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Abstract: This Special Issue covers some of the most relevant topics related to road vehicle
surroundings supervision, providing an overview of technologies and algorithms that are currently
under research and deployment. This supervision is essential for the new applications in current
vehicles oriented to connected and autonomous driving. The first part deals with specific technologies
or solutions, including onboard sensors, communications, driver supervision, and traffic analysis,
and the second one presents applications or architectures for autonomous vehicles (or parts of them).

Keywords: vehicle surroundings supervision; vehicle surroundings reconstruction vehicle positioning;
autonomous driving; connected vehicles; sensors; communications

1. Introduction

New assistance systems, cooperative services and autonomous driving of road vehicles imply
an accurate knowledge of vehicle surroundings. This knowledge can come from different sources,
such as onboard sensors, sensors in the infrastructure, and communications.

Among onboard sensors, short- and long-range sensors can be distinguished. In the first case,
ultrasonic, infrared, and capacitive sensors can be cited. Among the second group, laser scanners and
computer vision technologies appear to provide the best performance, although there are many others
that can complement the information using data fusion processes. In any case, the goal is to have
a representation of vehicle surroundings that is as complete as possible. Sensor fusion algorithms are
a common solution to overcome the sensors’ individual limitations.

Vehicle positioning is also essential. For this purpose, satellite positioning is commonly
used, but when it is not sufficiently reliable or the signal is lost, the same technologies as those
used for the recognition of the surroundings can provide an acceptable solution. In this regard,
the SLAM (Simultaneous Localization and Mapping) problem should be noted, which tries to
build or update the map of an environment that is not known a priori, and position the vehicle
on that map simultaneously. This technique, widely used and proven in robotics, has also been
implemented in the vehicular field for the perception of the environment in real time, for support and
accuracy improvements in autonomous global navigation satellite systems (GNSS) navigation, and for
generation of digital maps or calculation of trajectories followed when no GPS (Global Positioning
System) signal is received.

Vehicle-to-vehicle (V2V) communications and vehicle-to-infrastructure (V2I) communications
allow the vehicle to have greater knowledge of surroundings and to obtain information that is far
away from the onboard sensors. These communications provide additional data that could be used
for driver information purposes or for decision modules in autonomous driving, for example. In this
sense, connected and cooperative driving appears as a catalyst of autonomous driving, because it
enables real deployment under complex driving situations.

Appl. Sci. 2018, 8, 1125; doi:10.3390/app8071125 www.mdpi.com/journal/applsci1
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2. The Present Issue

This Special Issue consists of 11 papers covering some of the most relevant topics related to road
vehicle surroundings supervision, providing an overview of technologies and algorithms that are
currently under research and deployment.

These papers could be divided in two main groups. The first deals with specific technologies or
solutions [1–7] and the second presents applications or architectures for complete autonomous vehicles
(or parts of them) [8–11]. Furthermore, the first group presents a quite wide vision of research fields
that could be involved such as onboard sensors [1–3], communications [4], driver supervision [5],
and traffic analysis [6,7].

Onboard perception systems provide knowledge of the surroundings of the vehicle, and some
algorithms have been proposed to detect road boundaries and lane lines. This information could be
used to locate the vehicle in the lane. However, most proposed algorithms are quite partial and do not
take advantage of a complete knowledge of the road section. An integrated approach to the two tasks
is proposed in [1] that provides a higher level of robustness of results for road boundary detection
and lane line detection. Furthermore, the algorithm is not restricted to certain scenarios such as
the detection of curbs; it could be also used in off-road tracks.

The next paper [2] also considers that global navigation satellite systems (GNSS), to achieve
the necessary performance, must be combined with other technologies into a common onboard sensor
set that allows the cost to be kept low and which features the GNSS unit, odometry, and inertial sensors.
However, odometers do not behave properly when friction conditions make the tires slide. The authors
introduce a hybridization approach that takes into consideration the sliding situations by means of
a multiple model particle filter (MMPF). Tests with real datasets show the goodness of the proposal.

Considering that monitoring systems for intelligent vehicles that employ remote sensors, such as
cameras and radar, require the tracking of moving objects, adaptive tracking techniques are commonly used
for this purpose. To this end, a gain design strategy to compose an optimal α-β-η-θ filter is proposed [3].

Vehicular communications, both between separate vehicles and between vehicles and infrastructure
can be seen as an extension of the knowledge a vehicle can obtain from the surroundings. VANETs
(Vehicular Ad-hoc Networks) are an emerging offshoot of MANETs (Mobile Ad-hoc Networks) with
highly mobile nodes. They are envisioned to play a vital role in providing safety communications
and commercial applications to the on-road public. Establishing an optimal route for vehicles to send
packets to their respective destinations in VANETs is challenging because of the quick speed of vehicles,
dynamic nature of the network, and intermittent connectivity among nodes. A novel position-based
routing technique called Dynamic Multiple Junction Selection based Routing (DMJSR) is proposed for
the city environment [4].

Even in intelligent vehicles and sometimes for the design of assistance systems, driver’s intention
classification and identification is identified as the key technology. To study driver’s steering intention
under different typical operating conditions, five driving school coaches of different ages and genders
were selected as the test drivers for a real vehicle test [5].

Furthermore, the knowledge of traffic flow and its modelling is relevant information that could
be taken into account for decision-making in many intelligent systems. A localized space–time
autoregressive (LSTAR) model is proposed and a new parameter estimation method is formulated
based on the Localized Space–Time ARIMA -autoregressive integrated moving average- (LSTARIMA)
model to reduce computational complexity for real-time traffic prediction purposes [6]. A roundabout
traffic model based on cellular automata for computer simulation that takes into account various sizes
of roundabouts, as well as various types and maximum speeds of vehicles, is presented [7].

The four remaining papers that are included deal with autonomous vehicles. An adaptive
global fast sliding mode control (AGFSMC) for Steer-by-wire system vehicles with unknown steering
parameters is proposed [8]. Due to the robust nature of the proposed scheme, it can not only handle
the tire–road variation, but also intelligently adapts to the different driving conditions and ensures
that the tracking error and the sliding surface converge asymptotically to zero in a finite time.
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A Driving Decision-making Mechanism (DDM) is formulated [9] in order to take into account
the road conditions and their coupled effects on driving decisions. The results demonstrate the significant
improvement in the performance of DDM with added road conditions. They also show that road
conditions have the greatest influence on driving decisions at low traffic density. Among them, the most
influential is road visibility, followed by adhesion coefficient, road curvature, and road slope; at high
traffic density, they have almost no influence on driving decisions.

Finally, two papers include autonomous vehicle architectures. An open and modular architecture
is proposed [10], capable of easily integrating a wide variety of sensors and actuators which can be
used for testing algorithms and control strategies and including a reliable and complete navigation
application for a commercial vehicle.

The last experimental platform [11] consists of a platform for research on the automatic control of
an articulated bus, and the paper also focuses on the development of a human–machine interface to
ease progress in control system evaluation.
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Abstract: Road vehicle lateral positioning is a key aspect of many assistance applications and
autonomous driving. However, conventional GNSS-based positioning systems and fusion with
inertial systems are not able to achieve these levels of accuracy under real traffic conditions.
Onboard perception systems provide knowledge of the surroundings of the vehicle, and some
algorithms have been proposed to detect road boundaries and lane lines. This information could
be used to locate the vehicle in the lane. However, most proposed algorithms are quite partial
and do not take advantage of a complete knowledge of the road section. This paper proposes an
integrated approach to the two tasks that provides a higher level of robustness of results: road
boundaries detection and lane lines detection. Furthermore, the algorithm is not restricted to certain
scenarios such as the detection of curbs; it could be also used in off-road tracks. The functions have
been tested in real environments and their capabilities for autonomous driving have been verified.
The algorithm is ready to be merged with digital map information; this development would improve
results accuracy.

Keywords: positioning; road boundary; curb; lane line; laser scanner; algorithm; accuracy

1. Introduction

New driver assistance systems (ADAS) require a more precise and detailed knowledge of the
vehicle environment and its positioning [1]. These requirements are even greater when autonomous
driving functions are introduced where, in many cases, knowledge of “where in the lane” is required [2].
However, conventional GNSS (Global Navigation Satellite System)-based positioning systems are not
able to achieve these levels of accuracy under real traffic conditions, even when receivers that accept
DGPS (Differential Global Positioning Systems) are available, since centimeter accuracy levels cannot
be guaranteed along a whole route [3], much less so, in urban areas [4].

A solution that has been used for many years is the fusion of GNSS information with inertial
systems (e.g., [5,6]). These inertial sensors have the disadvantage of drift along time, that causes a
cumulative error that makes its use unviable over very large distances unless corrections are introduced
by means of another positioning source. However, in areas where GNSS signal loss or deterioration
is short, this fusion provides adequate results.

However, problems reappear in situations when the GNSS signal is zero, or bad over
long distances, such as in tunnels or in urban areas of narrow streets. In such cases, even navigation
systems that do not require high levels of precision do not work reliably [7]. Particularly critical
examples are deviations inside tunnels.

Another solution for positioning that has been explored is the use of smartphones [8–10]. However,
accuracy is far below what is required for many assistance systems, and autonomous driving and
coverage problems could be common in certain scenarios.

Appl. Sci. 2018, 8, 724; doi:10.3390/app8050724 www.mdpi.com/journal/applsci4
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The incorporation of sensors in vehicles for the perception of the environment for safety
functions and autonomous driving (such as LiDAR—e.g., [11–13], computer vision—e.g., [14,15],
radar—e.g., [16], or sensor fusion of some of them—e.g., [17,18]) has opened another field to improve
positioning. Thus, different methods of visual odometry and SLAM (Simultaneous Localization and
Mapping), based on computer vision and laser scanners, have emerged in recent years (e.g., [19–22]).

In this way, the sensors used for obstacle detection are also used as primary or secondary
sensors for positioning and road mapping [23,24]. Thus, lane keeping systems are based, generally,
on computer vision systems, and base their correct operation on the perception of the lines that
delimit the lanes. However, the detection of lane lines presents deficiencies in complex scenarios with
dense traffic, where other vehicles cover these marks, or due to the limitations of the sensors themselves,
such as the malfunctioning under lighting changes in the case of computer vision [25], or for errors
in the detection of badly maintained lines, areas with complex patterns on the road (merging lanes,
exits, intersections, change in the number of lanes, or confusion with areas on the roadway due to
maintenance operations). In addition, visual odometry methods also introduce cumulative errors in
the calculation of trajectories, and SLAM algorithms require significant computational calculations
when high precisions are required [26].

In this paper, a 3D laser scanner is used for transversal road characteristics detection,
taking advantage of the use of this equipment for other purposes such as safety critical assistance
systems or for autonomous driving. In this sense, there are solutions that seek to partially solve
this problem. Such is the case of [27,28], that proposes a method for the detection of the curvature
of the road with a 3D laser scanner, and introduces the use of the robust regression method—named
least trimmed squares—to deal with occluding scenes. The curb detector is also used as an input
to a Monte Carlo localization algorithm, which is capable of estimating the position of the vehicle
without an accurate GPS sensor. Also, in [29] an approach for laser-based curb detection is presented.
Other approaches to achieving higher levels of robustness in the detection of road lines are raised in [30].
Similarly, with similar equipment, [31] proposes algorithms for the detection of road boundaries.

The authors of [32] propose a system that is based on a formulation of stereo with homography as
a maximum a posteriori (MAP) problem in a Markov random field (MRF). This solution, that uses
computer vision, provides quite robust results even in complex scenarios. In [33], the free road surface
ahead of the ego-vehicle using an onboard camera is detected. The main contribution is the use of a
shadow-invariant feature space combined with a model-based classifier. The model is built online to
improve the adaptability of the algorithm to the current lighting, and to the presence of other vehicles
in the scene.

In other cases, the fusion of laser scanners and computer vision is used, as in [34], where the
algorithm is based on clouds of 3D points and is evaluated using a 3D information from a pair of
stereo cameras, and also from the laser scanner. To obtain a dense point cloud, the scanner cloud has
been increased using Iterative Closest Point (ICP) with the previous scans.

Algorithms proposed in this paper are oriented for the positioning of the vehicle in the road
with centimetric precision, even when the signals obtained from GNSS or inertial systems are
not appropriate. The solution is based on the use of 3D laser scanner, and the algorithms pursue the
detection of the boundaries of the road and the lanes, identifying the lane through which it circulates,
and the lateral position (and, therefore, the identification of lane change maneuvers).

Unlike previous approaches, the algorithm proposed in this paper tries to increase the robustness
of the results with a low computational cost (much faster than real time), using only laser scanner data
and a digital map when available, even in complex scenarios, and to go through the detection of road
boundaries and, subsequently, the detection of lanes in an integrated way, taking advantage of both
results to increase global reliability and to improve partial approaches. The algorithm also accept the
input of digital map information in order to improve results, but this additional information is not
strictly necessary. Furthermore, the algorithms should work under different scenarios, rural and urban,
considering that the road boundaries and the configurations of the lane lines could vary.
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2. Algorithm

In order to locate the vehicle laterally on the road it is necessary firstly to know the transversal
characteristics of the road. To do this, the algorithm shown in Figure 1 is proposed. The algorithm
begins by obtaining the raw data from the laser scanner. From that set of points, the function of road
boundaries detection that offers as output the width of the roadway is implemented. Two methods are
considered in parallel. The same set of points serves as input data for the lane lines detection function,
where the lane through which the ego-vehicle moves is distinguished from the rest, since it is expected
that a greater density of points will be available for fitting. This second function offers lane widths
as output. We proceed to evaluating whether the width obtained for each lane is included in a
preset range, with which the shoulder can be differentiated from the other lanes, as well as checking if
a line has been lost due to the lack of points of it; this implies the generation of a new estimated line
between those already calculated. In the cases of both the lanes and the road boundaries calculation,
when the functions do not offer satisfactory results, the information of the previous scan is used.
Finally, the possibility of having a digital map is contemplated, which can be used to corroborate the
number of lanes obtained (and use this feedback for the selection in the lane identification function)
and classify them, distinguishing the lanes of the main roadway from the additional lanes as the
merging or exit ones.

In the following subsections, the main functions of lane detection are described in detail.
Finally, after the road characteristics extraction process, it is simple to determine the lane through

which the vehicle moves, its lateral position in, and if it should perform a lane change maneuvers.

2.1. Road Boundaries Detection Functions

The determination of the limits of the road is of interest for two main reasons. On the one hand,
this calculation allows delimiting the area of interest for subsequent operations, such as the detection of
obstacles [35], for example. On the other hand, in some roads, especially in urban areas, external lanes
are not delimited by lines on one side, but their boundary is the curb that separates the road from
the sidewalk.

Initially, two methods are proposed that make use of the geometric characteristics that suppose
the end of the roadway.

� Method I: Study of the variations in the detection of each layer of the laser scanner.

The intersection of each layer of the laser scanner with the plane of the road causes a roughly
circular or elliptical section, depending on the relative inclinations, and may become other conics such
as hyperbolas or parabolas, although these special cases are not relevant for this paper. The presence
of the sidewalk at a height which is greater than the roadway involves cuts at different heights, so that,
at the position of the curb, gradients occur at the Y (lateral) and Z (vertical) coordinates, which are
significantly greater than those detected on the roadway (Figure 2).

In this way, laser scanner spots are studied in both dimensions, and the points where both
gradient levels are higher than preset thresholds are detected. These thresholds have been adjusted
using practical data from several scenarios, firstly using ideally simulated environments with typical
dimensions, and then with practical data. Subsequently, the DBSCAN clustering function is applied in
order to group all the points belonging to the curb and eliminate potential false detections, for example,
because of vertical elements in the vicinity of the road. This process provides a set of points that
distinguish the roadway from the surroundings because of the abrupt changes detected in curves
detected by each layer of the laser scanner.

6
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Figure 1. Flowchart for the extraction of the transversal characteristics of the road.

Figure 2. Illustration for Method I for the detection of roadway boundaries.

7
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Then, in order to eliminate other false points that do not belong to the road, we proceed to adjust
the points set to a plane using the M-estimator algorithm SAmple Consensus (MSAC), a variant of the
RANdom algorithm SAmple Consensus (RAMSAC).

� Method II: Study of the separation between intersecting sections of consecutive laser
scanner layers

This method is based on [27]. Considering the intersections of the layers of the laser scanner with
the ground surface, the radius of the circumferences (assuming perpendicularity between the vertical
axis of the laser scanner and the ground) depends on the height, so considering that the roadway is
not in the same vertical dimension as the adjacent zones, a gradient in the radius of said intersection
curves can be expected. It should be noted that both methods are based on the same concept (heights
differences), but they provide quite different results, as practical tests demonstrate.

Figure 3 shows an example of the pavement-sidewalk transition and how the radius difference Δri

of the detection circles between two consecutive layers varies. Although the curb could be identified
as the zones of greater gradients, it has been shown that there are several cases where this solution
induces errors in the detection of them, because of the presence of other obstacles near the curbs or the
path boundaries; this fact inhibits the identification of those boundaries (there are multiple candidates).
The solution proposed in the method is to try to identify areas with constant radius differences within
a predefined tolerance, which allows determining the roadway area.

Figure 3. Example of evolution of radius difference between 2 consecutive laser scanner layers in the
roadway-sidewalk transition.

Since it is possible to accept points on the road that do not correspond to it, two additional filters
are applied on the set of points detected: a height filter with which the points of each layer that differ
significantly from the average height of the rest are discarded from points identified as roadway
(potentially), and DBSCAN clustering algorithm.

2.2. Lane Lines Detection Function

From this first detection of the roadway, we proceed to the determination of the number of
lanes, the lane through which the vehicle moves, and the lateral position of the vehicle in the lane.
This function can be divided into the following steps:

Step 1: On the area definition belonging to the roadway, it is possible to fit mathematical curves
at each of the intersections of the layers of the laser scanner with the ground. The intersections of
laser scanner layers and the ground form conics (in general, ellipses, parabolas and hyperbolas).
Considering the common positioning of the scanner on vehicles, the intersection uses ellipses, so a
least-square fitting method is applied to obtain the conical parameters. The points that fall away from
this curve cannot be considered to belong to the roadway, but to obstacles on it, which allows them to
be removed from the points set (Figure 4).

8
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Figure 4. Example of curve fitting to points of intersection of the layers of the laser scanner and the
ground. (a) Total set of points (yellow); (b) Filtered points (red).

Step 2: Then, on the filtered point set, those points that show a greater reflectivity are extracted,
having checked experimentally the remarkable contrast in this variable between the asphalt and the
lines that delimit the lanes.

Step 3: On these points, geometric considerations are applied in order to eliminate false signals
due to irregularities on the asphalt with high reflectivity that do not correspond to the road markings
of lane delimitation. In this way, it is considered that, for the same layer, the dispersion of valid
contiguous points must be small in the longitudinal direction, and large in transverse, if they are
detected in front or behind the vehicle, and vice versa if they are located on the sides, due to the shape
of the intersection curve of the layer with the ground. Figure 5 shows the output of steps 2 and 3 on
a scanner frame. In most cases, a filtering process for this last step is not necessary because step 1
provides quite a good set of selected points, so few false points are considered after Step 2.

Step 4: The points clustering belonging to the same lane delimitation is done using knowledge
of the relative orientation of the road with the vehicle (extracted from the previous function of
road boundaries detection), and regions of interest are established around each set of points that,
by proximity criteria, are considered to correspond to the same line. These regions of interest maintain
the longitudinal direction of the points set, and extend a distance such that, considering the regulations
about horizontal road markings, they must intersect if they correspond to the same line (Figure 6a).

Step 5: When points that may belong to the delimitation of lanes are detected but there is not
enough data to establish the orientation of the area of interest, we proceed to generating new areas
with the average orientation of those areas in which the density of nearby points allowed for the
calculation (green areas in Figure 6b). It must be taken into account that, with the knowledge of the
expected lane width, it is possible to determine if those isolated points can be part of a lane line or not.
Additionally, the lane where the ego-vehicle is usually provides more information, although this is not
necessarily true, due to possible occlusions of obstacles on the roadway.
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Figure 5. Definition of points belonging to lane lines.

Figure 6. Definition of regions of interest for grouping line sections. (a) Case of having enough
information of each line section (areas marked in red); (b) Case of not having enough information on
each of the sections (areas amrked in green).

Step 6: Then, we proceed to adjust the sets of points corresponding to lane delimitation lines.
To do this, we proceed to a fitting process using quadratic polynomials, since they are considered to
approximate reality [30]. Additionally, conditions of parallelism between the lines are considered,
so equality conditions are imposed on linear and quadratic terms of the polynomials, as shown in
Equation (1) for the curve equation representing lane line i (only coefficient ai varies from one line
to another, but b and c are equal for all of them).

pi(x) = ai + bx + cx2 (1)

The least-squares fitting method is applied to obtain the N + 2 different coefficients, where N is
the number of lanes lines. Equation (2) shows the calculation of the quadratic error committed in the
curve fitting of lane line i, considering that Ni points have been selected in previous Steps for this line
and their coordinates are (xij, yij) with j ranging from 1 to Ni.
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Ei =
Ni

∑
j=1

(a1 + bxij + cx2
iji − yij)

2
(2)

Finally, the total error is calculated. It has been verified that the introduction of weighting factors
that give greater relevance to the curves with a greater number of points increases the robustness of
the overall adjustment. In particular, these coefficients are considered equal to the number of points
detected for each line, so the equation that should be minimized is written as follows, considering that
N lines have been distinguished:

ET =
N

∑
i=1

Ni Ei (3)

Minimization of Equation (3) provides values of polynomials coefficients ai, b and c.

3. Results

In order to evaluate the results of the developed algorithm, road tests have been conducted in
highway and urban areas. In them, a 16-layer Velodyne VLP-16 laser scanner was installed on top of
a passenger car. Additionally, the trajectory was recorded by means of a Trimble R4 DGPS receiver,
and the scenario was captured by a camera.

Firstly, the accuracy and robustness of the specific functions is assessed without the information
from previous scans and information from digital map. Afterwards, the complete algorithm is
considered to analyze whether misdetections of isolated functions could be solved in the proposed
iterative loops.

In the first place, the differences of both methods for roadway delimitation are analyzed.
Figure 7 shows an example of the use of the second method. Table 1 shows the comparison of
the detection of curbs.

Detections at distances less or greater than 10 m are distinguished. This fact is relevant since the
first layers acquired with the laser scanner provide a higher resolution and the first method presented
above is especially sensitive to this fact. In this case, only in 28% of the frames is it possible to detect
the curb more than 10 m in advance. In 67%, the detection is performed correctly, but at distances of
less than 10 m, which greatly limits its applicability since the anticipation for any action or automatic
control is very small. On the contrary, method II improves these results in a significant way, reaching a
reliability index in the detection with a range greater than 10 m of 94% of the frames.

It should be noted that the first method is based on information from each laser layer, so the
results are quite sensitive to any deviations that could appear in one layer. Other obstacles near the
boundaries could lead to incorrect detections because they could be considered as the road boundaries
following the method criteria. The second method relies on the information of two consecutive layers,
so the impact of obstacles is reduced if it is only detected by one of the layers.

These results are obtained in real scenarios with traffic around the vehicle which causes occlusions
of the curbs. Despite this, the degree of robustness detected for Method II is very high, and there
are not a significant number of consecutive frames with erroneous detection, which would be quite
limiting for autonomous driving applications. Furthermore, results take into account neither the
information from previous scans nor a digital map.

Table 1. Comparison of roadway detection methods (analysis over 875 frames).

Method I Method II

Correct detection with a range greater than 10 m 28% 94%
Correct detection with a range lower than 10 m 67% 2%

Incorrect detection 5% 4%
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Figure 7. Roadway detection using Method II. (a) Scenario; (b) Tridimensional detection of the
laser scanner; (c) Function results (points belonging to the passable path inside the region of interest
marked in green).

Additionally, it should be noted that the roadway detection function (Method II) has also been
tested in off-road areas in order to differentiate passable areas from those that may not be. With a
small computational cost, it is observed that satisfactory results are obtained, as can be seen in Figure 8,
where the two possible paths are seen as passable, and they differ from the rest of the paths defined
as non-passable.

Figure 8. Detection of passable areas in an off-road environment. (a) Scenario; (b) Three-dimensional
detection of the laser scanner; (c) Function results (points belonging to the passable path inside the
region of interest marked in green).

Subsequently, the reliability of the function for determining the number of lanes has been checked.
In this sense, it is necessary to distinguish the cases in which there are no singularities, such as
merging lanes, exits or changes in the number of lanes, with scenarios in which one of those situations
does occur. Table 2 shows the reliability of the function described in Section 3 in both scenarios. As
can be seen, in areas without singularities, robustness is quite high even when the information from
previous scan is not used (78% correct), while it is reduced in the case of road sections with singularities.
Note that 47% accuracy is guaranteed, although this value is considered a lower threshold since it does

12



Appl. Sci. 2018, 8, 724

not include those special cases where, for example, an additional lane appears as a merging or exit lane.
In these cases, in the absence of a reference of a digital map, the function is not able to differentiate
them from the lanes of the main roadway, so a conservative approach has been chosen not to include
them in the correct detections, since they require additional information.

Table 2. Reliability in lanes detection.

Scenario without Singularities
(200 Frames)

Scenario with Singularities (700
Frames)

Correct detection 78% >47% *
Calculation not performed 8% 18%

Incorrect detection 14% <35% *

* Every case that involves a merging or exit lane detection is not considered as correct, because it is not possible to
determine its nature, and it could be confused as an additional lane.

In this case, as in the case of the road boundaries detection, there are not many consecutive frames
with incorrect detection, and these are mainly due to the occlusion of the lane lines by other vehicles.
Furthermore, it should be noted that the reason for many incorrect detections or non-performed
calculations is the presence of obstacles. But, as these perturbations do not remain for long periods
of time, estimations of road boundaries and lane lines could be done using previous information.

The study of the most frequent situations of erroneous or unrealized calculations shows the
following conclusions:

� The shoulder can be identified as an additional lane, but has no influence on the detection of the
other lanes after detection of the roadway boundaries in the first phase of the function (Figure 9a)

� Due to the presence of obstacles on the road (mainly, other vehicles), occlusions of the lane lines
occur and, in extreme cases, complete information is lost relative to any of the lines (Figure 9b,c).

� In this case, the loss of information in the lane through which the vehicle moves is more
critical, since the initial estimates of the function are based on it.

� The loss of information from the farthest lanes is less relevant, and causes errors in lane
counting but not in the position of the vehicle on the road.

� The loss of information from an intermediate lane is usually solved approximately by the
function when estimating standard lane widths in the absence of information.

� The presence of additional lanes can be reliably detected, but, in the absence of other information,
they are not distinguished with respect to the main lanes of the roadway, as indicated
above (Figure 9d)

In the two final cases, it should be noted that the identification of the boundaries of the roadway
allows us to obtain approximate estimates of the information of the undetected lanes.

Finally, it should be noted that previous results from both functions show only their performance
in an isolated mode; interactions between them or use of previous scans as Figure 1 states have not
been considered in results of Tables 1 and 2. Even in such circumstances, the road characteristics
extraction partial functions provide quite accurate results in many cases. When using the information of
previous scans, transversal road characteristics estimation is possible throughout the test. Furthermore,
when using the information from a digital map, the lane lines and the number of lanes have been always
properly identified. It should be noted that this number, and the lane widths, are parameters that imply
interactions in the algorithm; however, some incorrect estimations could lead to convergence problems.
These problems have not arisen, and this fact could be taken as a complete success rate (100%) in the
tests performed in on-road scenarios.
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Figure 9. Examples of situations of erroneous or uncertain detections. (a) Road shoulder detection;
(b) Occlusions; (c) Loss of information of any of the lane lines; (d) Merging lane detection.

4. Conclusions

In this paper, an algorithm has been presented that is able to characterize the transversal road
section using 3D laser scanner, so that the boundaries of the road and the lines of separation of the
lanes are identified, positioning the vehicle laterally in it, performing these functions in a coordinated
manner to increase the reliability of the results. This positioning improves the accuracy that could
be obtained with conventional means of GNSS or inertial systems when the loss or deterioration of
satellite positioning extends over long stretches.

The tests carried out in real scenarios show the reliability of the detection of the road
boundaries and the difficulties in estimating the number of lanes, especially in sections of the road
where singularities, such as merging lanes, exits, crossings, etc. occur. In such situations, the reliability
of the function falls notably, although it is estimated that final rates of correct detection could increase
significantly with knowledge of the environment, for example, through the information of a digital map;
therefore, the algorithms should contrast the information captured by the laser scanner with known
information, instead of estimating information without any reference. However, results only show the
operating mode without that external help of a digital map.

Additionally, the detected errors—although they are abundant in complex scenarios—do not
appear in a continuous way, so reliable detections are mixed with other erroneous ones, but the first
ones allow establishing a reference in positioning.

It should be noted that the proper functioning of the boundaries detection function in off road
scenarios shows its robustness and versatility, which behaves satisfactorily in an environment for
which it was initially not foreseen, since its calibration is oriented towards the transition between
road and sidewalk. This function also correctly identifies the boundaries of the roadway with or
without curbs, so it is not limited to the case of urban areas with these elements.

Despite the accurate results, the proposed approach could only be used for positioning in a
practical way (from an economic point of view, and considering current state-of-the-art technology
and costs) if the sensor is used for other purposes. This fact is not really a limitation when dealing with
autonomous driving applications, because of the common current use of LiDAR technology, but this
fact is not strictly the same when dealing with only assistance systems.
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Finally, integration of computer vision could be used to enhance the extracted information,
because of the capacity of managing other kinds of image properties (such as colors, contrast, etc.),
and limitations of this technology could be mitigated by sensor fusion with the current laser scanners.
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Abstract: Continuous accurate positioning is a key element for the deployment of many advanced
driver assistance systems (ADAS) and autonomous vehicle navigation. To achieve the necessary
performance, global navigation satellite systems (GNSS) must be combined with other technologies.
A common onboard sensor-set that allows keeping the cost low, features the GNSS unit, odometry,
and inertial sensors, such as a gyro. Odometry and inertial sensors compensate for GNSS flaws in
many situations and, in normal conditions, their errors can be easily characterized, thus making
the whole solution not only more accurate but also with more integrity. However, odometers do
not behave properly when friction conditions make the tires slide. If not properly considered,
the positioning perception will not be sound. This article introduces a hybridization approach that
takes into consideration the sliding situations by means of a multiple model particle filter (MMPF).
Tests with real datasets show the goodness of the proposal.

Keywords: positioning; navigation; data fusion; odometry; particle filter; multiple-model filter

1. Introduction

Today’s most outstanding technology for road vehicle positioning is global navigation satellite
systems (GNSS). Among all GNSS, the US GPS (global positioning system) is the most popular.
GNSS systems provide absolute positioning based on the information gathered at the GNSS receiver
from the GNSS satellite constellation. Because of this, GNSS is subject to relevant problems such as
lack of satellite visibility, multipath problems due to the reflection of the satellite signals on surfaces
around the receiver’s antenna, jamming, or spoofing [1]. For this reason, it is recommended that the
positioning system features some other sensors that, together with the GNSS, provide an overall better
performance. The most common configuration is the GNSS, plus the odometry of the vehicle and
inertial sensors for attitude determination (a gyro). The values of travelled distance and the heading
provided by the odometry and the gyro respectively, work together to provide a dead reckoning (DR)
position that supports the GNSS in case of no coverage, and add redundant values to improve the
reliability of the whole system [2]. The extra cost of this sensor set is relatively low, as vehicles have
already embedded odometry and gyroscopes.

The main concept of DR is that the estimation of the vehicle position is based on the previous one,
as spatial increments are calculated from the sensor values. Consequently, the necessary integration
process leads to drifts when no absolute updates are obtained. Odometry errors may be due to
mechanical or electrical (quantization) issues; tire wear, which changes the wheel diameter over time;
and slippages and slides. Among these, the latter is the one that accounts for larger errors in the
provision of instant positioning. However, GNSS/DR fusion algorithms do not usually account for
slide errors. Therefore, when it happens, the solution is not only more inaccurate, but also inconsistent,
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since the errors considered by the algorithm are underestimated. This may lead to the malfunction
of applications that are based on the confidence of the position solution. For instance, in lane-level
applications, the confidence on the system on being on a specific lane at a given instant is crucial:
the knowledge of the goodness of the position is as important as the position itself to decide whether a
certain action must be taken. This is the concept of position integrity [3].

This article presents a multiple-model particle filter (MMPF) based solution that features two
different models running in parallel, one that accounts for slides errors, and another one that does not,
choosing at any time which model represents better the vehicle behavior. The simple concept behind
this approach lays on the fact that particles will follow different behaviors depending on their assumed
model and probability density function, and only those that are a better match with the vehicle motion
will remain strong (with relevant weights), serving as the germ for new offspring particles.

The rest of the paper is organized as follows. Section 2 analyzes the most relevant related works.
Later, the model for the slide error is introduced in Section 3. Sections 4 and 5 present the formulations
of both the MMPF implementation and the consistency checks, respectively. Section 6 shows and
discusses the results. Finally, Section 7 concludes the paper.

2. Related Work Materials and Methods

The literature of the field has a good number of articles featuring GNSS/DR solutions [2,4–8].
Despite the fact that some other technologies may be used to support the estimates along the longitudinal
axis of the vehicle, such as accelerometers [4], the use of the odometry is the most widely spread
approach [1]. With respect to the estimates of the heading, some authors employ electronic compasses,
but many others discard them for lack of consistency and poor performance [9]. To compensate for
the errors in the estimates of travelled distance, some authors use visual odometry, like in [10,11].
An interesting approach based on stereo vision for navigation in natural environments can be found
in [12]. The robotics community is also quite active in this field, like the work presented in [13] based
on cellular automata.

Regarding positioning filters, the most popular solution for fusing GNSS and DR is the
extended Kalman filter (EKF), which is a variation of the Kalman filter for non-linear systems [14].
Its success is based on the relative good performance at a low computational cost and simplicity [14].
However, the nature of the vehicle motion is clearly non-linear, and in these cases, some other
approaches provide better performances [15]. In these conditions, particle filters (PF), as genetic-type
Monte Carlo (MC) methods, use weighted samples to generate approximations of the probability
density function. This flexibility (when compared to Kalman), serves well to solve the positioning
filtering problem [16,17].

On another note, multiple model (MM) filters have been used with success before by the first
author of this article in the problem of positioning error estimation. In [13,18], different interactive
multiple model versions of the extended Kalman filter (IMM-EKF) showed good performance for
either improving the positioning solution, or maneuver prediction, respectively.

Multiple model particle filters have been applied in the field of tracking of ground, 3D targets
and [19–23]. However, there are not many articles with MMPF applied to road vehicle position.
The authors of [24] used it for detection and estimation of multipath effects on GPS measurements.

3. Error Model of the Odometry

As it has been aforementioned, odometry suffers from different kind of errors. The one introduced
by tire wear has a very low frequency and may be compensated by calibration of the step value. It may
be represented as a calibration error with the form ω(k)δr, where ω(k) is the angular rate of the wheels
at instant k and δr the difference between the real wheel radius, and the nominal value r.

Errors due to mechanical and electrical noises can be grouped together in a common term with
a Gaussian characteristic and zero mean, n(k)~N(0, σodo). We have tuned the value of σodo to 0.26 m,
corresponding with the odometry step in our vehicle setup.
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A wheel slide appears when the wheel rotates slower than the value calculated according to the
current vehicle speed. Wheel slip is the opposite case, when the wheels rotate faster than they would
do in normal friction conditions.

Although both effects may partially compensate one another in a long term, the estimation of
the vehicle pose at a given time suffers from slips and slides. In addition, slides appear more often
than slips in car navigation. This is the reason why we focus on slides in this paper. Nevertheless,
analogous considerations apply for slippages.

The characterization of the odometry error may be completed now to represent slides in the
sensor model

εslide
dt (k) = δslide(k) + ω(k)δr + n(k) (1)

where δslide(k) ≥ 0 stands for the sliding error, that may be also developed as

δslide(k) = (1 − scv)× c(k) (2)

being c(k)~N(0, σodo), and scv (slide compensation value) varying from 0 (maximum compensation) till
1 (minimum).

4. Multiple Model Particle Filter Based Method

The principle of the particle filter is to represent by means of a set of N samples {Xi(k)}N
{i=1} and

their corresponding weights {wi(k)}N
{i=1} the probability density function p(X(k)/Y{1:k}) at instant k of

the state vector X(k), given past observations, following the expression

p(X(k)/Y1:k) �
N

∑
i=1

Xi(k) · wi(k) (3)

where Y{1:k} stands for the observations collected from the initialization till instant k. Each sample Xi(k)
can be described as a Dirac delta expression δi(k)(X(k)) in the form

δi(k)(X(k)) = 0 i f X(k) �= Xi(k) (4)

δi(k)(X(k)) = 1 i f X(k) = Xi(k) (5)

The process of particle filtering can be summarized as follows:

• Initialization: Generation of N particles, or samples of the state vector, Xi(0), with equal
weights 1/N. The proposed state vector is [x(k) y(k) ψ(k)], representing east, north and heading
(from north to east) at the center of the rear axle of the vehicle.

• Prediction: Estimation of Xi(k + 1) following the prediction model. We use a classical 2D
kinematical model for a vehicle on a plane. The measurements of the odometry and the gyroscope
work as inputs to the filter. The travelled distance measured by the odometer, ds(k), is estimated
when a gyroscope value,

.
ψ(k), is processed. The equation for pose prediction is:

x(k + 1) = x(k) + ds(k) sin c(
.
ψ/2) cos (ψ(k) +

.
ψ(k)T/2)−

.
ψ(k)T(Dx sin ψ(k) + Dy cos ψ(k))

y(k + 1) = y(k) + ds(k) sin c(
.
ψ/2) sin(ψ(k) + ω(k)T/2)−

.
ψ(k)T(Dx cos ψ(k)− Dy sin ψ(k))

ψ(k + 1) = ψ(k) +
.
ψ(k)T

(6)

being T the sampling period, Dx, Dy the coordinate of the GPS antenna in the body frame, and
sinc the cardinal sinus.
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• Measurement update: Update of the weights of the particles with the observations Y(k). In our
case, the observation vector is [xGPS, yGPS], standing for east and north values coming from the
GPS. The update is done following the expression

wi(k) = wi(k − 1)× e{−0.5 (Y(k)−hXi(k))′R−1(Y(k)−hXi(k))} (7)

where h(Xi(k)) is the observation function that relates at instant k the state Xi(k) and observations
Y(k) (in our case, simply the second order identity matrix), and R the covariance matrix of observations.

• Normalization of the weights: wi(k) = wi(k)/ ∑N
i=1 wi(k).

• Resampling: To prevent high concentration of probability mass in only a few particles, (leading to
the convergence of a single wi(k) to 1), particles are resampled if

1

∑N
i=1 wi(k)2 < 0.5N (8)

• End of cycle: Making k = k + 1, and iterating to step 2.

In our approach, a fixed number of particles is assigned to the each model.
The addition of the weights of the particles of each model after the observation will indicate the

probability that each model m represents properly the vehicle behavior, μm(k). This probability is

μm(k) =
∑Nm

i w(k)m
i

∑Nm
i w(k)m

i + ∑Nm
i w(k) �=m

i

(9)

where w(k)i
m stands for the weight at instant k of the particle i that represents model m, Nm is the

number of particles of each model, that will be equal for all of them, and w(k) �=m
i stands for the weight

at instant k of a particle i that is not driven by model m.
Our solution is based on two different models, named the normal condition model (NCM) and the

slide condition model (SCM). Both models will actually share the state vector and prediction equation,
but will have different assumptions for the odometry model with and without slides, as described in (1).

Finally, the selected output will be such of the model with higher cumulative weight (more probable).
A weighted mixed output from both models, as the one used in [9], would be also possible, but it was
found unsuitable for the problem under consideration, as will be shown later in the tests.

5. Filter Consistency

As important as the filter itself, is the capability to evaluate whether or not it performs well.
In order to check the performance consistency of the filter under consideration, several methods have
been considered, detailed next. Later on the paper, in the sections dedicated to results, the goodness of
the proposal will be evaluated based on these methods.

