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1. Introduction

In recent years, the field of artificial intelligence has made a revolutionary break-
through. The remarkable success of deep learning technologies and large language models
(LLMs) has fundamentally reshaped industrial processes and societal dynamics, with their
transformative impact poised to persist in the foreseeable future. With the continuous
advancement of artificial intelligence (Al) technology, edge intelligence has emerged as a
new research hotspot. Just as edge computing was developed to provide faster and lower-
latency computing and storage services compared to cloud computing, the development
of edge intelligence aims to deliver enhanced responsiveness and diversified intelligent
services that surpass conventional cloud-based Al implementations. The emergence of
edge intelligence not only brings Al closer to users but also provides new technological
support for the development and application of 5G and the Internet of things (IoT).

Specifically, edge intelligence will promote innovative development in the fields of 5G
and the IoT in at least three areas. First, it will reconstruct the network infrastructure of 5G
and the IoT, making networks more efficient and flexible, thereby laying a solid foundation
for intelligent network services and applications. Second, it will provide faster and more
diverse intelligent service support for end-user applications. While enhancing existing
applications with faster and more personalized intelligent services, it will also give rise to
numerous innovative intelligent applications, such as augmented reality and virtual reality.
Last but not least, edge intelligence offers new solutions to the technical challenges faced in
the era of 5G and the IoT, for example, how to efficiently and rapidly utilize large amounts
of local data generated by numerous loT devices in a manner that protects user privacy.

While demonstrating significant potential, edge intelligence remains at a nascent
stage of development, requiring in-depth academic research and continuous industrial
exploration. To promote the development of edge intelligence, this Special Issue aims to
gather recent advances and novel contributions in the areas of edge intelligence and edge
computing for 5G and IoT networks, providing opportunities for academic researchers
and industry practitioners to exchange creative ideas, with the goal of inspiring further
innovation and fostering progress in academia and industry.

2. An Overview of Published Articles

Yushan Li’s article (contribution one) proposes a novel edge-based programming
framework tailored for real-time and distributed applications in smart transportation
systems. It leverages the Elixir programming language, event-driven architecture (EDA),
and the MQTT protocol to enhance edge-based vehicular systems. The proposed solution
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enhances system performance, achieving low-latency response times, high-concurrency
handling, and fault tolerance, as demonstrated through two case studies: a traffic light
system and a cab dispatch prototype. This work not only contributes to the development
of more scalable and responsive applications in edge computing but also highlights the
potential of Elixir in smart transportation applications, paving the way for future research
and practical deployment in edge-based smart transportation systems.

The article by Gulshan Saleem et al. (contribution two) introduces Edge-Enhanced
TempoFuseNet, a cutting-edge framework designed to address the challenges of intelligent
multiclass video anomaly recognition in low-quality surveillance video analytics within
5G and IoT environments. It tackles issues such as poor lighting and low spatial resolu-
tion, which are prevalent in real-world surveillance scenarios. The framework employs
a two-stream architecture combining spatial and temporal feature extraction for anomaly
classification, enhanced by a super-resolution technique using a pre-trained StyleGAN
to improve video quality. This approach significantly outperforms traditional methods,
achieving high accuracy and low false positive rates in anomaly classification. The study’s
significance lies in its ability to enhance the effectiveness of video surveillance systems by
improving anomaly detection accuracy, thereby contributing to safer and more efficient
monitoring solutions in various applications such as security, traffic monitoring, emergency
response, and behavior analysis.

The third article is from Rafael Moreno-Vozmediano et al. (contribution three) and
presents a comprehensive study on intelligent resource orchestration for 5G edge infrastruc-
tures, addressing the challenges of efficiently managing and optimizing resource allocation
in distributed edge environments. The proposed Smart 5G Edge-Cloud Management
Architecture integrates predictive intelligence mechanisms for workload forecasting and
optimization algorithms to achieve the optimal allocation of virtual resources across mul-
tiple edge locations. By leveraging various prediction and optimization mechanisms,
such as Bayesian regression for CPU usage prediction and integer linear programming
for resource optimization, the study demonstrates significant improvements in managing
latency-sensitive and data-intensive applications. This work is significant as it provides a
robust framework for intelligent edge orchestration, which is crucial for the deployment of
next-generation applications in 5G networks.

The subsequent contribution to this Special Issue, written by Laura Lemmi et al. (con-
tribution four), addresses the challenge of ensuring service continuity for edge computing
applications in 5G mobile networks, particularly when workloads need to be migrated
between edge nodes due to user mobility. The authors propose an innovative solution that
integrates Segment Routing over IPv6 (SRv6) into the 5G core data plane alongside the
ETSI multi-access edge computing (MEC) architecture. This approach allows for lossless
workload migration by implementing a packet buffer as a virtual network function (VNF)
within the SRv6 framework, ensuring that services can follow users without packet loss
or significant performance degradation. The solution is evaluated through a small-scale
testbed and the results demonstrate higher scalability and flexibility compared to traditional
IPv6 routing methods, showcasing the potential of SRv6 for enhancing service continuity
in dynamic 5G edge environments.

The article by Daniel Christian Lawo et al. (contribution five) addresses the critical
issue of securing Internet Protocol security (IPsec) tunnels against future quantum com-
puting threats by integrating post-quantum cryptography (PQC) algorithms. The authors
experimentally demonstrate the first IPsec tunnel secured by PQC algorithms such as
Falcon, Dilithium, and Kyber, deploying it in two scenarios: a high-performance data
center environment with a 100 Gbit/s line rate throughput and a wireless client-to-cloud
connection with a 0.486 Gbit/s throughput. The significance of this work lies in its contribu-
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tion to the development of quantum-resistant communication protocols and the adoption
of PQC in existing network infrastructures, ensuring data security in the post-quantum era.

In the sixth article, Yi Liu and Leonard Barolli (contribution six) tackle the critical
issue of determining driver anxiety levels while driving, which is crucial for improving
driving safety and reducing the risk of traffic accidents. The authors propose an intelligent
system based on fuzzy logic to decide a driver’s anxiety level (DAL) by considering various
factors, including driving experience, in-car environment conditions, and driver age. They
implement and compare two fuzzy-based models (DALM1 and DALM2), with DALM2
incorporating an additional parameter related to accident anxiety state. The simulation
results show that the system can effectively evaluate driver anxiety levels, with DALM?2
providing more accurate assessments due to its more comprehensive rule base. The
study bridges the gap between psychological and technical approaches in assessing driver
anxiety, providing a reliable and explainable method for real-time driver state evaluation
in intelligent transportation systems.

The research from Youssef Abadade et al. (contribution seven) delves into the prob-
lems faced by diagnosing respiratory diseases, particularly asthma, using lung sound
recordings. Traditional diagnostic methods, such as the stethoscope, are limited by their
reliance on physician expertise, lack of recording functionality, and inability to filter out
noise. Cloud-based deep learning solutions, while effective, often face issues related to
latency, Internet dependency, and privacy concerns. To overcome these limitations, the
authors developed Tiny Machine Learning (TinyML) models that can be deployed on low-
power, cost-effective devices like digital stethoscopes to provide the real-time and accurate
diagnosis of respiratory conditions. They trained and compared three models—a custom
CNN, an Edge Impulse CNN, and a custom LSTM—using a publicly available lung sound
dataset. The custom CNN achieved the highest accuracy while maintaining moderate
resource usage. This work highlights the potential of TinyML to enhance healthcare by
providing accessible, reliable diagnostic tools, especially in remote and underserved areas.

Sakshi Patni and Joohyung Lee’s study (contribution eight) presents EdgeGuard, a
novel decentralized architecture that addresses the challenges of data privacy, security,
and resource management in Internet of Medical Things (IoMT) networks. It integrates
blockchain technology, federated learning, and edge computing to enable secure and
efficient medical resource orchestration. The key contributions include a federated learning
algorithm optimized for medical data with differential privacy, a lightweight blockchain
consensus mechanism tailored for IoMT devices to ensure data integrity and security, and
an adaptive edge resource allocation method to enhance system scalability and efficiency.
Additionally, it introduces an access control system based on smart contracts and a secure
multi-party computing protocol for model updates. EdgeGuard significantly improves
computational performance, data value, and privacy protection compared to existing
solutions. This work provides a comprehensive and effective framework for secure and
efficient medical data management in IoMT ecosystems.

The work from Niroshinie Fernando et al. (contribution nine) proposes a novel three-
tier architecture integrating edge, fog, and cloud computing to optimize the distributed
processing of IoT data. It addresses the challenges of task allocation across heterogeneous
resources, dynamic node availability, and maintaining Quality of Service (QoS) in a cooper-
ative edge—fog—cloud environment. The key contributions include the development of a
conceptual architecture for dynamic collaboration among these tiers, the implementation of
a real-world prototype, and empirical evaluations demonstrating significant improvements
in performance, energy consumption, and cost reduction. The results show speedups of up
to 7.5 times and energy savings of up to 80%, highlighting the effectiveness of the proposed
architecture in supporting the dynamic computational needs of IoT ecosystems.
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The last article published in this Special Issue is from Zhiyuan Wang and Yuezhi Zhou
(contribution ten), and it provides an in-depth analysis and evaluation of Intel Software
Guard Extension (SGX)-based Trusted Execution Environment (TEE) usage in IoT and edge
intelligence scenarios. It identifies and addresses key challenges, such as performance
overhead, I/O security issues, and vulnerability to side-channel attacks that arise when
applying a TEE in resource-constrained edge environments. The study conducts extensive
experiments on different SGX implementations, including those based on SGX SDK and
LibOS, revealing significant performance bottlenecks and security limitations. It offers
critical insights into the limitations of current SGX solutions and proposes performance
optimization strategies, such as optimizing enclave entry and exit, bypassing the kernel
for I/O operations, and adopting confidential virtual machine (CVM)-based TEE. These
contributions provide valuable benchmarks and practical approaches for improving the
integration of TEE in IoT and edge intelligence scenarios.

3. Conclusions and Future Directions

This Special Issue on “Edge Intelligence: Edge Computing for 5G and the Internet
of Things” showcases the latest advancements and contributions in leveraging edge com-
puting and edge intelligence to empower 5G and the Internet of Things. The articles
published in this Special Issue span a diverse range of topics, including innovative pro-
gramming frameworks, intelligent resource orchestration, secure communication protocols,
and healthcare applications. These studies collectively highlight how edge intelligence can
revolutionize network infrastructure, enable innovative applications, and address technical
challenges facing 5G and the IoT. Together, they underscore the potential and importance
of edge intelligence for the future of 5G and the IoT.

Edge intelligence is expected to transform the way we interact with cloud-based Al by
bringing Al closer to the end users, thereby enhancing the capabilities of 5G and the IoT.
Here are some key future directions for edge intelligence:

Enhanced Al Models for Edge Intelligence: Future research should focus on develop-
ing more efficient and lightweight Al models that can run on resource-constrained edge
devices without compromising performance. Techniques like model pruning, quantization,
and federated or split learning will be crucial in achieving this goal.

Interoperability and Standardization: As edge intelligence continues to evolve, there
will be a growing need for standardized protocols and frameworks to ensure interoperabil-
ity between different edge devices and platforms. This will facilitate seamless integration
and communication across diverse 5G and IoT ecosystems.

Security and Privacy: With the increasing adoption of edge intelligence, ensuring the
security and safety of intelligent systems and protecting user data privacy and security
will remain critical challenges. Future developments should focus on advanced encryp-
tion methods, secure communications, robust authentication mechanisms, and trusted or
confidential computing technologies to protect sensitive applications and data at the edge.

Dynamic and Scalable Resource Management: Future edge computing systems must
be scalable and capable of dynamically managing resources to handle varying workloads
and network conditions. Intelligent orchestration frameworks that can predict and optimize
resource allocation in real time will be crucial.

Human-Centric Applications: Developing edge intelligence solutions that prioritize
human-centric applications, such as healthcare, smart homes, and smart transportation sys-
tems, will be an important direction. These applications should leverage edge intelligence
to provide more intuitive, responsive, and user-friendly experiences.
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By addressing these future directions, edge intelligence can continue to evolve and
play a pivotal role in shaping the next generation of 5G and IoT technologies, ultimately
leading to a smarter, more efficient, and secure digital ecosystem.

Author Contributions: Conceptualization and methodology, Y.Z.; investigation and validation, X.C.;
writing—original draft preparation, Y.Z.; writing—review and editing, X.C.; All authors have read
and agreed to the published version of the manuscript.

Funding: This work was partially supported by the National Key Research and Development
Program of China under grant no. 2023YFB4503000.

Acknowledgments: We would like to thank all the authors who have contributed their papers to
this Special Issue. Their efforts and insights have enriched the content and scope of this collection.
Our sincere appreciation also goes to the dedicated reviewers, whose meticulous, responsible, and
impartial evaluation not only ensured the selection of high-quality papers but also provided insightful
feedback to enhance the quality of the submissions. We are honored to acknowledge the Editorial
Board of Future Internet for entrusting us with the role of Guest Editors for this Special Issue. Finally,
we would like to express our profound thanks to the Editorial Office staff for their rigorous oversight
and dedicated management, which have ensured the timely and successful publication of this
Special Issue.

Conflicts of Interest: The authors declare no conflicts of interest.

List of Contributions

1. Li, Y, Fujita, S. A Synergistic Elixir-EDA-MQTT Framework for Advanced Smart Transportation
Systems. Future Internet 2024, 16, 81. https://doi.org/10.3390/£i16030081.

2. Saleem, G.; Bajwa, U.; Raza, R.; Zhang, F. Edge-Enhanced TempoFuseNet: A Two-Stream
Framework for Intelligent Multiclass Video Anomaly Recognition in 5G and IoT Environments.
Future Internet 2024, 16, 83. https:/ /doi.org/10.3390/£i16030083.

3. Moreno-Vozmediano, R.; Montero, R.; Huedo, E.; Llorente, I. Intelligent Resource Orchestration
for 5G Edge Infrastructures. Future Internet 2024, 16, 103. https:/ /doi.org/10.3390/i16030103.

4. Lemmi, L.; Puliafito, C.; Virdis, A.; Mingozzi, E. SRv6-Based Edge Service Continuity in 5G
Mobile Networks. Future Internet 2024, 16, 138. https:/ /doi.org/10.3390/£i16040138.

5. Lawo, D.; Abu Bakar, R.; Cano Aguilera, A.; Cugini, F; Imafia, J.; Tafur Monroy, I.; Vegas Olmos,
J. Wireless and Fiber-Based Post-Quantum-Cryptography-Secured IPsec Tunnel. Future Internet
2024, 16, 300. https:/ /doi.org/10.3390/£i16080300.

6.  Liu, Y,; Barolli, L. An Intelligent System for Determining Driver Anxiety Level: A Comparison Study
of Two Fuzzy-Based Models. Future Internet 2024, 16, 348. https:/ /doi.org/10.3390/£i16100348.

7. Abadade, Y.; Benamar, N.; Bagaa, M.; Chaoui, H. Empowering Healthcare: TinyML for Precise
Lung Disease Classification. Future Internet 2024, 16, 391. https:/ /doi.org/10.3390/£i16110391.

8. Patni, S.; Lee, J. EdgeGuard: Decentralized Medical Resource Orchestration via Blockchain-
Secured Federated Learning in IoMT Networks. Future Internet 2025, 17, 2. https://doi.org/10
.3390/£i17010002.

9. Fernando, N.; Shrestha, S.; Loke, S.; Lee, K. On Edge-Fog-Cloud Collaboration and Reaping Its
Benefits: A Heterogeneous Multi-Tier Edge Computing Architecture. Future Internet 2025, 17,
22. https://doi.org/10.3390/£i17010022.

10. Wang, Z.; Zhou, Y. Analysis and Evaluation of Intel Software Guard Extension-Based Trusted
Execution Environment Usage in Edge Intelligence and Internet of Things Scenarios. Future
Internet 2025, 17, 32. https:/ /doi.org/10.3390/£i17010032.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.



()
L]

a2 .
= “‘J future internet

Article

A Synergistic ElixirrEDA-MQTT Framework for Advanced
Smart Transportation Systems

Yushan Li ? and Satoshi Fujita »>*

Citation: Li, Y.; Fujita, S. A
Synergistic Elixir-EDA-MQTT
Framework for Advanced Smart
Transportation Systems. Future
Internet 2024, 16, 81.

https:/ /doi.org/10.3390/£i16030081

Academic Editors: Yuezhi Zhou and
Xu Chen

Received: 20 January 2024
Revised: 22 February 2024
Accepted: 25 February 2024
Published: 28 February 2024

Copyright: © 2024 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

Graduate School of Advanced Science and Engineering, Hiroshima University,

Higashi-Hiroshima 739-0046, Japan; yushanli433@gmail.com

Department of Information Engineering, Hiroshima University, Higashi-Hiroshima 739-0046, Japan
*  Correspondence: satoshi.fujita.g@gmail.com

Abstract: This paper proposes a novel event-driven architecture for enhancing edge-based vehicular
systems within smart transportation. Leveraging the inherent real-time, scalable, and fault-tolerant
nature of the Elixir language, we present an innovative architecture tailored for edge computing. This
architecture employs MQTT for efficient event transport and utilizes Elixir’s lightweight concurrency
model for distributed processing. Robustness and scalability are further ensured through the EMQX
broker. We demonstrate the effectiveness of our approach through two smart transportation case
studies: a traffic light system for dynamically adjusting signal timing, and a cab dispatch prototype
designed for high concurrency and real-time data processing. Evaluations on an Apple M1 chip
reveal consistently low latency responses below 5 ms and efficient multicore utilization under load.
These findings showcase the system’s robust throughput and multicore programming capabilities,
confirming its suitability for real-time, distributed edge computing applications in smart transporta-
tion. Therefore, our work suggests that integrating Elixir with an event-driven model represents
a promising approach for developing scalable, responsive applications in edge computing. This
opens avenues for further exploration and adoption of Elixir in addressing the evolving demands of
edge-based smart transportation systems.

Keywords: Elixir; edge computing; event-driven architecture; concurrency; smart transportation

1. Introduction
1.1. Background

With the rapid development of Internet of Things (IoT), an exponentially increasing
number of smart devices are being connected, generating massive amounts of real-time
data that need to be processed instantly. Traditional cloud computing architectures, relying
on centralized data centers, are insufficient to meet the low-latency and location awareness
requirements of many emerging IoT applications [1]. This has led to growing interest in
edge computing, which pushes computation and data storage closer to the location where
the data are generated. By processing data at the edge, latency can be reduced significantly
while also decreasing bandwidth usage [2].

The global market for the Internet of Things was estimated to be worth around USD
182 billion in 2020 [3], and it is anticipated to triple in size by 2030, reaching over USD
621 billion. At the same time, according to a report by Grand View Research, the global
edge computing market size is expected to reach USD 43.4 billion by 2027 [4], driven by the
increasing adoption of IoT devices and the need for real-time data analysis and processing
at the network edge.

However, existing edge computing solutions predominantly employ imperative pro-
gramming languages like C/C++, Java, and Python, which incur complexity in developing
and maintaining large applications. The tight coupling between components, lack of fault-
tolerance mechanisms, and single-threaded execution models in these languages make
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them ill suited for the dynamic and distributed nature of edge computing systems. To
overcome these limitations, we propose the use of Elixir, a modern functional programming
language built on the robust Erlang Virtual Machine, for building highly available and
fault-tolerant applications for edge computing.

In our previous work [5], we conducted experiments comparing an Elixir-based mes-
sage broker with an equivalent Rust implementation under different network conditions.
The results validated Elixir’s resilience and low latency, confirming its potential for edge
computing deployments. Building on these findings, in this paper, we propose a novel
programming framework in the edge computing paradigm. The framework combines the
benefits of Elixir language, and event-driven architecture, with MQTT protocol. We demon-
strate two use cases in the field of smart transportation applications: a traffic light system
that optimizes traffic flow in the intersection, and a cab dispatch system that coordinates
taxis and passengers based on real-time location data. The evaluation of the cab dispatch
system shows the low latency and good performance of the system.

In this paper, we will start our exploration with the introduction. Subsequently, we
will provide the essential properties of the language we use in Section 2. In Section 3, we
will introduce our architecture design in detail. Two specific case studies are demonstrated
in the next section. We next discuss the details of the prototype system in Section 5. Then,
Section 6 is provided as the evaluation part. To conclude, we synthesize the key findings
and implications of our research in the last section.

This paper is an extended version of a paper [5] presented at CANDAR 2023. The
difference to the conference version is summarized as follows: (1) we add recent papers
concerned with smart transportation systems and the application of event-driven architec-
ture in smart cities as related work; (2) we add event-driven architecture as an important
component in our proposed framework, and utilize it in a smart transportation application;
(3) in the evaluation, we add various kinds of experiments to demonstrate the overall
performance of our system in smart transportation scenarios; and (4) add a traffic light
system for supplement the explanation for our proposed framework.

1.2. Related Research

This subsection overviews related research on this study, focusing on three research areas:
event-driven architecture (EDA), smart transportation, and Elixir/Erlang-based systems.

1.2.1. Related Work Concerned with EDA

The adoption of event-driven architecture (EDA) in the development of smart cities
has become a widely applied concept in recent research. This trend highlights the versatile
application of EDA across various fields, demonstrating its potential to address a broad
spectrum of challenges within the smart city paradigm. The diversity observed in these
studies reflects EDA’s flexibility and its capability to enhance systems in multiple domains,
from healthcare, which directly impacts human health and safety, to urban traffic manage-
ment, aiming at optimizing flow and increasing transportation efficiency. Although these
approaches differ in their technical implementations, they share a core objective: leveraging
advanced technology to improve human life, whether through safeguarding human health
or promoting environmental sustainability.

This work by Amir Rahmani, Babaei, and Souri [6] introduced an event-driven IoT
architecture for data analysis of reliable healthcare applications, including context, event,
and service layers. Furthermore, the study presents complex event processing (CEP) as an
innovative solution, integrating automated intelligence within the event layer to enhance
the system’s responsiveness and decision-making capabilities. This contrasts with our
approach, which integrates Elixir and MQTT for an edge-based programming framework.
While CEP offers advanced data processing capabilities ideal for healthcare applications,
our methodology leverages Elixir’s robust concurrency and MQTT’s efficient message
handling, tailored to the dynamic nature of smart transportation systems. This divergence
highlights the adaptability of event-driven architectures across varying domains. The next
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work by Behnam Khazael et al. [7] also utilized complex event processing (CEP) systems.
Differently, it introduced Geo-TESLA, an advanced complex event processing language
tailored for smart city applications, enhancing the detection and reporting of complex
events within urban settings by leveraging spatial data types and operations.

Another work that combines event-driven architecture and smart city is the work
by Garcia Alvarez, Manuel, Javier Morales, and Menno-Jan Kraak [8]. They offered an
approach for spatiotemporal capabilities in information services for smart cities and de-
veloped a reference architecture of event-driven applications. This work demonstrates the
feasibility, performance, and scalability of event-driven applications in real-time processing
and detecting geographic events, leveraging IoT technologies. Xiao Changjiang [9] offered
an event-driven focusing service (EDFS) method that uses cyberphysical infrastructures for
emergency response in smart cities.

1.2.2. Related Work Concerned with Smart Transportation

With the development of smart cities, the integration of edge computing technologies
plays an important role in transforming urban infrastructure. The adoption of edge com-
puting not only facilitates real-time data processing at the network’s edge, enhancing the
efficiency and responsiveness of smart transportation applications, but also opens up new
avenues for addressing complex challenges inherent in urban environments. This complex-
ity is underscored by both the comprehensive survey by Saeik, Firdose et al. [10] on task
offloading in edge and cloud computing and the detailed examination of resource schedul-
ing strategies in edge computing by Luo et al. [11]. These works illustrate the diverse
approaches and theoretical foundations developed to optimize task offloading processes
and resource scheduling across different edge computing scenarios. The approach also
aligns with the broader objectives of improving traffic flow, enhancing vehicular communi-
cation, and ensuring safety, thus contributing to the overall efficiency and sustainability of
urban living.

The next part is within the smart transportation of edge computing realm. The first
related work discussed a decision support method of event-driven architecture for a traffic
management system [12]. This paper illustrates how event-driven architecture (EDA) and
complex event processing are used for real-time processing and analysis of extensive data
streams generated by sensors and vehicles. The core objective is real-time monitoring
and control of traffic flow, exemplified in a smart traffic management system prototype in
Bilbao, Spain. While the paper effectively demonstrates the use of event-driven architecture
for traffic management, our research focuses on leveraging edge computing technologies.
This approach significantly reduces communication latency and real-time responses, which
is a crucial aspect in smart transportation systems. Wei-Hsun Lee et al. proposed a novel
design and implementation of a smart traffic signal control (STSC) system that enhances
vehicular communication and traffic management [13]. We were inspired by the design of
the smart traffic signal control system; however, we used a different solution that combines
Elixir and event-driven architecture to handle the vehicular communication in real time.
The work by Ke Ruimin [14] focused on edge computing for real-time near-crash detection
in smart transportation. It used IoT devices like Nvidia Jetson TX2 for processing video
streams to identify near-crash events.

The research highlighted above offers diverse solutions and implementations for
smart transportation systems. Differently, our study introduces a more novel approach by
leveraging an edge-based framework using Elixir, combined with event-driven architecture
and MQTT, to efficiently handle the real-time processing of huge volumes of data in
intelligent transportation systems.

1.2.3. Related Work Concerned with Elixir/Erlang-Based Systems

In addition to research on event-driven architecture and smart transportation, there
is also compelling evidence regarding the study of Erlang language compatibility and
hardware adaptability in IoT systems. GRiSP is a hardware platform and a bare-metal
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Erlang virtual machine designed for real-time embedded systems. Several research studies
have attempted to build IoT systems using GRiSP. The papers [15,16] proposed a framework
called Achlys, to realize general-purpose edge computing using only nodes on a sensor
network without relying on gateways or connections to cloud servers. It offers great
suitability for distributed applications in IoT edge networks Hera [17] is a Kalman-filter-
based sensor fusion framework whose application programs are written in Erlang running
on GRiSP. With this framework, high-level processing for asynchronous and fault-tolerant
sensor fusion can be realized directly at the edge of the IoT network. Since GRiSP is bare
metal Erlang, it has full compatibility with Elixir which runs on BEAM. We contemplate
deploying GRiSP in actual environments in the subsequent phase of our research.

2. Elixir Programming Language

This section identifies three critical properties for implementing robust edge comput-
ing frameworks: fault tolerance, real-time processing, and support for nondisruptive operation.
Fault tolerance ensures continuous operation despite individual component failures. Real-
time processing guarantees timely data processing within specified latency constraints. The
nondisruptive operation allows updates and maintenance without service interruptions.
This section analyzes how Elixir, leveraging its foundation in Erlang, successfully embodies
these crucial properties.

2.1. Erlang: A Foundation for Resilience

Erlang, introduced in 1986 by Ericsson, is a functional programming language de-
signed for concurrent systems with the “run forever” philosophy [18]. This focus on robust,
nonstop systems makes Erlang a natural choice for edge computing.

Several key features contribute to Erlang’s suitability:

¢  Concurrent processes: Erlang runs multiple lightweight processes on the Erlang
Virtual Machine (BEAM). Individual process failures are handled by automatic termi-
nation and restart, ensuring system resilience.

e  Efficient resource allocation: Erlang’s process scheduling ensures timely responsive-
ness for real-time tasks. Processes can migrate between execution queues, minimizing
wait times and optimizing message exchange.

*  Hot code loading: Updates can be applied without service interruptions via hot code
loading, enabling nondisruptive operation and continuous maintenance.

These features demonstrate Erlang’s strength in building reliable and responsive
systems, making it a valuable foundation for edge computing frameworks.

2.2. Elixir: Building on Erlang’s Legacy

Elixir, built on top of the BEAM virtual machine, inherits Erlang’s core strengths.
BEAM compiles Elixir code to bytecode for efficient execution. Lightweight processes
and message-passing communication foster concurrency and fault tolerance, as failures
in one process do not affect others. This inherent resilience is crucial for edge environ-
ments where reliability is paramount. Unlike imperative languages, like Java and C++,
that rely on shared memory and heavyweight threads, Elixir’s message-passing model
avoids complex synchronization issues and performance bottlenecks associated with shared
resource contention.

Beyond inheriting Erlang’s strengths, Elixir offers additional advantages for building
scalable and maintainable edge applications:

¢  Functional programming paradigm: Elixir encourages a side-effect-free programming
style, where functions produce outputs solely based on their inputs, simplifying code
comprehension and testing.

¢ Powerful tools and libraries: Elixir provides a rich ecosystem of libraries and tools
designed for building robust and maintainable applications.
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These combined benefits make Elixir a compelling choice for developing reliable and
performant edge computing frameworks. The next subsection delves deeper into Elixir’s
programming model and its specific advantages for edge development.

2.3. Elixir’s Programming Model

This subsection examines key aspects of Elixir’s programming model that contribute to its
suitability for developing edge computing frameworks: polymorphism, meta-programming,
and code conciseness.

2.3.1. Polymorphism via Protocols

Both Elixir and Erlang achieve polymorphism through pattern matching and function
dispatch. However, Elixir introduces the powerful concept of profocols, enhancing flexibility
and intuitiveness. Protocols define a set of functions that any data type can implement,
enabling generic operations for different types and implementations. Elixir dynamically
recognizes and calls the corresponding specific implementation, demonstrating inherent
polymorphism. Additionally, protocols can have “fallback to Any” mechanisms, providing
default implementations for unknown types. This promotes code reusability and simplifies
handling heterogeneous data structures.

2.3.2. Powerful Meta-Programming Capabilities

Meta-programming, the ability to manipulate and generate code at runtime [19], em-
powers Elixir development. Compared to Erlang, Elixir offers a more comprehensive and
user-friendly meta-programming toolkit through its macro system. This system provides
higher-level abstractions and richer functionalities, including module metadata, annota-
tions, reflection, and code evaluation. Accessing the abstract syntax tree (AST) through
macros facilitates powerful code transformations and generation, leading to increased
development efficiency and improved code quality.

2.3.3. Concise and Expressive Functional Code

Elixir’s functional features contribute significantly to code conciseness. Functional
constructs like immutability and explicit function definitions enhance program clarity and
control flow visualization. This is particularly beneficial for edge computing applications,
where compact and understandable code is crucial for efficient execution and debugging.
Furthermore, conciseness reduces development time and complexity, making Elixir a
compelling choice for rapid development cycles.

2.4. Summary: Why Elixir for Edge Computing?

This section has identified three key features of Elixir’s programming model that
make it ideally suited for edge computing applications: robust polymorphism and protocol
mechanisms, powerful meta-programming capabilities, and inherent code conciseness
through functional idioms. These features, coupled with Elixir’s rapidly growing library
ecosystem, solidify its position as a top choice for building reliable and efficient edge
computing frameworks.

3. Architecture Design

This section outlines the key principles and components of the proposed architecture
for smart transportation edge computing. Details of the prototype implementation based
on this architecture are presented in the succeeding sections. Our envisioned system
continuously collects and stores sensor data from urban areas for efficient processing
and response to user requests. It demands scalability, real-time functionality, and fault
tolerance, aligning perfectly with the capabilities of the Elixir language, as discussed in the
previous section.

The proposed architecture comprises multiple interacting components, designed for
specific functionalities. Asynchronous message passing with MQTT for event transport and
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Elixir for event processing facilitates concurrent execution and fault isolation. Specifically,
Elixir’s lightweight concurrency and distributed processing handle asynchronous events in
a scalable manner (Section 3.2), while MQTT’s publish-subscribe messaging distributes
events across service components (Section 3.3).

3.1. Event-Driven Architecture for Edge Computing

Event-driven architecture (EDA) [20] centers around event production, detection,
consumption, and reaction, where “event” signifies a significant state change. EDA ex-
cels in systems requiring real-time operations, asynchronous communication, and high
scalability [20,21]. While traditional EDA often centralizes event handling [22,23], EDA
for edge computing, like smart transportation, requires optimization for low-latency and
local data processing to minimize network overhead and response time. In other words,
edge computing tailors EDA to address its inherent challenges: real-time data processing,
resource-constrained environments, and distributed computational nodes.

Prominent EDA systems include Kafka Streams [24], Azure Event Grid [25], and
RabbitMQ [26]. Kafka Streams excels in scalability and fault tolerance but might not fit
resource-constrained environments due to its complex setup. Azure Event Grid shines
within the Azure ecosystem, providing managed autoscaling. RabbitMQ, known for its
adaptability, supports varied protocols but can require nuanced configuration.

3.2. Key Components in the Proposed EDA-MQTT Framework

The proposed framework using EDA and MQTT broker for smart transportation
comprises five key components, as shown in Figure 1.
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Figure 1. The components in the proposed framework.

e EMQX Broker: The core messaging hub facilitating event-driven communication.
It receives events from various clients (user interface client, vehicle client, traffic
management service, location and infrastructure monitoring service) and is responsible
for accurately forwarding these messages to other clients that have subscribed to them.

¢  User Interface Client (edge computing component): Serves as the event producer
and event consumer. It represents the interface for all end-users, from pedestrians
to vehicle operators. It publishes events like traffic congestion reports and listens to
updates like route optimizations or transportation schedules.
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*  Vehicle Client (edge computing component): Mainly serves as the event producer.
It caters to all transportation modes, from cars to buses in the edge. This compo-
nent handles transport-specific events like maintenance alerts, vehicle statuses, and
location data.

¢  Traffic Management Service (hybrid cloud and edge computing component): This
service functions as a critical decision-making engine within our framework, operating
both at the edge and in the cloud to leverage the strengths of each environment.

- Edge Deployment: At the edge, the Traffic Management Service focuses on real-
time data processing and swift decision making. This proximity to the data
sources allows for immediate responses to dynamic traffic conditions, such as
adjusting traffic signals to alleviate congestion or responding to unexpected
incidents like accidents or road closures. The edge-based component ensures
minimal latency and maximizes the responsiveness of the traffic system.

—  Cloud Deployment: In the cloud, the Traffic Management Service undertakes a
more comprehensive role. Utilizing the cloud’s extensive computational power
and vast data storage capabilities, it conducts complex analyses of traffic patterns,
predictions of future trends, and development of long-term traffic strategies. The
cloud-based service also performs validation and verification of the decisions
made at the edge, ensuring overall system accuracy and reliability.

*  Location and Infrastructure Monitoring Service (cloud computing component): This
service continuously monitors events published by edge servers, facilitating a global
analysis of the accumulated data. It rapidly responds to and computes related services,
integrating insights from across the network. Additionally, this service is responsible
for storing data, ensuring that valuable information is retained for long-term analysis
and strategic planning.

Compared to other architectural paradigms, our EDA stands out for its event-focused
and asynchronous nature. It contrasts with synchronous patterns like model-view-controller
(MVC) and modularity-emphasizing microservices, which can sometimes involve syn-
chronous calls. Our architecture also shares parallels with the event sourcing pattern but
emphasizes reactive event handling rather than mere event logging.

Capitalizing on EDA’s inherent strengths and MQTT protocol, our architecture strives
for scalability, instantaneous responsiveness, and fault resilience, making it suitable for the
ever-evolving needs of smart transportation systems.

3.3. MQTT for Event Transport in Edge Computing

Edge computing necessitates efficient communication protocols for real-time data
processing, resource-constrained environments, and seamless device/sensor interactions.
Choosing the right protocol significantly impacts component interaction, latency, band-
width utilization, scalability, and security—all crucial factors in edge computing.

Given these demands, MQTT (Message Queuing Telemetry Transport) [27] emerges
as a prime candidate. Its lightweight footprint aligns well with the resource limitations
of edge devices. Built on a publish-subscribe model, MQTT inherently facilitates event-
driven communication, where events are transported through clients subscribing and
publishing messages to the broker. Moreover, MQTT offers various quality of service (QoS)
levels, ensuring reliable message delivery. This combination of features makes MQTT a
well-balanced choice for edge computing requirements.

The following discussion details the rationale behind selecting MQTT for our pro-
posed architecture.

3.3.1. Protocol Comparison for Edge Computing

CoAP (Constrained Application Protocol), AMQP (Advanced Message Queuing Proto-
col), MQTT, and HTTP (HyperText Transfer Protocol) are popular messaging protocols for
IoT and edge computing [28]. While HTTP boasts widespread support and robustness, its
resource demands outweigh its benefits in resource-constrained edge environments. Both

12
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CoAP and MQTT excel in low-bandwidth and resource-constrained settings, even run-
ning on 8-bit microcontrollers with minimal memory. However, MQTT provides superior
throughput and more reliable data delivery options through its QoS levels across low- and
high-traffic scenarios. In contrast, AMQP, although adept at complex messaging patterns,
falls short in edge computing due to its larger header size and increased complexity [29].

3.3.2. Leveraging MQTT 5.0 for Scalability and Feature Enhancement

The introduction of MQTT 5.0 significantly strengthens its scalability and caters to
both large-scale systems and small clients. Features like shared subscriptions and message
expiry enhance message management and distribution in large deployments [27]. Session
and message expiry intervals offer greater control over session states and message lifetimes,
optimizing resource usage, especially in resource-constrained environments. Additionally,
MQTT 5.0 introduces new message properties like content type, correlation data, and user
properties, enriching the contextual information available for complex data processing and
real-time decision making in edge computing systems.

3.3.3. Elixir and MQTT: A Symbiotic Synergy for Edge Computing

Compared to other languages, Elixir’s tight integration with MQTT offers robust
concurrency processing capabilities. Elixir’s lightweight process model and extensive
use of asynchronous messaging enable efficient multicore resource utilization, leveraging
parallel computing power. Each MQTT connection and session can map to an individual
Elixir process, transparently allocated across CPU cores by the scheduler. This one-to-one
mapping allows Elixir to handle massive concurrent MQTT connections with superior
performance, showcasing its parallel processing capabilities. Studies have demonstrated
that Elixir MQTT brokers can support millions of connections with significantly lower
latency than other languages.

Furthermore, Elixir’s distributed capabilities align seamlessly with MQTT clustering.
Through named process registration, Elixir nodes can easily collaborate to construct a
geographically distributed, logically unified large-scale MQTT cluster. This cluster auto-
matically load-balances and provides redundancy for fault tolerance, effortlessly managing
vast numbers of users and messages.

Finally, Elixir’s functional characteristics offer succinct pattern matching capabilities
for handling MQTT events, reducing code complexity. Mature MQTT client/server libraries
in the Elixir ecosystem expedite development.

In conclusion, Elixir’s tight integration with MQTT establishes a powerful program-
ming framework, synergistically combining their strengths to achieve optimal performance
and functionality in edge computing applications.

4. Two Case Studies of the Proposed Framework

This section presents two case studies demonstrating the efficacy and versatility of the
proposed framework within the domain of smart transportation.

4.1. Traffic Light System for Smart Transportation
4.1.1. Motivation and Approach

Traditional schedule-driven traffic light systems often struggle to adapt to dynamic
traffic conditions, leading to unnecessary delays and congestion. To address these limi-
tations, we propose an event-driven architecture (EDA) for adaptive traffic light control
within the context of smart transportation. This innovative approach leverages real-time
data from diverse sources to dynamically adjust signal timings, potentially minimizing
delays and promoting smoother traffic flow compared to fixed-schedule systems [30].

Our proposed system builds upon existing advanced traffic control systems (ATCSs)
by incorporating an event-driven paradigm. This enables seamless communication and
response between various system components acting as both event producers and con-
sumers. Real-time events such as pedestrian crossings, accidents, and congestion can be
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efficiently communicated and acted upon, empowering the system with rapid adaptability
to changing traffic conditions. Elixir’s inherent scalability and concurrency, as discussed in
previous sections, further contribute to the system’s responsiveness and effectiveness in
handling dynamic traffic patterns.

In addressing the specific scheduling challenges of traffic light signals, our approach
incorporates the Oldest Arrival First (OAF) algorithm [31]. The OAF algorithm, known
for its efficiency in vehicular traffic scheduling, utilizes real-time position and speed data
of individual vehicles. By focusing on isolated traffic intersections, the OAF algorithm
aims to minimize delays, enhancing the overall fluidity of traffic movement. By integrating
real-time data received from sensors into this algorithm, we can dynamically adjust the
scheduling of traffic lights based on real-time analysis. The output of the OAF algorithm,
combined with our EDA’s responsive policies, allows us to effectively address constantly
changing traffic events.

The OAF algorithm’s unique capability to process per-vehicle data enables us to
dynamically adjust traffic signals in response to immediate traffic conditions. The synergy
between the OAF algorithm and our EDA forms the foundation of our proposed smart
transportation system.

4.1.2. System Architecture and Implementation

We demonstrate the effectiveness of our approach using a busy crossroads as a testbed,
as shown in Figure 2. Sensors strategically placed at the intersection act as event producers,
continuously capturing data on vehicle presence, speed, and pedestrian movements. These
data points are then transmitted as event messages to roadside units (RSUs) acting as event
consumers. The RSUs handle real-time decision making and adjustments based on the
received information.

Accident detected

ublish message (((0))) Publish message
N »

Roadside Unit Roadside Unit

Centralized cloud
systems

Vehicle 1

Upload to the cloud

Figure 2. Typical use case of a traffic light system.

The core functionality revolves around event propagation and response:

*  When congestion or an accident is detected, the closest RSU publishes a unique event
message to the MQTT broker.

¢  This triggers downstream RSUs on the same street to receive the message and dynam-
ically calculate new route plans for affected vehicles, potentially miles away from the
initial event.

*  The edge server, running on Elixir, executes immediate control actions based on the
updated route plans.

*  Centralized cloud systems oversee the broader traffic network and initiate larger
adjustments when necessary.

Elixir plays a crucial role in ensuring data integrity and consistency throughout this
process. Its functional programming paradigm, featuring immutable data structures,
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safeguards data from inadvertent modifications. For instance, an intersection sensor’s
real-time vehicle density data are represented as an immutable structure shared with
two processes: one analyzing city-wide traffic flow and another managing the specific
intersection. If the centralized analysis process predicts modifications elsewhere based on
this shared data, it does not alter the original structure. This ensures that the intersection
control process operates with unaltered data, maintaining consistent and accurate signal
timing adjustments based on real-time conditions.

4.1.3. Beyond Traffic Flow Optimization

The benefits of this system extend beyond optimized traffic flow and reduced de-
lays. By minimizing stop-and-go driving, a major contributor to urban vehicle emissions,
the system indirectly contributes to a lower carbon footprint for smart transportation
systems [32]. This aligns with sustainability goals and leads to improved air quality for
urban residents.

4.2. Cab Dispatch System

This subsection presents our second case study: an event-driven cab dispatch system
designed for edge computing environments. Such environments demand systems capable
of efficiently handling diverse and bursty data streams, effectively utilizing multicore
architectures, and dynamically adapting to evolving sensor networks. Our prototype
system tackles these challenges and showcases the suitability of Elixir for edge computing
applications through its robust concurrency and real-time data processing capabilities.

Figure 3 provides an overview of the system architecture. The detailed implementation
aspects of this architecture are discussed in the subsequent section. User-facing passenger
and driver applications act as event producers. Passengers initiate ride requests, while
drivers simulate location updates, both publishing lightweight messages to a central MQTT
broker. A dedicated Elixir-based dispatch service acts as an event consumer, subscribing
to these messages and dynamically assigning drivers to passengers based on real-time
location and predefined rules.
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Driver Application Passenger Application
Figure 3. Utilization of the publish/subscribe model in the cab dispatch system.

Elixir’s strengths excel in this context, enabling the system to meet the demands of
edge computing:

e  Lightweight process model: Efficiently manages high concurrency arising from nu-
merous passengers and drivers, eliminating performance bottlenecks.

*  Asynchronous messaging: Facilitates real-time responses, ensuring a quick and effi-
cient dispatching experience with minimal latency.

By leveraging these key advantages, our prototype demonstrates the effectiveness of
Elixir in latency-sensitive edge computing applications. It paves the way for wider adoption
of Elixir in similar scenarios, particularly those requiring robust real-time processing and
reliable service delivery.
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5. Details of Prototype System
5.1. Event-Driven Design and Components

Figure 4 delves deeper into the event-driven design of the cab dispatch system, high-
lighting its core components and interactions. In this prototype system, events, event
producers, and event channels are implemented as follows.

Events ‘ Events _J

Event Producer Event Channel Event Consumer
Producer A MQTT Consumer A
Broker
Producer B Consumer B
Event loop
Producer C Event Consumer C

|— Publish —T T— Subsribe J

Figure 4. Workflow of the event-driven architecture for the smart transportation system.

5.1.1. Events

The system operates on a foundation of defined events, representing significant occur-
rences within the system’s lifecycle. Core event types include the following:

* CabRequested: Initiated by a passenger application, signifying a ride request with
details like passenger ID and destination.

*  CabRequestAccepted: Emitted by a driver upon accepting a ride request, confirming
their intent to fulfill the request.

¢  CabArrived: Indicates the driver’s arrival at the passenger’s pickup location.

e  TripStarted: Marks the commencement of the passenger’s journey with the cho-
sen driver.

¢  TripEnded: Signifies the completion of the trip upon reaching the desired destination.

Additional event types can be readily incorporated to cater to future needs and system
enhancements. These events are structured data payloads published to the MQTT broker,
facilitating efficient and decoupled communication. Upon receiving an event, the dispatch
service transitions the corresponding request through its state machine, moving it from
pending to assigned, and, subsequently, through other relevant states. For instance, a
CabRequest event triggers the transition from pending to assigned, while a TripEnded
event marks the final state. This explicit state management allows for clear observation and
control of the system’s evolution.

5.1.2. Event Producers

Proactive entities within the system act as event producers, encapsulating complex
backend details and emitting only meaningful events. Different entities can assume the role
of producer depending on the context. In our case, the passenger and driver applications
serve as primary producers:

*  Passenger application: Publishes CabRequested events upon initiating ride requests.

*  Driver application: Publishes CabRequestAccepted events when accepting ride re-
quests and periodically generates LocationUpdate events to broadcast their current lo-
cation.

This producer-driven approach enables consistent event exposure, simplifying the
integration of new data sources and promoting system flexibility.
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5.1.3. Event Channels

The MQTT broker serves as the system’s central event channel, providing reliable and
persistent message transmission between producers and consumers. It acts as a message
broker, actively listening for incoming connections, requests, and messages. When a pro-
ducer publishes an event, the broker filters, validates, and queues it for replayable delivery,
ensuring message integrity and resilience. This asynchronous dispatching facilitates decou-
pled services and enhances the overall effectiveness of the event-driven architecture. The
broker’s event loop architecture efficiently distributes millions of events per second across
geographically distributed edge devices, enabling real-time responsiveness and scalability.

5.2. Cab Dispatch Scenario: A Sequence of Events

The cab dispatch scenario unfolds through a series of orchestrated interactions between
key system components: the passenger application, MQTT broker, dispatch service, and
driver application. Figure 5 visualizes these interactions using a UML sequence diagram,
highlighting the chronological flow of events:

Passenger

Application MQTT Broker Dispatch Service Driver Application

1. Publish Request
»

Ll

2. Broadcast Request
Subscribe to Topic S >

3. Assign Driver

Ll

P 4. Accept Request

<

5. Notify Acceptance

T
1
1

|._______

7. Broadc:ast Arrival

< ------------------- T T TS TSI T T T T T
9. Broadcast Start
hSEREEEEEEEEEEEEEEEEE RREEEEEEEEEEEEEEERED
1. Broadcast End
IR E TR R R EEE LR

12 Notify Availability

Figure 5. The sequence diagram of the cab dispatch system.

1.  Cab Requested: Initiated by the passenger application, this event signifies a ride
request and includes details like passenger ID and desired destination. The passenger
application publishes this event to the MQTT broker and subscribes to the topic for
receiving cab acceptance notifications.

2. Cab Request Broadcasted: Upon receiving the CabRequested event, the MQTT broker
acts as a message intermediary, broadcasting it to all subscribed entities, including the
dispatch service and driver applications.

3. Driver Assigned: The dispatch service receives the broadcasted request and, applying
predefined rules like driver proximity and availability, assigns the request to the most
suitable driver.
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4. Cab Request Accepted: The assigned driver acknowledges the request by publishing
a CabRequestAccepted event to the MQTT broker.

5. Acceptance Notification Broadcasted: Similar to the request, the broker relays the
acceptance notification to all subscribers, including the passenger application, con-
firming the assigned driver.

6. Cab Arrived: The driver application simulates the driver’s journey to the passenger’s
location and, upon arrival, publishes a CabArrived event to notify the system.

7. Arrival Notification Broadcasted: The broker forwards the arrival notification to
subscribed entities, informing the passenger that the driver has arrived at the pickup
point.

8.  Trip Started: Once the passenger boards the cab, the driver application publishes a
TripStarted event to mark the commencement of the trip.

9.  Trip Start Notification Broadcasted: The broker disseminates the start notification,
informing all subscribers, including the passenger application, that the trip has begun.

10. Trip Ended: Upon reaching the destination, the driver application publishes a TripEnded
event to signify the completion of the trip.

11. Trip End Notification Broadcasted: The broker broadcasts the final notification to all
subscribers, informing them of the trip’s completion.

12.  Cab Availability Notification: The driver application updates its status to available by

notifying the dispatch service, allowing it to assign subsequent ride requests.

This sequential flow exemplifies the event-driven nature of the system, where indi-

vidual events trigger specific actions and state transitions, orchestrating the entire cab
dispatch process.

5.3. Basic Components
5.3.1. Driver Application

The Driver application, designed for edge devices, continuously updates the driver’s

location to simulate real-time movement. In the experimental evaluation described in the
next section, we achieve this by generating random geographical coordinates at regular
intervals. The application comprises two primary modules:

¢ Location Update Module: Generates random location updates for each driver, mim-
icking continuous position changes through periodic updates. Listing 1 demonstrates
a code snippet showcasing this periodic location update functionality.

e MQTT Publishing Module: Publishes location updates as JSON-encoded messages to
the MQTT broker under the driver’s unique topic. Additionally, it synchronizes all sim-
ulated taxis’ statuses and publishes pickup requests when drivers become available.

Listing 1. Updating the driver’s current location in real time.

def update_location(driver_id) do
2 :timer.sleep (1000)

location = generate_random_location ()

6 :ok = publish_location(driver_id, location)

8 update_location(driver_id) # Keep the loop going
9 | end

1 |defp generate_random_location() do
12 %{latitude: rand(0..90), longitude: rand(0..180)}
13 | end

5 | defp publish_location(driver_id, location) do
16 event = Y{driver_id: driver_id, location: location, timestamp:

DateTime.utc_now ()}
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18 event_binary = Jason.encode! (event)

20 ok = :emqtt.publish(conn, "driver/#{driver_id}/location",
event_binary)
21 | end

The Elixir application concurrently manages hundreds of taxi objects, including their
real-time location and state changes, replicating an actual taxi dispatch scenario. This
application runs autonomously, simulating multiple drivers updating and publishing their
locations indefinitely, demonstrating Elixir’s robustness and suitability for long-running
edge computing processes.

5.3.2. Passenger Application

Hosted on the AWS cloud, the passenger application allows passengers to initiate
ride requests. It serves as the entry point for submitting requests, specifying details like
passenger ID and destination. After submitting a request, the application establishes an
MQTT broker connection and subscribes to dedicated topics based on the request ID.

Listing 2 illustrates this subscription using the :emqtt.subscribe/2 function, focusing
on topics like events/cab_requested /#passenger_id, Here, #passenger_id is replaced with
the actual ID of the passenger, ensuring that the application only receives updates relevant
to its specific requests. This ensures the application receives only updates relevant to its
specific request. It then enters a listening state, waiting for incoming MQTT messages
that provide real-time ride status updates. These messages are processed to inform the
passenger about their ride’s current status.

Listing 2. Request status monitoring.

1 |{:0k, conn} = :emqtt.start_link([clientid: "PassengerApp",
clean_start: false])

:ok = :emqtt.subscribe(conn,
"events/cab_requested/#{passenger_idl}")

receive do

6 {:publish, publish} ->
7 I0.inspect (publish)
s | end

5.3.3. Dispatch Service

The dispatch service matches passenger requests available taxis based on proximity.
It subscribes to MQTT messages containing passenger requests and, upon receiving one,
spawns lightweight Elixir processes to concurrently calculate proximity for all idle taxis.
This concurrent approach significantly reduces matching computation time. Additionally,
we plan to implement load-balancing algorithms in the future.

The dispatch module publishes the assignment result via MQTT to the assigned
driver’s topic. If no drivers are available, it sends a notification to the passenger about the
failed assignment. Leveraging Elixir’s efficient concurrency and distributed communication
primitives, this module enables fast and reliable order dispatching.

6. Evaluation

Our evaluation methodology is designed to assess the performance of the cab dis-
patch system within an edge computing paradigm, focusing on several critical metrics:
response time latency, concurrency handling under high load conditions, fault tolerance,
and multicore processing efficiency. Recognizing the complexity and variability of real-
world IoT hardware environments [33], our current testing uses a purely software-based
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environment, and future work will include detailed hardware simulations to enhance the
practical applicability and robustness of our findings in diverse lIoT contexts. Additionally,
we also conducted experiments under simulated constrained network conditions to mimic
potential real-life challenges. The testbed for our experiments is a MacBook Pro equipped
with an Apple M1 chip, featuring 8 cores (4 performance and 4 efficiency cores), and 8 GB of
RAM, running macOS Monterey version 12.6. Our test programs were developed in Elixir
version 1.14.3, compiled with Erlang/OTP 25. The EMQX MQTT broker was deployed
within a Docker container on macOS, and the MQTT clients were operational on Ubuntu
VMs, version 22.04.1.

6.1. Latency Testing

We initially focused on response time, defined as the interval between dispatch request
initiation by the driver application and its receipt by the passenger application. More
specifically, the driver application sends the location to the broker, and the passenger
application subscribing to the same topic in the broker will process the location message
from the driver application. This test scrutinized system responsiveness, including Phoenix
LiveView’s hot code loading capabilities. To mimic real-world conditions, the Locust
script’s “wait_time” parameter controlled the dispatching of real-time location updates at
10 to 30 s intervals. This parameter means that every virtual driver will send the real-time
location in every 10 to 30 s.

Further iterations of the test varied the number of virtual drivers and their spawn
rate to observe the system’s behavior under different loads. As depicted in Figure 6, we
executed five sets of tests with varying user counts and spawn rates. The term “spawn
rate” here describes the velocity of virtual user generation per second during the test. For
instance, in the first group, with a spawn rate of 2 and a target of 100 users, the system
incrementally added two users per second until it reached the full count. The results were
promising: the median latency stayed below 5 ms, showcasing efficient data processing for
the majority of transactions. At the 80th percentile, even with 2000 users, the latency only
peaked around 8 ms, indicating that 80% of the transactions were processed within 8 ms.
Such performance underscores the framework’s aptness for edge computing scenarios,
where swift response times are critical.

Response Time vs Number of Users/Spawn Rate
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Figure 6. Latency comparison of different groups.
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Elixir’s functional programming paradigm and the Erlang VM’s robust concurrency
model contribute to this consistent performance under complex, concurrent processing
scenarios. These features equip the system for the real-time demands of edge computing.

Furthermore, to present a more vivid and direct representation of our system’s per-
formance, we conducted uninterrupted tests with 2000 and 10,000 users, respectively. Key
segments of these tests are illustrated in Figures 7 and 8. The plots predominantly show
that the majority of response times are maintained below 8 milliseconds. Notably, while
occasional latency spikes were observed, the system leveraged Elixir’s fault tolerance capa-
bilities to quickly return to optimal latency ranges under 8 milliseconds. This demonstrates
the resilience and stability of our system even under fluctuating conditions.

Driver App to Passenger App Message Transmission Latency Over Time (20,00 Drivers Test)
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Figure 7. Latency from passenger app to driver app of 2000 users group.
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Figure 8. Latency from passenger app to driver app of 10,000 users group.

21



Future Internet 2024, 16, 81

In scenarios simulating extreme conditions with up to 10,000 users, the system still
sustained its performance level. Even with the increased load, the scatterings of peak
latency did not exceed 160 ms. This resilience under high user volume is particularly
significant, highlighting the system’s compatibility with smart transportation applications
that demand low latency and high-density user environments.

Latency Comparison with EdgeX Foundry

EdgeX Foundry is a well-known, highly flexible, and scalable open-source edge
computing platform that facilitates interoperability between devices and applications at the
IoT Edge [34]. We conducted stress tests on the EdgeX Foundry platform under the same
testing conditions. Specifically, we configured our test environment on an Ubuntu virtual
machine and adjusted the conditions described in Section 6.1. Using EdgeX’s built-in
device-virtual service, we simulated a cab client and a passenger client, and we conducted
the stress tests by using the wrk tool. The tests had the following results: with 8 threads
and 50 connections, the average latency was 15.77 ms, with a latency distribution of 75%
at 19.04 ms and 90% at 23.52 ms. In comparison, stress tests conducted on our framework
using locust demonstrated a lowest average latency of 5 ms, with a 90% latency distribution
at 9 ms. This comparative testing showcases the low-latency advantage of our framework.
Further detailed comparative research with other frameworks will be conducted in our
future work.

6.2. Throughput Testing and Resource Utilization under Load

The next evaluation focused on throughput, analyzing concurrency handling capability
under load. The Locust script’s “wait_time” was set to 2-8 s to simulate peak traffic
conditions, alongside increasing user numbers and spawn rates up to 40,000 users and
5000 spawn rate. Requests per second (RPS) serves as a crucial metric reflecting the
system’s ability to process incoming requests. Figure 9 illustrates the system’s consistent
RPS performance across various stress conditions. The results confirm robust performance,
efficiently handling high request volumes during peak traffic periods.

Comparison of Highest RPS and RPS for different Number of users/Spawn rate
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Figure 9. Throughput testing in different sets of groups.

Additionally, resource utilization, defined as the ratio of the actual time spent by re-
sources executing the workload, is another critical metric in the edge computing
paradigm [35]. In the throughput testing under load, we also monitored the CPU uti-
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lization to assess the overall resource utilization. We focused specifically on the 40,000 user
and 5000 spawn rate scenario, and observed a peak CPU utilization of 58%. This figure
indicates a balanced resource usage. While lower utilization suggests the availability
of additional resources, higher average CPU utilization does not necessarily equate to
more efficient orchestration [36]. Indeed, high levels of CPU utilization might indicate
load accumulation on other resources due to inefficient load or resource management [37].
The relatively modest resource utilization observed in our tests could be attributed to
Elixir’s lightweight process model. However, it also highlights opportunities for further
optimization of resource usage in future work.

6.3. Constrained Network Conditions Testing

In real-world edge network environments, a variety of factors can contribute to unsta-
ble network conditions. Examples in edge networks include varying signal strengths due to
geographical locations, network congestion caused by high user density, and intermittent
connectivity issues in remote areas. Testing system performance under such unstable
network conditions is crucial for improving our framework in edge computing scenarios.

We set three groups of contained network conditions and evaluated them as shown in
Figure 10.

Metrics # Requests # Fails Average Mean 90th
RPS percentage
Constraned 1 Bla4 0 28 114.19 119
Constraned 2 4575 0 20.7 121.32 165
Constraned 3 6358 0 22.6 29.92 20

Figure 10. Different constrained network conditions testing.

*  Constrained_1: This scenario involved a network condition with a fixed delay of
100 ms and a packet loss rate of 1%. Under these conditions, the system managed to
handle 8184 requests without any failures, maintaining an average RPS of 28.0. The
mean latency was recorded at 114.19 ms, with the 90th percentile latency reaching
119.0 ms.

*  Constrained_2: This scenario set a base latency of 100 ms with a random fluctuation
of up to +20 ms. The system processed 4575 requests and exhibited an average RPS of
20.7. The mean latency increased slightly to 121.32 ms, and the 90th percentile latency
rose to 165.0 ms, reflecting the impact of variable delay conditions.

¢ Constrained_3: This scenario tested the system’s response to a higher packet loss rate
of 5%. Despite this challenge, the system processed 6358 requests and achieved an
average RPS of 22.6. Without extra latency added in this test, the mean latency in
this scenario was significantly lower, at 29.92 ms, and the 90th percentile latency was
20.0 ms.

For comparison, under normal conditions without any imposed network constraints,
the average latency of the system was around 8 ms. The observed latency showed an
accordingly additional increase over the standard measurements, demonstrating a linear
response to the network delay introduced.

6.4. Fault Tolerance Testing

In fault tolerance testing, we designed two primary experimental scenarios to assess
the system’s performance on fault tolerance: interruptions of the MQTT Broker service
and terminations of Elixir processes. The system’s response in these scenarios reflects its
recovery capabilities and robustness.

e  MQTT Broker Service Interruption: In this experiment, we demonstrate the system’s
resilience when a critical communication component fails. With the MQTT broker
positioned at the network edge, maintaining the integrity of complex event transmis-
sions is crucial, especially when encountering unforeseen incidents such as power
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outages. Equally important is the ability of MQTT clients to reconnect and quickly
return to low-latency operations. As shown in the logs and the accompanying figure,
we simulated the latency variations during a broker power outage and subsequent
restart. Here, latency refers to the delay experienced by the passenger application
in reconnecting to the restarted broker. The log data, with initial latencies exceed-
ing 3000 ms back to the average condition of 10 ms, indicate that the reconnected
passenger application rapidly processed messages sent during the outage. When
the broker is powered down, the connection between the broker and clients breaks
down immediately, the message sent by the driver application will be stored in the
broker immediately, and the passenger will automatically keep trying to reconnect
and listen to the same topic. When the MQTT broker is powered again, the system
will process the omitted events first then quickly return back to normal performance.
The system swiftly transitioned from high latency back to low latency, demonstrating
rapid recovery capabilities.

