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Application of Modified Steady-State Genetic Algorithm for
Batch Sizing and Scheduling Problem with Limited Buffers
Gordan Janeš, David Ištoković *, Zoran Jurković * and Mladen Perinić

Faculty of Engineering, University of Rijeka, Vukovarska 58, 51000 Rijeka, Croatia
* Correspondence: distokovic@riteh.hr (D.I.); zjurkovic@riteh.hr (Z.J.)

Abstract: Batch sizing and scheduling problems are usually tough to solve because they seek solutions
in a vast combinatorial space of possible solutions. This research aimed to test and further develop
a scheduling method based on a modified steady-state genetic algorithm and test its performance,
in both the speed (low computational time) and quality of the final results as low makespan values.
This paper explores the problem of determining the order and size of the product batches in a hybrid
flow shop with a limited buffer according to the problem that is faced in real-life. Another goal of
this research was to develop a new reliable software/computer program tool in c# that can also be
used in production, and as result, obtain a flexible software solution for further research. In all of the
optimizations, the initial population of the genetic algorithm was randomly generated. The quality
of the obtained results, and the short computation time, together with the flexibility of the genetic
paradigm prove the effectiveness of the proposed algorithm and method to solve this problem.

Keywords: hybrid flow shop; batch size; scheduling; buffer configuration; optimization; steady-state
genetic algorithm

1. Introduction

A genetic algorithm (GA) is a heuristic search that mimics the process of natural evo-
lution. The use of genetic algorithms for optimization was first introduced by Holland [1].
It is a stochastic heuristics technique which encompasses a semi-random search method
whose mechanism is based on the evolutionary processes that occur in nature. The search
method in a genetic algorithm is not based on improving a single solution, and instead, a
genetic algorithm works with multiple possible solutions. The GA as a search mechanism
is usually used when there is very little knowledge of the solution space or when there are
far too many possible solutions to use the standard search/optimization methods.

Many commonly used genetic algorithms have a major drawback: they have high
computational power requirements and some have high demands on the CPU or memory
of it, or usually, both, so a modified genetic algorithm based on a steady-state genetic
algorithm (SSGA) was developed with the following goals:

• To have reliable results;
• To be fast;
• To be suitable to run in a highly parallelized computer environment;
• To have low demands on the computer memory;
• Keep a low number of genetically identical individuals;

Based on the chosen algorithm, completely new software for testing was written in
C#.

The schedule and size of the product batches and buffer configuration are among the
major problems in manufacturing since manufacturing systems in a real environment have
frequent requirements for change. This is mainly due to today’s turbulent manufacturing
environment calls for adaptive and rapidly responding manufacturing systems because
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there is a high level of market competition. Other reasons for this can be problems in the
supply of raw material or energy and there being a long downtime due to the malfunction
of production equipment. So, flexibility and re-configurability are becoming more and
more important in modern manufacturing [2]. Those who are responsible for making
strategic decisions in manufacturing companies must have relevant pieces of information
as soon as possible to make relevant decisions on how to use the available resources and
retain market competitiveness.

The buffer storage in production serves to decrease and balance the processing times,
increase the production flexibility and decrease the impact of the breakdowns in production,
but they are at the cost of additional capital investment, the floor space of the line, and
using more inventory. Hence, the determining size and allocation of the buffer storage in
manufacturing systems has both theoretical and practical interests.

In this paper, the performance of a specially developed software-based modified
genetic algorithm was tested on the real-life problem of determining the size and schedule
of the product batches with multiple buffer storage configurations in a hybrid flow shop
(HFS). The study showed that the proposed approach was highly effective in the finding
acceptable solutions for all of the problem sets that were examined.

2. Literature Review

A large number of studies can be found in the literature which solve the problem
of determining the batch size and schedule in a HFS. According to Ribas et al. [3], a
HFS actually represents the production systems where a larger range of products move
unidirectional through several production stages. In each production stage, there are one or
more identical production capacities. A literature review on hybrid flow shop scheduling
problem was given by Ruiz and Vázquez-Rodríguez [4] and Tosun et al. [5]. This type
of manufacturing system is characteristic of many processes and discrete manufacturing
companies from the real environment [6], such as automobile manufacturing, machinery
manufacturing, etc. For this reason, this type of manufacturing system was chosen as the
subject of research.

A HFS scheduling problem is a complex combinatorial problem. There are many dif-
ferent variations of this problem, i.e., it differs depending on several factors, such as the
understanding of the environmental assumptions, constraints or performance measures that
are to be achieved [7]. For example, many authors have used different methods to minimize
the makespan [8–11]. Makespan is one of the most frequently used performance measures be-
cause makespan directly affects the performance of the manufacturing efficiency in the form of
there being satisfying delivery that is on time and reducing the production costs. Additionally,
other performance measures have been observed, as can be seen detailed in [12,13].

Market uncertainty and a change in the production philosophies, where the stocks
represent direct losses for many processes and discrete manufacturing companies, neces-
sitate the production of a wide range of products within the timeframe. This leads to
an increasing challenge in terms of determining the batch size and schedule. With this
realization, the research attention focused on making both decisions at the same time has
increased [14]. In addition, there is an increasing number of papers that deal with these
problems using real-world examples [15–17].

Besides batch sizing and scheduling, the problem of accumulating product units
between the manufacturing stages is also a major problem. Therefore, it is important to
know what capacity of buffer storage to provide for the smooth running of the production.
Leisten [18] spoke about the influence of a limited buffer in 1990. Makespan minimization
problems for a two-stage flow shop with a limited buffer were considered in [19,20]. Jiang
and Zhang [21] were investigated an energy-oriented scheduling problem deriving from a
hybrid flow shop with limited buffers. A solution for multi-objective permutation flow-
shop scheduling problems with limited buffers was presented by Qian et al. They proposed
an effective hybrid algorithm based on differential evolution [22]. For the same type of
problem, Liang et al. [23] developed a multi-objective hybrid self-adaptive differential
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evolution optimization algorithm. Zohali et al. [24] developed a metaheuristic algorithm,
which was called the discrete fruit fly algorithm, to solve a batch scheduling problem in
a hybrid flow shop with limited buffers. Marinelli et al. [25] dealt with capacitated batch
sizing and a scheduling problem with parallel machines and shared buffers. Batch sizing
and scheduling problems with buffer constraints were also presented by Sundaramoorthy
and Maravelias [26].

For solving the batch sizing and scheduling problems and buffer configuration prob-
lems, one of the most commonly used methods and techniques is GA. GA has proven to
be a relatively good optimization tool. An example of that is given by Shen, K. et al. [16].
Han et al. [17] proposed an improved compact genetic algorithm in a hybrid flow shop
with a multi-queue buffer. Amjad et al. developed and implemented a modified GA for
makespan optimization, where the GA was initialized based upon global, local and random
selection techniques, and adaptive reproductive operators were applied to intelligently
evolve the algorithm [27]. For solving the multi-objective optimization problem in HFS,
Chen and Zhao [28] introduced new constraints and improved the traditional GA. By
combining a Random Key Genetic Algorithm (RKGA) and a Technique for Order Pref-
erence by Similarity to an Ideal Solution (TOPSIS), Karacan et al. [29] proposed a new
integrated methodology.

However, many of the proposed ones do not give results enough fast or some modifi-
cations are needed to ensure that it is easier to apply them. Therefore, this paper proposes
a modified steady-state GA to solve this type of problem, which will serve as a kind of tool
for the fast and efficient determination of the batch size and schedule.

So, the first step in this study was to create a modified GA that would be easy to apply
and give results quickly. Additionally, the second step was to apply the modified GA to a
real-world example with the aim to determine the batch size and schedule and the required
buffer configuration.

3. The problem Formulation
3.1. Notation

The production system and all the data used in this article are based on data from the
real world. The problems of the manufacturing company are to find the appropriate batch
size for each product type, to order the allocation of the production capacities to each batch
of products and to determine the necessary buffer configuration to ensure that smooth
production occurs and to ensure that the delivery is on time.

The parameters used in this paper are given in Appendix A.

3.2. Description

The plant is producing groups of technologically similar products. The technologically
similar products are those that have a high degree of similarity in the order of processing
and duration of the operations. In this case, the plant is producing three types of techno-
logically similar products (which are labelled as D, E and F) and the delivery is scheduled
every two weeks. The targeted two-week production for each product is given in Table 1
as qj (qD, qE, qF).

Table 1. Two-week production goal.

j D E F

qj 4616 3232 2616

The working week lasts for five days and in two shifts. Each shift lasts eight hours,
so the maximum availability of the production equipment, in this paper, was 160 h
(Cgoal = 160 h). The makespan Ccalc must be lower than the maximum availability of the
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production equipment (1) or there will be a delay in the delivery, which should definitely
be avoided.

Ccalc < Cgoal, (1)

Delivering on time is a condition that has to be satisfied, but it is not required that the
makespan must be as small as possible. Every value that satisfies that the delivery is on
time is acceptable. The processing times pijk for the operations oij are given in Table 2.

Table 2. Processing times (in hours).

oij D E F Mi

1 0.028 0.035 0.036 3
2 0.031 0.035 0.036 3
3 0.012 0.010 0.010 1
4 0.020 0.019 0.017 2
5 0.008 0.012 0.014 1

This production system is typically a hybrid flow shop. Precisely, this production
system has five stages, where each stage consists of the Mi number of the same machines.
All three types of products pass unidirectionally through the production system and are
processed at each stage.

The arrival time of each batch at the stage where the type of product that is produced
is different from the previously processed one, and this means that there is a need to setup
the workplace. The setup times are defined as being relatively long, in this case, this is
mainly because of the client’s request. Since, there are technologically similar products, the
same setup time was used for all of the possible combinations of product changes at the
same stage. Therefore, the setup time STi for each stage is defined, as can be seen in Table 3.

Table 3. Setup times (in hours).

i 1 2 3 4 5

STi 0.233 0.233 0.267 0.267 0.267

As mentioned before, the products travel in batches through the production system.
Due to the simplicity of production management and control, the quantity of products in
each batch of the same type of product Bjb is set as equal (2). Except in the last batch Bjl,
where the quantity of product is equal to the remaining difference between the production
goal of the same type of product and the quantity of product that has been produced so
far (3). The order in which the batches of products enter the system is not defined, but it is
completely random.

Bj1 = Bj2 = . . . = Bj(l−1), (2)

Bjl = qj − Bj · (l − 1), (3)

After finishing the processing at the previous stage, the batch is sent directly to the
next stage if that stage is not occupied. Otherwise, the previous stage is blocked. For this
reason, a buffer f is needed between each stage that can receive a certain amount of product.
There are a total of four buffers where each can receive a different amount of product. It is
worth noting that several different batches can be on the same buffer at the same time. The
buffer can be recharged until the moment that it can no longer receive the entire batch. In
that case, the batch is waiting in the previous stage for the space in the buffer to be freed
up. After the next stage is empty (releasing the previous batch), then it is occupied by the
batch that first arrived on that buffer (according to the FIFO principle).

The batch size directly affects the required buffer size. On the other hand, the buffer
size takes up space in the production plant. When the problem of batch scheduling is
added to all this, it is necessary to adjust these values in order to achieve optimal results.
First of all, this is performed to satisfy the on-time delivery demand.
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In the first step, it is necessary to determine whether the defined production goals can
be produced. If it is possible to deliver them on time, we must determine which buffer
configuration is required at which position. After that, it is necessary to determine the
batch size and the order for the proposed buffer configurations, and observe which one
gives the best result in terms of satisfying that the delivery is on time.

In the optimization process, the following statements were also taken into account:

• All stages, machines and buffers are available at time 0;
• All jobs are released at time 0;
• Every operation is a part of a chain of operations;
• The order of operations must be followed;
• All of the operations of a given job have to be processed in a given order;
• Two operations of a job cannot be processed at the same time;
• Each machine can process at most one operation at a time;
• Once processing starts on a given machine, it must complete on that particular machine

without any interruption;
• The utilization of each machine is set as 0.85;
• Each operation has a fixed duration.

4. Genetic Algorithms Parameters
4.1. Initial Population

In all of the calculations for this paper, the initial population has been created com-
pletely randomly. Such an approach in the process of creation of the initial population, in
some cases, can result in a longer search time and require more computational resources,
but this approach provides the initial population with a high genetic diversity and a larger
pool of genetic material. Such as in real life, in nature, a high level of the genetic diversity
of a certain species increases the likeliness that that species will find (better) solutions for
the challenges of evolution. Therefore, population sizes of 100 individuals were used.

4.2. Coding and Decoding of Organisms (Solutions)

The first step in constructing a genetic algorithm is to define an appropriate genetic
representation and coding. Choosing a good representation is very important because this
step significantly affects all of the other steps in the algorithm, and consequently, it has a
big impact on the quality of results and speed of the algorithm. In determining the genetic
representation, the goal was also to obtain flexible code representation for further research
and software development.

A set of three 2D (two-dimensional) integer arrays were used for the chromosome
representation:

• Product sequence array—Integer type;
• Batch quantity array—Integer type;
• Fitness array—(real number) double-precision floating-point type.

The usage of one 3D (three-dimensional) array is less challenging from a programmer’s
point of view, but with the 2D arrays, the computer program runs significantly faster. Before
the final decision could be made on how to define the genetic representation, another
computer program was written to test memory operations speed, and the test showed that
usage of 2D arrays runs approx. 20 percent faster.

4.3. Solution Decoding

For better software efficiency, the GA population (possible solutions) were coded,
and at the end of the GA, the best solution has to be converted into a more readable
format. The decoding was performed by connecting the corresponding values from two
arrays—Figure 1. The first array contains the product designation and the second batch
size. By combining these two values, we obtain results that are in an easily readable format.
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4.4. Crossover (and Selection)

In the genetic algorithm that was used in this research, the processes of selection
and crossover are combined — Figure 2. This approach is inspired by nature: a habitat
with strict boundaries can support only a certain number of species, and this number is
limited by the habitat’s resources, and also, the species tend to grow until the habitat’s
limit is reached. Individuals that are more adjusted to the environment tend to outlive
the individuals that are less adjusted to the habitat parameters. As it was inspired by this
idea, in this algorithm, there is no selection for a standalone GA operator in which part
of the population is removed, and instead, the removal of the individuals is integrated
with the crossover GA operator, and only one individual is removed in each step. The
emptied space is fulfilled with an individual that is created during the crossover operation.
Also, during this process, the removal of identical individuals is integrated to keep the
genetic diversity within the population as high as possible. If two parents that are selected
for the crossover operation have the same fitness, then their genome is compared, and if
they are identical, one of them is removed from the population to make space for the new
individual that will be created in the crossover process.
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Step 1: In the first step, two individuals from the population are selected, and they will
be used as the parents. Their genetic material will be used in the process of the crossover
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and the creation of a new individual. The selection of parents is completely random, and
all of the individuals in the population have equal chances to be selected.

Step 2: In this step, the fitness of two individuals that were selected as parents are
compared. In the first stage of comparison, their fitness is compared, and if they do not
have the same fitness, they do not have an identical genome, and their genetic material can
be used in the creation of a new individual, and so the algorithm continues on to step 3a.
However, if they have the same fitness, an additional check is made, and their complete
genome is compared. In the case of two non-identical individuals, the algorithm continues
on to step 3a. Otherwise, the algorithm continues on to step 3b.

Step 3a: Since the parents are not identical, the individual with the worst fitness is
removed from the population to make space for the individual that will be created in step 4.
(Since it has the lowest fitness in the population, it is most likely that the usage of genetic
material from this individual will not produce competitive offspring.)

Step 3b: Because in step 2, two genetically identical parents were selected. The result
of the crossover process would be the creation of a new individual that is genetically
identical to its parents. To avoid this, one of the parents is removed from the population,
and randomly selected individuals take its place. This mechanism not only prevents the
creation of identical individuals, but it can also remove individuals with identical genomes.
The usage of this mechanism also prevents the loss of genetic material (and consequently,
it increases the chance to obtain better final algorithm results).

Step 4: The new individual is created as a result of the combination of the genetic
material of its parents, and the newly created individual takes the place of the removed one,
and the population again has a size determined by the habitat. After the new individual is
created, its fitness is calculated, and if it has the best or worst fitness in the population, it is
marked as such. This is the approach to selection in the genetic algorithm:

• It ensures the minimum loss of material from the genetic pool, and consequently, it
has a higher chance to produce better results;

• It has minimum requirements towards the computer memory since needs space for
only one population in computer memory;

• There is no need to sort the population-based on fitness and/or to make many com-
parisons of fitness within the population.

4.5. Mutation

A mutation introduces new genetic material into the population to enhance the di-
versity of a population. In GA, a mutation is applied with a small probability since a
large probability of a mutation may lead to loss of good genetic material, and as a result, a
downgrade in the quality of results, and it may make the algorithm slower.

In this case, there are two possible types of mutation: the change of the batch order or
the change of the batch size. In the first case, the case change of the batch order mutation
process is fairly simple. Only two genes replace their position. However, in the case of a
change of the batch size, additional modifications are required. To maintain the predefined
quantity of the product, in most cases, it is necessary to correct the number of batches
and size of the last batch. Batches that had to be added or removed and their position are
determined randomly.

This approach to the genetic algorithm enables us to make multiple mutations (modi-
fication of genome) and/or multiple selections and crossover operations at the same time.

4.6. Definition of the Fitness Function

After the creation of the initial population, the fitness of each individual in the popula-
tion Cfitness (4) is calculated.

Cfitness = Ccalc + Cpenaltyl, (4)
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Since, in this case, the delivery condition has to be satisfied, penalization of the
possible solutions (5) that do not satisfy this condition was introduced into the fitness
formula as Cpenalty.

Ccalc, penalty = Ccalc − Cgoal

if Ccalc, penalty > 0

Cpenalty = (1 + Ccalc, penalty) · (Ccalc − Cgoal)

else

Cpenalty = 0

end,

(5)

5. Results and Discussion
5.1. Computational Time

The computer program was launched 100 times with different population sizes on
the personal computer with AMD Ryzen 7 2700X Eight-Core Processor at 3.70 GHz CPU,
16 GB RAM and Windows 10 operating system. The population size was 100 individuals.
The mutation rate was 2%, and the crossover rate was 75 % of the population (the number
of selection/crossover operations in each generation was 0.75 of the population number)
in 200 generations. The average running time is shown in Table 4. The software has
two modes: “normal” and “log”. In the “log” mode, the software keeps logs of some
operation/calculation, and that makes it approximately 30 % slower. The values in Table 4
were achieved in the “normal” mode.

Table 4. Running time.

Population Size [pcs]

50 100 200 300 500

Generations 100 00:09.273 00:20.211 00:44.316 01:01.513 01:46.551
200 00:12.772 00:35.135 01:26.321 02:17.244 03:00.225

Increasing the GA parameters over 200 generations and 100 individuals in the popula-
tion did not produce better results, and the calculation time was still acceptable, so these
GA parameters were used in the further calculation.

For the comparison, the results and speed of the steady-state algorithm (SSga) that was
used in this research were compared with the steady-state generation algorithm (SSGga).
After consecutive 100 runs, the average calculated makespan value was lower (better) with
the steady-state (SSga) algorithm. On the other hand, the steady-state generation algorithm
(SSGga) had a better performance regarding the software run-time, as shown in Table 5.

Table 5. Makespan and running time (SS-GA and SSG-GA).

Algorithm avg. Time [sec] avg. Makespan [h]

steady-state algorithm (SS-GA) 36.778 160.087
steady-state generation algorithm (SSG-GA) 19.181 162.103

Despite the much lower computational time of the steady-state generation algorithm,
priority was given to the quality of the results of the steady-state algorithm because the
duration of the execution is acceptable in both cases.
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5.2. Results

The software was also used to test multiple real-world problems in the industry using
multiple scenarios. The research was conducted in two stages:

• The analysis of the need for a buffer in production;
• The analysis of the possible buffer configuration scenarios.

In the first step, a set of simulations was conducted to find where the greatest need for
a buffer between the operations was. So, in this set of simulations, a GA without buffer
limitations was executed 100 times. The ten best results were taken into consideration to
find out the buffer needs (Table 6). The buffer is shown as a number of pieces, and since all
three products are similar, the buffer capacity is same for all three products.

Table 6. Required buffer configuration.

Cfitness BD BE BF F1_MAX F2_MAX F3_MAX F4_MAX

155.610 119 295 164 595 238 164 357
156.534 123 225 159 680 434 159 492
156.827 161 156 147 591 322 156 322
157.173 230 267 170 526 267 198 340
157.273 229 182 253 676 265 182 482
157.309 224 200 300 704 360 216 448
157.314 201 233 255 605 267 66 468
157.334 137 135 209 643 369 137 542
157.455 184 260 175 568 260 184 368
157.603 178 126 157 544 178 157 304

Average: 613.2 296.0 161.9 412.3

As can be seen in the last row in Table 6, the requirements for the buffer are the largest
between the first and second operations and between the fourth and fifth production stages.
Otherwise, the smallest buffer requirements is between the third and fourth production
stages. These results were taken into consideration for the next stage, i.e., determining the
optimal buffer configuration.

In the second stage, we tested six possible buffer configurations (BC1-BC6). The
configurations were determined according to the data from Table 6, and the situations
in the production facility and six possible configurations were taken into consideration
(Table 7). For each scenario, the GA was executed 100 times with the same parameters
as in 5.1.

Table 7. Buffer configurations and results.

Buffer Configuration F1 F2 F3 F4 BD BE BF Average Cfitness Best Cfitness

BC1 90 90 90 90 87 86 75 163.787 159.038
BC2 90 60 90 120 60 60 59 171.562 166.604
BC3 90 90 60 120 54 60 60 171.353 165.592
BC4 120 60 90 90 56 60 57 171.526 165.842
BC5 120 90 60 90 60 60 59 171.562 166.604
BC6 120 60 60 120 60 60 53 170.464 165.383

According to the simulation results, the best makespan was achieved with the BC1
buffer configuration, both in an average value for 100 consecutive simulations and with the
best overall result. The BC1 buffer configuration is also the only buffer configuration that
meets the specified condition of there being an on-time delivery.

6. Conclusions and Future Research

In this paper, a modified steady-state genetic algorithm was tested to solve the op-
timization problem. The problem of determining the batch order and the size of three
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technologically similar products in a hybrid flow shop with a limited buffer capacity was
taken from the real environment. The results that were obtained in chapter 5 of this re-
search show that both the performance and speed of this algorithm are quite good, and
that the development of highly specialized and custom-made software can be taken into
consideration during the process of production planning.

In short, the low execution time of the algorithm allows for the testing of many
possible scenarios, and consequently, it obtains a better production process configuration.
The results also show that the software based on the developed algorithm can serve as a
reliable tool for its use in production planning. This can be very important in cases where
there is not much available time to make new production configurations from scratch or to
reconfigure existing ones.

Although genetic algorithms have been recognized as effective search algorithms for
many years, continuous improvements in computer performances open new possibilities
for the further development of genetic algorithms. In future research, the performance
of the genetic algorithm that is used in this paper will be tested on even more complex
problems to prove the capability of the algorithm to obtain reliable results.

The GA that was developed and used in this research is very suitable for paralleliza-
tion and its use on modern multicore CPUs. It can be assumed that the parallelization of
the computer code for the proposed genetic algorithm could bring significant performance
improvements, and that the algorithm can work on highly parallelized computing systems.
In this paper, we used a single thread solution, and so, a further reduction of the computa-
tional time is possible with some code modifications being performed. In further research,
it is possible to investigate single multi-tread vs. multiple single thread solutions.
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Appendix A. Parameters Used in This Paper

N set of jobs/products
S set of stages
Mi set of the parallel machines at stage i
L set of batches of the same product type
H set of buffers
j job/type of product, j = 1, . . . , n
i stage, i = 1, . . . , s
k machine, k = 1, . . . , m
b batch of the same product type, b = 1, . . . , l
f buffer, f = 1,.., h
oij operation of product j at stage i
pijk processing time of product j at stage i on machine k
STijk setup time of product j at stage i on machine k
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Bj batch size of product j
Bjb batch size of batch b of product j
q production goal/quantity
F buffer configuration/capacity
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Abstract: While traditional industrial robots participate in repetitive manufacturing processes from
behind caged safety enclosures, collaborative robots (cobots) offer a highly flexible and human-
interactive solution to manufacturing automation. Rather than operating from within cages, safety
features such as force and proximity sensors and programmed protection zones allow cobots to
work safely, close to human workers. Cobots can be configured to either stop or slow their motion
if they come in contact with a human or obstacle or enter a protection zone, which may be a
high pedestrian traffic area. In this way, a task can be divided into sub-processes allocated to the
cobot or the human based on suitability, capability or human preference. The flexible nature of the
cobot makes it ideal for low-volume, ‘just-in-time’ manufacturing; however, this requires frequent
reprogramming of the cobot to adapt to the dynamic processes. This paper reviews relevant cobot
programming and control methods currently used in the manufacturing industry and alternative
solutions proposed in the literature published from 2018 to 2023. The paper aims to (1) study the
features and characteristics of existing cobot programming and control methods and those proposed
in the literature, (2) compare the complexity of the task that the cobot is to perform with the skills
needed to program it, (3) determine who is the ideal person to perform the programming role, and
(4) assess whether the cobot programming and control methods are suited to that person’s skillset or
if another solution is needed. The study is presented as a guide for potential adopters of cobots for
manufacturing and a reference for further research.

Keywords: cobot; collaborative robot; programming; control; skills; task complexity; teach pen-
dant; manufacturing

1. Introduction

Cobots are an integral part of modern manufacturing, destined to become the leading
form of robotics technology in the future [1]. While most mechanical equipment currently
used in manufacturing is mono-functional, cobots can assist with a wide variety of tasks,
including some standard operations listed in Table 1, along with many more custom
applications. As systems incorporate self-learning capabilities of artificial intelligence
and auto-correction [2] into cobot operations, the subsequent autonomous behaviour can
provide unprecedented collaborative assistance to human workers [3,4]. Evolving from
traditional industrial robots [5], cobots have additional programming requirements to feed
a collaborative functionality, as shown in Table 2.

Table 1. Typical cobot tasks (Adapted from [6]).

Cobot Task General Application Description

Welding Joining of metal parts, typically with a MIG welding (automatic
welding wire feed) process

Machining Precision surfacing process involving a milling or cutting tool
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Table 1. Cont.

Cobot Task General Application Description

Deburring Removal of waste material from casting or machining processes
with an abrasive tool

Polishing Treatment to remove surface irregularities or attain a lustre to
coated or machined surfaces

Spray Painting Part coating, applied to protect or otherwise enhance
surface appearance

Sorting Practical categorisation of unsorted parts for kitting, classification
or other organisational operation

Pick & Place Moving components from a starting point to an endpoint for
assembly or other processes

Stacking Moving finished products from a production line to a pallet or
other storage location

Machine Tending Inserting billets or parts into a milling machine, lathe, etc. and
retrieving machined or processed components

Inspection/Measurement

Analysis or quality assurance process where parts and other
sub-assemblies or components are measured with sensors or by

other means to ensure they are within an acceptable
tolerance range

Table 2. Comparison between industrial robot and cobot capabilities [7–9].

Feature Traditional Industrial Robot Collaborative Robot

Engagement with humans
Segregated. Operates within a

protective barrier, away
from humans

Interactive. Operates
collaboratively with humans

Safety near humans Not safe. Must
work separately Safe to work with humans

Environmental awareness Cannot dynamically
adapt behaviour

Can adapt to changes in
the environment

Programming flexibility and
complexity

Fixed, rudimentary use case
programs. Typically

reprogrammed infrequently

Flexible, customised use case
programs. Potentially

reprogrammed frequently

Ease of implementation Arduous. Requires
fixed infrastructure

Fast set-up and
easy deployment

Operational behaviour Fast and repetitious, mainly
task focused

Slow and varied. Focus on
task and environment

Footprint/Portability Large footprint, fixed location Small footprint, mobile

Purchase cost Relatively expensive
to purchase

Relatively inexpensive
to purchase

Profitability Needs medium to
large-volume production

Profitable at
low-volume production

Investment prospect Slow return on investment Fast return on investment

Traditional industrial robots were designed to perform simple, repetitious tasks (refer
to Table 2), typically operating within human protective enclosures [10]. These tasks often
form part of a mass production process, where the robot is engaged in the same task for
long periods [7]. As such, industrial robots are typically programmed infrequently. In
contrast, cobots were designed primarily to assist humans with, among other things, low-
volume, customised production [2,11]. Due to the constantly changing task requirements,
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cobots are typically reprogrammed on a more regular basis [12] as a consequence of their
operational flexibility.

Identifying the need for a simplified cobot programming method, Dmytriyev et al. [12]
proposed the implementation of a flowchart-based programming environment. El Zaatari et al. [13]
found that to increase cobot autonomy, the complexity of the industrial application and
the worker’s knowledge of the task should be considered when choosing programming
features. Schou et al. [14] presented a task-level programming solution using a skill-based
system, with the instruction of cobots by operators with no previous robotic experience.
The skills, in this context, refer to generic controls related to cobot capabilities rather
than operator skills. To narrow the skills gap between robotics experts and workers who
lack programming expertise, a system using expert frames, which focus on specific cobot
operational aspects, was proposed. One of these frames relates to program quality and
identifies syntax errors, unused code and missing parameters or code segments. An
interactive interface allows operators to visualise a cobot operation and modify behaviour
in response to feedback data received [15].

Understanding the contributing elements would be beneficial to systematically analyse
the effectiveness of existing cobot programming and control methods. However, reviews
on foundation data, including existing and proposed cobot programming and control
methods in the literature, their intended users and the types of programmable cobot tasks,
appear deficient. Furthermore, research on the relationship between cobot programming
skills requirements and task complexity is lacking. These are the research gap questions
this study intends to address:

1. What are the common programming and control methods for cobots in the existing
market and literature?

2. What bearing does the complexity of a cobot task have on the skills required to
program the cobot to perform that task?

3. How effective are cobot programming and control methods in the existing market
and literature? Who is the most appropriate worker to implement the methods, and
have the methods been suitably developed for that worker?

2. Technical Readiness for Cobot Deployment

Industry perspectives showed that the most significant cobot adoption hurdle is a
deficiency among their staff in the knowledge required to program and interact with
a cobot [14,16]. Within the knowledge gap, understanding general cobot technologies,
application methods, and practical programming is prominent [17]. Employees with prior
knowledge of robot programming are considered a key asset in robotic task allocation,
ostensibly due to the wide variety of tasks cobots are capable of performing, such as
those listed in Table 3. However, the programming of these tasks was more complex
than practitioners expected [18]. This apparent misconception about the ease of cobot
programming may well be generated from the marketing promises presented by the cobot
vendors in general. This premise will be analysed in Section 5 of this paper. Augmenting
the programming skills problem, a fear of programming and technology in general among
potential operators has been identified as a possible barrier to cobot adoption [19].

Although there is a significant role for cobots to play in low-volume manufacturing [2,11,20],
the time spent programming cobots for small batch runs is often not economically viable [21].
This suggests that developing a simpler and more efficient programming method would
significantly increase cobot utilisation, especially within the varied tasks associated with
low-volume manufacturing operations.

Traditional industrial robots have typically been programmed by dedicated engineers,
who may be located off-site and have limited operational knowledge of the task being
performed by the robot [14]. Due to the smaller job runs and requirement for faster and
more frequent reprogramming of cobots, it may be more efficient to shift the focus from the
skills required to program a cobot to the knowledge of the task a cobot is carrying out [7].
There seems to be a disparity in programming a cobot to perform a particular task. In most
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practical scenarios, it is often the person who knows the task well who is not competent
with programming, and the person who is competent with programming does not know the
task well [22]. A possible solution is that the person with knowledge of the task could also
program the cobot [23,24]. Operators with task expertise provide substantial improvements
in the precision and efficiency of cobot operations when compared to non-experts [22]. An
aim of adaptive task-sharing design principles is that cobot programming should be part
of the workers’ and assembly planners’ duties [25]. Substituting a program engineer for
a worker skilled with the task being conducted but without cobot technical skills would
require a simplified programming tool.

Table 3. Cobot tasks and related operations (Adapted from [6]).

Cobot Task Category Related Cobot Operations

Assembly Screwdriving, Part Insertion, Pick and Place

Dispensing Gluing, Sealing, Lubricating, Painting, Coating, Dipping

Finishing Sanding, Polishing

Material Handling Packaging, Palletising, Bin Picking, Kitting

Material Removal Grinding, Deburring, Trimming, Milling, Routing, Drilling

Welding Mig, Soldering

Quality Inspection Testing, Inspecting, Measuring

Machine Tending CNC, Injection Moulding, Automated Machining

3. Existing Cobot Programming and Control Methodologies

Depending on the complexity of the task to be undertaken by the cobot, a range
of proprietary and third-party solutions are available. For more straightforward cobot
tasks, such as the first and second tasks listed in Table 4, teach pendant (also known as
Lead through programming), teach or program by demonstration, and offline/simulation
programming are commonly available options [23,26]. Figure 1 shows the teach pendants
produced by ABB and Universal Robots. A variety of other programming options are
provided by cobot vendors, as detailed in Table 5.
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For more complex tasks, such as the last two levels in Table 4, there are proprietary
scripts, graphical user interface (GUI) programming applications, and the option of pro-
gramming in a traditional programming language such as Python, C, C++, C# or Java, or a
dedicated robotics language such as Robot Operating System (ROS). ABB’s RAPID [27] and
Universal Robot’s URScript [28] are two typical examples of this category, which require
a relatively higher level of programming skill. The collaborative nature of a cobot allows
it to perform a greater range of tasks compared with an industrial robot, as shown in
Table 2. Many of the programming methods developed for industrial robots could restrict
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the range of operations and be less adaptable if applied directly to a cobot [29]. Because of
this programming rigidity, legacy programming methods may be less intuitive than those
developed specifically for cobots.

3.1. Programming of Industrial and Collaborative Robots

Traditional industrial robots have fulfilled manufacturers’ automation needs since their
introduction in the 1950s [5]. Relieving human workers from repetitious and laborious tasks,
these robots have been segregated from humans for safety reasons. Resolutely devoted to its
assigned task, the industrial robot blindly follows assigned orders, unable to accommodate
sudden changes in circumstances. Requiring relatively infrequent reprogramming, tasks
assigned to industrial robots are typically simple, repetitive operations designed to be
performed from a fixed location [29]. While some industrial robots are mounted on sliding
rails or mobile platforms to increase their mobility, most are stationary because of their
bulk and requirement to be housed within protective cages [30]. Their ability to operate at
high speed allows them to excel at high-volume manufacturing in the mass production
era [31].

A cobot is designed to perform precision tasks at relatively slower speeds while
demonstrating high flexibility and interactiveness and allowing a much more diverse
range of operational tasks than industrial robots [7]. In summary, both industrial and
collaborative robots are practical but have different roles to play in the industry. Directly
comparing attributes between the two, such as speed, without considering these different
roles [32] can potentially result in misguided conclusions. If applied to cobots, similar
programming techniques for industrial robots may not make sufficient allowance for the
differences between the two, which are comparably outlined in Table 2.

As modern technology progresses, many manufactured products become more com-
plex, as do their manufacturing processes [33]. Today’s intricate manufacturing assemblies
and processes are generally beyond the scope of industrial robots, especially where part of
the workload must be shared with human workers. With a more compact and streamlined
form and the addition of sensors and other safety features, cobots can operate outside
protective cages and work safely and collaboratively with humans. This allows a level of
automated task flexibility and functional expansion, opening up new opportunities for
product diversity in manufacturing [34]. As a result, a much wider variety of low-volume,
on-demand product manufacturing is now possible, which is the embodiment of agile
manufacturing [7,35]. Accompanying this more flexible and adaptive capability, however,
is the need for more frequent reprogramming of cobots [7].

3.2. Cobot Task Complexity

Cobots are one of the most utilised machines within manufacturing automation,
capable of implementing a broad range of application tasks [11]. The level of complexity
among tasks may vary according to the type of task and the object or workforce being
manipulated. For example, a sanding task on an object with a flat surface may be considered
less complex than if the object was of a complicated design. Similarly, screwdriving, parts
insertion and assembly may be deemed complex tasks due to the fine movements and
precision required. Still, the level of complexity may vary depending on the configuration,
degree of precision and other specific requirements of that task. Universal Robots has
defined a common range of cobot task categories [6], outlined in Table 3. Some examples of
tasks for each category are also provided in the table.

Cobots are expected to autonomously manage task complexity, especially as it in-
creases beyond human capacity during collaborative operations [13]. The execution of less
complex tasks is often considered an automated process, while for tasks of higher complex-
ities, there is an expectation that they will be conducted autonomously by robots [36]. Fur-
thermore, task complexity can be reduced by sharing the task among multiple cobots [37]
or by task reduction, cooperatively solved by multiple robots [38]. For instance, some
researchers have explored different ways of coordinating multiple cobots’ movements
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and actions [39], while others have focused on developing new algorithms to improve
communication and cooperation among cobots [40]. This paper focuses on the complexity
of the task overall to be undertaken by a cobot or cobots with respect to the programming
effort required. While multiple-robot systems (MRS) can reduce the overall complexity of a
task, their need for collaboration and accurate coordination [41] can add significantly to
the programming workload. Further compounding the technical complexity of MRS is the
need to select a suitable task allocation strategy that is robust, scalable and can be optimised
for a specific task [42]. A cluster-based approach, centred around the location of tasks
relative to team members, allocates tasks by training a binary classifier to nominate one of
two task allocation mechanisms through an auction bidding process [43]. Another model,
using k-means clustering, works to solve the balanced multi-robot task allocation problem
by minimising travel distance while optimising utilisation, which relates to task completion
time [44]. Intended for use within a Cyber-Physical System such as a warehouse manage-
ment system, task execution is asynchronously assigned to multiple robots in an ordering
mechanism to allocate interdependent Human–Robot Collaboration (HRC) tasks [45]. The
model uses mutual exclusion to allocate tasks, dynamically promoting system accuracy and
robustness. A Fuzzy Logic System can coordinate multiple robots to fulfil a common task.
Robots, trained using a Genetic Fuzzy System, derive a functional strategy to jointly execute
a nominated task [46]. MRS that rely on communication mechanisms, such as decentralised
planning algorithms, need complex programs to manage alignment coordination between
interacting agents accurately [47].

Adapted from the Universal Robots task definitions, an empirical list of task com-
plexity levels, with associated indicative category examples, is presented in Table 4. The
levels have been selected based on the amount of robotic and programming effort required
to perform a typical task at the proposed complexity level rather than on the computa-
tional resources consumed by a robot during the execution of the task [38]. The degrees
of effort have been determined empirically based on a range of programming tests con-
ducted primarily with a UR5e, a cobot representative of the Universal Robots eSeries cobot
range [48]. Robotic input refers to the range of manipulator and end-effector actions per
task, including:

• Type of joint movement (joint or linear motion)
• Number of movements
• Number of waypoints
• Number of end-effector engagements
• Degree of positional precision required
• Sensor input required (force, proximity, gyroscopic, etc.)
• Ease of end-effector to grip (owing to the surface or shape of parts, etc.)
• Payload handling

Table 4. Task complexity levels.

Task Complexity Level Types of Associated Tasks

1 (Low) Simple Gluing, Sealing, Dipping, Sanding, Polishing

2 (Low–medium) Pick and Place, Lubricating, Painting, Coating, Injection Moulding

3 (Medium) Material Handling, Simple Assembly, Grinding, Deburring,
Trimming, Drilling, Screwdriving

4 (Medium–high) Parts Insertion, CNC, Automated Machining

5 (High) Complex Assembly, Precise Milling, Routing, Quality Inspection

Programming input refers to the quantity and complexity of the programming ele-
ments required per task, as discussed in Section 5.3. Within the types of associated tasks,
each task can vary significantly in complexity (see Table 4). For example, while a sanding
task conducted on a single flat surface could be considered a task with low complexity,
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the precision sanding of a spherical object may well place the task at a higher level. It is,
therefore, impossible to be definitive with the assignment of the input levels, nor is it the
intention within the scope of this study. Instead, the objective is to assign input levels based
on the task complexity levels presented, with the types of associated tasks being indicative of
those levels.

3.3. Task Allocation in Human–Robot Collaboration

A vital step in the optimisation of Human–Robot Collaboration (HRC) is the assign-
ment of tasks to individual collaborators (agents) to maximise the efficient utilisation of
the cobot [49]. Within a manufacturing operation, sub-processes can be instinctively al-
located to the cobot or the human, based on considerations such as suitability, capability,
or human preference. To increase efficiency in a collaborative production environment, a
systematic resolution process must be applied to determine which tasks should be con-
ducted by the cobot and which tasks would be best left to a human [50,51]. The individual
skillsets of both the cobot and human involved are considered. Tasks are dynamically
assigned in a skill-based HRC system, which provides a graphical programming interface
and pre-programmed macros to simplify the cobot programming operation [52]. A task
allocation model, which maps task characteristics to agent capability, was proposed by [53]
and exploited human operators’ adaptability and cognitive prowess, along with cobots’
efficiency, accuracy, and consistency. Designed to manage tasks allocated to a human
and two robots in a heavy part handling HRC assembly operation, a solver based on
the Genetic Algorithm [54] is used to optimise both operation time and selection based on
agent capability. Considering human contentment in HRC, a two-staged capability-based
task allocation process was proposed [55]. In the first stage, task elements that align with
human capabilities are identified to assess whether humans can perform these safely or are
automated to preserve human safety. The remaining tasks are then allocated according to
suitability in the second stage based on agent capability, time efficiency, cost, and quality
outcomes. Allocation of tasks in HRC assembly operations is based on the classification
of the task complexity level and assigned to humans or robots in a complexity-based task
allocation method [56]. Agent skills, along with environmental aspects such as component
properties, presentation and feeding, are considered in the selection process, which affects
efficient handling in an assembly environment. A hierarchical HRC framework proposed
by [57] separates task allocation into abstraction and allocation layers in an assembly envi-
ronment. The abstraction layer defines the planning phase of the collaborative assembly,
considering the specific attributes of each element, including human and robot agents and
the real-time communication capabilities of each, while the allocation layer manages the
skills implementation requirements for the task.

An action scheduling framework using Artificial Intelligence (AI) contains a schedul-
ing algorithm that generates task allocations, which was proposed by [58]. The system
considers the sequence of operations, tools required, resource availability, positioning and
time efficiency in its optimisation process. Within this human-centric framework, there
is a focus on the safety of human operators, and operations are blocked if prerequisite
operations have not been completed. Task completion time rewards motivate a Markov
game model developed by [59], using deep multi-agent reinforcement learning to determine
the optimal cobot task allocation schedule. This model evaluates cobot and human agent
availabilities and determines the optimal task scheduling policy for the operation within a
chessboard structure that minimises all assembly task completion times as its objective.

3.4. Leading Cobot Vendors’ Programming and Control Methodologies

To provide readers with an overview of the landscape of existing cobot programming
and control methodologies, Table 5 lists seven leading cobot vendors and details of their
programming and control solutions. A selection of generic programming applications,
which provide an alternative to many proprietary developments, are also included.
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Table 5. Programming methods for leading cobot vendors.

Cobot Manufacturer Programming
Interface/Type Programming Method Intended User Level Intended Task

Complexity Limit
Source Language/Related

Language (If Known)

Universal Robots
[28,60,61]

PolyScope GUI/Hand guide Unskilled Low Proprietary (URP)

URScript Textual (Script) Skilled High Python, C++, C#, VB, Java

URSim GUI/Simulation Unskilled Low Proprietary (URP)

ABB [62–64]

Wizard GUI/Hand guide Unskilled Low Block-based RAPID

FlexPendant GUI/Simulation Semi-skilled Medium

RAPID Textual Skilled High Visual Basic

RobotStudio GUI/Simulation Semi-skilled Medium to High Proprietary (RAPID)

Fanuc [65]

TP (Teach Pendant) GUI/Hand guide Unskilled Low Proprietary (TP)

Karel Textual Skilled High Pascal

Roboguide GUI/Simulation Semi-skilled Medium to High

Festo [66]

BionicCobot GUI Unskilled Low to Medium ROS

Festo Robotic Suite GUI Semi-skilled Medium Python/ROS

RoboCIM GUI/Simulation Semi-skilled Medium Proprietary

Kuka [67]

iiOKA OS GUI/Hand guide Unskilled Low Linux kernel

KUKA Work.Visual GUI/Textual Skilled High

KRL (KUKA
Robot Language) GUI/Textual Skilled High Pascal

Kuka Sunrise Textual Skilled High Java

Kuka Sim/SimPro GUI/Simulation Semi-skilled Medium to High Proprietary

Yaskawa [68–70]

Direct Teach (DT) Hand guide Unskilled Low Proprietary

Smart Pendant GUI/Hand guide Unskilled Low Proprietary

INFORM II GUI/Textual Skilled High C

Omron [71]

ACE (Automatic Control
Environment) GUI/Hand guide Unskilled Low C#

eV+ Textual Skilled High MS-DOS/Unix Script

ACE Emulation Mode GUI/Simulation Unskilled Low C#

Generic cobot
programming
applications

(RoboDK, ArtiMinds,
Wandelbot, Pickit,

Robomaster, G-Code,
ROS, Traditional

languages)

RoboDK GUI [72] GUI/Hand guide Unskilled Low RDK

RoboDK API [72] Textual Skilled Medium–High Python (default), C, C++, . . .

ArtiMinds RPS [73] Modular Semi-skilled Medium–High Proprietary (RPS)

ArtiMinds RPS [73] Modular Semi-skilled Medium–High Proprietary (RPS)

Wandelbot Tracepen [74] Input device/App Unskilled Medium–High Proprietary

Pickit robot vision
system [75] GUI/3D vision Semi-skilled Medium

Robotmaster [76] GUI/Simulation Semi-skilled Medium–High

G-Code [77] (CAD/CAM)/Textual Skilled (CNC) Medium–High G-Code

ROS/ROS2 [78] Textual Skilled High C++/Python

Traditional prog
languages: Python, C,

C++, C#, Java, [79]
Textual Skilled High Proprietary

The ‘Intended User Level’ and ‘Intended Task Complexity Limit’ fields in Table 5 are
broadly based on cobot vendors’ statements, including those in Section 4.1 of this paper,
and practical reviews of the various applications. The aforementioned fields will be the
subject of the comparative analysis presented in Section 6. In addition, Intended User Level
references the general skill level definitions stated in [80], with unskilled work requiring
little to no independent judgement or previous experience to perform simple tasks; semi-
skilled may require close attention and coordination abilities for tasks with some complexity,
with decisions made by others; and skilled work, which requires judgement and decision-
making abilities while performing more complex tasks.
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3.5. Controlling Cobots without Formal Programming

Recognising the need for frequent reprogramming and flexible, collaborative operation,
cobot vendors compete to find the most intuitive and efficient method of controlling
their cobots.

3.5.1. Existing Cobot Control Methods

A common easy-to-navigate control method offered by cobot vendors is ‘Guiding’
(sometimes referred to as the Teach method/Easy programming/Basic programming),
which involves human manipulation to ‘teach’ the cobot the required sequence of operation.
Typically, user interfaces combine a pendant, tablet or PC-based display with the user
positionally hand guiding the cobot, as shown in Figure 2.
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3.5.2. Proposed Cobot Control Methods in Recent Literature

The benefits of assigning cobots to small-batch agile production [81] can be eroded
by the requirement for more frequent reprogramming [7], especially if there is a need to
continuously hire skilled programmers [12]. However, by simplifying programming and
control methods sufficiently, workplace operators, rather than dedicated programmers,
could intuitively program the cobots [82]. In this case, there would be greater potential for
increased cobot utilisation since the programming role would be open to a broader range
of workers.

Skill Based System

Since cobots are designed to interact closely with human workers, who have extensive
knowledge of the task being undertaken, programming the cobots by the same workers
would seem to be a logical part of the collaboration. With an emphasis on the task rather
than the program, a Skill Based System (SBS) allows a robotic novice worker to use a
graphical interface to map skills relating to a task, which equates to individual robotic
actions. As shown in Figure 3, these skill entities are used as parameters to initiate the
kinaesthetic configuration of a cobot’s joints [14]. For some prospective programmers,
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however, the first step will be to overcome their fears of programming and technology and
accept cobots as collaborative partners rather than their future replacement [19].
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Block-Based Interface

One approach in the quest for a more comprehensible programming experience is a
block-based interface, where pre-programmed modules can be selected and placed in a
desired sequence by novice users, as shown in Figure 4 [83]. This type of drag-and-drop
interface has two key advantages over text-based programs. Firstly, the blocks, written
in simple language, are designed to be intuitively arranged by a novice while providing
visual cues as the program develops. This allows the user to focus on the task’s workflow
rather than the program’s syntax, which relates to the second advantage. Each block can be
considered a pre-programmed function, which is syntactically correct and, along with the
other blocks in a sequence, collectively compilable [84].
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Layered Block-Based Interface

A layered approach to block-based programming provides users with different skill
levels and the flexibility to carry out programming tasks with a complexity level that
matches their ability. From workers with little technical skill generating basic assembly
workflows to those experienced in programming and robotics undertaking more complex
programming tasks, a three-layered approach caters for a broad range of user abilities and
task complexities in a single system (refer to Table 6) [24].
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Table 6. A three-layer block-based cobot programming model [24] (by permission).

Programming Layer Roles and expertise Required Training Support Techniques

Layer 1: Basic
assembly workflows
(robot movements
and tool actuation)

Assembly workers
and laypersons with

some assembly
experience

Some technical
training (e.g.,

professional school)

Mounting and
assembly devices,

multimodal teach-in

Layer 2: Block-based
programs (task

blocks, variables and
control structures)

Industrial engineers
with computational

thinking abilities and
technical intuition

Formal technical
training and a

programming course

CAD-modelling, 3D
printing, laser cutting

Layer 3: Advanced
functionality
(databases,

connectivity, etc.)

Software engineers
with advanced

programming skills

Formal software
engineering training

Internet/intranet,
databases, cloud,
Manufacturing

Execution System
(MES)

Chat-Assisted Block-Based Interface

By enhancing block-based programming with natural language chat functionalities,
non-technical users can more intuitively assign programmed tasks to cobots. Furthermore,
this flexible hybrid approach can allow users to implement more complex tasks more easily
than block-based programming alone while building user acceptance of the technology
and confidence with cobot programming over time [85].

Artificial Intelligence

Artificial Intelligence (AI) can also assist a programmer with specific language code
suggestions offered in real-time, generated through the Natural Language Processing
(NLP) functionality of OpenAI Codex [86]. However, programming expertise would be
required for each suggestion as part of the accept/reject/edit decision-making process.
Developing autonomous cobots motivates many researchers, and they are exploring specific
areas of AI that are more suited to efficient cobot management. For instance, Reinforcement
Learning has been effectively used to train robots to conduct complex tasks; while modifying
their behaviour in response to changes in their environments, which they continuously
monitor. In contrast, Deep Learning (DL) could restrict dynamic response behaviour due
to time-inefficient data processing requirements [87]. According to [87], DL may not be
suitable for differentiating objects of similar appearance, which may be the case with
some electronic components used in assembly processes. In addition, DL is a complex
area of AI that requires significant experience and skills to implement [88], a notion that
opposes the objective of the current study. To improve cobot adaptivity and intelligence
in HRC, an AI-based 3D perception system, which incorporates RGB colour scan cameras
to generate 3D representations of a cobot’s operational environment, contains an anti-
collision function and allows a human operator to control cobot movement with natural
gestures [89]. Furthermore, a path planning architecture establishes a predetermined
path for Unmanned Aerial Vehicle robots, using the Hungarian algorithm to optimise cost
efficiencies. A 3D occupancy map of the cobot’s operational environment is generated to
ensure a collision-free path [90].

Voice and Gesture Control

A more instinctive cobot control measure that alleviates the need to formally program
allows a user to guide a cobot through a task using voice commands and physical gestures.
An image and sound processor comprises a camera, a depth sensor (for human movement
tracking) and a set of microphones that capture the relevant human speech and gesture
inputs. These are converted in the software program into corresponding coordinates for
the cobot joints [91]. Figure 5 shows the testing station for the speech and gesture system,
depicting the operator, graphical interface and ABB IRB120 robot.
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A validation process is used between gestures in a task-managed system to prevent
undesired sequences from executing. In their work, users can decide to return to a pre-
vious save point of the program by way of a predefined human gesture [92]. In these
systems, operators would need to be suitably trained on the range of valid speech and
gesture commands.

Virtual Reality Systems

Moving further away from traditional programming and closer to a gaming platform,
there is an immersive cobot control method. Controlling a physical cobot from a virtual
environment is a concept that replaces a standard cobot interface console with a virtual
reality (VR) system, which is connected to the cobot’s controller mechanism. From within
the virtual environment, a human can control a virtual cobot (a virtual representation of a
physical cobot), with the inputs stored in a dedicated database so that the cobot’s trajectories
can be visualised in real-time or reproduced from stored values [93]. In addition, cobot
control includes safety precautions in human–cobot interaction, which can be achieved in a
VR environment. Cobot behaviour is dynamically modified to anticipate human movement
using a motion tracker [94].

Augmented Reality Systems

Combining the virtual environment with the real world, augmented reality (AR)
systems can provide a more realistic human experience than VR systems. AR systems
allow a faster and more user-friendly approach for humans to interact with cobots, with
users preferring an AR system over traditional teaching pendants or console options [95].
Users with no previous programming experience can perform a range of cobot motion
tasks through an AR interface. However, as the complexity of the cobot task increases, so
does the difficulty experienced by the user. For example, pick and place tasks are more
easily conducted than welding tasks. Overall, the AR experience positively affects the
novice user’s confidence to accurately and safely carry out the assigned tasks [96].

4. The Cobot Programming and Control Sales Pitch

With the global cobot market expected to exceed USD 9 billion by 2024 [9], competition
is fierce among cobot vendors as they vie for dominance in this lucrative industry. One
of the cobot vendors’ prime objectives is to simplify the human–cobot interaction method.
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Furthermore, to alleviate the need for robotic or formal programming skills, cobot vendors
attempt to present users with the most intuitive interface to control the cobot.

4.1. Cobot Vendors’ Perspectives on Their Programming Applications

In this section, a selection of claims and statements in the leading cobot vendors’
product description material has been quoted on the program and control attributes of
their cobot interfaces aimed at untrained users (refer to Table 7). The claims made by the
cobot vendors will be used to estimate programming effectiveness and intuitiveness from
the perspective of the intended user.

Table 7. Cobot vendors’ marketing claims.

1. Universal Robots (PolyScope) [60]

“Use your process expertise and PolyScope’s graphical interface to create a robust automation
system. No Code? No Problem.”

“PolyScope connects operators to robots for efficient and productive automation. You don’t need
coding experience to automate your processes.”

“Build programs by selecting nodes from a menu and placing them in order of operation. Each
node represents an instruction for the robot and its parameters can be configured.”

2. ABB (Wizard) [62]

“Wizard easy programming—An easy and intuitive way to program cobots and
Industrial robots.”

“Program your robot application within minutes! Wizard is an easy graphical programming
interface for ABB Cobots.”

“With Wizard, anyone and everyone can program their robot application.”
“Only a few minutes after the installation you will be able to operate your robot. With Wizard’s

easy drag and drop blockly based programming software, no specialized training or
programming skills are required.”

3. Fanuc (TP) [65]

“But the CRX’s #1 “Ease of Use” benefit is its Simple Drag and Drop Programming. 30 years ago,
robot programming was a high-level structured language like Fortran or C++. An engineer or

maintenance technician went to school to learn how to learn the programming language. Both are
very powerful, but not easy to use. With the all new FANUC CRX Tablet Teach Pendant–simple

programming becomes reality. Easily program and teach points with the CRX Tablet Teach
Pendant. The drag and drop interface for lead-through teaching and simple programming is easy

with no prior robotic experience needed.”

4. Festo (Festo Robotic Suite for BionicCobot) [66]

“Programming a robot is child’s play”
“The BionicCobot is operated intuitively via a graphic user interface developed in-house.”

“Commissioning and programming are intuitive, quick and easy with the “Robotic
Suite” software.”

“The developers were focusing specifically on making the Robotic Suite, the actual heart of the
cobot, as simple to operate as possible so there is no need for prior programming knowledge.”

“When it comes to programming, most of us probably think about complicated lines of code with
lots of abbreviations, brackets and other symbols. But programming a robot can actually be very

easy, as is shown by the software that Festo developed for its pneumatic lightweight robot,
the BionicCobot.”

5. Kuka (iiQKA OS) [67]

“iiQKA allows you to put together your individual automation package, without any prior
knowledge or programming experience.”

“The intuitive graphical interface allows for fully autonomous control of the system without any
programming knowledge.”

“Designed for quick start-up with little to no expertise, iiQKA offers incredible speed to
integrate robots.”
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Table 7. Cont.

6. Yaskawa (DT) [68,69]

“Quick and easy programming.”
“Simple and intuitive operator control, short learning curve.”

“Ideal for users who need to carry out frequent reprogramming and thus appreciate simple
operator control.”

“Ideal for novice robot users, this pendant simplifies INFORM programming for
easy-to-understand operation and fast implementation of the robot system.”

“The perfect entry into programming. Simply move the robot flange by hand, record the motion
points and operate the gripper actuation by pressing the respective DT buttons. The code is

automatically generated in the background on your pendant.”

7. Omcron (ACE) [71]

“The Automation Control Environment (ACE) software allows you to build applications, such as
Pack Manager packaging applications, which can be basic pick-and-place cells or complex cells
with multiple cameras, conveyors, and robots. You can create and configure these cells without
having to write any programming code. For applications that require greater control, you can

override the default V+ program code and make changes as needed.”

4.2. Epitomising the Marketing Message

Regarding user interaction with their products, the general message from cobot ven-
dors is that neither robotics nor programming experience is required, at least for the less
complicated cobot tasks. However, the complexity level is not explicitly referred to in
their marketing blurbs. Furthermore, many instructional videos released by cobot ven-
dors [97,98] tend to emphasise the simplicity of their user interfaces, while limitations, in
terms of task complexity, have generally been concealed. Marketing cobots as “simple to
program” can lead to the assumption that skilled programmers are no longer required [20].
This assumption makes no allowance for the complexity of the task to be programmed,
nor does it consider the variation in the skillset required to do so. Despite cobot vendors’
assurances that unskilled personnel can program their cobots, others have a different
perspective. A leading cobot tool manufacturer views cobot programming as a job for an
engineer with mechanical, electronics, electrical and programming skills and an under-
standing of combined system functionality and associated theory [99]. Manufacturers in the
industry, who operated cobots, revealed that of the total time employees spent with their
cobots, automation engineers accounted for 48%. Approximately half of the automation
engineers’ cobot duties were dedicated to programming [100]. In Section 6, the cobot
vendors’ claims will be compared with the observed skills required to program a cobot, to
establish the validity of their claims and the effectiveness and suitability of the programs
for their intended purposes and at their intended user levels.

5. The Underlying Skillset

There are three key elements involved in the process of cobot task allocation [101].

I. The cobot and its environment
II. Cobot programming steps
III. Cobot task implementation

For a human tasked with implementing the process, these elements correspond to the
knowledge and skills that must be acquired or provided extrinsically. Regarding cobots, a
conceptual knowledge of the hardware and technical skills in cobot operation and problem-
solving would be necessary, along with knowledge of the assembly line or other cobot
environments. To program cobots, knowledge of the programming application is essential,
along with skills in programming within the context and capabilities of a specific cobot.
Finally, knowledge of the task the cobot is to perform, optimisation characteristics, and
the skills to carry out the steps of the task would typically be required [101]. An aim of
adaptive task-sharing design principles is that cobot programming should be part of the
workers’ and assembly planners’ duties [25]. Substituting a program engineer for a worker
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skilled with the task being conducted, but without cobot technical skills, would require a
simplified programming tool.

5.1. Fundamental Technical Aspects of Cobot Control

To highlight the complexities potentially experienced by the user of a typical cobot
programming interface, robotics and programming concepts and keywords are presented.
Table 8 relates to the robotic (hardware) elements, while Table 9 contains the program-
ming (software) elements. The reference source for both tables was the Universal Robots
PolyScope graphical interface [60], used to program a UR eSeries cobot [102]. The list is not
intended to be exhaustive but rather a selection of representative fields more relevant to
the programming than the setting up of a cobot.

It is acknowledged that in Tables 8 and 9, not every listed entity would need to
be configured for each program. However, it could be argued that in support of sound
judgement, a knowledge of the purpose and functionality of each would be required to
determine when they should or should not be configured. For example, there is a view in
the cobot tool manufacturing industry that cobot programmers should have adequate
knowledge of advanced programming functions [99], such as those listed in Table 9.

5.2. Robotics (Hardware)

A selection of robotic control elements, along with corresponding robotic entities, is
listed in Table 8.

Table 8. Robotic control elements.

Robotic Element Specific Robotic Entity

General Fundamental kinematics and dynamics principles

Limits
Safety limits, including power, momentum, stopping time and distance,

tool speed and force and elbow speed and force limits

Joint position range limits and maximum speeds

Orientation and
positioning

Tool Centre Point (TCP), Tool Offset, Tool Position and Tool Rotational
Vector settings (all represented as three-dimensional cartesian

coordinate frames)

Relationship between base and tool coordinate frames

Direction for linear movement (expressed as positive or negative cartesian
coordinates or direction vector)

Waypoints (with options of fixed, relative or variable position)

Joints

Joint positions (in degrees) for the base, shoulder, elbow and three wrist
joints (pitch, yaw and roll).

Linear, non-linear and circular joint movements

Joint speed and acceleration values

Communication I/O Signals (Digital, Analog, Tool, Configurable, Boolean Register, Integer
Register, Float Register)

5.3. Programming (Software)

A selection of programming elements, along with corresponding cobot programming
entities, are displayed in Table 9.

5.4. Skills Required to Program and Control a Cobot

An empirical list of the skills required to program and control a cobot has been created
to analyse the relationship between these skills and the complexity of the tasks they are used
to conduct. Descriptions have been provided for each pair to clarify the assignment of skill
values and levels. TACOM [103], a task complexity measure, was used to guide the selection

27



Appl. Sci. 2023, 13, 4635

of cobot task complexity categories. The metric is based on the quantity of information
an operator must process about the task, the number of actions and logical sequence a
task contains, current knowledge of the task and available cognitive resources for decision-
making. TACOM calculates task complexity with respect to the task’s procedural steps. The
information density and composition that define a task and the number of actions and order
of operation required to execute it affect the complexity level of a task. A certain amount of
system knowledge is required to carry out an action and to understand the complications of
the task. The capacity of an operator, in terms of the precision and cognitive effort, during
the execution of a task, along with the specific resources required by the task, contribute to
the performance level of a human operator [104].

Table 9. Cobot programming requirements.

Programming Element Specific Cobot Programming Entity

General syntax Program structure and sequencing

Data Constants, variables, variable assignment

Conditionals/selections If, ElseIf, Else, Until, Switch statements, Boolean

Program loops/iterations For, While, Do-While

Functions/procedures Thread, Subroutine call

Control points Event, Wait, Set, Halt, Timer

Table 10 outlines a proposed user skill level paradigm. Each skill level designation has
a range from a low to a high skill level listed, followed by a suffix, which indicates the skill
type (R = Robotics, P = Programming). For example, ‘1 R’ indicates a skill level on the low
end of basic robotics knowledge, while ‘3 R’ refers to the high end of the same level. There
is a slightly broader range (7–10) in the higher levels of both skill types to accommodate
the greater range of advanced technical concepts.

Table 10. User skill levels for the programming and control of cobots.

Skill Level Designation Description of Skill Level

0: Unskilled No knowledge of robotic operation or programming

1–3 R: Basic Robotics

Basic knowledge of robotic concepts, such as the difference
between collaborative and industrial robots, the joint structure of

a manipulator (robotic arm) and basic understanding of end
effectors such as a gripper or suction cup

4–6 R: Mid Robotics

Familiar with robotic movement and functionality, including
linear and non-linear joint movement, consequences of joint

speed and acceleration settings (collision prevention) and
coordinate frames

7–10 R: High Robotics

In-depth knowledge of robotics, with practical skills in cobot
installation, tool configuration with respect to coordinate frames,
precise joint configuration, I/O signals, sensors and configuration

of safety elements such as protection zones

1–3 P: Basic Programming Basic knowledge of programming concepts, such as data types,
data inputs, computations and outputs

4–6 P: Mid Programming Familiar with basic programming techniques involving common
elements such as variables, loops and conditionals

7–10 P: High Programming Competent in structured programming, using functions, different
loop and conditional types, switch statements and classes

Although cobot programming methods range from those that are easier to use, for
less complex tasks, to those requiring higher skills for more complex tasks, there is some
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common ground between them. Following some targeted programming comparisons, it
was found that some tasks of medium complexity could be programmed at the higher end
of a Teach Pendant’s capability, for example, or at the lower end of a script-based method,
as indicated with the Venn diagram in Figure 6. The choice of method would be subject to
the skill level or discretion of the person programming the task. This further complicates
mapping task complexity to the corresponding required skill level for tasks within that
intersecting zone.
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The extent of the skills and knowledge required will vary based on the complexity
of the task being programmed. In addition, the broad range of approaches available to
program a specific task can further complicate the job. For example, the kinematic flexibility
of a cobot, while allowing great freedom in tool orientation and position, also increases the
programming complexity [93]. Considering the robotics and programming skills required,
Figure 7 shows a graphical representation of the skills required to program a cobot by
different methods based on task complexity.

From a skill requirement perspective, the transition from programming a cobot with a
teach pendant to write a script-based program to do so is significant. Using the Universal
Robots URScript or ABB RAPID programming methods as examples, a programmer must

1. Establish a connection to the cobot controller from a remote console. Some knowl-
edge of computer networks would be required to communicate with a host over a
socket connection.

2. Compose a syntactically correct control program. At least a moderate level of skill
in programming, with an understanding of program structure and syntax, would
be required. For this study, URScript test programs were written in Python, so an
understanding of the relevant formal language for the client program is also necessary.

3. Choose:

• Individual cobot joint positional coordinates and orientation parameters
• Motor speed and acceleration settings
• Tool selection
• Delay timing
• Other aspects depend on the complexity of the task being programmed.

Sound knowledge of robotic functionality, particularly about coordinate frames and
joint movement, would be mandatory.
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5.5. Skills Versus Task Complexity Testing Methodology and Results

A UR5e cobot was programmed to simulate representative tasks from the associated
task categories outlined in Table 4. Four tasks with complexity levels ranging from 1 to 8
were programmed with the Teach Pendant, while two tasks with complexity levels ranging
from 7 to 10 were programmed in Python through URScript, for comparison. The range of
technical skills utilised during the configuration of each programmed task was recorded.
These related to the robotic and programming elements, as defined in Tables 8 and 9,
respectively, are used to describe the user skill levels outlined in Table 10. The results of the
recorded program tasks are shown in Table 11 and represented graphically in Figure 7. The
programmed tasks listed in Table 11 were selected to represent each of the task complexity
levels in Table 4. The aggregate skill levels in the table are the product of the corresponding
robotic and programming skill levels defined in Table 10.

Table 11. Task complexity versus skill level.

Task Complexity Level Programmed Task Programming
Method

Robotic Skill
Level

Programming
Skill Level

Aggregate Skill
Level

1–2 (Low) Simple Polishing Teach Pendant 2 1 2

2–4 (Low–medium) Simple Pick and Place Teach Pendant 4 2 8

5–6 (Medium) Simple Assembly Teach Pendant 6 4 24

7–8 (Medium–high) Parts Insertion Teach Pendant 6 4 24

7–8 (Medium–high) Parts Insertion Script-based 9 9 81

9–10 (High) Complex Assembly Script-based 10 10 100
Appl. Sci. 2023, 13, x FOR PEER REVIEW 19 of 26 
 

 
Figure 7. Robotics and programming skills required versus task complexity. 

The effectiveness of the teach pendant as a programming tool is demonstrated in Fig-
ure 7, with a low level of skills required to program cobot tasks in the lower complexity 
range. However, from the medium task complexity level, the required skill level is three 
times higher than the previous one. When using the teach pendant, the required robotics 
skills are 1.5 times higher than programming skills for all complexity levels. This is be-
cause of the greater precision and finer tool positioning typically associated with more 
complex tasks. At the same time, there is a more gradual increase in skills required with 
the simplified graphical programming interface of the teach pendant. As task complexity 
enters the medium to high band, for tasks beyond the capability of the teach pendant, the 
required skills are 3.3 times higher for script-based programming. Because of the need to 
precisely define joint coordinates and other cobot parameters within the syntax of a tex-
tual programming language, the required robotic and programming skills increase at the 
same rate. The lack of skills issue has imposed constraints on the programming of complex 
tasks. 

6. Analysis of the Findings of This Review 
An analysis was undertaken into the relationship between the complexity of the task 

to be executed by the cobot and the relative skill levels required of the programmer. More-
over, a mapping of this relationship was established. In the quest to find the most suitable 
candidate for the cobot programming role, consideration was given to the frequency of 
cobot reprogramming, knowledge of the task to be performed by the cobot, economic ef-
ficiency and organisational logistics. Finally, the existing cobot programming and control 
methods and those proposed in the literature were evaluated to determine if they were ap-
propriate for the person with the programming role or whether another solution was 
needed. Section 6.1 evaluates the effectiveness of existing cobot programming and control 
methodologies, while Section 6.2 presents the practicalities of the main cobot program-
ming and control proposals in the literature. A summary of the findings, including re-
sponses to the research questions, is provided in Section 6.3. 

6.1. Effectiveness of Existing Cobot Program and Control Methodologies 
Cobot tasks programmed with script-based methods require some expertise in for-

mal programming, an understanding of the specific cobot functionality and a sound 
knowledge of robotics in general. Proprietary Teach Pendants, however, are typically mar-
keted as user-friendly tools designed for programming a cobot without the need for ro-
botic or programming skills. While the graphical interface of the teach pendant is easier 
to use than a script-based alternative, this study has found that some foundation skills in 
robotics and programming are still required. Basic programming and robotics knowledge 

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10

Ag
gr

eg
at

e 
sk

ill
s

Task complexity

Task complexity versus skill requirement

Teach Pendant Script-Based

Figure 7. Robotics and programming skills required versus task complexity.

The effectiveness of the teach pendant as a programming tool is demonstrated in
Figure 7, with a low level of skills required to program cobot tasks in the lower complexity
range. However, from the medium task complexity level, the required skill level is three
times higher than the previous one. When using the teach pendant, the required robotics
skills are 1.5 times higher than programming skills for all complexity levels. This is because
of the greater precision and finer tool positioning typically associated with more complex
tasks. At the same time, there is a more gradual increase in skills required with the
simplified graphical programming interface of the teach pendant. As task complexity
enters the medium to high band, for tasks beyond the capability of the teach pendant, the
required skills are 3.3 times higher for script-based programming. Because of the need to
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precisely define joint coordinates and other cobot parameters within the syntax of a textual
programming language, the required robotic and programming skills increase at the same
rate. The lack of skills issue has imposed constraints on the programming of complex tasks.

6. Analysis of the Findings of This Review

An analysis was undertaken into the relationship between the complexity of the task to
be executed by the cobot and the relative skill levels required of the programmer. Moreover,
a mapping of this relationship was established. In the quest to find the most suitable
candidate for the cobot programming role, consideration was given to the frequency of
cobot reprogramming, knowledge of the task to be performed by the cobot, economic
efficiency and organisational logistics. Finally, the existing cobot programming and control
methods and those proposed in the literature were evaluated to determine if they were
appropriate for the person with the programming role or whether another solution was
needed. Section 6.1 evaluates the effectiveness of existing cobot programming and control
methodologies, while Section 6.2 presents the practicalities of the main cobot programming
and control proposals in the literature. A summary of the findings, including responses to
the research questions, is provided in Section 6.3.

6.1. Effectiveness of Existing Cobot Program and Control Methodologies

Cobot tasks programmed with script-based methods require some expertise in formal
programming, an understanding of the specific cobot functionality and a sound knowledge
of robotics in general. Proprietary Teach Pendants, however, are typically marketed as
user-friendly tools designed for programming a cobot without the need for robotic or
programming skills. While the graphical interface of the teach pendant is easier to use than
a script-based alternative, this study has found that some foundation skills in robotics and
programming are still required. Basic programming and robotics knowledge will contribute
to a more accurate and safer outcome, even when programming a relatively simple cobot
task. Knowledge of coordinate frames, for example, can allow more positional precision of
joints and an understanding of efficient joint and linear movements, along with motor speed
and acceleration settings, could help with collision avoidance. Furthermore, programming
fundamentals such as sequences and loops can add vital insights into program structure and
process iteration. When marketing their teach pendants, cobot vendors tend to highlight
the ease of use for non-experts without emphasising the extent to which task complexity
may complicate the process. The teach pendant, therefore, does require both robotic and
programming skills, which increase as the task becomes more complex. It is, however, a
significantly more intuitive cobot programming tool than a script-based language, which
requires a high level of competency in robotics and formal programming. Some computer
networking knowledge may also be required, depending on the method of connection
between a terminal and its host.

6.2. The Practicality of the Primary Cobot Program and Control Methodologies Proposed in
the Literature

The main cobot programming and control methods proposed in recent literature and
reviewed in Section 3.5.2 are critiqued in this section.

6.2.1. Block-Based Interface

While alleviating syntax errors, programming with a block-based graphical inter-
face [83] requires some knowledge of program flow control and an understanding of
robotic movement when using it to control a cobot. There is also the potential for runtime
errors if, for example, unattainable values have been entered as joint position, speed, or
acceleration parameters.
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6.2.2. Voice and Gesture Control

Although they present an intuitive approach to controlling cobots, gesture and voice
control have their limitations. Gestures can be misinterpreted by the image processor
or incorrectly posed by the human operator. An example of where such errors could
occur is in the subtle pose differences between ‘Axis Y move forward’ and ‘Axis Z move
forward’, where only a slight difference in left arm position separates the two commands. Voice
control is affected by noise variation and also human error in the case of an incorrect
command or poor diction [91], which could be challenging in a production environment.
Collectively, this method may be difficult for a human to orchestrate, having to coordinate
the correct gestures and voice commands, especially when sequencing the cobot through
a complex task. In addition, task parameterising is time-consuming, some of the more
difficult gestures to pose cause fatigue and while the gesture recognition rate is generally
high, instances of false positives and false negatives occur, of which the user is notified,
following a validation process [92].

6.2.3. Virtual and Augmented Reality Systems

Work in virtual and augmented environments is progressing; however, VR [93] and
AR [95,96] systems for cobot operations do not currently appear to be developed and
tested to the point of practical deployment for the industry. What has been proposed
in the literature are VR systems that allow users to simulate robotic movement in an
immersive environment. However, each use case often requires creating a new virtual
environment and current capability is limited to simulation rather than functioning as a
practical programming method [93]. AR systems produce tracking inaccuracies, which
can misdirect the cobot, and there are also visual constraints. A reduced field of view
from the AR wearable devices and occlusion problems restrict the user’s perspective of
the computer-generated content and could impose risks when deployed in workplaces. In
addition, users can be distracted as they continuously swap between augmented and real
environments, disrupting the AR system’s fluidity [95].

6.3. Summary of Findings and Responses to Research Questions

Section 3 of this paper describes the common programming and control methods for
cobots, existing and proposed in the literature. Solutions from seven leading cobot vendors
were evaluated, and systems proposed in the literature were critiqued. The impact of a
cobot’s task complexity on the skills required to program it was addressed in Section 5,
with a graphical representation and summary of the analysis provided at the end of that
section. The effectiveness of existing cobot programming and control methods and the
practicality of methods proposed in the literature were assessed in Sections 6.1 and 6.2,
which focused on existing and proposed programming and control methods, respectively.
The final considerations were to determine the most appropriate candidate for the role of
cobot programmer and assess whether the current or proposed solutions can be matched
to that person’s skillset. In Section 2, it was argued that rather than focusing on the skills
required to program a cobot, the knowledge of the task should be the focal point. The view
was that it is often the case that the person who knows the task well, is not competent with
programming and the person who is competent with programming does not know the task
well. Operators with knowledge of and experience with a task that a cobot is intended to
assist with possess valuable insights into precision and efficiency, details of which may be
difficult to relay to a contracted programmer. Moreover, adaptive task-sharing principles
aim to embed cobot programming into workers’ duties. Based on these findings, a task-
experienced worker would be the most appropriate programmer, but the programming
methods analysed have not been specifically developed for a novice, as discussed in
Section 5. Compounding this problem, the scale in Figure 7 indicates that existing cobot
programming and control methods require more skill as cobot task complexity increases.
In addition, the investigation in Section 6.2 revealed that the methods proposed in the
literature were impractical or not sufficiently developed for reliable deployment. In general,
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these current cobot programming and control methods and those proposed in the literature
require more advanced skills or are underdeveloped to be used by a worker with no robotic
or programming experience. In the absence of a designated cobot programmer, therefore,
either the upskilling of cobot novices, who are task-savvy operators or the development
of a new generation of simplified cobot programming and control methods are the only
viable options.

7. Discussion and Future Work

Several elements restrict the establishment of a complete, accurate, and clearly defined
cobot task complexity to skill requirement matrix. Cobot task complexity is difficult
to define due to variations in the definers’ perceptions of complexity, which in turn, is
conceivably shaped by their levels of skill and approaches to the programming of the task.
For example, someone with more programming expertise may see a task as less complex,
which could seem daunting to a less skilled programmer. Another key issue is that of the
programming method used, especially concerning the tentative selection area between
programming methods of different complexity, as discussed in Section 5.4 and summarised
in Figure 6. Within that discretionary zone, a task may require more skills if programmed
with a script-based method and less with a Teach Pendant.

The ramifications of an incorrectly programmed cobot can be severe, regardless of
the programmer’s skill level, although programming errors might be more likely with a
less skilled programmer. Consequences of a poorly programmed cobot could range from
a delay in a manufacturing process, damage to or destruction of the cobot, equipment or
products, to human injury or even fatality, particularly if manipulator speed or force settings
are not constrained. In addition, companies expose themselves to possible legal action
due to injuries caused by their robots, with significant financial claims filed, especially if
negligence is a factor [105].

The purpose of this paper was to review cobot programming and control methods and
present a broad view of the complexity of the methods and cobot tasks from the perspective
of a user skill level. Considerably more research and analysis should be conducted in cobot
programming and control methods, focusing on flexibility and ease of use. Humans are the
principal collaborators with cobots, so there should be a close connection to the human skills
required to interact with a cobot partner. With further development, existing, proposed or
hybrid systems could lead to a new generation of human-centric cobot smart control.

8. Conclusions

In a collaborative environment, there is an interaction between humans, who know the
task, and cobots, who have been programmed to perform their part. Such an environment
consists of many variables, from the type of cobot and programming method used and
the programmer’s skillset to the complexity of the task. Task and program complexity,
along with programming skill levels, have been considered in broad terms and compared
with existing and proposed programming and control methods in the literature to evaluate
the relationship between task complexity and the skills required to program cobots. This
analysis was then used to assess the claims made by the leading cobot vendors about the
skills required to program their cobots. Cobot vendors typically emphasise the ease of
programming their cobots without reference to task complexity. The findings of this study
have revealed that even for tasks of relatively low complexity, some level of robotic and
programming skill is required to ensure a safe and effective outcome. As task complexity
increases, so do the required robotics and programming skills, contributing to a skills
dilemma. Furthermore, to complete highly complex tasks, the programming skills required
often exceeded those of the robotics skills. A task-focused approach highlights the benefit
of the cobot programming role being performed by the worker with the best knowledge of
the task rather than an expert with the best programming knowledge. The worker’s lack of
programming experience adds to the skills dilemma. Existing and proposed solutions are
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not currently suitable for that type of deployment. The solution is a programming system
requiring no technical expertise, regardless of the task complexity level.
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Abstract: The reduction in emissions and the increase in energy costs push companies to identify
solutions to reduce energy consumption in production systems. One of the approaches proposed
in the literature is the shutdown of machines to reduce energy consumption in the idle state. This
solution does not affect production processes and can be applied in various manufacturing fields.
This paper proposes switch-off policies in manufacturing systems under a workload control system.
The shutdown policies developed consider the number of items in the queue and the calculation
derived from the workload control mechanism. Simulation models have been developed to test the
proposed policies using the case always on as a benchmark, considering different levels of absorbed
power in the inactivity and warm-up states and different warm-up times. The results highlight how
the switch policies that include the workload evaluation drastically reduce the number of on/off
activities, assuring lower energy consumption.

Keywords: sustainable manufacturing; switch-off; workload control; simulation

1. Introduction

Environmental sustainability and energy costs are crucial topics in manufacturing
systems. The importance of identifying new solutions to improve the energy efficiency
of manufacturing systems is essential to reduce the emission of greenhouse gases and
the energy bill. Energy savings is the main way to meet the climate change targets set by
countries around the world [1]. About 24% and 5% of global greenhouse gas emissions
are related, respectively, to industrial energy consumption and industrial processes [2].
Then, the success of the reduction in energy consumption and increment in renewable
energy sources depends strongly on industrial energy efficiency [3]. Moreover, the installed
power of renewable energy sources grew from 2011 to 2020 continuously [4], with the
main contribution by solar and wind energy, about 91%. This expansion is also due to the
reduction in installation costs of renewable sources [5]. Among the methodologies proposed
for the reduction of energy consumption, the switch-off approach [6] is a promising strategy.
This approach does not change the manufacturing processes, and no new technology or
expensive equipment is necessary. The switch-off policy works like the start and stop of the
cars to reduce the energy consumed in the idle state. The fields of industrial applications
can be different, such as CNC machining operation, welding, plastic deformation, and
many other manufacturing processes.

The switch-off policies are mainly proposed for flow lines [7,8], but few works have
studied these policies in job-shop manufacturing systems [9]. The job-shop systems are
characterized by a variable routing of the parts for which it is more complex to introduce
switch-off policies than in flow line systems. The introduction of a switch-off policy in
job-shop systems needs to use information about the system as the production planning
model. A production planning control used for job shops that work in make-to-order is the
WorkLoad Control (WLC) approach [10,11].

The switch-off policies proposed in the literature evaluate the upstream, downstream,
or both buffers for production lines. The research proposes the introduction of switch-
off policies in job-shop systems using the information of the WorkLoad Control method.
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The introduction of the WLC method allows the evaluation of the direct workload in the
queues of the machines with the indirect workload (WLC) to improve the switch-off/on
decisions. It aims to pursue a trade-off between energy reduction and manufacturing
system performance. Simulation models are used to test the proposed switch-off policies
considering the manufacturing performance, energy reduction, and the number of on/off
activities. The number of switches on/off activities is not studied in the literature but can
be relevant for the influence on the reliability of the machines.

This paper is organized as follows. Section 2 discusses the literature review about
the switch-off policies in manufacturing systems. Section 3 describes the manufacturing
system context under the workload control policy. Section 4 explains the switch-off policies
based on workload computation. The simulation experiments and the numerical results
are discussed in Section 5. Section 6 provides the conclusions and future research path.