5.1. Filter Covariance

The estimation of the covariance of the filter state at instant k is denoted as matrix Pm(k), where m
stands for the choice of odometry model. Its value can be used to compute the positioning reliability
and can be calculated by

Pm(k) = w(k)m
i ×

(
x(k)m

i − x(k)m)× (
x(k)m

i − x(k)m) (10)

where x(k)m is the weighted mean value at instant k of the N particles i that belong to model m,
calculated as

x(k)m = w(k)m
i × x(k)m

i i = 1 · · · N (11)
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For a quick check, one can plot ellipsis of reliability around a certain position estimate based on
its covariance and compare them to the errors to realize whether the errors envelopes are consistent.

5.2. Time Average Autocorrelation

The time average autocorrelation test is based on the ergodicity of the innovation sequence. If the
number of time samples, K, is enough, this statistic is normally distributed and its variance is 1

K .
Its calculation for innovations one step apart can be done using

ρ(1) =
K

∑
k=1

υ(k)′υ(k + 1)×
[

K

∑
k=1

υ(k)′υ(k)×
K

∑
k=1

υ(k + 1)′υ(k + 1)

] 1
2

(12)

where υ(k) stands for the innovation at instant k, that can be estimated as the difference between the
predicted position and the observation.

This test can be executed in real time, and therefore, in single-run trials [14].

5.3. Time Average Normalized Innovation Square

The value of NIS at instant k can be calculated as

εν(k) = ν(k)′ S(k)−1ν(k) (13)

being S(k) the innovation covariance matrix, that can be calculated with

S(k) = H Pi(k) H + R (14)

where R is the matrix of observation covariance, H is the matrix that relates the state vector space with
the observation vector space, being in our case

H =

[
1 0 0
0 1 0

]
(15)

and Pi(k) the estimated covariance of the particle filter at instant k, that can be obtained as

Pi(k) = w(k)i
j ×

(
x(k)i

j − x(k)i
)
×
(

x(k)i
j–x(k)i

)
(16)

where x(k)i is the weighted mean value at instant k of the N particles j that belong to model i, calculated as

x(k)i = w(k)i
j × x(k)i

j j = 1 . . . N (17)

The time-average normalized innovation squared can be calculated as

εν =
1
K

K

∑
k=1

εν(k) (18)

If the innovation is white, zero mean, and S(k) represents its covariance, then K εν follows a
χ2 distribution.

6. Tests

6.1. Test Setup

The sensor setup included:

• EGNOS capable GPS receiver by Trimble, L1.
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• Dual-frequency RTK receiver by Ashtech, for ground reference.
• FOG (Fiber Optic Gyroscope) by KVH.
• Vehicle odometer with 26.15 cm resolution coupled to the rear wheels axle.

6.2. Results and Discussion

For proving the validity of our proposal, we collected measurements of several acceleration and
deceleration conditions, more prone to sliding errors in the odometry along the longitudinal axis.
The main objective of the tests is to analyze the capability of the filter to represent the vehicle motion
at any time, for what we will use the filter consistency techniques introduced in previous sections.
Since both Kalman and particle filters using single models show very similar results, only the results
of the particle filter will be discussed.

Figure 1 shows the distribution of particles around the solution in an experiment where the
vehicle drives from north to south. Cyan particles are estimated by the SCM while green ones are
calculated by the NCM. Even though both solutions are within the possible confidence scenarios,
both of them are not the same good. While in the upper cloud, the GPS-EGNOS value matches better
the solution that assumes normal conditions, after the slide, the satellite solution fits better the filter
output that assumed slides.
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Figure 1. Cloud of particles during an experiment with a slide.

Figure 2 shows how model probabilities change at those instants, precisely during the slides.
The MMPF manages to identify the sliding situations, and switches to the SCM model, returning to
the NCM only when the slide has disappeared. For the same test, Table 1 provides the consistency
results for all model combinations by using the time average correlation. Low values represent better
consistency. For a properly tuned filter, the variance should be σ2 = 1

K . In our experiment, σ = 0.0083,
and the 95% probability region results (−0.01633, 0.01633). Both NCM and SCM fall out of this
threshold, only satisfied by the MMPF.

Table 1. Time average correlation results for NCMPF, SCMPF, and MMPF.

Model Value

NCMPF 0.5762
SCMPF 0.9110
MMPF 0.0140
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Figure 2. Probability values of both models during the test.

Similar conclusions can be achieved by using the time average NIS indicator (Figure 3). Even if
the MMPF encounters some trouble to model the slide around instant 85, it is still the best solution.
Additionally, switching models based on each model probability appears to be sounder than a
weighted solution.
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Figure 3. Time average NIS value.

7. Conclusions

The article focused on the problem of inaccurate positioning and error estimation when GNSS/DR
positioning is subject to slides. To do so, the positioning system features two different models, one that
accounts for the wheel slides (SCM), and one that does not (NCM). Each model is driven by a particle
filter, thus allowing for a more flexible PDF (when compared to the most common extended Kalman
filter). The system is capable of switching between both SCM and NCM by means of a multiple
model implementation.

Different consistency checks for the filters under consideration are run, showing the goodness
of the MMPF with real datasets when compared to the single model implementations. The final
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positioning system is able to characterize better the errors at any time. On the one hand, particles with
stronger weights will survive, and only these are used in the resampling stage. On the other hand,
the model whose errors better represent the innovation of the positioning loop is selected.

Acknowledgments: This research has been carried out by researchers of the Group of Diseño Electrónico y
Técnicas de Tratamiento de señal/Universidad Politécnica de Cartagena, awarded as an excellence researching
group in the frame of the Spanish Plan de Ciencia y Tecnología de la Región de Murcia, Fundación Seneca
(19882/GERM/15).

Author Contributions: R.T.-M. conceived and designed the experiments. C.C.-C. and F.J.T.-M. performed the
experiments; all authors analyzed the data and wrote the paper.

Conflicts of Interest: The authors declare no conflict of interest. The founding sponsors had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the
decision to publish the results.

References

1. Bétaille, D.; Bonnifait, P.; Blanco Delgado, N.; Cosmen Schortmann, J.; Engdahl, J.; Gikas, V.; Gilliéron, P.Y.;
Hodon, M.; Feng, S.; Machaj, J.; et al. SaPPART White Paper. Better Use of Global Navigation Satellite Systems for
Safer and Greener Transport; IFSTTAR Techniques et Méthodes; IFSTTAR: Paris, France, 2015.

2. Toledo, R.; Zamora, M.A.; Ubeda, B.; Gomez-Skarmeta, A.F. An Integrity Navigation System based on GNSS/INS
for Remote Services Implementation in Terrestrial Vehicles. In Proceedings of the 7th International IEEE
Conference on Intelligent Transportation Systems, Washington, DC, USA, 3–6 October 2004; pp. 477–480.

3. Toledo-Moreo, R.; Bétaille, D.; Peyret, F. Lane-Level Integrity Provision for Navigation and Map Matching
With GNSS, Dead Reckoning, and Enhanced Maps. IEEE Trans. Intell. Transp. Syst. 2010, 11, 100–112.
[CrossRef]

4. Sukkarieh, S.; Durant-Whyte, H.; Nebot, E. A High Integrity IMU/GPS Navigation Loop for Autonomous
Land Vehicle Applications. IEEE Trans. Robot. Autom. 1999, 15, 572–578. [CrossRef]

5. Wilson, C.; Wang, J. Safety at the Wheel. Improving KGPS/INS Performance and Reliability; GPS World: Duluth,
MN, USA, 2003; pp. 16–26.

6. Berdjag, D.; Pomorski, D. DGPS/INS data fusion for land navigation. In Proceedings of the Fusion 2004,
Stockholm, Sweden, 28 June–1 July 2004.

7. Zhang, P.; Gu, J.; Milios, E.E.; Huynh, P. Navigation with IMU/GPS/digital compass with unscented Kalman
filter. In Proceedings of the IEEE International Conference on Mechatronics and Automation, Niagara Falls,
ON, Canada, 29 July–1 August 2005; pp. 1497–1502.

8. Liu, B.; Adam, M.; Ibañez-Guzman, J. Multi-aided Inertial Navigation for Ground Vehicles in Outdoor
Uneven Environments. In Proceedings of the 2005 IEEE International Conference on Robotics and Automation,
Barcelona, Spain, 18–22 April 2005.

9. Toledo-Moreo, R.; Zamora-Izquierdo, M.; Ubeda, B.; Skarmeta, M.A. High-Integrity IMM-EKF-Based Road
Vehicle. IEEE Trans. Intell. Transp. Syst. 2007, 8, 491–511. [CrossRef]

10. Takeyama, K.; Machida, T.; Kojima, Y.; Kubo, N. Improvement of Dead Reckoning in Urban Areas through
Integration of Low-Cost Multisensors. IEEE Trans. Intell. Veh. 2017, 2, 278–287. [CrossRef]

11. Alonso, I.P.; Llorca, D.F.; Gavilan, M.; Pardo, S.Á.; Garcia-Garrido, M.A.; Vlacic, L.; Sotelo, M.Á.
Accurate Global Localization Using Visual Odometry and Digital Maps on Urban Environments. IEEE Trans.
Intell. Transp. Syst. 2012, 13, 1535–1545. [CrossRef]

12. Kunii, Y.; Kovacs, G.; Hoshi, N. Mobile robot navigation in natural environments using robust object tracking.
In Proceedings of the IEEE 26th International Symposium on Industrial Electronics (ISIE), Edinburgh, UK,
19–21 June 2017; pp. 1747–1752.

13. Chaves, G.D.L.; Martins, L.G.A.; de Oliveira, G.M.B. An improved model based on cellular automata for
on-line navigation. In Proceedings of the 2017 Latin American Robotics Symposium (LARS) and 2017
Brazilian Symposium on Robotics (SBR), Curitiba, Brazil, 8–11 November 2017.

14. Bar-Shalom, Y. Estimation and Tracking: Principles; Artech House: Nonvood, MA, USA, 1993.
15. Skog, I.; Handel, P. In-Car Positioning and Navigation Technologies—A Survey. IEEE Trans. Intell. Transp. Syst.

2009, 10, 4–21. [CrossRef]
16. Doucet, A.; de Freitas, N.; Gordon, N. Sequential Monte Carlo; Springer: New York, NY, USA, 2001.

24



Appl. Sci. 2018, 8, 445

17. Djuric, P.M.; Kotecha, J.H.; Zhang, J.; Huang, Y.; Ghirmai, T.; Bugallo, M.F.; Miguez, J. Particle filtering.
IEEE Signal Proceess. Mag. 2003, 20, 19–38. [CrossRef]

18. Toledo-Moreo, R.; Zamora-Izquierdo, M. IMM-Based Lane-Change Prediction in Highways with Low-Cost
GPS/INS. IEEE Trans. Intell. Transp. Syst. 2009, 10, 180–185. [CrossRef]

19. Ekman, M.; Sviestins, E. Multiple Model Algorithm Based on Particle Filters for Ground Target Tracking.
In Proceedings of the 2007 10th International Conference on Information Fusion, Quebec, QC, Canada,
9–12 July 2007; pp. 1–8.

20. Hong, L.; Cui, N.; Bakich, M.; Layne, J.R. Multirate interacting multiple model particle filter for terrain-based
ground target tracking. IEE Proc. Control Theory Appl. 2006, 53, 721–731. [CrossRef]

21. Guo, R.; Qin, Z.; Li, X.; Chen, J. IMMUPF Method for Ground Target Tracking. In Proceedings of the IEEE
International Conference on Systems, Man and Cybernetics, Montreal, QC, Canada, 7–10 October 2007;
pp. 96–101.

22. Foo, P.H.; Ng, G.W. Combining IMM Method with Particle Filters for 3D Maneuvering Target Tracking.
In Proceedings of the 2007 10th International Conference on Information Fusion, Quebec, QC, Canada,
9–12 July 2007; pp. 1–8.

23. Wang, J.; Zhao, D.; Gao, W.; Shan, S. Interacting Multiple Model Particle Filter to Adaptive Visual Tracking.
In Proceedings of the Image and Graphics (ICIG’04), Hong Kong, China, 18–20 December 2004; pp. 568–571.

24. Giremus, A.; Tourneret, J.-Y.; Calmettes, V. A Particle Filtering Approach for Joint Detection/Estimation of
Multipath Effects on GPS Measurements. IEEE Trans. Signal Process. 2007, 55, 1275–1285. [CrossRef]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

25



applied  
sciences

Article

Performance Analysis and Design Strategy
for a Second-Order, Fixed-Gain,
Position-Velocity-Measured (α-β-η-θ) Tracking Filter

Kenshi Saho 1,* ID and Masao Masugi 2

1 Department of Intelligent Systems Design Engineering, Toyama Prefectural University,
Imizu 939-0398, Japan

2 Department of Electronic and Computer Engineering, Ritsumeikan University, Kusatsu 525-8577, Japan;
masug@fc.ritsumei.ac.jp

* Correspondence: saho@pu-toyama.ac.jp; Tel.: +81-766-56-7500

Academic Editor: Felipe Jimenez
Received: 29 June 2017; Accepted: 21 July 2017; Published: 26 July 2017
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and so on.

Abstract: We present a strategy for designing an α-β-η-θ filter, a fixed-gain moving-object tracking
filter using position and velocity measurements. First, performance indices and stability conditions
for the filter are analytically derived. Then, an optimal gain design strategy using these results
is proposed and its relationship to the position-velocity-measured (PVM) Kalman filter is shown.
Numerical analyses demonstrate the effectiveness of the proposed strategy, as well as a performance
improvement over the traditional position-only-measured α-β filter. Moreover, we apply an α-β-η-θ
filter designed using this strategy to ultra-wideband Doppler radar tracking in numerical simulations.
We verify that the proposed strategy can easily design the gains for an α-β-η-θ filter based on
the performance of the ultra-wideband Doppler radar and a rough approximation of the target’s
acceleration. Moreover, its effectiveness in predicting the steady state performance in designing the
position-velocity-measured Kalman filter is also demonstrated.

Keywords: α-β-η-θ filter; tracking filter design; velocity measurements; Kalman filter; α-β filter;
UWB Doppler radar

1. Introduction

Monitoring systems for robots and intelligent vehicles that employ remote sensors, such as
cameras and radar, require the tracking of moving objects. Adaptive tracking techniques such as
Kalman and extended Kalman filters [1–5] and particle filters [6,7] are commonly used for this purpose
because of their accuracy. An alternative option is fixed-gain tracking filters, which have also been
studied and used extensively for two reasons [8–12]:

• Simple implementation and low computational overhead: Optimal gain calculation is not required
in the fixed-gain filters. Thus, the number of matrix operations is small compared with the Kalman
filter and its variants [11].

• Applicability to the analytical evaluation of the Kalman filter: Fixed-gain filters are also useful
for analytical evaluations of the Kalman filter because they can be characterized as steady state
Kalman filters [12].

For these reasons, fixed gain filters are still being widely used in applications that strongly require
real-time capability and simple implementation, such as tracking in ultrasonography in medicine [13],
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motor position control [14], human fall detection [15] and vehicular radar [16]. Additionally, the analysis of
the Kalman filters assuming the steady state (fixed gain) is conducted to predict their tracking performance
in the filter design process. The simplest second-order fixed-gain tracking filter is known as an α-β filter,
which have been deployed in various tracking systems [12,17–22]. The design of the α-β filter has been
discussed based on an efficient design parameter known as the tracking index [10,12,22].

However, α-β filters only consider position measurements and hence cannot make full use
of modern sensors that can also measure velocity, such as ultra-wideband (UWB) Doppler radars,
which have recently come into use [23–25]. In the near-field, these radars can achieve accurate
sensing of moving objects, such as humans and cars. In [23,24], position and velocity estimates for
pedestrians were achieved with centimeter and cm/s accuracy, respectively (see [25] for hardware
implementation). Moreover, sensor fusion based on the Internet of Things technology also enables the
simultaneous measurement of position and velocity possible (e.g., sensor data fusion based on the
communication between radars and speedometers embedded in targets). Consequently, tracking filters
for such systems have become an important area of research [26–29]. However, almost all conventional
position-velocity-measured (PVM) trackers have been based on Kalman or particle filtering, whereas
fixed-gain PVM filters have not seen wide use. This is because the computational performance is
sufficient to drive PVM Kalman/particle filters in many applications. Additionally, the empirical design
of these filters without steady state analyses can realize tolerable tracking performance. However,
reiterating, fixed gain filter techniques are still important for various applications and analytical
performance evaluation of tracking systems to find better parameter settings.

To address the above problem, we have proposed third-order fixed-gain (α-β-γ) PVM filters and
have verified their performance [11]. However, a simpler second-order tracker such as an α-β filter is
often required when the number of components and/or the size of hardware is quite limited and the
complexity of target motion is predicted to be relatively small (i.e., a constant velocity model assuming
a second-order tracker is sufficient). To this end, we also have investigated the fundamental properties
of a PVM α-β filter [30]. However, this filter assumes an unrealistic assumption; specifically, correlated
errors of position and velocity do not exist in the filtering process. As a realistic second-order fixed
gain filter, Sudano [31] proposed a fixed-gain, position-velocity-measured, second-order tracking filter,
described as an α-β-η-θ filter. This filter corresponds to the α-β filter in position-only-measured tracking
problem, and the relationship between α-β-η-θ and the PVM Kalman filters is similar to that between
the α-β and Kalman filters. Therefore, we believe that although the α-β-η-θ filter is underutilized at
present, this filter will be widely used like the α-β filter after the spread of PVM systems such as the
UWB Doppler radar. Thus, clarifying the analytical properties and design strategy of the α-β-η-θ filter
is important for tracking technology in the near future. Although Sudano investigated the relationship
of this filter with the PVM Kalman filter using a random-acceleration model based on the tracking
indices, he did not discuss their performance or any design strategies. In addition, although Crouse [8]
described a general solution for optimal fixed-gain trackers with steady state Kalman gains, he too did
not discuss filter performance or a design strategy.

In this paper, a gain design strategy to compose an optimal α-β-η-θ filter is proposed, and efficient
performance indices are derived. The strategy is based on the method presented in [4] for Kalman
filters, which optimizes an analytical performance index for the tracking filter. The proposed strategy
provides the easy design of filter gains and accurate tracking of the α-β-η-θ filter compared with the
conventional empirical design methods. Furthermore, another important objective of this paper is
to demonstrate, using numerical simulations, the effectiveness of the α-β-η-θ filter obtained with the
proposed strategy for a realistic UWB Doppler radar application. In this application, we show its
effectiveness in the design of the PVM Kalman filter that has better steady state performance.

The remainder of this paper is organized as follows: Section 2 defines the tracking problem dealt
with in this paper. Section 3 reviews the α-β-η-θ filter of Sudano [31]. Its definition, relationship
to conventional filters and design problems are described. Section 4 analytically derives the filter’s
performance indices and stability conditions for an appropriate gain design. Section 5 proposes our
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design strategy and explores its relationship to the Kalman filter. Section 6 analyzes the performance
of α-β-η-θ filters designed with this strategy and compares it with the conventional filters. Section 7
presents a numerical application to realistic UWB Doppler radar tracking, and Section 8 offers
concluding remarks.

2. Definitions of Problem and Symbols

This paper mainly considers the one-dimensional second-order moving object tracking filter
assuming that only position and velocity measurements are considered. For the one-dimensional
problem, only tracking along the x-axis is considered. Note that for the performance evaluation,
assuming the realistic situation presented in Section 7, an actual two-dimensional tracking in the
x-y plane is considered, and the one-dimensional tracking filter being considered is implemented for
each axis in this simulation.

The inputs of the filter are measured target position xo and velocity vo. This assumes that the
observed data are both position and velocity. Note that many conventional studies on the tracking
system adopt a position-only analysis, whereas assuming position/velocity measurements is one of the
features of our study. The errors in xo and vo conform to white Gaussian noise, and their correlations
are not considered for simplicity. We assume that the variance of the position measurement errors Bx

and that of the velocity measurement errors Bv are known.
The outputs are predicted target position xp and velocity vp and smoothed (estimated) target

position xs and velocity vs. The focus of this paper is the optimization of the steady state accuracy
in xp. To achieve this, the inputs xo and vo are filtered by some gains. This study assumes that these
gains are unknown parameters that we must design. Thus, the purpose of this paper is the design of
the tracking filter gains that minimizes the errors in the predicted target position.

The detailed definitions and explanations of the tracking filters and their design methodology
that we focus on are presented in the rest of this paper. Table 1 lists the symbols used in this paper.
Furthermore, each symbol is defined at its first appearance.

Table 1. List of symbols.

Variables Description Unit

T Sampling interval (s)
k Discrete sampling index Dimensionless
(),k Parameter at index k
xp Predicted position (m)
vp Predicted velocity (m/s)
xs Smoothed (estimated) position (m)
vs Smoothed (estimated) velocity (m/s)
xo Observed (measured) position (m)
vo Observed (measured) velocity (m/s)
α Filter gain for xs with respect to xo Dimensionless
β Filter gain for vs with respect to xo Dimensionless
η Filter gain for xs with respect to vo Dimensionless
θ Filter gain for vs with respect to vo Dimensionless
(̃) Forecasts
(̂) Estimates
()T Transpose of matrix
()−1 Inversion of matrix

x State vector of target composed of position and velocity
z Measurement vector
F Transition matrix from k to k + 1
P Error covariance matrix with respect to x
Q Covariance matrix of process noise
K Kalman gain matrix
B Covariance matrix of measurement noise
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Table 1. Cont.

Variables Description Unit

Bx Error variance of xo (m2)
Bv Error variance of vo (m2/s2)

Qra Process noise matrix in random-acceleration (RA) model
q Variance of random-acceleration (RA) process noise (m2/s4)

Rxv Ratio of Bx to T2Bv Dimensionless
E() Mean with respect to k
σ2

p Smoothing performance index (m2)
efin Tracking performance index (m)
ac Acceleration assumed in the derivation of efin (m/s2)

εrms Root-mean-square (RMS) index (m)
μ Evaluating function in the proposed gain design strategy Dimensionless

aD Design parameter for the proposed strategy Dimensionless
Qgen Arbitrary process noise matrix

a (1,1) element of Qgen (m2)
b (1,2) (or (2,1)) element of Qgen (m2/s)
c (2,2) element of Qgen (m2/s2)
ε RMS prediction error of Monte Carlo simulations (m)

3. The α-β-η-θ Filter

3.1. Definition

The α-β-η-θ filter proposed by Sudano [31] is a second-order fixed-gain PVM tracker. It can be
considered to be an extension of the α-β filter, which uses position measurements only. The α-β-η-θ
filter iterates prediction and smoothing (update) processes. The prediction process is conducted
under the assumption that the target’s velocity is constant over the sampling interval and yields a
position prediction:

xp,k = xs,k−1 + Tvs,k−1, (1)

vp,k = vs,k−1, (2)

where xs,k is the smoothed target position at time kT, T is the sampling interval, xp,k is the predicted
position, vs,k is the smoothed velocity and vp,k is the predicted velocity. The smoothing process is
defined as in [31]:

xs,k = xp,k + α(xo,k − xp,k) + Tη(vo,k − vp,k), (3)

vs,k = vp,k + (β/T)(xo,k − xp,k) + θ(vo,k − vp,k), (4)

where xo,k is the measured position, vo,k the measured velocity and α, β, η and θ are fixed filter gains
that we must design.

3.2. The α-β Filter

The α-β filter is well known and popular in tracking because of its simplicity and utility in
real-time applications. Its prediction steps are the same as for the α-β-η-θ filter. The smoothing process
is defined as in [10]:

xs,k = xp,k + α(xo,k − xp,k), (5)

vs,k = vp,k + (β/T)(xo,k − xp,k). (6)

29



Appl. Sci. 2017, 7, 758

When η = θ = 0, the α-β-η-θ filter is identical to the α-β filter. Thus, the difference between
the two lies in whether measured velocities are used. Sudano verified the better performance of the
α-β-η-θ filter compared with the α-β filter using velocity measurements [31].

The α-β filter is widely used in the position-only-measured tracking systems, and its performance
has been sufficiently analyzed [12]. Various useful relationships between gains α and β and the design
strategy based on a design parameter known as a tracking index have been applied in its design [10].
The α-β filter is derived from the Kalman filter equations in the limit k → ∞. Thus, it is useful in the
steady state performance analysis of the Kalman filter tracking. Similar properties of the α-β filter are
expected for the α-β-η-θ filter, and clarifying these is useful for the PVM tracker design.

3.3. Relationship to Kalman Filters

Kalman filters are optimal tracking filters and are based on the adaptive calculation of a gain
matrix. The α-β-η-θ filter (and the α-β filter) is equivalent to steady state Kalman filters [31]. Thus,
we derive the optimal gains for the motion model under consideration from the Kalman filter
equations [4]:

x̃k = Fx̂k−1, (7)

P̃k = FP̂k−1FT + Q, (8)

Kk = P̄k HT(HP̃k HT + B)−1, (9)

x̂k = x̃k + Kk(zk − Hx̃k), (10)

P̂k = P̃k − Kk HP̃k, (11)

where x is a state vector, forecasts and estimates are denoted by tildes and hats, respectively, superscript
“T” and “−1” denote transpose and inversion, z is a measurement vector, F is the transition matrix, Pk
is the error covariance matrix at time kT, Q is the covariance matrix for process noise, Kk is the optimal
gain (Kalman gain) at time kT and B is the covariance matrix for the measurement noise.

The α-β-η-θ filter is obtained by substituting into Equations (7) and (10) vectors x̃k = (xp,k vp,k)
T,

x̂k = (xs,k vs,k)
T, zk = (xo,k vo,k)

T, and matrices:

F =

(
1 T
0 1

)
, (12)

H =

(
1 0
0 1

)
, (13)

Kk =

(
α Tη

β/T θ

)
, (14)

B =

(
Bx 0
0 Bv

)
(15)

(see [31]), where Bx and Bv are the error variances of xo,k and vo,k, respectively. With k → ∞ for Kk,
the appropriate gains of the α-β-η-θ filter are calculated as the Kalman filter predicts the state with the
minimum error for the assumed target model.

3.4. Optimal Filter for a Random-Acceleration Model and Its Problems

The optimal α-β-η-θ filter has been derived as the steady state Kalman filter under a general
random-acceleration (RA) model [31]. In this model, it is assumed that the process noise consists of
random accelerations with Q expressed as in [10]:
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Qra =

(
T4/4 T3/2
T3/2 T2

)
q, (16)

where q is the variance of the process noise. By calculating the limit of the Kk using Equation (16),
we have the optimal gains of the α-β-η-θ filter presented in [31]. For example, the relationship between
the optimal β and η is:

η = Rxvβ, (17)

where:
Rxv ≡ Bx/T2Bv, (18)

corresponds to the ratio of the measurement accuracies in position and velocity. The other gains are
expressed using tracking indices (see Equations (24)–(27) of [31]).

However, this filter is not optimal for other models, such as the frequently-used random-velocity
model [9] and the diagonal Q, which does not include correlations in process noise [1,2]. Other process
noise can be incorporated using arbitrary process noise; see [4]. The performance of this α-β-η-θ
filter was evaluated in [31] only in terms of several simple numerical calculations, and strategies for
designing tracking indices were not discussed. These problems must be solved to establish a design
strategy and to properly evaluate the filter’s performance.

4. Derivation of Performance Indices and Stability Conditions

To evaluate the performance of the tracking filter, steady state errors for the reduction of
measurement noise and the tracking of accelerating targets are used [11,12]. These indices are more
effective in evaluating steady state tracking accuracy than the error covariance matrix in the Kalman
filter equations, as discussed by Ekstrand (see Section 9.8 of [12]). Moreover, a comprehensive
performance index for measurement-error smoothing and tracking of an accelerating target based
on these indices is presented in [4]. This comprehensive index is used for our proposed gain design
strategy. Consequently, this section derives these performance indices of the α-β-η-θ filter. Stability
conditions are also derived for practical filter designs.

4.1. Smoothing Performance Index

An important function of a tracking filter is the reduction of random errors caused by measurement
noise. One such performance index is the steady state error for a target undergoing the same motion
as in the motion model, but taking into account sensor noise. We assume that xo,k contains noise
with variance Bx, that vo,k contains noise with variance Bv and that the target moves with constant
acceleration. The variance of the predicted target position in a steady state is calculated from:

σ2
p = lim

k→∞
E[(xp,k − xts,k)

2], (19)

(see [11,12]), where xts,k is the true target position, used to evaluate the smoothing performance and
E[ ] denotes the mean. The quantity σ2

p is called the smoothing performance index.
The smoothing performance index for the α-β-η-θ filter is derived as:

σ2
p(α, β, η, θ) =

g2(α, β, η, θ)Bx + g3(α, β, η, θ)T2Bv

g1(α, β, η, θ)
, (20)
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where:

g1(α, β, η, θ) = (βη − αθ − β)(αθ − βη − α − θ)(4 − 2α − β − 2θ + αθ − βη), (21)

g2(α, β, η, θ) = α3θ(θ − 2)(θ − 1) + α2β(2 − 2η − 2θ + 6ηθ − 3ηθ2)

+ α2θ2(2 − θ) + 2αβθ(η − 2)(θ − 2)

+ αβ2(1 + 2η − θ − 3η2 + 3η2θ) + β3η(1 − η)2

+ β2{η(2 − η)(θ − 2)− θ + 2}, (22)

g3(α, β, η, θ) = αθ(2η2 + 2ηθ + θ2 − θ)

+ βη(2η + 2θ − 2η2 − θ2 − 2ηθ) + θ2(2 − θ). (23)

The derivation of σ2
p(α, β, η, θ) is given in Appendix A. Note that when η = θ = 0,

σ2
p(α, β, 0, 0) =

2α2 + 2β + αβ

α(4 − 2α − β)
Bx. (24)

This is the smoothing performance index of the conventional α-β filter [12].

4.2. Tracking Performance Index

The filter is required to track complicated motions. In second-order trackers, when tracking a
target moving with constant acceleration, steady state bias error occurs as a result of the difference
between the motion model and the actual target motion. This provides an index of the tracking
performance for an accelerating target. When the true target position xtt,k = ac(kT)2/2 (ac denotes a
constant acceleration) and measurement errors are not considered, the steady state predicted error is
expressed as [11]:

efin = lim
k→∞

(xtt,k − xp,k). (25)

which is called the tracking performance index.
For the α-β-η-θ filter, the tracking performance index becomes:

efin(α, β, η, θ) = lim
z→1

(1 − z−1)Ep(z) =
2 − 2η − θ

2(αθ − βη + β)
acT2. (26)

The derivation of efin (α, β, η, θ) is given in Appendix B. Note that when η = θ = 0,

efin(α, β, 0, 0) = acT2/β, (27)

which is the tracking performance index of the conventional α-β filter [12].

4.3. RMS Index

The smaller the tracking and smoothing performance indices are, the better a tracking filter is.
However, there are trade-offs between these indices. To consider these trade-offs and practical
performance evaluations, a comprehensive performance index in smoothing and tracking was
proposed and its effectiveness for the Kalman filter verified in [4]. This index corresponds to the
root-mean-square (RMS) prediction error for a constant-acceleration target (considering sensor noise)
and is calculated as:

εrms =
√

σ2
p + e2

fin. (28)

We refer to this as the RMS index.
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4.4. Stability Condition

To apply the α-β-η-θ filter to real systems, it must be stable. Hence, stability conditions are now
derived. As shown in Equations (A19) and (A20) of Appendix B, the characteristic polynomial of
the α-β-η-θ filter is fαβηθ(z) = z2 + (α + β + θ − 2)z + αθ − ηβ − α − θ + 1. Applying Jury’s stability
test [32] to fαβηθ(z), we obtain stability conditions:

(1−η)β+αθ > 0 and 4−2α−β−2θ+αθ−ηβ > 0 and |αθ−ηβ−α−θ+1| < 1. (29)

5. Optimal Gain Design Strategy

5.1. Optimal Gain Design Using the RMS Index

Conventional gain design strategies based on tracking indices [10,22] have the following difficulties:

• The selection of an appropriate model (e.g., RA, random-velocity) is not considered. Thus,
this selection is conducted empirically [4].

• There are no general rules for the determination of a tracking index [12]. Sudano did not discuss
how to set the tracking indices for the α-β-η-θ filter [31].

To resolve these problems, we have adapted the strategy based on optimizing the RMS index
presented in [4] to the α-β-η-θ filter. Given Equations (20) and (26) and the normalization of the RMS
index in Equation (28) and substituting Equation (17), we define the index for the gain design as:

μ(α, β, θ, Rxv, aD) ≡ ε2
rms/Bx

=
g2(α, β, θ, Rxv) + g3(α, β, θ, Rxv)/Rxv

g1(α, β, θ, Rxv)
+ a2

D

(
2 − 2Rxvβ − θ

2(αθ − Rxvβ2 + β)

)2
, (30)

where:

a2
D ≡ a2

c T4/Bx (31)

is the important dimensionless parameter for the proposed strategy because μ depends on aD.
Although μ also depends on Rxv, it is determined from known measurements of the noise parameters
(Bx, Bv) and sampling interval T as indicated in Equation (18). Thus, the optimal gains are determined
by aD, and its appropriate presetting is essential for the proposed strategy. Note that Equation (17) is
always satisfied for α-β-η-θ filters derived from the Kalman filter (see Appendix C). The optimal gains
are calculated by solving the minimization problem:

arg min
α,β,θ

μ(α, β, θ, Rxv, aD)

sub. to stability conditions Equation(29) are satisfied. (32)

With Equation (32), optimal gains are determined for each Rxv and aD. Rxv can be set from
the performance of the sensors. Therefore, the main design parameter for the proposed strategy is
aD. As given in Equation (31), aD is determined by the target’s acceleration. Hence, presetting aD

appropriately is important in practical applications, and the value should be a typical value of the
target acceleration (e.g., mean or maximum). The choice of aD for the UWB Doppler radar application
is discussed in Section 7.

5.2. Procedure and Notes of the Proposed Strategy

Our proposed strategy can be summarized as follows:

1. Set Rxv from the sensor performance.
2. Design aD based on the approximate target acceleration.
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3. Determine α, β and θ by solving Equation (32).
4. Determine η with Equation (17).

With respect to the proposed strategy, note that:

• Equation (32) can be solved by simple gradient descent with several initial values [33]. This is
because the range of parameter searching is not so wide due to the stability conditions.

• This design process is conducted only once before using the filter. Although the computational
costs of the above optimization process are not small, this does not affect the simple tracking
process of the α-β-η-θ filters.

5.3. Relationship with Steady State PVM Kalman Filters

As described in Section 1, one of the reasons for considering the α-β and α-β-η-θ filters in
practical use is the analytical performance predictions of the Kalman filter (and its variants). However,
the proposed gain design strategy does not use the Kalman filter, and the relationship between
the designed α-β-η-θ and Kalman filters is therefore unclear. This section clarifies this relationship
analytically. Indeed, the proposed strategy corresponds to an optimization of the elements of the
covariance matrix of the process noise with respect to the RMS index. To prove this, we now derive
the relationship between steady state Kalman gains and the arbitrary covariance matrix of process
noise. The covariance matrix is expressed as [4]:

Qgen =

(
a b
b c

)
, (33)

where a > 0, b > 0, c > 0 and the dimensions of a, b and c are m2, m2/s and m2/s2,
respectively. For example, substituting (a, b, c) = (qT4/4, qT3/2, qT2) into Equation (33) gives the
Qra of (16); substituting (a, b, c) = (qvT2, qvT, qv) (qv is the variance of the velocity noise) yields the
random-velocity model [9]; and b = 0 leads to a diagonal Q, which is also a well-used setting in real
applications [1,2].

The relationship between steady state Kalman gains and Qgen is derived as:

a =
T2Bv

1 − Rxvβ2 − (1 − θ)α − θ
{(β2α + 2β3 + β2 + (θ − 1)θβ)R2

xv

+ α2((1 − θ) + 2αβ(1 − θ) + β2θ + β(−θ2 + 3θ − 2))Rxv

+ αθ(1 − θ) + θ(θ − 1)}, (34)

b =
β3R2

xv + (α(β(1 − θ)− θ2 + θ) + β2θ + βθ + θ2 − θ)Rxv

1 − Rxvβ2 − (1 − θ)α − θ
TBv, (35)

c =
(αβθ + β2(θ + 1)− βθ)Rxv + αθ(−β − θ) + βθ + θ2

1 − Rxvβ2 − (1 − θ)α − θ
Bv. (36)

The derivation of these is given in Appendix C.
Equations (34)–(36) transform the optimal gains of the α-β-η-θ filter as elements of the covariance

matrix of the process noise of the PVM Kalman filter and hence are useful in their design. In substituting
these optimal designed gains into Equations (34)–(36), we obtain a Kalman filter having the same
steady state performance. Similarly, solving Equations (34)–(36) with respect to (α, β, θ) and using
a set Qgen, we find the steady state gains of the designed PVM Kalman filter and its performance
using Equations (20), (26) and (28). Moreover, optimization of the proposed strategy of Equation (32)
with respect to (α, β, θ) is equivalent to optimization of the RMS index with respect to (a, b, c) using
Equations (34)–(36).
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The tracking filters and their design strategies that this paper considers are summarized in Table 2.
In the following subsections, the performance of the α-β-η-θ filter realized with the proposed strategy is
investigated and is compared with that of the conventional α-β filter and RA model-based filter design.

Table 2. Summary of the conventional and proposed tracking filters and design strategies.

Tracking Filter Input Design Strategy Preset Parameter k → ∞

α-β filter Position Based on RA model [12] q or tracking index [10] Kalman filter
Proposed strategy aD of Equation (31)

α-β-η-θ filter Position Based on RA model [27] q or tracking index [10] Position-velocity-measured
and velocity Proposed strategy aD of Equation (31) (PVM) Kalman filter

6. Steady State Performance Analysis

This section presents theoretical performance analyses of the α-β-η-θ filter using the proposed
design strategy. We compare the RMS index calculated using Equations (20), (26) and (28) for the
following filters:

• Proposed filter: the α-β-η-θ filter with the proposed strategy.
• RA filter: the α-β-η-θ filter with the RA model using optimal q (from Equation (16)) with respect

to the RMS index.
• Best α-β filter: the conventional α-β filter obtained with the proposed strategy, assuming

η = θ = 0.

Comparison with the RA filter indicates the effectiveness of the proposed strategy
(i.e., considering Qgen), and comparison with the best α-β filter illustrates the effectiveness of the
velocity measurements. Note that the analysis in this section investigates the steady state performance,
and this also corresponds to the steady state Kalman filter analysis. We assume that Bx and T are
normalized to one.

6.1. Relationship between Performance and aD

Figure 1 shows the relationship between the design parameter aD and the RMS index εrms for
Rxv = 1 and 10. From Figure 1a, the proposed filter realizes the best performance for relatively large aD.
This result verifies that the proposed strategy determines gains corresponding to a better covariance
matrix of process noise than the RA filter. The proposed filter also achieves better performance
compared with the best α-β filter, including small aD, and even for Rxv = 1, which means that the
measurement accuracy of the position and velocity is the same. Furthermore, when the velocity
measurement accuracy is high, the proposed filter achieves greater accuracy than the best α-β filter
(Figure 1b). In addition, although the difference between the RA and proposed filters is small for
Rxv = 10, the proposed filter also achieves the best performance.

Figure 1. Relationship between aD and εrms for (a) Rxv = 1 and (b) Rxv = 10; RA: random-acceleration.
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6.2. Relationship between Performance and Rxv

Figure 2 shows the relationship between Rxv and εrms for a2
D = 0.01 and 0.1, and both cases exhibit

the same trend. For both proposed and RA filters, better performance is achieved with better velocity
measurement accuracy. The performance of the proposed filter is better than that of the best α-β filter
including relatively small Rxv (the velocity measurement accuracy is low). In contrast, the performance
of the RA filter is worse than that of the best α-β filter for small Rxv, because the covariance matrix
of the RA filter is limited to Equation (16). Moreover, by comparing Figure 2a,b, we see the superior
effectiveness of the proposed filter for relatively large aD. These results indicate that the proposed filter
is effective when the velocity measurement accuracy and/or target acceleration is relatively high.

Figure 2. Relationship between Rxv and εrms for (a) a2
D = 0.01 and (b) a2

D = 0.1.

7. Application to UWB Doppler Radar Simulation

This section provides examples of the α-β-η-θ filter designed with the proposed strategy for
a realistic application to UWB Doppler radar tracking. Numerical simulations show the effectiveness
of the proposed strategy. We consider two scenarios:

• Medium maneuvering target assuming simple near-field sensing.
• High maneuvering target assuming the target executes an abrupt motion.