Elixir Process Interruption:

Before the details of the experimental setup, it is necessary to briefly explain the
language logic of Elixir that underpins its fault tolerance.

In BEAM-based systems, resilience is fundamentally rooted in the complete isolation
and independence of each process. This isolation is a key aspect of Elixir’s fault
tolerance, ensuring that a crash in one process does not affect others. BEAM processes
are lightweight, concurrent entities managed by the virtual machine (VM), which
schedules their execution. Typically, BEAM employs as many schedulers as there are
available CPU cores, with each scheduler operating in its own thread, while the entire
VM runs within a single OS process [38]. Figure 11 shows a simplified version of
the real experiment environment. Moreover, each process can maintain its state and
communicate with other processes to manipulate or access this state. In Elixir, data
immutability is a core principle. Processes act as containers for this data, preserving
immutable structures over time, sometimes indefinitely.

In addition to its inherent resilience, Elixir further enhances fault tolerance through
the implementation of specialized supervisor processes. These supervisor processes
are solely responsible for supervision processes, which are called child processes.
Whenever a child process terminates, the supervisor promptly initiates a replacement,
utilizing various strategies to manage these processes. This approach effectively
reduces the cascading failures and the frequency of restarts that might be triggered by
linked process crashes.

Our experimental setup within the passenger application is depicted in Figure 11,
which includes a primary supervisor executing the rest_for_one strategy. This
strategy ensures that when a child process crashes, the supervisor terminates all sub-
sequently listed processes in the child specification. This is particularly crucial for
Process_1, which gathers other system components and needs to maintain consistent
state updates to avoid data conflicts. Both the SystemSupervisor and ServerSuper-
visor employ the one_for_one strategy, whereby the crashing and restarting of their
supervised processes do not impact the operation of others.

The experimental results under the supervisor tree are presented in Table 1. Differing
from the random process terminations of chaos monkey experiments, we deliberately
terminated processes to observe the anticipated restart/no-restart behaviors. As
shown in the table, the outcomes matched our expectations: terminating Process_1
led to the restart of all processes; terminating Process_2 did not trigger any restarts;
and since Process_3 and Process_4 are linked, the crash of either affected the other.
In summary, Elixir’s process and supervisor mechanisms flawlessly uphold its fault
tolerance capabilities. Within the edge computing paradigm, these features can offer
vast prospects for smart transportation applications.
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Table 1. Testing of processes to be killed and the existence /nonexistence.

Killed Process

Process_1 Process_2 Process_3 Process_4
Process
ine Process_1
v v v
ine Process_2
X v v
ine Process_3
X v v
ine Process_4
X v X
OS process
BEAM
OS Thread OS Thread OS Thread
Scheduler Scheduler Scheduler
[ X X J
L v L
~| Process ~| Process ~| Process
SRS Ve Y Ve
; Supervisor Process Supervisor | 1. Start the
(rest_for_one) supervisor
|
Process 1 | SystemSupervisor
— ' (one_for_one)

2. Takas i |
different strateges - -------- ' l l
for isolated processes

Process 2 ServerSupervisor
— (one_for_one)

Process 3

Linking processes -1 ¢

Process 4

Figure 11. BEAM works as a single OS process and the processes under the supervisor tree.

6.5. Multicore Programming

Listing 3 presents a simulation involving 500 concurrent events, each calculating the
Euclidean distance from the origin to a random point. By invoking :erlang.system_info,
we determined the number of schedulers used by the Erlang runtime system (typically
one scheduler per CPU core). Not only for this individual experiment, but all the above
testings were also monitored to use multicore during the process. Our results confirmed

25



Future Internet 2024, 16, 81

that the Erlang runtime utilized all eight cores of the Apple M1 chip, demonstrating Elixir’s
effectiveness in leveraging multicore architecture.

Listing 3. Elixir multicore programing example.

1
> | defmodule ConcurrencyTest do
def distance_to_origin(x, y), do: :math.sqrt(x * x + y * y)

def test_concurrency(num_tasks) do
6 tasks = 1..num_tasks

7 |> Enum.map(fn _ ->

8 Task.async (

fn ->

10 x = :rand.uniform(1000)
11 y = :rand.uniform (1000)
12 distance_to_origin(x, y)
13 end) end)

14 | > Enum.map (&Task.await /1)

16 I0.puts("Schedulers:

17 #{:erlang.system_info
18 (:schedulers_online)}")
19 end

20 | end

» | ConcurrencyTest.test_concurrency (500)

22| I0.inspect (:erlang.system_info
25 (:schedulers_online))

6.6. Summary

The evaluations, encompassing both response time and throughput under high load,
demonstrate the system’s reliability and scalability. In an edge computing environment,
the cab dispatch system exhibits both agile response and sturdy concurrency management,
making it well suited for edge-centric solutions.

7. Concluding Remarks

This paper proposed an edge computing architecture tailored for real-time, distributed
applications. Our solution leverages Elixir’s unique capabilities: its lightweight concurrent
processing model for efficient resource utilization, and robust fault tolerance mechanisms
inherited from Erlang/OTP for enhanced system resilience. Additionally, we employed the
MQTT protocol for asynchronous event transport due to its proven efficiency and reliability
in distributed environments.

The evaluation of our framework through a cab dispatch prototype demonstrated its
strengths. The prototype achieved low-latency and high-concurrency capabilities, under-
lining the effectiveness of Elixir’s multicore utilization for edge computing scenarios. This
successful prototype exemplifies the potency of Elixir in crafting scalable and responsive
edge applications.

Our findings offer a valuable contribution to the field by furthering the integration of
Elixir and event-driven models within edge computing domains. This paves the way for
further scholarly discourse and exploration of Elixir’s potential in addressing the evolving
demands of real-time distributed systems at the edge.

In this study, we presented two case studies that collectively illustrate the unique ad-
vantages of adopting event-driven architecture (EDA) and the Message Queuing Telemetry
Transport (MQTT) protocol in smart transportation applications, demonstrating through
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testing the irreplaceable benefits of Elixir’s integration for system performance enhance-
ment. However, our experiments were conducted in a purely software environment; hence,
testing for broader application scenarios remains insufficient. As mentioned in the related
research section, we plan to continue framework improvement and testing on hardware
systems supporting the BEAM system, such as the Erlang-based GRiSP hardware platform,
aiming to propose a more comprehensive and application-enhanced version.

The research into these two case studies has led us to identify the optimal integration
of EDA and smart transportation, notably in rapid response to emergency events and in
reducing decision-making time during peak periods. At the same time, we have identified
other areas requiring further exploration, such as ensuring data protection while maintain-
ing efficient communication. Although Elixir and MQTT 5.0 provide us with high levels of
security, further research in this area will also be a part of our future work.
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Abstract: Surveillance video analytics encounters unprecedented challenges in 5G and IoT envi-
ronments, including complex intra-class variations, short-term and long-term temporal dynamics,
and variable video quality. This study introduces Edge-Enhanced TempoFuseNet, a cutting-edge
framework that strategically reduces spatial resolution to allow the processing of low-resolution
images. A dual upscaling methodology based on bicubic interpolation and an encoder-bank-decoder
configuration is used for anomaly classification. The two-stream architecture combines the power of a
pre-trained Convolutional Neural Network (CNN) for spatial feature extraction from RGB imagery in
the spatial stream, while the temporal stream focuses on learning short-term temporal characteristics,
reducing the computational burden of optical flow. To analyze long-term temporal patterns, the
extracted features from both streams are combined and routed through a Gated Recurrent Unit (GRU)
layer. The proposed framework (TempoFuseNet) outperforms the encoder-bank-decoder model in
terms of performance metrics, achieving a multiclass macro average accuracy of 92.28%, an Fl-score
of 69.29%, and a false positive rate of 4.41%. This study presents a significant advancement in the
field of video anomaly recognition and provides a comprehensive solution to the complex challenges
posed by real-world surveillance scenarios in the context of 5G and IoT.

Keywords: edge intelligence; anomaly identification; super resolution; video classification; two-
stream architecture; StyleGAN; IoT environment

1. Introduction

In the era of 5G and IoT, video surveillance is a critical component of modern secu-
rity and monitoring strategies. This surveillance relies on advanced camera technology
to observe and analyze diverse environments and contributes to applications such as
security, crime prevention, safety, emergency response, traffic monitoring, and behav-
ior analysis [1-3]. Video surveillance contributes significantly to theft prevention, traffic
management, and overall safety in the residential, commercial, and industrial sectors.

The incorporation of technology and machine learning [4,5] into video surveillance,
particularly in 5G and IoT environments, initiates unprecedented possibilities. Automated
video surveillance systems controlled by computer vision algorithms [6-8] detect anomalies,
changes in motion, and intrusions in real-time, reducing reliance on human monitoring [9].
However, challenges persist, such as operator errors, false alarms, and limitations in
contextual information within video footage [10-12].

In the context of 5G and IoT, this study addresses technical limitations associated with
low-quality videos: specifically, poor lighting and low spatial resolution. These difficulties
have an impact on the perceptual quality of video streams [13-15] and introduce factors
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such as poor lighting, camera noise, low spatial resolution, and low frame rates [9,16-19].
Despite these challenges, various techniques for detecting anomalies in low-quality surveil-
lance videos have been proposed, [20,21]. Two primary approaches are commonly used to
address the challenge of detecting anomalies in low-quality videos. The first entails improv-
ing video quality with techniques like denoising, dehazing, and super-resolution [22,23].
An alternative strategy is to use deep learning methods directly for anomaly detection in
low-quality videos [24,25].

This study outperforms existing approaches by introducing a new super-resolution
technique called “TempoFuseNet”. For enhanced anomaly detection, this innovative
framework employs a two-stream architecture that combines spatial and temporal features.
The spatial stream extracts features using a pre-trained Convolutional Neural Network
(CNN), whereas the temporal stream captures short-term temporal characteristics efficiently
using a novel Stacked Grayscale 3-channel Image (SG3I) approach. The extracted features
from both streams are fused via a Gated Recurrent Unit (GRU) layer to leverage long-term
temporal dependencies effectively. The contributions of this study include the identification
of challenges related to intra-class and inter-class variabilities, the introduction of a super-
resolution technique leveraging an encoder-bank—-decoder configuration, the incorporation
of a StyleGAN for feature enhancement, and the proposal of a two-stream architecture for
anomaly classification.

Recognizing the nuanced landscape of automated surveillance systems is essential in
the continuum of addressing challenges in video surveillance. These systems play a critical
role in overcoming the limitations of manual monitoring. Despite their potential, however,
these systems face challenges that necessitate strategic interventions for further refinement.
One significant challenge is the generation of false alarms, which can overwhelm security
personnel and undermine the effectiveness of surveillance operations. False alarms not
only divert attention but also place unnecessary demands on resources. The importance
of minimizing false alarms as a fundamental aspect of optimizing automated surveillance
systems is acknowledged in this study.

Another problem stems from video’s inherent limitation in providing comprehensive
context. Surveillance videos frequently capture snippets of events, making it difficult to
decipher the intentions of those being watched or comprehend the full scope of a given
incident. Improving the contextual understanding of surveillance footage appears to be a
critical component in addressing this challenge. Technical constraints obstruct the seamless
operation of automated surveillance systems. Poor lighting, low-resolution cameras, and
limited storage capacity can all have an impact on the effectiveness of these systems.
To improve the robustness and reliability of automated surveillance, a comprehensive
approach to addressing these technical limitations is required.

This study focuses on the technical limitations caused by low-quality videos: specifi-
cally, poor lighting and low spatial resolution. These difficulties have been identified as
critical factors influencing the perceptual quality of video streams and thereby influencing
the accuracy of anomaly detection systems according to [16]. The contributions of this
study can be summed up as follows:

¢  This study meticulously identifies and articulates two critical issues inherent in surveil-
lance videos: high intra-class variability and low inter-class variability. These chal-
lenges, which are inextricably linked to the temporal properties of video streams, both
short- and long-term, are exacerbated by the prevalence of low-quality videos.

*  This study makes an outstanding contribution by introducing an innovative super-
resolution approach designed to mitigate the impact of low-quality videos caused by
downscaling. This approach outperforms traditional bicubic interpolation by using
an encoder-bank—decoder configuration to upscale videos. The primary goal is to
improve the spatial resolution of videos in order to increase the accuracy of anomaly
detection. The addition of a pre-trained StyleGAN as a latent feature bank is a critical
step forward that enriches the super-resolution process and, as a result, improves
anomaly classification accuracy.
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e The study implies a two-stream architecture for anomaly classification. The spatial
stream uses a pre-trained CNN model for feature extraction, whereas the temporal
stream employs an innovative approach known as Stacked Grayscale Image (SG3I).
SG3I effectively lowers the computational costs associated with optical flow compu-
tation while accurately capturing short-term temporal characteristics. The extracted
features from both streams are concatenated and fed into a Gated Recurrent Unit
(GRU) layer, which allows the model to learn and exploit long-term dependencies.

e Experiments show that the super-resolution model improves classification accuracy by
3.7% when compared to traditional bicubic interpolation methods. When combined
with the encoder-bank—decoder super-resolution model, the classification model
achieves an impressive accuracy of 92.28%, an F1-score of 69.29%, and a low false
positive rate of 4.41%.

To sum up, this research not only identifies and understands the difficulties that are
associated with surveillance footage, but it also introduces novel approaches to deal with
those difficulties. The end result of these efforts is observable improvements in performance
and accuracy for the classification of anomalies in surveillance videos.

2. Related Work

Video anomaly detection is critical in the domain of surveillance systems, as it ad-
dresses the need to identify anomalous segments within video streams. Over time, two
major streams of methodologies have emerged for this critical task: handcrafted approaches
and deep-learning-based methods. The former employs manual feature engineering tech-
niques such as STIP, SIFT-3D, and optical flow histograms, whereas the latter makes use of
the power of deep neural networks such as VGG and ResNet to process spatiotemporal
data efficiently. The introduction of two-stream Convolutional Neural Networks (CNNs)
for improved activity recognition and novel approaches to modeling long-term temporal
dependencies are notable advancements. The literature includes a wide range of deep
learning models, from ConvLSTM to attention-based architectures, all of which contribute
to the improvement of anomaly detection in videos. Furthermore, weakly supervised tech-
niques, generative models, and recent efforts to address anomalies in low-resolution videos
have significantly expanded the scope of this evolving field. In the midst of these advances,
our research focuses on a novel problem: detecting anomalies in multi-class scenarios in
low-quality surveillance videos. We present a unified methodology that combines novel
super-resolution techniques with a two-stream architecture, providing a comprehensive
solution to the complexities of real-world surveillance scenarios.

Manual feature engineering methods such as STIP, SIFT-3D, and optical flow his-
tograms involve human intervention [26,27]. While insightful, improved dense trajectory
approaches like the one by Wang et al. [28] surpass earlier handcrafted techniques. The ad-
vent of deep learning has revolutionized video anomaly identification, with networks like
VGG and ResNet efficiently processing spatiotemporal data in videos [29,30]. Noteworthy
in this domain is the introduction of two-stream Convolutional Neural Networks (CNNs),
which combine spatial and temporal inputs for improved activity recognition [31,32].

Advancements in modeling long-term temporal dependencies have been achieved
through techniques like temporal segment networks and 3D convolutional filters. Wang
et al. [33] introduced a temporal segment network that exhibited robust performance
on benchmark datasets. The C3D method by Tran et al. [34] addressed challenges in
modeling temporal information and inspired subsequent work by Magsood et al. [35] for
anomaly classification. Among deep-learning-based models, significant strides have been
made, particularly in domains involving nonlinear, high-dimensional data. Luo et al. [36]
proposed a Convolutional Long Short-Term Memory (ConvLSTM) model for encoding
video frames and identifying anomalies. Ullah et al. [37] introduced a Convolution-Block-
Attention-based LSTM model that enhances spatial information accuracy. Riaz et al. [38]
combined human posture estimation with a densely connected fully Convolutional Neural
Network (CNN) for anomaly identification. Hasan et al. [1] utilized a recurrent neural net-
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work (RNN) and a convolutional autoencoder for anomaly detection, while Liu et al. [39]
integrated temporal and spatial detectors for anomaly identification.

Weakly supervised techniques, including C3D and MIL, have been employed for
anomaly detection. Sultani et al. [2] combined weak video labels with Multiple Instance
Learning (MIL). Landi et al. [40] used a coordinate-based regression model for tube
extraction. Generative models like GANs have been explored, with Sabokroul et al. [41]
training GANSs for visual anomaly detection. BatchNorm into Weakly Supervised Video
Anomaly Detection (BN-WVAD) [42] has been used to capitalize on the statistical insight
that temporal features of abnormal events often behave as outliers; BN-WVAD leverages
the Divergence of Feature from Mean vector (DFM) function from BatchNorm. This
DEM criterion serves as a robust abnormality indicator and identifies potential abnormal
snippets in videos. It enhances anomaly recognition, proves to be more resistant to label
noise, and provides an additional anomaly score to refine predictions from classifiers that
are sensitive to noisy labels. In [43], a Temporal Context Aggregation (TCA) module for
efficient context modeling and a Prompt-Enhanced Learning (PEL) module for enhanced
semantic discriminability are demonstrated. The TCA module captures complete contextual
information, while the PEL module incorporates semantic priors using knowledge-based
prompts to improve discriminative capacity and maintain separability between anomaly
sub-classes. Additionally, a Score Smoothing (SS) module is introduced in the testing
phase to reduce false alarms. In [44], a U-Net-like structure is implemented to effectively
capture both local and global temporal dependencies in a unified manner. The encoder
hierarchically learns global dependencies on top of local ones, and the decoder propagates
this global information back to the segment level for classification.

Recent research has focused on addressing anomalies in extremely low-resolution
videos [25,45-47]. Techniques such as Inverse Super-Resolution (ISR), initially introduced
by Ryoo et al. [45], aim to identify optimal image modifications for extracting addi-
tional information from low-resolution images. Additionally, multi-Siamese loss functions
have been proposed to maximize data utilization from a collection of low-resolution im-
ages. Chen et al. [46] developed a semi-coupled two-stream network that leverages
high-resolution images to assist with training a low-resolution network. Xu et al. [47]
demonstrated that using high-resolution images improves low-resolution recognition by
incorporating a two-stream neural network architecture that takes high-resolution images
as inputs. Their approach, sharing convolutional filters between low- and high-resolution
networks, significantly enhanced performance. In addition, Demir et al. [48] proposed the
TinyVIRAT dataset for natural low-resolution videos and presented a gradual generative
technique for enhancing the quality of low-resolution events. Super-resolution techniques
have also found success in various applications such as low-resolution face verification,
small object detection, person re-identification, and activity recognition [49-52]. For in-
stance, Ataer et al. [50] introduced an identity-preserving super-resolution approach for
face verification at very low resolutions, and Bai et al. [51] developed a multitask generative
adversarial network for small object detection.

In summary, the field of video anomaly detection has witnessed diverse advancements,
from Bayesian deep learning to convolutional models, recurrent neural networks, and
spatial-temporal graph attention networks. Our study addresses the challenge of detecting
anomalies in multi-class scenarios within low-quality surveillance videos and showcases
improved classification performance compared to interpolation-based strategies. The
integration of novel super-resolution techniques and a two-stream architecture forms
the backbone of our methodology and contributes to the evolution of video anomaly
recognition in complex real-world scenarios. While the literature review reflects significant
progress in video anomaly detection, there is a significant research gap that our study seeks
to fill. Existing approaches have primarily focused on either high-quality video scenarios or
have addressed anomalies in a binary manner, both of which are insufficient for real-world
applications. The combination of novel super-resolution techniques and a two-stream
architecture, as proposed in our methodology, represents a novel approach to closing this
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gap. Our research contributes to the evolving landscape of video anomaly recognition by
providing a tailored solution to the complexities of multi-class scenarios and low-quality
surveillance videos within 5G and IoT environments.

3. Materials and Methods

The effectiveness of anomaly detection in surveillance videos is inextricably linked
to the quality of the input data. In this methodology, we address the challenges posed
by low-quality surveillance videos; we focus on issues such as poor lighting and spatial
resolution. Our method combines advanced video resizing techniques with deep-learning-
based super-resolution methods to improve the overall quality of video streams. The
initial stages of our methodology include a meticulous video resizing process in which
we experiment with various interpolation methods to upscale low-resolution videos. We
then present a novel video super-resolution strategy that takes advantage of GLEAN, a
framework that uses Generative Adversarial Networks (GANSs) for latent feature extraction.
Unlike traditional GAN-based models, our implementation uses a streamlined process
that requires only one forward pass to generate high-resolution images. The use of a
StyleGAN, which has been fine-tuned on a dataset containing both low- and high-resolution
representations of surveillance video frames, is critical to our super-resolution strategy.
This pre-trained StyleGAN acts as a latent feature bank by providing rich priors for creating
realistic, high-quality, high-resolution videos. The proposed framework “TempoFuseNet”
is presented in Figure 1, and the specifics of all stages are discussed, including the dataset,
pseudocode for the super-resolution algorithm, and an explanation of our two-stream
architecture for anomaly classification. The goal is not only to improve the spatial resolution
of surveillance videos but also to provide a solid framework for accurately detecting
anomalies in challenging real-world scenarios within 5G and IoT environments.

Reduce LR Bicubic
i i i .
Resolution to 1/8 Interpolation  EASLAERa Resized Video g \’

Classification Model ‘
(Trained on Resized Videos) /Y ./

Performance
Comparison
SR ®

HR Classification Model
(Trained on SR Videos)

40x30

UCF Crime Dataset
320 x 240

Original Resolution

(Ground Truth)

Figure 1. Proposed framework (TempoFuseNet) for anomaly classification for low-resolution videos.

3.1. Dataset

In order to perform classification learning to classify surveillance videos into one of
several classes of anomalies, a labeled dataset of videos is required. Various datasets are
used by the research community to demonstrate anomaly detection in surveillance videos,
and each of these datasets has its own characteristics [2,39,53,54]. This study is based on
the UCF-Crime dataset [2], which is modified to make it more useful for the demonstration
of anomaly classification for low-quality surveillance videos.

There are 128 hours of surveillance footage in the original UCF-Crime dataset. The
dataset includes 1900 complete and unfiltered surveillance videos from the real world,
along with thirteen actual anomalies such as assault, arrest, abuse, arson, burglary, fighting,
shooting, explosion, road accident, vandalism, robbery, and shoplifting. These anomalies
were included in the dataset due to their possible impact on the safety of the general public.
We meticulously curated the dataset to address class imbalance by retaining a standardized
set of 50 videos per class to ensure the relevance and practicality of our study. Because of
this deliberate selection process, classes with insufficient representation were excluded,
resulting in a focused dataset with eight distinct categories: assault, arrest, abuse, arson,
burglary, fighting, explosion, and normal. This strategic enhancement to the UCF-Crime
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dataset ensures a balanced and representative collection, which improves the precision and
applicability of our experimental results. All videos in each class have the same spatial
resolution of 320 x 240 pixels, which contributes to the consistency and reliability of our
analytical framework.

Data Preparation

In order to perform learning on low-quality videos, the original videos are downsam-
pled by eight times to obtain a low-resolution version of the original videos. The video
resolution after downsampling is 40 x 30 pixels . Downsampling is performed by using
bilinear interpolation (refer to Equation (1)), in which the target image pixels are obtained
by performing linear interpolation in both the horizontal and vertical directions.

Let LR(x', ) be the low-resolution pixel values at coordinates (x/, ), and let HR(x, y)
be the high-resolution pixel values at coordinates (x, y). The downsampling operation can
be expressed as:

LR(x,y") = f(HR(x,y)) (1)

where

X' =[x/8], y =[y/8 (2)

This stage results in two sets of data: one containing high-resolution (HR) videos
that are the ground truth data, and the other has low-resolution (LR) videos, which are a
downsampled version of the data and will be used for classification modeling.

3.2. Video Upscaling

Video resizing is the most commonly used operation to change the resolution of a
video to match the requirements of the input layer of a convolutional neural network.
There are various algorithms that can be used to perform the operation of video upscaling,
and the most common are nearest neighbor interpolation, bilinear interpolation, bicubic
interpolation, and Lanczos interpolation [55]. Among these methods, nearest neighbor is
the fastest, and Lanczos is the slowest and most complex. Their upscaling performance
is similarly related, but we used bicubic interpolation in our implementation due to its
acceptable performance in terms of speed and upscaling quality. In order to perform bicubic
interpolation for video scaling, we the used Libswscale library from the FFmpeg 4.2.1 pack-
age. The Libswscale library, which is developed in C and is part of the FFmpeg multimedia
framework, includes highly optimized functions for scaling, colorspace conversion, and
pixel format transformations.

3.3. Video Super Resolution

To obtain high-resolution videos, this study use a deep-learning-based video super-
resolution approach as an effective strategy for overcoming technical limitations associated
with low-quality videos: particularly, poor lighting and low spatial resolution. The pro-
posed implementation employs GLEAN [56]: a framework that uses a Generative Adver-
sarial Network (GAN) as a latent bank to extract rich and diverse priors from a pre-trained
GAN model. Unlike traditional GAN-based methods, which involve adversarial loss and
costly optimization through GAN inversion, our approach uses a single forward pass to
generate high-resolution images.

To overcome poor lighting and low spatial resolution, a StyleGAN [57] is used in
our implementation. The StyleGAN, fine-tuned on a dataset of surveillance videos with
both low- and high-resolution representations of each frame, serves as a pre-trained latent
feature bank. This latent feature bank functions similarly to a dictionary, but its distinct
advantage is its nearly infinite feature bank, which provides superior priors for generating
realistic high-resolution videos. Furthermore, our encoder-bank-decoder formulation,
illustrated in Figures 2 and 3, is crucial for obtaining super-resolution images. Notably,
the encoder accepts an input resolution of 40 x 30 pixels and outputs 320 x 240 pixels,
demonstrating its ability to handle low-spatial-resolution scenarios. The latent feature bank,
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which is powered by the pre-trained StyleGAN, ensures that the generated high-resolution
videos retain realism and fidelity even in challenging lighting conditions.

Encoder Decoder
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Decoder

Bank
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Input (40x30) Output (320x240) ;“\‘

Figure 3. Video super-resolution framework (encoder-bank-decoder) based on pre-trained StyleGAN.

In order to obtain high-resolution videos apart from interpolation-based upscaling
techniques, deep-learning-based video super resolution is an attractive approach. Gener-
ative Adversarial Networks (GANSs) built using neural networks have shown excellent
performance in video generation, enhancement, and super resolution, among other tasks.
GLEAN [56] is an approach that uses a GAN-based model as a latent bank to obtain rich and
diverse priors from pre-trained GAN. Unlike existing GAN-based approaches that generate
realistic outputs through adversarial loss and the use of expensive optimization through
GAN inversion, this approach uses a single forward pass to generate a high-resolution
image. In this implementation, we used a StyleGAN [57] and fine-tuned it on a dataset
of surveillance videos containing low-resolution and high-resolution representations of
each frame.

Super-resolution images are obtained from low-resolution images by using an encoder—
bank-decoder formulation. The latent features bank acts like a dictionary as in traditional
approaches but differs in the sense that dictionaries contain a finite feature bank, whereas a
GAN contains a practically infinite feature bank, making it a superior prior. The architecture
of encoder-bank-decoder used in this implementation is provided in Figure 3. Note
that the encoder accepts an input resolution of 40 x 30 pixels and provides an output of
320 x 240 pixels. The bank is a pre-trained StyleGAN that acts as a latent feature bank to
provide realistic high-resolution videos.
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3.4. Upscaling Performance

As discussed, there are various interpolation-based approaches that can be used for
frame-by-frame video upscaling. The performances of four interpolation-based upscaling
approaches along with the ground truth and the super-resolution image obtained by our
implementation of GLEAN are provided in Figure 4. The results are provided for a single
frame from a surveillance video belonging to the “fighting” class. Nearest neighbor and
bilinear interpolation are the simplest and fastest methods to upscale an image but create the
lowest-quality results. The difference between them is that bilinear interpolation provides
a smoother image by using blurring, whereas nearest neighbor provides a boxing effect,
and the choice of which one to use mainly depends on the intended application. Lanczos
and bicubic are the next level of quality for upscaling and involve greater computational
complexity. Lanczos has better detail preservation and a sharper appearance, while bicubic
interpolation provides a smoother appearance. Because the targeted scenario for super
resolution involves videos with a large number of frames, we use bicubic interpolation
(Equation (3)) to upscale the video, which allows for a thorough comparison to the super-
resolution videos.

2 2
', yy=Y Y Ix+iy+j) K& —x+i)- K@y —y+j) 3)
i=—1j=-1

A super-resolution image produced using the modified GLEAN model is of much
higher quality compared to its counterparts in terms of preservation of details and recon-
struction of the structure. The modified GLEAN model includes improved architectural
features and training strategies that allow for more effective detail preservation during
the upscaling process. This entails a more sophisticated latent space representation or a
fine-tuned generator network, which allow the model to capture and reproduce intricate
details in the low-resolution input. The modified GLEAN model’s superior quality of super-
resolution images results from its advanced architecture and training strategies, which
enable effective preservation of details and accurate reconstruction of complex structures
when compared to other methods. To extract f; features (Equations (4) and (5)) from a
low-resolution image, we employed E; sequence operations followed by Convolutional
layers and fully connected layers to generate a matrix C of representative features.

fi:Ei<fi—1)/ foriE{l,...,N} 4)

C = En+1(fn) ()

Moreover, it is evident from Figure 4 that a super-resolution image has higher overall
contrast as compared to the ground truth image, which is due to the use of the latent feature
bank containing a pre-trained StyleGAN.

Bicubic Interpolation Lanczos Interpolation Super Resolution (GLEAN)

Figure 4. Video frame upscaling results for fighting scene.
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Algorithms 1 and 2 are simplified pseudocode of the proposed “TempoFuseNet”, with
a focus on video super resolution using the modified GLEAN framework and anomaly
classification using the two-stream architecture. This pseudocode is intended to provide an
algorithmic and high-level representation of anomaly classification for real-world scenarios
in 5G and IoT environments.

Algorithm 1: Video Super Resolution with GLEAN

Data: low_resolution_video
Result: super_resolved_video
GLEAN_model = initialize. GLEAN_with_StyleGAN();
foreach frame in low_resolution_video do
super_resolved_frame = GLEAN_model. forward_pass(frame);
L Save super_resolved_frame;

B W N =

5 return super_resolved_video;

Algorithm 2: Anomaly Classification with Two-Stream Architecture

Data: video_frames

Result: final_classification

1 for i to len(video_frames) 3 do

2 spatial_features = extract_spatial_features(video_frames[i]);
3 spatial_predictions = ResNet50_predict(spatial_features);

4 Save spatial_predictions;

5 for frame to video_frames do

6 SG3I_frame = convert_RGB_to_SG3I(frame);

7 temporal_features = ResNet50_predict(SG3I_frame);

8 Save temporal_features;

9 concatenated_features = concatenate(spatial_predictions, temporal_features);
10 temporal_model_output = apply_GRU(concatenated_features);

11 final_classification = Dense(temporal_model_output);

12 return final_classification;

3.5. Anomaly Classification

To perform anomaly classification, we used a two-stream architecture. Contrary to
existing approaches that rely on the optical flow for one stream and the RGB image for
the other stream, we used a simple but effective strategy that eliminates the need for
expensive optical flow computation. The proposed two-stream architecture is depicted
in Figure 5, whereas the details of both the spatial and temporal streams as well as late
temporal modeling are provided later in this section.

-:|:I:w- u [—l- i Dense
[ s o
I s 2

RGB Frame Spatial Stream

» &

Figure 5. Proposed two-stream architecture for spatiotemporal learning for anomaly classification.
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3.5.1. Spatial Stream

The spatial stream consists of a pre-trained CNN model base with its classification
and dense layers are removed. The network performs prediction on an individual frame
basis, and every third video frame is provided to the CNN model to match the predicted
computational performance of the temporal stream. The spatial stream uses a ResNet50
model that effectively acts as a feature extractor from the RGB images obtained from the
video stream.

3.5.2. Temporal Stream

In order to perform temporal learning without incurring a high computational load,
we made use of Stacked Grayscale 3-channel Image (SG3I) (Equation (6)) [59].

SG3I(x,y) = R(x,y),G(x,y), B(x,y) (6)

Here, SG3I(x, y) represents the function notation for the SG3I value at pixel coordi-
nates (x,y), and R(x,y), G(x,y), B(x,y) represents the intensity value at the same pixel
coordinates. SG3I relies on the simple idea of combining multiple frames of video into
single frame. The objective is achieved by converting the RGB frames into grayscale images.
These grayscale images are combined to form a single 3-channel RGB image, and then,
combining the three grayscale images forms the SG3I image, which acts like a single RGB
video frame. The frames are selected in sequential order, and each subsequent grayscale
frame is fitted to the red, green, and blue channels to yield a single RGB image. This new
image is fed to the same pre-trained CNN model as the spatial stream, which serve two
purposes: the SG3I image preserves the short temporal characteristics, and the grayscale
conversion lets the model focus more on motion-related features.

3.5.3. Late Temporal Modeling

The features extracted from both the spatial and temporal streams are flattened and
concatenated to perform feature fusion. In order to learn the long-term temporal character-
istics of a video, late temporal modeling is performed from a concatenated feature set. Long
Short-Term Memory (LSTM), bidirectional-LSTM, and Gated Recurrent Units (GRUs) are
the three modeling approaches that are experimented with, and it is observed that GRUs
provide the best temporal modeling characteristics, with a slight margin over LSTMs and
bi-LSTMs. A possible explanation for the better performance of GRUs over LSTMs is the
smaller size of the training dataset necessary to train a GRU. The GRU is followed by a
dense layer and classification of the video into one of eight classes.

4. Experiments
4.1. Experimental Setup

Our experimental setup is intended to address the challenges posed by poor lighting
and low spatial resolution in order to comprehensively assess the performance of anomaly
detection in low-quality surveillance videos. The trimmed UCF-Crime dataset, which
includes eight anomaly identification classes, is used in two different types of experiments.

The Trimmed UCF-Crime dataset has original video dimensions of 320 x 240. To
simulate real-world scenarios with poor lighting and low spatial resolution, we intentionally
reduced the spatial resolution by a factor of eight, resulting in low-resolution videos with
dimensions of 40 x 30. It is important to note that this intentional downsampling is only for
experimental purposes and is not a component of the proposed anomaly detection system.
Moreover, we recognize that the term “low quality” can be broad: our research focuses
on a specific aspect, low spatial resolution, to evaluate the robustness of our proposed
methodology under these conditions.

In the first experiment, the downscaled dataset is upscaled to its original spatial
resolution using bicubic interpolation. This experiment allows us to assess the performance
of our proposed anomaly classifier under standard upscaling conditions and serves as the
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baseline for comparison. In the second experiment, we use an advanced GLEAN-based
model for super resolution. This model upscales low-resolution videos, resulting in super-
resolved video frames. These frames are then used for classification modeling with our
proposed anomaly classifier. This experiment addresses the issue of low spatial resolution
by employing advanced super-resolution techniques. The experiments are carried out
in TensorFlow with the Keras 2.4.0 backend on a Windows 10 machine. Table 1 shows
the detailed system setup used for the experiments. During the model’s training phase,
a random search is used to select specific hyperparameters. To ensure the best model
performance, we use the Adam optimizer with a piecewise learning rate. If no progress is
seen after minimizing the learning rate for three consecutive validation checks, the training
is stopped. Table 2 summarizes the hyperparameter tuning process and offers insights into
optimizing different parameters for the best results.

Table 1. System specifications.

# Type Specifications

1 System Dell Precision T5600

2 CPU 2x Intel® Xeon® Processor E5-2687W
3 RAM 32GB DDR3

4 GPU GeForce RTX 2070

5 GPU Memory 8GB GDDR6

6 CUDA Cores 2304

7 Storage 512GB SSD

This experimental setup was designed to simulate and effectively address the tech-
nical limitations associated with poor lighting and low spatial resolution in real-world
surveillance scenarios. This was to ensure a thorough evaluation of TempoFuseNet, our
proposed anomaly identification framework.

Table 2. Training parameters used to train the model.

# Training Parameter Value

1 Optimizer Adam

2 Initial Learning Rate 0.003

3 Learning Rate Schedule Piecewise

4 Learning Rate Drop Factor 0.5

5 Gradient Decay Factor 0.9

6 L2 Regularization 0.0001

7 Max Epochs 100

8 Mini Batch Size 32

9 Loss Function Categorical cross-entropy
10 Validation Check Every epoch

4.2. Evaluation Method and Metrics

Model evaluation is a way to assess the skill of a prediction model, which is a classifier
in our case. The model is trained and evaluated using holdout validation in which the data
are partitioned into an 80:20 ratio with 80% of the data being used for model training and
validation and 20% holdout data being used for model testing. The performance of both
experiments is reported for the same train—test split of the data to make a fair comparison.
Evaluation of the model’s performance is made based on various performance metrics
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obtained from the confusion matrix. The comparative performance for both models is also
provided to assess the overall anomaly identification performance.

5. Results

Anomaly identification in surveillance videos is a difficult task, especially when using
low-quality videos with poor spatial resolution and visual characteristics. Traditional
methods, such as spatial interpolation, frequently result in limited improvement and can
introduce undesirable artifacts. Alternatively, video super resolution, which improves
spatial resolution, can be computationally expensive. This study addresses the challenges
of low-quality videos using a video super-resolution approach based on StyleGAN priors.
The StyleGAN improves not only the spatial resolution but also image sharpness and
contrast. Unlike traditional video super-resolution methods, our approach selectively
super-resolves frames that are relevant to anomaly identification, thereby improving com-
putational efficiency. A two-stream architecture is used for classification modeling, which
reduces the need for expensive optical flow computation. The RGB stream promotes spatial
learning, whereas the SG3I stream emphasizes short-term temporal learning. Both streams
use the same pre-trained CNN architecture, which has been fine-tuned for the dataset
of interest. The learned features are concatenated and fed into a Gated Recurrent Unit
(GRU) for long-term temporal modeling. The proposed approach effectively addresses
the challenges posed by low-quality surveillance videos and delivers superior anomaly
classification performance while minimizing the computational burden.

5.1. Classification Performance
5.1.1. Bicubic Interpolation of Videos

The classification performance of the upscaled images using bicubic interpolation is
provided in the confusion matrix in Figure 6. It is to be noted that out of 50 videos in each
class, 40 videos are used for model training, and 10 videos are used for model testing. The
confusion matrix provides the actual number of videos classified into each category. Table 3
provides the performance metrics for each class as well as the macro-averaged value for
all classes. Classification accuracy is usually regarded as the most important performance
metric for anomaly classification, followed by the FPR. Moreover, the values of precision,
recall (sensitivity), F1-score, specificity, FPR, and FNR are also reported for each class and
are averaged for all classes.

5.1.2. Super-Resolution Videos

Like for the bicubicly interpolated videos, the classification performance for super-
resolution videos is provided in the confusion matrix in Figure 7. The confusion matrix reports
the classification performance based on 10 videos per anomaly class. Table 4 provides the
performance metrics for each class as well as the macro-averaged value for all classes.
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Figure 6. Confusion matrix for bicubic interpolation of videos.
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Table 3. Classification performance for bicubic interpolation of videos.

Class Accuracy Precision Recall F1-Score Specificity FPR FNR
Abuse 86.42% 45.45% 50.00% 47.62% 91.55% 8.45% 50.00%
Arrest 93.83% 100.00%  50.00% 66.67% 100.00% 0.00%  50.00%
Arson 87.65% 55.56% 45.45%  50.00% 94.29% 5.71% 54.55%
Assault 86.42% 45.45% 50.00% 47.62% 91.55% 8.45%  50.00%
Burglary 91.36% 71.43% 50.00% 58.82% 97.18% 2.82%  50.00%
Explosion 90.12% 60.00% 60.00%  60.00% 94.37% 5.63% 40.00%
Fight 86.42% 46.15% 60.00% 52.17% 90.14% 9.86%  40.00%
Normal 86.42% 46.67% 70.00%  56.00% 88.73% 11.27%  30.00%
Macro-Average 88.58% 58.84% 54.43%  54.86% 93.48% 6.52% 45.57%
c
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Figure 7. Confusion matrix for super-resolution videos.

Table 4. Classification performance for super-resolution videos.

Class Accuracy Precision Recall F1-Score Specificity FPR FNR

Abuse 92.59% 70.00% 70.00%  70.00% 95.77% 4.23%  30.00%
Arrest 95.06% 100.00%  60.00%  75.00% 100.00% 0.00%  40.00%
Arson 90.12% 66.67% 54.55%  60.00% 95.71% 429%  45.45%
Assault 91.36% 63.64% 70.00%  66.67% 94.37% 5.63%  30.00%
Burglary 93.83% 77.78% 70.00%  73.68% 97.18% 2.82%  30.00%
Explosion 91.36% 63.64% 70.00%  66.67% 94.37% 5.63%  30.00%
Fight 92.59% 66.67% 80.00%  72.73% 94.37% 5.63%  20.00%
Normal 91.36% 61.54% 80.00%  69.57% 92.96% 7.04%  20.00%
Macro-Average 92.28% 71.24% 69.32%  69.29% 95.59% 441%  30.68%

5.2. Comparison with Existing Approaches

To validate the effectiveness of our proposed methodology, we conducted an extensive
experimental variations. In addition to these experiments, we performed a comparative
analysis between the TempoFuseNet framework and existing state-of-the-art approaches
that center around multiclass anomaly classification, using the UCF-Crime dataset as our
testing ground. In a similar context, Maqgsood et al. [35] introduced a convolutional neural-
network-based approach that initiates with video preprocessing to create 3D cubes through
spatial augmentation. To streamline the analysis process, they employed a subset of the
dataset: eliminating extraneous data and manually identifying atypical segments to ensure
class balance. Subsequently, these 3D video cubes were fed into a convolutional neural
network (CNN) to extract spatiotemporal features. Their analysis of the UCF-Crime dataset
yielded a classification accuracy of 45% across fourteen distinct classes. In another study;,
Tiwari et al. [60] employed a fuzzy-rule-based approach for video summarization with the
aim of addressing issues related to excessive data and high computational costs. Tiwari
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et al. [60] achieved a classification accuracy of 53% in their classification experiment by
leveraging a hybrid slow—fast neural network.

On the other hand, our study utilized a trimmed UCF-Crime dataset comprising
eight classes and fifty videos. For the anomaly classification task, we applied a two-step
approach: First, we upscaled the low-resolution (LR) videos using bicubic interpolation and
an encoder-bank—decoder configuration for super resolution. The encoder and decoder
played pivotal roles in downscaling and upscaling, while the bank was a pre-trained
StyleGAN acting as a latent feature repository to enhance super-resolution performance
based on feature priors. Our experiments encompassed both types of upscaled images, and
the results were systematically compared in order to highlight the effectiveness of our super-
resolution approach. Anomaly recognition was executed through a two-stream architecture
wherein a pre-trained CNN model extracted features from RGB images in the spatial
stream, and Stacked Grayscale 3-channel Images (SG3I) were used in the temporal stream,
substantially reducing the computational load of optical flow computation while capturing
short-term temporal characteristics. The features from both streams were concatenated
and passed through a Gated Recurrent Unit (GRU) layer to capture long-term temporal
characteristics. The output of the GRU layer was then processed through dense and
softmax layers before reaching the final classification layer. Our proposed methodology,
coupled with the encoder-bank-decoder super-resolution model, yielded remarkable
results, achieving a classification accuracy of 92.28%, an F1-score of 69.29%, and a false
positive rate of just 4.41%.

5.3. Comparison of Bicubic Interpolation and Super-Resolution Approaches

In order to perform a comparison of both approaches, a bar-chart is plotted, as shown
in Figure 8, for seven classification evaluation metrics; the chart clearly shows the superior-
ity of super resolution over bicubic interpolation to perform anomaly identification. It is to
be noted that the reported scores for accuracy, precision, recall, F1-score, and specificity are
higher for super-resolution videos in comparison to bicubic interpolation videos, which
is desirous, as higher values for these metrics indicate good classification performance.
On the other hand, FPR and FNR should be lower for a good classification system, and
therefore, their values are lower for video super-resolution scenarios. A clear performance
gap indicates that super-resolution-based anomaly detection models are very effective
when the video stream is of low spatial resolution.
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Figure 8. Comparison of bicubic interpolation and super-resolution approaches.

6. Conclusions

This study addressed the challenge of multi-class anomaly identification using low-
quality surveillance videos within 5G and IoT environments. By conducting experiments
on the trimmed UCF-crime dataset, the videos were downscaled to 1/8 resolution and then
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upscaled using bicubic interpolation and super-resolution techniques. The TempoFuseNet
framework employed a two-stream architecture that was followed by GRU for long-term
temporal modeling. The experimental results showcased remarkable performance, with
a classification accuracy of 92.28%, F1-score of 69.29%, and false positive rate of 4.41%.
Moreover, the integration of super resolution in the anomaly classifier yielded substantial
enhancements over the videos upscaled using bicubic interpolation. Specifically, the super-
resolution-based approach achieved a 3.7% improvement in accuracy, a significant 14.34%
boost in the Fl-score, and a commendable 2.11% reduction in the false positive rate. Hence,
TempoFuseNet outperforms existing state-of-the-art methods in multiclass classification
performance and effectively addresses the technical limitations caused by low-quality
videos, making it a robust solution for real-world surveillance scenarios, particularly in 5G
and IoT environments.

Future Work

This study makes significant progress in improving video quality and anomaly de-
tection in surveillance scenarios. However, future research could focus on integrating
real-time processing capabilities and on investigating methods for automatically fine-
tuning the model in response to changes to the lighting, spatial characteristics, or other
dynamic factors. Moreover, integrating multi-modal data sources, such as contextual infor-
mation, could improve anomaly detection accuracy and broaden the system’s applicability
in a variety of surveillance scenarios.
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Abstract: The adoption of edge infrastructure in 5G environments stands out as a transformative
technology aimed at meeting the increasing demands of latency-sensitive and data-intensive applica-
tions. This research paper presents a comprehensive study on the intelligent orchestration of 5G edge
computing infrastructures. The proposed Smart 5G Edge-Cloud Management Architecture, built
upon an OpenNebula foundation, incorporates a ONEedge5G experimental component, which offers
intelligent workload forecasting and infrastructure orchestration and automation capabilities, for
optimal allocation of virtual resources across diverse edge locations. The research evaluated different
forecasting models, based both on traditional statistical techniques and machine learning techniques,
comparing their accuracy in CPU usage prediction for a dataset of virtual machines (VMs). Addition-
ally, an integer linear programming formulation was proposed to solve the optimization problem of
mapping VMs to physical servers in distributed edge infrastructure. Different optimization criteria
such as minimizing server usage, load balancing, and reducing latency violations were considered,
along with mapping constraints. Comprehensive tests and experiments were conducted to evaluate
the efficacy of the proposed architecture.

Keywords: 5G edge infrastructures; intelligent edge orchestration; workload forecasting; resource
allocation and optimization; machine learning; integer linear programming

1. Introduction

The evolution of 5G technology has ushered in a new era of connectivity, offering
enhanced capabilities that extend beyond traditional communication paradigms. Advanced
5G networks facilitate a diverse range of applications, characterized by their complexity,
computational demand, and low-latency requirements. These applications, designed to
leverage the capabilities of advanced 5G, exhibit a hybrid profile, relying on resources
spanning the spectrum from data centers to the cloud to the edge.

In particular, the deployment of edge infrastructure in 5G environments is crucial to ad-
dressing the unique challenges posed by latency-sensitive and data-intensive applications [1,2].
The next generation of applications, encompassing smart IoT applications, real-time analyt-
ics, machine learning applications, and more, require intelligent orchestration of resources
in the edge domain, where computational tasks are strategically placed closer to data
sources to minimize latency and enhance overall system performance.

Orchestrating edge infrastructure in 5G environments is not without its complexi-
ties. The heterogeneous nature of edge devices, coupled with the dynamic and resource-
constrained characteristics of these environments, presents challenges for effective resource
management. Unlike traditional cloud-centric models, the edge requires a nuanced ap-
proach that considers factors such as reliability, security, data protection, and energy
efficiency. In light of these challenges, the need for intelligent orchestration becomes
paramount. An orchestration system driven by artificial intelligence (AI) and machine
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learning (ML) techniques can dynamically allocate and coordinate resources across a dis-
tributed edge infrastructure.

In the current cloud market, various vendors and tools claim to employ intelligent
techniques for resource management and monitoring. For instance, VMware implements a
predictive distributed resource scheduler (DRS) [3] for cloud platforms, which forecasts
future demand and preemptively addresses potential hot spots, by reallocating workloads
well in advance of any contention. OPNI [4], an open source project from SUSE, is an-
other noteworthy example aimed at enhancing observability, monitoring, and logging in
Kubernetes-based clusters. It offers a range of AIOps tools for detecting log anomalies, iden-
tifying root causes, and spotting metric irregularities. Google Active Assist [5] is another
tool that aims to provide intelligent solutions for improving cloud operations, by offering
recommendations for cost reduction, performance enhancement, security improvement,
and sustainability. Generally, these prediction and optimization techniques deployed by
cloud stakeholders are tailored for centralized cloud platforms and often comprise simple,
proprietary solutions that may not be adaptable to highly distributed 5G edge environ-
ments. On the other hand, recent initiatives like OpenNebula OneEdge [6] enable the
deployment and management of geo-distributed edge/cloud infrastructures, leveraging
resources from various public cloud and edge infrastructure providers. However, these
tools are still nascent and primarily offer basic management functionalities rather than
advanced, intelligent orchestration capabilities for optimizing the deployment of large scale
edge infrastructures.

In this work, we propose a pioneering Smart 5G Edge-Cloud Management Archi-
tecture, which seeks to expand the existing edge management platforms by integrating
intelligent orchestration capabilities. This integration aims to automate and optimize the
provisioning and deployment of geographically distributed 5G edge infrastructures. This
architecture, built upon the foundation of OpenNebula [7,8], will integrate cutting-edge
experimental components under development in the ONEedge5G project, as shown in
Figure 1. ONEedge5G aims to enable efficient capacity planning, provisioning, and risk
prevention in geographically distributed edge infrastructures and applications within the
context of advanced 5G networks. This is achieved through the characterization and moni-
toring of edge infrastructures and virtual applications, prediction of the state of the data
center—cloud—edge continuum, and programmatic intervention based on these predictions.
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Figure 1. OpenNebula + ONEedge5G for intelligent orchestration of multiple 5G edge locations.
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In its current developmental phase, ONEedge5G integrates diverse predictive in-
telligence mechanisms for workload forecasting. It also embeds various optimization
algorithms to ensure optimal resource allocation across multiple edge locations. This paper
introduces and assesses these intelligent techniques, demonstrating their effectiveness for
improving the management and performance of distributed edge infrastructures.

To evaluate the efficacy of our Smart 5G Edge-Cloud Management Architecture,
we conducted comprehensive tests and experiments. Through rigorous analysis, we
assessed the capabilities of a ONEedge5G prototype in accurate workload forecasting
and optimization. By presenting the results of these experiments, we demonstrate the
benefits and efficiency gains achieved by leveraging intelligent prediction and optimization
techniques in 5G edge management.

The remainder of this paper is structured as follows: Section 2 analyzes the advantages
and challenges of edge computing on 5G networks. Section 3 discusses related works.
Section 4 presents the design and main components of the Smart 5G Edge-Cloud Manage-
ment Architecture. Section 5 summarizes the time-series forecasting models employed
for workload prediction. Section 6 introduces the mathematical models utilized in the
integer linear programming (ILP) formulation for edge resource optimization. Section 7
demonstrates the virtual resource CPU usage forecasting results for the different datasets
and the resource optimization outcomes for the various objective functions and constraints.
Finally, Section 8 summarizes the conclusions of this study and suggests potential directions
for future research.

2. Edge Computing and Advanced 5G Networks

Advanced 5G networks bring a multitude of advantages [9], including significantly
faster data speeds, through enhanced mobile broadband (eMBB), ultra-reliable and low-
latency communication (URLLC), and support for a large number of connected devices
with massive machine-type communication (mMTC). The implementation of network
slicing allows customizable network services, tailoring offerings to specific requirements,
while technologies like beamforming and MIMO contribute to improved network coverage
and efficiency. Deploying edge computing infrastructures on advanced 5G networks offers
several key benefits. First, it significantly reduces latency by processing data closer to
the source, ensuring quicker response times for applications. This is particularly crucial
for real-time applications like augmented reality and autonomous vehicles. Second, edge
computing enhances energy efficiency by minimizing data transmission between central
clouds and end devices, contributing to a more sustainable network. Third, the proximity
of computational resources at the edge ensures improved application performance, partic-
ularly for latency-sensitive tasks. The combination of these technologies, along with the
growth of the Internet of Things (IoT), has given rise to the emergence of new computing
paradigms, such as multi-access edge computing (MEC) [10], which is aimed at extending
cloud computing capabilities to the edge of the radio access network, hence providing
real-time, high-bandwidth, and low-latency access to radio network resources.

According to [11], the main objectives of edge computing in 5G environments are
the following: (1) improving data management, in order to handle the large amounts of
real-time delay-sensitive data generated by user equipments (UEs); (2) improving quality
of service (QoS) to meet diverse QoS requirements, thereby improving the quality of expe-
rience (QoE) for applications that demand low latency and high bandwidth; (3) predicting
network demand, which involves estimating the network resources required to cater to
local proximity network (or user) demand, and subsequently providing optimal resource
allocation; (4) managing location awareness, to enable geographically distributed edge
servers to infer their own locations and track the location of UEs to support location-based
services; and (5) improving resource management, in order to optimize network resource
utilization for network performance enhancement in the edge cloud, acknowledging the
challenges of catering to diverse applications, user requirements, and varying demands
with limited resources compared to the central cloud.
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Focusing on the last objective, efficient resource management and orchestration in
5G edge computing [12,13] are crucial as they not only contribute to latency reduction
by strategically deploying computing resources, minimizing the time for data processing
and enhancing application responsiveness, but also play a pivotal role in optimizing en-
ergy consumption through dynamic allocation based on demand, thereby reducing the
environmental footprint. Furthermore, proper resource management is essential for per-
formance optimization, preventing bottlenecks, ensuring balanced workload distribution,
and maintaining consistent application performance, all of which collectively enhance
the overall user experience in these advanced network environments. In this context, Al
and ML techniques prove instrumental in addressing these challenges [14-18]. For ex-
ample, through predictive analytics and forecasting, ML algorithms can anticipate future
demands, enabling proactive resource allocation and strategic deployment for minimized
data processing times and reduced latency. Al-driven dynamic allocation can optimize
resource utilization and, consequently, energy consumption by adapting to real-time de-
mand patterns. Additionally, ML models, employing clustering and anomaly detection,
can ensure consistent application performance by preventing bottlenecks and optimizing
workload distribution.

In this article, we specifically address the issue of intelligent resource orchestration
in distributed edge computing infrastructures by integrating forecasting techniques for
predicting resource utilization [19,20] and optimization techniques for optimal resource
allocation [21,22]. Resource utilization forecasting leverages historical and real-time data
to predict future resource demands accurately. By employing both traditional statistical
techniques and Al-based ML techniques [23,24], these forecasts enable proactive resource
allocation, mitigating the risk of resource shortages or over-provisioning. Furthermore,
forecasting techniques facilitate capacity planning, allowing organizations to scale their
resources dynamically based on anticipated demands. Optimization techniques also play a
vital role in orchestrating resources across multiple edge locations. These techniques employ
mathematical models such as ILP and heuristic algorithms [25,26] to determine the optimal
mapping of virtual resources (VMs or containers) onto physical servers. By considering var-
ious factors including proximity, resource availability, and application requirements, these
techniques ensure efficient utilization of resources and minimize resource fragmentation.

3. Related Work

The literature has extensively explored the application of artificial intelligence (AI)
techniques, including evolutionary algorithms and machine learning (ML) algorithms,
to address diverse prediction and optimization challenges in both cloud and edge envi-
ronments. A recent study [27] offered a comprehensive review of machine-learning-based
solutions for resource management in cloud computing. This review encompassed areas
such as workload estimation, task scheduling, virtual machine (VM) consolidation, re-
source optimization, and energy efficiency techniques. Additionally, a recent book [28]
compiled various research works that considered optimal resource allocation, energy effi-
ciency, and predictive models in cloud computing. These works leveraged a range of ML
techniques, including deep learning and neural networks. For edge computing platforms,
surveys such as [29] have analyzed different machine and deep learning techniques for
resource allocation in multi-access edge computing. Similarly, ref. [30] provided a review
of task allocation and optimization techniques in edge computing, covering centralized,
decentralized, hybrid, and machine learning algorithms.

If we focus on workload prediction, we see this is an essential technique in cloud
computing environments, as it enables providers to effectively manage and allocate cloud
resources, save on infrastructure costs, implement auto-scaling policies, and ensure com-
pliance with service-level agreements (SLAs) with users. Workload prediction can be
performed at application or infrastructure level. Application-level techniques [31,32] in-
volve predicting a metric related to the application demand (e.g., requests per second
or task arrival rate) to anticipate the optimal amount of resources needed to meet that
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demand. On the other hand, infrastructure-level techniques [33,34] are based on predicting
one or more resource usage metrics (such as CPU, memory, disk, or network) and making
advanced decisions about the optimal amount and size of virtual or physical resources to
provision to avoid overload or over-sizing situations. Another interesting piece of research
in this area is [35], which presented a taxonomy of the various real-world metrics used to
evaluate the performance of cloud, fog, and edge computing environments.

The most common workload prediction techniques used in cloud computing are based
on time-series prediction methods [19,24], which involve collecting historical data of the
target metric (e.g., the historical CPU usage of a VM or group of VMs) and forecasting
future values of that metric for a certain time horizon. There are many different methods
for modeling and predicting the time-series used in cloud computing, many of them based
on classical techniques such as linear regression [36], Bayesian models [37], or ARIMA sta-
tistical methods [38]. The main advantage of these models is their flexibility and simplicity
in representing different types of time-series, making them quick and easy to use. However,
they have a significant limitation in their linear behavior, making them inadequate in some
practical situations.

More recently, different methods have been proposed for time-series prediction based
on machine learning and deep learning models [34,39,40] using artificial neural networks
that have inherent non-linear modeling capabilities. One of the most common ML models
applied to time-series is the long short-term memory (LSTM) neural network [23,41,42],
which overcomes the problem of vanishing gradients associated with other neural networks.
However, these methods also have several drawbacks. The first is that the training and
prediction times of the neural network can be quite high (several minutes, or even hours),
making them unfeasible in certain situations. The second problem is that the quality of
predictions of neural-network-based methods depends heavily on correct selection of the
model’s hyperparameters, which can vary depending on the input data, meaning that
adjusting these hyperparameters poses a serious challenge, even for expert analysts.

In absolute terms, it is not possible to claim that one prediction method is better than
another, as their behavior will depend on the specific use case, the profile of the input
data, the correct tuning of each model’s hyperparameters, and the use or non-use of co-
variables that may correlate with the variable being predicted. In this context, research in
this field involves exploring and comparing different prediction methods for each case,
improving existing methods, and combining different techniques by proposing new hybrid
or adaptive methods that allow for the most accurate forecasts possible. Likewise, applying
these prediction techniques to other emerging environments such as highly geo-distributed
edge/cloud environments, IoT environments, and server-less environments also represents
a significant challenge.

On the other hand, the optimal allocation of resources in cloud computing is an
important problem that must be addressed to ensure efficient use of resources and to meet
SLAs agreed with users. The goal is to allocate resources (e.g., VMs to physical hosts) in a
way that maximizes infrastructure utilization, subject to certain performance or application
response time requirements.

There are different optimization techniques used to solve this problem. One of the
most commonly used techniques is linear programming, which finds the optimal solution
to a linear function subject to a set of linear constraints. This technique is very useful for
problems involving a large number of variables and constraints. For example, ref. [43]
was a pioneering work in cloud brokering that used ILP to optimize the cost of a virtual
infrastructure deployed on a set of cloud providers. Subsequently, this research was ex-
panded upon in [44], which addressed dynamic cloud scenarios and incorporated diverse
optimization criteria such as cost or performance. The authors in [45,46] presented MAL-
LOOVIA, a multi-application load-level-based optimization for virtual machine allocation.
MALLOOVIA formulates an optimization problem based on ILP and takes the levels of
performance to must be reached by a set of applications as input, and generates a VM allo-
cation to support the performance requirements of all applications as output.The authors
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in [47,48] provided an approach for supporting the deployment of microservices in multi-
cloud environments, focusing on the quality of monitoring and adopting a multi-objective
mixed integer linear optimization problem, in order to find the optimal deployment satisfy-
ing all the constraints and maximizing the quality of monitored data, while minimizing
costs. Some recent works have also used ILP optimization for resource allocation in edge
computing infrastructures. For example, ref. [49] formulated an ILP model to minimize the
access delay of mobile users’ requests, in order to improve the efficiency of edge server and
service entity placement. The authors in [50] focused on the joint optimization problem of
edge sever placement and virtual machine placement. The optimization models proposed,
which take into account the network load and the edge server load, are based on ILP and
mixed integer programming.