2. Literature Review

Numerous works have been proposed in the literature on workload control and the
switch-off in production lines. The following discussion of the literature concerns the
proposed switch-off policies and applications in job-shop systems.

The switch-off policies have mainly been proposed in flow line systems [7,12]. These
approaches work on three decision evaluations: supervising the upstream buffer level;
supervising the downstream buffer level; and supervising the upstream and downstream
buffer levels together. These approaches reduce the energy consumed in the idle state of
the machines. The effectiveness of these models has also been tested in pull control systems
of flow lines [8].

The development of mathematical models can support the introduction of switch-off
policies, but this approach can increase computational complexity with the problem of
applying these models in real industrial applications [13].

To reduce the computational complexity, a fuzzy controller that supports each ma-
chine that collects the real-time data to switch off/on the machines was proposed in the
flow line [14,15].

Ref. [16] studied the switch-off policy introduction in the design model of the flow
line. This design model introduces a processing time distance for each couple of stations to
facilitate the switch-off of the machines. The numerical results show how this approach
leads to a significant reduction in energy consumption, limiting production loss.

Few works have been developed in the field of job shop systems. The authors of [17]
include the switch-off strategy using a mixed-integer linear programming model to reduce
energy consumption in a flexible job-shop system. The model proposed cannot identify
energy-efficient production schedules for real industrial applications.

Ref. [18] studied the scheduling problem for flexible job shops considering the switch-
off and speed processing time to save energy. A genetic algorithm is developed to solve
the mathematical problem to optimize the makespan, the energy consumption, and the
number of turning-on/off machines simultaneously.

Ref. [19] proposed a mixed-integer programming mode with a genetic algorithm to
optimize the makespan and reduce energy consumption. The numerical results show a
potential energy consumption reduction, but the genetic algorithm can lead to an increase
in the computational complexity for industrial cases.

Ref. [9] proposed a model that combines the direct and indirect workload of the stations
of a job shop. The numerical results highlight that it is possible to obtain a compromise
between energy reduction consumption and production loss.

Ref. [20] proposed a novel mathematical formulation that includes switching off the
machines to reduce energy consumption in flexible job shop scheduling problems. They
introduced a decomposition approach to allow the application of the proposed model for
large-scale problems.

Ref. [21] designed a fuzzy controller to switch off the machine while considering the
upstream buffer level and the required production rate. The simulation experiments on a
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machine highlighted that a large amount of energy could be saved without affecting the
throughput significantly. This approach could be extended to job shop systems with more
than one machine.

Ref. [22] discussed the resilience of integrated energy systems that can be affected by
the shutdown of the machines of a complete manufacturing system. The authors [23,24]
highlighted how the Internet of Things (IoT) technologies and cloud computing improve
the monitoring and operations of energy management systems.

The literature review analysis highlights the following limits:

- Few works have introduced switch-off policies in job-shop manufacturing systems.
The majority of papers developed mathematical models that can be difficult to apply
in real industrial applications.

- The introduction of switch-off policies in manufacturing systems controlled by a
workload mechanism has not been studied in the literature.

In response, this paper studied the introduction of several switch-off policies in a job
shop controlled by a workload mechanism by first asking (RQ1): what is the impact of the
switch-off policies in a job-shop system controlled by the workload mechanism?

The switch-off policies can include a different mechanism to turn off/on the machines
of the manufacturing system, and then our second research question asks (RQ2): what
is the impact on the main performance measures of the combinations of the turn-off/on
mechanism also based on the power consumed in the states of the machines?

3. Research Context

The proposed switch-off policies in a job shop controlled by workload mechanism were
evaluated using the same model introduced in previous studies [25,26] and investigated
in many works afterward. The main characteristics of the production system are briefly
described below. The job shop consists of six work centers, and each work center includes
one machine. The jobs enter the system following a random routing sequence without
any preferred routing; then, a statistical processing time for each machine (as described in
the simulation experiments section) and a due date are assigned to each job. According
to previous works [27,28], all jobs are accepted, and raw materials are always available.
Moreover, the main assumptions of the manufacturing system are the following: operations
cannot be pre-empted; each machine can process only one task at once; the queues are
managed by the Earliest Due Date (EDD) policy to improve the lateness performance; the
machining time includes the material handling time; and the handling resources are always
available. The notation used is described in the following:

Notation Definition

Indices M
The number of work centers/machines that compose the
manufacturing system

m The index of the machines m = 1, . . . , M
i The index of the jobs

Parameters PTim The processing time of the job i in the machine m

aim
A binary value equal to 1 if the job i must visit the machine
m; 0 otherwise

DDi The due date assigned to the job i
Seqim The ordered sequence of the machine m for the job i

WLnorm The norm of the workload control mechanism

Computation WLm Workload of the machine m

The workload control mechanism applied is a classical approach proposed in the
literature [27] following a continuous order release and fixed workload norm according to
the following steps. The jobs enter the pre-shop queue of the manufacturing system that is
managed according to the Earliest Due Date rule. Then, starting from the first job in the
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pre-shop queue, the potential workload of each machine added by the job is computed.
The potential workload is computed using the corrected aggregate load method [26], as
shown in Expression (1):

WLm = WLm + ∑M
m=1

PTim ∗ aim
Seqim

(1)

The corrected workload (Expression (1)) converts the load contribution considering
that the processing time of an operation is divided by the position of the corresponding
machine in the routing of the job. The potential workload computed supports the decision
on the release of the job in the manufacturing system. The job can enter the manufacturing
system if the workload of each machine is lower than the workload norm WLnorm. If the
job is released, the workload computed as shown in Expression (1) is updated for each
work center.

When job i leaves a machine, the workload of the machine is updated, as shown in
Expression (2):

WLm = WLm −
PTim
Seqim

(2)

The workload is updated considering the position of the machine in the routing of the
job to keep correct the input/output of the workload computation.

4. Switch off Policies

A shutdown policy is characterized by two decisions: what is the condition for
shutting down and the condition for turning on the machine? Figure 1 shows the activities
to implement a switch-off policy; when a machine loads a part, the state runs until the
end of the machining time. So, the machine is “on service” and can either load another
part or shut down depending on the policy being enforced. If the machine shuts down,
when the policy decides to turn it on, it is considered a warm-up period to transition to
the “on service” state. The shutdown policy must consider when to shut down when the
machine is in the “in service” state or when to power back on when the machine is in the
out-of-service state.
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The approaches proposed in the literature often evaluate the level of the upstream
and downstream buffer. In the case of a job shop system with the dynamic routing of
the jobs, the upstream buffer can be evaluated, while the downstream buffer cannot be
used because this buffer is not related exclusively to a specific machine as in the flow
lines. Then, the information that can support the switch-off policies for each machine is the
upstream buffer level and the workload computation derived from the workload control
mechanism. The combination of this information is proposed for computing a modified
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workload that supports the switch-off policy. The modified workload is calculated as the
combination of the workload and the items in the queue of the workstations. The modified
workload is computed as shown in Expression (3); this expression concerns the weighted
sum of two normalized values. The first is the workload of the machine m related to the
workload norm, and the second is the number of parts in the queue related to the work
in the process of the manufacturing system. The workload norm is the maximum value
possible for the workload of the machines, and the WIP is the maximum number of parts
in the manufacturing system.

WLmodm = α ∗ WLm

WLnorm
+ β ∗ Queuem

WIP
(3)

where WIP is the Work In Process of the jobs released in the manufacturing system and

α + β = 1 (4)

The modified workload, as shown in Equation (3), assumes values between 0 and 1.
Combining the upstream buffer level, workload, and modified workload can obtain five
switch-off policies, as shown in Table 1.

Table 1. Switch-off policies investigated.

Switch-Off Policy Off Condition Machine m On Condition Machine m

Policy 1 Queuem = 0 Queuem = 1

Policy 2 WLm < Threshold1 Queuem = 1

Policy 3 WLmodm < Threshold2 Queuem = 1

Policy 4 WLmodm < Threshold3 WLmodm > Threshold4

Policy 5 WLm < Threshold5 WLm > Threshold6

Policy 1 is used as the benchmark because it turns off the machines when the queue is
empty and turns on as soon as an item arrives in the queue, and this is the upstream policy
widely used in the literature [12].

Policy 2 uses the workload computed for the workload control to switch off the
machine while the machine turns on when an item arrives in the queue. Then, the first
threshold (threshold1) should be defined. Policy 3 differs from policy 2 in terms of the
switch-on condition that considers the workload modified, as computed in Equation (3)
with another threshold (threshold2) used to define.

The modified workload is used to switch on and off the machines for policy 4 with the
relative thresholds (Threshold3 and Threshold4). Finally, policy 5 considers the workload
computation to switch off/on with another two thresholds (Threshold5 and Threshold6).

5. Simulation Environment

The performance of the proposed switch-off policies is compared with the always-on
model. The simulation model has the same characteristics as previous work proposed in the
literature [27,28]; Table 2 reports the model characteristics for the simulations conducted.
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Table 2. Model characteristics.

Number of machines 6, including 1 bottleneck

Inter-arrival EXPO (0.642)

Number of operations Discrete Uniform [1, 6]

Due date (total processing time) × Uniform [5, 10]

Processing times, no bottlenecks 2-Erlang with mean 1

Processing times bottlenecks 2-Erlang with mean 1.15 (utilization about 90%)

The job shop consists of 6 work centers/machines with 1 bottleneck; the processing
time of machines that have no bottlenecks follows a 2-Erlang distribution with a mean of
1 and a mean of 1.15 for the bottleneck to lead to an average utilization of 90%. The job’s
arrival follows an exponential distribution with a parameter of 0.642.

The routing of the jobs is random, without any preferential sequence, with the number
of operations extracted by a discrete uniform between 1 and 6.

Due date is assigned to each job, considering the total processing time multiplied by a
parameter extracted by a uniform distribution. Finally, the simulation length is 25,000 h.

The simulation model described above was developed using the software package
SIMUL® (version 29.0).

Simul8 is a computer package for Discrete Event Simulation to simulate and model a
wide variety of manufacturing systems, such as production lines, job shops, robotics cells,
assembly systems, and complex product flows. The simulations conducted by SIMUL8
provide a series of statistics on the main performance measures of the manufacturing
system tested.

The effects of the power in the three states (idle, stop, and warm-up) of the machines
and the warm-up time are considered to evaluate the proposed switch-off policies. The
power of the work state is fixed because the objective is to evaluate the relation between
the power in the work state and the other states. In detail, 3 values for the warm-up time
are considered, 0.2, 0.4, and 0.6, which correspond to 20%, 40%, and 60% of the mean
processing time of the machines.

Table 3 shows the power cases evaluated for the states of work, idle, stop, and warm-up
of the machines.

Table 3. Power sensitivity analysis.

Power Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8 Case 9

Work (Kw) 5 5 5 5 5 5 5 5 5

Idle (Kw) 3 4 5 3 4 5 3 4 5

Stop (kw) 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

Warm-up (Kw) 5 5 5 4 4 4 3 3 3

The experiments concern 6 models (benchmark and 5 switch-off policies), 9 cases
of power values, and 3 warm-up times, with a total of 162 cases. The simulations are
repeated for several values of the thresholds (see Table 1) to obtain results similar to policy
1 proposed in the literature.

For each class of experiment, a series of replicates were carried out capable of ensuring
a confidence interval of 5% and 95% of the confidence level for each performance measure.
Each combination of the experimental class features over 2000 replicas and approximately
6 h of computation time (4 GHz Intel Core i7 and 8 Gb RAM). The simulations evaluate
the performance measures in the following areas: the performance of the manufacturing
system: throughput (products/unit time), number of products delayed (products), total
time of lateness (unit time), and the lateness for the product unit (unit time/product); the
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performance about the energy consumption includes the energy consumed in idle, working,
stop and warm-up states.

6. Numerical Results

The simulations for the benchmark case are repeated for different values of the work-
load norm to obtain a better performance. The workload norm that leads to better perfor-
mance is equal to 12 for all simulations conducted.

Table 4 reports the values of the thresholds, alfa, and beta that lead to performance
similar to policy 1, which is the policy proposed in the literature.

Table 4. Parameters for the switch-off policies.

Parameter Value Value

Policy 2 Threshold1 1

Policy 3 Threshold2 0.05

Policy 3 alfa 0.6 beta 0.4

Policy 4 Threshold3 0.05 Threshold4 1

Policy 5 Threshold5 0.09 Threshold6 1.1

alfa 0.6 beta 0.4

Figure 2 shows the reduction in energy consumption compared to the case of always
on for the five switch-off policies considering the nine cases of power consumption and
three warm-up times.

Policy 1 always leads to better energy reduction for all cases tested. The increment in
the warm-up times reduces the energy reduction consumption for all policies tested. This
is due to the higher energy consumed during the warm-up period.

Cases 1, 4, and 7 lead to lower energy reduction; these cases are characterized by
lower energy consumption in the idle state of the machines. The cases with higher energy
consumption in the idle state (3, 6, and 9) improve energy reduction. Then, it is important
to evaluate the characteristics of the machines to estimate the energy reduction in the
switch-off policies.

Except for case 2, policy 4 leads to better energy reduction than the other policies that
include workload computation.

Table 5 reports the ANOVA (α = 0.05) analysis conducted considering the idle, warm-
up power, and warm-up time as the source of variance. The sources of variance are relevant
for all policies tested except policy 5. The ANOVA analysis highlights how policy 5 is more
robust in terms of the warm-up characteristics.

Figure 3 shows the impact of the main effects of energy reduction for the five policies
studied. Policies 2, 3, 4, and 5 reduce the variability of the energy reduction compared to
policy 1 based only on the queues.

Figure 4 shows the number of on/off activities that can affect the tear of the machines.
Policy 2, 3, and 4 limit this value between 12,000 and 12,500. Policy 1 (based on the
queues) increases the number of on/off activities, and this policy is more affected by the
warm-up time.

Figure 5 shows the number of parts in delay compared to the model always being on.
As per the previous measure, policies 2, 3, and 4 have better performance, while policy 1 is
the worst, except when the warm-up time is lower.
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The same consideration of the part delayed can be confirmed by the total time delay,
as shown in Figure 6.

Figure 7 shows the time delay for the unit of the part delayed. The improvement
in this performance means that the increment in total time delay is not proportional to
the increment in parts delayed. Then, the parts delayed increase with switch-off policies’
increase with lower delay time accumulated. This can be important if the penalty is related
to the time delay of the parts.
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Table 5. ANOVA analysis.

Source of Variance Sum of Square Degree of Freedom Mean of Square F-Ratio p-Value

Policy 1

Idle power 0.023625 2 0.011813 911.52 0.000
Warm-up power 0.001617 2 0.000808 62.38 0.000
Warm-up time 0.004072 2 0.002036 157.12 0.000

Residual 0.000259 20 0.000013

Policy 2

Idle power 0.003696 2 0.001848 1180.47 0.000
Warm-up power 0.000163 2 0.000082 52.07 0.000
Warm-up time 0.000299 2 0.000149 95.40 0.000

Residual 0.000031 20 0.000002

Policy 3

Idle power 0.003892 2 0.001946 1542.30 0.000
Warm-up power 0.000184 2 0.000092 72.79 0.000
Warm-up time 0.000320 2 0.000160 126.80 0.000

Residual 0.000025 20 0.000001

Policy 4

Idle power 0.005817 2 0.002909 505.34 0.000
Warm-up power 0.000280 2 0.000140 24.35 0.000
Warm-up time 0.000338 2 0.000169 29.33 0.000

Residual 0.000115 20 0.000006

Policy 5

Idle power 0.003873 2 0.001937 20.23 0.000
Warm-up power 0.000573 2 0.000286 2.99 0.073
Warm-up time 0.000125 2 0.000062 0.65 0.532

Residual 0.001914 20 0.000096

The throughput of the systems does not change with the switch-off policies.
From the analysis of the results, the following points can be summarized:

- Policy 1, proposed in the literature, leads to a greater reduction in energy consumption;
the main limitations of this policy are greater variability in performance and an ex-
tremely high number of machine on/off activities that can reduce the reliability of the
machines. Moreover, the production performance measures are worst in these cases.
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- Among the policies proposed, policy 4 (based on the modified workload computation)
leads to the best compromise of energy reduction, production performance measures,
and number of machine-on/off activities.

- The ANOVA highlights how policy 5 is the more robust to the change in the parame-
ters studied.

- The simulation model is a crucial method used to estimate the performance of a
switch-off policy from several points of view.

7. Conclusions and Future Developmental Paths

The research proposed in this paper extends the switch-off method to reduce energy
consumption in job-shop systems. A production control method used in the job shop
system is workload control; in the literature, the effects of the switch-off policies in these
systems were not studied.

Then, the research proposed in this paper introduces the switch-off method in manu-
facturing systems controlled by a workload control approach to reduce energy consumption.
In response, our first research question asked: what is the impact of switch-off policies in a
job-shop system controlled by the workload mechanism?

The simulation results have demonstrated how the switch-off policies can reduce the
energy consumption of the manufacturing system by reducing the energy consumed in
the idle state of the machines. The upstream policy, proposed in the literature, allows for
drastically reducing energy consumption, but the number of turns on/off of the machines
is very high, and the performance measures of the manufacturing system are the worst.

Then, the policies proposed that include the workload computation of the control
mechanism allow us to obtain a better trade-off between energy consumption and manu-
facturing system performance. Moreover, the number of turns on/off of the machines is
lower with the proposed switch-off policies.

The analysis of the different values of idle power and warm-up characteristics answers
our second research question: what is the impact on the main performance measures of
the combinations of the turn-off/on mechanism also based on the power consumed in the
states of the machines?

The idle and warm-up power characteristics impact the manufacturing performance
and energy consumption, as shown by the ANOVA analysis. The simulations show how the
proposed policy based on workload computation is more robust against these parameters.
Moreover, policy 5, based on workload control data, is not affected by the warm-up power
and time.

At the managerial level, the simulation supports the decision maker in choosing the
better switch-off policy for energy consumption reduction and the manufacturing perfor-
mance target. The simulation helps the decision maker because it allows for estimating
both the productivity and energy performance of the manufacturing systems. The potential
industrial applications can involve production systems where CNC machines are used.
Recent CNC machines are capable of switching into energy-saving modes or even shutting
down completely. For example, [29] argued how in an aircraft small-parts supplier, there
is an idle period of 16% of the machines, and this can reduce the energy consumption by
about 13% with a switch-off policy. Therefore, the proposed method can support industrial
cases with several CNC machines (such as cutting operations) or auxiliary tools such as air
compressed for welding tasks. This is because both the CNC machines and air-compressed
auxiliary tools can easily be turned off and on.

This research, following the works proposed in the literature, concerns a manufac-
turing system with dedicated machines; a future development path can investigate the
impact of machine flexibility. A limitation of the proposed method is that the flexibility of
the machines is not considered, and the method works with a determined routing of the
jobs. Another limit is the processing time, which should have lower variability to aid the
proposed model. A future research path can investigate the impact of workload control
and a switch-off policy on the peak power constraint due to the energy provider.
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Abstract: In this paper, we are discussing a research project aiming to optimize the scheduling
of production orders within a real application in the packaging field. As a first approach, we
model the problem as an extended version of the hybrid and flexible flowshop scheduling problem
with precedence constraints, parallel machines, and sequence-dependent setups. The optimization
objective considered is the minimization of the total tardiness. To tackle this problem, we use two
methodologies: mixed-integer linear programming (MILP) and constraint programming (CP). These
two models were further extended by adding resource calendar constraints named also availability
constraints; this implies that the tasks should be scheduled only when the machine is available.
The different proposed models were compared to each other on a set of generated benchmarks that
reflect the specific properties of the industrial partner. Finally, as the studied configuration relies on
practical real-world application, where thousands of orders are produced monthly, a novel dedicated
heuristic was designed to address the need for quick solutions. The latter outperforms the other
proposed algorithms for expected total tardiness minimization. The proposed problem can be readily
modified to suit a wide range of real-world situations involving the scheduling of activities that share
similar characteristics.

Keywords: scheduling; optimization; mixed-integer linear programming; constraint programming;
dedicated heuristic; tardiness

1. Introduction

Effective production planning and scheduling attract continuous interest from man-
ufacturing companies, which is a good way to add flexibility to the business, to meet
the deadlines promised to the customer, and to ensure the best production efficiency by
balancing production needs with available resources, all at minimal cost. From this point
of view, the use of robust tools for production scheduling remains a strategic issue because
they enable optimizing production and meeting market challenges.

Scheduling is the operational organization of production in the workshop by decid-
ing the order in which tasks pass through the machines, respecting a certain number of
constraints to which the workshop is subjected, and according to optimization criteria
considered for decision making. In other words, the schedule can be defined as follows:
assign the task ‘i’ to the machine ‘k’ at a given time ‘t’ while considering, for example, the
operator ‘p’ equipped with the tool ‘o’ and the mater ‘m’.

Among different workshop configurations, a flowshop scheduling problem (FS) arises
in the context of repeated production, where jobs are required to visit the stages in the
same order and undergo identical processing operations; in other words, all operations
of all tasks go through the machines in the same order. In order to cope with real-world
problems, improve the overall capacity, add additional flexibility to the production, and
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avoid bottlenecks if some operations are too long, it is possible to multiply the number
of machines that can perform the same operation. The resulting model is known in the
literature as hybrid flowshop (HFS), also called flowshop with parallel machines; it consists
of a set of processing stages, in which each stage may have several identical or non-identical
machines, with at least one stage having two or more parallel machines. The classical
hybrid flowshop assumes that all jobs need to visit all stages in the same order. However, in
practice, each job might miss out or skip some stages, which can improve the performance
of the model and make it better suited for real-world industrial settings. HFS scheduling
problem with stage skipping is also called hybrid flexible flowshop scheduling problem.
The configuration under study is described in Figure 1.
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In hybrid and flexible flowshop (HFFS) scheduling problems, two decisions should be
taken: the assignment of jobs to the parallel machines as well as the sequencing of the jobs
allocated to each machine. This problem is known to be NPhard in its simple version and
in most of its extensions. As an example, Hoogever et al. [1] demonstrated that preemptive
scheduling in a two-stage flowshop with at least two identical parallel machines in one
of the stages so as to minimize makespan is NP-hard in the strong sense. Gupta et al. [2]
considered a non-preemptive two-stage hybrid flowshop problem in which the first stage
contains several identical machines and the second stage contains a single machine; they
demonstrated that the problem is NP-hard in the strong sense even when there are only
two machines at the first stage. HFFS scheduling problem has been widely applied in
various manufacturing environments, and several realistic constraints were considered.
A fair amount of research has focused on a variety of realistic constraints, ranging from
sequence-dependent setup times, constraint calendar, transportation time, due dates, and
so on. Furthermore, several optimization criteria were considered, covering the commonly
used makespan, costs, transportation, maximum tardiness and earliness, and the total of
tardy job.

In this paper, we make three significant contributions. Firstly, we introduce novel
CP and MILP models that take into account specific constraints, including sequence-
dependent setups and resource calendar constraints. Secondly, we assess the performance
of both models using real industrial benchmarks. Lastly, we propose a dedicated heuristic
that effectively addresses the need for fast computation times in practical real-world
applications, such as the one studied in this paper, where thousands of orders are produced
each month.

The remainder of this paper is organized as follows: Section 2 reviews the state of
the art regarding the related papers. The problem description is presented in Section 3.
In Section 4, we formulate all the proposed resolution models (MILP, CP, and a novel
dedicated heuristic). The computational experiments, allowing to evaluate the performance
of the proposed models, are presented in Section 5. Finally, in Section 6, we present the
conclusions of our work.
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2. State of the Art

The area of flowshop scheduling has been a very active field of research. It was first pro-
posed by Johnson in 1954. Since then, several approaches have been proposed and numerous
optimization objectives were considered. The current trends that attracted researchers during
the last decade in scheduling problems are toward integrating practical constraints. Among
all, we can point out setup time, resource calendar, and machine flexibility.

2.1. Constraints
2.1.1. Setup Constraints

Setup time, also called changeover, is a very important factor in the packaging industry
because it may have a significant impact on the overall production cycle. It denotes the
required time interval to prepare the necessary material resources. In many real-life
situations, a setup often occurs while shifting from one operation to another. Setup time is
classified into two categories: sequence-independent setup time and sequence-dependent
setup time. Sequence-independent setup time depends solely on the current task regardless
of its previous task. Sequence-dependent setup time depends on both the current and
immediately preceding task [3,4].

There has been a growth in interest in incorporating setup times in many studies. The
main reason why researchers have been motivated to utilize this assumption is to solve
scheduling problems in a real manner [5] Liu and Chang [6] addressed the problem of
Fm|Stsd, Csd, ri|∑ STi, Ci . They first formulated the problem as an integer programming
problem. Then, they employed a Lagrangian relaxation approach and finally developed
a search heuristic. Three major types of heuristics were proposed by Kurz and Askin [7],
who explored the Fm|Stsd, Csd, ri|∑ Ci problem, namely insertion heuristics (based on
insertion heuristics for the traveling salesman problem), Johnson’s algorithm, and a set of
naïve greedy heuristics. They investigated these three patterns and identified the range
of conditions under which each method performs well. Salmasi et al. [8] proposed a
mathematical programming model for Fm|fmls, Stsd|∑ Ci as the problem is proven to
be strongly NP-hard; two heuristic algorithms, tabu search (TS) and hybrid ant colony
optimization (HACO), were developed to solve the problem. In addition, a lower bounding
method based on the branch and price algorithm was developed to assess the performance
of the metaheuristic algorithms. An et al. [9] considered the F2|wt, Stsd|Cmax problem; they
developed several dominance properties, lower bounds, and heuristic algorithms and used
the latter to develop an efficient branch and bound algorithm. Cheng et al. [10] tackled
the Fp

∣∣Stsd
∣∣Cmax problem; they proposed a mixed-integer linear programming model to

solve small-sized instances. Due to the strong NP hardness of the research problem, an
effective metaheuristic, called pairwise iterated greedy (PIG) algorithm, was proposed
to solve medium- and large-sized problems. Rossi and Nagano [11] proposed a mixed-
integer linear programming (MILP) model for Fm|Stsd|∑ Ti problem. They proposed a
method to evaluate the total tardiness of a permutation sequence and also introduced a
partial acceleration method to calculate the total tardiness in an insertion neighborhood. In
addition, they developed a new heuristic to solve the problem efficiently. This heuristic
was then integrated into the best metaheuristics available in the literature. Kare and
Agrawal [12] studied the Fm|Stsd|∑ wTi, wEi problem. Three evolutionary metaheuristics
were proposed.

2.1.2. Resource Calendar Constraints

Another common and practical constraint found in real environments is to consider
the resource calendar. The traditional scheduling problem assumes that machines are
continuously available. However, in reality, this is often not the case due to non-availability
periods, such as maintenance, vacations, leaves, and so on. Considering these time-off
periods for resources is crucial for accurate and realistic scheduling. This helps to deter-
mine when resources are available to work on assigned tasks, ensuring that work is only
scheduled during available times.
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Machine availability constraints encountered in real-world environments can be clas-
sified as either fixed or non-fixed [13]. For fixed constraints, the intervals of unavailability
are predetermined, whereas they are unknown for the non-fixed constraints. Unavailability
periods can also be categorized based on operation preemption as non-preemptive [14],
crossable or non-crossable [15], or resumable, semi-resumable, or non-resumable [16]. An
operation is known as non-preemptive when its processing on a machine cannot be in-
terrupted until it is totally completed, and after that the concerning machine switches
to another operation. An operation interrupted by an unavailability period is called re-
sumable when its processing can continue during the next availability period. It is called
non-resumable if it has to restart from the beginning when the performing machine is avail-
able again. An operation is known as semi-resumable if it has to partially restart during
the next available period. There is other terminology introduced by Mauguière et al. [15].
It concerns unavailability periods allowing interruption of operations: crossable and non-
crossable unavailability periods. An unavailability period that allows an operation to
be interrupted and resumed after the unavailability period is called crossable, while an
unavailability period that does not allow the interruption of any operation is known as
non-crossable. Figure 2 gives a description for the notation used for interruptible and
non-interruptible operations.
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Bentalleb et al. [17] consider a deterministic case where unavailability periods are 
known in advance and fixed and correspond to preventive maintenance tasks. They tack-
led a two-machine job shop scheduling problem with an availability constraint on one 
machine under makespan minimization. First, two mixed-integer programming (MIP) 
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Bentalleb et al. [17] consider a deterministic case where unavailability periods are
known in advance and fixed and correspond to preventive maintenance tasks. They tackled
a two-machine job shop scheduling problem with an availability constraint on one machine
under makespan minimization. First, two mixed-integer programming (MIP) models were
proposed and then some heuristics were performed to solve the problem. Azem et al. [18]
investigate the job shop problem where operations can be interrupted by resource unavail-
ability periods. They propose approximation methods based on construction heuristics.

Surprisingly, the literature on the flowshop scheduling problems with resource calen-
dar or fixed machine availability is not abundant. Aggoune et al. [14] address the flowshop
scheduling problem with limited machine availability under the makespan criterion and un-
der the assumption that the machines are not available during the whole planning horizon.
They propose a heuristic approach based on the geometric approach to approximately solve
the problem. Figealska [19] studied the problem of preemptive scheduling in a two-stage
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flowshop with parallel unrelated machines under makespan minimization. Heuristic algo-
rithms were proposed based on combined linear programming procedures and a genetic
algorithm. Laribi et al. [20] investigate an extension of the classical flowshop scheduling
problem to the case where jobs processing requires additional nonrenewable resources; the
goal is to minimize the makespan. They propose an efficient mathematical model.

2.1.3. Machine Flexibility Constraints

In a modern manufacturing unit, machine flexibility is a very important feature that
enables increasing the overall workshop capacities, reducing or eliminating the impact of
bottleneck stages and balancing the capacities of the stages for the overall workshop. Such a
production unit is characterized by several stages. Each stage is made up of a set of parallel
machines. At some stages, the machines are duplicated and a job can be processed on any
machine. A flowshop with parallel machines is also known as a multiprocessor flowshop,
flexible flowshop, or hybrid flowshop. Machine flexibility has attracted much attention
from researchers in recent years. There are several examples provided in the literature,
including steelmaking [21,22], industry [23], as well as the semiconductor industry [24,25].
Odugawa et al. [26] provide a survey on several real-world applications, ranging from the
metal forming industry to the paper industry to the chemical industry. Some researchers
address real-world problems in their papers.

Kochhar et al. [27] exhibit a local search approach to solve highly realistic flexible flow
line scheduling with setups, buffer capacities, as well as blocking and breakdowns. Several
heuristics are provided by Botta-Genoulaz [28] for the flowshop scheduling problem with
multiple identical machines per stage, precedence constraints and time lags, and setups.
Ruiz and Maroto [29] provide a metaheuristic, in the form of a genetic algorithm, to
a complex generalized flowshop scheduling problem that results from the addition of
unrelated parallel machines at each stage, sequence-dependent setup times, as well as
machine eligibility. Naderi et al. [30] investigate the problem of hybrid flexible flowshop
(HFFS) with sequence-dependent setups, where the objective is to minimize the makespan.
They put forward two advanced algorithms that effectively handle the flexible and setup
features of this problem. Chen [31] proposed an integer hybrid metaheuristic based on
the principles of variable-neighborhood descent and TS for unrelated parallel machines
problems with ready times and sequence- and machine-dependent setup times to minimize
the weighted number of tardy jobs.

While many papers in the literature have tackled various realistic considerations and
constraints, to the best of our knowledge, there has been no effort to jointly address the
set of realistic constraints incorporated in the problem formulation of our paper, which
include sequence-dependent setups, machine flexibility, and resource calendar constraints.

2.2. Optimization Criteria

Setting the correct optimization criteria or objectives for a scheduling problem is
not always an easy task as they are diverse, convoluted, and often conflicting. Plenty of
scheduling problems have been studied considering several criteria. The most considered
are makespan (Cmax), total flow time, total tardiness, maximum tardiness, and number of
tardy jobs. Makespan and total flow time seek the effective utilization of the manufacturing
resources by reducing the elapsed time between the start and the completion of a sequence
of operations in a set of machines, while the remaining criteria are related to job due dates.
In fact, makespan minimization is significantly important in order to upsurge the utilization
of the production system. However, in today’s competitive environment, focusing on
makespan minimization without meeting the due date is of no use for an industry since
meeting customer deadlines is crucial. According to Sen and Gupta [32], when a task is
not completed before its due date, some penalties are incurred, such as potential loss of
customers, damaged reputation, loss of market competitiveness, penalty clauses if there
are any, as well as expediting (the job is assigned quickly to the processing machine at
the possible cost of extra setups, double handling of material, inefficient use of workmen
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and machine), etc. Hence, scheduling problems with tardiness objectives have attracted
increasing attention from managers and researchers. Table 1 provides a summary of several
significant studies that focus on the tardiness objective. The “Constraints” column contains
the various constraints that were taken into account in these studies. The “//m” column
refers to parallel machines, the “STsd” column pertains to sequence-dependent setups, the
“di” column represents due date constraints, the “wi” column represents waiting time, and
finally the “ri” column represents release date constraints.

Table 1. Important studies on scheduling problems with tardiness objectives.

Objective Function Year Author Reference
Constraints

Approach
//m STsd di wi ri

Total weighted
tardiness

1997 Lee and Pinedo [33] X X X Dispatching rule ATCS (Apparent Tardiness
Cost with Setups)

2000 Park et al. [34] X X Dispatching rule
2009 Naderi et al. [35] X X MIP and EMA metaheuristic
2013 Xi and Jang [36] X X Dispatching rules (ATCS)
2020 Diana et al. [37] X X VND metaheuristic

Total tardiness

2009 Chen [31] X X X Hybrid Approach (ATCS+SA)
2014 Herr and Goel [38] X X MIP
2015 Liang et al. [39] X ACO algorithm
2018 Lee [40] X Random iteration greedy metaheuristic
2020 Rossi and Nagano [11] X MILP, heuristics and metaheuristics

Makespan and total
tardiness/tardy jobs

2009 Naderi et al. [41] X X SA algorithm
2013 Tran et Ng [42] X A hybrid water flow algorithm
2018 Allahverdi et al. [43] X AA algorithm

2021 Wan et al. [44] A pseudo-polynomial algorithm and a dual
FPTAS

2022 Allali et al. [45] X MILP and metaheuristics (GA, ABC, MBO)

Tardy jobs

2017 Aydilek et al. [46] A DR algorithm
2019 Najat et al. [47] X Mathematical programming and heuristics
2021 Della Croce et al. [48] X Exponential time approximation algorithms
2022 Hejl et al. [49] X A decomposed ILP model

Bi-objective
Sum of weighted

earliness and
weighted tardiness

2008 Behnamian et al. [50] X A hybrid metaheuristic algorithm that
combines ACO, SA, and VNS

2009 Behnamian et al. [51] X Three hybrid metaheuristics

2011 Behnamian et
Zandieh [52] X X X A discrete colonial competitive algorithm

2019 Otten et al. [53] X Heuristic
2020 Schaller and valente [54] X BB and heuristics
2020 Kellerer et al. [55] FPTAS

3. Problem Description

The problem under study corresponds to a real industrial problem of a packaging
company that prints, on average, 1000 jobs per month. The operations can be categorized
into four main groups, ranging from the preparation of printing materials to the printing
process and shifting process (winding, perforation, and coating) and finally shaping process
aiming to make orders into their final form. Moreover, it is important to point out that this
process is characterized by flexibility, where machines might be skipped and not all the
machines must be visited by all the jobs.

A job i consists of a number n of operations; each operation Oij can be processed
by a subset of machines and has a processing time on machine k, and it may be zero for
some jobs as the jobs are not processed in some stages (skipping). Note that pi denotes the
processing time of job i.

Before starting processing, a setup time (ST) is needed between each of two consecutive
scheduled jobs on each machine. That is to say that, to transition from the processing of
the current operation Oij to the next one Oi’j’ on machine k, some setup settings must be
implemented according to the characteristics of each operation, such as color, size, etc. An
example of setup for the printing phase consists of removing the ink colors not required for
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the next job on that printing machine to free up the ink trays for colors that are required
for the next job. Transitioning from one job to another requires to change ink colors. The
time required to set up one job for the printing phase can be divided into three steps: the
first one to empty the tray from the previous ink, the second one to clean the ink tray, and
the last one to reload the appropriate ink color. The global needed setup time depends on
the number of color changes. On average, the significant setups may contribute to 40% of
the global printing step, including processing time and setup time. However, if a job “i”
requires the same color as the previous job “i− 1”, then the setup time for this color may
be avoided because the considered printing machine is already loaded with appropriate
color and, therefore, major setups are not needed. The setup time duration is correlated to
the setup settings’ similarities between two consecutive operations. The more resemblance
the operations’ settings, the shorter the machine setup.

Another important feature of the considered problem is resource calendar constraints
(RC), which allow to set the work shifts of all machines. The work shift is a segment of
continuous available times of a machine. This means that machines are available only
during working times in the calendar. These unavailability periods are the consequence of
shift patterns or planned maintenance. On the other hand, the machine setup cannot be
interrupted by unavailable periods, and the end of the setup must be immediately followed
by the beginning of the operation processing. Furthermore, a transportation time is needed
to transport a job from the current processing machine to the next one.

Based on the key features of the considered production system, a production schedule
should be planned to maximize the production effectiveness so that the printing line
can gain as much production benefit as possible. The production effectiveness can be
represented by an objective function that should be defined based on the production targets
of the problem. In flexible manufacturing plants operating in a make-to-order environment,
the efficient utilization of manufacturing resources is typically pursued to meet delivery
deadlines. Thus, in our case, we aim to minimize the total tardiness of all jobs, meaning
that we seek to find a job sequence that minimizes the total amount of time by which all
jobs are completed after their due dates.

The production problem can be described as a hybrid and flexible flowshop with nine-
teen unrelated parallel machines, denoted using the classical Graham notation
HFF19

∣∣∣Prec, STsd, RC, di

∣∣∣∑n
j=1 ti [56]. This classification is based on the features mentioned

above, and it is commonly used to represent production systems.
As the first systematic attempt to solve this problem, we construct a mathemati-

cal model in the form of mixed-integer linear program (MILP) that considers sequence-
dependent setups; we then add waiting constraints and evaluate how it behaves, and,
finally, we added resource calendar constraints that enhanced the complexity of the prob-
lem. The objective is to both assign jobs to one machine at each stage and then sequence
jobs on machines to minimize the total tardiness.

If the completion time of a job is greater than its due date (Ci > di), then it is called
tardy and tardiness takes positive values. Otherwise, it becomes an early job with a
tardiness value equal to zero (ti = max(0, Ci − di )).

4. Model and Notations

Job characteristics are modeled as follows:
Let N be the number of jobs to be scheduled. Each job i(i = 1 . . . N) is composed of

a set of operations Ji that must be processed according the defined processing route. Let
M be the number of all available material resources “machines”. For each operation j,
let mj⊂ M be the set of operations that can perform j ∈ ji and pik be the corresponding
processing times.

To transition from executing operation Oij to operation Oi’j’ on machine k, a setup
time stiji’j’k must be incurred. In our problem, the setup time for a job is dependent on
the previous job that was processed on the same machine and thus on the job processing
sequence. For each machine K(k = 1 . . . m), let lk be the number of unavailability periods
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and
[

υl
k,
−
υ

l

k

]
the time window of unavailability of material resource k ∈ m. The processing

of each job on the latter can only be preempted by this interval
[

υl
k,
−
υ

l

k

]
and resumed once

the machine becomes available. Let di denote the due date and specify the time limit by
which job i ∈ N should be completed. The number of jobs, their respective processing
times, and due dates are predetermined and known beforehand. Each machine has a
capacity and can only process one job at a time. A machine can only process one operation
at a time. The processing of the latter can be interrupted by an unavailability period. Setups
cannot be interrupted by an unavailability period and should occur when the machine is
available during the setup interval, and, once completed, the processing of the associated
operation should start. There is no limit on the capacity of the intermediate stock (buffer)
between the production stages. Finally, the objective is to minimize the total tardiness.

The notation used in this mathematical modelling is summarized in Tables 2 and 3:

Table 2. Notation used for the problem data.

Problem Data

i, i’ Index for jobs where i, i’ ∈ {1, . . . ,N}.
j Index for operations.
O The total number of operations.
Oij The jth operation of job i ∈ N.
k Index for machines where k ∈ {1, . . . , m}.
M Number of all material resources.
N Number of jobs to be scheduled.
Ji Set of operations of job i ∈ N.
Pi Processing time job i ∈ N.
di Due date of job i ∈ N.
mj⊂ M Set of material resources that can perform the operation j ∈ ji.

Stiji’j’k
Setup time to pass from the execution of an operation Oj to
operation Oj′ on machine k.

BigM A very large number.

mij ∩mi’j’
Set of machines on which operations j of job i and j’ of job i’ can
be processed.

lk The number of unavailability periods on machine k ∈ m.

υl
k

The starting time of the lth unavailability period of material
resource k ∈ m.

−
υ

l
k

The ending time of the lth unavailability period of material
resource k ∈ m

Table 3. The notation used for the decision variables.

Decision Variables

Xijk = 1 if the operation Oij is assigned to the material resource k.
0 otherwise.

Yiji′ j′k =
1 if the operation Oij is processed before the operation Oi’j’ on the
material resource k.
0 otherwise.

Sijk = Starting time of the operation Oij on machine k.
Cijk = Completion time of the operation Oij on machine k.
Ci = Completion time of job i.

4.1. Mixed-Integer Linear Programming

In this section, the MILP formulation presented in [3] is recalled using the notation of
Section 4 and afterwards extended in Section 4.1.2 by adding resource calendar constraints.
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4.1.1. Start-Based Model

The start-based model was developed in our previous work [3], with the consideration
of sequence-dependent setups, parallel machines, and precedence constraints, and this
model is formulated as a mixed-integer linear programming model as below and called
MILPwav from now on.

Minimize T = ∑n
i=1 ti (1)

Subject to:
ti = max(Ci − di) (2)

∑me
k=1 Xijk = 1,∀i ∈ N, j ∈ Ji, k ∈ mj (3)

Cijk ≥ Sijk + Pijk − BigM
(

1− Xijk

)
, ∀i ∈ N, j ∈ Ji, k ∈ mj (4)

Sijk + Cijk ≤ BigM(X ijk

)
, ∀i ∈ N, j ∈ Ji, k ∈ mj (5)

Cijk ≥ Sijk, ∀i ∈ N, j ∈ Ji, k ∈ mj (6)

∑i∈j ∑j,j′∈oi ∑k∈mi Yiji′ j′k = 1, ∀i, i
′ ∈ N, j, j

′ ∈ Ji, Ji′k ∈ mij ∩mi′ j′ (7)

Sijk ≥ Ci′ j′k + Stiji′ j′k − BigM
(

1−Yiji′ j′k

)
, ∀i, i

′ ∈ N, j, j
′ ∈ Ji, Ji′k ∈ mij ∩mi′ j′ (8)

Si′ j′k ≥ Cijk + St
iji
′
j′ k
− BigM

(
Yiji′ j′ k

)
, ∀i, i

′ ∈ N, j, j
′
, Ji, Ji′ , k ∈ mij ∩mi′ j′ (9)

Cijk = Pijk + Sijk , ∀i ∈ N, j ∈ Ji, k ∈ mj (10)

Ci= ∑
mij
k=1 Cijk, ∀i ∈ N, j ∈ Ji, k ∈ mij (11)

ti ≥ 0, i ∈ N (12)

Xijk ∈ {0, 1}; ∀i ∈ N, j ∈ oi,∈ mij (13)

Yiji′ j′k ∈ {0, 1}, ∀i, i′ ∈ N, j ∈ Ji, j′ ∈ Ji′ , k ∈ mij ∩mi′ j′ (14)

Sijk ≥ 0, ∀i ∈ N, j ∈ Ji, k ∈ mij (15)

Cijk ≥ 0, ∀i ∈ N, j ∈ Ji, k ∈ mij (16)

The objective function (1) aims at minimizing the sum of the total tardiness of all jobs.
Constraint (2) provide us with the value of the individual tardiness of each job. Constraint
(3) states that each operation can only be assigned to one machine, where the decision
variable Xijk is non-zero if operation Oij is assigned to processing unit k and zero otherwise.
Constraint (4) ensures that a job’s completion time is no earlier than the sum of its start time
and processing time. Constraint (5) sets the end date of each job on machines that are not
processing the job to 0. Constraint set (6) controls job completion at stages that a job may
skip. Constraint set (7) enforces precedence constraints, ensuring that each operation of a
job can only begin after its preceding operation has been completed. Constraints (8) and
(9) are used together to sequence any pair of tasks (i, i′) assigned to the same processing
unit k, preventing two jobs from being processed simultaneously on the same machine to
ensure the machine is occupied when processing an operation. Constraint set (10) specifies
that the completion time of any operation is the sum of its start time and processing time.
Constraint set (11) calculates the completion time of a job as the sum of the completion
times of all the operations in its processing route. Constraint (12) ensures that only positive
tardiness values are considered. Finally, Constraint sets (13) (14), (15), and (16) define the
decision variable domains.

4.1.2. Modeling Calendar Constraints

The start-based model is further extended to solve unavailability problems, which
are also addressed by incorporating resource calendar constraints. The processing of a job
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should not start during the time window of unavailability of resource k. That is to say
that any operation must be carried out and finished before the arrival of an interval of
unavailability. The execution time of an operation must be outside unavailability interval.

[
Sijk, Sijk + Pijk

]
∩
[

υl
k,
−
υ

l

k

]
= ∅ (17)

Constraint (18) allows to calculate the total unavailability period of a machine k that
processes job i.

ui =
m

∑
k=

lk

∑
l

Xik(
−
υ

l

k − υl
k) (18)

Constraint (19) calculates the operations completion time

Cijk = Pijk + Sijk+Stiji′ j′k + ui, ∀i ∈ N, j ∈ Ji, k ∈ mj (19)

Now, we have:

Ci =
mi

∑
k=1

Pijk + Sijk+Stiji′ j′k + ui , ∀i ∈ N (20)

From now on, we refer to the model that incorporates resource calendar constraints
into model MILPwav, MILPRC.

4.2. Constraint Programming

Constraint programming (CP) has good performance and robustness in the optimiza-
tion field. In fact, it is a strong tool for solving discrete optimization problems; it provides a
set of modeling features suitable for a very wide range of complex scheduling problems
that do not have a simple formulation. It provides an algebraic language with simple math-
ematical concepts; commonly, CP framework contains useful structural information; it has
the advantage of exposing high declarative, compact, and flexible constraint formulations,
which allow us to model the problem correctly and therefore makes it perform well for
finding optimal feasible solutions [4].

Here, we have modeled the problem in CP using IBM ILOG CP Optimizer. We will
not provide the details of the modeling language used in this paper. For those inter-
ested in learning more about this, we recommend referring to [57] and the CP Optimizer
reference manual.

4.2.1. Start-Based CP Model

A formulation of the main variables is presented in Table 4 using the concepts of CP
Optimizer. From now on, this model is called CPwav.

Minimize T = ∑n
i=1 max(0, ti) (21)

Table 4. CP decision variables.

Decision Variables

interval β j = An interval variable for each operation j

interval αjk = An optional interval variable for each possible
assignment of operation j to machine k ∈ mj

Subject to:
ti = max(0, endOf(itvs[Ci])− di) (22)

EndBeforeStart
(

β j ,
[
αjk

]
) j ∈ Ji, k ∈ mi (23)
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Alternative
(

β j , β j′) j, j′ ∈ Ji (24)

noOverlap
([

αjk

])
j ∈ J, ∀k ∈ mj (25)

di ≥ βi.end ∀i ∈ N (26)

interval αjk, opt, size = Pjk + Stjj′k, i ∈ V, k ∈ mi (27)

endAtStart
(

Stjj′k, αjk

)
j ∈ J, ∀k ∈ mj (28)

The objective function is to minimize the total tardiness (21), given by the difference
between the job’s end value and due date (22). The EndBeforeStart constraints (23) represent
the precedence constraints between interval variables. Alternative constraints (24) represent
the assignment constraints stating that each operation must be performed on exactly one
machine. Constraint (25) defines the nonoverlapping constraint; that is to say that, during
the interval

[
αjk

]
, which represents the assignment of an operation j to machine k, the latter

cannot overlap; e.g., the machine is busy during this interval.
The constraint endAtStart (α, β) is used to state that the end of a given interval variable

α, equals the start of a given interval variable β. We use this constraint (28) to ensure that
the end of a setup should be followed by the execution of the considered operation.

4.2.2. Modeling Calendar Constraints

The considered processing line is periodically submitted to calendar constraints; this
means that machines are not available during the whole planning horizon. To consider
machines’ unavailability, variable αjk should be modulated by adding an intensity step
function Fk that represents the unavailability interval of machine k. In CP optimizer,
Intensity is a stepwise function that applies a measure of usage or utility over an interval

length. The intensity is 0% during the unavailability interval
[
υl

k,
−
υ

l
k

]
and 100% outside

this interval. Therefore, modelling machines’ unavailability can simply be formulated by
constraint (29)

interval αjk, opt, size = Pjk, intesity = Fk, j ∈ J, ∀k ∈ mj (29)

An additional feature of our problem is that the setup cannot occur during an unavail-
ability period. To model this feature, we use the predefined constraint forbidExtent (a,U).
This expression prevents an interval variable from being scheduled during any time point
within the augmented horizon that is not also within one of the disjoint time windows.

forbidExtent
(

St
ii
′
k
, Fk

)
, i, i′ ∈ N, ∀k ∈ mi (30)

Forbidden start constraint forbidStart(α, F) states that, whenever the interval is present,
it cannot start at a value t where F(t) = 0. In the same sense, Forbidden end constraint
forbidEnd(α, F) states that, whenever the interval is present, it cannot end at a value t where
F(t− 1) = 0. We use constraints (31) and (2) to ensure the respect of unavailability periods.

forbidStart
(

αjk, Fk

)
, j ∈ J, ∀k ∈ mi (31)

forbidEnd
(

αjk, Fk

)
, j ∈ J, ∀k ∈ mi

From now on, we refer to the model that incorporates resource calendar constraints
into model CPwav, CPRC.

4.3. Dedicated Heuristic

In order to meet the needs of an industrial environment, we need to be able to develop
quick and effective solutions that can be used to solve the various tasks that are involved
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for a real industrial framework. Unfortunately, the exact resolution approaches presented
previously cannot sufficiently address the requirements for real industrial-size instances
(more than 100 tasks). A very common difficulty when trying to solve such large-sized
instances with the MILP model is running out of memory. The CP model reaches better
solutions in a short time, but, similarly, the solver has some issues regarding the instances’
size. In this section, we propose an effective dedicated heuristic that performs well and
finds good-quality solutions within a reasonable amount of time.

This heuristic follows the logic of a greedy algorithm, which is a type of problem solv-
ing technique that involves making a series of decisions in order to find the best solution. It
works by making the best decision at each step without considering the long-term conse-
quences of the decisions. The algorithm works by considering the most immediate benefit
of each decision and choosing the one that provides the lowest tardiness. This procedure is
repeated until all jobs have been inserted, resulting in a complete candidate solution.

The main steps of this dedicated heuristic are given below:

Step 1. Find earliest schedule
Step 2. Check machine’s busyness
Step 3. Setting operation’s schedule

This heuristic was coded on python. The detailed procedure of the heuristic is pre-
sented in Appendix A.

5. Experimental Results
5.1. Performance of MILP and CP Models

In this section, the performance of the proposed models is evaluated. We use ILOG
Cplex 12.10 software and CP Optimizer (CPO) for solving the MILP model and the CP
model, respectively, using a DELL personal computer equipped with an Intel® Core™
i5-8250U @ 1.6 1.8 GHz CPU, 8 GB RAM, and Window 10 operating system.

This section begins with a description of the numerical instances that were tested.
Then, the different results tables are presented and, at the end, comparisons between the
different algorithms are made.

5.1.1. Test Instances

To validate the proposed approaches in this work, we present in this section a descrip-
tion of the test instances that were used. Most of the datasets were initialized on the real
database of the studied printing company over a period of 2 weeks. We collected from the
production database all the data related to products: operations, processing times, setup
times, waiting times, and resource calendar.

To test the performance behavior of the proposed solution approaches and to investi-
gate their efficiency, it is necessary to build several sets of instances in various production
environments and different conditions. To this end, some test problems have been applied
in a variety of conditions with inspiration from the illustrated case study. Each test set is
generated by varying the problem size. It can be characterized by N, the number of jobs, O,
the total number of operations, and M, the number of machines. The result tables will not
mention the number of machines as it remains constant at 19. The different instances are
named WOS for Workshop Scheduling followed by the number of the instance.

An extensive set of numerical experiments have been conducted by considering
different problem sizes. The aim is to investigate which jobs and operations the model is
not able to find solutions for in a reasonable resolution time.

Based on the combination of the two abovementioned factors, two categories of
instances are arranged as the small- and large-sized instances. These categories correspond
to different workload situations, respectively: low-workload situation and normal- to
high-workload situation.

5.1.2. Experimental Results

In this section, we intend to evaluate the proposed models.
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We set the stopping criteria parameters as follows: the time limit CPU is equal to
30 min and the maximum iterations equal to 1000. The performances of the models are
evaluated thanks to real data of the workshop. Test results are discussed below.

Several set instance sets have been created with N ranging from

- {5, 8, 10, 13, 15 to 20} for small-sized instances.
- {30, 40, 50, 65, 70, 75, 80 to 100} for large-sized instances

For each set, at least two test instances were generated by varying the number of
operations. For each problem class, an effort measurement is completed by calculating
the associated total tardiness and the required CPU time. The optimal values that are
obtained for tardiness have been distinguished with bold numbers. When applying both
formulations to the test instances, a total of 160 experiments were carried out.

Instances without Resource Calendar Constraints

We now present some results on the solution quality obtained with the different
models that do not take into account resource calendar constraints.

1. Small-Sized Instances

In this subsection, the general performance of the MILP and CP models is evaluated by
a set of small-sized instances. Several instance sets have been created with n ranging from 5
to 20. Table 5 provides an overview of the obtained results. For each problem, the name, the
number of jobs, the number of operations and machines, the total tardiness T in minutes,
and the solution time in seconds are shown for both models (MILPwav and CPwav).

Table 5. Main characteristics of the considered small-sized instances and comparison of MILPwav

and CPwav models.

Instance Characteristics MILPwav CPwav

Instance N O TMILP CPUMILP TCP CPUCP

WOS1 5 7 0 5 0 4
WOS2 5 12 0 8 0 4
WOS3 5 20 0 12 0 4
WOS4 8 10 0 11 0 4
WOS5 8 25 0 50 0 5
WOS6 8 30 0 69 0 5
WOS7 10 17 0 58 0 5
WOS8 10 29 0 110 0 5

Table 5. Cont.

Instance Characteristics MILPwav CPwav

Instance N O TMILP CPUMILP TCP CPUCP

WOS9 10 43 0 180 0 12
WOS10 10 49 0 270 0 12
WOS11 13 18 0 90 0 12
WOS12 13 34 0 250 0 21
WOS13 13 49 0 360 0 21
WOS14 15 20 2870 240 2870 21
WOS15 15 45 4076 300 4076 32
WOS16 15 53 5760 410 5760 32
WOS17 15 59 7120 360 7120 32
WOS18 20 29 8200 380 8200 45
WOS19 20 55 9590 520 9590 40
WOS20 20 64 14,200 730 14,200 45
Average 12 33 2591 221 2591 18

Optimal values in bold.
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As the results show, the MILP model provides a great performance; it is capable
of solving to optimality all the small-sized problems up to n = 20 and o = 64 within a
reasonable time. The CP model, on the other hand, seems to be performing better regarding
the resolution time. For all the studied instances, the MILP model took longer to achieve
an optimal solution. Figure 3 provides a time comparison between the resolution of the
CP and MILP models. We can clearly see that the resolution time difference becomes more
noticeable as the number of jobs increases.
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2. Large-Sized Problems

To further validate the performance of the proposed models, larger-sized instances are
evaluated. Table 6 summarizes the corresponding computational results.
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Table 6. Main characteristics of the considered large-sized instances and comparison of MILPwav and
CPwav models.

Instance Characteristics MILPwav CPwav

Instance N O TMILP CPUMILP TCP CPUCP

LWOS1 30 66 0 320 0 6
LWOS2 30 80 5760 850 5760 6
LWOS3 40 88 9852 1710 9712 6
LWOS4 40 96 _ >1800 9980 6
LWOS5 50 110 _ >1800 12,100 12
LWOS6 50 127 _ >1800 19,560 12
LWOS7 65 143 _ >1800 19,800 12
LWOS8 65 150 _ >1800 21,600 30
LWOS9 65 165 _ >1800 22,400 26

LWOS10 65 185 _ >1800 23,980 26
LWOS11 70 164 _ >1800 23,800 30
LWOS12 70 172 _ >1800 25,000 42
LWOS13 70 190 _ >1800 26,960 42
LWOS14 75 182 _ >1800 26,740 73
LWOS15 75 198 _ >1800 27,880 73
LWOS16 75 212 _ >1800 29,660 73
LWOS17 80 210 _ >1800 29,920 49
LWOS18 80 225 _ >1800 38,500 70
LWOS19 100 320 _ >1800 40,940 87
LWOS20 100 380 _ >1800 48,520 87
Average 65 173 _ _ 23,141 38

Optimal values in bold.

As can be observed, up to N = 40 and O = 88, the MIP model is unable to find
a solution within 1800 s, whereas the CP model still finds an optimal solution for all
instances in 38 s on average. The first conclusion that can be drawn is that CP is much
faster than MILP. This experimentation confirms CP’s outstanding performance for the
problem under study.

Instances with Resource Calendar Constraints

This subsection shows the results of the instances on the models that incorporate
resource calendar constraints.

1. Small-Sized Instances

The results of the computational comparison for each combination of n and m are
presented in Table 7.

Table 7. Main characteristics of the considered small-sized instances and comparison of MILPRC

and CPRC models.

Instance Characteristics MILPRC CPRC

Instance N O U TMILP CPUMILP TCP CPUCP

RCWOS1 5 7 1 0 10 0 302
RCWOS2 5 12 1 0 14 0 302
RCWOS3 5 20 2 0 18 0 302
RCWOS4 8 10 2 0 15 0 302
RCWOS5 8 25 2 0 58 0 302
RCWOS6 8 30 3 0 82 0 950
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Table 7. Cont.

Instance Characteristics MILPRC CPRC

Instance N O U TMILP CPUMILP TCP CPUCP

RCWOS7 10 17 3 0 68 0 950
RCWOS8 10 29 3 0 140 0 950
RCWOS9 10 43 3 180 240 180 950
RCWOS10 10 49 4 1330 320 1330 950
RCWOS11 13 18 4 685 40 685 950
RCWOS12 13 34 4 1258 380 1258 950
RCWOS13 13 49 4 2780 450 2780 1100
RCWOS14 15 20 4 4200 490 4200 1100
RCWOS15 15 45 5 7200 820 7200 1100
RCWOS16 15 53 5 8400 1080 8320 1100
RCWOS17 15 59 5 9600 1202 8592 1300
RCWOS18 20 29 5 10,800 1440 9987 1300
RCWOS19 20 55 6 _ >1800 12,600 1300
RCWOS20 20 64 7 _ >1800 18,600 1300
Average 12 33 4 2609 326 3783 888

Optimal values in bold.

If we analyze the results when solving the MILPRC and CPRC models with small-sized
instances that consider resource calendar constraints, the presence of a high number of
unavailability periods decreases, even more regarding the performance of the MILP model
(the model only obtains 15 out of 20 optimal solutions and 20 of 20 feasible solutions). The
CP model, on the other hand, seems to perform well and is still able to obtain optimal
solutions even when the number of unavailabilities is high.

2. Medium- and Large-Sized Instances

The computational results for the medium/large-sized problems are summarized in
the Table 8 below.

Table 8. Main characteristics of the considered large-sized instances and comparison of MILPRC and
CPRC model.

Instance Characteristics MILPRC CPRC

Instance N O U TMILP CPUMILP TCP CPUCP

LRCWOS1 30 66 1 _ >1800 0 1300
LRCWOS2 30 80 1 _ >1800 6760 1300
LRCWOS3 40 88 2 _ >1800 9900 1300
LRCWOS4 40 96 2 _ >1800 9998 1300
LRCWOS5 50 110 2 _ >1800 13,100 1300
LRCWOS6 50 127 3 _ >1800 19,760 1300
LRCWOS7 65 143 3 _ >1800 20,100 1487
LRCWOS8 65 150 3 _ >1800 21,900 1487
LRCWOS9 65 165 3 _ >1800 23,254 1487
LRCWOS10 65 185 4 _ >1800 23,978 1487
LRCWOS11 70 164 4 _ >1800 23,900 1487
LRCWOS12 70 172 4 _ >1800 26,020 1487
LRCWOS13 70 190 4 _ >1800 26,990 1580
LRCWOS14 75 182 4 _ >1800 26,840 1580
LRCWOS15 75 198 5 _ >1800 28,520 1580
LRCWOS16 75 212 5 _ >1800 29,760 1580
LRCWOS17 80 210 5 _ >1800 _ >1800
LRCWOS18 80 225 5 _ >1800 _ >1800
LRCWOS19 100 320 6 _ >1800 _ >1800
LRCWOS20 100 380 7 _ >1800 _ >1800
Average 65 173 4 _ _ 19,424 _

Optimal values in bold.
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The experimental results show that the MILPRC model is not able to solve any problem
of size up to 30 jobs, while the CPRC model solved a large number of instances up to 75 jobs.

5.1.3. Discussion

According to the results of the experiments, the CP algorithm is more efficient than
the MILP model when it comes to solving our scheduling problem for both wav (without
ressource calendar constraints) and RC formulations (with resource calendar constraints).
It can perform well in handling any size of problem and proves the optimality of a large
number of instances. Even with high-availability periods, the CP model can still find
optimal solutions. It also proves the optimality of several instances and outperforms the
MILP model when it comes to finding feasible solutions.

Summing up, we can clearly see that the computational effort required to solve our
scheduling problem depends on the size of instances and the number of unavailability peri-
ods. The difference between CP and MILP increases as the number of jobs and the number
of unavailability periods increase. CP can provide significant savings in computational
effort compared to MILP formulation and finds better solutions and is the best overall in
all instances.

5.2. Dedicated Heuristic

For testing the performance of the proposed dedicated heuristic method, we generated
a benchmark composed of several sets of instances with different problem sizes by using
the real data obtained from the manufacturing environment of the plant. Accordingly, there
are 10 groups of benchmark problems of different sizes, varying from 60 to 150 jobs.

Table 9 provides for each instance the tardiness found, denoted by TDh, as well as
the execution time (CPUs column) to reach the best value. The column denoted by Treal
recalls the real results obtained by the planner. Finally, the gap between both solutions is
calculated in the column (gap). The last row represents the average values. The values
denoted in bold indicate that the heuristic reaches the optimal value for the considered
instances, meaning that the solution found by the heuristic is equal to the one obtained by
the exact method “CP”. For instances up to 80 tasks, the results obtained with the MILP
and CP models are not provided since the solver ran out of memory before providing any
initial solution.

Table 9. Main characteristics of the considered large-sized instances and comparison of MILPRC and
CPRC models.

Instance Characteristics

N O M U Treal TDh CPUDH Gap

60 148 19 5 30,120 22,695 4 25%
70 160 19 6 48,215 27,458 4 43%
80 189 19 7 68,743 38,548 6 44%
90 210 19 9 80,471 49,895 8 38%

100 260 19 9 94,875 58,951 8 38%
110 298 19 11 100,458 64,251 8 36%
120 352 19 12 124,524 70,589 12 43%
130 397 19 15 150,427 86,758 12 42%
140 410 19 16 159,751 89,827 12 44%
150 480 19 20 180,058 118,745 19 34%
105 290 19 11 103,764 62,772 9 39%

Optimal values in bold.

According to Table 9, if we compare the results of the dedicated heuristic against the
real results obtained by the planner, we see that the tardiness obtained by the heuristic
is significantly lower than that obtained by the planner, with an average gap of 39%. On
average, the dedicated heuristic provides a better solution overall for all the tested instances
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within a reasonable time compared to the real solution proposed by the planner, which
proves the efficiency of the dedicated heuristic.

6. Conclusions

This paper aims to apply operations research techniques to schedule activities within
a packaging company. It examines a difficult scheduling problem, which involves a hybrid
and flexible flowshop with various challenging features, such as parallel machines, prece-
dence constraints, sequence-dependent setup times, and resource calendar constraints. The
paper presents and analyzes two solutions for the problem using MILP and CP Optimizer.
MILP is a general-purpose solver, while CP Optimizer is specifically designed for schedul-
ing problems and has its own modeling language. The study compares the effectiveness of
the IBM ILOG CPLEX MILP and IBM ILOG CP Optimizer solvers based on their ability to
handle realistic problem sizes, with some showing promise on small instances but strug-
gling on larger ones. From the foregoing, MILP formulation performed well for small-sized
instances but struggled to find solutions for large-sized instances, or ones with a high
proportion of unavailability periods. The CP formulation performed better for large-sized
instances and ones with a high proportion of unavailability periods. Therefore, CP Opti-
mizer is more successful in finding optimal solutions for a greater number of instances than
MILP. To deal with large-sized instances, a dedicated heuristic was also proposed to pro-
vide good-quality solutions in reduced time. Thus, this heuristic is mainly recommended
for large-size problems. Future work should focus on improving the proposed algorithm
by adding some dispatching rules and investigating a comparable method for resolving
scheduling issues with restricted availability, where operations may be suspended due to
availability periods and resumed later, with or without incurring penalties.
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Appendix A

Table A1. Pseudo algorithm of the dedicated heuristic.

Pseudo-Algorithm

******************
SCHEDULING METHODS
******************
Determine an operation’s schedule
---------------------------------

a. initialize
- l = operation’s processing time (setup+execution)
- ls = operation’s setup time
- s = start
- ss = None, the actual start, es = None, the start of the execution, r = None, the available time
- ee = s, the end of the execution
- A = machines’ availabilities (list of int couples representing each an availability window)
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Table A1. Cont.

Pseudo-Algorithm

b. iteration
- b = 0, the availability bucket
- While l>0 and b<|A| (we still processing time and availability buckets
• B = A[b], B is the current availability bucket
• si = B[0] (interval start), ei = B[1] (interval end)
• if ei<=ee (if this intervals ends before the moving counter ee)
# continue to next interval

c. Set the availability time, r = ee + operation’s waiting time
Find earliest schedule
----------------------

a. Try to schedule at time
- determine a timing from time

timing = determineTiming()
- check if the machine is busy any time between timing.start and timing.end

busy = checkBusy()
- if not(busy)
• return timing and end

b. Else, try to schedule at each busyness interval’s end
for [si,ei] in the machine’s busyness intervals
- if ei<time => skip and continue to next interval
- timing = determine a timing from ei
- busy = check if machine is busy in that timing
- if not(busy)
• return timing and end

Check machine’s busyness
------------------------
Setting operation’s schedule
----------------------------

a. Set the operation’s attribute (start,exec,end,available,machine) to (timing[1],timing[2],timing[3],timing[4],machine.id)
b. Add the interval [timing[1],timing[3]] is the machine’s busyness and reorder the busyness intervals by increasing values
c. Find the next operation nextOp in this operation’s parent job
d. If nextOp exists, set its release time to timing[4]
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Abstract: This study presents an approach to solving the assembly line balancing problem (ALBP)
using the Methods-Time Measurement (MTM) time standard and simulation software. ALBP is
a common problem in manufacturing where a set of tasks with fixed times must be assigned to a
series of sequential workstations in order to minimize the total idle time and reduce the assembly
cost per product. This study uses MTM, a widely used production process scheduling method, to
create a new time analysis of an assembly process that was previously balanced using the Work-
Factor method and time study. This literature review shows that there are a lack of combinations
of updated time analyses with newer simulation approaches in the current literature, and this was
the motivation for the present work. An assembly line simulation was performed using Simio
software to evaluate different design options and operating scenarios. The results show that the
use of MTM and simulation can help minimize idle time and improve assembly line performance,
thereby reducing costs and increasing efficiency. This study shows that the approach of using MTM
and simulation is effective in solving ALBP and is a useful tool for manufacturing companies to
improve the performance of their assembly lines and reduce costs.

Keywords: optimization; production planning; assembly line; MTM time standard; simulation;
industry 4.0

1. Introduction

An assembly line is a manufacturing process consisting of various tasks in which
multiple parts are sequentially assembled into a product at several workstations to produce
the final product. It is widely used in mass production for manufacturing various types of
product, such as automobiles or electronic products. The workstations are arranged sequen-
tially, with tasks being performed by workers simultaneously. The main layout problem is
determining the optimal arrangement of tasks to workstations, which is commonly known
as the assembly line balancing problem (ALBP). ALBP is a classical optimization problem
in industrial engineering with the main objective of optimizing the efficiency (number of
workstations and cycle time) of assigning tasks to workstations. This approach has been
widely discussed and presented [1–5].

Setting up an assembly line is usually a long-term process that involves major in-
vestments. In addition to planning new assembly lines, existing assembly lines must also
be periodically redesigned to accommodate various changes in the production process.
Therefore, companies constantly face the challenge of changing their assembly systems
quickly and economically.

In light of the ideas of Industry 5.0, with its focus on the human-friendly, human-
centered, and sustainable design of production environments, our study focused on less-
publicized approaches to time analysis of the assembly process. Although time analysis
is a well-known approach, it has recently become more interesting because it is directly
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related to workers and their activities. Workers have different skills and perform tasks in
different ways in terms of speed, motivation, and diligence, a topic that is also considered
in ergonomics, and this could be a future direction of ALBP approaches. ALBP and time
analyses are closely related, so new variations and combinations of the two approaches
that are still being developed represent a new and interesting area for future research.

This study presents an approach to solving ALBP using the Methods-Time Measure-
ment (MTM) time standard and simulation software. A new time analysis using MTM was
performed to assess the current process and was balanced with the use of Work-Factor. The
new time analysis was used to prepare the rebalancing of an assembly line. Scenarios before
and after rebalancing were then compared in a simulated environment. The assembly
line simulation was performed using Simio software to evaluate different design options
and operating scenarios. The usefulness of the presented approach was demonstrated
by running the assembly line in a three-shift serial production in a large manufacturing
company for household appliances.

Although the focus of the present study is on time analysis, an in-depth analysis
of the work and work methods, including an ergonomic evaluation using the European
Assembly Worksheet (EAWS), was performed at the same time. Due to the complexity of
the optimization process, which requires the consideration of many influencing factors, the
present study was limited to time analysis.

2. Literature Review
2.1. Simulation Modeling

As a powerful tool for analyzing complex stochastic systems, of which assembly
lines are undoubtedly one, computer simulation modeling has been widely used [6–9].
Simulation modeling is the process of creating and testing a computer-based mathematical
model of a physical system. The main objectives of simulation modeling can be summarized
as follows:

• Gaining insight into the operation of a system; it is difficult to study the system
at standstill.

• Developing operational or resource strategies to improve system performance; existing
operating systems should be improved.

• Testing new concepts and/or systems prior to implementation, and typically, test-
ing how well the new proposed model will work and reviewing and refining the
configuration of the selected equipment.

• Obtaining information without interfering with the actual system.

Simulation modeling has several advantages, but also some disadvantages that should
be considered. The main advantage is the ability to examine systems dynamically and
in real time during the simulation run, which usually takes less time than testing in
a real environment. With a computer model, operation and interaction with different
scenarios can be simulated in seconds. The reduced analysis effort allows practitioners to
analyze many more different types of system than was previously possible. Simulation
software with the ability to dynamically animate the operation of the model is useful for
demonstrating system operation and troubleshooting potential failures. In addition to the
obvious advantages, there are some disadvantages to simulation modeling.

Simulation cannot provide accurate results if the input data are inaccurate. There-
fore, data collection is a very important part of the simulation process, even though it is
often neglected. Another challenge is problem solving. Although the simulation model
provides management with several possible solutions, simulation alone does not solve the
problem—this is still the responsibility of management.

The use of various simulation software programs has been covered in several pa-
pers [10–13] and books [6,14,15]. One of the most important decisions in conducting a
simulation study concerns the choice of software. We can choose a simulation package or a
general-purpose programming language. The advantages of simulation packages can be
summarized as follows:
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• They provide all the segments needed to build a simulation model (shorter time and
lower cost);

• The basic modeling constructs are usually more user-friendly (easy to use);
• Simulation models are easier to modify and maintain;
• Automatic checking for possible errors (better error detection).

In contrast, simulation models written in a general programming language have some
other advantages:

• An analyst already knows the programming language;
• A model written in a specific programming language (C, C++, Java) can be better

tailored to a specific application, and is therefore faster (shorter execution time);
• Greater flexibility in programming.

Discrete-event simulation packages are usually of two main types: general-purpose
simulation packages and application-oriented simulation packages. The former can be
used for any application, but may have specific features for certain applications (e.g.,
manufacturing or process optimization). The second type of simulation software is tailored
to a specific type of application, such as manufacturing or healthcare.

2.2. Simulation Software

There are several general-purpose simulation packages on the market, such as
Arena [16,17], ExtendSim [18], Simio [19,20], Anylogic [21,22], and others. Arena is typi-
cally used for applications such as manufacturing, supply chains, defense, and healthcare.
The modeling structures are functionally organized into different “templates” that are
used to model arrivals, departures, services, and unit decision logic. This is the basic
approach. The Arena software also allows for an advanced process approach with access
to external data files in Excel, Access, and SQL databases. A model is created by dragging
modules into the main model window and connecting them together to represent the flow
of units through the simulated system. Detailed modules can be designed using dialog
boxes. Three-dimensional (3D) animations can be created simultaneously using the “Visual
Designer”. In addition, there is activity-based costing that provides value-added and
non-value-added cost and time reports. The Arena simulation package has not been widely
used in previous research, but there are two cases where it has been used for assembly
lines [23,24].

ExtendSim is the name for a family of four general-purpose simulation packages
targeted toward specific market segments. A simulation model is created in a virtual
environment by selecting blocks from libraries, placing them in selected locations in the
model window, similar to Arena, and connecting them together to represent the flow of
units through the system. Detailed modules can be designed using dialog boxes. The
software can create a wide range of different system configurations. It has activity-based
costing, which allows fixed and variable costs to be assigned to a unit as it moves through
the simulated system. The “Scenario Manager” allows us to explore different scenarios
and shows us the model responses from one scenario to another. This literature review
shows that there are some applications of ExtendSim simulation packages in logistics [25],
transportation [26], and some other non-processing areas.

Simio is an object-oriented suite of simulation and planning products [20]. It is a
simulation modeling framework based on smart objects that allow models to be created
either using a standard library (for discrete-event simulations) or by allowing the user
to create new objects. An object in a library can be a customer or a machine. A model is
created by dragging objects into the 2D “Facility” window, connecting them with links
to show the flow of entities through the simulated system. Similar to the previously
presented software packages, detailed modules can be designed using a property editor. A
3D perspective view is also available for better visualization. The structure of an object in
Simio is identical to the structure of a model, and each model is automatically a module
that can be used to build hierarchical models. Specific properties (e.g., the machining
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time of a machine) and states (e.g., idle or busy) can be defined for each inserted object.
Simio also provides a set of sophisticated functions for running and analyzing simulation
experiments with different scenarios. The Simio simulation package is more widely used
than the previous two simulation software packages, but not for assembly lines. It has
some applications in logistics [27], service planning [28], production planning [29], and
cellular manufacturing [30].

Anylogic is a powerful and flexible simulation software package that can be used
to model and analyze complex systems in a variety of industries, including healthcare,
transportation, and logistics. Anylogic offers users three different modeling approaches:
discrete-event, agent-based, and system dynamics. This makes it a versatile tool that can
be used to model a wide range of systems. Like other software solutions, Anylogic also
has powerful visualization and analysis tools, including the ability to create 2D and 3D
animations of models, and perform advanced statistical analysis. There are some previous
research papers that use the Anylogic simulation package, but it is used for manufacturing
simulation, lean six sigma implementation, value stream analysis, lean manufacturing,
smart factories, material handling, and cloud simulation [31–35].

2.3. Assembly Line Balancing

The assembly line balancing problem (ALBP) deals with the allocation of tasks to
workstations while optimizing one or more previously selected goals, without violating
precedence constraints on the tasks or other constraints imposed on the assembly line.

The simple assembly line balancing problem (SALBP), which envisions a single-mode
line with a fixed cycle time and deterministic task times, does not consider all the features
typical of real problems. Real AL problems should consider several additional features,
such as cost functions, equipment selection, parallelization, stochastic task times, and others,
and can be solved via the so-called generalized assembly line balancing problem (GALBP).

The mixed-model assembly line balancing problem (MALBP) can be considered a
special case of GALBP where several similar models, which are variations of the same
basic product and differ only in certain adaptable product properties, can be assembled
simultaneously and continuously [36].

Parallelization is another feature that should be considered in assembly line configura-
tions. Different forms of parallelization can occur in the real environment and increase the
solution space of the problem, such as parallel lines [37], parallel workstations perform-
ing the same set of tasks [38], or parallel bipartite lines [39]. Parallel assembly sequence
planning (PASP) is best explained in the work of Gulivindala [40,41]. PASP is treated as
an NP-hard problem because of methodological difficulties in its development phase and
computational complexity in its implementation for solution generation.

Based on the assembly line layout, two types of assembly line balancing are known:
the one-sided assembly line balancing problem and the two-sided assembly line balancing
problem (TALBP), the latter of which is widely used in the assembly of large products such
as busses and trucks [42]. TALBP is characterized by a set of tasks that must be divided
and processed at a series of paired stations, where each station contains two opposing
workstations with two workers [43]. The TALBP approach, with four specific constraints
(precedence, cycle time, allocation, and direction), is much more complex than the one-sided
ALBP approach, although simple ALBP with minimization of the number of workstations
is already an NP-hard problem [44]. The methods used to solve ALBP can be divided into
three groups: exact methods, heuristic methods, and meta-heuristic methods. With all the
different possibilities and approaches, the field of ALBP solutions continues to grow and
evolve [45].

NP-hard problems are described as a class of computational problem for which a
solution can be verified in polynomial time, but for which no known algorithm can solve the
problem in polynomial time. NP-problems are of great interest in computer science because
many important problems, such as the traveling salesman problem and the satisfiability
problem, are known to be NP-problems. The class NP is defined as a set of decision
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problems for which a proposed solution can be verified in polynomial time. This means that
the amount of time required to solve or verify the problem grows faster than a polynomial
function of the size of the input [46].

2.4. Assembly Line and Industry 4.0

In addition to classical mathematical approaches, new technologies in the context of
Industry 4.0 (I4.0) can accelerate workplace design on the assembly line. Industry 4.0 is
leading companies to gradually and continuously automate traditional manufacturing
processes [12], but at the same time, Industry 5.0, with its focus on a more human-centered
approach to industrial work system design, is just around the corner [47]. Industry 5.0 em-
phasizes explicit attention to consequences for employees in the system in order to design
production environments that are human-friendly, human-centered, and sustainable.

Assembly systems are also affected by this revolution, with the concept of Assembly
System 4.0 (AS4.0) aiming to improve performance and workplace design [9,48–55].

Traditional approaches to optimizing assembly systems mainly consider time and cost
variables, but some studies also consider ergonomic aspects [56]. On the assembly line, the
work is repetitive and requires the full attention of the worker. The processes are flexible
and must also be organized while taking into account the workers’ skills [57]. Workers
are an integral and very important part of production systems, as they still perform the
majority of operations. They usually have different skills and expertise and perform tasks
in different ways in terms of speed, motivation and diligence.

The current trend of Industry 4.0, with “smart” paradigms such as sensors, com-
munication platforms, simulation, data-intensive modeling, and predictive engineering,
offers us the opportunity to recreate the work environment in a virtual scenario where it
is possible to simulate manual activities, evaluate ergonomic metrics, and perform time
analyses simultaneously [58]. Software-based time analyses and simulations allow us to
study different operating scenarios before setting up an assembly line in a real environment,
and also represent the added value of new technologies.

2.5. Assembly Line Reliability

System reliability should also be considered in the optimal design of assembly lines.
Optimizing system reliability involves formalizing and continuously improving the meth-
ods and techniques used to address the reliability of a complex system [1]. Within assembly
lines, system reliability refers to cycle time uncertainty. Changes in cycle time (e.g., in-
creases in cycle time) can cause a line to become unbalanced, resulting in production losses.
Therefore, maximizing assembly line reliability is another important goal for ALBP, in
addition to minimizing cycle time.

3. Problem Definition

The latest product produced on an observed assembly line, presented in Figure 1,
exceeded the expected production quantity. This was the result of the unforeseen positive
diffusion of a new technology on the market. Since the new planned output could not
be achieved on the current assembly line, the question arose as to whether the current
task workflow from one workstation to another was optimally balanced or whether it was
necessary to order a twin of the current assembly line.

The product assembled on the production line (Figure 1) is a fully automated espresso
machine with external dimensions of 400 × 300 × 400 (cm × cm × cm). There are approxi-
mately 216 operations composed of 864 steps of time analysis, which need to be completed
to assemble the whole product. The process time for assembly is 1102 s.

This problem is commonly known as the assembly line balancing problem and is best
described in [7]. The ALBP is represented by a set of tasks with fixed times that must be
assigned to a set of sequential workstations. The order in which the tasks can be executed
is constrained by a set of priority relationships. The most important constraint to consider
is the time available at each station, referred to as the cycle time.
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If the station utilization is lower than the cycle time, then the idle time for each cycle
is the difference between the station utilization and the assembly line cycle time. The goal
of ALBP’s solution is to minimize the total idle time across all stations on the assembly line.
In this way, the assembly cost per product is reduced to a minimum [59,60].

For better knowledge of all project participants, a new assembly time analysis was
created for this product. It was based on the Methods-Time Measurement time standard.
The newly created time analysis was used to compare the current state with the improve-
ment possibilities on the assembly line. Similar to [61], MTM was used because of its use in
production process planning. It assumes that individual basic movements in the correct
sequence are more time-efficient and can be performed with fewer errors.

After rebalancing of the assembly line, the European Assembly Worksheet (EAWS)
was used to assess workers’ posture and movements [62,63]. EAWS is a screening tool
used to assess workers’ biomechanical workload (postures, forces, manual handling, and
repetitions) that identifies key ergonomic issues and provides the opportunity to develop
solutions to overcome them. Although ergonomic assessment was a part of our work
analysis, the ergonomic results are not presented in detail in this paper.