7.1. Tracking of Medium Maneuvering Target

7.1.1. Simulation Setup

First, we show the application examples for a maneuvering target that assumes near-field radar
remote sensing for surveillance and robot monitoring systems. We simulate the UWB Doppler radar
tracking [23–25] of a maneuvering target and compare the tracking errors of the filters assumed in the
previous section and the PVM Kalman filter. For one-dimensional tracking assumed in the previous
sections, the steady state performances of the PVM Kalman and the proposed filters are the same.
However, for two-dimensional tracking assumed in this section, a difference in their tracking accuracy
occurs because the Kalman filter considers correlations between the x − y positions and velocities.
Therefore, a comparison between the α-β-η-θ filters and the PVM Kalman filter is also necessary.

Figure 3 shows the simulation scenario and the true acceleration of a target. The true target
position is (xt,k, yt,k) = (0.5 + 0.3kT sin(2πkT/10), 1.5 + 0.1(kT)1.2 cos(2πkT/12)). Two-dimensional
tracking in the x-y plane of the point target is assumed. We consider two Doppler radars located at
(x, y) = (0.5 m, 0) and (1.0 m, 0). The sampling interval T is 100 ms, and the observation time is
4 s. The transmitted signal is a UWB pulse with a center frequency of 26.4 GHz and a bandwidth of
500 MHz. The received radar signals are calculated using ray tracing with the addition of Gaussian
white noise. The radars measure position using ranging results [24] and measure velocity using the
Doppler shift with the method presented in [25]. We determine a standard derivation for this noise to
set Bx = 0.0302 m2 and Bv = 0.102 m2/s2. These values are the averages along the two axes (x and y)
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and are set based on the experimental results in [23,24]. Thus, the Rxv of the assumed radar system
is 9.0. For simplicity, we use this value for both axes. In addition, to evaluate the performance for
smaller Rxv, the case Rxv = 1.0 is generated by adding Gaussian white noise to the measured velocity
data. Bv in this instance is 0.302 m2/s2.

The α-β and α-β-η-θ filters are implemented for each axis, for which we use the same gain.
The implementation of the PVM Kalman filter is the same as in [27], and its covariance matrix for
process noise is calculated from the optimal α-β-η-θ filter gains designed with the proposed strategy
using Equations (34)–(36). The initial values of the state vectors and the error covariance matrix of
the PVM Kalman filter are all zero. Using the RMS prediction error calculated from 1000 Monte Carlo
simulations, the performance is defined as:

εk =

√√√√ 1
1000

1000

∑
m=1

{(xt,k − xp,m,k)2 + (yt,k − yp,m,k)2}, (37)

where xp,m,k and yp,m,k are the predicted positions in the m-th Monte Carlo simulation.

7.1.2. Filter Design

The gain design for the UWB Doppler radar using the proposed strategy is presented here.
We design an appropriate aD and evaluate the resultant performance. We presume a rough approximate
prediction of accelerations. For instance, when the maximum acceleration of the target in Figure 3b is
approximately predicted as ac = 0.6 m/s2, a2

D is then 0.04 from Equation (31). Using this a2
D, the above

radar settings of Rxv = 9.0 (T = 100 ms, Bx = 0.032 m2 and Bv = 0.12 m2/s2) and solving Equation (32),
we have the optimal gains α = 0.315, β = 0.00801, η = 0.0721 and θ = 1.15. Optimal gains for other
settings are similarly determined.

Figure 3. UWB Doppler radar simulation scenario: (a) radar positions and true orbit; (b) true acceleration;
UWB: ultra-wideband.

7.1.3. Evaluation Results

Figure 4 shows the simulation results for a2
D = 0.04 ((a) Rxv = 9.0, (b) Rxv = 1.0). Clearly,

the filters using velocity measurements achieve greater accuracy than the best α-β filter in both
cases. For Rxv = 9.0, the mean steady state prediction RMS errors (E[εk] in 2 < kT < 4) of the RA,
PVM Kalman and proposed filters are 2.48, 2.30 and 2.33 cm, respectively. These results indicate that
the proposed filter achieves better accuracy than the RA filter even for realistic situations. Although the
PVM Kalman filter is slightly better than the proposed filter, because it considers the correlated noise in
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the x- and y-axes, their errors are almost the same. This shows that the steady state performance of the
PVM filter is close to that of the α-β-η-θ filter, and the α-β-η-θ filter analysis is effective in performance
predictions of the PVM Kalman filters. The relationship of these filters is similar to the traditional α-β
and position-only-measured Kalman filters. The computational load of the α-β-η-θ filter is considerably
smaller than that of the PVM Kalman filter; the mean calculation times for each k of the α-β-η-θ and PVM
Kalman filters are 14.0 and 38.1 μs using an Intel Core i7-4600U CPU@2.10 GHz 2.70 GHz processor
and Scilab 5.5.0. This is because the α-β-η-θ filter does not require the adaptive calculations of the gains
and error covariance matrices. In addition, although the difference in steady state accuracy between
the proposed and best α-β filters is small (Figure 4b), the proposed filter achieves better accuracy even
for Rxv=1. The mean steady state prediction RMS errors of the RA, PVM Kalman and proposed filters
are 3.84, 3.61 and 3.68 cm, respectively, and these results lead to the same conclusions as those from
Figure 4a. These results are matched to the analysis results presented in the previous section.

We next investigate the performance of the proposed filter for different values of ac to assess
appropriate settings. Table 3 shows the steady state RMS error (E[εk] in 2 < kT < 4) for different values
of ac for Rxv = 9.0; ac = 0.4 m/s2 is assumed as a rough approximation for the mean acceleration of
the target, and ac = 0.1 and 1 m/s2 are considered as the order of the acceleration. The performance of
the proposed filter deteriorates for ac = 0.1 and 1 m/s2. This is because the difference between the
true target accelerations and these very rough approximate accelerations is too large. This means that
the proposed strategy requires some minimum degree of accuracy in target acceleration prediction
to perform adequately. However, the ac = 0.4 and 0.6 m/s2 cases have almost the same accuracy,
implying that strict values of the target acceleration are in practice not required with UWB Doppler
radars. As a method to obtain an approximated acceleration, communications of the tracking systems
and the accelerometers embedded in targets can be considered. Many sensing targets have acceleration
sensors, e.g., the robots and vehicles have inertial sensors, and humans have accelerometers embedded
in smart phones. In the near future, the Internet-of-Things technology will make data communications
between robots, smart phones and radar possible. Thus, we can obtain approximated acceleration
based on this novel technology.

Figure 4. Simulation results for (a) Rxv = 9 and (b) Rxv = 1; PVM: position-velocity-measured.

Table 3. Steady state RMS prediction error of the proposed filter for various ac (Rxv = 9).

ac (m/s2) a2
d Mean Steady State RMS Error (cm)

0.1 0.00111 2.82
0.4 0.0178 2.32
0.6 0.040 2.33
1.0 0.111 2.57
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7.2. Tracking of High-Maneuvering Target

Finally, an application to high-maneuvering targets with relatively high accelerations is presented
to clearly show the effectiveness of the proposed filter compared with the RA filter. Given the true
target position of (xt,k, yt,k) = (k2T2, 20 + (kT)1.5 cos(2πkT/10)), the true acceleration is plotted in
Figure 5a. Compared with the previous section, a high acceleration is assumed. We set Bx = 0.32,
Rxv = 1.0, ac = 3 m/s2 and aD = 1.0; other settings are the same as in the previous section.

Figure 5b shows the simulation results for the high-maneuvering target. The difference in
the RMS prediction error between the RA and proposed filters becomes large compared with the
moderate-maneuvering target assumed in the previous section. E[εk] in 2 < kT < 4 s of the
best α-β, RA, PVM Kalman and proposed filters are 0.589, 0.459, 0.190 and 0.201 m, respectively.
Whereas the PVM Kalman filter is slightly better than the proposed filter for the same reason as for a
moderate-maneuvering target, the proposed filter achieves greater accuracy than the RA filter. This is
because the RA model cannot track the abrupt motion of the high-maneuvering target because of
limitations in expressing process noise. In contrast, the proposed filter can set gains corresponding
to the appropriate process noises to accurately track the high-maneuvering target. Our theoretical
analyses presented in Figure 1a show that the performance difference between the assumed filters
becomes large when aD is relatively large. The above simulation results are consistent with these
analyses. In addition, with respect to the steady state accuracy of the PVM Kalman and the proposed
filter, the same result with the moderate-maneuvering target is obtained. Thus, the applicability to
performance predictions of the PVM Kalman filters using the analysis of the α-β-η-θ filter is clearly
indicated with these simulation results.

Figure 5. Simulation assuming a high-maneuvering target: (a) true acceleration; (b) results.

8. Conclusions

We have proposed a gain design strategy for α-β-η-θ filters and applied it to UWB Doppler
radar simulations. Stability conditions and an efficient performance index (the RMS index) for the
α-β-η-θ filter were analytically derived, and a design strategy was presented based on minimization
of the RMS index. We clarified the design parameters of the proposed strategy and examined their
relationship with those of the PVM Kalman filter. Numerical analyses using the derived performance
index showed that the designed α-β-η-θ filter achieved better performance than the traditional α-β

filter, as well as an α-β-η-θ filter designed using the general RA model. Finally, a numerical simulation
assuming a realistic UWB Doppler radar application verified the effectiveness of an α-β-η-θ filter
designed using the proposed strategy and the validity of the theoretical analyses. This simulation
showed that the proposed strategy can be applied to realistic tracking systems by presetting several
simple parameters, specifically an approximate acceleration and the radar measurement accuracy.
Moreover, the possibility of the application to performance predictions for the PVM Kalman filter
design was also indicated.
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Appendix A. Derivation of Equation (20)

The σ2
p of the α-β-η-θ filter is now derived from Equations (1)–(4); xts,k represents the motion of

the constant-velocity target:

xts,k = xts,k−1 + Tvts,k−1, (A1)

where vts,k is the true velocity. With Equations (1) and (A1), the predicted error is calculated as:

σ2
p = E[(xp,k − xts,k)

2]

= E[(xs,k−1 − xts,k−1)
2] + 2TE[(xs,k−1 − xts,k−1)(vs,k−1 − vts,k−1)]

+ T2E[(vs,k−1 − vts,k−1)
2]. (A2)

Thus, it is necessary to derive the error variance and covariance in the smoothing process to
obtain σ2

p.
The quantities xts,k and vts,k can be expressed as:

xts,k = (1 − α)xts,k + αxts,k + Tη(vt,k − vt,k), (A3)

vts,k = (1 − θ)vts,k + θvts,k + (β/T)(xt,k − xt,k). (A4)

Using Equations (3), (4), (A3) and (A4), we have:

xs,k−xts,k =(1−α)(xp,k−xts,k)+α(xo,k−xts,k)

+Tη((vo,k−vt,k)−(vp,k−vt,k)), (A5)

vs,k−vts,k =(1−θ)(vp,k−vts,k)+θ(vo,k−vts,k)

+(β/T)((xo,k−xt,k)−(xp,k−xt,k)). (A6)

From Equations (1), (2) and (A1) and defining Δxs,k ≡ xs,k − xts,k, Δvs,k ≡ vs,k − vts,k, Δxo,k ≡
xo,k − xts,k and Δvo,k ≡ vo,k − vts,k, we calculate:

Δxs,k = (1−α)(Δxs,k−1+TΔvs,k−1)+αΔxo,k+Tη(Δvo,k−Δvs,k−1), (A7)

Δvs,k = (1−θ)Δvs,k−1+θΔvo,k+(β/T)(Δxo,k−(Δxs,k−1+TΔvs,k−1)). (A8)
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Thus, the variances of the errors in the smoothed positions can be calculated using Equation (A7)
as:

E[Δx2
s,k] =(1−α)2(E[Δx2

s,k−1]+T2E[Δv2
s,k−1]+2TE[Δxs,k−1Δvs,k−1])

+T2η2(E[Δv2
o,k]−2E[Δvs,k−1Δvo,k]+E[Δv2

s,k−1])

+2α(1−α)(E[Δxs,k−1Δxo,k]+TE[Δvs,k−1Δxo,k])+2Tαη

· (E[Δxo,kΔvo,k]−E[Δxo,kΔvs,k−1])+2Tη(1 − α)

−E[Δxs,k−1Δvs,k−1]+TE[Δvs,k−1Δvo,k]−TE[Δv2
s,k−1]). (A9)

Because we have assumed k → ∞, the variances and covariances of errors do not depend on k.
Consequently, we can define the variances and covariances of the smoothing process as:

σ2
sx ≡ E[Δx2

s,k] = E[Δx2
s,k−1], σ2

sv ≡ E[Δv2
s,k] = E[Δv2

s,k−1],

σ2
sxv ≡ E[Δxs,kΔvs,k] = E[(Δxs,k−1Δvs,k−1)]. (A10)

In addition, the following relations are satisfied because the smoothed parameters are a linear
combination of the measured parameters:

E[Δxs,kΔxo,k] = E[Δxs,kΔvo,k] = E[Δvs,kΔxo,k] = E[Δvs,kΔvo,k] = 0. (A11)

Substituting Equations (A10) into (A9) and simplifying by means of Equation (15), we have:

α(2−α)σ2
sx+(1−α−η)T2σ2

sv+2(α−1)(1−α−η)Tσ2
sxv = α2Bx+η2T2Bv. (A12)

We can obtain the following equations similarly by calculating E[Δv2
s,k] and E[Δxs,kΔvs,k]:

− β2σ2
sx + (2 − β − θ)(β + θ)T2σ2

sv + 2β(1 − β − θ)Tσ2
sxv

= β2Bx + θ2T2Bv, (A13)

β(1 − α)σ2
sx + (1 − β − θ)(α + η − 1)T2σ2

sv

+ (α + 2β + θ − αθ − 2αβ − ηβ)Tσ2
sxv = αβBx + ηθT2Bv, (A14)

Substituting the solutions of the linear system involving Equations (A12)–(A14) into (A2) and
using Equation (A10), we arrive at Equation (20).

Appendix B. Derivation of Equation (26)

The efin of the α-β-η-θ filter is derived using the final value theorem in the z-domain. Applying a
z-transform to Equations (1)–(4), we obtain:

Xp(z) = Xs(z)/z + TVs(z)/z, (A15)

Vp(z) = Vs(z)/z, (A16)

Xs(z) = Xp(z) + α(Xo(z)− Xp(z)) + Tη(Vo(z)− Vp(z)), (A17)

Vs(z) = Vp(z) + (β/T)(Xo(z)− Xp(z)) + θ(Vo(z)− Vp(z)). (A18)

By simplifying of these equations, the relationship between Xp(z) and (Xo(z), Vo(z)) is
obtained as:

Xp(z) =
(α + β)z + αθ − α − ηβ

fαβηθ(z)
Xo(z) +

(η + θ)z − η

fαβηθ(z)
TVo(z), (A19)
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where:
fαβηθ(z) = z2 + (α + β + θ − 2)z + αθ − ηβ − α − θ + 1. (A20)

Because we have assumed that the target has constant acceleration ac but do not assume the
measurement errors,

Xo(z) = Z[ac(kT)2/2] =
z(z + 1)
2(z − 1)3 acT2, (A21)

Vo(z) = Z[ac(kT)] =
z

(z − 1)2 acT, (A22)

where Z[ ] denotes the z-transform. With Equations (A19), (A21) and (A22), the predicted error in the
z-domain, Ep(z) ≡ Xo(z)− Xp(z), is:

Ep(z) =
z(z+1)(z2+(θ−2)z+1−θ)−2z(z−1)(ηz+θz−η)

2(z − 1)3 fαβηθ(z)
acT2. (A23)

Thus, applying the final value theorem, Equation (26) is derived.

Appendix C. Derivation of Equations (34)–(36)

The relationship between steady state Kalman gains and Qgen is next derived. The k in Equations (7)–(11)
is omitted in the following equations because of the steady state assumption. The i-th row and j-th
column of a matrix P are denoted as Pi,j. With Equations (11) and (33), P̃ is calculated as:

P̃ =

(
P̂1,1 + 2TP̂1,2 + T2P̂2,2 + a P̂1,2 + TP̂2,2 + b

P̃1,2 P̂2,2 + c

)
. (A24)

Equation (9) can also be written as [34]:

K = P̂HTR−1. (A25)

Substituting Equations (13)–(15) into Equation (A25), we have:

K =

(
α Tη

β/T θ

)
=

(
P̂1,1/Bx P̂1,2/Bv

P̂1,2/Bx P̂2,2/Bv

)
, (A26)

which means that:

P̂ =

(
αBx ηTBv

βBx/T θBv

)
. (A27)

With P̂1,2 = P̂2,1 and Equation (A27), we obtain:

η = βBx/T2Bv = βRxv, (A28)

which implies that Equation (17) is satisfied for not only the RA model, but also arbitrary process noise.
Substituting Equations (13) and (14) into Equation (11), we obtain:

P̂ =

(
(1 − α)P̃1,1 − TηP̃1,2 (1 − α)P̃1,2 − TηP̃2,2

(1 − θ)P̃1,2 − (β/T)P̃1,1 (1 − θ)P̃2,2 − (β/T)P̃1,2

)
. (A29)
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Substituting Equation (A27) into Equation (A24), substituting Equation (A24) into Equation (A29)
and comparing their elements, we have:

αBx = (1−α)(αBx+2ηT2Bv+T2θBv+a)−Tη(ηTBv+θTBv+b), (A30)

βBx/T = (1 − α)(ηTBv + θTBv + b)− Tη(θBv + c), (A31)

θBv = (1 − θ)(θBv + c)− (β/T)(ηTBv + θTBv + b). (A32)

Solving the linear system composed of Equations (A30)–(A32) with respect to (a, b, c) using
Equation (A28), we obtain Equations (34)–(36).
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Abstract: VANET (Vehicular Ad-hoc Network) is an emerging offshoot of MANETs (Mobile Ad-hoc
Networks) with highly mobile nodes. It is envisioned to play a vital role in providing safety
communications and commercial applications to the on-road public. Establishing an optimal route
for vehicles to send packets to their respective destinations in VANETs is challenging because of
quick speed of vehicles, dynamic nature of the network, and intermittent connectivity among nodes.
This paper presents a novel position based routing technique called Dynamic Multiple Junction
Selection based Routing (DMJSR) for the city environment. The novelty of DMJSR as compared
to existing approaches comes from its novel dynamic multiple junction selection mechanism and
an improved greedy forwarding mechanism based on one-hop neighbors between the junctions.
To the best of our knowledge, it is the first ever attempt to study the impact of multiple junction
selection mechanism on routing in VANETs. We present a detailed depiction of our protocol and the
improvements it brings as compared to existing routing strategies. The simulation study exhibits that
our proposed protocol outperforms the existing protocols like Geographic Source Routing Protocol
(GSR), Enhanced Greedy Traffic Aware Routing Protocol (E-GyTAR) and Traffic Flow Oriented
Routing Protocol (TFOR) in terms of packet delivery ratio, end-to-end delay, and routing overhead.

Keywords: intelligent transportation; multiple junctions; position based routing; optimal route

1. Introduction

The emerging Vehicular Ad-hoc Networks (VANETs) is getting a spotlight from entities like
academicians, research institutes, and industries because it is envisioned to play a very important
role for the future transportation system. It aims at enhancing the driving experience of the users
by playing a crucial role in developing Intelligent Transportation System (ITS) and road safety by
providing road conditions and vehicular traffic information to the drivers. For the safety of drivers
and regulating the flow of vehicles, the drivers have to be alerted to unwanted traffic accidents, traffic
congestion, road conditions, and other associated features. The main objective of VANETs is to address
these issues by providing the exact and timely information to the drivers [1–12].

In VANETs, nodes are self-organized and capable of communicating in an infrastructure-less
environment [1–5,13,14]. The integration of advanced wireless technologies in vehicles helps them
to communicate without any infrastructure, which reduces the cost of hefty infrastructure deployment.
For the wireless access in a vehicular environment, IEEE 802.11 committee has developed a standard
named as IEEE 802.11p. For Vehicle-to-Vehicle (V2V) and Vehicle-to-Infrastructure (V2I) communications,
the Federal Communications Commission (FCC) has allocated a bandwidth of 75 MHz in 5.9 GHz band
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for licensed Dedicated Short Range Communication (DSRC). Each vehicle exchanges information with
other vehicles as well as roadside units within their radio ranges by using the allocated bandwidth by
FCC [1–3,13,14]. Also, various significant projects like CarTALK2000(Car Talk 2000) [15], C2CCC(Car 2
Car Communication Consortium) [16], California PATH(California Partners for Advanced Transportation
Technology) [17], FleetNet [18], DEMO 2000 by Japan Automobile Research Institute (JSK) [19], Chauffeur
in EU [20] and Crash Avoidance Metrics Partnership (CAMP) [19] are initiated by different firms for
developing vehicular communication.

VANETs are an offshoot of Mobile Ad hoc Networks with certain differentiating characteristics.
For instance, the nodes in MANETs (Mobile Ad-hoc Networks) have random movements, but the
movement of vehicular nodes is constrained by predefined roads. Traffic control system, speed barriers,
and congestion on the road also affect the speed and mobility pattern of vehicles. The vehicles can
be equipped with transceivers having longer transmission ranges, broad on-board storage capacities,
digital maps, and sensors for revealing vehicle states. Unlike MANETs, limited battery, processing
power, and storage do not make an issue in VANET due to the availability of rechargeable sources of
energy [11–14,21,22].

There are a lot of technical challenges in the design of effective vehicular communications. One of
them is to design an efficient routing strategy capable of computing shortest rich density optimal
path. Finding such a path is a challenge because of the high mobility of the nodes, the intermittent
connectivity, and the uneven distribution of vehicular nodes, which varies with time and location.
The nodes in one area may be sparsely connected while in another area they can be densely connected.
While, at the same time, the predictable mobility and mobility restrictions are helpful in establishing
routes [2,3,8]. Traditional MANETs routing protocols are unable to handle these issues. For routing in
VANETs, researchers have evaluated various well-known MANETs routing protocols but they have
concluded that MANETs routing protocols do not fit well in VANETs setting [23–26].

In the existing literature, most of the well-known routing protocols specifically designed for
VANETs establish routing path by considering immediate junction/street from source to destination.
Considering only immediate junction at one time may result in routing the packets along the streets
where there is no carrier or negligible connectivity resulting in an increased delay as well as packet
loss. If the packets stay in a buffer for a long time then there is a possibility that they will be discarded
due to the expiry of time-to-live. Consequently, this degrades the network performance. To the best of
our knowledge, a protocol that is capable of establishing dynamic optimal routing path by considering
multiple junctions/streets from source to destination based on shortest path and connectivity is
missing in the existing literature. This paper presents a novel position based routing protocol for
VANETs called Dynamic Multiple Junction Selection based Routing protocol (DMJSR). It is designed
specifically for city scenarios. DMJSR takes into account vehicles speed, their directions and locations,
and bi-directional double lanes road. It makes use of GPS and digital maps for getting the vehicle
current location and the road information respectively. It considers multiple-neighbor junctions
while making routing decisions which maximizes connectivity and enhances networks performance
as compared to existing approaches. Moreover, it is also novel in its mechanisms as it combines
multi-junction selection mechanism with position and direction based forwarding mechanism for
forwarding of packets between the selected junctions. It establishes dynamic optimal connected
routing paths, which enhances the performance in terms of packet delivery ratio, end-to-end delay,
and routing overhead. It is vital to achieve enhanced performance in terms of the aforementioned
parameters for providing safety services (like coordinated communication between two vehicles,
real-time traffic management, cooperative message transfer, accidents warnings, road hazard control
warnings, post-crash announcements, and traffic watchfulness), convenience services (like parking
availability, electronic toll collections, and active prediction) and commercial oriented services (like
distant vehicle diagnostics/personalization, downloading digital maps, internet access, advertisements,
real-time video relay, etc.).
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The rest of the paper is organized as follows. Section 2 describes the existing routing techniques
along with their limitations and elaborates the motivation of our work. Section 3 illustrates the proposed
routing strategy. Section 4 presents the simulation results and analysis. The paper is concluded in
Section 5.

2. Related Work

Routing protocols for VANETs can be categorized into two main types. The first type is topology-
based routing protocols and the second type is position-based routing protocols. The topology-based
routing protocols can further be categorized into reactive, proactive, and hybrid protocols [27,28].
The reactive protocols like Dynamic Source Routing(DSR) [29] and Ad-hoc on Distance Vector
Routing(AODV) [30] are based on demand routing because in these routing protocols only those routes
that are currently in use are maintained [14,21,31]. Proactive routing protocols, like Optimized Link
State Routing (OLSR) [32], are table driven routing protocols because in such protocols all the available
routes in the network topology are maintained [2,3,31,33]. Due to frequently changing network
topology in VANETs, the topology based routing protocols are not suitable. Such protocols are not
scalable under highly mobile large-scale VANETs. These protocols incur high latency in finding a route
because they store all the unused routing paths [3,34,35]. A protocol like AODV consumes additional
bandwidth due to transmission of periodic heavy beacon messages in intermittently connected
VANETs [14,31]. In addition, the maintenance of routing paths in highly mobile environments results
in large routing overhead for topology-based routing protocols [5–8,11]. In order to overcome the
restrictions of topology-based routing, position-based routing which is based on location information
is introduced [35]. In position-based routing protocols, the vehicular nodes are equipped with GPS
for getting accurate information about their geographical locations, speeds, and moving directions.
Destination node location can be found by using location services such as GLS (Grid Location
Service) [36], RLS (Reactive Location Service) [37] and HLS(Hierarchical Location Service) [34].
Beacon messages are used to obtain one-hop neighbor information. There is no need to maintain the
routing paths in position-based routing protocols. Due to all these features, position-based routing
protocols overcome the major limitations of topology-based routing protocols [2,3,11,12,31,33,34].
In the literature, many position-based routing protocols are proposed in VANETs. As the focus of
this work is city environments, therefore, we mention some of the well-known protocols specifically
designed for city scenarios.

Geographic Source Routing Protocol (GSR) [38] was designed for city scenarios. It uses Dijkstra
shortest path algorithm [2] to accomplish the shortest path between sender and destination. The shortest
path computed by GSR consists of road junctions that are ordered sequentially. The data packets have
to transverse these junctions in order to move from source to destination. The source node makes use
of Reactive Location Services (RLS) [14] for locating the destination. GSR uses greedy forwarding for
relaying packets between the junctions. The simulation outcomes, with the use of realistic vehicular
traffic in urban surroundings, illustrated that GSR performs better then topology based routing protocols
like DSR and AODV in terms of end-to-end delay and packet delivery ratio [2,31]. However, GSR is not
a traffic aware routing protocol. Therefore, it does not make use of traffic information for making the
routing decisions [3].

In [33], Greedy Perimeter Coordinator Routing (GPCR) was proposed for city environments.
GPCR consists of greedy forwarding and perimeter mode. The unique feature of the protocol is that it
makes routing decision at the coordinator node without considering digital maps. The node that is
near the junction or at the junction is called coordinator. In GPCR the restricted greedy forwarding
bound the packet carrier node to forward the packets to a node at the junction instead of dispatching
them across the junction. The local optimum situation is overcome by perimeter mode. An assumption
is made in perimeter mode that the graphs are naturally planner in city scenarios. Thus, it avoids
graph planarization that may create partitions in the network [3,21,38].
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Greedy Perimeter Stateless Routing Junction+ (GPSRJ+) [39] is an improved version of GPCR.
Unlike GPCR, it avoids unnecessary packet stop at a junction which raises hop count. It employs
two-hop neighbor information to predict which city street its neighboring junction vehicle will take.
If prediction identifies that its neighboring junction will forward the packet on to a street with a
different direction, it forwards the packet to the junction vehicle; else it avoids the junction and
forwards the packet to a vehicle that is nearest to the destination vehicle. The simulation result shows
that GPSRJ+ surpasses GPCR in terms of packet delivery ratio and hop count.

Anchor-based Street and Traffic-Aware Routing (A-STAR) [40] identifies anchor path with high
connectivity by using information about city bus routes. When a packet faces local optimum situation
then route recovery strategy is used to overcome the local optimum problem by calculating a new
anchor path. The simulation results verify that A-STAR outperforms Greedy Perimeter Stateless Routing
(GPSR) and GSR because it is capable of finding the end-to-end connected path even in case of low
vehicular density. However, one problem with this approach is that routes are along the anchor path
that may not be optimal resulting in increased end-to-end delay [2,31].

Enhanced Greedy Traffic-Aware Routing Protocol (E-GyTAR) [2] is similar to GyTAR but during
junction selection mechanism, it considers only directional density. It establishes the shortest path
based on directional density and thereby route the packet toward the destination. It uses greedy packet
forwarding strategy to forward the packet between the junctions. It avoids local optimum by using
carry and forward approach. The main drawback of this routing protocol is that it selects junctions
based on directional density and ignores non-directional density on a multi-lane road. If directional
density is absent then this protocol cannot find the way to relay packets towards the destination [3].

Traffic Flow Oriented Routing Protocol (TFOR) [3] is a recently proposed technique which consists
of two modules: (a) A junction selection mechanism based on traffic flows and the shortest routing
path and (b) A forwarding strategy based on two-hop neighbor information. It accomplishes shortest
optimal path based on shortest distance to the recipient node and vehicular traffic density. Simulation
outcomes show that TFOR outperforms E-GyTAR and GyTAR in terms of packet delivery ratio and
end-to-end delay.

Directional Geographic Source Routing (DGSR) [14]. It is an enhanced version of geographic
source routing (GSR) with directional forwarding strategy. In this routing scheme, the source vehicular
node uses location services to acquire the position of destination vehicle. It establishes the shortest path
from source to destination using Dijkstra Algorithm. The shortest path is consisting of junctions which
are ordered sequentially. The packets from source vehicular node follow the sequence of junctions to
reach the destination. If packet meets a local optimum, DGSR uses carry and forward approach to
overcome the local optimum problem.

Enhanced Greedy Traffic Aware Routing Protocol-Directional (E-GyTARD) [14]. It is an extended
version of E-GyTAR [2] with directional forwarding. It consists of two mechanisms: (i) Junction
selection; (ii) Directional greedy forwarding strategy. It uses location services to get the position of the
destination node. It selects junctions on the basis of directional traffic density and shortest distance
to the destination. It forwards packets in between junction using directional greedy forwarding.
Simulation outcomes in realistic urban scenarios show that E-GyTARD outperformed GSR and DGSR
in terms of packet delivery. Table 1 shows the comparative characteristic of all the aforementioned
routing protocols.
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3. Dynamic Multiple Junction Based Source Routing Protocol

3.1. Limitatiotions of Existing Protocols

The protocols that are considered for performance comparison in this work are GyTAR, E-GyTAR
and TFOR. The similarity among all these protocols is that all of these protocols are based on dynamic
junction selection mechanism. In these routing protocols, one junction is selected at a time based on
traffic density and shortest path to the destination. GSR is based on static junction selection mechanism
while GyTAR, E-GyTAR and TFOR are based on dynamic junction selection mechanism. Existing
literature shows that the protocols that are based on dynamic junction selection mechanism perform
better as compared to protocols using static junction selection [2,3,11]. The dynamical junction selection
protocols (GyTAR, E-GyTAR and TFOR) select one junction at a time for sending packets towards
the destination. However, there are a few limitations of this approach. For instance, let us consider
one of the scenarios shown in Figure 1. Figure 1 is added to this paper just to explain the possible
shortcomings of the existing protocols and how the proposed protocol can solve these shortcomings.
It is worth noting that the proposed routing protocol performs well for all the different simulation
settings that were used for performance evaluation during our work.

 
Figure 1. Limitations of Greedy Traffic Aware Routing Protocol (GyTAR), Enhanced Greedy Traffic
Aware Routing Protocol (E-GyTAR), and Traffic Flow Oriented Routing Protocol (TFOR).

Suppose source vehicle S is at junction J1 and wants to forward a packet to the destination vehicle
D. TFOR, GyTAR and E-GyTAR choose next junction on the basis of vehicular traffic density and shortest
path to the destination node, therefore J3 will be selected as the next junction by all the protocols. At J3

GyTAR, E-GyTAR and TFOR will be unable to find next appropriate junction as a next junction through
which packet can be routed toward the destination. Because the next shortest path providing streets
that lead to destination contain no vehicular density to forward the packet towards the destination.
When the packet is routed towards J3, all the protocols are unable to decide next path because from J3 to
J6 there is no traffic density. Similarly, J3 to J5 and J3 to J4 there is no traffic density. All these streets are
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out of traffic as there is no traffic density for routing packet further. In this case, routing performance is
degraded here because of inappropriate selection of junctions due to consideration of a single junction
only. The packet delivery ratio decrease and end-to-end delay increases despite the optimal paths (J1–J2,
J2–J4, J4–J5, J5–J9) are available with rich traffic density. Consequently, all these protocols are inefficient
in junction selection mechanism to decide optimal routing paths on the basis of vehicular traffic density
and shortest distance to the destination. Furthermore, their current junction selection mechanism is
very limited to move the packet progressively closer to the destination due to the consideration of just
the immediate junction from the current junction. The probability of incurring a dead street (street
without packet carriers/vehicles) along a selected path to the destination increases while considering
just the immediate junction.

We need a routing protocol that selects junctions efficiently by considering connectivity in
such a way that it maximizes packet delivery ratio, minimizes routing overhead and end-to-end
delay. We propose a novel routing strategy called dynamic multiple junction selection based routing
mechanism, which selects multiple junctions based on shortest path and traffic density for tackling
aforementioned like scenarios.

3.2. DMJSR Protocol Overview

It is a novel position based routing protocol capable of finding robust routes in city environment
by considering traffic density and shortest distance to the destination. The proposed protocol in this
paper uses multi-hop communication for routing of data in VANETs. The main objective of this routing
protocol is to ensure the selection of paths having more connectivity within city environments to
enhance the performance of the network.

3.2.1. Protocol Assumptions

DMJSR is a junction-based geographic routing protocol. Certain assumptions are made for the
working of this protocol. Similar assumptions are made in [2,3,31]. GPS is utilized by a vehicle in order to
locate its position. The destination vehicular node can be located using location services such as GLS [36].
Every vehicle contains an onboard navigation system, which provides the location of neighboring junctions
and useful street level information by using preloaded digital maps. Moreover, it is also assumed that every
vehicular node is familiar with its direction and velocity. We also assume that each vehicular node has
information about vehicular traffic density between two junctions. This information can be made available
by traffic sensors deployed beside junctions or simple distributed mechanism for road traffic estimation
realized by all vehicles [41]. In the presence of aforementioned assumptions, the detailed description of
our routing protocol is given below. It consists of two modules: (i) Dynamic multiple junction selection
mechanism and (ii) improved greedy forwarding mechanism between the junctions on the basis of one-hop
neighbor information.

3.2.2. Dynamic Multiple Junction Selection

Similar to the existing routing approaches GyTAR, E-GyTAR and TFOR, DMJSR routing protocol
uses anchor based routing approach with city streets information. It utilizes street map topology for
routing of data packets between vehicles. The major difference between the considered protocols and
our protocol is the junction selection mechanism. DMJSR selects the next appropriate junction by
considering the next two immediate junctions dynamically from current junction based on vehicular
traffic density and shortest curve metric distance to the destination. Now a big question about the
proposed protocol can be that why two junctions are considered and not three, four and so on?
The answer to this question is given in Section 4.3.4. By considering two junctions, it decreases the
probability of facing connectivity problem that occurs during existing junction selection mechanisms.
Also, it decreases the probability of incurring dead-street (street without packet carriers/vehicles) along
a selected path to the destination. It also moves packet progressively closer to the destination by using
those streets that are rich in traffic/connectivity as compared to existing approaches. When choosing
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next two-hop neighbor junction, the sender vehicular node or intermediate vehicular node looks
for the positions of two-hop neighboring junctions by using digital city streets map and a score is
calculated and assigned to all candidate two-hop neighbor junctions based on traffic density and curve
metric distance of candidate junctions to the destination. The two-hop neighbor junction with the
highest score is selected as the next destination junction. Candidate junctions are allocated score using
Algorithm 1.

In Algorithms 1 and 2, alpha (α) and beta (β) are the weighting factors for distance and traffic
density respectively between the junctions. By adjusting the value of α and β, we can make a tradeoff
between distance and traffic density when selecting next junction. Traffic density is vital for providing
connectivity for relaying packet toward the destination. H1 and H2 are the weighting factors for
candidate one-hop neighbor junction and two-hop neighbor junction respectively. An adjustment in
the value of H1 and H2 can make a tradeoff between the importance of candidate one-hop neighbor
junction and two-hop neighbor junctions. In our simulations, equal weights are assigned to all
aforementioned parameters. Lines 1 to 10 set the values to the parameters used in our algorithm.
Line 11 checks if candidate one-hop neighbor has next neighbor junction that leads to the destination
then Algorithm 1 invokes Algorithm 2 using line 12 which is given below.

Algorithm 1. The Dynamic Multiple Junction Selection Mechanism

Input: Area, α, H2

Output: The next destination junction NDj
1. begin
2. set score ← 0
3. set β ← 1 − α

4. set H1 ← 1 − H2

5. for each candidate junction j do
6. set Dn ← the curve metric distance between NCj and destination

/* NCj is the next candidate junction (one-hop) */
7. set Dc ← the curve metric distance between Cj and destination

/* Cj is the current junction */
8. set Dp1 ← Dn/Dc/* Closeness of candidate junction to destination */
9. set TD1 ← no. of vehicles between NCj and Cj in both directions
10. if score < (α × (1 − Dp1) + β × TD1)
11. if NCj contains next candidate neighbour junction NCk //two-hop
12. invoke Algorithm 2 //GetnextneighbourjuctionKofJ (NDk, Score)
13. set ScoreK = Score
14. set NCj ← NDk
15. set NDj ← NCj

16. set score ← H1.(α × (1 − Dp1 ) + β × TD1 ) + H2. (ScoreK)
17. else
18. set NDj ← NCj

19. set score ← α × (1 − Dp1 ) + β × TD1

20. end
21. end
22. end
23. return NDj

24. end

Algorithm 2 is used to assign a score to each of second-hop neighbor junctions. It returns the
junction with the highest score and control switches back to Algorithm 1. Algorithm 1 uses Line no 16
to compute the scores of the two-hop neighbor junctions. The junction having the highest score will be
selected as the next two-hop candidate neighbor junction through which packet is relayed toward the
destination. Any candidate two-hop neighbor junction that is closest to the destination and provides
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higher traffic density will be selected as the next destination junction through which packet moves
toward the destination. The working of the proposed protocol is illustrated in Figure 2.

Algorithm 2. Second-Hop Neighbor Junction Score Computation

Input: Area, α
Output: The next destination junction NDk with Score

GetnextneighbourjuctionKofJ (NCk, Score)
1. begin
2. for each candidate junction K of J do
3. set Dnk ← the curve metric distance between NCk and destination

/* NCk is the next candidate junction */
4. set Dck ← the curve metric distance between Ck and destination

/* Ck is the current junction */
5. set Dp2 ← Dnk /Dck//closeness of second hop w.r.t destination
6. set TD2 ← no. of vehicles between NCk and Ck in both directions
7. if score < (α × (1 − Dp2 ) + β × TD2) then
8. set NDk ← NCk
9. set score ← α × (1 − Dp2 ) + β × TD2

10. end
11. end
12. return (NDk, Scorek)
13. end
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Figure 2. Working of Dynamic Multiple Junction Selection based Routing Protocol (DMJSR).

3.2.3. Illustrative Example for DMJSR Working

Consider the scenario of Figure 2 where the source vehicle S is at current junction J1 and is
dispatching packet towards the destination D using DMJSR. In this case, there are 4 candidate two-hop
neighbor junctions of current junction J1 available through which packet can be routed toward the
destination. These include J4, J5, J6 and J8.
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Our proposed algorithm will assign weights to each of two-hop neighbor junctions of J1 according
to the traffic density and shortest curve metric distance to the destination. City streets that are
connecting J1 to J4 have higher traffic density than J1–J5, J1–J8 and J1–J6. Consequently, J1 and J4

have higher connectivity than J1–J6, J1–J8 and J1–J5.Therefore, DMJSR will assign more weight to J4 as
compared to J5, J6 and J8 and it will be chosen as next destination junction. In this way, our routing
approach will remove the limitations of GyTAR, E-GyTAR, and TFOR. In the case of such routing
protocols, J3 would have been selected instead of J4, which will not be considered because all these
protocols based on the selection of one-hop junction, which results in a sub-optimal choice in this case.
The packet would have been stuck in local maximum because after selecting J3, junctions J5 and J6

have no traffic density as these are along dead streets (those streets that contain no vehicle for carrying
packet towards the destination). Our routing protocol route the packet from current junction J1 to J4

through J2 and in this way it will relay the packet towards the destination node. Therefore, in DMJSR,
a packet will travel successively closer towards the destination node along the urban streets where
there are adequate vehicular nodes to provide connectivity. It is worth mentioning that Figure 2 is just
an illustration of one of the possible cases where the considered protocols would suffer in terms of
performance and the proposed protocol will work well. The proposed protocol works well for all the
considered simulation scenarios as discussed in Section 4.