Other optimization approaches that we can find in the literature are heuristic tech-
niques based on bio-inspired algorithms [26,51-54], such as genetic algorithms, particle
swarm optimization), and ant colony optimization, among others. These algorithms allow
users to find suboptimal solutions for optimization problems that are too complex to solve
exactly. Genetic algorithms, for example, are inspired by natural selection and biological
evolution to find optimal solutions. Reinforcement learning is another technique that has
been successfully used in resource management and allocation in cloud computing [55-57].
This technique is based on a learning model in which an agent interacts with an envi-
ronment and receives a reward or punishment based on its actions. Through experience,
the agent learns to make the optimal decisions that maximize the expected reward.

Each technique has its advantages and disadvantages, and the choice of the most
appropriate technique will depend on the specific characteristics of the problem to be
solved. In general, linear programming is more suitable for well-structured problems with a
limited number of variables and constraints. Metaheuristic algorithms are more suitable for
more complex problems with a large number of variables and constraints. Reinforcement
learning, on the other hand, is more suitable for problems involving uncertain dynamic
environments. Sometimes it will also be necessary to address multi-objective problems
where it is necessary to optimize more than one objective function subject to certain
constraints. Research in this field involves exploring, analyzing, and comparing different
optimization techniques adapted to each problem and use case, including the treatment
of both single and multi-objective problems, and the possibility of combining different
techniques through the proposal of new hybrid optimization techniques. Furthermore,
the application of these optimization techniques to other emerging environments such
as highly geo-distributed edge/cloud environments, IoT environments, and serverless
environments also represents an important challenge.

In the above research review, we found many studies focusing on predicting loads and
optimizing resources in centralized clouds or simple edge infrastructures, using various ma-
chine learning techniques. However, there has been limited exploration or implementation
of these techniques in highly distributed 5G edge environments within actual cloud/edge
infrastructure managers. The Smart 5G Edge-Cloud Management Architecture proposed in
this study aims to address this gap. It intends to analyze, enhance, and expand Al-based
prediction and optimization methods for large-scale 5G edge infrastructures. Addition-
ally, it plans to integrate these methods with existing edge management platforms like
OpenNebula. This integration will enable automated and optimized provisioning and
deployment of geo-distributed 5G edge infrastructures.

4. Proposed Architecture

Below, we present a Smart 5G Edge-Cloud Management Architecture built upon the
foundation of OpenNebula for the orchestration and management of cloud-edge infrastructures.

4.1. Smart 5G Edge-Cloud Management Architecture

The design of the new Smart 5G Edge-Cloud Management Architecture is shown
in Figure 2. In this context, it is important to note the difference between management
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(implemented by OpenNebula) and orchestration (implemented by the new components
of the ONEedge5G project). While management just involves the capacity for managing
the lifecycle of resources (physical or virtual) and performing basic actions regarding
these resources, orchestration involves intelligent and automated provision, configuration,
and coordination of resources, keeping track of the state of resources and reacting to events,
and making optimal decisions about, for example, scheduling, placement, migration,
or consolidation, based on different optimization criteria. The main components of this
architecture are the following;:
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Figure 2. Smart 5G Edge-Cloud Management Architecture.

The monitoring system is responsible for collecting different infrastructure-level met-
rics (e.g., CPU, memory, network I/O, or energy consumption) and logs from virtual
and physical infrastructure and/or service-level metrics (e.g., response time or re-
quests/s) and logs from deployed applications.

The historical trace/logs database stores the historical values of these metrics and logs.

The prediction and anomaly-detection system implements different Al-based algo-
rithms in order to predict future infrastructure load (e.g., CPU or memory usage
for a virtual or physical resource), to forecast application workloads (e.g., request/s
for an application), or to detect or predict anomalies (e.g., system failures, service
interruptions, or performance slow down).

The reporting and alerting system is used to configure different metric-based alert-
ing policies and reporting filters, in order to obtain valuable information, warnings,
and recommendations from the historical traces/logs and from the information pro-
vided by the prediction and anomaly-detection system.

The elasticity manager implements different horizontal or vertical auto-scaling mecha-
nisms to provide service elasticity, including Al-based proactive autoscaling based on
application workload predictions.

The virtual infrastructure orchestrator is responsible for making automated decisions
about the best possible allocation of virtual resources (VMs/containers) to physical
servers, which can be located in different cloud regions and edge zones. It can
implement different Al-based virtual resource allocation and migration strategies,
based on predictions, and using different optimization criteria such as cost, energy
consumption, and application performance.

The physical infrastructure orchestrator is responsible for making automated decisions
about deploying or shutting down physical (bare-metal) servers or clusters in different
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cloud and edge locations. It can implement different Al-based server placement and
consolidation strategies based on predictions, to decide when and where a new cluster
must be deployed and its optimal size, including dynamic re-dimensioning to adapt
the cluster size to actual or expected demand.
¢  The physical and virtual infrastructure managers provide the interfaces, drivers, and mech-

anisms necessary to manage the entire lifecycle of virtual and physical resources, as well
as performing different actions (e.g., deploy, migrate, suspend, resume, or shutdown) for
these resources, according to user commands or orchestrator decisions.

It is important to note that ONEedge5G is an ongoing experimental project, and there-
fore many of its components are still under development. This research work centers around
two main elements within its architecture: a virtual resource CPU usage prediction system
integrated within the prediction and anomaly detection module, and a virtual-to-physical
resource mapping system that utilizes optimization techniques, forming an integral part
of the virtual infrastructure orchestrator. Additionally, a historical trace database system
has been implemented leveraging Prometheus [58], which plays a critical role in providing
historical traces of virtual resource CPU usage to support the prediction system.

4.2. Intelligent Orchestration of Virtual Resources on 5G Edge Infrastructures

The problem addressed in this work focuses on the intelligent orchestration of vir-
tual resources (VMs or containers) in 5G edge infrastructures. As depicted in Figure 3,
the scenario under consideration involves multiple bare-metal clusters or servers located in
different 5G edge locations. These edge clusters are managed by a centralized instance of
the OpenNebula cloud manager. From the perspective of OpenNebula, these clusters form
a uniform physical resource pool, where virtual resources can be dynamically deployed on
an on-demand basis.

Users

#70Open 4 &
Nebula ONEedge

Management = Orchestration

Physical Physical Physical

resources . resources . resources
Virtual resources Virtual resources

M/ M/ M/
I Container I Container I Container I

Edge location 1 Edge location 2

Virtual resources
corner | Jf cone |
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Figure 3. Distributed edge infrastructure.

Intelligent orchestration of this infrastructure entails finding an optimal allocation of
virtual resources to the available physical servers within the edge infrastructure, while
satisfying specific criteria. Various optimization criteria can be considered, such as min-
imizing the number of servers in use by consolidating virtual resources onto the fewest
possible servers to reduce energy consumption, balancing the load of different servers to
prevent overloading and CPU contention, or optimizing latency by selecting the closest
edge server based on specific proximity criteria. In addition, the orchestration system can
also deal with different constraints, including a limit on the maximum number of hosts
used, or a limit on the number of violations of the proximity criteria.

To address these challenges, the ONEedge5G module incorporates various prediction
and optimization mechanisms. Prediction mechanisms leverage historical data to forecast
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the load of different virtual resources for the upcoming allocation period. This load can
be quantified in terms of virtual resource consumption, such as CPU, memory, and/or
bandwidth usage. Meanwhile, optimization techniques utilize the aforementioned predic-
tions to determine the optimal allocation of virtual resources to physical servers based on
specific optimization criteria (e.g., minimizing the number of servers, achieving server load
balancing, or optimizing latency) and constraints.

5. Virtual Resource Load Forecasting

As mentioned in Section 3, workload prediction in cloud computing can be conducted
at the application level or the infrastructure level. In this study, we focus on utilizing
infrastructure-level techniques, which rely on predicting one or more resource usage
metrics, such as CPU, memory, disk, or network utilization. Specifically, we employ and
compare different time-series forecasting methods to predict virtual resource CPU usage.

To accomplish this, it was imperative to gather historical data on CPU usage from
various virtual resources over a specified time period. For each virtual resource trace,
the historical data were divided into two datasets: one for training and another for testing.
The training data were then employed to train various time-series forecasting models,
while the test data were used to evaluate the accuracy of the predictions using appropriate
error metrics.

5.1. Time Series Forecasting Models

In this study, we implemented a range of forecasting models using the Darts Python
library [59]. This library offers a wide array of models, including both classical approaches
like ARIMA and sophisticated deep neural networks. Leveraging the capabilities of the
Darts library, we implemented the following forecasting models:

* Naive seasonal. This is a simple baseline model for univariate time-series forecast-
ing [60] that always predicts the value of K time steps ago. When K = 1, this model
predicts the last value of the training set. When K > 1, it repeats the last K values of
the training set.

* ARIMA (auto-regressive integrated moving average). The ARIMA model [61] is a
form of regression analysis that assesses the relationship between a dependent variable
and other changing variables. Its objective is to predict future values of a time-series
by examining differences between values in the series, rather than the actual values
themselves. In this study, we utilized the Auto-ARIMA model [62] offered by the Darts
library, which automatically determines the optimal parameters for an ARIMA model.

*  Bayesian regression. Bayesian regression [63] is a type of conditional modeling in
which the mean of one variable is described as a linear combination of other variables.
One of the most useful types of Bayesian regression is Bayesian ridge regression,
which estimates a probabilistic model of the regression problem. The Darts model
used in our experiments is based on the Scikit-Learn implementation of Bayesian ridge
regression [64].

e Facebook (FB) Prophet. FB Prophet [65] is a forecasting package developed by Face-
book’s data science research team. Its objective is to provide users with a powerful
and user-friendly tool for forecasting business results, without requiring expertise in
time-series analysis. The underlying algorithm is a generalized additive regression
model consisting of four main components: a piecewise linear or logistic growth curve
trend, a yearly seasonal component modeled using Fourier series, a weekly seasonal
component using dummy variables, and user-provided important holidays.

*  Recurrent neural networks (RNN) based on LSTM (long short-term memory). LSTM [66]
are a specialized type of RNN used in deep learning. They address the vanishing
gradient problem of traditional RNNs by incorporating memory cells and gating
mechanisms. These mechanisms enable LSTM networks to selectively remember
or forget information over time, making them well-suited for tasks requiring the
understanding of long-range dependencies in sequential data.
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*  Neural basis expansion analysis time-series forecasting (N-BEATS). N-BEATS is a
neural network that was architecture initially described in [67]. The primary objec-
tive of N-BEATS is to address the univariate time-series point forecasting problem
using deep learning techniques. In the N-BEATS implementation provided by Darts,
the original architecture is adapted to handle multivariate time-series by flattening the
source data into a one-dimensional series.

By exploring and comparing these forecasting models, we aimed to identify the most
accurate and reliable approach for predicting virtual resource CPU usage in our infrastructure.

5.2. Forecast Accuracy Measures

Different error metrics can be used to evaluate the accuracy of forecasting models.
Some of the most common error measures are the following;:

e Mean absolute error (MAE):

1 & .
MAE = — ) [yi = §il )
i=1
. Mean squared error (MSE):
SE = 1 3 C_0:)?
MSE = 0 Z(J/z yz) (2)
i=1

*  Root mean squared error (RMSE):

RMSE = [~} (yi — ;) @A)
i=1

where y; are the actual observations (e.g., CPU usage), #J; are the predictions made by the
forecasting model, and 7 is the number of observations.

In this work, we used the RMSE metric to compare the different forecasting techniques.
RMSE represents the standard deviation of the residuals (prediction errors), and it is a
measure of how spread out these residuals are. In other words, it tells you how concentrated
the data are around the line of best fit.

|-

6. Edge Resource Optimization
6.1. Problem Statement

The scenario considered in this work consists of a distributed 5G edge infrastructure
composed of a set of physical servers, one per edge location, each server with a specific
computing capacity (measured in the number of available cores) and a certain memory
capacity (measured in MB of available RAM). Our objective is to deploy a set of virtual
resources (VMs or containers) in this infrastructure, where each virtual resource has its
own computing requirements (number of assigned cores), memory requirements (amount
of assigned RAM in MB), and an estimated (forecasted) percentage of CPU usage for
each time slot. Furthermore, to model latency in our system, we assume that each virtual
resource is designated with a preferred edge location based on proximity criteria that
consider the distance between the edge location and the end users it serves. If the virtual
resource is not assigned to the preferred edge location, this is considered a latency viola-
tion. In our proposed model, we do not measure the exact time penalty caused by these
violations but instead focus on counting the total number of virtual resources affected by
latency violations.

The problem at hand involves finding the optimal mapping of virtual resources (VMs
or containers) to edge servers for a given time period (in our case, the mapping is performed
once a day). As outlined in Section 2, deploying edge computing infrastructures on 5G
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networks presents new challenges related to reducing latency, minimizing energy consump-
tion, and distributing workloads across geo-distributed edge nodes in various 5G locations
(such as 5G base stations). This study tackles these challenges by considering different
objective functions, such as minimizing the total number of cores utilized in the physical
infrastructure in order to reduce energy consumption, optimizing load balancing among
the different servers to improve workload distribution, and minimizing the number of
virtual resources affected by latency violations to reduce the observed latency for end users
and devices. Furthermore, we must account for some mapping constraints. For instance, it
is essential to ensure that the aggregate CPU usage of all virtual resources assigned to a
physical server should never exceed the server’s capacity (number of available cores) in
any given time slot. Additionally, there may exist optional constraints, such as imposing
an upper limit on the utilization of resources (e.g., cores) within the edge infrastructure or
establishing a limit on the number of latency violations.

6.2. Problem Formulation

The proposed solution for the previously stated problem is based on an ILP formula-
tion. As an overview, the inputs for the model are the number of physical servers available
at the 5G edge infrastructure, the capacity of these servers in terms of CPUs (number of
cores available), the set of virtual resources (VMs or containers) to be deployed, the capacity
allocated to these virtual resources in terms of CPUs (number of cores assigned to the
virtual resource), and the estimated percentage of CPU usage per time interval of these
virtual resources. These estimations are obtained using the forecasting methods detailed in
Section 5.

The output is the mapping of virtual resources to physical servers; that is, which
virtual resources should be deployed to each physical server, and which physical servers
are used for this deployment. Three different integer linear programming problems are
proposed, with three different objective functions.

The following subsections provide a detailed formulation of the problems.

6.2.1. Inputs

Let {v1,vy,...,0,} be the set of virtual resources to be mapped to the edge infrastruc-
ture, and let {s1,s,...,sm } be the set of physical servers available at this infrastructure,
assuming one server per edge location. Virtual resources and servers are characterized by
the following parameters (inputs of the model):

*  V{is the number of cores assigned to virtual resource v;, Vi = 1,...,n.

* V! is the estimated (predicted) CPU usage (%) of v; at time interval t, Vi = 1,...,n,
VE=0,...,23.

. S]C. is the number of cores available on servers;, Vj =1,...,m.

*  Prefjis the preferred edge location (or preferred server) designated for each virtual
resource, as defined by the following binary input parameter:

1 if s; is the preferred server designated for virtual resource v;
Prefi; = ]
0 Otherwise

6.2.2. Outputs

The output of the model is a mapping of virtual resources to edge servers for the next
full day, which can be defined using the two following decision variables:

0 Otherwise

. {1 if edge server s; is used for the next day’s allocation
j =

. x {1 if, for the next full day, the virtual resource v; is allocated to edge server s;
ij =

0 Otherwise
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6.2.3. Objective Functions

The goal is to find the optimal mapping of virtual resources to edge servers for the
next day (Xl-j,Yj Vi=1,...,n, Vj=1,...,m)that meets particular objective functions.
We explore three different objective functions, as follows:

1.  To minimize the total number of cores used in the edge infrastructure, which can be
formulated as follows:

Minimize Total_cores 4)
where
m
— c
Total_cores = 21 5¢-Y; (5)
]:

In the particular scenario where all servers are homogeneous and have an equal
number of cores, i.e., S]C- = 5% Vj =1,...,m, this objective function is equivalent to
minimizing the number of servers in use, which can be formulated as follows:

Minimize Total_servers (6)
where
Total _cores _

S¢ 4
]

m
Total_servers = Y; if S]C- =S,Vj=1,....,m 7)
=1

2. To balance the average load of all the cores used in the edge infrastructure. To formu-
late this objective function, we first define the average (daily) load per core of an edge
server, S;Oﬂd, as follows:

iy e Xij - Vi - Vi
25 ’

s}‘md = Vi=1,...,m (8)

Then, the load balancing objective function can be expressed as follows:
Minimize Max_load 9)

where
Max_load = max{S}O“d, Vi=1,...,m} (10)

It is worth noting that the maximum function (mmax) is not linear. Therefore, in order to
incorporate it into the ILP formulation, it is necessary to transform it into one or more
linear expressions. This can be achieved by re-formulating the Max_load function
as follows:

Max_load >= S Vj=1,...,m (11)

3. To minimize the number of virtual resources affected by latency violations, regarding
the preferred location of each virtual resource, Pref;;, and the actual location selected

for this virtual resource, Xij, which can be formulated as follows:
Minimize Total_latency_violations (12)

where ; "
Yig XjLq [Prefij — Xijl

Total_latency_violations = 5

(13)
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As in the previous case, the absolute value function is also non-linear. Therefore,
it is necessary to transform it into a linear expression using the following auxiliary
variable, Di]-:

Dl']'>:P1’€fij—Xi]' Vi=1,...,n Vj:1,...,m
Dij >= —(Prefi]‘—Xl’]') Vi=1,...,n ij 1,...,m (14)
Dij>:0 Vi=1,...,n ijl,...,m

Then, the Total_latency_violations function can be re-formulated as follows:

21?1:1 Z]m:1 Dz’j

Total_latency_violations = >

(15)

6.2.4. Constraints

Each of these objective functions is subject to a set of strict constraints and some
optional constraints.
(a) Strict constraints

e Each virtual resource must be allocated to exactly one edge server:

m
Y. X;=1 VYi=1,...,n (16)
j=1

®  The estimated CPU usage of all the virtual resources allocated to a server
cannot exceed, within a certain threshold a (with & € [0,1]), the maximum
capacity (number of cores) available on that server:

n
Z%Xiny-VZ’t <a-S§-Y; Vji=1,...m Vt=0,...,23 (17)
1=

The analyst has the flexibility to select the value of the « threshold, which
serves to mitigate the discrepancy between the estimated CPU usage and the
actual CPU usage of the virtual resources and prevent overloading of the
physical servers.

(b) Optional constraints

*  We can set a limit on the maximum number of cores used in the edge infras-
tructure:

m
Total_cores = Z S]C~ -Y; < core_limit (18)
j=1

*  We can set a limit on the maximum number of latency violations allowed:
Yit1 Xty |Prefij — Xl

2 (19)
< latency_violation_limit

Total_latency_violations =

It is necessary to note that, once again, the Total_latency_violations function
must be reformulated, as shown in Equations (14) and (15), to transform the
absolute value function into a linear expression.

It is important to note that this study primarily focuses on CPU usage for virtual
resources. However, it is worth mentioning that similar constraints and consid-
erations can be applied to other system resources, such as memory, bandwidth,
and disk consumption.
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7. Results

This section showcases the prediction and allocation results achieved with the vari-
ous forecasting models, employing different optimization functions and constraints. All
experiments were performed on an on-premises server equipped with a 2.3 GHz 8-core
Intel Core i9 processor and 32 GB of RAM. This configuration represents a standard setup
for executing a front-end instance of a cloud orchestrator.

7.1. Traces

The workload traces needed to feed the different forecasting and optimization algo-
rithms can be obtained from the different sources, including public dataset repositories
(e.g., Google Workload Cluster Traces [68], the Azure Public Datasets [69], the Grid Work-
load Archive [70], or the Alibaba Cluster Trace Program [71], among others), production
traces obtained from some real companies, or synthetic traces generated by certain work-
load generator applications (e.g., Predator [72], Locust [73], etc.). Using public datasets
has several advantages compared to the alternatives. Public datasets are typically curated,
cleaned, and anonymized to ensure privacy and security; furthermore, they facilitate fair
comparisons and reproducibility of experiments. On the other hand, accessing production
traces from real companies can be challenging due to confidentiality concerns, legal restric-
tions, and the need for collaboration or data-sharing agreements. Synthetic traces generated
by workload generators may not accurately represent real-world workload characteristics
and patterns. Since there are no publicly available workloads with sufficient representation
of distributed edge infrastructures, as noted in previous studies [74,75], in this work, we
opted to use two well-known cloud VM traces from public datasets. Specifically, we utilized
data from the Azure Public Datasets [76] and the GWA-T-12 Bitbrains traces sourced from
the Grid Workload Archive [77].

The VM traces available in the Azure Public Datasets encompass a representative
subset of the first-party Azure VM workload within a specific geographical region. These
first-party workloads consist of both internal VMs utilized for research/development
and infrastructure management, as well as first-party services provided to third-party
customers, such as for communication, gaming, and data management. The time-series
data derived from the Azure VM trace V1 span a duration of 30 days, commencing from
16 November 2016, and concluding on 16 February 2017. For each VM, this trace records
the capacity provisioned for this VM in terms of its cores, memory, and disk allocations.
Additionally, it collects CPU usage data reported every five minutes.

The GWA-T-12 Bitbrains dataset includes performance metrics obtained from approxi-
mately one thousand VMs within a distributed data center operated by Bitbrains. Bitbrains
specializes in managed hosting and business computation services for enterprises, catering
to prominent customers such as major banks (ING), credit card operators (ICS), insurers
(Aegon), and more. The time-series data recorded in the Bitbrains traces were collected at
5 min intervals, spanning a duration of 30 days from 12 August 2013, to 11 September 2013.
For each VM, this trace records the capacity provisioned for this VM in terms of number of
CPU cores, CPU MHz, and memory allocations. Additionally, it collects data about CPU
usage, memory usage, disk read /write throughput, and network input/output throughput,
reported every five minutes.

7.2. Forecasting Results

We utilized the aforementioned traces from Bitbrains and Azure to forecast CPU usage
using the various time-series forecasting models described in Section 5. These models were
implemented in Python using the Darts library. In both datasets, VM traces were collected
every five minutes over a 30-day period. We grouped these traces into hourly time-series,
by computing the maximum CPU usage within each hour. Our objective was to predict
CPU usage for the next 24 h period based on historical data. Before using them, both sets
were normalized to the interval [0,1]. The predicted CPU usage for the last 24 h period
was then used as input for the optimization models, allowing us to achieve an optimal
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allocation of VMs to physical servers. The results of these allocations are presented in
Section 7.3.

7.2.1. Bitbrains Trace Forecasting

The Bitbrains dataset contains traces for 1250 VMs. We classified these VMs into

four groups:

Incomplete traces (252): Only VM traces that include data for all the time intervals of
the complete 30-day period were selected. Incomplete traces were excluded.

Low CPU usage traces (875): VM traces with low CPU usage (averaging under 10%)
were discarded when applying the forecasting models. For these traces, we assumed
the expected CPU usage for the next 24 h period could be computed simply as the
average CPU usage from the historical dataset.

Unpredictable traces (81): Many VM traces exhibit unpredictable CPU usage patterns,
including variable length periods of 0% CPU usage and variable length periods of
nearly 100% CPU usage. For these unpredictable traces, we assumed that the expected
CPU usage for the next 24 h period was always 100%. This prevented potential
under-provisioning situations that could lead to degradation of CPU performance.
Predictable traces (42): These are the VM traces that did not fall into any of the groups
above. There are a total of 42 predictable traces in the Bitbrains dataset. The different
forecasting models were exclusively applied to this trace group.

We ran and compared six different forecasting models:

Naive seasonal model, with K =24 h

Bayesian regression model, using a Ridge-type regressor to predict the target time-

series from lagged values, using a lag period of 24 h

Facebook Prophet model, without specific parameters (default values were used)

Auto-ARIMA model, without specific parameters (default values were used)

RNN model based on LSTM, with the following parameters:

- input_chunk_length =24

- output_chunk_length =24

- hidden_dim =10

- n_rnn_layers = 1

- batch_size = 32

- epochs = 50 For the remaining RNN-LSTM parameters, the default values were
used.

N-BEATS model, with the following parameters:

- input_chunk_length =24

- output_chunk_length = 24

- epochs = 50 For the remaining N-BEATS parameters, the default values were
used.

Due to space limitations, it is impossible to display the charts comparing the actual

and predicted CPU usage values for the 24 h testing period across all combinations of VMs
and prediction models. Therefore, we only present a sample of four selected VMs, which
are displayed in Figure 4.
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Figure 4. Forecasting results for a subset of Bitbrains VM traces (% CPU usage).

A

The graphs presented in Figure 5 illustrate the prediction accuracy (RMSE) achieved by
the different models when forecasting CPU usage for the 42 VMs considered in this dataset.
It is evident that certain forecasting methods outperformed others depending on the trace.
On average, the Bayesian regression and neural network-based models (RNN-LSTM and
N-BEATS) exhibited lower RMSE values compared to the other models.
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Figure 5. Prediction accuracy (RMSE) of various time-series forecasting models applied to Bitbrains

VM traces.

This observation is further supported by Table 1, which summarizes the average
RMSE and execution time (including fit and predict functions for all selected VMs) for each
prediction model. Notably, Bayesian regression demonstrated the highest level of accuracy.
In terms of execution times, neural network models (RNN-LSTM and N-BEATS) required
more computational time for model fitting, but they did not yield an improved accuracy

compared to Bayesian regression.

S 8 K &G IS

bayesian_reg
RMSE (average = 0.05)

auto_arima
RMSE (average = 0.07)

mn_lstm
RMSE (average = 0.06)

Table 1. Summary of prediction accuracy (average RMSE) for Bitbrains traces.

Model RMSE (Avg.) Exec. Time (Fit + Predict)
Naive seasonal 0.0613 33s

Bayesian Regression 0.0536 36s

FB Prophet 0.0627 75s

Auto-ARIMA 0.0731 7 min

RNN-LSTM 0.0619 23 min

N-BEATS 0.0580 1h

Adaptive (oracle) 0.0455 -

Adaptive (realistic) 0.0584 -

In addition to the six tested forecasting models, we proposed the utilization of an
adaptive model that combines all of the analyzed models, as shown in Table 1. The un-
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derlying concept of this adaptive approach is to execute all six forecasting models once a
day, and to select for each specific VM trace the model that performs best. The challenge
lies in the fact that it is impossible to know in advance which model will yield the best
results for the upcoming day. The oracle adaptive model assumes that we have advance
knowledge of the best-performing model for each individual VM trace on the following day.
We would then select that particular model to predict the hourly CPU usage for that VM.
However, in practice, this oracle selection is unfeasible. Therefore, we proposed a second
realistic adaptive model, which compares the forecasts obtained from the different models
on the day before and selects the model that performed best for making predictions for the
next day. It is evident that the oracle adaptive model outperformed each of the individual
models in terms of prediction accuracy. However, on average, the realistic adaptive model
did not improve on the predictions obtained by the Bayesian regression model.

7.2.2. Azure Trace Forecasting

The Azure dataset considered in this work contained traces for 28,858 VMs. We
categorized these VMs into three groups:

¢ Incomplete traces (5): Only traces that included data for all the time intervals of the
complete 30-day period were selected. Incomplete traces were excluded.

*  Low CPU usage traces (25,218): Traces with low CPU usage (averaging below 10%)
were excluded from the application of forecasting models. For these traces, we as-
sumed the expected CPU usage for the next 24 h period could be computed as the
average CPU usage from the historical dataset.

*  Predictable traces (3635): These traces did not fall into either of the two previous
groups. In the Azure dataset, there were a total of 3635 predictable traces. The different
forecasting models were exclusively applied to this group of traces.

We ran and compared five forecasting models (Naive seasonal, Bayesian regression, FB
prophet, Auto-ARIMA, and RNN-LSTM) with the same parameters as in the Bitbrains case.
The N-BEATS model was not considered for forecasting Azure traces due to its extended
execution time for all 3635 VM traces, exceeding three days.

Prediction results for this dataset are summarized in Figure 6, which shows the
prediction accuracy (RMSE) achieved by the different models when forecasting CPU usage
for the VM traces considered in this dataset. Table 2 displays the average RMSE and
execution time (including fit and predict functions for all selected VMs) for each prediction
model. As observed, the Bayesian regression model once again demonstrated the highest
average accuracy. Regarding execution times, models based on neural networks (RNN-
LSTM) required significantly more computational time for model fitting but they did not
enhance the accuracy compared to the Bayesian regression. In addition to the five tested
forecasting models, we also implemented the two previously explained adaptive methods
(oracle and realistic). In this scenario, it can be observed that the realistic adaptive model
marginally improved on the average RMSE of the predictions obtained by the Bayesian
regression model.

Based on these results, we can conclude that the Bayesian regression model was
sufficiently effective in generating accurate CPU usage forecasts, while also requiring a
reasonably low execution time. Therefore, the outcomes generated by this model were
selected as inputs for the optimization algorithms.
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Figure 6. Prediction accuracy (RMSE) of various time-series forecasting models applied to Azure
VM traces.

Table 2. Summary of prediction accuracy (average RMSE) for Azure traces.

Model RMSE (Avg.) Exec. Time (Fit + Predict)
Naive seasonal (K = 24) 0.0498 17 min.

Bayesian Regression 0.0419 21 min.

FB Prophet 0.0504 40 min.

Auto-ARIMA 0.0508 59h

RNN-LSTM 0.0491 12.7h

Adaptive (oracle) 0.0314 -

Adaptive (realistic) 0.0414 -

7.3. Resource Optimization Results

As stated previously, the optimization problem addressed in this work consists of
finding the optimal mapping of virtual resources (VMs or containers) to edge servers using
different optimization criteria and constraints. The solution proposed for this problem
ise based on the ILP formulation, as shown in Section 6. These kinds of problems can be
effectively solved using standard solvers for linear programming, such as COIN CBC [78],
CPLEX [79], and SCIP [80]. In particular, our implementation was built upon the OR
Tools library for Python [81], leveraging the SCIP solver integrated within the Pywraplp
module [82].
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Our experimental test bed consisted of 500 VMs randomly chosen from the Azure
dataset, which had to be distributed across 12 different 5G edge locations. Each edge
location housed a physical server equipped with 64 cores and 192 GB of RAM. The parame-
ters defining each VM included the assigned number of cores, the predicted CPU usage
percentage for the next 24 h period (based on hourly predictions derived from the Bayesian
regression model), and the preferred edge location. These preferred edge locations were
also chosen randomly, following the distribution illustrated in Figure 7.
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Figure 7. Distribution of VMs according to the preferred edge location.

7.3.1. Comparison of Different Objective Functions without Optional Constraints

The initial experiments involved a comparison of the optimal allocation obtained with the
three different objective functions: minimization of the number of servers in use, Equation (6);
minimization of the total number of latency violations, Equation (12); and optimization
of load balance among servers, Equation (9). In these experiments, these objective func-
tions were used without any optional constraints (only strict constraints were considered,
as explained in Section 6.2.4). It is important to note that since all edge servers have similar
hardware configurations, the objective function that minimizes the total number of servers
in use is equivalent to minimizing the total number of cores, Equation (7). We also com-
pared these objective functions with the solution obtained without any optimization (i.e.,
allocating each VM to its preferred edge location). The results of these experiments are
shown in Table 3 and Figure 8.

Table 3 provides a summary of the allocation achieved for each objective function
(cases 1, 2, and 3) and the solution obtained without optimization (case 4). In case 4,
each VM was simply allocated to its preferred edge location. The table presents the total
number of servers in use, the total number of latency violations, and the execution time
of the ILP solver for each solution. On the other hand, Figure 8 depicts the estimated
average daily load per core of each server based on the VM CPU usage predictions used
in the optimization model, Equation (8), as well as the actual average daily load of each
server (similar to Equation (8), but using real VM CPU usage values instead of predicted
values). Additionally, the figure illustrates the maximum hourly actual load, representing
the worst-case scenario (maximum peak load) across all servers and time intervals.
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Table 3. Allocation results for different objective functions (without optional constraints).

Case Objective Function Total Servers Total Lat. Violations  Solver Exec. Time

1 Number of servers 9 389 09s
2 Latency violations 12 29 10s
3 Load balance 12 432 14s
4 None 12 0 -
Case 1 Objective function: number of servers Case 2 Objective function: latency violations
Constrains: none Constrains: none
mm Avg. daily load (actual) mmAvg. daily load (estimated) ===Max. peak load (actual) mmAvg. daily load (actual) mmAvg. daily load (estimated) ==Max. peak load (actual)
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Figure 8. Estimated vs. actual load.

As observed in Table 3, allocating VMs to their preferred edge locations without
any optimization (case 4) resulted in no latency violations. However, this approach led
to significant server overloading, as depicted in Figure 8 (case 4). Servers 1, 2, and 3
exhibited actual average loads exceeding 100%, with a maximum peak load surpassing
140%. Upon implementing optimization (cases 1, 2, and 3), regardless of the chosen objective
function, the strict constraint specified in Equation (17) (with « = 1) effectively prevented
overloading. Consequently, the actual average load remained below 100% for all three
cases and the maximum peak load approached 100%.

When comparing the results of the different objective functions, optimizing the number
of latency violations (case 2) allocated only 29 out of 500 VMs to an edge location different
from their preferred one, utilizing the 12 available servers. On the other hand, when
minimizing the number of servers in use (case 1), the solution obtained utilized only nine
servers instead of 12. However, this resulted in a significant number of latency violations,
with 389 out of 500 VMs affected. These minimum values (29 latency violations and nine
servers) represent the global minima for these two optimization problems. Hence, solutions
with fewer than nine servers or fewer than 29 latency violations are not considered feasible.
Regarding the load profiles in Figure 8, for these two cases, although the average daily
load per core did not exceed 100% for any server, there was a noticeable imbalance in
the load across the different servers, and the peak load slightly exceeded 100%. The load
balancing objective function (case 3) addressed this issue by utilizing all 12 available servers
and incurring a larger number of latency violations (432). However, it achieved a better
distribution of the load among the different servers and successfully avoided overloading in
all time slots. Finally, regarding the execution times of the ILP solver, it can be observed that,
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for the given problem size (500 VMs and 12 servers with 64 cores per server), the optimal
solution could be reached in less than two seconds in all cases.

Another noteworthy observation from Figure 8 is the comparison between the esti-
mated and actual average loads. The disparities between them stemmed from the prediction
errors of the Bayesian regression model employed to forecast the CPU usage of the various
VMs for the upcoming 24 h period. These prediction errors led to an estimation discrep-
ancy in the server load, typically ranging from 1% to 30%. However, all the optimization
algorithms (cases 1, 2, and 3) demonstrated the capability to achieve an optimal solution
with an average daily load per server below 100%.

Next, we analyze how the different objective functions performed under various
optional constraints.

7.3.2. Minimization of Number of Servers with Latency Violation Constraints

In this subsection, we analyze the objective function that minimized the number of
servers, with different limits on the number of latency violations allowed. Table 4 and
Figure 9 summarize the results of these experiments.

As observed in Table 4, when the limit on latency violations approached the global
minimum (29 latency violations), it became necessary to utilize all 12 available servers.
However, by relaxing the latency violation constraint, the number of servers in use could
be reduced. For a limit of 60 latency violations, it was possible to achieve a solution with
the minimum number of servers (9 servers). Increasing the latency violations limit beyond
60 did not lead to any significant improvement in solution quality. Thus, we can conclude
that a solution with nine servers and around 60 latency violations represents a favorable
trade-off between both variables. Regarding the solver’s execution times, we observed that
the introduction of constraints increased the time required to achieve an optimal solution.
However, these times remained below 20 s in all cases.

Figure 9 displays the load profiles of these solutions, showcasing only the maximum
and minimum values of the actual average daily load, as well as the maximum peak load
for simplicity. As observed, a significant disparity existed between the maximum and
minimum values of the average daily load. The maximum value was close to 100%, while
the minimum value fell below 40%. This imbalance in the load distribution among the
different servers is significant and can result in the overloading of certain servers during
specific time slots. This is evident in the graph displaying the maximum peak load, which
exceeded 100% in all cases.

Table 4. Allocation results for the ‘number of servers’ objective function under different latency
violation constraints.

Limit on Latency Total Latency

Total Servers Used Solver Exec. Time

Violations Violations

30 12 30 32s
40 11 40 10.7 s
50 10 50 18.6 s
60 9 60 10.6s
None 9 389 09s
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Objective function: number of servers
Constrains: latency violations

Avg. Daily Load (min) ~ =—e=Avg. Daily Load (max)  =—e=Max. peak Load
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Figure 9. Actual load per core for the ‘number of servers’ objective function under different latency
violation constraints.

7.3.3. Minimization of Total Latency Violations with Number of Server Constraints

Now, we analyze the objective function that minimized the number of latency viola-
tions, with different limits on the number of servers. Table 5 and Figure 10 summarize the
results of these experiments. As observed, when the limit on the number of servers was
increased from 9 to 12, the optimization algorithm yielded solutions with highly satisfactory
numbers of latency violations, ranging from 59 to 29 (the global minimum). Therefore, we
can further refine the conclusion from the prior case and state that one of the solutions with
the best trade-off between the number of servers and latency violations was the one with
9 servers and 59 latency violations (which represented less than 12% of the total number
of VMs). We can observe that the solver’s execution time remained below 10 seconds in
all cases.

Regarding the load profiles of these solutions (Figure 10), they exhibited similarities to
the previous case, displaying a significant imbalance in load distribution, with a maximum
peak load exceeding 100% in all the cases.

Objective function: latency violations
Constrain: number of servers

Avg. Daily Load (min) —o—Avg. Daily Load (max) —e—Max. peak Load
120

/ \
100

—

80

60

40

Load per core (%)

20

9 10 11 None

Number of servers limit

Figure 10. Actual load per core for the ‘latency violations” objective function under different
server constraints.
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Table 5. Allocation results for the ‘latency violations’ objective function under different server

constraints.
Limit on Number of Total Servers Used T(?tal I‘Jatency Solver Exec. Time
Servers Violations
9 9 59 89s
10 10 50 71s
11 11 40 3.0s
12 12 29 10s

7.3.4. Optimization of Load Balance with Latency Violation and Number of
Server Constraints

In this subsection, we analyze the objective function that optimizes the load balance
using both constraints in the number of servers and the number of latency violations.
We carried out two sets of experiments, the first with the maximum number of servers
(12 servers) and different latency violation constraints (Figure 11), and the second with
the minimum number of servers (nine servers) and different latency violation constraints
(Figure 12). In this case, we only show the load profile graphs, since the number of servers
and number of latency violations values were implicit in each experiment.

Objective function: load balance
Constrains: number of servers (12) and latency violations

Avg. Daily Load (min) —e—Avg. Daily Load (max) —e—[Max. peak Load
120
100 ——
o\c v
o 80
o
o
- 60
(]
o
T 40
o
—
20
0
30 40 50 60 None

Latency violations limit

Figure 11. Actual load per core for the ‘load balancing” objective function under different latency
violation constrains and a server limit of 12.

When utilizing 12 servers, we could observe a convergence between the maximum
and minimum values of the average daily load as we relaxed the constraint on latency
violations. This indicates an improved load distribution among the servers. Furthermore,
with a latency violation limit above 40, the maximum peak load remained below 100%,
indicating the absence of server overloading in these scenarios. The solver’s execution time
stayed below two seconds in all experiments.

On the other hand, if we limit the number of servers to the minimum value of nine,
each server has to support a higher load, leaving less room for load balance improvement.
However, by establishing a latency violation limit of around 80-90, we can slightly reduce
the gap between the maximum and minimum average daily load. This helps to avoid over-
loading, keeping the maximum peak load at around 100%. In some of these experiments,
the solver took longer to converge to an optimal solution, with execution times ranging
from 3 to 120 s.
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Objective function: load balance
Constrains: number of servers (9) and latency violations
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Figure 12. Actual load per core for the ‘load balancing” objective function under different latency
violation constrains and a server limit of 9.

7.3.5. Sensitivity Analysis

The final experiment in this study involved conducting a sensitivity analysis to ex-
amine the impact of the CPU usage prediction errors in the allocations results. The CPU
usage percentage values used in the previous experiments were based on the predictions
made by the Bayesian regression model shown in Section 7.2, without considering the
prediction intervals. These prediction intervals represent the range of values within which
the actual observation is expected to fall with a certain level of confidence and are typically
symmetrically centered around the forecasted value, incorporating a designated error
margin. In this analysis, we established a conservative prediction interval using an error
margin of +10%, which was calculated as twice the rounded-up value of the RMSE for
these predictions.

We compared the allocation results for the objective function of minimizing server
count, with no additional constraints, using four sets of CPU usage values: the actual CPU
usage values (ideal case, as these values cannot be known in advance in a real scenario); the
mean value of the prediction interval; the upper bound of the prediction interval (i.e., mean
predicted values plus a 10% error); and the lower bound of the prediction interval (i.e., mean
predicted values minus a 10% error). Table 6 displays the total number of servers allocated
in each scenario. As observed, using the actual CPU usage values allowed for an allocation
solution with only eight servers, comparable to the solution obtained when using the lower
bound values of the prediction intervals. On the other hand, allocation based on the mean
predicted values resulted in a total of nine servers, while allocating based on the upper
bound values of the prediction intervals requires ten servers.

Table 6. Sensitivity analysis for the ‘number of servers’ objective function with no optional constraints.

CPU Usage Values Used for the

Optimization Total Servers Used

Actual values

Predicted values (lower bound)
Predicted values (mean)
Predicted values (upper bound)

= O ©
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Figure 13 displays the load profiles for the four scenarios. It is evident that when
using the actual CPU usage values (ideal case), the optimization algorithm returned an
optimal solution with the minimum number of servers and a load per core that never
exceeded 100%. Solutions based on mean values of the prediction intervals, and upper
bound values, also exhibited minimal overloading, but using a higher number of servers.
Conversely, the allocation based on lower bound values of the prediction intervals resulted
in a minimum number of servers, but increased overloading, with a maximum peak load of
115%. In conclusion, the sensitivity analysis indicated that while the best solution in terms
of server count and load profile was obtained using the actual CPU usage values, this is un-
feasible in a real scenario. The solution utilizing the mean values of the prediction intervals
offered the best trade-off between the total number of servers used and limited overloading.

Sensitivity analysis
Objective function: number of servers (no constrains)

Avg. daily load (min) —e—Avg. daily load (max) —e—Max. peak load
140

120

100 ?\\.

60

Load per core (%)

40

20

Actual values Pred. values (lower bound) Pred. values (mean) Pred. values (upper bound)

CPU usage values used for the optimization

Figure 13. Sensitivity analysis results (actual load per core).

8. Conclusions and Future Work

This work introduced a novel Smart 5G Edge-Cloud Management Architecture based
on OpenNebula. The proposed architecture incorporates experimental components from
the ONEedge5G project which, in its current developmental phase, will incorporate predic-
tive intelligence mechanisms for CPU utilization forecasting and optimization algorithms
for the optimal allocation of virtual resources (VMs or containers) on geographically dis-
tributed 5G edge infrastructures.

This study emphasized infrastructure-level techniques for CPU usage forecasting,
employing different statistical and ML time-series forecasting methods. Bayesian regression
demonstrated the highest accuracy among the methods evaluated. The optimization
problem addressed involved finding the optimal mapping of virtual resources to edge
servers using different criteria and constraints. An ILP formulation was proposed for
solving this problem. The scenario included a distributed edge infrastructure with physical
servers, each with specific computing and memory capacities. Virtual resources with
their computing requirements, as well as preferred edge locations based on proximity
criteria, were deployed in the infrastructure. The results showed that optimizing different
objective functions, such as minimizing the number of servers, reducing latency violations,
or balancing server loads, led to improved management of the infrastructure. Allocating
virtual resources based on their preferred edge locations without optimization resulted in
no latency violations but severe server overloading. However, optimization algorithms
successfully prevented overloading, while maintaining an average daily load per server
below 100%.

By merging various optimization criteria and constraints, such as the number of
servers in use and the number of latency violations, different optimized solutions can be
obtained. For instance, one approach is to minimize latency violations to a minimum of 29
by utilizing all available servers, while another option is to reduce the number of servers
to nine with only 59 latency violations. However, these solutions introduce significant
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imbalances in load distribution among servers and may result in overloading on certain
servers and time slots. To address this issue, incorporating the load balancing objective
function proves effective, as it can achieve solutions with a limited number of latency
violations, while improving load distribution and preventing overloading.

In our future work, we have various plans to enhance the prediction and optimization
models. First, we aim to incorporate additional hardware metrics, including memory,
bandwidth, and disk usage, to explore their potential correlation and integrate them into
the mathematical models for optimization. Additionally, we plan to propose new opti-
mization criteria based on the previous metrics, as well as integrating different objective
functions using various multi-objective approaches. We also intend to investigate alterna-
tive optimization techniques, such as bio-inspired algorithms or reinforcement learning
algorithms, to further improve the efficiency of the system. Another aspect not addressed
in this study but worthy of consideration in future research is the potential utilization
of nested virtualization, where containers are not run directly on bare-metal servers but
within VMs. In such scenarios, two levels of allocation should be addressed: containers to
VMs, and VMs to physical servers. Finally, expanding the capabilities of the ONEedge5G
modules is on our agenda, encompassing functionality for capacity planning, prediction,
and anomaly detection, as well as proactive auto-scaling mechanisms to facilitate elasticity
management. These advancements will contribute to the comprehensive development of
our Smart 5G Edge-Cloud Management Architecture and enable more robust and adaptive
management of distributed 5G edge infrastructures.

Author Contributions: All authors participated in the definition of the architecture. R.M.-V. con-
ceived the study, coordinated the research, conducted the experimental section, and drafted the
manuscript. E.H., R.S.M. and LM.L. also participated in the definition of the experimental scenarios
and helped to refine the manuscript. All authors have read and agreed to the published version of
the manuscript.

Funding: This work was supported by the Spanish Ministry for Digital Transformation and Civil
Service through the UNICO I+D 6G Program, Project OneEdge5G-Intelligence and Automation
for the Operation of Distributed Edge Systems on 5G Advanced Infrastructures (TSI-064200-2023-
1), co-funded by the European Union—NextGenerationEU through the Recovery and Resilience
Facility (RRF).

Data Availability Statement: Datasets used in this work are publicly available at the following
links: Azure public datasets: https://github.com/Azure/AzurePublicDataset/blob/maste
r/AzurePublicDatasetV1.md (accessed on 25 January 2024); GWA-T-12-Bitbrains datasets: http:
//gwa.ewi.tudelft.nl/datasets /gwa-t-12-bitbrains (accessed on 25 January 2024).

Conflicts of Interest: Ignacio M. Llorente and Rubén S. Montero are, respectively, an employee and

an external collaborator of OpenNebula Systems company. The author declare no conflicts of interest.

Abbreviations

The following abbreviations are used in this manuscript:

AR Autoregression

ARIMA Auto-Regressive Integrated Moving Average
eMBB Enhanced Mobile Broadband
FB Facebook

Al Artificial Intelligence

ILP Integer Linear Programming
IoT Internet of Things

LSTM Long Short-Term Memory

MA Moving Average

MAE Mean Absolute Error

MEC Multi-access Edge Computing
MIMO Multiple-Input Multiple-Output
ML Machine Learning
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mMTC Massive Machine Type Communication

MSE Mean Squared Error

N-BEATS Neural Basis Expansion Analysis for Time Series
QoE Quality of Experience

QoS Quality of Service

RMSE Root Mean Squared Error

RNN Recurrent Neural Networks

SLAs Service Level Agreements

UE User Equipment

URLLC Ultra-Reliable and Low-Latency Communication
VM Virtual Machine
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Abstract: Ensuring compliance with the stringent latency requirements of edge services requires
close cooperation between the network and computing components. Within mobile 5G networks, the
nomadic behavior of users may impact the performance of edge services, prompting the need for
workload migration techniques. These techniques allow services to follow users by moving between
edge nodes. This paper introduces an innovative approach for edge service continuity by integrating
Segment Routing over IPv6 (SRv6) into the 5G core data plane alongside the ETSI multi-access edge
computing (MEC) architecture. Our approach maintains compatibility with non-SRv6 5G network
components. We use SRv6 for packet steering and Software-Defined Networking (SDN) for dynamic
network configuration. Leveraging the SRv6 Network Programming paradigm, we achieve lossless
workload migration by implementing a packet buffer as a virtual network function. Our buffer may
be dynamically allocated and configured within the network. We test our proposed solution on a
small-scale testbed consisting of an Open Network Operating System (ONOS) SDN controller and a
core network made of P4 BMv2 switches, emulated using Mininet. A comparison with a non-SRv6
alternative that uses IPv6 routing shows the higher scalability and flexibility of our approach in terms
of the number of rules to be installed and time required for configuration.

Keywords: 5G; edge computing; SRv6; service continuity; SDN; ETSI MEC

1. Introduction

Emerging applications demand efficient network infrastructure and protocols, as
well as the collaboration of network and computing elements. 5G network technology
meets these requirements, as it features qualities such as programmability, low latency,
high bandwidth, network, and context awareness [1]. 5G expands the previous genera-
tion capabilities, defining new application areas: Enhanced Mobile Broadband (eMBB),
Ultra-Reliable Low-Latency Communications (URLLC), and Massive Machine-Type Com-
munications (mMTC) [2,3].

5G is a technology that relies on small cells, which have low-power and short-range
transmissions. This feature enables higher bandwidth and reliability, but also leads to more
frequent handovers due to the limited coverage [4,5]. The ability of the client to move
seamlessly is, in fact, a fundamental feature of 5G networks.

Edge computing is a key concept for 5G applications that require very low latency,
such as augmented reality, virtual reality, autonomous vehicles, and the Internet of Things
(IoT) [6]. Edge computing is characterized by its wide and pervasive distribution across
geographic areas, close to the end user. The proximity of computing facilities is the key
factor that enables ultra-low latency, high bandwidth, and security. Edge services, i.e.,
those services running in edge data centers, may then require migration across edge sites
to support user mobility. When the user changes her/his location, the edge site that hosts
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the user-assigned edge service may become too distant and cause higher latency. In this
situation, another edge data center may be closer. The edge service should “follow” the
client to preserve the Quality of Service (QoS). If services are stateful, moving the service
along with its internal state is required. In this context, one way to achieve this mechanism
is to wrap the service in virtual machines or containers and migrate the instance from the
original edge site to a target one using existing methods to smoothly transfer the whole
package [7].

The European Telecommunications Standards Institute Industry Specification Group
(ETSI ISG) worked in the last decade to create a standardized, open, multi-vendor, and
multi-access edge computing environment. The ETSI specifies the elements required to
enable applications to be hosted in a multi-vendor multi-access edge computing (MEC) envi-
ronment [8]. The MEC architecture provides cloud computing capabilities and a distributed
environment at the edge of the network. The system consists of MEC Hosts dislocated at
the edge of the network and connected through the underlay communication infrastructure.
It provides advantages in terms of delay, network traffic, and data localization. The ETSI
MEC has been identified as the key technology for supporting low-latency edge services in
5G networks. The ETSI MEC architecture provides a system orchestration mechanism that
enables the management of service instances and their dynamic association with the user
equipment (UE) [9]. The orchestration oversees the selection of the best MEC Host where a
service instance should run in order to guarantee the application requirements’ satisfaction.
It is also in charge of triggering the proper network configuration through the 5G core (5GC)
in a centralized manner. The ETSI MEC environment also supports the service continuity
required by user mobility in 5G networks. The MEC system, based on the information
exchanged with the 5GC network entities, verifies which is, at any time, the best MEC
Host for an edge service. To guarantee the latency constraints, instance migration may be
triggered [10]. MEC can guarantee service continuity by employing various techniques
such as DNS and device-application interface solutions. Most of the proposed methods,
however, require the active involvement of the client [11].

In line with the 5G requirements for a network that is highly scalable, maintainable,
and programmable [12], Segment Routing over IPv6 (SRv6) has been recently proposed as
the new data plane for 5GC [13,14]. SRv6 provides flexibility, programmability, scalability,
and has great potential for further development, which are essential features of 5G networks.
SRv6 Network Programming allows integrating functions, implemented as virtual network
functions (VNFs), as part of the network node packet processing. SRv6 also facilitates the
dynamic reconfiguration of the network, enabling seamless service continuity when edge
services are migrated to follow their mobile 5G users. Enabling seamless service continuity
means letting the client reach the edge service in its new location, while guaranteeing
qualitative and quantitative requirements. For what concerns qualitative aspects, the
service must be reached transparently to the client application logic, which is achieved
through SRv6 by keeping the same IP address for the migrated service. Moreover, no
packets should be lost during the service migration process. With respect to quantitative
requirements, the application should not suffer from any significant impairment in terms of,
for example, experiencing latency or throughput. In addition, SRv6 simplifies the network
protocol stack in 5G scenarios. Finally, SRv6 supports the centralized control plane [15],
allowing an easy integration with the 5G-MEC environment.

Let us consider the scenario of Figure 1, where MEC Hosts are deployed in proximity
to the gNBs to run latency-constrained services. A UE can move and access the network
through a different gNB. After the handover, the MEC system may decide to relocate the
edge service associated with the moved user to a different MEC Host. Subsequently, a
network reconfiguration is required to allow the UE to seamlessly reach the edge service in
its new location. In this context, we propose a solution for lossless workload migration,
based on buffering implemented as a VNF that is dynamically allocated in the network and
by the network.
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Figure 1. SRv6-based reference scenario.

Our approach relies on the integration between MEC and 5G, using an SRv6-based data
plane, and on the strategic implementation of SRv6 Network Programming. Leveraging
the MEC environment enables the allocation of edge services and their dynamic relocation
to accommodate user mobility. The SRv6 Network Programming paradigm provides the
capabilities required to ensure service continuity within the ETSI MEC framework through
dynamic reconfiguration of the network, by means of an SDN controller, and through the
integration of buffering as a VNF within the packet-processing pipeline.

A preliminary version of this work was presented in [16]. This work extends it by
integrating our SRv6-based, service continuity solution into the 5GC data plane and the
ETSI MEC architecture. Specifically, this work makes the following four-fold contribution:

1. It presents a converged MEC-based architecture for service continuity in 5G with an
SRv6 programmable data plane.

2. It defines an SRv6 End.Buffer behavior for guaranteeing lossless workload migration
in SRv6-compliant 5G networks.

3. To ensure compatibility with non-SRv6 5G network components, it introduces a
new End.M.GTP6.D.Buffer behavior acting as a VNF at the border between such
components and the SRv6 5GC network.

4. It describes a Proof-of-Concept (PoC) implementation of the proposed system based
on P4 devices. We evaluated our solution over a limited-scale test environment and
compared the performance against a non-SRvé6 alternative that uses IPv6 routing.

The remainder of this paper is organized as follows. Section 2 introduces background
content on SRv6 Network Programming. Next, Section 3 reports the related work in the field.
Then, Section 4 presents our converged 5G and MEC architecture and related procedures,
whereas Section 5 describes our SRv6-based migration solution that is integrated in the
above 5G-MEC context. In Section 6, we detail the experimental analysis of the proposed
solution. Finally, Section 7 concludes the paper.

2. Background on SRv6 Network Programming
2.1. SRv6 Architecture

Segment Routing (SR) is a source-routing-based tunneling method enabling packet
steering through a network via a list of segments. It accommodates the Equal-Cost Multi-
path (ECMP) aspect of IP and offers compatibility with both distributed and centralized
control paradigms for segment construction and network optimization [17,18].

79



Future Internet 2024, 16, 138

The data plane of SR architecture outlines the encoding of segments to be incorporated
into a packet and defines the forwarding semantics for each segment, i.e., how a node
should process a packet based on the segment. Two different implementations of the SR
architecture are available: SR over MPLS and SRv6.

The control plane of SR architecture outlines the method for distributing segments
across network nodes. Additionally, it establishes a mechanism for instructing nodes on
how to apply the segment list to a packet or a flow.

Each segment is identified by a Segment IDentifier (SID), which is an MPLS label in
the case of MPLS implementation or an IPv6 address in the case of SRv6 implementation.
Segments are divided into Node SIDs, Adjacency SIDs, and Service SIDs. In the first type,
the segment identifies a node, which means that a packet must be forwarded to that node
through the shortest path. The Adjacency SID is a segment identifying the link over which
the packet must be forwarded. These kinds of SIDs have local scope, limited to the node
that processes it. Finally, the Service SID is a kind of segment identifying a function that
must be executed on a node. That SID contains information on both the function and the
node that must execute it. In this work, we utilize SRv6 implementation, which is currently
the most commonly employed.

IPv6 architecture can embed SR functionalities through an extension header, called
Segment Routing Header (SRH), which is a type of Routing Header [19]. Figure 2 depicts
the SRv6 header structure. In SRv6, each segment is an IPv6 address, which represents an
action(s) that a network node should execute, for example, forwarding the packet to a next
hop or running a VNEF. The SID currently designated as the packet’s destination address
is said to be the active segment. The SRH is composed of the list of segments, entered in
reverse order, i.e., the last segment to be reached will be placed at index 0, while the first
one at the last index. The SRH contains other fields, such as Last Entry, which states the
index (starting from 0) of the last element in the segment list, i.e., the first one to be used,
and Segment Left, which specifies the index of the active segment.

7 15 23 31

Next Header Hdr Ext Len Routing Type | Segment Left

Last Entry = n-1 Flags Tag

Segment List [0]  (128-bit IPv6 address)

Segment List [n-1] (128-bit IPv6 address)

Optional Type Length Value Object (variable)

Figure 2. The SRv6 header structure.

The SR architecture comprises three types of nodes: source, endpoint, and transit [19].
The source node is the one in charge of embedding the SRH in the packet. As detailed
later, the source node may either embed the SRH in the original IPv6 packet, called inline
SRH, or encapsulate the original packet into an outer IPv6 header with the SRH extension,
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called encapsulated SRH. In the case of encapsulation, the SRH may not be necessary. This
happens when the number of segments in the list is equal to one. In this case, it is enough
to insert that segment as the destination address of the outer IPv6 header. In the case of
the inline SRH, the source node must modify the original IPv6 header fields as follows. It
sets as the destination address the last segment of the SRH segment list. It increases the
payload length by the SRH size. It sets as the Next Header the Routing Header. It also
needs to set the Next Header field of the SRH to the Next Header field value of the original
IPv6 packet. In the case of the encapsulated SRH, the source node must fill the outer IPv6
header fields as follows. It sets as the source address the current node address, and as the
destination address, the last segment of the SRH segment list. Its Next Header field value
must be equal to 34, which is the Routing Header. Finally, the payload length must be
set to the SRH size plus the original IPv6 packet size. The transit node is any node that
forwards a packet based on its IPv6 destination address, without processing the SRH. The
packet destination address is not a node’s locally configured SID. The transit node may
even be non-SRv6 capable, but it must be IPv6 capable. Finally, the endpoint node is a
node receiving a packet whose IPv6 destination address is a locally instantiated SID. It will
process the SRH and apply the instruction coded into the received SID.

The source node is the one in charge of steering packets based on a policy, i.e., a list of
segments, which are instructions [20]. The policy can be identified through an IPv6 address,
called Binding SID (BSID). A given policy may be executed by different source nodes.
Note, however, that each source node must use a different BSID from other source nodes,
to indicate that same policy. When a source node receives a packet whose destination
address matches with a locally instantiated BSID, it applies the corresponding policy. In
other words, the source node inserts in the packet the list of segments associated with that
policy [20-22]. A source node must instantiate a different BSID for each policy it wants
to implement. The BSID is a key element in the SR architecture, providing scalability and
network opacity. It also allows the exploitation of the same SR policy by different entities,
because setting a specific BSID as the destination address is enough to obtain the execution
of a policy.

2.2. SRv6 Network Programming

SRv6 Network Programming is a framework that allows the encoding of a sequence
of instructions in an IPv6 packet. Each instruction is identified by an SID and is executed
on the node that has instantiated that SID. Those instructions can range from simple packet
forwarding to more complex functions [23]. Functions are called behaviors in the SRv6
Network Programming domain.

An SRv6 Service SID is a 128-bit address structured as LOC:FUNC:ARG. The number
of bits composing each part are not pre-established; the only constraint is that the total
length cannot exceed 128. LOC identifies the locator, i.e., the endpoint node, and it is the
routable part. FUNC is an opaque identifier of the behavior locally instantiated by the node
identified by LOC. It is bounded to the SID. Finally, the ARG field contains the behavior’s
arguments. The SID structure is usually defined by the SRv6 domain provider, which
establishes the number of bits to be used for each part and assigns the locator to each node.
Then, each node or a central entity can assign the bits related to the function and argument
parts. In a distributed scenario, each SID must be advertised together with a codepoint,
mapping the SID to a specific function. Codepoints and their meaning must be known by
all the SRv6-enabled devices within the domain. In a centralized scenario, the SIDs will be
configured and installed by the central controller, which also instructs the source node to
enter a segment list.