The assembly line was split into three logical zones: A, B, and C. To obtain the results
of the study as soon as possible and implement the improvements, only zones A and B were
included in the study, because the cycle time of zone C was lower than the new planned
cycle time of the assembly line. The layout zones are highlighted in Figure 2.
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The assembly line was divided into three logical zones based on the effect of the fully
automated inspection stations used on the assembly line. Zone A included eight worksta-
tions. After Zone A, an automated PreCheck camera station was used to perform a visual
inspection of all assembly work performed to date. This was the last step before sealing
the product with the housings. Zone B included 2 workstations where assembly of the
housings and preparation of the product took place prior to the fully automated functional
and safety testing of the product. Zone C represents the last two workstations where the
finishing operations of assembly and packaging were performed, which are not relevant to
the possible safety-critical aspects of the product.

To minimize disruptions on the assembly line, which was running in a three-shift serial
production, it was decided to display all collected information in a simulated environment.
The simulated environment was prepared using Simio simulation software.

The main goal of the study was to simulate whether the new desired output of the
assembly line can be achieved, without disturbing the current assembly line, which is in
serial production.

Study Limitations and Assumptions

Our study was limited to the production line in a selected medium-sized company, so
that all specifics and characteristics were limited to the type of production and equipment.
The other limitations of the present study are as follows:

• We came to an agreement with the manufacturer that prevents the publication of
some data.

• The precedence graph for the assembly had to be respected.
• Because of the test stations, the operations had to remain in their designated zones.

This means that operations that were in Zone A before rebalancing remained in Zone A
after rebalancing.

• Two of the operations in the assembly line required oiling and had fixed oiling devices.
To reduce costs and ease the transition to the new assembly order, these operations
remained at the same workstations.

This study’s assumptions are based, first, on the anticipated need to increase assembly
line output due to increased market demand. Second, the MTM time analysis is assumed
to accurately reflect the time required for each step of the assembly operations.

4. Materials and Methods

The ALBP was analyzed using the MTM time standard. This is a widely used method
for scheduling production processes because it assumes that individual basic movements
in the correct sequence are more time-efficient and can be executed with fewer errors. Due
to the cycle times in the observed assembly line, the use of the MTM Universal Analysis
System (MTM-UAS) was recommended. This method of predetermined motion time
system was described in the last review article [64] as state-of-the-art in practice.

The Work-Factor (WF) system and the Methods-Time Measurement (MTM) system
are well known approaches from a group of predetermined times. Both systems have
some benefits and obstacles and have undergone many changes and variants over time.
The MTM system was first described by Maynard, Stegemerten, and Schwab [65] for
production process planning. Both approaches, WF and MTM, are based on the assumption
that individual basic movements can be performed in the correct sequence more time
efficiently and with fewer errors. The time units used are referred to as TMUs (Time
Management Units). The components of the process follow each other in a linear sequence,
which is reflected in their sequential process.

The basic concept of MTM is to decompose a task into its basic human activities, use
basic times for them from tables, and combine them into a basic time for the entire task.
Several variants of MTM have been developed, differing in their focus. Because of the
length of the process time, the MTM Universal Analysis System (MTM-UAS) was chosen in
this study (Figure 3). MTM-UAS, which assigns a pre-determined time standard to specific
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individual process steps, was created to meet manufacturers’ demands for productivity
improvement in batch production. Today, it is widely used in the automotive industry [66].
The categorization MTM-UAS aims for serial production and minimization of the time
units used. Sequences of movements and tasks occur regularly and in rapid succession.
Taylor and Gilbreth analyzed the ideal workflow from the point of view of efficiency. In
addition to the personal skills and abilities of the workers, they emphasized the sequence
of work steps as particularly important [67].
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The cycle times of the observed production line range from 60 to 120 s, and the detailed
MTM analysis with all the required steps was extensive. To illustrate the application of
MTM analysis, a brief example based on a laboratory demonstration of a workstation was
prepared and is shown in Figure 4. The example shows 7 assembly operations consisting
of 14 assembly steps. For each movement that is performed, the starting position of the
worker must be known. Code is then developed based on factors such as the difficulty
of grasping and positioning the object, which depend on the size, weight, and type of
packaging of the object. Accurately measuring the length of the movement is critical to
determining the specific code for each step. Additionally, codes for body motion, including
side steps, are used in this example.

MTM-UAS allows for the creation of building blocks that represent operations that are
repeated in the assembly process. It is recommended that these building blocks are used to
avoid discrepancies in the different phases of the timing analysis.

Originally, the analysis was divided into seven parts. Splitting the timing analysis is
recommended when the results show that the output is not achieved and realignment of
the assembly line is required. The split parts were later combined into one workstation for
presentation purposes [58]. The sum of all steps in the example in Figure 4 results in a base
time of 21.96 s. The base time represents the cycle time of the workstation.

In our analysis, the European Assembly Worksheet (EAWS) was used to assess workers’
posture and movements. EAWS was originally developed for the assessment of assembly
work in the automotive industry, where work is performed in short cyclic segments. The
EAWS structure consists of the following sections: the general section, the working posture
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section, action forces, manual material handling, and repetitive upper limb movements.
The EAWS index is composed of two values: one related to the whole body and the other
to the upper limbs. The risk zones are classified as follows:
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- Green, 0–25 points, low risk—no action is needed,
- Yellow, 26–50 points, moderate risk—further risk assessment and analysis are per-

formed, taking into account additional risk factors (redesign or recovery actions)
- Red, >50 points, high risk—action to reduce the risk is required.

For our simulation, final solutions with a total score below 25 were considered (Figure 5).
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To evaluate the accuracy of the prepared time analysis, a statistical analysis of a
previous time analysis project was performed. The collected data of the project, which is
now in serial production, were used to create a time distribution using ExpertFit software.

Using ExpertFit, any analyst, regardless of prior knowledge of statistics, can avoid
pitfalls that undermine the success of simulation studies. ExpertFit identifies the best of
the probability distributions under consideration and helps the analyst decide whether
the fit is a good one. If no adequate fits are found, ExpertFit [68] can be used to create an
empirical distribution function.

To minimize disruptions on the assembly line during three-shift serial production, new
scenarios created using the MTM method were tested in a simulated environment. Simio
simulation software was used to prepare the simulated environment. One of the main
advantages of Simio is that it allows users to test and evaluate different design options and
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operating scenarios to determine the best solutions to improve performance and reduce
costs [19].

The assembly line in question met most of the conditions that determine whether it is
appropriate to build a simulation model. The reasons for this were the longer simulated
time interval of the assembly line process under study and the variant planning without
interfering with the real system [69].

As mentioned earlier, a model of the assembly line was created using Simio simulation
software. The assembly line model was then used to simulate different scenarios (Figure 6).
The effects of variables on the performance of the assembly line and its bottleneck stations
were simulated. The simulation results had to be critically analyzed, and the lessons learned
had to be applied to the real environment in which the assembly line was optimized.
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Simio simulation software was used because we are familiar with it and have had
good experience using it to study various problems in manufacturing. Similar to [27], it
was chosen for its ability to represent the system in three dimensions and model realistic
spatial relationships in the layout. This resulted in a user-friendly interface that facilitated
model verification and validation.

5. Results
5.1. Line Balancing

The previous time analysis was performed by another engineer using the Work-Factor
method. To keep the rebalancing results as accurate as possible, a new time analysis was
created from scratch using MTM.

The cycle times of the observed production line were between 60 and 120 s. Due to
the nature of the assembly and the length of the cycle times at the workstation, the use
of the MTM Universal Analysis System (MTM-UAS) was recommended. The assembly
operations were simple and were all performed manually, except for the screw driving op-
erations, which were performed using electric screwdrivers. No above-average training or
certification was required to perform nine of the ten jobs mentioned. The one that required
more in-depth training took place at Workstation 9, which was responsible for handling
the results and responding appropriately to the results of the automated PreCheck station.

The time analysis was prepared by an expert engineer, but there was still a possibility
that the results prepared by different engineers may differ. To evaluate the accuracy
of the engineers’ time analyses, a statistical analysis of a previous time analysis project
was performed.

The cycle time for a particular workstation was estimated to be 59.8 s. After the new
work procedure was implemented and the learning curve of the two weeks was completed,
14 cycles were measured, which are shown in Table 1.
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Table 1. Cycle times measured on a different project for which the same expert engineer had prepared
the assembly line balancing with the use of MTM.

Cycle (#) Cycle Time (s) Cycle (#) Cycle Time (s)

1 72 8 49
2 62 9 55
3 54 10 58
4 69 11 55
5 62 12 60
6 66 13 64
7 53 14 58

Based on the times recorded and shown in Table 1, a time distribution was generated
using ExpertFit software. The results of the distribution show that the normal distribution
59.643; 6.105; delta 0.401 is the best fit for the acquired cycle times.

After comparing the engineer’s estimated time based on method MTM-UAS and the
distribution of times measured on the assembly line, there is a 0.26% difference in the results.
The results show that the method and the expert engineer are suitable for preparing the
time analysis for this type of assembly production. The results of the MTM-UAS method,
which was prepared for the assembly line in question, were used in the simulation model.

After the time analysis was prepared, the assembly line adjustment had to be planned,
also known as the rebalancing process. Each task and each step of the tasks were coded
using MTM-UAS and organized using the EasyPlan software. Examples of the coding,
determination of frequency, determination of quantity, and time of the steps (TG) are shown
in Table 2. The TG Sum column shows the assigned time of operations in seconds.

Table 2. Example of an operation divided into four steps, analyzed using the MTM-UAS code, and
organized using the EasyPlan software.

Step Code Q × F TG (s) TG Sum (s)

1 KA 1 × 2 0.90 1.80
2 AC2 1 × 1 1.98 1.98
3 AB2 1 × 1 1.62 1.62
4 PC1 1 × 2 1.08 2.16

When tasks were assigned to a workstation, the sum of all steps of the tasks at each
workstation must be less than the desired cycle time of the assembly line.

The results of the new time analysis were combined with the original assembly process
and are shown in Table 3.

Table 3. Cycle times by workstation—before rebalancing.

Workstation (#) Cycle Time (s) Workstation (#) Cycle Time (s)

1 107.1 6 86.32
2 95.04 7 77.40
3 96.48 8 86.58
4 99.74 9 95.42
5 73.80 10 95.58

After seeing the results shown in Table 3, rebalancing was performed. The results of
the rebalancing are shown in Table 4.

The bottleneck for the new rebalancing in Zone A is workstation 1, which is the
pacemaker of the assembly line. The problem is that Zone B, with workstations 9 and 10,
is the real bottleneck of the assembly line. For further improvements and studies on the
assembly line, a worker would need to be added to Zone B. This would mean that a lot of
workers would have to be added in Zone A to maintain the desired workstation occupancy.
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Table 4. Cycle times by workstation—after rebalancing.

Workstation (#) Cycle Time (s) Workstation (#) Cycle Time (s)

1 93.96 6 86.32
2 92.52 7 86.58
3 92.16 8 86.58
4 90.20 9 95.42
5 93.78 10 95.58

5.2. Simulation Model

The purpose of creating a simulation model of the assembly line was to study the
effects of rebalancing on the efficiency of the assembly process. To improve the quality of
the results obtained using time analysis, a simulation model was created using the time
analysis data. The additional benefit of the simulation model is its consideration of the
influences and disturbances that are present in an assembly environment. In the simulation
model, they are represented by:

- The calculated distribution of the time analysis data;
- The first pass yield of the workers and the inspection stations in the first run;
- The repair station effect;
- The work schedule;
- Breaks.

5.2.1. Preparation of the Simulation Model

A simulation model of the assembly line was created using Simio simulation software.
The model contained all the information that could be collected in the real environment.

Figure 7 shows the layout of workstations 1–10 represented in the rebalancing data.
The layout also includes workstations 11 and 12, which were excluded from the analysis
due to their clear lower cycle time, and which are repair stations to which the devices must
go if they fail the device tests at the PreCheck, End of Line, or Complete stations.
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Figure 7. Layout of the assembly line presented in Simio simulation software.

The first pass yields (FPY) of each test station and the average repair times were also
used in the simulation models.

Because the calculated distribution of the previously prepared time analysis reflects
the repeatability of the prepared time analysis, the calculated normal distribution was
included in the simulation model for each workstation cycle time.
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Two sources were used because the packaging cell was shared by two assembly lines
to check if there were problems with the availability of the packaging cell.

A three-shift schedule was implemented in the simulation model, which is shown
in Table 5. The time spent on breaks, lunch breaks, cleaning the workplace, and talk-
ing to the production manager affects the final production and must be included in the
simulation model.

Table 5. Work schedule followed at the assembly line.

Start Time Duration (min) End Time

06:11 79 07:30
07:40 110 09:30
09:55 115 11:50
12:00 110 13:50
14:11 79 15:30
15:40 110 17:30
17:55 115 19:50
20:00 110 21:50
22:11 79 23:30
23:40 110 01:30
01:55 115 03:50
04:00 110 05:50

To test the effects of rebalancing, two simulation scenarios were created. The first
scenario used the assembly process before rebalancing, and the second scenario used the
assembly process after rebalancing.

Figure 8 presents the 3D view in the simulation software Simio. Workstations in idle
states are presented in gray, and the bottleneck effect is presented in yellow color as the
buffer becomes filled; the entities that represent the product flow through the assembly
workstations can be tracked.
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5.2.2. Results of the Simulation Scenarios

The PreCheck station split the assembly process into two logical parts, since the tasks
of workstations 9 and 10 could not be executed before the tests of correct assembly had
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been performed on the device in the PreCheck station. For this reason, the results of the
simulation scenario and the distribution of balance on the assembly line were divided into
two separate parts, as shown in Tables 6 and 7.

Table 6. Dispersion of assembly line balance before rebalancing.

Workstations 1–8 Workstations 9–10

Minimal occupancy (%) 67.92 86.11
Maximal occupancy (%) 100 86.46

Dispersion (%) 47.23 0.41

Table 7. Dispersion of assembly line balance after rebalancing.

Workstations 1–8 Workstations 9–10

Minimal occupancy (%) 88.58 96.10
Maximal occupancy (%) 100 96.53

Dispersion (%) 12.89 0.45

After running the simulation scenario for a simulated month of assembly, average
output rates per shift were created. The assembly line output per shift increased from
218 to 243 products per shift after rebalancing.

6. Discussion

This study aimed to evaluate the performance of an assembly line by analyzing the
current task workflow and rebalancing it, if necessary, to achieve optimal production
quantity. The study utilized the MTM-UAS time standard and simulation software Simio
to perform a new time analysis and assess the effectiveness of the rebalancing process.
The results show that the current assembly line was not optimally balanced and required
rebalancing to improve production efficiency.

The distribution of the results of the time analysis, prepared by an expert engineer,
shows that the decision to use MTM-UAS was correct and best suited to the type of
assembly line that was observed.

The results of the new time analysis show that there was a clear need for rebalancing,
as there was a 38.37% difference between the bottleneck workstation and the least occupied
workstation. After rebalancing, the difference in occupancy between the new bottleneck
workstation and the new least occupied workstations was reduced to 8.52%.

To confirm the idea of rebalancing, a simulation model was created to have as little
negative impact as possible on the actual assembly line before we could make sure that the
rebalancing decision was correct.

There is a slight difference between the previous results of the timing analysis due
to all the other variables that the simulation model can also include. The results of the
simulation scenario before rebalancing showed that there was a 47.23% difference in
occupancy between the bottleneck workstation and the least occupied workstation. The
results of the simulation scenario after rebalancing showed that the difference in occupancy
between these workstations was reduced to 12.89%.

The simulation scenarios also had an impact on the performance of the assembly line,
which was increased by 11.4%. This means that a twin assembly line is still needed, but a
reduction from the planned three shifts to two on the twin assembly line can be realized.

All this was achieved without any disturbances to the observed assembly line that
was in serial production, which was the main goal of the study.

Changes have already been made to test the impact of the new balance on the current
assembly line. Work steps were changed between workstations so that the learning curve
was rerun. The planned output from the simulation scenario results was achieved, and
there was positive feedback from the assembly workers as the differences in workstation
occupancy were reduced and clearly visible from their point of view.
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This study showed the optimization of balancing results checked using simulation
scenarios, but ALBP was still solved by hand. The next step is to use genetic algorithms to
solve ALBPs that outperform existing heuristics [70]. In addition, the ergonomic design of
the assembly line is an important component of a stable production process. Therefore, the
ergonomic weighting of tasks should also be included in the process of solving an ALBP.

7. Conclusions

Under the conditions of never-ending competition, the importance of an efficient
production system has become more and more important. The need for reductions in
production costs and quick responses to customer demand have forced us to look for new
approaches and solutions. Assembly lines, with their specifics of design, balancing, and
scheduling for mass production, are an important part of these optimization efforts. The
case presented, using an existing simulation software package, shows us a useful approach
to successful assembly line optimization.

Production system simulation modeling is a powerful tool for optimizing manufactur-
ing processes and improving productivity. It involves creating a mathematical model of
the production system and simulating its behavior to study the effects of various changes
on the system. For more detailed and tailored solutions, the use of metaheuristic methods
should also be considered. Metaheuristic methods are powerful optimization techniques
that have become increasingly popular in recent years. These methods are often used to
solve complex optimization problems that cannot be solved using traditional optimization
techniques. Traditional optimization techniques are often better suited to well-structured
problems, while metaheuristics are better suited to complex, unstructured problems. In
addition, traditional techniques are often deterministic and provide theoretical guarantees
on the quality of the solution, while metaheuristics are often stochastic and do not provide
such guarantees.

The results of this study could be useful to both academia and industry. For researchers,
our study provides insight into the effectiveness of various methods for balancing assembly
lines, and can serve as a basis for further research. For practitioners, our work can serve as
a basis for decision-making processes and help determine the most appropriate approach
to balancing assembly lines for their specific needs. In addition, the methodology we used
can be applied to other similar systems and help improve their efficiency. Overall, we
hope that our study contributes to ongoing efforts in the field of industrial engineering and
stimulates further research and practical applications.

For future research, the latest industrialization concept, known as Industry 5.0, should
also be considered in the development of industrial manufacturing. Its focus is on integrat-
ing advanced technologies with human-centered values to enable smarter, more efficient,
and more sustainable production processes. Ergonomics should also be considered as an
appropriate tool for worker assignment, taking into account their experience and physical
abilities. Industry 5.0, characterized by the integration of cyber–physical systems, artificial
intelligence, machine learning, and Big Data analytics with human operators, will be the
focus of further research to create a more collaborative and personalized production envi-
ronment. The results of this new research could help improve worker safety and comfort,
reduce the risk of musculoskeletal disorders, and increase overall productivity.
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Abstract: Selective assembly is a manufacturing method that matches and assembles pairs of parts in
a manner that offsets the machining errors of these parts. In the production of products requiring
high precision and efficient mass production, flow production and search-based selective assembly
must be combined for market competitiveness; however, this method increases computational costs
and generates many surplus parts. Therefore, research should aim to minimize surplus parts in
search-based selective assembly at a low computational cost to suit flow production systems. In this
paper, we propose the density-based prioritization (DBP) algorithm, which minimizes surplus parts
in the search-based selective assembly of flow production systems. In addition, a method of varying
the assembly tolerance is developed and incorporated into DBP to increase its process capability.
The proposed algorithm requires an assembly facility to prepare parts with as many different sizes
as possible. This paper confirms that DBP reduces computational costs and surplus parts while
enhancing process capability.

Keywords: prioritization; selective assembly; surplus part; flow production; ball bearing

1. Introduction

Selective assembly is a manufacturing method that measures the machining errors of
processed parts and then matches and assembles specific pairs such that these errors are
offset. Consequently, high-precision assemblies can be obtained even with low-precision
parts, enabling the mass production of precision products. However, due to the difficulty
of achieving an ideal combination of all parts according to dimensional distribution of
parts or the selective assembly method, parts without mates (surplus parts) remain. The
occurrence of surplus parts wastes manufacturing resources and increases manufacturing
costs. Therefore, minimizing surplus parts is important for selective assembly [1].

Various methods of selective assembly have been studied according to the character-
istics of fabricated products and assembly facilities. Raj et al. [2] developed an algorithm
based on particle swarm optimization to minimize surplus parts in selective assembly that
must satisfy multiple assembly tolerances. In addition, Raj et al. [3] proposed a method
that used the non-dominated sorting genetic algorithm II to optimize assembly precision
and eliminate surplus parts. Asha and Babu [4] applied genetic, simulated annealing, and
memetic algorithms to selective assembly to compare assembly precision and the number
of surplus parts. Filipovich and Kopp [5] modified a selective assembly model based on a
parameter estimation algorithm to reduce sorting errors due to measurement errors. Aderi-
ani et al. [6] proposed the use of a genetic algorithm to improve assembly precision under
any distribution of parts without producing surplus parts. Furthermore, Aderiani et al. [7]
improved the phenotype–genotype mapping method used with evolutionary optimization
algorithms for selective assembly to accelerate optimization. Liu et al. [8] proposed a
method that used a fireworks algorithm to optimize assembly precision and the number
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of surplus parts in multi-matching selective assembly under a non-normal dimensional
distribution of parts. Kannan and Pandian [9,10] proposed a selective assembly model that
used a genetic algorithm to minimize surplus parts within a strict assembly tolerance.

These selective assembly approaches can be divided into group- and search-based
methods. Group-based methods classify parts to be assembled with each other into
groups according to their dimensions and organize groups so that machining errors are
offset, whereas search-based methods identify and assemble the best combinations of parts
through calculation. Group-based methods have simple structures and fast processing
speeds, enabling efficient mass production, but when the required precision is high, the
facility should be larger so that groups can be further subdivided. Search-based methods
enable more precise assembly than group-based methods. Search-based methods require
calculation every time a new component is introduced, so studies on these approaches
focus on batch production systems rather than flow production systems. However, as the
precision parts in automobiles and industrial machineries require very high precision and
efficient mass production, flow production systems and search-based selective assembly
must be combined for market competitiveness. Therefore, research should focus on mini-
mizing surplus parts in search-based selective assembly at a low computational cost to suit
flow production systems.

In search-based selective assembly, a dimensional concentration phenomenon occurs
in which the supply and assembly frequencies of parts according to size become unbalanced.
As this phenomenon intensifies, the diversity of the parts decreases, thus reducing the
probability that the combinations satisfy the assembly tolerance. In this paper, we propose
the density-based prioritization (DBP) algorithm to minimize surplus parts in the search-
based selective assembly of flow production systems. DBP regards the similarity of a part
with the other parts as density on the dimensional coordinate and gives high selection
priority to parts with high density to balance the supply and assembly frequencies. We
examine the selective assembly procedure for producing precision ball bearings and analyze
the factors that cause surplus parts to occur. We then evaluate selective assembly with DBP
and compare it with traditional selective assembly.

2. Search-Based Selective Assembly of Flow Production Systems and Surplus Parts
2.1. Selective Assembly Procedure

In this study, an actual precision single-row deep-groove ball bearing assembly process
is analyzed as an example of selective assembly. The ball bearing consists of an outer ring,
an inner ring, and balls, as shown in Figure 1. In this example, the dimensions of each part
and the specifications of the assembly clearance are as follows:

• Outer ring raceway diameter: A = 40+0.024
−0.005 mm;

• Inner ring raceway diameter: B = 24 ± 0.025 mm;
• Ball diameter: C = 8 ± 0.0005 mm;
• Assembly clearance: Y = 0.009 ± 0.0025 mm.
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The assembly clearance is formed according to the dimensions of each part as follows:

Y = A - B − 2C. (1)
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The given ball bearing assembly process consists of the structure shown in Figure 2.
The outer and inner rings are supplied one by one in every process cycle by the flow
production system and the balls are preproduced and placed in seven tanks. The assembly
facility has thirty slots for storing the outer rings one by one. Additional types of balls
are prepared to increase the possibility of assembly between the outer and inner rings.
Seven types of balls have different biases, ranging from −6 to +6 µm in increments of 2 µm,
with respect to the ball diameter of 8 mm, and the tolerance is ±0.5 µm, as ever. When an
inner ring is supplied, the assembly facility checks the stored outer rings and balls to find a
combination that can satisfy the assembly clearance tolerance. According to Equation (1),
in a total of 210 cases, assembly is performed by selecting the combination whose assembly
clearance is the most approximate to 9 µm and the slot vacated by the selected outer ring is
refilled with a newly supplied outer ring.
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Figure 2. Selective assembly of precision ball bearing.

The diameters of each ball in the tanks cannot be identified and recorded, thus all
balls in the same tank are deemed to have the same diameter. Therefore, the allowable
range of Y should be set to ±1.2 µm in consideration of the tolerance (±1 µm) and other
measurement errors. In addition, if the center value of each dimension in Equation (1) were
removed, the calculation would only be possible with the error values. Based on this, the
dimensional values to be used for selective assembly are redefined as follows:

• Outer ring raceway diameter error: A = ±15 µm;
• Inner ring raceway diameter error: B = ±25 µm;
• Ball diameter bias:

C3− = −6 µm

C2− = −4 µm

C− = −2 µm

C0 = 0 µm

C+ = 2 µm

C2+ = 4 µm

C3+ = 6 µm;

• Assembly clearance tolerance: Y = ±1.2 µm.

Then, the combination whose assembly clearance is the closest to the target value is
identified by finding the combination where Y is the most approximate to 0 µm.

If no combination satisfies the assembly tolerance, the outer rings in all slots will be
removed and all slots will be refilled with newly supplied outer rings. The inner ring
remains in the assembly facility and will be used again when assembly resumes. Therefore,
the inner rings supplied to the assembly facility as good products must be assembled. The
extracted outer rings are reprocessed or discarded as surplus parts. In addition, assembly
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is paused until all slots are refilled, so the generation of surplus parts reduces process
productivity and increases production costs.

2.2. Cause of Surplus Parts

If even one slot has an outer ring that satisfies the assembly tolerance, no surplus part
will remain. Since the assembly facility does not know which diameter inner rings will be
supplied next, the diameters of the outer rings in the slots should be as varied as possible
so that at least one outer ring can be assembled regardless of which diameter inner ring
is supplied. Figure 3 shows the dimensional distribution of outer ring raceway diameter
errors in the slots over time from some of the data obtained from the assembly facility to
illustrate how the distribution changes as the assembly process proceeds. Over time, the
diameter errors gradually converge to similar values. As this dimensional concentration
phenomenon intensifies, the diversity of the outer rings decreases, thus reducing the
probability that the combinations satisfy the assembly tolerance. This phenomenon occurs
because the dimensional distribution of the outer and inner ring raceway diameter errors
becomes unbalanced as the machine tools undergo constant wear and adjustment. However,
changes in this distribution are difficult to control precisely in the machine tools. Therefore,
a selection strategy should be developed to balance the supply and assembly frequencies
throughout the range of the outer ring raceway diameter.
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3. DBP Algorithm

As confirmed in Section 2.2, the frequencies of supply and assembly must be balanced
throughout the range of measurements to minimize surplus parts in the search-based
selective assembly of flow production systems. Accordingly, we propose the DBP algorithm,
which prioritizes the selection of parts with many other similar sized parts in the slots.

DBP regards the similarity of a part with the other parts for each slot as linear density
on the dimensional coordinate; these slots are prioritized in order of density. This linear
density λ can be understood as a quantity Q of parts per unit range L of measurement;
this is equal to the inverse of the average distance E(D) between neighboring parts on the
dimensional coordinate:

λ =
Q
L

=
1

E(D)
. (2)
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Thus, DBP obtains the density for one part λi as the inverse of the average distance
from one part xi to its two nearest parts in each of the smaller and larger sides on the
dimensional coordinate, xi−1 and xi+1:

λi =
1

1
2{(xi − xi−1) + (xi+1 − xi)}

=
2

xi+1 − xi−1
. (3)

In addition, the order of density is the reverse of the order of average distance and the
order of average distance is the order of sum of the two distances:

λi > λj ⇔ xi+1 − xi−1 < xj+1 − xj−1 . (4)

Therefore, unnecessary calculations for prioritization are omitted. Here, since the
smallest and largest parts have only one side which is smaller or larger, the distances of
these parts from their nearest parts are multiplied by two. The dimensional concentration
phenomenon is alleviated by determining whether the outer rings can be assembled in
order of priority so that they can be selected first. The implementation of the DBP algorithm
is as follows:

Algorithm: Density-Based Prioritization

Input: Array of measurements of parts X
Output: Array of sorted indexes by priority P

1. n← length (X)
2. initialize D[1 . . . n]
3. P← [1 . . . n]
4. sort X and P by X in ascending
5. for i← 2 . . . n−1 do
6. D[i]← X[i+1]−X[i−1]
7. end
8. D[1]← 2 × (X[2]−X[1])
9. D[n]← 2 × (X[n]−X[n−1])
10. sort P by D in ascending
11. return P

The selective assembly process selects the outer ring with the highest priority set by DBP
among the outer rings that can be assembled. However, this is a poor strategy in terms of
process capability, which is an indicator of how well the precision of the process results meets
the tolerances required by the process. Process capability should be controlled in the process
of manufacturing precision products. The process capability Cpk is calculated as follows:

Cpk = min
[

USL− µ̂

3σ̂
,

µ̂− LSL
3σ̂

]
. (5)

where USL is the upper specification limit, LSL is the lower specification limit, µ̂ is the
mean of the process, and σ̂ is the variability of the process; the sigma levels corresponding
to different Cpk values are shown in Table 1 [11].

Table 1. Process capabilities and sigma levels.

Cpk Sigma Level

2 6σ
1.67 5σ
1.33 4σ

1 3σ
0.67 2σ
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Even if all parts meet the specifications, a low process capability indicates a high
probability of producing defective products due to future fluctuations. Therefore, a method
of reducing the process deviation is needed. A phasing method can be implemented to
determine whether or not products can be assembled in a narrower tolerance and again in
the original tolerance if there are no parts that can be assembled. Since the DBP-applied
selective assembly system does not consider the assembly precision, the distribution of the
assembly results will approximate a uniform distribution within the tolerance. Therefore,
the process capability is estimated as follows:

σ̂ ≈ σuni f orm =
UTL− LTL√

12
, (6)

µ̂ ≈ µuni f orm =
LTL + UTL

2
, (7)

LTL + UTL
2

=
LSL + USL

2
⇒ Cpk =

USL− LSL
6σ̂

, (8)

∴ Cpk ≈
(USL− LSL)

√
12

6(UTL− LTL)
. (9)

where UTL is the upper tolerance limit and LTL is the lower tolerance limit. The assembly
tolerance satisfying a specific process capability is estimated as follows:

UTL ≈ LSL + USL
2

+
(USL− LSL)

Cpk
√

12
, LTL ≈ LSL + USL

2
− (USL− LSL)

Cpk
√

12
. (10)

4. Performance Evaluation and Results

For evaluating the effectiveness of DBP, an assembly scenario was reproduced us-
ing data collected from the actual precision ball bearing assembly facility described in
Section 2.1 and the DBP algorithm was simulated. The simulation had a total of
125,447 cycles and one outer ring and one inner ring were supplied for each cycle. Thirty
outer ring slots and seven ball tanks were used. The effectiveness of DBP was assessed by
comparing it with the traditional algorithm. Three versions of DBP with different levels of
tolerance phasing were created. The compared algorithms were as follows:

1. Traditional: select the combination where Y is the most approximate to 0 µm among
combinations where Y is within ±1.2 µm.

2. DBP-I: select the combination with the highest-priority outer ring (set by DBP) among
combinations where Y is within ±1.2 µm.

3. DBP-II: Select the combination with the highest-priority outer ring (set by DBP) among
combinations where Y is within ±0.6 µm. If no satisfactory combination is identified,
explore using ±1.2 µm.

4. DBP-III: Select the combination with the highest-priority outer ring (set by DBP)
among combinations where Y is within ±0.4 µm. If no satisfactory combination is
identified, explore using ±0.8 and ±1.2 µm in sequence.

Table 2 shows the surplus part ratio and process capability for each algorithm in the
simulation. The surplus part ratio is the ratio of the surplus outer rings to the total outer
ring supply; the reduction rate compared with the traditional algorithm is the difference
in the number of the surplus outer rings between the traditional and applied algorithms
divided by the number of the surplus outer rings in the traditional algorithms. Findings
confirm that surplus parts can be reduced using the DBP algorithm compared with the
traditional algorithm. DBP-I does not generate any surplus parts but reduces Cpk to
1.109. As the assembly tolerance is phased under DBP-II and DBP-III, the surplus parts
gradually increase, but they are better than the results of the traditional algorithm; Cpk is
also improved. Accordingly, an appropriate assembly clearance tolerance can be set by
balancing the surplus part ratio and process capability. Figure 4 shows the dimensional
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distributions of the outer ring diameter errors in the slots for each DBP version. The
dimensional concentration phenomenon is less than that in Figure 3. Compared with
DBP-I, DBP-II and DBP-III show a weaker alleviation of the dimensional concentration
phenomenon as the tolerance is phased. This is because DBP operates more similarly to the
traditional algorithm as the tolerance is phased. If the tolerance were phased in units of
0.1 µm, which is the minimum unit, DBP would produce exactly the same results as the
traditional algorithm. Therefore, the surplus part ratio and process capability are adjusted
according to the level of tolerance phasing.

Table 2. Surplus part ratios and process capabilities of compared algorithms.

Surplus Part Ratio
(%)

Reduction Rate Compared
with Traditional

(%)
Cpk

Traditional 0.806 - 1.877
DBP-I 0.000 100.000 1.109
DBP-II 0.033 95.906 2.106
DBP-III 0.132 83.623 2.933

Table 3 shows the operation times of the algorithms to evaluate their computational
costs. The operation time is measured starting from the completion time of the inner ring
raceway diameter measurement and ending at the decision of one combination of the parts
to be assembled. The traditional algorithm always examines all combinations, so it shows a
constant operation time of approximately 210 µs/cycle. DBP does not have to examine the
subordinated combinations if products can be assembled into high-priority combinations,
so its operation time varies in some cases. The minimum operation time is approximately
50 µs/cycle, regardless of the phase of the assembly tolerance, and the maximum operation
time increases as the assembly tolerance is phased in more detail. The average operation
time of DBP over the entire period is shorter than that of the traditional algorithm. As a
result, DBP did not delay the assembly process. However, the dynamic operation time can
destabilize the process cycle time and pose a potential risk factor for the entire production
system. Therefore, a proper buffer should be placed immediately after the assembly process
to introduce DBP.

Table 3. Operation times of compared algorithms.

Minimum Operation
Time

(µs/Cycle)

Maximum Operation
Time

(µs/Cycle)

Average Operation
Time

(µs/Cycle)

Traditional 210.2 210.6 210.4
DBP-I 50.94 439.3 72.56
DBP-II 50.79 674.8 97.96
DBP-III 50.33 885.2 128.4
CPU Intel Core i9-10940X 3.30 GHz OS Windows 10 Pro
RAM 4 × 32 GB DDR4 2666 MHz Language Python 3.11.0
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5. Conclusions

In this paper, we propose the DBP algorithm, which minimizes the surplus parts in
the search-based selective assembly of flow production systems. DBP evaluates the density
of a part (similarity of a part with the other parts); then, for assembly, DBP prioritizes the
parts in order of density. The proposed algorithm alleviates the dimensional concentration
phenomenon by allowing high-priority parts to be selected preferentially. In addition,
tolerance phasing is presented to solve the process capability degradation of DBP.

For assessing the effectiveness of DBP, an assembly scenario was reproduced using
data collected from an actual precision ball bearing assembly facility. Three versions of
DBP with different levels of tolerance phasing were created and were compared with the
traditional algorithm through simulation. Their surplus part ratios, process capabilities, and
operation times were analyzed and compared. Results confirmed that DBP could reduce
surplus parts and improve process capability compared with the traditional algorithm by
setting an appropriate phase of assembly tolerance. In addition, the average operation time
of DBP over the entire period was shorter than that of the traditional algorithm. However,
since the dynamic operating time can destabilize the process cycle time, a proper buffer
must be placed immediately after the assembly process to introduce DBP. In this study,
only one assembly scenario was used to assess the effectiveness of DBP and the influence of
various factors that may occur in the actual factory were not considered. Therefore, further
analysis of data for various scenarios and empirical works is needed to prove the practical
applicability of the DBP.
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Abstract: Cloud manufacturing is characterized by large uncertainties and disturbances due to
its networked, distributed, and loosely coupled features. To target the problem of frequent cloud
resource node failure, this paper proposes (1) three resource substitution strategies based on node
redundancy and (2) a new robustness analysis method for cloud manufacturing systems based on
a combination of the complex network and multi-agent simulation. First, a multi-agent simulation
model is constructed, and simulation evaluation indexes are designed to study the robustness of
the dynamic cloud manufacturing process (CMP). Second, a complex network model of cloud
manufacturing resources is established to analyze the static topological robustness of the cloud
manufacturing network. Four types of node failure modes are defined, based on the initial and
recomputed topologies. Further, three resource substitution strategies are proposed (i.e., internal
replacement, external replacement, and internal–external integration replacement) to enable the
normal operation of the system after resource node failure. Third, a case study is conducted for
a cloud manufacturing project of a new energy vehicle. The results show that (1) the proposed
robustness of service index is effective at describing the variations in CMP robustness, (2) the two
node failure modes based on the recalculated topology are more destructive to the robustness of
the CMP than the two based on the initial topology, and (3) under all four failure modes, all three
resource substitution strategies can improve the robustness of the dynamic CMP to some extent, with
the internal–external integration replacement strategy being most effective, followed by the external
replacement strategy, and then the internal replacement strategy.

Keywords: cloud manufacturing; robust optimization; resource substitution; complex network;
multi-agent simulation

1. Introduction

In the era of Industry 4.0, with the rapid development of Internet technology, informa-
tion technology, and manufacturing technology, the traditional large-scale manufacturing
mode is gradually being replaced by customized service modes. A series of advanced
networked manufacturing modes, such as application service providers, manufacturing
grids, agile manufacturing, and global manufacturing have been proposed successively [1].
In this context, Li et al. [2] introduced the concept of “cloud manufacturing”—a new
service-oriented networked manufacturing mode that gathers manufacturing resources
and capabilities together on the cloud platform, escaping the limitations of space and dis-
tance; through service integration, the sharing of manufacturing resources and capabilities
is fully realized [3]. Since its inception, cloud manufacturing has attracted widespread
attention because of its advanced ideas and technical concepts [4].

The cloud manufacturing mode extends the manufacturing environment to multiple
user subjects, service subjects, and geographical spaces. As such, it faces a high level
of uncertainty and disturbance [5]. The cloud manufacturing system (CMS) can reduce
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the impact of some disturbances (e.g., demand change, order fluctuation, and emergency
order insertion) through its own flexible configuration and self-adjustment strategies,
but relatively serious disturbances can cause a variety of damage, such as insufficient
supervision of the cloud platform, random the withdrawal of cloud service providers
from the platform, the failure of cloud resource nodes, and the interruption of cloud paths,
among others [6]. Therefore, it is of great practical significance for the implementation
and deployment of cloud manufacturing projects to accurately identify the impact of
uncertain environments on cloud manufacturing [7–9], explore the robustness level of the
cloud manufacturing process (CMP) under different interference modes, and formulate
corresponding robustness recovery strategies to improve the stability and anti-interference
of the system [10–12].

2. Related Works
2.1. Robustness Analysis Study of Manufacturing Systems

Many scholars have conducted research on the robustness of advanced manufacturing
systems and networks. Gao et al. [13] applied complex network theory to the manufactur-
ing industry, proposing the construction method of the complex network failure model.
Yana et al. [14] proposed that the vulnerability of the manufacturing network may lead
to new risks; they analyzed the topology structure and vulnerability of the cloud manu-
facturing network (CMN) and put forward management suggestions. Cauvin et al. [15]
analyzed the impacts of interruption events on the entire industrial system and proposed a
cooperative repair approach based on a distributed industrial system to limit these impacts.
Li et al. [16] established a collaborative manufacturing services network model using the
complex network method, defined six fault types, and proposed corresponding fault de-
tection methods. Further, the cascaded propagation characteristics of different faults were
revealed, and corresponding control strategies were proposed. Lachenmaier et al. [17]
analyzed the changing individualized requirements, risks, and possible solutions in cyber-
physical systems. Galaske and Anderl [18] proposed a decision support method for the
terminal management process of a cyber-physical production system, modeling and sim-
ulating respective scenarios of interruption events and response strategies. Hou [19]
established the process relationship network of the flexible job shop by analyzing the
relationships among basic production factors, such as machines and workpieces in the
shop. They proposed adaptive preventive maintenance and buffer time insertion strate-
gies. Zhang [20] proposed the definition of the manufacturing product assurance network;
they established an evolutionary model of the manufacturing product assurance weighted
network on this basis, and then analyzed the robustness characteristics of the network.

Such research demonstrates that cloud manufacturing and other advanced networked
manufacturing modes have large uncertainties and risks due to their networked, dis-
tributed, and loosely coupled characteristics. Robustness analysis of these modes has
become a popular issue in academic circles, with many scholars exploring this from a
variety of perspectives.

2.2. Robustness Enhancement Strategies and Recovery Measures

The specific robustness enhancement and defense strategies vary from network to
network, but from the perspective of a network structure, establishing redundant nodes
or links is one of the most common methods to improve network robustness. As early
as 2005, Beygelzimer et al. [21] proposed that people are usually faced with the problem
of improving the robustness of an existing network that cannot be substantially modi-
fied or redesigned: only minor modifications are allowed, such as adding new nodes,
reconnecting partial edges, or adding new edges. Ma [22] stated that the robustness of
the whole network can be improved by increasing the number of reliable nodes in the
network or improving the reliability of a small number of nodes in the network. Ji et al. [23]
argued that it is impossible to enhance the reliability of every node in the network, so it is
instead necessary to specify the priority of nodes and links and focus on their protection.
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Regarding the study of reliable nodes, Li [24] proposed a heuristic scheduling rule based
on controlling critical nodes for the scheduling optimization of the job shop in a disturbed
environment, and Wang [25] used both the improved node shrinkage method and the
triangular fuzzy number method to comprehensively evaluate the importance of nodes in
the network, proposing corresponding improvement measures in terms of critical node
protection. Regarding the study of adding links (i.e., connected edges), Ji et al. [23] pro-
posed two new strategies: low inter degree–degree difference addition and random inter
degree–degree difference addition. They verified the effectiveness of these proposed strate-
gies through a comparison with four existing link-addition strategies (i.e., random addition,
low degree addition, low betweenness addition, and algebraic connectivity-based addition).
Wang et al. [26] proposed a preferred connectivity strategy based on the structure of inter-
dependent networks. They applied this strategy to three existing link-addition strategies
(i.e., random addition, low degree addition, and low inter degree–degree difference addi-
tion), finding that each improved strategy was significantly better than the previous one in
terms of robustness improvement. The effects of link-addition strategies on the improve-
ment of the robustness of different networks have been further investigated [27–30].

Measures such as adding redundant nodes and connected edges can effectively im-
prove network robustness. As such, these measures are receiving increasing attention from
scholars, and they also provided ideas for the design of the cloud manufacturing-based
robustness improvement strategy in this paper. Targeting the problem of frequent cloud
resource node failure, this paper attempts to establish redundant nodes so that appropriate
alternative resources [31] can be used to avoid the complete breakdown of the manufactur-
ing process or system when the original manufacturing resource nodes fail. Based on this
and the background characteristics of cloud manufacturing, this paper presents three kinds
of robustness improvement strategies: internal resource replacement, external resource
replacement, and internal–external integration replacement.

2.3. Multi-Agent Simulation Study of Cloud Manufacturing System

The existing research on the robustness of advanced manufacturing systems mostly
uses the complex network analysis method, which is well suited to reflect the structural
characteristics of the system. As a type of networked manufacturing mode, the structural
characteristics of cloud manufacturing is a key topic in robustness research; however, the
dynamic operation process, logical judgment, and dynamic temporal relationship among
entities are also aspects of cloud manufacturing that should be focused on.

The CMS contains a variety of entities, and various forms of behavior interaction and
information transfer exist between the same entities and different entities, showing the
characteristics of the complex system. Analyzing the complexity through simple, intelligent,
and autonomous entities, such as agents in multi-agent systems, is considered an appropriate
approach to address this challenge in industrial scenarios [32]. Further, the multi-agent
simulation modeling of the CMS is presently a popular research topic. For example, Zhao et al.
designed and implemented an agent-based cloud manufacturing simulation platform, where
the simple reflective agent was used to encapsulate the resources and the complex agent
was used to encapsulate the services. This gave the cloud platform a five-layer architecture
(i.e., the data layer, low tool layer, management layer, upper tool layer, and application layer).
Dobrescu et al. [33] proposed a cloud simulation platform to provide computing resources and
services for the hybrid simulation of virtual manufacturing systems, and Chen and Chiu [34]
developed a cloud-based factory simulation experiment system. Zhang et al. [35] analyzed
typical smart manufacturing simulation techniques from three aspects: manufacturing unit
simulation, manufacturing integration simulation, and manufacturing intelligence simulation.
In addition, some scholars have conducted multi-agent simulation modeling research on cloud
manufacturing from multiple perspectives, such as cloud service entity encapsulation [36,37],
selection and scheduling [38–40], and trust and security issues [5,8], among others. Multi-
agent simulation has become an important tool for cloud manufacturing research, yet
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current multi-agent simulation research on the robustness of cloud manufacturing appears
relatively rare.

This paper proposes a robustness analysis method that combines the complex network
and multi-agent simulation to investigate the optimization and enhancement of CMS ro-
bustness under multiple resource substitution strategies. The complex network perspective
can reflect the structural robustness of CMSs, while multi-agent simulation can consider
the process robustness of CMSs from multiple dimensions, such as time, cost, quality, and
reliability. The combination of these two perspectives extends the robustness analysis object
of the CMS from the CMN to the CMP, thereby realizing the dual-dimensional analysis of
the static structure and dynamic process of CMS robustness.

The rest of this paper is arranged as follows. Section 3 constructs a multi-agent
simulation model of the CMP and proposes process robustness indexes from the sim-
ulation perspective. Section 4 establishes a complex network model of cloud manufac-
turing resources and selects structural robustness metrics from the network perspective.
Section 5 defines four types of resource node failure modes and three types of resource
replacement strategies to deal with resource failure. Section 6 conducts a case study, com-
bining multi-agent simulation software Anylogic and Python 3.0 tools to study the changes
in the robustness of cloud manufacturing under different failure modes. Section 7 provides
the research conclusions and future prospects.

3. Model of the Cloud Manufacturing Process and Robustness Evaluation Indicator
Based on Multi-Agent Simulation
3.1. Construction of Multi-Agent Simulation Model

The cloud platform, cloud task, cloud resource, cloud message, cloud order, and
other types of subjects are all contained in the CMS, along with two different types of user
roles: cloud service providers and cloud demanders [41]. The CMP [2] basically entails the
following, as indicated in Figure 1:
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(1) Through information transformation, resource sensing, resource access, unified mod-
eling of cloud services, and other technologies, cloud service providers integrate
different kinds of manufacturing equipment and manufacturing capability resources
into the cloud platform and deposit them into the cloud resource pool. This allows
globally distributed resources to be managed and shared centrally, thereby circum-
venting the spatial and geographical limitations.
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(2) Utilizing terminal devices, cloud demanders submit their requests for services
(i.e., orders) to the cloud platform. The cloud demand set uniformly stores orders
awaiting processing from various cloud demanders.

(3) In accordance with the service route of the to-be-processed order, the cloud platform
integrates and adapts various cloud tasks to create structured and reliable cloud
task sequences.

(4) In order to perform cloud manufacturing services, the platform imports each order
into the appropriate cloud task sequence when the cloud demand set is not vacant.
Based on the task type, the appropriate resources are requested from the resource
pool while processing cloud tasks. After being requested, resources in an inactive
state transition to a busy state. The resource is released and returned to an idle state
once the assignment has been finished.

Multiple entity types are present in the CMS, and numerous forms of information
transmission and behavior interactions occur among entities of the same and different
types. Consequently, the CMS model can be stated as follows:

CMS={PA,DA,SA,TA,RA,OA,MA,E} (1)

where PA represents the cloud platform agent; DA represents the cloud demander agent;
SA represents the cloud service agent; TA represents the cloud task agent; RA represents
the cloud resource agent; OA represents the order agent issued by DA; MA represents the
message agent sent to SA when TA requests or releases resources; and E represents the
external environment of information transmission and inter-entity behavior interaction.

3.1.1. Modeling of Cloud Resource Agent

Through information transformation, resource access, cloud service unified modeling,
and other technology, service providers’ manufacturing equipment and manufacturing
capacity resources are integrated into the cloud resource pool to create virtual resources
known as cloud resources. The primary function of the cloud resource agent is to collaborate
with cloud tasks to finish the processing of cloud orders:

RA0=〈ID,produceLevel,busy,broken,owner,price〉 (2)

where ID represents the resource’s special identification number; produceLevel is an in-
teger ranging from 1 to 10 that specifies the resource’s productivity level; busy indicates
whether the resource is in a busy condition; broken shows whether the resource is defective;
owner identifies which cloud server the resource belongs to; and price denotes the re-
source’s cost, which is randomly generated using a normal distribution at model startup.

Considering the resource substitution strategies developed in this paper in the face
of resource failure (see Section 5.2 for details), it is necessary to continue expanding the
attributes of cloud resource agents:

RA=RA0+〈 replace_Resource,replace_Rate〉 (3)

where replace_Resource specifies the alternative resource type Rj for each resource type
Ri, with this model assuming that Ri and Rj are mutually substitutive; and replace_Rate
is the replacement rate (i.e., matching rate) of the replacement resource. Although the
substitute resource can replace the original resource to complete the established cloud task,
there is an increase in the total work time. The resource replacement rate is generated by a
normally distributed random number at the time of model initialization.

3.1.2. Modeling of Cloud Task Agent

The development of the cloud task agent is essential to cloud manufacturing simu-
lation modeling. It encompasses both the behavior interaction and information transfer
between the cloud server agent and the cloud resource agent, in addition to the processing
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path for all order kinds (e.g., serial, parallel, and hybrid paths). The cloud task agent
further generates (a) the mechanism for choosing the best service provider, (b) numerous
statistical data, including the service cycle and cost, and (c) information on the cloud task
and cloud resource nodes. The existing process modeling library components are modified
accordingly to accomplish this goal. The following is a description of the cloud task agent:

TA0=〈ID,owner_Orders,pre_taskList,after_taskList,

reque_resourceList,basicWorkingTime,currentOrder,FuncselectBestServer,

FuncselectBestResource,FuncrecordRouteStamp,FuncrecordTaskTime,FuncrecordTaskCost,

FuncrecordTaskReliability〉

(4)

where ID represents the task’s special identification number; owner_Orders identifies
which type of order processing path the task belongs to; pre_taskList and after_taskList
designate the pre-order and post-order tasks, accordingly; reque_resourceList indicates
the resource type requested by the task. basicWorkingTime specifies the average time
required to complete a task; currentOrder indicates the order being processed at the
moment; FuncselectBestServer identifies the best server by considering the resource cost,
logistics, distance, and other variables; FuncselectBestResource decides the best resource;
FuncrecordRouteStamp records the order–task and task–resource relationships for finished or-
ders; FuncrecordTaskTime, FuncrecordTaskCost, and FuncrecordTaskReliability record, respectively,
the service time, the service cost, and the service reliability of the present task.

Again, it is necessary to continue expanding the attributes of cloud task agents:

TA=TA0+〈is_internalReplace,internal_replaceResource,

internal_replaceRate,internal_replaceSerial,is_externalReplace,

external_Partner,external_replaceSerial,FunccalcuWorkingTime〉
(5)

where is_internalReplace indicates whether the current cloud task process has invoked the
internal resource replacement strategy; internal_replaceResource specifies the replacement
resource selected under the internal replacement strategy; internal_replaceRate is the
resource matching rate of the internal replacement resource; internal_replaceSerial is
an integer from 1 to 3 indicating which specific case of internal replacement the current
process belongs to; is_externalReplace indicates whether the current cloud task process
has invoked the external resource replacement strategy; external_Partner indicates the
specific external server with which to cooperate under the external resource replacement
strategy; external_replaceSerial is an integer from 1 to 3 indicating which specific case of
external replacement the current process belongs to; and FunccalcuWorkingTime calculates the
cloud task time under the current resource replacement strategy.

Figure 2 depicts the comprehensive CMP simulation implemented within the cloud
task agent by modifying and adapting existing component codes from Anylogic’s process
modeling library. This procedure’s specifics are as follows:

(1) By means of the enter component, the order is imported into the cloud task’s internal
procedure. The order is immediately assigned by the cloud platform if the current
task is the first in the task sequence; if not, the preceding task assigns the order after it
has been finished (e.g., task 2 orders are assigned by task 1 after task 1 is finished).

(2) The queue component temporarily stores the current order while the following deter-
minations are made: (a) if the current task is first in the task sequence or there is only
one task in the previous task sequence, the hold and hold1 components are opened
concurrently, and the current order is entered into queue2 for further processing; or
(b) if there are multiple tasks in the previous task sequence, the current order must
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wait until the orders of all previous tasks have been processed before entering queue2
for further processing.

(3) The queue1 component combines the information of multiple branch orders, whereas
the hold2 component ensures that only a single order is entered for subsequent
processing at any given time. Hold2 reopens and proceeds to serve the next order
when the current order is fulfilled and exits through exit.

(4) When the order enters queue3, the task agent selects the optimal service provider
and sends “resource request” information to it. When the optimal service provider
accepts the request, it chooses to adopt or not adopt the resource replacement strategy
according to whether the target resource is faulty. If the resource substitution strategy
is adopted, it is necessary to further select which resource substitution strategy to
adopt. The busy attribute of the corresponding optimal resource is changed to “true”,
the hold3 component opens and the order flows through the delay component to
simulate the cloud manufacturing service. After a certain delay time, the service
is completed.

(5) The order is placed in queue4 and the “release resource” message is sent to the best
server. When the best server acknowledges the message, the busy attribute of the
best resource changes from “true” to “false”, and the hold4 component opens. Order
traverses the delay1 component, and the release of the resource is accomplished
following a predetermined delay period.

(6) The order passes through the exit component to conclude all of its service procedures
for this task. It then imports the post-order task sequence of this task: (a) if there
is only one post-order task, it is imported instantly into the enter component of the
post-order task; (b) if there are numerous post-order tasks, the information of the
current order is copied and brought into the enter component of the corresponding
post-order tasks; and (c) if there is no post-order task, this indicates that the task is
already the last task in the task sequence. As a result, the order is included in the
group of completed orders, and data such as the service cycle, service cost, and route
record are tallied and output.

Figure 2. Cloud task agent’s internal workflow.

3.1.3. Modeling of Cloud Server Agent

The primary function of cloud servers is to convey information and interact with cloud
tasks. Each cloud server’s resource pool has all kinds of cloud resources. The server locates
the appropriate resource in its resource pool and allots it to the cloud task after receiving
the “request resource” message. The server releases the associated cloud resource and adds
it back to the cloud resource pool after receiving the “release resource” message. The cloud
server agent can be illustrated as follows:

SA=〈ID,location,resourcePool,dScore,

pScore,totalScore,FuncconfigureResource,

Funccommon,Funcinter_replace,Funcexter_replace,Funcinter&exter〉

(6)

where ID represents the cloud service provider’s special identification number; location refers
to the server’s latitude and longitude coordinates, which is utilized to initialize the server’s
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location on the GIS map; resourcePool is used for storing the corresponding virtual resources
of the cloud server; dScore, pScore, and totalScore are the distance score, price score, and total
score when the cloud task chooses the best cloud server; and FuncconfigureResource is used to
manage and distribute resources when receiving cloud task information. If the message is
“release resource”, the server will locate the corresponding resource and set its busy attribute
to “false”. If the message is “request resource”, the broken attribute of the corresponding
resource is examined before any other properties: (1) If the value of the broken property
is “false”, this indicates that the resource is not faulty, so its busy attribute continues to be
judged, where, (a) if the busy attribute is “false”, cloud order processing can be started, and
(b) if the busy attribute is “true”, this means that this resource is being used by other tasks,
so it needs to wait until the other tasks have been completed before starting the processing
of orders. (2) If the value of the broken property is “true”, this means that the resource is
faulty and it cannot complete the processing of the corresponding cloud task. If the resource
is faulty, according to the experimental settings, one of the following strategies is chosen: the
no-resource replacement strategy, the internal resource replacement strategy, the external
resource replacement strategy, or the internal–external integrated strategy. Funccommon is
the no-resource replacement strategy: when the requested resource fails, the requested
processing order is added to the failed order set. Funcinter_replace is the internal resource
replacement strategy: when the requested resource fails, a replacement resource is found
for the failed resource within the current service provider. Funcexter_replace is the external
resource replacement strategy: when the requested resource fails, the same type of resource
as the failed resource from other cloud service providers is requested. Funcinter&exter is a
combination strategy of internal and external resource replacement: when the requested
resource fails, the priority is to find a replacement resource within the service provider;
if the internal replacement resource fails, then external resources are sought from other
service providers.

3.1.4. Modeling of Other Agent

In addition to the above types of agents, the CMS also includes multiple types of
agents, such as the cloud platform agent, cloud orders agent, cloud messages agent, and
cloud demander agent, which can be expressed as:

PA=〈tobeProcessedOrderList,finishedOrderList,

failedOrderList,attackNum,Funcini,FuncallocationOrders,FuncsettingFaultStatus,

FunccalcuQos,FuncoutputNetwork〉

(7)

OA=〈ID,owner,taskList,routeStamp,cost1Accum,cost2Accum,

cost3Accum,reliabilityAccum,startTime,finishTime〉
(8)

MA=〈msg,resourceList,owner〉 (9)

DA=〈ID,location,orderList,FuncsendOrders〉 (10)

The attributes and methodologies of these four agent types are already detailed in [42],
so they are not repeated here.

3.2. Multi-Agent Simulation-Based Robustness Evaluation Indicator

Based on the multi-agent model in Section 3.1 and the order–task sequence, the
dynamic simulation of the CMP can be realized, and the results data (e.g., the order
completion time, logistics transportation distance, and resource occupation) can be output
to evaluate the performance of the CMP. Quality of service (QoS) is commonly used in
academia to evaluate the CMP, with QoS values mostly being evaluated from multiple
dimensions, such as the time, cost, and reliability [43–45]. Referring to the definition of QoS,
this paper proposes robustness of service (RoS) as a robustness measurement indicator from
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the perspective of the simulation of four dimensions: service time, service cost, reliability,
and order completion rate. The specific calculation formulae for these four dimensions are
as follows:

(1) Service time

The sum of all orders’ completion times during the simulation cycle is represented by
the following formula:

T =
m

∑
j=1

tj (11)

where m denotes the overall number of orders, j = 1, 2, . . . ,m denotes the jth order in the
order sequence, and tj denotes the finish time of the jth order, which can be derived from
the results of the simulation.

(2) Service cost

The cloud resource service fee, logistics service fee, and cloud resource release fee,
which together make up the overall cloud service cost, are determined as follows:

C =
m
∑

j=1

nj

∑
i=1

tserving
i,j ∗ presource

i,j +
m
∑

j=1

nj

∑
i=1

di,j ∗ clogistic

+
m
∑

j=1

nj

∑
i=1

treleasing
i,j ∗ prelease ra

(12)

where m represents the total amount of orders and nj represents the number of assignments
associated with each order; j = 1, 2, . . . , m is the jth order in the order sequence; i = 1, 2, . . . ,
n is the ith the task in the task sequence; tserving

i,j represents the cloud service time of the ith
task in the jth order; presource

i,j represents the service cost per unit time of the resource related to

the task; di,j represents the logistics distance related to the task; clogistic represents the logistics

cost per unit distance; treleasing
i,j represents the release time of the cloud resources for the task;

and prelease represents the cost per unit time of releasing resources.

(3) Service reliability

The service reliability is measured by a multiplicative index [44], which has the
following form:

rel =
∑m

j=1 ∏
nj
i=1 reli,j

m
(13)

where reli,j represents the service reliability of the ith task in the jth order, as specified in
the order agent’s reliabilityAccum property.

The evaluation of the CMP’s robustness in this paper also refers to the definition
of robustness, which refers to the ability of the CMS to operate normally and maintain
its original performance in the face of various unexpected disruptions and interruptions.
For the CMS, the normal completion of cloud orders within a service cycle can reflect its
normal operation capability more intuitively. Therefore, the order completion rate index
is introduced:

(4) Order completion rate

The order completion rate is the proportion of total scheduled orders to orders actually
completed throughout the simulation cycle.

o f r =
N1

N1 + N2
(14)

where N1 represents the number of orders fulfilled throughout the simulation cycle and
N2 represents the number of incomplete orders.
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In summary, combining the definitions of robustness and QoS, this paper proposes a
new robustness evaluation index, RoS, to comprehensively consider the normal operational
capability of the CMS in the face of unexpected disturbances.

The RoS index takes the order completion rate as the main body, where the higher the
order completion rate, the stronger the normal operational ability in the face of interference,
and the stronger the ability to resist risks (i.e., the stronger the robustness of the cloud
service), and vice versa. When the order completion rates are the same, the index then
compares the differences in the time and cost of completing the same order quantity: if the
same number of orders are completed with less time, lower cost, and higher reliability, the
cloud service is more robust, and vice versa. Therefore, it can be expressed as:

RoS = o f r ∗ [1− (ω1 ∗
|T − T0|

T0
+ ω2 ∗

|C− C0|
C0

+ ω3 ∗
|rel − rel0|

rel0
)] (15)

where T0, C0, and rel0 are the respective baseline values of the service time, cost, and
reliability under the condition of no interference; T, C, and rel are the actual values of the
current experimental group; and ω1, ω2, and ω3 are the respective weight coefficients of
the three indexes, satisfying ∑3

i=1 ωi = 1.

4. Model of the Cloud Manufacturing Network and Robustness Evaluation Indicator
Based on Complex Network
4.1. Development of a Complex Network Model for Cloud Manufacturing

The CMN consists of cloud service resources and their interconnections. The network
can be evaluated utilizing the complex network model due to the vast number of resources
and intricate connection relationships. Figure 3a depicts the processing task paths for
Order-A, Order-B, and Order-C, the resources utilized by each task along these paths,
and the relationships between the resources and servers. If two tasks are linked by a
path, their corresponding resources are also linked. Figure 3b illustrates how the CMN is
formed by considering all resources to be network nodes and resource connections to be
connected edges.

Figure 3. Schematic depiction of (a) the CMS’s internal relationships and (b) the cloud resource
network.
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4.2. Evaluation Indicator for Network Robustness Based on Static Topology

The term “network robustness” is generally used to describe the degree of network
performance retention following the failure of network nodes or edges [44], and the change
in the maximum connected subgraph following node failure can reflect the degree of
structural integrity retention in the network. As a result, the rate of change in the maximal
connected subgraph’s node count was chosen as one of the robustness evaluation indicators
for this study.

S =
N′

N
(16)

where N’ represents the number of nodes in the maximally connected subgraph after the
network has been attacked, and N represents the number of nodes in the original network.
Specifically, S = 0 indicates that the network is disconnected, whereas S = 1 indicates that
the network is completely connected and there are no isolated nodes.

5. Robust Failure Mode Definition and Formulation of Multiple Resource
Replacement Strategies
5.1. Definition of Failure Modes for Robustness Analysis

The definition of failure modes is the key to robustness analysis. Based on a combina-
tion of the cloud manufacturing characteristics and the spatial topology structure of the
CMN, this paper proposes two types of failure modes: cloud resource failure based on the
initial topology, and cloud resource failure based on the recomputed topology.

The initial topology refers to the initial structural characteristics of the CMN, which is
a static network. The recalculated topology refers to the structural characteristics of the
CMN that are obtained through recalculation after the initial network is attacked, which is
a dynamic network that changes step by step with the attack steps.

Both failure modes are subdivided into degree-based and betweenness-based resource
failures. The degree is widely used to measure the importance of the nodes: it represents
how closely a resource node is connected to other resource nodes in the CMN. The be-
tweenness reflects the structural importance of the nodes in the network [46,47]: a node
with high betweenness has greater control over the logistics and information flow in the
network. The specific failure mode definitions are shown in Table 1.

Table 1. Resource failure based on initial topology and recomputed topology.

Failure Mode
Description Failure Mode Calculation Process

Resource failure based on
initial topology

Initial node degree
loss (ID)

Sort the resource nodes in the initial network (Network-0) by
degree, from largest to smallest. Remove one node at a time, and

repeat n times until all nodes in the network are removed.
Initial node

betweenness
loss (IB)

Sort the resource nodes in the initial network (Network-0) by
betweenness, from largest to smallest. Remove one node at a time,

and repeat n times until all nodes in the network are removed.

Resource failure based on
recomputed

topology

Recomputed node degree
loss (RD)

Sort the resource nodes in the initial network (Network-0) by
degree, from largest to smallest. Remove the first node and

generate a new network (Network-1). Recalculate and sort the
resource nodes in the new network (Network-1) by degree, from

largest to smallest. Remove the first node and generate a new
network (Network-2) . . . and so on, until all nodes in the network

are removed.

Recomputed node
betweenness

loss (RB)

Sort the resource nodes in the initial network (Network-0) by
betweenness, from largest to smallest. Remove the first node and

generate a new network (Network-1). Recalculate and sort the
resource nodes in the new network (Network-1) by betweenness,

from largest to smallest. Remove the first node and generate a
new network (Network-2) . . . and so on, until all nodes in the

network are removed.

Note: The removal of nodes is handled differently in the complex network model and the multi-agent model:
(1) In the complex network model, the corresponding resource nodes and all connected edges on the nodes are
deleted. (2) In the multi-agent model, the corresponding resource agent is changed to a “fault” state, which means
the resource is unable to provide services.
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5.2. Formulation of Multiple Resource Substitution Strategies

Targeting the cloud resource node failure problem proposed in Section 5.1, this pa-
per aims to develop a robustness enhancement strategy for CMNs that involves adding
redundant nodes.

For the supply chain modeling and robustness problem, Zhao [48] took the smartphone
supply chain as an example and put forward three different robustness optimization
strategies: enterprise internal operation management, cooperative management between
enterprises, and a regional development strategy. Inspired by this, and combined with
the characteristics of cloud manufacturing, this paper proposes three kinds of robustness
improvement strategies: internal resource replacement, external resource replacement, and
internal–external integration replacement.

(1) Internal replacement strategy: The cloud service provider Si will internally provide
replacement resources Rj for Ri (noted as Ri-Si and Rj-Si, respectively). If Ri-Si fails,
Rj-Si will replace it to complete the processing of cloud manufacturing tasks. Although
the tasks will be completed, the cloud task time will be increased due to the different
resource types, and additional working hours will be incurred.

(2) External replacement strategy: The cloud service provider Sj, Sk . . . etc. will provide
the same type of resources Ri as Ri-Si (recorded as Ri-Sj, Ri-Sk . . . etc.). When the
resource Ri fails, the strategy will comprehensively select the best cloud service
provider based on multiple factors, such as resource quotation and the distance
between service providers. It will then request alternative resources from them to
replace the failed Ri-Si to complete the cloud manufacturing task. Since the resource
types are the same, this does not add additional task time; however, the transfer of
resources and information among different service providers will generate additional
logistics transportation costs and time.

(3) Internal–external integration replacement strategy: This strategy is the combination of
the previous two strategies. When a cloud resource fails, this strategy first looks for a
replacement resource within the service provider; if no replacement resource is found
or its replacement resource also fails, it continues to seek the same type of resource
from other service providers. The logical flow of these three strategies is shown
in Figure 4.
In addition, in the complex network model, node failure is reflected by removing
the failed resource node and all the edges connected to the node. After selecting the
corresponding resource replacement strategy, the optimal alternative resource node
under the current strategy is first determined. If this replacement node is already
in the original network, all connected edges belonging to the failed node will be
directly linked to the replacement node; if it is not already in the original network, the
replacement node should first be added to the network, then be linked similarly.
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Figure 4. Logical flow diagram of resource substitution strategy.

6. Case Study
6.1. Model Parameters Description

The cloud manufacturing project for a new energy vehicle is used as a case study. This
project offers life-cycle cloud manufacturing services for new energy vehicles, with the
technologies provided including electrification and autonomous driving.

The cloud manufacturing project consists of 24 order types, 95 cloud tasks (t1–t95),
and 72 resource types (r1–r72). Table 2 displays the appropriate resource types for each
cloud task, and Table 3 displays the routes for each order type’s associated cloud task.
This paper assumes a bidirectional substitution relationship between resources (e.g., if
the substitute resource of ri is rj, the substitute resource of rj is ri). Based on this, the
substitution relationships among internal resources are shown in Table 4.

Each of the project’s five cloud servers (S1-S5) offers 72 different kinds of cloud
resources. The cloud servers compete for different orders because they charge different
prices for their resources and are located at various distances from cloud demanders.
Resource r1 of servers S1–S5 are identified by the labels r1–S1, r1–S2, r1–S3, r1–S4, and
r1–S5, respectively.

Moreover, there are 14 cloud demanders (d1–d14). Each cloud demander submits
24 orders, with 1 of each order type submitted (i.e., 1 of each of the 24 order types). As
indicated in Table 5, the fundamental details of each cloud service provider and cloud
demander are externally imported from Excel.
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Table 2. Order and cloud service route correspondence.

Order Type Cloud Service Route Order Type Cloud Service Route

Order 11

Appl. Sci. 2023, 13, x FOR PEER REVIEW 15 of 27 
 

Moreover, there are 14 cloud demanders (d1–d14). Each cloud demander submits 24 
orders, with 1 of each order type submitted (i.e., 1 of each of the 24 order types). As indi-
cated in Table 5, the fundamental details of each cloud service provider and cloud de-
mander are externally imported from Excel. 

The weight coefficients for the RoS were set in this study to be 1ω  = 1/3, 2ω  = 1/3, 
and 3ω  = 1/3. 

Table 2. Order and cloud service route correspondence. 

Table 3. Task and resource correspondence. 

Task Resource Task Resource Task Resource Task Resource 
t1 (r1) t2 (r3) t3 (r2) t4 (r4) 
t5 (r11, r30) t6 (r5) t7 (r12, r29) t8 (r6) 
t9 (r12, r29) t10 (r31) t11 (r11, r30) t12 (r67) 

t13 (r32) t14 (r1) t15 (r7) t16 (r1) 
t17 (r2) t18 (r8) t19 (r2) t20 (r5) 
t21 (r5) t22 (r41) t23 (r6) t24 (r6) 
t25 (r71) t26 (r42) t27 (r33) t28 (r9) 
t29 (r9) t30 (r34) t31 (r10) t32 (r10) 
t33 (r9) t34 (r7) t35 (r9) t36 (r7) 

Order Type Cloud Service Route Order 
Type Cloud Service Route 

Order 11 t1   t2 Order 12 t3   t4 
Order 13 t5   t6 Order 14 t7   t8 
Order 15 t9   t10 Order 16 t11   t12   t13 
Order 21 t14   t15   t16 Order 22 t17   t18   t19 
Order 23 t20   t21   t22 Order 24 t23   t24   t25   t26 
Order 25 t27   t28   t29 Order 26 t30   t31   t32 
Order 31 t33   t34   t35   t36 Order 32 t37   t38   t39   t40 
 
Order 33 
 

t42 
t41          t44 

t43 

 
Order 34 

t46 
t45          t48 

t47 
 
Order 41 

t50     t51 
t49             t53      t55 
        t52                   

t54 

 
Order 42 

t57     t58 
t56             t60      t62 
        t59                   

t61 
 
Order 43 

t64     t65 
t63             t67      t69 
        t66                   

t68 

 
Order 44 

t71     t72 
t70             t74      t76 
        t73                   

t75 
 
Order 51 

t78 
t77          t80 

t79 

 
Order 52 

t82 
t81     t83     t85 

t84 
 
Order 53 

t87 
t86          t89 

t88 

 
Order 54 

t91    t92 
t90               t95 

t93    t94 

Order 12

Appl. Sci. 2023, 13, x FOR PEER REVIEW 15 of 27 
 

Moreover, there are 14 cloud demanders (d1–d14). Each cloud demander submits 24 
orders, with 1 of each order type submitted (i.e., 1 of each of the 24 order types). As indi-
cated in Table 5, the fundamental details of each cloud service provider and cloud de-
mander are externally imported from Excel. 

The weight coefficients for the RoS were set in this study to be 1ω  = 1/3, 2ω  = 1/3, 
and 3ω  = 1/3. 

Table 2. Order and cloud service route correspondence. 

Table 3. Task and resource correspondence. 

Task Resource Task Resource Task Resource Task Resource 
t1 (r1) t2 (r3) t3 (r2) t4 (r4) 
t5 (r11, r30) t6 (r5) t7 (r12, r29) t8 (r6) 
t9 (r12, r29) t10 (r31) t11 (r11, r30) t12 (r67) 

t13 (r32) t14 (r1) t15 (r7) t16 (r1) 
t17 (r2) t18 (r8) t19 (r2) t20 (r5) 
t21 (r5) t22 (r41) t23 (r6) t24 (r6) 
t25 (r71) t26 (r42) t27 (r33) t28 (r9) 
t29 (r9) t30 (r34) t31 (r10) t32 (r10) 
t33 (r9) t34 (r7) t35 (r9) t36 (r7) 

Order Type Cloud Service Route Order 
Type Cloud Service Route 

Order 11 t1   t2 Order 12 t3   t4 
Order 13 t5   t6 Order 14 t7   t8 
Order 15 t9   t10 Order 16 t11   t12   t13 
Order 21 t14   t15   t16 Order 22 t17   t18   t19 
Order 23 t20   t21   t22 Order 24 t23   t24   t25   t26 
Order 25 t27   t28   t29 Order 26 t30   t31   t32 
Order 31 t33   t34   t35   t36 Order 32 t37   t38   t39   t40 
 
Order 33 
 

t42 
t41          t44 

t43 

 
Order 34 

t46 
t45          t48 

t47 
 
Order 41 

t50     t51 
t49             t53      t55 
        t52                   

t54 

 
Order 42 

t57     t58 
t56             t60      t62 
        t59                   

t61 
 
Order 43 

t64     t65 
t63             t67      t69 
        t66                   

t68 

 
Order 44 

t71     t72 
t70             t74      t76 
        t73                   

t75 
 
Order 51 

t78 
t77          t80 

t79 

 
Order 52 

t82 
t81     t83     t85 

t84 
 
Order 53 

t87 
t86          t89 

t88 

 
Order 54 

t91    t92 
t90               t95 

t93    t94 

Order 13

Appl. Sci. 2023, 13, x FOR PEER REVIEW 15 of 27 
 

Moreover, there are 14 cloud demanders (d1–d14). Each cloud demander submits 24 
orders, with 1 of each order type submitted (i.e., 1 of each of the 24 order types). As indi-
cated in Table 5, the fundamental details of each cloud service provider and cloud de-
mander are externally imported from Excel. 

The weight coefficients for the RoS were set in this study to be 1ω  = 1/3, 2ω  = 1/3, 
and 3ω  = 1/3. 

Table 2. Order and cloud service route correspondence. 

Table 3. Task and resource correspondence. 

Task Resource Task Resource Task Resource Task Resource 
t1 (r1) t2 (r3) t3 (r2) t4 (r4) 
t5 (r11, r30) t6 (r5) t7 (r12, r29) t8 (r6) 
t9 (r12, r29) t10 (r31) t11 (r11, r30) t12 (r67) 

t13 (r32) t14 (r1) t15 (r7) t16 (r1) 
t17 (r2) t18 (r8) t19 (r2) t20 (r5) 
t21 (r5) t22 (r41) t23 (r6) t24 (r6) 
t25 (r71) t26 (r42) t27 (r33) t28 (r9) 
t29 (r9) t30 (r34) t31 (r10) t32 (r10) 
t33 (r9) t34 (r7) t35 (r9) t36 (r7) 

Order Type Cloud Service Route Order 
Type Cloud Service Route 

Order 11 t1   t2 Order 12 t3   t4 
Order 13 t5   t6 Order 14 t7   t8 
Order 15 t9   t10 Order 16 t11   t12   t13 
Order 21 t14   t15   t16 Order 22 t17   t18   t19 
Order 23 t20   t21   t22 Order 24 t23   t24   t25   t26 
Order 25 t27   t28   t29 Order 26 t30   t31   t32 
Order 31 t33   t34   t35   t36 Order 32 t37   t38   t39   t40 
 
Order 33 
 

t42 
t41          t44 

t43 

 
Order 34 

t46 
t45          t48 

t47 
 
Order 41 

t50     t51 
t49             t53      t55 
        t52                   

t54 

 
Order 42 

t57     t58 
t56             t60      t62 
        t59                   

t61 
 
Order 43 

t64     t65 
t63             t67      t69 
        t66                   

t68 

 
Order 44 

t71     t72 
t70             t74      t76 
        t73                   

t75 
 
Order 51 

t78 
t77          t80 

t79 

 
Order 52 

t82 
t81     t83     t85 

t84 
 
Order 53 

t87 
t86          t89 

t88 

 
Order 54 

t91    t92 
t90               t95 

t93    t94 

Order 14

Appl. Sci. 2023, 13, x FOR PEER REVIEW 15 of 27 
 

Moreover, there are 14 cloud demanders (d1–d14). Each cloud demander submits 24 
orders, with 1 of each order type submitted (i.e., 1 of each of the 24 order types). As indi-
cated in Table 5, the fundamental details of each cloud service provider and cloud de-
mander are externally imported from Excel. 

The weight coefficients for the RoS were set in this study to be 1ω  = 1/3, 2ω  = 1/3, 
and 3ω  = 1/3. 

Table 2. Order and cloud service route correspondence. 

Table 3. Task and resource correspondence. 

Task Resource Task Resource Task Resource Task Resource 
t1 (r1) t2 (r3) t3 (r2) t4 (r4) 
t5 (r11, r30) t6 (r5) t7 (r12, r29) t8 (r6) 
t9 (r12, r29) t10 (r31) t11 (r11, r30) t12 (r67) 

t13 (r32) t14 (r1) t15 (r7) t16 (r1) 
t17 (r2) t18 (r8) t19 (r2) t20 (r5) 
t21 (r5) t22 (r41) t23 (r6) t24 (r6) 
t25 (r71) t26 (r42) t27 (r33) t28 (r9) 
t29 (r9) t30 (r34) t31 (r10) t32 (r10) 
t33 (r9) t34 (r7) t35 (r9) t36 (r7) 

Order Type Cloud Service Route Order 
Type Cloud Service Route 

Order 11 t1   t2 Order 12 t3   t4 
Order 13 t5   t6 Order 14 t7   t8 
Order 15 t9   t10 Order 16 t11   t12   t13 
Order 21 t14   t15   t16 Order 22 t17   t18   t19 
Order 23 t20   t21   t22 Order 24 t23   t24   t25   t26 
Order 25 t27   t28   t29 Order 26 t30   t31   t32 
Order 31 t33   t34   t35   t36 Order 32 t37   t38   t39   t40 
 
Order 33 
 

t42 
t41          t44 

t43 

 
Order 34 

t46 
t45          t48 

t47 
 
Order 41 

t50     t51 
t49             t53      t55 
        t52                   

t54 

 
Order 42 

t57     t58 
t56             t60      t62 
        t59                   

t61 
 
Order 43 

t64     t65 
t63             t67      t69 
        t66                   

t68 

 
Order 44 

t71     t72 
t70             t74      t76 
        t73                   

t75 
 
Order 51 

t78 
t77          t80 

t79 

 
Order 52 

t82 
t81     t83     t85 

t84 
 
Order 53 

t87 
t86          t89 

t88 

 
Order 54 

t91    t92 
t90               t95 

t93    t94 

Order 15

Appl. Sci. 2023, 13, x FOR PEER REVIEW 15 of 27 
 

Moreover, there are 14 cloud demanders (d1–d14). Each cloud demander submits 24 
orders, with 1 of each order type submitted (i.e., 1 of each of the 24 order types). As indi-
cated in Table 5, the fundamental details of each cloud service provider and cloud de-
mander are externally imported from Excel. 

The weight coefficients for the RoS were set in this study to be 1ω  = 1/3, 2ω  = 1/3, 
and 3ω  = 1/3. 

Table 2. Order and cloud service route correspondence. 

Table 3. Task and resource correspondence. 

Task Resource Task Resource Task Resource Task Resource 
t1 (r1) t2 (r3) t3 (r2) t4 (r4) 
t5 (r11, r30) t6 (r5) t7 (r12, r29) t8 (r6) 
t9 (r12, r29) t10 (r31) t11 (r11, r30) t12 (r67) 

t13 (r32) t14 (r1) t15 (r7) t16 (r1) 
t17 (r2) t18 (r8) t19 (r2) t20 (r5) 
t21 (r5) t22 (r41) t23 (r6) t24 (r6) 
t25 (r71) t26 (r42) t27 (r33) t28 (r9) 
t29 (r9) t30 (r34) t31 (r10) t32 (r10) 
t33 (r9) t34 (r7) t35 (r9) t36 (r7) 

Order Type Cloud Service Route Order 
Type Cloud Service Route 

Order 11 t1   t2 Order 12 t3   t4 
Order 13 t5   t6 Order 14 t7   t8 
Order 15 t9   t10 Order 16 t11   t12   t13 
Order 21 t14   t15   t16 Order 22 t17   t18   t19 
Order 23 t20   t21   t22 Order 24 t23   t24   t25   t26 
Order 25 t27   t28   t29 Order 26 t30   t31   t32 
Order 31 t33   t34   t35   t36 Order 32 t37   t38   t39   t40 
 
Order 33 
 

t42 
t41          t44 

t43 

 
Order 34 

t46 
t45          t48 

t47 
 
Order 41 

t50     t51 
t49             t53      t55 
        t52                   

t54 

 
Order 42 

t57     t58 
t56             t60      t62 
        t59                   

t61 
 
Order 43 

t64     t65 
t63             t67      t69 
        t66                   

t68 

 
Order 44 

t71     t72 
t70             t74      t76 
        t73                   

t75 
 
Order 51 

t78 
t77          t80 

t79 

 
Order 52 

t82 
t81     t83     t85 

t84 
 
Order 53 

t87 
t86          t89 

t88 

 
Order 54 

t91    t92 
t90               t95 

t93    t94 

Order 16

Appl. Sci. 2023, 13, x FOR PEER REVIEW 15 of 27 
 

Moreover, there are 14 cloud demanders (d1–d14). Each cloud demander submits 24 
orders, with 1 of each order type submitted (i.e., 1 of each of the 24 order types). As indi-
cated in Table 5, the fundamental details of each cloud service provider and cloud de-
mander are externally imported from Excel. 

The weight coefficients for the RoS were set in this study to be 1ω  = 1/3, 2ω  = 1/3, 
and 3ω  = 1/3. 

Table 2. Order and cloud service route correspondence. 

Table 3. Task and resource correspondence. 