3.2.4. Forwarding between Junctions

After the determination of destination junction, DMJSR uses a greedy approach with one-hop
neighbor information for moving forward data packets between junctions. It is achieved by marking
all data packets with the location of the next destination junctions. Every vehicular node maintains
a neighbor table that contains the direction, speed and position of each neighbor vehicular node.
Neighbor table is updated through periodic beacon messages exchange. The packet carrier vehicular
node consults its neighbor table for the most recent predicted locations of neighboring vehicles
prior to forwarding the data packet. It forwards the packet to a one-hop neighbor that is closest to
the destination.

Protocols like GyTAR [31] and E-GyTAR [2] make use of one-hop neighbor information based
predictive strategy. This strategy prefers to forward the packet to the next node based on the speed
of the vehicular node instead of preferring a node that lies closest to the destination. The one-hop
neighbor having the highest speed is selected as next forwarding node. However, this approach has a
few limitations. Firstly, in the presence of appropriate one-hop neighbors, it may end up selecting an
inappropriate one-hop neighbor for forwarding packets which may incur more delay and hop count.
For instance, Figure 3 presents a scenario mentioned in TFOR [3].

In this Scenario, suppose the neighbor A of F (forwarding vehicle) has greater speed among all of
its one-hop neighbors such as B and E. The forwarding vehicular node F chooses vehicle A instead
of vehicular node B because of its greater speed as compared to other neighbors and forward packet
to it at time t1. Vehicular node A is unable to forward packet to vehicular node C at time t2, because
vehicular node C is outside the transmission range of vehicular node A. But if the forwarding vehicular
node F makes use of two-hop neighbor information which is accomplished by beacons exchange,
then at time t2, F will be able to dispatch the packet to vehicular node C through neighbor vehicular
node B instead of vehicular node A. This is because B is nearer to C and C is the closest vehicular
node to destination vehicle D. By doing so, it minimizes the delay while reducing the number of
intermediate hops while relaying the packet from source to destination.
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 IntersectionTwo way road
 
Vehicular Node

Forwarding Vehicle 
 

Figure 3. Limitation of speed based improved greedy forwarding strategy used in GyTAR, and E-GyTAR.

Secondly, speed-based forwarding strategy can cause an increase in a number of hops due to
the variable high speed of different nodes [3]. By considering these facts, TFOR proposed two-hop
neighbor based greedy forwarding that prefers position and direction of two-hop neighbor nodes
instead of speed.

Two-hop neighbor based forwarding strategy used in TFOR minimizes the hop count and
diminishes the end-to-end delay as compared to one-hop speed based improved greedy forwarding
of GyTAR [31]. Our proposed protocol DMJSR employs one-hop neighbor information based greedy
forwarding technique in which forwarding node considers position and direction of one-hop neighbor
as a substitute of two-hop neighbor based greedy forwarding of TFOR and one-hop speed based
improved greedy forwarding of GyTAR and E-GyTAR which helps it to achieve improved performance
as compared to existing strategies.

The reason for this selection is because first of all it is simpler as compared to other variants
and secondly it generates less routing overhead in the highly dense environment as compared to
maintaining two-hop neighbor information.

Despite the forwarding strategy based on one-hop neighbor information, the risk remains that a
packet carrier vehicle is unable to locate a next candidate forwarding vehicle to forward the packet,
in that case, it will make use of carry and forward approach [31]. The packet carrier vehicle will hold
the packet until an appropriate forwarding node in its vicinity is found. However, our approach
minimizes the use of carry and forward as compared to existing approaches because of its emphasis
on connectivity during junction selection which reduces end-to-end delay and packet loss. As frequent
use of carry and forward causes more delays due to lack of connectivity and also packet loss because
of expiry of the time-to-live duration of the packet. In general, if our protocol during junction selection
phase finds that there is no vehicular density around the next candidate junctions, it will simply
employ carry and forward technique to move packet toward next destination junction.

4. Simulation Setup and Result Analysis

For performance evaluation, GloMoSim (Global Mobile System Simulator) (2.03, UCLA (University
of California Los Angeles), Los Angeles, CA, USA, 2008) [3,35,42] is used to carry out simulations.

4.1. Mobility Model

It is a very vital step to choose an appropriate mobility model for VANETs simulation. The mobility
model must exhibit the real vehicular characteristics. The mobility model also affects the performance of

55



Appl. Sci. 2018, 8, 687

protocols [2,3]. The mobility models for vehicular environment usually have two categories. These are
macroscopic and microscopic mobility models. The macroscopic mobility is actually a reflection of
mobility constraints such as roads, number of road lanes, the city streets, speed limits, traffic lights,
traffic density, and traffic flows. The microscopic mobility exhibits the characteristics such as vehicles
conduct with each other and with the infrastructure [35,43]. Both micro and macro mobility categories
are made available by the VanetMobiSim. It is an extended version of CANU (Communication in
Ad-hoc Networks for Ubiquitous Computing) mobility simulation model [35,42,43].

4.2. Simulation Scenario

In our simulation, VanetMobiSim (1.1, Institut Eurecom, Sophia Antipolis, Valbonne, France,
2007) [43] is used to generate the vehicular mobility traces in an area of 3000 × 2700 m2. This area
contains 18 intersections and 30 bidirectional multilane roads in which vehicular nodes mobility is
simulated. At the start of the simulation, the vehicular nodes are randomly distributed over the multilane
roads and move in both directions. The movements of the vehicles on the roads are based on car following
model or intelligent driving model [43]. The vehicles speed depends on the kind of the vehicles (like car,
bus, truck, etc.) and nature of the roads. The number of vehicles is varied from 100 to 350. The simulation
results are averaged over 10 runs. The rest of the parameters are summarized in Table 2.

Table 2. Simulation setup.

Simulation/Scenario MAC/Routing

Simulation time 250 min MAC (Medium Access
Control) protocol

802.11 DCF (Distributed
Coordination Function)

Map size 3000 × 2700 m2 Channel capacity 54 Mbps

Mobility model VanetMobiSim Transmission range 266 m

Number of intersections 23 Traffic model 15 CBR connections

Number of double lane roads 36 Packet sending rate (1–10 packet(s)/second)

Number of vehicles 100–350 Vehicle Speed 35–60 Km/h

Number of simulation runs 10 Packet size 128 bytes

Weighting factors α = 0.5, β = 0.5,
H1 = 0.5, H2 = 0.5 Beacon Interval 1 s

4.3. Simulation Results and Discussion

For performance comparison, we have compared three other routing protocols with our proposed
protocol. These protocols are GSR [38], E-GyTAR [2] and TFOR [3]. The performance metrics used for
comparison include packet delivery ratio, end-to-end delay, and routing overhead. Packet delivery
ratio is defined as the percentage of packets that are successfully delivered to their destination vehicles.
End-to-end delay is defined as the average delay incurred by the packet from its source to its destination.
Routing overhead is the ratio of total control packets produced to the total data packets received at the
destinations during the complete simulation [2,3,31].

4.3.1. Packet Delivery Ratio

Figure 4 depicts that packet delivery ratio for all the considered protocols increases with increase
in vehicular density. It can be observed from the figure that packet delivery ratio of DMJSR is higher
as compared to GSR, E-GyTAR and TFOR. This is primarily because, in DMJSR, the routing path is
established progressively based on multiple junctions ensuring that the junctions with higher vehicular
traffic density are selected. Consequently, a packet will travel successively closer towards the destination
along the city streets where there are adequate vehicular nodes to ensure high network connectivity.
Whereas in case of GSR, the source vehicle computes series of junction statically before transmission
of the packet without taking into account the vehicular traffic density. As a result, some data packets
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are unable to find their destination node because of lack of connectivity on some segments of city
streets. However, the problem with E-GyTAR and TFOR is that they establish path based on one
junction at a time. As a result, sometimes those junctions whose next streets contain no vehicular traffic
are selected. Selection of such streets results in local optimum and as a result, packet delivery ratio
decreases. The new dynamic multiple junction selection mechanism and one-hop position and direction
based forwarding mechanism minimize the occurrence of such cases and this helps DMJSR to bring
considerable improvement in terms of packet delivery ratio as compared to GSR, E-GyTAR and TFOR.
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Figure 4. Packet delivery ratio vs. the number of nodes (@5 packets/second). GSR, Geographic Source
Routing Protocol; DMJSR, Dynamic Multiple Junction Selection based Routing Protocol; TFOR, Traffic
Flow Oriented Routing Protocol; E-GyTAR, Enhanced Greedy Traffic Aware Routing Protocol.

Figure 5 shows a comparison of packet delivery ratio vs. packet sending rates. Increasing packet-
sending rate to certain values for all protocols decreases packet delivery ratio. It brings congestion which
compels the network to drop some packets. In GSR, certain nodes on the preselected paths instigate more
packet transmission which results in more decrease in packet delivery ratio as compared to others routing
protocols. The packet-sending rate does not spoil too much the performance of E-GyTAR, TFOR and
DMJSR in terms of delivery ratio.
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Figure 5. Delivery ratio as a function of the packet-sending rate (350 nodes).

4.3.2. End-To-End Delay

Figure 6 illustrates that DMJSR outperforms GSR, E-GyTAR and TFOR in terms of end-to-end
delay as well. This is because DMJSR avoids pre-determining an end-to-end routing path before
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dispatching data packets without considering connectivity as GSR does: the route in DMJSR is
discovered progressively based on multiple junction mechanism by considering network connectivity
when relaying data packets from source to destination. In E-GyTAR only directional density is
used to find the path, but in urban scenarios with a two-lane road, there are a lot of streets having
non-directional density and shortest distance to the destination that can play a key role for relaying
packets towards the destination during routing. The speed based greedy forwarding approach
of E-GyTAR results in incurring more hops while relaying the packet from source to destination
resulting in an increase in end-to-end delay. In DMJSR, there is a reduction in the number of hops
required to deliver data packets due to use of the forwarding mechanism that maintains one-hop
neighbor information based on position and direction instead of the speed of vehicular node to forward
packets between two junctions. Although, TFOR uses directional and non-directional traffic density to
accomplish routing path but still suffer from the local optimum problem at junction level which causes
more delay. DMJSR selects those multiple junctions that provide enough connectivity as compared
to E-GyTAR and TFOR and is less likely to be affected by local optimum. For GSR, E-GyTAR and
TFOR, the likelihood of packets staying more time in suspension buffer of a vehicular node is more as
compared to DMJSR, which results in an increase in end-to-end delay for GSR, E-GyTAR and TFOR.
The novel combination of multiple junction selection mechanism with position and direction based
one-hop forwarding mechanism in DMJSR leads to a considerable reduction of end-to-end delay in
comparison to the other protocols.
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Figure 6. End-to-end delay vs. the number of nodes (@5 packets/second).

4.3.3. Routing Overhead

Figure 7 shows the routing-overhead of all the three protocols against the number of the nodes.
With an increase in vehicular density, there is an increase in routing overhead for all the protocols.
This is because the amount of control messages depends on the number of vehicles. DMJSR has least
routing overhead as compared to GSR, E-GyTAR and TFOR. GSR incurs higher routing overhead
because of generation of more beacon messages. It obtains the locations of its neighbor by generating a
higher amount of beacons messages as compared to other routing protocols. While in E-GyTAR the
routing overhead increases because of its improper junction selection mechanism that causes local
optimum in the absence of directional density of vehicles. TFOR also produces more overhead because
of its junction selection mechanism. Additionally, maintaining two-hop neighbor information in greedy
forwarding brings more routing overhead for TFOR in highly dense environments like traffic jams.
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Figure 7. Routing overhead vs. the number of nodes (@5 packets/second).

4.3.4. Impact of Increasing Number of Considered Junctions Dynamically

One important question that needs to be answered is that what is the optimal number of
junctions that should be considered for achieving the best performance in terms of various parameters?
For answering this question, we have compared the performance in terms of packet delivery ratio with
respect to increasing the number of considered junctions. The simulation result shows that considering
two junctions results in a better performance as compared to considering more than two junctions.

Figure 8 shows that increasing the number of considered junctions from 1 to 2 results in an
increase in packet delivery ratio. However, as we start increasing the number of junctions beyond 2,
the performance of DMJSR starts to degrade in terms of packet delivery ratio. The major reason behind
this observation lies in one of the very basic characteristics of VANETs, i.e., the network in VANETs is
very dynamic and the network topology changes very rapidly. Because of this reason, considering more
than 2 junctions while making a decision for packet forwarding degrades the performance instead of
achieving an enhanced performance. Moreover, keeping all the information that lies between multiple
junction such as density, direction of vehicles etc., in a very dynamic topology also leads to an overhead
in terms of processing and storage. The simulation results revealed that the proposed protocol is
capable of achieving better performance as compared to existing routing protocols. As a next step,
performance evaluation using a more complex mobility model based on real traffic traces that fully
capture the complexity involved in the movement of the nodes can be considered.

DMJSR performance with increasing intersections
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Figure 8. Packet delivery ratio vs. increasing no of junctions dynamically at a time @ 350 vehicular nodes.
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5. Conclusions

In this paper, a novel multiple junction selection based routing protocol (DMJSR) is proposed.
We first presented the major problems faced by some of the already well-known protocols in VANETs.
Then we explained our new proposed protocol and explained how it overcomes the limitations faced
by existing protocols. DMJSR selects two junctions at a time based on traffic density and shortest curve
metric distance to the destination. DMJSR employs a novel multiple junction approach, an improved
greedy forwarding strategy based on one-hop neighbor information to relay packets in between
junctions, and a recovery strategy, which can incorporate urban surroundings challenges in a better way.
The simulation results indicated that our proposed protocol convincingly outperforms TFOR, E-GyTAR,
and GSR in terms of packet delivery ratio end-to-end delay because of its ability to incorporate in better
ways the main challenges faced in the city environments as compared to the existing routing protocols.
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Abstract: Driver’s intention classification and identification is identified as the key technology for
intelligent vehicles and is widely used in a variety of advanced driver assistant systems (ADAS).
To study driver’s steering intention under different typical operating conditions, five driving school
coaches of different ages and genders are selected as the test drivers for a real vehicle test. Four kinds
of typical car steering condition test data with four different vehicles are collected. Test data are filtered
by the Butterworth filter and are used for extracting the driver steering characteristic parameters.
Based on Principal Component Analysis (PCA), the three kinds of clustering analysis methods,
including the Fuzzy C-Means algorithm (FCM), the Gustafson–Kessel algorithm (GK) and the
Gath–Geva algorithm (GG), considered are proposed to classify and identify driver’s intention
under different typical operating conditions. Results show that the three approaches can successfully
classify and identify drivers’ intention respectively despite some accuracy error by FCM. Meanwhile,
compared with FCM and GK, GG was the best performing in classification and identification of the
driver’s intention. In order to verify the validity of the identification method designed by this article,
five different drivers were selected. Five tests were carried out on the driving simulator. The results
show that the results of each identification are exactly the same as the actual driver’s intention.

Keywords: driver’s steering intention; real vehicle test; Principal Component Analysis (PCA);
cluster analysis

1. Introduction

In recent years, with the rapid integration of high-tech and advanced automotive technologies
such as computers, the Internet, communications and navigation, automatic control, artificial
intelligence, machine vision, precision sensors, high-precision maps and smart cars (or unmanned
vehicles), smart driving has become one of the world’s automotive engineering research hotspots
and a new impetus of the automotive industry’s growth. According to authoritative media at home
and abroad, in the future of the automotive industry, more than 90% of scientific and technological
innovation will focus on the field of automotive intelligence. Therefore, smart vehicles are safe, efficient,
energy-efficient next-generation vehicles [1,2], and the study of smart cars has a very important
significance, which has become the focus of the global automotive industry.

The driver intention is reflected by his/her own inner state in the driving process. It cannot
be obtained directly during driving and is only predicted by the driver’s movements, vehicle
status and traffic environment information. Driver’s intention classification and identification
are identified as comprising the key technology for intelligent vehicles and are widely used in a
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variety of Advanced Driver Assistant Systems (ADAS) [3,4], such as the Adaptive Cruise Control
System (ACC) [5,6], the Active Front Steering System (AFS) [7–10], the Parking Assistance Systems
(PAS) [11,12], the steer-by-wire systems [13] and Man-machine Co-driving Electric Power Steering
(MCEPS) system [14,15]. The classification and identification of driver’s intention are based on the
real-time acquisition of the driver’s operating signal and car state, or at the same time, by monitoring
the driver’s head movement range and facial expressions, the driver’s behavior is distinguished and
identified to obtain the driver’s driving intention [16].

Many scholars are committed to study the classification and identification of driver’s intention.
Liang Li et al. [17] proposed a novel method based on an artificial error back-propagation neural
network to identify the driver’s starting intention. Takano et al. [18] proposed an intelligent cognitive
method for driver’s intention identification based on the Hidden Markov Model (HMM). The method
mainly includes data segmentation, time series data labeling and the identification and generation
of the driving mode. Raksin et al. [19] proposed an algorithm based on the driver’s intention to
identify the direct yaw moment control, in which the driver steering intention identification is through
the Hidden Markov Model (HMM). The use of the dynamic Bayesian network was combined with
the past driving state and the current driving state to predict the driver’s intention of parking at
the crossroads. Tesheng Hsiao [20] used the maximum posterior probability assessment method to
obtain the driver’s steering model parameters. He established a steering model that can effectively
improve the recognition accuracy and that has the function of predicting the driver’s driving strategy.
The previous research works mainly concentrated on a single traffic environment, such as the straight
road or the crossroads intentions, and not on variety of typical steering conditions under the driving
intention identification study.

The driving intention under each condition requires multiple drivers’ characteristic steering
parameters, such as driving parameters (steering angle, angular velocity and torque) and vehicle
status parameters (roll angle, lateral acceleration and yaw rate). However, if all the characteristic
parameters are used for classification and identification, the computational complexity is increased
due to the large number of characteristic parameters. Additionally, analysis of the situation becomes
much more difficult. Although each feature parameter provides some information, some of the
characteristic parameters are correlated, and the characteristic parameters are not independent of
each other. Therefore, the information provided by these characteristic parameters overlaps to some
extent. Therefore, we need to use a kind of theoretical algorithm to reduce the dimension of the
data and to decorrelate the input variables. Principal Component Analysis (PCA) is used to reduce
the data dimension, which is used in various applications such as error recognition [21], pedestrian
identification [22] and image tracking [23]. However, PCA is not used in the driving intention
identification study under typical steering conditions.

In essence, the driver’s intention is a pattern recognition process. The cluster analysis is a typical
method of pattern recognition. Compared with the traditional classification and identification of
driver’s intention using the neural network and fuzzy mathematics, the clustering algorithm only needs
a small amount of data, which eliminates the need to construct the nonlinear recognizer and ensures
that the accuracy is stable. In order to classify and identify driver’s intention, three clustering analysis
methods are studied: the Fuzzy C-Means algorithm (FCM), the Gustafson–Kessel algorithm (GK) and
the Gath–Geva algorithm (GG). Due to its flexibility and robustness for ambiguity, the FCM algorithm
is currently an active topic [24] and has been widely applied in the areas of pattern recognition [25],
function approximation [26], image processing [27], machine learning [28], and so on. The GK
algorithm can generate a fuzzy partition that provides the degree of membership of each data point
to a given cluster [29]. The GG algorithm can make the parameters of the univariate membership
functions be directly derived from the parameters of the clusters [30].

Therefore, this paper selected five driving school coaches of different driving experiences and
genders as real vehicle test driver, and four typical car steering conditions’ test data with four different
vehicles were collected. Additionally, this paper used principal component analysis and clustering
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analysis to classify and identify the driver’s intention. The paper analyzed the advantages and
disadvantages of the three different clustering methods (FCM, GK and GG) in the direction of driver’s
steering intention.

The paper is organized as follows. In the second section, five driving school coaches of different
ages and genders are selected as the test drivers for the real vehicle test. In the third section, driver’s
characteristic steering parameters under different conditions are proposed. The fourth section uses
principal component analysis and clustering analysis to classify and identify the driver’s intention.
In the fifth section, the clustering results and analysis are presented. Finally, the conclusions are drawn
in the last section.

2. Experiment

2.1. Experimental Devices

The real vehicle experiment of driver’s steering in different conditions consists of the following
components: S-Motion biaxial optical speed sensor (Kistler, Winterthur, Switzerland) (signal delay
only 6 ms), biaxial optical speed sensor mounting bracket, KiMSW Force steering wheel sensor 250 Nm
(Kistler, Winterthur, Switzerland) (steering angle accuracy: 0.015◦), universal mounting bracket (Kistler,
Winterthur, Switzerland), power distribution box (Kistler, Winterthur, Switzerland) and SDI-600GI
Model GPS/INS (SDI, Beijing, China) (accuracy: 10 cm error). The experimental devices are shown in
Figure 1.

 

Figure 1. Experimental devices and the actual installation.

2.2. Experimental Design and Experimental Vehicles

This experiment selected 5 driving school coaches of different driving ages and genders as the
test drivers, which are shown in Table 1. The turn right/left steering condition, U-turn condition,
lane keeping condition and lane changing condition are proposed in the real vehicle test. Additionally,
the speed of the vehicle is certain during the test. The test vehicles were four passenger cars: GM GL8,
Skoda Octavia, Honda Accord and SAIC MG. The experimental vehicles are shown in Figure 2.

Table 1. Driver information.

No. Ages (Years) Driving Experience (Years) Gender

Driver 1 55 33 female
Driver 2 28 10 male
Driver 3 53 31 male
Driver 4 46 22 male
Driver 5 53 21 male

65



Appl. Sci. 2017, 7, 1014

 

Figure 2. Experimental vehicles (1) GM GL8, (2) Skoda Octavia, (3) Honda Accord, (4) SAIC MG.

3. The Method of the Driver’s Intention Identification

Driver’s Characteristic Steering Parameter under Different Conditions

In order to accurately describe the steering characteristics of the driver under each steering
condition, it is ensured that there will be no loss or distortion of the driver’s intention information.
According to GB/T 6323-1994 “Vehicle Handling Stability Test Method”, this paper selects the typical
steering conditions of the driver’s characteristic parameters, as shown in Table 2. In order to identify the
driver’s steering intention under different steering conditions, this paper chooses the driver steering
parameters and vehicle dynamics parameters for the first two seconds under different operating
conditions. The purpose of this is to use the initial operation of the driver to identify the driver’s
steering intention in the next period. It is helpful to lay the foundation for dynamic control for further
advanced driver assistant systems. Furthermore, this can improve the accuracy of the intelligent
vehicle active safety control system. However, various uncertainties exist due to the large amount of
interference signal in the test data, as shown in Figure 3. Especially, torque, angular velocity, yaw rate
and lateral acceleration need to be filtered.

Table 2. Driver’s characteristic steering parameters.

Symbol Meaning Units

δm Average steering angle deg
δmax Maximum steering angle deg

.
δm Average angular velocity deg/s

.
δmax Maximum angular velocity deg/s
Tm Average torque Nm

Tmax Maximum torque Nm
γmax Maximum yaw rate deg/s
φmax Maximum roll angle deg
aymax Maximum lateral acceleration m/s2

66



Appl. Sci. 2017, 7, 1014

 
(a)

 
(b)

 
(c)

3 3.5 4 4.5 5 5.5 6 6.5 7
-3

-2.5

-2

-1.5

-1

-0.5

Time (s)

T
or

qu
e 

(N
m

)

 

 

Raw datd
Order:1
Order:2
Order:3
Order:10

3 3.5 4 4.5 5 5.5 6 6.5 7
-50

-40

-30

-20

-10

0

10

20

30

Time (s)

A
ng

ul
ar

 v
el

oc
ity

 (
de

g/
s)

 

 

Raw data
Order:1
Order:2
Order:3
Order:10

3 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

Time (s)

Y
aw

 r
at

e 
(d

eg
/s

)

 

 

Raw data
Order:1
Order:2
Order:3
Order:10

Figure 3. Cont.

67



Appl. Sci. 2017, 7, 1014

 
(d)

3 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

Time (s)

La
te

ra
l a

cc
el

er
at

io
n 

(m
/s

2 )

 

 

Raw data
Order:1
Order:2
Order:3
Order:10

Figure 3. Filter results with the Butterworth filter: (a) torque; (b) angular velocity; (c) yaw rate; and
(d) lateral acceleration.

The Butterworth filter is a kind of electronic filter whose frequency response curve is the smoothest.
The filter was first proposed by a British engineer, Stephen Butterworth, in a paper published in the
British journal Radio Engineering in 1930. The attenuation rate of the first-order Butterworth filter
is 6 dB per octave. The second-order Butterworth filter has a decay rate of 12 dB per octave, and the
third-order Butterworth filter has an attenuation rate of 18 dB per octave, and so on. The amplitude of
the Butterworth filter is monotonically decreasing, and it is also the only filter that maintains the same
shape regardless of the order of the amplitude of the diagonal frequency curve. The higher the order
of the filter is, the faster the amplitude attenuation in the resistive band is. The difference with the
Chebyshev, Bessel and elliptical filters is that the attenuation of the Butterworth filter is slower than
the other filters, but is very flat and does not vary.

The Butterworth low-pass filter can be expressed by the square of the amplitude:

|H(ω)|2 =
1

1 +
(

ω
ωc

)2n (1)

where n is the order of the filter and ωc is the cut-off frequency.
Therefore, we choose the Butterworth filter with different orders to process the test data.

Filter results can be seen in Figure 3. In Figure 3a, the first-order Butterworth filter obtains the
closest data to the raw data; simultaneously, the value of torque is also very smooth. Therefore,
the first-order Butterworth filter is the most suitable to handle the torque signal. In Figure 3b, we can
reach the same conclusion about the angular velocity signal. In Figure 3c,d, although the first-order
Butterworth filter obtains the closest data to the raw data, the first-order Butterworth filter is less
smooth than the second-order Butterworth filter. Therefore, the second-order Butterworth filter is the
most suitable to handle the yaw rate and the lateral acceleration signal.

Since the number of experimental data is very large, which is shown in Table 3, only about 20%
(133) of the experimental data are selected (after removing the wrong data). This is because, compared
with the traditional classification and identification of the driver’s intention using the neural network
and fuzzy mathematics, the clustering algorithm only needs a small amount of data, which eliminates
the need to construct the nonlinear recognizer and ensures that the accuracy is stable. Additionally,
the characteristic parameters of these sets of test data are extracted and analyzed, which lays the
foundation for the driver’s steering intention identification.
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Table 3. Actual experimental data and speed conditions.

The Number of
Experiment and the

Speed Limit

Typical Steering Conditions

Turning
Right/Left
Condition

U-Turn
Condition

Lane Keeping
Condition

Lane
Changing
Condition

The Sum of
All the

Conditions

Number of
Experimental Data

320 82 160 162 724

Speed Conditions (km/h) 20–50 20–30 30–60 30–40 20–60

The representative samples of the experimental data of the real vehicle tests are shown in
Figures 4–9, which contain four conditions of the data, respectively, turning right condition, U-turn
condition, lane keeping condition and lane changing condition.

(a) (b)

(c) (d)

Figure 4. Steering angle under different steering conditions: (a) turning right; (b) U-turn; (c) lane
keeping; (d) lane changing.

(a) (b)

Figure 5. Cont.
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(c) (d)

Figure 5. Angular velocity under different steering conditions: (a) turning right; (b) U-turn; (c) lane
keeping; (d) lane changing.

(a) (b)

(c) (d)

3.5 4 4.5 5
1

1.5

2

2.5
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3.5

Figure 6. Torque under different steering conditions: (a) turning right; (b) U-turn; (c) lane keeping;
(d) lane changing.

(a) (b)

Figure 7. Cont.
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(c) (d)

Figure 7. Roll angle under different steering conditions: (a) turning right; (b) U-turn; (c) lane keeping;
(d) lane changing.

(a) (b)

(c) (d)

Figure 8. Lateral acceleration under different steering conditions: (a) turning right; (b) U-turn; (c) lane
keeping; (d) lane changing.

(a) (b)

Figure 9. Cont.
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(c) (d)

Figure 9. Yaw rate under different steering conditions: (a) turning right; (b) U-turn; (c) lane keeping;
(d) lane changing.

4. Principal Component Analysis of Steering Parameters

In solving practical problems and research, it is often possible to collect more information about
the research object in order to have a comprehensive understanding of the problem. However, due to
the theoretical development and application of technical constraints, having too many variables to be
processed and too much information have become analysis obstacles. To solve this problem, Principal
Component Analysis (PCA) should be used to analyze data. PCA is a statistical analysis method that
simplifies multiple indicators into a small number of comprehensive indicators, with as few as possible
to reflect the original variable information [31], to ensure that the original loss of information and the
number of variables is as small as possible. Let X =

(
X1, X2, · · · , Xp

)′ be a p-dimensional random
vector, and its linear variation is as follows:

PC1 = a1
′X = a11X1 + a21X2 + . . . + ap1Xp

PC2 = a2
′X = a12X1 + a22X2 + . . . + ap2Xp

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
PCp = ap

′X = a1pX1 + a2pX2 + . . . + appXp

(2)

Using the new variable PC1 to replace the original p variables X1, X2, ..., Xp, PC1 should reflect
as much as possible the original variable information. If the first principal component is not enough
to represent the vast majority of the original variables’ information, two main components PC2, and
so on, will be used. The main purpose of principal component analysis is to simplify the data, so in
practical applications, we will not take p principal components and usually use m (m < p) principal
components. The number of principal components m should be based on the cumulative contribution
of the variance of each principal component to the final decision.

pr = λk/∑ λi (3)

where λ is the eigenvalue corresponding to each principal component, k is the number of selected
main components and I is the total number of components.

The principal component analysis of 133 sets of experimental data is carried out by MATLAB
software, and nine principal components (Y1, Y2, ..., Y9) were obtained. The eigenvalue, contribution
rate and cumulative contribution rate of each principal component are shown in Table 4. According
to the principal component analysis principle, the first four principal components are selected, and
the correlation between the characteristic parameters and the principal components is analyzed.
The representative average angular velocity, average steering angle, maximum yaw rate and maximum
lateral acceleration, the four parameters of acceleration, are used for cluster analysis. The method of
principal component analysis is shown in Figure 10.
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Figure 10. Method of principal component analysis.

Table 4. The principal component eigenvalue, contribution rate and cumulative contribution rate.

Main Ingredient Eigenvalues Contribution Rate (%) Cumulative Contribution Rate (%)

Y1 4.279 41.33 41.33
Y2 1.439 17.42 58.75
Y3 1.235 14.53 73.28
Y4 1.005 11.95 85.23
Y5 0.699 5.12 90.35
Y6 0.325 4.91 95.26
Y7 0.032 3.61 98.87
Y8 0.006 1.09 99.96
Y9 0.005 0.04 100

5. Comparison of Clustering Analysis Methods

5.1. Fuzzy C-Means Algorithm

The fuzzy C-means clustering is defined as:

J(X; U, V, λ) =
c

∑
i=1

N

∑
k=1

(μik)
mD2

ikA +
N

∑
k=1

λk

(
c

∑
i=1

μik − 1

)
(4)

and by setting the gradients of (J) with respect to U, V and λ to zero. If D2
ikA > 0, ∀i, k and m > 1, then

(U, V) ∈ Mf c × Rn×c may minimize only if:

μik =
1

∑ c
j=1

(
DikA/DjkA

)2/(m−1)
, 1 ≤ i ≤ c, 1 ≤ k ≤ N (5)
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Additionally:

vi =

N
∑

k=1
μm

ik xk

N
∑

k=1
μm

ik

, 1 ≤ i ≤ c (6)

5.2. Gustafson–Kessel Algorithm

The Gustafson–Kessel algorithm obtains the objective function by introducing the covariance
matrix, which is suitable for the clustering analysis of the correlation between the variables and is
suitable for the distribution of irregular data [32]. The clustering algorithm uses the adaptive distance
of the clustering covariance matrix to measure. By obtaining the objective function to achieve the
membership matrix of the fuzzy clustering, , and the clustering center V = (v1, v2, v3, · · · , vc)

T , where:
c is the number of samples; uij is the clustering center membership relative to the data point; and

they meet uij ∈ [0, 1],
c
∑

i=1
uij = 1, 1 ≤ j ≤ N. The data sequence X = (x1, x2, · · · , xN) is given, and its

minimized objective function is:

J(X, V, U) =
c

∑
i=1

N

∑
j=1

(
uij
)mD2

ij (7)

D2
ij = ‖xj − vi‖2

Ai
=
(
xj − vi

)T Ai
(
xj − vi

)
(8)

Ai = det(Fi)
1
n F−1

i (9)

where: m is the fuzzy index, representing the degree of fuzzy clustering, and the greater the value of m,
the greater the degree of overlap between the major clusters; usually, m takes one or two; D2

ij is the
distance from any data point xj to the cluster center vi, and it is a square inner product norm; Ai is a
positive definite symmetric matrix, and it is determined by the clustering matrix covariance matrix Fi.

However, Formula (9) cannot be minimized directly considering its linear features. In order
to obtain a viable solution, Ai must be constrained in some way. The usual way is to constrain the
determinant of Ai. The allowable matrix Ai varies with its determinant, corresponding to the shape of
the optimized cluster, while its volume remains unchanged:

‖Ai‖ = ρi, ρ > 0 (10)

where ρi is certain for each cluster. Using the Lagrange multiplier method, Ai is obtained:

Ai = [ρidet(Fi)]
1/nF−1

i (11)

where Fi is defined by:

Fi =

N
∑

k=1
(μik)

m(xk − vi)(xk − vi)
T

N
∑

k=1
(μik)

m
(12)

5.3. Gath–Geva Algorithm

The Gath–Geva algorithm was proposed by Bezdek and Dunn [33]:

Dik(xk, vi) =

√
det(Fωi)

αi
exp

(
1
2

(
xk − vi

(l)
)T

F−1
ωi

(
xk − vi

(l)
))

(13)
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The difference between the GG algorithm and the GK algorithm is that the distance norm involves
an exponential term. Fωi is the fuzzy covariance matrix of the i-th cluster, given by:

Fωi =

N
∑

k=1
(μik)

ω(xk − vi)(xk − vi)
T

N
∑

k=1
(μik)

ω
, 1 ≤ i ≤ c (14)

The prior probabilities formula for each classification are given by:

αi =
1
N

N

∑
k=1

μik (15)

6. Clustering Results and Analysis

In order to further analyze the driver’s steering characteristics under the steering conditions
after clustering, the results are shown by the average angular velocity and the average steering angle.
As shown in Figures 11–13, the fuzzy C-means algorithm, the Gustafson–Kessel algorithm and the
Gath–Geva algorithm were used to divide the driver’s steering test results into four classes, and in each
algorithm, the cluster center for each class is marked. (0.18, 0.59), (0.33, 0.18), (0.55, 0.785) and (0.785,
0.625) are the four clustering centers given by the fuzzy C-means algorithm; the Gustafson–Kessel
algorithm gives four clustering centers: (0.155, 0.62), (0.27, 0.305), (0.46, 0.53) and (0.76, 0.67). The four
cluster centers (0.115, 0.63), (0.255, 0.365), (0.44, 0.48) and (0.742, 0.649) are given by the Gath–Geva
algorithm. According to the fourth cluster center, we can see that the average angular velocity and the
average steering angle of the drivers’ steering are larger. This reflects the driver’s steering intention
under the U-turn condition. Analysis of the first and second cluster centers revealed that these two
types of conditions exist; the lower average angular velocity and larger average steering angle. It can
be judged at this time that the first cluster reflects the drivers’ steering intention under the lane change
condition, and the second cluster centers reflects drivers’ steering intention under the lane keeping
condition. The remaining third cluster center between the fourth and first two cluster centers usually
belongs to the ordinary driver’s intentions for the turn right/left steering conditions.
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Figure 11. Visualization of the classification results of the driver’s steering intention based on the fuzzy
C-means algorithm.
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Figure 12. Visualization of the classification results of the driver’s steering intention based on the
Gustafson–Kessel algorithm.
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Figure 13. Visualization of the classification results of the driver’s steering intention based on the
Gath–Geva algorithm.

Three kinds of clustering analysis methods can be used to separate the experimental data under
different steering conditions into four different types. However, by comparing the three clustering
methods, we can find that for the third cluster center, the average steering angle is greater than the
average steering angle of the center of the fourth cluster using the fuzzy C-means algorithm, which is
contrary to the fact that the average steering angle under the normal right/left turn is less than the
average steering angle of the U-turn. Therefore, the accuracy of the Gustafson–Kessel algorithm and
the Gath–Geva algorithm is superior to the fuzzy C-means algorithm.

In order to analyze the clustering effect more scientifically, in the clustering method, the most
representative criteria for evaluating the clustering effect are the Partition Coefficient (PC) and the
Classification Entropy (CE), which are defined as follows:
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The Partition Coefficient (PC) measures the amount of “overlapping” between clusters. It is
defined by Bezdek as follows:

PC (c) =
1
N

c

∑
i=1

N

∑
j=1

(μij)
2 (16)

The Classification Entropy (CE) measures the fuzziness of the cluster partition only, which is
similar to the partition coefficient.

CE (c) = − 1
N

c

∑
i=1

N

∑
j=1

μij log(μij) (17)

In this paper, C is the number of clusters and N is the total number of experiments. When the
two validity evaluation functions reach the optimal value, that is PC (c) reaches the maximum value
and CE (c) reaches the minimum value, the clustering analysis effect is better. The comparisons of PC
(c) and CE (c) and the required time among different clustering algorithms under different working
conditions are shown in Table 5.

Table 5. Recorded data of the evaluation in three ways.

Algorithm PC (c) CE (c) Time Consumed (s)

Fuzzy C-means 0.6935 0.6096 5.1685
Gustafson–Kessel 0.7356 0.4892 5.7304

Gath–Geva 0.9493 0.0377 5.5268

By analyzing Table 6, we can see that the Gath–Geva algorithm achieves the maximum value
for the Partition Coefficient (PC). At the same time, the Gath–Geva algorithm achieves the minimum
value for the Classification Entropy (CE). Due to the complexity of the Gath–Geva algorithm, the time
consumed area is somewhat more than the fuzzy C-means, but it is also within acceptable limits.
To sum up, the Gath–Geva algorithm is better than the other two methods for the classification and
identification of driver’s intention.

Table 6. The results of the identification.

Distances Condition 1 Condition 2 Condition 3 Condition 4 Condition 5

The distance to Clustering Center 1 3.4 2.3 0.28 2.8 3.64
The distance to Clustering Center 2 6.8 6.1 4.03 0.65 7.39
The distance to Clustering Center 3 0.25 0.74 2.79 2.7 5.71
The distance to Clustering Center 4 2.2 3.0 4.99 2.47 0.16

The result of identification Clustering 3 Clustering 3 Clustering 1 Clustering 2 Clustering 4

7. The Results of the Identification of Driver’s Steering Intention

The identification process of the driver’s steering intention is shown in Figure 14 by the method of
principal component analysis and the Gath–Geva algorithm, including the offline part, online part and
identification. The offline part is to analyze the driver’s steering intention data under different steering
conditions through the principal component analysis and Gath–Geva algorithm analysis and get the
clustering center. The online and identification parts are the processes of the real-time identification
of the driver’s steering intention. Firstly, the first 2 s of the test data are obtained under a certain
condition in the driving simulator. Secondly, the characteristics of the data parameters are extracted,
and then, the distances between the characteristic parameters and the center of each clustering center
are calculated. Finally, according to the principle of the smallest distance, the driver’s steering intention
is determined. The distance calculation formula is:

di = ‖x − ci‖, i = 1, 2, 3, 4 (18)
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where x represents the characteristic parameters of one condition, x =
(
x1, x2, · · · , xp

)
; ci represents

the clustering center parameters for clustering, ci =
(
ci1, ci2, · · · , cip

)
.

Figure 14. The flowchart for the identification of the driver’s steering intention. PCA: Principal
Component Analysis.