In [23], a set of standard behaviors is defined; however, SRv6 Network Programming
has the flexibility to support the association of any function with an SID, as shown in [24-26].
In what follows, we give an overview of the standard behaviors exploited in this work. In
Section 2.2.1, we describe H.Encaps.Red, which is used to tunnel the packet through the
5GC, encapsulating it into an outer IPv6 header along with an additional SRv6 sub-header.
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In Section 2.2.2, we illustrate H. Insert, which, instead, adds an SRv6 sub-header to the
original IPv6 packet. Finally, in Section 2.2.3, we detail the End behavior, applied by each
SRv6 endpoint.

2.2.1. H.Encaps.Red

This behavior is applied by the source node in the case of the SRH-encapsulated
version. When the source node receives a packet whose destination address matches with a
locally instantiated BSID associated with the H.Encaps.Red behavior, it does the following.
Firstly, it encapsulates the packet into an outer IPv6 header. Then, if the segment list to
be entered is more than one element long, it embeds the SRH into the IPv6 outer header.
The first segment to be reached is not included in the SRH; instead, it is just set as the
destination address. Based on that, the Segment Left field of the SRH will be the index
of the last element in the list plus one, because the active segment is not included in the
SRH. In addition, the header length is 128 bits shorter. If, instead, the segment list to be
entered contains just one element, the SRH is not needed: the element will be placed in
the destination address of the outer IPv6 header. Finally, the outer IPv6 header fields are
properly set, and the packet is forwarded.

2.2.2. H.Insert

This behavior is applied by the source node in the case of the inline SRH version.
When the source node receives a packet whose destination address matches with a locally
instantiated SID associated with the H. Insert behavior, it does what follows. Firstly, it
embeds the SRH into the IPv6 header. Then, it sets the last segment of the list as the packet
destination address. Finally, the SRH and IPv6 header fields are properly set, and the
packet is forwarded.

Differently from the H.Encaps.Red, where the final destination (e.g., the service ad-
dress) is in the inner IPv6 header, in the H. Insert case, that address must be included
in the segment list. The latter requires removing the SRH at the penultimate segment to
make the procedure transparent or if the service is SRv6 unaware. The H. Insert behavior
is less scalable compared to the H.Encaps.Red because the same SRv6 policy (i.e., list of
segments) cannot be applied to multiple services. The reason is that in the case of H. Insert,
the service address must be included in the SRH segment list. In the case of H.Encaps.Red
instead, using an outer IPv6 header, the service address can be left in the destination
address field of the inner IPv6 header. H.Encaps .Red allows the exploitation of the same
SRv6 policy for all the packets that require the same list of segments.

2.2.3. End

The End behavior actions are performed by all the endpoints, and most of the custom
behaviors are extensions of this one. When a node receives a packet whose destination
address matches with its locally instantiated End SID, if the Segment Left field of the SRH
is not zero, the node does the following actions. Firstly, it decreases by one the hop limit
field of the outermost IPv6 header. Then, it decreases by one the Segment Left by one.
Subsequently, it takes the new active segment and sets it as the IPv6 destination address.
Finally, it forwards the packet. If, instead, the Segment Left field of the packet is zero, the
SRH must be removed, using one of the available flavors. In this work, we exploit the
Ultimate Segment Decapsulation (USD).

When a node applying the End behavior finds the Segment Left field equal to zero, it
does the following. Firstly, it removes the outer IPv6 header. Then, it forwards the packet
based on the inner IPv6 destination address.

3. Related Work

The service continuity problem with workload migration is addressed in the literature
at different protocol stack layers [27]. The authors in [24] propose a three-layer solution to
guarantee no loss when a virtual machine is migrated within the same cloud data center
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to achieve load balancing. They exploit SRv6 to embed source and target servers into
pre-established logical paths. They defined three SRv6 behaviors; however, only the routers
directly connected with the virtual machine can apply them because they must be able to
detect the virtual machine status. Moreover, the approach can be used only in a single data
center because the routers must have knowledge of the local network. Finally, the packet
buffer cannot be flexibly placed. The work in [24] cannot support service continuity during
inter-data center migration, as it relies on local network awareness.

Another network-layer solution is provided by the work in [28], where the Loca-
tor /Identifier Separation Protocol (LISP) is used in conjunction with SRv6. The approach
allows the managing of the path migration for the Service Function Chains (SFCs) in a dis-
tributed edge environment, with the aim of facilitating user mobility. The LISP is exploited
to associate a service identifier with its location, introducing additional and unnecessary
complexity. SRv6 is indeed a flexible framework able to inherently offer functionalities
similar to those provided by the LISP, without requiring a separate mapping for a service
locator /identifier. Some works in the literature have extended the SRv6 Network Pro-
gramming model proposed in [23]. The authors in [25] introduce a new behavior to direct
incoming traffic toward the egress node along the path ensuring the highest throughput.
The authors in [26] proposed a new SRv6 behavior that enables in-network programming.
The new behavior allows the execution of any possible function in eBPF by encoding the
latter in a segment. Contributions to SRv6 Network Programming outlined by [25,26] are
not applicable to ensuring service continuity during workload migration within an edge
computing environment.

For what concerns solutions at the transport layer, the authors in [29] enhance the
QUIC protocol on the server side to maintain connections after service relocation; however,
they do not preserve the original IP address and therefore need to handle this aspect.
Alternatively, service continuity can be ensured at the link layer, as demonstrated in [30,31],
where VXLAN and NVGRE are, respectively, employed for this purpose. However, these
solutions are not suitable in the distributed edge environment.

The service continuity problem has also been addressed at the application level. The
ETSI MEC [11] proposes a solution, also exploited by [32], where the DNS and the client
are involved in the service continuity procedure. The client, at each HTTP transaction,
must open a new TCP connection and query the DNS to have the service location. In
addition, the DNS must notify the client each time the service moves to a different MEC
Host. The ETSI MEC [11] provides another solution at the application layer to guarantee
service continuity. When a client is able to directly interact with the MEC system, it can
be notified of the MEC application instance address by the MEO. This solution, however,
requires modifying the client to make the interaction possible.

The authors in [33] propose a solution based on SDN to ensure service continuity
in the 5G-MEC scenario. They guarantee the connection persistency by maintaining the
original IP address after service relocation. The solution, however, considers a legacy 5G
network, where the GTP-U encapsulation is used, and no SRv6 support is provided.

4. Architecture and Procedures for MEC-Based Mobile Services

In this section, we describe a converged 5G and MEC architecture that combines
elements from both domains. Our focus is on how these components interact and enable
efficient service delivery and their seamless migration at the network edge. We consider a
modified version of the 5G MEC architecture proposed in [9]. Our architecture is shown
in Figure 3. Using Figure 3 as a reference, the Radio Access Network (RAN) serves as
the bridge between user equipments (UEs) and the cellular network. It encompasses base
stations (gNBs in 5G terminology) and handles radio-resource management, modulation,
and demodulation.
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Figure 3. Converged 5G and MEC reference architecture.

The 5GC forms the central part of the 5G system, providing connectivity between
the RAN and other data networks. The data plane (or user plane in 5G terminology) is
composed of one or more User Plane Functions (UPFs) that process and forward user
data to/from external data networks. UPFs can be deployed as part of the external data
networks, such as an MEC deployment, although remaining logically a component of the
5GC. In current 5GC architectures, the communication between the RAN and the UPF, and
among UPPFs, is handled by the GPRS Tunneling Protocol User Plane (GTP-U). However,
several studies and standardization efforts from both 3GPP and IETF are proposing SRv6
for substituting GTP-U toward a full-IP 5GC [13,14]. We follow this approach, and we
consider the user plane to be composed of SRv6-capable UPFs. We note that additional
SRv6 nodes can be deployed between UPFs, e.g., to embed virtualized network functions
(VNFs) or for traffic engineering purposes [13]. In the following, we will refer to both these
nodes and UPFs as SRv6 nodes. In Section 4.2, we will present the procedures related to
configuring SRv6 nodes for forwarding IP packets through the data plane.

The 5GC control plane is composed of several functions controlling and configuring
both the core and access network aspects. Each function offers one or more services to other
functions in the networking through a service bus, following a so-called Service-Based
Architecture (SBA).

From the perspective of this work, the functions of interest are the Access and Mobility
Management Function (AMF), Session Management Function (SMF), and the Network
Exposure Function (NEF). The AMF handles UE registration and session management
and is responsible for user mobility management, authentication, and security. The SMF
controls session establishment, modification, and termination, and is responsible for routing
data between UEs and external networks. In the considered architecture, the AMF and SMF
will be responsible for configuration, respectively, in the gNBs and in SRv6 nodes. As far as
the IP packets forwarding is concerned, we will assume the SMF to configure it through
a dedicated SDN controller. In more detail, as reported in [34], the SMF sees the SDN
controller as a UPE. Communication between the SDN controller and the SMF is enabled
via the N4 interface. The SDN controller, instead, configures the forwarding rules on SRv6
nodes. The utilization of an SDN controller allows us to decouple the SMF and the network
devices, creating a hybrid SDN network wherein different protocols can be employed for
device configuration [35]. Following this approach, the SMF is not required to interact with
devices directly; instead, it only needs to communicate with the SDN controllers using a
standard 3GPP interface. Finally, the NEF provides APIs for exposing network capabilities
to external systems, e.g., letting them request network reconfiguration to the AMF or SMFE.
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In a typical deployment, both the 5G control plane components and the SDN controller
should be replicated so that they do not constitute a single point of failure. They must
provide high availability and they must ensure consistency.

Exploiting SDN controllers for routing rules configuration also facilitates the adaptabil-
ity of the solution for hybrid networks. Each SDN controller is responsible for configuring
its network components using network-specific protocols.

The MEC system acts as an external data network that is accessible through the
5GC. It is composed of several MEC Hosts, deployed at the network edge, and providing
virtualized resources. MEC Hosts allow the deployment of MEC applications, which
provide services for the end user, including, e.g., augmented reality, video analytics, and IoT
applications. In the augmented reality domain, a typical scenario where a stateful service is
run in edge servers is assisted surgery [36]. Considering the IoT, a mobile application can
be used to remotely control sensors and actuators through a service running on an MEC
Host. Video analytics applications can be exploited for autonomous driving [37].

Several MEC Hosts are managed by a logically centralized MEC Orchestrator (MEO),
which manages the deployment, scaling, and lifecycle of MEC applications across multiple
MEC Hosts. It optimizes resource utilization based on user demands and network condi-
tions. In this work, we have not studied policies and algorithms for selecting the service
instance in order to optimize the performance and resources. However, considering the
growing adoption of a new paradigm, known as computing-aware traffic steering (CATS),
in future work, we intend to study orchestration solution matching that new vision. In
CATS, networking and computing capabilities and their dynamic status must be jointly
taken into consideration to carry out the proper decision in terms of traffic steering and
service instance selection [38]. The MEO decisions may require the 5GC to be configured
accordingly. For this purpose, the MEC communicates with the AMF and SMF through
the NEF.

The integration of the above components may introduce new vulnerabilities in the
system, each one inherited by the added elements. In this respect, within the literature,
there are several works that describe and solve the possible security threats of 5G, SRv6,
MEC, and SDN controllers. The potential risks and typical attacks on SDN networks are
comprehensively outlined in [39], which also presents solutions for protecting the network.
The work in [40] presents the most common security issues in 5G networks, providing
possible countermeasures as well. ETSI MEC vulnerabilities are described in [41], also
illustrating the solutions available in the literature. Finally, the authors in [42] deal with
security and risks in SRv6 networks.

4.1. IPv6 Addressing Convention and Reference Scenario

We now present a possible allocation of IPv6 addresses for the different entities, which
we use throughout the paper. The used addressing convention has been inspired by [43].

The pool C:0: : /32 is reserved for services. The client is allocated the pool A:0::/32.
The 5GC network devices are allocated addresses from the B:0: : /32 pool, as Table 1 shows.
In more detail, the gNB addresses are assigned from B:0:1: : /48, whereas the addresses of
the SRv6 nodes are allocated from B:0:0: : /48. As suggested by [23], the SID comprises
three components: the locator, the function, and the arguments. For a given device, the
locator remains consistent across all behaviors and is constructed from the node identifier,
e.g.,B:0:0:1::/48 being the locator, each implemented behavior has an address whose
first 48 bits are B:0:0:1: :.

In Section 4.2 and in Section 5, we will employ four distinct behaviors. Two behaviors
are taken from [23], whereas two new behaviors, End.Buffer and End.M.GTP6.D.Buffer,
are defined in this work to support the lossless mobility in SRv6-based 5G networks. The
End behavior, as defined in [23], is allocated the prefix B: 0:0: <nodeid>:E: /80 and requires
no arguments.
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Table 1. 5G core devices addressing space.

5G Core Locator or Behavior Allocated SID Prefix
Locator B:0:0:<nodeid>::/64
End behavior B:0:0:<nodeid>:E:: /80
End.Buffer behavior B:0:0:<nodeid>:B:: /80
End M.GTP6.D BSID B:0:0:<nodeid>:G000:<args>::/96
End.M.GTP6.D.Buffer BSID B:0:0:<nodeid>:GB00:<args>::/96

Regarding the two new behaviors, the End.Buffer, which will be explained in Sec-
tion 5.2.1, is denoted by B:0:0:<nodeid>:B::/80. The End.M.GTP6.D behavior, defined
in [13] and identified by the BSID B:0:0: <nodeid>:G000: <args>: : /80, requires arguments
to establish the SRv6 policy, i.e., to delineate the list of segments to be encapsulated in the
SRH. Finally, the End.M.GTP6.D.Buffer behavior, which will be described in Section 5.2.2,
is identified by the BSID B:0:0:<nodeid>:GB00:<args>::/80. It requires arguments to
identify the SRv6 policy, i.e., to understand the list of segments to be encapsulated in the
SRH before executing the buffering function.

We conclude this section by illustrating a reference network topology, reported in
Figure 4, which is used as a reference in Sections 4.2 and 5 for describing the allocation
and migration procedures. A UE can be either a mobile device or an IoT device. A UE is
connected to the base station gNB1, which accesses the 5GC network via SR Endpointl. The
service instance of the UE runs on MEC Host1 and is deployed in the form of containers.
MEC Host1 is in turn connected to the 5GC through SR Endpoint3. The 5GC control plane,
prompted by the MEO, configures the system’s routing rules via the AMF and SMF. The
SMF communicates with the SDN controller to implement rules in the SRv6 nodes.

5G Core
Control Plane
Fom------- 2Rk AMF
1
: SMF MEC Host 1
1
' SDN
! Controller i
B RS e
______ SR Endpoint —
UE - |
A:0:C:1:: gNB1 SR Endpointl  gp\6 hased 56
Core
() SR Endpoint2
. ndpoin i
» /é ______ =S SR Endpoint4

MEC Host 2

Figure 4. Proposed network topology.

Since the UE has mobility capabilities, a handover, e.g., from gNB1 to gNB2 could
occur. Assuming a non-roaming handover, the client retains its original IPv6 address.
The MEC architecture provides mechanisms to support service instance migration and
information transfer between MEC Hosts [44]. Upon notification from the 5GC regarding
the UE mobility, the MEC system can initiate the migration of the corresponding service
from MEC Host1 to MEC Host2. The migration in this case is the procedure that allows a
running container to be moved from one host to another [45]. Uplink packets traverse the
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5GC via SR Endpoint2 and exit through SR Endpoint4. As soon as migration is triggered, a
network update to reroute packets toward the new destination is enforced.

4.2. SRv6-Based Path Allocation

Based on the architecture presented so far, we now discuss the configuration of a
5GC network in the case of MEC-based services. The procedures are based on [13], which
considers two operation modes: Enhanced Mode and Enhanced Mode with Unchanged gNB
Behavior. The first mode belongs to a full SRv6-aware 5G core network, where the SRv6
domain is extended to the gNBs. The gNBs tunnel the packet across the 5GC network
through an IPv6-SRv6 encapsulation. The second concerns the case of a 5G network with
SRv6-unaware gNBs. This second mode guarantees the retro compatibility, by instructing
the first SRv6 node of the 5GC network, called the Ingress Router, to remove the GTP-U
encapsulation and add the SRv6 one. As anticipated in Section 4, GTP-U is a protocol
that allows the establishment of a tunnel between the RAN and the 5GC to carry user
information. A GTP-U tunnel is uniquely identified by a Tunnel Endpoint Identifier (TEID).
Using Figure 4 as a reference, we describe the SRv6-based path allocation procedure in
both modes.

The path allocation procedure is triggered by the first request for an edge service by
a client. Initially, the MEC system instantiates a container to host the requested service,
assigning it an IPv6 address from the appropriate pool. This IPv6 address is retained
throughout the container’s lifecycle. Hence, any subsequent migration does not alter its
assigned address. Subsequently, the MEO triggers the AMF and the SMF to configure
routing rules. Due to the characteristics of SRv6, rule configuration is confined to devices
positioned at the network edge and any other potential endpoints. Core routers within
the 5GC network are preconfigured with necessary rules to allow packet forwarding to
SR endpoints. The SIDs format permits aggregation, thus enhancing scalability. It is
worth noting that core routers may lack SRv6 capabilities and route the packets toward the
endpoint using the IPv6 routing mechanism.

In both modes, the H.Encaps.Red behavior is employed. By encapsulating IPv6
packets within an outer IPv6 Header, a uniform SRv6 tunnel can be utilized for all packets
necessitating the same path and functions within the 5GC network, increasing scalability.
This approach is possible thanks to the exclusion of the container address from the segment
list, with the container’s IPv6 address placed as the destination address within the inner
IPv6 packet. Instead, adopting the inline version of the SRH precludes this capability, as
it includes the container’s IPv6 address as part of the segments list. Moreover, the use of
H.Encaps.Red instead of H. Insert offers higher security and efficiency, as it avoids the
need for modifying the original IPv6 packet. However, our architecture also supports
the H. Insert method, although in the Enhanced Mode with Unchanged gNB mode, an
extension of the End.M.GTP6.D behavior is required.

4.2.1. Path Allocation Procedure in Enhanced Mode

The Enhanced Mode considers a full SRv6 5GC network, where the gNB1 undertakes
the SRv6 encapsulation process. In such a configuration, the execution of the End.M.GTP6.D
behavior by an SRv6 endpoint is not needed. The gNB1 must be configured by the AMF
to insert the required list of segments to tunnel the packet through the 5GC network and
reach the service container running in MEC Host1. We consider a scenario wherein, upon
reaching the SR Endpoint3 node, the packet exits the core network and is delivered to the
service container.

Figure 5 shows an exemplary packet flow in the data plane. The UE sends a packet
to its service instance running on MEC Host 1. When the packet reaches gNB1, the latter
applies the H.Encaps . Red behavior and forwards it. Given that the segment list consists
only of a single segment, the inclusion of the SRH is unnecessary; specifying the destination
address within the outer IPv6 header is enough. Subsequently, SR Endpoint3 applies
the End behavior, removing the outer IPv6 header before forwarding the packet to the
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designated container. A description of the control plane procedures required to configure
both the gNB and the SR Endpoints can be found in Appendix A.

MEC Host 1

IPv6 @ SA=B:0:1:1:

IPv6 | SA=A:0:C:1:: Hdr |DA= 51919:5?3"5'3
Hdr | DA=C:0:A:1:: ';’;? Sﬁié'-%-i'l:
| ey | /-/\ Payload‘ — | Pv6 | SA=A:0:C:1:
«@A_-_-w "h/ Hdr | DA=C:0:A:1::
R - \~ [ Payload |

A0:C:1: gng1 SR Endpoin? SR Endpaint3
SRv6-based 5G
Core

Figure 5. Data plane in Enhanced Mode path allocation.

4.2.2. Path Allocation Procedure in Enhanced Mode with Unchanged gNB Behavior

The Enhanced Mode with Unchanged gNB Behavior characterizes a 5G network
configuration wherein the gNB lacks SRv6 capabilities and instead supports only the GTP-
U encapsulation of IPv6 packets. The 5GC network can manage SRv6 tunneling. The
Enhanced Mode with Unchanged gNB Behavior, as stated in [13], provides a mechanism
for the interworking between a 5G legacy gNB and 5G SRv6-enabled core network.

As shown by Figure 6, gNB1 encapsulates the uplink packets into GTP-U. Therefore,
SR Endpointl is required to substitute the GTP-U encapsulation with the SRv6 one, by
applying the End .M. GTP6.D behavior.

IPv6 SA=B:0:1:1:: MEC Host 1
Hdr DA =B:0:0:1:G000:1::
UDP

IPv6 @ SA=B:0:0:1:

[ aTP | TEID: - Hdr |DA=B:0:0:3:E:
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) Payload SA=A:0:C:1::
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SRv6-based 5G
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Figure 6. Data plane in Enhanced Mode with Unchanged gNB path allocation.

Figure 6 shows the data plane of the path allocation procedure. The UE sends a packet
to its service instance running on MEC Host 1. Since gNB1 is not SRv6 capable, it tunnels
the packet through GTP-U encapsulation. gNB1 is configured by the AMF to enter, as the
destination address, B:0:0:1:G000:1: :, so that SR Endpointl applies the correspondent
policy. SR Endpointl, upon receiving a packet whose destination address corresponds to
B:0:0:1:G000:1::, which is a BSID, applies the correspondent SR policy, consisting of
the End.M.GTP6.D behavior with a preinstalled list of segments. The BSID is an address
that identifies, for a node, an SRv6 tunnel between itself and another endpoint. The SR
policies can be preconfigured or installed during the path allocation procedure by the SDN
controller. Again, since the list would be composed of just one segment, it is not required
to add the SRH; placing the only segment in the destination field of the outer IPv6 header
is enough. SR Endpoint] sets as the source address of the outer IPv6 header its locator
(B:0:0:1::). SR Endpoint3 applies the End behavior with the USD, removing the outer
IPv6 header; then, it forwards the packet to the destination container. A description of the
control plane procedures required to configure both the gNB and the SR Endpoints can be
found in Appendix A.
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5. SRv6-Based Lossless Migration

In this section, we first present service migration in the considered 5G-MEC scenario.
Then, considering the two operation modes described in Section 4.2, two corresponding
migration procedures are explained, providing the control plane and data plane details.
The service migration procedure described must guarantee service continuity, i.e., service
relocation must remain hidden from the client. Our solution enables making the client
not aware of the location of the service, and we ensure that the latter always maintains
the same IP address, regardless of the MEC Host where it is running. Moreover, we have
to guarantee connection persistence, a lossless workload migration, and preservation of
performance experienced by the application. The first one is the Enhanced Mode, i.e., a
full 5GC network, whereas the second one is the Enhanced Mode with Unchanged gNB,
i.e., the integration of a non-SRvé6-enabled gNB with an SRv6 core network. Finally, we
describe the End.Buffer and End.M.GTP6.D.Buffer behaviors, proposed for the Enhanced
Mode and Enhanced Mode with Unchanged gNB, respectively.

5.1. Migration Procedure

The high-level idea behind our approach is the following. When the MEC system
is notified of a client handover, the MEO may trigger a container migration to guarantee
latency requirements. After relocation, the migrated service instance keeps its original IPv6
address, ensuring a transparent migration process for the UE, which remains unaware
of the movement. Using Figure 4 again as a reference, we assume that after the client
handover from gNB1 to gNB2, the service is migrated from MEC Host1 to MEC Host2.
The migration transparency is provided through the reconfiguration of the SRv6 tunnel
traversing the 5GC network. The only entities within the network affected by this migration
are the ingress edge nodes responsible for encapsulating the packets into an IPv6-SRv6
header and the corresponding egress edge nodes dealing with the decapsulation and final
delivery. When the container migrates, a buffering mechanism is required to hold packets
during the downtime period [24]. That mechanism will be further explained in Section 5.2.
The migration procedure in terms of path reconfiguration is different depending on the
mode we are considering, i.e., whether the new gNB is SRv6 capable or not and will rely on
different SRv6 behaviors. The first is the End.Buffer behavior. It is applied in the case of
the full SRv6-based 5G core network. It includes the execution of the End behavior and the
storing of the processed packet in a buffer. The other is the End.M.GTP6.D.Buffer behavior,
applied by the SR Endpoint at the ingress of the 5GC network in the SRv6-unaware gNB
mode. The behavior implements End.M.GTP6.D followed by the storing of the packet
in a buffer. Those novel behaviors are extensions of the SRv6 Network Programming
framework, introduced to obtain lossless workload migration by integrating the buffering
mechanism into the SRH. Therefore, the buffer becomes part of SIDs processing.

Nevertheless, to guarantee no packets are lost during the process, the migration
procedure must follow a strict order, reported in Figure 7. Firstly, the MEO selects the node
where the buffer will be instantiated and proceeds with its allocation. The node can be
either a simple SRv6 Endpoint or a UPE. In both modes, the network node will be in charge
of handling the SRH. Then, the MEO triggers the update of the network devices through the
SMEF, AME, and SDN controller. That rule update must be performed in reverse order, from
the egress edge node (SR Endpoint4) to gNB2. The strict order is mandatory to guarantee
lossless migration. Updating the rules on the devices closer to the destination first, on the
one hand increases the number of on-the-fly packets, and on the other hand, it permits
the recovery of them, drastically reducing the possibility of losses. The rule installed in
gNB2 must include the transit through the packet buffer. After the configuration of SR
Endpoint2, SR Endpoint3 must also be updated to redirect the on-the-fly packets toward
the target MEC Host through the packet buffer. Subsequently, container migration can start.
The container is initially checkpointed at source (MEC Host1). After that, its checkpoint
image is transferred to the target MEC Host (MEC Host2), and it is finally restored. Upon
restoration, the MEO can trigger the buffer flush. Specifically, it lets in-buffer packets be
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forwarded toward the destination. At the same time, the routing rules must be updated
again to steer new packets directly toward the destination without traversing the buffer.

Routing Container

Buffer rules Container Checkpoint Container Buffer

creation update Checkpoint Transfer Restore Flush
] | ] ] | |
| )t

Routing
MEC Hostl SRv6 Node e

MEC Host2 SRv6 Node - Buffer capable update

Figure 7. The proposed migration timeline.

The total time of the migration procedure is influenced by multiple factors, e.g., the
SDN controller location, the topological distance between the source and target MEC Hosts,
the network conditions, and the size of the service instance’s checkpoint to be transferred.
The container migration time is composed of three phases: the checkpoint, the transfer, and
the restore. The work in [45] demonstrates that in a real-world scenario, the time required
for container migration is the component that most contributes to the total delay, being of
the order of tens of seconds in the worst case.

For linearity and completeness reasons, in the description of the two procedures, we
place the buffer on the ingress edge node, SR Endpoint2. The rule update procedures are
explained considering the buffer has already been instantiated.

5.1.1. Enhanced Mode

The Enhanced Mode, characterized by comprehensive SRv6 encapsulation, requires
the configuration of routing rules only on gNB2, SR Endpoint4, and SR Endpoint2. gNB2
is in charge of encapsulating the packets in an IPv6-SRv6 header. During the migration
interval, gNB2 must include in the segment list the SID identifying the End . Buf fer behavior
for SR Endpoint2.

Figure 8 shows the control plane procedure for path migration. The MEO configures
gNB2 to apply the H.Encaps.Red. gNB2 includes within the SRH, the SR Endpoint4’s
End SID and sets the SR Endpoint2’s End.Buffer SID as the destination address of the
IPv6 outer header. Firstly, the MEO asks the SMF to activate the SDN controller for SR
Endpoint4 configuration. The latter requires a rule to forward the packets to the designed
container once decapsulated. Subsequently, the MEO prompts the AMF to configure the
H.Encaps.Red encapsulation rule on gNB2, as just described. At the same time, the MEO
asks the SMF to trigger the SDN controller for configuring the H.Encaps.Red rule on SR
Endpoint2 to redirect the on-the-fly packets. The latter rule must include the SR Endpoint2’s
End.Buffer SID.

Once the container is restored on MEC Host2, a new network configuration is required.
The buffer is not required anymore, and the packets can be forwarded directly to the service
instance. The MEOQ, in this phase, can trigger all the following actions concurrently. The
H.Encaps.Red rule must be updated on gNB2, to encapsulate the packet. At the same
time, the MEO prompts the SMF and the SDN controller to update the backup rule on SR
Endpoint3. Concurrently, the H.Encaps.Red rule on gNB1 can be removed. Finally, the
MEDO triggers the buffer flush.
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Figure 8. Control plane in Enhanced Mode path migration with buffering.

Figure 9 delineates a data plane example during service migration, which has been
triggered by the MEO after the client handover. It illustrates the data plane downtime
interval. Figure 9 shows the UE sending a packet to its service instance, whose transfer
is in progress. When it reaches gNB2, the latter applies the H.Encaps.Red behavior and
forwards the packet. gNB2 inserts the SRH; Figure 9 shows, in the SRH, the list of the
segments (B:0:0:4:E::) and the index of the active segment (Segment Left field). The
packet reaches SR Endpoint2, which implements the End . Buffer behavior. After that, the
packet with the updated outer header is forwarded to SR Endpoint3. SR Endpoint3 applies
the End behavior with the USD, removing the outer IPv6-SRv6 header. Then, it forwards
the packet to the destination container.

MEC Host 1
=
(D) /~ C:0:A:1::
/é --------- [~ SR Endpoint3 ===
UE gNB1 SREndpointl  opv6-pased 5G
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Hdr | DA=C:0:A:1:: Hdr DA = B:0:0:2:B:: Hdr DA =B:0:0:4.E:: Hdr | DA=C:0:A:1::
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Figure 9. Data plane in Enhanced Mode path migration with buffering.

5.1.2. Enhanced Mode with Unchanged gNB GTP-U Behavior

To provide lossless migration in the interworking between GTP-U and SRv6, the gNB2
must set a BSID as the destination of the outer IPv6 header. This BSID identifies, within SR
Endpoint2, a policy implementing the End.M.GTP6.D.Buffer behavior.

Figure 10 shows the control plane procedure for path migration. Firstly, the MEO asks
the SMF to trigger the SDN controller for SR Endpoint4 configuration. The latter requires
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a rule to forward the packets after the SRH decapsulation. Then, the policy to be applied
by SR Endpoint2 is selected, and the correspondent IPv6 address and actions must be
installed on SR Endpoint2, if not performed yet. After that, the MEO must configure gNB2
to insert the B:0:0:2:GB00: : address, which is the SR Endpoint2’s BSID identifying
an End.M.GTP6.D.Buffer policy. The determination of the BSID to be used is based on
both the function along the path to be executed and the tunnel which the packet needs
to traverse. This means that, in the scenario where multiple flows enter and exit the core
network through the same nodes and use the same buffer instance, a single BSID can be
exploited. Concurrently, the MEO must trigger the configuration of a backup path on
SR Endpoint3; the latter, to redirect on-the-fly packets, must apply the H.Encaps.Red. It
includes the SR Endpoint4’s End SID in the segment list and it sets, as the outer IPv6
destination, the SR Endpoint2’s End . Buffer SID. Once the container is restored on MEC
Host2, a rule must be updated again to remove the buffering phase. At this point, the
buffer is not required anymore, so the packets can be forwarded directly to the designed
instance. The MEQ, in this phase, can trigger all the following actions concurrently. Given
the policy to be applied by SR Endpoint2, the MEO requires the SMF to activate the SDN
controller for configuring the former on SR Endpoint2. That policy, identified by address
B:0:0:2:G000: :, consists of the application of End .M. GTP6.D behavior to tunnel the packet
toward the destination through SR Endpoint4. The MEO also prompts the update of the
GTP-U encapsulation rule on gNB2. gNB2 must insert B:0:0:2:G000: : as the outer IPv6
destination address. At the same time, the MEO triggers the SMF and the SDN controller
to update the backup rule on SR Endpoint3. Moreover, the GTP-U rule on gNB1 can be
removed. Finally, the MEO triggers the buffer flush.
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Figure 10. Control plane in Enhanced Mode with Unchanged gNB path migration with buffering.

Figure 11 shows the data plane example for path migration during the downtime.
It illustrates the UE sending a packet to its service instance, while the transfer is in
progress. When gNB2 receives the packet, it encapsulates that packet in GTP-U, by setting
B:0:0:2:GB00:2: : as the destination address. Once the packet reaches SR Endpoint2 with
the latter End.M.GTP6.D.Buffer SID, the behavior is executed. Subsequently, the packet
with the updated outer header is forwarded to SR Endpoint4. SR Endpoint4 applies the
End behavior with the USD, removing the outer IPv6-SRv6 header. Then, it forwards the
packet to the destination container.
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Figure 11. Data plane in Enhanced Mode with Unchanged gNB path migration with buffering.

5.2. Supporting Buffering and SRv6 Behavior

To guarantee service continuity in the case of workload migration, we leverage both
standard SRvé6 behaviors and newly defined behaviors. Concerning the standard be-
haviors, we exploit the H.Encaps.Red, the End with the USD defined in [23] and the
End.M.GTP6.D defined in [13]. Taking advantage of the programmability and flexibility of
SRv6, we extend the list of behaviors by the definition of custom ones: End.Buffer and
End.M.GTP6.D.Buffer.

Both behaviors update the packet headers and store them in the buffer. When the
packet flush is triggered, the stored packets are submitted to the IPv6 routing table hosted
on the device. We highlight that the packet can be immediately forwarded after release
from the buffer without the need for any additional modification. This approach speeds up
packet delivery and reduces the overhead on the device. As a final remark, note that the
packet buffer can be used to handle packets that are targeted at different services; all the
information to reach the service is embedded in the packets.

5.2.1. END.Buffer Behavior

The End.Buffer behavior is an extension of the End behavior with the USD described
in [23]. When a packet arrives to a node with a destination address matching a node’s
End.Buffer SID, it is first checked whether the current destination address of the outer
IPv6 header is the last segment of the SRv6 list. In that case, the packet is decapsulated. If,
instead, the SRH is still needed, the packet is updated as follows. The IPv6 outer header
Hop Limit field and the Segment Left field of the SRH are decreased by 1. Finally, the IPv6
outer header destination address is updated with the current active segment. Whether
the packet has been decapsulated or not, the packet is placed in the buffer, ready to be
forwarded without further modifications once the buffer flush is triggered.

Figure 12 reports an example of the End.Buffer behavior, used in the mode described
in Section 5.1.1. The incoming packet (on the left) has the End.Buffer SID of the SR
Endpoint2 router as the destination address of the outer IPv6 Header. Firstly, the behavior
modifies the SRH outer IPv6 header. It decreases the Segment Left field. Then, it sets the
IPv6 destination address equal to the active segment. Subsequently, it decreases the Hop
Limit header field. Finally, the resulting packet is placed in the buffer.

SR Endpoint2

IPv6 Routing Table
Address: B:0:0:2:B:: Behavior: END.Buffer

Outer IPv6 Hd SA =B:0:1:2:;, DA =B:0:0:2:B:: <>
AP ARy (0045, SLo 1 Outer IPv6 Hr| SA=B:0:1:2:, DA=BO:04E: |
Inner [PvG Hdr SA = AO:C:15, DA= GO B0 ity
e e Inner IPv6 Hdr|  SA=A0:C:1:, DA=COAT: |

| Payload | Payload ‘

Figure 12. The End.Buffer behavior.

93



Future Internet 2024, 16, 138

Outer IPv6 Hdr |SA = A:1:0:2::, DA = B:0:0:1:GB00:2::

UbP
GTP

5.2.2. End.M.GTP6.D.Buffer

The End.M.GTP6.D.Buffer behavior is an extension of the End.M.GTP6.D behavior
described in [13]. When a packet arrives to a node with a destination address matching one
of the node’s End .M. GTP6.D SIDs, firstly, the outer IPv6 headers are inspected to determine
whether the subsequent headers correspond to UDP and GTP-U. After the verification,
GTP-U, UDP, and the outer IPv6 headers are extracted. Next, the packet is encapsulated
into a new outer IPv6 header with the SR as the extension header. The list of segments
put in the SRH depends on the End.M.GTP6.D SID received, which identifies the policy.
The SIDs’ list included in the SRH is missing the first segment because H.Encaps.Red is
used. Subsequently, the source address field of the outer Ipv6 header is set to the current
node’s locator. The destination address field instead is the first SID of the segment list
that was not included in the SRH. Finally, the other Ipv6 header fields are properly set.
At this point, the packet is placed in the buffer, ready to be forwarded without further
modifications. Figure 13 reports an example of the End.M.GTP6.D.Buffer behavior in
the mode described in Section 5.1.2. The incoming packet (on the left) is addressed to
an End.M.GTP6.D.Buffer SID of the router SR Endpoint2. SR Endpoint2 applies the
End.M.GTP6.D.Buffer, which embeds the following operations. Firstly, it removes the
outer Ipv6 header and the subsequent UDP and GTP-U headers. Then, it encapsulates
the packet into another Ipv6 outer header (H.Encaps.Red). The segment list would be
composed of just one segment, so the addition of the SRH can be avoided; it is enough to
set the End SID of the SR Endpoint4 node (B:0:0:4:E: :) as the destination address of the
outer IPv6. At this point, the packet can be placed in the buffer, ready to be forwarded
when the bulffer flush is triggered.

SR Endpoint2

IPv6 Routing Table

Address: B:0:0:1:GB00:2:: Behavior: END.M.GTP6.D.Buffer
==

4
Outer IPv6 Hdr SA=A:1:0:2:;, DA=B:0:0:4:E:: ‘
Inner IPv6 Hdr SA=A:0:C:1:;, DA=C:0:A:1::

TEID: -

Inner IPv6 Hdr

SA=A:0:C:1:;, DA=C:0:A:1::

Payload

Payload

Figure 13. The End.M.GTP6.D.Buffer behavior.

6. Testbed and Performance Evaluation

In this section, we first present the implementation of our solution in the scenario of
a full 5G network, where the gNB is responsible for the IPv6-SRv6 encapsulation. Then,
we describe a performance evaluation of the proposed solution, comprising a scalability
analysis, an evaluation of the performance in static conditions, and the results in a scenario
with container migration.

6.1. Implementation and Testbed Deployment

The proposed solution was evaluated through a small-scale PoC, comprising an Open
Network Operating System (ONOS) SDN controller, a simplified data plane composed of
Stratum BMv2 switches emulated through Mininet, and three MEC Hosts running Docker
as the virtualization technology.

6.1.1. Data Plane and ONOS SDN Controller

The ONOS project in [46] provides a P4;¢4 (P4 version dated to 2016) implementation
of an SRv6 network. We extended the P4 code for the BMv2 switch architecture by imple-
menting the End . Buffer behavior, which is used to handle packets that must be placed in
the buffer during the migration procedure. In addition, we modified the table responsible
for entering the SRH; in particular, we defined different actions based on the number of
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segments to be included. The latter modification is required due to the P4’s lack of support
for loops.

Moreover, we implemented two ONOS applications, used, respectively, for interacting
with the SRv6 nodes and higher-level services, i.e., the SMF/MEQ in our architecture. The
first one is an ONOS core application that interacts with the BMv2 switches. It injects the
processing pipeline and fills their tables. In addition, it handles the packet in and packet
out messages. The application is in charge of managing all the device tables, configuring
both the standard tables and those related to SRv6 behaviors. Our contribution concerns
the implementation of those functions in charge of managing the SRv6 tables and actions;
in more detail, those for including the SRH with the segment list, those for implementing
the End and End.Buffer behavior, and, finally, the action in charge of removing the SRH.
The ONOS application, by default, configures all network devices with routing rules for
each possible SID in the network. In order to exploit the scalability characteristic of SRv®6,
we modified the part of the code managing the IPv6 routing tables in such a way that the
ONOS distributes only the routes for the edge nodes’ SIDs.

The second application exposes custom REST APIs to external services. This appli-
cation allows the interaction with the ONOS controller, which is needed to request the
ONOS to inject a network configuration into the BMv2 switches. The requests supported
by the application include the configuration of specific SR paths and IPv6 routing rules.
The application is reachable through a URI, and the requests must contain a JSON object
specifying the operations to be performed and their parameters, e.g., installing SRv6 paths
requires the ONOS identifiers of the ingress and egress edge nodes. The application then
parses the request and invokes the proper core app function.

The core network is emulated using Mininet [47]. We used different networks to eval-
uate the performance of our solution, all composed of Stratum BMv2 switches connected
in leaf-spine topology. The implemented networks differ in the number of core layers.
Each node at the border of the Mininet-emulated network needs to have at least one port
attached to a different Mininet container interface. This is necessary to let such nodes
exchange packets with external hosts, namely, clients and MEC Hosts.

We note that our implementation focuses only on emulating the data plane of the 5GC,
leaving aside the RAN aspects. In this respect, our network includes simplified gNBs, which
receive IPv6 packets from clients and encapsulate them using SRv6, following the Enhanced
Mode. The implementation of the RAN is out of the scope of this work, which focuses
more on managing the 5GC network in order to guarantee lossless service continuity.

6.1.2. Edge Service Migration

Edge services run as Docker containers. For what concerns their migration, we
leveraged CRIU [48] and rsync [49] tools. CRIU, which stands for Checkpoint/Restore
in Userspace, deals with the checkpoint of the container’s status on its original host and
its restoration on the target host. We exploited CRIU’s --tcp-established option to
guarantee TCP connection persistence after migration [50]. This allows CRIU to obtain the
support of Linux Kernel to retrieve and restore the TCP connection status, i.e., it saves the
socket state and restores it at the destination. In addition, before the connection is restored
on the target host, the original container’s IP address must be available. To guarantee the
latter requirement, the same network namespace must be created on the target host. The
rsync tool is used to transfer the container and connection checkpoints to the target host.

6.1.3. Testbed

We deployed a test environment comprising the six devices shown in Figure 14. Firstly,
the Qotom mini-PC runs the system orchestrator and the Mininet container, which emulates
the core networks of the BMv2 switches. Further information about the network topologies
will be given in Section 6.2. Four additional Qotom mini-PCs are also used as follows: one
is the client, while the others are MEC Hosts. Two of them are the source and target of the
container migration, whereas the third one is used to run the buffer function in some of
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the experiments. The last device is a PC server running the ONOS controller. The Qotom
mini-PCs have a Quad-core Intel i7-4600U CPU, 8 GB RAM, Ubuntu 18.04; whereas the PC
server has an Octa-core Intel i7-3770 CPU, 16 GB RAM, Ubuntu 18.04.

v
Mininet .
Client Core Host | container Container || MEC Host 2

ONOS
Container

ONOS Host

— MEC Host 3

Figure 14. Proposed high-level testbed architecture.

The ONOS configures the nodes emulated in Mininet out-of-band. To simulate the
in-band network with consistent network delays, we used Linux tc- netem. In particular,
we set a 1 ms one-way delay for each traversed link in the core network.

6.2. Performance Evaluation

We evaluated our solution in terms of scalability and flexibility. Firstly, we present
a scalability analysis where we compared our SRv6 solution against a non-SRv6 one in
terms of the configuration times and number of rules to be installed. Subsequently, we
show the performance of our solution, comparing it with a non-SRv6 one in terms of the
round-trip time in static conditions. Finally, we illustrate the results of the analysis in
dynamic conditions, i.e., when the MEO triggers container migration.

As stated in the testbed description, for our evaluation, we used different network
topologies. All of them are leaf-spine topologies, which differ in terms of the number of
core layers. Specifically, we used three different networks. The smallest one is composed
of one core layer, for a total of one core node. Another network is composed of two core
layers, with three nodes each. The biggest network is composed of four core layers, for a
total of twelve core nodes.

6.2.1. Scalability Analysis

Firstly, we conducted measurements on the time required to install rules on network
devices for both path allocation and path migration. In our setup, the ONOS sends write
operations in a specific order. Operations directed toward a particular switch are not mixed
with those for other switches. Furthermore, these operations are sent sequentially, and the
ONOS does not wait for one operation to finish before sending the next one. We evaluated
scalability across the network topologies explained above. Additionally, we compared our
SRv6-based solution with a non-SRv6 one, relying on the standard IPv6 routing mechanism.
In the latter mechanism, each router forwards packets solely based on the IPv6 address of
either the client or the server.

Figure 15 demonstrates the consistent superiority of our solution over the non-SRv6
approach; the most significant disparities are observed in the case of the path allocation
procedure. Specifically, under the non-SRv6 method, the configuration of all core network
devices is necessary; thus, the effect of the number of core layers is evident. Our approach,
instead, needs the configuration of only the ingress and egress edge nodes. However, the
number of core layers influences the outcomes because its increase results in the ONOS
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being topologically more distant from the egress edge device. The higher the distance
between the ONOS and the target device, the higher the latency for the rule installation.
Regarding path migration, discrepancies between the two methods are less pronounced, as
a similar number of devices necessitate reconfiguration in both cases. The characteristics
of the network and the positions of the source and target MEC Hosts with respect to the
client impact the number of devices to be reconfigured in the non-SRv6 approach. As
stated previously, the distance between the ONOS controller and the target devices impacts
the rule installation time. Moreover, the ONOS controller sends the requests sequentially
without waiting for a response. Based on that, the outcomes in Figure 15 are influenced by
the order in which the ONOS sends the operations. We now analyze the worst-case scenario,
i.e., where the ONOS sends the last write operations to the farthest device, which also has
the longest processing time. Figure 16 shows the worst-case rules installation overhead
across all the involved switches, decomposed to underlying the different contributions.
Assuming | to be the number of network nodes in the system and the number of operations
sent to the last node, we define the time at which the ONOS sends operation i to node j as
sij. Then, we define r;; as the time at which that operation enters its destination. Finally, d;;
is the processing time of the above-mentioned operation. We suppose that operations i and
i 4+ 1 addressed to node j are separated, both at transmission and reception by an interval
T;j. Subsequently, p;; is the time required by node j to process operation i. To conclude,
we suppose that, once the node terminates the execution of operation i, the subsequent
operation is already available, as stated by the following formula:

ALLOCATION MIGRATION

= SRv6
3 non-SRv6

=
g
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- j I l l
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I 2 4 I 2 4
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Figure 15. Network nodes installation overhead.
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Figure 16. Worst-case network configuration timeline.

The decomposition of the rule installation overhead is also shown in Figure 17, where
the worst-case scenario is considered. The first component, the green one, is the interval of
the time between the dispatch of the first instruction to the first node and the dispatch of
the first operation to the last node, called the request interval. Then, we have the latency,
which is the time between the dispatch and delivery of the first instruction to the last node.
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Finally, we have the computation time, which is the interval of the time required by the last
and slowest node to satisfy all the received requests. Formally, this is defined as
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Figure 17. Worst-case network configuration overhead.

Figure 17 confirms that the most significant difference in terms of the rule installation
time between the SRv6 and non-SRv6 approaches is given by the request interval. This is
due to the fact that in the solution without SRv#, it is necessary to configure a much larger
number of devices. The other components, transmission time, and processing time of a
request are similar in both cases, as expected.

In the previous experiments, we analyzed the scalability in terms of the rule installation
time for a single client-server pair. We now consider the scalability in terms of the number
of write operations to be performed, within a scenario with multiple client-server pairs.
In our SRv6-based solution, the ONOS must configure only the ingress and egress edge
routers, maintaining the number of write operations constant despite the depth of the core
network. We define C as the number of clients, ES as the number of edge nodes receiving
SRv6 rules to be installed, and EI as the number of edge nodes receiving IPv6 rules to be
written. The number of operations to be performed in the SRvé6-based case, SR, for both
the initial configuration and the migration update are the following:

SR = C x (ES + EI). 3)

In the case of the initial path allocation, both ES and EI are equal to 1. In the case of
path migration, we have ES equal to 2 and EI equal to 1. As a result, we have a complexity
in both cases of O(C).

Considering the non-SRv6 approach instead, all the core nodes must be configured in
addition to the edge ones. The number of core layers in the latter case significantly impact
the result. Exploiting the above variables and defining K as the number of core layers, the
number of operations for the allocation procedure, 10SR 4, are the following:

noSR = C x (2x K42 x EI). )

The complexity of the path allocation procedure, using the non-SRvé6 approach, is
O(K x C). For what concerns the path migration procedure, identifying the number of
core devices that must receive a rule update as K, the number of required write operations,
noSRyy, are defined as

noSRy = CU x (K+ EI). 5)
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Therefore, the complexity of the path migration procedure in the non-SRv6 scenario is
O(KxC).

6.2.2. Analysis in Static Conditions

We analyzed the performance in terms of the request-response time. We measured
the request-response time of a TCP-based client-server application as in [24], consisting of
a client that sends 100 B requests with a rate of 0.5 s, and a server sending an echo response.
For the comparison, we considered the non-SRv6 approach as well as two different SRv6
flavors: the first, called Loose SRv6, introduces only the required segments, which is the
egress edge node End SID. The second one, called Hop-by-Hop SRv6, includes in the SRH
the segments of all the traversed devices within the core network. In Figure 18, we show
the results of the request-response time over 50 repetitions when no migration is involved.
As shown, the adoption of the Loose SRv6 approach does not worsen the performance with
respect to the standard IPv6 routing mechanism. Hop-by-hop SRv6 flavor, instead, does
not scale with the number of hops. What affects the performance, making the approach
less efficient from a latency point of view, is the bigger SRH that must be processed by each
node within the network. Therefore, if there are no reasons necessitating a hop-by-hop
approach, such as in the case of traffic engineering, it is recommended to use the Loose
SRvé6 flavor.
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Figure 18. Mean request-response time.

6.2.3. Analysis in Dynamic Conditions

We evaluated our approach in time intervals within which the container is migrated.
We considered four different scenarios. The first, No Migration SR, is the baseline, where
the container is not migrated. The second, No Buffer SR, migrates the container without
any packet buffer. The third, Target Buffer SR, uses a packet buffer instantiated on the
UPF within the target MEC Host. The last, Ingress Edge Buffer SR, involves a packet buffer
executed on the UPF placed within an MEC Host connected to the ingress edge node. In all
the scenarios, SRv6 is used to steer the packets.

Figure 19 shows the throughput of an iperf3 application, measured at the server side,
over a 10 s time interval including migration. The client sent 5 MB to the server with
a bandwidth limited to 1.5 Mbps. The throughput is measured for each of the network
topologies described previously. The considered server container required, on average,
3.19 s for migration. Figure 19 confirms the throughput stability of around 1.5 Mbps
in static conditions and shows similar performances in the other three scenarios. They
have a similar throughput drop during the container downtime, despite the considered
topology. The main difference is the time required by the throughput to go back to its
original stable value. The No Buffer scenario takes more compared to the buffering cases,
and the difference increases with the network depth. The explanation for this outcome
is based on the necessity to retransmit lost packets, requiring them to traverse the entire
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network before reaching their target destination. To conclude, Figure 19 shows the slight
superiority of the Target Buffer compared to the Ingress Edge Buffer despite the topologies.
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Figure 19. Throughput within a time interval containing migration.

Figure 20 shows the boxplot of the throughput in the four scenarios listed above, using
the same network topologies. Data are taken from a 10 s time interval containing migration,
and they have been aggregated. The boxplot graphs appear as expected, following the
conclusions taken from those of Figure 19. In the No Migration scenario, the box is collapsed
in a line, corresponding to the median. This is due to the throughput constant value
of around 1.5 Mbps. The No Buffer case, instead, has the wider box, due to a larger
number of values equal to zero and to the slower throughput increment after container
restoration. The reason is the packet retransmission. The buffering cases have a better
performance compared to the No Buffer one. Their throughput increases faster, with the
Target Buffer exceeding the Ingress Edge Buffer. Finally, as shown in Figure 21, we analyzed
the performance in terms of the request-response time in a dynamic scenario, using the
TCP-based client-server application already exploited in Section 6.2.2. In this case, the
container migration procedure lasts 3.28 s, on average. As shown, the No Migration scenario
is the best, as expected. Concerning the migration cases, those approaches with buffer
outperform the one without it, and they have a similar performance irrespective of the
topology. The use of the buffer, enabling the prevention of packet losses, allows having the
increase in the request-response time as close as possible to the container downtime, in the
worst case.
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The conducted experiments demonstrate that our proposed solution guarantees ser-
vice continuity in the presence of edge service migration, as per the definition provided in
Section 1. Specifically, we verified that our approach allows a client to transparently reach
its edge service after migration by using the very same IP address and while leveraging
the original TCP connection. Moreover, the graphs show how our solution allows the
throughput to be the same before and after service migration. Furthermore, our buffer-
based approach ensures the throughput increases more quickly than a solution without
buffer, as in the former case, no packet is lost.

7. Conclusions

In the ETSI MEC environment, edge service migration may be required to support
user mobility. Leveraging the SRv6-based implementation of the 5GC network, in this
work, we proposed a solution that guarantees service continuity in the case of workload
migration between MEC Hosts. Our method preserves the IPv6 service address, enabling
relocation transparency for the client, achieved through SRv6 to steer packets to the new
service location. We introduced new SRv6 behaviors to support service continuity in the
5G-MEC environment, namely, End.Buffer and End.M.GTP6.D.Buffer. Those behaviors
allow being able to flexibly place the buffer within the network and integrate it as part of
the SID processing. We set up a small-scale testbed environment to assess our proposed
solution. The results outline that our approach has superior scalability compared to a
non-SRv6 alternative relying on standard IPv6 routing. The configuration time for the
SRv6 approach is at most 52% less than the non-SRv6 alternative. The number of rules
to be installed for the SRv6 approach scale with the number of clients, while the non-
SRv6 alternative scales with the number of clients multiplied by the number of core
devices. Additionally, the experimental analysis illustrates that our system ensures lossless
workload migration through the utilization of a packet buffer. The packet buffer allows the
throughput’s standard deviation to be 10% lower compared to the No Buffer solution for
all the considered topologies.

As future work, we plan to extend the analysis by including the RAN in order to
have a more complete view of the performance of our system. We also intend to study
orchestration solutions following the CATS paradigm.
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Appendix A
Appendix A.1. Control Plane Path Allocation Procedure in Enhanced Mode Scenario

Figure Al shows the control plane procedure for the path allocation. Firstly, the MEO
asks the SMF to trigger the SDN controller for SR Endpoint3 configuration. SR Endpoint3,
being the last device in the SR domain, requires a rule to forward the packets after the
SRH decapsulation. Then, the MEO triggers the AMF to configure the H.Encaps.Red rule
on gNB1, which is the first device of the SRv6 domain, in charge of encapsulating the
original packet.
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Figure A1. Control plane Enhanced Mode path allocation.

Appendix A.2. Control Plane Path Allocation Procedure in Enhanced Mode with Unchanged
gNB Behavior

Figure A2 shows the control plane procedure for the path allocation. The MEO
determines the appropriate SR policy to be enforced at SR Endpointl. Based on that, it
selects the corresponding BSID. For clarity, we assign label BSID1 to the selected BSID,
which is an IPv6 address. This BSID serves as the designated destination address that
gNB1 embeds within the IPv6 outer header to enforce the specified SR policy at Endpoint1.
Firstly, the MEO asks the SMF to activate the SDN controller for the configuration of SR
Endpoint3, as in the previous case. Then, the MEO instructs the SMF to trigger the SDN
controller in configuring the End.M.GTP6.D rule on SR Endpointl, if not installed yet, for
the determined SR policy (BSID1). Finally, the MEO prompts the AMF to configure the
GTP-U encapsulation rule on gNB1.
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Figure A2. Control plane Enhanced Mode with Unchanged gNB path allocation.
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Abstract: In the near future, commercially accessible quantum computers are anticipated to revo-
lutionize the world as we know it. These advanced machines are predicted to render traditional
cryptographic security measures, deeply ingrained in contemporary communication, obsolete. While
symmetric cryptography methods like AES can withstand quantum assaults if key sizes are doubled
compared to current standards, asymmetric cryptographic techniques, such as RSA, are vulnerable
to compromise. Consequently, there is a pressing need to transition towards post-quantum cryp-
tography (PQC) principles in order to safeguard our privacy effectively. A challenge is to include
PQC into existing protocols and thus into the existing communication structure. In this work, we
report on the first experimental IPsec tunnel secured by the PQC algorithms Falcon, Dilithium, and
Kyber. We deploy our IPsec tunnel in two scenarios. The first scenario represents a high-performance
data center environment where many machines are interconnected via high-speed networks. We
achieve an IPsec tunnel with an AES-256 GCM encrypted east-west throughput of 100 Gbit/s line
rate. The second scenario shows an IPsec tunnel between a wireless NVIDIA Jetson and the cloud
that achieves a 0.486 Gbit/s AES-256 GCM encrypted north-south throughput. This case represents a
mobile device that communicates securely with applications running in the cloud.

Keywords: post-quantum cryptography; falcon; dilithium; kyber; data processing unit; data center; IPsec

1. Introduction

For several years now, quantum computing has been a focal point of rigorous inves-
tigation ultimately resulting in the creation of a quantum processor [1]. The arrival of a
powerful commercially available quantum computer is expected in the near future, with
prototype systems [2], digital annealers [3], and quantum annealers [4] already being on
the market. This presents a significant challenge to contemporary communication systems
reliant on classical cryptographic infrastructure and methods. The vulnerability of asym-
metric cryptography, such as RSA [5], to quantum processors poses a serious threat to our
communication. Unlike asymmetric cryptography, symmetric cryptography such as the
Advanced Encryption Standard (AES)/Rijndael cipher [6] is said to remain secure against
quantum threats if its key size is doubled [7]. Hence, a shift from AES-128 to AES-256 is
required. However, the urgency to replace current asymmetric cryptography algorithms
with quantum-resistant alternatives, known as post-quantum cryptography (PQC), is
paramount. It is imperative to account for the threat to our digital communications posed
by the arrival of quantum computers. Therefore, in December 2016, the National Institute
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of Standards and Technology (NIST) launched a competition for the standardization of
new, quantum-resilient algorithms that are hard to crack not only by classical computers
but also by quantum computers [8].

Recently, the NIST announced their decision to standardize three PQC signature al-
gorithms and one Key Exchange Mechanism (KEM) [8]. Many different candidates were
submitted to the NIST competition. The security of the candidates is mostly based on
one of the following approaches [9]: multivariate cryptography, hash-based cryptogra-
phy, code-based cryptography, isogeny-based cryptography, or lattice-based cryptography.
Multivariate cryptographic systems base their security on solving multivariate equation
systems. An example for a PQC candidate which is multivariate-based is the PQC signature
scheme Rainbow [10]. Hash-based schemes base their security on the well-known and
well-understood technique of hashing. The NIST candidate SPHINCS+ [11] is a hash-
based signature scheme that was one of the four candidates in the NIST competition
that was announced to be standardized. Code-based schemes are relying on algorithmic
primitives [12]. To name an example, Classic McEliece [13] is a code-based KEM that was
submitted to the NIST competition that was not elected to be standardized. However, three
out of four candidates for PQC standardization, namely Falcon [14], Dilithium [15], and
Kyber [16], are based on cryptographic lattices. The fourth candidate that is going to be
standardized, SPHINCS+ [11], is hash-based. In the literature, extensive comparisons have
been made regarding the performance of SPHINCS+, Falcon, and Dilithium. Notably, stud-
ies such as [17,18] identify certain drawbacks of SPHINCS+ that are particularly relevant to
our work. Specifically, SPHINCS+ produces signatures that are substantially larger in size,
as shown in Table 1. These significantly larger signature sizes pose a concern for our client-
to-data-center application. Additionally, SPHINCS+ is the most computationally intensive
algorithm among the three. Therefore, we have excluded SPHINCS+ from consideration
and are focusing our PQC work on three out of the four algorithms that have been chosen
for standardization: Falcon [14], Dilithium [15], and Kyber [16].

The current digital technologies confirm identities using digital certificates that create
a so-called chain of trust. Figure 1 illustrates how a chain of trust is established using a
sequence of certificates, which can include one or multiple intermediate certificates. A
digital certificate contains the public key and the signature of a certificate authority (CA).
The end-entity certificate includes the certificates within the certificate chain. Therefore,
the sizes of the signatures and the public keys heavily influence the size of the resulting
certificate. Naturally, that holds true for all certificates included in the certificate chain that
need to be validated by the end entity. In Table 1, the signature and public key sizes of
the three PQC signature algorithms chosen by the NIST are shown in bytes. Additionally,
Kyber’s public key and encapsulation sizes in bytes can be seen. For reference purposes,
Table 2 shows the sizes in bytes for the most commonly used classical signature algorithms.
The signature algorithms mentioned in Table 2 are not quantum-safe. Comparing Table 1
with Table 2 shows clearly that the sizes of the PQC algorithms are significantly greater
compared to their classical counterparts. Hence, the size of a PQC certificate is considerably
greater than the size of a certificate that is signed using classical cryptographic algorithms
such as RSA. While PQC algorithms have yet to be standardized and rolled out into
production systems, efforts are being taken to examine so-called hybrid certificates [19,20].
Hybrid certificates are certificates that support the use of multiple algorithms during
the transitional phase where classical algorithms are still in use and PQC algorithms are
being deployed.
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Intermediate Certificate

Chain Link

End-entity Certificate

Issuing CA's name Subject's name

Root CA's name Issuing CA's public key LChainLink Subject's public key

Root CA's public key Issuer's name

C Root CA's signature
Self-signed

Figure 1. Chain of trust: The root CA signs the intermediate certificate. The end-entity certificate’s

Root CA's public name

Root CA's signature Signs Issuer's signature

authenticity is confirmed by one or more intermediate CAs. Hence, trust is established.