Task Resource Task Resource Task Resource Task Resource 
t1 (r1) t2 (r3) t3 (r2) t4 (r4) 
t5 (r11, r30) t6 (r5) t7 (r12, r29) t8 (r6) 
t9 (r12, r29) t10 (r31) t11 (r11, r30) t12 (r67) 

t13 (r32) t14 (r1) t15 (r7) t16 (r1) 
t17 (r2) t18 (r8) t19 (r2) t20 (r5) 
t21 (r5) t22 (r41) t23 (r6) t24 (r6) 
t25 (r71) t26 (r42) t27 (r33) t28 (r9) 
t29 (r9) t30 (r34) t31 (r10) t32 (r10) 
t33 (r9) t34 (r7) t35 (r9) t36 (r7) 

Order Type Cloud Service Route Order 
Type Cloud Service Route 

Order 11 t1   t2 Order 12 t3   t4 
Order 13 t5   t6 Order 14 t7   t8 
Order 15 t9   t10 Order 16 t11   t12   t13 
Order 21 t14   t15   t16 Order 22 t17   t18   t19 
Order 23 t20   t21   t22 Order 24 t23   t24   t25   t26 
Order 25 t27   t28   t29 Order 26 t30   t31   t32 
Order 31 t33   t34   t35   t36 Order 32 t37   t38   t39   t40 
 
Order 33 
 

t42 
t41          t44 

t43 

 
Order 34 

t46 
t45          t48 

t47 
 
Order 41 

t50     t51 
t49             t53      t55 
        t52                   

t54 

 
Order 42 

t57     t58 
t56             t60      t62 
        t59                   

t61 
 
Order 43 

t64     t65 
t63             t67      t69 
        t66                   

t68 

 
Order 44 

t71     t72 
t70             t74      t76 
        t73                   

t75 
 
Order 51 

t78 
t77          t80 

t79 

 
Order 52 

t82 
t81     t83     t85 

t84 
 
Order 53 

t87 
t86          t89 

t88 

 
Order 54 

t91    t92 
t90               t95 

t93    t94 

Order 21

Appl. Sci. 2023, 13, x FOR PEER REVIEW 15 of 27 
 

Moreover, there are 14 cloud demanders (d1–d14). Each cloud demander submits 24 
orders, with 1 of each order type submitted (i.e., 1 of each of the 24 order types). As indi-
cated in Table 5, the fundamental details of each cloud service provider and cloud de-
mander are externally imported from Excel. 

The weight coefficients for the RoS were set in this study to be 1ω  = 1/3, 2ω  = 1/3, 
and 3ω  = 1/3. 

Table 2. Order and cloud service route correspondence. 

Table 3. Task and resource correspondence. 

Task Resource Task Resource Task Resource Task Resource 
t1 (r1) t2 (r3) t3 (r2) t4 (r4) 
t5 (r11, r30) t6 (r5) t7 (r12, r29) t8 (r6) 
t9 (r12, r29) t10 (r31) t11 (r11, r30) t12 (r67) 

t13 (r32) t14 (r1) t15 (r7) t16 (r1) 
t17 (r2) t18 (r8) t19 (r2) t20 (r5) 
t21 (r5) t22 (r41) t23 (r6) t24 (r6) 
t25 (r71) t26 (r42) t27 (r33) t28 (r9) 
t29 (r9) t30 (r34) t31 (r10) t32 (r10) 
t33 (r9) t34 (r7) t35 (r9) t36 (r7) 

Order Type Cloud Service Route Order 
Type Cloud Service Route 

Order 11 t1   t2 Order 12 t3   t4 
Order 13 t5   t6 Order 14 t7   t8 
Order 15 t9   t10 Order 16 t11   t12   t13 
Order 21 t14   t15   t16 Order 22 t17   t18   t19 
Order 23 t20   t21   t22 Order 24 t23   t24   t25   t26 
Order 25 t27   t28   t29 Order 26 t30   t31   t32 
Order 31 t33   t34   t35   t36 Order 32 t37   t38   t39   t40 
 
Order 33 
 

t42 
t41          t44 

t43 

 
Order 34 

t46 
t45          t48 

t47 
 
Order 41 

t50     t51 
t49             t53      t55 
        t52                   

t54 

 
Order 42 

t57     t58 
t56             t60      t62 
        t59                   

t61 
 
Order 43 

t64     t65 
t63             t67      t69 
        t66                   

t68 

 
Order 44 

t71     t72 
t70             t74      t76 
        t73                   

t75 
 
Order 51 

t78 
t77          t80 

t79 

 
Order 52 

t82 
t81     t83     t85 

t84 
 
Order 53 

t87 
t86          t89 

t88 

 
Order 54 

t91    t92 
t90               t95 

t93    t94 

Order 22

Appl. Sci. 2023, 13, x FOR PEER REVIEW 15 of 27 
 

Moreover, there are 14 cloud demanders (d1–d14). Each cloud demander submits 24 
orders, with 1 of each order type submitted (i.e., 1 of each of the 24 order types). As indi-
cated in Table 5, the fundamental details of each cloud service provider and cloud de-
mander are externally imported from Excel. 

The weight coefficients for the RoS were set in this study to be 1ω  = 1/3, 2ω  = 1/3, 
and 3ω  = 1/3. 

Table 2. Order and cloud service route correspondence. 

Table 3. Task and resource correspondence. 

Task Resource Task Resource Task Resource Task Resource 
t1 (r1) t2 (r3) t3 (r2) t4 (r4) 
t5 (r11, r30) t6 (r5) t7 (r12, r29) t8 (r6) 
t9 (r12, r29) t10 (r31) t11 (r11, r30) t12 (r67) 

t13 (r32) t14 (r1) t15 (r7) t16 (r1) 
t17 (r2) t18 (r8) t19 (r2) t20 (r5) 
t21 (r5) t22 (r41) t23 (r6) t24 (r6) 
t25 (r71) t26 (r42) t27 (r33) t28 (r9) 
t29 (r9) t30 (r34) t31 (r10) t32 (r10) 
t33 (r9) t34 (r7) t35 (r9) t36 (r7) 

Order Type Cloud Service Route Order 
Type Cloud Service Route 

Order 11 t1   t2 Order 12 t3   t4 
Order 13 t5   t6 Order 14 t7   t8 
Order 15 t9   t10 Order 16 t11   t12   t13 
Order 21 t14   t15   t16 Order 22 t17   t18   t19 
Order 23 t20   t21   t22 Order 24 t23   t24   t25   t26 
Order 25 t27   t28   t29 Order 26 t30   t31   t32 
Order 31 t33   t34   t35   t36 Order 32 t37   t38   t39   t40 
 
Order 33 
 

t42 
t41          t44 

t43 

 
Order 34 

t46 
t45          t48 

t47 
 
Order 41 

t50     t51 
t49             t53      t55 
        t52                   

t54 

 
Order 42 

t57     t58 
t56             t60      t62 
        t59                   

t61 
 
Order 43 

t64     t65 
t63             t67      t69 
        t66                   

t68 

 
Order 44 

t71     t72 
t70             t74      t76 
        t73                   

t75 
 
Order 51 

t78 
t77          t80 

t79 

 
Order 52 

t82 
t81     t83     t85 

t84 
 
Order 53 

t87 
t86          t89 

t88 

 
Order 54 

t91    t92 
t90               t95 

t93    t94 

Order 23

Appl. Sci. 2023, 13, x FOR PEER REVIEW 15 of 27 
 

Moreover, there are 14 cloud demanders (d1–d14). Each cloud demander submits 24 
orders, with 1 of each order type submitted (i.e., 1 of each of the 24 order types). As indi-
cated in Table 5, the fundamental details of each cloud service provider and cloud de-
mander are externally imported from Excel. 

The weight coefficients for the RoS were set in this study to be 1ω  = 1/3, 2ω  = 1/3, 
and 3ω  = 1/3. 

Table 2. Order and cloud service route correspondence. 

Table 3. Task and resource correspondence. 

Task Resource Task Resource Task Resource Task Resource 
t1 (r1) t2 (r3) t3 (r2) t4 (r4) 
t5 (r11, r30) t6 (r5) t7 (r12, r29) t8 (r6) 
t9 (r12, r29) t10 (r31) t11 (r11, r30) t12 (r67) 

t13 (r32) t14 (r1) t15 (r7) t16 (r1) 
t17 (r2) t18 (r8) t19 (r2) t20 (r5) 
t21 (r5) t22 (r41) t23 (r6) t24 (r6) 
t25 (r71) t26 (r42) t27 (r33) t28 (r9) 
t29 (r9) t30 (r34) t31 (r10) t32 (r10) 
t33 (r9) t34 (r7) t35 (r9) t36 (r7) 

Order Type Cloud Service Route Order 
Type Cloud Service Route 

Order 11 t1   t2 Order 12 t3   t4 
Order 13 t5   t6 Order 14 t7   t8 
Order 15 t9   t10 Order 16 t11   t12   t13 
Order 21 t14   t15   t16 Order 22 t17   t18   t19 
Order 23 t20   t21   t22 Order 24 t23   t24   t25   t26 
Order 25 t27   t28   t29 Order 26 t30   t31   t32 
Order 31 t33   t34   t35   t36 Order 32 t37   t38   t39   t40 
 
Order 33 
 

t42 
t41          t44 

t43 

 
Order 34 

t46 
t45          t48 

t47 
 
Order 41 

t50     t51 
t49             t53      t55 
        t52                   

t54 

 
Order 42 

t57     t58 
t56             t60      t62 
        t59                   

t61 
 
Order 43 

t64     t65 
t63             t67      t69 
        t66                   

t68 

 
Order 44 

t71     t72 
t70             t74      t76 
        t73                   

t75 
 
Order 51 

t78 
t77          t80 

t79 

 
Order 52 

t82 
t81     t83     t85 

t84 
 
Order 53 

t87 
t86          t89 

t88 

 
Order 54 

t91    t92 
t90               t95 

t93    t94 

Order 24

Appl. Sci. 2023, 13, x FOR PEER REVIEW 15 of 27 
 

Moreover, there are 14 cloud demanders (d1–d14). Each cloud demander submits 24 
orders, with 1 of each order type submitted (i.e., 1 of each of the 24 order types). As indi-
cated in Table 5, the fundamental details of each cloud service provider and cloud de-
mander are externally imported from Excel. 

The weight coefficients for the RoS were set in this study to be 1ω  = 1/3, 2ω  = 1/3, 
and 3ω  = 1/3. 

Table 2. Order and cloud service route correspondence. 

Table 3. Task and resource correspondence. 

Task Resource Task Resource Task Resource Task Resource 
t1 (r1) t2 (r3) t3 (r2) t4 (r4) 
t5 (r11, r30) t6 (r5) t7 (r12, r29) t8 (r6) 
t9 (r12, r29) t10 (r31) t11 (r11, r30) t12 (r67) 

t13 (r32) t14 (r1) t15 (r7) t16 (r1) 
t17 (r2) t18 (r8) t19 (r2) t20 (r5) 
t21 (r5) t22 (r41) t23 (r6) t24 (r6) 
t25 (r71) t26 (r42) t27 (r33) t28 (r9) 
t29 (r9) t30 (r34) t31 (r10) t32 (r10) 
t33 (r9) t34 (r7) t35 (r9) t36 (r7) 

Order Type Cloud Service Route Order 
Type Cloud Service Route 

Order 11 t1   t2 Order 12 t3   t4 
Order 13 t5   t6 Order 14 t7   t8 
Order 15 t9   t10 Order 16 t11   t12   t13 
Order 21 t14   t15   t16 Order 22 t17   t18   t19 
Order 23 t20   t21   t22 Order 24 t23   t24   t25   t26 
Order 25 t27   t28   t29 Order 26 t30   t31   t32 
Order 31 t33   t34   t35   t36 Order 32 t37   t38   t39   t40 
 
Order 33 
 

t42 
t41          t44 

t43 

 
Order 34 

t46 
t45          t48 

t47 
 
Order 41 

t50     t51 
t49             t53      t55 
        t52                   

t54 

 
Order 42 

t57     t58 
t56             t60      t62 
        t59                   

t61 
 
Order 43 

t64     t65 
t63             t67      t69 
        t66                   

t68 

 
Order 44 

t71     t72 
t70             t74      t76 
        t73                   

t75 
 
Order 51 

t78 
t77          t80 

t79 

 
Order 52 

t82 
t81     t83     t85 

t84 
 
Order 53 

t87 
t86          t89 

t88 

 
Order 54 

t91    t92 
t90               t95 

t93    t94 

Order 25

Appl. Sci. 2023, 13, x FOR PEER REVIEW 15 of 27 
 

Moreover, there are 14 cloud demanders (d1–d14). Each cloud demander submits 24 
orders, with 1 of each order type submitted (i.e., 1 of each of the 24 order types). As indi-
cated in Table 5, the fundamental details of each cloud service provider and cloud de-
mander are externally imported from Excel. 

The weight coefficients for the RoS were set in this study to be 1ω  = 1/3, 2ω  = 1/3, 
and 3ω  = 1/3. 

Table 2. Order and cloud service route correspondence. 

Table 3. Task and resource correspondence. 

Task Resource Task Resource Task Resource Task Resource 
t1 (r1) t2 (r3) t3 (r2) t4 (r4) 
t5 (r11, r30) t6 (r5) t7 (r12, r29) t8 (r6) 
t9 (r12, r29) t10 (r31) t11 (r11, r30) t12 (r67) 

t13 (r32) t14 (r1) t15 (r7) t16 (r1) 
t17 (r2) t18 (r8) t19 (r2) t20 (r5) 
t21 (r5) t22 (r41) t23 (r6) t24 (r6) 
t25 (r71) t26 (r42) t27 (r33) t28 (r9) 
t29 (r9) t30 (r34) t31 (r10) t32 (r10) 
t33 (r9) t34 (r7) t35 (r9) t36 (r7) 

Order Type Cloud Service Route Order 
Type Cloud Service Route 

Order 11 t1   t2 Order 12 t3   t4 
Order 13 t5   t6 Order 14 t7   t8 
Order 15 t9   t10 Order 16 t11   t12   t13 
Order 21 t14   t15   t16 Order 22 t17   t18   t19 
Order 23 t20   t21   t22 Order 24 t23   t24   t25   t26 
Order 25 t27   t28   t29 Order 26 t30   t31   t32 
Order 31 t33   t34   t35   t36 Order 32 t37   t38   t39   t40 
 
Order 33 
 

t42 
t41          t44 

t43 

 
Order 34 

t46 
t45          t48 

t47 
 
Order 41 

t50     t51 
t49             t53      t55 
        t52                   

t54 

 
Order 42 

t57     t58 
t56             t60      t62 
        t59                   

t61 
 
Order 43 

t64     t65 
t63             t67      t69 
        t66                   

t68 

 
Order 44 

t71     t72 
t70             t74      t76 
        t73                   

t75 
 
Order 51 

t78 
t77          t80 

t79 

 
Order 52 

t82 
t81     t83     t85 

t84 
 
Order 53 

t87 
t86          t89 

t88 

 
Order 54 

t91    t92 
t90               t95 

t93    t94 

Order 26

Appl. Sci. 2023, 13, x FOR PEER REVIEW 15 of 27 
 

Moreover, there are 14 cloud demanders (d1–d14). Each cloud demander submits 24 
orders, with 1 of each order type submitted (i.e., 1 of each of the 24 order types). As indi-
cated in Table 5, the fundamental details of each cloud service provider and cloud de-
mander are externally imported from Excel. 

The weight coefficients for the RoS were set in this study to be 1ω  = 1/3, 2ω  = 1/3, 
and 3ω  = 1/3. 

Table 2. Order and cloud service route correspondence. 

Table 3. Task and resource correspondence. 

Task Resource Task Resource Task Resource Task Resource 
t1 (r1) t2 (r3) t3 (r2) t4 (r4) 
t5 (r11, r30) t6 (r5) t7 (r12, r29) t8 (r6) 
t9 (r12, r29) t10 (r31) t11 (r11, r30) t12 (r67) 

t13 (r32) t14 (r1) t15 (r7) t16 (r1) 
t17 (r2) t18 (r8) t19 (r2) t20 (r5) 
t21 (r5) t22 (r41) t23 (r6) t24 (r6) 
t25 (r71) t26 (r42) t27 (r33) t28 (r9) 
t29 (r9) t30 (r34) t31 (r10) t32 (r10) 
t33 (r9) t34 (r7) t35 (r9) t36 (r7) 

Order Type Cloud Service Route Order 
Type Cloud Service Route 

Order 11 t1   t2 Order 12 t3   t4 
Order 13 t5   t6 Order 14 t7   t8 
Order 15 t9   t10 Order 16 t11   t12   t13 
Order 21 t14   t15   t16 Order 22 t17   t18   t19 
Order 23 t20   t21   t22 Order 24 t23   t24   t25   t26 
Order 25 t27   t28   t29 Order 26 t30   t31   t32 
Order 31 t33   t34   t35   t36 Order 32 t37   t38   t39   t40 
 
Order 33 
 

t42 
t41          t44 

t43 

 
Order 34 

t46 
t45          t48 

t47 
 
Order 41 

t50     t51 
t49             t53      t55 
        t52                   

t54 

 
Order 42 

t57     t58 
t56             t60      t62 
        t59                   

t61 
 
Order 43 

t64     t65 
t63             t67      t69 
        t66                   

t68 

 
Order 44 

t71     t72 
t70             t74      t76 
        t73                   

t75 
 
Order 51 

t78 
t77          t80 

t79 

 
Order 52 

t82 
t81     t83     t85 

t84 
 
Order 53 

t87 
t86          t89 

t88 

 
Order 54 

t91    t92 
t90               t95 

t93    t94 

Order 31

Appl. Sci. 2023, 13, x FOR PEER REVIEW 15 of 27 
 

Moreover, there are 14 cloud demanders (d1–d14). Each cloud demander submits 24 
orders, with 1 of each order type submitted (i.e., 1 of each of the 24 order types). As indi-
cated in Table 5, the fundamental details of each cloud service provider and cloud de-
mander are externally imported from Excel. 

The weight coefficients for the RoS were set in this study to be 1ω  = 1/3, 2ω  = 1/3, 
and 3ω  = 1/3. 

Table 2. Order and cloud service route correspondence. 

Table 3. Task and resource correspondence. 

Task Resource Task Resource Task Resource Task Resource 
t1 (r1) t2 (r3) t3 (r2) t4 (r4) 
t5 (r11, r30) t6 (r5) t7 (r12, r29) t8 (r6) 
t9 (r12, r29) t10 (r31) t11 (r11, r30) t12 (r67) 

t13 (r32) t14 (r1) t15 (r7) t16 (r1) 
t17 (r2) t18 (r8) t19 (r2) t20 (r5) 
t21 (r5) t22 (r41) t23 (r6) t24 (r6) 
t25 (r71) t26 (r42) t27 (r33) t28 (r9) 
t29 (r9) t30 (r34) t31 (r10) t32 (r10) 
t33 (r9) t34 (r7) t35 (r9) t36 (r7) 

Order Type Cloud Service Route Order 
Type Cloud Service Route 

Order 11 t1   t2 Order 12 t3   t4 
Order 13 t5   t6 Order 14 t7   t8 
Order 15 t9   t10 Order 16 t11   t12   t13 
Order 21 t14   t15   t16 Order 22 t17   t18   t19 
Order 23 t20   t21   t22 Order 24 t23   t24   t25   t26 
Order 25 t27   t28   t29 Order 26 t30   t31   t32 
Order 31 t33   t34   t35   t36 Order 32 t37   t38   t39   t40 
 
Order 33 
 

t42 
t41          t44 

t43 

 
Order 34 

t46 
t45          t48 

t47 
 
Order 41 

t50     t51 
t49             t53      t55 
        t52                   

t54 

 
Order 42 

t57     t58 
t56             t60      t62 
        t59                   

t61 
 
Order 43 

t64     t65 
t63             t67      t69 
        t66                   

t68 

 
Order 44 

t71     t72 
t70             t74      t76 
        t73                   

t75 
 
Order 51 

t78 
t77          t80 

t79 

 
Order 52 

t82 
t81     t83     t85 

t84 
 
Order 53 

t87 
t86          t89 

t88 

 
Order 54 

t91    t92 
t90               t95 

t93    t94 

Order 32

Appl. Sci. 2023, 13, x FOR PEER REVIEW 15 of 27 
 

Moreover, there are 14 cloud demanders (d1–d14). Each cloud demander submits 24 
orders, with 1 of each order type submitted (i.e., 1 of each of the 24 order types). As indi-
cated in Table 5, the fundamental details of each cloud service provider and cloud de-
mander are externally imported from Excel. 

The weight coefficients for the RoS were set in this study to be 1ω  = 1/3, 2ω  = 1/3, 
and 3ω  = 1/3. 

Table 2. Order and cloud service route correspondence. 

Table 3. Task and resource correspondence. 

Task Resource Task Resource Task Resource Task Resource 
t1 (r1) t2 (r3) t3 (r2) t4 (r4) 
t5 (r11, r30) t6 (r5) t7 (r12, r29) t8 (r6) 
t9 (r12, r29) t10 (r31) t11 (r11, r30) t12 (r67) 

t13 (r32) t14 (r1) t15 (r7) t16 (r1) 
t17 (r2) t18 (r8) t19 (r2) t20 (r5) 
t21 (r5) t22 (r41) t23 (r6) t24 (r6) 
t25 (r71) t26 (r42) t27 (r33) t28 (r9) 
t29 (r9) t30 (r34) t31 (r10) t32 (r10) 
t33 (r9) t34 (r7) t35 (r9) t36 (r7) 

Order Type Cloud Service Route Order 
Type Cloud Service Route 

Order 11 t1   t2 Order 12 t3   t4 
Order 13 t5   t6 Order 14 t7   t8 
Order 15 t9   t10 Order 16 t11   t12   t13 
Order 21 t14   t15   t16 Order 22 t17   t18   t19 
Order 23 t20   t21   t22 Order 24 t23   t24   t25   t26 
Order 25 t27   t28   t29 Order 26 t30   t31   t32 
Order 31 t33   t34   t35   t36 Order 32 t37   t38   t39   t40 
 
Order 33 
 

t42 
t41          t44 

t43 

 
Order 34 

t46 
t45          t48 

t47 
 
Order 41 

t50     t51 
t49             t53      t55 
        t52                   

t54 

 
Order 42 

t57     t58 
t56             t60      t62 
        t59                   

t61 
 
Order 43 

t64     t65 
t63             t67      t69 
        t66                   

t68 

 
Order 44 

t71     t72 
t70             t74      t76 
        t73                   

t75 
 
Order 51 

t78 
t77          t80 

t79 

 
Order 52 

t82 
t81     t83     t85 

t84 
 
Order 53 

t87 
t86          t89 

t88 

 
Order 54 

t91    t92 
t90               t95 

t93    t94 

Order 33

Appl. Sci. 2023, 13, x FOR PEER REVIEW 15 of 27 
 

Moreover, there are 14 cloud demanders (d1–d14). Each cloud demander submits 24 
orders, with 1 of each order type submitted (i.e., 1 of each of the 24 order types). As indi-
cated in Table 5, the fundamental details of each cloud service provider and cloud de-
mander are externally imported from Excel. 

The weight coefficients for the RoS were set in this study to be 1ω  = 1/3, 2ω  = 1/3, 
and 3ω  = 1/3. 

Table 2. Order and cloud service route correspondence. 

Table 3. Task and resource correspondence. 

Task Resource Task Resource Task Resource Task Resource 
t1 (r1) t2 (r3) t3 (r2) t4 (r4) 
t5 (r11, r30) t6 (r5) t7 (r12, r29) t8 (r6) 
t9 (r12, r29) t10 (r31) t11 (r11, r30) t12 (r67) 

t13 (r32) t14 (r1) t15 (r7) t16 (r1) 
t17 (r2) t18 (r8) t19 (r2) t20 (r5) 
t21 (r5) t22 (r41) t23 (r6) t24 (r6) 
t25 (r71) t26 (r42) t27 (r33) t28 (r9) 
t29 (r9) t30 (r34) t31 (r10) t32 (r10) 
t33 (r9) t34 (r7) t35 (r9) t36 (r7) 

Order Type Cloud Service Route Order 
Type Cloud Service Route 

Order 11 t1   t2 Order 12 t3   t4 
Order 13 t5   t6 Order 14 t7   t8 
Order 15 t9   t10 Order 16 t11   t12   t13 
Order 21 t14   t15   t16 Order 22 t17   t18   t19 
Order 23 t20   t21   t22 Order 24 t23   t24   t25   t26 
Order 25 t27   t28   t29 Order 26 t30   t31   t32 
Order 31 t33   t34   t35   t36 Order 32 t37   t38   t39   t40 
 
Order 33 
 

t42 
t41          t44 

t43 

 
Order 34 

t46 
t45          t48 

t47 
 
Order 41 

t50     t51 
t49             t53      t55 
        t52                   

t54 

 
Order 42 

t57     t58 
t56             t60      t62 
        t59                   

t61 
 
Order 43 

t64     t65 
t63             t67      t69 
        t66                   

t68 

 
Order 44 

t71     t72 
t70             t74      t76 
        t73                   

t75 
 
Order 51 

t78 
t77          t80 

t79 

 
Order 52 

t82 
t81     t83     t85 

t84 
 
Order 53 

t87 
t86          t89 

t88 

 
Order 54 

t91    t92 
t90               t95 

t93    t94 

Order 34

Appl. Sci. 2023, 13, x FOR PEER REVIEW 15 of 27 
 

Moreover, there are 14 cloud demanders (d1–d14). Each cloud demander submits 24 
orders, with 1 of each order type submitted (i.e., 1 of each of the 24 order types). As indi-
cated in Table 5, the fundamental details of each cloud service provider and cloud de-
mander are externally imported from Excel. 

The weight coefficients for the RoS were set in this study to be 1ω  = 1/3, 2ω  = 1/3, 
and 3ω  = 1/3. 

Table 2. Order and cloud service route correspondence. 

Table 3. Task and resource correspondence. 

Task Resource Task Resource Task Resource Task Resource 
t1 (r1) t2 (r3) t3 (r2) t4 (r4) 
t5 (r11, r30) t6 (r5) t7 (r12, r29) t8 (r6) 
t9 (r12, r29) t10 (r31) t11 (r11, r30) t12 (r67) 

t13 (r32) t14 (r1) t15 (r7) t16 (r1) 
t17 (r2) t18 (r8) t19 (r2) t20 (r5) 
t21 (r5) t22 (r41) t23 (r6) t24 (r6) 
t25 (r71) t26 (r42) t27 (r33) t28 (r9) 
t29 (r9) t30 (r34) t31 (r10) t32 (r10) 
t33 (r9) t34 (r7) t35 (r9) t36 (r7) 

Order Type Cloud Service Route Order 
Type Cloud Service Route 

Order 11 t1   t2 Order 12 t3   t4 
Order 13 t5   t6 Order 14 t7   t8 
Order 15 t9   t10 Order 16 t11   t12   t13 
Order 21 t14   t15   t16 Order 22 t17   t18   t19 
Order 23 t20   t21   t22 Order 24 t23   t24   t25   t26 
Order 25 t27   t28   t29 Order 26 t30   t31   t32 
Order 31 t33   t34   t35   t36 Order 32 t37   t38   t39   t40 
 
Order 33 
 

t42 
t41          t44 

t43 

 
Order 34 

t46 
t45          t48 

t47 
 
Order 41 

t50     t51 
t49             t53      t55 
        t52                   

t54 

 
Order 42 

t57     t58 
t56             t60      t62 
        t59                   

t61 
 
Order 43 

t64     t65 
t63             t67      t69 
        t66                   

t68 

 
Order 44 

t71     t72 
t70             t74      t76 
        t73                   

t75 
 
Order 51 

t78 
t77          t80 

t79 

 
Order 52 

t82 
t81     t83     t85 

t84 
 
Order 53 

t87 
t86          t89 

t88 

 
Order 54 

t91    t92 
t90               t95 

t93    t94 

Order 41

Appl. Sci. 2023, 13, x FOR PEER REVIEW 15 of 27 
 

Moreover, there are 14 cloud demanders (d1–d14). Each cloud demander submits 24 
orders, with 1 of each order type submitted (i.e., 1 of each of the 24 order types). As indi-
cated in Table 5, the fundamental details of each cloud service provider and cloud de-
mander are externally imported from Excel. 

The weight coefficients for the RoS were set in this study to be 1ω  = 1/3, 2ω  = 1/3, 
and 3ω  = 1/3. 

Table 2. Order and cloud service route correspondence. 

Table 3. Task and resource correspondence. 

Task Resource Task Resource Task Resource Task Resource 
t1 (r1) t2 (r3) t3 (r2) t4 (r4) 
t5 (r11, r30) t6 (r5) t7 (r12, r29) t8 (r6) 
t9 (r12, r29) t10 (r31) t11 (r11, r30) t12 (r67) 

t13 (r32) t14 (r1) t15 (r7) t16 (r1) 
t17 (r2) t18 (r8) t19 (r2) t20 (r5) 
t21 (r5) t22 (r41) t23 (r6) t24 (r6) 
t25 (r71) t26 (r42) t27 (r33) t28 (r9) 
t29 (r9) t30 (r34) t31 (r10) t32 (r10) 
t33 (r9) t34 (r7) t35 (r9) t36 (r7) 

Order Type Cloud Service Route Order 
Type Cloud Service Route 

Order 11 t1   t2 Order 12 t3   t4 
Order 13 t5   t6 Order 14 t7   t8 
Order 15 t9   t10 Order 16 t11   t12   t13 
Order 21 t14   t15   t16 Order 22 t17   t18   t19 
Order 23 t20   t21   t22 Order 24 t23   t24   t25   t26 
Order 25 t27   t28   t29 Order 26 t30   t31   t32 
Order 31 t33   t34   t35   t36 Order 32 t37   t38   t39   t40 
 
Order 33 
 

t42 
t41          t44 

t43 

 
Order 34 

t46 
t45          t48 

t47 
 
Order 41 

t50     t51 
t49             t53      t55 
        t52                   

t54 

 
Order 42 

t57     t58 
t56             t60      t62 
        t59                   

t61 
 
Order 43 

t64     t65 
t63             t67      t69 
        t66                   

t68 

 
Order 44 

t71     t72 
t70             t74      t76 
        t73                   

t75 
 
Order 51 

t78 
t77          t80 

t79 

 
Order 52 

t82 
t81     t83     t85 

t84 
 
Order 53 

t87 
t86          t89 

t88 

 
Order 54 

t91    t92 
t90               t95 

t93    t94 

Order 42

Appl. Sci. 2023, 13, x FOR PEER REVIEW 15 of 27 
 

Moreover, there are 14 cloud demanders (d1–d14). Each cloud demander submits 24 
orders, with 1 of each order type submitted (i.e., 1 of each of the 24 order types). As indi-
cated in Table 5, the fundamental details of each cloud service provider and cloud de-
mander are externally imported from Excel. 

The weight coefficients for the RoS were set in this study to be 1ω  = 1/3, 2ω  = 1/3, 
and 3ω  = 1/3. 

Table 2. Order and cloud service route correspondence. 

Table 3. Task and resource correspondence. 

Task Resource Task Resource Task Resource Task Resource 
t1 (r1) t2 (r3) t3 (r2) t4 (r4) 
t5 (r11, r30) t6 (r5) t7 (r12, r29) t8 (r6) 
t9 (r12, r29) t10 (r31) t11 (r11, r30) t12 (r67) 

t13 (r32) t14 (r1) t15 (r7) t16 (r1) 
t17 (r2) t18 (r8) t19 (r2) t20 (r5) 
t21 (r5) t22 (r41) t23 (r6) t24 (r6) 
t25 (r71) t26 (r42) t27 (r33) t28 (r9) 
t29 (r9) t30 (r34) t31 (r10) t32 (r10) 
t33 (r9) t34 (r7) t35 (r9) t36 (r7) 

Order Type Cloud Service Route Order 
Type Cloud Service Route 

Order 11 t1   t2 Order 12 t3   t4 
Order 13 t5   t6 Order 14 t7   t8 
Order 15 t9   t10 Order 16 t11   t12   t13 
Order 21 t14   t15   t16 Order 22 t17   t18   t19 
Order 23 t20   t21   t22 Order 24 t23   t24   t25   t26 
Order 25 t27   t28   t29 Order 26 t30   t31   t32 
Order 31 t33   t34   t35   t36 Order 32 t37   t38   t39   t40 
 
Order 33 
 

t42 
t41          t44 

t43 

 
Order 34 

t46 
t45          t48 

t47 
 
Order 41 

t50     t51 
t49             t53      t55 
        t52                   

t54 

 
Order 42 

t57     t58 
t56             t60      t62 
        t59                   

t61 
 
Order 43 

t64     t65 
t63             t67      t69 
        t66                   

t68 

 
Order 44 

t71     t72 
t70             t74      t76 
        t73                   

t75 
 
Order 51 

t78 
t77          t80 

t79 

 
Order 52 

t82 
t81     t83     t85 

t84 
 
Order 53 

t87 
t86          t89 

t88 

 
Order 54 

t91    t92 
t90               t95 

t93    t94 

Order 43

Appl. Sci. 2023, 13, x FOR PEER REVIEW 15 of 27 
 

Moreover, there are 14 cloud demanders (d1–d14). Each cloud demander submits 24 
orders, with 1 of each order type submitted (i.e., 1 of each of the 24 order types). As indi-
cated in Table 5, the fundamental details of each cloud service provider and cloud de-
mander are externally imported from Excel. 

The weight coefficients for the RoS were set in this study to be 1ω  = 1/3, 2ω  = 1/3, 
and 3ω  = 1/3. 

Table 2. Order and cloud service route correspondence. 

Table 3. Task and resource correspondence. 

Task Resource Task Resource Task Resource Task Resource 
t1 (r1) t2 (r3) t3 (r2) t4 (r4) 
t5 (r11, r30) t6 (r5) t7 (r12, r29) t8 (r6) 
t9 (r12, r29) t10 (r31) t11 (r11, r30) t12 (r67) 

t13 (r32) t14 (r1) t15 (r7) t16 (r1) 
t17 (r2) t18 (r8) t19 (r2) t20 (r5) 
t21 (r5) t22 (r41) t23 (r6) t24 (r6) 
t25 (r71) t26 (r42) t27 (r33) t28 (r9) 
t29 (r9) t30 (r34) t31 (r10) t32 (r10) 
t33 (r9) t34 (r7) t35 (r9) t36 (r7) 

Order Type Cloud Service Route Order 
Type Cloud Service Route 

Order 11 t1   t2 Order 12 t3   t4 
Order 13 t5   t6 Order 14 t7   t8 
Order 15 t9   t10 Order 16 t11   t12   t13 
Order 21 t14   t15   t16 Order 22 t17   t18   t19 
Order 23 t20   t21   t22 Order 24 t23   t24   t25   t26 
Order 25 t27   t28   t29 Order 26 t30   t31   t32 
Order 31 t33   t34   t35   t36 Order 32 t37   t38   t39   t40 
 
Order 33 
 

t42 
t41          t44 

t43 

 
Order 34 

t46 
t45          t48 

t47 
 
Order 41 

t50     t51 
t49             t53      t55 
        t52                   

t54 

 
Order 42 

t57     t58 
t56             t60      t62 
        t59                   

t61 
 
Order 43 

t64     t65 
t63             t67      t69 
        t66                   

t68 

 
Order 44 

t71     t72 
t70             t74      t76 
        t73                   

t75 
 
Order 51 

t78 
t77          t80 

t79 

 
Order 52 

t82 
t81     t83     t85 

t84 
 
Order 53 

t87 
t86          t89 

t88 

 
Order 54 

t91    t92 
t90               t95 

t93    t94 

Order 44

Appl. Sci. 2023, 13, x FOR PEER REVIEW 15 of 27 
 

Moreover, there are 14 cloud demanders (d1–d14). Each cloud demander submits 24 
orders, with 1 of each order type submitted (i.e., 1 of each of the 24 order types). As indi-
cated in Table 5, the fundamental details of each cloud service provider and cloud de-
mander are externally imported from Excel. 

The weight coefficients for the RoS were set in this study to be 1ω  = 1/3, 2ω  = 1/3, 
and 3ω  = 1/3. 

Table 2. Order and cloud service route correspondence. 

Table 3. Task and resource correspondence. 

Task Resource Task Resource Task Resource Task Resource 
t1 (r1) t2 (r3) t3 (r2) t4 (r4) 
t5 (r11, r30) t6 (r5) t7 (r12, r29) t8 (r6) 
t9 (r12, r29) t10 (r31) t11 (r11, r30) t12 (r67) 

t13 (r32) t14 (r1) t15 (r7) t16 (r1) 
t17 (r2) t18 (r8) t19 (r2) t20 (r5) 
t21 (r5) t22 (r41) t23 (r6) t24 (r6) 
t25 (r71) t26 (r42) t27 (r33) t28 (r9) 
t29 (r9) t30 (r34) t31 (r10) t32 (r10) 
t33 (r9) t34 (r7) t35 (r9) t36 (r7) 

Order Type Cloud Service Route Order 
Type Cloud Service Route 

Order 11 t1   t2 Order 12 t3   t4 
Order 13 t5   t6 Order 14 t7   t8 
Order 15 t9   t10 Order 16 t11   t12   t13 
Order 21 t14   t15   t16 Order 22 t17   t18   t19 
Order 23 t20   t21   t22 Order 24 t23   t24   t25   t26 
Order 25 t27   t28   t29 Order 26 t30   t31   t32 
Order 31 t33   t34   t35   t36 Order 32 t37   t38   t39   t40 
 
Order 33 
 

t42 
t41          t44 

t43 

 
Order 34 

t46 
t45          t48 

t47 
 
Order 41 

t50     t51 
t49             t53      t55 
        t52                   

t54 

 
Order 42 

t57     t58 
t56             t60      t62 
        t59                   

t61 
 
Order 43 

t64     t65 
t63             t67      t69 
        t66                   

t68 

 
Order 44 

t71     t72 
t70             t74      t76 
        t73                   

t75 
 
Order 51 

t78 
t77          t80 

t79 

 
Order 52 

t82 
t81     t83     t85 

t84 
 
Order 53 

t87 
t86          t89 

t88 

 
Order 54 

t91    t92 
t90               t95 

t93    t94 

Order 51

Appl. Sci. 2023, 13, x FOR PEER REVIEW 15 of 27 
 

Moreover, there are 14 cloud demanders (d1–d14). Each cloud demander submits 24 
orders, with 1 of each order type submitted (i.e., 1 of each of the 24 order types). As indi-
cated in Table 5, the fundamental details of each cloud service provider and cloud de-
mander are externally imported from Excel. 

The weight coefficients for the RoS were set in this study to be 1ω  = 1/3, 2ω  = 1/3, 
and 3ω  = 1/3. 

Table 2. Order and cloud service route correspondence. 

Table 3. Task and resource correspondence. 

Task Resource Task Resource Task Resource Task Resource 
t1 (r1) t2 (r3) t3 (r2) t4 (r4) 
t5 (r11, r30) t6 (r5) t7 (r12, r29) t8 (r6) 
t9 (r12, r29) t10 (r31) t11 (r11, r30) t12 (r67) 

t13 (r32) t14 (r1) t15 (r7) t16 (r1) 
t17 (r2) t18 (r8) t19 (r2) t20 (r5) 
t21 (r5) t22 (r41) t23 (r6) t24 (r6) 
t25 (r71) t26 (r42) t27 (r33) t28 (r9) 
t29 (r9) t30 (r34) t31 (r10) t32 (r10) 
t33 (r9) t34 (r7) t35 (r9) t36 (r7) 

Order Type Cloud Service Route Order 
Type Cloud Service Route 

Order 11 t1   t2 Order 12 t3   t4 
Order 13 t5   t6 Order 14 t7   t8 
Order 15 t9   t10 Order 16 t11   t12   t13 
Order 21 t14   t15   t16 Order 22 t17   t18   t19 
Order 23 t20   t21   t22 Order 24 t23   t24   t25   t26 
Order 25 t27   t28   t29 Order 26 t30   t31   t32 
Order 31 t33   t34   t35   t36 Order 32 t37   t38   t39   t40 
 
Order 33 
 

t42 
t41          t44 

t43 

 
Order 34 

t46 
t45          t48 

t47 
 
Order 41 

t50     t51 
t49             t53      t55 
        t52                   

t54 

 
Order 42 

t57     t58 
t56             t60      t62 
        t59                   

t61 
 
Order 43 

t64     t65 
t63             t67      t69 
        t66                   

t68 

 
Order 44 

t71     t72 
t70             t74      t76 
        t73                   

t75 
 
Order 51 

t78 
t77          t80 

t79 

 
Order 52 

t82 
t81     t83     t85 

t84 
 
Order 53 

t87 
t86          t89 

t88 

 
Order 54 

t91    t92 
t90               t95 

t93    t94 

Order 52

Appl. Sci. 2023, 13, x FOR PEER REVIEW 15 of 27 
 

Moreover, there are 14 cloud demanders (d1–d14). Each cloud demander submits 24 
orders, with 1 of each order type submitted (i.e., 1 of each of the 24 order types). As indi-
cated in Table 5, the fundamental details of each cloud service provider and cloud de-
mander are externally imported from Excel. 

The weight coefficients for the RoS were set in this study to be 1ω  = 1/3, 2ω  = 1/3, 
and 3ω  = 1/3. 

Table 2. Order and cloud service route correspondence. 

Table 3. Task and resource correspondence. 

Task Resource Task Resource Task Resource Task Resource 
t1 (r1) t2 (r3) t3 (r2) t4 (r4) 
t5 (r11, r30) t6 (r5) t7 (r12, r29) t8 (r6) 
t9 (r12, r29) t10 (r31) t11 (r11, r30) t12 (r67) 

t13 (r32) t14 (r1) t15 (r7) t16 (r1) 
t17 (r2) t18 (r8) t19 (r2) t20 (r5) 
t21 (r5) t22 (r41) t23 (r6) t24 (r6) 
t25 (r71) t26 (r42) t27 (r33) t28 (r9) 
t29 (r9) t30 (r34) t31 (r10) t32 (r10) 
t33 (r9) t34 (r7) t35 (r9) t36 (r7) 

Order Type Cloud Service Route Order 
Type Cloud Service Route 

Order 11 t1   t2 Order 12 t3   t4 
Order 13 t5   t6 Order 14 t7   t8 
Order 15 t9   t10 Order 16 t11   t12   t13 
Order 21 t14   t15   t16 Order 22 t17   t18   t19 
Order 23 t20   t21   t22 Order 24 t23   t24   t25   t26 
Order 25 t27   t28   t29 Order 26 t30   t31   t32 
Order 31 t33   t34   t35   t36 Order 32 t37   t38   t39   t40 
 
Order 33 
 

t42 
t41          t44 

t43 

 
Order 34 

t46 
t45          t48 

t47 
 
Order 41 

t50     t51 
t49             t53      t55 
        t52                   

t54 

 
Order 42 

t57     t58 
t56             t60      t62 
        t59                   

t61 
 
Order 43 

t64     t65 
t63             t67      t69 
        t66                   

t68 

 
Order 44 

t71     t72 
t70             t74      t76 
        t73                   

t75 
 
Order 51 

t78 
t77          t80 

t79 

 
Order 52 

t82 
t81     t83     t85 

t84 
 
Order 53 

t87 
t86          t89 

t88 

 
Order 54 

t91    t92 
t90               t95 

t93    t94 
Order 53

Appl. Sci. 2023, 13, x FOR PEER REVIEW 15 of 27 
 

Moreover, there are 14 cloud demanders (d1–d14). Each cloud demander submits 24 
orders, with 1 of each order type submitted (i.e., 1 of each of the 24 order types). As indi-
cated in Table 5, the fundamental details of each cloud service provider and cloud de-
mander are externally imported from Excel. 

The weight coefficients for the RoS were set in this study to be 1ω  = 1/3, 2ω  = 1/3, 
and 3ω  = 1/3. 

Table 2. Order and cloud service route correspondence. 

Table 3. Task and resource correspondence. 

Task Resource Task Resource Task Resource Task Resource 
t1 (r1) t2 (r3) t3 (r2) t4 (r4) 
t5 (r11, r30) t6 (r5) t7 (r12, r29) t8 (r6) 
t9 (r12, r29) t10 (r31) t11 (r11, r30) t12 (r67) 

t13 (r32) t14 (r1) t15 (r7) t16 (r1) 
t17 (r2) t18 (r8) t19 (r2) t20 (r5) 
t21 (r5) t22 (r41) t23 (r6) t24 (r6) 
t25 (r71) t26 (r42) t27 (r33) t28 (r9) 
t29 (r9) t30 (r34) t31 (r10) t32 (r10) 
t33 (r9) t34 (r7) t35 (r9) t36 (r7) 

Order Type Cloud Service Route Order 
Type Cloud Service Route 

Order 11 t1   t2 Order 12 t3   t4 
Order 13 t5   t6 Order 14 t7   t8 
Order 15 t9   t10 Order 16 t11   t12   t13 
Order 21 t14   t15   t16 Order 22 t17   t18   t19 
Order 23 t20   t21   t22 Order 24 t23   t24   t25   t26 
Order 25 t27   t28   t29 Order 26 t30   t31   t32 
Order 31 t33   t34   t35   t36 Order 32 t37   t38   t39   t40 
 
Order 33 
 

t42 
t41          t44 

t43 

 
Order 34 

t46 
t45          t48 

t47 
 
Order 41 

t50     t51 
t49             t53      t55 
        t52                   

t54 

 
Order 42 

t57     t58 
t56             t60      t62 
        t59                   

t61 
 
Order 43 

t64     t65 
t63             t67      t69 
        t66                   

t68 

 
Order 44 

t71     t72 
t70             t74      t76 
        t73                   

t75 
 
Order 51 

t78 
t77          t80 

t79 

 
Order 52 

t82 
t81     t83     t85 

t84 
 
Order 53 

t87 
t86          t89 

t88 

 
Order 54 

t91    t92 
t90               t95 

t93    t94 
Order 54

Appl. Sci. 2023, 13, x FOR PEER REVIEW 15 of 27 
 

Moreover, there are 14 cloud demanders (d1–d14). Each cloud demander submits 24 
orders, with 1 of each order type submitted (i.e., 1 of each of the 24 order types). As indi-
cated in Table 5, the fundamental details of each cloud service provider and cloud de-
mander are externally imported from Excel. 

The weight coefficients for the RoS were set in this study to be 1ω  = 1/3, 2ω  = 1/3, 
and 3ω  = 1/3. 

Table 2. Order and cloud service route correspondence. 

Table 3. Task and resource correspondence. 

Task Resource Task Resource Task Resource Task Resource 
t1 (r1) t2 (r3) t3 (r2) t4 (r4) 
t5 (r11, r30) t6 (r5) t7 (r12, r29) t8 (r6) 
t9 (r12, r29) t10 (r31) t11 (r11, r30) t12 (r67) 

t13 (r32) t14 (r1) t15 (r7) t16 (r1) 
t17 (r2) t18 (r8) t19 (r2) t20 (r5) 
t21 (r5) t22 (r41) t23 (r6) t24 (r6) 
t25 (r71) t26 (r42) t27 (r33) t28 (r9) 
t29 (r9) t30 (r34) t31 (r10) t32 (r10) 
t33 (r9) t34 (r7) t35 (r9) t36 (r7) 

Order Type Cloud Service Route Order 
Type Cloud Service Route 

Order 11 t1   t2 Order 12 t3   t4 
Order 13 t5   t6 Order 14 t7   t8 
Order 15 t9   t10 Order 16 t11   t12   t13 
Order 21 t14   t15   t16 Order 22 t17   t18   t19 
Order 23 t20   t21   t22 Order 24 t23   t24   t25   t26 
Order 25 t27   t28   t29 Order 26 t30   t31   t32 
Order 31 t33   t34   t35   t36 Order 32 t37   t38   t39   t40 
 
Order 33 
 

t42 
t41          t44 

t43 

 
Order 34 

t46 
t45          t48 

t47 
 
Order 41 

t50     t51 
t49             t53      t55 
        t52                   

t54 

 
Order 42 

t57     t58 
t56             t60      t62 
        t59                   

t61 
 
Order 43 

t64     t65 
t63             t67      t69 
        t66                   

t68 

 
Order 44 

t71     t72 
t70             t74      t76 
        t73                   

t75 
 
Order 51 

t78 
t77          t80 

t79 

 
Order 52 

t82 
t81     t83     t85 

t84 
 
Order 53 

t87 
t86          t89 

t88 

 
Order 54 

t91    t92 
t90               t95 

t93    t94 

Table 3. Task and resource correspondence.

Task Resource Task Resource Task Resource Task Resource

t1 (r1) t2 (r3) t3 (r2) t4 (r4)
t5 (r11, r30) t6 (r5) t7 (r12, r29) t8 (r6)
t9 (r12, r29) t10 (r31) t11 (r11, r30) t12 (r67)
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t17 (r2) t18 (r8) t19 (r2) t20 (r5)
t21 (r5) t22 (r41) t23 (r6) t24 (r6)
t25 (r71) t26 (r42) t27 (r33) t28 (r9)
t29 (r9) t30 (r34) t31 (r10) t32 (r10)
t33 (r9) t34 (r7) t35 (r9) t36 (r7)
t37 (r10) t38 (r8) t39 (r10) t40 (r8)
t41 (r13, r14) t42 (r61) t43 (r21, r23) t44 (r51, r52)
t45 (r15, r16) t46 (r62) t47 (r22, r24) t48 (r53, r54)
t49 (r21, r23) t50 (r47, r48) t51 (r47, r48) t52 (r33)
t53 (r35, r37) t54 (r63) t55 (r43, r45) t56 (r22, r24)
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Table 3. Cont.

Task Resource Task Resource Task Resource Task Resource

t57 (r49, r50) t58 (r49, r50) t59 (r34) t60 (r36, r38)
t61 (r64) t62 (r44, r46) t63 (r35, r37) t64 (r41)
t65 (r41) t66 (r39) t67 (r25, r27) t68 (r65)
t69 (r13, r14) t70 (r36, r38) t71 (r42) t72 (r42)
t73 (r40) t74 (r26, r28) t75 (r66) t76 (r15, r16)
t77 (r47, r48) t78 (r51, r52) t79 (r57, r58) t80 (r47, r48)
t81 (r49, r50) t82 (r53, r54) t83 (r68) t84 (r59, r60)
t85 (r49, r50) t86 (r57, r58) t87 (r17, r19) t88 (r63)
t89 (r55) t90 (r59, r60) t91 (r18, r20) t92 (r69)
t93 (r64) t94 (r70) t95 (r56)

Table 4. Substitution relationships among internal resources.

Resource Alternative
Resource Re-Source Alternative

Resource Re-Source Alternative
Resource Re-Source Alternative

Resource

r1 r2 r2 r1 r3 r4 r4 r3
r5 r6 r6 r5 r7 r8 r8 r7
r9 r10 r10 r9 r11 r12 r12 r11
r13 r16 r14 r15 r15 r14 r16 r13
r17 r20 r18 r19 r19 r18 r20 r17
r21 r24 r22 r23 r23 r22 r24 r21
r25 r28 r26 r27 r27 r26 r28 r25
r29 r30 r30 r29 r31 r32 r32 r31
r33 r34 r34 r33 r35 r38 r36 r37
r37 r36 r38 r35 r39 r40 r40 r39
r41 r42 r42 r41 r43 r44 r44 r43
r45 r46 r46 r45 r47 r49 r48 r50
r49 r47 r50 r48 r51 r53 r52 r54
r53 r51 r54 r52 r55 r56 r56 r55
r57 r59 r58 r60 r59 r57 r60 r58
r61 r62 r62 r61 r63 r64 r64 r63
r65 r66 r66 r65 r67 r68 r68 r67
r69 r70 r70 r69 r71 r72 r72 r71

Table 5. Properties of cloud demanders and cloud servers.

ID City Location
(Latitude, Longitude) ID City Location

(Latitude, Longitude)

S1 Beijing (39.91, 116.41) d5 Jinan (36.4, 117)
S2 Shanghai (31.21, 121.43) d6 Lanzhou (36.03, 103.73)
S3 Chengdu (30.66, 104.06) d7 Wulumuqi (43.76, 87.68)
S4 Hangzhou (30.26, 120.2) d8 Changsha (28.21, 113)
S5 Shenzhen (22.61, 114.06) d9 Nanchang (28.68, 115.9)

d10 Fuzhou (26.08, 119.3)
d1 HaErbin (45.75, 126.63) d11 Nanning (22.48, 108.19)
d2 ShenYang (41.8, 123.38) d12 Lasa (29.6, 91)
d3 Baotou (40.39, 109.49) d13 Lianyungang (34.36, 119.1)
d4 Tianjin (39.13, 117.2) d14 Hefei (31.52, 117.17)

The weight coefficients for the RoS were set in this study to be ω1 = 1/3, ω2 = 1/3,
and ω3 = 1/3.

6.2. Structural Robustness Analysis

Based on the network model construction method described in Section 4.1, Figure 5 depicts
the initial cloud manufacturing resource network. Matlab-2020a software was implemented
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to conduct data statistical analysis on the network, and as shown in Table 6 and Figure 6, the
relevant network topology parameters and degree distribution were obtained.

Figure 5. Layout of the cloud resource network in space.

Table 6. Topological parameters of initial cloud resource network.

Topological Parameter Number of Nodes Average Degree Density Average Path Length

Cloud resource
network 231 21.208 0.087 4.231

Figure 6. Cloud resource network degree distribution.

The network contained 231 resource nodes, and the distribution of node degrees was
very unbalanced. A small number of nodes occupied the vast majority of connected edges,
proving that the network possessed the traits of a scale-free network. It was a sparse
network, as the nodes with higher degree values tended to connect the nodes with lower
degree values, as indicated by the network’s low density.

Then, using the four failure modes outlined in Section 5.1, Python 3.0 was used to
simulate and determine how the structural robustness indexes changed in response to each
failure mode.
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6.2.1. Structural Robustness Comparison of Three Substitution Strategies under Initial
Node Degree Loss (ID) Failure Mode

As shown in Figure 7, (1) in the ID failure mode, the maximum connectivity subgraphs
under the no-substitution strategy (“common”) and the three resource substitution strate-
gies (“internal”, “external”, and “inter&exter”) all show a decreasing trend as the number
of node failures increases. This indicates that from the complex network perspective,
the structural robustness of the CMS gradually decreases. (2) The curves of the three re-
source substitution strategies are all located above the curve of the no-substitution strategy
(i.e., their maximum connectivity subgraph values are larger than the no-substitution strat-
egy’s value). This indicates that all three resource substitution strategies can improve the
structural robustness of the CMS in the face of initial node degree failure. (3) The “internal”
curve is only slightly higher than the “common” curve, and when the number of node
attacks is high, the maximum connected subgraph values of these two strategies decrease
to 0, at which point the CMN has completely collapsed. In contrast, the “external” and
“inter&exter” curves are significantly higher than the “common” curve, and even when the
number of node attacks is high, the connected subgraph values still maintain a high level.
This indicates that the external replacement strategy and the internal–external integrated
replacement strategy both offer more significant robustness enhancement than the internal
replacement strategy under the ID failure mode.

Figure 7. Variation of S under ID failure mode.

6.2.2. Structural Robustness Comparison of Three Substitution Strategies under Initial
Node Betweenness Loss (IB) Failure Mode

As shown in Figure 8, (1) in the IB failure mode, the maximum connectivity subgraphs
under the no-substitution strategy (“common”) and the three resource substitution strate-
gies (“internal”, “external”, and “inter&exter”) all show a decreasing trend as the number
of node failures increases. This indicates that from the complex network perspective,
the structural robustness of the CMS gradually decreases. (2) The curves of the three re-
source substitution strategies are all located above the curve of the no-substitution strategy
(i.e., their maximum connectivity subgraph values are larger than the no-substitution
strategy’s value). This indicates that all three resource substitution strategies can im-
prove the structural robustness of the CMS in the face of initial node betweenness failure.
(3) The “internal” curve is only slightly higher than the “common” curve, and when the
number of node attacks is high, the maximum connected subgraph values of these two
strategies decrease to 0, at which point the CMN has completely collapsed. In contrast, the
“external” and “inter&exter” curves are significantly higher than the “common” curve, and
even when the number of node attacks is high, the connected subgraph values still maintain
a high level. This indicates that the external replacement strategy and the internal–external
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integrated replacement strategy both offer more significant robustness enhancement than
the internal replacement strategy under the IB failure mode.
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6.2.3. Structural Robustness Comparison of Three Substitution Strategies under
Recomputed Node Degree Loss (RD) Failure Mode

As shown in Figure 9, (1) in the RD failure mode, when the number of node attacks is
high, the maximum connectivity subgraph values under all three substitution strategies
decrease to 0, at which point the CMN has completely collapsed. This indicates that the RD
failure mode is more destructive to the structural robustness of the CMS than either the ID
or IB modes. (2) The “external” curve is always located above the “internal” curve, and the
“inter&exter” curve is nearly always located above the “external” curve. This indicates that
the maximum connectivity subgraph value is largest under the internal–external integration
replacement strategy, followed by the external replacement strategy, and then the internal
replacement strategy. Therefore, for the structural robustness of the CMS under the RD
failure mode: internal–external integration replacement strategy > external replacement
strategy > internal replacement strategy.
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6.2.4. Structural Robustness Comparison of Three Substitution Strategies under
Recomputed Node Betweenness Loss (RB) Failure Mode

As shown in Figure 10, (1) in the RB failure mode, when the number of node attacks is
high, the maximum connectivity subgraph values under all three strategies decrease to 0,
at which point the CMN has completely collapsed. This indicates that the RB failure mode
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is more destructive to the structural robustness of the CMS than either the ID or IB modes.
(2) The “external” curve is always located above the “internal” curve, and the majority
of the “inter&exter” curve is located above the “external” curve. This indicates that the
maximum connectivity subgraph value is largest under the internal–external integration
replacement strategy, followed by the external replacement strategy, and then the internal
replacement strategy. Therefore, for the structural robustness of the CMS under the RB
failure mode: internal–external integration replacement strategy > external replacement
strategy > internal replacement strategy.
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In summary, from the complex network perspective, all three resource substitution
strategies significantly improved the structural robustness of the CMS. In the four failure
modes (i.e., ID, IB, RD, and RB), the structural robustness levels under all three strate-
gies were higher than those with no strategy. Further, the internal–external integration
replacement strategy brought the greatest robustness enhancement to the CMS, followed
by the external replacement strategy, and then the internal replacement strategy. This is
reasonable because the essence of a resource substitution strategy is to add redundant
nodes, so when a resource fails, redundant alternative resources will be there to replace it
to complete the task. Therefore, as the number of node failures increased, the strategies
with more initial redundant nodes (i.e., the internal–external resource integration strategy
and the external replacement strategy) were more robust. Conversely, the strategy with
fewer initial redundant nodes (i.e., the internal replacement strategy) was less robust. In
addition, in the failure modes based on the initial topology (i.e., ID and IB), only the struc-
tural robustness under the no-replacement strategy and the internal replacement strategy
significantly decreased. In contrast, in the failure modes based on the recomputed topology
(i.e., RD and RB), the structural robustness under all strategies significantly decreased, indi-
cating that the failure modes based on the recomputed topology were more destructive to
the structural robustness of the CMS. However, for all four failure modes, all three resource
substitution strategies could protect the structural robustness of the CMS to some extent.

6.3. Process Robustness Analysis

This research analyzed changes in the RoS under the four failure types using the
multi-agent simulation program Anylogic and Python 3.0.

6.3.1. Process Robustness Comparison of Three Substitution Strategies under ID
Failure Mode

As shown in Figure 11, (1) in the ID failure mode, the RoS values under the no-
substitution strategy (“common”) and the three resource substitution strategies (“internal”,
“external”, and “inter&exter”) all show a decreasing trend as the number of node failures
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increases (i.e., as the cloud order completion rate decreases). This indicates that from
a multi-agent simulation perspective, the robustness of the CMP gradually decreases.
(2) The curves of the three resource substitution strategies are all located above the curve
of the no-substitution strategy (i.e., their RoS values are larger than the no-substitution
strategy’s value, which means their order completion rates are higher). This indicates that
all three resource substitution strategies can improve the robustness of the CMP in the
face of initial node degree failure. (3) The “internal” curve is only slightly higher than the
“common” curve, and when the number of node attacks is high, the RoS values of these
two strategies decrease to 0, at which point all cloud orders fail to be processed. In contrast,
the “external” and “inter&exter” curves are significantly higher than the “common” curve,
and though the RoS values fluctuate when the number of node attacks is high, they still
maintain a high level (above 0.6). This indicates that the external replacement strategy
and the internal–external integration replacement strategy both offer more significant
robustness enhancement than the initial replacement strategy under the ID failure mode. In
particular, when the number of node attacks is high, the slight fluctuations of the RoS value
indicate that the cloud order completion rate tends to be stable at this time, but different
resource substitution strategies will lead to changes in the service time, cost, reliability, and
other factors.

Figure 11. Variation of RoS under ID failure mode.

6.3.2. Process Robustness Comparison of Three Substitution Strategies under IB
Failure Mode

As shown in Figure 12, (1) in the IB failure mode, the RoS values under the no-
substitution strategy (“common”) and the three resource substitution strategies (“internal”,
“external”, and “inter&exter”) all show a decreasing trend as the number of node failures
increases (i.e., as the cloud order completion rate decreases). This indicates that from
a multi-agent simulation perspective, the robustness of the CMP gradually decreases.
(2) The curves of the three resource substitution strategies are all located above the curve
of the no-substitution strategy (i.e., their RoS values are larger than the no-substitution
strategy’s value, which means their order completion rates are higher). This indicates that
all three resource substitution strategies can improve the robustness of the CMP in the face
of initial node betweenness failure. (3) The “internal” curve is only slightly higher than the
“common” curve, and when the number of node attacks is high, the RoS values of these
two strategies decrease to 0, at which point all cloud orders fail to be processed. In contrast,
the “external” and “inter&exter” curves are significantly higher than the “common” curve,
and though the RoS values fluctuate when the number of node attacks is high, they still
maintain a high level (above 0.6). This indicates that the external replacement strategy
and the internal–external integration replacement strategy both offer more significant
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robustness enhancement than the initial replacement strategy under the IB failure mode. In
particular, when the number of node attacks is high, the slight fluctuations in the RoS value
indicate that the cloud order completion rate tends to be stable at this time, but different
resource substitution strategies will lead to changes in the service time, cost, reliability, and
other factors.

Figure 12. Variation of RoS under IB failure mode.

6.3.3. Process Robustness Comparison of Three Substitution Strategies under RD
Failure Mode

As shown in Figure 13, (1) in the RD failure mode, as the number of node attacks
increases, the RoS values under all three substitution strategies rapidly decline and finally
decrease to 0, at which point all cloud orders fail to be processed. This indicates that
the RD failure mode is more destructive to the robustness of the CMP than either the
ID or IB modes. (2) The “external” curve is always located above the “internal” curve,
and the “inter&exter” curve is nearly always located above the “external” curve. This
indicates that the RoS value is largest under the internal–external integration replacement
strategy, followed by the external substitution strategy, and then the internal substitution
strategy. Further, under the three strategies, the numbers of node attacks required to make
all cloud order processing fail (i.e., when the process robustness decreases to its lowest)
are approximately 110 (“internal”), 140 (“external”), and 160 (“inter&exter”). Therefore,
to attain robustness of the CMP under the RD failure mode: internal–external integration
strategy > external substitution strategy > internal substitution strategy.
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6.3.4. Process Robustness Comparison of Three Substitution Strategies under RB
Failure Mode

As shown in Figure 14, (1) in the RB failure mode, as the number of node attacks
increases, the RoS values under all three substitution strategies rapidly decline and finally
decrease to 0, at which point all cloud orders fail to be processed. This indicates that
the RB failure mode is more destructive to the robustness of the CMP than either the
ID or IB modes. (2) The “external” curve is always located above the “internal” curve,
and the “inter&exter” curve is nearly always located above the “external” curve. This
indicates that the RoS value is largest under the internal–external integration replacement
strategy, followed by the external substitution strategy, and then the internal substitution
strategy. Further, under the three strategies, the number of node attacks required to make
all cloud order processing fail (i.e., when the process robustness decreases to its lowest) are
110 (“internal”), 150 (“external”), and 160 (“inter&exter”). Therefore, to obtain robustness
of the CMP under the RB failure mode: internal–external integration strategy > external
substitution strategy > internal substitution strategy.
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In summary, from the perspective of multi-agent simulation, all three resource sub-
stitution strategies significantly improved the process robustness of the CMS. In the four
failure modes (i.e., ID, IB, RD, and RB), the process robustness levels under all three strate-
gies were higher than those with no strategy. Further, the internal–external integration
replacement strategy brought the greatest robustness enhancement, followed by the exter-
nal replacement strategy, and then the internal replacement strategy. This is reasonable
because the three strategies provided different amounts of alternative resources: the in-
ternal substitution strategy can provide fewer alternative resources, which corresponds
to lower robustness; the external substitution strategy can provide five resources of the
same type because five external cloud service providers are involved in this paper; and the
internal–external integration replacement strategy can provide more than five resources
of the same type or alternative resources, which corresponds to higher robustness. In
addition, in the failure modes based on the initial topology (i.e., ID and IB), only the pro-
cess robustness under the no-replacement strategy and the internal replacement strategy
significantly decreased. In contrast, in the failure modes based on the recomputed topology
(i.e., RD and RB), the process robustness under all strategies significantly decreased, indi-
cating that the failure modes based on the recomputed topology were more destructive
to process robustness. However, for all four failure modes, all three resource substitution
strategies could protect the process robustness of the CMS to some extent.
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6.4. Management Suggestion

Based on the analysis results in Sections 6.2 and 6.3, the following management
suggestions were obtained. First, focus should be placed on protecting the resource nodes
with a larger degree and larger betweenness (i.e., the important nodes in the CMS). The
structural robustness and process robustness of the CMS decreased rapidly in the failure
modes based on the node degree (i.e., ID and RD) and node betweenness (i.e., IB and RB),
indicating that nodes with a larger degree and betweenness are crucial to maintaining
system robustness. More specifically, nodes with a large degree are closely connected with
other nodes, so they can play an important role in maintaining system connectivity, and
nodes with a large betweenness have greater control over the logistics and information
flow in the system, so they can play an important role in maintaining the information
transmission rate of the system. Second, alternative resources must be provided to ensure
that when the original resources fail, alternative resources can replace them to complete
their tasks. These alternative resources can be set up within (1) the same service provider,
(2) other external service providers, or (3) a combination of both, and all these methods can
protect the robustness of the CMS to a certain extent.

7. Conclusions

This study combined the complex network with multi-agent simulation to propose a
new analysis method for the structural robustness and process robustness of the CMS. To
target the frequent failure of resource nodes in the cloud manufacturing environment, three
resource substitution strategies were proposed to better ensure the stability and robustness
of the system. First, a multi-agent simulation model was constructed to study the dynamic
process robustness of the CMS. Here, RoS was proposed as a robustness measure, and
the behavior characteristics and modeling methods of several key types of CMP agents
were detailed. Second, a complex network model of cloud manufacturing resources was
established through the order–task relationship and task–resource relationship to study
the static topological robustness of the CMS. Here, the maximum connectivity subgraph
was proposed as a robustness measure. Regarding attack strategies, four failure modes
(i.e., ID, IB, RD, and RB) were defined, and regarding robustness enhancement strategies,
three resource substitution strategies (i.e., internal replacement, external replacement, and
internal–external integration replacement) were proposed. Third, a case study of a cloud
manufacturing project of a new energy vehicle was conducted. The results of this show that
(1) the proposed RoS index was effective at portraying the variations of CMP robustness,
(2) the three resource substitution strategies could improve both the structural robustness
and process robustness of the CMS (with the internal–external integration strategy being
most effective, followed by the external substitution strategy, and then the internal substi-
tution strategy), and (3) the two node failure modes based on the recalculated topology
were more destructive to the robustness of the CMP than the two node failure modes based
on the initial topology. However, for all four failure modes, all three resource substitution
strategies could protect the robustness of the CMS to some degree.

In combining the complex network with multi-agent simulation, the robustness anal-
ysis object of the CMS is extended from the CMN to the CMP, which provides a new
perspective with two dimensions (i.e., structure and process). Moreover, the three proposed
recovery strategies (elastic measures) are designed based on the idea of adding redundant
nodes, which is of great significance to the implementation and deployment of cloud man-
ufacturing projects. This research will be furthered by investigating the robustness of cloud
path interruption, cloud logistics interruption, city lockdowns, and other phenomena, to
provide a quantitative and dynamic decision-making basis for improving the robustness of
the CMS.
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Abstract: In the complex and ever-changing manufacturing environment, maintaining the long-term
steady and efficient work of the assembly line is the ultimate goal pursued by relevant enterprises, the
foundation of which is a balanced load. Therefore, this paper carries out research on the two-sided
assembly line balance problem (TALBP) for load balancing. At first, a mathematical programming
model is established with the objectives of optimizing the line efficiency, smoothness index, and
completion time smoothness index of the two-sided assembly line (TAL). Secondly, a deep rein-
forcement learning algorithm combining distributed proximal policy optimization (DPPO) and the
convolutional neural network (CNN) is proposed. Based on the distributed reinforcement learning
agent structure assisted by the marker layer, the task assignment states of the two-sided assembly
and decisions of selecting tasks are defined. Task assignment logic and reward function are de-
signed according to the optimization objectives to guide task selection and assignment. Finally, the
performance of the proposed algorithm is verified on the benchmark problem.

Keywords: two-sided assembly line; load balancing; deep reinforcement learning; distributed
multiple processes

1. Introduction

An assembly line (AL) is an arrangement of workstations in a streamlined manner
according to the product assembly process sequence for the organization and the arrange-
ment of production. A workstation is an assembly unit that focuses on a specific segment
of production, and the workpiece is assembled in all the workstations to form a complete
product. Due to the assembly line adopting the flow operation mode, the assembly op-
eration process is standardized, and the assembly workers are generally fixed in a single
station or several adjacent stations for repeated operations, which increases the utilization
rate of workers, thus greatly improving production efficiency [1].

In the two-sided assembly line (TAL), the left and right sides of the same workstation
can independently execute assembly of the same product with different processes in
parallel, as shown in Figure 1. These are called mated stations [2]. Compared with the
one-sided AL, the TAL can effectively shorten the length of theAL, improve the utilization
rate of auxiliary tools, reduce the time loss caused by the movement of workers between
various stations, and reduce the transportation cost of assembly parts [2].

To balance the TAL is to distribute a group of tasks evenly to each station as far as
possible under certain constraints to pursue the optimization of one or more objectives [3].
However, after the assembly line is put into operation, the original balance parameters, such
as cycle time, operation content, operation time, and assembly process, may change with
the improvement of assembly workers’ technology, product upgrades, customer demand
change, etc. In such cases, the original assembly line balance may be disrupted, prohibiting
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the assembly line from being a stable, efficient, and high-quality operation, and thus greatly
reducing the economic benefits of the relevant enterprises. Therefore, it is necessary to
optimize and improve the original balancing scheme, which involves reassigning tasks to
achieve the assembly line load balance and improve the operation efficiency of the TAL.
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Figure 1. Two-sided assembly line. 
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TALBP is one of the NP-hard problems belonging to combinatorial optimization [4].
Since it was proposed in 1993 [5], it has been widely studied. The main research methods
include exact algorithm, heuristic algorithm, and meta-heuristic algorithm [1,2]. Although
the exact algorithm can obtain the optimal solution, its solving speed is slow and can can
be used for small-sized problems; the heuristic algorithm is fast, simple, and efficient, but
the solution results cannot reach the global optimal; and the meta-heuristic algorithm is
relatively fast and effective, but the iterative search process is usually time-consuming
and needs to be solved iteratively for each problem case. Moreover, these traditional
optimization algorithms rarely make use of historical information to adjust behavior and
cannot effectively use historical solving experience for learning; hence, there is great room
for improvement in terms of solving large-scale problems.

In addition, different cases of problems have the same combinatorial optimization
structure (the objective function or the coefficient of constraint conditions); there are only
differences in specific values; for example, improving assembly workers’ skills will reduce
the working time of tasks, but the correlation between tasks does not change. As an artificial
intelligence algorithm closer to the way of human thinking, the deep reinforcement learning
algorithm has deep association learning ability compared with the traditional optimization
algorithm. When solving the cases at a same scale, historical experience of different cases—
that is, existing task assignment schemes—can be associated and learned, the essential
information of problems can be mined, and task assignment strategies can be obtained and
automatically updated to achieve efficient solutions to similar cases. Moreover, the deep
reinforcement learning algorithm has higher adaptability to the complex and ever-changing
production environment, which is easy to adjust so as to alter the solution. In addition,
although deep reinforcement learning algorithms have begun to be tried in solving such
AL balancing problems [6,7], they are currently used to optimize simulation models and
resource allocation. Therefore, this paper carries out the study on load balancing of TAL
based on deep reinforcement learning for the first time.

The remaining sections are introduced as follows. Section 2 provides a literature
review for the load balancing-oriented TALBP and deep reinforcement learning. Section 3
shows the mathematical model of load balancing-oriented TALBP. Section 4 describes the
deep reinforcement learning algorithm combining distributed proximal policy optimization
(DPPO) and convolutional neural network (CNN). The experimental verification is carried
out in Section 5 and conclusions and future work avenues are presented in Section 6.

2. Literature Review
2.1. Two-Sided Assembly Line Balance Oriented to Load Balancing

According to different production stages and research objectives, TALBPs are mainly
divided into two categories [8]. The first type of balancing problem occurs in the design
and planning stage, the aim was to explore that how to use the minimum number of
workstations and/or stations to achieve production under the premise of a given cycle
time. For this type problem and its variants, many scholars have designed exact algo-
rithms [9,10], heuristic algorithms [11,12], and meta-heuristic algorithms [13,14]. With the
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assembly line officially put to use, some potential problems (task assignment, resource
allocation, etc.) that could not be predicted in time in the design stage of the assembly line
become increasingly obvious. Moreover, assembly workers’ skills, product configuration,
and customer demands may also change, and thus the task content and/or operation time
changes and the original balancing plan needs to be further optimized. The second type of
balance problem occurs in this stage, which is the problem of how to obtain a better cycle
time by optimizing task assignment under the premise of definite workstations [15–17].
However, the above studies did not consider load balancing, which is the initial goal of
balance research [5] and the source of maintaining the stable and efficient operation of the
assembly line [18,19].

Considering the importance of load balancing, some scholars have specifically studied
this kind of problem and defined it as the third type of balance problem—that is, how to
optimize task assignment and balance the load of all stations as much as possible under the
premise of fixed cycle time and line length. Ozcan and Toklu [20] used the assembly line
smoothness index to measure load balancing and combined it with assembly line efficiency
as optimization objectives to build a mathematical model of TAL load balancing. The
minimum deviation method (MDM) was used to combine multi-objective problems into
single-objective problems, and a tabu search algorithm was proposed. Lan and Yee [21]
designed a nonlinear integer programming model to maximize the smoothness of the line
for the third-type TALBP and solved it using Lingo. Purnomo and Wee [22] designed a
harmonic search (HS), combining non-inferior sorting rules for TALBP considering zone
constraints. The goal was to optimize the production efficiency and balance the load of sta-
tions. Li et al. [23] used an improved version of teaching and learning optimization (ITLBO)
to balance multi-constraint and multi-objective TAL. The goals were the optimization of
assembly line efficiency, assembly line smoothness, and total associated unit production
costs. Li et al. [24] proposed an iterative local search algorithm (ILS) to realize the load
balancing of TALs. A heuristic algorithm was applied to obtain the better initial population;
the local search and disturbance factors were used iteratively until a local optimal solution
was found. This algorithm also applies the priority decoding method based on the combi-
nation of orientation selection rules and task selection rules to reduce the load difference
between the left and right stations of a workstation as far as possible so as to ensure that
the sequence-related waiting time is reduced to a certain extent. Wu et al. [25] used a
hybrid algorithm based on variable neighborhood search and gravity search for the TALBP
considering zone constraints to achieve load balancing among workstations and reduce
the series-dependent completion time of tasks as much as possible. Buyukozkan et al. [26]
provided the dictionary bottleneck hybrid TALBP, balancing the load of all workstations
by gradually minimizing the weighted load of the workstations with the maximum load
and finally achieving the load balancing of all workstations on the assembly line. Yadav
and Agrawal [27] measured load balancing by the idle time length on the workstations
and established the related mathematical model. A branch and bound algorithm was
programmed in the Lingo solver for this problem, and load balancing schemes of various
benchmark problems were explored. After that, the workload maximization of stations was
used as the measure of load balance [28], an exact algorithm was designed, and its effec-
tiveness was verified through an engineering project. Abdullah Make and Ab Rashid [29]
carried out a study on load balancing of TALs in automobile assembly workshops and
designed a particle swarm optimization algorithm. To obtain a better task assignment
scheme, in addition to cycle time and stations, the influences and constraints of workers’
skill levels, tools, and equipment on assembly task assignment were also considered.

To sum up, current research on the load balancing of TALs is still mainly focused on
the optimization design and solution of the traditional algorithm (i.e., exact, heuristic, and
meta-heuristic algorithms), and as far as we know, there is no research on load balancing-
oriented TALBP based on deep reinforcement learning, which is more suitable for complex
and variable manufacturing processes. In addition, for multi-objective optimization, most
of them are converted into single objectives by mathematical programming methods. The
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operation involved weighted coefficient or unified dimensions; that is, the search direction
is delimited artificially, which reduces the search space and cannot guarantee the optimality
of the solution.

2.2. Deep Reinforcement Learning

The reinforcement learning algorithm (RLA) could be used to obtain optimal strategies
for sequencing decision problems [30]. As shown in Figure 2, the agent of RLA interacts
with the environment continuously, observes the environment state st, makes a decision
action at, and obtains the feedback (reward) rt from the environment, then adjusts the
strategy according to the feedback information from the environment so that the subsequent
output decision action can meet the expectation.
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The deep learning algorithm (DLA) is a method by which to gradually acquire the
whole picture of things through multi-level learning and abstracting from simple to com-
plex [31]. The deep reinforcement learning algorithm (DRLA) generated by the combination
of reinforcement learning (RL) and deep learning (DL) shows strong data processing and
environment interaction abilities in terms of self-adaptation and self-learning, has rapid
decision-making abilities combined with offline training and online decision-making, and
highly versatile generalization ability, which can better solve complex problems [32].

In 2015, DeepMind [33] proposed the first DRLA—the Deep Q-learning Network
(DQN). It combined deep neural networks with reinforcement learning and applied them
to the research of games, Go (i.e., weiqi) and other fields, achieving impressive results. Since
then, research on various deep reinforcement learning methods has been rapidly carried
out, and the applications have expanded from games to other fields [34–36]. At present,
for combinatorial optimization, deep reinforcement learning algorithms have already
penetrated into the classic travel salesman problem [37], the path optimization problem [38],
the packing problem [39], the maximum cutting problem [40], and other operational
research problems. At the same time, some scholars, aiming to solve practical production
problems, have also begun to introduce the deep reinforcement learning algorithm into
the research of manufacturing problems [41]. In the area of AL balancing, Li et al. [6]
focused on the research of balancing AL in the digital domain, and designed a DRLA
with the support of deep deterministic policy gradient (DDPG) to enhance the operation
and simulation effect of the assembly line digital twin model. Lv et al. [7] combined the
sequencing problem with the assembly line balance problem and proposed a new version
of DRLA on the basis of DDPG, in which an iterative interaction mechanism between task
assembly time and station load were designed to achieve production task sequencing and
worker allocation layer by layer. The objective was minimizing the work overload.

Although there have been some preliminary achievements in solving combinatorial
optimization problems by DRLA, to the best of our knowledge, there are no studies of the
deep reinforcement learning algorithm for the TALBP so far.
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3. Mathematical Model for Load Balancing-Oriented TALBP
3.1. Assumptions

(1) The assembly line task assignment scheme is available, and the specific task
assignment is known;

(2) The product variety is unique, and the processes are determined;
(3) Cycle time is deterministic;
(4) Execution time of takes and precedence relationship between tasks are known;
(5) Buffers, parallel stations and tasks are not considered.

3.2. Parameters

ns: Number of workstations.
nm: Number of stations.
I: Task set, I = {1, 2, . . . , i, . . . , m}.
J: Workstation set, J = {1, 2, . . . , j, . . . , n}.
(j, k): the specific station of the workstation j, i.e., the operating orientation of the

station, k = 1, represents left station, k = 2, represents right station.
AL: Task set that can only be assembled in the left station, AL ⊂ I.
AR: Task set that can only be assembled in the right station, AR ⊂ I.
AE: Task set that can be assembled in both left and right stations, AE ⊂ I.
P(i): Task set that contains all immediate precedence tasks of task i.
Pa(i): Task set that contains all precedence tasks of task i.
S(i): Task set that contains all immediate successor tasks of task i.
Sa(i): Task set that contains all successor tasks of task i.
PC: Set of tasks without precedence tasks.
C(i): Task set opposite to operating orientation of task i. C(i) = AL, i ∈ AR; C(i) = AR,

i ∈ AL; C(i) = Φ, i ∈ AE.
K(i): Set of operating orientation indication of a task i. K(i) = {1}, i ∈ AL; K(i) = {2},

i ∈ AR; K(i) = {1, 2}, i ∈ AE.
ts
i : Start time of the task i.

t f
i : Finish time of the task i.

ti: Operation time of the task i, ti = t f
i − ts

i .
ct: Cycle time.
µ: A constant with a larger value.
xijk = {0, 1}: If the task i is assigned to the workstation (j, k), the value is 1, otherwise

it is 0.
zip = {0, 1}: If task i and task p are assigned to the same workstation, the task i is

assigned earlier than task p, the value is 1, otherwise 0.