In order to verify the validity of the identification method designed by this article, five different
drivers were selected. Five tests were carried out on the driving simulator, namely turning right,
turning left, lane changing, lane keeping and U-turn condition. (0.45, 0.65), (0.44, 0.48) and (0.742,
0.649) are given by the Gath–Geva algorithm according to the above, respectively representing lane
changing, lane keeping, turning right and U-turn condition. As shown in Table 6, in Conditions 1–5,
the distances between the characteristic parameters and the center of each clustering center were
calculated. It is shown that the results of each identification are exactly the same as the actual driver’s
intention. Therefore, the effectiveness of the identification method designed by this article is verified.

8. Conclusions

In this paper, driver’s characteristic steering parameters under different conditions were proposed.
Real vehicle tests under four kinds of typical operating conditions were implemented by five excellent
driving school coaches with different ages and genders. The test vehicles covered four different
countries’ passenger cars. Then, the principal component analysis and clustering analysis were
combined to classify and identify the driver’s steering intention. By comparison and analysis,
the Gath–Geva algorithm was significantly better than the other two clustering algorithms under
different typical operating conditions to classify and identify the driver’s steering intention. In order
to verify the validity of the identification method designed by this article, five different drivers were
selected. Five tests were carried out on the driving simulator. It was show that the results of each
identification were exactly the same as the actual driver’s intention. Therefore, the effectiveness of the
identification method designed by this article was verified.
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Abstract: With the rapid increase of private vehicles, traffic congestion has become a worldwide
problem. Various models have been proposed to undertake traffic prediction. Among them,
autoregressive integrated moving average (ARIMA) models are quite popular for their good
performance (simple, low complexity, etc.) in traffic prediction. Localized Space-Time ARIMA
(LSTARIMA) improves ARIMA’s prediction accuracy by extending the widely used STARIMA with
a dynamic weight matrix. In this paper, a localized space-time autoregressive (LSTAR) model was
proposed and a new parameters estimation method was formulated based on the LSTARIMA model
to reduce computational complexity for real-time prediction purposes. Moreover, two theorems are
given and verified for parameter estimation of our proposed LSTAR model. The simulation results
showed that LSTAR provided better prediction accuracy when compared to other time series models
such as Shift, autoregressive (AR), seasonal moving average (Seasonal MA), and Space-Time AR
(STAR). We found that the prediction accuracy of LSTAR was a bit lower than the LSTARIMA model
in the simulation results. However, the computational complexity of the LSTAR model was also
lower than the LSTARIMA model. Therefore, there exists a tradeoff between the prediction accuracy
and the computational complexity for the two models.

Keywords: LSTAR; STARIMA; parameters estimation; traffic flow prediction; urban road network

1. Introduction

In recent decades, the number of vehicles in urban areas has increased rapidly and the urban
road network is becoming larger and more complex. Due to this, traffic congestion has become a
major problem in big cities, which has led to more fuel consumption and environment pollution.
Statistics show that the average annual traffic congestion cost in the US in 2014 was 1433 dollars per
auto commuter, or over 5 billion dollars per city for very large urban areas [1]. In order to improve the
efficiency of the urban road network and reduce traffic congestion, intelligent transportation systems
(ITS) [2] have been developed by integrating information technology, automatic control technology,
and geographic information systems (GIS). With the introduction of ITS, real-time traffic information is
available to the vehicles in the road network for trip planning through vehicular navigation systems or
dynamic route guidance systems. Unlike the computer network, which can transmit data package from
source to destination in a very short time, vehicles in urban road networks need much longer times to
travel to their destinations. Thus, trip planning should consider not only current traffic information,
but also future traffic conditions. Therefore, short-term traffic flow prediction with real-time traffic
information as prior knowledge is quite essential and has attracted increasing attention [3].
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The earliest traffic prediction method was based on the macroscopic traffic simulation model
proposed by Lighthill and Whitham [4] and Richards [5], known as the Lighthill-Whitham-Richards
(LWR) model. In this model, vehicles in the highway are treated as “traffic flow” and their dynamics
can be analyzed with the continuous fluid conservation equation in fluid mechanics. The microscopic
traffic modeling method of cellular automaton (CA) [6] simulates the traffic flow dynamics by analysis
of the interaction of individual vehicles. Traffic simulation models focus on traffic flow dynamics
using only current traffic information; no historic information is needed. The weakness of the traffic
simulation model is that it needs the origination-destination (OD) matrix of all vehicles to simulate the
traffic dynamics, which is normally hard to collect.

The autoregressive moving average (ARMA) model or autoregressive integrated moving average
(ARIMA) model [7], also called the Box-Jenkins model, is an important prediction model in economics
and other areas. Furthermore, it is considered as the standard of time series prediction. ARIMA and
its variations as seasonal ARIMA (SARIMA) [8], vector ARMA (VARMA) models [9], and so on
have been widely used for traffic prediction. The space-time ARIMA (STARIMA) [10] model has a
long historical background which is based on the ARMA with exogenous inputs (ARMAX) model.
Since the 1980s, STARIMA has been applied to different areas such as river flow, spread of disease,
spatial econometrics, and so on. In 2005 [11], the STARIMA methodology was first proposed for the
spatiotemporal behavior of traffic flow. In the STARIMA model, traffic flow data is in the form of a
spatial time series which is collected at specific locations at constant intervals of time to be used for the
short-term forecasting of space-time stationary traffic-flow processes. Furthermore, the model can be
used for assessing the impact of traffic-flow changes on other parts of the network through the use
of weight matrices estimated on the basis of the distances among the various locations. Unlike the
VARMA model, which is a generic model without any known information, the number of parameters
to be estimated for STARIMA is much less, as the road network topology is considered. However, in the
proposed STARIMA model [11], the weight matrices are assigned equally without considering the
traffic condition differences between the directly connected first order spatial neighbors and the not
directly connected higher order neighbors in the whole road network.

In the past 10 years, there have been many research studies on STARIMA. Min et al. [12] presented
a dynamic form of the STARIMA that accounted for temporal dynamics. They replaced the traditional
distance-weighted spatial weight matrix with a temporally dynamic matrix that reflected the current
traffic turn ratios observed at each road intersection. The weight matrix can be updated in real time
based on current conditions, but the method was limited to intersection-based flow data and was
fixed spatially.

Tao Cheng et al. [13] extended the standard STARIMA model to a Localized STARIMA
(LSTARIMA) model, which described the modeling of dynamic and heterogeneous autocorrelation in
network data with improved traditional models. The constructed model provided an improvement
over the traditional space-time series models. Their paper showed that the performance of prediction
was improved when compared to standard STARIMA models. The LSTARIMA model captured the
autocorrelation of traffic data locally and dynamically in the road network with a dynamic spatial
weight matrix. The LSTARIMA model has also shown good performance in traffic prediction without
the need for data pre-processing (e.g., a logarithmic transformation and differencing). Compared with
other ARIMA variations, the LSTARIMA model has a simpler structure (because the LSTARIMA has
smaller AR, and MA order values p and q). As the future traffic state of the current road depends
not only on its prior states, but also on its neighbor roads, the weight matrix of roads is key to traffic
flow prediction.

In this paper, our contributions are as follows:

1. An LSTAR model with lower computational complexity based on the LSTARIMA was proposed.
In the LSTARIMA model of Cheng et al. [13], the same weight matrix W was used for AR and
MA components of the whole road network. We used different matrices, W and U, for AR and
MA components. And individual observation zi(t) was used instead of the N-dimension column
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vector Z(t) to allow each road to have its own weight matrix W, U. Since the ARMA model can
be properly approximated by a high-order AR model, we further developed the reconstructed
LSTARIMA model into our proposed LSTAR model.

2. A more reasonable weight matrix and new traffic information collection with the Vehicular
Ad hoc Networks (VANET) approach was proposed. As the number of vehicles output from
upstream roads has more impact on the future traffic condition compared to speed difference,
it was used to determine the dynamic spatial weights instead of the speed difference. To obtain
the traffic information needed for weight matrix determination, the vehicles stopped at red lights
were used to collect traffic information via VANET.

3. Two theorems were given and verified for parameter estimation of our proposed LSTAR model.
When the distribution of traffic flow is stable, the weight matrix can be treated as time invariant.
When the traffic flow distribution is not stable, the weight matrix is time variant. For these two
different cases, we provided two theorems to determine the parameters.

4. Related simulations were performed. Through the simulation results, we observed
that the prediction accuracy of LSTAR was a bit lower than the LSTARIMA model.
However, the computational complexity of the LSTAR model was also lower than the LSTARIMA
model. Therefore, there existed a tradeoff between the prediction accuracy and the computational
complexity for the two models.

The rest of this paper is organized as follows. In Section 2, state-of-the-art traffic information
collection, traffic prediction, and traffic applications are reviewed. In Section 3, we introduce the LSTAR
model, the construction of the weight matrix of the LSTAR model, and a new traffic information
collection method. In Section 4, parameters estimation methods of the LSTAR model are given
and proven. In Section 5, the experimental evaluation is presented. Finally, Section 6 provides
the conclusions and identifies future research directions.

2. State-of-the-Art and Related Topics

Traffic information collection provides the data input for traffic prediction, and there are
many applications that use traffic prediction results to improve traffic conditions. In this section,
the state-of-the-art traffic information collection, traffic prediction, and urban traffic applications
are reviewed.

2.1. Traffic Information Collection

As traffic information is the base data of ITS, how to collect traffic information efficiently is
an important area of research. Loop detectors are pressure, magnetic, and other sensors buried
underground to detect if there are vehicles passing over them. They are widely deployed in urban
areas to count the number of vehicles passing through fixed points of roads. Compared to loop detector
technology, machine-vision-based traffic monitoring is a state-of-the-art approach with the advantages
of easy maintenance, real-time visualization, and high flexibility [14]. With properly installed cameras,
traffic information such as speed, volume, and even traffic accidents can be detected. However, it is
expensive to establish these systems as well as to maintain a huge number of fixed devices on the road
side, and they can only gather the traffic information of fixed points.

With the equipment of global position system (GPS) receivers on vehicles or mobile phones,
vehicles can detect their own real-time location and speed. An alternative traffic information collection
approach has been proposed to estimate the traffic state by checking the location and speed of some
vehicles running on the road [15,16]. These probe vehicles are known as floating vehicles, and are
normally buses and taxis. Due to the low cost of GPS receivers, the overall cost of the floating vehicles
system is low. The shortcoming of floating vehicles is that their distribution in the urban traffic network
is not even in space and time, which means that they may not be able to provide complete traffic states
of the whole road network.
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Vehicular Ad hoc Networks (VANET) [17–19] are an emerging technology developed for traffic
security and data transformation [20]. In recent years, many research studies have used VANET to
collect traffic information. The first type of system uses VANET to only estimate the traffic density
of the road by detecting the number of vehicles in the VANET communication range [21]. The other
type of system assumes that each vehicle is also equipped with a GPS receiver so more detailed traffic
information can be collected [22,23]. As GPS receivers are more commonly equipped when compared
with VANET and GPS can provide more information, more research has focused on the approach with
GPS. With the communication capability of VANET, the collected traffic information can be easily
shared and used by other ITS applications such as traffic prediction, route planning, and so on.

After traffic information is collected, it can be used as an input to other ITS applications as base
data. Since VANET can obtain the traffic information of the whole network without infrastructure and
can be easily integrated with other ITS systems, it was used to collect traffic information in our paper.
Section 3.3 discussed our traffic information collection method via VANET in detail.

2.2. Traffic Prediction

Short-term traffic prediction is one of the most important topics in ITS research and practice.
Aside from the ARIMA series prediction method, there have also been many other methodologies
engaged for this purpose.

The Kalman filtering method [24,25], which is based on historical data and present data to predict
a future state, has been widely used in the forecasting of traffic flow. However, its computational
complexity is too high for complex urban traffic flow prediction. Neural Networks (NNs) models [26,27]
have also been utilized to predict traffic flow for their high prediction accuracy. The weak point of
NNs is the long model training time. Other research studies have referred to Support Vector Machines
(SVM) [28]. However, the error of SVM is high under the circumstance of peak periods and blocking
traffic accidents compared with the Bayesian network [29].

The K-NN method (K-nearest neighborhood) [30] performs well in short-term forecasting even
when accidents have occurred. However, this algorithm has high complexity and needs a large amount
of calculation when searching for class neighbors. Markov-based models [31] have also shown good
performance on traffic flow prediction since the traffic condition at the next interval is closely related
to the recent states. However, in these models, there are many states to consider. New technologies
such as big data [32] and particle filtering [33,34] have also been used in traffic predication and other
urban mobility applications.

Although these traffic prediction approaches have provided good prediction results in some
scenarios, most of them are too complex or require a long training time. Thus, there have been
respectable efforts put towards improving various ARIMA prediction models.

2.3. Urban Traffic Applications

Current traffic information and predicted traffic information are the base data of ITS, but they
are meaningless without practical applications. Route planning and vehicle navigation systems are
some of the most popular applications that use real-time and predicted traffic information [35].
The first-generation route planning system only considers the static features of the road network
to obtain the shortest path. With the development of real-time traffic information collection technology,
dynamic route planning has been proposed to re-calculate the new shortest path with the updated
real-time data at each intersection. Such a system provides better travel planning when compared
with the static route. However, using only current data may lead to frequent route changes in complex
traffic conditions. The newest route planning systems use the predicted traffic information to arrive at
the best and most stable route to the destination.

The other main applications using current and predicted traffic information are traffic
management applications. The most common usage is to display current traffic states, the predicted
traveling time to land mark locations, and traveling proposals on the traffic information board. With
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this information, drivers can re-plan their travel accordingly. Adaptive traffic signal control is the
key technology of traffic management. The reactive traffic signaling control system adjusts the signal
phase and cycle lengths according to current traffic data. The predictive traffic signal systems retime
the traffic sign according to the predicted traffic information. With the predictive approach, the total
waiting time of vehicles is reduced and the efficiency of the traffic network is improved [36].

Predicted traffic information is not only used by navigation systems and traffic management
systems, but also by other urban applications such as parking management and so on. For the wide
usage of traffic prediction, there are continuous research interests in this field.

3. Model and Preliminaries

3.1. LSTAR Model Construction

According to the STARIMA model defined in Reference [11], both space and time are considered.

Zt =
p

∑
k=1

λk

∑
l=0

φklWlzt−k −
q

∑
k=1

mk

∑
l=0

θklWlεt−k + εt. (1)

Zt is an N-dimensional column vector of road i, while i = 1, 2, . . . , N, and Wl is an N × N matrix
with element wl

ij. εt is the residual vector. φkl , θkl are the AR and MA parameters, respectively.
Then, the observation of road i, zi(t) can be described as:

zi(t) =
p

∑
k=1

λk

∑
l=0

N

∑
j=1

φklw
(l)
ij zj(t − k)−

q

∑
k=1

mk

∑
l=0

N

∑
j=1

θklw
(l)
ij ε j(t − k) + εi(t). (2)

In 2014, a new space-time model, the localized STARIMA (LSTARIMA) model, was proposed
by Cheng et al. [13] to consider spatial heterogeneity and temporal non-stationarity. The model is
described by the following form:

Zi(t) =
pi

∑
k=1

λk(t−k,i)

∑
h=0

φi,khW(h,t−k,i)Zi(t − k)−
qi

∑
l=1

nl(t−l,i)

∑
h=0

θi,lhW(h,t−l,i)εi(t − l) + εi(t). (3)

Zi(t) is an N-dimensional column vector of the observation value on link 1, . . . , N with tag
i at time t, which can be any prediction variable of roads such as speed, traffic flow, density, and
so on. The term εi(t) is a residual on link 1, . . . , N at time t. The first term in Equation (3) is the
AR component, whereas the second term is the MA. The parameters pi and qi are the AR and MA
orders, respectively. h is the spatial order that represents the order of spatial separation between two
locations. The parameters λk(t − k, i) and nl(t − l, i) are the dynamic spatial orders associated with
the kth and lth temporally lagged terms in the AR and MA components, respectively. They specify the
size of the spatial neighborhood that could influence the link of interest i within temporal lags k and l.
The parameters W(h,t–k,i) and W(h,t–l,i) are the dynamic spatial weight matrices W(h,t,i) pertaining to link
i at temporal lags k and l. φi,kh and θi,lh are the AR and MA parameters for each link i (i = 1, 2, . . . , N).

Although spatial tag i was added to Zi(t) in the LSTARIMA model construction, the spatial
heterogeneity was not fully considered. As the Zi(t) here is an N-dimension column vector which
covers all of the roads (road 1, 2, . . . , N) in the network, all of the roads will share the same φi,kh and
θi,lh. In this LSTARIMA model, the same matrix W is used for both AR and MA components. As the
weight matrix of AR and MA components is not always the same, using only one weight matrix W is
not proper.

In this paper, different weight matrices W, U were used for AR and MA components and
individual road traffic flow observation zi(t), according to Equation (2), was defined to allow every
road to have its own weight matrix Wi, Ui according to spatial location, but not sharing the same
weight matrix among all roads, as in Equation (3).
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Then, the LSTARIMA can be rewritten as follows:

zi(t) =
pi

∑
k=1

λi,k

∑
h=0

Ni

∑
j=1

φi,khw(h)
ij (t − k)zj(t − k)−

qi

∑
k=1

mi,k

∑
h=0

Ni

∑
j=1

θi,khu(h)
ij (t − k)ε j(t − k) + εi(t). (4)

The parameters w(h)
ij (t − k) and u(h)

ij (t − l) are the elements of dynamic spatial weight matrices

W(h)
i (t − k) and U(h)

i (t − l) pertaining to link i at temporal lags k and l. Like the traditional STARIMA
model, LSTARIMA makes use of spatial weight matrices W and U to model the influence of the
spatiotemporal neighborhoods. However, it relaxes the globally fixed temporal dependence for all
locations by using different AR and MA parameters according to location. Furthermore, it accounts
for the temporal non-stationarity by allowing the matrix elements value and size of the spatial
neighborhoods to vary with time.

According to Bo [37], the ARMA model can be properly approximated by the high-order AR
model. As AR only has one type of parameter to be estimated, ARMA and ARIMA have two or three
types of parameters to be estimated, and the parameters estimation of AR is easy even when the order
is a little bit higher. There exist plenty of studies that have used a high-order AR model to approximate
many processes of interest [37]. Furthermore, traffic flow has complex dynamics and may not exactly
match an ARIMA model. In addition, many studies have removed MA and used only different AR
models to conduct traffic prediction and obtain good results with limited AR order [38]. For reducing
computational complexity and real-time prediction purpose, in this paper, we proposed the LSTAR
model for traffic flow prediction.

With the MA component removed, the LSTARIMA prediction model (Equation (4)) is changed
into the following LSTAR model:

zi(t) =
pi

∑
k=1

λi,k

∑
h=0

Ni

∑
j=1

φi,khw(h)
ij (t − k)zj(t − k) + εi(t) (5)

where εi(t) is white noise, φi,hk is the parameter for each link i (i = 1, 2, . . . , N), and w(h)
ij (t − k) are

the elements of the dynamic spatial weight matrix W(h)
i (t − k) pertaining to link i at temporal lag k.

3.2. Weight Matrix Construction

Weight matrix construction is an essential topic in STARIMA models. In the STARIMA model,
the weight matrix is time invariant and equal for the same neighbor order. In the LSTARIMA model,
a time variant weight matrix was introduced to improve traffic prediction accuracy with lower AR
and MA orders. Furthermore, the speed difference was used to construct the weight matrix in the
LSTARIMA model [13]. The speed of a road is an important character of traffic flow, but is not the
essential one in terms of impact to surrounding roads. It is obvious that a road that outputs only
one vehicle will not impact neighbor roads at the same level as saturated roads with the same speed.
The traffic output amount to the neighbor roads in a time slot has more impact on the future traffic
state of neighbor roads. Thus, the output vehicle number during a time slot was used in the weight
matrix construction instead of speed in this paper.

For all pairwise road sections (i, j) with spatial lag h, the corresponding w(h)
ij (t) is defined

as follows:

w(h)
ij (t) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 h = 0, i = j
Qij(t)
∑ Q(t) h = 1, ∑ Q(t) �= 0

Q(h)
ij(t)

∑ Q(h)(t)
h �= 1, ∑ Q(h)(t) �= 0

0 ∑ Q(h)(t) = 0

(6)
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where Qij(t) is the number of vehicles running from road j towards road i at time slot t and ∑ Q(t)
is the sum of vehicle numbers from directly connected roads to road i at time slot t. Q(h)

ij(t) is the
number of vehicles on the h order neighbor road j towards h − 1 order neighbor of road i at time slot t,
and Q(h)

ij(t) = 0 if j is not the h order neighbor of i. ∑ Q(h)(t) is the sum of Q(h)
ij(t).

3.3. Traffic Information Collection

In this paper, we proposed a traffic information collection system via VANET for urban areas.
In this system, each vehicle was assumed to have a GPS receiver and VANET equipped to report its
location. This assumption is reasonable as currently more and more vehicles are equipped with such
devices. Considering that there are always traffic lights at the intersection of urban roads, we used
vehicles stopped at red lights to collect traffic information by checking the location of all vehicles inside
their VANET communication range periodically.

As shown in Figure 1, when the traffic light turned red for the east-west direction, the first vehicle
stopped at the west side was selected as the traffic information collector (TIC). If there were no vehicle
stops at the west side, the first vehicle stopped at the east side would be the TIC. In the example of
Figure 1, vehicle V11 is the TIC and collects the traffic information during the red light period.

Step 1. When the traffic light turns to red at T0, V11 broadcasts traffic information collection request.
Step 2. All of the vehicles in the communication range R of V11 will report their locations to V11 after

receiving the request from V11.
Step 3. V11 catalogs the vehicles to four vehicle sets according to the location. They are marked as

Vset(E, T0), Vset(S, T0), Vset(W, T0), and Vset(N, T0).
Step 4. After time τ < R/Vmax, V11 collects the traffic information again according to Steps 1–3

and obtains Vset(E, T0 + τ), Vset(S, T0 + τ), Vset(W, T0 + τ), Vset(N, T0 + τ). Vmax is the
maximum allowed velocity. Time τ < R/Vmax will let all vehicles running towards the
intersection be detectable at time T0 + τ.

For example:

If R = 150 m and Vmax = 20m/s, τ = 5 s can be used as 5 < 150
20 = 7.5. The maximal length

a vehicle can run during τ is 20 m
s × 5 s = 100 m < 150 m. Then, no vehicle entering the

intersection at T0 can run outside the communication range of V11 and be detectable at T0 + τ.
Step 5. The vehicles’ set run from road A to road B is calculated by formula: Vset(A → B, T0 + τ) =

Vset(A, T0) ∩ Vset(B, T0 + τ).

For example:

As shown in Figure 1, the traffic output from S to E from T0 to T0 + τ is:

Vset(S → E, T0 + τ) = Vset(S, T0) ∩ Vset(E, T0 + τ)

= {V1, V2, V3, V4} ∩ {V1, V8, V9, V10} = {V1}

Step 6. The TIC calculates the traffic output of each road with time interval τ until the traffic light for
the east-west direction turns green. As the traffic light for the south-north direction turns red,
the first vehicle stopped at the north or south side will be selected as the TIC and collect traffic
information continuously.

As a part of the advance travel information system (ATIS), the TIC will send out the collected
traffic information via VANET for applications such as traffic prediction. In normal urban traffic
conditions, there should always be vehicles stopped at the red light to act as the TIC. If there is no
vehicle stopped at the red light to be the TIC, the traffic information of the last time slot will be
used. This is acceptable as it normally happens in very low traffic density cases and real-time traffic
information is not important.
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With the collected traffic information, the traffic output of each road section j can be calculated by:

Q(h)
ij(t) = ∑

n
∑
m

Vset(j → jm, T + nτ),

where T + nτ ∈ (t − 1, t], j is the h order neighbor of road i, jm is the h − 1 order neighbor of road i
(jm is i when h = 1), m is the total number of jm which are downstream j.

Figure 1. Traffic information collection.

4. Main Results

For the LSTAR model, in this section we discuss how to determine the parameter φi,kh with a

given weight matrix W(h)
i (t). With the determined weight matrix W(h)

i (t) and φi,kh, the future traffic

observation ẑ(t) of road i can be predicted. Normally, w(h)
ij (t) is time variant. When the traffic flow

distribution is stable in the road network, w(h)
ij (t) will be time invariant since

Q(h)
ij(t)

∑ Q(h)(t)
is constant.

Considering the weight matrix differences of being time invariant or not, two theorems are discussed,
and the LSTAR parameters estimation can be conducted accordingly.

Definitions 1. rij(m) is the correlation coefficient of road i and j, ri(m) = rii(m) is the

autocorrelation coefficient of road i. We define Φi =
[
φi,10, φi,11, . . . φi,1λi,0 , φi,20, φi,21, . . . , φi,piλi,k

]T
,

88



Appl. Sci. 2018, 8, 277

let n = ∑
pi
k=1 λi,k to be the dimension of Φi. Ri = [ri(0), ri(1), . . . , ri(n − 1)]T ,

Σ =
[
σi

2, 0, . . . , 0
]T , S(h, m) = ∑Ni

j=1 w(h)
ij rij(m),

A =

⎡⎢⎢⎢⎢⎢⎢⎣
S(0, 1) S(1, 1) · · · S(λi,k, pi)

S(0, 0) S(1, 0) · · · S(λi,k, pi − 1)
S(0, 1) S(1, 1) · · · S(λi,k, pi − 2)

...
...

...
...

S(0, n − 1) S(1, n − 1) · · · S(λi,k, n − 1 − pi)

⎤⎥⎥⎥⎥⎥⎥⎦, A =
[

A Ri − Σ
]
.

Theorem 1 follows:

Theorem 1. If W(h)
i (t) is time invariant and Rank(A) = Rank

(
A
)

= n, the LSTAR model can be
uniquely determined.

Proof. As W(h)
i (t) is time invariant, we can observe that W(h)

i (t) = W(h)
i (t − k) and it can be rewritten

to W(h)
i .

The model of Equation (5) will be a time invariant system. Since zi(t) is a stationary random
signal, Equation (5) will be:

zi(t) =
pi

∑
k=1

λi,k

∑
h=0

Ni

∑
j=1

φi,khw(h)
ij zj(t − k) + εi(t). (7)

Pre-multiplying both sides of the model (Equation (7)) by zi(t − m):

zi(t)zi(t − m) =
pi

∑
k=1

λi,k

∑
h=0

Ni

∑
j=1

φi,khw(h)
ij zj(t − k)zi(t − m) + εi(t)zi(t − m). (8)

Taking the expected values in both sides, we obtain an equation similar to the Yule-Walker equation:

ri(m) =
pi

∑
k=1

λi,k

∑
h=0

Ni

∑
j=1

φi,khw(h)
ij rij(m − k) + σi

2δ(m) (9)

where the expected value is:
E(εi(t)zi(t − m)) = σi

2δ(m). (10)

As φi,hk does not have tag j, we obtain:

ri(m) =
pi

∑
k=1

λi,k

∑
h=0

φi,kh

Ni

∑
j=1

w(h)
ij rij(m − k) + σi

2δ(m). (11)

For Equation (11), rewrite φi,kh to a column vector as

Φi =
[
φi,10, φi,11, . . . , φi,1λi,0 , φi,20, φi,21, . . . φi,kλi,k

]T
. In addition, n = ∑

pi
k=1 λi,k is the number of

parameters φi,kh to be estimated.
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As S(h, m) = ∑Ni
j=1 w(h)

ij ri,j(m), we obtain:

⎡⎢⎢⎢⎢⎢⎢⎣
ri(0)
ri(1)
ri(2)

...
ri(n − 1)

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣
S(0, 1) S(1, 1) · · · S(λi,k, pi)

S(0, 0) S(1, 0) · · · S(λi,k, pi − 1)
S(0, 1) S(1, 1) · · · S(λi,k, pi − 2)

...
S(0, n − 1)

...
S(1, n − 1)

...
· · ·

...
S(λi,k, n − 1 − pi)

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
φi,10
φi,11
φi,12

...
φi,kλi,k

⎤⎥⎥⎥⎥⎥⎥⎦+

⎡⎢⎢⎢⎢⎢⎢⎣
σi

2

0
0
...
0

⎤⎥⎥⎥⎥⎥⎥⎦. (12)

Let A =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

S(0, 1) S(1, 1) · · · S
(
λi,k, pi

)
S(0, 0) S(1, 0) · · · S

(
λi,k, pi − 1

)
S(0, 1) S(1, 1) · · · S

(
λi,k, pi − 2

)
...

...
...

...
S(0, n − 1) S(1, n − 1) · · · S

(
λi,k, n − 1 − pi

)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, Ri =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

ri(0)
ri(1)
ri(2)

...
ri(n − 1)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, Σ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

σi
2

0
0
...
0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

Then, the augmented matrix of Equation (12) is:

A =

⎡⎢⎢⎢⎢⎢⎢⎣
S(0, 1) S(1, 1) · · · S(λi,k, pi) ri(0)− σi

2

S(0, 0) S(1, 0) · · · S(λi,k, pi − 1) ri(1)
S(0, 1) S(1, 1) · · · S(λi,k, pi − 2) ri(2)

...
...

...
...

...
S(0, n − 1) S(1, n − 1) · · · S(λi,k, n − 1 − pi) ri(n − 1)

⎤⎥⎥⎥⎥⎥⎥⎦ =
[

A Ri − Σ
]
.

If Rank(A) = n, then Rank
(

A
)
= n and we will have a unique solution of parameters Φi:

Φi = A−1(Ri − Σ) (13)

Then, we can uniquely define the LSTAR model and predict traffic flow with it.
If R(A) �= R

(
A
)
, there is no solution for Equation (12).

If Rank(A) = Rank
(

A
)
< n, there are infinite solutions for Φi.

Remark 1. In case the spatial weight matrix W(h)
i (t) is time invariant, we can determine the LSTAR prediction

model by the correlation of roads. We can uniquely define the LSTAR model when Rank(A) = Rank
(

A
)
= n.

When Rank(A) = Rank
(

A
)
< n, there will be many solutions for parameter Φ . This means that we have

defined more parameters than are actually needed. We can reduce λi,k and/or pi to obtain a unique LSTAR model.

Definitions 2. Let r′i(m) be the autocorrelation coefficient of ith element of U(t) = W(t)Z(t), where the

matrix W(t) = ∑
λi,k
h=0 W(h)

i (t), which combines all spatial effect defined in W(h)
i (t) to one matrix,

and Z(t) =
[
z1(t), z2(t), . . . , zNi (t)

]T is the vector form of zi(t). We define Φi =
[
φi,1, φi,2, . . . , φi,pi

]T ,

R′
i =

[
r′i(0), r′i(1), . . . , r′i(pi − 1)

]T , Σ =
[
σi

2, 0, . . . , 0
]T ,

A′ =

⎡⎢⎢⎢⎢⎣
r′i(1) r′i(2) · · · r′i(pi)

r′i(0) r′i(1) · · · r′i(pi − 1)
...

...
...

...
r′i(pi − 2) r′i(pi − 3) · · · r′i(1)

⎤⎥⎥⎥⎥⎦, A′ =
[

A′ R′
i − Σ

]
.

We then present Theorem 2.

Theorem 2. If W(h)
i (t) is time variant, the combined weight matrix W(t) is full ranked,

and Rank(A′) = Rank
(

A′
)
= pi, the LSTAR model can be uniquely determined.
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Proof. According to the weight matrix W(h)
i (t) construction in the LSTAR model, the element w(h)

ij (t)
will always be zero when i, j is not at spatial order h. We combine all of the λi,k weight matrix

into one weight matrix, W(t) = ∑
λi,k
h=0 W(h)

i (t). This simplification is reasonable as (1) time variant
wij(t) can somehow give an effect similar to spatial order h; and (2) wij(t) is always equal to the only

non-zero w(h)
ij (t):

wij(t) = 0 + 0 + . . . + w(h)
ij (t) + . . . + 0 = w(h)

ij (t) number of zero is λi,k − 1

Considering the combined spatial weight matrix W(t) = ∑
λi,k
h=0 W(h)

i (t),

Z(t) =
[
z1(t), z2(t), . . . , zNi (t)

]T is an Ni dimension column vector that includes all neighbor

roads within the spatial order to be considered by road i, and Σ =
[
σi

2, 0, . . . , 0
]T , we can obtain a

matrix from the LSTAR model according to Equation (5).

Z(t) =
pi

∑
k=1

φi,kW(t − k)Z(t − k) + Σ(t) (14)

when the rank of W(t) is Ni, Equation (14) can be rewritten as:

[W(t)]−1[W(t)Z(t)] =
pi

∑
k=1

φi,kW(t − k)Z(t − k) + Σ(t). (15)

Let U(t) = [W(t)Z(t)], we obtain:

[W(t)]−1U(t) =
pi

∑
k=1

φi,kU(t − k) + Σ(t). (16)

[W(h)
i (t)]

−1
can be treated as an instantaneous window to U(t), so U(t) is stationary in the short

term. We have:

U(t) =
pi

∑
k=1

φi,kU(t − k) + Σ(t). (17)

Let ui(t) be the element of U(t), then:

ui(t) =
pi

∑
k=1

φi,kui(t − k) + εi(t). (18)

Pre-multiplying both sides of Equation (18) by ui(t − m):

ui(t)ui(t − m) =
pi

∑
k=1

φi,kui(t − k)ui(t − m) + εi(t)ui(t − m). (19)

Taking expected values in both sides, we obtain:

r′i(m) =
pi

∑
k=1

φi,kr′i(m − k) + σi
2δ(m) (20)

where the expected value r′i(m) = E(ui(t − m)ui(t − k)), r′i(m) = E([W(h)
i (t)]

−1
ui(t)ui(t − m)),

E(εi(t)ui(t − m)) = σi
2δ(m).
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We can then obtain:⎡⎢⎢⎢⎢⎣
r′i(0)
r′i(1)

...
r′i(pi − 1)

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
r′i(1) r′i(2) · · · r′i(pi)

r′i(0) r′i(1) · · · r′i(pi − 1)
...

...
...

...
r′i(pi − 2) r′i(pi − 3) · · · r′i(1)

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

φi,1
φi,2

...
φi,pi

⎤⎥⎥⎥⎥⎦+

⎡⎢⎢⎢⎢⎣
σi

2

0
...
0

⎤⎥⎥⎥⎥⎦ (21)

Let Φi =

⎡⎢⎢⎢⎢⎢⎢⎣
φi,1

φi,2

...
φi,pi

⎤⎥⎥⎥⎥⎥⎥⎦, A′ =

⎡⎢⎢⎢⎢⎢⎢⎣
r′i(1) r′i(2) · · · r′i(pi)

r′i(0) r′i(1) · · · r′i(pi − 1)
...

...
...

...
r′i(pi − 2) r′i(pi − 3) · · · r′i(1)

⎤⎥⎥⎥⎥⎥⎥⎦, R′
i =

⎡⎢⎢⎢⎢⎢⎢⎣
r′i(0)

r′i(1)
...

r′i(pi − 1)

⎤⎥⎥⎥⎥⎥⎥⎦, Σ =

⎡⎢⎢⎢⎢⎢⎢⎣
σi

2

0
...
0

⎤⎥⎥⎥⎥⎥⎥⎦.

Then the augmented matrix of Equation (21) is:

A′ =

⎡⎢⎢⎢⎢⎣
r′i(1) r′i(2) · · · r′i(pi) r′i(0)− σi

2

r′i(0) r′i(1) · · · r′i(pi − 1) r′i(1)
...

...
...

...
...

r′i(pi − 2) r′i(pi − 3) · · · r′i(1) r′i(pi − 1)

⎤⎥⎥⎥⎥⎦ =
[

A′ R′
i − Σ

]
.

If Rank(A′) = pi, then Rank
(

A′
)
= pi and we will have a unique solution of parameters Φ:

Φi =
[
A′]−1

(R′
i − Σ). (22)

If R(A′) �= R
(

A′
)

, there is no solution for Equation (21).

If Rank(A′) = Rank
(

A′
)
< pi, there are infinite solutions for Φ.

Remark 2. Unlike W(h)
i (t) with most of its elements being zero and normally not being full ranked,

most elements of the combined weight matrix W(t) are not zero. So W(t) is normally a full rank matrix.
For some special cases when W(t) is not a full rank matrix, we can reduce the size of W(t) to make it fully ranked.
When W(t) is a full rank matrix, we can uniquely define the LSTAR model when Rank(A) = Rank

(
A
)
= n.

Similar to Remark 1, we can reduce pi to obtain a unique LSTAR model if Rank(A) = Rank
(

A
)
< n.

In this section, two theorems were given and proven according to the weight matrix determined.
When the traffic flow distribution is stable, W(h)

i (t) can be treated as time invariant and Theorem 1 can

be used. When the traffic flow distribution is not stable, W(h)
i (t) is time variant and Theorem 2 should

be used. With the measured weight matrix W(h)
i (t) and estimated Φi, future traffic state ẑi(t + 1) can

be predicted according to the LSTAR model (Equation (5)) by one-time slot shifting.

5. Practical Example and Experimental Evaluation

5.1. Practical Example

In this paper, we provide a practical example on how to use our LSTAR model to predict
future traffic flow of the Shanghai Century Park area. To evaluate the prediction approach of LSTAR,
we adopted the widely used traffic simulation tools Simulation of Urban Mobility (SUMO) [39] and
OpenStreetMap (OSM) [40], which are recognized as promising candidates for traffic simulations,
and the simulation results are commonly accepted as a replacement of real data. Additionally, plenty
of works exist that have adopted SUMO and OSM as tools to generate traffic data for research [41,42].
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In this example, we demonstrate the model-building procedure for our proposed LSTAR model
in the context of traffic flow prediction on a road network. First, we downloaded the OSM format road
network map of the area near Shanghai Century Park, as shown in Figure 2. The OSM format map not
only included the geography topology of the road network, but also the road type, lane number, speed
limitation, traffic light duration, and so on, according to real-world information. Then, the SUMO
NetConvert tool was used to convert the OSM format map to a SUMO format map. SUMO was then
used to simulate the traffic flow of this area according to the road network information converted from
the OSM map.

 

Figure 2. OpenStreetMap (OSM) map of Shanghai Century Park area.

In the simulation, trip demands were generated randomly every two seconds according to the
edge length. The “Fringe factor” was set to 4, which means that roads with no successor or no
predecessor had four times the possibility of being selected as the start or end of a trip when compared
to other roads. The speed limitations, traffic light durations of each road, and so on were obtained from
the real-world data of the OSM map. The simulation duration was one week. The detailed simulation
parameters are listed in Table 1.

After we obtained traffic flow data generated from SUMO, they were used to conduct traffic
flow prediction with different prediction models. The prediction intervals were five minutes, 15 min,
and 30 min, as normally a prediction interval over 30 min has less significance to real-time route
planning or vehicle navigation.

The SUMO format map converted from the OSM map is shown in Figure 3. The roads were
renamed as Rn-m for easy usage in the following discussion. In the following section, road R7-3 in
a north-to-south direction was selected as the example road to demonstrate the LSTAR prediction
procedure. Furthermore, we conducted traffic flow prediction for roads R7-2, R3-3, and R3-4 with the
same procedure used for road R7-3.
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Table 1. Simulation parameters.

Parameters Value

Trip Generation Method Random
Trip Possibility Weight Edge Length
New Trip Start Interval 2 s

Fringe Factor 4
Max Vehicle Number 300
Traffic Light Duration OSM Map data

Speed Limitation OSM Map data
Simulation Duration 604,800 s (1 Week)

Figure 3. Simulation of Urban Mobility (SUMO) road network.

Construction of a Dynamic Spatial Weight Matrix

Step 1. Build a spatial adjacency matrix.
The first step was to build a spatial adjacency matrix based on the topological structure of the

network, which appears in Figure 1. In this paper, spatial adjacency matrices of spatial orders up to
three were constructed as per Reference [13]. The spatial neighborhood information can be found in
Table 2 with the first, second, and third order neighbors separated.

Step 2. Determine the dynamic spatial order and weights.
The second step was to determine the dynamical spatial order and weights for every road

link with the method proposed in this paper (Section 3.2. Weight Matrix Construction). In this
simulation, only road R7-3 in a north-to-south direction was selected to show how the weight matrix
was determined. According to weight matrix definition, only upstream road sections of R7-3 in the
north-to-south direction were considered. The dynamic spatial weights calculation results of road R7-3
in a north-to-south direction with a five-minute time step are shown in Table 2.
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With the dynamic spatial weights estimated in Table 2, we can see that the weights are time variant
in this case as the traffic flow was time variant. Then, we used Theorem 2 to conduct a parameters
estimation and traffic flow prediction.