Table 1. Signature (Sig) and public key (Pub key) sizes of Falcon and Dilithium in bytes for different
NIST security levels (I, II, I1I, and V). Public key (Pub key) and encapsulation (Encaps) size of Kyber
in bytes. For SPHINCS+, the sizes in bytes are indicated for the use of SHA-256 128-bit (NIST I),
SHA-256 192-bit (NIST III), and SHA-256 256-bit hashing (NIST V).

Algorithm I II III v
Kyber Pub key 800 1184 1568
Kyber Encaps 768 1088 1568

Dilithium Pub key 1312 1952 2592

Dilithium Sig 2420 3293 4595
Falcon Pub key 897 1793
Falcon Sig 666 1280

SPHINCS+ Pub key 32 48 64

SPHINCS+ Sig 17,088 35,664 49,856

Table 2. Public key (Pub key) and signature (Sig) sizes of classical signature algorithms in bytes [19].
Classical signature and public key sizes are considerably smaller compared to the sizes employed in
PQC signature algorithms.

Algorithm Pub Key Sig
RSA 1024 128 128
RSA 2048 256 256
RSA 4096 512 512

SECP384r1 48 96

SECP521r1 65 132

For the transition towards the use of quantum-resilient algorithms, PQC must be
integrated into existing protocols that are used nowadays such as Internet Protocol security
(IPsec). Our work contributes to the goal of integrating PQC into the widely established
IPsec protocol. In this work, we use the reference implementations of Falcon, Dilithium,
and Kyber that were submitted to the NIST competition. We do not use an optimized,
accelerated, or in any form modified version of the algorithms. We benchmark the PQC
algorithms Falcon, Dilithium, and Kyber on our experimental setup. We execute the
algorithms on different processors for reference purposes. The main challenge that we
address in the work we present here is the experimental integration of PQC into the
IPsec protocol for the purpose of quantum-resilient communication. We set up a PQC-
secured IPsec tunnel and implement the tunnel for two scenarios: (1) an intra-data-center
high-speed connection between devices in the data center and (2) a client-to-data-center
connection. With this work, it is our goal to contribute to the state of the art by presenting a
quantum-safe software stack for setting up a high-speed IPsec tunnel. We demonstrate the
use of the IPsec tunnel in a high-performance environment and in an environment with a
mobile, low-power client.
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2. Related Works

Since the NIST started the competition for the standardization of PQC algorithms, a lot
of work on the implementation of the presented PQC algorithms has been performed. Those
efforts have not only been focused on Central Processing Unit (CPU) implementations
but also on a variety of platforms such as FPGA [21,22], GPU [23], RISC-V [24,25], or a
combination of different platforms [26] to improve the performance of the computationally
challenging parts of the PQC algorithms. The Number Theoretic Transform (NTT) method,
for example, is a mathematical operation of fundamental importance for Falcon [14],
Dilithium [15], and Kyber [16]. NTT serves for the efficient multiplication of polynomials.
The procedure can be parallelized, and hence, the performance benefits strongly from
implementations on platforms that can provide heavy parallelization such as FPGAs [27] or
GPUs [28]. Other subroutines or functions of PQC algorithms are recursive and therefore
do not benefit from parallelization. As an example, Falcon uses floating point operations
and recursive functions which would require a modification prior to being implemented in
hardware. In [29], the authors state that their implementation of Falcon’s key generation
on a FPGA shows a high latency while having high hardware utilization compared to a
software-based implementation on an Intel I7 CPU.

The IPsec protocol has existed for decades. Therefore, numerous publications with
different implementations on a large variety of platforms have been reported. In [30], the
authors compare IPsec solutions implemented in Data Plane Development Kit (DPDK), in
the Linux userspace, in the Linux kernel, on the Network Interface Card (NIC), and on the
host CPU. They claim a 3.54x improvement in throughput and a 2.54 X improvement in
latency with their implementation compared to the existing control plane design. They
achieve a 4.795 Gbit/s throughput. However, they achieve this throughput using 128-bit
AES Galois-counter mode (GCM). For being considered quantum-safe, AES-256 must
be used [7].

In [31], the authors examine the reference implementations of Dilithium and Kyber
on data processing unit (DPU) devices and how the algorithms can be accelerated using
an optimized version for ARM core processors. In [32], the authors use a PQC software
stack similar to the one that we present in this work. They investigate the performance
impact of Falcon and Kyber in the stack and evaluate the advantages and disadvantages
of choosing one over the other. In [33], an IPsec tunnel using Dilithium and Kyber with a
different software stack and a different methodology is established. In the work that we
present here, we apply our knowledge about PQC and focus on establishing a PQC-secured
IPsec tunnel.

In the context of quantum-secure communication, it is necessary to mention Quantum
Key Distribution (QKD). While PQC is based on mathematical challenges, the security of
QKD relies on the physical properties of quantum mechanics to achieve secure communica-
tions. In [34], the authors report on a 10 Gbit/s IPsec tunnel between two JP Morgan Chase
data centers. QKD is a highly important approach to securing future networks against
attackers. However, unlike PQC, QKD requires extensive specialized hardware. Moreover,
the rate at which quantum-safe keys are exchanged is low. Consequently, a key manage-
ment system [35] is required, which increases the overhead and complexity of such systems.
Given the high costs associated with QKD, we expect it to be used primarily in areas with
very high security needs, such as military or government applications. We envision a
co-existence of PQC and QKD systems in the form of hybrid PQC-QKD schemes [35].

Despite extensive research on PQC and IPsec individually, little has been reported on
the integration of PQC with IPsec. In [36], the authors use PQC in a custom protocol and
combine it with IPsec. However, they neither use Falcon [14] nor report on the throughput
achieved with their IPsec implementation. The focus of their work is on integrating
PQC into an encryption daemon used by IPsec. Like us, the authors use strongSwan
as the encryption daemon. However, without the necessary firmware support, IPsec
hardware offloading cannot be used, forcing the device’s CPU to handle all cryptographic
operations for the IPsec tunnel. The authors employ a version of strongSwan that does
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not support hardware offloading. This lack of offloading would significantly reduce the
tunnel’s throughput due to the CPU’s increased workload. In our work, we demonstrate
a complete setup of a PQC-secured IPsec tunnel using Dilithium, Falcon, and Kyber,
including hardware offloading of the tunnel’s AES-256 GCM operations, and report on
the performance.

3. IPsec Protocol

IPsec [37] is an OSI layer 3 (network layer) protocol that is part of the IPv4 suite.
For comparison, MACsec is a layer 2 (data link layer) protocol, while TLS acts on layer 4
(transport layer), and SSH operates on layer 7 (application layer) of the OSI model. IPsec is
used to end-to-end encrypt and decrypt data in transit [38]. Multiple different algorithms
are supported. In this work, we use AES GCM, in particular AES-256 GCM, because the
DPU devices allow for hardware offloading of AES GCM. IPsec works in either transport
or tunnel mode. Using the transport mode, the payload of the ip packet is encrypted. The
IP header is not modified nor encrypted. The tunnel mode encrypts the entire IP packet
and authenticates it. Therefore, the original IP packet is encapsulated into a new IP packet
including a new IP header. The tunnel mode is used to create virtual private networks for
network-to-network communications.

Moreover, IPsec can be used in either the Authentication Header (AH) mode or in
Encapsulation Security Payload (ESP) mode [39]. The AH mode serves as a means for
authentication exclusively. It guarantees data integrity, data origin authentication, and
optionally, a replay protection service. Data integrity is maintained through the utilization
of a message digest created by algorithms like HMAC-MD5 or HMAC-SHA. Data origin
authentication is established by employing a shared secret key to generate the message
digest. Replay protection is implemented through a sequence number field within the
AH header. The AH mode verifies the authenticity of IP headers and their payloads,
except for specific header fields that may undergo legitimate alterations during transit,
such as the Time To Live (TTL) field. The ESP protocol offers both data confidentiality
through encryption and authentication, which includes ensuring data integrity, data origin
authentication, and replay protection. ESP can operate solely for confidentiality, solely for
authentication, or for both confidentiality and authentication simultaneously. When ESP
incorporates authentication, it employs identical algorithms to those used in AH, although
with different coverage. AH-style authentication verifies the complete IP packet, including
the outer IP header, whereas the ESP authentication mechanism authenticates only the IP
datagram segment of the IP packet. In this paper, we use IPsec exclusively in the ESP mode.
We do not use the AH mode.

IPsec uses security policies and security associations. Every Security Association (SA)
is identified by an Security Parameter Index (SPI) and a sequence number. Authentication
can be carried out via two different options: with standard public key encryption or with
the so-called pre-shared key method. IPsec supports a variety of public key schemes, such
as RSA [40] or Diffie-Hellman [41]. If, however, the pre-shared key method is used for
establishing the IPsec tunnel, the symmetric key that is used for encryption is already in
possession of the devices. The devices send each other hashes of the pre-shared keys and
hence proof that they are indeed in possession of the correct key. As IPsec does not support
PQC public key encryption, we perform our own PQC-secured authentication and key
exchange and then ultimately set an IPsec connection using the pre-shared key method.
This is possible because both parties have the key that they exchanged before via PQC. An
important parameter when setting up an IPsec connection is the re-keying parameter that
indicates how often a new key is exchanged. As an encryption daemon, we use strongSwan
(https:/ /www.strongswan.org/, accessed on 25 January 2025) version 5.9.10. Since this
version does not support PQC yet, we deactivate re-keying in this work as re-keying would
inevitably employ non-quantum-safe key exchange algorithms. Instead of re-keying, we
run the herein presented software stack again, thus setting up a new connection that uses a
new key. The IPsec rules are installed into the Linux kernel using the ip-xfrm command
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that is part of the iproute2 (https://github.com/iproute2/iproute2 accessed on 3 July 2024)
Linux tool set.

IPsec Hardware Acceleration

IPsec is a widely used protocol suite for securing Internet Protocol (IP) communi-
cations by authenticating and encrypting each IP packet in a data stream. BlueField-2
DPUs offer hardware acceleration for IPsec, enabling efficient packet processing and en-
cryption/decryption without burdening the host CPU. The software framework that is
used to program the DPU is called Data Center-on-a-Chip Architecture (DOCA). By design,
DOCA is very similar to NVIDIA’s Compute Unified Device Architecture (CUDA) that
is used for the programming of a Graphic Processing Unit (GPU). Like in CUDA, using
the Application Programming Interfaces (APIs) enables the user to access on-board hard-
ware accelerators of the device. Figure 2 presents the workflow of DOCA IPsec, detailing
the steps involved in setting up IPsec policies and processing network traffic within the
BlueField environment. We configure the NIC similar to the procedure presented on the
NVIDIA DOCA webpage (https://docs.nvidia.com/doca/sdk/nvidia+doca+east-west+
overlay+encryption+application/index.html, accessed on 15 July 2024) regarding the accel-
eration of east-west traffic. Hence, the DPU offloads the complex cryptographic operations
to the hardware accelerators that are accessible via DOCA.

Open DOCA device for secured port

A
Probe DPDK ports

y
Initialize DOCA Flow and DOCA Flow
ports

A
Build DOCA Flow pipes

\ 4
Create UDS socket and listen for
incoming data

New IPsec policies received?

Yes
A4

Parse policy

y

Create IPSec SA shared resource

A

Insert encrypt rule to DOCA Flow pipes

Figure 2. Overview of DOCA IPsec workflow. The sequential steps involved in setting up IPSec
policies and processing network traffic within the BlueField environment are illustrated.

When the IPsec connection is configured, the process begins by initializing the DOCA
device for the secure port. This step ensures that the network interface is ready to handle
incoming and outgoing traffic securely. To prepare the infrastructure for packet processing
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and flow management, DPDK ports are probed to identify available network interfaces.
This is followed by initializing DOCA Flow (https://docs.nvidia.com/doca/archive/doca-
v1.2/flow-programming-guide/index.html accessed on 10 January 2024) and DOCA Flow
ports. DOCA Flow pipes are then constructed to define the flow of packets through various
stages of processing. These pipes facilitate actions such as the filtering, forwarding, and
manipulation of packet headers.

A Unix Domain Socket (UDS) is created to establish a communication channel for
receiving incoming data. This socket serves as the interface for interacting with external
systems and applications. The system periodically checks for new IPsec policies. Upon
receiving a new policy, it is parsed to extract relevant information such as encryption
and decryption rules. If the policy corresponds to an encryption rule, an IPsec SA shared
resource is created. This resource manages encryption parameters and states for packets
matching the specified criteria. The encryption rule is then inserted into the appropriate
DOCA Flow pipes. This ensures that packets matching the encryption criteria undergo the
specified encryption process before further processing or transmission. After processing
the IPsec policy, the system resumes listening for incoming data on the UDS. This allows it
to continue handling network traffic while enforcing the defined security policies.

As shown in Figure 3, the IPsec offload process on BlueField begins with the initializa-
tion and configuration of the DPU. This involves opening and initializing a DOCA device
for the unsecured port and setting up the control pipe as the root for packet processing.
Incoming packets are classified based on the protocol type (TCP or UDP) and IP version
(IPv4 or IPv6). BlueField-2 DPUs use dedicated pipes to match packet headers against
predefined criteria, such as 5-tuple (source/destination IP addresses, source/destination
ports, and protocol). The 5-tuple includes the IP address of the device that sends the packet,
as well as the IP address of the intended recipient device. Additionally, it includes the
source port number used by the application to send data on the source device, as well as
the destination port number used by the application to receive data on the destination
device. Finally, it specifies the type of protocol used for communication, such as TCP or
UDP. Once a packet is classified and matched, it undergoes encryption or decryption based
on the established IPsec policies. BlueField-2 DPUs support hardware-accelerated encryp-
tion/decryption operations, leveraging dedicated cryptographic engines (https://docs.
nvidia.com/doca/sdk/nvidia+doca+ipsec+security+gateway+application+guide accessed
on 10 January 2024) for fast and secure data processing.
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Figure 3. DOCA IPsec Flow diagram.
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Encrypted packets are encapsulated with additional IPsec headers before being for-
warded to the appropriate destination. BlueField-2 DPUs handle encapsulation efficiently,
ensuring minimal overhead and latency in the data transmission process. In the secure
egress domain, BlueField-2 DPUs perform additional processing to ensure proper packet
routing and security enforcement. This may involve IP classification, encryption pipe
selection (IPv4 or IPv6), and the application of IPsec policies based on metadata matching.
Metadata refer to additional information attached to a packet that can provide context
beyond the basic header information. For IPsec, metadata might include details about the
specific SA used for encryption, enabling the DPU to select the appropriate algorithms
and keys. BlueField-2 DPUs seamlessly integrate with the application layer, providing
APIs and interfaces for application developers to define and enforce IPsec policies, monitor
network traffic, and manage security configurations. The hardware acceleration capabilities
of BlueField-2 DPUs significantly enhance the performance and scalability of IPsec imple-
mentations in data center and cloud environments. By offloading intensive cryptographic
operations to dedicated hardware, BlueField-2 DPUs optimize resource utilization and
improve the overall system efficiency.

4. Implementation
4.1. PQC-Algorithms

Falcon [14], Dilithium [15], and SPHINCS+ [11] are the three candidates in the NIST
competition for PQC signature algorithms that are chosen to be standardized [8]. All three
signature algorithms have in common that they execute the same procedural steps: key
generation, verification, and sign. Key generation and signing are performed by the server
machine. The client machine needs to verify the signature.

Unlike Dilithium and Kyber, Falcon offers only two NIST security levels: Falcon 512
(NIST level I), and Falcon 1024 (NIST level V). Falcon’s signature and public key sizes in
bytes for the NIST security level I and V can be seen in Table 1. For research purposes,
Falcon’s reference implementation also includes Falcon 256. However, Falcon 256 is not
considered secure against quantum attacks [14] and is therefore not considered in this
work. The security of the algorithm is based on the theoretical framework developed
by Gentry, Peikert, and Vaikuntanathan for lattice-based signature schemes [42]. This
framework is applied to NTRU lattices utilizing a trapdoor sampler that is called “fast
Fourier sampling”. The fundamental mathematical challenge to solve is the Short Integer
Solution (SIS) problem over NTRU lattices [14,43]. In this work, we use the reference
implementation of Falcon that has been submitted to the NIST competition. During the
key generation process, this algorithm’s implementation utilizes AES-generated pseudo-
random numbers as initial seeds to set up SHAKE-256 for generating random polynomials
following a Gaussian distribution. If the squared norm of these polynomials exceeds the
bounds, or if the norms of orthogonalized vectors deviate, the algorithm rejects them and
generates new polynomials. The Fast-Fourier Transform (FFT) is employed to calculate the
norms of orthogonalized vectors. Leveraging these polynomials, the algorithm produces
a public key polynomial. The key generation module resolves the NTRU equation to
compute the key polynomials [14].

Dilithium offers three NIST security levels: Dilithium 2 (NIST level II), Dilithium 3
(NIST level III), and Dilithium 5 (NIST level V). Signature and public key sizes in bytes
can be seen in Table 1. The implementation of Dilithium that is used in this work employs
SHAKE for matrix expansion, vector masking, and sampling of the secret polynomials.
A Dilithium version that uses AES in counter mode for these steps exists. However, this
specific version requires Advanced Vector Extensions (AVX2) operations which are not
supported by the DPU’s ARM cores. Hence, we employ SHAKE instead of AES for the key
generation of Dilithium. During the signature generation, NTT is used [15].

Initially, many different candidates for possible KEM algorithms were submitted to
the NIST competition. To name an example, other KEM candidates were BIKE (code-
based) [44] or SIKE (isogeny-based) [45]. Regardless, Kyber is the only KEM in the NIST
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competition that was chosen for standardization. It thus will most likely become the main
algorithm for the key exchange stage of PQC-based digital communication. As KEM,
the three main procedural steps of Kyber are called key generation, key encapsulation,
and key decapsulation. In the key generation process, a key pair comprising a public
key and a private key is created. The key encapsulation aims to encrypt the key that
is intended for obtaining a shared secret using the public key. Subsequently, the key
decapsulation is employed to recover the key that was encrypted with the public key during
the encapsulation phase. Like Dilithium, Kyber offers three different levels of security:
Kyber 512 (NIST level 1), Kyber 768 (NIST level I1I), and Kyber 1024 (NIST level V) [16].
Similar to Dilithium, Kyber employs NTT to enhance its security. The algorithm conducts
arithmetic operations on 256-bit polynomials within a polynomial ring. Despite variations
in security levels, the size and modulus of the polynomials remain consistent. The increase
in security level solely leads to a rise in the number of polynomials utilized [16].

4.2. Algorithmic Procedure

We use the procedure shown in Figure 4 to set up the IPsec tunnel that we present in
this work. First, we establish an OpenSSL (https:/ /www.openssl.org/ accessed on 10 January
2024) connection between the two devices. The cipher that we used for the OpenSSL session is
TLS_AES_256_GCM_SHA384. The required certificates are self-signed. In a real-life scenario,
the self-signed certificates would need to be replaced by certificates issued by a certificate
authority. The second step is the exchange of PQC signatures. For this purpose, we use the
reference implementation of Falcon [14] and the reference implementation of Dilithium [15].
After that, we exchange a PQC key using Kyber’s reference implementation [16]. The refer-
ence implementations of the three PQC algorithms used in this work are available online
(https:/ /falcon-sign.info/, https://pq-crystals.org/dilithium/index.shtml, https://pq-
crystals.org/kyber/index.shtml accessed on 10 January 2024). The fourth step is the com-
bination of the OpenSSL key with the PQC key by performing an XOR operation with the
OpenSSL key and the PQC key. This is called key mixing. The resulting key is secure for as
long as at least one of the two mixed keys is not compromised [46]. Ultimately, we use the
ephemeral key resulting from mixing the keys to set up the IPsec connection using the pre-
shared key method. The IPsec connection is protected by AES-256 GCM encryption which
is considered to be secure against quantum attacks [7]. Superuser privileges are required for
the execution. The session key remains active for as long as the IPsec SA is active. In case a
new key needs to be exchanged, the procedure shown in Figure 4 is repeated.

OpenSSL session

( \ . sps ( \
1. self-signed certificates 1.
Root CA's na.me TLS_AES_256_GC M_S HA384 Root CA's na.me
Root CA's public key Root CA's public key
" Root CA's signature ® RootCA's signature

Self-signed 2. PQC- authentication 2 Self-signed
(_w

3. PQC key exchange
Kyber

B
e

4. Key mixing: PQC and OpenSSL key 4.
— — ) — —
Machine 1 5.SetupIPsec tunnelusingthe mixed PQCkeys Machine 2
AES 256 GCM

Figure 4. Methodology: First, using self-signed certificates, an OpenSSL session is established. The
used cipher was TLS_AES_256_GCM_SHA384. Then, PQC signatures are exchanged. As a third step,
Kyber is used to exchange a key. Fourthly, the key retrieved by Kyber and the key established by the
OpenSSL session are mixed. Ultimately, an IPsec tunnel is set up using the mixed ephemeral key.
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We execute the procedure shown in Figure 4 on the server machine’s processor directly,
on the DPU, and on the Jetson. If the cryptographic operations are executed on the server’s
CPU, the DPU is used as simple NIC. The server encrypts the traffic and sends the outgoing
traffic already encrypted to the NIC via PCle 4. While receiving traffic, the NIC forwards
the encrypted traffic to the host, and the host machine decrypts the traffic on its own CPU.
In this case, the NIC only manages outgoing and incoming connections. It is not used for
processing of any kind. If the cryptographic are executed on the NIC, the server sends the
outgoing and incoming traffic unencryptedly to the NIC. It thus saves valuable CPU cycles
of its own CPU. In this case, the NIC executes all cryptographic operations. It receives
the data as plaintext from its host and sends out the data encryptedly. The receiving DPU
decrypts the incoming packets and forwards them to the host via PCle 4.

5. Experimental Setup and Methodology

Figure 5 shows the schematical representation of a data center. In a data center,
multiple servers are stashed in several racks. All servers are interconnected via a high-
speed network within the data center. Different applications are running on the servers.
The applications are potentially running a number of virtual machines (VMs) on various
different machines that, hence, are required to communicate with each other. In a data
center, this is called east-west traffic. External users and clients access the services provided
by the applications that are running in the data center via the public internet. This kind of
traffic is referred to as north-south traffic.
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Figure 5. Schematic representation of a data center: Multiple racks host many servers, all intercon-
nected via the local intra-data-center network. Different applications are hosted. Traffic within the
data center is referred to as east-west traffic. Incoming/outgoing traffic is called north—south traffic.
External users and clients access the services.

In this work, we present two scenarios for the application of the PQC-secured IPsec tun-
nel that we demonstrate in this work. The first scenario emulates an intra-data-center east—
west communication at line rate. Our experimental setup for this, shown in Figure 6, repre-
sents this scenario: Two Dell PowerEdge 740xd (https:/ /www.dell.com/en-us/shop/dell-
poweredge-servers/poweredge-r740xd-rack-server/spd/poweredge-1r740xd / pe_r740xd_
tm_vi_vp_sb accessed on 10 January 2024) servers are each equipped with an NVIDIA Blue-
Field 2 DPU (https:/ /www.nvidia.com/en-us/networking/products/data-processing-
unit/ accessed on 10 January 2024). Each DPU is equipped with eight on-board ARMv8
processors that are clocked with 2750 MHz. The DPUs are connected via optical fiber
with an optical switch. The throughput between DPU and DPU is measured using the
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VIAVI [47] traffic generator. The VIAVI traffic generator can achieve throughputs of up to
400 Gbit/s. However, the DPUs that we use are capable of 100 Gbit/s, and therefore, we do
not make use of VIAVT's full capabilities. In order to test the throughput, the VIAVI traffic
generator is placed in between the two DPUs.

VLAN100

Tunnel mode

New IP ESP P L4 Header Data ESP Trailer ESP Auth

| —
g Encrypted ,/A

Authenticated

Figure 6. Two identical servers are each equipped with an Nvidia BlueField 2 100 G DPU. The DPUs
are connected via optical fiber to an optical switch and IPsec connection established with following
packet header fields. This emulates the east-west traffic in the intra-data-center scenario.

The second scenario that we present in our work is a quantum-safe way for clients to
establish a north—south IPsec connection for accessing the services from outside the data
center. We demonstrate our north-south IPsec tunnel using a wireless connection. Our
setup for this can be seen in Figure 7: a mobile device that seeks to exchange encrypted
information with the cloud. As a mobile device, we use an Nvidia Jetson Nano (https://
developer.nvidia.com/embedded /jetson-nano accessed on 10 January 2024) that is equipped
with a WiFi antenna extension. The Jetson connects to the cloud via a WiFi router. We
measure the throughput between the Jetson and a 25 G DPU in the cloud using the iperf
(https:/ /iperf.fr/ accessed on 15 January 2024) traffic generator and achieve a 0.486 Gbit/s
throughput. We connect the Jetson to a 25 G DPU instead of a 100 G DPU because the WiFi
antenna’s maximum throughput is equal to 1 Gbit/s, and therefore, a 25 G DPU is suitable
to provide the necessary performance.
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Figure 7. Wireless setup: An Nvidia Jetson Nano connects to a WiFi using a WiFi antenna extension.

The Jetson establishes a PQC-secured IPsec tunnel and connects through the network to a server that
is equipped with a 25G DPU.

6. Results
6.1. Signature Algorithms

Figure 4 shows the methodology that we use for setting up the quantum-secure IPsec
tunnel that we present in this work. The server machine and the client machine have to
perform different tasks. As Dilithium and Falcon are signature algorithms, they are part of
step 2 in Figure 4. Hence, the latency introduced by the execution of the algorithms can be
attributed to step 2. While executing a signature algorithm, the server machine needs to
generate a key and create a signature using the sign process. Figure 8 shows the average
required clock cycles while executing Dilithium on the server side on the server directly
(blue background), on the Jetson (red background), and on the DPU (yellow background).
While signing, a security downgrade from Dilithium 5 down to Dilithium 3 comes with a
performance gain between 6 % (server) and 39 % (DPU) in terms of CPU cycles. Further
trading off security for the velocity of execution by using Dilithium 2 instead of 5 yields
a performance boost between 41 % (server) and 89 % (DPU). While generating a key, it is
between 35 % (server) and 40 % (Jetson) faster to use Dilithium 3 instead of Dilithium 5. At
the lowest security level, it consumes 89 % (server, Jetson, and DPU) less CPU cycles to use
Dilithium 2 instead of Dilithium 5.

The cryptographic operations of Dilithium'’s client side are shown in Figure 9. The
client needs only to verify the signature. The verification process of a Dilithium 5 signature
takes between 25 % (server) and 43 % (Jetson) longer than the verification of a Dilithium 3
signature. Verifying a Dilithium 2 signature is between 65 % (server) and 83 % quicker than
the equivalent process for a Dilithium 5 signature.

The cryptographic latency introduced by Falcon on the server side can be seen in Figure 10.
Generating a key for Falcon 1024 takes between 89 % (Jetson) and 94 % (server) more clock
cycles in comparison with Falcon 512. It is of note that the key generation of Falcon is
particularly more challenging than Dilithium’s key generation. Falcon’s key generation
requires about two orders of magnitude more clock cycles compared to Dilithium’s key
generation. Signing requires between 63 % (server) and 73 % (DPU) more clock cycles for
Falcon 1024 while comparing it with Falcon 512.
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Figure 8. Cryptographic latency introduced by the execution of Dilithium’s keygen and Dilithium’s
sign executed on the server side. The server device was a Dell PowerEdge server, equipped with an In-
tel Xeon CPU, an NVIDIA Jetson (the wireless device in our setup), and an NVIDIA BlueField 2 DPU.

The cryptographic latency introduced by Falcon on the client side can be seen in
Figure 11. The client requires between 54 % (Jetson) and 71 % (DPU) more clock cycles to
verify a Falcon 1024 signature compared to a Falcon 512 signature. Falcon’s and Dilithium’s
verification processes are similarly competitive in terms of performance. Dilithium is
slightly faster while Falcon is within the same order of magnitude regarding the required
CPU clock cycles for the execution.
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Figure 9. Cryptographic latency introduced by the execution of Dilithium’s verification executed on
the client side. The server device was a Dell PowerEdge server, equipped with an Intel Xeon CPU, an
NVIDIA Jetson (the wireless device in our setup), and an NVIDIA BlueField 2 DPU.
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Figure 10. Cryptographic latency introduced by the execution of Falcon’s key generation and
Falcon’s sign executed on the server side. The server device was a Dell PowerEdge server, equipped
with an Intel Xeon CPU, an NVIDIA Jetson (the wireless device in our setup), and an NVIDIA
BlueField 2 DPU.
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Figure 11. Cryptographic latency introduced by the execution of Falcon’s verification executed on
the client side. The server device was a Dell PowerEdge server, equipped with an Intel Xeon CPU, an
NVIDIA Jetson (the wireless device in our setup), and an NVIDIA BlueField 2 DPU.

6.2. Key Exchange Mechanism

Kyber as a key exchange mechanism represents step 3 in Figure 4. The latency added
in this step equals the latency caused by the execution of Kyber. The server machine has
to perform the key generation and the key decapsulation while the client machine has
to execute the key encapsulation. The latency introduced for the server machine can be
seen in Figure 12. Upgrading the security level from Kyber 512 to Kyber 768 comes with
a penalty in terms of CPU cycles between 33 % (DPU) and 40 % (server) during the key
decapsulation. Furthermore, increasing the security level from Kyber 768 to Kyber 1024
costs between 45 % (server) and 57 % more CPU (DPU) cycles while performing the key
decapsulation. The key generation is generally a more expensive operation compared with
key decapsulation. While generating a key for Kyber 512, an additional charge of 32 %
(server) to 34 % (DPU, Jetson) applies. Upgrading the strength from Kyber 768 to Kyber
1024 costs between 28 % (server) and 66 % more CPU clock cycles while generating a key.
The Jetson and the DPU perform very similarly. The server requires more CPU cycles by
almost one order of magnitude regarding only the number of clock cycles that are required
for the execution of the algorithm. This does not take into account the clock frequency the
different processors are operating at.

Figure 13 shows the latency introduced on the client machine. The only operation that
the client has to perform is the key encapsulation. Downgrading the security level from
Kyber 1024 to Kyber 768 boosts the performance by between 37 % (server) and 75 % (Jetson).
Decreasing the security level to Kyber 512 yields a performance gain of 75 % (server) to
113 % (DPU) with respect to Kyber 1024.
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Figure 12. Cryptographic latency introduced by the execution of Kyber’s key generation and Kyber’s
key decapsulation executed on the server side. The server device was a Dell PowerEdge server,
equipped with an Intel Xeon CPU, an NVIDIA Jetson (the wireless device in our setup), and an
NVIDIA BlueField 2 DPU.
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Figure 13. Cryptographic latency introduced by the execution of Kyber’s key encapsulation executed
on the client side. The server device was a Dell PowerEdge server, equipped with an Intel Xeon CPU,
an NVIDIA Jetson (the wireless device in our setup), and an NVIDIA BlueField 2 DPU.

To examine the performance of the individual steps of the various algorithms, we exe-
cute on different processors the main three steps of Falcon and Dilithium (key generation,
verify, and sign), as well the main three steps of Kyber (key generation, key encapsula-
tion, and key decapsulation). The results can be seen in Figure 14 for an AMD Ryzen
7 3700X desktop processor, in Figure 15 for the ARMv8 processor on the DPU, and in
Figure 16 for the Intel Xeon processor that our servers are equipped with. The metric is
executions per second. It is of note here that the Intel Xeon, shown in Figure 16, performs
slightly better than the ARMvS, shown in Figure 16, even though the Intel Xeon requires
a significant amount of CPU cycles more for the execution of the PQC algorithms. This
is due to the higher clock frequency that the Intel Xeon is operating at compared to the
ARMUvS processor.
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Figure 16. Falcon’s and Dilithium’s main steps (key generation, verification, and sign) and Kyber’s main
steps (key generation, key encapsulation, and key decapsulation) executed on an Intel Xeon processor.

After the keys have been exchanged successfully, during step 4 in Figure 4, we perform
an XOR operation between the cryptographic key that we retrieved while setting up an
OpenSSL session using classical cryptography and the keys that we have exchanged using
Kyber. Ultimately, we perform step 5 in Figure 4 and set up the IPsec tunnel. We do that
for both scenarios, east-west traffic and north—south traffic.

6.3. IPsec Tunnel

Using the iperf traffic generator, we analyze the performance of the north-south IPsec
tunnel that we set up between the Jetson as a wireless device and the 25 G DPU in the
cloud, shown in Figure 7. We achieve an AES-256 GCM encrypted wireless throughput
of 0.486 Gbit/s. As this scenario emulates a mobile device communicating via the cloud,
the signal travels through a chain of multiple hops. We therefore do not set the maximum
transmission unit (MTU) because every device in the chain between the mobile device and
the 25G DPU in the cloud can modify the MTU size.

In our intra-data-center east—-west traffic scenario, however, we do have control over
the MTU size. Thus, after we set up the east-west IPsec tunnel from DPU to DPU, we
characterize the tunnel’s throughput with different MTU sizes using the VIAVI traffic
generator. The results can be seen in Figure 17. The original plots generated by VIAVI
for each MTU can be seen in Figure 18. With small packets, 64 B MTU, we achieve an
encrypted throughput of 34 Gbit/s. This can be seen in Figure 18a. Doubling the MTU
to 128 B yields an encrypted throughput of 58 Gbit/s, as shown in Figure 18b. Setting the
MTU to 256 B in Figure 18c results in an encrypted throughput of 73 Gbit/s. In Figure 18d,
at 512 B MTU, we obtain an encrypted throughput of 95 Gbit/s. Ultimately, in Figure 18e,f,
starting from 1024 B MTU, we observe an encrypted throughput of 100 Gbit/s line rate.
For all MTU sizes that are bigger than, and including 1024 B, the encrypted throughput
converges towards 100 Gbit/s. That holds true for jumbo-sized packets due to the fact that
the on-board hardware accelerators of the DPU support only operation up to 100 Gbit/s.
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Figure 18. Throughput of the IPsec tunnel with different MTU sizes. The traffic is generated by
VIAVI and passed through the IPsec tunnel that we present in this work. For all MTU sizes equal
to or bigger than 1024 B, we achieve the maximum supported line rate of 100 Gbit/s. (a) 64 B MTU;
(b) 128 B MTU; (c) 256 B MTU; (d) 512 B MTU; (e) 1024 B MTU; (f) 1518 B MTU.

7. Discussion

Kyber [16], being the only remaining KEM in the NIST competition chosen for stan-
dardization, is integral to every version of the encryption stack presented in this work. The
choice of security level for Kyber (NIST levels I, III, or V) can vary based on numerous
factors, including security requirements and the processing power of the devices involved.
This decision is typically made by the application or, ultimately, by the software developer.

Dilithium [15], developed by the same group (https:/ /pg-crystals.org/ accessed 19
March 2024) that submitted Kyber, offers excellent performance in terms of execution speed
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when combined with Kyber [16]. However, Dilithium’s signatures are larger compared
to Falcon’s, resulting in larger certificates and more data that need to be transmitted
over networks. This might not be an issue in high-performance environments, such as
data centers, where network bandwidth is abundant, making signature sizes irrelevant.
However, in mobile applications with limited and potentially unstable network connections,
the larger signature size could negatively impact performance.

Falcon’s performance is inferior to Dilithium’s in terms of computation. Falcon re-
quires more CPU clock cycles per execution, and especially its key generation process
is significantly more demanding. Despite this, in scenarios where keys are generated
infrequently, the impact of this disadvantage is minimal. However, in high-performance
environments with numerous sessions, each requiring its own key, this becomes a signifi-
cant drawback of Falcon. The advantage Falcon offers is its smaller signature size, which
may be more suitable for mobile, low-power, and low-performance environments.

8. Conclusions and Future Work

In this work, we present a software stack to establish a fully offloaded, quantum-safe
IPsec tunnel. We first perform a quantum-safe authentication using the PQC signature algo-
rithms Falcon and Dilithium, followed by the key exchange algorithm Kyber. Then, using
the quantum-secure key, we set up an IPsec tunnel that is secured by AES-256 GCM. More-
over, we benchmark the performance of the PQC algorithms on multiple CPUs. Dilithium
outperforms Falcon in terms of execution speed. However, Falcon’s signature is smaller
than Dilithium’s which poses an advantage in environments with low network capacities.

In our experimental setup, we demonstrated an IPsec connection between a mobile
device connected to WiFi and a 25 G DPU in the cloud. We did not modify the MTU,
considering that every device and hop linking the connection between the Jetson and
the DPU could modify the MTU. Using our setup, we achieved an end-to-end encrypted
throughput of 0.486 Gbit/s between the Jetson and the 25 G DPU.

Once the IPsec tunnel was established, NVIDIA’s NIC showed excellent performance
by offloading cryptographic operations to the NIC’s hardware accelerators, effectively
liberating the host machine’s CPU from cryptographic calculations. We confirmed the
IPsec tunnel’s performance relative to the MTU size using the VIAVI traffic generator. With
small packets of 64 B MTU, we achieved a throughput of 34 Gbit/s. With an MTU of 1024 B,
we achieved a full encrypted throughput of 100 Gbit/s line rate, which is the maximum
performance attainable with this NIC model. We observed a 100 Gbit/s line rate for all
MTU sizes larger than 1024 B, including jumbo packets.

To further accelerate the transition to quantum-resistant algorithms, we identify two
major tasks that need to be addressed in the future. First, PQC algorithms must be fully
integrated into existing software stacks, transitioning from research environments into
production code used in real-life applications. Our work represents a first step towards this
direction. Second, the processing power required for PQC algorithms is significantly higher
than that of classical algorithms. We therefore anticipate the development of dedicated
hardware accelerators specifically for PQC algorithms, similar to the hardware accelerators
currently used for classical asymmetric cryptography. This would accelerate the execution
speed and reduce the energy consumption while using PQC algorithms.
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Abbreviations

The following abbreviations are used in this manuscript:

AES Advanced Encryption Standard

AH Authentication Header

API Application Programming Interface
AVX2 Advanced Vector Extensions

CA Certificate Authority

CPU Central Processing Unit

CUDA  Compute Unified Device Architecture
DOCA  Data Center-on-a-Chip Architecture
DPDK  Data Plane Development Kit

DPU Data Processing Unit

ESP Encapsulation Security Payload

GCM Galois-counter mode

GPU Graphics Processing Unit

IPsec Internet Protocol security

KEM Key Exchange Mechanism

MTU Maximum Transmission Unit

NIC Network Interface Card

NIST National Institute of Standards and Technology
NTT Number Theoretic Transform

PQC Post-Quantum Cryptography

QKD Quantum Key Distribution

SA Security Association
SIS Short Integer Solution
SPI Security Parameter Index
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Abstract: While driving, stress and frustration can affect safe driving and pose the risk of causing
traffic accidents. Therefore, it is important to control the driver’s anxiety level in order to improve
the driving experience. In this paper, we propose and implement an intelligent system based on
fuzzy logic (FL) for deciding the driver’s anxiety level (DAL). In order to investigate the effects of the
considered parameters and compare the evaluation results, we implement two models: DAL Model 1
(DALM1) and DAL Model 2 (DALM2). The input parameters of DALM1 include driving experience
(DE), in-car environment conditions (IECs), and driver age (DA), while for DALM2, we add a new
parameter called the accident anxiety state (AAS). For both models, the output parameter is DAL.
We carried out many simulations and compared the results of DALM1 and DALM2. The evaluation
results show that the DAL is very good for drivers’ ages between 30 to 50 years old. However, when
the driver’s age is below 30 or above 50, DAL tends to decline. With an increase in DE and IECs,
the DAL value is decreased. But when the AAS is increased, the DAL is increased. DALM2 is more
complex because the rule base is larger than DALM1, but it makes a better decision of DAL value.

Keywords: VANETSs; fuzzy logic; driver anxiety level

1. Introduction

As the number of COVID-19 infections declines, economic activities are resuming,
and the traffic volume will be increased in the future. Thus, drivers may face heightened
stress due to traffic congestion, which could lead to irritation. Such emotions can impair
the ability to drive safely and increase the risk of causing traffic accidents. Driving a car is
a constant source of stress, as it demands that drivers remain vigilant of surrounding traffic
conditions in order to make appropriate decisions and precise maneuvers. A survey on
Japanese drivers’ behaviors indicates that the primary emotions experienced while driving
include anger /irritation, fear of accidents, and impatience, as shown in Figure 1 [1].

There are many factors that cause these emotions such as the behavior of other drivers
with aggressive cutting in, dangerous actions of cyclists and pedestrians, and the surround-
ing traffic environment, such as traffic jams. Also, when other vehicles do not adhere to
traffic rules or are driven aggressively, it often irritates many drivers. Controlling emotions
is crucial for safe driving. Regardless of driving proficiency, the inability to manage emo-
tions, especially under significant stress, can impair concentration. This often results in
hazardous driving behaviors, potentially leading to severe accidents [2].

Substantial research is currently being conducted by industry, governmental bodies,
and academic entities to develop effective systems and infrastructure for preventing car
accidents. This has led to an increased emphasis on collaboration among researchers,
culminating in the creation of intelligent transportation systems (ITSs).

ITSs are dedicated to the application of advanced transportation technologies, merging
state-of-the-art information, communication, and control technologies to craft sustainable
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networks that integrate people, vehicles, and roadways. Within ITSs, vehicular ad hoc
networks (VANETs) provide critical roles, primarily focusing on enhancing safety, stream-
lining traffic flow, boosting efficiency, and facilitating the convenience of both drivers
and passengers. In VANETSs, vehicles, functioning as network nodes, are equipped with
capabilities to relay vital data, including safety alerts and road or traffic updates, among
themselves through vehicle-to-vehicle interactions and to roadside units via vehicle-to-
infrastructure communication. Despite the practical deployment of VANETs incorporating
various applications, existing architectures encounter a myriad of challenges.

= [mpatience Nervousness Accident Anxiety

Drowsiness/Fatigue = Anger/Irritation + Discomfort/Trouble

Figure 1. Classification of experienced emotions.

Driving anxiety is related to many factors such as transportation, clinical, cognitive
psychological, social, and technical aspects. However, most of the studies about driving
anxiety are based on questionnaires, and they investigate only the feelings and emotions
associated with this problem, while the quantification of its detrimental effects while
driving is rarely undertaken. Most of the behavioral measures are determined by accident
reports and assessments of subjective experiences. They are mainly related to the extent of
driving avoidance in different situations [3-8].

Fuzzy logic (FL) significance arises from the general nature of human reasoning, which
is typically approximate, particularly in the realm of common sense. FL employs linguistic
variables to articulate control parameters, allowing complex issues to be expressed and
understood through straightforward linguistic terms. Additionally, the use of linguistic
variables enables the description of vague parameters. Fuzzy sets, representing linguistic
labels, deploy membership functions to rank preferences for the potential interpretations of
these labels. There are many applications of FL in different fields of science and engineer-
ing [9,10].

This paper presents an intelligent FL-based system for deciding the driver’s anxiety
level (DAL). In order to investigate the effects of the considered parameters and compare
the evaluation results, we implemented two models: DAL Model 1 (DALM1) and DAL
Model 2 (DALM?2). The input parameters of DALM1 were the driving experience (DE),
in-car environment conditions (IECs), and the driver’s age (DA), while for DALM2, we
added a new parameter called the accident anxiety state (AAS). For both models, the output
parameter was DAL. We carried out many simulations and compared the results of DALM1
and DALM2. The evaluation results show that DALM? is more complex because the rule
base is larger than DALM]1, but it makes a better decision of DAL value.

By our study, we aimed to close the gap between psychological and emotional
fields and the technical approaches. To the best of our knowledge, there are no tech-
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nical papers that consider FL to determine the driver’s anxiety level. Presently, in dif-
ferent fields, researchers have used artificial intelligence (AI) and machine learning (ML)
algorithms [11,12]. However, they are used as black boxes. By using FL, we can build
explainable intelligent systems.

The organization of this paper is outlined as follows: Section 2 introduces the concept
of VANETSs. A brief overview of FL and a FL controller (FLC) is provided in Section 3.
The design of our FL-based system is presented in Section 4. In Section 5, we present the
simulation results, while in Section 6, we expand on them through discussion. The paper
concludes with a summary and suggestions for prospective research in Section 7.

2. VANETs

A VANET (vehicular ad hoc network) is a type of mobile ad hoc network (MANET),
which can facilitate the exchange of information between vehicles as well as between
vehicles and roadside infrastructure. These networks can support V2V (vehicle-to-vehicle)
and V2I (vehicle-to-infrastructure) communication. They are expected to evolve with ad-
vancements in autonomous vehicles, smart cities and 5G technology. More sophisticated
applications such as platooning, where vehicles travel in a group formation to reduce fuel
consumption and improve traffic flow, will be integrated into VANETs. Thus, VANETs
represent a crucial advancement in transportation technology, promising significant im-
provements in safety, efficiency, and convenience for future road networks.

Key components of VANETS are as follows.

e  Vehicles: The vehicles are equipped with Onboard Units (OBUs) that facilitate com-
munication with other vehicles and roadside units.

e Roadside units (RSUs): The RSUs are fixed units along the road, which provide
connectivity to vehicles, serving as gateways to the internet and other networks.

e OBUs: The OBUs are communication devices installed in vehicles, which enable the
transmission and reception of data.

e Application Units (AUs): The AUs are part of vehicle’s onboard system, which utilize
VANET data to operate various applications.

In VANETSs, the V2V communication is the direct communication between vehicles,
which is essential for collision avoidance, traffic information dissemination, and cooperative
driving. While V2I refers to the communication between vehicles and infrastructure, such
as traffic signals or toll booths. This facilitates traffic management, toll collection, and the
provision of real-time traffic updates. While VANETs possess many advantages, they have
extensive and constantly changing topologies as well as fluctuations in the capacity of
wireless links. They are constrained by bandwidth and hard delay constraints. Also, the
high mobility, speed, and low density of vehicles lead to brief contact durations. In addition,
limited transmission ranges, physical barriers, and interference result in intermittent and
disrupted connectivity.

For the implementation of VANET applications, it is essential to develop appropriate
networking mechanisms capable of addressing challenges inherent in vehicular environ-
ments [13-19].

Mobility pattern recognition is a complex task in VANETs because the driving state
of each vehicle is different. For traffic control and accident prevention, the human driver
behavior should be analyzed to identify mobility patterns and predict the driver’s state [20].
The diver’s state is affected by different factors such as the external environment, the car
safety device, their driving skill, driver emotions, driver age, transportation information,
and so on, as shown in Figure 2.
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Figure 2. Factors affecting driver’s state.

3. FC and FLC

The FL system considers values between true and false, rather than being confined to
binary extremes, thus enhancing traditional logic frameworks. It can process both linguistic
and numerical data by mapping from input vectors to a singular output value via an
online algorithm. Unlike conventional binary logic, which operates strictly at 0 or 1, FL
functions across a continuum from 0 to 1. This allows for more nuanced interpretations of
data, aligning well with the mimicking complex, nonlinear relationships and managing
situations with varying degrees of certainty. Consequently, FL offers a closer approximation
to human reasoning and decision-making processes. Also, it proves beneficial in a variety
of applications.

Fuzzy control (FC) emerges as the predominant field of application. The FLC process
is initiated with fuzzification, in which crisp numerical input values are transformed into
fuzzy sets based on predefined linguistic variables. This transformation enables the system
to manage imprecision and ambiguity effectively. Such a step is crucial for translating
real-world sensor data into formats that the FLC can interpret in terms of degrees of truth,
rather than binary on/off states. The inference engine assesses the fuzzy inputs along with
the rule base, which consists of a collection of if-then rules encoding expert knowledge and
decision logic. These rules determine the output of the controller in fuzzy terms, taking
into account all possible input combinations and their respective actions.

Finally, the defuzzification mechanism transforms the set of fuzzy outputs into a
crisp value, which is subsequently utilized for control purposes. This output is a single
value representing the aggregated result of the fuzzy inference process, optimized to
achieve the desired control objective. Consequently, the FLC can make decisions that mimic
human reasoning, facilitating sophisticated control strategies in complex and nonlinear
systems [21-24].

4. Proposed Simulation System

In this paper, we consider FL to implement the proposed simulation system. The
proposed system structure is shown in Figure 3. In the implemented system, sensors will
detect and quantify the input parameters for the FL-based system.

We implement two models: DALM1 and DALM2. The input parameters of DALM1
include driving experience (DE), in-car environment conditions (IECs), and driver age
(DA), while for DALM2, we add a new parameter called the accident anxiety state (AAS).
For both models, the output parameter is the DAL. We explain each parameter in the
following paragraphs.
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Figure 3. Structure of the proposed system.

e  Driving Experience (DE)

In general, it is known that experienced drivers are able to make more appropriate
responses than inexperienced drivers. Also, the driving experience can affect the traffic
safety behavior. Specifically, young people have peculiar driving behavior such as driving
faster, decelerating and accelerating more abruptly, being less likely to come to a full stop at
stop signs and tailgating other cars, in comparison to middle-aged and older drivers [25].

e  In-car Environment Conditions (IECs)

The IECs are related to the vehicle conditions such as the air quality aspects influencing
environmental conditions in vehicles. Especially with the mobile age and associated lengthy
periods of stay in enclosed cars, maintaining healthy air hygiene in the car interior is very
important. There are different factors that influence the vehicle environment such as
temperature, window-opening, the correct usage of automated air conditioning systems,
and indoor air filters. These factors are useful for improving the environmental conditions
of vehicles and optimizing the interior air hygiene. These are related also with the different
endowments, ages and models of vehicles [26].

e  Driver Age (DA)

Aging combined with injury or disease can affect the physical and mental capabilities
required for the task of driving. There are different difficulties for older people such as
maintaining a constant speed and keeping within the lane, turning the head and body
during parking, the reduced field of view and unintentional speeding, identifying road
signs and driving at night, reduced reactions and longer decision times, and difficulty with
ingress/egress. Thus, the age of drivers has a great effect on DAL [27].

e Accident Anxiety State (AAS)

The AAS refers to a specific type of anxiety experienced by individuals who have been
involved in, witnessed, or even heard about car accidents. This anxiety can significantly
affect the person ability to drive or even be a passenger in a vehicle. The symptoms and
impacts of the driver AAS include physical symptoms, emotional symptoms, behavioral
symptoms, cognitive symptoms, and so on. The AAS can severely limit the person in-
dependence and freedom, making it challenging to carry out daily activities that involve
driving. It can also affect one’s ability to commute to work, attend social events, or perform
assigned errands [28].
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The terms set for input and output parameters are defined as shown in Table 1.
For the implementation of the proposed system, we consider triangular and trapezoidal
membership functions as shown in Figure 4 because they are good for real-time systems
and applications [29]. The membership functions are shown in Figure 5. We set the DE,
IEC, AAS and DAL values to range from 0 to 1 unit. The DE value range we set from 20 to
90 considering the driver ages in Japan [25]. The DAL is considered in 6 levels for DALM1
and 7 levels for DALM2. When the DAL value is DAL1, the amount of the driver’s anxiety
is good, while when it is DAL6 (DALM1) or DAL7 (DALM2), this is the worst case.

Table 1. Parameters and term set.

Parameters Term Sets

Driving Experience (DE) Not Good (NG), Good (G), Very Good (VG)
In-car Environment Conditions (IECs) Bad (Ba), Normal (Nor), Good (Gd)
Driver Age (DA) Young (Yo), Middle (Mi), Old (Ol)
Accident Anxiety State (AAS) Low (Lo), Middle (Mid), High (Hi)
A . Driver Anxiety Levell (DAL1), DAL2, DAL3, DAL4,
DALMLI: Driver Anxiety Level (DAL) DALS, DAL6
DALM2: DAL DAL1, DAL2, DAL3, DAL4, DAL5, DAL6, DAL7

xsHa, X 8% XXty X
Figure 4. Triangular and trapezoidal membership functions.

The fuzzy rule base (FRB) for DALM1 is shown in Table 2 and has 27 rules, while the
FRB for DALM?2 is shown in Table 3 and has 81 rules. The control rules are constructed by
“if ... then ...” expressions, such as the following:

Table 2. FRB for DALMI1.

Rule DE 1IEC DA DAL  Rule DE IEC DA DAL  Rule DE IEC DA DAL
1 NG Ba Yo DAL6 10 G Ba Yo DALS5 19 VG Ba Yo DAL4
2 NG Ba Mi DAL4 11 G Ba Mi DAL3 20 VG Ba Mi DAL2
3 NG Ba Ol DAL6 12 G Ba Ol DAL6 21 VG Ba Ol DALS5
4 NG Nor Yo DALS5 13 G Nor Yo DAL4 22 VG Nor Yo DAL3
5 NG Nor Mi DAL3 14 G Nor Mi DAL2 23 VG Nor Mi DALI1
6 NG Nor Ol DAL6 15 G Nor Ol DALS5 24 VG Nor Ol DAL4
7 NG Gd Yo DAL3 16 G Gd Yo DAL2 25 VG Gd Yo DAL2
8 NG Gd Mi DAL2 17 G Gd Mi DALI1 26 VG Gd Mi DALI1
9 NG Gd Ol DALS5 18 G Gd Ol DAL4 27 VG Gd Ol DAL3

If the DE is NG, the IECs are Ba and the DA is Yo, then the DAL is DAL6 (Rule 1 of
Table 2), or If the AAS is Hi, the DE is VG, the IECs are Gd and the DA is O], then the DAL
is DAL3 (Rule 81 of Table 3).

We explain the membership functions as follows. The triangular membership function
is denoted by f(), while the trapezoidal membership function is denoted by g(). The
maximum value for the triangular membership function is denoted by xg, while the edges
are denoted by x¢ — ap and x¢ + aj, for the left and right sides, respectively. For the
trapezoidal membership function, the maximum values are denoted by xg and x;, while
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the edges are denoted by xg —ag and x; + aj, for the left and right sides, respectively. The
FRB for both models is tuned based on our experience and the related work on a driver’s
anxiety [25-28]. When we want a strong effect of the parameter for a peak value, we select
the triangular membership function, while in cases when we want the strong effect of the
parameter in a region, we use the trapezoidal membership function.

V
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00 010203040506070809 1 00.10203040506070809 1
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0.5 0.5
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Figure 5. Membership functions for parameters. (a) Driving Experience (DE). (b) In-car Environment
Conditions (IECs). (c) Driver Age (DA). (d) Accident Anxiety State (AAS). (e) Driver Anxiety
Level (DAL).

unG (DE) = g (DE; NGg, NG1, NGy, NGyy1)
uc (DE) = g (DE; Gy, G1, Gwo, Gw1)
uyc (DE) = g (DE; VG, VG1, VGyo, VGw1)

UBa (IEC) =g (IEC, Ba(), Bal, Baw(], Bawl)
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uNor (IEC) = f (IEC; Norg, Nory,g, Nory1)

Had (IEC) = g (IEC; Gdo, Gd1, Gdwo, Gdw1)

Wy, (DA) = g (DA; Yo0, Yol, Yow0, Yow1)

uvi (DA) = g (DA; Mi0, Mil, Miw0, Miw1)

nor (DA) = g (DA; O10, Ol1, Olw0, Olw1)

UL, (AAS) = g (AAS; Lo0, Lol, Low0, Low1)

tvid (AAS) = f (AAS; Mid0, Midw0, Midw1)

uhi (AAS) = g (AAS; Hi0, Hil, Hiw0, Hiw1)

Table 3. FRB for DALM?2.

Rule AAS DE IEC DA DAL Rule AAS DE IEC DA DAL Rule AAS DE IEC DA DAL
1 Lo NG Ba Yo DAL6 28 Mid NG Ba Yo DAL7 55 Hi NG Ba Yo DAL7
2 Lo NG Ba Mi DAIL4 29 Mid NG Ba Mi DAL6 56 Hi NG Ba Mi DAL7
3 Lo NG Ba Ol DAL7 30 Mid NG Ba Ol DAL7 57 Hi NG Ba (@) DAL7
4 Lo NG Nor Yo DAL5 31 Mid NG Nor Yo DAL6 58 Hi NG Nor Yo DAL7
5 Lo NG Nor Mi DAL3 32 Mid NG Nor Mi DAL5 59 Hi NG Nor Mi DAL6
6 Lo NG Nor Ol DAL6 33 Mid NG Nor Ol DAL7 60 Hi NG Nor Ol DAL7
7 Lo NG Gd Yo DAL4 34 Mid NG Gd Yo DAL6 61 Hi NG Gd Yo DAL7
8 Lo NG Gd Mi DAL2 35 Mid NG Gd Mi DAL4 62 Hi NG Gd Mi DAL5
9 Lo NG Gd Ol DAL5 36 Mid NG Gd Ol DAL6 63 Hi NG Gd Ol DAL7

10 Lo G Ba Yo DAL4 37 Mid G Ba Yo DAL5 64 Hi G Ba Yo DAL6
11 Lo G Ba Mi DAL2 38 Mid G Ba Mi DAL3 65 Hi G Ba Mi DAL5
12 Lo G Ba Ol DAL5 39 Mid G Ba Ol DAL6 66 Hi G Ba (@) DAL7
13 Lo G Nor Yo DAL3 40 Mid G Nor Yo DAL4 67 Hi G Nor Yo DALG6
14 Lo G Nor Mi DAL1 41 Mid G Nor Mi DAL2 68 Hi G Nor Mi DALA4
15 Lo G Nor Ol DAL4 42 Mid G Nor Ol DAL5 69 Hi G Nor (@) DAL6
16 Lo G Gd Yo DAL2 43 Mid G Gd Yo DAL3 70 Hi G Gd Yo DALS5
17 Lo G Gd Mi DALl 44 Mid G Gd Mi DAL2 71 Hi G Gd Mi DAL3
18 Lo G Gd Ol DAL3 45 Mid G Gd Ol DAIL4 72 Hi G Gd Ol DAL6
19 Lo VG Ba Yo DAL2 46 Mid VG Ba Yo DAL3 73 Hi VG Ba Yo DAL5
20 Lo VG Ba Mi DALl 47 Mid VG Ba Mi DAL2 74 Hi VG Ba Mi DAL3
21 Lo VG Ba Ol DAL3 48 Mid VG Ba Ol DAIL4 75 Hi VG Ba (@) DAL6
22 Lo VG Nor Yo DALl 49 Mid VG Nor Yo DAL2 76 Hi VG Nor Yo DALA4
23 Lo VG Nor Mi DALl 50 Mid VG Nor Mi DALl 77 Hi VG Nor Mi DAL2
24 Lo VG Nor Ol DAL2 51 Mid VG Nor Ol DAL3 78 Hi VG Nor 0Ol DAL5
25 Lo VG Gd Yo DALl 52 Mid VG Gd Yo DAL2 79 Hi VG Gd Yo DAL3
26 Lo VG Gd Mi DALl 53 Mid VG Gd Mi DAL1 80 Hi VG Gd Mi DAL1
27 Lo VG Gd Ol DALl 54 Mid VG Gd Ol DAL2 81 Hi VG Gd Ol DAL4

The membership functions of DAL are defined as follows.

upar1 (DAL) = g (DAL; DAL10, DAL11, DAL1w0, DAL1w1)

upaLz (DAL) = f (DAL; DAL20, DAL2w0, DAL2w1)
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upars (DAL) = f (DAL; DAL30, DAL3w0, DAL3w1)
upars (DAL) = f (DAL; DAL40, DAL4w0, DAL4w1)
upars (DAL) = f (DAL; DAL50, DAL5w0, DAL5w1)
upare (DAL) = f (DAL; DAL60, DAL6wO, DAL6w1)

upary (DAL) = g (DAL; DAL70, DAL71, DAL7w0, DAL7w1)

5. Simulation Results

In this section are presented the simulation results, illustrating the correlations between
input and output parameters as shown in Figures 6-9. We discuss the relations among
various parameters in DALM1 and DALM2. For implementation of our system, we use
FuzzyC software developed in our Lab [2,29].
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Figure 6. Relationship between DAL and DA for different values of IECs and DE. (a) DE = 0.1.
(b) DE = 0.5. (c) DE = 0.9.

136



Future Internet 2024, 16, 348

1
0.9
0.8 0—-0-6-6-6
— 0.7 }
€ 0.65g
+
D ot - - - -,
1 0.3
0.2 IEC=0.1 —&— | 0.2 IEC=0.1 —&—
0.1 IEC=0.5 —— 01 IEC=0.5 —g—
'0 IEC=0.9 —m— '0 IEC=0.9 ——
20 25 30 35404550 55 60 65 70 7580 85 90 20 25 3035404550 55 60 65 70 75 80 8590
DA DA
(a) (b)
0; IEC=0.1 —©—
g IEC=0.5 —o—
0.8 IEC=0.9 —&—

DAL [unit]

0 -
20 25 3035404550 55 60 65 70 7580 8590
DA

(c)
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5.1. Simulation Results of DALM1

The simulation results of DALM1 are shown in Figure 6. We show the relationship
between DAL and DA, DE and IECs input parameters. The DE is considered a constant
parameter. We increased the values of the DE and IECs from 0.1 to 0.9 and the DA from 20
to 90.