3.3. Mathematical Model

Equations (1)–(3) are the objective functions, and their calculation formulae are shown
in Equations (4)–(6). STjk = ∑i∈Sjk

ti, is the total working time of tasks which are assigned
to station (j,k), and STmax= max

{
STjk

}
is the maximum one of them. Ct(j, k) represents the

completion time of station (j,k), and Ctmax= max{Ct(j, k)} is the maximum thereof. Equation (7)
indicates that any task can only be assigned to one station. Equations (8) and (9) show cycle
time constraints—that is, the completion time of each station must be less than cycle time.
Equation (10) represents the precedence constraint. Equations (11)–(13) represent sequence-
dependent constraints. Equations (14)–(17) give the definition of each variable.

maxLE (1)

minSI (2)

minCSI (3)
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LE =

nm
∑

i=1
ti

ct ∗ nm
× 100% (4)

SI =

√√√√√ ∑
j∈J

2
∑

k=1
(STmax − STjk)

2

nm
(5)

CSI =

√√√√√ ∑
j∈J

2
∑

k=1
(Ctmax − Ct(j, k)2)

nm
(6)

∑
j∈J

∑
k∈K(i)

xijk = 1, ∀i ∈ I (7)

t f
i ≤ ct, ∀i ∈ I (8)

t f ≥ ti, ∀i ∈ I (9)

∑
g∈J

∑
k∈K(i)

gxhjk ≤ ∑
j∈J

∑
k∈K(i)

jxijk, ∀i ∈ I − P0, h ∈ P(i) (10)

t f − t f
h + µ(1− ∑

k∈K(h)
xhjk) + µ(1− ∑

k∈K(i)
xijk) ≥ ti, ∀i ∈ I − P0, h ∈ P(i), j ∈ J (11)

t f
p − t f

i + µ(1− xpjk) + µ(1− xijk) + µ(1− zip) ≥ tp, ∀i ∈ I,
p ∈ {r|r ∈ I − (Pa(i) ∪ Sa(i) ∪ C(i)), i ≺ r}, j ∈ J, k ∈ K(i) ∪ K(p)

(12)

t f
i − t f

p + µ(1− xpjk) + µ(1− xijk) + µzip ≥ ti, ∀i ∈ I,
p ∈ {r|r ∈ I − (Pa(i) ∪ Sa(i) ∪ C(i)), i ≺ r}, j ∈ J, k ∈ K(i) ∪ K(p)

(13)

xij1 = {0, 1}, i ∈ AL, j ∈ J (14)

xij2 = {0, 1}, i ∈ AR, j ∈ J (15)

xijk = {0, 1}, i ∈ AE, j ∈ J (16)

zip = {0, 1}, ∀i ∈ I, p ∈ {r|r ∈ I − (Pa(i) ∪ Sa(i) ∪ C(i)), i ≺ r} (17)

4. Deep Reinforcement Learning Algorithm Based on DPPO and CNN (DPPO–CNN)
4.1. DPPO–CNN Agent

The architecture of DPPO–CNN with distributed multiple processes is shown Figure 3;
the main process and m subprocess are turned on simultaneously. The main process is
responsible for network training and update (gradient calculation and update), while
the subprocess is only responsible for data acquisition without gradient calculation. The
main process includes the experience pool and the main Actor–Critic network, and each
subprocess includes the child Actor–Critic network. The Actor network is used to make
task assignment decisions at based on the environmental status st of the TAL, while the
Critic network is used to evaluate the quality of task allocation decisions at. Actor–Critic
network structures are shown in Figures 4 and 5.
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Figure 4. Actor network.

(1) Initialize the main Actor–Critic network of the main process and send its parameters
to each subprocess through an orbit.

(2) The child Actor–Critic network of the subprocess loads the main Actor–Critic
network and then interacts with the environment and transmits interactive trajectory (state
matrix s, task assignment decisions a, reward function r) to the main process through an
orbit.

(3) The main process stores the interaction experience of all subprocesses in the
experience pool. When the amount of experience stored in the experience pool exceeds the
capacity of the experience pool, it is packaged as a training set to train the main Actor–Critic
network.

(4) Transfer the updated main Actor–Critic network to each subprocess again and go
back to (1).
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Figure 5. Critic network.

The Actor network is the strategy network, which approximates the optimal task
assignment strategy pθ(at|st) by using the neural network with parameter θ. The network
structure is shown in Figure 4, including a two-layer convolutional network and a three-
layer fully connected network. The dimensional matrix M× N is the input of the network
at time t corresponding to the environmental status st. M is the number of feature vectors,
and N is the number of total assembly tasks. After the matrix is input, two layers of
convolution operations are carried out on it. The convolution Kernel size is as follows:
Kernel = (1, 3). The feature vector obtained after convolution is flattened and input into the
three fully connected layers. The number of nodes in the first two layers is 256, and the
number of nodes in the last layer is N. Then, it is normalized by the SoftMax function and
outputs pθ(at|st) , which is the probability of output task to be assigned at when the Actor
policy network is in the status st.

The Critic network is evaluation network, which approximates the optimal strategy
evaluation value vΨ(st|at) by using the neural network with parameter Ψ. The network
structure is shown in Figure 5. In this paper, the first several layers of the Critic network
structure are the same as that of the Actor network structure, but the last layer is the
linear regression layer; that is, the SoftMax layer in the Actor network is replaced with
vΨ(st|at) = f (h(t); Ψ) = ω ∗ h(t) + b , where vΨ(st|at) is the output of the Critic network
at time t and h(t) is the output of the previous fully connected layer. Ψ is the parameter of
the internal unit node of the network, including the weight ω and the bias item b.

In each subprocess, the learning process is shown in Figure 6. The agent observes
environmental status st of task assignment, makes the selection decision, and outputs
the task to be assigned at and updates the status and gives back the reward rt after the
assignment of task at. The agent can solve the problem through continuous interaction with
the environment. After each problem is solved, the trajectory of the interaction between
the agent and the environment (including status, decision task, and reward) is stored in the
experience pool. These dates are preprocessed to obtain training data in the experience pool.
The interaction between the agent and the environment is suspended when the amount
of data stored in the experience pool reaches its capacity limit. Parts of the training data
are selected randomly by the agent from the experience pool, the network (task allocation
strategy) is updated, and the experience is learned. The higher reward value is obtained
through repeated trial and error, and eventually, the maximization of the cumulative reward
and the optimization of the task allocation strategy can both be realized.
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4.2. Task Assignment State of TAL

As shown in Table 1, there are 18 task assignment state features for the load balancing-
oriented TALBP considered. Values of features 1–5 represent the related sequence numbers
tasks; features 6–18 represent the overall situation of task assignment scheme of TAL; in
particular, values of state features 11–16 are rounded.

Table 1. Task assignment state of TAL.

No. Features Description

1 PTime A task with the longest operation time in the set of tasks without
precedence tasks

2 MFlow A task with the largest spare time caused by matched task in the set of
tasks without precedence tasks

3 SucNum A task with the largest number of successor tasks in the set of tasks
without precedence tasks

4 AllSucNum A task with the largest number of successor tasks

5 MTNum A task with the smallest number of matched tasks in the set of tasks
without precedence tasks

6 Side
The operating orientation of a task with the smallest sequence number
in the set of tasks without precedence tasks (0 is E type of tasks; 1 is
non-E type of tasks)

7 FAN The number of tasks can be selected at present
8 NPN The number of tasks without predecessors at present
9 NER The number of remaining E type of tasks
10 NR The number of remaining non-E type of tasks

11 LRDiffoverAE The load difference of remaining non-E type of tasks/the average time
of remaining E type of tasks

12 RToverAveptO Remaining spare time of current station/the average time of tasks of
current station

13 RToverAveptT Remaining spare time of matched station/the average time of tasks of
matched station

14 OPToverRemain The operation time/remaining time of tasks
15 ARPW Improved position weight
16 RRPW Reverse position weight

17 PreNum A task with the largest number of immediate successor tasks in the set
of tasks without precedence tasks

18 AllPreNum A task with the smallest number of precedence tasks

Original state feature information is abstracted and preprocessed by one-hot encod-
ing to give it two-dimensional arrangement feature information, which is suitable for
subsequent processing by convolutional neural network. If the number of tasks in TAL
is N, the matrix with dimension 18 × N, as the environment state st, can be obtained
after preprocessing.

Figure 7 shows the two types of the initial state matrix of P16 (Figure 8), and the state
feature value of the initial state is shown in Table 2 (Figure 9).
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Figure 7. State matrix of P16: (a) state matrix s1 generated for third column of Table 2; (b) state
matrix s2 generated for fourth column of Table 2.
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Figure 8. P16.

Table 2. Each state feature value of the initial state for P16.

No. Features
State Feature Value
(Task Assignment

Scheme I)

State Feature Value
(Task Assignment

Scheme II)

1 PTime 1 1
2 MFlow 1 1
3 SucNum 1 1
4 AllSucNum 1 1
5 MTNum 1 1
6 ARPW 1 1
7 RRPW 1 1
8 PreNum 1 1
9 AllPreNum 1 1

10 Side 0 0
11 FAN 2 1
12 NPN 2 2
13 NER 10 9
14 NR 6 6
15 LRDiffoverAE 1 1
16 RToverAveptO 3 3
17 RToverAveptT 3 2
18 OPToverRemain 1 1
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Figure 9. Task assignment schemes of P16: (a) task assignment scheme I; (b) task assignment
scheme II.

4.3. Decision of Selecting Tasks

The mask layer is introduced to ensure that only the tasks that meet the constraints
of precedence, operation orientation, and sequence dependence can be selected. Take the
P16 problem as an example; the network parameters θ of the agent Actor strategy adopt
orthogonal initialization. In the state s1 of task assignment in the TAL environment, the
output pθ(a1|s1) is shown in Figure 9. At this time, if sampling is conducted according
to the probability distribution, the task to be assigned is 3, which does not satisfy the
precedence constraint. After processing at the mark layer—as shown in Figure 10—only
task 1 and task 2 satisfy constraints, i.e., they can be selected. At this time, if sampling is
conducted according to probability distribution, task 2 can be selected to be assigned.
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Step 1: Initialize to generate the initial state of the TAL environment.
Step 2: Start a new workstation and set the earliest assignable task time of to 0.
Step 3: Generate a task set At without precedence tasks; alternatively, all of its prece-

dence tasks have already been assigned, according to precedence constraint.
Step 4: Select the station (left or right) with a smallest start time as the assigned

station m. If the start time is the same, choose the left station.
Step 5: Check whether the current workstation is the last one. If yes, perform Step 6;

otherwise, turn to Step 7.
Step 6: Generate the set of assignable tasks Bt for station m.
Generate rules are as follows: (1) select the task without real-time predecessors;

(2) select the task for which the completion time of its immediate predecessors is less
than the earliest task-assignable time of the station; (3) select the task whose operating
orientation is the same as the operating edge of station m.

Step 7. Check whether the task output by the agent is in the set Bt. If it is, turn to
Step 11; otherwise, go to Step 8.

Step 8. If At is an empty set, stop this algorithm; otherwise, perform Step 9.
Step 9. If the earliest task assignable time of station (t1) is earlier than the earliest task

assignable time of the mated station (t2), t1 = t2, and return to Step 5; otherwise, perform
Step 10.

Step 10. If both sides of the station have been scanned, start a new workstation and
return to Step 2; otherwise, scan the other side and return to Step 5.

Step 11. Assign the selected task by DPPO–CNN agent.
Step 12. Update the number of immediate predecessors and their related completion

time of all the unassigned tasks, the earliest task assignable time of station m, and the
assembly line state; then, return to Step 3.

4.5. Reward Function

Reinforcement learning agents can achieve the optimal task assignment strategy
pθ(at|st) by maximizing cumulative rewards (rsum) and then realize the optimization objec-
tives. Sparse reward is adopted by the traditional deep reinforcement learning algorithm,
i.e., rewards r1, r2, . . . , rn−1 are all equal to 0 until all tasks have been assigned. The
environment gives feedback reward rn to the agent; then, the accumulate reward rsum = rn.
This is an easy way to converge the algorithm because for many tasks, the agent can obtain
positive samples with a certain probability by conducting random exploration in the envi-
ronment, and the positive samples occupy a relatively significant proportion of the total
samples at the early stage of learning.

However, with the increase in task complexity, the probability of obtaining positive
samples through random exploration becomes small, and the sparse feedback signals
cannot indicate the exploration direction for the agent. The algorithm will be difficult
to converge or the convergence speed will be very slow. To overcome this problem, it is
necessary to add other reward items or punishment items to make the reward function
become dense, and to guide the agent to explore the environment more efficiently [39].
In this paper, for objective LE, if both the operation time of the tasks and the number
of stations are determined, the smaller the ct, the higher the LE. For objective SI, if the
workloads of tasks which are assigned to a station are substantially equal to cycle time of
that station, the difference between the STmax and the STi will be small, and so will the SI.
Similarly, for objective CSI, if the completion time of a station is substantially equal, the
value of CSI is small, which means the operation of the assembly line is stable and balanced.
Therefore, the values of SI and CSI will decrease if the idle time of each station is reduced.

There are two types of idle time that can be generated on a two-sided assembly line
due to its parallel structure and the sequence-dependent relationship of its tasks, as shown
in Figure 12: (1) End idle time—If the completion time of the current station will exceed
the cycle time when the new task is assigned to the current station, the new task has to be
assigned to the next station. In this case, the completion time of the current station will be
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less than the cycle time, and the time difference between the completion time of the current
station and cycle time is the end idle time. As shown in Figure 12, on workstation 1, after
task 5 is completed, task 4 needs to be assigned, but if the operation time of task 4 is 9,
whether it is assigned to the left or right stations of workstation 1, the completion time will
exceed cycle time 18; therefore, task 4 has to be assigned to workstation 2, and there has to be
idle time at the end of the left and right stations of workstation 1. (2) Sequence-dependent
idle time—If sequence-related tasks are assigned to the left and right stations of the same
workstation, due to the absolute sequence constraint between them, this may lead to a
situation in which some tasks may have to sit idle and wait, and this kind of idle time inside
stations is called sequence-dependent idle time. As shown in Figure 12, on workstation 2,
task 7, assigned to right station, can not be started from time 0 because its immediate
precedent, task 4, is assigned to left station of the same workstation. Task 7 has to wait
before task 4 is completed; therefore, there are nine time unitsof sequence-dependent idle
time before task 7, which is caused by task 4.
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Moreover, the logic of task assignment in this paper may cause the cycle time of the
last workstation to be much larger than that of all other workstations, as shown in Figure 12.
Due to fewer tasks being assigned to the first two stations, more tasks are assigned to the
last workstation (3), resulting in the overloading of the completion time of workstation 3.
Therefore, the difference between the actual cycle time of the last station (i.e., its completion
time) and the ideal cycle time should be controlled.

Under these conditions, the reward function is set as follows during the task assign-
ment process:

(1) If a task is the last task at the current station and there is end idle time at the current
station, the reward function r is calculated as Equation (18):

r = − (end idle time o f the current station); (18)

(2) If there is idle time in the station caused by a between thesequence-dependent
relationship of tasks, i.e., sequence-dependent idle time, the reward function r is calculated
as Equation (19):

r = − (sequence− dependent idle time); (19)

(3) If all tasks have been assigned in the last station, the reward function r is calculated
as Equation (20):

r = −( le
LE

+
SI
si

+
CSI
csi

+ ctactual − ctideal), (20)

where ctactual represents the actual cycle time of the last station (i.e., its completion time)
and ctideal represents the ideal cycle time;

(4) The other state is equal to 0, as shown in Equation (21):

r = 0. (21)
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4.6. Overall Flow of DPPO–CNN

The overall flow of the proposed DPPO–CNN for TALBP-BL (Algorithm 1) is as follows.

Algorithm 1 Load balancing-oriented TALBP based on DPPO–CNN

1: Initializes the Actor–Critic network parameters θ, ϕ for the main process, maximum iteration
number, experience pool capacity buffer size, maximum experience pool capacity max buffer size,
batch data size, number of network updates of each round epoch; Subprocess Actor–Critic
network parameters θ, ϕ.
2: for each episode do:
3: t = 1.
4: The main process empties the experience pool, sends its Actor–Critic network parameters θ, ϕ

to each child process; each sub-process bilateral assembly line environment 1, 2, 3, . . . , m is
initialized, generates states S1

t , S2
t , S1

t , . . . , Sm
t ; each agent 1, 2, 3, . . . , m loads the network

parameters of the main process.
5: while buffer size < max buffer size do:
6: while all tasks of m’s respective bilateral assembly lines have not been allocated do:
7: Agent 1, 2, 3, . . . , m observes the environment status S1

t , S2
t , S1

t , . . . , Sm
t , respectively, and takes

the tasks a1
t , a2

t , a1
t , . . . , am

t to be assigned according to strategy pθ(at|st) .
8: Environment 1, 2, 3, . . . , m allocates tasks a1

t , a2
t , a1

t , . . . , am
t separately, and feedback reward r1

t ,
r2

t , r1
t , . . . , rm

t .
9: t = t + 1.
10: Environment 1, 2, 3, . . . , m update states S1

t , S2
t , S1

t , . . . , Sm
t .

11: end while
12: Agent 1, 2, 3, . . . , m stores the interactive trajectory (solving experience) τ1, τ2, τ3, . . . , τm,
respectively, in the experience pool and packages it as training data.
13: end while
14: for epoch in {1, 2, . . . , epochs} do:
15: Randomly extract the training data with the size of batch size from the experience pool.
16: Calculate the network loss function of the actor strategy of the master process; evaluate the
critic loss function of the master process.
17: Update the main process Actor’s policy network pθ(at|st) .
18: Update the main process Critic’s evaluation network vϕ(st, at).
19: end for
20: θold, ϕold ← θ, ϕ .
21: end for

5. Experimental Verification and Discussions
5.1. Implementation of the DPPO–CNN

In this paper, 59 instances of the benchmark problem (P9 [42] (Figure A1), P12 [42]
(Figure A1), P16 [6] (Figure 8), P24 [42] (Figure A1), P65 [6] (Figure A2), P148 [5,6] (Table A1),
and P205 [6] (Table A2)) are utilized to test the performance of the proposed DPPO–CNN. In
addition, the DPPO–CNN algorithm is programmed in Python 3.6 and runs on a personal
computer with Ubuntu 20.04LTS, 2.90 GHz CPU frequency, and the 16 g memory.

The parameters of DPPO–CNN are mainly decided according to the empirical values
and the actual data of the agent interaction process, as listed in Table 3.
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Table 3. Parameters of DPPO–CNN.

Parameter Value Parameter Value

Number of hidden layers on the Actor
and Critic network 256 Learning rate of the

Actor network 10−4

Activation function of hidden layers
on the Actor and Critic network Leaky Relu Learning rate of the

Critic network 2 × 10−4

Activation function of output layers
on the Actor network Softmax Sample size 256

Activation function of output layers
on the Critic network Leaky Relu Maximum capacity of

the experience pool 4096

Convolution kernel of convolution
layers on the Actor and Critic network (1, 3) Study times per

round 8

Initialize network parameters Orthogonal
initialization

Return discount
factor 0.99

Optimizer Adam Cutting coefficient 0.2

5.2. Verification of DPPO–CNN in Term of Model Training

To verify the performance of distributed multiple processes of DPPO–CNN, the model
training results of DPPO–CNN are compared with the deep reinforcement learning with
single process, named the PPO–CNN, which uses the same parameters, state matrix, and
reward function. To clarify the effect of distributed multiple processes, P16 is used as the
representative of small-scale cases and P65 as the representative of large-scale cases for
detailed explanation, as shown in Figures 13 and 14.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 16 of 26 
 

Table 3. Parameters of DPPO–CNN. 

Parameter Value Parameter Value 

Number of hidden layers on 

the Actor and Critic 

network 

256 
Learning rate of the Actor 

network 
10−4 

Activation function of 

hidden layers on the Actor 

and Critic network 

Leaky Relu 
Learning rate of the Critic 

network 
2 × 10−4 

Activation function of 

output layers on the Actor 

network 

Softmax Sample size 256 

Activation function of 

output layers on the Critic 

network 

Leaky Relu 
Maximum capacity of the 

experience pool 
4096 

Convolution kernel of 

convolution layers on the 

Actor and Critic network 

(1, 3) Study times per round 8 

Initialize network 

parameters 

Orthogonal 

initialization 
Return discount factor 0.99 

Optimizer Adam Cutting coefficient 0.2 

5.2. Verification of DPPO–CNN in Term of Model Training 

To verify the performance of distributed multiple processes of DPPO–CNN, the 

model training results of DPPO–CNN are compared with the deep reinforcement learning 

with single process, named the PPO–CNN, which uses the same parameters, state matrix, 

and reward function. To clarify the effect of distributed multiple processes, P16 is used as 

the representative of small-scale cases and P65 as the representative of large-scale cases 

for detailed explanation, as shown in Figures 13 and 14. 

   

(a) (b) (c) 

Figure 13. Comparison between DPPO–CNN and PPO–CNN in term of model training (P16): (a) 

cumulative reward curves; (b) loss curves of the Actor network; (c) loss curves of the Critic network. 
Figure 13. Comparison between DPPO–CNN and PPO–CNN in term of model training (P16):
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Critic network.

Figure 13a shows the cumulative reward curves of DPPO–CNN and PPO–CNN for
P16; we can see that: (1) the cumulative rewards of both DPPO–CNN and PPO–CNN
are increasing gradually, and they converge after 60 rounds of training; this verifies the
effectiveness of our algorithm indirectly; (2) the cumulative reward curve of DPPO–CNN
algorithm is rising faster than that of PPO–CNN algorithm, which shows that DPPO–CNN
is better than PPO–CNN; (3) the gap is not obvious because of P16 is relatively simple and
both algorithms can obtain a good solution strategy quickly. However, from the related
results of large-scale case P65 (Figure 14a,b), the advantages of DPPO–CNN are very
prominent; the convergance of PPO–CNN needs 1200 rounds of training, whereas that of
DPPO–CNN only needs 600 rounds. The study concludes that the distributed architecture
designed in this paper is helpful in solving large-scale cases. A similar conclusion can be
also obtained from the comparison between DPPO–CNN and PPO–CNN in terms of loss
curves in P16 and P65, respectively, as shown in Figure 13b,c and Figure 14c,d.
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5.3. Verification of DPPO–CNN in Term of Solutions

The trained Actor–Critic network model of the DPPO–CNN agent is saved and utilized
to solve the load balancing-oriented TALBP of all 59 instances with different scales. Both
DPPO–CNN and PPO–CNN algorithms are ran 20 times for problem instance and the best
results are record and exhibited in Table 4.

As can be seen from Table 4, the solution of the DPPO–CNN algorithm is superior
to that of the PPO-TALBP algorithm in 49 cases out of all 59 test cases, which shows
the absolute advantage of DPPO–CNN. Furthermore, (1) both DPPO–CNN and PPO–
CNN perform well in solving the load balancing-oriented TALBP, especially in small-
scale cases (P9, P12, P16, and P24), which shows that the main architecture of the deep
reinforcement learning algorithm combining distributed proximal policy optimization
(DPPO) and the convolutional neural network (CNN) is tenable; (2) DPPO–CNN has
outstanding performance in solving large-scale cases (P65, P148, and P205). Take P148
with cycle time 255 as an example, LE = 91.34%, SI = 34.17, and CSI = 26.78 obtained
by PPO–CNN, while LE = 99.53%, SI = 1.98, and CSI = 1.98 obtained by DPPO–CNN.
Obviously, both SI and SCI decrease significantly, which means the load is more balanced.
In addition, through calculation, it is found that in large-scale cases (P65, P148, and P205)
that the solutions obtained by DPPO–CNN have an average increase of 7.89% in LE, an
average decrease of 76.71% in SI, and an average decrease of 74.92% in CSI compared
to the solutions obtained by PPO–CNN. (3) Although both DPPO–CNN and PPO–CNN
perform excellently in terms of calculation time, the solution speed of DPPO–CNN is
significantly better than that of PPO–CNN. For example, each kind of P65 instance can be
resolved by DPPO–CNN within 0.04 s, while PPO–CNN resolves them 0.1 s; the calculation
time here refers to the online solving time of the instance after the training is complete.
Considering the fact that model training time makes up the majority of the running time of
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deep reinforcement learning algorithms, the comparison of the offline training time of the
proposed DPPO–CNN and PPO–CNN is shown in Table 5. We can see that compared with
PPO–CNN, DPPO–CNN also performs better in terms of offline training time.

Table 4. Result comparison.

Instance ct ns PPO-CNN DPPO–CNN
LE SI CSI Time(s) LE SI CSI Time(s)

P9 3 3 94.44% 0.41 0.41 0.004 94.44% 0.41 0.41 0.001
4 3 85.00% 1.87 1.87 0.004 94.44% 0.41 0.41 0.001
5 2 85.00% 1.12 1.12 0.004 85.00% 1.12 1.12 0.001
6 2 70.83% 2.50 1.58 0.005 85.00% 1.12 1.12 0001
7 2 60.71% 3.57 3.57 0.005 85.00% 1.12 1.12 0.001

P12 4 4 78.13% 1.37 1.37 0.007 78.13% 1.37 1.37 0.002
5 3 83.33% 1.23 0.91 0.007 83.33% 1.23 0.91 0.002
6 3 83.33% 2.97 2.97 0.008 83.33% 1.23 0.91 0.002
7 2 89.29% 1.12 1.12 0.008 89.29% 1.12 1.12 0.003
8 2 78.13% 1.94 1.23 0.008 89.29% 1.12 1.12 0.003
9 2 69.44% 3.35 1.87 0.009 89.29% 1.12 1.12 0.003

P16 15 4 78.095% 7.18 7.09 0.009 78.095% 7.18 7.09 0.003
16 3 85.42% 2.94 2.52 0.009 85.42% 2.94 2.52 0.004
18 3 75.93% 4.97 2.55 0.010 85.42% 2.94 2.52 0.004
19 3 71.73% 5.86 2.38 0.011 85.42% 2.94 2.52 0.006
20 3 68.33% 6.81 2.83 0.011 85.42% 2.94 2.52 0.006
21 3 65.08% 8.56 6.18 0.012 85.42% 2.94 2.52 0.007
22 2 93.18% 1.87 1.58 0.013 93.18% 1.87 1.58 0.007

P24 18 4 97.22% 0.71 0.61 0.014 97.22% 0.71 0.61 0.009
20 4 87.5% 2.92 2.03 0.015 97.22% 0.71 0.61 0.009
24 3 97.22% 1.00 0.71 0.017 97.22% 1.00 0.71 0.010
25 3 95.33% 2.52 2.52 0.017 97.22% 1.00 0.71 0.010
30 3 77.78% 7.92 5.21 0.020 97.22% 1.00 0.71 0.013
35 2 100% 0.00 0.00 0.020 100% 0.00 0.00 0.014
40 2 87.50% 6.82 2.55 0.020 100% 0.00 0.00 0.014

P65 326 8 97.76% 9.99 9.94 0.076 98.36% 8.79 8.79 0.024
381 7 95.59% 27.42 25.03 0.079 98.98% 6.10 6.10 0.027
435 6 97.68% 12.37 11.58 0.083 99.28% 4.59 4.59 0.030
490 6 86.72% 102.11 40.07 0.087 99.28% 4.59 4.59 0.032
512 5 99.59% 2.70 2.70 0.092 99.59% 2.70 2.70 0.037
544 5 93.73% 43.76 36.76 0.100 99.59% 2.70 2.70 0.038

P148 204 13 96.61% 9.52 9.52 0.175 99.53% 1.66 1.66 0.094
228 12 93.64% 22.61 17.38 0.181 99.30% 2.43 2.43 0.097
255 11 91.34% 34.17 26.78 0.193 99.53% 1.98 1.98 0.101
306 9 93.03% 32.58 20.76 0.211 99.35% 2.08 2.08 0.113
357 8 89.71% 57.34 52.67 0.242 99.46% 2.18 2.18 0.118
378 7 96.83% 20.44 5.09 0.256 99.73% 2.00 2.00 0.123
408 7 89.71% 72.79 31.40 0.263 99.73% 2.00 2.00 0.127
454 6 94.05% 40.96 13.82 0.271 99.77% 1.58 1.58 0.136
459 6 93.03% 41.95 33.69 0.281 99.77% 1.58 1.58 0.144
510 6 83.73% 133.08 128.98 0.297 99.77% 1.58 1.58 0.149

P205 1133 11 93.66% 103.255 76.98 0.761 98.44% 24.44 16.49 0.391
1275 10 91.55% 157.90 108.27 0.783 98.34% 26.75 19.20 0.420
1322 9 98.11% 35.00 29.71 0.789 98.70% 29.50 12.09 0.438
1455 9 89.14% 202.97 119.14 0.821 98.70% 29.50 12.09 0.445
1510 8 96.63% 63.64 34.84 0.843 98.85% 25.94 17.83 0.461
1650 8 88.43% 265.00 96.17 0.855 98.85% 25.94 17.83 0.474
1699 7 98.15% 46.30 19.52 0.857 98.79% 30.93 13.99 0.480
1888 7 88.32% 374.85 253.90 0.864 98.79% 30.93 13.99 0.499
1920 7 86.85% 447.20 371.80 0.869 98.79% 30.93 13.99 0.502
2077 6 93.67% 197.45 121.67 0.888 98.90% 36.08 11.42 0.518
2100 6 92.64% 205.35 157.83 0.891 98.90% 36.08 11.42 0.523
2266 6 85.85% 459.64 395.98 0.907 98.90% 36.08 11.42 0.542
2300 6 84.58% 516.95 456.03 0.912 98.90% 36.08 11.42 0.549
2454 5 95.13% 219.16 63.68 0.920 99.08% 34.69 11.02 0.558
2500 5 93.38% 251.86 112.88 0.944 99.08% 34.69 11.02 0.565
2643 5 88.33% 419.17 277.99 0.952 99.08% 34.69 11.02 0.577
2800 5 83.38% 683.82 659.15 0.981 99.08% 34.69 11.02 0.582
2832 5 82.43% 735.43 711.63 0.992 99.08% 34.69 11.02 0.589
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Table 5. Comparison of the offline training times of DPPO–CNN and PPO–CNN.

Instance
Training Time (h)

DPPO–CNN PPO-CNN

P9 0.15 0.10
P12 0.20 0.12
P16 0.35 0.20
P24 0.50 0.35
P65 1.00 0.68

P148 1.50 0.95
P205 4.00 2.34

6. Conclusions and Future Work Avenues

In this article, the load balancing-oriented TALBP has been studied and a deep rein-
forcement learning algorithm combining distributed proximal policy optimization (DPPO)
and convolutional neural network (CNN) has been presented. To the best of our knowl-
edge, this is the first attempt to solve the load balancing-oriented TALBP based on deep
reinforcement learning. A mathematical model with objectives of optimizing line efficiency
(LE), smoothness index (SI), and completion time smoothness index (CSI) is provided.
In the proposed deep reinforcement learning algorithm, distributed multiple processes
have been proposed to improve the search speed and capability of solutions. A total of
18 task assignment state features for the load balancing-oriented TALBP environment have
been considered, which ensure that the agent can obtain more useful information from the
environment and perform optimal selection as completely as possible, and different reward
functions according to objectives and their implicit information have been proposed to
guide good solution direction. Fianlly, the performance of the proposed algorithm has been
verified on all scales of benchmark instances via a comparison with the single-process deep
reinforcement learning algorithm in terms of model training and solution results.

Although the proposed algorithm performs better in this study, there is still the
possibility of improvement; for example, we could directly obtainin the Pareto-optimal
solution set using the deep reinforcement learning algorithm and/or extend the application
of the proposed algorithm to other versions of the TALBP or other types of assembly lines,
such as linear and parallel assembly lines, as well as similar production planning problems,
such as the two-sided disassembly line balancing problem [43], the assembly sequence
problem [44], and so on.
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Table A1. P148.

NO. Time Side Immediate
Sucessors NO. Time Side Immediate Sucessors

1 16 E 5, 6, 7, 8 75 101 E 88, 97
2 30 E 3 76 5 E 77
3 7 E 4, 5, 6, 7 77 28 E 78
4 47 E 8 78 8 E 79
5 29 E 14 79 111 E 80
6 8 E 9 80 7 E 81
7 39 E 14 81 26 E 106
8 37 E 10 82 10 E 83, 89, 143, 146
9 32 E 14 83 21 E
10 29 E 14 84 26 E 85
11 17 E 12 85 20 E
12 11 E 13 86 21 E
13 32 E 87 47 E
14 15 E 15, 16 88 23 E 111
15 53 L 17 89 13 E 90
16 53 R 17 90 19 E 79
17 8 E 18, 19 91 115 E 105
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Table A1. Cont.

NO. Time Side Immediate
Sucessors NO. Time Side Immediate Sucessors

18 24 L 20 92 35 E 135
19 24 R 20 93 26 L
20 8 E 21, 22, 23, 24 94 46 E
21 7 R 25, 26, 27, 28 95 20 E 101
22 8 L 25, 26, 27, 28 96 31 E 104
23 14 L 25, 26, 27, 28 97 19 E
24 13 R 25, 26, 27, 28 98 34 E 101
25 10 R 29 99 51 E 100
26 25 R 29 100 39 E 101
27 11 L 29 101 30 E 102, 103
28 25 L 29 102 26 E 127
29 11 E 31 103 13 E 127
30 29 R 104 45 E
31 25 E 36 105 58 E 119
32 10 L 34 106 28 E 107
33 14 R 35 107 8 E 108
34 41 L 36 108 43 E 109
35 42 R 36 109 40 E 110
36 47 R 37 110 34 E
37 7 R 38, 45 111 23 E 112
38 80 R 39 112 162 L 113
39 7 R 40 113 11 L 114, 116, 120, 123, 128
40 41 R 41, 48, 55 114 19 E 115
41 47 R 115 14 E 125
42 16 L 43 116 31 E 117
43 32 L 44 117 32 E 118
44 66 L 118 26 E 126
45 80 L 46 119 55 E
46 7 L 47 120 31 E 121
47 41 L 48, 49, 55 121 32 E 122
48 13 E 122 26 E 126
49 47 L 123 19 E 124
50 33 E 51 124 14 E 125
51 34 L 53,69 125 19 E
52 11 L 53 126 48 E
53 118 L 127 55 E
54 25 L 133 128 8 L 129
55 7 R 54, 72, 76, 87, 88 129 11 L 130
56 28 E 73 130 27 L 131, 137
57 12 L 79 131 18 L
58 52 L 84, 86 132 36 E 135
59 14 E 75, 87 133 23 L 135
60 3 E 134 20 R 135
61 3 E 62 135 46 E 136
62 8 E 63 136 64 E
63 16 E 67 137 22 L
64 33 R 65, 71, 72 138 15 E 139
65 8 E 66,99 139 34 E 140
66 18 E 67 140 22 E
67 10 E 68 141 151 L 142
68 14 E 95,98 142 148 R 143, 146, 147, 148
69 28 R 82 143 64 L
70 11 R 71 144 170 L 145
71 118 R 145 137 R 147, 148
72 25 R 134 146 64 R
73 40 E 84, 86, 87, 88, 96 147 78 L
74 40 E 75 148 78 R
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Table A2. P205.

NO. Time Side Immediate Sucessors NO. Time Side Immediate Sucessors

1 692 E 36 104 68 R 113
2 42 E 3, 4 105 232 L 106, 107
3 261 R 5 106 122 L 108
4 261 L 5 107 151 E 108
5 157 E 7, 13 108 31 L 113
6 90 E 36 109 97 E 113
7 54 R 8 110 308 R 113
8 67 R 9 111 116 L 113
9 30 R 10 112 312 R 113

10 106 R 11 113 34 E

114, 115, 116, 117, 118, 119,
120, 121, 122, 123, 124, 161,
162, 163, 169, 171, 174, 203,
204, 205

11 32 R 12 114 128 L 160
12 62 R 36 115 54 E 160
13 54 L 14 116 175 R 160
14 67 L 15 117 55 E 160
15 30 L 16 118 306 E 126
16 106 L 17 119 59 E 126
17 32 L 18 120 59 E 126
18 62 L 36 121 66 E 126
19 56 E 36 122 66 E 126
20 67 E 22 123 23 E 126
21 86 E 22 124 244 E 125
22 37 E 23 125 54 E 126
23 41 E 24, 34 126 294 R 127, 128, 129
24 72 E 26, 27, 28 127 84 E 135
25 86 R 28 128 61 E 135
26 16 L 35 129 57 E 135
27 51 R 35 130 38 R 136
28 66 R 29 131 944 E 132
29 41 R 30, 33 132 511 R 133
30 72 R 31, 32 133 625 R 189
31 51 R 35 134 445 R 189

32 16 R 35 135 68 L
136, 137, 138, 139, 140, 141,
142, 144, 145, 147, 148, 149,
150, 151, 152, 153, 158

33 15 R 35 136 53 L 189
34 15 L 35 137 49 E 160
35 85 E 36 138 92 E 160

36 59 E 37, 40, 41, 42, 62, 69, 72, 75, 83,
110, 111, 112 139 236 E 160

37 23 L 38 140 116 L 143
38 13 L 39 141 265 L 143
39 19 L 45 142 149 L 143
40 108 E 43, 54 143 74 L 160
41 214 E 92 144 332 E 160
42 80 E 43, 54 145 324 E 146
43 37 L 44 146 104 L 160
44 84 L 45 147 51 L 160
45 18 L 46, 48, 51, 53 148 58 R 160
46 12 L 47 149 67 R 160
47 29 L 92 150 49 R 160
48 37 L 49 151 107 E 160
49 13 L 50 152 38 L 160
50 70 L 92 153 27 L 154
51 217 L 52 154 68 E 155
52 72 L 92 155 207 E 156
53 85 L 92 156 202 E 157
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Table A2. Cont.

NO. Time Side Immediate Sucessors NO. Time Side Immediate Sucessors

54 43 R 55 157 83 E 189
55 97 R 56, 59, 61 158 35 R 159
56 37 R 57 159 58 R 189
57 13 R 58 160 42 E 164, 170, 178, 179, 184
58 35 R 92 161 68 R 167
59 217 R 60 162 68 R 165
60 72 R 92 163 68 R 164
61 85 R 92 164 103 R 165
62 25 E 63 165 103 R 166
63 37 E 64 166 103 R 167
64 37 E 65, 68 167 103 R 168
65 103 E 66 168 103 R 177
66 140 E 67 169 68 L 170
67 49 E 80 170 103 L 172
68 35 E 80 171 68 L 172
69 51 E 70 172 103 L 173
70 88 E 71 173 103 L 175
71 53 E 73 174 68 L 175
72 144 E 73 175 103 L 176
73 337 E 74 176 103 L 177
74 107 E 76 177 10 E 185, 186, 187, 188, 194, 195
75 371 E 92 178 187 E 180
76 97 E 77, 78, 79 179 134 L 180
77 166 E 80, 82 180 89 L 181, 183
78 92 L 80 181 58 L 182
79 92 R 80 182 49 L
80 106 E 81 183 134 L
81 49 E 84 184 53 L
82 92 E 92 185 334 E 189
83 371 E 92 186 24 R 189
84 87 E 85 187 76 R 189
85 162 E 86, 88, 90 188 76 L 189
86 96 E 87 189 192 E 190, 191, 193
87 79 E 92 190 98 E
88 96 E 89 191 258 R 192
89 42 E 92 192 165 E
90 88 R 91 193 38 R
91 90 R 92 194 115 E 197
92 97 R 93, 94, 95, 96, 97, 98, 99 195 83 L 196
93 270 R 135 196 56 R 197
94 452 E 135 197 29 R 198, 199, 201
95 48 R 113 198 303 R
96 338 E 113 199 18 R 200
97 34 E 100 200 29 R
98 65 E 100 201 154 L 202
99 50 E 100 202 90 L
100 112 E 101, 103, 105, 109, 130, 131, 134 203 93 L
101 48 E 102 204 94 E
102 117 E 113 205 165 E
103 50 E 104
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13. Yılmaz, D.; Emel, K.A.; Uğur, Ö.; Mehmet, S.İ. A modified particle swarm optimization algorithm to mixed-model two-sided

assembly line balancing. J. Intell. Manuf. 2017, 28, 23–36.
14. Huang, D.; Mao, Z.; Fang, K.; Yuan, B. Combinatorial Benders decomposition for mixed-model two-sided assembly line balancing

problem. Int. J. Prod. Res. 2022, 60, 2598–2624. [CrossRef]
15. Kim, Y.K.; Song, W.S.; Kim, J.H. A Mathematical Model and a Genetic Algorithm for Two-sided Assembly Line Balancing. Comput.

Oper. Res. 2009, 36, 853–865. [CrossRef]
16. Lei, D.; Guo, X. Variable neighborhood search for the second type of two-sided assembly line balancing problem. Comput. Oper.

Res. 2016, 72, 183–188. [CrossRef]
17. Kang, H.; Lee, A.H.I. An evolutionary genetic algorithm for a multi-objective two-sided assembly line balancing problem: A case

study of automotive manufacturing operations. Qual. Technol. Quant. Manag. 2023, 20, 66–88. [CrossRef]
18. Azizoglu, M.; Imat, S. Workload smoothing in simple assembly line balancing. Comput. Oper. Res. 2018, 89, 51–57. [CrossRef]
19. Walter, R.; Schulze, P. On the performance of task-oriented branch-and-bound algorithms for workload smoothing in simple

assembly line balancing. Int. J. Prod. Res. 2022, 60, 4654–4667. [CrossRef]
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Abstract: With the increasing adoption of smart factories in manufacturing sites, a large amount
of raw data is being generated from manufacturers’ sensors and Internet of Things devices. In
the manufacturing environment, the collection of reliable data has become an important issue.
When utilizing the collected data or establishing production plans based on user-defined data, the
actual performance may differ from the established plan. This is particularly so when there are
modifications in the physical production line, such as manual processes, newly developed processes,
or the addition of new equipment. Hence, the reliability of the current data cannot be ensured. The
complex characteristics of manufacturers hinder the prediction of future data based on existing
data. To minimize this reliability problem, the M5P algorithm, is used to predict dynamic data using
baseline information that can be predicted. It combines linear regression and decision-tree-supervised
machine learning algorithms. The algorithm recommends the means to reflect the predicted data in
the production plan and provides results that can be compared with the existing baseline information.
By comparing the existing production plan with the planning results based on the changed master
data, it provides data results that help production management determine the impact of work
time and quantity and confirm production plans. This means that forecasting data directly affects
production capacity and resources, as well as production times and schedules, to help ensure efficient
production planning.

Keywords: production planning; predictive modeling; master data; machine learning; M5P Algorithm

1. Introduction

Supply chain management (SCM) is being studied and rapidly applied to manufactur-
ing floors, where artificial intelligence (AI) can provide visibility and transparency for rapid
and responsive decision making. This research helps improve quality control, reduce de-
fects, and increase customer satisfaction [1]. Many studies have been conducted to identify
the contribution of AI to SCM through systematic reviews of manufacturing systems [2].
Production planning and scheduling are at the core of SCM. These are important problems
in various industries and require efficient scheduling methods to improve productivity and
reduce costs [3]. Researchers have been working on solving workshop scheduling problems
using machine learning algorithms, and their contributions can be seen. These studies show
that there is a need for research to improve the production planning process by applying
new algorithms in various fields. This research aims to investigate how technology can be
applied to production planning in the field of supply chain management.

Modern manufacturing systems are increasingly complex, dynamic, and connected.
Recent advances in AI, particularly machine learning, have shown great potential to trans-
form the manufacturing sector, as the myriad of uncertainties and interdependencies make
factory operations highly non-linear and stochastic [4]. It is contended that that AI can
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be used to improve the quality of data, optimize processes, and make better decisions [5].
Since the Industrial Revolution, the mass production system has been discarded completely
in favor of multi-product, low-volume production to satisfy the complex and diverse needs
of customers. Moreover, the life-cycle of products has been shortened. The complexity of
the manufacturing process from demand to production to shipment has increased exponen-
tially with technological advances. Manufacturers have factories in multiple locations that
provide products through multiple supply chains. In this increasingly complex manufac-
turing environment with multiple tradeoffs, production planning within a given capacity
should be performed appropriately to satisfy various constraints and demands. In the
current competitive and dynamic business environment, reliable data has become even
more important with the advancement of Internet of Things (IoT) and cloud technology.
Furthermore, predicting and utilizing data from numerous sources remains a key challenge
in the current situation.

Production planning has a wide range of influences on SCM. The objective of SCM is
to improve efficiency, quality, productivity, and customer satisfaction. It plays an impor-
tant role in achieving these objectives [6]. Production planning optimizes the use of raw
materials and resources, coordinates production volumes and schedules, and efficiently
manages the production process. It can help identify and improve problems in areas such
as inventory management, production line efficiency, and productivity. Thereby, it provides
factors that can have a positive impact [7].

It learns baseline information data (which form the basis of production planning
according to performance data) and makes predictions using machine learning, compares
with and reflects on existing master data, establishes plans through the production planning
system, and provides indicators to help manage production.

Section 1 presents the background and purpose of the study, as well as the method-
ology and organization of the study. Section 2 describes the importance of master data
from the perspective of the manufacturing industry before outlining the contents of the
study. Section 3 describes the algorithms applied from a technical point of view and dis-
cusses previous research. Section 4 describes the design of the process. Section 5 provides
the experimental results and discussion. Section 6 summarizes the results, presents the
limitations, and considers directions for future research.

2. Related Work
2.1. The Importance of Managing Manufacturer Master Data

With the development of technology and the application of the industrial IoT, a
large amount of data is being generated in research and development processes in the
manufacturing domain. These include manufacturing procedures, enterprise management,
and product transactions [8]. Data directly related to production efficiency are managed
closely and respond to change. Among the master data in production, the yield and tact time
are the two key metrics used by manufacturers to measure the production efficiency. Low
yields indicate that manufacturers are producing defective products. This can cause low
customer satisfaction, lost revenue, and increased production costs. Accurately estimating
and managing tact time also enables the forecasting and planning of production volumes
and production schedules. This, in turn, enables production to be planned efficiently and
maintains the production line running smoothly. This also implies a reduction in the
process lead time and thereby, a faster production and more rapid dispatch of products
to customers [9]. An improvement in the efficiency of the production process can be an
important indicator of customer satisfaction. This is because it enables producers to respond
better to the diverse needs of their customers.

In this respect, both the datasets contribute to increased productivity and improved
quality. As variable baseline information is critical for manufacturers to improve the pro-
duction efficiency, reduce costs, and enhance customer satisfaction, manufacturers can
monitor these data and undertake action to improve the overall business performance [10].
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2.2. How to Estimate Manufacturer Master Data

Forecasting the data values of the two master datasets (yield and tact time) can help
manufacturers optimize their production processes and ensure that they manufacture the
products they require to satisfy the demand in a timely manner [11]. Several methods can
be used to forecast data. One of these is to use historical data (where past performance
data can be used to identify factors that can affect the yield and tact time) and predict the
future values of these factors. Another method to predict the baseline information is to
use a simulation. Simulations can be used to model the manufacturing process in a virtual
environment. Moreover, the model can be used to test different operating conditions and
determine their effect on the measured data [12].

This is a simplified way of saying that master data that must to be predicted are
analyzed and applied to the manufacturing floor. Figure 1 shows the conventional methods
of processing data by analyzing these using a structured system implementation logic
based on past performance data. The processed data are ultimately applied based on the
user’s assessment, which is dependent on the user input.

Figure 1. Traditional Method for Advanced Data Collection and Analysis in Data-Driven Manufac-
turing Processes [13].

2.3. Highly Advanced Methods to Manage Manufacturer Master Data

In a manufacturer’s smart factory, the IoT enables sensors and other devices to collect
and transmit data to monitor and control baseline information in real time. With rapid
advances in AI technology and hardware performance, machine learning has attained a
level of sophistication that manufacturers can use to identify patterns in historical data
and predict baseline information [14]. This indicates that preprocessed master data can
be analyzed using machine-learning algorithms to predict and reflect the results in real
time [15]. Real-time data are limited by the fact that it does not fully account for the inter-
actions and uncertainties between different variables. This can be overcome by utilizing
various machine-learning algorithms. It is challenging for existing job-planning techniques
to obtain effective optimal solutions using an individual numerical analysis method for
complex distributed resource-planning problems. The effectiveness of the proposed hybrid
methodology is demonstrated through a comprehensive case study of manufacturers [16].
To address uncertainty, many methods to predict data are being researched actively. These
include the use of fuzzy logic to model ambiguous input variables and environmental
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factors and the use of nonlinear programming techniques to identify optimal decision
variables [17]. Research and demonstrations are being conducted at present to construct
machine-learning models based on real-time data collected from various sensors for identi-
fying normal and abnormal conditions [18].

Taken together, these studies show that manufacturing master data management is
evolving to focus on leveraging data, analytics, and automation. Adopting AI technology
can optimize production processes, improve quality, manage reference information more
efficiently and effectively, and improve the overall performance of the production pro-
cess [19]. As shown in Figure 2, AI can help manufacturers collect and analyze data from
sensors, machines, and other devices. This enables manufacturers to track the performance
of their production processes and identify areas for improvement [20]. It can also be used
to predict future data. It can help predict the future output, quality, and costs. This, in turn,
can help manufacturers manage inventory levels and produce the products required to
satisfy the demand. Overall, it can help manage the master’s data more efficiently and
effectively.

Figure 2. Advanced Data Collection and Analysis in Data-Driven Manufacturing Processes [13].

3. M5P Algorithms and Master Data in Production Planning System

In this study, the process of estimating the master data used by manufacturers and
applying it to production planning is discussed. It describes how the master data are
collected, preprocessed into a data form suitable for the process, and then measured using
an algorithm to be applied. The study also describes the behavior of the machine-learning
algorithm M5P applied in this study and proposes a data application process. The purpose
is to apply the predicted values to a production planning system and compare these with
existing results to provide effective indicators for production planning.
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3.1. Forecasting Variable Master Data

Research has revealed that most manufacturers have experienced consequences related
to additional production resources, extended lead times, reduced product quality, and
low performance owing to data management issues. This indicates that data errors are
common in business processes [21]. Master data management plays a highly important
role in production planning. In the production process, baseline information such as the
production volume and production time comprise the core information required to establish
production plans and operate efficiently. Among the master data, tact time and yield mostly
have constant values. However, these display inconsistent and unstable characteristics in an
altered manufacturing environment, such as manual processes, newly developed processes,
or the addition of new facilities [22]. Rather than manage the master data as user-managed
baseline information, machine-learning algorithms are used to make predictions based on
process data such as performance, to establish production plans [23]. Accurate forecast
data can optimize the production schedule guidance to obtain the optimization of the total
production time. Therefore, ensuring the proper use of existing resources to meet the basic
requirements of the production schedule has important theoretical significance for the
actual production of the enterprise [24]. The target master data to be predicted are defined
as follows.

1. Tact Time: The time required to produce one product. In the production process, tact
time is an important factor that determines the production speed of the production
line. For efficient production, it is necessary to optimize the tact time of the production
line and establish a production plan based on it. Keeping accurate and up-to-date
information about tact time through master data management ensures that production
plans are well-aligned with actual production.

2. Yield: Indicates how many of the products produced during the production process
meet the quality standards. Yield directly affects product quality and production
performance, so it is an important factor to consider when planning production.

Figure 3 shows that the existing IT system is implemented such that users master
data information through the UI , whereas the new IT system collects and analyzes data
through sensors located in resources other than the users. It predicts the current data as
well as the future data to be used for planning. Manufacturing processes require flexibility
and the capability to reconfigure themselves to address critical challenges. To achieve
this, it is important to obtain relevant information in real time to make strategic decisions,
optimally utilize available resources, and remain competitive in the market. A method
to achieve this is to use machine-learning to predict and provide effective data. Machine-
learning algorithms are utilized to improve production planning and address scheduling
challenges [25]. It is challenging for conventional job-planning techniques to obtain effec-
tive optimal solutions to complex distributed resource-planning problems using individual
numerical analysis methods [26]. Thus, machine-learning algorithms have been used to
develop methods to improve production planning. In this study, the M5P algorithm is used
in the API to predict the values of the two types of master data. The objective is to establish
a production plan and compare it with the existing master data plan, and thereby help
users finalize the production plan.
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Figure 3. Traditional IT compared to Analytics IT.

Artificial Intelligence (AI) is an emerging branch of data analysis, widely used when
trying to obtain intrinsic relationships between data [27]. This is a new way of analyzing
data to understand relationships. It utilizes machine learning algorithms as a prediction
method. Machine learning algorithms can be broadly categorized into supervised learning,
unsupervised learning, and reinforcement learning [19]. Supervised learning is a method
that uses input data and data with correct answers (labels) to train a model. Using the
training data, a predictive model is generated that could predict the correct output for a new
input. The predictive model learns the relationship between a given input and output to
generate a decision boundary [28]. A typical flowchart of a supervised learning algorithm
in machine learning is shown in Figure 4. Based on this flowchart, here is how the study
was conducted.
1. Data collection: The input data required for training and the correct answers (labels)

are collected. The data required for training for both yield and tact times are the
master data consisting of existing baseline information. The correct answer data are
calculated based on the performance.

2. Data preprocessing: The collected data are processed into an analyzable form, and the
necessary preprocessing tasks are performed. These methods include data cleaning,
attribute scaling, and outlier handling. The statistical program R is used to organize
the horizontal database data into vertical data. This is the means by which the features
are represented as columns in a model, wherein each row represents a data point.
When converted into vertical data, the features are placed in columns corresponding
to the model input matrix. This makes it suitable for the model to process the data. The
obtained yield and tact-time training data are organized into vertical data by type. In
machine learning, the processing of vertical data has the advantage of standardizing
the data structure. This facilitates their application to various models and libraries.

3. Select/extract attributes: The attributes required for training are selected or extracted.
In this step, one can analyze the characteristics of the data and select important features
or extract new features. In this study, information such as ITEM and RESOURCE is
extracted from the machine learning calculation because these are not directly related
to the target data calculation. Moreover, the data to be included in the calculation can
be selected.

4. Select a model: The best model for the given problem is selected. The M5P algorithm
provided by Weka (a Java machine learning library) is used in this study.
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5. Train the model: The selected model is trained using the training data. During the
training phase, the model learns the relationship between the input data and correct
answers (labels) for that data so that it can make predictions.

6. Evaluate the model: The performance of the trained model is evaluated. This is accom-
plished by examining the model’s prediction results using test data and calculating
the evaluation metrics. The main evaluation metrics are the accuracy, precision.

7. Apply the model: The trained model is applied to new data to make predictions. The
results of the predictions for new data are applied to accomplish the objective. In this
study, the data predicted by machine learning are incorporated into the master data
to generate a new production plan.

Figure 4. Machine Learning Supervise Process [29].
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This study calculates two target master datasets by analyzing the performance infor-
mation and predicting their values using a supervised learning algorithm, in conjunction
with their corresponding target values.

3.2. M5P Algorithm

The M5P algorithm has the following features and benefits. It has advantages in
handling categorical features (categorical variables). The algorithm includes a way to
handle categorical variables internally, so they can be directly included in the predictive
model without the need to preprocess the data. This simplifies the model development
process and saves time. It also allows the user to automatically determine appropriate
bifurcation points to account for different levels of categorical variables to achieve optimal
predictive performance. The M5P algorithm typically has a faster execution speed than
other complex regression algorithms. It is useful for small-sized datasets or in situations
with time constraints. Applying the M5P algorithm also allows the relationship between
data and rules to be described and analyzed, to predict the numerical characteristics of the
target variable [30]. One of the main advantages of model trees is that these can efficiently
handle a large number of datasets with many attributes and dimensions. These are also
known to be robust when addressing missing data [31]. These two features are the main
reasons that this algorithm was selected for this study. The capability to rapidly process
large amounts of data with missing and volatile information, and achieve predictability is
important in daily production planning. As shown in Figure 5, there are three major steps
in developing an M5P tree: tree construction, tree pruning, and tree smoothing. The M5
tree construction process attempts.

1. Tree Construction: The M5P algorithm constructs a regression tree by recursively
partitioning the training dataset based on the attribute values. The splitting process
aims to find the attribute that provides the best split, often based on criteria such
as information gain or variance reduction. The algorithm continues splitting until a
stopping criterion is met, such as reaching a minimum number of instances per leaf
or a maximum tree depth. The constructing process attempts to maximize a measure
called the standard deviation reduction (SDR) [32].
Equation (1) of SDR is shown as follows, where H is the instances dataset that stretch
the node, Hi is the set that is received from a divided node according to a given
attribute, and sd is the standard deviation of H̄ [33].

SDR = sd(H)−∑
i

|Hi|
|H| × sd(Hi),

sd(H) =

√√√√ N

∑
1

(Hi − H̄)2

N − 1
,

H̄ =
N

∑
i

Hi
N

,

(1)

2. Model Pruning: Pruning is an optional step that aims to simplify the tree and reduce
overfitting. Pruning techniques, such as subtree replacement or subtree raising, can be
applied to remove unnecessary branches or nodes from the tree without significantly
affecting the performance. Pruning helps to generalize the model and improve its
predictive capabilities on unseen data.

3. Tree Smoothing: The M5P algorithm trains a linear regression model on the leaf nodes
during the process of constructing the model tree. The predicted value at each leaf
node is calculated based on the conditions at that leaf node. However, the model tree
may be too complex or tend to overfit the data. To address these issues, tree smoothing
is used. Tree smoothing is a way to increase the smoothness of predictions, and it
involves combining the predictions of a leaf node with the predictions of its parent
node, with some adjustments. This reduces the volatility of the predictions and allows
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the complexity of the model tree to be controlled. By regression, the final value is
smoothed by combining the current value with the predicted value from the linear
regression as the following Equation (2).

T̄ =
Nt + KA

N + K
(2)

where T̄ is the predicted value shift to the higher level of the next node, N is the total
number of training instances that shift to the next lower node, Nt is the predicted
value shifted from the lower node to the present node, A is the predicted value by the
node at this node, and K is a constant value [33].

In Figure 6, the M5P algorithm can perform both regression and decision trees. Pruning
allows nodes to include linear models instead of constant values. The M5P algorithm is an
algorithm for solving regression problems which is used to predict a continuous output
value from given data [34]. Create a decision tree to make a classification, and then create a
linear model for the nodes. The tree is constructed based on the features of the data, and
prediction is performed by dividing the data according to the conditions. The leaf contains
a linear model, which can express the linear relationship between the features of the data
and the target [35].

The “Unpruned” option is set to false, which means that pruning is enabled. In general,
pruning allows the model to be more concise and provide more generalized results. Pruning
is a technique for reducing the complexity of a model by removing unnecessary branches
from a tree model.

Figure 5. M5P Algorithm Training Process Flowchart.

160



Appl. Sci. 2023, 13, 7829

Figure 6. M5P tree algorithm.

3.2.1. Linear Regression

A linear regression algorithm is a regression analysis technique that models the linear
correlation between a dependent variable (y) and at least one independent variable (x).
It can be a simple linear regression based on an explanatory variable or a multiple linear
regression based on more than one explanatory variable [36]. It is called simple linear re-
gression when based on a single explanatory variable, and multiple linear regression when
based on more than one explanatory variable. Linear regression uses a linear prediction
function to model the regression equation, and the unknown parameters are estimated
from the data. Equation (3) a formula is a way to model a linear relationship, and a method
is a formula expressed in vector form. The formula for the linear regression algorithm,
where y is the predicted value, x are the input variables, β are the weights for each variable,
and b is the bias [37]. This form of a linear equation models a linear relationship between
the input variables, where the weights represent the importance of each variable. The linear
model uses the data to adjust the weights and bias as it is trained. Typically, methods such
as Ordinary Least Squares or Maximum Likelihood Estimation are used to estimate the
parameters of the model. Linear models are less affected by the scale of the attributes, so
data preprocessing is relatively simple.

In this study, while generating a linear regression formula with tact time as the result
of the M5P algorithm, the metadata included the RESOURCE ID and ITEM ID. Meanwhile,
the feature was unspecified. Operation tact time, minimum tact time, etc. The target value
was the real tact time. Based on these data, a linear regression formula was generated in
the form of (3) to obtain the predicted value.

y = β0 + β1x1 + β2x2 + · · ·+ βnxn + ε (3)

In this study, the results of the data applied to the production planning system were
implemented through machine learning using a formula model (3) to predict the resulting
data.
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3.2.2. Decision Tree

When a decision tree is constructed, several branches may introduce variances in
the training dataset owing to noise or outliers. This problem has been addressed as an
overfitting in tree pruning, which uses statistical procedures to eliminate less accurate
branches. It generally includes pre- and post-pruning [18]. Decision trees are among the
most popular supervised learning algorithms used in machine learning. It learns decision
rules based on the values of the attributes in the data and represents these in a tree
structure [38]. The M5P algorithm is a type of decision-tree algorithm. It is a part of an
algorithm called model trees, which works in a manner that is moderately different from
that of decision trees. Unlike decision trees, the M5P algorithm trains and uses linear
models at the leaf nodes. The hyperparameters of the M5P algorithm tree used by Weka
are as follows:

1. Unpruned: This is a Boolean value that prevents pruning. The default value is false,
indicating that pruning would be performed.

2. UseUnsmoothed: This is a Boolean value that prevents smoothing. The default value
is false, which implies that smoothing is disabled.

3. MinimumNumberInstances: An integer value that specifies the minimum number of
instances required on each node. The default value is 6. Setting it to a smaller value
can increase the complexity of the model. In the M5P algorithm, “Minimum Number
of Instances” is important hyperparameters used to control the complexity of the
model [39]. These can be adjusted to improve the performance of the model.

4. BuildRegressionTree: This parameter is used when generating the regression tree and
is set to a boolean value. The default value is true.

5. Max saveInstanceData: This parameter is a boolean value that determines whether to
save the training data. The default value is false, and if set to true, training data are
saved.

Decision Tree is used as a classifier for the M5P algorithm used in this study. The
decision tree provides a structure for pruning unnecessary data and resolving overfitting
based on the characteristics of metadata, such as ITEM ID and RESOURCE ID.

3.3. Production Plan System

Prior to the concept of SCM, companies connected various processes such as pro-
duction, logistics, and accounting. Production, logistics, finance, accounting, and so on
share information and resources through ERP systems [40]. However, as the supply chain
complexity increases, a new system for managing the planning process becomes necessary.
As a system to manage production planning, it was introduced with the characteristics
of an advanced planning and scheduling (APS) hierarchy. The APS system is used to
develop a production plan based on these two characteristics and existing data. The supply
chain can function as a solution to multiple planning problems by optimizing goals and
constraints through a model definition of the plan [41]. The master data (which contain
basic information related to products, inventory, production facilities, supply chains, etc.)
play a highly important role in production planning and management. This directly affects
the accuracy and efficiency of production planning. Maintaining accurate and updated data
and formulating production plans based on these improves the accuracy and flexibility of
production schedules and enables effective inventory management and efficient supply
chain operations.

In this study, a production plan was established using the APS system by reflecting the
master data predicted by machine-learning results. A comparison of the established plan
with the existing plan provided indicators that can be used as a reference for comparing
results that affect the availability of facilities, such as the input quantity.

162



Appl. Sci. 2023, 13, 7829

3.4. Process Implementation Tools

The data for this study were obtained in the CSV format and preprocessed using the
statistical program R. The machine-learning models were generated using Weka.

3.4.1. Weka

In this study, Weka was used to apply the machine-learning algorithms. This is an
open-source platform for machine learning and data mining. It is used to develop and
test machine-learning algorithms. It can perform various machine-learning tasks such
as data preprocessing, classification, regression, and clustering [42]. Weka is written in
Java and provides libraries that implement various machine-learning algorithms. It can
be used to analyze data and construct predictive models. The M5P algorithm described
was implemented in the library. The library allows for the application of machine-learning
algorithms.

3.4.2. R

R is the programming language used for data analysis and statistical modeling. It
is open-source software that provides users with the flexibility to perform a variety of
sophisticated analyses. The statistical program R provides several advantages in machine
learning. It provides a wide range of statistical techniques and functions. R is highly active
in the machine learning and data science communities. Moreover, there is a community of
users who share knowledge, information, and support for problem solving [43].

Given these advantages, R was used to preprocess the collected horizontal data.
Additionally, a new data attribute was generated. It enabled us to exclude unnecessary
data and group these. It can be plugged into Weka to use most features of R for data
preprocessing.

3.5. Advanced Production Planning Methods for Manufacturing Processes

Production planning is an important step in planning and coordinating the process by
which an organization produces a product or service. To increase the predictive power of
the master data, we experimented with new technologies and approaches to produce more
accurate and efficient results.
This study utilized a data-driven predictive model to forecast production requirements.
Yield and tact-time data were used to generate predictions using machine-learning-based
algorithms. Data were collected and analyzed. Predictive models can be used to forecast
data, which can then be used to plan production. Based on the data collected, an APS
system was used to establish a production plan. Various scenarios can be simulated during
production planning, and an optimal production plan can be derived.

4. Experimental Settings up
4.1. Design and Implement Production Planning Changes

Production planning is the process of determining the resources and work schedules
required to produce a product or service. In this study, production planning followed the
flow shown in Figure 7. A production plan was established based on the data required
for planning. This plan was based on the results of the existing interval planning method
and the change dataset predicted by machine learning. This study proposed a process that
provides an indicator for comparing two planning results and specifies a more reasonable
plan. The master data, based on the flowchart in Figure 7 are obtained through PL/SQL
and changed into a CSV file. Before applying the machine learning algorithm, the data
were preprocessed using R. This involved classifying metadata, features, attributes, targets,
etc., and separating the data into training and test sets. Planning through machine learning
predictions was established by utilizing a production planning solution. Create a production
plan that results in the database and compare the plans using PL/SQL.
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Figure 7. Machine Learning Reflection Comparison Production Planning Process.

4.2. Development Environment

The machine learning model implementation environment works on a laptop. The
hardware environment for machine learning is shown in the table below (Table 1).

Table 1. Hardware Environment.

Hardware Performance

CPU 13th Gen Intel(R) Core(TM) i7-1360P 2.20 GHz
RAM 16 GB
GPU Intel® Iris® Xe Graphics

The environment in which the machine learning model was developed is shown in
the table below (Table 2).

Table 2. Development Environment.

Type

OS Windows 11 Home 22H2
DBMS Oracle 21c XE

Development Languages Java 1.8
Development Tools R 4.3.0, Weka 3.8.6

The programs implemented in Master Data Machine Learning Predictions were imple-
mented in Weka.
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4.3. Implementing a Machine Learning Model

Figure 8 is a flow chart of a machine learning application implemented using Weka.
In the flow chart, check the order of preprocessing, training data, test data, classification,
applying machine learning algorithms, and applying classifiers.

Figure 8. Machine-learning Model Flow by Weka.

The input data consist of master data required for production planning. Among the
many master data, yield and tact time data are specified in this study. We extract the
corresponding data from the manufacturer’s database using PL/SQL. The input data were
received as a CSV file and preprocessed using the R program. Raw data are horizontal data
like Figure 9. The data are preprocessed to categorize each data and remove unnecessary
data. The character data are categorized as metadata, and the variables that affect the
prediction value are set as features. Based on the table data, the tact time series data
are configured as a feature. We specify the prediction target variable and change it to a
new dataset that is easier to apply to the machine learning algorithm. The pre-processed
data were subjected to cross-validation fold maker. Cross-validation is used to evaluate
the performance of a model by dividing a given dataset into multiple subsets, or folds.
K-Fold Cross Validation was used, and the value of K was arbitrarily set to a constant.
K means the number of folds to be divided. An experimental approach was needed to
determine the value of K in our environment. The maximum K value is set to 10, and
after experimenting with different values, we settled on 10 as the optimal value. After this
process, the preprocessed data were divided into a test set and a training Set and used as
input data. We set the training set ratio to 80% and the test data ratio to 20%.

In the WEKA environment, the M5P algorithm hyperparameters were tested based on
the following four parameters. -N: Unpruned, -U: UseUnsmoothed, -R: BuildRegression-
Tree, -M: MinimumNumberInstances.

The performance of the model can be controlled and optimized by adjusting these
hyperparameters. The optimal values of the hyperparameters were tested based on the
performance metric relative absolute error (RAE). It can be interpreted as follows: the
smaller RAE is, the closer is the prediction to the true value. Table 3 shows the results,
and the hyperparameter settings of Unpruned, UseUnsmoothed, and MinimumNumberIn-
stances 6 show the best predictive metrics. Testing the hyperparameter settings defined the
parameter values for this experiment.
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Table 3. RAE metrics by Hyperparameter.

RAE (%) -M 4.0 -M 5.0 -M 6.0 -M 7.0 -M 8.0

NONE 10.042 10.0494 10.1141 10.5581 10.7338

-R
NONE 16.855 16.7616 16.764 16.7879 16.7879

-N 16.3638 16.3637 16.3632 16.3665 16.3676
-U 10.8224 10.7141 10.733 10.9508 10.9508

-N NONE 9.5442 9.5456 9.5935 9.8459 9.9783
-U 8.8193 8.7659 8.7515 9.0278 9.1206

-U NONE 9.2306 9.2141 9.2728 9.9319 10.1855

Figure 9. Example of Tact time Data Preprocessed with PL/SQL.

When the data are trained with the M5P machine learning model, they are classified
through a decision tree, and a linear regression formula is generated at the node.

The pseudocode for the M5P algorithm in the Weka Library is shown below (Algorithm 1).
The M5P algorithm is a decision-tree-based classifier. A decision tree is an algorithm

that uses a tree structure to classify data. The M5P algorithm is a variation of a decision
tree, which is a good model for regression problems. The M5P algorithm establishes criteria
for partitioning the data and then performs another partition in each partitioned region to
form a tree. This process means generating rules for classifying and predicting data. The
result of the algorithm for deriving production plan results becomes the forecast input data
to be applied to the production plan.

4.4. Configure Machine Learning Model Training Input Data

Data form the foundation for all machine-learning models. For a machine-learning
model to learn, clean data samples should be fed continuously into the system during
training. The desired task may not be achievable if the collected data are highly imbalanced
or inadequate. To overcome this problem, performance-based data (excluding human-
predicted data) were collected. The tact time and yield were calculated based on the
production line, work start time, end time, input quantity, finished quantity, and so on for
each standard production model as the input data.

In Figure 9, the yield and tact-time information data are preprocessed in PL/SQL and
generated as a CSV file to be set as the default input data. The training dataset comprised
over 10,000 cases. The data show that the average tact time, minimum tact time, maximum
tact time, and actual performance-based tact time differed. The problem is to select the most
appropriate value from the data to be applied to the plan. It is necessary to experiment
with the data to generate predictions.
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Algorithm 1 M5P Algorithm.

function BUILDM5P(dataset)
Create a new node
if all samples in the dataset have the same output value then

return the node with the corresponding output value
end if
if there are no more features left to split on or stopping criteria are met then

return the node with the average output value in the dataset
end if
Select the best attribute to split the dataset
Assign the selected attribute to the current node
for each possible value of the selected attribute do

Partition the dataset into subsets based on the value of the selected attribute
if a subset is empty then

Create a leaf node with the average output value in the parent dataset
Assign the leaf node as the child of the current node

else
Recursively call BUILDM5P on the subset
Assign the returned subtree as the child of the current node

end if
end for
return the constructed M5P tree

end function
procedure MAIN

Load training dataset X and target values y
Call LINEARREGRESSION function with X and y as input
Get the trained weights w and bias b
Use the trained model to predict target values for new instances

end procedure

Two results were obtained after the machine-learning model was trained using the
M5P algorithm. A decision tree divides input data into features, determines the best
decision rule for each partition, and represents it as a tree-like structure. This enables data
classification or prediction. Decision trees are intuitive and convenient-to-interpret models.
Techniques such as pruning have been used to prevent overfitting. The result of a Decision
Tree model is a structure like the one shown in Figure 10.

Each node in the Decision Tree sorts through the metadata and prunes unnecessary
outliers to create the linear model at the last node.

4.5. Production Planning Process with M5P Algorithm

The pruned tree shows that the decision-tree algorithm was applied and that the nodes
were organized in a linear model. A linear model is generated as many times as there are
nodes in the decision tree and generates multiple formulas. In the above formula, the final
value is the vertical set of data from the preprocessed input data in Figure 11.
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Figure 10. M5 unpruned model tree generated by the M5P algorithm using Weka.

Figure 11. Linear model created with the M5P algorithm using Weka.
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Through the GUI of the Weka Library, you can check the graphs and metrics of the
M5P algorithm results for each equipment and model. Objects with the prefix “predicted”
have a Y-value, indicating that they are the result of that machine learning. An example
of one of the resulting values can be seen in the Figure 12. A model performance chart is
used to evaluate the prediction accuracy and performance of the model by visualizing the
relationship between predicted and actual values. The predicted value is called “predicte-
dREAL TACT” and the actual value is called “REAL TACT”. The chart shows how well the
predicted and actual values match. The difference between the predicted and actual values
is visualized.

Figure 12. M5P algorithm Results predicted by Machine learning.

In this study, the target data for prediction were Real tact time and the Y value is
Predicted real tact time as a result of the algorithm. All metadata are composed of different
colors and can be classified in the graph, the composition data of the result value can be
checked.

Various metrics have been used to evaluate the performance of machine-learning
regression models, including the mean squared error (MSE), mean absolute error (MAE),
and coefficient of determination (R-squared). MSE is a metric that squares the difference
between the predicted value and the actual value, then calculates the average. The smaller
the MSE, the smaller the model’s prediction error. MAE is a metric that calculates the
average of the absolute differences between predicted and actual values. The smaller the
MAE, the smaller the model’s prediction error. R-squared is a measure of how well a model
explains the given data. It represents the percentage of the total variability in the given data
that can be explained by the model. The coefficient of determination has a value from 0 to
1, with values closer to 1 indicating that the model explains the data well. These metrics are
used to evaluate and compare the performance of the regression model in various aspects.
In Figure 13, the evaluation metrics for the performance of the regression model can be
seen. Shows the results of machine learning performance metrics with the optimal values
of hyperparameter settings -N, -U, and -M 6.0 applied to the test.
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Figure 13. M5P Algorithm Machine Learning Results.

Like tact time, yield can also be predicted using the M5P algorithm, and the resulting
value, M5P Linear Regression, is reflected as new master data. Input the results of machine
learning predictions into a database so that they can be used as supplementary indicators
for existing planning results.

5. Results and Discussion
5.1. Experiment Results

This study aimed to (1) predict master data that can potentially fluctuate (rather than
being constants) using machine-learning algorithms and (2) present the results of applying
those predictions. The M5P machine-learning algorithm predicts the yield and tact time
data that may fluctuate among the master data, and establishes a production plan that
reflects these values. This provides auxiliary indicators for production management. Tact
time and yield are absolute indicators of work time and quantity. These may not have exact
values depending on the process characteristics.

Figure 14 shows that an error exists between the actual plan and the tact time predicted
using the M5P algorithm.

A production plan with a large error in the actual production entity can adversely
affect many production-related indicators such as staffing and equipment utilization. An
increase of the number of inputs requires additional raw materials, labor, and equipment.
An increase in the number of inputs increases the inventory of produced products. This
can increase the unit cost of production, decrease competitiveness, and reduce the flex-
ibility of the production process. Therefore, it is important to consider these issues and
plan production when inputs increase. Determining the appropriate input amount and
balancing productivity gains with cost efficiency are critical issues. Figure 15 shows that
the input quantity has increased significantly compared to the original plan due to the
predicted yield, due to the increase in input quantity, changes in inventory management,
and facility utilization rate, etc. This results in large differences when comparing detailed
planning results. Similarly, Figure 16 shows that the working time per parking lot increased.
When planning for a modified baseline production, the differences in yield and tact time
can indicate a difference in the overall manufacturing plan. Fluctuations are important
indicators that should be assessed during production management. Even a small difference
in yield or tact time can have a significant impact on the line balance as the production
volumes increase. It can also generate a series of supply chain issues such as inventory
management and due dates. Therefore, a new plan should be formulated to reflect the
erroneous results.
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Figure 14. M5P Algorithm in Learning reduces learning Tact time Compared to Original Data.

Figure 15. Compare the Quantities of the Existing Plan and The Machine Learning predictive Model
Plan.
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Figure 16. Compare the Operation times of Traditional Planning and Machine Learning Predictive
Model Planning.

Increasing the input quantities and working hours are important issues in production
management. If these fluctuations can be predicted and considered in an actual production
plan, the accuracy of the schedule, efficiency of the production line, and management
of resources can be better controlled. This would, in turn, enable production process
optimization at an unprecedented level. Even when data is managed with existing baseline
information, it would be feasible to predict the future and plan more flexibly if the baseline
data can be predicted based on the existing performance, and to use it as a supplementary
indicator.

5.2. Experiment Discussion

The M5P algorithm was applied in the experiment. It has the advantage of handling
continuous variables, making it suitable for numerical data analysis. M5P has excellent
model transparency by generating a model tree that can be easily interpreted and under-
stood. On the other hand, the existing Decision Tree algorithm lacks the Hyperparameters
available in traditional decision tree algorithms. M5P is primarily designed for continu-
ous variables and may not handle categorical variables effectively. Also, without proper
pruning or regularization techniques, M5P can be prone to overfitting, especially when the
model tree becomes overly complex. If, as in this experiment, there are many features in
the ITEM ID and RESOURCE ID, the size of the tree may increase, making the model less
interpretable.

In addition, the limitation of this experiment is that the result of reflecting the two data
in the production plan shows that the difference between operation time and operation
quality has been affected, but it is unclear whether the efficiency of the production plan
has improved, and only the change is known. In order for the results of this experiment to
be meaningful, it is very important to involve the manufacturer’s production managers
in order to understand the results, even if we provide quantitative metrics of workload
and time. The result of the production plan is a trade-off between all factors. Fluctuations
in these values affect the overall production line balance and capacity. To overcome and
adapt to this problem, it is important to involve the manufacturer’s production manage-
ment experts. To overcome the limitations of data forecasting in production planning,
manufacturers can consider the following methods. Utilizing multiple data sources and
applying machine learning and predictive models is the basis of this experiment. Establish
a production plan based on the predicted data and simulate the production plan according
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to changes through scenario analysis so that you can make optimal decisions. It is also
necessary to actively utilize the knowledge and experience of experts to overcome the
limitations of data forecasting. While it is difficult to completely overcome the limitations
of data forecasting, forecast accuracy can be improved by combining the above methods.
Expert input can improve the reliability and relevance of forecast data by incorporating
valuable domain-specific knowledge.

6. Conclusions

The focus is shifting from mass production to low-volume, high-variety production.
Moreover, consumer needs are diversifying further. In addition, the recent COVID-19
pandemic has affected the supply chain and production planning, thereby requiring more
complex demand and resource management. Therefore, it is necessary to conduct research
on forecasting the fluctuating data to satisfy these changing conditions. Machine learning
for predicting and reflecting the volatile baseline information during planning can be an in-
dicator for effective manufacturing production planning. When the physical manufacturing
environment changes, such as through manual processes, new development processes, new
facilities, and new product development, the existing master data may become less reliable
and need to be updated. Inaccurate data can result in sales losses and high production
costs.

Based on the experiments in this study, we predicted two master data points using a
machine-learning model. It was observed that when production is planned based on the
predicted values, the work time and production volume could differ significantly from
those in the plan formulated with the original master data. Experiments have revealed that
the two datasets studied (yield and tact time) are important master datasets for production
planning. Yield is a measure of the quantity of products manufactured to the desired quality
standard in a production run. The tact time is a metric that indicates the frequency at which
a product should be produced during the production process. The difference between
operation quality and time is a factor that has an absolute impact on the utilization rate
and output of the entire process, and through this experiment, it was confirmed that the
predicted data show a difference in results and can be improved in terms of production
management. If the difference can be applied as a reference for production management, it
can be used to help predict and manage the master data.

The previously selected master data information predicts only two-attribute data and
does not reflect time-series trends. This limits the scope of the data and prediction results.
To overcome these limitations, research is needed to utilize the raw data that is generated
at manufacturing sites but not being utilized. In the development of current technology,
a lot of raw data is generated from sensors at manufacturing sites. Of course, this data is
useful in many areas, but there is also a significant amount of data that is lost. There are
studies that have applied machine-learning algorithms to monitor sensor data in order to
improve acidity, reduce costs, and enhance safety [38].

As further research, we plan to test other algorithms, compare results, and apply AI
models that improve performance or results. It is expected that by aggregating multiple
data and managing a lot of master data using AI models, users will be able to utilize more
pure data with less intervention. By learning from multiple data sources and analyzing
time-series, it will be able to predict future data for the entire planning horizon, rather
than just a cutoff point, and generate data that more accurately reflects trends. It is hoped
that this deeper research will result in manufacturing process systems that can proactively
respond to the ever-increasing complexity of the supply chain.
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Abstract: Optimal buffer allocations can significantly improve system throughput by managing
variability and disruptions in manufacturing or service operations. Organisations can minimise
waiting times and bottlenecks by strategically placing buffers along the flow path, leading to a
smoother and more efficient production or service delivery process. Determining the optimal
size of buffers poses a challenging dilemma, as it involves balancing the cost of buffer allocation,
system throughput, and waiting times at each service station. This paper presents a framework that
utilises finite queueing networks for performance analysis and optimisation of topologies, specifically
focusing on buffer allocations. The proposed framework incorporates a finite closed queuing network
to model the intra-logistics material transfer process and a finite open queueing network to model
the outbound logistics process within a manufacturing setup. The generalised expansion method
(GEM) is employed to calculate network performance measures of the system, considering the
blocking phenomenon. Discrete event simulation (DES) models are constructed using simulation
software, integrating optimisation configurations to determine optimal buffer allocations to maximise
system throughput. The findings of this study have significant implications for decision-making
processes and offer opportunities to enhance the efficiency of manufacturing systems. By leveraging
the proposed framework, organisations can gain valuable insights into supply chain performance,
identify potential bottlenecks, and optimise buffer allocations to achieve improved operational
efficiency and overall system throughput.

Keywords: buffer allocations; finite queueing networks; GEM; simulation; optimisation; blocking

1. Introduction

The evolutionary trajectory of supply chain systems has given rise to the realisation
that it is no longer a mere chain but a complex network [1]. Consequently, a novel term
has been introduced to refer to conventional supply chains as demand networks [2]. The
contemporary supply chain eco-system has undergone significant transformations over
time, and supply chain systems are now widely regarded as sophisticated network systems.
This evolution can be attributed to several factors, including the growth of trade and
the economy, technological disruptions, increased product specialisation, and changing
customer landscapes [3]. These changes have led to unprecedented transparency for all
stakeholders, promoting excellence in the supply chain domain [4].

The supply chain industry has been transforming significantly due to increasing
transparency across supply chains and networks. Despite this progress, organisations
still require a more structured and systematic flow of information within and across their
supply chains to better understand and have situational awareness of their systems [5].
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Supply chain mapping is considered an ideal tool for visualising the network concerning
different layers across and through the system [6]. The supply chain mapping is developed
for several reasons, including performance measurement [7,8], re-configurations to achieve
continuous improvements [9], integration with technological advances [10,11], and the
ability to foresee supply chain risks and challenges posed by natural disasters, geopolitical
instabilities, and pandemics [12]. According to MacCarthy et al. [6] supply chain mapping
can be developed to clarify information at different levels, and Figure 1 illustrates a classi-
fication of hierarchies of supply chain mappings according to the relevant domains and
focus areas.
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Global value chain maps serve as valuable tools for organisations to position them-
selves within the global structure and gain an understanding of the industries and markets
in which they operate [13]. These maps provide a macro-level perspective and offer a high-
level understanding of supply chain systems. A supply network map encompasses the
supply chains that make up an industry, including the roles of regulatory bodies and other
facilitating institutions, to gain an overall understanding of the industry’s structure [14].
Supply chain maps are subsets of supply network maps that provide greater visibility into
each element, such as inbound and outbound logistics, making the organisation the focal
point of observation [15].

Moreover, supply chain maps are developed to illustrate the flow of products and
services from the organisation’s perspective. Value stream maps (VSM) provide information
on the material, and information flows throughout the different stages of production,
culminating in the final delivery of the product to the customer. VSMs have become a
popular tool under lean manufacturing systems to identify and manage non-value-adding
activities in the production processes [16–18]. Process maps are a conventional mapping
tool used to understand the sequence of processes or tasks necessary to produce one unit
of product or service [19]. Industry practitioners use time and motion studies and process
maps interchangeably.