After the future traffic states are predicted, the information can be used to conduct route planning
or predictive traffic signal control applications, and so on.

5.2. Experimental Evaluation

The traffic flow prediction accuracy results of the different prediction methods by means of Root
Mean Square Error (RMSE) are shown in Figure 4. Figure 5 shows the average RMSE and Root Mean
Square Percentage Error (RMSPE). The average of Figures 4 and 5 is the average RMSE, RMSPE values
of roads R7-3, R7-2, R3-3, and R3-4 per the prediction models. The definition of RMSE and RMSPE are
shown below.

RMSE =

√
∑n

i=1(xi − x̂i)
2

n
(23)

RMSPE =

√
∑n

i=1(xi−x̂i)
2

n
∑n

i=1 xi
n

× 100% (24)

where n is the prediction interval number, xi is the actual value, and x̂i is the prediction value.

 

 

Figure 4. Prediction accuracy comparison of different models with: (a) 5-min prediction interval;
(b) 15-min prediction interval; and (c) 30-min prediction interval.
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The average RMSE and RMSPE values of all road sections are shown in Figure 5.

Figure 5. Average prediction accuracy comparison of different models: (a) Root Mean Square Error
(RMSE); and (b) Root Mean Square Percentage Error (RMSPE).

From Figure 4, the results showed that on most roads, the prediction accuracies of the different
prediction models were similar for all intervals. The predication accuracy from low to high was
Shift, AR, Seasonal MA, STAR, LSTAR, and LSTARIMA, with some exceptions on R3-4 and
R3-3. From Figure 5, we can see that the RMSE increased as the prediction intervals increased
for all prediction methods, while the RMSPE decreased when the prediction intervals increased.
This indicates that although the absolute error increased as the prediction intervals increased, the actual
prediction accuracy increased with larger prediction intervals as the percentage form errors decreased.
Figure 5 also shows that, regardless of the prediction interval, the average prediction accuracy of
LSTAR was always better than Shift, AR, Seasonal MA, and STAR. Moreover, LSTARIMA always had
a little higher accuracy when compared to LSTAR in all prediction intervals.

According to Diebold [43], only comparing values such as RMSE is not sufficient to declare that
one prediction model is better than another without a statistics significance check. There are many
hypothesis tests designed for prediction accuracy comparison and the Diebold-Mariano (DM) test [43]
is the most popular one. To further evaluate the prediction performance of LSTAR, the DM test was
used to check if LSTAR was better than other statistically significant prediction models. The forecast
package of R [44] was used to conduct the DM test for the prediction results of road R7-3. As the DM
test can only compare the prediction accuracy of two models, we did the DM test for LSTAR and the
other models one by one. The DM test hypothesis was that LSTAR had better performance than all of
the other methods subjected to the test. The p-values of each DM test are shown in Table 3.
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Table 3. Diebold-Mariano (DM) test results; AR: autoregressive; Seasonal MA: seasonal moving
average; STAR: Space-Time AR.

Prediction Model 5 min 15 min 30 min

Shift 0.0000 0.0000 0.0000
AR 0.0351 0.0225 0.0000

Seasonal MA 0.0611 0.0822 0.07814
STAR 0.1023 0.0884 0.0929

LSTARIMA 0.8985 0.7828 0.6797

The DM test results showed that the LSTAR prediction accuracy was significantly better than
Shift at p-value < 1%, better than AR at p-value < 5%, and almost better than Seasonal MA and
STAR at p-value < 10% (one p-value of STAR > 10%). LSTARIMA was not significantly better than
LSTAR at p-value < 10%, as no p-value was greater than 90% with the hypothesis that LSTAR is better
than LSTARIMA.

6. Conclusions

This paper discussed the application of a local space-time autoregressive (LSTAR) model for
traffic flow prediction. In this paper, we showed the prediction process of the LSTAR model in detail.
The LSTAR model appears to be the best model among the Shift, AR, Seasonal MA, and STAR models
given its greater parameter flexibility (dynamic spatial neighborhood and dynamic spatial weight).
According to the DM test results, the LSTAR prediction accuracy was significantly better than Shift
and AR, and was better than seasonal MA and STAR, but not significantly. As LSTARIMA also
considers the local spatial and time dynamics and still keeps the MA component, the prediction
accuracy was always better than the LSTAR model in the simulation results. However, the decrease in
LSTAR prediction accuracy was very minor when compared to LSTARIMA, and was not statically
significant. Furthermore, the computational complexity of the LSTAR model was also lower than that
of the LSTARIMA model. Therefore, there existed a tradeoff between the prediction accuracy and the
computational complexity for the two models.

Future studies will be carried out to assess the performance of the LSTAR model with different
real-world traffic data and the usage of prediction data for different urban traffic applications. We will
also conduct the simulation and performance evaluation of the traffic information collection via the
VANET approach.
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Featured Application: The current article proposes traffic modelling in a roundabout on the basis

of cellular automata. It also considers roundabout traffic reorganisation in order to increase

roundabout capacity. The article also presents an analysis on the impacts of pedestrian traffic and

on distances between vehicles. An analysis focussing on multi-lane roundabouts is also provided.

Abstract: The current article presents a roundabout traffic model based on cellular automata for
computer simulation. The model takes into account various sizes of roundabouts, as well as various
types and maximum speeds of vehicles. A realistic vehicle braking phase is presented which is
adjusted to the kind of vehicle and weather conditions. It also analyses roundabout traffic options
including where the various rules for entering and exiting a roundabout apply. Traffic rules are
contained in respective traffic scenarios. The simulation results indicate that there is significant scope
for roundabout traffic reorganisation, with a mind to increasing roundabout capacity.

Keywords: cellular automaton (CA); model of CA; computer simulation; roundabout traffic
simulation; roundabout traffic rules

1. Introduction

In most urban areas, there is an on-going increase in the number of vehicles on the road. For road
authorities, taking measures to improve traffic efficiency and the safety of its participants is essential.
Amongst research in this field [1–3], studies on traffic theories [3], models [4], and traffic modelling for
one- and two-way roads and also roundabouts appear to be the most promising. Such analyses are
significantly facilitated by computer simulations [5], which help to visualise the object of the research.

A roundabout is an intersection where traffic moves in a circle around a central island. According
to roundabout traffic rules, vehicles approaching a roundabout must give way to vehicles already
moving in the roundabout. Roundabout intersections help to solve number of the problems
encountered by the traditional intersection which involves a major and a minor road. Roundabouts
reduce the number of vehicle-vehicle and vehicle-pedestrian collision points at an intersection, which
in turns helps reduce the number of accidents. Research studies conducted in the US have shown a
drop in the number of accidents (by 29%) and injured persons (by 81%) as a result of implementing
roundabouts [6]. An important aspect of roundabouts implementation is making drivers slow down
when approaching a roundabout, which results from the need to give way to vehicles already moving
around the roundabout, and from the appropriate structure of a roundabout. Leaf and Preusser [7]
found vehicle velocity has a tremendous effect on the scale of injuries sustained by a pedestrian hit
by a vehicle: slowing down from 48 km/h to 32 km/h means the pedestrian’s chances of surviving
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increase ninefold. In a study in Sweden [8], major factors of roundabout safety were specified: the
number of lanes in a roundabout, island diameter, and also traffic speed and intensity. The authors of
the study argued that single-lane roundabouts are the safest, whereas large-radius roundabouts result
in a higher permissible speed, which is positively related to the number of accidents. At the same time,
a radius of less than 10 m is also problematic as it usually encourages drivers to accommodate the
bend, and consequently drive almost straight on without reducing a reduction in speed.

Computer simulations are applied in roundabout traffic modelling to visualise the effects of layout
changes. Simulations by their nature obtain information on a given system during the design stage.
Computer simulation can also apply hypothetical conditions to a given system. They can provide an
examination of the system operation in conditions which occur rarely and conditions yet to eventuate,
such as the simulation of the effect of new traffic regulations). Simulation programs are based on
mathematical models (traffic flows, multi-agent models, neural networks and cellular automata),
which map the process and enable specification of input parameters that affect the simulation
effectiveness. For example, Sisiopiku and Heung-Un Oh have determined, by means of a simulation,
that roundabouts are particularly recommended in places where the traffic is evenly spread among the
feeder roads, and also in places where there is a substantial amount of left-turn traffic (in the case of
right-hand traffic) [9]. The pair [10] established factors that affect the capacity of roundabouts, and
found that a three-lane roundabout is not necessarily preferable to a two-lane roundabout.

The mentioned examples of studies show that the focus of the research to date has been to ascertain
whether a roundabout is preferable to a conventional intersection, and how many lanes in a roundabout
is best to ensure optimal traffic flow. The majority of cities face a problem of chronic jammed streets
and roundabouts notwithstanding the studies and road traffic regulations established. There have
been numerous examples of drivers who fail to obey rules and cause congestion. The human factor is
a significant variable any simulation of traffic.

The purpose of the current article is to determinate, based on computer simulation, whether road
traffic reorganisation has an effect on roundabout capacity. The authors have developed a multi-lane
roundabout model with multi-lane entrance and exit roads. The novelty of the model is the application
of varied traffic principles, which contribute to the analysis of driver behaviour. Comparison of the
existing roundabout traffic rules with the proposals presented in the studies reveals that roundabout
capacity could be increased by over 15%.

The current publication is organised as follows: the following chapter is a review of previous
studies, then there is a short note on the theoretical basis, the research problem and the developed
model. Following this, simulation scenarios and experimental studies are discussed, and the article is
concludes with a summary.

2. Related Works

2.1. Selected Hardware and Software Solutions

Road traffic analysis and modelling is a challenging task due to the complexity of the situation
and its stochastic nature. Attempting to avoid inconveniencing the connected driver with attempts
to adjust a specific area (e.g., an intersection or a roundabout), road administrators and researchers
resort to simulation to determine best road solutions. The literature describes mathematical models
and also software solutions and hardware solutions, as well as solutions combining hardware and
software. The most numerous are software solutions, for example: MATSim (Multi-Agent Transport
Simulation) [11], VISSIM (Verkehr In Städten-SIMulationsmodell) [12], TRANSIMS (TRansportation
ANalysis SIMulation System) [13], MITSIM (Massachusetts Institute of Technology SIMulation) [14],
AIMSUN (Advanced Interactive Micro-scopic Simulator for Urban Networks) [15,16], SUMO
(Simulation of Urban MObility) [17,18] or CORSIM (CORridor SIMulation) [19,20], extensions of
existing solutions [21,22], and multi-agent simulations [23] regarding pollution [24,25] or driver
behaviour [26]. Some authors also focus their attention on solutions close to real-time simulations [27].
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Hardware solutions are broad. They include numerous scale models of selected road junctions [28–30],
hardware-in-the loop solutions [31,32], solutions presenting a scale model of a real object [33] or
GPU(Graphics Processing Unit)-based solutions [34].

2.2. Selected Studies and Models of Road Traffic

The car-following theory, “follow-the-leader”, was developed in the late 1950s [35]. The theory
won many supporters and was applied whole-heartedly [36,37], particularly in relation to road traffic
simulation [38–43].

Some of the studies based on car-following theory concentrated on finding a gap in a flow of
vehicles moving around a roundabout, which makes it possible for a waiting vehicle to enter the
roundabout from a feeder road (the so-called gap-acceptance model) [44–47]. The main limitation
of the gap-acceptance theory is an assumption that drivers behave in a predictable way, whereas in
reality behaviours are slightly different, e.g., resulting from ignorance or intentional disobeying of the
rules [48]. The issue was also addressed by more contemporary researchers [49–51]. Some more recent
directions in research studies have been application of cellular automata in the modelling of unloading
bays [52] and exploitation of game theory in order to shorten the time autonomous vehicles wait to
enter roundabouts [53].

2.3. Selected Basic Traffic Models Based on Cellular Automata

Cellular automata are perfect for traffic flow modelling due to their stochastic nature. The
Nagel–Schreckenberg (N–Sch) model is a simple model of cellular automata to simulate car traffic.
It was developed in 1992 by Nagel and Schreckenberg [4]. The model describes the single-lane car traffic
and it is the basis for testing various traffic scenarios [54]. Schreckenberg created a project to inform
drivers from Cologne, Aachen and Bonn about traffic jams on the road. Development and utilization of
the model enabled the prediction of traffic congestion and notification of the drivers. Another proven
framework is the model developed by Biham [55]. It is a simple cellular automaton model displaying
the traffic in two intersecting directions. Each array cell can be occupied with a vehicle travelling in
one of the two directions (north or east). The vehicle moves by one cell in the chosen direction, if that
the adjacent cell is empty. Otherwise, the vehicle remains in place. The most important model showing
traffic within the intersection is the model by Chowdhury and Schadschneider [56]. The authors model
the traffic in one-way single-lane roads. The development of the model to the version for two-lane
and two-way roads is presented in another study by Małecki and Iwan [21]. The new model expands
the original idea of the intersections with the mechanism of induction loops activating traffic light to
eliminate congestion, namely to keep smooth traffic flow at the intersection. Phenomena taking place
in 4-way intersections were addressed in Ławniczak and Di Stefano [57]. An interesting modification
of the N–Sch model is presented by Hartman [58], regarding urban traffic simulation.

Cellular automata are an effective tool for the analysis of actual behaviours [59,60]. Cellular
automata have been applied to describe traffic jams [61], queue lengths before intersections and
roundabouts [10,62] and to compare the capacities of various road solutions [63], as well as to study
drivers’ behaviours and to provide references for traffic design and management at roundabouts [64].

2.4. Roundabout Cellular Automaton (CA) Models

The rules of the traffic in a roundabout were dealt with in Belz et al. [65]. The work involved
developing a model of a cellular automaton for capture of priority-taking and priority-abstaining
behaviours in roundabouts.

A number of publications have addressed single-lane roundabout modelling [66–68]. The topics
studied have included study road traffic dynamics in roundabouts [69], and the study of probability
of road accidents [70,71]. The current publication focuses on developing a model for multi-lane
roundabouts. It adds to previous studies in the field [40,72,73]. However, earlier studies failed to
address the impact of traffic reorganization in the way the current article does. The authors of the
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earlier studies investigated the correlation between roundabout size and its capacity. The current
paper is the first to examine the approach consisting in changing the traffic rules at roundabouts of a
specified size, and its effect on the roundabout capacity. Roundabout traffic reorganisation is presented
in the subsequent simulation scenarios described in the further parts of the article.

3. Proposed Approach

3.1. Theoretical Background

The generalised CA roundabout traffic model for a multi-lane roundabout with multi-lane feeder
roads was developed based on the Nagel–Schreckenberg model [4] and its modified version by
Hartman [58]. The original traffic model (N–Sch) was developed for the purposes of motorway traffic
simulations. The length of the automaton single cell was assumed to correspond to 7.5 m of the road,
which represents an average length of a car together with its surrounding space. The velocity unit in
the N–Sch model corresponds to the actual speed of 27 km/h. In order to reflect actual urban traffic,
using Hartman [58], vehicles were classified according to their length and the number of cells taken up
by them (Table 1). The length of the automaton single cell corresponds to 2.5 m of the actual road. This
translates into the velocities of moving vehicles (Table 2).

Table 1. Vehicle classification (by length).

Vehicle Type Vehicle Length [m] Vehicle Length [cells]

Motorcycle 2.5 1
Car 5 2
Van 7.5 3

Minibus 10 4
Bus, commercial van 12.5 5

Truck 15 6

Table 2. Comparison of velocities in the Nagel–Schreckenberg (N–Sch) model and the presented approach.

Velocity [cells/s] Velocity in N–Sch Model [km/h] Velocity in the Presented Approach [km/h]

0 0 0
1 27 9
2 54 18
3 81 27
4 108 36
5 135 45
6 162 54

3.2. Research Problem

Studies have been focused on determining the optimum number of lanes in a roundabout in
order to greatest capacity. The authors of the current article approach the issue in a different way,
by formulating the following thesis: traffic rule modification may lead to the increase of roundabout
capacity without changing the roundabout structure. To prove the thesis, the author has analysed the
roundabout traffic, developed a model and run experimental studies.

The roundabout traffic analysis was performed based on several month long observations of
traffic at various roundabouts, including large and small, single-lane as well as 2- or 3-lane ones.
The observations revealed that excessive congestion was found in the outer lane of a roundabout,
while the occupancy of the inner lane (in the case of 2-lane roundabouts) or of the inner and middle
lanes (in the case of 3-lane roundabouts) was moderate. Figure 1 presents averaged results of the
observations, providing numeric values regarding the mean quantity of vehicles that entered the
roundabout directly into the outer lane and those which did not take the first possible exit even though
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they were moving along the outer lane. The analysis shows that in the case of 2-lane roundabouts
as many as 69.3% of the drivers entering the roundabout get into the outer lane and then only 19.2%
of them take the first possible exit. In the case of 3-lane roundabouts, the values were 57.8% and
21.9%, respectively. The other drivers (80.8% and 78.1%) continue driving in the outer lane up to the
subsequent exit or further.

Figure 1. Average tendency to use the individual lanes at (a) 2-lane; (b) 3-lane roundabouts in Poland.
Source: own research.

Pursuant to regulations, such behaviour is legal in most countries. However, the roundabout
traffic observations have revealed that such behaviour causes an unnecessary restriction of vehicles
queuing in feeder roads to enter the intersection (especially when the distance between the adjacent
entrances is small). The above defined thesis may be further specified by stating that a reduction in
the occupancy of the outer lane of a roundabout may increase the chances for the queuing vehicles to
enter the roundabout, and increase its capacity. Shorter queues of waiting vehicles also provide the
benefits of lower emissions and reduced local pollution.

3.3. The Data Set and the Simulation Setup

The data used for calibration and validations of the model were obtained during a comprehensive
traffic study in Szczecin, Poland, during which the city area was divided into 255 communication areas.
The boundaries of communication divisions were along major roads, rivers and other traffic barriers.
Traffic surveys were conducted. Interviews were conducted with truck drivers and traffic volume
and traffic pattern were measured. The following information was collected: the generic structure of
vehicles (passenger cars, vans, minibuses, trucks without trailers, trucks with trailers and semi-trailers),
and number of people in the vehicle. For external areas of the city, the country of origin of the vehicle,
the source and destination of the journey, the frequency of the journey and the motives of the journey
were also ascertained. The survey was conducted on weekdays from 6 a.m. to 10 p.m.

The field data provided information on the average number of vehicles passing through the
roundabout (Table 3).

Table 3. List of roundabouts (Szczecin, Poland) that were under observation.

No. Name of Roundabout
Number of

Lanes
Average Number
of Vehicles/day

Average Number
of Vehicles/h

1. Herman Haken Roundabout 3 6346 397
2. University Roundabout 3 5579 349
3. Gierosa Roundabout 2 5893 368
4. Giedroycia Roundabout 2 8174 511
5. Grunwaldzki Square 3 12,132 758
6. Odrodzenia Square 2 10,972 686
7. Szarych Szeregów Square 3 11,526 720
8. Ułanów Podolskich Roundabout 2 8538 533
9. Ronald Reagan Roundabout 2 4712 295
10. Łupaszka Roundabout 1 3171 198
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Based on the data obtained, the number of vehicles in the model was set at 500 vehicles per hour
(average value resulting from the table is 481.5).

3.4. Assumptions of the Roundabout Traffic Model

The model was prepared so as to enable traffic flow simulation on a multi-lane roundabout with
multiple entrance and exit roads. The model describes right-hand traffic.

The lanes on the roundabout are numbered from 0 (inner lane) to n − 1, where n corresponds to
the total number of lanes on the roundabout. The feeder road consists of the entrance road and the exit
road. The right-hand lane of the entrance road and the right-hand lane of the exit road are to first lanes
to be numbered starting from zero. The right-hand lane is the lane on the right-hand side from the
point of view of a driver travelling on the road in the given direction. Due to different lengths of the
roundabout lanes, it is impossible to divide them into the same number of cells. Assuming that the
cell length is constant and amounts to 2.5 m, the outer lanes will have more cells than the inner ones,
reflecting the actual differences in the lanes lengths. The lane length, taking its inner (shorter) edge,
may be determined using the formula:

llane = 2 × π × (risland + n × wlane) (1)

where llane is the lane length, risland is the island radius, n is the subsequent lane number, starting from
the inner lane numbered 0, and wlane is the single lane width.

The developed model posits that the width of each lane wlane is the same. By parameterising the
model in relation to the actual size of the roundabout, the number of cells in each lane is determined in
relation to its length:

ncells =

⌊
llane
2.5

⌋
(2)

The resulting value is rounded down, as the number of cells making up a lane must be an integral
number. Assuming that the radius of a sample roundabout amounts to 28 m, and the lane width is
4.5 m, the number of cells on subsequent lanes will then be, respectively: ncells =

⌊
2×π×(28 m+0×4.5)

2.5 m

⌋
=

�70.37� = 70 and ncells =
⌊

2×π×(28 m+1×4.5)
2.5 m

⌋
= �81.68� = 81. The outer lane will be divided into

81 cells, and the inner lane into 70 cells.
Distance from the exit. If the cells in the roundabout lane are numbered with subsequent values

from the range < 0, cmax >, the distance to the nearest exit dexit may be computed using the formulas:

dexit = cexit − ccurrent dla ccurrent ≤ cexit (3)

dexit = cmax + 1 − |cexit − ccurrent| dla ccurrent > cexit (4)

Distance from the entrance. As the cells in the entrance road are numbered with subsequent
values from the range < 0, cmax >, the distance of the simulated vehicle from the entrance into the
roundabout dentrance equals the difference between the cell connected with the roundabout centrance and
the cell currently containing the front of the vehicle ccurrent.

dentrance = centrance − ccurrent (5)

Calculation of the cell value in the subsequent iteration for vehicles entering and exiting the roundabout
is dependent on information on adjacent cells. Adjacent cells are those which link the feeder road with
the roundabout internal road. Adjacency does not need to be of the first degree. For example, cells in
the inner lane of the roundabout are not directly adjacent to any cell in the feeder road. However, there
are cells located between the aforementioned cells which link the two lanes and enable movement
of vehicles. When a vehicle exits the roundabout, an adjacent cell is the last one which the vehicle
covers on its lane before moving into a cell located in the feeder road lane. Depending on the lane on
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which the vehicle is located and the lane onto which it is going to move, these will be different cells
corresponding to the natural turns taken by vehicles. The values of CA cells from which vehicles may
exit the roundabout are determined by the formula:

cexit =
[ncells

4
× r − 2 + 1 × lexit

]
(6)

where cexit is the cell from which a vehicle may exit the roundabout, ncells is the quantity of cells
in the roundabout lane in which the vehicle is travelling, r is the multiplier depending on the road,
N(North)-1, E(East)-2, S(South)-3, W(West)-4, lexit is the the exit lane, symbol [ ] denotes rounding to
an integral number.

For the vehicles entering the intersection, an adjacent cell is the first one into which the vehicle
moves upon entering the roundabout. The interdependence is shown by the formula:

centrance =
[ncells

4
× r + 2 − 1 × lentrance

]
(7)

where: centrance is the cell taken up by a vehicle upon entering the roundabout, ncells is the quantity of
cells in the roundabout lane in which the vehicle is travelling, r is the multiplier depending on the
road, N-1, E-2, S-3, W-4, and lentrance is the entrance lane.

3.5. Simulation Scenarios

Figure 2 shows the possible trajectories of vehicles that enter and exit the roundabout.
The observations of roundabouts have revealed that a possibility of taking up any lane in a roundabout
causes a risk of collision. When a vehicle entering a roundabout from the right-hand lane of a feeder
road takes up the inner lane of the roundabout, it prevents the vehicle on the left-hand side from
entering the roundabout. The event leads to temporary blocking of the vehicles located in the left-hand
lane. Additionally, when exiting the roundabout, the driver in the outer lane of the roundabout is more
privileged. As a result, drivers tend to choose the right-hand lane as “safer”, i.e., the lane in which
the driver always has right of way (Figure 1), which consequently leads to excessive occupancy of the
outer lane of a roundabout while the inner lanes are under occupied.

 

(a) (b) 

Figure 2. Scenario 1: possible directions of vehicle movement in the roundabout (a) enter; (b) exit.

Scenario 1 (Figure 2) shall be the reference scenario. The subsequent scenarios will refer to
Scenario 1 in the comparative aspect.

The proposed traffic scenario (Scenario 2) is as follows: the vehicle in the right-hand lane of the
feeder road should take up the outer or middle lane (in the case of 3-lane roundabouts), whereas the
vehicle in the left-hand lane of the feeder road should go into the inner or middle lane, giving way to
the vehicle on its right-hand side in cases where both of them are trying to get into the middle lane.
The tested scenario results in a greater quantity of vehicles simultaneously entering the roundabout
(Figure 3).
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(a) (b)

Figure 3. Scenario 2: possible directions of vehicle movement in the roundabout (a) enter; (b) exit.

Pursuant to the current EU regulations, a vehicle exiting a roundabout from the outer lane may
take up any lane of the exit road, whereas the vehicle moving along the inner lane has to yield to
it (Figure 4b: vehicle whose trajectory is marked with a dotted line). It may be hard for the driver
moving along the inner lane to assess whether the driver on the right-hand side is driving straight on
or moving into the outer lane. The proposed traffic scenario (Scenario 3) is as follows: the vehicle in
the outer lane may take up the right-hand lane of the exit road, and the vehicle in the inner lane may
take up the left-hand lane of the exit road, giving way to the vehicle on the right-hand side which is
driving straight.

 
(a) (b)

Figure 4. Scenario 3: possible directions of vehicle movement in the roundabout (a) enter; (b) exit.

The tested scenario is for two cars exiting the roundabout simultaneously, if they are taking the
same exit (Figure 4b), provided that the entrance into the roundabout is compliant with Scenario 1.

The fourth analysed traffic scenario (Scenario 4) is a combination of Scenario 2 and Scenario 3.
The tested scenario is of two vehicles entering the roundabout simultaneously and exiting the
roundabout simultaneously in the same direction (Figure 5).

 
(a) (b)

Figure 5. Scenario 4: possible directions of vehicle movement in the roundabout (a) enter; (b) exit.
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The last of the examined scenarios (Scenario 5) regards roundabout traffic reorganisation (Figure 6).
The vehicles travelling along the outer lane of the roundabout have to yield to the vehicles driving on
the left-hand side, which are exiting the roundabout (Figure 6b: vehicle whose trajectory is marked with
a dotted line). The experiment is motivated by the fact that drivers of the vehicles on the right-hand
side are better able to see the manoeuvres of the vehicles driving on the left-hand side (in the case of
right-hand traffic). Additionally, the scenario also applies the previously proposed changes regarding
entering and exiting a roundabout, considered in Scenario 4.

 
 

(a) (b)

Figure 6. Scenario 5: possible directions of vehicle movement in the roundabout (a) enter; (b) exit.

3.6. The System Developed for the Simulation

The application was developed in JavaScript and it can be operated in web browsers as well as by
means of a console. Running the application by means of a console is possible via a Node.js runtime
environment based on a V8 engine in the Chrome browser. Running the application in such a way is
faster, as the program can operate without the graphics layer. The application makes use of many free
tools enabling the programming works. Figure 7 shows the structure of the application together with
the tools applied.

Figure 7. The application structure.

Frequent problems with running the application are due to different runtime environments.
The problems are solved by the combination of Vagrant and Ansible tools. Vagrant enables management
of virtual machines, offering identical runtime conditions for applications. Ansible is used to ensure that
the virtual machine is always equipped with any indispensable libraries. Upon starting, the program
compares the current state of the machine with the expected one and carries out any necessary setups.
Before that, it is necessary to prepare the configuration files that define the dependencies.

The application is written in accordance with the latest standards of ECMAScript 6. To enable
correct operation of the application in web browsers, the Babel transpiler was used to change the code
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into the one compliant with ECMAScript 5. The process of transpilation and providing the application
to the www server was automated by means of the Grunt program.

4. Results of the Experimental Studies

The object of the simulation experiment was to check whether roundabout traffic reorganisation
has an effect on the roundabout capacity. A study was performed to find out the impact of an increasing
number of trucks on roundabout traffic in order to make a reliable choice of the best configuration of
regulations. The study accounted for the sizes of such vehicles and their limited technical and physical
capabilities, such as e.g., slow acceleration, or low manoeuvring speed.

The experiments were conducted in a 2-lane roundabout with four feeder roads, for right-hand
traffic. Each feeder road consists of the entrance road and the exit road, each with two lanes. The
roundabout island diameter amounted to 56 m. The roundabout capacity was examined on the sample
of 500 vehicles, by measuring the number of iterations needed for moving all the vehicles through the
roundabout, and using the formula:

b =
nvehicles

niterations
(8)

where b is roundabout capacity, nvehicles is the number of vehicles that have driven across the
roundabout (500), and niterations is the number of CA iterations.

The simulation was repeated 1000 times in order to obtain results that are not distorted by random
events. The quantity of vehicles in the feeder roads was even. The entrance road for each vehicle was
assigned at random with the same probability (25%). The exit road was assigned at random by the
programme in the same manner. The entrance and exit roads had two lanes, so the individual lanes
were assigned to the vehicles at random. The probability of assigning a given exit lane depended on
the examined traffic rules and the roundabout lane on which the vehicle was travelling. In Scenario 1
the vehicle was able to take either of the two lanes in the exit road, if it was moving along the outer
lane. In the case the probability of choosing either lane in the exit road was 0.5. If the vehicle was
moving along the inner lane of the roundabout, it was able to take the left-hand lane only, and the
probability of choosing the left-hand lane was 1. Selection of lanes in the roundabout was made on the
same principles, if the principles made it possible to take any lane, the probability was 1

nroundabout_lanes
,

while for a 2-lane roundabout it was 0.5. In the case of random assigning of the entrance lane, the
probability was always 0.5 in all the scenarios. The experiments were run assuming mixed traffic,
with 90% of cars (including motorcycles), and 10% of trucks. An exception was the examination of the
impact of the number of trucks on the roundabout capacity. Then the quantity of trucks varied.

4.1. Examining the Impact of the Proposed Changes on the Roundabout Capacity

Table 4 presents the results of the experiment aimed at examining the impact of different forms of
roundabout traffic reorganisation on the roundabout capacity. The mean and median values for the
number of iterations have been rounded to integral numbers. The values are similar with each other,
which meant that the results were absent outliers.

Table 4. Mean number of iterations and median of the iteration quantity.

Examined Traffic Scenarios Mean Number of Iterations Median of Iteration Quantity

Scenario 1 526 524
Scenario 2 494 493
Scenario 3 503 502
Scenario 4 456 456
Scenario 5 483 482

In order to make sure that the analysed results are not distorted, their distribution was visualised
in the box plot presented in Figure 8. It shows that the results are scattered in a similar manner, proven
by the similar sizes of the boxes and their “whiskers”. The distribution of the variable is symmetric,
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as the horizontal line in the box representing the median is located more or less in the middle. During
the testing of the individual scenarios there were some outliers that are marked with circles, however,
their quantity compared to the number of cycles accounts for less than 1% of the obtained results.
The chart shows that there is a correlation between the examined scenarios and the quantity of CA
iterations. The traffic organisation described in Scenario 4 caused vehicles to cross the roundabout in
the shortest time. The worst case of the traffic organisation is represented by the reference scenario,
i.e., Scenario 1 (526 iterations on the average). That means an improvement of 15%.

Figure 8. Impact of roundabout traffic organisation on the quantity of cellular automaton (CA) iterations.

The roundabout capacity was calculated (Figure 9) based on each of the obtained results.
The guiding principle was the higher the value of the capacity, the better the solution. The measure of
roundabout capacity is the quantity of vehicles which exit the roundabout in a time unit which is one
iteration of a cellular automaton. The best result was obtained in the case of Scenario 4. The second
best result was the roundabout traffic organisation according to Scenario 5.

Figure 9. Impact of traffic organisation on the roundabout capacity.
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Table 5 shows the percentage differences in relation to Scenario 1. The traffic organisation
described in Scenario 4 led to the greatest increase in the roundabout capacity in relation to the current
traffic rules (Scenario 1). Scenario 4 is a combination of the rules specified in Scenarios 2 and 3. The
changes introduced separately provide an increase of 6.4% and 4.5%, respectively, and cumulatively
10.9%. However, introducing them together increases the roundabout capacity by an extra 4.4%, thus
achieving the best result of all the modifications, equalling 15.3%. Such traffic organisation tidies
up the road traffic and can be achieved without substantial modifications of the traffic regulations
(what it does require is provision of more accurate driver training and at the same time developing
appropriate algorithms for autonomous vehicles). The second biggest increment in relation to the
reference scenario is demonstrated by Scenario 5. It is an attempt to turn attention to the fact that
the traffic regulations in force favour drivers moving along the outer lane of a roundabout. Such
vehicles often block roundabouts, while the inner lanes are empty or almost empty. According to the
simulations, introducing the changed right of way in roundabouts can cause a result of increase 8.9%,
preferable to the status quo (Scenario 1), while at the same time being the second most efficient set
of rules.

Table 5. Mean number of iterations and median of the iteration quantity.

Examined Traffic Scenarios Roundabout Capacity in Relation to Scenario 1 [%]

Scenario 1 0
Scenario 2 6.4
Scenario 3 4.5
Scenario 4 15.3
Scenario 5 8.9

The subsequent studies pertained to the impact of the number of pedestrians at the roundabout
on the roundabout capacity for the individual traffic scenarios. Figures 10–13 demonstrate the research
results for the specified distances between vehicles 1 and 4 and for the specified maximum velocities
of cars and trucks. The traffic scenarios return values that are similar for the distance between vehicles
equalling 1 (Figure 10).

Figure 10. Impact of pedestrian traffic on roundabout capacity as per various traffic scenarios, distance
between vehicles = 1. Specified speeds: max car speed = 5, truck speed = 2.
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Figure 11. Impact of pedestrian traffic on roundabout capacity as per various traffic scenarios, distance
between vehicles = 2. Specified speeds: max car speed = 5, truck speed = 2.

Figure 12. Impact of pedestrian traffic on roundabout capacity as per various traffic scenarios, distance
between vehicles = 3. Specified speeds: max car speed = 5, truck speed = 2.

Figure 13. Impact of pedestrian traffic on roundabout capacity as per various traffic scenarios, distance
between vehicles = 4. Specified speeds: max car speed = 5, truck speed = 2.
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More significant differences are found in the cases shown in Figures 11–13. The figures reveal
that road traffic organisation has a considerable impact on roundabout capacity. It was found that the
larger the forced distance between vehicles, the smaller the roundabout capacity, due to the fact that
vehicles queuing to enter the roundabout must wait longer. However, the distance between moving
vehicles is insufficient for the waiting vehicles. In the case presented in Figure 13, the most effective
type of traffic organisation is that applied in Scenario 5. It is 20–30% more effective in relation to the
reference scenario for various numbers of pedestrians participating in the traffic. For smaller distances
between vehicles, the differences are much smaller, ca. 10%. The traffic organisation that proved to be
the least susceptible to changing the distances between vehicles was the one applied in Scenario 2, and
at the same time it was the least effective.

Figure 14 presents the aggregated results of the research study for the individual scenarios,
specified speeds (1–4), probability of pedestrians’ appearance at the roundabout (0; 0.5; 1) and different
maximum speeds. The observed value is the number of CA iterations.

Figure 14. Impact of pedestrian traffic and distances between vehicles on roundabout capacity as per
various traffic scenarios.
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The subsequent study focused on finding out how roundabout capacity changes in different
scenarios of traffic organisation (Scenarios 1–5) in the context of deteriorated adhesion. The developed
model was prepared in such a way so that the braking process accounts for delay resulting from lack
of tyre adhesion to various surfaces. The adhesion studies were performed for wet (Figure 15) and for
snowy (Figure 16) surfaces. In this case, roundabout capacity was studied for 100 vehicles.

Figure 15. Examination of the impact of the number of vehicles moving on wet surfaces on roundabout
capacity, as per various traffic scenarios.

Figure 16. Examining the impact of the number of vehicles moving on snowy surfaces on roundabout
capacity, as per various traffic scenarios.

The analysis of the results has shown that again reference Scenario 1 proved to be the least
effective form of traffic organisation at the roundabout. Scenarios 3–5 were more effective.
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4.2. Examining the Impact of Freight Vehicles on Roundabout Capacity

The aim of the study was to determine whether an increase in the number of trucks significantly
affects roundabout capacity. The first stage of the study was examining the roundabout capacity
without trucks. In total 500 cars crossed the roundabout on average in 375 iterations of the cellular
automaton, applying the most effective traffic organisation—Scenario 4. In the subsequent tests,
the percentage of trucks was increased by 1%, which resulted in an increase in the time needed for
the constant number of vehicles to cross the roundabout. The distribution of the received results is
presented in Figure 17.

Figure 17. Distribution of the number of CA iterations depending on the percentage of trucks.

It is visible that the more trucks are involved, the longer the average duration of the experiment,
which means that the roundabout capacity is getting smaller. A more accurate analysis has shown
that the more trucks there are, the more unstable the traffic becomes. The differences between the
maximum and minimum values start to increase.

5. Interpretation of the Results and Future Works

The above studies described have shown that it is possible to increase roundabout capacity by
changing traffic regulations. Also, trucks have a significant impact on urban traffic fluidity: their
growing share in the total number of vehicles (simulated in one of the experiments) led to a significant
reduction of the roundabout capacity.

In order to maximise the number of vehicles crossing a roundabout, it should be possible for
vehicles to enter and exit the roundabout simultaneously. The multi-lane area of a roundabout can be
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used most effectively, which results in capacity maximisation. This was demonstrated by Scenario
4. Such traffic organisation may be easily implemented, e.g., by appropriate marking of solid and
broken lines within roundabouts. The analysis of urban traffic performed in Poland reveals that more
appropriate marking may lead to increasing safety of road traffic participants. An additional criterion
to improve traffic safety seems to be driver training. The observations of roundabout traffic have
revealed numerous behaviours of drivers that generated unnecessary traffic collisions. Development
of Scenario 5 was inspired by actual events observed at roundabouts. Many a time, the vehicles
driving in the inner lane (in the case of 2-lane roundabouts) or in the middle lane (in the case of 3-lane
roundabouts), when trying to exit the roundabout would cut in on the vehicles moving in the outer
lane. It was observed that e.g., less experienced or elderly drivers tended to keep to the outer lane. The
traffic organisation described in Scenario 5 could reduce such behaviours, which in turn might lead to
increased traffic capacity in cities having a high number of roundabouts.

Another aspect, which should be noted in order to increase traffic capacity, is reduction of freight
vehicles on roundabouts affected by heavy traffic. Of course it is impossible to totally eliminate freight
traffic in cities. However, it is possible to limit the number of trucks in cities, e.g., by providing
ring-roads. Also, a controversial idea seems to be a prohibition to drive trucks in peak hours. When the
number of trucks is significant and there are limited other possibilities to increase the traffic capacity,
this idea might be taken into account.

It should be emphasised that not each roundabout has the same shape or the number of entrances
and exits. Moreover, a computer simulation takes into account merely a fragment of the reality.
Nevertheless, the results of the study are promising and this issue deserves further attention. The model
does not consider drivers’ behaviour, experience, fatigue nor ongoing concentration in navigating
through roundabouts. The future plans for this task include an ongoing linkage between the model
and metrics form the urban system, which will record quantitative data (although it would certainly
be useful to develop a methodology for automatically retrieving qualitative data such as vehicle data).
The model also does not specifically look at the specific characteristics of pedestrians walking by
the roundabout, treating them only as a parameter that has some influence on the scenarios studied.
However, incorporating pedestrians’ behaviour into the launched study may point to further important
aspects. The developed model does not account for cyclists, either. The aforementioned facts show an
area that could contribute to the subsequent studies in this respect. Other aspects that may be of some
importance, but were not investigated, are the distances between the individual feeder roads. The
developed model could also be extended to include the possibility of turbo roundabout simulations.
It would require small modifications of the principles contained in Scenario 5. It also might provide
an answer to the question whether in the case of a given roundabout it is better to apply the classical
traffic organisation, or a directional traffic organisation.

It must be stressed that the model has been tested in a simulation environment, which can be
perceived as an incomplete scientific pathway. Therefore, in the future, some works will be carried out
towards validation of the model, using available measures and current real data.