In Figure 6a, when IEC is 0.1 and DA is 40, the DAL is 0.8. When the IEC value is
increased to 0.5 and 0.9, the DAL is 0.62 and 0.4. So, the DAL value is decreased about 18%
and 40%, respectively. In Figure 6b,c, we changed the DE to 0.5 and 0.9, respectively. We see
that with increase of DE parameter, the DAL is decreased. For DE 0.5 and 0.9, comparing
with Figure 6a, when the DA is 40 and the IEC is 0.9, the DAL is decreased by 12% and
28%, respectively.

5.2. Simulation Results of DALM?2

The simulation results of DALM2 are shown in Figures 7-9. We show the relationship
between DAL and DA for different values of IECs, AAS and DE. We investigate the effect
of AAS on DAL, which is considered as a new parameter. We consider the AAS and DE as
constant parameters and we change the IECs value from 0.1 to 0.9, and the DA value from
20 to 90.

We can see in Figure 7a that when the DA value is 40, IEC is 0.1, AAS is 0.1 and DE is
0.1, the DAL is 0.7. Comparing the same point with Figure 6, the DAL is decreased 10%.
In Figure 7b, we changed the DE from 0.1 to 0.5. It can be seen that the DAL is decreased
compared with Figure 7a. Also, in Figure 7c, the values of DAL have decreased much more.

In Figures 8 and 9, we changed the AAS values from 0.1 to 0.5 and 0.9. We see that for
the same point when the DA value is 40, IECs is 0.1 and DE is 0.1, the DAL is 0.8 and 0.92,
respectively. Comparing with the same point of Figure 7a, the DAL is increased by 10%
and 22%, respectively.
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Thus, when the AAS value is increased, the DAL in DALM2 increases much more
compared with DALMI1. This shows that the AAS has a great effect on the driver’s
anxiety level.

6. Discussion

In this section, we discuss the simulation results. In the case of DALM1, when dealing
with inexperienced drivers (DE = 0.1), the results show the highest values of DAL. The low
experience coupled with bad in-car environment conditions increase the driver’s anxiety.
For a moderate value of driver experience (DE = 0.5), the anxiety level is decreased, and the
best behavior is that for middle-aged drivers. In the case of experienced drivers (DE = 0.9),
we see that the anxiety level is very low, especially for middle-aged drivers and good in-car
environment conditions.

For DALM2, we have scenarios: a low-level accident anxiety state (AAS = 0.1: Scenario
1), a moderate-level accident anxiety state (AAS = 0.5: Scenario 2) and a high-level accident
anxiety state (AAS = 0.9: Scenario 3).

In the case of Scenario 1, the drivers have a low level of accident anxiety, so the driver
experience coupled with in-car environment conditions and driver age have a great effect
on the driver’s anxiety level. The low level of DAL occurs when the driver is middle-aged,
the in-car environment conditions are good and they have good experience. In the case
of Scenario 2, the accident anxiety state is moderate, so the values of DAL are increased
compared with Scenario 1. The values of DAL are increased more in Scenario 3 because
the level of the accident anxiety state is high. The worst case of Scenario 3 occurs when
the driving experience is low, in-car environment conditions are bad, with young and
old-aged drivers.

7. Conclusions and Future Work

In this paper, we presented a FL-based system for assessing driver anxiety levels by
considering various input parameters. We examined two models: DALM1 and DALM2.
We evaluated the proposed models through simulations. From the evaluation results,
we conclude that the DAL is very good for drivers within the ages of 30 to 50 years old.
However, when the driver’s age is below 30 or above 50, the DAL tends to decline. With
increasing values of DE and IECs, the DAL value is decreased. But when the AAS is
increased, the DAL is increased. This shows that the AAS has a great effect on the driver’s
anxiety level. Comparing complexity, DALM?2 is more complex than DALM1. However,
DALM2 also considers the AAS, which makes the system more reliable.

In future research, we would like to make extensive simulations to evaluate the
proposed system. Also, we will implement a testbed and compare the simulation results
with experimental results.
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Abstract: Respiratory diseases such as asthma pose significant global health challenges, necessitating
efficient and accessible diagnostic methods. The traditional stethoscope is widely used as a non-
invasive and patient-friendly tool for diagnosing respiratory conditions through lung auscultation.
However, it has limitations, such as a lack of recording functionality, dependence on the expertise
and judgment of physicians, and the absence of noise-filtering capabilities. To overcome these
limitations, digital stethoscopes have been developed to digitize and record lung sounds. Recently,
there has been growing interest in the automated analysis of lung sounds using Deep Learning (DL).
Nevertheless, the execution of large DL models in the cloud often leads to latency, dependency on
internet connectivity, and potential privacy issues due to the transmission of sensitive health data.
To address these challenges, we developed Tiny Machine Learning (TinyML) models for the real-
time detection of respiratory conditions by using lung sound recordings, deployable on low-power,
cost-effective devices like digital stethoscopes. We trained three machine learning models—a custom
CNN, an Edge Impulse CNN, and a custom LSTM—on a publicly available lung sound dataset.
Our data preprocessing included bandpass filtering and feature extraction through Mel-Frequency
Cepstral Coefficients (MFCCs). We applied quantization techniques to ensure model efficiency. The
custom CNN model achieved the highest performance, with 96% accuracy and 97% precision, recall,
and Fl-scores, while maintaining moderate resource usage. These findings highlight the potential
of TinyML to provide accessible, reliable, and real-time diagnostic tools, particularly in remote and
underserved areas, demonstrating the transformative impact of integrating advanced Al algorithms
into portable medical devices. This advancement facilitates the prospect of automated respiratory
health screening using lung sounds.

Keywords: TinyML; lung disease classification; early detection

1. Introduction

According to the World Health Organization (WHO), lung diseases are among the
leading causes of mortality worldwide, resulting in the deaths of millions of people each
year [1]. Respiratory diseases are often detected late, making treatment less effective [2].

Various clinical approaches have been developed to diagnose and assess lung health
issues, including computed tomographic scans, chest X-rays, and pulmonary function
tests. However, these techniques are restricted to specialized medical facilities due to their
complexity, high cost, and time-consuming nature [3]. Additionally, medical professionals
in hospitals are often overworked, which increases the likelihood of errors and patient
waiting times [3]. Therefore, it becomes apparent that a different approach is needed to
better assist practitioners in making an initial diagnosis.

Future Internet 2024, 16, 391. https:/ /doi.org/10.3390/£i16110391 141

https://www.mdpi.com/journal/futureinternet



Future Internet 2024, 16, 391

In contrast, the stethoscope is used as a non-invasive and patient-friendly tool for
diagnosing respiratory conditions through lung auscultation [4]. This procedure involves
listening to the sounds produced by air moving in and out of the lungs.

During lung auscultation, experts are able to identify various abnormal respiratory
sounds, like wheezing and crackling [4]. These sounds serve as indicators of possible
respiratory conditions for the patient. However, traditional stethoscopes come with several
associated challenges. Firstly, their effectiveness relies heavily on the physician’s expertise
and judgment, introducing potential for diagnostic errors [5]. Secondly, they lack a record-
ing feature, preventing other medical personnel from analyzing the sounds heard during
consultations [6]. Thirdly, they are not equipped with noise-canceling capabilities, making
it difficult to hear lung sounds in noisy environments such as emergency rooms or busy
clinics [7].

The digital stethoscope has introduced a new approach to auscultation, benefiting
research, education, and clinical practice [8]. It digitizes lung sounds, allowing for record-
ing and playback, which reduces reliance on a single physician’s judgment and enables
collaboration with other medical professionals [8]. It incorporates digital filters to eliminate
noise and isolate the relevant acoustic signals within specific frequency bands [8]. This
enhances diagnostic accuracy and improves clinical decision making. It also allows for the
visualization and retrospective analysis of lung sounds. The integration of wireless trans-
mission capabilities, such as Bluetooth or WiFi, with the digital stethoscope will facilitate
remote diagnosis, greatly enhancing convenience and application in a variety of medical
contexts [8].

In recent years, there has been growing interest in the automated analysis of lung
sounds. By using machine learning, particularly Deep Learning (DL) techniques, the ex-
perience, quality of diagnosis, and care for both patients and healthcare professionals
have significantly improved [3,8]. The utilization of DL algorithms to examine lung sound
patterns captured by digital stethoscopes represents a promising approach for the early and
precise detection of disease [9]. Moreover, these technologies aim not only to reduce depen-
dency on specialist facilities but also to overcome the limitations of traditional stethoscopes,
making diagnosis more accurate by removing human error [3].

However, coupling digital stethoscopes with DL presents certain limitations. DL
algorithms require significant computational resources, posing challenges in resource-
constrained environments [10,11]. Latency in cloud-based solutions can impact real-time
analysis, particularly in areas with insufficient internet bandwidth for large data transmis-
sion [10-12], and privacy concerns arise when transmitting sensitive health data over the
internet [10,11]. To address these limitations, Tiny Machine Learning (TinyML) [13] offers a
compelling solution by enabling efficient ML codes to run on small, energy-efficient devices.

TinyML is a fast-growing field of ML including hardware, algorithms, and software
that aims to facilitate running ML models on ultra-low-power devices having very limited
power (under 1 mW), less memory, and limited processor capabilities [14]. TinyML offers
tiny IoT devices the ability to analyze data collected by various sensors and act based on
the decisions made by the embedded ML model without the need for the cloud. TinyML
finds applications in diverse fields [11], including agriculture [11,15], healthcare [10,11,16],
and environmental monitoring [11,17].

The hardware limitations of tiny IoT devices require the minimizing of the ML model
in order to deploy it in extremely resource-limited devices. The minimization of the model
can be performed by the following techniques: pruning and quantization [14]. These
techniques aim to reduce the size of the ML model while trying not to impact its accuracy.
The pruning technique is the process of removing unused weights in the model to increase
speed inference and minimize its size, while quantization reduces the precision of the
model parameters from floating-point (e.g., 32-bit) to lower (e.g., 8-bit) precision [11]; this
decreases the model’s memory footprint as well as the amount of processing required.

TinyML holds immense potential in the healthcare sector [10,11,16]. TinyML’s ability
to run directly on devices at the edge offers numerous advantages. One of the most

142



Future Internet 2024, 16, 391

significant benefits is the ability to perform real-time data analysis without the need for
continuous data transmission to centralized cloud systems [11,16,18]. This reduces latency,
enhances data privacy by minimizing the transfer of sensitive patient data, and lowers
dependency on reliable internet connections [10,16], which is particularly beneficial for
remote health monitoring in remote and undeserved areas [12,16].

Many studies have demonstrated the practical applications of TinyML in healthcare,
showcasing its potential to optimize real-time health monitoring and diagnostic tools.
The authors of [19] optimized a Convolutional Neural Network (CNN) model through
pruning and quantization, making it deployable on low-cost microcontrollers like the
Raspberry Pi Pico and ESP32 for real-time blood pressure estimation using photoplethys-
mogram (PPG) signals. This approach enables efficient, low-power solutions for continuous
blood pressure monitoring. The authors of [20] proposed a TinyML-based solution for
predicting and detecting falls among elderly individuals, utilizing a wearable device placed
on the leg to capture movement data. The system employs a nonlinear support vector
machine classifier for real-time fall detection and prediction. Similarly, the authors of [21]
used CNN models combined with audio data to detect falls. In [22], researchers devel-
oped a system that predicts blood glucose levels in individuals with type 1 diabetes by
deploying DL models on edge devices. This system, which relies on recurrent neural
networks (RNNs), processes continuous glucose monitoring (CGM) data on low-power,
resource-constrained devices, enabling real-time monitoring without the need for cloud
infrastructure. Additionally, the authors of [23] introduced a lightweight solution based on
Temporal Convolutional Networks (TCNs) for heart rate estimation in wearable devices.
By leveraging optimized TCN models, the system achieved accurate heart rate monitoring
while maintaining low latency and energy consumption, making it suitable for use in
resource-constrained environments like wearable health devices.

In this paper, we present a new approach focused on creating TinyML models to
distinguish between asthma and non-asthma conditions by using lung sound recordings.
We developed and compared various ML models based on different metrics. To ensure
these models are suitable for cost-effective platforms such as the Arduino Nano 33 BLE, we
employed quantization techniques.

The remainder of the paper is organized as follows: Section 2 reviews existing studies
that have addressed similar challenges. Section 3 details the materials and methodologies
used in our experiments. Section 4 provides a comprehensive analysis of the empirical
results and their implications. Finally, Section 5 presents our conclusions and proposes
directions for future research.

2. Related Works

Numerous research papers have examined the application of DL to identify patterns
and distinguish among various lung conditions by using raw respiratory sound data.

The authors of [24] developed a framework for classifying various respiratory diseases
by using lung sound recordings. They employed a CNN with Mel-Frequency Cepstral
Coefficients (MFCC) for feature extraction. The proposed model achieved a classification
accuracy of 95.7%, effectively distinguishing among different respiratory diseases, such as
asthma, COPD, URTI, LRTI, and bronchiectasis, and a class representing healthy people.

In [25], the authors developed a framework for classifying lung sounds, addressing
the challenge of noise interference from the heart and lung sounds. By utilizing two
public datasets with 280 lung sounds of varying durations and sampling rates, the study
preprocessed signals for uniformity and employed Mel-Frequency Cepstral Coefficients
(MECCs) [26] and Short-Time Fourier Transform (STFT) [27] for feature extraction. It tested
several models, achieving the highest accuracy with an STFT+MFCC-ANN combination,
demonstrating promising results for automatic respiratory diagnosis with high precision
and recall rates.

In the paper [5], the authors evaluated the efficacy of various deep learning models
for diagnosing respiratory pathologies by using lung auscultation sounds. The study
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compared three deep learning models across both non-augmented and augmented datasets,
revealing that the CNN-LSTM model outperformed others with high accuracy rates in all
scenarios. Augmentation significantly enhances model performance, with the CNN-LSTM
hybrid showing particular strength by combining the CNN's feature extraction capabilities
with LSTM’s [28] classification efficiency.

In [29], the authors explored the effectiveness of Mel Frequency Cepstral Coefficients
(MFCCs) in classifying cough sounds for diagnosing five respiratory diseases, such as
asthma and chronic obstructive pulmonary diseases (COPDs). The study employed a
unique ensemble of recurrent neural network models with LSTM cells and tested various
meta-classifiers, achieving over 87% accuracy. This approach underscores MFCCs’ poten-
tial as standalone features for cough signal classification and suggests future directions,
including further disease characteristic diagnosis and COVID-19 cough classification.

In [30], the authors tackled the challenge of detecting respiratory pathologies from
sounds, using the ICBHI Benchmark dataset. Given the dataset’s imbalance, the study
employed a Variational Convolutional Autoencoder for data augmentation, alongside
traditional oversampling techniques. A CNN was employed for classification into healthy,
chronic, and non-chronic categories, achieving an F-score of 0.993 in the three-label clas-
sification. For the six-class classification, which included RTI, COPD, Bronchiectasis,
Pneumonia, and Bronchiolitis, the CNN achieved an F-score of 0.99.

In [31], the authors developed a non-invasive method for classifying respiratory
sounds by using an electronic stethoscope and audio recording software. By using MFCC
with SVM and spectrogram images with CNN, they benchmarked the CNN’s performance
against the SVM method across various sound classifications. The CNN and SVM both
reached 86% in distinguishing healthy versus pathological sounds; for rale, thonchus,
and normal sounds, the CNN achieved 76% and SVM 75%; in singular-sound-type classifi-
cation, both achieved 80%. These results underline the effectiveness of CNNs and SVM in
respiratory sound analysis.

In [32], the authors developed a system for diagnosing asthma using deep learning
by analyzing respiratory sounds from asthmatic and non-asthmatic individuals. They
developed a web interface and a mobile app for real-time prediction, aiding doctors in
performing accurate diagnoses. Utilizing features such as chroma, RMS, Spectral centroid,
Rolloff, and MFCCs, the ConvNet model demonstrated impressive performance metrics,
including 99.8% accuracy, 100% sensitivity, 100% specificity, and a 99% F-score.

In [33], the authors proposed RDsLINet, a novel lightweight inception network for
classifying a broad spectrum of respiratory diseases through lung sound signals. The frame-
work involves preprocessing, melspectrogram image conversion, and classification via
RDsLINet. The proposed RDsLINet achieved impressive accuracy rates: 96% for seven-
class, 99.5% for six-class, and 94% for healthy vs. asthma classifications.

In [34], the authors proposed a novel approach to respiratory disease detection through
a wearable auscultation device. They developed a Respiratory Sound Diagnosis Proces-
sor Unit (RSDPU) utilizing LSTM networks to analyze respiratory sounds in real time.
The study highlights the implementation of Dynamic Normalization Mapping (DNM)
to optimize quantization and reduce overfitting, crucial to maintaining model accuracy
with limited computational resources. The hardware implementation of the RSDPU in-
cludes a noise corrector to enhance diagnostic reliability. The results show that the RSDPU
achieved an 81.4% accuracy in abnormality diagnosis, with a minimal power consumption
of 381.8 pW. The study demonstrates the potential of combining advanced machine learn-
ing techniques with efficient hardware design to create effective and practical healthcare
solutions for continuous respiratory monitoring

A startup called Respira Labs [35] has introduced an innovative, cost-effective wear-
able sensor that leverages TinyML to analyze cough sounds for signs of respiratory diseases
like pneumonia. This compact device integrates a microphone and a microcontroller ex-
ecuting a neural network to discern specific cough characteristics such as wheezing and
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crackling. Designed for ease of use, it features a simple strap mechanism, operates without
batteries, and communicates results via LED indicators and sound signals.

Table 1 summarizes existing research on lung disease detection and classification
using audio data, covering diseases such as asthma, COPD, lung fibrosis, bronchitis, and
pneumonia and various pathological lung sounds. Datasets vary from publicly available
ICBHI 2017 to self-collected data, indicating diversity in data sources. The extracted audio
features include STFT, MFCC, and spectrograms, with MFCC being the most common.
The models used range from ANN, CNN, and LSTM, to hybrid CNN-LSTM, achieving
high accuracy rates and mostly deploying solutions on cloud platforms. While some
studies [33,34] have explored computation directly on edge devices, our work leverages
TinyML to push the boundaries of what can be achieved on resource-limited hardware. This
approach allows for efficient real-time analysis and model deployment on compact, low-
power devices, making advanced diagnostics more accessible in a wide range of settings.

Table 1. Related work summary.

Work  Lung Diseases Dataset Feature(s) Model Results Deployment
Asthma, COPD,
URTI, LRTI, and Respiratory Sound o
[24] bronchiectasis and Database MFCC CNN 95.7% Cloud
normal
ANN: 98.61%;
Normal and ICBHI 2017 and ANN, SVM, KNN, SVM: 93%; KNN:
[25] abnormal KAUH STET and MFCC DT, and RF 93%; DT: 88%; RF:  —1oud
95%
Asthma, BRON,
COPD, heart
failure, lung ICBHI 2017 and CNN and LSTM CINN: 99.81%;
[5] fibrosis, normal, KAUH - and CNN-LSTM LSTM: 99.81%; Cloud
and pleural CNN-LSTM: 100%
effusion
pneumonia
Asthma, COPD,
[29] ILD, bronchitis, Self-collected data MECC LSTM 88.5% Cloud
and pneumonia
(o]  Healthy, chronic, ICBHI 2017 MFCC CNN Accuracy: 99% Cloud
and non-chronic
MEFCC-SVM: 86%;
Healthy and MFCC and SVM-MFCC, Spectrogram-
[31] pathological Self-collected data spectrogram CNN-Spectrogram CNN: Cloud
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3. Materials and Methods

In this section, we describe the various methods employed to acquire, preprocess,
and build models for distinguishing between normal and asthma conditions. The devel-
opment process was conducted by using Edge Impulse, a platform specifically designed
for training models, adjusting hyperparameters, and optimizing them for operation on
various edge devices. Figure 1 depicts our approach, which involves the standard stages
found in traditional machine learning projects, with added steps for real-time processing
on the microcontroller:

Step 1:  Data collection and preparation: Lung sound data were acquired from a publicly
accessible dataset, divided into 80% for training and 20% for testing. These data
were then processed by using bandpass filtering to reduce external noise.

Step2:  The lung sound data were uploaded to the Edge Impulse platform [36] and seg-
mented into 5-second windows, with MFCC features extracted from each window.

Step3: A custom CNN, a CNN proposed by Edge Impulse, and a custom LSTM were
created, trained, and optimized for deployment on a microcontroller.

Step4:  The three models were tested by using the test data, and performance metrics
were computed.

Public Lung [(Preprocessing |[fFeature Model Training Model [/Models Testing | [{Models
Audio Dataset > Noise reduction by | || EXtraction > Custom CNN Optimization & Comparing Performance
> Public dataset applying band > MFcC > CustomLSTM > Quantization > Accuracy Comparing

S pass filter 3 :
S | [
Hospitalin Jordan. » Inference time

Figure 1. Workflow of lung sound analysis and model training process.

3.1. Dataset

In this study, we used a publicly available dataset from King Abdullah University
Hospital in Jordan [37]. The dataset comprises 310 records from 105 patients with various
respiratory conditions, including normal, asthma, pneumonia, heart failure, bronchiectasis,
and chronic obstructive pulmonary disease. The duration of each recording ranges from 5
to 30 s, for a total of 88 min of data. The patients” ages range from 12 to 90 years, with a
mean + SD age of 48 + 18 years. For each patient, three types of recordings were obtained,
each using a different filtering mode—bell mode filtration, diaphragm mode filtration,
and extended mode filtration—to minimize interference from heartbeats and external noise.

The audio recordings were captured by using a single channel at a sampling rate of
4 kHz. The audio files, in WAV format, were captured by using a single-channel stethoscope-
based acquisition system (electronic stethoscope 3200; 3M Littmann) positioned at various
locations on the chest wall. Table 2 presents the quantity of patients in each disease
classification along with the associated count of recordings utilized from this dataset.
The dataset demonstrates an unequal distribution, containing more data for the normal and
asthma categories compared with the others. Given this situation, we decided to distinguish
between two distinct kinds of lung sounds: normal and asthma. Before uploading data to
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Edge Impulse, each audio file was processed with a 5th-order Butterworth bandpass filter,
with upper and lower cut-off frequencies set to 100-1800 Hz, to reduce external noise [4,34].

Table 2. Demographic summary and recording details by disease category.

Category Subjects Age (Mean * SD) Number of Records Duration
Normal 35 (11F, 24M) 43+19 105 31m10s
Asthma 32 (17F, 15M) 45+ 15 94 28mo06s
Heart failure 21 (9F, 12M) 58 + 18 56 13m 59 s
Pneumonia 5 (2F, 3M) 55+ 13 17 4mb53s
Bronchiectasis 3 (1F, 2M) 37 £26 9 2m

COPrD 9 (1F, 8M) 57 +9 29 07mb54s

Upon uploading our dataset, we proceeded to create an ML pipeline called an “im-
pulse”. This impulse comprises three primary building blocks: the input block, the process-
ing block, and the learning block. The input block identifies the data type employed during
the training of the model. It can either be an image or a time series. In our specific case, we
utilized time series as the input data. The window size was set to 5000 ms, and the window
increase was set to 5000 ms [34]. This duration is sufficient to cover at least one respiratory
cycle, given the average resting respiration rates for adults (12-20 breaths per minute) [37].

3.2. Feature Extractor

Feature extraction is an essential phase in lung sound analysis, where raw audio signals
are converted into useful representations for classification. This process includes several
categories: time-domain, frequency-domain, and time—frequency-domain features. Time-
domain features capture the temporal characteristics of lung sounds, including metrics
such as the zero-crossing rate, root mean square, and signal envelope. Frequency-domain
features provide insights into the energy distribution across different frequency bands and
include measures like MFCCs. Time—frequency-domain features, like wavelet transform
and spectrograms, present a combined view of both time and frequency characteristics [6].

MEFCCs are commonly used as features [6,25,29] in lung analysis derived from the
Fourier transform, which can capture the distribution of energy in different frequency
bands. The MFCCs consist of a series of coefficients that capture the characteristics of the
signal’s spectrum. These coefficients are derived by taking the logarithm of the discrete
cosine transform applied to the signal’s spectrum. The particular parameters utilized to
produce MFCCs are detailed in Table 3.

Table 3. Relevant parameters used to generate MFCCs.

Parameter Value
Number of coefficients 13
Frame length 0.256
Frame stride 0.064
Filter number 20
FFT length 256

In order to obtain the MFCC parameters presented in Table 3, we were inspired by
the methodology used in [34], where the authors tested multiple configurations of MFCC
parameters to optimize model performance and resource consumption. Following a similar
procedure, we conducted multiple iterative tests to explore different parameter settings
and find the optimal balance between performance and computational efficiency. While we
initially tested the parameters used in their study, we found that these configurations did
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not yield the desired results in our specific case. As a result, we experimented with other
configurations to achieve the best balance between model accuracy and resource efficiency.

Given the constraints of TinyML, where devices are resource-limited and power-
sensitive, it was essential to choose parameters that minimized memory usage and compu-
tational time. The final selected parameters consume 38 KB of RAM and have a processing
time of 763 ms, based on estimates provided by the Edge Impulse platform for an Arduino
Nano 33 BLE [38].

3.3. Model Proposition

In this work, we developed three classifiers, i.e., a custom CNN model, the CNN
model proposed by Edge Impulse, and a custom LSTM model, that can diagnose two
distinct respiratory conditions, that is, asthma and normal. We drew inspiration from the
existing literature [31,34], which demonstrated promising results in lung disease detection.
Tables 4-6 illustrate the architectures of these three models.

Table 4. Our CNN model.

Custom CNN Model
Input(shape=(975, ))
Reshape((975 / 13, 13))

Conv1D(32, kernel_size=3, activation="relu’)

MaxPooling1D(pool_size=2)

BatchNormalization()

Dropout(20%)

Conv1D(64, kernel_size=3, activation="relu’)

MaxPooling1D(pool_size=2)

BatchNormalization()

Dropout(20%)

Conv1D(128, kernel_size=3, activation="relu’)

MaxPooling1D(pool_size=2)

BatchNormalization()
Dropout(20%)
Flatten()

Table 5. Custom LSTM model.

Our LSTM Model
Input(shape=(975, ))
Reshape((975 / 13, 13))
LSTM(128)
Dropout(20%)
LSTM(64)
Dropout(20%)
LSTM(32)
Dropout(20%)

Dense(512, activation="relu’)

Dropout(40)
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Table 5. Cont.

Our LSTM Model

Dense(8, activation="relu’)

Dropout(40%)

Dense(classes, activation="softmax”)

Table 6. CNN model proposed by Edge Impule.

CNN Model Proposed by Edge Impule
Input(shape=(975, ))
Reshape((975 / 13, 13))

Conv1D(8, kernel_size=3, activation="relu’)

MaxPooling1D(pool_size=2)
Dropout(25%)

Conv1D(16, kernel_size=3, activation="relu’)

MaxPooling1D(pool_size=2)
Dropout(25%)

Dense(classes, activation="softmax”)

To tune the hyperparameters, a total of 396 combinations of epochs, learning rates,
and mini-batch sizes were explored across all three models. Specifically, we tested epochs
ranging from 10 to 300, with learning rates of 1073,107%,6 x 1073, and 6 x 10~*, and mini-
batch sizes of 32, 16, and 8. The Adam optimizer was consistently applied across all models
to facilitate the optimization process. Table 7 summarizes the optimal hyperparameters,
presenting the configurations that show the highest accuracy.

Table 7. Optimal hyperparameters showing the highest accuracy.

Model Learning Rate Epochs Batch Size
Custom CNN 6x 1073 300 32
CNN Edge Impulse 6 x 1073 100 16
Custom LSTM 6x1073 100 32

3.4. Target Device

The target device for deployment is an Arduino Nano 33 BLE Sense [38], featuring a
Cortex-M4F 64 MHz processor, chosen for its compact size and versatility across various ap-
plications. With 256 kB of RAM and 1024 kB of ROM, the device has limited computational
resources. To optimize model deployment, we used post-training quantization provided
by the Edge Impulse platform, utilizing implementations from the TensorFlow Lite Micro
library [39]. This technique reduces the precision of a model’s internal representations by
converting 32-bit floating-point parameters into lower-precision int8, significantly reducing
the model’s memory (ROM) requirements. This optimization makes deployment on a
constrained device more feasible and accelerates computation, enabling quicker predic-
tions and responses. Post-training quantization is thus a crucial step, preserving core
functionality and accuracy while adapting the models to the device’s limited resources.

Given the deployment on the Arduino Nano 33 BLE Sense, additional metrics, such
as inference time, memory usage, and storage footprint, were considered. These factors
are essential to ensuring the models’ efficiency and smooth performance on the device.
By evaluating classification metrics, computational efficiency, and suitability for the tiny
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device, we made informed decisions regarding model selection. Edge Impulse offers a
functionality that estimates the performance of the model on the target device before
deployment, facilitating a more informed deployment process.

4. Results and Discussion

In this section, we compare the performance of the three models by using metrics such
as accuracy, precision, recall, F1-score, and Area Under the Curve (AUC), as well as model
size, inference time, and peak RAM usage, which are critical for deployment on TinyML
devices. The dataset was split into 72% training, 10% validation, and 18% testing. Each
model was trained and quantized by Edge Impulse for deployment suitability.

Table 8 shows the results of our experiments. the custom CNN model achieved the
highest performance, with an accuracy of 96% on the test set and an AUC of 0.96. In contrast,
the CNN Edge Impulse model, while faster and less resource-intensive, demonstrated
lower accuracy, 85%, and an AUC of 0.85. This difference can be attributed to the simpler
architecture of the Edge Impulse model. The custom LSTM model, however, achieved
lower accuracy, 90%, compared with the CNN.

Table 8. Model evaluation on validation and testing sets.

. Area Under
Model Accuracy Precision Recall F1-Score Loss Value ROC Curve
Custom CNN
Validation 100% 100% 100% 100% 0.03 1.00
Testing 96% 97% 97% 97% - 0.96
CNN Edge Impulse
Validation 92% 92% 92% 92% 0.24 0.91
Testing 85% 86% 86% 86% - 0.85
Custom LSTM
Validation 93% 93% 93% 93% 0.28 0.93
Testing 90% 93% 92% 92% - 0.90

The confusion matrix in Table 9 provides a detailed evaluation of the classification
performance of the CNN, LSTM, and CNN-EDGE-IMPULSE models on the test set data.
The custom CNN outperformed the other models, correctly classifying 94.1% of “Asthma”
cases and 98.3% of “Normal” cases, while the LSTM achieved 82.4% and 98.3%, respec-
tively. CNN Edge Impulse, while more resource-efficient, had the lowest performance, with
accuracy of 76.5% for “Asthma” and 88.1% for “Normal”.

Table 9. Confusion matrix of test set data. Green: correct classifications, Red: misclassifications.

Asthma Normal Asthma Normal Asthma Normal Uncertain
(CNN) (CNN) (LSTM) (LSTM) (CNN- (CNN-
EDGE- EDGE-
IMPULSE) IMPULSE)
0% 0% 0%
0% 0% 0%
0% 0% 0%

Asthma (CNN)
Normal (CNN)
Asthma 0%
(LSTM)

Normal 0% 0%
(LSTM)

Asthma 0% 0%
(CNN-EDGE-

IMPULSE)

Normal 0% 0%
(CNN-EDGE-

IMPULSE)

Fl-score 0.96 0.97

0% 0%
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Table 10 compares the models based on resource consumption, as estimated by the
Edge Impulse cloud platform on the Arduino Nano 33. The CNN Edge Impulse model
demonstrates its clear advantage for low-power, resource-constrained environments, requir-
ing only 4.5 KB of RAM. However, this comes at the cost of lower classification performance.
The custom CNN, which uses more RAM (12 KB) and has a longer inference time, strikes a
balance between resource usage and accuracy, making it a more suitable option when both
high classification performance and moderate resource usage are required.

Table 10. Performance comparison of different models.

Model Inferencing Time Peak RAM USAGE Flash Usage
Our CNN 127 ms 120K 249.6 K
CNN Edge Impulse 6 ms 45K 31.7K
Our LSTM 324 ms 232K 190 K

On the other hand, the LSTM model, while providing good accuracy (90%) and the
ability to process sequential data, has the highest resource demands, consuming 23.2 KB of
RAM. This makes it less practical for highly resource-constrained devices.

Table 11 presents a comparative analysis between our proposed CNN model and
similar works that utilize Edge ML models. Our TinyML model demonstrates superior
performance, achieving higher accuracy, 96%, while also excelling in resource efficiency,
making it more suitable for deployment on low-power devices.

Table 11. Qualitative performance comparison of the proposed CNN with existing works.

Work [33] [34] Our Work
Dataset KAUH ICBHI 2017 KAUH
Feature Mel-spectrogram MFCC MEFCC

Discrete Fourier Zero padding, Zero padding,
transform (DFT)-based  segmentation into 3 s Butterworth
Preprocessing filtering and windows, Butterworth bandpass filter, and

segmentation into 5 s

bandpass filter, and

segmentation into

windows Z-score normalization 5s windows
Lung diseases Asthma and healthy Normal and Asthma and healthy
subnormal
Target device - Alinx AX7A200 FPGA  Arduino Nano 33 BLE
Model RDsLINet LSTM CNN
Accuracy 91% 81.4% 96%
Total e.xecutlon 5439 s ) 890 ms
time
Peak RAM
USAGE - 32 KB 12.0 KB
Flash usage 498 KB - 249.6 KB

One of the key reasons our model outperforms that of [33], which used the same
dataset, lies in the application of pruning and quantization techniques. These methods
allowed us to significantly reduce both model size and inference time, optimizing the
model for resource-constrained environments. Pruning effectively removes less critical
weights from the network, thus speeding up computation and reducing memory usage,
while quantization lowers the precision of the model’s parameters without substantially
affecting its accuracy, leading to more efficient deployment on embedded devices.
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In contrast, in [33], the authors applied depthwise separable convolutions and global
average pooling (GAP) layers instead of fully connected layers to reduce the model size and
execution time. This likely contributes to the differences in execution time and accuracy
observed in our model compared with [33].

5. Conclusions and Future Work

In this work, we have exploited TinyML models for detecting respiratory diseases,
particularly asthma, using lung sound recordings. Our custom CNN model achieved
an accuracy of 96% while maintaining efficient resource usage. This demonstrates the
feasibility of deploying real-time, accurate diagnostic tools on resource-constrained devices,
making them suitable for portable medical applications.

The potential impact of this approach on healthcare is significant. By offering a low-
cost, portable solution for respiratory disease detection, our models can enhance access to
reliable diagnostics in remote and underserved areas, reducing the reliance on traditional
medical facilities and expensive equipment. This advancement is crucial to improving early
disease detection and patient outcomes.

In future work, we will address the challenges encountered with dataset imbalance,
which limited the diversity of the training data. To overcome this challenge, we will explore
merging multiple publicly available lung sound datasets and applying data augmentation
techniques, such as variational autoencoders [30]. Additionally, real-world clinical valida-
tion and the inclusion of more respiratory conditions will be key steps toward refining and
extending the applicability of our models.
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Abstract: The development of medical data and resources has become essential for en-
hancing patient outcomes and operational efficiency in an age when digital innovation in
healthcare is becoming more important. The rapid growth of the Internet of Medical Things
(IoMT) is changing healthcare data management, but it also brings serious issues like data
privacy, malicious attacks, and service quality. In this study, we present EdgeGuard, a
novel decentralized architecture that combines blockchain technology, federated learning,
and edge computing to address those challenges and coordinate medical resources across
IoMT networks. EdgeGuard uses a privacy-preserving federated learning approach to
keep sensitive medical data local and to promote collaborative model training, solving
essential issues. To prevent data modification and unauthorized access, it uses a blockchain-
based access control and integrity verification system. EdgeGuard uses edge computing to
improve system scalability and efficiency by offloading computational tasks from loMT
devices with limited resources. We have made several technological advances, including a
lightweight blockchain consensus mechanism designed for [oMT networks, an adaptive
edge resource allocation method based on reinforcement learning, and a federated learning
algorithm optimized for medical data with differential privacy. We also create an access
control system based on smart contracts and a secure multi-party computing protocol
for model updates. EdgeGuard outperforms existing solutions in terms of computational
performance, data value, and privacy protection across a wide range of real-world medical
datasets. This work enhances safe, effective, and privacy-preserving medical data manage-
ment in IoMT ecosystems while maintaining outstanding standards for data security and
resource efficiency, enabling large-scale collaborative learning in healthcare.

Keywords: federated learning; resource orchestration; Internet of Medical Things; blockchain;
scalability; resource efficiency

1. Introduction

In the era of digital healthcare transformation, the Internet of Medical Things (IoMT)
has emerged as a form of critical infrastructure, enabling healthcare providers to collect,
analyze, and utilize vast amounts of patient data efficiently [1]. The proliferation of IoMT
devices has facilitated unprecedented levels of patient monitoring and care, enabling rapid
innovations in personalized medicine and remote healthcare delivery [2]. The goal of
collaborative healthcare management in geographically distributed IoMT networks is to
efficiently allocate and manage resources across various edge devices to meet healthcare
demands effectively. However, as [oMT adoption grows, so do the challenges associated
with ensuring security, privacy, and compliance, particularly in distributed healthcare
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environments [3]. A recent survey highlights the landscape of [oMT adoption, revealing that
wearable devices are the leading IoMT category, utilized by 69.6% of surveyed healthcare
organizations [2]. Remote patient monitoring systems follow with a 62.3% adoption rate,
and smart medical equipment is used by 60.2% of organizations. This diverse usage
emphasizes the necessity for robust strategies to manage multi-device IoMT environments
effectively [4,5].

The geographically distributed IoMT networks, where medical devices and edge
computing resources are deployed across multiple locations, offer key advantages such
as reduced latency in critical care scenarios, improved resilience, and enhanced compli-
ance with regional health data regulations. These architectures are vital for meeting the
demands of global healthcare delivery and ensuring uninterrupted service during localized
disruptions or emergencies [6]. However, they offer significant safety concerns. The need to
protect sensitive health information across a variety of locations, defend against a broader
spectrum of online cyber threats, and ensure compliance under distinct healthcare regula-
tory standards increases layers of complexities as cited in [7]. Although several advanced
security measures have been designed for IoMT, significant barriers still remain in meeting
the security requirements of geographically dispersed healthcare networks. These prob-
lems include critical communication overhead that causes latency in time-sensitive medical
applications, challenges with data integrity across various medical devices, and scalability
issues arising from the incapacity of current security mechanisms to manage increasing
amounts of health data [8]. Additionally, it is common for medical device combinations
to be non-standardized, which leads to hazards and discrepancies. Inadequate visibility
in auditing and monitoring further contributes to the inability to identify and address
medical security issues in healthcare settings [9]. Furthermore, providing comprehensive
security will require a lot of processing and storage power for a medical device with limited
resources, which will affect its overall effectiveness and cost. Due to these difficulties,
an effective solution for IoMT contexts is urgently needed. The suggested architecture,
EdgeGuard, combines federated learning’s privacy with blockchain’s decentralized secu-
rity [9,10]. It is specifically designed for the IOMT. This is the whole framework that, on
the one hand, enhances health data security and optimizes resource management in collab-
orative healthcare environments and, on the other, permits safe and effective cooperation
between dispersed medical devices and edge nodes.

EdgeGuard is an innovative framework that seeks to redefine the contours of secure
and efficient data management in IoMT networks. It leverages blockchain technology,
adaptive federated learning, and edge computing capabilities to address significant limi-
tations of current approaches in healthcare data security and privacy [3,11]. EdgeGuard
implements a novel decentralized architecture that optimizes resource utilization across
diverse IoMT devices while ensuring robust data privacy and integrity [12]. Our framework
introduces several key innovations: a lightweight blockchain consensus mechanism specifi-
cally designed for IoMT networks, an adaptive aggregation function for privacy-preserving
federated learning, and intelligent resource allocation through reinforcement learning [13].
As illustrated in Figure 1, EdgeGuard introduces a secure blockchain layer that enables
safe collaborative learning while preventing information leakage of patient data. The main
contributions of this work are as follows:

*  Privacy-preserving federated learning architecture: A novel adaptive aggregation
mechanism that enables secure model training across distributed healthcare institu-
tions [14]. This architecture incorporates differential privacy techniques and secure
aggregation protocols, ensuring patient privacy while optimizing model performance
through quality-aware aggregation.
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Figure 1. EdgeGuard: a secure federated learning framework for IoMT.

e  JoMT-optimized blockchain consensus: A lightweight consensus mechanism specifi-
cally engineered for resource-constrained medical devices, providing robust security
guarantees while maintaining efficiency. This mechanism ensures data integrity and
creates immutable audit trails for regulatory compliance.

* Intelligent resource management: Advanced optimization techniques for heteroge-
neous [oMT environments include the following:

— A dynamic model complexity adaptation based on available computational resources.
- Adaptive learning rate scheduling, considering resource constraints.

Quality-aware device selection for optimal federated learning rounds.
- Efficient model update compression for bandwidth-constrained scenarios.

¢  Comprehensive performance framework: A multi-dimensional evaluation frame-
work that assesses not only diagnostic accuracy but also computational efficiency,
communication effectiveness, energy consumption, and fairness across diverse loMT
devices, ensuring practical deployability in real-world healthcare settings.

This paper is structured as follows: Section 2 discusses the related work and Section 3
presents EdgeGuard’s system formulation, including the system model, assumptions, threat
model, problem statement, and design goals. Section 3 describes the proposed EdgeGuard
framework in detail. Section 4 explains the operational design and algorithm analysis.
Section 5 discusses the experimental setup, results, and analysis, and Section 6 concludes
the paper.

2. Related Work

The integration of blockchain technology with federated learning in IoMT networks
has emerged as a significant research area in recent years, driven by concerns over data
privacy and security vulnerabilities in healthcare systems. In this section, we will analyze
some of the most recent advances in this area, focusing on three main aspects: blockchain
mechanisms, federated learning in healthcare, and integrated decentralized blockchain-FL
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architectures. In the context of IoMT networks, ref. [8] presented a security framework
that provides security when medical data are being transferred based on a combination of
encryption techniques, pattern recognition modules, and adaptive learning mechanisms.
Although this approach has made advances in both the detection of anomalies as well
as attack resistance, it neither considers the quality of data in a distributed setting nor
does it take into account the computational capabilities of [oMT products. In addition, the
framework lacks mechanisms for enabling decentralized yet secure collaborative machine
learning across healthcare institutions—a must-have component to enhance diagnostic
models while guaranteeing the privacy of records. This shortcoming is something Edge-
Guard addresses with its blockchain-secured federated learning architecture.

Mohammed et al. [15] proposed a federated learning paradigm toward collaborative
usage of health information while keeping it private based on both secure multi-party
computations and differential privacy. Even though it has provided significant privacy
preservation, there has been no proper consideration given to securing the model updates,
the participating devices, or the data quality. A recent work proposed by Biken Singh et
al. [16] introduces a blockchain-supported federated learning system for WBANSs, focusing
on energy efficiency and privacy through QNNs, differential privacy, and homomorphic
encryption. However, their approach primarily focuses on energy optimization and basic
privacy preservation, with no consideration of data quality assessment and device reliability
in medical contexts. The authors failed to provide explicit security requirements for loMTs
in healthcare environments. EdgeGuard bridges this gap through its adaptive aggregation
and lightweight consensus mechanisms, which are specifically tailored for [oMT.

Prior work by Yu et al. [17] proposed an I-UDEC framework combining blockchain,
Al and federated learning to optimize computation offloading and resource allocation in
ultra-dense edge computing. The work obtained great improvements in task execution time
but was mainly focused on general IoT scenarios and did not consider specific medical data
sensitivity and healthcare regulatory compliance. Furthermore, their blockchain implemen-
tation was not designed for resource-constrained medical devices—something EdgeGuard
addresses in its healthcare-specific design and lightweight consensus mechanism. The
paper by Ali Kashif et al. [18] explored the integration of federated learning in healthcare
Metaverse applications, highlighting potential benefits and challenges in medical diagnosis,
patient monitoring, and drug discovery. While comprehensive in scope, the paper primarily
focused on theoretical aspects and future possibilities, lacking practical implementation de-
tails or specific solutions for current IoMT security and privacy challenges that EdgeGuard
addresses through its concrete blockchain-secured federated learning architecture. Previous
research [19] proposed combining DFT with differential privacy in federated learning for
healthcare, achieving better accuracy and reduced communication costs, but their approach
lacked security mechanisms for model updates and did not address device reliability or
data quality validation in medical networks—gaps that EdgeGuard specifically addresses.

Although the existing works are tremendous in terms of healthcare security through
federated learning and integrating blockchain, they merely focus on individual aspects
like privacy preservation or energy efficiency and cannot achieve a holistic solution in
IoMT environments. Most approaches usually miss critical points related to data quality
assessment and reliability of devices and, most importantly, come up with lightweight
security mechanisms tailored for resource-constrained medical devices.

EdgeGuard has addressed this by designing an integrated framework that contains
blockchain-secured federated learning and IoMT-specific optimizations. Our solution
uniquely integrates adaptive aggregation based on data quality and device reliability,
a lightweight consensus mechanism designed for medical devices, and comprehensive
security measures that maintain HIPAA compliance while enabling efficient collaborative

158



Future Internet 2025, 17, 2

learning. The comparative analysis in Table 1 demonstrates the current work addresses
particular aspects of privacy and security for health networks but not in totality. As such,
EdgeGuard clearly distinguishes itself by combining privacy preservation, lightweight
blockchain security, resource optimization, data quality assessment, and device reliability
monitoring within the proposed healthcare-specific framework.

Table 1. Comparison of related works in blockchain-secured federated learning for healthcare.

Privacy Security Resource Data Quality Device Healthcare
Work Preservation Mechanism Optimization Assessment Reliability Specific

[8] Pattern Recognition DP Encryption No No No Yes
[15] Privacy-preserving FL DP + MPC No No No No Yes
[16] WBAN-based FL DP + HE Blockchain Energy-aware No No Yes
[17] I-UDEC Framework FL Blockchain 2Ts-DRL No No No
[18] DFT-based FL DP + DFT No Communication No No Yes
EdgeGuard (Ours) DP + MPC L];%::tlz\éﬁ;giﬂt Resource-aware Yes Yes Yes

DP: differential privacy, MPC: multi-party computation, HE: homomorphic encryption, DFT: discrete Fourier
transform, 2Ts-DRL: two-timescale deep reinforcement learning, FL: Federated Learning.

3. Problem Formulation
3.1. System Model

More than a thousand devices form a vast network of IoMT healthcare data resources.
The adaptive federated learning model, with its dynamic aggregation, is recognized as
a well-known system in the field of IoMT. This novel idea has changed the concept and
analysis of medical data. It ensures privacy and security in these increasingly developing
digital health systems. Edge devices, local datasets, central servers, edge servers, local and
global models, adaptive aggregation functions, blockchain security layers, and more, are
the main components used in this proposed model. The following are the main parts of
our system:

1.  Edge devices (6D = {edy,edy,...,edy}): The different numbers of IOMT N edge
devices range in terms of their computing and sensing capabilities. These edge
devices are important components of our distributed learning setup from simple
fitness trackers to cutting-edge medical equipment.

2. Local datasets (DS = {DS;,DS,,...,DSn}): Every edge device ed; tracks a local
dataset, thus reflecting a different portion of global health data. These datasets are
characterized by their size |DS;| and a quality metric q; € [0, 1].

3. Edge servers (£S = {esy,esy, ..., esp}): A collection of M edge servers arranged
specifically to enable intermediate aggregation and computational offloading. These
servers improve system scalability and responsiveness by acting as a link between the
central server and resource-limited peripheral devices. This makes our whole system
work better and faster, especially when dealing with lots of devices that might not be
very powerful on their own.

4. Central server (CS): A high-performance central server that orchestrates the federated
learning process, aggregates model updates, and maintains the global model. It is
responsible for initiating learning rounds and disseminating the updated global model
to edge devices.

5. Global and local models (wg, w;): A shared neural network with d parameters; the
global model w, € R? represents the collective knowledge extracted from various
medical data sources across the network. Collection W consists of local model in-
stances, where the model parameters trained on the local dataset DS; of edge device
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ed; are represented by each w; € R?. These local models feed into the global model
and are updated regularly, enabling a distributed learning process that protects data
privacy and makes use of the IoMT network’s collective insights.

6. Communication links (£ = {/;;}): The group of communication lines that link the
central server, edge servers, and edge devices. The bandwidth bi]- and latency )\l‘]‘ of
each connection /;; are its key characteristics.

7.  Adaptive aggregation function (f : RY x [0,1] x [0,1] — R%): A completely novel
function that dynamically weighs each edge device’s contribution according to mea-
sures for data quality and reliability. It is defined as follows:

wg = f{wity, {ai} iy, {ri}i) 1)

where r; denotes the device ¢;’s reliability and ¢q; denotes the data quality measure.

8. Blockchain Security Layer (BSL) B To ensure the security, integrity, and traceability
of the federated learning process [20], our system incorporates a BSL. This decen-
tralized ledger system, denoted as B = (B, T,0,V), consists of a chain of blocks
B = {by,by,..., bk}, each containing a set of verified transactions. The function
T:E£USU{C} — B maps entities to transactions recorded in blocks, while the cryp-
tographic hash function o : B — {0,1}* ensures the immutability of the blockchain. A
validation function V : Bx EUSU{C} — {0, 1} verifies the legitimacy of transactions
and blocks. Each model update and aggregation operation is recorded as a transaction
in the blockchain, ensuring the integrity and traceability of the learning process:

b1 = o (b || T(wg™) || T({w ™ Yiee,)) €)

where the symbol parallel denotes concatenation. This blockchain layer gives our

system a higher level of security by providing an editable and tamper-proof record of

all learning activities inside the IoMT network.

9.  Quality assessment module (QA : DS — [0,1]): A new module that grades the
quality of a local dataset based on various criteria, such as data distribution, label
accuracy, and task relevance, around the world. The quality score that is derived for
every local dataset is q; = Q(D;).

10. Reliability evaluation function (REL : ED x T — [0, 1]): The feature that scores the
reliability of the edge devices over time, accounting for the needs of hardware, uptime,
and consistency of contributions. For each device at time ¢ it returns a reliability score
Rel; = REL(ed;, t).

In the complex ecosystem, the adaptive federated learning scheme requires a series of
communication rounds. For each round ¢, we choose a subset of edge devices ED; C £D.
Based on their own datasets, this subset of edge devices computes local updates:

wit = w! — yVLF(w!, DS;) 3)
where LF denotes the loss function and 7 represents the learning rate. Subsequently, using
our adaptive aggregation function, the central server aggregates these updates:

witt = f{w!™ Yieen, {4} Yieen, {1l Yicen,) (4)

In this dynamic aggregation technique by IoMT, worldwide learning depends not just on
the volume of data but on the goodness of data along with the credibility of origin. This, in
turn, opens up the gates for an even more adaptive and robust learning process.

160



Future Internet 2025, 17, 2

3.2. Assumptions and Threat Model

The main assumptions and threats are considered, which define our system architec-

ture and security measures while designing EdgeGuard for safe and effective federated

learning in IoMT healthcare networks.

3.2.1. Main Assumptions

1.

Data privacy and locality: The local dataset D; € DS for every edge device ed; € £D
remains on the device. According to healthcare data standards and patient privacy,
only model updates w; € }V are shared. Formally:

Ved; € £D, share w; but not DS; (5)

Device heterogeneity and intermittent connectivity: The edge devices,
ED = {edy,edy, ..., edy}, are heterogeneous in terms of processing capability and
network reliability. We represent this heterogeneity by defining a time-varying subset
of devices that are active, ED; C £D in each round t:

ED; = {ed; € £D | device ed; is active at time ¢} (6)

Semi-honest participants: While implementing the steps, participants have the oppor-
tunity to learn from the data they have received. We assume the reliability assessment
function REL : ED x T — [0, 1] represents this behavior over time:

Ved; € ED,t € T:0 < REL(e;,t) <1 (7)

3.2.2. Primary Threats u

1.

Data poisoning attacks (,;): The malicious entities may manipulate the local dataset
or introduce fake data into the global model wg updates. We represent this threat as a
perturbation J of local updates:

~t4+1 41
w; T =w; +46, o~ Dadversary (8)

where Dygyersary is an adversarial distribution.

Privacy breaches (1i,): The adversaries could try to recreate private information from
model updates. In such cases, the differential privacy anticipates and assists the users
from the privacy risks:

Pr[f(DS) € S] < ¢ -Pr[f(DS') € S] +6 )

where datasets D and DS’ differ by one record; here, f is our learning algorithm, € is
the privacy budget, and ¢ is the failure probability.

Integrity and authentication attacks (j;): The attackers might fabricate the devices
or interfere with model updates. In order to solve this, our blockchain security layer
B = (B, T,o, V) ensures the following:

V(b e) =1 — T(wf“) is a valid transaction in by (10)

where b, € B is a block in the blockchain, and V is the validation function.

With its blockchain-based integrity verification B, adaptive aggregation function f, and

privacy-preserving methods, EdgeGuard confronts these fundamental assumptions and

threats. The reliability evaluation function R and quality assessment module Q : D — [0,1]

are designed to counteract data poisoning attacks and the blockchain layer offers an
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unchangeable audit trail to guarantee the authenticity and integrity of model modifications.
By keeping raw data localized and introducing noise to model updates, the federated
learning method, when paired with differential privacy measures, naturally contributes to
privacy protection against breaches.

3.3. Problem Statement and Design Goals

In this study, a federated learning system, called EdgeGuard, is developed using
blockchain technology to enable safe and effective cooperation in the Internet of Medical
Things (IoMT) networks with N-distributed edge devices. The challenge involves effec-
tively carrying out federated learning tasks across many IoMT devices while reducing
threats (p4, ptp, and p;). This is conducted to enhance the learning process’s overall effi-
ciency and provide strong security in a cooperative healthcare setting. During the federated
learning process over periods {f1,t2,..., T}, the objective is to maximize data utility (DU)
and model accuracy (MA) while minimizing communication overhead (CO), potential
threats (1), and model divergence (MD) in the presence of unknown malicious clients, such
that we have the following:

K
[ Jwii} (11)
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where w;j; = 1 if edge device ¢; participates in learning round j at local edge devices.
Equation (12) formulates the threat model by incorporating the considered potential threats
(pq: data poisoning, jip: privacy breaches, and y;: integrity attacks), aiming to minimize
these risks and enhance the overall security of the collaborative environment:

g = min(pg, pp, pi) (12)

Equation (13) is formulated in a way that guarantees the effective distribution of edge
devices to learning rounds across geographically dispersed data centers:

w:EXxTxSxpu —{0,1} (13)

The critical constraints that must be satisfied during the federated learning process within
the IoMT network are stated in Equations (15)—(18):
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The constraint C1 specifies that each edge device e; must participate in exactly one learning
round; the constraints {C2-C4} state that the available resource capacity (CPU, RAM,
bandwidth) of the edge network must be greater than or equal to the total requesting
resource capacity of participating edge devices; constraint C5 specifies the geographical
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constraints, indicating the availability of edge devices within the IoMT network. The design
goals of EdgeGuard are, thus, formulated as a multi-objective optimization problem:

%}B{CO, u,MD} and r&a}‘)}({Du, MA} (19)
subject to constraints C1-C5, where w¢ denotes the global model parameters. To achieve
these goals, EdgeGuard employs the following:

*  Anadaptive aggregation function f to balance data utility and privacy:
wéﬂ = f({wfﬂ}ieet/ {Qf}iesfr {”f}ie&) (20)

*  Ablockchain security layer B = (B, T, o, V) to ensure integrity and traceability.
* A quality assessment module Q : D — [0, 1] to evaluate data quality.
e A reliability evaluation function R : £ x T — [0, 1] to assess device trustworthiness.

These components work in concert to create a secure, efficient, and privacy-preserving
federated learning system for IoMT healthcare networks.

4. Proposed Framework

The EdgeGuard framework in Figure 1 enables secure federated learning across dis-
tributed IoMTs by allowing the edge devices to perform local model training over the
sensitive health data, and the encrypted model updates are transmitted over the blockchain
layer safeguarding the data integrity and privacy. With the direction of continuous secu-
rity analysis and resource management, the central server then aggregates these changes
into a global model via adaptive aggregation. This very sophisticated technique enables
collaborative learning with raw patient data remaining localized, therefore balancing use-
fulness and privacy against system efficiency in challenging medical situations. EdgeGuard
will, therefore, address particular challenges when processing remote medical data and
aid in providing more insight into healthcare by combining various modules without
compromising individual patient privacy or system security.

4.1. EdgeGuard Framework

The EdgeGuard architecture consists of six main steps: local model training, local
model upload, cross-verification, block generation and propagation, adaptive aggregation,
and global model update. These procedures provide safe and efficient federated learning
in IoMT healthcare networks.

4.1.1. Local Model Training

The local training process is independently conducted using locally stored data on
each IoMT edge device. We consider N edge devices as £ = {edq,edy, ..., edy}. Let there
be M medical sensors at each edge device denoted as S = {sq,sy,...,5)} sending their
health data to the IoMT environment for processing and analysis. Each sensor generates a
set of health measurements, mathcalH = hy, hy, ..., hz, along with particular parameters
like the timestamp, sensor type, and measurement value (h;imei, hyypei, hyaluei). The edge
device consists of computational resources characterized by CPU, memory, and bandwidth
capacities (Eé: PU” El o E%w)- A convolutional neural network (CNN) is utilized at the
edge devices to process and analyze the health data. The neural network comprises p-g-r
number of neurons at the input, hidden, and output layers. These layers are interconnected
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through NN weights ({w;,, wp,, . . ., Wi, WHy, WHy, - - -, WH,, WOy, - - wo, } ), with the size of
the NN as S, such that we have the following:

S=(p+1)xqg+(@xr)=q(p+r+1)=q(p+2)asr=1 (21)

The NN weights and biases (b) are initialized randomly in the range of [0,1]. The CNN
collects the historical health data and normalizes the data to create and provide p input
values, such as {DSy, DS,,...,DS p}, into the input layer. The prediction process consists
of three main steps: training, testing, and prediction. Data validation is conducted to
improve the model’s performance, using the mean absolute percentage error (MAPE) as
the error function to assess the model’s accuracy. The pre-processing of data extracts health
measurements from different sensors and aggregates them over a fixed time interval. To
normalize the input data within the range of [0, 1], the data aggregation process is applied,

as shown in Equation (22):
A Di — Dmin

=
Dmax - Dmin

(22)

In the dataset, DS, represents the highest value obtained, while DS,,,;,, corresponds to the
lowest value. The normalized data, denoted as DS, comprise a collection of all normalized
data values, represented as DA'Sl, DS,, ..., DS,. These normalized one-dimensional values
are utilized as input to the input layer of the CNN. This model analyzes previous p health
data values to predict the health status (Y,,:) at the p + 1th time instance. The ReLU
activation function, as depicted in Equation (23), is used in the hidden layers:

ReLU(x) = max(0, x) (23)

The evaluation of the accuracy and performance of the LM training process is carried out
by utilizing the MAPE score, as given in Equation (24):

MAPE — 100% i |Ypredicted - Yactuul|
n

i=1 Yactual

(24)

where n represents the total number of data samples, while Yyt and Y egicreq correspond
to the actual and predicted health status, respectively. Stochastic gradient descent with
momentum (SGD-M) is employed to achieve dynamic and adaptive optimization of the
network weights. In this context, velocity (v) represents the gradient change needed to
reach the global minimum, as expressed in Equation (25):

Wiyl = Wt — Ut (25)

The updated weight vector is represented as w1, while the current weight vector is
denoted as w;. The calculation of v; can be performed using Equation (26):

v =pB-v_1 +nVuw; (26)

Here, the momentum is represented by the term - v;_1. The constant § has a value
between 0 and 1, the learning rate is denoted as 7, and Vw; corresponds to the gradient of
the loss function for the weight. v;_1 represents the velocity at the previous step. Then, the
local model w; 1 is uploaded to the blockchain to complete federated learning aggregation.

4.1.2. Local Model Upload

In EdgeGuard, we collect model updates from our medical devices, represented as
{Awq, Aw,, ..., Awy}. These updates are added to our blockchain, forming a series of
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connected blocks {Bl, B, ..., BN}. Each block has two parts: a body and a header. The
body, shown in Equation (27), contains the model updates and calculation times, as follows:

Body; = {(Aw}, Tiyeq) |V, 1, i} 27)

Here, Awi denotes the update from device k for training round I, and Tl’l0 a1 denotes how
long device i takes to compute. The header, given by Equation (28), is like an information
tag, as follows:

Header; = {Pprev, A, POW} (28)

Pprev links to the previous block, A denotes how fast we make blocks, and PoW is proof
that the block is legit. We also track the block size using Equation (29):

Bsize = h+m - Np (29)

This depends on the header size }, the size of each update dm, and the number of devices
Np. This setup helps us keep our medical Al updates organized and secure, balancing
technical precision with practical application in our IoMT network [21].