Value stream mapping is a widely used tool in the manufacturing and service industry
to visualise and analyse the flow of materials and information and to comprehend the
underlying business processes from an organisation-centric perspective. VSM is particu-
larly effective in promoting cross-functional communication and collaboration within an
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organisation while providing opportunities for continuous improvement. Additionally,
VSM is recognised for facilitating lean manufacturing practices, which help identify and
eliminate waste and non-value-adding activities. The resulting efficiency improvements
can help organisations track and optimise lead time, ultimately enhancing their overall
performance. VSM provides the basis for developing supply chain maps, whereas it gets
fed by the process mapping systems.

The interconnection between process topological design and VSMs lies in their ability
to provide crucial insights into the structure and flow of activities within a system, partic-
ularly within the context of supply chains. Process topological design encompasses the
layout, configuration, and connectivity of components or nodes in a system, aiming to
attain desired performance objectives. Concurrently, VSMs offer a comprehensive under-
standing of the material and information flows within a specific process or value stream,
aiding in identifying waste, inefficiencies, and improvement opportunities.

Buffer allocation, an integral aspect of topology design, plays a significant role in man-
aging and optimising the flow of materials and information. In manufacturing systems and
logistics networks, buffer allocation decisions are often made within the broader context of
topology design. This entails determining the appropriate number, size, and placement of
buffers at strategic locations throughout the system, aiming to ensure a balanced flow of
goods or materials, minimise bottlenecks, and optimise system performance [20–22]. Poor
buffer allocations in manufacturing and service settings can significantly affect operational
performance. These consequences include reduced system throughput, as inadequate
buffer allocations lead to congestion, bottlenecks, and delays in material transfers or service
delivery. Longer lead times are another result, as insufficient buffer capacity increases
waiting times and queuing delays at service stations [23]. Poor buffer allocations can also
lead to higher inventory levels, as buffers are not appropriately sized or located, resulting in
increased holding costs and potential obsolescence. Moreover, resource utilisation becomes
imbalanced, with some areas being utilised and others underutilised, leading to ineffi-
ciencies and wasted resources [24]. Inefficient resource allocation is a consequence, with
misalignment between resource capacity and demand patterns. Ultimately, better buffer
allocations can result in customer satisfaction due to delays, disruptions, and unreliable
performance. To mitigate these consequences, careful analysis and optimisation of buffer
allocations, considering demand patterns, process variability, and resource capacities, are
essential. Implementing a well-designed buffer allocation strategy can help minimise these
negative consequences and improve overall operational performance [25].

By integrating VSMs into the process topological design, the current state of the
process is visually represented, enabling the identification of critical paths, information
flows, material flows, and interdependencies between different stages or workstations.
This understanding of the process flow and interdependencies is then utilised to design
an optimised process topological configuration. Buffer allocation decisions align with
the identified bottlenecks, aiming to strategically allocate buffers or storage capacities to
manage and optimise the flow of materials and information throughout the system.

Consequently, process topological design and value stream maps are interconnected,
providing essential insights into the structure and flow of activities within a system. Buffer
allocation, an integral component of topology design, facilitates efficient material and
information flow management by strategically placing buffers at appropriate locations to
balance the system, minimise bottlenecks, and optimise overall system performance [26].

This study aims to develop a process mapping approach that utilises finite queueing
networks to analyse material logistics systems’ performance within manufacturing facilities.
Specifically, the focus is on the intra-logistics process, which involves transporting raw
materials to different feeding points based on demand, and the outbound logistics process,
which encompasses preparing finished goods for shipment to diverse customers. This
research uses finite queueing network models to estimate key performance metrics such
as waiting time, resource utilisation, and throughput. Finite queueing networks have
proven valuable tools for modelling operations in manufacturing setups and determining
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appropriate buffer sizes. These networks capture the flow of entities (such as materials or
customers) through a series of interconnected queues, representing the various stages or
service stations within the manufacturing process. By incorporating factors such as arrival
rates, service times, and queue capacities, finite queueing networks enable researchers and
practitioners to simulate and analyse real-life scenarios more accurately [27,28].

Compared to infinite systems, which assume an infinite capacity for queues, finite
queueing networks provide a more realistic representation of operational constraints and
resource limitations. Due to physical and cost constraints, manufacturing setups typically
have finite capacities for machines, workstations, and buffers. Researchers can model
scenarios closely resembling manufacturing environments by considering these finite
capacities [29].

By leveraging finite queueing networks, researchers can simulate different buffer
allocation strategies, evaluate their impact on performance metrics such as throughput,
waiting times, and resource utilisation, and ultimately determine the optimal buffer sizes
for optimal operations. These models allow for experimentation and optimisation, en-
abling decision-makers to make informed choices regarding buffer allocations that balance
operational efficiency, cost-effectiveness, and customer satisfaction [30,31].

This research seeks to make a scholarly contribution by delving into optimising buffer
allocations in the material transfer process involving a homogeneous fleet of trucks. The
study concentrates on two crucial material handling processes: Inter-facility transfer and
outbound logistics. Notably, the significance of this study lies in its pioneering approach to
buffer allocation problems within an organisational context, taking into account both ends
of the logistics process. This research unfolds in two distinct phases, with the initial phase
focusing on inter-facility material transfer and the second phase dedicated to outbound
logistics. While prior studies have explored buffer allocation problems, they have predomi-
nantly concentrated on a singular logistics process. Consequently, this study takes a critical
stride towards an integrated analysis of logistics processes within an organisational setup,
specifically concerning buffer allocation problems.

The remaining sections of this study are organised as follows. Section 2 extensively re-
views the existing literature about process mapping applications, buffer allocation problems,
and the methodologies employed in previous studies. This section provides a compre-
hensive examination of prior research to establish the foundation for the current study.
Section 3 explains the methodology adopted for the present investigation, outlining the
key steps and procedures involved. Section 4 offers a meticulous analysis of the numerical
experiments conducted using the proposed approach. This section incorporates a case
study to demonstrate the method’s effectiveness in practical scenarios. Section 5 concludes
the study by summarising the key findings and contributions.

2. Literature Review

This section comprehensively examines the applications of finite queueing network
models within process improvement, presenting significant insights gleaned from a se-
quence of empirical investigations conducted on real-world industrial operations. More-
over, studies related to buffer allocation problems and the employed methodologies, result-
ing outcomes, and significant ramifications are elucidated in detail. Moreover, particular
emphasis is placed on underscoring the scholarly contributions of this study in advancing
the optimisation of manufacturing processes, specifically pertaining to material logistics.

2.1. Process Maps and Applications

In a study conducted by Eleftheriadis and Myklebust [32], process maps were used to
model the manufacturing process with process owner details to implement a zero-defect
manufacturing environment. Similarly, Sharma [33] utilised process maps to analyse the
welding process in a manufacturing facility and formulated a multi-criteria optimisation
problem to make the process more sustainable. The optimisation problem was solved using
meta-heuristics.
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Araki et al. [34] and Mutua et al. [35] used process maps integrated with an op-
timisation problem to determine the fabrication parameters in a laser melting process.
Bajaj et al. [36] and Wang et al. [37] utilised process maps in laser melting manufacturing
processes to achieve reduced defect rates and identify the root causes of quality issues.
Ponticelli et al. [38] presented a fuzzy genetic algorithm to optimise process control func-
tions in a metal foam manufacturing facility. The process map was used to configure the
operational parameters to improve the process and reduce defect rates.

He et al. [39] utilised process maps in a polymer dispensing system to determine
the process planning parameters. Sabzi et al. [40] used process maps for alloy design
and process optimisation. The authors presented a framework to design alloy production
and determine the optimal solidification and thermal formation and then used a genetic
algorithm to solve the optimisation problem. In a study conducted by Mejri et al. [41],
process mapping was used to visualise a detergent manufacturing process. The authors
used process re-engineering and innovation to optimise the production process while
eliminating uncertainty.

In the additive manufacturing field, process maps are widely used to improve current
processes and enhance efficiency, as demonstrated in studies conducted by Gui et al. [42],
Akbari et al. [43], and Patel et al. [44]. Kumbhar et al. [19] used process maps integrated
with digital twin models to detect bottlenecks in manufacturing systems for the diagnosis
and improvement of the system.

2.2. Order Releasing and Scheduling Using Heuristic Based on Drum Buffer (DRB)
Rope Technique

Bisogno et al. [45] explored the application of the theory of constraints (TOC), specifi-
cally the DBR technique, to improving process performance in healthcare services. Cus-
tomising DBR for scheduled patient flows and introducing DBR for unscheduled patient
flows, the study provided rules to control patient throughput, considering the trade-off
between minimising flow times and maximising throughput volumes. Simulation experi-
ments demonstrated the impact of TOC DBR rules on this trade-off.

Thürer and Stevenson [46] examined bottleneck shiftiness and order release methods,
revealing that downstream bottleneck shifts had adverse effects on performance while
upstream shifts had minimal impact. The distance between the actual and assumed
bottlenecks had negligible performance implications, offering valuable insights for DBR and
similar release methods. Thürer and Stevenson [47] further explored different sequencing
and dispatching rules to enhance the performance of the DBR scheduling mechanism. The
researchers found that prioritising the shortest bottleneck processing time during high load
periods significantly improved performance.

Researchers are now exploring flow shop configurations, focusing on bottleneck man-
agement and connections to the theory of constraints (TOC). The drum buffer rope (DBR)
methodology has been developed to address these challenges as a production planning and
control tool within this context [48]. Yue et al. [49] presented a heuristic approach based on
the DBR method to address the challenges of order releasing and multi-item scheduling
in MTO production systems. The proposed approach aims to enhance productivity and
efficiency in MTO companies by considering dynamic customer demands and capacity-
constrained resources. Through experimentation on different problem types based on due
date tightness and product demand, the performance of the proposed heuristic is compared
with other well-known heuristic methods from the literature. The results indicate that the
proposed DBR-based heuristic outperforms the competitors, particularly when an optimal
buffer size is adopted, offering significant improvements in order release and scheduling
effectiveness.

180



Appl. Sci. 2023, 13, 9525

2.3. Multi-Level Rolling Horizon Planning and Scheduling Using DBR Approach Considering
Material Constraints

The advent of Industry 4.0 concepts has led to a growing trend of digitization in
industries. Consequently, traditional planning and scheduling approaches need to be
revised to address the challenges posed by this new digital landscape.

Saif et al. [50] proposed a drum buffer rope-based heuristic algorithm (DBR-HA)
for efficient planning and scheduling in mixed-model production industries aiming to
implement Industry 4.0. The algorithm considered shifting bottleneck resources and
maximised the use of capacity constraint resources, providing effective plans and schedules
for each planning horizon. Lin et al. [51] integrated TOC and ERP in production planning
to improve quality and cost efficiency. Utilising the DBR method, the study synchronised
production, identified bottlenecks, allocated resources effectively, and enhanced production
performance. A practical case demonstrated the successful integration and implementation
of TOC and ERP in production planning.

Prasetyaningsih et al. [52] addressed an imbalance problem in a shoe company’s
production lines by applying the TOC approach, utilising linear programming for pro-
duction planning optimisation, and DBR for flow control. By considering the output gap
between production lines, buffers were determined, and three solution alternatives were
proposed, resulting in a substantial reduction of the imbalance issue at the shoe production
lines. Telles et al. [53] examined the effects of implementing DBR on the efficiency of three
engineering-to-order (ETO) production lines in an aerospace manufacturing context. The
analysis, conducted longitudinally through a case study, utilised data envelopment analysis
(DEA), the Wilcoxon test, and analysis of variance (ANOVA) to assess the impact of DBR.
The findings revealed a significant efficiency increase of up to 19% following the imple-
mentation of DBR. Liu et al. [54] incorporated the theory of constraints and leveraged the
DBR mechanism to develop multi-level planning and scheduling strategies in the context
of mixed-model production. Additionally, the researchers propose a multi-level planning
heuristic (MLPH) that employs DBR and priority rules to achieve efficient planning and
scheduling. The approach considers material requirement planning and optimally utilises
capacity-constrained resources (CCR) to the fullest extent.

2.4. Buffer Allocation Problems

Cruz et al. [55] presented an original methodology to address the buffer allocation and
throughput trade-off problem in finite queueing networks. A specialised multi-objective
genetic algorithm approximates the Pareto optimal set of solutions. Computational results
demonstrate the efficiency and efficacy of the proposed methodology, highlighting the
impact of the coefficient of service time variation on buffer allocation decisions and the
dependence of buffer allocation on target throughput. Smith et al. [56] addressed optimising
topological network design for multi-server queueing networks. Series, merge, and split
topologies are examined using approximation and iterative search methods to estimate
performance and determine optimal buffer allocation. The impact of the coefficient of
variation on buffer allocation is highlighted, and computational results illustrate emerging
buffer patterns within different topologies.

G. Wang et al. [57] compared three layout structures in automotive engine shops to
maximise profit based on throughput and buffer investment costs. The analysis utilises
queueing network models with finite buffers and unreliable machines, considering hetero-
geneous service times and exponentially distributed failure and repair times. The study
employed approximation methods and a gradient search approach to determine the opti-
mal buffer allocation. Zhang et al. [58] modelled mould manufacturing using OQNs with
finite buffers. Based on queuing theory approximations, the proposed methods effectively
evaluate system performance and demonstrate feasibility for large-scale practical prob-
lems. The findings provide valuable insights for system design, resource planning, buffer
allocation, and capacity configuration. MacGregor Smith [59] presented an approach to
determine the buffer allocation of a finite system using a queueing network decomposition
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methodology combined with a nonlinear sequential quadratic programming algorithm.
The joint optimisation problem maximises throughput by treating the population as a
constraint. Li et al. [60] developed analytical formulas to estimate the throughput of a
reliable production line with exponential service times and finite buffers. The formulas
apply to approximately balanced lines with similar processing times and provide upper
bounds for throughput.

Cruz et al. [61] presented a study of optimising performance in finite single-server
acyclic queueing networks using a multi-objective methodology to minimise buffer ar-
eas and service rates while maximising throughput. The proposed approach utilises a
simulated annealing algorithm to redistribute buffer spaces and improve throughput
without compromising overall capacity. Pedrielli et al. [62] introduced the discrete event
optimisation (DEO) methodology for the simultaneous simulation and optimisation of
manufacturing systems for buffer allocation in a production line. DEO utilises mathemati-
cal programming to approximate mixed integer linear programming models, providing a
formal approach for simulation optimisation in queueing systems.

Yu et al. [63] addressed the optimisation of buffer allocation in AMHS in intelligent
manufacturing workshops, highlighting the need for more integration between production
and MHS in existing research. The study proposes a flow shop model with capacitated
batch transports, utilising an OQN with blocking. An approximation method is presented
to compute performance measures, and an iterative optimisation algorithm is developed
for determining optimal buffer allocation. Hu et al. [64] presented a study identifying the
optimal task assignment policy for maximising long-term average throughput. It provides
insights into the preferred server coordination policies based on buffer allocation and
numerical comparisons and generalisations for longer queueing lines.

A co-occurrence network (Figure 2) in the relevant literature provides insights into
their interconnectedness and identifies important research trends and relationships. For
example, the co-occurrence of keywords such as manufacturing, material handling, and
machine shop practice suggests a strong association between these concepts in buffer
allocation and queueing networks. Performance evaluation and throughput are often
explored together, indicating the significance of evaluating system performance in terms of
throughput. The co-occurrence of keywords such as system analysis, topology, and blocking
implies the importance of studying the system’s structure and characteristics, including
network topology and the impact of blocking on performance. Moreover, keywords such
as integer programming and genetic algorithms suggest utilising optimisation techniques
for solving buffer allocation problems in queueing networks. These methods are commonly
employed to find optimal solutions by balancing conflicting objectives.
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Uniform and Non-Uniform Buffers

Uniform or homogeneous buffers possess equivalent capacities or sizes throughout
the queueing network. Conversely, non-uniform buffers, also called heterogeneous buffers,
exhibit varied capacities or sizes across different buffers in the queueing network, en-
abling each buffer to accommodate different entities. From an optimisation standpoint,
the suitability of uniform buffers in a queueing network relies on the specific goals and
requirements of the analysed system [65]. While uniform buffers can simplify the analysis,
they may only sometimes represent the optimal choice regarding performance or resource
utilisation. Uniform buffers foster balanced resource utilisation across the network, which
can be advantageous in scenarios prioritising uniformity to ensure fairness and prevent bot-
tlenecks. However, in certain situations, non-uniform buffers may offer superior resource
utilisation. For instance, when demand or arrival rates significantly differ across different
network parts, allocating larger buffers to high-demand areas can avert congestion and
optimise resource allocation. Uniform buffers may not be optimal for minimising queue-
ing delays. In the presence of heterogeneous arrival rates or service times, non-uniform
buffers facilitate the allocation of buffer capacity based on demand at each network stage.
By allowing larger buffers at bottleneck points or areas with high variability in arrival
rates, non-uniform buffers can diminish queueing delays and enhance the overall system’s
performance [66]. The cost associated with buffer size plays a vital role in optimisation.
Uniform buffers simplify resource allocation and buffer management but can result in
over-provisioning in specific network segments.

Conversely, appropriately sizing non-uniform buffers based on demand patterns
can optimise resource utilisation and potentially reduce costs by eliminating unnecessary
buffer capacity. Non-uniform buffers offer greater flexibility and adaptability to dynamic
changes within the system. In situations where the demand pattern or service times vary,
non-uniform buffers enable better adjustment to changing requirements. This flexibility
leads to improved performance and responsiveness compared to uniform buffers, which
may need to be more adaptable to varying conditions [67].
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2.5. Solving Finite Queueing Networks

Solving finite queueing networks presents more significant challenges than solving
infinite networks due to several key factors. Firstly, finite networks have a complex and
expansive state space that grows exponentially with the number of nodes, buffers, and enti-
ties. This complexity hinders direct analysis and solutions using traditional methods [68].
Secondly, interactions and dependencies among nodes in finite networks introduce intri-
cate dynamics, making it more challenging to understand entity flow, bottlenecks, and the
influence of routing strategies compared to the simplified assumptions in infinite networks.
Additionally, evaluating performance measures such as queue lengths, waiting times, and
resource utilisation becomes more complex due to interdependencies among nodes and
the variability of system parameters [69]. Non-exponential service time distributions in
practical scenarios further complicate the analysis, as traditional methods assume expo-
nential distributions [70]. Adapted analytical techniques or alternative methodologies are
required to address this challenge. Finally, as the size and complexity of finite queueing
networks increase, analytical solutions may become intractable, necessitating numerical
methods [71], approximations [72–75], or simulations [20,76] that demand significant com-
putational resources and time. In light of these complexities, researchers employ a range of
methodologies and techniques, such as approximation methods, decomposition techniques,
numerical methods, and simulations, to overcome the challenges and gain meaningful
insights from finite queueing networks.

Blocking Phenomenon

According to Smith [77], three types of blocking can occur in a two-stage queueing
network: blocking after service (BAS), blocking before service (BBS), and repetitive service
blocking (RSB). In the case of BAS, a customer or entity remains on the server until they are
serviced, and they can only proceed to the downstream block if there is an empty space
(buffer) available. BAS ensures that customers are not prematurely removed from the
system, allowing them to complete their service before moving forward in the network. In
the case of BBS, customers or entities are prevented from entering the server or queue before
receiving service due to factors such as limited buffer space or predetermined constraints.
This blocking occurs at the server’s entrance, resulting in a loss of service opportunity. On
the other hand, RSB refers to a situation where a customer repeatedly receives service from
a server, preventing other waiting customers from being served. RSB typically arises when
a customer requires multiple service instances consecutively, effectively monopolising the
server’s attention and delaying service for other waiting entities.

2.6. Scholarly Contributions and Future Extensions of the Study

This study aims to make a scholarly contribution by focusing on optimising buffer allo-
cations in the material transfer process involving a homogeneous fleet of trucks. Specifically,
the study addresses the optimal buffer allocation in two material handling processes: The
inter-facility transfer and outbound logistics processes. These material handling processes
were modelled using finite queueing networks. The networks are designed to accommodate
constrained and unconstrained populations with generalised service times. By utilising the
GEM approximation approach, the performance measures of the processes are evaluated,
including cycle time, resource utilisation rates, and throughput levels. Given that the
optimal buffer allocation problem is NP-hard, this study adopts a simulation optimisation
approach to solve it. This approach considers the complex interactions and dependencies
between various factors involved in the buffer allocation problem. In future extensions of
this research, a comprehensive analysis of all logistics processes will be conducted to gain
a holistic understanding of the supply chain across all stages. This integrated approach
will provide valuable insights for optimising the overall performance and efficiency of the
supply chain.
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3. Methodology

This section elucidates the methodology implemented in the present study, focusing
on modelling inter-facility and outbound logistics processes as finite queueing networks.
The GEM approximation technique is elaborated upon, enabling the estimation of network
performance measures. Additionally, a mathematical model is formulated to optimise
buffer allocation within the network, followed by an explanation of the solution approaches
employed to address the optimisation problem.

3.1. Modelling the Material Transfer Processes Using a Finite Queueing Network

The study adopts a rigorous technical approach to modelling material transfer oper-
ations involving a homogeneous fleet of trucks. The trucks carrying raw materials from
storage to feeding points are represented as network jobs. Each sub-process within the
material transfer operations is depicted as a node in the network. The inter-facility material
transfer process encompasses a restricted number of assigned trucks, while the outbound
logistics process allows for an unrestricted number of customer trucks. Therefore, the study
uses finite CQN and finite OQN for the abovementioned cases. Different raw materials or
product types are represented through multi-class jobs.

The stochastic nature of the service time at each node captured within the queues is
modelled as M/G/1 queues, assuming a generally distributed service time. The queue
discipline follows a first-come, first-serve policy. All stations within the network consist
of a single-server configuration, and the movement between stations is modelled with an
infinite number of servers.

The presence of limited buffer capacity at each node gives rise to the potential oc-
currence of blocking. In this study, the blocking after service (BAS) strategy is employed,
wherein a job remains in the current node even after completion of service if it cannot
be transferred to the succeeding node due to insufficient available space. Consequently,
exponential service time distributions are unsuitable for this analysis, as they assume
memoryless service durations following a constant exponential distribution. Within an ex-
ponential setting, jobs serviced at a given node promptly depart to the next node, assuming
adequate space is available.

3.2. Generalized Expansion Method (GEM)

The GEM has emerged as a powerful approach for solving finite queueing networks
and has demonstrated several advantages compared to other methodologies. GEM offers
accurate performance analysis by considering finite capacities, blocking phenomena, and
service time distributions [78]. It provides a robust framework for analysing complex
systems with multiple interconnected queues, enabling researchers to derive analytical
expressions for performance measures. Regarding implementation cost, GEM offers an
advantageous position as it relies on existing mathematical techniques and equations with-
out requiring extensive computational resources or specialised software [79]. Additionally,
GEM is relatively easy to use, providing researchers with clear analytical insights into
system behaviour and facilitating sensitivity analysis. While other methodologies, such as
simulation-based approaches, may offer more flexibility in capturing system complexities
and stochastic behaviour, they often require significant computational resources and ex-
pertise in simulation software [80]. Overall, GEM is a valuable methodology for accurate
performance analysis of finite queueing networks, offering a cost-effective and user-friendly
alternative to other methodologies.

The GEM, as proposed by Kerbache and Smith [73], comprises three fundamental
steps: network reconfiguration, parameter estimation, and feedback elimination (Figure 3).
This study employs GEM as an approximation technique to analyse the finite queueing
network and the blocking phenomenon.
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The first step, network reconfiguration, involves restructuring the original queueing
network by introducing auxiliary nodes (holding nodes) and links to account for the
blocking effects. This reconfiguration enables the representation of blocking occurrences
within the network model. The second step, parameter estimation, aims to estimate the
unknown parameters of the modified queueing network. This estimation step involves
determining the routing probabilities, blocking probabilities, squared coefficient values,
service times, and other relevant parameters crucial for accurately modelling the system
behaviour.

The final step, feedback elimination, focuses on eliminating the feedback loops that
may arise due to the reconfiguration. Feedback loops can lead to complexity in the analysis
and may hinder the accurate estimation of performance measures. Removing these feed-
back loops can simplify and analyse the modified queueing network more efficiently. The
following mathematical notations were employed to derive equations for the performance
measures of the finite queueing network using GEM.

Notations and Definitions

M Number of nodes
Λj Input rate node i (i = 1,2,. . . M)
T Number of product classes t (t = 1,2,. . . T)
Bi Buffer capacity at node i excluding those in service
Ki Buffer capacity at node i including those in service
αj The probability of jobs leaving the system from node j (j = 1,2,. . ., M)
Cj Cost of a buffer space in node j
Lsj Mean number of jobs (queue length) at queue s in node j
λh Arrival rate to holding node h
µh Mean service rate at holding node h
PKj Blocking probability that node j is at capacity Ki
P′Kj Feedback blocking probability
Θ Mean throughput of the system
Θj Output rate at node j
Uj Utilisation rate at node j
S2 Squared Coefficient of variation of the service time
ρ = λ

µ Server busy time as a proportion of arrival and service rate

ρh = λh
µh

Server busy time as a proportion of arrival and service rate at node h
β Maximum budget allocated for buffer space allocation
Ds Mean waiting time at queue s
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N Network population (for CQN)
An M/G/1 queue is a queueing system where customer arrivals follow a Poisson

process (M), service times have a general distribution (G), and there is a single server (1)
serving customers one at a time.

Based on the two-moment approximation technique, a closed-form approach can be
used to calculate the blocking probability using the following equation [73,81].

PKj =
ρ

(2+
√

ρs2−√ρ+2(Kj−1)

(2+
√

ρS2−√ρ) (ρ− 1)

ρ

(2+
√

ρs2−√ρ+2(Kj−1)

(2+
√

ρS2−√ρ) − 1

(1)

According to Zhang et al. [82], the output rate of node j can be calculated using the
following for an OQN system.

Θj = Λj
(
1− PKj

)
+ λh

(
1− P′Kj

)ρh ·
(
1− PKj

)ρj (2)

According to Kerbache and Smith [26], the total throughput of node j in a multi-class
finite CQN with total population of N.

Θj =
∑M

i=1 ∑T
t=1
(
λij·
(
1− PKj

))

N
(3)

According to Kerbache and Smith and Kerbachea and Smith [72,73] the utilisation rate
at node j in OQN and CQN can be calculated using the following equations, respectively.

Uj =
λj(

Θj·Kj
) (4)

Uj =
Θj

µj
(5)

3.3. Formulation of Optimisation Problem

Buffer allocation in queueing networks offers the potential to optimise multiple ob-
jectives by considering various performance measures such as throughput, waiting time,
resource utilisation, and system stability. However, achieving a harmonious equilibrium
among these objectives poses challenges due to their inherent trade-offs.

The complexity of the buffer allocation problem arises from the need to determine
the optimal allocation of finite buffer resources across different nodes within the network.
The task involves striking a delicate balance in buffer sizes to maximise overall system
performance while simultaneously addressing multiple objectives. For instance, increasing
buffer sizes can alleviate congestion and enhance throughput, but it may also lead to
prolonged waiting times. Conversely, reducing buffer sizes may enhance responsiveness
but elevate blocking probabilities and diminish overall throughput.

In order to address the buffer allocation problem in a finite queueing network, an
optimisation framework is formulated with a carefully designed objective function and
constraints [83].

Maximise Θ (K, µ) (6)

Maximise Θ (N, K) (7)

Constraints
M

∑
i=1

Ki·Ci ≤ β (8)

Li ≤ Ki ∀ i = 1, 2, ..M (9)
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1 ≤ Ki ∈ Z+ ∀i = 1, 2, ..M (10)

Equation (6) presents the system throughput as a function of arrival rates and buffer
sizes in the OQN context. Similarly, Equation (7) demonstrates the throughput as a function
of network population and buffer sizes in CQN. In this study, we will maintain constant
arrival rates for OQN and network population for CQN to determine the optimal buffer
allocation for each node, aiming to maximise throughput. However, we will conduct
various scenarios in both cases, considering different arrival rates, network populations,
and compositions to assess their impacts on the system’s overall throughput. It is important
to note that the objective function in both cases is subject to constraints. For instance,
Equation (8) establishes an upper bound on the total number of buffers allocated due to
budget limitations. Additionally, in a steady state, the average queue length should not
exceed the buffer sizes of a given node (Equation (9)), and the number of buffers allocated
must always be a positive integer with a minimum value of one (Equation (10)).

The optimisation problem of buffer allocation, known for its NP-Hard nature, poses a
significant challenge in finding an optimal solution in a reasonable computation time [26,84].
Over the years, various solution approaches have been developed to tackle this intricate
problem. Traditional methods, such as mathematical modelling and optimisation algo-
rithms, have been widely employed to derive optimal buffer allocation strategies. However,
due to the complexity and combinatorial nature of the problem, these approaches often
require more computation and may only sometimes yield optimal solutions. As a result,
simulation optimisation approaches have gained prominence in recent years. By combining
the power of simulation and optimisation techniques, these approaches provide robust
solutions with high accuracy, making them increasingly popular for addressing the buffer
allocation optimisation problem.

The buffer allocation problem in this study was optimised using the built-in opti-
misation engine of AnyLogic software. The authors utilised a personal computer with
8GB of RAM and a core i3 7th Gen processor to execute the simulation experiments. The
maximum iteration count was set to 5000 runs to ensure convergence towards optimal
results. Figure 4 comprehensively illustrates the sequential steps in this study’s AnyLogic
optimisation solution approach.

The OptQuest optimisation engine in AnyLogic simulation software solves larger
combinatorial problems by efficiently navigating search trees and identifying fruitful
directions towards optimal solutions. It utilises advanced techniques such as genetic
algorithms, simulated annealing, and tabu search to explore the solution space and prune
unproductive paths [85].

188



Appl. Sci. 2023, 13, 9525Appl. Sci. 2023, 13, x FOR PEER REVIEW 14 of 30 
 

 

Figure 4. Steps of optimisation approach used in Anylogic software. 

The OptQuest optimisation engine in AnyLogic simulation software solves larger 

combinatorial problems by efficiently navigating search trees and identifying fruitful di-

rections towards optimal solutions. It utilises advanced techniques such as genetic algo-

rithms, simulated annealing, and tabu search to explore the solution space and prune un-

productive paths [85]. 

4. Case Study—Numerical Experiments 

To demonstrate buffer allocation problems, this section presents a case study that 

utilizes numerical experiments to investigate and evaluate the proposed methodology in 

inter-facility material transfer operations and outbound logistics processes. These experi-

ments aim to validate the effectiveness and efficiency of the methodology in optimising 

the buffer allocation problem within the intra-organisational material flows and the cor-

responding outbound logistics activities. We conducted the case study using a manufac-

turing facility with multiple workstations as the testbed. Applying the analytical method 

based on GEM, we formulated a finite queueing network model that considered various 

parameters, such as arrival rates, service times, and buffer capacities. By solving the GEM 

equations, we obtained analytical expressions for performance measures. Simultaneously, 

we developed a simulation model to replicate the dynamics of the facility and conducted 

multiple numerical experiments to collect data on system performance metrics. The re-

sults from the analytical method and simulation were compared to assess the effectiveness 

of the proposed methodology in optimising buffer allocation. This empirical illustration 

demonstrates the practical application of the proposed methodology. It showcases its ef-

ficacy in addressing the buffer allocation problem in the context of intra-organisational 

material flows and outbound logistics processes. 

4.1. Inter-Facility Material Transfer Process 

SM is a specialised steel manufacturing firm that produces steel rebars for the do-

mestic market. To manufacture steel billets, which serve as the primary inputs for produc-

ing steel rebars, SM employs an electric arc furnace (EAF) system. The billet production 

Figure 4. Steps of optimisation approach used in Anylogic software.

4. Case Study—Numerical Experiments

To demonstrate buffer allocation problems, this section presents a case study that
utilizes numerical experiments to investigate and evaluate the proposed methodology in
inter-facility material transfer operations and outbound logistics processes. These experi-
ments aim to validate the effectiveness and efficiency of the methodology in optimising
the buffer allocation problem within the intra-organisational material flows and the corre-
sponding outbound logistics activities. We conducted the case study using a manufacturing
facility with multiple workstations as the testbed. Applying the analytical method based on
GEM, we formulated a finite queueing network model that considered various parameters,
such as arrival rates, service times, and buffer capacities. By solving the GEM equations,
we obtained analytical expressions for performance measures. Simultaneously, we devel-
oped a simulation model to replicate the dynamics of the facility and conducted multiple
numerical experiments to collect data on system performance metrics. The results from
the analytical method and simulation were compared to assess the effectiveness of the
proposed methodology in optimising buffer allocation. This empirical illustration demon-
strates the practical application of the proposed methodology. It showcases its efficacy in
addressing the buffer allocation problem in the context of intra-organisational material
flows and outbound logistics processes.

4.1. Inter-Facility Material Transfer Process

SM is a specialised steel manufacturing firm that produces steel rebars for the domestic
market. To manufacture steel billets, which serve as the primary inputs for producing steel
rebars, SM employs an electric arc furnace (EAF) system. The billet production process
involves utilising various materials, including scrap materials, hot briquette iron (HBI), and
specific additives such as carbon, chromium, and deoxidisers such as aluminium or silicon.
Daily, SM acquires scrap materials from the domestic market, which are stored in different
forms and purities in the SM storage yard. These forms include heavy metal scrap and
shredded scrap. Additionally, SM incorporates HBI and direct reduced iron (DRI) as raw
materials in the billet production process. The selection of billet grades is determined by
evaluating the quality and percentage of the scrap materials. To simplify our discussions

189



Appl. Sci. 2023, 13, 9525

in subsequent sections, we will utilise the notations A, B, and C to represent heavy metal
scrap, shredded scrap, and HBI/DRI materials.

In the context of SM, the production of steel billets takes place on a daily basis, using
materials A, B, and C. These materials are transported each day by a fleet of homogeneous
trucks to the facility situated within the billet plant. Figure 5 illustrates the inter-facility
material transfer operations undertaken to meet the demand requirements of the billet plant.
Figure 6 presents the layout of the storage area and the billet plant, visually representing
their spatial arrangement.
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As depicted in Figure 6, except for the loading and unloading service stations, all
other stations are shared among the three types of material trucks. Truck servicing follows
a first-come, first-served basis. The node details and average service time for each service
station are presented in Table 1, denoted in minutes. Additionally, Table 2 provides the
weight of a full truckload of each material.
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Table 1. Node details and average service times.

Node # Process
Aver.

Service Time
(min)

Node # Process
Aver.

Service Time
(min)

1 Gate operation 1.5 7 Weigh bridge 2 1.5

2 Weigh bridge1 1.5 8 Unloading—A 2.5

3 Loading—A 6 9 Unloading—B 2

4 Loading—B 4 10 Unloading—C 3.5

5 Loading—C 7 11 Return trip 6

6 Quality check 2

Table 2. Full truckload weights.

Raw Material (Product Class) Full Truck Load (Tons)

A 7

B 3

C 9

Each service station within the system is managed by a single server, implying that
each station has the capacity to serve only one truck at any given time.

In order to evaluate and optimise inter-facility material transfer operations, this study
conducted performance measurements and buffer allocation optimisation exercises. The
experiments were designed based on scenarios identified in Table 3. Additionally, various
parameters were considered, including the cost of buffer space (Ci) and the maximum
allotted budget for buffer space allocation (β), with values of EUR 200 and EUR 5000,
respectively. All experiments were conducted to simulate a 24 h time-period operation.

Table 3. Scenarios used for optimisation and performance analysis experiments.

Scenario #
Number of Trucks Total Number

of TrucksA B C

Scenario 1 3 3 3 9

Scenario 2 4 4 4 12

Scenario 3 6 6 6 18

Scenario 4 4 5 6 15

Scenario 5 6 4 5 15

4.1.1. Development of the DES Model for Inter-Facility Material Transfer Operations

The DES model for the inter-facility material transfer operations was developed based
on the abovementioned details, as illustrated in Figure 7. Anylogic University edition
(version 8.8.1) simulation software was employed. The model represents all service stations
(nodes) as finite queue capacity service blocks. The decision variables, namely the buffer
sizes for each node, were introduced as parameters in the optimisation configuration. The
objective function was formulated to calculate the total throughput of the system. The
trucks carrying three different types of materials were incorporated into the system through
three sources. Each service block is coupled with a single resource pool to ensure the single-
server phenomenon. Furthermore, the model accounted for the blocking phenomenon
known as blocking after service (BAS), which occurs when a truck will not leave the station
even after servicing if there is no space in the next node.
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4.1.2. Optimal Buffer Allocation

Table 4 presents the optimal buffer allocations obtained for each scenario investigated
in the study. The allocations differ across scenarios, indicating the significance of tailoring
buffer allocation strategies to specific operational conditions.

Table 4. Optimal buffer allocations in each scenario.

Scenario # Optimal Buffer
Allocation

Throughput (Tons of
Materials

Transferred)

Total # of Buffers
Used

Scenario 1 4,1,4,3,1,3,2,2,1,1 3101 22

Scenario 2 1,1,3,2,2,4,3,2,2,1 3656 21

Scenario 3 1,3,2,4,1,1,2,7,2,1 3677 24

Scenario 4 1,1,1,1,1,10,1,1,1,1 3628 18

Scenario 5 2,1,6,2,1,5,1,1,3,3 3794 25

A uniform truck allocation was employed for all material types in the initial three
scenarios. Furthermore, an analysis of the results reveals that an increase in the number of
trucks allocated to each material type and the total number of trucks corresponded to an
increase in throughput, quantified as the total tons of materials transferred. However, it is
worth noting that this increase in throughput was accompanied by a potential decrease
in the average throughput per truck. In scenarios 4 and 5, different truck allocations were
implemented for each material type while maintaining a constant total of 15 trucks. Conse-
quently, distinct optimal buffer allocations were obtained for these scenarios, resulting in
disparate throughput values. These findings underscore the influence of the number and
allocation of trucks on buffer optimisation and subsequent material transfer efficiency in
inter-facility operations.

Furthermore, in scenario 4, we observed a near-uniform allocation of buffers across
the service stations, except for a single station. This finding underscores the significance of
conducting a comprehensive analysis to determine each case’s optimal buffer allocation
strategy.

Additionally, noteworthy observations can be drawn from scenarios 1 and 2. Despite
an increase in the total number of trucks employed (from 9 to 12), the total number of
buffers utilised decreased from 22 to 21. This suggests that an increase in truck quantity
does not necessarily correlate with a proportional increase in buffer requirements. Similarly,
in scenario 4, where the total number of buffers used was 18, an equivalent number of trucks
in scenario 5 necessitated 25 buffers to achieve the optimal throughput. This discrepancy
highlights the varying impact of truck allocations and compositions on buffer requirements,
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considering that certain service stations are exclusively utilised by trucks carrying a single
product type. In contrast, others are shared among multiple product types.

The decision to set the maximum iterations to 5000 was carefully considered to strike
a balance between ensuring convergence towards optimal results and computational
efficiency. The figures presented in Appendix A (Figures A1–A4) demonstrate that con-
vergence typically occurs well before reaching the maximum of 5000 iterations, indicating
the efficiency of the proposed method in achieving optimal solutions in most experimental
examples. However, to account for potential problem size and complexity variations, we
adopted a conservative approach by setting a maximum of 5000 iterations. For larger-scale
problems, the convergence might occur more slowly than in the experimented examples,
making the maximum iteration limit crucial in capturing longer convergence trends. This
choice ensures the robustness of our approach, enabling effective handling of a broader
range of problem sizes and complexities.

These findings accentuate the importance of considering the interplay between truck
allocations, the composition of product types, and their corresponding buffer allocations
when optimising material transfer operations. A holistic approach is essential to compre-
hensively assess and determine each unique scenario’s most effective and efficient buffer
allocation strategy.

4.1.3. Utilisation Rates Comparison

Efficient utilisation of servers is paramount to optimising system performance and
ensuring smooth operations in closed queueing networks. The utilisation rate, representing
the ratio of time a server is busy to the total time, is a crucial performance indicator for
evaluating server allocation strategies. Table 5 presents the comparison of server utilisation
rates obtained through the GEM-based analytical method and simulation model. The
results demonstrate the accuracy and reliability of the GEM-based analytical method in
estimating server utilisation rates, with average differences between the analytical method
and simulation models ranging from 1% to 6% in scenario one and from 1% to 7% in
scenario 5, except for nodes 6 and 7, where the utilisation rates are close to 1. However,
it should be noted that when utilisation rates approach 1, the GEM-based method may
exhibit slightly higher deviations from the simulation results. These findings highlight
the effectiveness of the GEM-based method in calculating server utilisation rates in finite
closed queueing networks while acknowledging the need for caution when utilisation rates
are close to 1.

Di f f erence = (Analytical meth. − Simulation meth.) (11)

Table 5. Server utilisation rates in identified scenarios using analytical and simulation method.

Scenario # Scenario 1 Scenario 5

Node # GEM
Method

Simulation
Model Diff. GEM

Method
Simulation

Model Diff.

Node1 63.30% 66% −2.70% 75.9% 79% −3.1%

Node2 63.30% 66% −2.70% 77.8% 78% −0.2%

Node3 68.90% 66% 2.90% 72.9% 78% −5.1%

Node4 69.80% 73% −3.20% 92.4% 99% −6.6%

Node5 54.10% 55% −0.90% 54.1% 58% −3.9%

Node6 85.80% 82% 3.80% 87.5% 98% −10.5%

Node7 87.80% 84% 3.80% 87.1% 99% −11.9%

Node8 28.70% 32% −3.30% 37.5% 44% −6.5%

Node9 35.80% 30% 5.80% 25.0% 30% −5.0%

Node10 38.10% 43% −4.90% 50.0% 51% −1.0%
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Analysing the scenarios provides valuable insights into the system dynamics and
potential bottlenecks. Scenario 1 demonstrates a relatively stable system, exhibiting lower
utilisation rates than scenario 5. In scenario 5, several nodes approach or reach utilisation
rates near 1.0, indicative of bottleneck situations where system performance stagnates. No-
tably, scenario 5 (18 trucks) exhibits different truck quantities and compositions compared
to scenario 1 (9 trucks), which has the fewest number of trucks.

Additionally, consistent observations reveal that the last three nodes consistently
exhibit low utilisation rates. This suggests the need for process redesign to balance the
workload across both streams rather than exert excessive pressure on certain segments.
Potential solutions include:

• Subdividing specific processes into two sub-processes,
• merging idle stations to consolidate workloads, or
• employing additional servers to alleviate the burden on busy servers.

These interventions can contribute to better resource utilisation, reduced conges-
tion, and improved overall system efficiency. Further analysis and targeted optimisation
strategies should be considered to address these observed bottlenecks and enhance the
performance of the queueing network.

4.1.4. Sensitivity Analysis

Sensitivity analysis is a valuable tool used in decision-making processes to evaluate
the influence of various factors on the outcomes of a system or model. Sensitivity analysis
provides insights into the robustness and stability of decision-making frameworks by
systematically varying these factors and observing the resulting changes in the outputs.
In this section, we employ sensitivity analysis techniques to investigate the impact of
critical factors on our decision-making model. Through this analysis, we aim to identify
the most influential factors, understand their effects on decision outcomes, and enhance
the reliability and effectiveness of our decision-making processes.

In this sensitivity analysis section, we examine the variations in utilisation rates,
throughput, and buffer allocations resulting from introducing an additional server to
node 6 in scenarios 1 and 3. We aim to assess the impact on the system’s performance by
introducing this additional server. The results of this analysis are presented in Table 6,
which provides insights into the changes observed in utilisation rates, throughput, and
buffer allocations under these specific conditions. Through this examination, we gain a
deeper understanding of how the system responds to introducing an extra server and its
implications for overall system performance in scenarios 1 and 3.

Table 6. Impact of adding an extra server in node 6.

Scenario #
Node Utilisation Rate Throughput Total # of Buffers

1 Server 2 Servers 1 Server 2 Servers 1 Server 2 Servers

Scenario 1 84% 42% 3101 3126 22 10

Scenario 3 99% 67% 3677 4199 24 18

Table 6 unveils intriguing insights regarding the factors influenced by the introduction
of an additional server in node 6. In scenario 1, the results demonstrate a slight increase
in throughput, reaching 3126 tons, representing a modest improvement of approximately
0.8% compared to the original case. Conversely, scenario 3 exhibits a more substantial boost
in throughput, surging to 4199 tons with the inclusion of a dual server in node 6, signifying
a significant increase of approximately 14% from the baseline. Furthermore, both scenarios
showcase a reduction in the total number of servers utilised and a decrease in the utilisation
rate of node 6. These findings emphasise the interconnected nature of design factors within
the system, whereby modifications in certain factors influence other performance metrics to
varied extents. Consequently, this analysis provides valuable insights for informed decision
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making when designing system topologies, enabling practitioners to consider the interplay
of factors and their implications on system performance.

4.1.5. Comparison of Analytical and Simulation Methodologies

Analytical and simulation methodologies offer unique advantages when comparing
methodologies for studying buffer allocations and system performance. Analytical method-
ologies provide fast and cost-effective analysis, with mathematical equations and formulas
enabling quick calculations of system performance measures. They offer closed-form so-
lutions and accessible interpretation, making them suitable for straightforward systems
and providing valuable insights. In contrast, simulation methodologies excel at modelling
complex and dynamic systems, capturing real-world complexities and uncertainties more
accurately. Although more time consuming and resource intensive, simulation models
allow for detailed process flows, interactions, and random variations, providing flexibility
and realism. The choice between methodologies depends on research goals, system com-
plexity, available resources, and the trade-off between accuracy, time, and cost. Researchers
often employ both methods to gain comprehensive insights into buffer allocations and sys-
tem performance. This integrated approach ensures a balance between efficiency, accuracy,
and the ability to capture the intricacies of the studied systems.

4.2. Out-Bound Logistics Process

SM organisation serves two customer types: Standard customers and spot customers.
Standard customers, often large manufacturing companies, have long-term contracts, such
as contracts of affreightment with SM, ensuring a stable flow of predictable orders. SM can
efficiently plan and allocate resources for these known orders, benefiting from established
trust and coordination. In contrast, spot customers have short-term or one-time orders,
often with short notice and varying requirements. SM must promptly respond to these
demands, adapting quickly to their unpredictability. Despite their shorter engagement,
spot customers contribute to SM’s growth and resource optimisation.

The outbound logistics process for customer trucks carrying steel rebars within the
manufacturing company’s premises begins with the gate entry process. This involves
recording the entry of trucks and initiating necessary security and safety checks. For spot
order trucks, an additional process of creditworthiness evaluation is conducted between the
gate entry and the order processing process. This evaluation verifies the customer’s ability
to pay back by assessing their financial stability and credit history. Figure 8 shows the
flowchart of the whole outbound logistics process for both standard and spot customers.

After the gate entry and creditworthiness evaluation, the subsequent processes are
initiated. Process 2, order processing, involves receiving and verifying the customer’s
order for steel rebars, confirming pricing and payment details, and generating an order
confirmation. The order processing process for standard and spot customers differs in
terms of time requirements. The order processing process takes an average amount of
time for standard customers whose orders are previously known to the company. Since
the company has established relationships with standard customers and has their order
details on record, the process can be streamlined and expedited. However, when it comes
to spot customers who place orders on short notice or for one-time purchases, the order
processing process tends to take longer. The company must allocate additional time for
spot customers, as their orders require thorough verification and may require additional
documentation and checks. The extended processing time for spot customers is necessary
to ensure these special orders’ accuracy, compliance, and proper handling.
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In process 3, steel rebar preparation, the requested steel rebars are retrieved from
the inventory or production area within the manufacturing company and checked for
compliance with the required specifications. This process includes packaging and labelling
and focuses on securely packaging the steel rebars for transport. This may involve bundling
the rebars, placing them on pallets, and labelling the packages with relevant information.
In process 4, documentation and compliance, the necessary shipping documents, invoices,
and paperwork are prepared, ensuring compliance with internal procedures and legal
requirements. Process 5, loading and staging, entails loading the packaged steel rebars onto
the customer trucks within the manufacturing company’s premises. This process includes
utilising appropriate equipment, such as forklifts or cranes, to ensure the safe and efficient
loading of the rebars onto the trucks. Process 6 involves inspecting the loaded trucks
to verify that the steel rebars are adequately secured and that the trucks are in suitable
transportation conditions. Any identified concerns or issues are addressed during this
truck inspection process.

The truck dispatch process is the final step in outbound logistics, closely coupled with
the delivery confirmation. The truck dispatch process comes into play once the trucks
carrying steel rebars are loaded and ready to depart from the manufacturing company’s
premises. Table 7 shows the average service time of sub-processes of outbound logistics
operations.
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Table 7. Average service time for each outbound logistics processes.

Process Aver. Service Time
(min) Process Aver. Service Time

(min)

Gate operation 2 Documentation and
compliance 2

Creditworthiness
evaluation 3 Loading and staging 12

Order processing—
standard 7 Truck inspection 2

Order
processing—spot 10 Truck dispatch and

delivery confirmation 2

4.2.1. DES Model for SM’s Outbound Logistics Operation

A DES model, as illustrated in Figure 9, has been constructed to emulate the outbound
logistics process of SM. This simulation model incorporates a finite OQN framework within
the Anylogic software platform. Subsequently, optimisation configurations are inputted
into the model to ascertain the optimal buffer sizes for each service station.
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The simulation-optimisation experiments conducted in this study involve using vari-
ous customer arrival rates to represent distinct scenarios. The identified customer arrival
rates and the ratio between standard and spot customers are presented in Table 8. The
objective of the optimisation study is to maximise the throughput, which corresponds to
the number of successfully fulfilled customer orders. A constraint is imposed with the
budget limit for buffer spaces, with each space costing EUR 100. The total budget allocated
for buffer spaces is EUR 8000. The optimisation experiment is executed over 12 h, with a
maximum of 1000 iteration runs. These experimental settings align with the methodology
employed in the previous section.

Table 8. Identified scenarios for optimisation experiments.

Scenario # Arrival Rate (per Hour) Stand.: Spot

Scenario 1 4 80 to 20

Scenario 2 4 90 to 10

Scenario 3 5 90 to 10

Scenario 4 8 90 to 10

4.2.2. Optimal Buffer Allocation for Outbound Logistics Process

Table 9 presents the optimal buffer allocations obtained across the previously identified
scenarios. Several noteworthy observations can be drawn from the results presented below.
In scenarios 1 and 2, where the arrival rate of trucks remains the same but the customer
composition differs, different buffer allocations are observed while maintaining the same
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throughput. On the other hand, scenario 3 exhibits an optimal uniform buffer allocation.
In the final scenario, a higher throughput and lower order processing time are achieved;
however, this is accompanied by significantly greater utilisation of buffer spaces. As a
result, it is crucial for logistics practitioners in the SM domain to consider various factors
such as arrival rate, customer order composition, order processing time, and buffer costs in
order to manage their operations effectively.

Table 9. Optimal buffer allocations for identified scenarios with order processing efficiency.

Scenario # Optimal Buffer
Allocation

Throughput (#
of Orders
Processed)

Aver. Order
Processing
Time (min)

Total Number
of Buffer

Spaces Used

Scenario 1 1,1,5,1,7,1,4,3 49 14.69 23

Scenario 2 2,2,2,3,3,1,1,2 49 14.69 16

Scenario 3 1,1,1,1,1,1,1,1 51 14.12 8

Scenario 4 5,12,3,3,20,7,2,16 57 12.63 68

4.2.3. Cycle Time Comparison with Analytical and Simulation Method

Table 10 presents the estimated cycle time (sojourn time) for various scenarios using
the analytical method and simulation model. The difference between the results is cal-
culated using Equation (12), ranging between approximately ±4% and ±8%. The table
demonstrates that the analytical method, employing the GEM approximation, offers reli-
able and robust solutions for analysing finite OQNs. The accuracy and effectiveness of the
analytical method make it a valuable tool for studying and evaluating system performance
in real-world applications.

Di f f ernce =
(Analytical meth. − Simulation meth.)

Analytical meth.
(12)

Table 10. Comparison of cycle times using analytical and simulation methods.

Scenario #
Cycle Time (min)

GEM Method Simulation Model Diff.

Scenario 1 13.471 14.69 −8.30%

Scenario 2 13.851 14.69 −5.71%

Scenario 3 12.981 14.12 −8.07%

Scenario 4 12.135 12.63 −3.92%

4.3. Managerial Insights

The analysis of buffer allocation in a steel manufacturing company’s inter-facility
material transfer operation and outbound logistics process reveals several key managerial
insights. Firstly, the number and allocation of trucks significantly impact buffer optimisa-
tion and material transfer efficiency. By increasing the number of trucks allocated to each
material type and the total number of trucks, the overall throughput in total tons of materi-
als transferred can be increased. However, a potential decrease in the average throughput
per truck may accompany this increase. Therefore, managers must carefully balance the
number of trucks allocated to different material types to achieve optimal performance.

Different optimal buffer allocations were obtained when different truck allocations
were implemented for each material type while maintaining a constant total number of
trucks, leading to varying throughput values. This finding highlights the importance of
considering the quantity and composition of trucks when determining buffer requirements.
Furthermore, the analysis reveals that an increase in the total number of trucks does not
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necessarily result in a proportional increase in buffer requirements. Different scenarios
with equivalent numbers of trucks may require significantly different buffer allocations,
depending on the truck composition and the specific service stations involved. Thus, man-
agers should consider the specific characteristics of each scenario and carefully analyse the
interplay between truck allocations, customer order compositions, and buffer requirements
to optimise material transfer operations.

The analysis also emphasises the significance of resource utilisation rates in identifying
potential bottlenecks and improving system performance. By evaluating the utilisation
rates of servers at various nodes or service stations, managers can pinpoint areas with high
levels of occupancy that may hinder system efficiency. In particular, the analysis identifies
nodes where utilisation rates approach or reach 1.0, indicating potential bottlenecks. These
bottlenecks signal the need for reallocation or additional resources to ensure optimal
system performance. Strategies such as process subdivision, workload consolidation, or
adding servers can help balance the workload and enhance resource utilisation, reducing
congestion and improving overall system efficiency.

Sensitivity analysis further enhances decision making by assessing the impact of
critical factors on system outcomes. The analysis demonstrates the influence on throughput,
buffer allocations, and utilisation rates by introducing an additional server in specific
scenarios. The results indicate that including an extra server can improve throughput and
decrease server utilisation, thereby enhancing overall system performance. These findings
highlight the system’s interconnected nature of design factors and provide valuable insights
for informed decision making when designing system topologies.

Overall, the managerial insights derived from the analysis underscore the importance
of considering factors such as truck allocations, customer order compositions, buffer
requirements, and resource utilisation rates in optimising inter-facility material transfer
operations and outbound logistics processes. By carefully evaluating and balancing these
factors, managers can effectively manage their operations, improve system performance,
and enhance overall efficiency in the steel manufacturing company’s supply chain.

5. Conclusions

This paper has presented a framework for optimising buffer allocation in inter-facility
material transfer and outbound logistics processes. The study has demonstrated the
significance of strategic buffer placement and sizing in improving supply chain efficiency
and performance. By utilising finite queueing networks and the generalised expansion
method (GEM), the framework allows for the modelling, analysis, and optimisation of
buffer allocations in manufacturing systems.

Resource utilisation rates are crucial in identifying bottlenecks and improving system
efficiency. Evaluating server utilisation at different nodes allows managers to allocate re-
sources effectively by employing process subdivision or workload consolidation strategies.

This study’s significance lies in its pioneering approach to buffer allocation problems,
considering both ends of logistics processes. While previous studies focused on single
logistics processes, this research integrates inter-facility transfer and outbound logistics,
paving the way for a holistic examination of buffer allocation in complex setups. Future
research can explore integrated analyses encompassing inbound, intra, and outbound
logistics to understand buffer allocation across the entire logistics network comprehensively.

The study has specific limitations that require acknowledgement. Firstly, it concen-
trates on a single-server environment, overlooking the intricacies of multi-server setups.
Secondly, assuming homogeneous jobs or customers may only partially represent real-
world situations where variations exist. Thirdly, the study adopts a first-come, first-serve
queue discipline, neglecting potential priority-based service considerations. Lastly, the
assumption of uniform buffer costs at all stations disregards the possibility of varying
costs at different locations. These limitations indicate potential areas for future research to
enhance the applicability of buffer allocation models.
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In conclusion, this study provides valuable insights into the buffer allocation process
for manufacturing companies to optimise inter-facility material transfer and outbound
logistics. The proposed framework offers opportunities for improving operational efficiency
and overall performance in manufacturing supply chains.
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Abstract: Having sustainable and flexible features is crucial for manufacturing companies considering
the increasing competition in the globalized world. This study considers three aspects of sustain-
ability, namely economic, social, and environmental factors, in the design of flexible manufacturing
cells. Three different multi-objective integer mathematical programming models were developed
with the objective of minimizing the costs associated with carbon emissions, inter-cellular move-
ments, machine processing, machine replacement, worker training, and additional salary (bonus).
Simultaneously, these models aim to minimize the carbon emission amount of the cells within the
environmental dimension scope. The developed models are a goal programming model, an epsilon
constraint method, and an augmented epsilon constraint (AUGMECON) method. In these models,
alternative routes of parts are considered while assigning parts to machines. The results are obtained
using the LINGO 20.0 optimization program with a developed illustrative example. The obtained
results are tested and compared by performing sensitivity analyses. The sensitivity analyses include
examinations of the effects of changes in part demands, machine capacity values, carbon limit value,
and the maximum number of workers in cells.

Keywords: sustainable manufacturing; flexible manufacturing cells; multi-objective optimization;
goal programming; epsilon constraint method; augmented epsilon constraint method

1. Introduction

Sustainability refers to discussing economic, environmental, and social dimensions
simultaneously. While the environmental dimension assesses various factors such as gas
emissions, solid/liquid waste management, and energy consumption, the social dimension
considers some aspects such as working conditions and work safety. The economic dimen-
sion considers providing economic benefits like increasing net present value [1]. Sustainable
manufacturing examines products and techniques that have both an economic impact and
the ability to minimize the adverse effects of environmental factors, while also protecting
energy and natural resources and being reliable for workers [2]. The environmental aspect
of sustainability relates to the well-being of people and relies on the responsible use of
renewable and non-renewable resources and the Earth’s capacity to breathe waste. The
environmental aspect of sustainability points out that natural resources are not abundant
and are continually consumed. Environmental indicators provide an early warning system
to prohibit damage to the natural environment [3]. While manufacturing companies aim
to transform natural resources, financial capital, and information into products that fulfill
social needs, the human factor plays a crucial role in every aspect of the manufacturing
process. Social sustainability indicators are essential in assessing and measuring the social
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impacts of manufacturing decisions [4]. Galal and Moneim [5] examine social factors
within manufacturing systems, addressing elements such as education budget, overtime
rate, security, and labor expenditure. In the context of manufacturing system sustainability,
Rajak and Vinodh [6] investigate social sustainability indicators, encompassing aspects like
job opportunities, health and safety applications, research and development, healthcare
and education, and social cohesion. According to Vimal et al. [7], employee education and
training emerge as significant strategies for advanced manufacturing systems. Lin et al. [8]
categorize social factors in manufacturing systems into diverse criteria, including work
accidents, physical workload, working conditions, employee productivity, knowledge and
skills, and employee satisfaction. Mengistu and Panizzolo [9] gather a range of criteria,
including employment opportunities, employee satisfaction, occupational health and safety,
education, and development, and working conditions to define social factors within manu-
facturing systems. According to Ahmad et al. [3], the economic dimensions of sustainability
encompass various indicators that are traditionally associated with financial accounting
and intangible assets. The economic dimension of sustainability is indeed interconnected
with the environmental and social pillars. Economic pillars are also associated with costs
and profits [3].

Sustainable manufacturing systems development efforts contemplate solving prob-
lems at all levels (product, process, and system) [10]. The dynamic cellular manufacturing
system is one of the manufacturing systems that has a high degree of flexibility and agility
to handle product changes [11]. Flexible manufacturing systems are computer-controlled
systems that can simultaneously process various parts, including automated material han-
dling equipment and numerically controlled machine tools [12]. The systems divided into
subsystems to produce certain parts are called cellular manufacturing systems [13]. The
cell formation problem addressing the design of cellular manufacturing systems aims to
group parts into part families and related machines into machine cells. This problem aims
to ensure grouping efficiency by minimizing inter-cellular and intra-cellular movement
costs. The classification of cellular manufacturing systems is based on the geometry of each
part and the similarity in the working process. This classification aims to reduce inventory,
improve flow time, optimize space utilization, and enhance system efficiency [11].

The organization of this study is as follows: In the second section, a comprehensive
review of the related literature is presented, focusing on the environmental, social, and
economic dimensions of sustainable factors in cellular manufacturing systems and cell
formation. The primary purpose of this study is to design flexible manufacturing cells
considering sustainable factors. To achieve this, three different mathematical programming
models are presented in the following sections and discussed in Section 3 in detail. The
goal programming model, the ε-constraint model, and the augmented ε-constraint (AUG-
MECON) model were developed. Section 4, Results and Discussion, includes the solution
of the sample problem and the sensitivity analyses. In Section 5, the conclusions and future
studies are presented.

2. Literature Review

A selection of studies related to the formation of cellular manufacturing systems
with some sustainability criteria is given below. Ghodsi et al. [14] consider three aspects
of sustainability simultaneously in their cellular manufacturing model. In terms of the
economic aspects of sustainability, the lowest cost, the reduction in pollutant emissions as
an environmental sustainability criteria, and the reduction in the negative impact on job
satisfaction in terms of social factors are taken into consideration. Aljuneidi and Bulgak [15]
develop a mixed integer linear programming model that combines reconfigurable cellu-
lar manufacturing systems and hybrid manufacturing–remanufacturing systems. They
suggest an integrated strategy encompassing aspects of design optimization, analysis,
and process planning, aiming to consider several design issues concerning sustainable
manufacturing systems. Within the model aiming to minimize the total cost, cost items
related to manufacturing and remanufacturing, as well as costs associated with returned
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products for remanufacturing, were also considered. Mehdizadeh et al. [16] summarize the
cell formation problem and production planning and present a multi-objective model. The
required time in terms of the time unit for the training of a worker to operate the machines,
and some cost terms, such as training, hiring, firing, and salary costs, are considered in the
model. Niakan et al. [11] present a two-objective mathematical model for the dynamic cell
formation problem considering economic, environmental, and social criteria. In their study,
the authors focused on minimizing total cost including cost terms such as inter-cell move-
ment, intra-cell movement, hiring, firing, salary, and training costs, as well as reducing
total manufacturing waste, which includes factors such as raw materials, chemicals, energy
consumption, and CO2 emissions. In addition, the maximum daily noise exposure level
for worker assignments is added as a constraint to the model as a social criterion. Niakan
et al. [17] address minimizing machine-related costs (machine fixed and variable costs, ma-
chine procurement and relocation costs, and intra-cell and inter-cell movement costs) and
wages, while also considering social issues such as minimizing potential machine hazards
and maximizing job opportunities. They state that they tried to establish a balance between
economic and social criteria while designing the cells in each period. Imran et al. [18]
consider the rated power of machines and the rated power of the material handling devices
(AGVs) in the cell formation problem of cellular manufacturing systems. Additionally, the
cost per kilowatt hour of electricity is also incorporated into the model. Arghish et al. [19]
propose a mathematical model that considers economic and environmental criteria for the
type 2 fuzzy cell formation problem. Iqbal and Al-Ghamdi [20] work on saving energy in a
machine shop environment by optimizing the assignment of production processes to varied
machines and grouping machines in multiple cells to minimize the movement distance.
Kumar and Singh [21] propose a bi-objective stochastic mathematical model for sustainable
cellular facility layout, along with suggesting an embedded metaheuristic to solve the
model. The electricity consumption of AGVs between machines was incorporated into the
model. The authors state that the environmental and economic aspects of sustainability
in the process of designing a layout is considered in their model. Raoofpanah et al. [22]
present a mixed-integer nonlinear programming model that considers environmental issues
such as pollution and waste resulting from manufacturing and transportation in the context
of cell formation. The cost of the pollution created by the types of vehicles used by the
suppliers is considered in the model. Telegraphi and Bulgak [23] present a mixed integer
linear programming model for designing optimization of a cellular manufacturing system
within the context of a closed-loop supply chain to establish a sustainable manufactur-
ing enterprise. In their study, the minimization of the costs of remanufacturing returned
products and related costs such as the disposal, disassembly, and holding of the returned
products are also considered. Forghani et al. [24] address an integrated cell formation
and group layout model as a mixed-integer program, considering energy consumption,
assembly considerations, and process routing. The electric energy consumption generated
during processing of parts on machines is incorporated into the model. Jafarzadeh et al. [25]
consider the sustainable manufacturing system in the dynamic cellular manufacturing
system using fuzzy parameters. They propose a multi-objective sustainable mathematical
model that minimizes costs, CO2 emissions, and product shortages while considering
customer satisfaction.

In the literature, various cost items have been considered in relation to cell formation
problems. Table 1 provides a chronological presentation of some cost items and various
studies that have addressed these costs in the context of cell formation problems.
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Table 1. A selection of cost items in cell formation studies.

Authors
Movement Costs Machine

Relocation-
Related

Cost

Worker
Training

Cost

Hiring and
Firing Cost

Salary
Cost

Energy
Cost

Remanufacturing
Cost

Pollution
CostIntra-

Cellular
Inter-

Cellular

Aryanezhad et al. [26]
√ √ √ √ √

Fan and Feng [27]
√ √ √ √

Bagheri and Bashiri [28]
√ √ √ √

Aljuneidi and Bulgak [15]
√ √

Azadeh et al. [29]
√ √ √

Mehdizadeh and Rahimi [30]
√ √ √

Mehdizadeh et al. [16]
√ √ √ √ √ √

Niakan et al. [11]
√ √ √ √ √ √

Nouri [31]
√ √ √ √ √

Zohrevand et al. [32]
√ √ √

Sadeghi et al. [33]
√ √ √ √ √ √

Zhang and Zhou [34]
√ √ √

Arghish et al. [19]
√ √ √

Delgoshaei et al. [35]
√ √ √

Fahmy [36]
√ √ √

Raoofpanah et al. [22]
√ √ √

In this study, the design of flexible manufacturing cells is discussed by considering
various factors related to economic, social, and environmental dimensions of sustainability.
The study aims to design manufacturing cells that quickly adapt to dynamic and com-
petitive market conditions with flexible and sustainable features. A general evaluation of
cell formation studies regarding sustainable dimensions is given in Table 2. As seen in
Table 2, this study examines the flexible cell formation problem by considering various
factors related to sustainability dimensions including economic, environmental, and social
dimensions.

Table 2. A selection of cell formation studies according to sustainability dimensions.

Authors Economical Environmental Social

Fan and Feng [27]
√ √

Ghodsi et al. [14]
√ √ √

Aljuneidi and Bulgak [15]
√ √

Mehdizadeh and Rahimi [30]
√

Niakan et al. [11]
√ √ √

Niakan et al. [17]
√ √

Nouri [31]
√

Imran et al. [18]
√

Sadeghi et al. [33]
√

Zhang and Zhou [34]
√ √

Arghish et al. [19]
√ √

Delgoshaei et al. [35]
√

Iqbal and Al-Ghamdi [20]
√

Kumar and Singh [21]
√ √

Raoofpanah et al. [22]
√ √

Forghani et al. [24]
√

Jafarzadeh et al. [25]
√ √ √

This article
√ √ √

In Table 3, a selection of various studies in the relevant literature in terms of some
factors are listed. This study considers all factors listed in Table 3 and various sustainability
factors in the design process of flexible cells.

This study focuses on the design of flexible manufacturing cells considering the
economic, environmental, and social dimensions of sustainability. This study aims to
ensure optimum results for the following three developed models: the goal programming
method, the epsilon constraint (ε-constraint) method, and the AUGMECON method.
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Table 3. A selection of cell formation studies in terms of some factors.

Authors Worker Assignment Skill Route Flexibility Period

Aryanezhad et al. [26]
√ √ √ √

Fan and Feng [27]
√ √ √ √

Bagheri and Bashiri [28]
√ √

Azadeh et al. [29]
√ √ √

Mehdizadeh and Rahimi [30]
√ √

Niakan et al. [11]
√ √ √

Nouri [31]
√ √ √

Sakhaii et al. [37]
√ √ √

Feng et al. [38]
√ √ √

Raoofpanah et al. [22]
√

Shafiee-Gol et al. [39]
√ √

This article
√ √ √ √

3. Material and Methods
3.1. Problem Formulation

In this article, three different multi-objective mathematical programming models,
named the goal programming method, the ε-constraint method, and the AUGMECON
method, were developed to address the identified problem. The goal programming model
is obtained by minimizing the sum of the deviations from the target values. As mentioned
in the study of Felfel et al. [40], in the ε-constraint method, one of the objectives is accepted
as the objective function. Thus, while the selected objective function is optimized, other
objective functions are considered as constraints and limited by the epsilon value [40]. In
the AUGMECON method, unlike the classical ε-constraint method, the slack or surplus
variables are included in the model, and the constraints of the objective function are
converted into equations [41]. Thus, some constraints that are typical for each multi-
objective method were added to the mathematical programming models.

In this study, the developed multi-objective mathematical programming models aim
to minimize cost items, including carbon emission, inter-cellular movements, machine
processing, machine replacement, worker training, and bonus costs, which are calculated
for workers based on their skills. Moreover, this study aims to reduce the amount of carbon
emissions by considering the environmental dimension. The optimal route of each part
is determined based on alternative routes. In addition, decisions are made to determine
the number of machines assigned to cells, added to cells, and removed from cells for each
period, the assignment of workers to cells, the number of workers in the cell and system,
and the total training time that workers receive. Various assumptions of the developed
model are stated below:

• In the system, the routing flexibility for each part is taken into account. Only one
alternative route of each part can be chosen.

• The system has machine flexibility. Multiple part types can be processed on different
machines.

• The capacities of the cells are limited, and there are upper and lower limits for the
number of machines to be taken into account.

• The part demands are fixed and known values. The processing time of a part on its
route is known.

• The amount of power that machines consume during production is considered. Indi-
rect and energy-related carbon emissions arising from the operation of the machines
are considered. Machine idle times are ignored.

• The movements of parts between cells are considered.
• The carbon emission conversion factor is a constant coefficient.
• The time required for the addition of machines to cells and the removal of machines

from the cells is ignored.
• The system has worker flexibility, and different workers may have different skills.
• In addition, worker skills are assumed constant in each period.
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3.2. Developed Goal Programming Model

The developed goal programming model consists of several components, including
sets, parameters, decision variables, objective function, and constraint equations. These
elements are defined as follows:

Indices:
W Set of part types (w ∈W).
R Set of alternative routes (r ∈ R).
Q Set of cells (q ∈ Q).
S Set of machine types (s ∈ S).
I Set of worker types (I ∈ I).
L Set of skills (l ∈ L).
E Set of periods (e ∈ E).
Parameters:
Dew The demand of part w in period e.
Kes The time capacity of machine s in period e.
twrqs The machining time of part w on machine s in cell q using alternative route r.
pwwrqs The amount of power consumed while machining part w on machine s in cell q using alternative route r.
HAew The cost of moving part w between cells in a period e.
CEes The machine s carbon emission cost per period e.
Oes The machine s processing/operation cost per period e.
NACes The cost of adding machine s to cells per period e.
NRCes The cost of removing machine s from cells per period e.
EMeqi The training cost of worker i in cell q in period e.
ESil The time that worker i spends on an operation of skill l.
HYeql The limit value of skill l in cell q in period e.
TESeql The limit time that workers with skill l in cell q in period e can spend.
IKeq The maximum number of workers of cell q in period e.
HALeq The lower bound for the number of machines in cell q in period e.
HULeq The upper limit for the number of machines in cell q in period e.
F The carbon emission conversion factor.
LBeq The carbon emission limit value of cell q in period e.
Bl The bonus wage to be received by l skilled worker.
ESTeil The training time received by worker i in the skill l in period e.

zewrq





1, if part w is produced at least one time in cell q with alternative route r
in the period e
0, otherwise

IYil

{
1, if the worker i has skill l
0, otherwise

GHwrqs

{
1, if part w has alternative route r with machine s in cell q
0, otherwise

HD1, HD2, HD3, HD4, HD5, HD6, HD7, and HD8, respectively, represent the target
values for the objective items.

Decision Variables
xewr

{
1, if alternative route r is selected for part w in period e,
0, otherwise

Veqi

{
1, if worker i is assigned to cell q in period e,
0, otherwise

Neqs The number of machine s assigned to cell q in period e.
NAeqs The number of machine s added to cell q in period e.
NReqs The number of machine s removed from cell q in period e.
ISeq The number of workers in cell q in period e.
EISe The total number of workers in the system in period e.

TAi
The total training time that worker i will receive during all periods according to the worker’s
abilities.

The parameters Kes, twrqs, ESil , TESeql , and ESTeil have the same time unit in the
model. Additionally, the parameters HAew, CEes, Oes, NACes, NRCes, EMeqi, and Bl have
the same currency unit.

Objective Function

Min = d+1 + d+2 + d+3 + d+4 + d+5 + d+6 + d+7 + d+8 (1)

The objective function of the goal programming model is given by Equation (1).
Using Equation (1), the minimization of the sum of deviations from the handled targets
is ensured. In the objective function (1), d+1 , d+2 , d+3 , d+4 , d+5 , d+6 , d+7 , d+8 ,respectively, are the
decision variables that represent positive deviations from the targets. In Equations (2)–(9),
d−1 , d−2 , d−3 , d−4 , d−5 , d−6 , d−7 , d−8 , respectively, are negative deviations from the targets.
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Constraints

E

∑
e=1

W

∑
w=1

R

∑
r=1

Q

∑
q=1

S

∑
s=1

twrqsxewrGHwrqsDew pwwrqsF +
(
d−1 − d+1

)
= HD1 (2)

E

∑
e=1

W

∑
w=1

R

∑
r=1

Q

∑
q=1

S

∑
s=1

twrqsxewrGHwrqsDew pwwrqsCEesF +
(
d−2 − d+2

)
= HD2 (3)

The first goal constraint, Equation (2), aims to not exceed the carbon emission target
value, as shown by HD1. Conversion factors can vary according to factors such as fuel
types and materials used. In this study, the carbon emissions released from the machines
are calculated based on the energy consumption values of the machines. In Equation (3),
the second goal constraint of the model, aims to not exceed the target value of the total
carbon emission cost. This cost item varies depending on factors such as the power values
of the machines, processing times, and part demands.

E

∑
e=1

W

∑
w=1

R

∑
r=1

Q

∑
q=1

S

∑
s=1

twrqsxewr NeqsGHwrqsDewOes +
(
d−3 − d+3

)
= HD3 (4)

Equation (4) aims to not exceed the target value of the total operation cost. The total
operation cost is calculated according to factors such as part demands, part processing
times, and the number of machines in the cell.

E

∑
e=1

W

∑
w=1

R

∑
r=1

[(
Q

∑
q=1

zewrq

)
− 1

]
DewHAewxewr +

(
d−4 − d+4

)
= HD4 (5)

E

∑
e=1

Q

∑
q=1

I

∑
i=1

VeqiEMeqi +
(
d−5 − d+5

)
= HD5 (6)

Equation (5), the fourth goal constraint, aims to not pass over the target value of the
total cost of movement between cells. The goal constraint indicated by Equation (6) aims
to not pass over the target value of the total training cost of workers assigned to cells in
each period.

E

∑
e=1

Q

∑
q=1

S

∑
s=1

NAeqsNACes +
(
d−6 − d+6

)
= HD6 (7)

E

∑
e=1

Q

∑
q=1

S

∑
s=1

NReqsNRCes +
(
d−7 − d+7

)
= HD7 (8)

Equations (7) and (8) are the goal constraints related to the total cost items generated
during cell design. Equation (7) aims to not exceed the target value of total cost of the
number of machines added to cells. Equation (8) aims to not exceed the target value of the
total cost of the item associated with removing machines from cells.

E

∑
e=1

Q

∑
q=1

I

∑
i=1

L

∑
l=1

Veqi IYil Bl +
(
d−8 − d+8

)
= HD8 (9)

Equation (9) aims to not exceed the target value of the total bonus wage that workers
assigned to cells receive according to their abilities. In this study, the economic dimension
of sustainability is also considered when designing the cells.

R

∑
r=1

xewr = 1∀e, w (10)
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In this study, it is assumed that the model has routing flexibility and each part has al-
ternative routes. Equation (10) shows that the parts can choose only one of their alternative
routes in each period.

W

∑
w=1

R

∑
r=1

zewrqxewr ≥ 1∀e, q (11)

W

∑
w=1

R

∑
r=1

twrqsxewrGHwrqsDew ≤ KesNeqs∀e, q, s (12)

Equation (11) shows that at least one part is processed in the selected route in each cell
in each period. Equation (12) ensures that the machines cannot exceed their time capacity
for each period and each cell.

W

∑
w=1

R

∑
r=1

S

∑
s=1

twrqsxewrGHwrqsDew pwwrqsF ≤ LBeq∀e, q (13)

Equation (13) shows that the total amount of carbon emissions for each cell in each
period cannot exceed a limit value. With this constraint, the environmental dimension of
sustainability for the cells is also regarded when designing the cells.

Ne−1,qs + NAeqs − NReqs = Neqs∀e, q, s, e > 1 (14)

S

∑
s=1

Neqs ≤ HULeq∀e, q (15)

S

∑
s=1

Neqs ≥ HALeq∀e, q (16)

In Equation (14), regarding cell design, the numbers of machine types in each cell
in each period are calculated. The numbers of machine types in each cell are calculated
considering that machines may be added to and removed from the cells in each period.
Thus, the machine numbers and types change dynamically in each period. Equation (15)
shows the upper limit value for the total number of machine types in each cell in each
period. In Equation (16), the lower limit value of the total number of machine types for
each cell is given.

I

∑
i=1

IYilESilVeqi ≤ TESeql ∀e, q, l (17)

Equation (17) shows that in each period, in each cell and according to each skill,
the total time spent by workers cannot exceed a certain limit value. With this constraint,
workers are assigned to cells according to their abilities.

I

∑
i=1

Veqi = ISeq∀e, q (18)

I

∑
i=1

Veqi ≤ IKeq∀e, q (19)

Equation (18) calculates the total number of workers assigned to each cell in each
period. Equation (19) provides that the number of workers assigned to each cell in each
period cannot exceed a particular limit value.

Q

∑
q=1

ISeq = EISe∀e (20)
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Equation (20) shows the total number of workers assigned to the cells in each period.

Q

∑
q=1

Veqi ≥ 1∀e, i (21)

I

∑
i=1

IYilVeqi ≤ HYeql∀e, q, l (22)

E

∑
e=1

Q

∑
q=1

L

∑
l=1

VeqiESTeil = TAi∀i (23)

xewrGHwrqs ≤ Neqs∀e, w, r, q, s (24)

Equation (21) provides for the assignment of each worker to at least one cell in each
period. Equation (22) shows that the total number of workers for each skill type in each
cell for each period cannot exceed the limit value. The total training time received by
each worker in all periods is calculated by Equation (23). With Equation (23), the social
dimension of sustainability is also regarded when designing the cells. In Equation (24), if
the part is produced on its alternative route in a period and the machine type and cell are
available with the alternative route of the part, then there is at least one machine assignment
to the cell in that period.

xewr, Veqi ∈ {0, 1}∀e, w, r, q, i (25)

Neqs, NAeqs, NReqs, EISe, ISeq ≥ 0 and integer∀e, q, s (26)

TAi ≥ 0∀i (27)

d+1 , d+2 , d+3 , d+4 , d+5 , d+6 , d+7 , d+8 , d−1 , d−2 , d−3 , d−4 , d−5 , d−6 , d−7 , d−8 ≥ 0 (28)

0–1 binary decision variables are shown in Equation (25). Decision variables that are
positive integers are represented by Equation (26). Equations (27) and (28) indicate that the
total training time and the goal deviation values must be positive, respectively.

Linearization of the Model

The goal constraint, indicated by Equation (4), is non-linear due to the multiplication
of the two decision variables. For this reason, the constraint in this article is made linear by
using the binary-in-integer linearization technique mentioned by Mahdavi et al. [42].

The following new constraint expressions and a decision variable are considered to
linearize the model:

xnewrqs = xewr Neqs (29)

xnewrqs ≤ Neqs∀e, w, r, q, s (30)

xnewrqs ≤ xewr M ∀e, w, r, q, s (31)

xnewrqs − Neqs ≥ (x ewr − 1
)

M∀e, w, r, q, s (32)

xnewrqs ≥ 0 and integer∀e, w, r, q, s (33)
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E

∑
e=1

W

∑
w=1

R

∑
r=1

Q

∑
q=1

S

∑
s=1

twrqsxnewrqsGHwrqs DewOes +
(
d−3 − d+3

)
= HD3 (34)

M is a big enough number coefficient than the decision variables xewr and Neqs. The model
was made linear with the addition of new Equations (30)–(33), and thus Equation (34) is the
edited version of Equation (4). That is, the new Equations (30)–(33) are added to the goal
programming model and Equation (34) is added to the model instead of Equation (4).

3.3. Developed ε-Constraint Model

In the ε-constraint method, one of the multi-objective functions is considered as
the primary objective function and the other objectives are converted into constraints by
applying a limitation with an upper bound. Then, the εj level is changed to generate all
Pareto solutions [40].

The ε-constraint problem formulation stated in Felfel et al. [40] is taken into account.
The below equations are considered for the ε-constraint model in this study. The mini-
mization of total cost items was assigned a relatively higher priority and is considered as a
single objective function item in Equation (35).

MinSNC2 =
E
∑

e=1

W
∑

w=1

R
∑

r=1

Q
∑

q=1

S
∑

s=1
twrqsxewrGHwrqsDew pwwrqsCEesF

+
E
∑

e=1

W
∑

w=1

R
∑

r=1

Q
∑

q=1

S
∑

s=1
twrqsxnewrqsGHwrqsDewOes

+
E
∑

e=1

W
∑

w=1

R
∑

r=1

[(
Q
∑

q=1
zewrq

)
− 1

]
DewHAewxewr +

E
∑

e=1

Q
∑

q=1

I
∑

i=1
VeqiEMeqi

+
E
∑

e=1

Q
∑

q=1

S
∑

s=1
NAeqsNACes +

E
∑

e=1

Q
∑

q=1

S
∑

s=1
NReqsNRCes

+
E
∑

e=1

Q
∑

q=1

I
∑

i=1

L
∑

l=1
Veqi IYil Bl

(35)

The minimization of the total amount of carbon emissions is represented with SNC1
and is shown in Equation (36). It was changed to an ε-constraint and thus, Equation (37) is
subject to this constraint:

E

∑
e=1

W

∑
w=1

R

∑
r=1

Q

∑
q=1

S

∑
s=1

twrqsxewrGHwrqsDew pwwrqsF = SNC1 (36)

E

∑
e=1

W

∑
w=1

R

∑
r=1

Q

∑
q=1

S

∑
s=1

twrqsxewrGHwrqsDew pwwrqsF ≤ ε1 (37)

Equations (10)–(27), Equations (30)–(33), and Equations (35)–(37) are included in the
ε-constraint model in this study.