6. Conclusions

The article focuses on the analysis of traffic efficiency at roundabout intersections. The current
roundabout traffic rules were presented, and then other forms of roundabout traffic organisation were
proposed by means of specifying various traffic scenarios. A generalised model was developed, which
was based on cellular automata aimed at examining multi-lane roundabout capacity for different
road traffic rules. The developed model was implemented in the form of a simulation system, which
enabled numerous simulations. The obtained results proved that modification of the existing traffic
regulations has an effect on increasing roundabout capacity. The greatest roundabout capacity is
provided by the form of traffic organisation that makes vehicles enter and exit a roundabout in parallel.
The implication is that several vehicles may easily enter and exit a roundabout at the same time. The
results obtained were better by 15.3% (Scenario 4) and 8.9% (Scenario 5) compared to regulations in
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force (Scenario 1). Another important result of the study was determination that a reduction of freight
traffic has a square function effect on roundabout capacity. It means even a small number of trucks
within the total quantity of vehicles may significantly reduce roundabout capacity.

Studies such as the current one cannot possibly be performed in real conditions, mainly due to a
possibility of collision, and difficulties in ensuring that all the traffic participants will understand the
conditions of the experiment and will behave as prescribed. Computer simulations were applied to
bridge this gap. A mathematical model and a simulation system were developed, and the obtained
results were presented in the figures and tables. The simulation applied at the microscopic level made
it possible to reproduce the phenomena of the real world, such as road traffic, and enabled answering
of new questions regarding possible behaviours of drivers.

During the research some possible areas of improvement of the proposed approach have been
identified. The most interesting ones seem to be the validation of the model and the inclusion of the
human factors to reduce model simplification.

The aim of the study was to demonstrate that a modification of road traffic rules could lead to
increasing roundabout capacity. The results described have shown that the aim of the study has been
attained, and the results make it possible to take up further studies.
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Abstract: A steer-by-wire (SbW) system, also known as a next-generation steering system, is one
of the core elements of autonomous driving technology. Navigating a SbW system road vehicle in
varying driving conditions requires an adaptive and robust control scheme to effectively compensate
for the uncertain parameter variations and external disturbances. Therefore, this article proposed
an adaptive global fast sliding mode control (AGFSMC) for SbW system vehicles with unknown
steering parameters. First, the cooperative adaptive sliding mode observer (ASMO) and Kalman filter
(KF) are established to simultaneously estimate the vehicle states and cornering stiffness coefficients.
Second, based on the best set of estimated dynamics, the AGFSMC is designed to stabilize the impact
of nonlinear tire-road disturbance forces and at the same time to estimate the uncertain SbW system
parameters. Due to the robust nature of the proposed scheme, it can not only handle the tire–road
variation, but also intelligently adapts to the different driving conditions and ensures that the tracking
error and the sliding surface converge asymptotically to zero in a finite time. Finally, simulation
results and comparative study with other control techniques validate the excellent performance of
the proposed scheme.

Keywords: adaptive global fast sliding mode (AGFSM); adaptive sliding mode observer (ASMO);
Kalman filter (KF); Steer-by-Wire (SbW)

1. Introduction

The automobile industry is immensely working to transform conventional road vehicles into
partial/full autonomous vehicles. SAE International and NHTSA have classified six levels of driving
autonomy from “no automation” to “full automation” [1,2]. In particular, from the lane-keeping
assistance system [3] to fully automated maneuvering [4–6], Steer-by-Wire (SbW) technology is
playing a fundamental role in advanced driving assistance systems [7]. Nissan introduced the first
commercialized SbW system in 2013 with the Infiniti Q50 vehicle [8,9]. The SbW system delivers better
overall steering performance with comfort, reduces power consumption, provides active steering
control, and significantly improves the passenger safety. Compared with a conventional steering
system, the SbW system has replaced the mechanical shaft between the steering wheel and front
wheels with two actuators, controllers, and sensors. The first actuator steers the front wheels and the
second actuator provides steering feel feedback to the driver, obtained from the road and tire dynamics.
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Over the last decade, many researchers have proposed a number of control techniques to
compensate for the system parameter variation, change in road conditions, and external disturbances
for obtaining the robust performance of the SbW system. In [10,11], sliding mode based control
schemes are proposed for a partially known SbW system with unknown lumped uncertainties to track
the reference signal. However, it is hard to classify the wide range of nominal parameters under the
sideslip, and the robust performance may not be guaranteed over different road conditions. In [12–16],
the upper bound sliding mode control (SMC) technique is proposed for the bounded unknown SbW
system parameters and uncertain dynamics. However, the process of obtaining these proper bounds
is not evident. In [17–20] proportional-derivative (PD) control is proposed to follow the driver’s
steering wheel signal closely. However, under uncertain dynamics, it is difficult to achieve satisfactory
performance with a conventional control scheme. In [21] cornering stiffness and chassis side slip
angle are estimated to calculate the self-aligning torque. The authors used the proportion of estimated
torque as a feedback to the driver for artificial steering feel. In [22] three suboptimal sliding mode
techniques are evaluated for yaw-rate tracking problem in over-actuated vehicles. In [23,24], adaptive
control is implemented for path tracking via SbW system and the authors estimated the sliding gains
by considering the known steering parameters and cornering coefficients. However, they did not
use any mechanism to stop the estimation. Consequently, the controller could lead to saturation by
estimating too large a sliding gain. In [25,26] the authors proposed a hyperbolic tangent function
with adaptive SMC based schemes to counter the effect of self-aligning torque. In [27] the frictional
torque and self-aligning torque are replaced by a second-order polynomial function that acts as an
external disturbance over the SbW system. The authors proposed an adaptive terminal SMC (ATSMC)
to estimate the upper bounds of parameters and disturbance.

Apart from the control design, a robust estimation methodology is also needed for the SbW
system to estimate the vehicle states, uncertain parameters, and tire–road conditions for eliminating
the effect of external disturbances from the controller. For instance, in recent years Kalman filter (KF)
and nonlinear observers have gained much more attention from researchers; for example, in [28] a
dual extended KF is used to estimate vehicle states and road friction. In [29] the authors estimated five
DOF vehicle states and inertial parameters, such as overloaded vehicle’s additional mass, respective
yaw moment of inertia, and its longitudinal position using the dual unscented KF by considering the
constant road–tire friction over a flat road. In [30–32] a fixed gain based full-state nonlinear observer is
designed to estimate the longitudinal, lateral, and yaw velocities of the vehicle. However, for good
estimation performance the observer gains must be tuned to a wide range of driving conditions.
In order to reduce the burden of gain tuning from a-nonlinear observer [33], employed linear matrix
inequality based convex optimization to obtain the gains of reduced order observer for estimating
vehicle velocities. In [34] the authors implemented an adaptive gain based sliding mode observer to
estimate the battery’s charging level and health in electric vehicles.

In this paper first, we have established the adaptive sliding mode observer (ASMO) and the
Kalman filter (KF) to simultaneously estimate the vehicle states and cornering stiffness coefficients
by using the yaw rate and the strap down [35] lateral acceleration signals. Then, based on the
simultaneously estimated dynamics, the two-fold adaptive global fast sliding mode control (AGFSMC)
is designed for SbW system vehicles, considering that the steering parameters are unknown. In the
first fold, estimated dynamics-based control (EDC) is utilized to stabilize the impact of self-aligning
torque and frictional torque. In the second fold, the AGFSMC is developed to estimate the uncertain
SbW parameters and eliminate the effect of residual disturbance left out from the EDC. The adaptation
capability of the proposed scheme not only intelligently handles the tire–road environmental changes,
but also adapts the system parameters and sliding gains according to the different driving conditions.

Finally, for avoiding overestimations of parameters and gains, discontinuous projection
mapping [36] is incorporated to stop the estimation and adaptive mechanism as the tracking error
converges to the designed dead zone bounds [37]. In the simulated results section, the comparative
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study will show the effectiveness of the proposed AGFSMC scheme, which ensures that the tracking
error and sliding surface converge asymptotically to zero in a finite time.

The rest of the paper is structured as follows: In Sections 2 and 3, vehicle dynamics modeling
and SbW system modeling with external disturbance are discussed. In Section 4, the ASMO and KF
are established to estimate the vehicle states and parameters. In Section 5, the AGFSMC scheme is
developed for the SbW system and the convergence analysis with bounded conditions is discussed
in detail. Section 6 describes the simulation results and findings to validate the proposed scheme,
followed by the last section that concludes the paper.

2. Vehicle Dynamics Modeling

Figure 1 illustrates the simplest bicycle model of a vehicle, which has a central front wheel and
a central rear wheel, in place of two front and two rear wheels. The vehicle has two degrees of freedom,
represented by the lateral motion y and the yaw angle ψ. According to Figure 1, the dynamics along
the y axis and yaw axis are described as [38,39]:

m
( ..

y + Vx
.
ψ
)
= Fy f cos δ f w + Fx f sin δ f w + Fyr (1)

Iz
..
ψ = l f

(
Fy f cos δ f w + Fx f sin δ f w

)
− lrFyr, (2)

where
..
y,

.
ψ, and

..
ψ. are the acceleration with respect to the y axis motion, yaw rate, and yaw acceleration,

respectively. l f and lr represent the distance of front and rear axles from the center of gravity,
respectively. m and Iz are the mass of vehicle and the moment of inertia along the yaw axis, respectively.
Vx denotes the longitudinal vehicle velocity at the center of gravity. Fx f and Fxr are the longitudinal
forces of the front and rear wheels, respectively. Fy f and Fyr are the lateral frictional forces of front and
rear wheels, respectively, as shown in Figure 1.

Figure 1. Bicycle model of vehicle.

In order to simplify the model, it is assumed that longitudinal forces Fx f , Fxr are equal to zero
and by using the small angle approximation, i.e., cos δ f w ≈ 1, the simplified dynamics can be modeled
as follows:

m
( ..

y + Vx
.
ψ
)
= Fy f + Fyr (3)

Iz
..
ψ = l f Fy f − lrFyr. (4)

For small slip angles, the lateral frictional forces are proportional to slip-angle α f and αr at the
front and rear wheels, respectively. Therefore, lateral forces are defined as:

Fy f = 2Cf .α f (5)

Fyr = 2Cr.αr, (6)

where

α f = δ f w −
Vy + l f

.
ψ

Vx
(7)
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αr = −
Vy − l f

.
ψ

Vx
, (8)

where Cf and Cr are the front and rear tires’ cornering stiffness coefficients. δ f w denotes the steering
angle of front wheels, which is considered the same for both front wheels, and factor 2 accounts for
two front and two rear wheels, respectively.

By using the small angle approximation Vy =
.
y [38], Equations (7) and (8) can be written as:

α f = δ f w −
.
y + l f

.
ψ

Vx
(9)

αr = −
.
y − l f

.
ψ

Vx
. (10)

Substituting Equations (5), (6), (9) and (10) into Equations (3) and (4), the state space model is
represented as:

.
x = Ax + Bδ f w, (11)

where
x =

[ .
y

.
ψ
]T

A =

⎡⎢⎢⎣
−2

(Cf +Cr
mVx

)
−
(

Vx + 2
( l f Cf −lrCr

mVx

))
−2

( l f Cf −lrCr
IzVx

)
−2

(
l2

f C f +l2
r Cr

IzVx

)
⎤⎥⎥⎦, B =

⎡⎣ 2Cf
m

2l f Cf
Iz

⎤⎦.
(12)

3. Steer-by-Wire System Modeling

Figure 2 depicts the standard model of SbW system for road vehicles. As shown, the steering
wheel angle sensor is used to detect the driver’s reference angle and the feedback motor is used to
provide the artificial steering feel.

Steering wheel
angle sensor

Steering wheel

Steering feel
Feedback motor

Pinion angle 
sensor

Front wheel
steering motor Controller

Figure 2. Steer-by-wire model.

Similarly, the front wheel angle is detected by the pinion angle sensor. Based on the error between
the reference angle and the front wheel angle, the control signal is provided to the front wheel steering
motor to closely steer the front wheels according to the driver’s reference angle.
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The equivalent second-order dynamics of the front wheels’ steering motor is expressed as
follows [10,15]:

Jeq
..
δ f w + Beq

.
δ f w + τF + τa = ku, (13)

where Jeq and Beq are the equivalent moment of inertia and the equivalent damping of the SbW system,
respectively. u is the front wheels’ steering motor control input and k is the steering ratio between the
steering wheel angle and the front wheels’ angle, given by δ f w = δsw/k.

It is known that many modern road vehicles use the variable steering ratio. Therefore, dividing
both sides of Equation (13) by k eliminates the impact of the variable steering ratio from the proposed
control scheme without compromising the steering performance. Thus, the dynamics of SbW system
can be written as:

Jek
..
δ f w + Bek

.
δ f w + τFk + τak = u, (14)

where

Jek =
Jeq

k
=

J f w

k
+ J f mk (15)

Bek =
Beq

k
=

Bf w

k
+ Bf mk (16)

τFk =
τF
k

(17)

τak =
τa

k
, (18)

where J f w and J f m are the moment of inertia of the front wheels and the front wheel steering motor,
respectively. Bf w and Bsm are the damping factors of the front wheels and the front wheel steering
motor, respectively.

When the vehicle is turning, the steering system experiences torque that tends to resist the
attempted turn, known as self-aligning torque τa. It can be seen from Figure 3 that the resultant lateral
force developed by the tire manifests the self-aligning torque. The lateral force is acting behind the
tire center on the ground plane and tries to align the wheel plane with the direction of wheel travel.
Therefore, the total self-aligning torque is given by [14]:

τa = Fy f
(
tp + tm

)
, (19)

where tp is the pneumatic trail (the distance between the application point of lateral force Fy f to the
center of tire), tm is the mechanical trail, also known as the caster offset, which is the distance between
the tire center and the point where the steering axis intersects with the ground plane.

Side view

Top view

Figure 3. Self-aligning torque on front wheel.
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By substituting Equations (5) and (9) into Equation (19), τa can be written as:

τa = 2Cf

(
δ f w −

.
y + l f

.
ψ

Vx

)(
tp + tm

)
. (20)

Moreover, τF is the coulomb frictional torque acting on SbW system, expressed as [23]:

τF = Fz f μtpsign
( .

δ f w

)
(21)

Fz f =
mglr

l f + lr
, (22)

where Fz f is the normal load on front axle, μ is the coeffient of friction, mg is the vehicle’s weight without
any external load, and sign() signum function is used to identify the direction of the frictional torque.

The stability of the SbW system mainly depends on the road and environmental conditions.
The uncertain road surface such as dry, wet, or icy can produce considerable variations in the tire
cornering stiffness coefficients Cf , Cr, which can adversely affect the controller performance. Therefore,
to estimate the vehicle states and the uncertain parameter variation, the cooperative ASMO and KF are
designed in the next section.

4. ASMO and KF

In this section, we will first design the ASMO for yaw rate
.
ψ and lateral velocity

.
y, and then

use the KF parameter estimator to estimate the tire cornering stiffness coefficients under varying
road conditions.

In order to design the observer, a few assumptions are made, such as: the yaw rate
.
ψ is directly

measurable from yaw rate sensor; and the vehicle’s longitudinal velocity is obtained from Vx = reω,
where re is the effective tire radius and ω is the averaged free wheels angular speed measured from
the wheel encoders. Moreover, it is considered that there is no effect of gravitation acceleration g on
the lateral acceleration ay, such that the ay measurement model is defined as [29]:

ay,sensor =
..
y + Vx

.
ψ. (23)

Therefore, the lateral velocity can be obtained from a strapdown algorithm [35] as follows:

.
y(t) =

.
y(t − 1) +

∫
(ay,sensor − Vx

.
ψ)dt, (24)

where
.
y(t − 1) is the prior lateral velocity.

The conventional sliding mode observer (SMO) for vehicle states (Equation (11)) can be
designed as:

..
ŷ = −A11

.
ŷ − A12

.
ψ̂ + B1δ f w + L1sign

( .
y −

.
ŷ
)

(25)

..
ψ̂ = −A21

.
ŷ − A22

.
ψ̂ + B2δ f w + L2sign

( .
ψ −

.
ψ̂
)

, (26)

where A11, A12, B1, and B2 are the elements of Equation (12) with nominal m0 and Iz0; L1 and L2 are
the observer gains, which must satisfy the following conditions, such that:

L1 > max(|A11e1|+ |A12e2|) (27)

L2 > max(|A12e1|+ |A22e2|), (28)

where e1 =
.
y −

.
ŷ and e2 =

.
ψ −

.
ψ̂.
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The road surface variation is a critical factor for tuning the observer gains L1 and L2 during
the design process. Any inappropriate selection of L1 and L2 will significantly reduce the SMO
performance, resulting in a possible deviation of state estimation from the original trajectory.

Due to the aforementioned fact, an adaptive gain based sliding mode observer [34] is proposed,
which improves the estimation performance by adapting the observer gains according to tire road
conditions. Therefore, Equations (25) and (26) are changed to new forms, as follows:

..
ŷ = −A11

.
ŷ − A12

.
ψ̂ + B1δ f w + L̂1(t)sign(e1) (29)

..
ψ̂ = −A21

.
ŷ − A22

.
ψ̂ + B2δ f w + L̂2(t)sign(e2), (30)

where the ASMO gain adaptation law for i = 1, 2 is expressed as:

.
L̂i(t) =

{
ρi|ei|, |ei| > εi

0, otherwise
, (31)

where L̂i(t) > 0, is strictly positive time varying adaptive ASMO gain. ρi is a positive scalar used
to adjust the adaption speed. εi � 1 are small positive constants used to activate the adaptation
mechanism with the condition defined in Equation (31); therefore, as the error converges to the bound
|ei| ≤ εi in finite time, L̂i(t) will stop increasing.

For convergence proof, the Lyapunov function of ASMO for lateral velocity is defined as:

V1 =
1
2

e2
1 +

1
2ρ1

L̃1, (32)

where L̃1 = L̂1 − L1 is the adaptive gain convergence error.
The derivative of V1, with the consideration that

.
L1 = 0, is obtained as follows:

.
V1 = e1

.
e1 +

1
ρ1

L̃1

.
L̂1

= e1[−A11e1 − A12e2 − L̂1sign(e1)] +
1
ρ1

L̃1

.
L̂1

≤ e1[−A11e1 − A12e2]− L̂1|e1|+ (L̂1 − L1)|e1|
≤ e1[−A11e1 − A12e2]− L1|e1|.

(33)

Thus, by considering Equation (27):
.

V1 ≤ 0. (34)

Similarly, the Lyapunov function V2 for yaw rate convergence error e2 and adaptive gain
convergence error L̃2 = L̂2 − L2 can be written as:

V2 =
1
2

e2
2 +

1
2ρ2

L̃2. (35)

The time derivative of Equation (35) will asymptotically converge to zero,
.

V2 ≤ 0, by considering
.
L2 = 0 and L2 > max(|a12e1|+ |a22e2|).

Remark 1. In the practical implementation, the direct strapdown of lateral acceleration may incorporate the
small continuous noise to the lateral velocity that can diverge the ASMO estimation over time. Therefore, to deal
with the issue, a lateral velocity-based damping term [40] is added to cancel out the incremental noise. Now
Equation (24) can be written as:

.
y(t) =

.
y(t − 1)(1 − σ) +

∫
(ay,sensor − Vx

.
ψ)dt, (36)
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where σ > 0 is an adjustable small damping parameter.

Remark 2. The designed ASMO may encounter high-frequency chattering due to the discontinuous signum
function sign(); therefore, it is replaced by the continuous function ei/(|ei|+ εi), such that Equations (29) and
(30) are rewritten as:

..
ŷ = −A11

.
ŷ − A12

.
ψ̂ + B1δ f w + L̂1(t)

e1

|e1|+ ε1
(37)

..
ψ̂ = −A21

.
ŷ − A22

.
ψ̂ + B2δ f w + L̂2(t)

e2

|e2|+ ε2
. (38)

The estimation performance of the ASMO for lateral velocity and yaw rate primarily depends
upon the knowledge of tire cornering stiffness coefficients Cf and Cr, which are unknown in practice
and cannot be measured directly from the onboard vehicle sensors. Therefore, a Kalman filter (KF) [41]
is proposed in cooperation with ASMO to estimate these stiffness coefficients under different tire–road
conditions. Once the KF estimates a sufficient set of tire cornering stiffness coefficients, the parameter
estimation can be switched off.

The KF algorithm [41] for tire cornering stiffness estimation is given in Table 1.

Table 1. Kalman filter algorithm.

1. Initialize ŵ0, P0:

ŵ0 = E[w(0)]
P0 = E[(w(0)− ŵ0)(w(0)− ŵ0)

T ]

2. Time Update:

ŵ−
t = ŵt−1

P−
t = Pt−1 + Q

3. Measurement Update:

Kt = P−
t HT(HP−

t HT + R
)−1

ŵt = ŵ−
t + Kt

(
zt − Hŵ−

t
)

Pt = (I − Kt H)P−
t

P denotes the estimate error covariance, Q is the process noise covariance, and R = r2
s is the

measurement noise covariance, whereas rs represents the sensor’s zero-mean white noise.
The tire cornering coefficients vector w and the measurement z, consisting of the lateral

acceleration ay, are defined as:

w =
[
Cf Cr

]T
, z = Hw, (39)

where
z = ay

H =

[
− 2

m0

(
.
ŷ+l f

.
ψ̂

Vx
− δ f w

)
− 2

m0

(
.
ŷ−l f

.
ψ̂

Vx

)]
.

(40)

It is to be noted that the tire cornering stiffness coefficient’s vector w is considered as constant,
therefore, the time derivative of w is zero, (

.
w = 0). Then, w and z can be written in Euler’s discretized

form as:
w(k) = w(k − 1) + v(k) (41)

z(k) = Hw(k) + r(k), (42)

where v and r are the zero mean process noise and measurement noise, respectively.
In order to improve the estimation performance and the convergence accuracy of KF, the difference

e3 = zt − Hŵ−
t , known as residual, is utilized to switch off the KF estimator. Therefore, on the basis of
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e3, a bounded condition is selected, such that when e3 reaches the specified bound |e3|≤ ε3 , the KF
will stop the estimation process and thereafter the estimated parameters will become constant until e3

exceeds the specified condition. ε3 (ε3 > 0) is the small positive constant.
Thus, the estimated tire cornering stiffness-based ASMO for Equations (37) and (38) is revised as:

..
ŷ = −A11(ŵt−1)

.
ŷ − A12(ŵt−1)

.
ψ̂ + B1(ŵt−1)δ f w + L̂1(t)

e1

|e1|+ ε1
(43)

..
ψ̂ = −A21(ŵt−1)

.
ŷ − A22(ŵt−1)

.
ψ̂ + B2(ŵt−1)δ f w + L̂2(t)

e2

|e2|+ ε2
. (44)

5. AGFSMC Control Design

In this section, the estimated dynamics-based adaptive global fast sliding mode control (AGFSMC)
is designed in two steps to estimate the uncertain steering parameters and eliminate the effect of
varying tire–road disturbance forces, so that the front wheels asymptotically track the driver’s reference
command in finite time.

The tracking error eθ between the front wheel angle δ f w and the scaled reference hand wheel
angle δd is defined as:

eθ(t) = δ f w(t)−
δsw(t)

k
= δ f w(t)− δd(t). (45)

The combination of linear sliding surface and the terminal sliding surface is known as the global
fast terminal sliding surface, s, which is defined as [42]:

s =
.
eθ + λ1(eθ)

q/p + λ2eθ , (46)

where λ1 and λ2 (λ1, λ2 > 0), are strictly positive constants, and q and p, are positive odd numbers,
such that q < p.

Thus, the time derivative of s is obtained as:

.
s =

..
eθ + λ1

q
p
(eθ)

(
q
p −1) .

eθ + λ2
.
eθ . (47)

.
s can be written as:

.
s =

..
δ f w −

..
δr, (48)

where
..
δr is expressed as:

..
δr =

..
δd −

(
λ1

q
p
(eθ)

(
q
p −1)

+ λ2

)
.
eθ . (49)

Thus, for stabilizing the SbW system (Equation (14)) and exponentially converging the tracking
error (Equation (45)) to zero, the two-step closed loop control law u for the SbW system is designed as:

u = uE + uA, (50)

where, in the first step, the estimated dynamics based control (EDC) uE, is designed to counter the
tire–road disturbance acting on the SbW system as follows:

uE = −sign(s)(|ξτak|+|ξτFk|), (51)

where ξτak, is the estimated self-aligning torque, which is computed from the best set of estimated
vehicle states and front wheel cornering stiffness provided by the ASMO and KF. ξτFk is the nominal
frictional torque obtained from the nominal set of vehicle parameters, such as mass, nominal coefficient
of friction, and the geometry of the vehicle.
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Both |ξτak| and |ξτFk| are expressed as:

|ξτak| =
2Ĉ f

ko

(
tpo + tm

)∣∣∣∣∣∣
⎛⎝δ f w −

.
ŷ + l f

.
ψ̂

Vx

⎞⎠∣∣∣∣∣∣ (52)

|ξτFk| =
m0glr(

l f + lr
)

k0

μotpo

∣∣∣sign
( .

δ f w

)∣∣∣, (53)

where
.
ŷ,

.
ψ̂, and Ĉ f are the observed vehicle states and the front wheel’s estimated cornering stiffness, as

worked out in the previous section, respectively. μo, tpo, m0, and ko are the nominal system parameters.
Second, to tackle the residual disturbance left by the EDC and estimate the uncertain steering

parameters, the adaptive global fast sliding mode control (AGFSMC) uA is designed as follows:

uA = −sign(s)

⎛⎝|�|â + T̂

∣∣∣∣∣∣
.
ŷ + l f

.
ψ̂

Vx

∣∣∣∣∣∣+ β̂1|u(t − 1)|

⎞⎠− β2s, (54)

where â(t) is the estimated parameter’s vector and |�| is the signal feedback vector; they are defined
as follows:

â =
[

Ĵek B̂ek F̂ T̂
]T

(55)

|�| = [|
..
δr||

.
δ f w||sign(

.
δ f w)||δ f w|]. (56)

Moreover, β̂1 and β2, (β̂1, β2 > 0) are the fixed and adaptive gains used to control the convergence
speed of AGFSMC, respectively, and |u(t − 1)| is the prior control input obtained at the time step t − 1.

Therefore, the adaptation laws for updating the â(t) and β̂1 are designed as:

.
â = Γ|�T ||s| (57)

.
β̂1 = |s||u(t − 1)|, (58)

where Γ(Γ > 0) is the diagonal positive definite gain matrix used to tune the parameter adaptation
speed. Figure 4 shows the framework of the proposed AGFSMC scheme.

Figure 4. AGFSMC scheme framework.

Convergence Proof

The Lyapunov function candidate is defined as:

131



Appl. Sci. 2017, 7, 738

V3 =
1
2

Jeks2 +
1
2

ãTΓ−1 ã +
1
2

β̃1
2, (59)

where ã(t) = â(t) − a is the parameter estimation error, β̃1(t) = β̂1(t) − β1 is the adaptive gain
convergence error, and Γ−1 is the inverse of gain matrix.

The time derivative of Lyapunov function V3 in terms of the SbW system (Equation (14)) and the
control input (Equation (50)), with the considerations that

.
a = 0,

.
β1 = 0, are obtained as follows:

.
V3 = sJek

.
s +

.
â

T
Γ−1 ã + β̃1

.
β̂1

= s[−Jek
..
δr − Bek

.
δ f w − τFk − τak + u] +

.
â

T
Γ−1 ã + β̃1

.
β̂1

= s[−Jek
..
δr − Bek

.
δ f w − τFk − τak − sign(s)(|ξτFk|

+|ξτak|) + uA] +
.
â

T
Γ−1 ã + β̃1

.
β̂1

= s[−Jek
..
δr − Bek

.
δ f w + uA]− (sτFk + |s||ξτFk|)

−(sτFk + |s||ξτak|) +
.
â

T
Γ−1 ã + β̃1

.
β̂1

≤ s[−Jek
..
δr − Bek

.
δ f w + uA]− |s|(|ξτFk| − |τFk|)

−|s|(|ξτak| − |τak|) +
.
â

T
Γ−1 ã + β̃1

.
β̂1.

(60)

It is considered that |ξτFk| < τFk and |ξτaFk| < τak, such that:

|ξτFk| − |τFk| = −F|sign(
.
δ f w)| (61)

|ξτak| − |τak| = −T
(∣∣∣δ f w

∣∣∣+ ∣∣∣∣∣
.
y + l f

.
ψ

Vx

∣∣∣∣∣
)

, (62)

where F and T are the uncertain residual parameters of frictional torque and self-aligning
torque, respectively.

Substituting Equations (61), (63) and AGFSMC uA (Equation (54)) into (Equation (60)), then the
inequality is written as:

.
V3 ≤ s[−Jek

..
δr − Bek

.
δ f w − sign(s){ Ĵek|

..
δr|+ B̂ek|

.
δ f w|

+T̂ |δ f w|+ T̂
∣∣∣∣∣

.
ŷ+l f

.
ψ̂

Vx

∣∣∣∣∣+ β̂1|u(t − 1)|} − β2s]

+|s|F |sign(
.
δ f w)|+ |s|T |δ f w|+ |s|T

∣∣∣∣ .
y+l f

.
ψ

Vx

∣∣∣∣
+

.
â

T
Γ−1 ã + β̃1

.
β̂1

= −(|s| Ĵek|
..
δr|+ sJek

..
δr)− (|s|B̂ek|

.
δ f w|+ sBek

.
δ f w)

−(|s|F̂ |sign(
.
δ f w)| − s|F |sign(

.
δ f w)|)

−(|s|T̂ |δ f w| − |s|T |δ f w|) + |s|T
∣∣∣∣ .

y+l f
.
ψ

Vx

∣∣∣∣− |s|T̂
∣∣∣∣∣

.
ŷ+l f

.
ψ̂

Vx

∣∣∣∣∣
−|s|β̂1|u(t − 1)| − β2s2 +

.
â

T
Γ−1 ã + β̃1

.
β̂1

= −|s||
..
δr| J̃ek − |s||

.
δ f w|B̃ek − |s||sign(

.
δ f w)|F̃ − |s||δ f w|T̃

−|s|
(
T̂
∣∣∣∣∣

.
ŷ+l f

.
ψ̂

Vx

∣∣∣∣∣− T
∣∣∣∣ .

y+l f
.
ψ

Vx

∣∣∣∣
)
− |s|β̂1|u(t − 1)| − β2s2

+
.
â

T
Γ−1 ã + β̃1

.
β̂1

= −|s||�|ã +
.
â

T
Γ−1 ã − |s|

(
T̂
∣∣∣∣∣

.
ŷ+l f

.
ψ̂

Vx

∣∣∣∣∣− T
∣∣∣∣ .

y+l f
.
ψ

Vx

∣∣∣∣
)

−|s|β̂1|u(t − 1)|+ (β̂1 − β1)
.
β̂1 − β2s2.

(63)
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With the adaptation laws of
.
â (Equation (57)) and

.
β̂1 (Equation (58)), substituting into Equation

(63) satisfies:
.

V3 ≤ −|s|

⎛⎝T̂

∣∣∣∣∣∣
.
ŷ + l f

.
ψ̂

Vx

∣∣∣∣∣∣− T
∣∣∣∣∣

.
y + l f

.
ψ

Vx

∣∣∣∣∣
⎞⎠− |s|β1|u(t − 1)| − β2s2 (64)

The convergence proof shows that the proposed AGFSMC is stable and the inequality
(Equation (64)) ensures that the global fast terminal sliding surface variable exponentially converges to
zero (s = 0) in the finite time.

Remark 3. The signum function sign(s) incorporates the chattering and discontinuity in the proposed
controller. Therefore, to eliminate the chattering phenomenon the signum function is replaced by the boundary
layer saturation function sat(·) such that Equations (51) and (53) are re-written as:

uE = −sat(s)(|ξτak|+|ξτFk|) (65)

uA = −sat(s)

⎛⎝|�|â + T̂

∣∣∣∣∣∣
.
ŷ + l f

.
ψ̂

Vx

∣∣∣∣∣∣+ β̂1|u(t − 1)|

⎞⎠− β2s. (66)

The boundary layer saturation function is defined as:

sat(s) =

{
s
φ |s| < φ

sign(s) otherwise
, (67)

where φ > 0 represents the boundary layer thickness. Due to the boundary layer, the closed-loop error cannot
converge to zero. However, a carefully selected value of φ would lead the error to a user-specified bounded region.

Remark 4. In order to avoid overestimation of â and β̂1, which can lead the control input u(t) to saturation,
Equations (57) and (58) can be re-written for the permissible bounds of eθ using the discontinuous projection
mapping [36] as follows:

.
â =

{
0 if |eθ | ≤ ε4

Γ|�|T |s| otherwise
(68)

.
β̂1 =

{
0 if |eθ | ≤ ε5

|s||u(t − 1)| otherwise
, (69)

where ε4 and ε5 are defined as dead zone bounds [27] in terms of tracking error. Therefore, when the tracking
error converges to the respective dead zone bound, the adaption mechanism will be switched off and after that â
and β̂1 become constant.

6. Simulation Results

In this section, the estimation accuracy of vehicle states and cornering stiffness coefficients, and
the control input performance of the proposed AGFSMC scheme for SbW system road vehicles, are
validated over the three different maneuvering tests, in compression with adaptive sliding mode
control (ASMC) and adaptive fast sliding mode control (ATSMC).

The first test (test 1) is sinusoidal maneuvering with varying tire–road conditions—snowy for
the first 30 s and a dry asphalt road for the next 30 s—with the selected coefficient of friction as
μt<30 = 0.45, μt≥30 = 0.85 and the tire cornering stiffness coefficients for the front and rear wheels
as Cf (t<30) = 4000, Cf (t≥30) = 8000, Cr(t<30) = 5000, Cr(t≥30) = 10, 000, respectively. The second test
(test 2) is known as circular maneuvering, conducted over a dry asphalt road. Moreover, a high speed
cornering test (test 3) is also introduced to further evaluate the robustness of the proposed scheme.

133



Appl. Sci. 2017, 7, 738

It is worth noting that the first two tests are carried out at longitudinal speed Vx = 10 m/s and the
third test at Vx = 20 m/s with the same sampling rate of ΔT = 0.001 s. Furthermore, the vehicle and
SbW system parameters are listed in Table 2.

Table 2. Vehicle and SbW system parameters.

Parameter Value (s)

m (kg) 1270
Iz
(
kg·m2) 1537

l f , lr (m) 1.015, 1.895
Jek 0.28
Bek 0.88
k 18

tm, tp (m) 0.023, 0.016

The parameters for the proposed cooperative ASMO and KF estimator with the termination
bounds are selected as: L̂1(0) = L̂2(0) = 8, ρ1 = ρ2 = 10, σ = 0.001, ε1 = ε2 = 0.005, ε3 =

0.01, m0 = 1150 kg, Iz0 = 1430 kg·m2, ŵ0 = [100 100]T , P0 = 10000 × I2x2, Q =
(
1 × 10−6)I2×2,

and rs = 0.001.
In addition, the parameters for the designed AGFSMC scheme with dead zone bounds are chosen

as: λ1 = λ2 = 12, p = 7, q = 5, φ = 0.8, β2 = 4, tpo = tm = 0.016 m, μo = 0.6, ko = 16, Γ = I4×4,
ε4 = ε5 = 0.002, and the initial conditions are considered as â(0) = β̂1(0) = 0.

To compare the performance of the proposed AGFSMC scheme with the adaptive sliding mode
control (ASMC), as designed in [25], we used the following equations:

u = 1
k (Je0(λ

.
e +

..
δd) + Be0

.
δ f w + ξ f 0sign(

.
δ f w) + �s + Ksat(s) + ρ̂τtanh(δ f w))

K = 0.1(Je0(λ|
.

e|+|
..
δd|) + Be0|

.
δ f w|+ ξ f 0)

.
ρ̂τ = μ �

Je0
+ μ

.
stanh(δ f w),

(70)

where the tracking error e = δd − δ f w and the sliding surface s =
.
e + λe with

.
s = (sk − sk−1)/Δt

are defined in Equation (71). The saturation function sat(·) is also taken to be the same as Equation
(67) with boundary layer thickness φ = 0.8. Moreover, the nominal SbW system parameters Je0 = 3,
Be0k = 12, ξ f 0 = 100, k = 18, and the control parameters λ = 12, � = 72, μ = 450 are selected
according to the methodology defined in [25].

For performance comparison with ATSMC, as designed as [27], the calculations are given
as follows:

u = −sat(s)
[

â1

(
..
δd

)
+ b̂1

∣∣∣ .
δ f w

∣∣∣+ ĉ0 + ĉ1

∣∣∣δ f w

∣∣∣+ ĉ2

∣∣∣ .
δ f w

∣∣∣+ λâ q
p (e)

(
q
p −1)∣∣ .

e
∣∣]− ρ̂

2 s

−k1sign(s)− k2s
.
ĉ0 = η1|s|(1 − σĉ0)

.
ĉ1 = η2|s|

∣∣∣δ f w

∣∣∣(1 − σĉ1)
.
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∣∣∣ .
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∣∣∣(1 − σĉ2)
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â1 =

(
η4|s|

(
..
δd

)
+ η4|s|λ q

p (e)
(

q
p −1)∣∣ .

e
∣∣)(1 − σâ1)

.
b̂1 = η5|s|

∣∣∣ .
δ f w

∣∣∣(1 − σb̂1

)
,

.
ρ̂ = η6

s2

2 (1 − σρ̂),

(71)

where λ, p, q, sat(s), and φ have the same values as those defined in AGFSMC. Moreover, the control
parameters and adjustable parameters for adaptive laws are selected according to [27] as follows:

η1 = 4, η2 = η3 = η4 = η5 = η6 = 2, k1 = 0.001, k2 = 4,
..
δd = 2 and ρ = 0.001, resptectively.
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6.1. Sinusoidal Maneuvering Test (Test 1)

The reference steering wheel angle is generated by:

δd = 0.4 sin(0.5πt)rad. (72)

Figure 5 shows the simultaneously estimated lateral velocity, yaw rate, and cornering stiffness
coefficients. It is observed that the cooperative ASMO and KF scheme intelligently cope with the
tire–road variations and estimate the vehicle states and cornering stiffness coefficients by self-tuning
the gains according to the driving environment. Figure 5c shows that the estimated Ĉ f , Ĉr have not
only converged to the neighborhood of the actual values in both dry and snowy conditions, but also
become constant after the condition e3 reached a specified termination bound.
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Figure 5. Estimation results of vehicle states and cornering stiffness coefficients in test 1: (a) Estimated
lateral velocity; (b) Estimated yaw rate; (c) Estimated cornering stiffness coefficients.

Figure 6 represents the tracking response and the control input performance of the AGFSMC
scheme against the varying tire–road disturbance forces. We can see from Figure 6b that the proposed
methodology effectively eliminates the impact of self-aligning torque (Equation (20)) and Coulomb
frictional torque (Equation (21)) from the SbW system and ensures that the front wheels are precisely
tracking the reference steering angle with a steady state tracking error of 0.002 rad. It is noted that
at the beginning of sinusoidal maneuvering, after 3 s, the tracking error reached the peak value of
0.01 rad. This is because we started all the parameter estimations from very low values, such as
ŵ0 = [100 100]T , â(0) = β̂1(0) = 0. Therefore, right after the peak error, all the estimated parameters
converged to the sufficient estimation set. As a result, the peak tracking error also converged to the
steady-state dead zone region.

Moreover, Figure 7 shows the estimated SbW system parameters and the sliding gain adaptation
profile. It is observed that the estimated SbW system parameters did not converge to the listed actual
constants, but due to the adaptive capability of the proposed control scheme, all parameters as well
as the sliding gain are adaptively adjusted in time for both driving conditions, which ensure the
closed-loop stability of the SbW system. Hence, the outstanding steering performance of the SbW
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system vehicle is achieved against the nonlinear tire–road disturbance forces and the uncertain SbW
system parameters.
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Figure 6. Control performance of the proposed AGFSMC scheme in test 1: (a) Tracking performance;
(b) Tracking error; (c) Control input torque.
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Figure 7. Estimated SbW system parameters and sliding gain with AGFSMC scheme in test 1: (a–d)
Estimated SbW system parameters; (e) Estimated sliding gain.