4.1.3. Cross-Verification

Miners broadcast and verify model updates, accumulate verified updates in a candi-
date block B, and finalize the block if it follows Equation (30):

Bsize > h+0m - Nport > Ty (30)

4.1.4. Block Generation and Propagation

EdgeGuard employs a proof of work (PoW) mechanism for secure block generation
and propagation. This process unfolds in three key steps: hash generation, block generation
rate determination, and block propagation with ledger update. In the hash generation step,
a miner m in the network computes a hash value H by iteratively modifying a nonce value
N. The goal is to find a hash that satisfies the condition expressed in Equation (31):

H(N)<T (31)

Here, H represents the hash function, N is the nonce, and T denotes the target value that
defines the PoW difficulty. The block generation rate, denoted as A, is inversely proportional
to the PoW difficulty, which is reflected in the target hash value T. This relationship is

captured in Equation (32):

Am% (32)

This inverse relationship implies that a more stringent target value T results in a lower A,
thereby reducing the frequency of block generation. As stated in Equation (33), upon gen-
eration of a valid hash by a miner, the new block B is verified, approved, and disseminated
to all miners. At this point, the miners cease their proof of work calculations and append B
to their local ledgers.

If H (T(wf“) | n) < Target, then B is added to all local ledgers (33)

The proof-of-work method, thus, ensures integrity and security within the EdgeGuard
architecture and provides a good base for decentralized storage and validation of the model
changes within the IoMT network.
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4.1.5. Adaptive Aggregation and Global Model Update

Another innovation is the adaptive aggregation function that weighs contributions
from each edge device within the function of data quality and reliability of devices. Such
a feature is extremely critical for ensuring that the federated learning process remains
robust and effective in the eventuality of a possible problem that results from data quality
and security threats. Let {wq, w», ..., wy} represent the gradient updates acquired from
the blockchain layer. Finally, the central server takes the adaptive aggregation function
f to obtain the new global gradient at the time step t + 1. Mathematically, we have the
following:

w1 = f{w ™ Y iee, {0t e, {1t ice,) (34)

where &; is the set of participating devices in round t, ¢ is the quality score of device
i’s data, and r! is the reliability score of device i. The adaptive aggregation function f is

defined as follows: 5
ic& XiWi
Flwi} Agi} {ri}) = 5558 (35)

):ieé‘t i

where «; is the weight assigned to device i’s update and is calculated as follows:

a; = q; - 1i - exp(—Blw; — @|*) (36)

Here, @ is the average of all updates, and f is a hyperparameter controlling the influence

of update similarity. This formulation ensures the following;:

1. Higher quality data (higher g;) have more influence on the global model.

2. More reliable devices (higher ;) contribute more significantly.

3. Updates that are closer to the average (potentially more trustworthy) are given higher
weight.

The quality score g; is determined by the quality assessment module (QAM):

1
-~ 1+exp(—(mGCi+ 72V — 130;))

q; = Q(D;) (37)
where C; denotes the completeness of the data, V; denotes the validity, O; denotes the
outlier ratio, and 11, 2, y3 denote learnable parameters. The reliability score #; is calculated
by the reliability evaluation function (REF), as follows:

1
1+exp(—(AU; + A24; — A3E)))

ri = R(ej, t) = 6rip1 + (1 —6)( ) (38)
where r;;_1 is the previous reliability score, U; is the uptime ratio, A; is the contribution
accuracy, E; is the error rate, J is a smoothing factor, and A, A, A3 are learnable parameters.
This adaptive aggregation mechanism allows EdgeGuard to conduct the following:

1.  Mitigate the impact of low-quality or malicious updates.
2. Adapt to changing device behaviors and data characteristics.
3. Improve the overall robustness and accuracy of the global model.
4. Provide an implicit defense against various attacks, including data poisoning and

free-riding.

The aggregated gradient w;; is then used to update the global model GM. The
GM has the same architecture as the local models. The update process is expressed in
Equation (39):

GM(141) = GMy) + Wi (39)
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4.1.6. Local Model Update

The global gradient w; 1 is broadcast to all local clients using the blockchain layer,
ensuring that the privacy of each client is maintained. Then each local model LM; for the
ith edge device is updated using the broadcasted global gradient w; | as expressed in
Equation (40):

LMY = LM (40)

where LMi(t) represents the local model parameters at epoch ¢, and LMftH)

updated local model parameters for the next epoch. Local training for the next epoch begins

represents the

with the updated parameters of the global model, ensuring consistency across all local
models while maintaining the privacy and security of individual health data. This iterative
process of local training, secure aggregation, and model distribution allows EdgeGuard
to facilitate collaborative learning across IoMT devices, enabling improved healthcare
insights while maintaining stringent privacy and security standards essential to medical
applications.

4.2. Smart Contract Implementation for Access Control and Model Updates

The IoMT network, running on the EdgeGuard framework, promises to have extremely
complicated architectures for safe and verifiable smart contracts. Our implementation
includes three leading types: device access control, model update verification, and secure
aggregation protocols. The layer of smart contracts is important as it facilitates the transition
between the federated learning process and the incorporation of blockchain security.

The proposed smart contract manages device registration, validates model updates,
and ensures secure aggregation according to the privacy and security requirements of
healthcare data. Specifically, this study targets three main aspects:

*  Access control: Ensures only authorized IoMT devices participate in the federated
learning process.

*  Model update verification: Validates and records model updates in an immutable manner.

¢  Secure aggregation: Implements privacy-preserving model aggregation using multi-
party computation.

Algorithm 1 presents the comprehensive smart contract protocol that governs these
interactions within EdgeGuard.

This protocol further completes our description of the blockchain security layer B
in Section 3.1, such that the federated learning process can remain robust and free of
attacks only when legitimate devices are involved in the training model. It makes use of
the adaptive aggregation function in Equations (34)—(36), in which quality scores g; and
reliability scores r; are used for weighing each edge device.

The implementation guarantees the following three important properties:

1.  Security: Through robust access control and validation mechanisms.

Privacy: Via secure multi-party computation during aggregation.
3. Verifiability: Through immutable blockchain records of all operations.

This kind of architecture of the smart contract provides a needed base in the loMT
environment for secure and verifiable federated learning, yet it certainly aligns with Edge-
Guard’s decentralized approach to medical resource management.
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Algorithm 1 EdgeGuard smart contract protocol.

Require: Set of edge devices ED = {edy, edy, ..., edy}, local models W = {wy,wy, ..., wn},
quality scores Q = {41, 42, - ..,qN}, reliability scores R = {r1,72,...,rN}
Ensure: Verified global model update w,
1: Initialize Devicelnfo, ModelUpdate structures
2: for each registered device ed; € £D do

3. Devicelnfoled;] <— {active : true, reliability : r;, timestamp : t}

4 ModelUpdateled;] < {model : w;, quality : q;, verified : false}

5: end for

6: for each update round t do

7: for each active device ed; € £D do

8: if ValidateDevice(ed;) then

9: commitment <— GenerateCommitment(w;)

10: Commitments|ed;] < commitment

11: shares|ed;] < SecureShare(w;)

12: end if

13: end for

14: maskedUpdates < @

15: for each committed device ed; do

16: if ValidateCommitment (ed;) then

17: wj < q; - 1i - exp(—Bllw; — @||?) > From Equation (36)
18: maskedUpdates <— maskedUpdates U { DecryptShare(shares[ed;]) x a;}
19: end if
20: end for
21:  wt! « Y (maskedUpdates)/ Y (a;) > Adaptive aggregation
2:  if H(T(w'*! || n)) < Target then
23: RecordUpdate(w'*1)
24: for eached; € £D do

25: ModelUpdate|ed;].model + w'*1

26: ModelUpdate|ed;].verified < true

27: end for

28: if convergence criteria are met then

29: break

30: end if

31: end if

32: end for

33: return wy < w' !

4.3. Operational Design and Complexity Analysis

Algorithm 2 presents the functional design of the suggested EdgeGuard framework.
The four main parts of the EdgeGuard algorithm—model update distribution, adaptive
aggregation, blockchain operations, and edge device computations—determine how long it
takes to run. Edge device computations including local model training and data preparation
have temporal complexity O(I x n), where n is the local dataset’s data point count and I is
the number of training iterations. Using a temporal complexity of O(M x 2%), where M is
the number of blocks and d is the PoW difficulty level, the blockchain layer generates and
verifies secure blocks using the proof of work (PoW) consensus technique. With ed denoting
the number of edge devices and N denoting the overall number of model parameters, the
adaptive aggregation processes of the central server introduce a complexity of O(N x ed).

This process aggregates updates from every edge device involved in participating.
Moreover, the methods of quality assessment and dependability evaluation add a com-
plexity of O(ed x K), where K is the count of evaluation criteria. As such, the entire time
complexity of the EdgeGuard approach could be estimated as follows:

O(I x n) + O(M x 24) + O(N x ed) + O(E x K) (41)
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There is a balance between safe blockchain operations, local computations, and flexible
global aggregation in the IoMT setting. This complexity analysis shows how EdgeGuard is
spread out.

Algorithm 2 EdgeGuard: secure federated learning for loMT.

Require: Set of edge devices £ = {edy, edy, ..., ,edy}, local datasets D = {Dj, Dy, ...,Dn},
global model wg, blockchain B = (B, T, 0, V), central server C
Ensure: Updated global model wg, secure and private federated learning
1: Initialize wg, B
2: for each communication round { do

3: &t + Select participating devices
4 foreache; € & in parallel do
5 Preprocess local data D;
6: w! < Train local model on D;
7: qt < Q(D;) > Quality Assessment
8 rt < R(e; t) > Reliability Evaluation
9: @+ wh + N (0,0%) > Apply differential privacy
10: by < o(bx_q || T(@, qt,71)) > Create blockchain block
11: while H(by) > Target do
12: Adjust nonce in by,
13: end while
14: Broadcast by to other miners
15: end for
16 Cretrieves {@!,q!, 1!} icg, from B
17: w?“l — f{@ }ies, {q Yies, {ri}ice,) > Adaptive aggregation
18: b1 < o(by || T(w(fg“)) > Record global update in blockchain
19: foreache; € £ do
20: e; retrieves wh! from B
21: wi ™ wht! > Update local model
22: end for
23: if convergence criteria met then
24: break
25: end if
26: end for

27: return Wq

5. Performance Analysis
5.1. Experimental Setup

The EdgeGuard framework was evaluated using a comprehensive simulation envi-
ronment built with PyTorch v1.9.0 for federated learning implementation, integrated with
Ethereum Ganache v2.5.4 for blockchain simulation. The experiments were conducted on a
server equipped with 2 Intel® Xeon® Silver 4114 CPUs (Santa Clara, CA, USA) (40 cores,
2.20 GHz), 128 GB RAM, running Ubuntu 20.04 LTS, and NVIDIA Tesla V100 GPU with
32 GB memory. The federated learning environment was implemented using PyTorch
DistributedDataParallel, incorporating our custom adaptive aggregation mechanism with
differential privacy support through PyTorch DP. The blockchain component utilized a
private Ethereum network with smart contracts written in Solidity v0.8.0, specifically
modified for IoMT requirements. Web3.py v5.28.0 facilitated smart contract interactions,
while NumPy v1.21.0 and Pandas v1.3.0 were used for efficient data manipulation and
numerical computations. To simulate the [oMT environment, we configured three types of
edge devices with varying computational capabilities, as shown in Table 2. The network
environment was configured to reflect real-world conditions, with bandwidth variations
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from 1-10 Mbps, latency ranges of 10-100 ms, and packet loss rates of 0.1-1% in a star
topology with a central aggregator.

Table 2. Edge device configurations.

Device CPU Cores MIPS RAM (GB) Storage (GB) Power (W)
El 2 2660 4 32 5
E2 4 3067 8 64 8
E3 8 3467 16 128 12

Dataset: We utilized the MIMIC-III dataset, performing comprehensive preprocessing
including temporal alignment of vital signs, missing value imputation using forward fill,
feature normalization, and time series segmentation into 24-h windows. The dataset was
split into training (80%), validation (10%), and test (10%) sets. Performance monitoring was
conducted using Linux perf-tools v5.15.0 for resource utilization, iperf3 v3.12 for network
statistics, and Intel RAPL (Running Average Power Limit) through powercap-utils v0.6.0
for energy consumption measurements.

5.2. Baseline Implementation

For comparative analysis, we implemented Fed Avg as our baseline following McMa-
han et al.’s seminal work [22]. The Fed Avg implementation performs standard federated
averaging without the security enhancements of EdgeGuard. In each communication
round, the server selects a fraction of available clients (C = 0.8) and broadcasts the current
global model. Each selected client trains the model on their local data for E epochs and
returns the model updates. The global model is then updated using the following:

1N Ty

wg =Y Wk (42)
k=1

where 1y represents the size of the local dataset at client k, n denotes the total dataset size,

and w}, represents the local model parameters at round ¢. This vanilla implementation

differs from EdgeGuard in several key aspects:

*  No quality-based weighting of client updates.

*  No reliability assessment of participating devices.
*  No blockchain-based security mechanisms.

*  No differential privacy protections.

Both EdgeGuard and the Fed Avg baseline were implemented using the same optimiza-
tion framework to ensure a fair comparison. The optimization configuration incorporates
SGD with momentum as the base optimizer and includes additional enhancements such as
cosine annealing for learning rate scheduling and gradient clipping to improve training
stability. Table 3 provides a comprehensive list of all parameters used in our experiments,
including the detailed optimization configuration that was previously omitted.
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Table 3. Simulation parameters.

Parameter Value
System Configuration

Number of Edge Devices 50-500
Number of IoMT Sensors 100-2000
CPU Cores per Server 40
RAM per Server 128 GB
GPU Memory 32 GB
Federated Learning Parameters

Train/Test Split 80:20
Local Epochs 10-50
Batch Size 64
Communication Rounds 1-300
Client Selection Rate 0.8

Malicious Devices

{10%, 20%, ..., 50%}

Optimization Parameters

Base Learning Rate 0.01

Optimizer SGD with Momentum (8 = 0.9)
Learning Rate Scheduler Cosine Annealing
Weight Decay 1x 1074
Gradient Clipping 1.0

Early Stopping Patience 10 epochs
Momentum 0.9

Blockchain Parameters

Block Generation Rate (1) {0.1,0.3,0.5,0.7}
Consensus Algorithm Proof of Work
Gas Limit 6,721,975

Block Time 15s

Smart Contract Version Solidity v0.8.0
Network Parameters

Bandwidth Range 1-10 Mbps
Latency Range 10-100 ms
Packet Loss Rate 0.1-1%
Network Topology Star

Dataset Configuration

Training Set 80%

Validation Set 10%

Test Set 10%

Time Window 24 h

Sampling Rate 5 min

Security Parameters

Differential Privacy & 0.1-1.0

Privacy Budget & 10>
Encryption Method AES-256

Key Length 2048 bits

5.3. Evaluation and Simulation Results

We tested EdgeGuard on the MIMIC-III dataset in a simulated IoMT environment.
Our evaluation focused on model accuracy, communication efficiency, security robustness,

and resource utilization in four key aspects.

The experimentation environment maintains consistent conditions for both implemen-

tations, utilizing the MIMIC-III dataset with identical preprocessing steps and evaluation

metrics. This setup ensures a fair comparison while highlighting EdgeGuard’s enhanced

security and efficiency features.
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5.3.1. Model Accuracy

Figure 2 presents how the accuracy of the model converges to rounds of communication
in EdgeGuard compared to standard federated learning (FedAvg) and a centralized approach.

This resulted in an average test error of 94.3%, which was higher than that of Fed Avg
at 91.7% and closer to the 95.5% error rate achieved by a centralized approach. The adaptive
aggregation mechanism contributed to faster convergence toward this higher final accuracy
in the federated setting.

100
< i
K A
g 90
-
5
S
<
g 80 —&— EdgeGuard
§ —— FedAvg
Centralized
70 | | | | I I

| | |
0 20 40 60 80 100 120 140 160 180 200
Communication Rounds

Figure 2. Model accuracy convergence.

5.3.2. Communication Efficiency

Figure 3 shows the total amount of data transferred during the training process for
different numbers of edge devices.

100

I I
—&— EdgeGuard
80 |—=— FedAvg

60

40

Total Data Transferred (GB)

| | | | | | | |
50 100 150 200 250 300 350 400 450 500
Number of Edge Devices

Figure 3. Communication efficiency.

EdgeGuard outperformed Fed Avg in terms of communication efficiency, cutting the
overall amount of data sent by as much as 30%, especially as the number of edge devices
rose.

5.3.3. Security Robustness

Figure 4 illustrates EdgeGuard’s performance under varying percentages of malicious
nodes for different types of attacks.

EdgeGuard maintained an accuracy of over 90% even with up to 40% of the nodes
being malicious, demonstrating strong resilience against data poisoning, model poisoning,
and Sybil attacks.
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Figure 4. Security Robustness Under Different Attacks.

5.3.4. Resource Utilization

Table 4 presents the average resource utilization per edge device type during training.

EdgeGuard showed effective resource management across a variety of device types.
Compared to standard federated learning, the integration of blockchain activities resulted
in an average 15% increase in energy usage. However, a decrease in communication over-
head made up for this. To summarize, EdgeGuard outperformed conventional federated
learning in terms of model correctness, communication effectiveness, and security robust-
ness while exhibiting tolerable resource use increases. The adaptive methods of the system
demonstrated efficacy in preserving performance in adversarial IoMT scenarios while
optimizing resource utilization among heterogeneous edge devices.

Table 4. Resource utilization.

Device CPU (%) RAM (GB) Network (MB/s) Energy (Wh)
E1 78.5 3.2 0.8 12.6
E2 65.3 6.1 1.2 20.1
E3 52.1 11.8 15 28.5

6. Conclusions

In this paper, we present EdgeGuard, a unique architecture that improves federated
learning in IoMT contexts in terms of security, efficiency, and speed. Through EdgeGuard’s
integration of blockchain technology and adaptive federated learning, data privacy and
integrity are guaranteed across distributed edge devices. Our analysis reveals that Edge-
Guard resists up to 40.05% of malicious nodes while achieving a model accuracy of 94.34%,
surpassing typical techniques by 2.68%. It also optimizes resource utilization in IoMT
scenarios by reducing communication overhead by 30.67%. Coupled with proof of work
consensus and differential privacy approaches, the framework’s adaptive aggregation
mechanism provides a robust defense against various threats and ensures the protection
of patient data. Thus, EdgeGuard offers a complete solution for machine learning in de-
centralized healthcare ecosystems that is safe, effective, and privacy-preserving, greatly
advancing the development of reliable Al-driven healthcare applications.
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Abstract: Edge, fog, and cloud computing provide complementary capabilities to enable
distributed processing of IoT data. This requires offloading mechanisms, decision-making
mechanisms, support for the dynamic availability of resources, and the cooperation of
available nodes. This paper proposes a novel 3-tier architecture that integrates edge,
fog, and cloud computing to harness their collective strengths, facilitating optimised
data processing across these tiers. Our approach optimises performance, reducing en-
ergy consumption, and lowers costs. We evaluate our architecture through a series of
experiments conducted on a purpose-built testbed. The results demonstrate significant
improvements, with speedups of up to 7.5 times and energy savings reaching 80%, under-
lining the effectiveness and practical benefits of our cooperative edge-fog-cloud model in
supporting the dynamic computational needs of IoT ecosystems. We argue that a multi-tier
(e.g., edge-fog-cloud) dynamic task offloading and management of heterogeneous devices
will be key to flexible edge computing, and that the advantage of task relocation and
offloading is not straightforward but depends on the configuration of devices and relative
device capabilities.

Keywords: edge computing; fog computing; cloud computing; device-enhanced edge

1. Introduction

Cloud computing, despite its widespread adoption, struggles to satisfy the latency
and bandwidth demands of IoT applications, necessitating the integration of edge and
fog computing to complement cloud capabilities [1,2]. These paradigms, by situating
computation closer to data at the network’s edge, address latency and bandwidth issues
and foster a cooperative dynamic among edge, fog, and cloud layers [3,4]. In this synergy,
the device-enhanced edge model enables utilising idle computational resources of IoT
devices themselves [5]. This approach not only alleviates the pressure on traditional edge
servers but also promotes flexibility and resource efficiency. But the deployment of a
cooperative device-enhanced edge-fog-cloud architecture presents significant challenges,
including task allocation across heterogeneous resources, dynamic node availability, and
maintaining Quality of Service (QoS).

Building upon the Honeybee model [6], we propose an integrated architecture
for coordinating resources across edge, fog, and cloud tiers, and empirically evalu-
ate its efficacy. This paper aims to investigate the following research questions within
this architecture:

*  RQI1: How does node collaboration across edge, fog, and cloud layers impact overall
task performance?
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*  RQ2: How does adjusting task-sharing parameters affect the system’s behaviour?
*  RQ3: How can dynamic node availability, where heterogeneous nodes may leave or
join without prior warning, be handled in a cooperative edge, fog, cloud setting?

Our contributions include a conceptual architecture for dynamic edge-fog-cloud col-
laboration, the development of a real-world prototype, and an empirical evaluation demon-
strating the approach’s effectiveness in a physical testbed.

The paper is organised as follows: Section 2 outlines the background and motivation
for our architectural approach. Section 3 reviews related work in computation offloading.
Section 4 details the Honeybee architecture and its enhancements. Section 5 presents
our experimental evaluation, followed by conclusions and future work directions in
Section 7.

2. Background and Motivation

The edge-fog-cloud architecture is commonly envisioned as a 3-layered model [7-9].
In this model the edge layer is at the bottom and directly connected to end-user IoT devices,
the middle tier is composed of fog nodes, and the cloud layer is at the top, as shown
in Figure 1. There are other interpretations of how the interactions between edge, fog,
and cloud may occur [10], and this paper follows the model in Figure 1. In this paper,
we envision a computing architecture where the IoT devices themselves are utilised as
edge resource providers. The idea of a collection of end-user IoT devices collaboratively
working as a collective computing resource has been explored in the literature under
various terms, such as ‘mobile device clouds’ [11], ‘mobile edge-clouds’ [12], human-
driven edge computing [13], ‘collaborative multi-device computing’ [14], ‘mobile crowd
computing’ [6] and ‘device-enhanced multi-access edge computing’ [5] (device-enhanced
MEC). In this paper, we use the term ‘device-enhanced MEC’ to refer to the bottom tier of
Figure 1, which provides edge computing services to end-user IoT devices.

Cloud Tier
with hundreds
of data centres

I Fog Tier
ﬁ with thousands
Fog Servers 1 of nodes

Device-enhanced
Edge Tier
with millions of
nodes

Figure 1. A 3-tier architecture for device-enhanced edge, fog, and cloud computing. End-user IoT
devices such as smartphones, drones, and robots are integrated as edge resources, forming a local
collective resource, and work collaboratively with conventional edge, fog, and cloud servers.

As shown in the aforementioned research, integrating end-user IoT devices to the edge
tier as resource providers can provide performance gain, energy savings, and increased
resource utilisation and availability. However, when considering real-life constraints, the
co-cooperation amongst device-enhanced edge, fog, and cloud layers becomes essential.
We illustrate this in the motivating scenario illustrated in Figure 2.
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Local Edge server
at home

Driving Medical Clinic
WiFi link
/ Cloud /;/
/ Fog servers  Servers Fog servers Cloud Dewce-to Device Link
servers | emmeee- >
Base stations with Edge servers L ~~~~~ Cellular Link
ocal Edge server .
J & famil ber in thei At the clinic
ane & family member in their car Doctors tablet

Figure 2. Scenario showing how different contexts require collaboration amongst resource nodes at
edge, fog, and cloud tiers.

Here, Jane, has a medical condition which requires her to use a wearable device for
constant monitoring of health data. The application QoS requirements in this case include
near-real-time response time, a particular level of accuracy, high availability, and secure
handling of Jane’s sensitive medical data. She is also concerned about the battery drain of
her mobile device and data access fees.

The wearable device sends the sensor data to her smartphone for analysis which
is not powerful enough to run the Al algorithms required to process this high-velocity
stream of data continuously. Hence, this application requires the support of external
resources to provide accurate and timely results. Jane’s smartphone has a collaborative
resource-sharing middleware installed, which runs in the background of the smartphone
and the resource nodes, and acts as an intermediary between applications and external
resources. Applications that need external resources connect to available resources through
the middleware.

In Figure 2, when Jane is at home, Jane’s smartphone connects her to a local collective
resource, made up of the collective resources of her family members’ smartphones and her
home edge server to carry out the sensor data processing tasks. In this situation, all of the
participating resource nodes can be considered to be at the edge. Since all of the nodes are
trusted, and connectivity is robust, Jane does not have the need to request the support of
remote servers.

When Jane is traveling in the car with another family member, the local collective
resource is made of just two smartphones-Jane’s and her family member. Since this particu-
lar resource collection does not provide sufficient computing resources to satisfy the QoS
requirements of Jane’s app, she further shares the app workload with a conventional edge
server located at a base station, as well as with fog and cloud servers. In this situation, the
entire workload is not offloaded to the servers, but shared amongst the two smartphones
(which form the local collective resource in this case) as well.

The app workload involves a large amount of data; hence, reducing data transfers
via cellular links is beneficial, due to latency, data access fees, and energy usage. During
the drive, Jane’s smartphone suffers intermittent data connectivity, and so a considerable
amount of work is being supported by the local collective resource, instead of the other
servers. How much work is performed by the two smartphones (the local collective
resource) and the conventional edge, fog, and cloud servers can depend on their availability
and latency, as well as the task scheduling algorithm in Jane’s collaborative resource sharing
middleware. When the cellular data connectivity drops, this can increase the latency of
conventional edge, fog, and cloud servers, impacting their performance. In this case, the
two smartphones should be able to pick up most of the workload.

When Jane is at the medical clinic (rightmost situation in Figure 2), her smartphone
forms a local collective resource with her doctors tablet via D2D and with the clinic edge
server via WiFi. She further shares her work with fog and cloud servers because the doctor’s
diagnostic process requires the app to provide faster performance. As Jane uses the clinic’s
high-speed WiFi to connect to the remote servers, there is no concern of intermittent data
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connectivity or data access fees. In this situation, the fog and cloud servers should be able
to pick up most of the workload due to the availability of high-speed connectivity.

In the three aforementioned contexts described in the scenarios in Figure 2, Jane shared
her work with resource nodes at the device level, edge, fog, and cloud levels in various
degrees. The three situations had different constraints in terms of connectivity, trust and
security, and amount of available resources, yet the application QoS requirements remained
the same. Hence, to continue to meet the QoS requirements, the collaboration across edge,
fog, and cloud needs to adapt dynamically depending on the context.

3. Related Work

Existing surveys on edge, fog, and cloud computing have comprehensively discussed
the synergy between IoT and edge, fog, and cloud computing paradigms, explaining how
edge and fog computing can bridge the gap between IoT and cloud computing by moving
the computation closer to the end-user IoT devices, thereby addressing issues with energy,
latency, and context awareness [4,5,15-18]. Numerous scholarly papers have extensively
addressed diverse facets of edge, fog, and cloud tiers, taken as separate tiers. Specifically,
for device-enhanced MEC, additional complexities need to be considered due to the dy-
namic nature of device-based resource providers and their intrinsic characteristics, such as
distributed ownership, mobility, finite energy, resource constraints, increased proximity
to other device-based resource providers, and Device-to-Device (D2D) communication
capacity [5,15,19-22]. Various aspects of the technical feasibility of the lowest tier of device-
enhanced MEC, where devices such as smartphones function as edge resource providers,
have been demonstrated in frameworks such as MMPI [23], Hyrax [24], MClouds [25],
Aura [26], and Honeybee [6]. However, these existing works have not investigated how
the device-based resource providers can collaborate and share work with nodes at fog and
cloud layers, considering various overheads, impacts on performance, and battery and
various offloading parameters.

As highlighted in a recent work on the convergence of edge, fog, and cloud, only a
few papers have yet investigated the interactions between these three paradigms in a 3-tier
edge-fog-cloud architecture [27]. Below, we discuss related work that has explored this
under-researched area. Here, we only focus on work that has investigated the interactions
and collaborations between at least two of the edge, fog, and cloud tiers, and do not
consider work that only focuses on one tier.

One of the first papers to explore edge-fog-cloud collaboration is Flores et al. [20],
who proposed the HyMobi framework, which allows a mobile application to interoperate
between device-enhanced MEC, fog, and cloud tiers. HyMobi has an incentive mech-
anism based on credit and reputation, and allows users to lease the resources of their
devices as an open commodity in the edge tier, exploiting the social characteristics of the
devices to form offloading communities. The effectiveness of HyMobi is demonstrated
via a proof-of-concept implementation and a testbed, evaluating the performance and
energy consumption of mobile applications and infrastructure awareness in a social-aware
environment. However, the performance results are not explored thoroughly with different
edge-fog-cloud combinations. Other papers that discuss all three tiers of edge-fog-cloud
include [21,28,29]. In [21], a task can be offloaded to either edge, fog or cloud, or executed
on the device itself; however, no collaboration amongst the tiers is mentioned. Although the
algorithm in [28] can be applied to all three layers of edge-fog-cloud to reduce latency and
power consumption, the paper only considers the fog layer. In [29], a Min-Min algorithm,
considering cost, makespan, energy, and load balancing, is used to schedule tasks amongst
the edge-fog-cloud tiers.
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The coordination of work offloading amongst the edge and cloud tiers is discussed
in [22,30,31]. In [22], the authors propose the HyFog framework, which considers interac-
tions between device-enhanced MEC and cloud, and allows devices to choose the execution
mode among local mode, D2D mode, and cloud mode. Simulations show that HyFog's
three-layer graph-matching algorithm-based solution is able to minimise the power con-
sumption while ensuring latency requirements. However, there is no discussion about
adapting to dynamic conditions, such as device mobility. In comparison, refs. [19,32]
only consider collaborated work offloading inside the device-enhanced MEC layer itself,
between the devices as resource providers and the conventional edge server/s.

Offloading in hybrid fog/cloud systems is discussed in [33-35]. In [33], the authors
present a scheme for the joint optimisation of transmit power control, computation and ra-
dio bandwidth allocation when offloading in hybrid fog/cloud systems, while guaranteeing
user fairness and maximum tolerable delay. In [34], Zahoor et al. present a cloud-fog-based
architecture in the context of a smart grid. The authors discuss simulation results of using
round robin, throttled, and particle swarm optimisation algorithms to schedule requests
from devices such as smart meters on the VMs of a fog-cloud architecture. However, it
is unclear if there is any collaboration amongst the fog-cloud tiers. Kumar and Karri [35]
present the EEOA (electric earthworm optimisation algorithm) for efficient resource assign-
ment and work scheduling amongst fog-cloud tiers, considering the makespan, cost, and
energy usage. Simulation results show that in many cases, the proposed EEOA performs
better than alternative methods.

Opverall, few papers have considered collaboration amongst all three tiers of edge-fog-
cloud [20,21,28,29]. However, amongst all the papers considered in this section, only [20]
has used an actual test bed without solely depending on simulations. Although important,
simulations lack real-world variability, and do not always capture emergent behaviours
arising from the interactions of various components in the edge, fog, and cloud tiers.
Only work reported in [19,20,22,29-32] has provided clear evidence of supporting inter-
tier interactions and collaborations, and a majority do not discuss support for dynamic
conditions. In this paper, we address the gaps highlighted above.

4. An Architecture for Edge-Fog-Cloud Offloading

This section introduces our architecture for supporting inter-tier collaboration amongst
edge, fog, and cloud tiers in a device-enhanced MEC context. We have chosen to extend and
build on the Honeybee framework since it is open-source, supports proactive worker-centric
offloading, and has automatic load-balancing and fault-tolerant mechanisms. Honeybee
has also been extended in other work to work with drones [36], robots [37] and dependency-
based task scheduling [38], showing its extensibility.

The Honeybee framework (https:/ /github.com/niroshini/honeybee, accessed on 18
December 2023) is an Android implementation of the Honeybee mode [6,39], and enables
the formation of mobile edge clouds, via peer-to-peer (P2P) connections using Wi-Fi Direct.
In the Honeybee model, the device with the task to be completed is called the ‘delegator’.
The original task is first decomposed to a pool of jobs, and then is offloaded to “‘worker’
devices in the vicinity, while also carrying out a portion of the jobs by itself. Honeybee’s
task-scheduling algorithm is based on work stealing [40] to automatically load-balance
the jobs amongst the delegator and the workers. The workers must proactively request
to ‘steal” jobs, and each time the delegator receives a steal request, it will respond to the
requesting worker with a chunk of jobs. In this way, faster workers are able to steal more
and more jobs, thus avoiding performance bottlenecks with faster nodes having to wait
for slower nodes. The Honeybee model is also able to handle random disconnections
as well as exploit random resource node encounters. To address the critical aspect of
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incentivising participation of workers, we have previously explored the socio-technical
requirements and engineering challenges of this paradigm, identifying effective incentive
mechanisms [41]. Our findings provided insights into aligning user motivations with
application goals through both intrinsic-social and extrinsic-personal incentives, ensuring
sustained engagement while mitigating resource depletion concerns. However, in this work,
we do not focus on the design of incentive structures, instead assuming that appropriate
mechanisms are already in place across the edge, fog, and cloud layers to support inter-tier
collaboration. In this paper, we build on the Honeybee model to extend the cooperative
work-stealing mechanism beyond the original Honeybee’s local device cloud. We have
extended the Honeybee delegator to be able to simultaneously maintain connections with
multiple P2P edge servers via Wi-Fi Direct, as well as fog and cloud servers via the LAN
and the internet, respectively. The Honeybee worker component has been extended to
include support for Java implementations on fog and cloud servers. While our previous
work [38] extended the Honeybee framework to support sequential dependency tasks, this
study does not utilise the dependency-enabled extension, as it lies beyond the scope of the
present investigation. Figure 3 shows a high-level view of the architecture of the extended
framework for Edge-Fog-Cloud collaboration.

Honeybee Worker(s) Honeybee Worker(s)
Fog server(s) 'E'E'lz*tfﬂ Cloud server(s)
l - Jelegalo _ Results/Mess
Results/ Delegator device
] Messages 9 Job data/
Messages
LAN Jobdata/  Results/ | | Job data/ Internet
Messages  Messages| gMessages
Wi-Fi
Direct
X
[ T

[

Honeybee Worker(s)

P2P Worker device(s)
- Edge server(s)

Figure 3. The edge-fog-cloud collaborative architecture.

Algorithms 1-4 provide an overview on how resource nodes at the edge, fog, and
cloud collaboratively work on a distributed set of jobs. As shown in Algorithm 1, the
delegator first initialises the job pool and starts consuming the jobs (for processing), while
concurrently, it also starts the resource discovery threads for edge, fog, and cloud workers.
Algorithm 3 describes the generalised periodic resource discovery thread. The delegator
spawns three instances of this thread for workers at the three tiers of edge (W,), fog
(Wg), and cloud (W). Each tier uses communication protocols applicable for that tier.
Each instance of the three resource discovery threads operates independently, discovering
resources specific to the worker type. Whenever a worker node is discovered, the system
attempts to establish connections with them, via WiFi-Direct (for P2P edge), LAN (for
fog), and internet (for cloud). Upon connecting, each worker will attempt to ‘steal” from
the delegator’s job pool (see Algorithms 4 and 5). Whenever a worker’s share of jobs is
completed, it will send the results to the delegator, and without waiting to be assigned jobs,
will proactively attempt to ‘steal” jobs from the delegator.
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Algorithm 1 Delegator’s main thread

1:

O 0 N O U W N

_
=}

Input: Job pool J = {j1,/2,...,jn} where n > 0, delegator d, edge workers W,, fog
workers Wf, cloud workers W,

: Output: Completed jobs J¢, initially Jc¢ = @
. Initialise J to ensure J # @

: Start delegator’s job consumer thread T, .,

: Start Ty comedge for edge workers

: Start Ty comrog for fog workers

: Start Ty comciond for cloud workers

: while 7\ Jc # @ do

T con consume J
Update J ¢ with results from T; .,

: end while

Algorithm 2 Delegator’s job consumer thread

=
(=]

R B A R o

: Input: 7 = {j1,j2,. .-, jn}t, n >0,d,W,, Wy, We
: Output: Jc

.LetW:WgUWfUWC

: while 7\ Jc # @ do

if 7 # @ then

Consume J

Update Jc
else Steal from a worker in W > Traverse workers in connection order
end if

- end while

Algorithm 3 Delegator’s periodic resource discovery thread for worker type W

O XN D ey

_
=}

: Input: Worker type W € {W,, Wf, W, }; Communication protocol Comm
: Output: Established connections stored in a ConcurrentHashMap M
: Initialise M as an empty ConcurrentHashMap

while resources are periodically discovered for W do
for each worker w € W do
Open socket connection using protocol Comm
Create a ClientSocketThread instance for w
M {w] < ClientSocketThread instance
Start a communication thread for w > Algorithm 5
end for

: end while

Algorithm 4 Worker’s main thread

_ s e
@ NP

RS BN L i S

: Input: Worker job pool Jy, initially [J;, = @, Stolen jobs Js, d
: Output: Worker’s completed jobs J ¢y, initially Jcyy = @
: Initialise: work_ongoing « true

while work_ongoing do
if Js # @ then
Jw +— T U Ts
while 7, # @ do
Consume Jy
Update J ¢y and send to d
end while
else Steal from d
end if

: end while
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Algorithm 5 Delegator’s communication thread for each worker

O e N o S R N T T
S0 XN D2

21:
22:
23:

: Input: Worker w, job pool J, connection map M
: Output: Updated 7, completed results Jc

: Retrieve w’s connection details from M

: Send init_signal to w

: while read # @ do

m <— read > m: received message
if m = steal_request then
Send no_jobs_left if 7 = @, else start victim thread T ,;
else if m = results then
Jc + JcUnew results > Store results
if 7 C Jc then
Execute on_task_completed
end if
else if m = stolen_jobs then
J < J Ustolen jobs; start job consumer thread Ty .,
else if m = no_jobs then
Mark w as idle
if expired jobs # @ then
J + J Uexpired jobs
end if
else if m = worker_heartbeat then
Update w’s status in M
end if

24: end while

Algorithm 5 manages all communication between the worker node and the delegator

node. This includes handling job-stealing requests, processing completed results, dele-

gator functioning as a victim when a worker steals jobs from the delegator (described in
Algorithm 6), expiring the oldest jobs (detailed in Algorithm 7), and sending termination
signals upon task completion (detailed in Algorithm 8).

Algorithm 6 Delegator’s victim thread

1: Input: Job pool J, steal limit L,, chunk size C;
2: Output: Stolen job list J's

3: Initialise Js + @

4 if J # @ then

5. if |J| > L, then

6: job < get firstjob in J

7: end if

8:  while job # null do

9: Js < JsU{job} > Add job to stolen list
10: if | 7| < L; then
11: break
12: end if
13: if | Js| > C; then
14: break > Steal chunk size is constant across all workers
15: end if
16: job < getnextjob in [J
17: end while
18: end if

19: Transmit J's to worker
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Algorithm 7 Delegator’s job expiration method

: end if
: return Jexpired

Input: Pending results list R

1
2: Output: Expired jobs Jexpired
3: Initialise jexpired — Q@

4 if R # @ then

5:
6
7
8

Select worker w,, with the oldest pending jobs from R
jexpired + pending jobs of w,y

Algorithm 8 Delegator’s on_task_completed method

Input: Connection map of all connected workers M
Output: Task completion signal sent, all connections closed
for all connected workers w € M do

Send termination_signal to w

Close connection with w
end for

Over the course of program execution, any participating device can assume both roles

of thief and victim. Hence, the worker can ‘steal” from the delegator and the delegator can

also ‘steal” from workers if its own job pool is empty, but the task is not yet completed (see

Algorithm 2). When a device receives a steal request, depending on its available job queue,

it can decide to become a victim (see Algorithm 6). The victim then removes a Cs number

of jobs (i.e., a chunk) from its own job list, and transmits them to the thief. The chunk size,

Cs, defines the number of jobs a node can steal at a time. It is set as a small percentage of

the total job count to minimise loss and enable easy reassignment if the worker disconnects.

Stealing decisions: When the delegator steals from workers, workers are traversed
sequentially in the order they connected to the delegator. The delegator attempts
to steal jobs from each worker until successful or until all workers have been tried.
Workers can only steal from the delegator due to an implementation constraint in
peer-to-peer (P2P) connection protocols. In technologies such as Bluetooth and Wi-Fi
Direct, only a star topology is supported, not a mesh. As a result, P2P connections
between workers are not feasible.

Conflict avoidance: The delegator maintains a synchronised lock on the job pool
J during job allocation to prevent race conditions. This ensures that jobs are not
simultaneously assigned to multiple workers.

Complexity and overhead: The sequential worker selection ensures that worker
traversals are O(n), where n is the number of connected workers. Locking and job
allocation operations remain O(1), ensuring low overhead for each steal request.
Fault tolerance: Worker heartbeats and job expiry are two main fault tolerance mecha-
nisms in the framework. Each worker periodically sends a ‘heartbeat’ signal to the
delegator to indicate its availability (see Algorithm 5). Other communications, such
as job results, are also considered as heartbeats. If no heartbeat is received from a
worker for a pre-determined consecutive interval, the delegator deems the worker as
disconnected, and their assigned jobs are returned to the job pool for reassignment. If
a job remains uncompleted beyond a predefined expiry time, it is marked as ‘expired’
and returned to the job pool, allowing other nodes, including the delegator, to process
it (see Algorithms 5 and 7). The delegator invokes the job expiry mechanism only after
its own job queue is exhausted and a steal attempt fails, ensuring efficient resource
utilisation while preventing indefinite delays.
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This proactive design lends itself for more opportunism as the availability and re-
sourcefulness of each worker is unknown a priori, and subject to change any time [6]. For
example, a worker’s availability can be impacted if/when a worker node receives a call
while it is participating in task execution, or if its location changes due to the owner moving
away. This process continues until the pool is exhausted, or until a worker disconnects.
The resource discovery threads are periodic; hence, potential workers can join at any point
in time.

4.1. Upper and Lower Bounds for Speedup

In this section, extending previous work in Honeybee [6], we formulate theoretical
upper and lower bounds to analyze the best- and worst-case speedup scenarios within a
device-enhanced edge-fog-cloud computing architecture.

We assume that a given edge-fog-cloud computing environment consists of x P2P
edge nodes, including the delegator, y fog workers, and z cloud workers, where x, y, z are
non-negative integers.

Let us denote each node in the device-enhanced edge layer as 7., where 1 <i < x.
The delegator is denoted as n,,. Each fog worker is denoted as n fir where1 <j <y, and
each cloud worker is denoted as 1., where 1 <[ < z.

The time taken to complete m jobs on the delegator 7., is denoted as t.,. The time
taken for an edge worker 1., to receive, complete, and return results for m jobs is denoted as
te,, where i > 1. Hence, the relative computational power of an edge worker 7, compared
to the delegator 7., can be given as:

ik, M)
te,

Similarly, the time taken for a fog server 1y, to complete and return results for 1 jobs
is denoted as tf,, and for a cloud server ,, as t,. The relative computational powers of fog
and cloud workers compared to the delegator 1, can be represented by constants ky, and
k,, respectively:

t

fi _

b ky, ()
fe,

tel - kC] (3)

The parameters k,;, k fir and k., introduced in Equations (1), (2), and (3), respectively,
serve as indicators of the relative efficiency of task execution by worker nodes in comparison
to the delegator. Specifically, a value of k < 1 signifies that the worker node, be it within
the edge, fog, or cloud tier, can process and return the results of the assigned tasks more
expediently than the delegator performing the same tasks in a monolithic manner. This
computational advantage highlights the potential benefit of offloading tasks to worker
nodes with k < 1. Conversely, a value of k > 1 suggests that task offloading may not yield
substantial speedups, as the worker node does not demonstrate a computational speed
advantage over the delegator.

Even when k > 1, indicating a worker’s lower computational power compared to
the delegator, offloading can still enhance overall performance. This improvement arises
because the delegator and workers operate concurrently, increasing total system throughput.
Essentially, the collective output of all computing nodes, despite individual limitations, can
contribute to achieving speedup. Thus, the decision to offload tasks should consider the
system-wide contribution, highlighting the importance of a holistic approach in optimising
the edge-fog-cloud architecture’s efficiency.
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It is important to note that the relative computational power indicators ke, k,, and k,
are assumed to be constant for the purposes of this theoretical analysis. This simplification
is intended to provide a tractable baseline for deriving upper and lower bounds on speedup.
In practice, these indicators may vary dynamically due to fluctuations in network traffic
(e.g., WLAN, LAN, and internet) and the computational load on worker devices, especially
edge devices with constrained resources. These variations can influence task completion
times and, consequently, the speedup achieved in real-world scenarios.

4.1.1. Best-Case Scenario

Deriving from [6], only considering the P2P edge workers, assuming jobs of equal
computational complexity and ignoring overheads, the upper bound for speedup can be
given as:

X /1
Supper =1+ Z (k> (4)
i=2 \ "€

This formula illustrates the ideal scenario where the combined effort of all devices
maximises the task processing speed. Realistically, it should be noted that given the
presence of overheads and the variability in job sizes, the realised speedups are likely to
fall below this theoretical maximum.

Incorporating the fog and cloud workers, the updated formula for the upper bound
for speedup becomes:

Sur =14 351 z<kf) () ®

i=2 =1

4.1.2. Worst-Case Scenario

The lower bound for speedup is formulated, extending from [6], for edge, fog, and
cloud workers as follows.

We consider the worst-case scenario where the collective capability of the worker
devices across the edge, fog, and cloud tiers is significantly less than that of the delegator.
This scenario might occur due to high network latency, worker unavailability, or extremely
weak workers.

In such situations, the delegator undertakes the parallelised task execution without
the assistance of any worker nodes, incurring overheads, including costs related to task
parallelisation and ongoing worker search efforts, as well as communication costs across
the edge, fog, and cloud layers.

The utmost job completion time, tyorst, is represented as:

tworst = tm + Cedge + Cfog + Ccloud T Cedge + €fog + €cloud

Under these assumptions, the lower bound for speedup can be given as:

tm
Slower > (6)
tm + Cedge + Cfog + Celoud T Cedge + €fog + €loud

This formulation reflects the minimal speedup achievable under adverse conditions.

5. Experimental Evaluation

An image processing task (face detection) was chosen as the computational task to
be shared amongst the nodes. The job pool on the delegator consists of 1000 unique
PNG images at 1024 x 1024 resolution, obtained from the FFHQ dataset (https:/ /github.
com/NVlabs/fthg-dataset, accessed on 4 March 2024). We selected images starting from
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filenames 66000.png to 66999.png. The mean image size was 1.3 MB, with a median of
1.31 MB and a standard deviation of 0.161. The images were stored in the delegator device
at the start of each experiment. The nodes used for the experiment are given in Table 1.
These devices represent a range of computational capacities across the edge, fog, and cloud
layers. The Moto G5S Plus (D1) represents a constrained edge device typical in IoT setups,
while the OnePlus 6 (D2) demonstrates a more powerful edge environment. The Dell
Inspiron 5502 (F1) serves as a fog server, representing resource-rich devices for intermediate
computation and the AWS EC2 t3.xlarge instance (C1) exemplifies a high-performance
cloud resource for centralised processing. These choices demonstrate the applicability
of our approach to devices across a wide spectrum of computational capacities, from
constrained edge devices to powerful cloud resources.

All results were obtained from experiments conducted on the specified physical
devices, ensuring a realistic evaluation of the system’s performance. No simulations were
used. The aims of each experiment and related RQs are given in Table 2. Each experiment
was conducted five times, and the results were averaged to ensure statistical reliability. The
network capacity and latency details for the three different edge-fog-cloud tier networks in
the experiments are given in Table 3.

Table 1. Specifications of the delegator and worker nodes.

Node CPU RAM (o1

Moto G5S Plus (D1) Qualcomm MSM 8953 Snapdragon 625 4GB Android 8.1

Oneplus6 (D2) Qualcomm SDM845 Snapdragon 845 8 GB Android 11

Dell Inspiron 5502 (F1) 11th Gen Intel(R) Core(TM) i7-1165G7 @2.80GHz 1.69GHz 16 GB Microsoft Windows 10
Pro (x64)

AWS EC2 instance t3.xlarge  4vCPU upto 3.1 GHz Intel Xeon Platinum Processor 16 GB  Ubuntu Server 20.04 LTS

(Cx where x € [1..12])

Table 2. Experiment overview.

Experiment Aim RQ

1,2,3,4,5,6,9 Compare the performance of the system when there are multiple con- RQ1
figurations of edge, fog, cloud nodes, with heterogeneous platforms,
capacities, connection protocols, working together

7 Investigate the impact of task sharing configuration parameters inan  RQ2
edge, fog, cloud collaboration setup

8,10 Investigate the impact of dynamically adding/removing or slowing RQ3
down worker nodes

Table 3. Network capacity and latency details for different network types.

Network Type Latency Range (ms) Bandwidth (Mbps)
P2P Edge (Wi-Fi Direct-based) 5-10 50-100
Fog Server (LAN-based) 5-30 100-150
Cloud Server (Internet-based) 200400 30-50

5.1. Experiment 1: Baselines

This experiment examines the computational capacities of each worker node in com-
parison to the delegator. This sets the baseline values to understand the performance gains
and battery usage for the later experiments. The delegator first executes the entire task
monolithically (the ‘monolithic version’ refers to the task without any of the parallelising
components). Next, the delegator offloads the entire task to each worker, and each node
processes the entire task sequentially. Two sets of baseline experiments are carried out:
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(1) D1 as delegator, with D2, F1, and C1 as workers, and (2) D2 as delegator, with D1, F1,
and C1 as workers. The speedup metric, denoted as S, provides the relative performance
gain achieved through offloading compared to monolithic execution. Table 4 shows the
results of this study. Note that Avg. Tr. time denotes the average transmission time per job
in the table. This includes all associated communication delays, such as the propagation
time, any network routing or switching delays, and job preparation and acknowledgment
processing at both ends. Battery % indicates the battery usage of the delegator during the
execution of the experiment. This was measured by recording the battery percentage of
each device just before the experiment started and immediately after it ended.

Table 4. Experiment 1: Baseline experimental results for each worker with D1 and D2 as delegator.

D1 as Delegator D2 as Delegator
Node S Battery (%) Avg Tr. Avg Total S Battery (%) Avg Tr. Avg Total
Time (ms) Time (ms) Time (ms) Time (ms)
Delegator N/A 17.60 N/A 3,900,012 N/A 8.99 N/A 1,042,548
Fog 2.70 4.00 797 1,446,771 0.85 5.60 627 1,043,236
Cloud 1.43 8.39 1948 2,725,512 0.56 7.39 1286 1,674,836
Edge 2.57 5.20 184 1,515,956 0.17 23.60 2002 6,089,051

With D1 as delegator, the results indicate that D2, F1, and C1 exhibit speedup factors
of approximately 2.57, 2.70, and 1.43 over D1, respectively, Note that this comparative
performance takes transmission delays into account. This is why even though the fog (F1)
and cloud (C1) nodes may be computationally more resource rich than the P2P edge node
(D2), the overall performance in D1’s perspective is less than D2. As can be seen from the
battery usage on D1, offloading significantly reduces D1’s battery consumption, even with
the additional communication costs.

With D2 as delegator, F1's speedup (0.85) is only slightly lower than D2’s monolithic
execution, but C1 demonstrates a marked decrease in speedup with S = 0.56. Despite C1
having significant computational power, due to latency issues that are well known with
cloud computing, jobs offloaded to C1 take more time to return results. Finally, the P2P
edge node (D1) is the slowest, with S = 0.17. This is due to D1 being significantly less
powerful than D2 (see Table 1).

5.2. Experiment 2: Delegator and P2P (Edge)

In this experiment, the delegator D1 collaborates with a peer-to-peer edge device
D2. Comparative analysis indicates that D2 operates at a rate 2.57 times faster than
D1, as detailed in Section 5.1. D2’s superior computational capacity compared to D1 is
further demonstrated by D2 executing approximately 2.6 times as many jobs as D1. This
performance discrepancy is clearly depicted in Figure 4a. Hence, this configuration achieves
a speedup of 3.59, as documented in Figure 4b. The average task completion time for this
experiment was 1,084,998 ms.

5.3. Experiment 3: Delegator and Fog

In this experiment, D1 cooperates with F1 to complete the jobs together. This results
in a speedup of 3.76, as seen in the Figure 4b. This is also due to the fact that F1 is more
powerful than D1, as evidenced by the number of jobs completed by each node, as seen in
Figure 4a. The average task completion time for this experiment was 1,038,146 ms.
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Figure 4. Results for Experiments 2-6 and 9. (a) Jobs completed by each node for Experiments 2-6,9.
(b) Speedup gains and battery usage for varying node configurations.

5.4. Experiment 4: Delegator and Cloud

Here, D1 shares the workload with Cl1, resulting in a speedup of 2.48, as seen in
Figure 4b. Node C1 is more powerful than the delegator D1, as evidenced by the number
of jobs completed by each node in Figure 4a. The average task completion time for this
experiment was 1,571,844 ms.

5.5. Experiment 5: Delegator, Fog, and Cloud

In this experiment, the delegator (D1) is collaborating with both F1 and C1. As can be
seen from from Figure 4b, this results in a speedup of 4.85. The average task completion
time for this experiment was 803,566 ms.

5.6. Experiment 6: Delegator, P2P, Fog, and Cloud

In this experiment, a comprehensive 3-tier configuration, comprising a P2P edge device
(D2), a fog server (F1), a cloud server (C1), and the delegator (D1), collaboratively processes
the tasks. This integrated architecture achieves a significant speedup of approximately 7.5,
as documented in Figure 4b. The average task completion time for this experiment was
514,485 ms. D2 and F1, being the fastest workers, are able to complete almost two-thirds
of the total jobs (Figure 4a). Figure 5 illustrates the cumulative number of jobs completed
(y-axis) over time in milliseconds (x-axis) for each node (D1, D2, F1, C1). The lines represent
the total number of jobs completed by each node at any given point in time. The gap
between the lines provides an indication of how many jobs each device has completed
relative to the others, with a larger gap signifying a higher contribution.
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Figure 5. Time series of number of jobs completed by each node. Experiment 6: Results for D1
working with D2, F1, and C1: Time series of number of jobs completed by each node.
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5.7. Experiment 7: Varying the Chunk Size

Chunk size, defined as the number of jobs dispatched per steal request to a worker,
is a critical parameter within the Honeybee framework for optimising performance. An
excessively large chunk size results in workers incurring substantial wait times for job
reception rather than execution, while an overly small chunk size leads to too many steal
requests, thereby increasing overheads.

The effect of chunk size is notably pronounced when job data are sizeable. In this
paper, the job data are images, with an average size of 1.3 MB. The aim of this experiment is
to calibrate chunk size to enhance performance. Initially, the experiment maintains a fixed
chunk size for D2 and C1 at 5, iterating over various chunk sizes for F1 (see Figure 6b),
which was identified as the most efficient worker in preceding experiments. Subsequently,
the experiment is replicated with D2 (see Figure 6a) given its comparable efficacy to F1 in
job completion.

Speedups for D1 with varying chunk size for D2
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Figure 6. Experiment 7: Varying the chunk size. (a) Speedup gains for the D1 with varying chunk
size for F1 and constant chunk size for nodes D2 and C1. (b) Speedup gain for the D1 with varying
chunk size for D2 and constant chunk size for nodes F1 and C1.

Increasing the chunk size beyond Honeybee’s default of 5 yields performance gains for
F1, with chunk sizes of 15 and 20 emerging as optimal for maximising speedups (Figure 6a).
Nonetheless, augmenting the chunk size beyond these values appears to diminish returns.
Conversely, for worker D2, the default chunk size gives the best speedup (Figure 6b).
This phenomenon can be explained by examining the trade-off between communication
time and job processing. An increase in chunk size results in proportionately longer
job transmission times. Thus, an equilibrium must be struck between the latency of job
arrival—a function of both the data volume per job and the chunk size—and the frequency
of steal requests initiated by the worker. A diminutive chunk size prompts a higher rate of
steal requests, while an excessive chunk size can lead to disproportionate waiting periods
for job arrival relative to the job execution time.

This experiment highlights the need to configure chunk sizes for the different require-
ments for different tiers, as in this case, for fog and P2P edge. Fog servers, with greater
processing power and bandwidth, can handle larger chunks effectively, while edge devices
perform better with smaller chunks, compensating for their limited speed and capacity.

5.8. Experiment 8: Scalability

The results from previous experiments in this section show that adding more workers
leads to increased speedups. However, it can be expected that speedups may eventually
stabilise even if more and more nodes are added, due to the overheads of parallelisa-
tion and transmission costs. In this experiment, we investigate the scalability of adding
more and more workers using instances of similar cloud workers. Starting with one
cloud worker, the number of cloud workers is gradually increased till 12 to test the op-
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timal number of workers for the highest speedups. Figure 7 illustrates the results of
this experiment.
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Figure 7. Experiment 8: Results of scaling up cloud workers. (a) Speedups for delegator D1 with
varying number of cloud workers (1 to 12). (b) Avg. job transmission time (ms) from delegator D1 to
different setups of varying number of cloud workers.

From Figure 7a, it can be seen that the system performance increases with the addition
of cloud workers. However, the returns plateau after five cloud servers. From that point
onwards, the speedups remain stable even though more cloud workers are added. This
can be explained in that having more workers increases the job distribution/transmission
overheads, as illustrated in Figure 7b. With an increasing number of cloud workers, the
average transmission time for a job increases. As long as this transmission overhead is
offset by the benefit of increased computing resources, the system could continue to have
increasing speedups. However, it is evident from Figure 7a that the point of diminishing
returns for this particular setup occurs at five cloud servers. This result with cloud workers
is also consistent with the experimental results for P2P mobile workers investigated in [6],
which highlights that regardless of the type of worker (whether P2P edge/fog/cloud),
there will be an optimal number of workers for a given job setup.

5.9. Experiment 9: Relative Node Capability

In this experiment, the role of the devices D1 and D2 have been switched, so that D2
is the delegator and D1 is a P2P edge worker. When D2 acts as the delegator, and works
with other workers F1, C1, and D1, the jobs can be completed with an average speedup of
2.72, as shown in the node configuration D2*+F1+C1+D1 in Figure 4b. The average task
completion time for this experiment was 382,891 ms. On average, out of 1000 jobs, D2
completed around 400 jobs and is the dominant node, as shown in Figure 4a. It is followed
by F1, which completed around 349 jobs. C1 completed 203 jobs and D1 is the weakest of
all, completing only 48 jobs.

5.10. Experiment 10: Dynamic Changing of the Node Availability

In real-world scenarios, it can be expected that the node availability would change
dynamically. In this set of experiments, the node availability was manually changed to
investigate how well this would be handled by the system by examining the rate of job
completion (how many jobs were completed by each node at a given time). Figure 8
shows the results of this set of experiments. Note that the jobs are not completely identical
(although generally similar), and therefore, the rate of job completion is not a 100% indicator
of how much ‘work” a node would have done, as the processing of some jobs may be more
or less complex than others.
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Figure 8. Experiment 10: Results for D1 working with D2, F1, and C1 under dynamic conditions.
(a) Time series of cumulative jobs completed by the nodes: Slowing down F1. (b) Time series of
cumulative jobs completed by the nodes: Disconnect F1. (c) Time series of cumulative jobs completed
by the nodes: Add new cloud worker.

5.10.1. Degradation of Network (Pausing Node to Emulate Reduced Availability)

We first investigated the impact of a node’s availability being decreased with no prior
warning, by programmatically slowing down F1. This was achieved by pausing F1 for
20 s before working on the stolen jobs once it has completed 150 jobs. As can be seen from
Figure 8a, the rate of job completion of F1 starts to decrease around 220,000 ms. This is
evident in the change of the slope of F1 in Figure 8a. The other nodes’ (D1, D2, C1) rate of
job completion does not appear to have been significantly increased to compensate for F1's
slow down in this instance, although closer inspection reveals a slight uptick of C1’s rate of
job completion. This may have been because although F1 was slowed down, it was still
stealing jobs from the pool. Hence, it may not have given sufficient opportunity for the other
nodes to steal more jobs at a higher rate. This experiment was performed five times, and
the average speedup obtained was 5.873. This can be compared with the average speedup
gained when all the nodes D1, D2, F2, C1 were working with no degradation in Experiment
6, as given in Section 5.6, where the average speedup was 7.582. Although the impact
of the F1’s decreased performance is evident from the reduced speedup, Honeybee’s job
scheduling and load balancing methods were still able to handle the unexpected reduction
in F1’s availability without needing to reconfigure the system parameters.

5.10.2. Degradation of Network (Random Loss of Node)

As the second experiment in this set, we tested Honeybee’s fault tolerance mechanisms
by programmatically disconnecting F1 halfway through the task. As can be seen from
Figure 8b, F1's slope is flat from 250,000 ms onwards. The slopes of D1, D2, F1, and C1’s
curves at the point of disconnection (at t; in Figure 8b) are 2.498,6.142,7.03, and 5.195,
respectively. After another 250,000 ms has elapsed, at 510,000 ms (at ¢, in Figure 8b), their
slopes are 2.496, 6.333, 0, and 5.795, where both D2 and C1 have noticeable upticks in their
rates of job completion. This can be explained by D2 and C1 stepping up to steal more jobs
in the absence of F1. Unlike in the previous experiment shown in Figure 8a, here, the total
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absence of F1 provided an opportunity for the other nodes to engage in increased stealing.
Although the disconnection here was random, Honeybee’s load-balancing mechanisms
were still able to (1) ensure any jobs assigned to F1 were added back to the pool so that job
execution can complete, and (2) seamlessly load-balance the jobs amongst the remaining
nodes automatically without any interventions. This experiment was performed five
times, and the average speedup obtained was 6.421, compared to the average speedup of
7.582, when all nodes were performing without any disconnections, as given in Section 5.6.
Interestingly, the average speedup that was obtained here is actually higher than that of
the 5.873 recorded in the previous experiment in Figure 8a. This suggests that it is more
optimal to have a lower number of nodes with high availability than to have more nodes
with decreased availability.