3.4. Developed Augmented ε-Constraint Model (AUGMECON)

The AUGMECON method is a novel version of the classical ε-constraint method.
This method suggests transforming the objective function constraints into equations by
including the slack or surplus variables of the classical method [41].

The AUGMECON method improves the classical epsilon constraint method by em-
ploying lexicographic optimization to structure the payoff table in alignment with the
desired priorities, subsequently optimizing the objective functions in accordance with these
priorities. The lexicographic optimization initially focuses on optimizing the first objective
function f 1, resulting in the optimal value z1*. To maintain this optimality for the first
objective function, a constraint is introduced, setting f 1 = z1*, in a model dedicated to
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optimizing the second objective function. This process is iterated until each individual
objective function has been separately optimized. To address another weakness of the
epsilon constraint method, the objective function constraints are converted into equalities
by introducing slack or surplus variables. The value of δ is a small number [43]. ri is the
range of the i-th objective function, which is determined based on the data in the payoff
table [41].

The AUGMECON model formulation stated in Yadollahi et al. [43] was considered. In
this study, the below equations are presented. As in the ε-constraint method, minimization
of the total cost is considered as relatively important and modeled as a single objective
function as shown in Equation (35). The expression SNC2 represents the total cost and
is shown in Equation (35). The minimization of the total amount of carbon emissions is
represented with SNC1. The expression indicated by SLV1 is a slack or surplus variable in
the model.

Min(SNC2 − δ ∗ (SLV1/r1)) (38)

s.t : SNC1 + SLV1 = ε1 (39)

SLV1 ∈ R+ (40)

In this study, the value of δ is assumed to be 0.0001 as shown in Equation (38). In
addition, Equations (10)–(27) and Equations (30)–(33) are included in the AUGMECON
model. Additionally, Equations (36) and (38)–(40) are included in the AUGMECON model
in this study.

The following Section 4 consists of the results and discussion, where the solution of the
sample problem, obtained results, and corresponding sensitivity analyses are presented.

4. Results and Discussion

In this study, a sample problem was created to test the developed mathematical pro-
gramming model and analyze its sensitivity. The processing time and power consumption
of the machines in the cells according to the alternative routes are presented in Table A1 in
Appendix A. Table A2 in Appendix A indicates part demands and part movement costs
between cells of the sample problem in each planning period.

Figure 1 shows a schematic presentation of the flexible manufacturing cells created
using Table A1. In this figure, for example, the flow in the system according to the alternate
route 1 of part 1 can be seen.
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Table 4 shows the time capacities of all machines in each period of the sample problem.

Table 4. Machine time capacities.

Machine
Capacity

1. Period 2. Period 3. Period 4. Period 5. Period

1 55,200 51,900 48,800 45,400 35,400
2 48,900 45,400 44,200 43,900 42,900
3 50,100 46,300 44,100 43,300 42,300
4 49,200 48,100 47,100 45,100 44,100
5 48,900 46,800 45,500 44,800 43,800
6 46,200 45,000 44,000 43,500 41,000
7 47,500 45,900 42,000 40,900 38,900
8 44,850 42,750 41,800 40,750 38,750
9 47,200 46,900 45,800 43,900 37,900
10 48,900 44,400 43,700 38,900 35,900
11 51,100 50,300 48,800 45,300 42,900
12 58,200 55,100 53,500 50,400 48,900
13 47,900 45,800 44,800 43,800 41,800
14 48,200 47,000 45,800 45,000 43,900
15 54,500 52,900 50,500 48,900 46,900
16 52,850 50,750 48,200 46,750 41,750
17 48,900 45,800 43,220 42,800 40,800
18 48,200 45,000 43,400 42,000 41,500
19 45,500 43,900 42,000 41,600 40,300
20 47,850 45,750 43,500 42,750 41,750

Table 5 presents the process/operation costs of all machines and carbon emission costs
in each period of the sample problem. Table 6 indicates the costs associated with adding
machines to the cells and removing machines from the cells in each period.

Table 5. Operation costs of all machines and carbon emission costs.

Machine

Operation Costs Carbon Emission Costs

1.
Period

2.
Period

3.
Period

4.
Period

5.
Period

1.
Period

2.
Period

3.
Period

4.
Period

5.
Period

1 9 10 12 13 15 7 8 9 8 12
2 8 10 13 16 17 6 9 10 9 11
3 10 11 14 15 19 7 8 9 9 14
4 11 12 16 18 20 9 7 9 10 13
5 13 13 18 19 23 7 7 7 9 12
6 14 15 16 16 22 6 6 9 8 13
7 15 17 12 13 18 8 7 8 9 12
8 13 15 16 17 19 7 9 9 11 13
9 15 18 19 20 21 7 8 10 12 14

10 9 12 14 18 19 6 9 8 7 13
11 10 13 13 13 19 7 8 6 7 12
12 12 15 19 20 24 9 7 9 8 11
13 12 13 16 17 20 7 7 7 9 12
14 16 18 19 17 18 5 6 10 10 14
15 13 15 16 18 22 8 6 9 10 12
16 12 15 16 17 20 7 9 8 9 10
17 14 18 18 20 23 6 7 9 8 11
18 16 17 21 23 26 6 8 9 8 12
19 13 15 14 17 22 7 6 9 12 13
20 12 16 15 18 20 8 9 9 10 11
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Table 6. Machine addition and removal costs.

Machine

Machine Addition Costs Machine Removal Costs

1.
Period

2.
Period

3.
Period

4.
Period

5.
Period

1.
Period

2.
Period

3.
Period

4.
Period

5.
Period

1 25 45 30 40 49 55 46 40 45 55
2 55 30 35 38 48 75 55 50 55 58
3 45 35 30 38 51 45 55 50 55 59
4 65 62 45 49 59 65 62 65 75 78
5 48 63 50 59 65 48 75 70 75 79
6 55 55 55 60 63 65 55 55 65 75
7 40 56 50 55 65 60 65 60 65 69
8 50 63 60 60 66 45 50 55 65 70
9 25 45 45 55 58 55 46 40 45 55

10 55 30 35 38 48 75 55 50 55 58
11 45 35 42 43 53 45 55 55 58 65
12 65 62 40 60 65 65 62 60 65 70
13 48 63 45 65 68 48 75 70 73 75
14 55 55 50 50 55 65 55 50 54 60
15 40 56 55 59 63 60 65 60 63 65
16 50 63 60 63 65 45 50 70 74 75
17 48 63 60 65 68 48 75 45 48 55
18 55 55 50 55 65 65 55 55 58 60
19 40 56 55 55 65 60 65 60 65 70
20 50 63 60 65 70 45 50 55 58 70

In Table 7, the minimum and maximum number of machines, the maximum number
of workers, and the carbon emission upper limit values of each cell for each period are
indicated. In Table 8, the skill types of the workers and the time data pertaining to the
amount of time workers spend according to these skill types are shown.

Table 7. Upper and lower limits for cells.

Period

Cell Machine
Upper Limit

Cell Machine
Lower Limit

Cell Worker
Upper Limit Cell Carbon Emission Upper Limit

Cell Cell Cell Cell

1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

1 5 5 4 4 4 5 1 1 1 1 1 1 4 4 4 4 4 4 365,100 376,400 397,500 425,100 376,400 377,500
2 5 5 4 5 5 4 1 1 1 1 1 1 4 4 4 4 4 4 375,000 388,500 387,000 395,000 438,500 377,000
3 5 5 4 5 5 4 1 1 1 1 1 1 4 4 4 4 4 4 385,000 354,000 350,000 405,000 415,000 357,800
4 5 5 4 5 5 4 1 1 1 1 1 1 4 4 4 4 4 4 395,000 364,000 390,000 425,000 435,000 387,800
5 4 4 5 4 5 4 1 1 1 1 1 1 4 4 4 4 4 4 355,000 334,000 370,000 405,000 405,000 357,800

Table 8. Worker–skill matrix and workers’ skill durations.

Skill
Worker

I1 I2 I3 I4 I5 I6

1 1 0 1 0 0 1
2 1 1 0 0 1 0
3 0 0 1 1 0 0

Skill
Worker

I1 I2 I3 I4 I5 I6

1 5 0 2 0 0 3
2 4 8 0 0 7 0
3 0 0 3 9 0 0

The limit times that workers can spend in each cell in each period according to their
skill types and training costs are shown in Table 9. Training times received by workers
according to their skills are shown in Table 10.
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Table 9. The limit values, the limit times of workers with skills, and the training costs.

The Limit Value of Workers with
Skills

The Limit Time of Workers with
Skills Training Cost of Workers

Skill Skill Workers

1. Period 1 2 3 1 2 3 1 2 3 4 5 6

Cell 1 1 2 0 25 20 0 50 65 75 45 35 70
Cell 2 2 2 1 15 30 25 30 80 55 65 35 25
Cell 3 2 0 3 35 0 30 33 65 78 40 25 30
Cell 4 1 2 0 25 20 0 40 75 45 35 35 70
Cell 5 2 2 1 15 30 25 30 80 65 55 35 25
Cell 6 2 0 3 35 0 30 38 65 78 40 25 30

2. Period 1 2 3 1 2 3 1 2 3 4 5 6

Cell 1 3 2 0 20 15 0 50 65 75 45 35 70
Cell 2 1 3 0 40 25 0 30 80 55 65 35 25
Cell 3 2 1 2 35 40 25 33 65 78 40 25 30
Cell 4 3 2 0 20 15 0 40 75 45 35 35 70
Cell 5 1 3 0 40 25 0 30 80 65 55 35 25
Cell 6 2 1 2 35 40 25 38 65 78 40 25 30

3. Period 1 2 3 1 2 3 1 2 3 4 5 6

Cell 1 3 2 0 20 15 0 50 65 75 45 35 70
Cell 2 1 3 0 40 25 0 30 80 55 65 35 25
Cell 3 2 1 2 35 40 25 33 65 78 40 25 30
Cell 4 3 2 0 20 15 0 40 75 45 35 35 70
Cell 5 1 3 0 40 25 0 30 80 65 55 35 25
Cell 6 2 1 2 55 45 35 38 65 78 40 25 30

4. Period 1 2 3 1 2 3 1 2 3 4 5 6

Cell 1 4 3 0 30 35 0 60 75 85 55 45 75
Cell 2 2 3 0 50 35 0 35 70 65 75 55 35
Cell 3 3 2 3 45 40 25 39 65 75 45 35 35
Cell 4 4 2 0 30 35 0 45 78 48 55 45 80
Cell 5 3 3 0 45 35 0 35 85 75 59 45 35
Cell 6 4 2 3 40 50 35 40 75 80 50 30 40

5. Period 1 2 3 1 2 3 1 2 3 4 5 6

Cell 1 1 1 0 22 17 0 40 55 70 40 30 65
Cell 2 2 2 1 13 20 20 25 70 50 60 30 20
Cell 3 2 0 3 30 0 25 30 60 70 35 20 25
Cell 4 1 2 0 20 20 0 38 65 40 30 33 68
Cell 5 2 2 1 13 25 27 28 70 60 50 30 23
Cell 6 2 0 2 30 0 25 35 60 75 35 20 28

The carbon emission conversion factor denoted by F is assumed as 0.426 kg/kWh. The
bonus wages to be received by the workers according to each skill type are assumed as 900,
700, and 800 currency units, respectively. HD1, HD2, HD3, HD4, HD5, HD6, HD7, and HD8
are assumed as 600,000, 610,000, 535,000, 450,000, 8000, 5000, 5000, and 7000, respectively.
Additionally, the M value is assumed to be 1000. The GHwrqs parameter is derived based
on the twrqs parameter found in Table A1 in Appendix A. It takes a value of 1 if there is
an available machine process time for the alternative route r with machine s in cell q for
part w; otherwise, it assumes a value of 0. zewrq is a parameter that is created according
to periods and considers the machine processes in the cells according to the routes of the
parts in Table A1 in Appendix A.

In this study, the LINGO 20.0 optimization program was employed to solve the
multi-objective integer mathematical programming models, which addresses the design
of sustainable and flexible manufacturing cells. The developed goal programming, ε-
constraint, and AUGMECON mathematical programming models were solved separately
using the LINGO 20.0 optimization program using a MacBook Air (M1, 2020) with 8 GB
of RAM. The global optimal results were obtained in 12 min and 38 s, 18 min and 31 s,
and 19 min and 51 s for the goal programming method, the ε-constraint method, and
the AUGMECON method, respectively. In the results obtained in the goal programming
model, the positive and negative deviation values from the related targets are obtained as
d+1 = 5,330,653, d+2 = 52,162,290, d+3 = 14,190,360, d+4 = 3,317,127, d+5 = 0, d+6 = 0, d+7 = 0,
d+8 = 25,000, d−1 = 0, d−2 = 0, d−3 = 0, d−4 = 0, d−5 = 6413, d−6 = 4506, d−7 = 4613, d−8 = 0.
Additionally, the objective function value of the goal programming model is obtained as
75,025,430. In Table A3 seen in Appendix B, the results related to optimal routes obtained
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from these three methods are presented separately. The optimal machine assignments
results for the goal programming, ε-constraint, and AUGMECON methods are shown in
Tables 11–13, respectively.

Table 10. Training times received by workers according to skills.

Training Time According to Skill

1. Period

Worker Skill 1 Skill 2 Skill 3

1 15 10 0
2 0 15 0
3 17 0 15
4 0 0 11
5 0 18 10
6 18 0 0

2. Period

Worker Skill 1 Skill 2 Skill 3

1 10 8 0
2 0 18 0
3 17 0 13
4 0 0 11
5 0 13 0
6 17 0 0

3.Period

Worker Skill 1 Skill 2 Skill 3

1 10 8 0
2 0 13 0
3 15 0 18
4 0 0 12
5 0 12 0
6 23 0 0

4.Period

Worker Skill 1 Skill 2 Skill 3

1 15 17 0
2 0 18 0
3 22 0 13
4 0 0 16
5 0 16 0
6 20 0 0

5.Period

Worker Skill 1 Skill 2 Skill 3

1 11 7 0
2 0 16 0
3 15 0 14
4 0 0 10
5 0 23 0
6 15 0 0
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Table 11. Optimal machine assignments for the goal programming.

Period Cell Optimal Machine Assignments Optimal Machine Addition Optimal Machine Removal

1

1 N111(1), N112(1), N113(1)
2 N124(1), N125(1), N126(1)
3 N136(1), N137(1), N138(1), N139(1)
4 N148(1), N1,4,11(1), N1,4,12(1), N1,4,15(1)
5 N1,5,14(1), N1,5,15(1), N1,5,16(1), N1,5,17(1)
6 N1,6,18(1), N1,6,19(1), N1,6,20(1)

2

1 N211(1), N212(1), N213(1)
2 N224(1), N225(1), N226(1)
3 N236(1), N237(1), N238(1), N239(1)
4 N2,4,10(1), N2,4,11(1), N2,4,12(1), N2,4,13(1), N2,4,15(1) NA2,4,10(1) NA2,4,13(1) NR248(1)
5 N2,5,14(1), N2,5,15(1), N2,5,16(1), N2,5,17(1)
6 N2,6,18(1), N2,6,19(1), N2,6,20(1)

3

1 N311(1), N312(1), N313(1)
2 N324(1), N325(1), N326(1)
3 N336(1), N337(1), N338(1), N339(1)
4 N3,4,8(1), N3,4,10(1), N3,4,11(1), N3,4,12(1), N3,4,15(1) NA348(1) NR3,4,13(1)
5 N3,5,14(1), N3,5,15(1), N3,5,16(1), N3,5,17(1)
6 N3,6,18(1), N3,6,19(1), N3,6,20(1) NA3,6,13(1)

4

1 N411(1), N412(1), N413(1)
2 N424(1), N425(1), N426(1), N427(1) NA427(1)
3 N436(1), N437(1), N438(1), N439(1)
4 N4,4,10(1), N4,4,11(1), N4,4,12(1), N4,4,13(1), N4,4,15(1) NA4,4,13(1) NR448(1)
5 N4,5,14(1), N4,5,15(1), N4,5,16(1), N4,5,17(1), N4,5,18(1) NA4,5,18(1)
6 N4,6,18(1), N4,6,19(1), N4,6,20(1)

5

1 N511(1), N512(1), N513(1), N5,1,14(1) NA5,1,14(1)
2 N524(1), N525(1), N526(1) NR527(1)
3 N536(1), N537(1), N538(1), N539(1)

4 N548(1), N5,4,11(1), N5,4,12(1), N5,4,15(1) NA548(1) NR5,4,10(1)
NR5,4,13(1)

5 N5,5,14(1), N5,5,15(1), N5,5,16(1), N5,5,17(1), N5,5,18(1)
6 N5,6,13(1), N5,6,18(1), N5,6,19(1), N5,6,20(1)

Table 12. Optimal machine assignments for the ε-constraint method.

Period Cell Optimal Machine Assignments Optimal Machine Addition Optimal Machine Removal

1

1 N111(1), N112(1), N113(1)
2 N124(1), N125(1), N126(1), N127(1)
3 N136(1), N137(1), N138(1), N139(1)
4 N1,4,11(1), N1,4,12(1), N1,4,13(1), N1,4,15(1)
5 N1,5,14(1), N1,5,15(1), N1,5,16(1), N1,5,17(1)
6 N1,6,18(1), N1,6,19(1), N1,6,20(1)

2

1 N211(1), N212(1), N213(1)
2 N224(1), N225(1), N226(1), N227(1)
3 N236(1), N237(1), N238(1), N239(1)
4 N2,4,10(1), N2,4,11(1), N2,4,12(1), N2,4,13(1), N2,4,15(1) NA2,4,10(1)
5 N2,5,14(1), N2,5,15(1), N2,5,16(1), N2,5,17(1)
6 N2,6,18(1), N2,6,19(1), N2,6,20(1)

3

1 N311(1), N312(1), N313(1)
2 N324(1), N325(1), N326(1), N327(1)
3 N336(1), N337(1), N338(1), N339(1)
4 N3,4,8(1), N3,4,10(1), N3,4,11(1), N3,4,12(1), N3,4,15(1) NA3,4,8(1) NR3,4,13(1)
5 N3,5,14(1), N3,5,15(1), N3,5,16(1), N3,5,17(1)
6 N3,6,18(1), N3,6,19(1), N3,6,20(1)

4

1 N411(1), N412(1), N413(1)
2 N424(1), N425(1), N426(1), N427(1)
3 N436(1), N437(1), N438(1), N439(1)
4 N4,4,10(1), N4,4,11(1), N4,4,12(1), N4,4,13(1), N4,4,15(1) NA4,4,13(1) NR4,4,8(1)
5 N4,5,14(1), N4,5,15(1), N4,5,16(1), N4,5,17(1)
6 N4,6,18(1), N4,6,19(1), N4,6,20(1)

5

1 N511(1), N512(1), N513(1)
2 N524(1), N525(1), N526(1), N527(1)
3 N536(1), N537(1), N538(1), N539(1)

4 N548(1), N5,4,11(1), N5,4,12(1), N5,4,15(1) NA548(1) NR5,4,10(1)
NR5,4,13(1)

5 N5,5,14(1), N5,5,15(1), N5,5,16(1), N5,5,17(1)
6 N5,6,18(1), N5,6,19(1), N5,6,20(1)
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Table 13. Optimal machine assignments for the AUGMECON method.

Period Cell Optimal Machine Assignments Optimal Machine Addition Optimal Machine Removal

1

1 N111(1), N112(1), N113(1)
2 N124(1), N125(1), N126(1)
3 N136(1), N137(1), N138(1), N139(1)
4 N1,4,11(1), N1,4,12(1), N1,4,13(1), N1,4,15(1)
5 N1,5,14(1), N1,5,15(1), N1,5,16(1), N1,5,17(1)
6 N1,6,18(1), N1,6,19(1), N1,6,20(1)

2

1 N211(1), N212(1), N213(1)
2 N224(1), N225(1), N226(1)
3 N236(1), N237(1), N238(1), N239(1)
4 N2,4,10(1), N2,4,11(1), N2,4,12(1), N2,4,13(1), N2,4,15(1) NA2,4,10(1)
5 N2,5,14(1), N2,5,15(1), N2,5,16(1), N2,5,17(1)
6 N2,6,18(1), N2,6,19(1), N2,6,20(1)

3

1 N311(1), N312(1), N313(1)
2 N324(1), N325(1), N326(1)
3 N336(1), N337(1), N338(1), N339(1)
4 N3,4,8(1), N3,4,10(1), N3,4,11(1), N3,4,12(1), N3,4,15(1) NA3,4,8(1) NR3,4,13(1)
5 N3,5,14(1), N3,5,15(1), N3,5,16(1), N3,5,17(1)
6 N3,6,18(1), N3,6,19(1), N3,6,20(1)

4

1 N411(1), N412(1), N413(1)
2 N424(1), N425(1), N426(1)
3 N436(1), N437(1), N438(1), N439(1)
4 N4,4,8(1), N4,4,10(1), N4,4,11(1), N4,4,12(1), N4,4,15(1)
5 N4,5,14(1), N4,5,15(1), N4,5,16(1), N4,5,17(1)
6 N4,6,18(1), N4,6,19(1), N4,6,20(1)

5

1 N511(1), N512(1), N513(1)
2 N524(1), N525(1), N526(1)
3 N536(1), N537(1), N538(1), N539(1)
4 N5,4,8(1), N5,4,11(1), N5,4,12(1), N5,4,15(1) NR5,4,10(1)
5 N5,5,14(1), N5,5,15(1), N5,5,16(1), N5,5,17(1)
6 N5,6,18(1), N5,6,19(1), N5,6,20(1)

The optimal worker assignments for multi-objective approaches are shown in Table 14.
In Table 15, the number of workers in cell q in the period e is shown for each multi-objective
approach. Moreover, for each multi-objective approach it was determined that EIS1 = 6,
EIS2 = 6, EIS3 = 6, EIS4 = 6, EIS5 = 6, TA1 = 111, TA2 = 80, TA3 = 159, TA4 = 60, TA5 = 82, and
TA6 = 93.

Table 14. Optimal worker assignments to cells for each period for the multi-objective approaches.

Period Optimal Worker Assignment for
Goal Programming

Optimal Worker Assignment for
ε-Constraint

Optimal Worker Assignment for
AUGMECON

1 V111, V112, V146, V155, V163, V164 V112, V121, V123,V155, V156, V164 V112, V121, V123,V155, V156, V164

2 V241, V233,V234, V246, V252, V255 V226, V232, V233, V234, V251, V265 V226, V232, V233, V234, V251, V265

3 V333, V334, V341, V346, V352, V355 V326, V332, V333, V334, V351, V365 V326, V332, V333, V334, V351, V365

4 V421, V422, V425, V426, V433, V434 V421, V426, V432, V433, V434, V465 V421, V426, V432, V433, V434, V465

5 V512, V521, V525, V563, V564, V566 V512, V521, V523, V525, V556, V564 V512, V521, V523, V525, V556, V564

Table 15. Optimal number of workers in cells for each period for the multi-objective approaches.

Period Optimal Total Worker
for Goal Programming

Optimal Total Worker
for ε-Constraint Optimal Total Worker for AUGMECON

1 IS11(2), IS12(0), IS13(0), IS14(1), IS15(1),
IS16(2)

IS11(1), IS12(2), IS13(0), IS14(0), IS15(2),
IS16(1)

IS11(1), IS12(2), IS13(0), IS14(0), IS15(2),
IS16(1)

2 IS21(0), IS22(0), IS23(2), IS24(2), IS25(2),
IS26(0)

IS21(0), IS22(1), IS23(3), IS24(0), IS25(1),
IS26(1)

IS21(0), IS22(1), IS23(3), IS24(0), IS25(1),
IS26(1)

3 IS31(0), IS32(0), IS33(2), IS34(2), IS35(2),
IS36(0)

IS31(0), IS32(1), IS33(3), IS34(0), IS35(1),
IS36(1)

IS31(0), IS32(1), IS33(3), IS34(0), IS35(1),
IS36(1)

4 IS41(0), IS42(4), IS43(2), IS44(0), IS45(0)
IS46(0)

IS41(0), IS42(2), IS43(3), IS44(0), IS45(0),
IS46(1)

IS41(0), IS42(2), IS43(3), IS44(0), IS45(0),
IS46(1)

5 IS51(1), IS52(2), IS53(0), IS54(0), IS55(0)
IS56(3)

IS51(1), IS52(3), IS53(0), IS54(0), IS55(1),
IS56(1)

IS51(1), IS52(3), IS53(0), IS54(0), IS55(1),
IS56(1)

When calculating ε values, the minimum objective function values were obtained for
each objective function; hence, the calculated pay-off table for the ε-constraint method is
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shown in Table 16. The epsilon values for the ε-constraint method are taken between these
ε1 = 5,958,372, . . ., 5,910,828 ranges. The calculated lexicographic optimization pay-off table
for the AUGMECON method is shown in Table 17. In the AUGMECON model, the value
of r1 is 45,157. The epsilon values for the AUGMECON method are taken between these
ε1= 5,966,694, . . ., 5,929,064 ranges.

Table 16. Pay-off table for the ε-constraint method.

SNC1 SNC2

Min SNC1 5,902,903 72,492,480

Min SNC2 5,974,220 71,788,790

Table 17. Pay-off table with the lexicographic optimization for the AUGMECON method.

SNC1 SNC2

Min SNC1 5,929,063 71,788,790

Min SNC2 5,974,220 71,788,790

The Pareto optimal front graph obtained by using epsilon values in the ε-constraint
method is presented in Figure 2.
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The following section presents the obtained results from the analyses.

Sensitivity Analyses

Sensitivity analyses were conducted to evaluate the impact of some parameters on
the objective function value in the sample problem. The analyses were performed for
the three developed multi-objective models: the goal programming, the ε-constraint, and
the AUGMECON methods. Firstly, a sensitivity analysis is conducted using the goal
programming method to examine the impact of changes in part demands. The results of the
analysis are depicted in Figure 3, which illustrates the effect of a 10% decrease in demand
for each period individually. For instance, in the first period, the demand value for part
1 is 150, and thus, for the purpose of this analysis, the demand for part 1 is considered
as 135. Similarly, the analysis considers a 10% decrease in demand for each part in every
period. The impact of percentage changes in part demand values on the cost items of the
objective function was evaluated using the goal programming method, and the results are
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presented in Figure 4. When there is an increase in demand for parts, the costs related to
carbon emission, operation, inter-cellular movement, and adding and removing machines
are higher than in their current situations. It can be observed in Figure 4 that an increase
in part demand does not cause any change in worker training cost and bonus wage items.
Raoofpanah et al. [22] examine the effect of changes in demand on costs related to cell
formation, inventory, and environmental issues. They state that cell formation costs are
more sensitive to changes in demand compared with the other two costs.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 21 of 45 
 

is 150, and thus, for the purpose of this analysis, the demand for part 1 is considered as 
135. Similarly, the analysis considers a 10% decrease in demand for each part in every 
period. The impact of percentage changes in part demand values on the cost items of the 
objective function was evaluated using the goal programming method, and the results are 
presented in Figure 4. When there is an increase in demand for parts, the costs related to 
carbon emission, operation, inter-cellular movement, and adding and removing machines 
are higher than in their current situations. It can be observed in Figure 4 that an increase 
in part demand does not cause any change in worker training cost and bonus wage items. 
Raoofpanah et al. [22] examine the effect of changes in demand on costs related to cell 
formation, inventory, and environmental issues. They state that cell formation costs are 
more sensitive to changes in demand compared with the other two costs. 

 
Figure 3. The impact of part demand changes using the goal programming method. 

 
Figure 4. The effect of the increase in demand for parts on the values of cost items using the goal 
programming method. 

Changes in the capacity values of the machines may affect the objective function 
values of the model. For example, Figure 5 illustrates the analysis of the impact of a 10% 
increase in capacity value of machine 1 in period 5 on both the carbon emission amount 

Figure 3. The impact of part demand changes using the goal programming method.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 21 of 45 
 

is 150, and thus, for the purpose of this analysis, the demand for part 1 is considered as 
135. Similarly, the analysis considers a 10% decrease in demand for each part in every 
period. The impact of percentage changes in part demand values on the cost items of the 
objective function was evaluated using the goal programming method, and the results are 
presented in Figure 4. When there is an increase in demand for parts, the costs related to 
carbon emission, operation, inter-cellular movement, and adding and removing machines 
are higher than in their current situations. It can be observed in Figure 4 that an increase 
in part demand does not cause any change in worker training cost and bonus wage items. 
Raoofpanah et al. [22] examine the effect of changes in demand on costs related to cell 
formation, inventory, and environmental issues. They state that cell formation costs are 
more sensitive to changes in demand compared with the other two costs. 

 
Figure 3. The impact of part demand changes using the goal programming method. 

 
Figure 4. The effect of the increase in demand for parts on the values of cost items using the goal 
programming method. 

Changes in the capacity values of the machines may affect the objective function 
values of the model. For example, Figure 5 illustrates the analysis of the impact of a 10% 
increase in capacity value of machine 1 in period 5 on both the carbon emission amount 
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programming method.

Changes in the capacity values of the machines may affect the objective function values
of the model. For example, Figure 5 illustrates the analysis of the impact of a 10% increase in
capacity value of machine 1 in period 5 on both the carbon emission amount and total cost,
which are objective functions, using the ε-constraint method and hence epsilon values. The
10% increase mentioned here is applied for only period 5. In the fifth period, the capacity
of machine 1, whose capacity value is 35,400, is analyzed as 38,940 by considering a 10%
increase in its capacity. Table 18 shows the status numbers corresponding to the epsilon
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values for the analysis of change in machine 1 capacity in period 5. The analysis shows that
the change in the machine capacity first increases and then decreases the amount of carbon
emissions.
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Table 18. Status numbers regarding epsilon values using the ε-constraint method for the analysis of
change in machine 1 capacity in period 5.

Status Number 1 2 3 4 5

Epsilon Value 5,977,181 5,958,612 5,940,043 5,921,474 5,902,905

Objective function values of the model may be affected by alterations in carbon limit
values. For instance, Figure 6 shows the impact of a 10% increase in the carbon limit value
for cell 6 in the fifth period on both the amount of carbon emission and the total cost. The
analysis examines the influence of increasing the carbon limit value on emission amount
and total cost using the ε-constraint method and hence epsilon values. In the fifth period
of cell number 6, the carbon emission limit value of 357,800 is investigated as 393,580 due
to a 10% increment. Table 19 indicates the status numbers regarding the epsilon values for
the analysis of change in the carbon limit value for cell 6 in the period 5. As can be seen in
the figure, with the increase in carbon emission limit value, the objective functions related
to the cost and carbon emission amounts initially show an increase. Then, it is seen that the
cost and carbon emission amounts decrease.
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Table 19. Status number regarding the epsilon value using the ε-constraint method for the analysis
of change in the carbon limit value for cell 6 in period 5.

Status Number 1 2 3 4 5

Epsilon Value 5,963,143 5,951,103 5,939,063 5,927,023 5,914,983

Figure 7 shows the effect on objective functions by changing the maximum number of
workers that can be assigned to cells in each period. In the current situation, the maximum
number of workers that can be assigned to each cell in each period is taken as four. For this
analysis the maximum number of workers for six cells are assumed as 6, 5, 5, 5, 6, and 6 in
the first period, 5, 6, 5, 5, 6, and 4 in the second period, 5, 5, 6, 5, 6, and 5 in the third period,
6, 6, 5, 6, 5, and 6 in the fourth period, and 5, 5, 4, 6, 6, and 6 in the fifth period, respectively.
The status numbers corresponding to the epsilon values for the analysis of change in the
maximum number of workers that can be assigned to cells in each period are shown in
Table 20. As seen in Figure 7, the analysis shows that the change in the maximum number
of workers leads to a gradual decrease in the amount of carbon emissions.
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Table 20. Status number regarding the epsilon value using the ε-constraint method for the analysis
of change in the maximum number of workers.

Status Number 1 2 3 4 5 6

Epsilon Value 5,959,367 5,948,075 5,936,783 5,925,491 5,914,199 5,909,193

Alterations in carbon limit values can affect the objective function values of the model.
For example, Figure 8 illustrates a 10% increase in carbon limit value for cell 6 in period 5
using the AUGMECON method. Table 21 shows the status numbers regarding the epsilon
values using the AUGMECON method for the analysis of change in carbon limit value for
cell 6 in the fifth period. As seen in Figure 8, the analysis shows that the change in carbon
limit value for cell 6 in period 5 causes a decrease in the amount of carbon emissions.
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Table 21. Status number regarding the epsilon value using the AUGMECON method for the analysis
of change in the carbon limit value for cell 6 in period 5.

Status Number 1 2 3 4 5

Epsilon Value 5,962,379 5,953,925 5,945,771 5,937,417 5,929,064

The objective functions of the model can be affected by changes in machine capacity
values. For instance, Figure 9 displays the impact of a 10% increase in the capacity values
of machine 3 in period 3. The status numbers regarding the epsilon values using the
AUGMECON method for the analysis of change in machine 3 capacity in period 3 are
indicated in Table 22. As seen in Figure 9, in the analysis, as the machine capacity changes,
the carbon emission amount value, which is the objective function, first increases and then
decreases.
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Table 22. Status number regarding epsilon value using the AUGMECON method for the analysis of
change in machine 3 capacity in period 3.

Status Number 1 2 3 4 5

Epsilon Value 5,965,359 5,955,535 5,945,711 5,935,887 5,929,064
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5. Conclusions and Future Studies

In this study, three multi-objective mathematical programming models were presented
that focus on the design of flexible manufacturing cells while incorporating sustainable
factors. The study considers economic, environmental, and social dimensions, which are
the three key dimensions of sustainability, by including various parameters. By considering
these dimensions, this study aimed to develop the design of flexible manufacturing cells
within a sustainable framework. In addition to minimizing the number of carbon emissions
within the scope of the environmental dimension, this study aimed to minimize various
cost items considering carbon emissions, inter-cellular movement, machine replacement,
machine operation, worker training, and bonus wages for workers as the economic di-
mension. The total training time received by each worker in all periods is shown as a
constraint in the model within the scope of the social dimension. Since the study involves
multi-objectives, the identified problem is modeled using multi-objective optimization tech-
niques. Firstly, the goal programming model related to the problem was developed. Then,
the ε-constraint and AUGMECON models for the examined problem were presented. In all
developed multi-objective models, various decision variables were considered to optimize
the flexible manufacturing cells. They cover the decision variables such as determining
the optimal routes between the alternative routes of parts, the number of machines to be
added to or removed from cells, the number of workers assigned to cells, and the total
training time of workers. In this study, all the developed multi-objective mathematical
programming models were solved using the LINGO 20.0 optimization program on the
developed sample problem. These global optimal solutions were reached in 12 min and 38 s,
18 min and 31 s, and 19 min and 51 s for the goal programming method, the ε-constraint
method, and the AUGMECON method, respectively. When the results obtained from each
of the developed multi-objective optimization models were examined, it was observed that
the decision variables regarding determining optimal routes of parts, assigning optimal
machines to cells, adding them to cells, and removing them from cells provide different
results. While the ε-constraint and AUGMECON models provided the same results in the
optimal worker assignments and the optimal number of workers in cells for each period,
the goal programming model provided different results. The decision variables of the total
number of workers in the system in each period and the total training times received by
workers provided the same results for all developed models. The results were tested by
performing sensitivity analyzes for each developed multi-objective optimization model.

In future studies, metaheuristic algorithms can be proposed to solve larger-scale prob-
lems in the context of sustainable manufacturing systems. Additionally, the consideration
of parameters such as machining times and demands such as fuzzy variables can enhance
modeling capabilities and address uncertainties in real-world scenarios. Furthermore,
the development of a decision support system specifically designed for modeling sus-
tainable manufacturing systems holds the potential to yield valuable insights for making
informed decisions.
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Appendix A

Table A1. Alternative routes of parts, machine process time, and power consumption.

Part Route Cell–Machine (Operating Time)/(Machine Power Amount)

1

1 Q1-S1(9)/PW(14) Q2-S4(4)/PW(15) Q3-S7(6)/PW(13) Q4-S11(3)/PW(14)-S12(7)/PW(17)
Q5-S14(7)/PW(18)-S15(5)/PW(14) Q6-S20(8)/PW(18)

2 Q1-S2(6)/PW(13)-S3(5)/PW(15) Q2-S5(7)/PW(17) Q4-S11(7)/PW(19)-S12(8)/PW(17)-S13(4)/PW(15)
Q5-S14(9)/PW(18)-S15(4)/PW(14) Q6-S18(5)/PW(14) Q6-S20(7)/PW(18)

3 Q1-S1(6)/PW(16)-S2(9)/PW(19)-S3(4)/PW(14) Q3-S8(2)/PW(22) Q4-S12(9)/PW(19)-S13(6)/PW(26)
Q5-S14(8)/PW(18)-S15(4)/PW(24) Q6-S18(9)/PW(19)-S20(8)/PW(18)

4
Q1-S1(11)/PW(19)-S2(6)/PW(18)-S3(5)PW(25) Q2-S5(5)/PW(25)
Q4-S11(8)/PW(19)-S12(5)/PW(24)-S13(5)/PW(15) Q5-S14(5)/PW(23) Q5-S15(4)/PW(24)
Q6-S20(8)/PW(18)

5 Q1-S1(8)/PW(16)-S2(5)/PW(19)-S3(4)/PW(24) Q3-S8(8)/PW(16) Q4-S12(9)/PW(19)-S13(6)/PW(16)
Q5-S14(7)/PW(18)-S15(4)/PW(24) Q6-S18(8)/PW(19)-S20(5)/PW(18)

2

1 Q1-S3(8)/PW(18) Q2-S6(5)/PW(15) Q3-S7(4)/PW(14) Q4-S9(8)PW(14)-S10(6)/PW(15)
Q5-S13(7)/PW(18)-S14(9)/PW(19) Q6-S19(4)/PW(24)

2 Q1-S1(6)/PW(20) Q2-S6(7)/PW(18) Q4-S11(8)/PW(18)-S13(5)/PW(23) Q5-S14(6)/PW(27)
Q6-S18(8)/PW(18)-S19(3)/PW(22)

3 Q1-S2(5)/PW(25)-S3(3)/PW(23) Q2-S6(6)/PW(16) Q3-S7(4)/PW(24)-S8(7)/PW(17)
Q4-S8(8)/PW(8) Q5-S16(4)/PW(14) Q6-S20(7)/PW(17)

4 Q1-S1(8)/PW(18)-S2(9)/PW(17)-S3(3)/PW(23) Q2-S6(8)/PW(8) Q4-S11(8)/PW(8)-S13(3)/PW(23)
Q5-S14(7)/PW(17) Q6-S18(8)/PW(18)-S19(3)/PW(22)

5 Q1-S2(5)/PW(15)-S3(3)/PW(23) Q3-S7(5)/PW(24)-S8(7)/PW(17) Q4-S8(7)/PW(18)
Q5-S15(5)/PW(25)-S16(4)/PW(24) Q6-S20(9)/PW(17)

3

1 Q1-S1(9)/PW(12)-S3(4)/PW(14) Q2-S6(6)/PW(17) Q4-S10(5)/PW(17)-S12(4)/PW(22)
Q5-S15(5)/PW(18) Q6-S19(7)/PW(14)-S20(6)/PW(15)

2 Q1-S1(2)/PW(23) Q2-S4(5)/PW(15)-S5(7)/PW(18) Q3-S8(6)/PW(26) Q5-S16(4)/PW(24)
Q6-S19(3)/PW(23)-S20(4)/PW(24)

3 Q1-S1(7)/PW(17)-S2(5)/PW(21)-S3(3)/PW(13) Q2-S5(5)/PW(15) Q3-S7(6)/PW(16)
Q4-S15(7)/PW(17)

4 Q1-S1(5)/PW(23)-S2(7)/PW(17) Q2-S4(1)/PW(19)-S5(6)/PW(18) Q3-S8(5)/PW(16)-S9(6)/PW(16)
Q6-S20(7)/PW(27)

5 Q1-S1(8)/PW(11)-S2(1)/PW(17) Q2-S5(8)/PW(18) Q3-S8(2)/PW(14)-S9(6)/PW(16) Q6-S20(7)/PW(17)

4

1 Q1-S1(5)/PW(21)-S2(7)/PW(22)-S3(3)/PW(14) Q2-S4(5)/PW(15)-S6(8)/PW(17)
Q4-S10(7)/PW(17)-S12(4)/PW(12) Q5-S15(6)/PW(18) Q6-S19(4)/PW(14)-S20(5)/PW(15)

2 Q1-S1(3)/PW(23) Q2-S4(5)/PW(15)-S5(8)/PW(18) Q3-S8(6)/PW(16) Q5-S16(4)/PW(14)
Q6-S19(3)/PW(23)-S20(4)/PW(24)

3 Q1-S1(6)/PW(17)-S2(9)/PW(22)-S3(3)/PW(23) Q2-S5(5)/PW(15) Q3-S7(6)/PW(16) Q4-S15(7)/PW(17)

4 Q1-S1(3)/PW(23)-S2(4)/PW(17) Q2-S4(6)/PW(21)-S5(1)7PW(18) Q3-S8(5)/PW(16)-S9(6)/PW(26)
Q6-S20(7)/PW(17)

5 Q1-S1(4)/PW(21)-S2(6)/PW(17) Q2-S5(7)/PW(18) Q3-S8(8)/PW(24)-S9(6)/PW(26) Q6-S20(3)/PW(27)

5

1 Q1-S1(2)/PW(14)-S2(5)/PW(15)-S3(4)/PW(19) Q2-S6(8)/PW(18)-S7(10)/PW(19)
Q4-S10(5)/PW(15)-S12(2)/PW(12) Q5-S15(6)/PW(16)-S16(5)/PW(15) Q6-S20(5)/PW(15)

2
Q1-S1(3)/PW(23)-S2(11)/PW(17) Q2-S4(9)/PW(19)-S5(8)/PW(18)-S6(6)/PW(16)
Q3-S8(6)/PW(16)-S9(7)/PW(7) Q5-S16(4)/PW(24)-S17(5)/PW(25)
Q6-S18(5)/PW(15)-S19(3)/PW(23)-S20(4)/PW(14)

3 Q1-S1(8)/PW(18)-S3(3)/PW(23) Q2-S5(9)/PW(19) Q3-S7(7)/PW(17) Q4-S15(9)/PW(19)-S16(8)/PW(18)

4 Q1-S1(6)/PW(16)-S2(8)/PW(18)-S3(5)/PW(25) Q2-S4(4)/PW(24)-S5(7)/PW(17)-S6(6)/PW(26)
Q3-S8(6)/PW(16)-S9(5)/PW(25) Q6-S19(4)/PW(24)-S20(7)/PW(17)

5 Q1-S1(5)/PW(15)-S2(6)/PW(16) Q2-S5(8)/PW(18) Q3-S8(8)/PW(18)-S9(6)/PW(16)
Q6-S19(6)/PW(19)

6

1 Q1-S1(9)/PW(17)-S2(6)/PW(15)-S3(8)/PW(18) Q2-S6(7)/PW(17)-S7(6)/PW(26)
Q4-S10(7)/PW(17)-S12(2)/PW(22) Q5-S15(8)/PW(28) Q6-S19(4)/PW(24)-S20(5)/PW(15)

2 Q1-S1(3)/PW(23) Q2-S4(9)/PW(15)-S5(8)/PW(8) Q3-S8(6)/PW(16) Q5-S16(4)/PW(14)
Q6-S19(3)/PW(23)-S20(4)/PW(24)

3 Q1-S1(8)/PW(17)-S2(2)/PW(22)-S3(1)/PW(23) Q2-S5(5)/PW(15) Q3-S7(6)/PW(16)
Q4-S15(7)/PW(17)

4 Q1-S1(5)/PW(13)-S2(7)/PW(17) Q2-S4(2)/PW(19)-S5(4)/PW(18) Q3-S8(5)/PW(16)-S9(6)/PW(16)
Q6-S20(3)/PW(17)

5 Q1-S1(6)/PW(18)-S2(3)/PW(17) Q2-S5(8)/PW(8) Q3-S8(2)/PW(4)-S9(6)/PW(6) Q6-S20(6)/PW(7)

7

1 Q1-S3(8)/PW(24) Q2-S5(5)/PW(8)-S6(7)/PW(17) Q4-S10(7)/PW(17)-S12(8)/PW(12)
Q5-S15(8)/PW(8) Q6-S19(4)/PW(4)-S20(5)/PW(5)

2 Q1-S1(3)/PW(23) Q2-S4(7)/PW(5)-S5(8)/PW(8) Q3-S8(6)/PW(6) Q5-S16(5)/PW(14)
Q6-S19(3)/PW(13)-S20(4)/PW(4)

3 Q1-S1(7)/PW(7)-S2(1)/PW(18)-S3(3)/PW(13) Q2-S5(5)/PW(5) Q3-S7(6)/PW(6) Q4-S15(6)/PW(7)

4 Q1-S1(4)/PW(3)-S2(7)/PW(7) Q2-S4(3)/PW(11)-S5(8)/PW(8) Q3-S8(9)/PW(6)-S9(6)/PW(6)
Q6-S20(7)/PW(7)

5 Q1-S1(5)/PW(12)-S2(6)/PW(17) Q2-S5(8)/PW(18) Q3-S8(4)/PW(14)-S9(5)/PW(16) Q6-S20(6)/PW(7)
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Table A1. Cont.

Part Route Cell–Machine (Operating Time)/(Machine Power Amount)

8

1 Q1-S1(9)/PW(9)-S3(8)/PW(8) Q2-S6(8)/PW(7) Q4-S10(5)/PW(7)-S12(3)/PW(12) Q5-S15(6)/PW(8)
Q6-S19(5)/PW(14)-S20(5)/PW(15)

2 Q1-S1(9)/PW(9) Q2-S4(6)/PW(16)-S5(8)/PW(8) Q3-S8(6)/PW(6) Q5-S16(4)/PW(14)
Q6-S19(3)/PW(13)-S20(4)/PW(14)

3 Q1-S1(7)/PW(17)-S2(5)/PW(15)-S3(3)/PW(13) Q2-S5(5)/PW(5) Q3-S7(6)/PW(16) Q4-S15(7)/PW(7)

4 Q1-S1(7)PW(13)-S2(7)/PW(7) Q2-S4(9)/PW(11)-S5(8)/PW(8) Q3-S8(10)/PW(16)-S9(6)/PW(16)
Q6-S20(7)/PW(7)

5 Q1-S1(4)/PW(14)-S2(7)/PW(7) Q2-S5(8)/PW(8) Q3-S8(5)/PW(14)-S9(6)/PW(16) Q6-S20(2)/PW(7)

9

1 Q1-S3(8)/PW(8) Q2-S5(8)/PW(18)-S6(3)/PW(17)-S7(12)/PW(19) Q4-S11(7)/PW(9)-S12(2)/PW(12)
Q5-S15(8)/PW(18) Q6-S19(4)/PW(4)-S20(5)/PW(5)

2 Q1-S1(5)/PW(8)-S2(9/PW(9) Q2-S4(6)/PW(15)-S5(8)/PW(8) Q3-S7(7)/PW(7)-S8(6)/PW(6)
Q5-S16(4)/PW(14)-S17(6)/PW(6) Q6-S20(4)/PW(4)

3 Q1-S1(9)/PW(7)-S3(7)/PW(13) Q2-S5(6)/PW(5)-S6(8)/PW(8) Q3-S7(6)/PW(6)-S8(8)/PW(8)
Q4-S15(7)/PW(17)-S16(9)/PW(9)

4 Q1-S1(3)/PW(13)-S2(7)/PW(7)-S3(4)/PW(14) Q2-S4(6)/PW(11)-S5(8)/PW(18)
Q3-S8(6)/PW(16)-S9(6)/PW(6) Q6-S20(2)/PW(7)

5 Q1-S1(3)/PW(15)-S2(5)/PW(7)-S3(7)/PW(7) Q2-S5(8)/PW(8) Q3-S8(4)/PW(14)-S9(6)/PW(16)
Q6-S19(3)/PW(18)-S20(6)/PW(17)

10

1 Q2-S5(4)/PW(14)-S6(4)/PW(15) Q4-S10(7)/PW(17)-S11(8)/PW(18)-S12(5)/PW(22)
Q5-S15(8)/PW(8)-S17(9)/PW(9) Q6-S19(1)/PW(14)-S20(5)/PW(15)

2 Q1-S1(3)/PW(23)-S2(5)/PW(25) Q2-S4(5)/PW(25)-S5(8)/PW(28)-S6(4)/PW(24) Q3-S8(6)/PW(6)
Q5-S16(4)/PW(14)-S17(5)/PW(15) Q6-S19(3)/PW(13)-S20(4)/PW(14)

3 Q1-S1(9)/PW(16)-S2(8)/PW(18)-S3(3)/PW(13) Q2-S5(5)/PW(15)-S6(6)/PW(17)
Q3-S7(6)/PW(16)-S8(8)/PW(18) Q4-S15(7)/PW(17)

4 Q1-S1(5)/PW(15)-S2(7)/PW(17) Q2-S4(4)/PW(14)-S5(8)/PW(8) Q3-S8(6)/PW(16)-S9(6)/PW(16)
Q6-S18(8)/PW(18)-S20(7)/PW(17)

5 Q1-S1(3)/PW(14)-S2(7)/PW(17)-S3(8)/PW(18) Q2-S5(8)/PW(18) Q3-S8(4)/PW(14)-S9(6)/PW(26)
Q6-S19(4)/PW(17)

11

1 Q1-S2(8)/PW(18) Q2-S5(4)/PW(14)-S6(7)7PW(17) Q4-S10(4)/PW(14)-S11(8)/PW(18)-S12(5)/PW(15)
Q5-S15(8)/PW(8)-S16(7)/PW(7) Q6-S18(6)/PW(16)-S19(6)/PW(18)-S20(9)/PW(9)

2 Q1-S1(8)/PW(18)-S2(6)/PW(8) Q2-S4(5)/PW(15)-S5(4)/PW(8)-S6(9)/PW(9) Q3-S8(6)/PW(16)
Q5-S16(4)/PW(14) Q6-S19(3)/PW(11)-S20(4)/PW(14)

3 Q1-S2(5)/PW(15) Q2-S6(7)/PW(17)-S7(6)/PW(16) Q4-S15(7)/PW(17)

4 Q1-S1(10)/PW(19)-S2(7)/PW(17)-S3(9)/PW(9) Q2-S4(3)/PW(8)-S5(8)/PW(8)
Q3-S8(5)/PW(15)-S9(6)/PW(16) Q6-S18(4)/PW(14)-S19(8)/PW(18)-S20(7)/PW(17)

5 Q1-S1(9)/PW(16)-S2(7)/PW(17) Q2-S4(7)/PW(17)-S5(8)/PW(8)
Q3-S7(5)/PW(15)-S8(4)/PW(24)-S9(6)/PW(16) Q6-S19(4)/PW(18)-S20(6)/PW(16)

12

1 Q1-S3(8)/PW(13) Q2-S6(6)/PW(16)-S7(5)/PW(15) Q4-S10(4)/PW(14)-S11(3)/PW(13)-S12(2)/PW(12)
Q5-S15(8)/PW(18) Q6-S20(5)/PW(15)

2 Q1-S1(3)/PW(13)-S2(7)/PW(17) Q2-S4(7)/PW(26)-S5(7)/PW(17) Q3-S8(7)/PW(14)
Q5-S16(5)/PW(15)-S17(4)/PW(14) Q6-S19(7)/PW(17)-S20(8)/PW(18)

3 Q1-S1(2)/PW(22)-S2(8)/PW(18) Q2-S5(7)/PW(17)-S6(4)/PW(24) Q3-S7(6)/PW(6)-S8(5)/PW(5)
Q4-S15(7)/PW(19)-S16(8)/PW(18)

4 Q1-S1(6)/PW(7)-S2(6)/PW(16) Q2-S4(5)/PW(15)-S5(4)/PW(24) Q3-S8(4)/PW(24) Q6-S20(7)/PW(17)
5 Q1-S2(1)/PW(8) Q2-S5(11)/PW(18) Q3-S8(2)/PW(24)-S9(6)/PW(16) Q6-S19(8)/PW(18)

13

1
Q1-S2(7)/PW(18)-S3(5)/PW(12) Q2-S4(3)/PW(16)-S6(7)/PW(17)
Q4-S10(6)/PW(17)-S11(3)/PW(18)-S12(2)/PW(22) Q5-S15(8)/PW(18)-S16(9)/PW(9)
Q6-S18(7)/PW(17)-S19(6)/PW(16)-S20(5)/PW(25)

2 Q1-S1(5)/PW(15)-S2(7)/PW(26) Q2-S4(5)/PW(15)-S5(4)/PW(18)-S6(7)/PW(17)
Q3-S8(6)/PW(6)-S9(7)/PW(7) Q5-S16(4)/PW(24)-S17(5)/PW(15) Q6-S19(6)/PW(16)

3 Q1-S3(3)/PW(13) Q2-S5(3)/PW(15)-S6(7)/PW(17) Q3-S7(6)/PW(16)-S8(7)/PW(17)
Q4-S15(7)/PW(17)-S16(6)/PW(16)

4 Q1-S2(10)/PW(17) Q2-S5(8)/PW(18) Q3-S8(9)/PW(15)-S9(6)/PW(16)-S10(4)/PW(24) Q6-S19(8)/PW(18)

5 Q1-S1(6)/PW(24)-S2(7)/PW(17) Q2-S5(1)/PW(21) Q3-S8(4)/PW(24)-S9(6)/PW(16)
Q6-S18(9)/PW(9)-S19(8)/PW(18)

14

1 Q2-S6(9)/PW(17) Q4-S10(5)/PW(21)-S12(2)/PW(22) Q5-S15(8)/PW(18) Q6-S19(4)/PW(14)-S20(5)/PW(15)

2 Q1-S1(3)/PW(23) Q2-S4(5)/PW(15)-S5(8)/PW(18) Q3-S8(6)/PW(16) Q5-S16(4)/PW(24)
Q6-S19(3)/PW(23)-S20(4)/PW(24)

3 Q1-S1(8)/PW(17)-S2(1)/PW(22)-S3(3)/PW(13) Q2-S5(5)/PW(15) Q3-S7(6)/PW(16) Q4-S15(7)/PW(17)

4 Q1-S1(4)/PW(13)-S2(7)(PW(17) Q2-S4(1)/PW(21)-S5(5)/PW(28) Q3-S8(6)/PW(26)-S9(6)/PW(16)
Q6-S20(7)/PW(17)

5 Q1-S1(11)/PW(21)-S2(3)/PW(17) Q2-S5(8)/PW(18) Q3-S8(4)/PW(14)-S9(6)/PW(16) Q6-S20(4)/PW(17)

15

1
Q1-S1(11)/PW(18) Q2-S6(7)/PW(17)-S7(5)/PW(15) Q3-S15(8)/PW(8)
Q4-S10(3)/PW(17)-S11(5)/PW(15)-S12(2)/PW(23) Q5-S15(8)/PW(8)
Q6-S18(9)/PW(19)-S19(4)/PW(24)-S20(5)/PW(15)

2 Q1-S1(3)/PW(23)-S2(7)/PW(17) Q3-S8(6)/PW(16) Q5-S16(4)/PW(14) Q6-S19(3)/PW(13)-S20(4)/PW(14)
3 Q1-S1(10)/PW(19)-S3(3)/PW(23) Q2-S5(5)/PW(25) Q3-S7(6)/PW(16) Q4-S15(7)/PW(17)

4 Q1-S1(3)/PW(23)-S2(7)/PW(17)-S3(8)/PW(18) Q2-S4(9)/PW(19)-S5(8)/PW(18)
Q3-S8(6)/PW(16)-S9(3)/PW(16)-S10(7)/PW(17) Q6-S19(6)/PW(16) S20(9)/PW(19)

5 Q1-S2(7)/PW(17) Q2-S5(8)/PW(8) Q3-S9(6)/PW(16) Q6-S19(3)/PW(18)-S20(7)/PW(17)
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Part Route Cell–Machine (Operating Time)/(Machine Power Amount)

16

1 Q4-S10(7)/PW(17)-S12(5)/PW(20) Q5-S15(8)/PW(18)

2 Q2-S4(12)/PW(15)-S5(8)/PW(18) Q3-S8(6)/PW(16) Q5-S16(2)/PW(24)
Q6-S19(3)/PW(23)-S20(4)/PW(24)

3 Q1-S1(4)/PW(17)-S2(8)/PW(22)-S3(3)/PW(23) Q2-S5(5)/PW(15) Q3-S7(6)/PW(16) Q4-S15(7)/PW(17)

4 Q1-S1(3)/PW(13)-S2(7)/PW(17) Q2-S4(6)/PW(18)-S5(3)/PW(18) Q3-S8(7)/PW(16)-S9(6)/PW(16)
Q6-S20(7)/PW(17)

5 Q1-S1(7)/PW(17)-S2(3)/PW(19)-S3(5)/PW(15) Q2-S5(8)/PW(18)
Q3-S6(4)/PW(14)-S8(4)/PW(14)-S9(6)/PW(16) Q6-S19(5)/PW(15)-S20(2)/PW(17)

17

1 Q1-S2(6)/PW(17)-S3(5)/PW(15) Q2-S6(7)/PW(17) Q4-S10(1)/PW(17)-S12(2)/PW(22)
Q5-S15(6)/PW(18)-S16(5)/PW(25) Q6-S18(6)/PW(26)-S20(5)/PW(25)

2 Q1-S1(3)/PW(23)-S2(8)/PW(18) Q2-S4(5)/PW(15) Q3-S7(4)/PW(14)-S8(6)/PW(16)
Q5-S16(11)/PW(24)-S17(7)/PW(17) Q6-S20(9)/PW(19)

3 Q1-S1(8)/PW(19)-S3(7)/PW(14) Q2-S5(5)/PW(15)-S6(7)/PW(17) Q3-S7(6)/PW(26)-S8(5)/PW(15)
Q4-S15(7)/PW(17)-S16(8)/PW(18) Q5-S18(9)/PW(19)

4 Q1-S1(6)/PW(23)-S2(7)/PW(27) Q2-S4(1)/PW(21)-S5(8)/PW(18) Q3-S8(4)/PW(16)-S9(6)/PW(16)
Q6-S20(7)/PW(17)

5 Q1-S2(4)/PW(17) Q2-S5(8)/PW(18) Q3-S8(4)/PW(14)-S9(6)/PW(16)

18

1 Q1-S2(9)/PW(19)-S3(4)/PW(24) Q2-S6(7)/PW(17) Q4-S10(7)/PW(27)-S12(9)/PW(19)
Q5-S15(8)/PW(18)-S19(4)/PW(24)-S20(5)/PW(25) Q6-S18(5)PW(15)

2 Q1-S1(9)/PW(19)-S2(5)/PW(25) Q2-S4(4)/PW(24) Q3-S8(6)/PW(16)-S9(6)/PW(16)
Q5-S16(6)/PW(16)-S17(7)/PW(17) Q6-S19(8)/PW(18)-S20(4)/PW(24)

3 Q1-S1(9)/PW(19)-S3(7)/PW(17) Q2-S5(5)PW(15) Q3-S7(6)/PW(16)-S8(5)/PW(15)
Q4-S15(9)/PW(19)-S16(4)/PW(24)

4 Q1-S2(9)/PW(9)-S3(4)/PW(14) Q2-S5(3)/PW(13)-S6(5)/PW(15) Q3-S8(6)/PW(16)
Q6-S18(3)/PW(13)-S19(8)/PW(8)-S20(4)/PW(14)

5 Q1-S1(6)/PW(16)-S2(7)/PW(17)-S3(5)/PW(25) Q2-S5(8)/PW(8)-S8(4)/PW(14)
Q3-S8(4)/PW(14)-S9(6)/PW(16)-S10(5)/PW(15) Q6-S19(5)/PW(15)-S20(7)/PW(17)

19

1 Q2-S6(4)/PW(14)-S7(8)/PW(18) Q4-S10(7)/PW(17)-S11(5)/PW(25)-S12(2)/PW(22) Q5-S15(8)/PW(18)
Q6-S19(4)/PW(24)-S20(5)/PW(15)

2 Q1-S1(6)/PW(16) Q2-S4(5)/PW(15)-S5(8)/PW(18) Q3-S8(6)/PW(26) Q5-S16(6)/PW(26)
Q6-S19(13)/PW(13)-S20(4)/PW(14)

3 Q1-S2(9)/PW(9)-S3(8)/PW(18) Q2-S5(5)/PW(15) Q3-S7(11)/PW(16) Q4-S15(7)/PW(17)

4 Q1-S2(9)/PW(19) Q2-S4(7)/PW(11)-S5(8)/PW(18) Q3-S8(7)/PW(7)-S9(6)/PW(16)
Q6-S19(2)/PW(22)-S20(3)/PW(3)

5 Q2-S5(8)/PW(8) Q3-S8(4)/PW(24)-S9(6)/PW(16) Q6-S19(9)/PW(15)-S20(6)/PW(16)

20

1 Q2-S6(11)/PW(9)-S7(9)/PW(9) Q3-S9(5)PW(15) Q4-S10(6)/PW(16)-S11(8)/PW(18)-S12(2)/PW(22)
Q5-S15(9)/PW(9) Q6-S18(6)/PW(16)-S19(4)/PW(24)-S20(5)/PW(25)

2 Q1-S1(3)/PW(13)-S2(8)/PW(18) Q2-S4(9)/PW(9)-S5(6)/PW(16) Q3-S7(7)/PW(17)-S8(6)/PW(16)
Q6-S20(4)/PW(14)

3 Q1-S2(12)/PW(12) Q2-S5(9)/PW(9) Q3-S7(6)/PW(16)-S8(7)/PW(17) Q4-S15(8)/PW(8)-S16(9)/PW(9)
Q6-S19(8)/PW(8)

4 Q1-S2(7)/PW(17)-S3(8)/PW(18) Q3-S8(3)/PW(16)-S9(6)/PW(16)-S10(5)/PW(25) Q5-S17(9)/PW(9)
Q6-S19(5)/PW(25)-S20(8)/PW(18)

5 Q2-S5(8)/PW(8) Q3-S8(7)/PW(9)-S9(10)/PW(6)

21

1 Q1-S1(9)/PW(8)-S2(5)/PW(9)-S3(4)/PW(14) Q4-S10(8)/PW(15)-S11(6)/PW(16)-S12(2)/PW(22)
Q6-S19(4)/PW(24)-S20(5)/PW(25)

2 Q2-S4(9)/PW(15)-S5(8)/PW(18) Q3-S8(8)/PW(16)-S9(7)/PW(17) Q6-S19(9)/PW(9)

3 Q1-S3(9)/PW(9) Q2-S5(5)/PW(25)-S6(7)/PW(17) Q3-S7(6)/PW(26) Q4-S15(7)/PW(17)
Q6-S18(8)/PW(18)-S19(9)/PW(19)

4 Q1-S2(7)/PW(17) Q2-S4(13)/PW(11)-S5(4)/PW(18) Q3-S8(6)/PW(16)-S9(6)/PW(16) Q6-S20(7)/PW(17)
5 Q1-S1(4)/PW(24)-S2(6)/PW(16) Q2-S5(5)/PW(17) Q3-S8(4)/PW(14)-S9(6)/PW(16) Q4-S11(7)/PW(17)

22

1 Q1-S1(5)/PW(16)-S3(2)/PW(24) Q2-S5(5)/PW(18) Q4-S10(7)/PW(17)-S11(9)/PW(9)-S12(7)/PW(17)
Q5-S15(8)/PW(8)-S16(5)/PW(15) Q6-S20(9)/PW(9)

2 Q1-S1(5)/PW(3)-S2(9)/PW(9) Q3-S8(6)/PW(16)-S9(8)/PW(8) Q5-S16(4)/PW(14)-S17(5)/PW(15)
Q6-S19(9)/PW(9)

3 Q1-S1(8)/PW(18)-S2(2)/PW(12) Q2-S5(9)/PW(9) Q3-S7(7)/PW(16)-S8(7)/PW(17)
Q4-S15(7)/PW(17)-S16(8)/PW(18)

4 Q2-S5(8)/PW(8)-S6(7)/PW(7) Q3-S8(6)/PW(6)-S9(8)/PW(9) Q6-S18(3)/PW(3)-S20(9)/PW(9)

5 Q1-S1(7)/PW(17)-S2(9)/PW(9) Q2-S4(2)/PW(20)-S5(8)/PW(18)
Q3-S8(4)/PW(14)-S9(6)/PW(16)-S10(3)/PW(23) Q4-S16(4)/PW(14) Q5-S17(6)/PW(16)-S18(5)/PW(15) Q6-S20(7)/PW(17)

23

1 Q1-S3(3)/PW(14) Q2-S6(7)/PW(14) Q5-S15(8)/PW(18)-S16(9)/PW(9)

2 Q1-S1(3)/PW(23)-S2(8)/PW(18) Q2-S4(5)/PW(15)-S5(6)/PW(18)-S6(7)/PW(17) Q3-S8(6)/PW(16)
Q4-S15(6)/PW(16) Q6-S20(9)/PW(9)

3 Q1-S1(9)/PW(9)-S2(8)/PW(8) Q2-S4(4)/PW(24)-S5(5)/PW(25) Q3-S7(6)/PW(26)-S8(7)/PW(17)
4 Q2-S4(2)/PW(21)-S5(5)/PW(17)-S6(8)/PW(18) Q6-S19(3)/PW(23)-S20(9)/PW(9)
5 Q2-S5(6)/PW(16) Q3-S9(6)/PW(6) Q6-S18(11)/PW(9)-S20(3)/PW(15)

24

1 Q1-S1(9)/PW(8)-S2(2)/PW(13)-S3(1)/PW(14) Q2-S5(6)/PW(16)-S6(7)/PW(17)
Q4-S10(6)/PW(14)-S11(8)/PW(18) Q5-S14(6)/PW(16)-S15(8)/PW(18) Q6-S19(6)/PW(16)-S20(3)/PW(13)

2 Q2-S5(7)/PW(16)-S6(7)/PW(17) Q3-S8(9)/PW(19)-S9(5)/PW(15) Q5-S16(3)/PW(23)-S17(2)/PW(22)
Q6-S20(4)/PW(12)

3 Q1-S1(6)/PW(16)-S3(8)/PW(9) Q4-S15(4)/PW(4)-S16(5)/PW(5) Q6-S19(8)/PW(8)

4 Q1-S1(3)/PW(23)-S2(7)/PW(17)-S3(6)/PW(16) Q2-S5(8)/PW(8)-S6(5)/PW(15)
Q6-S19(8)/PW(18)-S20(9)/PW(9)

5 Q1-S2(7)/PW(17) Q2-S5(8)/PW(18)-S6(5)/PW(15) Q3-S8(4)/PW(14)

231
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25

1 Q1-S1(5)/PW(15)-S2(6)/PW(16)-S3(5)/PW(14) Q2-S5(8)PW(18)-S6(7)/PW(17)-S7(5)/PW(15)
Q3-S8(5)/PW(23) Q4-S12(9)/PW(9) Q5-S15(8)/PW(18)

2 Q1-S1(3)/PW(3)-S2(1)/PW(5) Q2-S4(4)/PW(24)-S5(7)/PW(17) Q3-S8(5)/PW(15)-S9(4)PW(24)
Q5-S16(3)/PW(8) Q6-S19(9)/PW(9)-S20(6)/PW(6)

3 Q1-S2(8)/PW(18)-S3(9)/PW(9) Q2-S5(5)/PW(15) Q3-S6(4)/PW(10)-S7(6)/PW(16)

4 Q1-S1(6)/PW(16)-S2(7)/PW(17)-S3(8)/PW(18) Q2-S4(2)/PW(12)-S5(8)/PW(18)-S6(3)/PW(11)
Q3-S8(6)/PW(16)-S9(6)/PW(16) Q6-S19(8)/PW(18)-S20(7)/PW(17)

5 Q1-S2(9)/PW(17) Q2-S4(4)/PW(14)-S5(8)/PW(8) Q3-S8(4)/PW(14)-S9(6)/PW(16)
Q6-S19(9)/PW(16)-S20(7)/PW(17)

26

1 Q1-S3(4)/PW(14) Q2-S6(10)/PW(17)-S7(8)/PW(18) Q4-S10(7)/PW(17) Q5-S15(8)/PW(8)-S16(8)/PW(8)
Q6-S18(4)/PW(14)-S20(5)/PW(15)

2
Q1-S1(7)/PW(17)-S2(8)/PW(18) Q2-S4(2)/PW(21)-S5(3)/PW(13)-S6(4)/PW(24)
Q3-S7(5)/PW(15)-S8(6)/PW(16)-S9(7)/PW(17) Q5-S16(4)/PW(14)-S17(5)/PW(15)
Q6-S18(7)/PW(17)S20(4)/PW(24)

3 Q1-S1(10)/PW(18)-S2(9)/PW(19) Q2-S5(5)/PW(15)-S6(6)/PW(16) Q3-S7(6)/PW(16)-S8(7)/PW(17)
Q4-S14(7)/PW(17)-S15(8)/PW(18)

4 Q2-S4(8)/PW(18)-S5(8)/PW(18) Q3-S8(9)/PW(19)

5 Q1-S2(4)/PW(14) Q2-S5(6)/PW(16)-S6(7)/PW(17) Q3-S8(5)/PW(15)-S9(7)/PW(17)
Q5-S16(6)/PW(16)-S17(3)/PW(23) Q6-S18(2)/PW(14)-S19(8)/PW(18)

27

1 Q1-S1(7)/PW(9)-S2(1)/PW(21)-S3(4)/PW(14) Q2-S4(3)/PW(23)-S6(5)/PW(15)
Q4-S10(5)/PW(15)-S11(6)/PW(16)-S12(2)/PW(12) Q6-S19(7)/PW(17)

2 Q1-S1(15)/PW(13)-S2(5)/PW(15)-S3(1)/PW(16) Q2-S5(5)/PW(15)-S6(2)/PW(2)
Q3-S7(3)/PW(17)-S8(6)/PW(16) Q5-S6(4)/PW(4)-S17(5)PW(5)

3 Q1-S1(6)/PW(16)-S3(3)/PW(23) Q2-S5(8)/PW(18)-S6(9)/PW(9) Q3-S7(7)/PW(17)-S8(5)/PW(15)
Q4-S14(6)/PW(26)-S15(7)/PW(7) Q6-S19(8)/PW(18)-S20(4)/PW(14)

4 Q1-S1(3)/PW(3)-S2(8)/PW(6)-S3(4)/PW(4) Q4-S5(7)/PW(8) Q6-S20(7)/PW(7)

5 Q1-S1(4)/PW(24)-S2(7)/PW(17)-S3(8)/PW(18) Q2-S4(5)/PW(25)-S5(8)/PW(18)
Q3-S8(4)/PW(24)-S9(6)/PW(16) Q5-S17(6)/PW(16) Q6-S19(5)/PW(17)-S20(7)/PW(17)

28

1 Q1-S1(4)/PW(15)-S3(6)/PW(16) Q2-S6(9)/PW(9) Q4-S10(6)/PW(16)-S12(3)/PW(13)
Q5-S15(8)/PW(18) Q6-S19(6)/PW(16)-S20(8)/PW(18)

2 Q1-S1(3)/PW(16) Q2-S4(12)/PW(22)-S5(8)/PW(18) Q3-S8(7)/PW(17) Q5-S16(6)/PW(6)
Q6-S19(5)/PW(15)-S20(1)/PW(23)

3 Q1-S1(9)/PW(19)-S3(6)/PW(26) Q2-S5(5)/PW(5) Q3-S7(7)/PW(7) Q4-S15(8)/PW(8)

4 Q1-S1(4)/PW(14)-S2(8)/PW(18) Q2-S4(3)/PW(13)-S5(7)/PW(11) Q3-S8(9)PW(19)-S9(6)/PW(26)
Q6-S19(4)/PW(14)-S20(8)/PW(18)

5 Q1-S1(6)/PW(16)-S2(8)/PW(18) Q2-S5(8)(PW(18) Q3-S8(9)/PW(19)-S9(5)/PW(15)
Q6-S19(3)/PW(23)-S20(6)/PW(16)

29

1 Q1-S1(3)/PW(15)-S3(3)/PW(13) Q2-S6(8)/PW(8) Q4-S12(9)/PW(9) Q6-S20(6)/PW(16)

2 Q2-S4(5)/PW(9)-S5(6)/PW(16)-S6(5)/PW(15) Q3-S7(7)/PW(17)-S8(8)/PW(8) Q4-S9(9)/PW(9)
Q5-S16(3)/PW(23)-S17(2)/PW(20) Q6-S20(4)/PW(14)

3 Q1-S2(6)/PW(9)-S3(3)/PW(13) Q3-S7(7)/PW(17)-S8(8)/PW(18) Q6-S18(9)/PW(9)

4 Q1-S2(7)/PW(17) Q2-S5(8)/PW(18)-S6(4)/PW(14) Q3-S7(5)/PW(15)-S8(4)/PW(16)-S9(6)/PW(16)
Q6-S19(5)/PW(15)-S20(6)/PW(16)

5 Q1-S2(7)/PW(17) Q2-S5(8)/PW(18) Q3-S8(4)/PW(14)-S9(6)/PW(16) Q5-S16(4)/PW(14)-S17(5)PW(15)
Q6-S19(3)/PW(13)-S20(6)/PW(9)

30

1 Q1-S1(9)/PW(9)-S2(1)/PW(13)-S3(5)/PW(15) Q2-S5(6)/PW(16)-S7(7)/PW(17)
Q3-S8(5)/PW(15)-S9(4)/PW(24) Q5-S15(6)/PW(16) Q6-S20(9)/PW(19)

2 Q1-S1(9)/PW(13)-S2(5)/PW(15)-S3(8)/PW(18) Q2-S4(7)/PW(14)-S5(3)/PW(13)
Q3-S7(9)/PW(13)-S8(9)/PW(9) Q5-S16(6)/PW(6)-S17(7)/PW(7)

3 Q1-S2(7)/PW(17)-S3(3)PW(13) Q2-S5(6)/PW(16)-S6(7)/PW(17) Q3-S7(11)/PW(11)
Q4-S15(3)/PW(23)-S16(4)/PW(14) Q6-S18(5)/PW(15)-S19(6)/PW(16)

4 Q1-S1(9)/PW(9)-S2(7)/PW(17) Q2-S5(8)/PW(8) Q3-S8(5)/PW(15)-S9(4)/PW(14)
Q6-S19(8)/PW(8)-S20(9)/PW(9)

5 Q1-S2(9)/PW(9)-S3(7)/PW(17) Q2-S4(6)/PW(16)-S5(5)/PW(15) Q3-S8(4)/PW(14)-S9(6)/PW(16)
Q4-S11(6)/PW(16)-S12(8)/PW(8) Q5-S16(9)/PW(9)-S17(8)/PW(8)

31

1 Q1-S1(5)/PW(18)-S3(5)PW(15) Q2-S6(6)/PW(16) Q4-S10(6)/PW(16)-S12(3)/PW(23)
Q5-S15(9)/PW(19) Q6-S19(7)-S20(3)

2 Q1-S1(6)/PW(16) Q2-S4(7)/PW(17)-S5(8)/PW(18) Q3-S8(9)/PW(19) Q5-S16(5)/PW(25)
Q6-S19(4)/PW(24)-S20(5)/PW(15)

3 Q1-S1(6)/PW(16)-S2(3)/PW(13)-S3(5)/PW(15) Q2-S5(9)/PW(19) Q3-S7(7)/PW(17) Q4-S15(9)/PW(19)

4 Q1-S1(9)/PW(17)-S2(3)/PW(23) Q2-S4(2)/PW(20)-S5(4)/PW(14) Q3-S8(9)/PW(19)-S9(3)/PW(23)
Q6-S20(8)/PW(18)

5 Q1-S1(3)/PW(25)-S2(9)/PW(19) Q2-S5(4)/PW(24) Q3-S8(6)/PW(23)-S9(2)/PW(17) Q6-S20(8)/PW(18)

32

1 Q3-S7(6)/PW(16) Q4-S10(8)/PW(18)-S11(7)/PW(17)-S12(1)/PW(23) Q5-S15(4)/PW(14)
Q6-S20(5)/PW(15)

2 Q1-S1(13)/PW(13)-S2(8)/PW(18)-S3(4)/PW(24) Q2-S5(3)/PW(13) Q3-S7(5)/PW(13)-S8(7)/PW(18)
Q5-S16(6)/PW(16)-S17(7)/PW(17) Q6-S19(8)/PW(18)

3 Q1-S1(9)/PW(9) Q3-S7(6)/PW(16)-S8(9)/PW(9) Q4-S14(6)/PW(16)-S15(7)/PW(17)
Q5-S16(9)/PW(9)-S17(3)/PW(13) Q6-S18(8)/PW(8)-S19(9)/PW(9)

4 Q1-S1(6)/PW(16)-S2(10)/PW(17)-S3(5)/PW(10) Q2-S4(2)/PW(5) Q3-S8(3)/PW(13)-S9(7)/PW(7)
Q5-S16(5)/PW(15) Q6-S18(5)/PW(15)-S19(9)/PW(9)

5 Q1-S2(9)/PW(9) Q3-S8(6)/PW(13)-S9(2)/PW(21) Q6-S19(3)/PW(16)-S20(7)/PW(7)

232
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33

1
Q1-S1(3)/PW(9)-S2(3)/PW(12)-S3(9)/PW(23) Q2-S5(9)/PW(15)-S6(7)/PW(17)
Q3-S7(6)/PW(16)-S8(5)/PW(20) Q4-S10(7)/PW(17)-S11(3)/PW(13)-S12(2)/PW(21)
Q5-S15(8)/PW(18)-S16(4)/PW(18) Q6-S18(6)/PW(16)-S19(4)/PW(24)-S20(5)/PW(15)

2 Q1-S1(3)/PW(13)-S2(8)/PW(18) Q2-S4(5)/PW(13)-S5(8)/PW(18) Q3-S8(6)/PW(16)-S9(7)/PW(17)
Q5-S16(4)/PW(14)-S17(5)/PW(23) Q6-S18(5)/PW(15)-S20(4)/PW(14)

3 Q1-S1(7)/PW(16)-S3(10)/PW(23) Q2-S5(6)/PW(16) Q3-S7(3)/PW(19) Q4-S15(8)/PW(18)-S16(9)/PW(19)

4 Q1-S2(9)/PW(19)-S3(5)/PW(15) Q2-S4(3)/PW(11)-S5(3)/PW(9) Q3-S7(4)/PW(14)
Q4-S10(5)/PW(15)-S11(3)/PW(16)

5
Q1-S2(8)/PW(18)-S3(9)/PW(19) Q2-S4(4)/PW(24)-S5(5)/PW(12)
Q3-S8(3)PW(13)-S9(6)/PW(16)-S10(2)/PW(14) Q5-S16(2)/PW(20)-S17(3)/PW(13)
Q6-S18(4)/PW(15)-S19(3)/PW(16)-S20(7)/PW(17)

34

1 Q4-S10(6)/PW(16)-S11(5)/PW(18)-S12(2)PW(22) Q5-S15(6)/PW(18)-S16(8)/PW(18) Q6-S19(5)/PW(15)

2
Q1-S1(3)/PW(23)-S2(8)/PW(18) Q2-S5(6)/PW(18)-S6(7)/PW(21)
Q3-S8(5)/PW(22)-S9(4)/PW(18)-S10(3)/PW(13) Q5-S16(4)/PW(14)-S17(5)
Q6-S18(7)/PW(17)-S20(4)/PW(20)

3 Q1-S1(8)/PW(9)-S3(5)/PW(15) Q2-S5(5)/PW(15)-S6(6)/PW(16) Q3-S7(6)/PW(16)-S8(8)/PW(18)
Q4-S15(7)/PW(17)-S16(8)/PW(18)

4 Q1-S1(3)/PW(23)-S2(7)/PW(17)-S3(4)/PW(24) Q2-S5(8)/PW(18) Q3-S8(6)/PW(16)-S9(5)/PW(15)
Q6-S19(8)/PW(8)

5 Q1-S1(6)/PW(16)-S2(3)/PW(23)-S3(5)/PW(15) Q2-S5(8)/PW(18)-S6(4)/PW(24)
Q3-S8(9)/PW(14)-S9(6)/PW(15)-S10(3)/PW(23) Q6-S18(6)/PW(14)-S19(5)/PW(15)-S20(7)/PW(17)

35

1 Q2-S6(8)/PW(18)-S7(9)/PW(19) Q4-S10(7)/PW(17)-S12(2)/PW(22) Q5-S15(8)/PW(18)

2 Q1-S1(3)/PW(23) Q2-S4(6)/PW(15)-S5(8)/PW(18) Q3-S8(6)/PW(16) Q5-S16(4)/PW(14)
Q6-S19(3)/PW(23)-S20(4)/PW(14)

3 Q1-S1(7)/PW(17)-S2(2)/PW(20)-S3(3)/PW(15) Q2-S5(5)/PW(5) Q3-S7(6)/PW(6) Q4-S15(7)/PW(7)

4 Q1-S1(10)/PW(23)-S2(7)/PW(17) Q2-S4(3)/PW(21)-S5(9)/PW(18) Q3-S8(6)/PW(6)-S9(6)/PW(6)
Q6-S20(7)/PW(17)

5 Q1-S1(6)/PW(11)-S2(7)/PW(17) Q2-S5(8)/PW(8) Q3-S8(1)/PW(15)-S9(6)/PW(16) Q6-S20(2)/PW(17)

36

1 Q1-S1(3)/PW(12) Q2-S4(5)/PW(17) Q3-S7(3)/PW(13) Q4-S11(3)/PW(14)-S12(7)/PW(17)
Q5-S14(8)/PW(18)-S15(4)/PW(14) Q6-S20(8)/PW(18)

2 Q1-S2(3)/PW(23)-S3(5)/PW(18) Q2-S5(7)/PW(17) Q4-S11(9)/PW(19)-S12(6)/PW(17)-S13(5)/PW(15)
Q5-S14(8)/PW(18)-S15(4)/PW(14) Q6-S18(4)/PW(14)-S20(8)/PW(18)

3 Q1-S1(6)/PW(16)-S2(9)/PW(19)-S3(1)/PW(14) Q3-S8(2)/PW(22) Q4-S12(9)/PW(19)-S13(6)/PW(26)
Q5-S14(8)/PW(18)-S15(4)/PW(24) Q6-S18(9)/PW(19)-S20(8)/PW(18)

4 Q1-S1(9)/PW(21)-S2(7)/PW(18)-S3(5)/PW(25) Q2-S5(5)/PW(25)
Q4-S11(9)/PW(19)-S12(4)/PW(24)-S13(5)/PW(15) Q5-S14(3)/PW(23)-S15(4)/PW(24) Q6-S20(8)/PW(18)

5 Q1-S1(9)/PW(20)-S2(9)/PW(23)-S3(4)/PW(24) Q3-S8(6)/PW(14) Q4-S12(9)/PW(15)-S13(6)/PW(16)
Q5-S14(4)/PW(11)-S15(4)/PW(24) Q6-S18(3)/PW(17)-S20(8)/PW(16)

37

1 Q1-S3(8)/PW(15) Q2-S6(5)/PW(24) Q3-S7(4)/PW(14) Q4-S9(4)PW(20)-S10(5)/PW(18)
Q5-S13(8)/PW(18)-S14(9)/PW(19) Q6-S19(4)/PW(24)

2 Q1-S1(2)/PW(20) Q2-S6(8)/PW(28) Q4-S11(8)/PW(18)-S13(3)/PW(23) Q5-S14(7)/PW(27)
Q6-S18(8)/PW(18)-S19(2)/PW(22)

3 Q1-S2(9)/PW(25)-S3(3)/PW(23) Q2-S6(6)/PW(16) Q3-S7(4)/PW(24)-S8(7)/PW(17) Q4-S8(3)/PW(8)
Q5-S16(4)/PW(14) Q6-S20(7)/PW(17)

4 Q1-S1(5)/PW(18)-S2(7)/PW(17)-S3(3)/PW(23) Q2-S6(8)/PW(8) Q4-S11(8)/PW(8)-S13(3)/PW(23)
Q5-S14(7)/PW(17) Q6-S18(8)/PW(18)-S19(2)/PW(22)

5 Q1-S2(5)/PW(25)-S3(3)/PW(23) Q3-S7(4)/PW(24)-S8(7)/PW(17) Q4-S8(8)/PW(20)
Q5-S15(5)/PW(22)-S16(4)/PW(24) Q6-S20(7)/PW(27)

38

1 Q1-S1(2)/PW(19)-S3(14)/PW(17) Q2-S6(7)/PW(19) Q4-S10(7)/PW(20)-S12(2)/PW(22) Q5-S15(8)/PW(18)
Q6-S19(4)/PW(14)-S20(5)/PW(15)

2 Q1-S1(3)/PW(23) Q2-S4(5)/PW(25)-S5(8)/PW(18) Q3-S8(6)/PW(16) Q5-S16(4)/PW(24)
Q6-S19(3)/PW(13)-S20(4)/PW(24)

3 Q1-S1(3)/PW(19)-S2(2)/PW(11)-S3(13)/PW(13) Q2-S5(5)/PW(15) Q3-S7(6)/PW(17) Q4-S15(7)/PW(19)

4 Q1-S1(3)/PW(23)-S2(7)/PW(17) Q2-S4(1)/PW(19)-S5(8)/PW(18) Q3-S8(6)/PW(16)-S9(6)/PW(19)
Q6-S20(7)/PW(24)

5 Q1-S1(3)/PW(10)-S2(7)/PW(17) Q2-S5(8)/PW(18) Q3-S8(4)/PW(19)-S9(6)/PW(16) Q6-S20(10)/PW(21)

39

1 Q1-S1(1)/PW(24)-S2(8)/PW(26)-S3(4)/PW(14) Q2-S4(5)/PW(18)-S6(7)/PW(17)
Q4-S10(7)/PW(17)-S12(2)/PW(18) Q5-S15(8)/PW(18) Q6-S19(4)/PW(19)-S20(5)/PW(15)

2 Q1-S1(3)/PW(23) Q2-S4(5)/PW(22)-S5(8)/PW(18) Q3-S8(6)/PW(16) Q5-S16(4)/PW(14)
Q6-S19(3)/PW(23)-S20(4)/PW(24)

3 Q1-S1(3)/PW(17)-S2(2)/PW(22)-S3(3)/PW(23) Q2-S5(5)/PW(15) Q3-S7(6)/PW(16) Q4-S15(7)/PW(17)

4 Q1-S1(3)/PW(23)-S2(7)/PW(17) Q2-S4(3)/PW(21)-S5(5)7PW(18) Q3-S8(6)/PW(16)-S9(6)/PW(26)
Q6-S20(7)/PW(17)

5 Q1-S1(4)/PW(21)-S2(9)/PW(27) Q2-S5(8)/PW(18) Q3-S8(4)/PW(24)-S9(6)/PW(26) Q6-S20(5)/PW(27)

40

1 Q1-S1(2)/PW(14)-S2(5)/PW(15)-S3(4)/PW(19) Q2-S6(8)/PW(18)-S7(9)/PW(19)
Q4-S10(5)/PW(15)-S12(2)/PW(12) Q5-S15(6)/PW(16)-S16(5)/PW(15) Q6-S20(5)/PW(15)

2
Q1-S1(13)/PW(23)-S2(7)/PW(27) Q2-S4(9)/PW(19)-S5(8)/PW(18)-S6(6)/PW(16)
Q3-S8(6)/PW(26)-S9(7)/PW(7) Q5-S16(4)/PW(24)-S17(5)/PW(25)
Q6-S18(5)/PW(15)-S19(3)/PW(23) S20(4)/PW(14)

3 Q1-S1(8)/PW(18)-S3(3)/PW(28) Q2-S5(9)/PW(19) Q3-S7(7)/PW(17) Q4-S15(9)/PW(19)-S16(8)/PW(18)

4 Q1-S1(3)/PW(19)-S2(8)/PW(18)-S3(5)/PW(25) Q2-S4(4)/PW(21)-S5(7)/PW(17)-S6(6)/PW(26)
Q3-S8(4)/PW(16)-S9(5)/PW(25) Q6-S19(4)/PW(24)-S20(7)/PW(17)

5 Q1-S1(5)/PW(15)-S2(6)/PW(16) Q2-S5(8)/PW(28) Q3-S8(8)/PW(18)-S9(6)/PW(16) Q6-S19(9)/PW(17)
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41

1 Q1-S1(8)/PW(16) Q2-S4(5)/PW(18) Q3-S7(3)/PW(13) Q4-S11(4)/PW(14)-S12(7)/PW(17)
Q5-S14(8)/PW(18)-S15(4)/PW(14) Q6-S20(8)/PW(18)

2 Q1-S2(3)/PW(23)-S3(5)/PW(15) Q2-S5(7)/PW(17) Q4-S11(9)/PW(19)-S12(7)/PW(19)-S13(5)/PW(15)
Q5-S14(8)/PW(18)-S15(4)/PW(14) Q6-S18(4)/PW(24) Q6-S20(8)/PW(18)

3 Q1-S1(6)/PW(16)-S2(5)/PW(19)-S3(4)/PW(14) Q3-S8(2)/PW(22) Q4-S12(9)/PW(17)-S13(6)/PW(26)
Q5-S14(8)/PW(18)-S15(4)/PW(21) Q6-S18(9)/PW(19)-S20(8)/PW(18)

4 Q1-S1(9)/PW(19)-S2(8)/PW(18)-S3(5)PW(25) Q2-S5(5)/PW(25)
Q4-S11(9)/PW(18)-S12(4)/PW(24)-S13(5)/PW(15) Q5-S14(13)/PW(23)-S15(4)/PW(24) Q6-S20(8)/PW(18)

5 Q1-S1(6)/PW(19)-S2(9)/PW(19)-S3(4)/PW(24) Q3-S8(6)/PW(26) Q4-S12(11)/PW(19)-S13(6)/PW(16)
Q5-S14(8)/PW(18)-S15(4)/PW(24) Q6-S18(3)/PW(14)-S20(8)/PW(18)

42

1 Q1-S3(8)/PW(19) Q2-S6(5)/PW(25) Q3-S7(4)/PW(14) Q4-S9(4)PW(14)-S10(5)/PW(15)
Q5-S13(8)/PW(18)-S14(7)/PW(19) Q6-S19(4)/PW(24)

2 Q1-S1(8)/PW(20) Q2-S6(8)/PW(18) Q4-S11(8)/PW(18)-S13(3)/PW(23) Q5-S14(7)/PW(27)
Q6-S18(8)/PW(18)-S19(2)/PW(22

3 Q1-S2(7)/PW(25)-S3(3)/PW(23) Q2-S6(3)/PW(16) Q3-S7(4)/PW(24)-S8(7)/PW(17) Q4-S8(8)/PW(8)
Q5-S16(4)/PW(14) Q6-S20(7)/PW(17)

4 Q1-S1(6)/PW(18)-S2(7)/PW(17)-S3(3)/PW(23) Q2-S6(8)/PW(8) Q4-S11(8)/PW(8)-S13(3)/PW(23)
Q5-S14(7)/PW(17) Q6-S18(8)/PW(18)-S19(2)/PW(22)

5 Q1-S2(5)/PW(15)-S3(3)/PW(23) Q3-S7(4)/PW(24)-S8(7)/PW(17) Q4-S8(8)/PW(18)
Q5-S15(5)/PW(25)-S16(4)/PW(24) Q6-S20(5)/PW(17)

43

1 Q1-S1(8)/PW(19)-S3(4)/PW(14) Q2-S6(7)/PW(17) Q4-S10(7)/PW(17)-S12(1)/PW(22) Q5-S15(8)/PW(18)
Q6-S19(4)/PW(14)-S20(5)/PW(15)

2 Q1-S1(3)/PW(13) Q2-S4(5)/PW(15)-S5(8)/PW(18) Q3-S8(6)/PW(26) Q5-S16(4)/PW(14)
Q6-S19(3)/PW(23)-S20(4)/PW(24)

3 Q1-S1(2)/PW(17)-S2(2)/PW(21)-S3(3)/PW(15) Q2-S5(5)/PW(15) Q3-S7(6)/PW(16) Q4-S15(7)/PW(17)

4 Q1-S1(3)/PW(23)-S2(7)/PW(17) Q2-S4(5)/PW(19)-S5(3)/PW(18) Q3-S8(3)/PW(19)-S9(6)/PW(16)
Q6-S20(7)/PW(27)

5 Q1-S1(4)/PW(21)-S2(2)/PW(17) Q2-S5(8)/PW(18) Q3-S8(3)/PW(15)-S9(9)/PW(16) Q6-S20(2)/PW(27)

44

1 Q1-S1(1)/PW(20)-S2(5)/PW(22)-S3(4)/PW(14) Q2-S4(5)/PW(15)-S6(7)/PW(27)
Q4-S10(7)/PW(17)-S12(2)/PW(12) Q5-S15(8)/PW(18) Q6-S19(4)/PW(14)-S20(5)/PW(15)

2 Q1-S1(3)/PW(23) Q2-S4(5)/PW(15)-S5(8)/PW(18) Q3-S8(6)/PW(16) Q5-S16(4)/PW(14)
Q6-S19(3)/PW(13)-S20(4)/PW(24)

3 Q1-S1(4)/PW(17)-S2(2)/PW(12)-S3(3)/PW(23) Q2-S5(5)/PW(15) Q3-S7(6)/PW(16) Q4-S15(7)/PW(17)

4 Q1-S1(3)/PW(25)-S2(5)/PW(17) Q2-S4(1)/PW(21)-S5(3)PW(18) Q3-S8(6)/PW(16)-S9(6)/PW(26)
Q6-S20(7)/PW(17)

5 Q1-S1(3)/PW(16)-S2(5)/PW(17) Q2-S5(8)/PW(18) Q3-S8(3)/PW(24)-S9(6)/PW(26) Q6-S20(3)/PW(17)

45

1 Q1-S1(9)/PW(14)-S2(5)/PW(15)-S3(4)/PW(13) Q2-S6(8)/PW(18)-S7(6)/PW(12)
Q4-S10(5)/PW(15)-S12(2)/PW(12) Q5-S15(6)/PW(16)-S16(5)/PW(15) Q6-S20(5)/PW(15)

2
Q1-S1(3)/PW(23)-S2(7)/PW(17) Q2-S4(6)/PW(19)-S5(8)/PW(18)-S6(6)/PW(16)
Q3-S8(6)/PW(16)-S9(9)/PW(7) Q5-S16(4)/PW(24)-S17(5)/PW(25)
Q6-S18(5)/PW(15)-S19(3)/PW(23)-S20(4)/PW(14)

3 Q1-S1(8)/PW(18)-S3(3)/PW(23) Q2-S5(6)/PW(19) Q3-S7(7)/PW(17) Q4-S15(9)/PW(19)-S16(8)/PW(18)

4 Q1-S1(6)/PW(16)-S2(8)/PW(18)-S3(5)/PW(25) Q2-S4(4)/PW(24)-S5(3)/PW(17)-S6(6)/PW(26)
Q3-S8(6)/PW(16)-S9(5)/PW(25) Q6-S19(4)/PW(24)-S20(5)/PW(17)

5 Q1-S1(5)/PW(15)-S2(6)/PW(16) Q2-S5(8)/PW(18) Q3-S8(8)/PW(21)-S9(6)/PW(16) Q6-S19(9)/PW(20)

46

1 Q1-S1(4)/PW(17)-S2(2)/PW(15)-S3(8)/PW(18) Q2-S6(7)/PW(17)-S7(5)/PW(26)
Q4-S10(7)/PW(17)-S12(2)/PW(22) Q5-S15(8)/PW(28) Q6-S19(4)/PW(24)-S20(5)/PW(15)

2 Q1-S1(3)/PW(23) Q2-S4(5)/PW(15)-S5(8)/PW(18) Q3-S8(6)/PW(16) Q5-S16(4)/PW(14)
Q6-S19(3)/PW(23)-S20(4)/PW(24)

3 Q1-S1(5)/PW(19)-S2(2)/PW(22)-S3(3)/PW(23) Q2-S5(5)/PW(15) Q3-S7(6)/PW(16) Q4-S15(7)/PW(14)

4 Q1-S1(4)/PW(19)-S2(7)/PW(17) Q2-S4(2)/PW(19)-S5(8)/PW(18) Q3-S8(3)/PW(16)-S9(6)/PW(16)
Q6-S20(7)/PW(17)

5 Q1-S1(3)/PW(18)-S2(7)/PW(17) Q2-S5(8)/PW(8) Q3-S8(12)/PW(4)-S9(6)/PW(6) Q6-S20(3)/PW(16)

47

1 Q1-S3(4)/PW(24) Q2-S5(8)/PW(8)-S6(7)/PW(17) Q4-S10(7)/PW(17)-S12(2)/PW(12) Q5-S15(8)/PW(18)
Q6-S19(14)/PW(4)-S20(5)/PW(15)

2 Q1-S1(3)/PW(23) Q2-S4(5)/PW(5)-S5(8)/PW(8) Q3-S8(6)/PW(6) Q5-S16(4)/PW(14)
Q6-S19(3)/PW(13)-S20(4)/PW(14)

3 Q1-S1(7)/PW(17)-S2(9)/PW(18)-S3(3)/PW(13) Q2-S5(5)/PW(5) Q3-S7(6)/PW(6) Q4-S15(7)/PW(17)

4 Q1-S1(6)/PW(13)-S2(7)/PW(17) Q2-S4(1)/PW(11)-S5(5)/PW(8) Q3-S8(3)/PW(16)-S9(6)/PW(21)
Q6-S20(7)/PW(22)

5 Q1-S1(3)/PW(12)-S2(7)/PW(17) Q2-S5(9)/PW(18) Q3-S8(4)/PW(14)-S9(6)/PW(16) Q6-S20(4)/PW(11)

48

1 Q1-S1(6)/PW(19)-S3(8)/PW(18) Q2-S6(4)/PW(14) Q4-S10(7)/PW(17)-S12(2)/PW(12)
Q5-S15(8)/PW(8) Q6-S19(4)/PW(14)-S20(5)/PW(15)

2 Q1-S1(6)/PW(21) Q2-S4(6)/PW(16)-S5(8)/PW(18) Q3-S8(6)/PW(19) Q5-S16(4)/PW(14)
Q6-S19(3)/PW(13)-S20(4)/PW(14)

3 Q1-S1(7)/PW(17)-S2(5)/PW(15)-S3(3)/PW(23) Q2-S5(5)/PW(15) Q3-S7(6)/PW(16) Q4-S15(7)/PW(17)

4 Q1-S1(3)PW(13)-S2(7)/PW(17) Q2-S4(10)/PW(11)-S5(8)/PW(19) Q3-S8(4)/PW(16)-S9(6)/PW(16)
Q6-S20(11)/PW(16)

5 Q1-S1(4)/PW(14)-S2(7)/PW(17) Q2-S5(8)/PW(22) Q3-S8(6)/PW(14)-S9(3)/PW(16) Q6-S20(8)/PW(21)
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49

1 Q1-S3(6)/PW(11) Q2-S5(8)/PW(18)-S6(7)/PW(17)-S7(9)/PW(19) Q4-S11(6)/PW(9)-S12(4)/PW(12)
Q5-S15(8)/PW(18) Q6-S19(5)/PW(13)-S20(5)/PW(11)

2 Q1-S1(6)/PW(8)-S2(9)/PW(9) Q2-S4(5)/PW(15)-S5(8)/PW(8) Q3-S7(7)/PW(7)-S8(6)/PW(6)
Q5-S16(4)/PW(14)-S17(6)/PW(6) Q6-S20(4)/PW(14)

3 Q1-S1(6)/PW(17)-S3(3)/PW(13) Q2-S5(5)/PW(15)-S6(8)/PW(18) Q3-S7(6)/PW(22)-S8(8)/PW(8)
Q4-S15(7)/PW(17)-S16(9)/PW(9)

4 Q1-S1(3)/PW(21)-S2(7)/PW(17)-S3(4)/PW(18) Q2-S4(3)/PW(11)-S5(6)/PW(18)
Q3-S8(6)/PW(14)-S9(6)/PW(13) Q6-S20(7)/PW(17)

5 Q1-S1(1)/PW(15)-S2(7)/PW(11)-S3(7)/PW(17) Q2-S5(8)/PW(8) Q3-S8(4)/PW(22)-S9(6)/PW(16)
Q6-S19(8)/PW(18)-S20(7)/PW(21)

50

1 Q2-S5(4)/PW(14)-S6(5)/PW(15) Q4-S10(7)/PW(17)-S11(8)/PW(18)-S12(2)/PW(22)
Q5-S15(8)/PW(21)-S17(9)/PW(19) Q6-S19(4)/PW(14)-S20(5)/PW(15)

2 Q1-S1(7)/PW(23)-S2(5)/PW(25) Q2-S4(5)/PW(25)-S5(7)/PW(28)-S6(4)/PW(24)
Q3-S8(4)/PW(14) Q5-S16(2)/PW(14)-S17(5)/PW(15) Q6-S19(3)/PW(13)-S20(4)/PW(14)

3 Q1-S1(6)/PW(16)-S2(8)/PW(18)-S3(3)/PW(13) Q2-S5(5)/PW(15)-S6(7)/PW(17)
Q3-S7(6)/PW(16)-S8(8)/PW(18) Q4-S15(7)/PW(17)

4 Q1-S1(4)/PW(15)-S2(7)/PW(17) Q2-S4(4)/PW(14)-S5(8)/PW(21) Q3-S8(5)/PW(16)-S9(6)/PW(16)
Q6-S18(5)/PW(18)-S20(7)/PW(17)

5 Q1-S1(4)/PW(14)-S2(6)/PW(17)-S3(8)/PW(18) Q2-S5(8)/PW(18) Q3-S8(5)/PW(14)-S9(6)/PW(26)
Q6-S19(7)/PW(17)

51

1 Q1-S2(9)/PW(18) Q2-S5(4)/PW(14)-S6(7)7PW(17) Q4-S10(4)/PW(14)-S11(8)/PW(18)-S12(5)/PW(15)
Q5-S15(8)/PW(8)-S16(7)/PW(7) Q6-S18(6)/PW(16)-S19(8)/PW(18)-S20(9)/PW(21)

2 Q1-S1(8)/PW(10)-S2(8)/PW(12) Q2-S4(5)/PW(17)-S5(8)/PW(20)-S6(9)/PW(19) Q3-S8(6)/PW(16)
Q5-S16(3)/PW(14) Q6-S19(3)/PW(11)-S20(4)/PW(14)

3 Q1-S2(5)/PW(15) Q2-S6(6)/PW(15)-S7(7)/PW(17) Q4-S15(7)/PW(16)

4 Q1-S1(8)/PW(17)-S2(4)/PW(19)-S3(9)/PW(9) Q2-S4(8)/PW(21)-S5(5)/PW(10)
Q3-S8(5)/PW(15)-S9(6)/PW(16) Q5-S18(4)/PW(14) Q6-S19(8)/PW(18)-S20(7)/PW(17)

5 Q1-S1(5)/PW(16)-S2(7)/PW(17) Q2-S4(7)/PW(17)-S5(8)/PW(12)
Q3-S7(5)/PW(15)-S8(4)/PW(24)-S9(6)/PW(16) Q6-S19(8)/PW(20)-S20(6)/PW(16)

52

1 Q1-S3(8)/PW(23) Q2-S6(6)/PW(16)-S7(5)/PW(15) Q4-S10(3)/PW(14)-S11(3)/PW(13)-S12(2)/PW(12)
Q5-S15(8)/PW(18) Q6-S20(5)/PW(15)

2 Q1-S1(5)/PW(21)-S2(6)/PW(18) Q2-S4(6)/PW(24)-S5(7)/PW(17) Q3-S8(7)/PW(14)
Q5-S16(5)/PW(15)-S17(4)/PW(14) Q6-S19(7)/PW(17)-S20(8)/PW(18)

3 Q1-S1(4)/PW(22)-S2(6)/PW(18) Q2-S5(7)/PW(17)-S6(5)/PW(24) Q3-S7(6)/PW(11)-S8(5)/PW(15)
Q4-S15(7)/PW(19)-S16(8)/PW(18)

4 Q1-S1(4)/PW(18)-S2(6)/PW(16) Q2-S4(5)/PW(15)-S5(4)/PW(24) Q3-S8(7)/PW(24) Q6-S20(7)/PW(21)
5 Q1-S2(8)/PW(8) Q2-S5(7)/PW(18) Q3-S8(4)/PW(24)-S9(6)/PW(16) Q6-S19(9)/PW(19)

53

1
Q1-S2(9)/PW(18)-S3(3)/PW(12) Q2-S4(6)/PW(16)-S6(7)/PW(17)
Q4-S10(6)/PW(20)-S11(8)/PW(18)-S12(2)/PW(12) Q5-S15(7)/PW(18)-S16(9)/PW(9)
Q6-S18(7)/PW(17)-S19(6)/PW(16)-S20(5)/PW(20)

2 Q1-S1(8)/PW(15)-S2(6)/PW(26) Q2-S4(5)/PW(15)-S5(8)/PW(18)-S6(7)/PW(17)
Q3-S8(6)/PW(24)-S9(7)/PW(17) Q5-S16(4)/PW(24)-S17(5)/PW(15) Q6-S19(6)/PW(16)

3 Q1-S3(3)/PW(13) Q2-S5(5)/PW(15)-S6(7)/PW(17) Q3-S7(6)/PW(16)-S8(7)/PW(17)
Q4-S15(7)/PW(17)-S16(6)/PW(16)

4 Q1-S2(7)/PW(17) Q2-S5(8)/PW(18) Q3-S8(5)/PW(15)-S9(6)/PW(16)-S10(4)/PW(24) Q6-S19(8)/PW(18)

5 Q1-S1(1)/PW(24)-S2(7)/PW(17) Q2-S5(3)/PW(21) Q3-S8(4)/PW(24)-S9(6)/PW(16)
Q6-S18(4)/PW(22)-S19(8)/PW(19)

54

1 Q2-S6(9)/PW(17) Q4-S10(7)/PW(21)-S12(1)/PW(22) Q5-S15(10)/PW(18)
Q6-S19(11)/PW(14)-S20(5)/PW(15)

2 Q1-S1(3)/PW(23) Q2-S4(5)/PW(15)-S5(8)/PW(18) Q3-S8(6)/PW(16) Q5-S16(4)/PW(24)
Q6-S19(3)/PW(23)-S20(4)/PW(24)

3 Q1-S1(4)/PW(17)-S2(2)/PW(22)-S3(3)/PW(13) Q2-S5(5)/PW(15) Q3-S7(6)/PW(16) Q4-S15(7)/PW(17)

4 Q1-S1(3)/PW(12)-S2(6)(PW(14) Q2-S4(2)/PW(11)-S5(8)/PW(18) Q3-S8(6)/PW(23)-S9(6)/PW(16)
Q6-S20(7)/PW(17)

5 Q1-S1(1)/PW(21)-S2(5)/PW(17) Q2-S5(3)/PW(18) Q3-S8(4)/PW(14)-S9(6)/PW(16) Q6-S20(7)/PW(22)

55

1
Q1-S1(5)/PW(18) Q2-S6(7)/PW(17)-S7(5)/PW(15) Q3-S15(8)/PW(8)
Q4-S10(4)/PW(17)-S11(5)/PW(15)-S12(2)/PW(23) Q5-S15(8)/PW(8)
Q6-S18(9)/PW(19)-S19(4)/PW(14)-S20(5)/PW(15)

2 Q1-S1(3)/PW(23)-S2(7)/PW(17) Q3-S8(6)/PW(16) Q5-S16(4)/PW(14) Q6-S19(3)/PW(13)-S20(4)/PW(14)
3 Q1-S1(11)/PW(19)-S3(3)/PW(23) Q2-S5(5)/PW(25) Q3-S7(6)/PW(16) Q4-S15(7)/PW(17)

4 Q1-S1(6)/PW(26)-S2(7)/PW(11)-S3(8)/PW(18) Q2-S4(9)/PW(15)-S5(8)/PW(18)
Q3-S8(8)/PW(16)-S9(6)/PW(19)-S10(7)/PW(17) Q6-S19(6)/PW(16)-S20(9)/PW(16)

5 Q1-S2(7)/PW(17) Q2-S5(8)/PW(8) Q3-S9(6)/PW(16) Q6-S19(9)/PW(24)-S20(7)/PW(17)

56

1 Q4-S10(7)/PW(15)-S12(9)/PW(20) Q5-S15(8)/PW(18)
2 Q2-S4(5)/PW(15)-S5(8)/PW(18) Q3-S8(6)/PW(16) Q5-S16(5)/PW(24) Q6-S19(3)/PW(13)-S20(4)/PW(24)
3 Q1-S1(9)/PW(18)-S2(2)/PW(24)-S3(3)/PW(23) Q2-S5(5)/PW(15) Q3-S7(6)/PW(16) Q4-S15(7)/PW(17)

4 Q1-S1(3)/PW(18)-S2(7)/PW(17) Q2-S4(3)/PW(19)-S5(8)/PW(21) Q3-S8(10)/PW(21)-S9(6)/PW(15)
Q6-S20(7)/PW(18)

5 Q1-S1(4)/PW(13)-S2(9)/PW(20)-S3(9)/PW(15) Q2-S5(8)/PW(19)
Q3-S6(4)/PW(16)-S8(7)/PW(18)-S9(6)/PW(16) Q6-S19(5)/PW(17)-S20(4)/PW(21)
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57

1 Q1-S2(9)/PW(21)-S3(5)/PW(15) Q2-S6(4)/PW(17) Q4-S10(7)/PW(17)-S12(5)/PW(22)
Q5-S15(8)/PW(18)-S16(5)/PW(25) Q6-S18(6)/PW(26)-S20(5)/PW(25)

2 Q1-S1(3)/PW(23)-S2(8)/PW(18) Q2-S4(5)/PW(15) Q3-S7(4)/PW(14)-S8(6)/PW(16)
Q5-S16(4)/PW(24)-S17(3)/PW(17) Q6-S20(9)/PW(19)

3 Q1-S1(8)/PW(19)-S3(4)/PW(14) Q2-S5(5)/PW(15)-S6(7)/PW(17)
Q3-S7(6)/PW(26)-S8(5)/PW(15) Q4-S15(7)/PW(17)-S16(8)/PW(18) Q5-S18(9)/PW(19)

4 Q1-S1(3)/PW(23)-S2(7)/PW(17) Q2-S4(1)/PW(21)-S5(4)/PW(8) Q3-S8(6)/PW(13)-S9(6)/PW(19)
Q6-S20(7)/PW(22)

5 Q1-S2(9)/PW(21) Q2-S5(8)/PW(18) Q3-S8(4)/PW(14)-S9(6)/PW(16)

58

1 Q1-S2(9)/PW(18)-S3(4)/PW(14) Q2-S6(7)/PW(17) Q4-S10(7)/PW(27)-S12(9)/PW(19) Q5-S15(8)/PW(18)
Q6-S18(5)PW(15)-S19(4)/PW(24)-S20(5)/PW(25)

2 Q1-S1(8)/PW(19)-S2(5)/PW(25) Q2-S4(9)/PW(24) Q3-S8(6)/PW(26)-S9(6)/PW(16)
Q5-S16(6)/PW(16)-S17(7)/PW(17) Q6-S19(8)/PW(18)-S20(4)/PW(24)

3 Q1-S1(9)/PW(19)-S3(7)/PW(17) Q2-S5(5)PW(15) Q3-S7(6)/PW(16)-S8(5)/PW(15)
Q4-S15(9)/PW(19)-S16(4)/PW(24)

4 Q1-S2(9)/PW(9)-S3(4)/PW(14) Q2-S5(3)/PW(13)-S6(5)/PW(15) Q3-S8(6)/PW(16)
Q6-S18(3)/PW(13)-S19(8)/PW(18)-S20(4)/PW(14)

5 Q1-S1(6)/PW(19)-S2(7)/PW(16)-S3(5)/PW(15) Q2-S5(8)/PW(8)-S8(4)/PW(14)
Q3-S8(4)/PW(14)-S9(6)/PW(26)-S10(5)/PW(15) Q6-S19(9)/PW(18)-S20(7)/PW(13)

59

1 Q2-S6(3)/PW(14)-S7(8)/PW(18) Q4-S10(7)/PW(17)-S11(5)/PW(25)-S12(2)/PW(22) Q5-S15(8)/PW(18)
Q6-S19(4)/PW(24)-S20(5)/PW(15)

2 Q1-S1(6)/PW(16) Q2-S4(5)/PW(15)-S5(8)/PW(18) Q3-S8(6)/PW(26) Q5-S16(5)/PW(26)
Q6-S19(13)/PW(13)-S20(4)/PW(14)

3 Q1-S2(9)/PW(9)-S3(7)/PW(18) Q2-S5(5)/PW(15) Q3-S7(6)/PW(16) Q4-S15(7)/PW(17)

4 Q1-S2(9)/PW(19) Q2-S4(11)/PW(11)-S5(8)/PW(18) Q3-S8(4)/PW(7)-S9(6)/PW(16)
Q6-S19(2)/PW(22)-S20(3)/PW(14)

5 Q2-S5(8)/PW(8) Q3-S8(4)/PW(24)-S9(6)/PW(16) Q6-S19(5)/PW(15)-S20(6)/PW(19)

60

1 Q2-S6(7)/PW(11)-S7(9)/PW(9) Q3-S9(8)PW(15) Q4-S10(3)/PW(19)-S11(8)/PW(18)-S12(2)/PW(22)
Q5-S15(9)/PW(9) Q6-S18(6)/PW(16)-S19(4)/PW(14)-S20(5)/PW(25)

2 Q1-S1(3)/PW(23)-S2(8)/PW(18) Q2-S4(9)/PW(9)-S5(6)/PW(16) Q3-S7(7)/PW(17)-S8(6)/PW(16)
Q6-S20(4)/PW(14)

3 Q1-S2(12)/PW(12) Q2-S5(8)/PW(9) Q3-S7(6)/PW(16)-S8(7)/PW(17) Q4-S15(8)/PW(19)-S16(9)/PW(9)
Q6-S19(8)/PW(18)

4 Q1-S2(7)/PW(17)-S3(8)/PW(18) Q3-S8(6)/PW(16)-S9(6)/PW(16)-S10(5)/PW(25) Q5-S17(9)/PW(19)
Q6-S19(5)/PW(25)-S20(8)/PW(18)

5 Q2-S5(3)/PW(18) Q3-S8(5)/PW(21)-S9(6)/PW(16)

61

1 Q1-S1(6)/PW(21)-S2(5)/PW(19)-S3(4)/PW(14) Q4-S10(5)/PW(15)-S11(7)/PW(16)-S12(8)/PW(22)
Q6-S19(4)/PW(24)-S20(5)/PW(15)

2 Q2-S4(5)/PW(25)-S5(8)/PW(18) Q3-S8(6)/PW(26)-S9(7)/PW(17) Q6-S19(9)/PW(9)

3 Q1-S3(5)/PW(9) Q2-S5(5)/PW(25)-S6(7)/PW(17) Q3-S7(6)/PW(26) Q4-S15(7)/PW(17)
Q6-S18(8)/PW(18)-S19(9)/PW(19)

4 Q1-S2(7)/PW(17) Q2-S4(11)/PW(11)-S5(8)/PW(18) Q3-S8(6)/PW(19)-S9(6)/PW(18) Q6-S20(7)/PW(20)
5 Q1-S1(4)/PW(24)-S2(5)/PW(16) Q2-S5(8)/PW(27) Q3-S8(4)/PW(22)-S9(6)/PW(16) Q4-S11(4)/PW(17)

62

1 Q1-S1(8)/PW(18)-S3(7)/PW(24) Q2-S5(6)/PW(18) Q4-S10(7)/PW(17)-S11(8)/PW(9)-S12(5)/PW(17)
Q5-S15(9)/PW(8)-S16(3)/PW(15) Q6-S20(7)/PW(9)

2 Q1-S1(6)/PW(3)-S2(8)/PW(9) Q3-S8(4)/PW(16)-S9(5)/PW(8) Q5-S16(8)/PW(14)-S17(5)/PW(15)
Q6-S19(7)/PW(9)

3 Q1-S1(6)/PW(18)-S2(7)/PW(12) Q2-S5(7)/PW(9) Q3-S7(8)/PW(16)-S8(4)/PW(19)
Q4-S15(7)/PW(27)-S16(6)/PW(18)

4 Q2-S5(9)/PW(8)-S6(3)/PW(7) Q3-S8(9)/PW(6)-S9(5)/PW(9) Q6-S18(3)/PW(3)-S20(9)/PW(9)

5 Q1-S2(5)/PW(17)-S3(9)/PW(9) Q2-S4(2)/PW(20)-S5(8)/PW(18)
Q3-S8(5)/PW(21)-S9(6)/PW(16)-S10(3)/PW(13) Q4-S16(4)/PW(14) Q5-S17(3)/PW(18)-S18(5)/PW(15) Q6-S20(9)/PW(21)

63

1 Q1-S3(9)/PW(24) Q2-S6(7)/PW(17) Q5-S15(8)/PW(18)-S16(9)/PW(9)

2 Q1-S1(7)/PW(23)-S2(3)/PW(18) Q2-S4(5)/PW(15)-S5(8)/PW(18)-S6(7)/PW(17) Q3-S8(6)/PW(16)
Q4-S15(6)/PW(16) Q6-S20(9)/PW(19)

3 Q1-S1(7)/PW(9)-S2(8)/PW(8) Q2-S4(4)/PW(24)-S5(5)/PW(25) Q3-S7(6)/PW(26)-S8(9)/PW(17)
4 Q2-S4(3)/PW(23)-S5(7)/PW(17)-S6(3)/PW(18) Q6-S19(9)/PW(23)-S20(7)/PW(11)
5 Q2-S5(7)/PW(19) Q3-S9(6)/PW(6) Q6-S18(8)/PW(9)-S20(5)/PW(15)

64

1 Q1-S1(9)/PW(14)-S2(3)/PW(20)-S3(2)/PW(14) Q2-S5(9)/PW(16)-S6(7)/PW(17)
Q4-S10(2)/PW(19)-S11(8)/PW(18) Q5-S14(6)/PW(16)-S15(8)/PW(18) Q6-S19(6)/PW(16)-S20(3)/PW(13)

2 Q2-S5(6)/PW(16)-S6(7)/PW(17) Q3-S8(9)/PW(19)-S9(5)/PW(15) Q5-S16(7)/PW(23)-S17(2)/PW(22)
Q6-S20(4)/PW(12)

3 Q1-S1(6)/PW(16)-S3(9)/PW(9) Q4-S15(7)/PW(21)-S16(5)/PW(15) Q6-S19(8)/PW(18)

4 Q1-S1(3)/PW(13)-S2(7)/PW(17)-S3(6)/PW(16) Q2-S5(8)/PW(8)-S6(5)/PW(15)
Q6-S19(8)/PW(18)-S20(9)/PW(9)

5 Q1-S2(3)/PW(17) Q2-S5(9)/PW(14)-S6(5)/PW(15) Q3-S8(7)/PW(21)

65

1 Q1-S1(7)/PW(15)-S2(4)/PW(16)-S3(5)/PW(14) Q2-S5(8)PW(18)-S6(7)/PW(17)-S7(5)/PW(15)
Q3-S8(3)/PW(23) Q4-S12(9)/PW(9) Q5-S15(8)/PW(18)

2 Q1-S1(9)/PW(9)-S2(5)/PW(15) Q2-S4(4)/PW(24)-S5(7)/PW(17) Q3-S8(5)/PW(15)-S9(4)PW(24)
Q5-S16(8)/PW(8) Q6-S19(9)/PW(9)-S20(6)/PW(6)

3 Q1-S2(7)/PW(18)-S3(9)/PW(9) Q2-S5(5)/PW(15) Q3-S6(4)/PW(10)-S7(6)/PW(16)

4 Q1-S1(5)/PW(16)-S2(7)/PW(17)-S3(8)/PW(18) Q2-S4(9)/PW(12)-S5(8)/PW(18)-S6(3)/PW(11)
Q3-S8(6)/PW(16)-S9(6)/PW(16) Q6-S19(8)/PW(18)-S20(7)/PW(17)

5 Q1-S2(8)/PW(17) Q2-S4(5)/PW(14)-S5(3)/PW(8) Q3-S8(7)/PW(14)-S9(6)/PW(16)
Q6-S19(6)/PW(16)-S20(7)/PW(17)
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66

1 Q1-S3(4)/PW(14) Q2-S6(7)/PW(17)-S7(8)/PW(18) Q4-S10(7)/PW(17) Q5-S15(8)/PW(8)-S16(8)/PW(8)
Q6-S18(4)/PW(14)-S20(5)/PW(15)

2
Q1-S1(7)/PW(17)-S2(8)/PW(18) Q2-S4(2)/PW(21)-S5(3)/PW(13)-S6(4)/PW(24)
Q3-S7(5)/PW(15)-S8(6)/PW(16)-S9(7)/PW(17) Q5-S16(4)/PW(14)-S17(5)/PW(15)
Q6-S18(7)/PW(17)-S20(4)/PW(24)

3 Q1-S1(8)/PW(18)-S2(9)/PW(19) Q2-S5(5)/PW(15)-S6(6)/PW(16) Q3-S7(6)/PW(16)-S8(7)/PW(17)
Q4-S14(7)/PW(17)-S15(8)/PW(18)

4 Q2-S4(7)/PW(18)-S5(8)/PW(18) Q3-S8(9)/PW(19)

5 Q1-S2(5)/PW(14) Q2-S5(8)/PW(16)-S6(7)/PW(17) Q3-S8(5)/PW(15)-S9(7)/PW(17)
Q5-S16(6)/PW(16)-S17(3)/PW(23) Q6-S18(4)/PW(14)-S19(8)/PW(18)

67

1 Q1-S1(7)/PW(19)-S2(1)/PW(21)-S3(4)/PW(14) Q2-S4(3)/PW(23)-S6(5)/PW(15)
Q4-S10(7)/PW(15)-S11(6)/PW(16)-S12(2)/PW(12) Q6-S19(7)/PW(17)

2 Q1-S1(11)/PW(13)-S2(5)/PW(15)-S3(5)/PW(16) Q2-S5(9)/PW(15)-S6(7)/PW(8)
Q3-S7(4)/PW(17)-S8(5)/PW(16) Q5-S6(6)/PW(4)-S17(8)PW(5)

3 Q1-S1(6)/PW(16)-S3(8)/PW(23) Q2-S5(8)/PW(18)-S6(9)/PW(9) Q3-S7(7)/PW(17)-S8(8)/PW(19)
Q4-S14(6)/PW(26)-S15(7)/PW(7) Q6-S19(8)/PW(18)-S20(6)/PW(14)

4 Q1-S1(3)/PW(3)-S2(6)/PW(6)-S3(4)/PW(4) Q4-S5(8)/PW(8) Q6-S20(7)/PW(7)

5 Q1-S1(6)/PW(24)-S2(7)/PW(17)-S3(8)/PW(18) Q2-S4(5)/PW(25)-S5(8)/PW(18)
Q3-S8(3)/PW(24)-S9(6)/PW(16) Q5-S17(6)/PW(16) Q6-S19(4)/PW(21)-S20(7)/PW(17)

68

1 Q1-S1(7)/PW(22)-S3(6)/PW(14) Q2-S6(9)/PW(9) Q4-S10(6)/PW(16)-S12(3)/PW(13) Q5-S15(8)/PW(18)
Q6-S19(6)/PW(16)-S20(8)/PW(18)

2 Q1-S1(6)/PW(16) Q2-S4(6)/PW(22)-S5(8)/PW(18) Q3-S8(9)/PW(17) Q5-S16(6)/PW(6)
Q6-S19(7)/PW(15)-S20(3)/PW(23)

3 Q1-S1(9)/PW(19)-S3(6)/PW(26) Q2-S5(5)/PW(5) Q3-S7(7)/PW(7) Q4-S15(8)/PW(8)

4 Q1-S1(4)/PW(14)-S2(8)/PW(18) Q2-S4(3)/PW(16)-S5(11)/PW(11) Q3-S8(9)PW(19)-S9(6)/PW(26)
Q6-S19(4)/PW(14)-S20(8)/PW(18)

5 Q1-S1(6)/PW(16)-S2(8)/PW(18) Q2-S5(8)(PW(18) Q3-S8(9)/PW(11)-S9(5)/PW(15)
Q6-S19(3)/PW(23)-S20(6)/PW(16)

69

1 Q1-S1(7)/PW(17)-S3(5)/PW(13) Q2-S6(9)/PW(8) Q4-S12(9)/PW(9) Q6-S20(6)/PW(16)

2 Q2-S4(9)/PW(11)-S5(6)/PW(16)-S6(5)/PW(15) Q3-S7(7)/PW(17)-S8(8)/PW(8) Q4-S9(9)/PW(9)
Q5-S16(3)/PW(23)-S17(2)/PW(20) Q6-S20(4)/PW(9)

3 Q1-S2(6)/PW(9)-S3(3)/PW(13) Q3-S7(7)/PW(17)-S8(8)/PW(18) Q6-S18(9)/PW(9)

4 Q1-S2(9)/PW(17) Q2-S5(7)/PW(18)-S6(4)/PW(14) Q3-S7(6)/PW(15)-S8(6)/PW(16)-S9(6)/PW(16)
Q6-S19(5)/PW(15)-S20(6)/PW(16)

5 Q1-S2(7)/PW(17) Q2-S5(8)/PW(18) Q3-S8(4)/PW(14)-S9(6)/PW(16) Q5-S16(4)/PW(14)-S17(5)PW(15)
Q6-S19(3)/PW(13)-S20(8)/PW(19)

70

1 Q1-S1(10)/PW(17)-S2(2)/PW(11)-S3(4)/PW(15) Q2-S5(6)/PW(16)-S7(7)/PW(17)
Q3-S8(5)/PW(15)-S9(4)/PW(24) Q5-S15(6)/PW(16) Q6-S20(9)/PW(19)

2 Q1-S1(3)/PW(14)-S2(5)/PW(15)-S3(8)/PW(18) Q2-S4(4)/PW(19)-S5(3)/PW(13)
Q3-S7(3)/PW(23)-S8(9)/PW(9) Q5-S16(6)/PW(16)-S17(7)/PW(17)

3 Q1-S2(13)/PW(17)-S3(3)PW(13) Q2-S5(6)/PW(16)-S6(7)/PW(17) Q3-S7(11)/PW(11)
Q4-S15(3)/PW(23)-S16(4)/PW(14) Q6-S18(5)/PW(15)-S19(6)/PW(16)

4 Q1-S1(9)/PW(9)-S2(7)/PW(17) Q2-S5(8)/PW(8) Q3-S8(5)/PW(15)-S9(4)/PW(14)
Q6-S19(8)/PW(8)-S20(9)/PW(9)

5 Q1-S2(8)/PW(9)-S3(7)/PW(17) Q2-S4(6)/PW(16)-S5(5)/PW(15) Q3-S8(4)/PW(24)-S9(3)/PW(16)
Q4-S11(7)/PW(16)-S12(8)/PW(8) Q5-S16(10)/PW(19)-S17(8)/PW(18)

71

1 Q1-S1(7)/PW(18)-S3(5)PW(25) Q2-S6(6)/PW(16) Q4-S10(6)/PW(16)-S12(3)/PW(23) Q5-S15(9)/PW(19)
Q6-S19/PW(17)-S20(3)/PW(13)

2 Q1-S1(6)/PW(16) Q2-S4(9)/PW(17)-S5(8)/PW(18) Q3-S8(5)/PW(19) Q5-S16(5)/PW(25)
Q6-S19(4)/PW(24)-S20(5)/PW(15)

3 Q1-S1(6)/PW(16)-S2(3)/PW(13)-S3(5)/PW(15) Q2-S5(8)/PW(19) Q3-S7(3)/PW(17) Q4-S15(9)/PW(19)

4 Q1-S1(7)/PW(17)-S2(3)/PW(23) Q2-S4(2)/PW(20)-S5(4)/PW(14) Q3-S8(7)/PW(22)-S9(3)/PW(23)
Q6-S20(10)/PW(18)

5 Q1-S1(3)/PW(25)-S2(3)/PW(19) Q2-S5(5)/PW(24) Q3-S8(6)/PW(23)-S9(8)/PW(17) Q6-S20(8)/PW(26)

72

1 Q3-S7(9)/PW(16) Q4-S10(8)/PW(18)-S11(6)/PW(17)-S12(3)/PW(23) Q5-S15(5)/PW(14) Q6-S20(5)/PW(15)

2 Q1-S1(8)/PW(19)-S2(8)/PW(18)-S3(4)/PW(24) Q2-S5(3)/PW(13) Q3-S7(5)/PW(23)-S8(7)/PW(18)
Q5-S16(6)/PW(16)-S17(7)/PW(17) Q6-S19(8)/PW(18)

3 Q1-S1(7)/PW(9) Q3-S7(6)/PW(16)-S8(9)/PW(19) Q4-S14(6)/PW(26)-S15(7)/PW(17)
Q5-S16(9)/PW(9)-S17(3)/PW(13) Q6-S18(8)/PW(8)-S19(9)/PW(9)

4 Q1-S1(10)/PW(16)-S2(3)/PW(17)-S3(5)/PW(10) Q2-S4(2)/PW(5) Q3-S8(3)/PW(13)-S9(7)/PW(7)
Q5-S16(5)/PW(15) Q6-S18(5)/PW(15)-S19(9)/PW(9)

5 Q1-S2(9)/PW(9) Q3-S8(3)/PW(13)-S9(2)/PW(21) Q6-S19(5)/PW(16)-S20(3)/PW(27)

73

1
Q1-S1(6)/PW(23)-S2(2)/PW(19)-S3(4)/PW(13) Q2-S5(5)/PW(15)-S6(7)/PW(17)
Q3-S7(3)/PW(16)-S8(5)/PW(20) Q4-S10(4)/PW(17)-S11(3)/PW(13)-S12(2)/PW(21)
Q5-S15(8)/PW(18)-S16(4)/PW(24) Q6-S18(6)/PW(16)-S19(4)/PW(24)-S20(5)/PW(15)

2 Q1-S1(5)/PW(13)-S2(8)/PW(18) Q2-S4(5)/PW(15)-S5(8)/PW(18) Q3-S8(6)/PW(16)-S9(7)/PW(17)
Q5-S16(4)/PW(14)-S17(5)/PW(23) Q6-S18(5)/PW(15)-S20(4)/PW(24)

3 Q1-S1(7)/PW(16)-S3(13)/PW(23) Q2-S5(6)/PW(16) Q3-S7(9)/PW(19) Q4-S15(8)/PW(18)-S16(9)/PW(19)

4 Q1-S2(9)/PW(19)-S3(5)/PW(15) Q2-S4(3)/PW(11)-S5(9)/PW(9) Q3-S7(4)/PW(14)
Q4-S10(5)/PW(15)-S11(6)/PW(16)

5
Q1-S2(8)/PW(19)-S3(8)/PW(19) Q2-S4(4)/PW(22)-S5(8)/PW(12)
Q3-S8(3)PW(13)-S9(9)/PW(16)-S10(2)/PW(14) Q5-S16(8)/PW(20)-S17(3)/PW(13)
Q6-S18(7)/PW(15)-S19(6)/PW(11)-S20(3)/PW(27)
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Table A1. Cont.

Part Route Cell–Machine (Operating Time)/(Machine Power Amount)

74

1 Q4-S10(8)/PW(16)-S11(8)/PW(18)-S12(2)PW(22) Q5-S15(9)/PW(18)-S16(3)/PW(18) Q6-S19(5)/PW(15)

2
Q1-S1(3)/PW(23)-S2(8)/PW(18) Q2-S5(8)/PW(18)-S6(7)/PW(21)
Q3-S8(5)/PW(22)-S9(4)/PW(18)-S10(3)/PW(13) Q5-S16(4)/PW(14)-S17(5)
Q6-S18(5)/PW(17)-S20(4)/PW(20)

3 Q1-S1(9)/PW(9)-S3(5)/PW(15) Q2-S5(5)/PW(15)-S6(6)/PW(16) Q3-S7(6)/PW(16)-S8(8)/PW(18)
Q4-S15(7)/PW(17)-S16(8)/PW(18)

4 Q1-S1(8)/PW(23)-S2(7)/PW(17)-S3(4)/PW(24) Q2-S5(8)/PW(18) Q3-S8(6)/PW(16)-S9(5)/PW(15)
Q6-S19(9)/PW(8

5 Q1-S1(6)/PW(16)-S2(7)/PW(23)-S3(6)/PW(15) Q2-S5(7)/PW(18)-S6(8)/PW(24)
Q3-S8(4)/PW(14)-S9(6)/PW(25)-S10(8)/PW(23) Q6-S18(4)/PW(14)-S19(6)/PW(15)-S20(8)/PW(17)

75

1 Q2-S6(4)/PW(18)-S7(9)/PW(19) Q4-S10(6)/PW(17)-S12(5)/PW(22) Q5-S15(8)/PW(18)

2 Q1-S1(7)/PW(23) Q2-S4(5)/PW(15)-S5(8)/PW(18) Q3-S8(6)/PW(16) Q5-S16(5)/PW(14)
Q6-S19(6)/PW(23)-S20(4)/PW(14)

3 Q1-S1(6)/PW(17)-S2(2)/PW(22)-S3(5)/PW(15) Q2-S5(4)/PW(5) Q3-S7(3)/PW(6) Q4-S15(5)/PW(7)

4 Q1-S1(4)/PW(23)-S2(7)/PW(17) Q2-S4(5)/PW(21)-S5(6)/PW(18) Q3-S8(8)/PW(6)-S9(6)/PW(6)
Q6-S20(6)/PW(17)

5 Q1-S1(1)/PW(11)-S2(4)/PW(17) Q2-S5(3)/PW(18) Q3-S8(5)/PW(15)-S9(6)/PW(16) Q6-S20(9)/PW(25)

76

1 Q1-S1(7)/PW(24) Q2-S4(7)/PW(15) Q3-S7(4)/PW(13) Q4-S11(6)/PW(14)-S12(7)/PW(17)
Q5-S14(5)/PW(18)-S15(4)/PW(14) Q6-S20(8)/PW(18)

2 Q1-S2(3)/PW(13)-S3(5)/PW(15) Q2-S5(7)/PW(17) Q4-S11(5)/PW(19)-S12(4)/PW(17)-S13(3)/PW(15)
Q5-S14(8)/PW(18)-S15(4)/PW(14) Q6-S18(4)/PW(14)-S20(8)/PW(18)

3 Q1-S1(5)/PW(16)-S2(7)/PW(19)-S3(4)/PW(14) Q3-S8(8)/PW(22) Q4-S12(9)/PW(19)-S13(8)/PW(26)
Q5-S14(8)/PW(18)-S15(4)/PW(24). Q6-S18(9)/PW(19)-S20(8)/PW(18)

4 Q1-S1(9)/PW(19)-S2(8)/PW(18)-S3(5)/PW(25) Q2-S5(5)/PW(25)
Q4-S11(9)/PW(19)-S12(4)/PW(24)-S13(5)/PW(15) Q5-S14(3)/PW(23)-S15(4)/PW(24) Q6-S20(8)/PW(28)

5 Q1-S1(7)/PW(16)-S2(8)/PW(19)-S3(4)/PW(24) Q3-S8(6)/PW(16) Q4-S12(7)/PW(19)-S13(6)/PW(16)
Q5-S14(8)/PW(18)-S15(4)/PW(24) Q6-S18(10)/PW(19)-S20(6)/PW(28)

77

1 Q1-S3(7)/PW(18) Q2-S6(5)/PW(15) Q3-S7(4)/PW(14) Q4-S9(6)PW(24)-S10(5)/PW(15)
Q5-S13(7)/PW(18)-S14(9)/PW(19) Q6-S19(6)/PW(24)

2 Q1-S1(5)/PW(20) Q2-S6(8)/PW(18) Q4-S11(8)/PW(18)-S13(3)/PW(23) Q5-S14(7)/PW(27)
Q6-S18(8)/PW(18)-S19(5)/PW(22)

3 Q1-S2(3)/PW(25)-S3(6)/PW(23) Q2-S6(4)/PW(19) Q3-S7(7)/PW(24)-S8(8)/PW(17)
Q4-S8(5)/PW(8) Q5-S16(5)/PW(14) Q6-S20(7)/PW(17)

4 Q1-S1(8)/PW(21)-S2(7)/PW(17)-S3(3)/PW(23) Q2-S6(8)/PW(8) Q4-S11(9)/PW(8)-S13(2)/PW(23)
Q5-S14(7)/PW(17) Q6-S18(8)/PW(28)-S19(2)/PW(22)

5 Q1-S2(5)/PW(15)-S3(3)/PW(23) Q3-S7(7)/PW(24)-S8(7)/PW(17) Q4-S8(8)/PW(18)
Q5-S15(3)/PW(25)-S16(6)/PW(24) Q6-S20(7)/PW(24)

78

1 Q1-S1(8)/PW(22)-S3(4)/PW(14) Q2-S6(6)/PW(17) Q4-S10(8)/PW(17)-S12(2)/PW(22) Q5-S15(8)/PW(18)
Q6-S19(4)/PW(14)-S20(5)/PW(15)

2 Q1-S1(3)/PW(23) Q2-S4(5)/PW(15)-S5(8)/PW(18) Q3-S8(6)/PW(26) Q5-S16(4)/PW(18)
Q6-S19(3)/PW(23)-S20(4)/PW(24)

3 Q1-S1(6)/PW(17)-S2(2)/PW(21)-S3(3)/PW(13) Q2-S5(5)/PW(15) Q3-S7(6)/PW(16)
Q4-S15(7)/PW(17)

4 Q1-S1(8)/PW(23)-S2(7)/PW(17) Q2-S4(6)/PW(19)-S5(6)/PW(18) Q3-S8(5)/PW(16)-S9(6)/PW(16)
Q6-S20(3)/PW(17)

5 Q1-S1(3)/PW(11)-S2(7)/PW(17) Q2-S5(8)/PW(18) Q3-S8(8)/PW(24)-S9(6)/PW(16) Q6-S20(5)/PW(26)

79

1 Q1-S1(5)/PW(11)-S2(2)/PW(22)-S3(4)/PW(14) Q2-S4(1)/PW(25)-S6(7)/PW(17)
Q4-S10(7)/PW(17)-S12(2)/PW(12) Q5-S15(8)/PW(18) Q6-S19(4)/PW(14)-S20(5)/PW(15)

2 Q1-S1(3)/PW(23) Q2-S4(5)/PW(19)-S5(8)/PW(18) Q3-S8(6)/PW(26) Q5-S16(5)/PW(14)
Q6-S19(3)/PW(23)-S20(4)/PW(24)

3 Q1-S1(7)/PW(17)-S2(6)/PW(22)-S3(3)/PW(23) Q2-S5(4)/PW(19) Q3-S7(6)/PW(16) Q4-S15(7)/PW(17)

4 Q1-S1(3)/PW(23)-S2(7)/PW(17) Q2-S4(3)/PW(21)-S5(8)7PW(18) Q3-S8(2)/PW(16)-S9(6)/PW(26)
Q6-S20(11)/PW(17)

5 Q1-S1(4)/PW(21)-S2(6)/PW(17) Q2-S5(8)/PW(18) Q3-S8(5)/PW(24)-S9(6)/PW(26) Q6-S20(8)/PW(27)

80

1 Q1-S1(8)/PW(19)-S2(5)/PW(25)-S3(4)/PW(19) Q2-S6(8)/PW(18)-S7(9)/PW(19)
Q4-S10(5)/PW(15)-S12(2)/PW(12) Q5-S15(6)/PW(16)-S16(5)/PW(15) Q6-S20(5)/PW(15)

2
Q1-S1(7)/PW(23)-S2(4)/PW(17) Q2-S4(5)/PW(19)-S5(7)/PW(18)-S6(6)/PW(16)
Q3-S8(5)/PW(16)-S9(7)/PW(7) Q5-S16(4)/PW(24)-S17(3)/PW(25)
Q6-S18(5)/PW(25)-S19(6)/PW(23)-S20(4)/PW(14)

3 Q1-S1(6)/PW(18)-S3(7)/PW(23) Q2-S5(7)/PW(19) Q3-S7(5)/PW(17) Q4-S15(6)/PW(25)-S16(8)/PW(18)

4 Q1-S1(6)/PW(16)-S2(8)/PW(18)-S3(5)/PW(25) Q2-S4(4)/PW(24)-S5(7)/PW(17)-S6(6)/PW(26)
Q3-S8(6)/PW(16)-S9(5)/PW(25) Q6-S19(5)/PW(24)-S20(7)/PW(19)

5 Q1-S1(7)/PW(15)-S2(6)/PW(20) Q2-S5(7)/PW(21) Q3-S8(4)/PW(18)-S9(6)/PW(16) Q6-S19(8)/PW(19)
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Table A2. Part demands and movement costs between cells.

Part
Part Demands Movement Costs between Cells

1.
Period

2.
Period

3.
Period

4.
Period

5.
Period

1.
Period

2.
Period

3.
Period

4.
Period

5.
Period

1 150 90 80 70 65 45 40 35 30 40
2 80 75 70 75 70 35 50 45 40 45
3 40 35 30 50 45 30 47 40 37 47
4 75 70 65 85 80 34 48 40 38 48
5 80 75 70 100 95 52 40 55 40 45
6 120 100 90 85 80 55 50 55 50 55
7 60 55 50 65 60 37 45 40 35 45
8 50 45 40 55 50 36 45 35 35 40
9 85 75 70 85 75 33 50 44 40 45

10 90 70 65 90 85 40 35 30 30 35
11 90 75 70 45 40 55 43 40 33 38
12 60 55 50 50 45 32 52 50 36 42
13 50 45 40 40 35 35 45 45 40 45
14 55 50 45 55 50 38 40 50 48 55
15 70 60 55 65 60 45 45 40 39 49
16 110 90 85 70 65 47 42 40 32 45
17 100 80 75 55 50 45 55 50 45 48
18 50 45 40 40 38 40 38 35 32 38
19 65 50 45 55 50 33 45 40 39 42
20 80 75 70 80 75 52 45 40 35 45
21 70 65 60 60 55 40 50 55 50 55
22 100 95 85 90 75 45 55 50 50 55
23 60 55 50 50 45 40 37 35 33 38
24 55 50 45 55 50 43 38 35 30 35
25 70 60 55 65 60 40 30 35 32 38
26 50 45 40 40 35 45 45 40 36 40
27 90 85 80 90 80 55 55 50 48 55
28 45 40 35 70 65 40 45 45 43 53
29 55 50 45 80 75 33 40 40 38 45
30 90 80 75 90 85 40 45 45 40 45
31 120 85 80 60 55 45 38 30 29 45
32 90 85 80 100 95 46 55 50 48 52
33 100 75 70 85 80 32 52 50 45 55
34 85 70 65 80 70 35 48 45 40 45
35 80 70 65 80 70 52 45 35 30 40
36 150 125 115 105 100 41 38 50 45 55
37 90 85 80 80 75 37 52 40 35 45
38 40 35 30 65 60 33 45 45 40 45
39 45 40 35 40 35 43 40 40 35 48
40 90 80 75 60 55 40 43 40 39 42
41 90 65 60 60 50 47 38 35 30 35
42 70 65 60 65 60 45 43 40 35 38
43 60 55 50 75 70 40 45 40 35 40
44 95 60 55 65 60 42 48 45 40 45
45 70 60 50 65 60 51 50 55 50 55
46 150 115 105 75 70 43 35 35 30 39
47 70 65 55 80 70 37 40 40 35 42
48 60 55 45 75 65 33 42 45 42 45
49 75 70 60 80 70 35 46 50 46 50
50 80 70 50 90 80 48 43 45 43 53
51 120 115 95 75 70 43 35 30 30 45
52 70 65 60 60 55 37 53 55 53 55
53 50 45 40 40 35 30 45 45 40 45
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Table A2. Cont.

Part
Part Demands Movement Costs between Cells

1.
Period

2.
Period

3.
Period

4.
Period

5.
Period

1.
Period

2.
Period

3.
Period

4.
Period

5.
Period

54 65 60 55 55 50 34 40 40 35 45
55 70 60 55 55 55 52 45 55 45 50
56 50 45 40 40 37 45 48 40 38 40
57 90 70 60 80 75 34 48 45 44 45
58 70 65 60 75 73 40 45 55 45 48
59 65 60 55 65 64 38 40 35 30 35
60 70 65 60 60 58 52 45 40 38 42
61 130 105 100 95 90 47 36 40 36 40
62 80 65 60 60 55 30 47 45 43 45
63 80 70 60 75 70 35 39 35 33 35
64 70 60 55 70 65 30 41 40 31 35
65 85 70 65 75 70 50 45 45 40 45
66 130 85 80 80 75 40 52 50 42 48
67 80 75 65 70 65 38 55 55 50 55
68 70 65 60 85 80 37 45 40 38 42
69 85 80 70 90 85 40 40 45 40 45
70 90 80 70 75 70 45 50 55 50 55
71 110 95 90 70 65 40 45 50 45 48
72 90 85 80 65 60 35 52 55 52 55
73 70 65 60 60 55 30 45 40 38 42
74 85 50 45 40 35 38 44 45 40 45
75 80 70 60 60 55 55 43 40 38 42
76 60 55 50 65 60 40 50 50 45 55
77 70 65 60 95 90 30 55 55 50 55
78 80 75 70 105 100 40 39 35 36 40
79 65 60 55 70 65 35 49 45 42 45
80 70 55 50 55 45 40 50 50 45 55

Appendix B

Table A3. Optimal routes for the goal programming, ε-constraint, and AUGMECON methods.

Parts Optimal Route for
Goal Programming

Optimal Route for
ε-Constraint

Optimal Route for
AUGMECON

1 x111, x211, x311, x411, x511 x111, x211, x311, x411, x511 x111, x211, x311, x411, x511

2 x123, x222, x323, x422, x523 x122, x222, x323, x422, x523 x122, x222, x323, x423, x523

3 x135, x235, x335, x435, x535 x135, x235, x335, x435, x535 x135, x235, x335, x435, x535

4 x142, x242, x342, x443, x542 x142, x242, x342, x443, x542 x142, x242, x342, x443, x542

5 x155, x255, x355, x455, x555 x155, x255, x355, x455, x555 x155, x255, x355, x455, x555

6 x165, x265, x365, x465, x565 x165, x265, x365, x465, x565 x165, x265, x365, x465, x565

7 x173, x273, x373, x473, x573 x173, x273, x373, x473, x573 x173, x273, x373, x473, x573

8 x185, x285, x385, x483, x585 x185, x285, x385, x483, x585 x185, x285, x385, x483, x585

9 x192, x295, x395, x492, x592 x195, x295, x395, x494, x592 x195, x295, x395, x494, x592

10 x1,10,4, x2,10,1, x3,10,1, x4,10,1, x5,10,5 x1,10,5, x2,10,5, x3,10,1, x4,10,1, x5,10,5 x1,10,5, x2,10,5, x3,10,1, x4,10,1, x5,10,5

11 x1,11,3, x2,11,3, x3,11,3, x4,11,3, x5,11,3 x1,11,3, x2,11,3, x3,11,3, x4,11,3, x5,11,3 x1,11,3, x2,11,3, x3,11,3, x4,11,3, x5,11,3

12 x1,12,5, x2,12,5, x3,12,5, x4,12,5, x5,12,5 x1,12,5, x2,12,5, x3,12,5, x4,12,5, x5,12,5 x1,12,5, x2,12,5, x3,12,5, x4,12,5, x5,12,5

13 x1,13,5, x2,13,5, x3,13,5, x4,13,5, x5,13,5 x1,13,5, x2,13,5, x3,13,5, x4,13,5, x5,13,5 x1,13,5, x2,13,5, x3,13,5, x4,13,5, x5,13,5

14 x1,14,3, x2,14,3, x3,14,3, x4,14,3, x5,14,3 x1,14,3, x2,14,3, x3,14,3, x4,14,3, x5,14,3 x1,14,3, x2,14,3, x3,14,3, x4,14,3, x5,14,3

15 x1,15,5, x2,15,5, x3,15,2, x4,15,2, x5,15,2 x1,15,5, x2,15,5, x3,15,2, x4,15,2, x5,15,2 x1,15,5, x2,15,5, x3,15,2, x4,15,2, x5,15,2
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Table A3. Cont.

Parts Optimal Route for
Goal Programming

Optimal Route for
ε-Constraint

Optimal Route for
AUGMECON

16 x1,16,2, x2,16,1, x3,16,1, x4,16,1, x5,16,3 x1,16,2, x2,16,1, x3,16,1, x4,16,1, x5,16,3 x1,16,2, x2,16,1, x3,16,1, x4,16,1, x5,16,3

17 x1,17,5, x2,17,5, x3,17,5, x4,17,5, x5,17,5 x1,17,5, x2,17,5, x3,17,5, x4,17,5, x5,17,5 x1,17,5, x2,17,5, x3,17,5, x4,17,5, x5,17,5

18 x1,18,4, x2,18,4, x3,18,4, x4,18,4, x5,18,4 x1,18,4, x2,18,4, x3,18,4, x4,18,4, x5,18,4 x1,18,4, x2,18,4, x3,18,4, x4,18,4, x5,18,4

19 x1,19,5, x2,19,5, x3,19,5, x4,19,5, x5,19,5 x1,19,5, x2,19,5, x3,19,5, x4,19,5, x5,19,5 x1,19,5, x2,19,5, x3,19,5, x4,19,5, x5,19,5

20 x1,20,5, x2,20,5, x3,20,5, x4,20,5, x5,20,5 x1,20,5, x2,20,5, x3,20,5, x4,20,5, x5,20,5 x1,20,5, x2,20,5, x3,20,5, x4,20,5, x5,20,5

21 x1,21,5, x2,21,5, x3,21,5, x4,21,5, x5,21,5 x1,21,5, x2,21,5, x3,21,5, x4,21,5, x5,21,5 x1,21,5, x2,21,5, x3,21,5, x4,21,5, x5,21,5

22 x1,22,4, x2,22,4, x3,22,4, x4,22,4, x5,22,4 x1,22,4, x2,22,4, x3,22,4, x4,22,4, x5,22,4 x1,22,4, x2,22,4, x3,22,4, x4,22,4, x5,22,4

23 x1,23,5, x2,23,5, x3,23,5, x4,23,5, x5,23,5 x1,23,5, x2,23,5, x3,23,5, x4,23,5, x5,23,5 x1,23,5, x2,23,5, x3,23,5, x4,23,5, x5,23,5

24 x1,24,5, x2,24,5, x3,24,5, x4,24,5, x5,24,5 x1,24,5, x2,24,5, x3,24,5, x4,24,5, x5,24,5 x1,24,5, x2,24,5, x3,24,5, x4,24,5, x5,24,5

25 x1,25,3, x2,25,3, x3,25,3, x4,25,3, x5,25,3 x1,25,3, x2,25,3, x3,25,3, x4,25,3, x5,25,3 x1,25,3, x2,25,3, x3,25,3, x4,25,3, x5,25,3

26 x1,26,4, x2,26,4, x3,26,4, x4,26,4, x5,26,4 x1,26,4, x2,26,4, x3,26,4, x4,26,4, x5,26,4 x1,26,4, x2,26,4, x3,26,4, x4,26,4, x5,26,4

27 x1,27,4, x2,27,4, x3,27,4, x4,27,4, x5,27,4 x1,27,4, x2,27,4, x3,27,4, x4,27,4, x5,27,4 x1,27,4, x2,27,4, x3,27,4, x4,27,4, x5,27,4

28 x1,28,3, x2,28,3, x3,28,3, x4,28,3, x5,28,3 x1,28,3, x2,28,3, x3,28,3, x4,28,3, x5,28,3 x1,28,3, x2,28,3, x3,28,3, x4,28,3, x5,28,3

29 x1,29,1, x2,29,1, x3,29,1, x4,29,1, x5,29,1 x1,29,1, x2,29,1, x3,29,1, x4,29,1, x5,29,1 x1,29,1, x2,29,1, x3,29,1, x4,29,1, x5,29,1

30 x1,30,4, x2,30,4, x3,30,4, x4,30,4, x5,30,4 x1,30,4, x2,30,4, x3,30,4, x4,30,4, x5,30,4 x1,30,4, x2,30,4, x3,30,4, x4,30,4, x5,30,4

31 x1,31,5, x2,31,3, x3,31,3, x4,31,3, x5,31,5 x1,31,5, x2,31,3, x3,31,3, x4,31,3, x5,31,5 x1,31,5, x2,31,3, x3,31,3, x4,31,3, x5,31,5

32 x1,32,5, x2,32,5, x3,32,5, x4,32,5, x5,32,5 x1,32,5, x2,32,5, x3,32,5, x4,32,5, x5,32,5 x1,32,5, x2,32,5, x3,32,5, x4,32,5, x5,32,5

33 x1,33,2, x2,33,4, x3,33,4, x4,33,4, x5,33,2 x1,33,2, x2,33,4, x3,33,4, x4,33,4, x5,33,2 x1,33,2, x2,33,4, x3,33,4, x4,33,4, x5,33,2

34 x1,34,4, x2,34,1, x3,34,1, x4,34,1, x5,34,4 x1,34,4, x2,34,1, x3,34,1, x4,34,1, x5,34,4 x1,34,4, x2,34,1, x3,34,1, x4,34,1, x5,34,4

35 x1,35,3, x2,35,3, x3,35,3, x4,35,3, x5,35,3 x1,35,3, x2,35,3, x3,35,3, x4,35,3, x5,35,3 x1,35,3, x2,35,3, x3,35,3, x4,35,3, x5,35,3

36 x1,36,1, x2,36,1, x3,36,1, x4,36,1, x5,36,1 x1,36,1, x2,36,1, x3,36,1, x4,36,1, x5,36,1 x1,36,1, x2,36,1, x3,36,1, x4,36,1, x5,36,1

37 x1,37,2, x2,37,4, x3,37,3, x4,37,4, x5,37,3 x1,37,2, x2,37,2, x3,37,3, x4,37,2, x5,37,3 x1,37,2, x2,37,2, x3,37,3, x4,37,3, x5,37,3

38 x1,38,3, x2,38,3, x3,38,3, x4,38,3, x5,38,3 x1,38,3, x2,38,3, x3,38,3, x4,38,3, x5,38,3 x1,38,3, x2,38,3, x3,38,3, x4,38,3, x5,38,3

39 x1,39,3, x2,39,3, x3,39,3, x4,39,3, x5,39,3 x1,39,3, x2,39,3, x3,39,3, x4,39,3, x5,39,3 x1,39,3, x2,39,3, x3,39,3, x4,39,3, x5,39,3

40 x1,40,5, x2,40,5, x3,40,5, x4,40,1, x5,40,5 x1,40,5, x2,40,5, x3,40,5, x4,40,5, x5,40,5 x1,40,5, x2,40,5, x3,40,5, x4,40,5, x5,40,5

41 x1,41,1, x2,41,1, x3,41,1, x4,41,1, x5,41,1 x1,41,1, x2,41,1, x3,41,1, x4,41,1, x5,41,1 x1,41,1, x2,41,1, x3,41,1, x4,41,1, x5,41,1

42 x1,42,3, x2,42,4, x3,42,3, x4,42,4, x5,42,3 x1,42,4, x2,42,4, x3,42,3, x4,42,4, x5,42,3 x1,42,4, x2,42,4, x3,42,3, x4,42,3, x5,42,3

43 x1,43,3, x2,43,3, x3,43,3, x4,43,3, x5,43,3 x1,43,3, x2,43,3, x3,43,3, x4,43,3, x5,43,3 x1,43,3, x2,43,3, x3,43,3, x4,43,3, x5,43,3

44 x1,44,3, x2,44,3, x3,44,3, x4,44,3, x5,44,3 x1,44,3, x2,44,3, x3,44,3, x4,44,3, x5,44,3 x1,44,3, x2,44,3, x3,44,3, x4,44,3, x5,44,3

45 x1,45,5, x2,45,5, x3,45,5, x4,45,1, x5,45,5 x1,45,5, x2,45,5, x3,45,5, x4,45,5, x5,45,5 x1,45,5, x2,45,5, x3,45,5, x4,45,5, x5,45,5

46 x1,46,5, x2,46,5, x3,46,5, x4,46,5, x5,46,5 x1,46,5, x2,46,3, x3,46,5, x4,46,5, x5,46,5 x1,46,5, x2,46,3, x3,46,5, x4,46,5, x5,46,5

47 x1,47,2, x2,47,2, x3,47,2, x4,47,2, x5,47,2 x1,47,2, x2,47,2, x3,47,2, x4,47,2, x5,47,2 x1,47,2, x2,47,2, x3,47,2, x4,47,2, x5,47,2

48 x1,48,3, x2,48,3, x3,48,3, x4,48,3, x5,48,3 x1,48,3, x2,48,3, x3,48,3, x4,48,3, x5,48,3 x1,48,3, x2,48,3, x3,48,3, x4,48,3, x5,48,3

49 x1,49,2, x2,49,2, x3,49,2, x4,49,2, x5,49,2 x1,49,2, x2,49,2, x3,49,2, x4,49,2, x5,49,2 x1,49,2, x2,49,2, x3,49,2, x4,49,2, x5,49,2

50 x1,50,4, x2,50,4, x3,50,4, x4,50,3, x5,50,4 x1,50,4, x2,50,5, x3,50,4, x4,50,3, x5,50,4 x1,50,4, x2,50,5, x3,50,4, x4,50,3, x5,50,4

51 x1,51,3, x2,51,3, x3,51,3, x4,51,3, x5,51,3 x1,51,3, x2,51,3, x3,51,3, x4,51,3, x5,51,3 x1,51,3, x2,51,3, x3,51,3, x4,51,3, x5,51,3

52 x1,52,5, x2,52,5, x3,52,5, x4,52,5, x5,52,5 x1,52,5, x2,52,5, x3,52,5, x4,52,5, x5,52,5 x1,52,5, x2,52,5, x3,52,5, x4,52,5, x5,52,5

53 x1,53,5, x2,53,5, x3,53,5, x4,53,5, x5,53,5 x1,53,5, x2,53,5, x3,53,5, x4,53,5, x5,53,5 x1,53,5, x2,53,5, x3,53,5, x4,53,5, x5,53,5

54 x1,54,5, x2,54,3, x3,54,3, x4,54,3, x5,54,3 x1,54,5, x2,54,3, x3,54,3, x4,54,3, x5,54,3 x1,54,5, x2,54,3, x3,54,3, x4,54,3, x5,54,3

55 x1,55,2, x2,55,2, x3,55,2, x4,55,2, x5,55,2 x1,55,2, x2,55,2, x3,55,2, x4,55,2, x5,55,2 x1,55,2, x2,55,2, x3,55,2, x4,55,2, x5,55,2

56 x1,56,2, x2,56,1, x3,56,1, x4,56,1, x5,56,2 x1,56,2, x2,56,1, x3,56,1, x4,56,1, x5,56,3 x1,56,2, x2,56,1, x3,56,1, x4,56,1, x5,56,3

57 x1,57,5, x2,57,5, x3,57,5, x4,57,5, x5,57,5 x1,57,5, x2,57,5, x3,57,5, x4,57,5, x5,57,5 x1,57,5, x2,57,5, x3,57,5, x4,57,5, x5,57,5

58 x1,58,4, x2,58,4, x3,58,4, x4,58,4, x5,58,4 x1,58,4, x2,58,4, x3,58,4, x4,58,4, x5,58,4 x1,58,4, x2,58,4, x3,58,4, x4,58,4, x5,58,4

59 x1,59,5, x2,59,5, x3,59,5, x4,59,5, x5,59,5 x1,59,5, x2,59,5, x3,59,5, x4,59,5, x5,59,5 x1,59,5, x2,59,5, x3,59,5, x4,59,5, x5,59,5

60 x1,60,5, x2,60,5, x3,60,5, x4,60,5, x5,60,5 x1,60,5, x2,60,5, x3,60,5, x4,60,5, x5,60,5 x1,60,5, x2,60,5, x3,60,5, x4,60,5, x5,60,5

61 x1,61,2, x2,61,2, x3,61,5, x4,61,5, x5,61,5 x1,61,5, x2,61,2, x3,61,5, x4,61,5, x5,61,5 x1,61,5, x2,61,2, x3,61,5, x4,61,5, x5,61,5

62 x1,62,4, x2,62,4, x3,62,4, x4,62,4, x5,62,4 x1,62,4, x2,62,4, x3,62,4, x4,62,4, x5,62,4 x1,62,4, x2,62,4, x3,62,4, x4,62,4, x5,62,4

63 x1,63,5, x2,63,5, x3,63,5, x4,63,5, x5,63,5 x1,63,5, x2,63,5, x3,63,5, x4,63,5, x5,63,5 x1,63,5, x2,63,5, x3,63,5, x4,63,5, x5,63,5
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Table A3. Cont.

Parts Optimal Route for
Goal Programming

Optimal Route for
ε-Constraint

Optimal Route for
AUGMECON

64 x1,64,5, x2,64,5, x3,64,5, x4,64,5, x5,64,5 x1,64,5, x2,64,5, x3,64,5, x4,64,5, x5,64,5 x1,64,5, x2,64,5, x3,64,5, x4,64,5, x5,64,5

65 x1,65,3, x2,65,3, x3,65,3, x4,65,3, x5,65,3 x1,65,3, x2,65,3, x3,65,3, x4,65,3, x5,65,3 x1,65,3, x2,65,3, x3,65,3, x4,65,3, x5,65,3

66 x1,66,4, x2,66,4, x3,66,4, x4,66,4, x5,66,4 x1,66,4, x2,66,4, x3,66,4, x4,66,4, x5,66,4 x1,66,4, x2,66,4, x3,66,4, x4,66,4, x5,66,4

67 x1,67,4, x2,67,4, x3,67,4, x4,67,4, x5,67,4 x1,67,4, x2,67,4, x3,67,4, x4,67,4, x5,67,4 x1,67,4, x2,67,4, x3,67,4, x4,67,4, x5,67,4

68 x1,68,3, x2,68,3, x3,68,3, x4,68,3, x5,68,3 x1,68,3, x2,68,3, x3,68,3, x4,68,3, x5,68,3 x1,68,3, x2,68,3, x3,68,3, x4,68,3, x5,68,3

69 x1,69,3, x2,69,1, x3,69,3, x4,69,1, x5,69,3 x1,69,3, x2,69,1, x3,69,3, x4,69,1, x5,69,3 x1,69,3, x2,69,1, x3,69,3, x4,69,1, x5,69,3

70 x1,70,4, x2,70,4, x3,70,4, x4,70,4, x5,70,4 x1,70,4, x2,70,4, x3,70,4, x4,70,4, x5,70,4 x1,70,4, x2,70,4, x3,70,4, x4,70,4, x5,70,4

71 x1,71,3, x2,71,3, x3,71,3, x4,71,3, x5,71,3 x1,71,3, x2,71,3, x3,71,3, x4,71,3, x5,71,3 x1,71,3, x2,71,3, x3,71,3, x4,71,3, x5,71,3

72 x1,72,5, x2,72,5, x3,72,5, x4,72,5, x5,72,5 x1,72,5, x2,72,5, x3,72,5, x4,72,5, x5,72,5 x1,72,5, x2,72,5, x3,72,5, x4,72,5, x5,72,5

73 x1,73,2, x2,73,4, x3,73,4, x4,73,4, x5,73,2 x1,73,2, x2,73,4, x3,73,4, x4,73,4, x5,73,2 x1,73,2, x2,73,4, x3,73,4, x4,73,4, x5,73,2

74 x1,74,4, x2,74,1, x3,74,1, x4,74,1, x5,74,4 x1,74,4, x2,74,1, x3,74,1, x4,74,1, x5,74,4 x1,74,4, x2,74,1, x3,74,1, x4,74,1, x5,74,4

75 x1,75,3, x2,75,3, x3,75,3, x4,75,3, x5,75,3 x1,75,3, x2,75,3, x3,75,3, x4,75,3, x5,75,3 x1,75,3, x2,75,3, x3,75,3, x4,75,3, x5,75,3

76 x1,76,1, x2,76,1, x3,76,1, x4,76,1, x5,76,1 x1,76,2, x2,76,1, x3,76,1, x4,76,1, x5,76,1 x1,76,2, x2,76,1, x3,76,1, x4,76,1, x5,76,1

77 x1,77,3, x2,77,2, x3,77,3, x4,77,2, x5,77,3 x1,77,2, x2,77,2, x3,77,3, x4,77,2, x5,77,3 x1,77,2, x2,77,2, x3,77,3, x4,77,3, x5,77,3

78 x1,78,3, x2,78,3, x3,78,3, x4,78,3, x5,78,3 x1,78,3, x2,78,3, x3,78,3, x4,78,3, x5,78,3 x1,78,3, x2,78,3, x3,78,3, x4,78,3, x5,78,3

79 x1,79,3, x2,79,3, x3,79,3, x4,79,3, x5,79,3 x1,79,3, x2,79,3, x3,79,3, x4,79,3, x5,79,3 x1,79,3, x2,79,3, x3,79,3, x4,79,3, x5,79,3

80 x1,80,5, x2,80,5, x3,80,5, x4,80,5, x5,80,5 x1,80,5, x2,80,5, x3,80,5, x4,80,5, x5,80,5 x1,80,5, x2,80,5, x3,80,5, x4,80,5, x5,80,5
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