5.10.3. Adding a New Node Opportunistically

In the third and last experiment in this set, we investigated Honeybee’s ability to
incorporate more resource nodes opportunistically halfway through task execution, and
whether this can provide benefits to overall performance. As can be seen in Figure 8c, the
new cloud worker C2 was added at 260,000 ms. This experiment was performed five times,
and the average speedup obtained was 8.32, compared to the average speedup of 7.582,
when nodes D1, D2, F1, and C1 were performing without any disconnections, as given
in Section 5.6. As can be seen from the job completion curves in Figure 8c, the addition
of the new node C2 has not caused any disruption to the performance of the other nodes.
From the increased speedup obtained here, it is evident that Honeybee can handle the ad
hoc addition of new nodes, and thereby exploit opportunistic node encounters without
requiring any reconfiguration or interventions.

6. Summary and Discussion

The speedups and battery savings (for delegator) are summarised in Table 5. As shown
in Table 5, the proposed collaborative and proactive method achieves the highest speedups
and battery savings when the nodes across edge, fog, and cloud are all working together.

RQ1: The impact of node collaboration across edge, fog, and cloud layers on overall task
performance

Experiments 1 to 6, and 9 investigated the impact on performance and battery life
of delegating computations to different combinations of P2P edge, fog, and cloud nodes.
Experiment 1 demonstrates that transmission (and latency) times must be considered when
offloading computations to other hosts. We also noted that with today’s mobile devices,
fog nodes or edge nodes can sometimes perform better even than cloud nodes (of course,
depending on the configuration of the cloud nodes). Experiment 2 showed that two peer
devices (D1 and D2) can complete jobs as much as 3.6 times faster, in particular, when
a device offloads some computations to a more powerful device. Experiment 3 showed
that a device (i.e., D1) offloading to a powerful fog node (F1) can complete jobs as much
as 3.76 times faster, in particular, when a device offloads some computations to a more
powerful device. Also, though D1 using F1 is faster than D1 using D2, it is noted that a
higher battery usage is required when D1 uses F1 than if it uses F1 (due to the transmission
power required to a fog node as opposed to a peer node). Experiment 4 showed that a
device (i.e., D1) offloading to a cloud node (C1) can complete jobs as much as 2.48 times
faster, in particular, when a device offloads some computations to a more powerful device.
It is noted that a higher battery usage is required when D1 uses C1 than if it uses F1, as
we would expect. Experiment 5 showed that a device (i.e., D1) offloading to a fog node
(F1) and cloud node (C1) can achieve a speed up of 4.85. However, because less work is
performed by D1, even though it is transmitting jobs to the other devices, its battery usage
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decreased. Experiment 6 showed that a device (i.e., D1) offloading to a a peer node (D2), a
fog node (F1), and a cloud node (C1) can achieve a speed up of 7.5. However, because even
less work is performed by D1, even though it is transmitting jobs to the other devices, its
battery usage decreased. Experiment 9 shows that the more powerful (relative to workers)
a device is, the less advantage there is in delegating, e.g., it shows that since D2 is more
powerful, the speedup from delegation is less than would be gained if D1 was the delegator.

Table 5. Experiment summary.

Exp. Configuration: D1 as Delegator Avg Battery Saving %  Avg Speedup
1 D1 monolithic - 1.00
1 offload to D2 77.27 2.57
1 offload to F1 52.33 2.70
1 offload to C1 70.45 1.43
2 D1+ D2 71.59 3.59
3 D1+F1 65.91 3.76
4 D1+C1 50.00 2.48
5 D1+F1+C1 72.78 4.85
6 D1+D2+F1+C1 80.68 7.58
7 Varying chunks for D2

7 Chunk size = (D2 =5,F1=5,C1 =5) 80.68 7.58
7 Chunk size = (D2 =20,F1=5,C1 =5) 80.68 7.57
7 Chunk size = (D2 =30, F1 =5, C1 =5) 79.55 7.57
7 Chunk size = (D2 =40,F1 =5,C1 =5) 79.55 7.10
7 Varying chunks for F1

7 Chunk size = (D2 =5, F1 =10, C1 = 5) 77.27 7.62
7 Chunk size = (D2 =5,F1 =15,C1 =5) 75.06 7.81
7 Chunk size = (D2 =5, F1 =20, C1 = 5) 75.00 7.74
7 Chunk size = (D2 =5, F1 =25, C1 = 5) 79.55 7.50
7 Chunk size = (D2 =5, F1 =30, C1 =5) 76.19 7.46
7 Chunk size = (D2 =5, F1 =35, C1 = 5) 77.27 7.51
7 Chunk size = (D2 =5, F1 = 40, C1 = 5) 80.68 7.64
7 Chunk size = (D2 =5, F1 =45,C1 =5) 79.55 7.59
7 Chunk size = (D2 =5, F1 =50, C1 = 5) 78.47 7.51
8 Adding Cloud Workers

8 D1 + 2 Clouds 58.01 3.33
8 D1 + 3 Clouds 57.44 3.69
8 D1 + 4 Clouds 59.15 3.87
8 D1 + 5 Clouds 67.05 3.93
8 D1 + 8 Clouds 60.23 4.01
8 D1 + 12 Clouds 60.23 4.06
Exp. Configuration: D2 as delegator Avg. Battery Saving%  Avg Speedup
9 D2 monolithic - 1.00
9 offload to D1 —162.51 0.17
9 offload to F1 37.71 0.85
9 offload to C1 17.80 0.56
9 D2+ D1+F1+C1 44.38 2.72

RQ2: Impact of task sharing configuration parameters in an edge, fog, cloud collabora-
tion setup

Experiment 7 shows that delegation parameters such as chunk size have a significant
impact on performance, increasing speedup by as much as 3-5% (e.g., in a 10 h job, that
would be 30 min of savings), and that parameter optimisation should be tailored to the
specific requirements of each tier.

RQ3: Dynamically adding/removing or slowing down worker nodes

Experiment 8 shows that there are limits to delegation—employing more cloud work-
ers does not always mean improvements to speedup due to increasing transmission times
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and the delegator’s limitations in managing multiple workers. The speedup saturates at
around 4.1 even with eight cloud nodes or more. There are also diminishing returns so that
the gain in speedup with each additional node is less. Experiment 10 demonstrates the
ability of the Honeybee framework to compensate and adapt to nodes disconnecting or
slowing down across diverse tiers of edge, fog, and cloud—other nodes automatically do
more jobs and do so in a way where the additional jobs are distributed fairly uniformly
among the remaining nodes so that no particular node suddenly increases in job uptake
(the increases in cumulative jobs across different devices over time remain fairly linear).
Conversely, the addition of a new worker reduces load or completed jobs on all nodes
fairly uniformly.

Overall, for Honeybee-based work stealing style offloading computations, we note
that, with the current networking technology, offloading (especially to nearby nodes,
i.e.,, fog or peer nodes) becomes a way to reduce battery consumption on the dele-
gator, i.e., with D1 as delegator, we have: batt(D1,D2,F1,C1) < batt(D1,F1,C1) <
batt(D1,D2) < batt(D1,F1) < batt(D1,C1), where batt is the battery usage on the
delegator. Also, speedups are to be gained with offloading, despite additional trans-
missions required, and in particular, offloading to more devices helps more, unless the
delegator device is relatively much more powerful than the device(s) being offloaded
to, and despite transmissions to fog or cloud nodes, the more powerful the device be-
ing offloaded to, the greater the speedups attainable: with D1 as delegator, we have:
su(D1)[1] < su(F1)[2.37] < su(D1,C1)[248] < su(D2)[2.53] < su(D1,D2)[3.6] <
su(D1,F1)[3.76] < su(D1,F1,C1)[4.85] < su(D1,D2,F1,C1)[7.5], where su denotes the
speed up with the given configuration (also given in square brackets), and with the more
powerful D2 as delegator, the speedup attained is no more than 2.8. While speedups are
to be gained via offloading, there are limits to how much gain can be achieved and the
advantage of using more workers, and there are diminishing returns with more nodes being
used, with clear implications. For estimations of costs (with paying for more cloud nodes)
versus benefits (from improved speedups), a mechanism to determine the optimal number
of nodes (minimising the cost/benefit ratio) is required. It might not be necessary to scale
a system beyond some threshold number of devices (in our experiments, less than half a
dozen other worker nodes are adequate). Since delegation or offloading requires resources
of the delegator, a multilevel delegation/offloading architecture might be required, e.g.,
a hierarchical or graph-based delegation where workers themselves delegate to others,
recursively, would be needed to obtain further speedups when a large number of devices
are actually available.

There is a need to tune parameters to obtain good performance relative to the re-
sources/costs employed, e.g., chunk size, number of workers, and there is a need to
compensate for disconnections, slow downs or node failures, as well as addition of new
nodes, which our Honeybee algorithm does successfully.

7. Conclusions and Future Work

In this work, we evaluated the proposed system of collaborative edge-fog-cloud
architecture exclusively on a real testbed with actual devices, ensuring practical applicability
and eliminating reliance on simulations. Our experiments suggest that dynamic cooperative
computations involving edge, fog, and cloud nodes are advantageous and should be
facilitated as a “normal” device function. Honeybee has provided a means to enable
such cooperative computations in a seamless way that is dynamically responsive to the
availability and changing capacities of devices at run-time. As computers in our pockets
and surroundings become more powerful and increase in number, the problem is, and
increasingly so, not the lack of computational capabilities, but an increase in untapped
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idle resources (e.g., the case of idle resources on desktops [42] and cloud nodes [43] easily
extends to smartphones and other devices).

This paper has experimented with a range of configurations involving edge, fog, and
cloud nodes, but there are many more to explore. The optimal configurations for com-
putations are not easily arrived at analytically, but best effort, heuristic-based, functional
validation approaches are probably more practical, e.g., a rule of thumb might be “offload
only when surrounded by more capable devices which are not too far away”, where the
capabilities of devices can only be detected by performing some jobs for a short monitored
period of time (as opposed to requiring explicit sharing of device information due to pri-
vacy reasons). Moreover, our theoretical analysis of speedup bounds currently assumes
constant relative computational power indicators k,, k fir and k.. However, in real-world
scenarios, these values vary due to fluctuating network conditions and computational loads.
Extending our model with probabilistic or time series-based approaches could capture
these dynamics, enabling adaptive task offloading and configuration optimisation, and
enhancing the framework’s robustness in variable environments. While our experiments
used D1 as a representative of modestly resourced edge devices, future work will involve
testing the system on smaller and more constrained IoT platforms. This will further validate
the scalability and adaptability of our approach across diverse edge environments. Hence,
much further work remains.
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Abstract: With the extensive deployment and application of the Internet of Things (IoT),
5G and 6G technologies and edge intelligence, the volume of data generated by IoT and
the number of intelligence applications derived from these data are rapidly growing.
However, the absence of effective mechanisms to safeguard the vast data generated by IoT,
along with the security and privacy of edge intelligence applications, hinders their further
development and adoption. In recent years, Trusted Execution Environment (TEE) has
emerged as a promising technology for securing cloud data storage and cloud processing,
demonstrating significant potential for ensuring data and application confidentiality in
more scenarios. Nevertheless, applying TEE technology to enhance security in IoT and
edge intelligence scenarios still presents several challenges. This paper investigates the
technical challenges faced by current TEE solutions, such as performance overhead and
I/0 security issues, in the context of the resource constraints and data mobility that are
inherent to IoT and edge intelligence applications. Using Intel Software Guard Extensions
(SGX) technology as a case study, this paper validates these challenges through extensive
experiments. The results provide critical assessments and analyses essential for advancing
the development and usage of TEE in IoT and edge intelligence scenarios.

Keywords: Trusted Execution Environment (TEE); Software Guard Extensions (SGX);
Internet of Things (IoT); edge intelligence; performance evaluation; security

1. Introduction

The Internet of Things (IoT) has experienced rapid development in recent years,
transforming industries to Internet-based paradigms by enabling the connection of millions
of devices [1]. Owing to advancements in 5G and the upcoming 6G wireless communication
technologies, data transmission has become significantly faster and more reliable, laying
a solid foundation for IoT and edge intelligence applications [2]. By 2030, it is projected
that approximately 500 billion IoT devices will be in use globally [3]. IoT data generation is
expected to grow significantly, with estimates suggesting a rise to 73.1 ZB by 2025, a 422%
increase from the 17.3 ZB produced in 2019 [4]. IoT devices are increasingly used in smart
homes [5], healthcare [6,7], manufacturing [8,9], and transportation [10,11], where they
collect vast amounts of data. These data are essential for deriving insights and powering
edge intelligent applications through advanced analytics and machine learning [12], driving
the convergence of IoT, edge devices, and cloud into a seamless computing continuum [13],
which serves as a cornerstone of modern digital ecosystems.
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With the expansion of IoT and edge intelligence computing, ensuring the security
and privacy of the massive amount of data generated and processed by these devices
has become a significant challenge [14]. Trusted Execution Environment (TEE) provides a
secure, isolated space within a processor where sensitive data and code can be processed,
safeguarding them from unauthorized access or tampering [15]. TEE is crucial for protecting
the growing volume of sensitive data generated by billions of interconnected devices in
IoT. These devices often operate in untrusted environments and are vulnerable to security
breaches, making TEE essential for ensuring data integrity and privacy [16]. Various
TEE technologies enhance data security, including AMD Secure Encrypted Virtualization
(SEV) [17] for virtual machine encryption, Arm TrustZone [18] for embedded devices,
and Penglai Enclave [19] on RISC-V platforms. Intel SGX [20], in contrast, focuses on
application-level security through enclaves, making it ideal for protecting sensitive data in
cloud and edge intelligence applications [21] and is widely used in IoT [22,23].

However, as edge intelligence becomes an essential component of IoT architectures,
the usage of TEE in these scenarios faces several challenges. The resource constraints
of edge devices, such as limited processing power and memory, coupled with the high-
performance demands of real-time applications, make it difficult for TEE technologies
to operate efficiently [24]. Additionally, ensuring data integrity [25,26], managing I/O
operations securely [27], and handling the performance overhead from frequent enclave
transitions [28] present significant hurdles, limiting the widespread deployment of TEE-
based solutions in edge intelligence.

In this paper, we analyze the performance and security challenges of using SGX-based
TEE in IoT and edge intelligence scenarios. Through a series of experiments, we evaluate the
impact of TEE on system performance, focusing on key aspects such as I/O operations and
data handling in resource-constrained environments. We concentrate on the performance
of different SGX implementations in real-world scenarios, conducting comprehensive and
detailed evaluations on SGX-based TEE through various carefully designed test cases. Our
results reveal significant performance degradation and security limitations when using
TEE technologies in edge scenarios. This research provides critical technical evaluations
and security analyses that offer valuable insights for advancing the development and
application of TEE in IoT and edge intelligence scenarios. The contributions of this paper
could be summarized as follows:

1. A comprehensive survey of current TEE technologies in IoT scenarios is conducted,
identifying key challenges such as I/O security and performance overhead.

2. A detailed testing framework is designed to evaluate the performance of SGX-based
TEE in edge environments, covering implementations based on SGX Software Devel-
opment Kit (SDK) and Library Operating System (LibOS), as well as their usage in a
virtual environment.

3.  Based on the survey and experimental results, performance bottlenecks in SGX are
identified, offering insights and optimization directions for the application of TEE
technologies in edge intelligence scenarios.

The rest of the paper is organized as follows. In Section 2, we provide a brief intro-
duction to the fundamental concepts of SGX-based TEE, focusing on two key features:
isolated execution and attestation. Section 3 discusses the application of TEE in IoT and
the challenges it faces in edge intelligence scenarios, such as I/O security and performance
degradation. Section 4 presents a detailed performance evaluation of SGX in edge scenarios
and proposes performance improvement directions based on the test results. Section 5
covers a review of related research and Section 6 concludes the paper.
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2. SGX-Based TEE

This section briefly introduces the basic concepts of SGX, and focuses on the two features
of SGX: isolated execution and attestation. In addition, two SGX implementations based on
SGX SDK and LibOS will be introduced.

2.1. Basic Concept About SGX

SGX is one of the widely used TEE technologies introduced by Intel Corporation in
2013. Through the combination of software and hardware, a special memory space called
an enclave was built to protect users’ sensitive data and code [20]. Entering and exiting the
enclave requires special hardware instructions and involves complex security checks. SGX
focuses on runtime data security, and even privileged software such as the OS or hypervisor
cannot access data inside the enclave when the program is running. Isolated execution
and attestation [29] are two important characteristics of SGX. Isolated execution is the
guarantee that secret data will not be stolen by other software or programs and attestation
is a common method for devices to prove their identities to each other in cloud computing
scenarios. These two characteristics are the core part of SGX and also the security guarantee
of SGX in IoT environments.

2.1.1. Isolated Execution

The isolation of physical memory is the primary condition for isolated execution.
A protected contiguous memory space called Enclave Page Cache (EPC) is allocated in
the memory and is physically isolated from other parts of the system. The data stored in
the EPC are automatically encrypted by the CPU when written to memory and decrypted
when read back into the CPU cache. The size of the EPC is limited, at 93 MB in the SGX
version 1 [30], which leads to some performance degradation issues [31]. Special hardware
instructions, Ecall and Ocall, are required to enter and exit the enclave. Furthermore,
SGX records the allocation of each EPC page in the Enclave Page Cache Map (EPCM) and
manages the access and modification of these pages. When any operation attempts to
access the enclave, the CPU will sequentially check the permissions of the external access
process, the validity of the EPC address, and the EPCM to ensure address space isolation.

2.1.2. Attestation

In cloud-based IoT scenarios, users transmit code and data to the cloud for processing.
Attestation can ensure that users’ sensitive data are not tampered by malicious software
in the cloud. There are two kinds of attestation technology in SGX, local attestation and
remote attestation. Local attestation is used to confirm the identity between two enclaves
on the same platform while remote attestation is used to protect the data integrity on
remote servers. The code, data, and some metadata within the enclave are hashed to create
a unique abstract, which serves as the enclave’s identity for attestation [29].

2.2. SGX Implementation

There are currently two common ways to deploy SGX applications, namely SGX SDK-
based and LibOS-based. The SGX SDK-based approach as shown in Figure la requires
porting or re-building the program in C or C++ based on SGX SDK [32]. In addition,
the legacy code needs to be partitioned into secure and insecure portions, which requires a
lot of effort. SGX SDK-based implementation effectively reduces the trusted computing
base (TCB) size and allows for selective placement of sensitive data in the EPC, thereby
optimizing the use of EPC space. However, this approach also has some drawbacks. First,
the cost of code porting is high, leading to poor usability. Second, since system calls
are not supported within the enclave, frequent context switching is required, resulting
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in significant performance overhead. Finally, there is insufficient support for high-level
languages, making programming in languages such as Python more difficult.

To overcome these drawbacks, LibOS-based approaches are proposed and has attracted
considerable attention. As shown in Figure 1b, by providing library operating system
with support within the enclave, interactions between the enclave and the operating
system are reduced, enabling the rapid deployment of unmodified applications in the
enclave. Although the TCB size increases, the usability is significantly enhanced through
a LibOS shim layer. Many solutions have been proposed based on LibOS. For example,
Haven [33] pulls most of the application-supporting OS code into the enclave to reduce
dependence on the underlying OS, andSCONE [34] integrates SGX with Docker containers,
enabling applications to run securely within SGX enclaves without requiring modifications.
Among these solutions, Gramine [35] (formerly known as Graphene) and Occlum [36]
are widely used LibOS-based SGX implementations that perform well in terms of both
performance and security. Gramine is an open-source LibOS that provides a flexible and
lightweight environment for running unmodified applications securely within enclaves.
Occlum is written in Rust at its core, providing more reliable security guarantees. This
paper will focus on these two LibOS-based implementations, analyzing their performance
and security.

a B ( Enclave
Enclave \‘

e . ™ ( Application \
‘ Function ‘

‘ Trusted library Non-sensitive data

\\, 7 / } and code
Context Switch, | Tem—— )
Ecall/Ocall |
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Library Operation System
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data and code
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7

Operation System Operation System

(a) (b)

Figure 1. Different SGX implementations. (a) SGX SDK-based. (b) LibOS-based.

3. Analysis of TEE Usage in Edge Intelligence and IoT

IoT refers to a scenario where physical and digital devices are interconnected through
specific protocols and communication methods, forming an extensive network [1]. Infor-
mation exchange is a crucial component of IoT, involving the protection of privacy data
and identity authentication between devices. These concerns align directly with the core
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capabilities of TEE. In cloud computing, data are transmitted to the cloud for centralized
processing, yet data owners do not fully trust the cloud infrastructure. As a result, TEE
technologies such as ARM TrustZone [18], Confidential Compute Architecture (CCA) [37],
Penglai Enclave [19] and SGX are crucial for ensuring data protection on remote servers.
Next, we will analyze the applications of these different TEE technologies in the IoT and
conduct a detailed investigation and analysis of SGX.

3.1. Arm TrustZone and CCA

In 2004, Arm TrustZone was proposed by incorporating hardware security extensions
into Arm Cortex-A application processors. Arm TrustZone divides a system’s hardware
and software resources into two distinct worlds: the Secure World and the Normal World.
The Secure World handles sensitive operations, such as cryptographic key management,
authentication, and secure storage, while the Normal World runs the standard operating
system and applications. The transition between the Secure World and the Normal World
is managed through Monitor Mode. TrustZone extends memory security with optional
components like the TrustZone Address Space Controller (TZASC) and TrustZone Memory
Adapter (TZMA). TZASC manages secure and non-secure memory regions for DRAM,
while TZMA handles off-chip ROM or SRAM, enabling secure world access to non-secure
areas but not vice versa.

CCA, designed to enhance virtual machine protection, introduces the Realm Manage-
ment Extension (RME) and adds two new worlds: Realm World and Root World. CCA
introduces the Realm World to create secure, isolated environments for confidential VMs,
completely separating them from other domains, including the host OS, hypervisor, Trust-
Zone, and other realms. CCA uses a Granule Protection Table, an extension to the page
table that tracks memory ownership with worlds to maintain separation. The Granule
Protection Table is managed by the Monitor in the Root World, which ensures that the
hypervisor or OS cannot alter it directly. This Monitor also controls the dynamic allocation
of memory across worlds by updating the Granule Protection Table. Additionally, CCA
features attestation mechanisms that validate the platform and ensure the integrity of the
realms. The low power consumption of the ARM architecture makes it well suited for IoT
scenarios. Owing to its wide deployment in mobile and low-end devices, ARM TrustZone
and CCA are widely deployed in IoT and edge intelligence scenarios [38—40].

3.2. Penglai Enclave

Penglai Enclave is a software-hardware co-designed TEE technology aimed at en-
hancing the security and scalability of security-critical applications in cloud environments,
specifically on RISC-V platforms. Penglai introduces two key hardware primitives: the
Guarded Page Table and the Mountable Merkle Tree (MMT). The Guarded Page Table
enables fine-grained, page-level memory isolation, ensuring that unauthorized software
cannot access secure memory. MMT provides scalable memory encryption and integrity
protection, supporting large secure memory regions. The secure monitor operates at
the highest privilege level (e.g., machine mode in RISC-V), managing enclave creation,
enforcing memory isolation and maintaining security guarantees.

Additionally, Penglai employs the Shadow Enclave and Shadow Fork mechanisms,
which allow for the fast creation of multiple secure instances, significantly reducing the
latency of memory initialization. The system can dynamically scale to thousands of con-
current secure instances, supporting up to 512 GB of encrypted memory with only ap-
proximately 5% overhead for memory-intensive applications. This framework effectively
addresses the limitations of traditional TEE systems in terms of memory protection and
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scalability, making it particularly suitable for large-scale, dynamic and serverless cloud
computing scenarios.

3.3. Analysis of SGX in Edge Intelligence and IoT

SGX is widely used in IoT scenarios based on its security guarantees and remote
attestation features. Table 1 summarizes some applications of SGX in IoT. The application
scenarios can be broadly categorized into four types, with the first focusing on the use of
SGX for IoT architecture. The work in [41] describes the entire process from data acquisition
at the edge devices, to encrypted transmission, and finally, decryption and processing at
the gateway, with SGX responsible for key management tasks. Based on device virtual
cloning, SGX-Cloud [42] was constructed to allow users to choose which data to place into
the cloud. The methods outlined in [43] utilized SGX'’s privacy-preserving mechanisms
to achieve secure multi-party data sharing. Second, the remote attestation mechanism
of SGX can be better utilized to achieve a security-enhanced identity authentication [44].
Third, blockchain is a key component in IoT scenarios, and its integration with SGX can
achieve better privacy protection. The work in [45] sets up oracle nodes running in an
SGX environment, enabling blockchain to securely obtain external data. Zhang et al. [46]
leveraged SGX in industrial IoT to track data flow and prevent data abuse. According to the
study in [4], SGX edge servers were set up to implement attribute-based fine-grained access
control. Furthermore, SGX can also be applied in fields such as federated learning [47],
smart grids [48] and health data protection [49].

Table 1. SGX application in IoT scenarios.

Category Reference IoT Application SGX Use Case
An end-to-end, SGX-based, IoT data Key management,
Ayoade-etal, 2019 [41] protection framework Remote attestation
Architecture Showail et al., 2022 [42] B}nldmg SGX-Cloud based on device Data fencryPtlon,
virtual cloning Data integrity
Lei et al., 2021 [43] Secu.re multi-party data interaction Prlva.cy—preserm.ng,.
architecture Identity authentication
Policy-based security-enhanced
Attestation Wang et al., 2018 [44] authentication mechanism between remote  Remote attestation

terminal and IoT devices

Woo et al., 2020 [45]

Methods for securely obtaining external
data on the blockchain

Trusted intermediary

Blockchain-based

Zhang et al., 2022 [46]

Establishing a secure data trading
environment to prevent data abuse

Identity authentication,
Behavior monitoring

Han et al., 2022 [4]

Attribute-based fine-grained access control

Edge intelligence,
Identity authentication

Kalapaaking et al., 2023 [47]

Comprehensive federated learning
framework from data collection to local
model generation and secure

model aggregation

Secure model aggregation

Other Scenarios

Li et al., 2020 [48]

Efficient privacy-preserving architecture in
smart grids

Confidential database

Gao et al., 2021 [49]

Protection of sensitive medical data to
build a secure Internet of Medical Things

Device registration

However, SGX usage in edge intelligence still has limitations. In edge intelligence sce-
narios, where device resources are limited and data mobility are complex, SGX, though ca-
pable of providing hardware-level data security, still faces significant challenges. Security
and performance analyses are crucial in understanding the effectiveness and practicality
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of SGX in these scenarios. On the one hand, data security is a significant concern in edge
devices, as data exchanged with peripherals or the cloud are vulnerable to leakage. Ad-
ditionally, SGX’s inherent weakness in defending against side-channel attacks, combined
with the closer proximity of attackers to edge devices, increases the likelihood of such
attacks succeeding in edge scenarios. On the other hand, deploying SGX on edge devices
often leads to performance degradation due to the added computational overhead and
frequent context-switching, particularly in resource-constrained environments. Next, we
will conduct an in-depth analysis of the three key challenges SGX faces in edge intelligence
scenarios: 1/0O security issues, vulnerability to side-channel attacks, and performance
degradation issues.

3.3.1. I/0O Security Issues

Firstly, SGX does not include specific protection measures for I/O operations. While
memory regions are protected by SGX, I/O operations still interact with external systems
through unprotected channels. These channels, such as networks and storage devices, may
become targets for attackers, potentially leading to the risk of I/O data being intercepted or
alerted on edge devices. To establish a trusted path between the enclave and 1/O devices,
various solutions have been proposed, as shown in Table 2.

Table 2. Trusted I/O path construction in SGX environment.

Category

Reference

Methodology

Limitations

Hypervisor-based

Weiser et al., 2017 [50]

Based on trusted hypervisor

Large TCB and complex
binding and attestation

Software-based

Liang et al., 2020 [51]

Leverages SMM and SMVisor to protect I/O
operations

Occupies limited SMRAM

Thalheim et al., 2021 [52]

Based on SPDK and DPDK for user-space
1/0

Limited generality

External HW

Stancu et al., 2019 [53]

USB Dongle (HW) and DPE for attestation

Additional overhead
for initialization

Jang et al., 2024 [54]

Based on UDP (HW) for USB packet
forwarding

Substantial overhead caused
by remote attestation

Specific Scenarios

Peters et al., 2018 [55]

Modify the protocol stack and use the
Bluetooth controller to protect Bluetooth
device I/O

Limited generality

Eskandarian et al., 2019 [56]

Two dongles for keyboard and monitor,
enhancing security for browser

Limited screen protection
area, Unprotected mouse

There are generally three approaches to construct a trusted 1/O path: hypervisor-
based, software-based and external hardware (HW)-based solutions. For hypervisor-based
methods such as SGXIO [50], although it leverages a virtual machine to supervise the OS, it
significantly increases the TCB. Additionally, because SGX does not trust the hypervisor, this
approach involves a complex process of trusted domain binding and attestation. Software-
based solutions like Aurora [51] protects I/O using the System Management Mode (SMM)
but occupies valuable SMRAM resources and lacks distinction between secure and non-
secure devices. Rocket-io [52] leverages the Storage Performance Development Kit (SPDK)
and Data Plane Development Kit (DPDK) to accelerate communication between the enclave
and peripherals. However, it is limited to the disk and network interface card, offering poor
generality. The approaches based on external HW encounter challenges such as significant
overhead when establishing trusted I/O paths. Ref. [53] designs an external HW called
USB Dongle, and implements a Device Provisioning Enclave (DPE) for key exchange and
information transmission, but during the initialization of the trusted path, a trusted OS
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must first be booted to bind the DPE and the device, resulting in significant performance
overhead. Furthermore, A USB proxy device (UPD) is designed in [54] for transmitting USB
packets. However, the I/O path setup relies on remote attestation, which incurs significant
overhead. Some I/O protection solutions for specific scenarios, such as Bluetooth [55] and
browsers [56] are proposed but these also encounter issues such as limited generality and
inadequate security protection. This demonstrates that SGX still lacks a universal solution
for I/O security and I/O performance degradation issues. This is particularly concerning
in edge intelligence scenarios, where attackers can more easily access devices and data
sources, leading to increased security risks.

3.3.2. Vulnerability to Side-Channel Attacks

SGX provides hardware-level protection, preventing privileged software, such as the
OS and hypervisor, from accessing sensitive data. However, the shared use of system
resources between the enclave and untrusted applications significantly expands the attack
surface for side-channel vulnerabilities. Currently, side-channel attacks exploiting page
tables, branch prediction and cache present significant threats to the security of data
within enclaves.

In the case of page tables, the enclave depends on the untrusted OS for management,
while using additional data structures for validation. The OS can mark all pages as inacces-
sible, causing any access to trigger a page fault. By monitoring which pages the enclave
accesses and analyzing the sequence of these events over time, the OS can potentially infer
certain enclave states and compromise protected data. PigeonHole [57] demonstrates that
page fault side-channel attacks can exploit unprotected SGX, leaking an average of 27%
and up to 100% of secret bits. Additionally, Ref. [58] focuses on attacks targeting page
table flags, such as modifying the “present” bit to track enclave page access, using updates
to the “accessed” bit to detect pages accessed by the victim enclave and monitoring the
“dirty” bit to infer the victim enclave’s memory write operations. Additionally, attacks like
the controlled-channel attacks [59] also pose significant challenges to the security of data
within the enclave.

Branch prediction is a critical mechanism in modern processors that predicts the
outcome of branch instructions before execution. By utilizing branch prediction, processors
can preemptively fetch and decode instructions based on the predicted branch direction,
enhancing performance. However, during context switching, the Branch Prediction Unit
(BPU) is not flushed, potentially retaining sensitive information from isolated environments.
This residual data can be exploited by attackers through software-based side-channel
attacks, posing significant security risks. By analyzing the branch history information of the
victim enclave, attacks such as Branch Shadowing [60] and BranchScope [61] can effectively
extract sensitive data or cryptographic keys from within an enclave.

Cache-based side-channel attacks exploit the differing access times between the cache
and main memory, stealing sensitive data by measuring the victim’s execution time or data
access patterns. For example, the Prime + Count cache side-channel attack [62] can establish
covert channels across worlds within ARM TrustZone. For SGX, it is particularly susceptible
to cache-timing attacks [25]. Experiments have shown that the Prime+Probe cache side-
channel attack can extract the AES key from an SGX enclave in less than 10 s. To address
the issue of side-channel attacks, several solutions have been proposed. For page table-
based side-channel attacks, hardware isolation can provide enclaves with independent
page tables [63]. Additionally, cache partitioning [64] prevents attackers and victims
from sharing cache lines, while techniques like timing variation elimination [65] can help
mitigate cache-based side-channel attacks. Although these methods can effectively defend
against specific types of side-channel attacks, there is currently no universal solution to
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protect SGX and other TEE technologies from side-channel vulnerabilities. Furthermore,
many SGX projects, such as Gramine and Occlum, overlook side-channel attacks in their
considerations, making SGX more susceptible to such attacks in practical deployments.

3.3.3. Performance Degradation Issues

In resource-constrained edge scenarios, the issue of SGX’s performance degradation
has drawn significant attention. SGX’s performance degradation primarily arises from
two sources, the overhead of data encryption and decryption, and the performance cost
associated with entering and exiting the enclave during system calls or EPC page fault [66].
Encryption and decryption operations are performed by hardware, leaving limited room
for optimization. In contrast, various approaches have been proposed to optimize the per-
formance overhead caused by context switching. Hotcalls [28] based on a synchronization
spin-lock mechanism significantly improve performance compared to Ecalls and Ocalls.
The work in [67] achieves exitless system calls by delegating system calls to threads running
outside the enclave, and performance overhead due to page faults is mitigated by imple-
menting paging within the enclave. Another more general solution involves leveraging a
LibOS, such as Gramine [35] and Occlum [36]. The LibOS approach can streamline interac-
tions between the enclave and the application, potentially reducing the overhead associated
with traditional system calls and improving overall performance. Next, we will provide
a detailed discussion of the performance overheads of different SGX implementations in
edge intelligence scenarios through a qualitative analysis and a quantitative assessment.

4. Performance Evaluation in Edge Scenarios

In this section, the performance evaluation of four different SGX implementations in
edge scenarios are conducted, including the SGX SDK-based approach, two LibOS-based
approaches (Gramine and Occlum), and the SGX implementation in a virtual environment.
CPU-intensive instructions, I/ O-intensive instructions, network programming, common
system calls and performance under realistic workloads are the five main aspects of testing,
covering most edge intelligence scenarios. Through qualitative analysis and quantitative
evaluation, we will analyze the performance degradation of SGX in resource-constrained
edge scenarios.

4.1. Experimental Setup

The hardware specifications, system parameters, and software versions used for the
tests are shown in Table 3. The virtual environment utilizes the docker environment
provided by Occlum, version 0.26.4. For both Gramine and Occlum, default values are used
for the relevant parameters, and the tests are conducted on the SGX version 1. We disable
CPU frequency boost features and fix the CPU frequency at 4.7 GHz to reduce performance
data fluctuation. In the network tests, we disconnect external network connections and
use local addresses to conduct the tests, minimizing external interference. To avoid the
impact of other processes on the experimental results, we disable unnecessary background
processes and services.

4.2. CPU-Intensive Workload

The Native-mode Benchmark (NBench) is a common test suite used to assess CPU
performance, primarily focusing on the computational speed, floating-point operations
and memory system efficiency of a computer. The NBench results are measured by the num-
ber of test iterations completed within 1 s. The more iterations are completed, the higher
the efficiency. Taking the native Linux test results as the baseline, the performance of SGX
implementations are illustrated in Figure 2.
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Table 3. System configuration.

Hardware Environment
CPU: Xeon(R) W-1250 CPU, 4.70 GHz DRAM: 16 GB
CPUs: 1 Socket, 12 cores
L1: 384 KB, L2: 1536 KB, L3: 12 MB

System Settings

Linux kernel: 6.6.8-060608-generic GCC:94.0
OS: Ubuntu 20.04 Architecture: x86_64
Intel SGX SDK
Version: 2.22 PRM:128 MB
Gramine
Version: 1.6 Enclave size: 256 MB
Max_threads: 4
Occlum
Version: 0.26.4 User_Space_Size: 300 MB

Max_threads: 32

Overall, the implementation based on the SGX SDK has the worst performance, while
Gramine performs the best. The performance of Occlum is similar to that of Gramine,
and there is almost no difference between the virtual and native environments. The im-
plementation based on the SGX SDK incurs significant context-switching overhead due
to frequent enclave transitions, which leads to significant performance overhead. In the
FOURIER test, it achieves only about 30% of the native performance. For the two LibOS-
based approaches, Gramine performs well across all tests, with a minimum performance of
about 80% of native performance. Occlum excels in numerical sorting, bitwise operations
and LU decomposition, but in other tests, its performance is approximately 40% to 60%
of the native performance. This is because Occlum’s design is more oriented towards
multi-process environments, allowing multiple processes to coexist within a single enclave,
whereas Gramine excels in single-threaded processing capabilities.

Il SGX SDK [ Gramine I Occlum I Docker

110%
Native Linux

100%

80%

60%

40%

Relative Performance

20%

NUM BIT FP FOURIER HUFFMAN NEURAL LU

Figure 2. CPU-intensive workload.

Separately, in the numerical sorting task, all four SGX implementations perform well,
with performance being close to that of native Linux. This is due to the use of heap
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sort in the sorting task, and the small amount of numbers to be sorted in each group,
which avoids the issue of insufficient enclave capacity. As a purely computational task,
the performance of all SGX implementations is similar. In the bitwise operation test,
LibOS-based approaches achieve performance close to native, while the SGX SDK shows a
significant performance decline. In the floating-point computation tests, Occlum shows a
performance decline relative to Gramine, indicating that Occlum is weaker in floating-point
calculations. In purely CPU-intensive tasks, both Gramine and Occlum exhibit minimal
performance degradation, while the SGX SDK experiences a notable performance decline.
In edge intelligence scenarios, if using SGX SDK, it is essential to make efficient use of the
limited memory space within the enclave and minimize the number of enclave transitions

to reduce performance overhead.

4.3. I/O-Intensive Workload

In typical workflows, I/O is a common and crucial task. This is particularly relevant
in edge intelligence applications, where devices are closer to the data source, making it
important to focus on how to efficiently acquire and distribute data through I/O operations.
Disk I/O is used for testing, with IOzone selected as the I/O-intensive workload. I0zone
generates a series of file operations and measures their performance. IOzone is widely used
and has been ported to various systems and platforms to assess file system performance.
Since SGX does not support system calls natively, the SGX SDK-based solution requires
using Ocalls to exit the enclave for I/O operations. This approach does not provide security
guarantees, so we did not conduct I/O tests on the SGX SDK. Instead, we focused on testing
LibOS-based solutions, as these solutions have their own file systems, allowing disk I/O to
be performed within the enclave. We tested both Gramine and Occlum, which, despite both
being based on LibOS, have significant differences in file systems. In Gramine, users need to
customize a manifest file to specify trusted files, creating a virtual file system. Since Gramine
only allows one process to exist within an enclave, processes cannot share encryption keys,
which prevents them from sharing an encrypted file system. Gramine can only encrypt files
marked as trusted, and it does not encrypt file metadata. In contrast, Occlum uses a fully
encrypted file system divided into two layers: a read /write layer and a read-only layer.
The read-only layer is encrypted from the “image” folder in the host’s Occlum instance,
while the read /write layer handles files generated during process execution.

To ensure the generality of the experimental results, each experiment was conducted
a total of five times. Additionally, we ensured that only the current process performs file
read /write and disk interaction operations. In the line charts, the short horizontal lines
indicate the maximum and minimum values from the five tests, while the average of the
five tests is connected to form the line chart. This paper mainly records the performance in
four scenarios: sequential read /write and random read /write. Additionally, we focused
on the system’s read and write performance under different buffer sizes.

4.3.1. Sequential Read /Write Performance

Sequential read and write operations are both performed on files stored on disk,
meaning relevant file information is not preloaded in memory. In the case of sequential
write operations, new files are written, requiring not only data storage but also the overhead
of tracking the data’s location on the storage medium, known as metadata. The results
are shown in Figure 3. Occlum’s sequential read and write performance is significantly
weaker than Gramine’s, which is a result of the performance overhead introduced by the
fully encrypted file system. When the buffer size was small, Gramine’s sequential read
and write speed could match or even surpass that of native Linux. However, once the size
exceeded 1 MB, there was a noticeable decline in performance as the block size increased.
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The reason for this is that Gramine reached its preset maximum read/write buffer size,
and further increased its result in multiple read /write operations, which reduced efficiency.
When the bulffer size for sequential read reached 16 MB, Gramine’s efficiency dropped to
only about 20% of that of the native Linux, as shown in Figure 3a.
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Figure 3. Sequential read /write performance. (a) Sequential read. (b) Sequential write.

4.3.2. Random Read /Write Performance

Random read and write operations were performed on cached files, which resulted
in higher performance compared to sequential read and write operations. The results
are shown in Figure 4. Occlum’s read and write performance remained at a low level,
while Gramine experienced a noticeable performance drop when the read /write buffer size
exceeded 1 MB. Unlike sequential read and write operations, Gramine’s performance with
smaller buffer sizes did not surpass that of the native Linux. It merely approached native
performance. This indicates that with caching, Gramine cannot achieve the same read and
write performance as native Linux. The results in the virtual environment show almost no
difference compared to those in the native environment.
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Figure 4. Random read /write performance. (a) Random read. (b) Random write.
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Overall, SGX does not offer an I/O solution that balances performance and security
in edge intelligence scenarios. The SGX SDK requires frequent enclave transitions for
I/0O operations, which introduces additional performance overhead without providing
sufficient security. Occlum offers a secure file system, but its performance is too poor to be
practically useful in real tasks. While Gramine achieves native performance with smaller
buffer sizes in tests, it lacks comprehensive security guarantees and experiences significant
performance degradation with larger buffer sizes.
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4.4. Performance in Network Programming

In the context of 10T, the performance of network programming directly influences
the speed of data exchange, thereby impacting application performance. This study sim-
ulated a scenario where a confidential server based on SGX was deployed remotely, and
by adjusting the client load, server throughput and latency were observed to assess the
impact of SGX on network programming performance. Lighttpd [68], a lightweight HTTP
server, was enabled on the server side, while ApacheBench [69] was used on the client
side to adjust the load. The simulation test was conducted by continuously downloading
files from the server. The Lighttpd server version used was 1.4.40, and the ApacheBench
version was 2.3. To simplify the experiment, both the server and the client ran on the
same test machine, with the download address set to the local network 127.0.0.1 and port
8004. The test focused on two main aspects: first, testing multi-threaded performance by
examining changes in system throughput as concurrency increases; and second, testing
single-threaded performance by analyzing how latency changes as the size of the down-
loaded file increases. Since SGX SDK does not support system calls and cannot directly
access ports, the experiment was conducted using SGX implementations based on LibOS,
namely Gramine and Occlum.

4.4.1. Impact of Concurrency on Throughput

Since Occlum requires the use of the spawn method for process creation and does not
support the fork system call, and fork is used in Lighttpd, the Lighttpd code needs to be
modified to replace fork calls with spawn system calls. The code modification is planned
for future implementation, and in this paper, testing is only performed on native Linux and
Gramine. In the Gramine tests, the maximum number of threads for Lighttpd was set to 25,
and the file downloaded by the client was a randomly generated file of 10 KB.

Figure 5 shows that as concurrency increases, both the native Linux and Gramine
exhibit a trend where throughput initially increases and then stabilizes. When concurrency
is low, Gramine’s performance is significantly lower. For instance, when the concurrency
is 1, Gramine achieves a throughput of only 7.6, while the native Linux exceeds 4000.
The main reason for this is that with such a low load, the proportion of time spent handling
download tasks decreases significantly, making the overhead of creating enclaves in Gramine
particularly costly. However, as the load increases, both native Linux and Gramine show a
rapid increase in throughput as concurrency rises from 1 to 50. When concurrency increases
from 50 to 300, Gramine’s throughput continues to rise, while the native Linux throughput
stabilizes, and both eventually reach their maximum throughput. The test results indicate
that Gramine’s maximum throughput is about 75~80% of that of native Linux.
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Figure 5. Impact of concurrency on throughput.
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4.4.2. CPU Resource Usage

The CPU usage of the Gramine and Occlum frameworks is evaluated during network
programming to address resource constraints in edge scenarios, where computational
resources are limited. The evaluation focuses on the Lighttpd web server running within
enclaves, with its CPU consumption monitored from an external terminal. To ensure
the accuracy of the experimental results, the system cache is cleared prior to each test.
The terminal used for testing is set to measure CPU usage every second. Results are shown
in Figure 6. For Occlum, since all processes are initiated by a parent process, only the CPU
usage of its child processes is measured. In contrast, for Gramine, the Lighttpd service is
managed by the Platform Abstraction Layer (PAL) loader, making it the primary target
for monitoring. The results show that both frameworks exhibit similar trends, with higher
CPU usage during the initial runtime phase. However, as the server stabilizes, Occlum
achieves slightly lower steady-state CPU overhead compared to Gramine. Overall, Occlum
has a lower CPU overhead, but the initialization of the Lighttpd environment causes a
significant number of context switches, resulting in the TEE’s CPU overhead being much
higher than that of a native Linux environment.
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Figure 6. Comparison on CPU usage.

4.4.3. Impact of File Size on Latency

When measuring the impact of file size on download latency, a single-threaded mode
was used, and native Linux, Gramine and Occlum were all tested. The client concurrency
was set to 1, and the file size gradually increased from 1 KB to 100 KB to observe the changes
in download latency. The results are shown in Figure 7. As the file size increases, there is
no significant change in the latency of native Linux. For Occlum, latency increases both
in virtual and native environments. Gramine is the most affected by file size, with latency
rising significantly as the file size increases. Comparing server performance in single-
threaded mode, Occlum demonstrates better performance in handling file downloads,
particularly with larger files. Compared to native Linux, Occlum’s latency is approximately
2 to 3 times higher, while Gramine, due to the impact of file size, can experience latency
increases of over 10 times.

According to the results of the network programming performance tests, although Oc-
clum performs better in file downloads in single-threaded mode, it still exhibits 2 to 3 times
higher latency compared to native Linux, and is similarly affected by latency fluctuations
due to file size. Additionally, Occlum’s compatibility issues with the spawn-based pro-
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cess creation mode can lead to usability problems. Gramine, on the other hand, has high
download latency and is severely impacted by the size of the load.
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Figure 7. Impact of file size on latency.

4.5. System Call Overhead

A core challenge faced by SGX is how to manage its relationship with OS. In Section 2,
two approaches to interacting OS are introduced. The SGX SDK fully distrusts OS, which
means that system calls cannot be made within the enclave. While this approach enhances
security, it presents challenges in terms of performance and code portability. On the other
hand, when allowing for a moderate increase in TCB, LibOS-based solutions can perform
most system calls within the enclave. Through security checks, these solutions can also
avoid attacks from OS, such as Iago attacks [70]. We primarily tested the system call
overhead of process creation and inter-process communication in Gramine and Occlum to
observe SGX performance in multi-process tasks.

4.5.1. Process Creation Latency

Gramine and Occlum differ significantly in their process management models.
Gramine only allows one process per enclave, while Occlum permits multiple processes
within a single enclave. This leads to differences in their process creation methods: Occlum
discards the fork system call and instead uses spawn to create new processes. Gramine,
on the other hand, uses the traditional fork to create child processes, where the child and
parent processes share the enclave properties defined by the manifest file. During testing,
child processes are generated with varying memory sizes allocated via the malloc function.
For parent processes, both native Linux and Gramine use fork system call, while Occlum
uses spawn. The time required to create a new process with different memory sizes reflects
the process creation latency.

In Figure 8, the process creation latency in Occlum is significantly lower than in
Gramine. When the memory size of the new process is small (less than 100 MB), the
performance can match that of native Linux. In Gramine, after a fork call, a new enclave is
created, and complex interactions occur between the parent and child processes, such as
identity authentication and key exchange, resulting in higher latency. Occlum, however,
allows multiple processes to exist within a single enclave, where these processes share
resources and are transparently managed by the operating system, greatly reducing process
creation time. However, when the memory size of the new process exceeds the capacity of
the EPC, it is constrained by the secure memory limit, requiring some of the memory to be
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moved to regular memory. This triggers repeated encryption and decryption operations,
leading to additional performance overhead and a sharp increase in latency.
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Figure 8. Process creation latency.

4.5.2. Inter-Process Communication Performance

Considering the different process execution models, in addition to process creation,
inter-process communication is also a common and important scenario. First, we used
the process creation methods mentioned earlier, whereas Gramine and native Linux used
fork, and Occlum used spawn to create a child process. Communication between the
parent and child processes was then established through the pipe system call. The parent
process is responsible for writing data into the pipe, while the child process reads data
from it. The throughput under different buffer sizes was used to reflect the efficiency of
inter-process communication. In Figure 9, it can be observed that Occlum demonstrates
high efficiency in inter-process communication, with almost no difference compared to
native Linux. As the buffer size increases, the throughput of the pipe gradually increases.
However, Gramine shows very low efficiency in inter-process communication. Through
testing process-related system calls, although Gramine supports multi-process mode, its
performance significantly declines. In contrast, Occlum achieves native level performance
in both process creation and inter-process communication system calls.
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Figure 9. Inter-process communication.
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4.6. Performance Under Realistic Workloads

In this section, we aim to evaluate the performance and applicability of SGX in the
context of IoT workloads. IoT systems often involve extensive data caching and fast access
requirements, which impose stringent demands on both performance and data security.
SGX offers hardware-based TEE that ensures the confidentiality and integrity of sensitive
data while maintaining system flexibility and scalability. To simulate a representative loT
workload, Memcached is selected as the target application for evaluation. Memcached,
a lightweight and widely adopted in-memory caching system, is commonly utilized for
efficient key-value storage and retrieval in distributed systems with high-speed data access
requirements. Its workload characteristics closely align with the caching and access patterns
frequently observed in IoT scenarios. By employing Memcached as the benchmark, this
study replicates typical IoT workloads to systematically analyze the impact of SGX on both
performance and security under realistic operating conditions. The results aim to provide
meaningful insights into the feasibility and practicality of deploying SGX in real-world IoT
environments.

The Memcached environment is configured for both Gramine and bare-metal
Linux, with a focus on evaluating the relationship between throughput and latency.
Memcached runs inside the SGX enclave, and load testing is performed using the
memtier_benchmark [71] from a separate terminal. The default configuration uses four
threads, and the load is increased by incrementally raising the number of concurrent clients
per thread. The resulting performance metrics are presented in Figure 10. It is observed
that the maximum throughput of Gramine is only about 30% of that achieved on bare-metal
Linux, and its relative performance is even lower under light workloads. This indicates
that in the Memcached scenario, the use of SGX still introduces significant performance
overhead. Frequent encryption and decryption operations, along with transitions in and
out of the enclave, severely limit the performance of edge devices.
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Figure 10. Throughput versus latency of Memcached.

4.7. Performance Improvement Strategies

Based on the performance tests, it is evident that SGX experiences significant perfor-
mance degradation in edge intelligence scenarios. Although different SGX implementations
excel in specific areas, such as Gramine in CPU-intensive tasks and Occlum in process
management, the overall performance of SGX in real-world tasks like I/O and network
programming remains poor. To improve SGX's performance in edge scenarios, three main
approaches can be considered: optimizing enclave entry and exit, bypassing the kernel for
I/0 operations and adopting confidential virtual machine (CVM)-based TEE.
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4.7.1. Optimizing Enclave Entry and Exit

Enclave switching poses a significant bottleneck in SGX-based systems, with the
overhead of a single Ecall or Ocall exceeding 14,000 cycles [28]. In comparison, a typical
system call incurs only around 150 cycles. Since nearly all system calls within an enclave
require switching to the untrusted application to complete, frequent transitions result in
substantial performance overhead. To address this issue, approaches like HotCalls [28]
and Eleos [67] have been proposed. HotCalls reduces the latency of enclave transitions by
leveraging a spin-lock mechanism and shared unencrypted memory, cutting the overhead
of Ecalls and Ocalls to as low as 620 cycles. Eleos, on the other hand, employs an “exitless”
architecture that batches system calls, caches results and utilizes shared memory buffers
to minimize the need for enclave exits, achieving a 2-3x reduction in overhead for system
call-intensive workloads. Both approaches effectively mitigate the severe performance
degradation caused by frequent enclave transitions, making SGX more practical for real-
world, high-performance scenarios. However, our experimental evaluation reveals that
the LibOS-based approach offers a more balanced solution for performance, security and
usability in SGX implementations. By integrating most system calls directly within the
enclave, LibOS significantly reduces the frequency of enclave switches. With a moderate
increase in the TCB size, it also eliminates the need for partitioning existing code, allow-
ing applications to be deployed into enclaves efficiently and with minimal performance
overhead. Consequently, we conclude that the LibOS-based approach is particularly well
suited for IoT and edge intelligence scenarios, where both performance optimization and
ease of deployment are critical.

4.7.2. Bypassing the Kernel for I/ O Operations

SGX performs well in CPU-intensive tasks, but it shows poor performance in I/O-
intensive tasks and real-world applications, necessitating specialized optimization for I/O
operations. SGX inherently lacks support for trusted I/O and does not allow efficient
methods such as DMA to access enclave memory. Traditional solutions involve multiple
copying steps: from disk or network cards to the kernel space, then from the kernel space
to untrusted application memory, and finally, into the enclave, resulting in significant
performance degradation. To address these challenges and provide secure and reliable
peripheral channels, Aurora [51] proposes a trusted I/O path based on the System Man-
agement Mode (SMM). Aurora uses System Management RAM (SMRAM) to isolate and
protect I/O operations, creating a secure communication channel between the enclave and
peripheral devices. Key features of Aurora include support for HID keyboards, USB storage,
hardware clocks and serial printers, as well as a batch processing mechanism to optimize
performance by reducing context switching. On the other hand, an efficient architecture
called SMK [72] focuses on extending SGX capabilities to address specific issues such as
secure networking and trusted timing in distributed environments. SMK provides a trusted
network by running protocol stacks on trusted hardware, ensuring data integrity and au-
thenticity. Additionally, SMK introduces a trusted clock system to ensure that applications
relying on precise timestamps (e.g., blockchain and secure communications) remain secure
and reliable.

Although these methods can achieve secure I/0O, they do not provide significant
performance improvements. We believe that since TEE does not inherently trust privileged
software, bypassing the kernel is a more suitable solution for TEE systems. This approach
aligns with the TEE’s core security model, minimizing reliance on untrusted components
and reducing the attack surface while ensuring both the integrity and confidentiality of data
during I/O operations. Rocket-IO is a direct I/O stack for TEEs that bypasses the untrusted
kernel using user-space libraries like DPDK and SPDK, enabling efficient and secure hard-
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ware interaction. It eliminates multiple data copies and integrates encryption, significantly
enhancing both I/O performance and security compared to existing frameworks. At the
same time, we believe that new hardware and protocols can be leveraged to achieve the
authentication of trusted peripherals, enabling direct data interaction. For instance, uti-
lizing RDMA network cards, device authentication can be conducted through the SPDM
protocol, extending the trust domain from the CPU to external devices. Subsequently, direct
data exchange can be realized through methods such as DMA. Additionally, integrating
advanced hardware like Persistent Memory can enhance both efficiency and security by
enabling high-speed, non-volatile storage and direct data access. Combined with TEEs
like Intel SGX, this ensures low-latency and secure data interaction across devices, while
maintaining robust protection for sensitive operations [73].

4.7.3. Adopting CVM-Based TEE

Although the methods mentioned above can effectively improve the performance of
SGX, its fundamental limitation lies in its design as a user-space TEE. While distrusting
the OS, SGX still relies on OS-provided services, such as page table management, leading
to inherent performance and security challenges. In contrast, VM-based TEEs, such as
HyperEnclave [74], leverage a trusted hypervisor to build a flexible, general-purpose TEE
architecture, offering multiple enclave types to suit diverse application needs. CVMs,
in particular, are evolving rapidly, enabling fully functional virtual machines where un-
modified applications can run seamlessly. Despite introducing a slightly larger TCB, CVMs
significantly enhance performance for I/O-intensive tasks [75]. For example, Intel TDX [76]
addresses SGX’s I/0O limitations by supporting trusted I/O, while solutions like Bifrost [77]
optimize CVM-1/0 performance through techniques such as zero-copy encryption and
packet reassembly, achieving up to 21.50% performance gains over traditional VMs. Simi-
larly, FOLIO [78], a DPDK-based software solution, improves network I/O performance
for CVMs without relying on trusted I/O hardware, achieving performance within 6% of
ideal TIO configurations while maintaining security and compatibility with DPDK applica-
tions. Given these advancements, CVM-based approaches are likely to represent the most
practical and effective model for implementing TEEs in the future, provided there are no
extreme constraints on TCB size.

5. Related Works

In this section, we primarily summarize the works related to the analysis and evalua-
tion of TEE technologies.

For SGX-based TEE technologies, Hasan et al. [32] implemented LMbench using
both the SGX SDK and Gramine, focusing on four scenarios: Forkless, SGX, NoSGX
and Gramine. They compared the performance of the porting method and the shim-based
method by analyzing system read /write performance and the overhead of certain system
calls. They also tested Ecall and Ocall overhead, showing that the shim-based method is
more optimization-friendly. After several iterations, LibOS-based technologies like Gramine
and Occlum outperformed the port-based method in some scenarios. For SGXGauge, the
authors of [66] examined SGX performance under different memory usage levels, using
EPC size as a baseline and testing in low, medium and high memory usage conditions. They
compared native Linux, SGX SDK-based and LibOS-based implementations, revealing a
significant performance drop in the SGX SDK when memory exceeded the EPC, while
LibOS-based implementations maintained stable performance. Weisse et al. [28] detailed
Ecall and Ocall performance overheads in warm and cold cache environments. They also
tested data exchange speeds between non-secure applications and enclaves across four
buffer transfer modes: zero copy, copying in, copying out and copying in&out. The results
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showed poor performance in the application-enclave interface, prompting the proposal of
HotCalls to redesign the interface and improve performance.

For other TEE technologies, analysis and evaluation are essential components. For Arm
TrustZone, a study [79] comparing it with other TEE technologies concluded that Trust-
Zone is more hardware-efficient and avoids the risks of a highly privileged “black box”
controlling the system. For ARM CCA, the authors of [37] conducted detailed performance
tests under various workloads, including hypercalls, I/O instructions and application
benchmarks like Apache and MySQL, identifying key performance bottlenecks. On the
RISC-V platform, the authors of [19] evaluated the performance of Penglai Enclave using
the SPECCPU benchmark and addressed security challenges such as controlled-channel
and cache-based side-channel attacks, proposing mitigation strategies to enhance security.
Additionally, some studies focus on TEE technologies that adopt VM-based protection, such
as AMD SEV and Intel TDX. For instance, recent work [75] conducted a comparative evalu-
ation of TDX, SEV, Gramine-SGX and Occlum-SGX, analyzing computational overhead and
resource usage under various operational scenarios with legacy applications. This study
uniquely evaluates TDX, providing valuable insights into the performance of CVM-based
TEEs under realistic conditions. In contrast, the abovementioned works do not consider
the integration of TEE technologies into IoT environments. In resource-constrained edge
intelligence scenarios, the performance and applicability of TEEs face significant challenges,
where factors such as limited computational power and energy efficiency can heavily
impact their effectiveness.

6. Conclusions

This paper presented an in-depth analysis and evaluation of SGX-based TEE technolo-
gies in IoT and edge intelligence scenarios. Through comprehensive performance testing of
various SGX implementations, including those based on SGX SDK and LibOS, we identified
key challenges, such as performance degradation and I/O security issues, that arise when
applying TEE in resource-constrained and latency-sensitive edge environments. Our ex-
perimental results highlight significant performance bottlenecks, particularly in areas like
enclave transitions and secure I/O operations. These findings offer critical insights into the
limitations of current SGX solutions and provide valuable benchmarks for improving the
integration of TEE in IoT scenarios. Additionally, it proposes corresponding performance
optimization strategies, offering practical approaches for deploying TEE in IoT and edge
intelligence scenarios.

However, this study has some limitations. Primarily, it focuses on SGX-based TEE
implementations and does not include evaluation with real workloads for other kinds of
TEE technologies. Second, some security concerns related to TEE usage in edge environ-
ments, such as Man-in-the-Middle and Denial of Service attacks, are not covered in this
work. Future work will focus on implementing the proposed performance optimizations
and I/O security enhancements, while also broadening our experimental scope to cover
other TEE technologies. This will provide a more comprehensive understanding of TEE
utilization and find potential improvements in IoT-Edge Cloud Continuum.
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