Figure 8 demonstrates that the steering performance of the ASMC scheme is not as good as that
of the proposed AGFSMC scheme. This is because the hyperbolic tangent function used in ASMC is
unable to replicate the actual self-aligning torque acting on the SbW system. Also, the adaptation law
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cannot estimate the appropriate equivalent coefficient of self-aligning torque to compensate for the
varying tire–road conditions. Consequently, the overall tracking error is much higher, particularly in
the dry asphalt road condition: the tracking error peaks to the steady-state value of 0.06 rad, which is
almost 30 times higher than in the proposed scheme. Although the ASMC scheme has the information
of nominal parameters and utilized the saturation function, it incorporates high-frequency chattering
during the first 3 s of the simulation, where the reference angle is set to zero.
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Figure 8. Control performance of adaptive sliding mode controller in test 1: (a) Tracking performance;
(b) Tracking error; (c) Control input torque; (d) Estimated equivalent coefficient of self-aligning torque.
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Figure 9 shows that the overall tracking response of ATSMC is better than the ASMC under the
varying driving conditions, while both schemes cannot outperform the proposed AGFSMC. It can be
seen that the control input overshoots the allowable control limit, which causes irregular spikes in
the tracking error. We noticed two reasons for that: (1) The designed adaptation law for estimating
the control parameter â1 does not include a provision to maintain the positive estimation; and (2)
the ATSMC does not possess any mechanism to bound or stop the parameter adaptation process for
avoiding overestimations, as compared to the one proposed in AGFSMC. Therefore, the tracking error
is consistently converging to a smaller region with spikes due to the large and continuous parameter
estimation, which may lead the controller to saturation state.
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Figure 9. Control performance of adaptive terminal sliding mode control in test 1: (a) Tracking
performance; (b) Tracking error; (c) Control input torque; (d) Estimated parameters.

6.2. Circular Maneuvering Test (Test 2)

The circular maneuvering test is carried out over the dry asphalt road for 25 s with these selected
tire–road parameters: Cf = 8000, Cr = 10000, and u = 0.85.

Figures 10–12 portray the promising results of the proposed AGFSMC scheme in all aspects
during test 2. We can see the fine estimation of vehicle states and cornering coefficients in Figure 10.
The estimated cornering coefficients takes less than a second to converge to the sufficient estimation
set over the dry asphalt, such as, Ĉ f

∼= 7250, Ĉr ∼= 9050, and becomes constant after e3 satisfies the
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selected ε3 bound. Thus, Figure 11 exhibits the excellent tracking response of the front wheels with an
observed peak tracking error of 0.008 rad, which eventually converged to the ε4 bound after the rapid
adjustment of all adaptive parameters Ĵek, B̂ek, F̂ , T̂ , and β̂1 to certain constants, as shown in Figure 12.
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Figure 10. Estimation results of vehicle states and cornering stiffness coefficients in test 2: (a) Estimated
lateral velocity; (b) Estimated yaw rate; (c) Estimated cornering stiffness coefficients.
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Figure 11. Control performance of the proposed AGFSMC scheme in test 2: (a) Tracking performance;
(b) Tracking error; (c) Control input torque.
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(e)

Figure 12. Estimated SbW system parameters and sliding gain with AGFSMC scheme in test 2: (a–d)
Estimated SbW system parameters; (e) Estimated sliding gain.

In contrast to the proposed scheme, the ASMC shows the worst tracking performance throughout
test 2. It can be seen from Figure 13 that the tracking error is unable to obtain any steady state bound
and reached a peak value of 0.076 rad, which is almost 9.5 times higher than in the proposed AGFSMC
scheme. Moreover, the adaptation law also shows inconsistent behavior in the last 7 s of this test,
where the estimated coefficient of self-aligning torque rapidly drops to a highly negative value. As a
result, neither tracking error nor sliding surface converged to the steady state boundary at a finite time
in the Lyapunov’s sense.
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Figure 13. Control performance of adaptive sliding mode controller in test 2: (a) Tracking performance;
(b) Tracking error; (c) Control input torque; (d) Estimated equivalent coefficient of self-aligning torque.
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On the other hand, the ATSMC performed slightly better than the ASMC in terms of tracking
response and also managed to converge the tracking error to the steady state bound during test 2.
The peak tracking error observed under the ATSMC scheme is 0.067 rad as shown in Figure 14, which is
marginally less than the ASMC but almost 8.35 times higher than the proposed scheme. Moreover, the
abrupt shift in â1 parameter estimation and the multiple control input overshoots are again observed
in this test.
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Figure 14. Control performance of adaptive terminal sliding mode control in test 2: (a) Tracking
performance; (b) Tracking error; (c) Control input torque; (d) Estimated parameters.

6.3. High Speed Cornering Test (Test 3)

In order to further evaluate the estimation accuracy, tracking response, and control input
performance of the proposed AGFSMC scheme, a high-speed cornering test is performed on a dry
asphalt road for 45 s.

As expected, Figures 15–17 clearly indicate the remarkable performance of the proposed scheme
against the parametric uncertainties and tire–road disturbance. The cooperative ASMO and KF also
maintain the robustness and provide adequate estimated dynamics to stabilize the effect of self-aligning
torque and frictional torque at high speed. The peak tracking error observed during test 3 under the
AGFSMC scheme is 0.0095 rad, which is almost eight times lower than ASMC (0.076 rad), and four
times lower than ATSMC (0.04 rad). Compared to other control schemes, Figure 18 shows that the
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tracking error under ASMC was again unable to attain any steady state bound and also incorporates
high-frequency chattering at constant steering angle inputs. The ATSMC shows a decent performance
regarding the tracking error convergence as compared to ASMC. However, the sudden parameter
estimation shift with control overshoot still exists in this test, as shown in Figure 19.
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Figure 15. Estimation results of vehicle states and cornering stiffness coefficients in test 3: (a) Estimated
lateral velocity; (b) Estimated yaw rate; (c) Estimated cornering stiffness coefficients.
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Figure 16. Control performance of the proposed AGFSMC scheme in test 3: (a) Tracking performance;
(b) Tracking error; (c) Control input torque.
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Figure 17. Estimated SbW system parameters and sliding gain with AGFSMC scheme in test 3: (a–d)
Estimated SbW system parameters; (e) Estimated sliding gain.
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Figure 18. Control performance of adaptive sliding mode controller in test 3: (a) Tracking performance;
(b) Tracking error; (c) Control input torque; (d) Estimated equivalent coefficient of self-aligning torque.
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Figure 19. Control performance of adaptive terminal sliding mode control in test 3: (a) Tracking
performance; (b) Tracking error; (c) Control input torque; (d) Estimated parameters.

7. Conclusions

In this paper, we have developed an AGFSMC scheme for SbW system road vehicles with
unknown steering parameters. It has been demonstrated that the cooperative ASMO and KF
intelligently cope with tire–road variations and simultaneously provide the best set of estimated
vehicle states and cornering stiffness coefficients. Thereafter, the estimated dynamics-based AGFSMC
is designed to adapt to the unknown SbW system parameters and eliminate the effect of tire–road
disturbance forces. The proposed global fast terminal sliding surface guarantees the precise tracking
of front wheels and ensures the asymptotic convergence of tracking error. Finally, the comparative
study results are analyzed as follows:

• The adaptive features of cooperative ASMO and KF showed strong robustness against varying
driving conditions in all three maneuvering tests, and estimated the sufficient dynamics to
stabilize the impact of tire–road frictional torque and self-aligning torque.

• The proposed AGFSMC is proven to attain a smaller peak tracking error and faster convergence
of steady-state error to smaller bounds in comparison with ASMC and ATSMC over all
three maneuvers.

• The discontinuous projection mapping along with designed dead zones, also effectively managed
to restrict the estimation drift problem.
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Thus, the comparative study validates the remarkable steering performance of the proposed
AGFSMC scheme, carried out over three different driving maneuvers. For our forthcoming work, we
will investigate the dynamic behavior of nonlinear self-aligning torque and Coulomb frictional torque
in extreme maneuvering conditions. In addition, we are also investigating the adaptive second-order
sliding mode control for SbW system road vehicles to improve the estimation accuracy of dynamic
tire–road disturbance forces under varying driving conditions.
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Abbreviations

The following abbreviations are used in this article:

Vx, Vy,
.
ψ Vehicle’s velocities and yaw rate

..
y,

..
ψ Vehicle’s lateral and yaw acceleration

m, Iz Vehicle’s mass and mass moment of inertia
Fy f , Fyr Lateral force at front and rear wheel
Fx f , Fxr Longitudinal force at front and rear wheel
Cf , Cr Cornering coefficient of front and rear wheel
α f , αr Sideslip angle of front and rear wheel
J f w, J f m, Jeq Moment of inertia of front wheels, actuator, and equivalent SbW system
Bf w, Bf m, Beq Viscous damping of front wheels, actuator, and equivalent SbW system
l f , lr Distance of front and rear axles from center of gravity
tp, tm Pneumatic and mechanical trail
τF, τa Tire–road frictional torque and self-aligning torque
μ Tire–road coefficient of dry friction
Fz f Vertical load on front axle
k Steering ratio
.
ŷ,

.
ψ̂ ASMO estimated vehicle states

L̂1, L̂2 ASMO adaptive gains
ρ1, ρ2 ASMO adaptation law speed adjustment parameters
Ĉ f , Ĉr KF estimated cornering coefficients
e1, e2, e3 ASMO and KF estimation errors
ε1, ε2, ε3 ASMO and KF termination bounds
δ f w Front wheel angle
δd Reference angle
eθ Tracking error
s Sliding surface
λ1, λ2, q, p GFTSM surface parameters
Ĵek, B̂ek, F̂ , T̂ , β̂1, β2 AGFSM estimated and fast convergence parameters
ε4, ε5 AGFSM adaptation law dead zone bounds
u AGFSM control input
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Abstract: Driving Decision-making Mechanism (DDM) is identified as the key technology to ensure
the driving safety of autonomous vehicle, which is mainly influenced by vehicle states and road
conditions. However, previous studies have seldom considered road conditions and their coupled
effects on driving decisions. Therefore, road conditions are introduced into DDM in this paper, and
are based on a Support Vector Machine Regression (SVR) model, which is optimized by a weighted
hybrid kernel function and a Particle Swarm Optimization (PSO) algorithm, this study designs a
DDM for autonomous vehicle. Then, the SVR model with RBF (Radial Basis Function) kernel function
and BP (Back Propagation) neural network model are tested to validate the accuracy of the optimized
SVR model. The results show that the optimized SVR model has the best performance than other two
models. Finally, the effects of road conditions on driving decisions are analyzed quantitatively by
comparing the reasoning results of DDM with different reference index combinations, and by the
sensitivity analysis of DDM with added road conditions. The results demonstrate the significant
improvement in the performance of DDM with added road conditions. It also shows that road
conditions have the greatest influence on driving decisions at low traffic density, among those, the
most influential is road visibility, then followed by adhesion coefficient, road curvature and road
slope, while at high traffic density, they have almost no influence on driving decisions.

Keywords: autonomous vehicle; driving decision-making mechanism; road conditions; support
vector machine regression; PSO algorithm

1. Introduction

With the current rapid economic growth, vehicle ownership is fast increasing, accompanied by
more than one million traffic accidents per year worldwide. According to statistics, about 89.8% of
accidents are caused by driver’s wrong decision-making [1]. So, in order to alleviate traffic accidents,
autonomous vehicles have been the world’s special attention for its non-driver’s participation. Key
issues in researching autonomous vehicle include autonomous positioning, environmental awareness,
driving decision-making, motion planning, and vehicle control [2]. As an important manifestation of
the intelligent level of autonomous vehicles, the driving decision-making has currently become the
focus and difficulty for experts in the study of autonomous vehicle [3]. For autonomous vehicle, it
needs to rely on driving decision-making mechanism (DDM) to decide accurate driving strategy [4].
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Collecting and extracting traffic scene feature by sensors and based on the driving rules, it could not
only make accurate driving decisions, but also drive safely in complex traffic environment.

In recent years, many scholars have devoted themselves to the research of DDM for autonomous
vehicles. Suh et al. [5] established vehicles’ desired steering angle model and longitudinal acceleration
model based on vehicle states, and developed a control algorithm for the driving model. Wang et al. [6]
established a DDM for car following, free driving, and lane changing, with the decision tree algorithm
only considering vehicles’ running states on the road. To improve the disadvantage of lacking
flexibility existing in the decision tree algorithm, Zheng et al. [7] used traditional artificial neural
network to substitute the decision tree algorithm and trained an ANN (Artificial neural networks)
driving decision-making model. Noh and An [8] presented a driving decision-making framework for
automated driving in highway environment, which considers the interactions between the subject and
surrounding vehicles. The previous research works mainly took vehicle states as the reference indexes
of DDM, and ignored the influence of road conditions on the driving decision-making.

The empirical studies show that road conditions have a great influence on driving decision-
making, including weather-related and road geometry related factors [9,10]. For example, reducing
road visibility will change the traffic flow dynamics [11], and changing the geometric layout of
the road will easily lead to changes in driving behavior [12]. Hamdar et al. [10] analyzed the
impact of road conditions on vehicles’ longitudinal operation, and found that extreme environmental
conditions could increase the extent to which a vehicle deviated from normal driving behavior.
Hoogendoorn et al. [11] conducted a series of driving simulations and found that driving in foggy
weather led to the lower speed and acceleration, as well as to consider a larger distance from the
lead vehicle. Broughton et al. [13] studied the car following decision-making under three visibility
conditions, and the results showed that low visibility could reduce driver’s risk identification ability.
Wang et al. [14] analyzed the impact of road curvature and slope on car following behavior. They
found that when driving on road with different slopes and curvature, the car-following characteristics
of vehicles varied greatly, and then established a car following model while considering curve and
slope. Olofsson et al. [15] investigated optimal maneuvers for vehicles on different road surfaces, such
as asphalt, snow, and ice, and found that there were fundamental differences in the optimal maneuvers
depending on tire-road characteristics. Previous studies have shown that driving in abnormal road
conditions would increase the incidence of traffic accidents that are caused by incorrect driving
behavior. So, road conditions, including road curvature, slope, visibility, and friction coefficient, are
important parameters for DDM.

At present, most researches use neural network, decision tree model, and mathematical model to
build DDM, but these methods need a large sample size or workload, and their prediction accuracy
needs to be improved [5–8]. Support Vector Machine (SVM) is a widely accepted machine learning
method with strong generalization ability; it can use nonlinear methods to map the variables to be
classified (SVC, support vector machine classification) or regressed (SVR, support vector machine
regression) into higher or more infinite dimensional feature spaces. But, in the classification problem,
SVR adopts the same principle as SVC, and SVR can predict the value of infinite possible output.
In addition, the tolerance margin is set up in SVR to approximate the most accurate classification
results [16]. Although SVR is more complex than SVC, it has better flexibility in solving the
multi-classification problem. Therefore, in this paper, the SVR algorithm is used to predict the
multi-driving decision, and the output threshold range is set for each driving decision. In the research
of driving decision, SVR is mainly used to car following behaviors [17,18], driving risk assessment [19],
and so on. At present, most researches use SVR to solve the problems by specifying the kernel functions
directly [17–19], but sometimes it may be found that the kernel function does not match the target
problem. Therefore, in order to make the objective problem automatically choose the optimal kernel
function, a new kernel function is proposed to optimize the SVR model.
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So, in this paper, by simultaneously referring vehicle states and road conditions, an optimized
SVR model is developed to obtain the inherent complexity of driving decisions, including car following,
lane changing, and free driving. Specifically, this study makes the following contributions:

(1) A detailed analysis of DDM for autonomous vehicles is conducted, which suggests that the
control maneuvers of autonomous vehicle depend on the extracted traffic environment feature,
not only including vehicle states, but also road conditions.

(2) A SVR model, optimized by a weighted hybrid kernel function and particle swarm optimization
(PSO) algorithm, is developed to establish DDM for autonomous vehicle. In order to validate the
effectiveness of the optimized SVR model, the SVR model with a single RBF kernel function and
BP neural network (BPNN) model are tested to compare with it.

(3) By comparing the reasoning results of DDM with different reference index combinations,
and by the sensitivity analysis, the effect of road conditions on driving decisions is
quantitatively evaluated.

2. The Driving Decision-Making Process of Autonomous Vehicle

As shown in Figure 1, with the sensor equipment, the autonomous vehicle can sense and collect
traffic information, including vehicle states and road conditions in real time, to input them into the
designed data processing program for some data processing to obtain the input variables of DDM.

According to these input variables, the DDM searches the relevant information and matches
the accurate driving decision with the learning experiences, and then transmits the decision order to
the control system. These learning experiences refer to the driving decision-making rules in DDM
that are obtained by learning a lot of real driving experience. Then, the control system will control
the actuators (include the steering system, pedals, and automatic gearshift) to carry on with the
corresponding operation.

 

Input variables 

Road conditions

Data 
processing 
program 

Sensors 
Systems 

Control 
System 

DDM 

Vehicle states 

Driving decision 

Figure 1. Schematic architecture of the driving decision-making process of autonomous vehicle. DDM:
Driving Decision-making Mechanism.

In the whole process of information collection, transmission, and execution, the DDM plays a
key role, which is the central system to control the autonomous vehicle. The types of driving decision
DDM outputs include free driving, car following, and lane changing. Its input variables are obtained
through the preliminary data processing for extracting traffic scenario characteristics as reference
indexes and the further data fusion. The method of data fusion adopted in this paper is Principal
Component Analysis (PCA). The whole detailed data processing steps in the data processing program
are described in Figure 2.
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Figure 2. The detailed data processing of data processing program.

The schematic diagram of vehicle states on a road is shown in Figure 3. All of the above obtained
reference indexes in Figure 2 are described as follows:

ΔLi,0/(m): The gap difference between Li and safe distance L0, and Li refers to the distance between
the subject vehicle M and vehicle i, i = {Mbf, Mlf, Mlb};
ΔvM,i/(m/s): The relative speed between vehicle M and vehicle i;
ht/(s): The time headway of current lane;
μ: Road adhesion coefficient, dimensionless;
ρ/(m−1): Road curvature;
τ: Road slope, percentage; and,
δ/(m): Road visibility.

M Mbf

MlfMlb

Mbb

v

LMbf

LMlfLMlb

Figure 3. Diagrammatic sketch of vehicle states.

2.1. Support Vector Machine Regression Model

SVR model is a kind of machine learning method based on statistical learning theory, which can
improve the generalization ability of learning machine by seeking the minimum structural risk [16,20].
So, SVR model has been widely applied and developed in the fields of pattern recognition, regression
analysis, and sequence prediction [18,21].

Let SV = {(x1, y1), (x2, y2), . . . , (xm, ym)} be a set of m training samples, each of samples xm is the
input variable, which is obtained from traffic environment features. ym is the output driving decision
corresponding to xm. These training samples are fitted by f (x) = ωTx + b, and all of the fitted results
must be satisfied with error accuracy ε, i.e.,:∣∣∣ωTxi + b − yi

∣∣∣ ≤ ε, i = 1, 2, . . . , m (1)

According to the minimization criteria of structural risk, f (x) should make 1
2‖ω‖2 minimum.

When considering the exiting fitted errors, the relaxation factors are introduced as ξ j ≥ 0, ξ∗j ≥ 0. The
best regression result can be derived from the minimum extreme value of the following function:

Φ(ω, ξ j, ξ∗j ) =
1
2
‖ω‖2 + C

m

∑
i=1

(ξ j + ξ∗j ) (2)
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where C is the penalty factor value, C > 0.
Then, adopt the dual principle, and set the Lagrange multiplier α, α∗ to establish the Lagrange

equation. Through drafting the parameters ω, b, ξ j, ξ∗j and making the drafted formulas equal to 0, the
regression coefficient ω and constant term b can be obtained:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ω =
m
∑

i=1
(αi − α∗i )xi

b = 1
m

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
∑

0 < α < C
0 < α∗ < C

[
yi − ∑

xj∈SV
(αj − α∗j )·(xi − xj)− ε

]⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(3)

After that, the results are substituted into the function f (x) to get the regression function:

f (x) =
m

∑
i=1

(αi − α∗i )(xi · x) + b (4)

Finally, the original samples are mapped into a high-dimensional feature space with a kernel
function K(xi, x), and calculate the parameters with the same method, as above. The obtained
non-linear regression function is:

f (x) =
m

∑
i=1

(αi − α∗i )K(x, xi) + b (5)

The common kernels are showed as following:

Polynomial kernel function: KPoly(x, xi) = (a(x · xi) + b)d

Radial basis function: KRbf = exp(−‖x−xi‖2

σ2 )

Sigmoid kernel function: KSig = tan(τ(x · xi)− δ)

Where the dot denotes the inner-product operation in Euclidean space, d is the degree of
polynomial kernel, σ is the constant term determining the width of RBF kernel [18]. With different
kernels, it can be structured by different regression surfaces, then different training results may be
gotten on driving decision-making. So, it is important to select the proper kernel function and kernel
parameters in the SVR model.

2.2. The Optimized Support Vector Machine Regression Model

2.2.1. The Selection of Kernel Function

In the research field of SVR model, the selection of kernel function type is the most popular
research problem. The kernel function adopted by most of SVR research is the RBF kernel function.
But, for different specific problems, the selected kernel function can reflect some of the characteristics
of the problem itself [22]. The kernel function specified by researchers based on experience may not be
the best choice for specific problems. So, this requires some ways to choose the optimal kernel function
for them. In this paper, in order to avoid complexity and one-sidedness of the selection, and to give
full play to the benefits that are brought by various kernel functions for the DDM, a weighted hybrid
kernel function is proposed:

K(x, xi) = β1[KPoly(x, xi)]
e1 + β2[KRbf(x, xi)]

e2 + β3[KSig(x, xi)]
e3 (6)
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where 0 ≤ β j ≤ 1, ej ∈ R, j = 1, 2, 3, respectively, refer to the weight factor and exponential factor
corresponding to each kernel function. Then, combine the exponential factor e1, e2 with d and σ

respectively, we can simplify this formula:

K(x, xi) = β1KPoly(x, xi) + β2KRbf(x, xi) + β3[KSig(x, xi)]
e3 (7)

The weighting factor needs to be satisfied:

β1 + β2 + β3 = 1 (8)

When β j = 0, it represents that the corresponding kernel function does not play a role in DDM.
When β1 = 1, e = 1 and β2,3 = 0, then the expression of the formula is similar with the primitive type
of Polynomial Kernel.

2.2.2. Parameter Optimization

Particle swarm optimization (PSO) algorithm is a new evolutionary and iterative optimization
algorithm developed in recent years. PSO algorithm is also started from the random solution and the
quality of its solution is evaluated by the fitness. It finds the global optimum following the optimal
particles in the solution space [23]. PSO algorithm has a fast convergence rate, and can avoid falling
into the local optimum [24,25]. So, in this paper, we adopt PSO algorithm to optimize the undetermined
parameters of the SVR model and the weighted hybrid kernel function.

In the PSO algorithm, particles dynamically adjust their positions in the n-dimensional space
through their individual and peer flight experience. In n-dimensional space, the number of particles
is l, and the position of particle i can be represented as xi = [xi1, xi2, . . . , xin], and its flying speed is
vi = [vi1, vi2, . . . , vin]. The best position visited by the particle i so far can be noted as the particle
best, i.e., Pbesti = [Pbesti1, Pbesti2, . . . , Pbestin], and the best position found by all the particles so far
can be noted as the global best, i.e., Gbest = [Gbesti1, Gbesti2, . . . , Gbestin]. At every moment t, the
particle will adjust its speed and position by:

vt+1
id = μvt

id + c1rand(0, 1)(Pbestid − xt
id) + c2rand(0, 1)(Gbestid − xt

id) (9){
vid = vmax, vid > vmax

vid = −vmax, vid < −vmax
(10)

xt+1
id = xt

id + vt+1
id (11)

where i = 1, 2, . . . , l, d = 1, 2, . . . , n, vmax is the limited maximum flying speed, and rand(0, 1) is the
uniform random number on the interval [0, 1], it can increase the searching randomness of particles
based on the Pbest and the Gbest.

Then, the PSO-SVR parameter optimization architecture is established in Figure 4. We set the
updated step factor as μ = 1 and the positive acceleration coefficients of particle as c1 = c2 = 2.0. The
limited maximum flying speed vmax is set to 100, and the number of particles l is 50. The number of
undetermined parameters is 9, including β, e in selecting kernel function type, parameters of each
single kernel function a, b, d, σ, τ, δ, and SVR penalty factor C, it is represented as the dimension of the
particle space. The parameter of kernel function σ and penalty factor C are limited in the value range
(−10, 10).
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Figure 4. The steps of Particle Swarm Optimization (PSO)—Support Vector Machine Regression (SVR)
parameters optimization architecture.

The optimization steps are given as follows:

Step 1 randomly initialize the positions and speeds of all particles;
Step 2 the fitness value of each particle is calculated according to the fitness function of driving

decision problem;
Step 3 respectively compare the fitness value of each particle with their own Pbest and Gbest. If the

fitness value is larger than Pbest, then update Pbest with the fitness value. If the fitness value
is larger than Gbest, then update Gbest with the fitness value;

Step 4 for each update, reset the SVR penalty factor C to create a larger research space for particles,
avoid falling into the local area of current optimal value;

Step 5 update the position and speed of each particle according to Formulas (8) and (9); and,
Step 6 when the number of iterations reaches the maximum set, stop it and output the optimal

parameters. Otherwise, return to Step 2.

In this paper, set the training accuracy as the fitness function in the optimized process. In order to
evaluate the predicting effect of model for each driving decision, the average absolute error EM and
relative mean square error ER are selected as the comprehensive evaluation indexes. The former can
reflect the degree of deviation between reasoning and measured values, and the latter is the changing
embodiment of the error values, which reflects the output stability of SVR model.

EM(xi) =
1
m

m

∑
i=1

|yi − f (xi)|
yi

× 100% (12)
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ER(xi) =

√√√√ 1
m

m

∑
i=1

(
|yi − f (xi)|

yi
)

2

× 100% (13)

3. Experimental Set-Up

A driving experiment needs to be set up to collect relevant data for training the optimized SVR
model. Driving simulation is an alternative on-road experiment when the driver desires to use more
controllable traffic scenarios to manipulate under certain experimental conditions. By adjusting the
light, brightness, motion, audio, etc. in the simulator, it can represent a real traffic scene and an
actual vehicle for the driver, which is used to study driving behaviors safely. From the output data,
we can obtain the trajectory data of the subject and surrounding vehicles, which are useful to analyze
driving decisions.

3.1. Driving Simulator

Driving simulation experiment is performed using the UC-win/Road 12.0 driving simulator
platform (12.0 version, Fulamba Software Technology Co., Ltd., Shanghai, China, 2016) at the intelligent
transportation experimental center of Transportation College in Shandong University of Science and
Technology, which is shown in Figure 5. The hardware is made up of three networked computers
and some interfaces, such as the steering system, pedals and the automatic gearshift. The traffic
environment is projected onto a large visual screen (Fulamba Software Technology Co., Ltd., Shanghai,
China) (this big screen is made up of 3 sub-screens), which can provide a 135◦ field of view. The
resolution of visual scene is 1920 × 1080, the refresh rate of the scene is 20–60 Hz depending on the
complexity traffic environment. The simulator can record the position coordinates, speed, acceleration
of the subject vehicle, and the surrounding vehicle in real time.

Figure 5. Traffic Simulation Scene of Simulated Driving Test.

3.2. Participants

A total of 31 drivers with different driving experiences are recruited for experiment, including
19 male and 12 female drivers. Before performing driving simulation experiments, a survey for all of
the participants is conducted, which is mainly focused on personal driving habits, driving experience,
car accident history, physical and psychological status, etc. The average age of the participants is
25.7 years old (std is 3.91 years), ranging from 23 to 37 years. All of the participants have a qualified
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driver’s license, and more than five years of driving experience (std is 4.33 years). None of participant
has any visual and psychological problems. Among 31 participants, three participants (two males,
one female) had car crashes in the past five years. The participants are trained to be familiar with the
driving simulated operation and to complete the driving simulation on all the traffic environments
as required.

3.3. Driving Scenario Setting

A two-way with four-lane urban road section is established for this experiment, as shown in
Figure 5. Setting different parameters for vehicles, roads, and traffic, we can establish different traffic
simulated scenarios. Set all the vehicles running on these scenarios as standard cars, and the traffic
density range to 4–32 veh/km (note: 4–16 veh/km is the low density range, 16–28 veh/km is the
middle density range, and 28–32 veh/km is the high density range). The traffic flow is running
randomly at each density range with a desired speed of 40–50 km/h. The reference values of the road
parameters are shown in Table 1, and the initial set of road parameters are standard values, i.e., (μ, ρ, τ,
δ) = (0.75, 0, 0, 1000). The data acquisition frequency is 10 Hz.

Table 1. Settings of Road Parameters.

Road Parameters Setting Values

Adhesion coefficient μ 0.75/0.55/0.28/0.18
Road curvature ρ (m−1) 0/3/1.67/1

Road slope τ 0/2%/4%/6%
Road visibility δ/m 1000/500/100/50

3.4. Data Acquisition and Preprocessing

3.4.1. Data Acquisition

The collected data include driving trajectory data of the subject and its surrounding vehicles, their
speeds and road environment parameters. According to the following method, the useful driving
trajectory data of each driving decision are extracted and classified into the driving decision data set:

(1) Lane changing: The driving trajectory data of 10 s before implementing lane changing are
recorded in lane changing data set.

(2) Car following: The driving trajectory data within the 50 m gaps between the subject and its
leading vehicle are recorded in car following data set.

(3) Free driving: The driving trajectory data beyond 50 m gaps between the subject and its leading
vehicle, and the driving trajectory data output when the subject vehicle with the desired speed
are recorded in free driving data set.

After data classification and statistics, a total of 3211 groups of free driving data, 5312 groups
of car following data, and 1009 groups of lane changing data are obtained. Each group of driving
decision data includes one group of the driving trajectory data, together with their corresponding
speeds and the road environment parameters.

3.4.2. Preliminary Data Process

In the preliminary data process, the data contained in all driving decision data sets are calculated
to obtain the driving decision samples. From the driving trajectory data, we can obtain ΔLMbf,0,
ΔLMlf,0, ΔLMbl,0, ht and the driving decision (free driving, car following or lane changing), from
the speed information, we can obtain ΔvM,Mbf , ΔvM,Mlf , and ΔvM,Mbl , from the road environment
parameters, we can obtain the values of μ, ρ, τ, δ. One sample includes one reference index vector
H =

[
ΔLMbf,0, ΔLMlf,0, ΔLMbl,0, ΔvM,Mbf , ΔvM,Mlf , ΔvM,Mbl , ht, μ, ρ, τ, δ

]
and its corresponding

driving decision.
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3.4.3. The Output and Input Variables of the Optimized SVR Model

(1) The output variables

In this paper, the output variable of the optimized SVR model is a driving decision, may be free
driving, car following, or lane changing. We assign the represented values and the output threshold
ranges to all of the driving decisions, as seen in Table 2. For example, if an output value of DDM falls
within the threshold range (−1.5, 0.5), it represents that the driving decision is free driving.

Table 2. Driving Decision-Making Behaviors.

Driving Decision Symbol Represented Value Threshold Range of the Output Value

Free driving y1 −1 (−1.5, 0.5)
Car following y2 0 (−0.5, 0.5)

Lane Changing y3 1 (0.5, 1.5)

(2) The input variables

Solving practical problems often need to collect a lot of indexes to reflect more information about
the research object. If the correlation between these indexes is high, then the information reflected
from them will have a certain overlap, which will increase the complexity of processing information.
To solve this problem, Principal Component Analysis (PCA) is proposed to analyze data indexes and
obtain the needed input variables [26].

PCA is a statistical analysis method. It can transform multiple correlated indexes into a few
of uncorrelated indexes. The comprehensive indexes, called the principal components, will keep
the original indexes information as much as possible. If there is a p-dimensional random vector
f = ( f1, f2 . . . , fp)

′, using PCA, the p reference indexes can be transformed into a set of uncorrelated
principal indexes x1, x2, . . . , xp as their principal components, as seen in (14).⎧⎪⎪⎪⎨⎪⎪⎪⎩

x1 = a11 f1 + a12 f2 + . . . + a1p fp

x2 = a21 f1 + a22 f2 + . . . + a2p fp

..............................................
xp = ap1 f1 + ap2 f2 + . . . + app fp

(14)

Then, m(m < p) principal components need to be selected from above p principal components to
adequately reflect the information represented by fp. The number of principal components m depends
on the cumulative contribution rate of the variance G(m).

G(m) =
m

∑
i=1

λi/
p

∑
k=1

λk (15)

where λi is the eigenvalue of xi.
Usually, when G(m) > 85%, these m principal components can adequately reflect the information

of the original p reference indexes.
Then, we use PCA to make the correlation analysis of 11 reference indexes through 200 sets of

samples. The analysis process of PCA is shown in Figure 6. The calculated results of PCA for each
principal component are shown in Figure 7. According to the cumulative contribution rate of the
variance of each principal component, the first five principal components X = [x1, x2 , . . . , x5] are
selected as the input variables of the optimized SVR model.
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4. The Performance of the Optimized SVR Model on Driving Decision-Making

4.1. The Performance of the Weighted Hybrid Kernel Function

In the parameter optimization process of the optimized SVR model, 75% of the driving decision
samples are randomly selected for training, and the remaining 25% samples are used for model
validation. In order to evaluate the performance of the weighted hybrid kernel function, a SVR model
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with RBF kernel function is input with the same 75% samples to get its corresponding iteration results.
We set to 200 the maximum number of training iterations.

With the PSO algorithm, we can obtain the weighted hybrid kernel function of the optimized SVR
model, as shown in formula (16).

K(x, xi) = 3 × 10−3KPoly(x, xi) + 4.21 × 10−1KRbf(x, xi) + 5.76 × 10−1[KSig(x, xi)]
3.13×10−1

(16)

The optimal parameters of each basic kernel function incorporated in the weighted hybrid kernel
function are shown in the following Table 3. The best penalty factor C = 5.4142. In the SVR model with
RBF kernel function, the optimal parameters are σ = 1.4142, C = 6.0524. The iterative comparison
results of fitted values can be seen from Figure 8.

Table 3. The best parameters of each basic kernel function.

The Basic Kernel Function
Optimal Parameters

a b d σ τ δ

Polynomial kernel function 12.114 3.741 0.097 - - -
Radial basis function - - - 60.565 - -

Sigmoid kernel function - - - - 13.255 1.651
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Figure 8. The iterative comparison results of fitted values of two SVR models.

It can be seen that the fitted accuracy of SVR model with weighted hybrid kernel function and RBF
kernel function, respectively, are 92.3% after 31 generations and 89.7% after 43 generations. So, when
compared with RBF kernel function, the weighted hybrid kernel function shows better performance
on driving decision-making.

4.2. The Performance of SVR Model

BP (Back Propagation) neural network (BPNN) is one of the most widely used and successful
learning algorithms in current research, and is particularly suitable for solving complex problems with
internal mechanisms [27–29]. In order to verify the performance of SVR model, a typical feed-forward
BPNN is established to compare with SVR model on the performance of driving decision-making. The
BPNN model is established with five layers (an input layer, three hidden layers, and an output layer).
Set the Tan-Sigmoid function as the transfer function of BPNN model. The five principal components
X = {x1, x2, . . . , x5} obtained above are set as its input layer parameters and the corresponding
driving decisions yk is set as the output layer parameter.
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In general, the number range of nodes in the hidden layers depends on the number of nodes in
the input and output layer [30]. We use our sample data to check the accuracy performance of BPNNs
with different number of nodes in the hidden layers, the final number of nodes in each hidden layer
is determined to 7. By the parameter adjustment and the test in MATLAB, the number of iterations
is determined to 500, the learning rate is 0.01, and the training goal (mean square error) is 1 × 104.
Then, the same 75% samples are input into BPNN model for training to obtain the BPNN-based DDM
(BPNN-DDM). In the training process, the weights and bias are adjusted continuously to suit the
desired output corresponding to the reference indexes. After 48 iterations, the network converges
to the desired error. Then, the remaining 25% samples are input into the trained BPNN-DDM and
SVR-DDM with RBF kernel function, the reasoning results of SVR-DDM with weighted hybrid kernel
function, SVR-DDM with RBF kernel function and BPNN-DDM can be seen in the Table 4.

Table 4. The reasoning results of three driving decision-making mechanism (DDMs). SVR: Support
Vector Machine Regression; RBF: Radial Basis Function; BPNN: Back Propagation neural network.

Type
Driving
Decision

Reasoning
Accuracy Rate

EM ER
Average

Reasoning Time

SVR-DDM with
weighted hybrid
kernel function

Free driving 93.1% 0.090 0.347
0.004 sCar following 94.7% 0.057 0.121

Lane changing 89.1% 0.101 0.723

SVR-DDM with RBF
kernel function

Free driving 89.3% 0.127 0.655
0.003 sCar following 92.7% 0.091 0.319

Lane changing 86.8% 0.142 0.981

BPNN-DDM
Free driving 89.9% 0.121 0.844

0.009 sCar following 91.4% 0.091 0.327
Lane changing 87.1% 0.138 1.362

It can be seen from Table 4 that the SVR-DDM with weighted hybrid kernel function has the best
performance in reasoning driving decisions, with the 93.1% accuracy for free driving, 94.7% accuracy
for car following, and 89.1% accuracy for lane changing. The reasoning accurate of SVR-DDM with
RBF kernel function for three driving decisions is 89.3%, 92.7% and 86.8%, respectively, lower than
that of the SVR-DDM with weighted hybrid kernel function, this results are from the optimization
of kernel function in SVR Model. When compared with the two SVR-DDMs, the decision reasoning
accuracy of BPNN-DDM is lower than SVR-DDM with weighted hybrid kernel function, and has little
differences with the SVR-DDM with RBF kernel function. But, the ER values show that the reasoning
stability of the SVR-DDM with RBF kernel function is better than BPNN-DDM. In addition, the three
DDMs have the highest accuracy for car following decision, and the lowest accuracy for lane changing.
This result may be due to the small number of samples and the complexity of lane changing itself.
In summary, the above results support the superior performance of SVR than BPNN in terms of the
reasoning accurate, stability, and time, so the SVR model is more suitable for driving decision-making
than BPNN model.

4.3. Influence Analysis of Road Conditions on the Reasoning Accuracy of DDM

In order to verify the effects of road conditions on the accuracy of DDM, the reasoning results of
three DDMs (include SVR-DDM with weighted hybrid kernel function, SVR-DDM with RBF kernel
function and BPNN-DDM) with the following reference index combinations are compared:

1. vehicle states + Road conditions are used as inputs; and,
2. only vehicle states are used as inputs.

Three DDMs with the first reference index combination has already been trained and validated in
the previous Table 4.
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For the second reference index combination, road conditions information is eliminated from the
above 75% training samples and the remaining 25% testing samples. Then, three DDMs without
considering road conditions are established using the same training method and tested with the testing
samples. The reasoning results of three DDMs without considering road conditions are shown in the
following Table 5.

Table 5. The results of three DDMs without considering road conditions.

Type
Driving
Decision

Reasoning
Accuracy Rate

EM ER
Average

Reasoning Time

SVR-DDM with
weighted hybrid
kernel function

Free driving 82.3% 0.145 1.566
0.003 sCar following 85.9% 0.138 1.441

Lane changing 78.2% 0.158 1.845

SVR-DDM with RBF
kernel function

Free driving 78.5% 0.157 1.634
0.002 sCar following 82.2% 0.155 1.521

Lane changing 76.8% 0.173 1.848

BPNN-DDM
Free driving 78.1% 0.171 1.859

0.006 sCar following 80.4% 0.159 1.723
Lane changing 75.1% 0.176 1.877

As illustrated in Tables 4 and 5, after eliminating the information of road conditions from the
reference index set, the accuracy of SVR-DDM with weighted hybrid kernel function for free driving,
car following and lane changing is reduced from 93.1% to 82.3%, 94.7% to 85.9% and 89.1% to 78.2%,
respectively, SVR-DDM with RBF kernel function is reduced from 89.3% to 78.5%, 92.7% to 82.2% and
86.8% to 76.8% respectively, and the BPNN-DDM is reduced from 89.9% to 78.1%, 91.4% to 80.4% and
87.1% to 75.1% respectively. The results support the effectiveness of making driving decision with road
conditions. In addition, although the average reasoning time of DDMs with added road conditions is
higher than that of DDMs without added road conditions, the reasoning stability of DDMs with added
road conditions is much better than that of DDMs without added road conditions. In general, DDM
has better performance on reasoning driving decisions with added road conditions, which is further
explained that the road condition cannot be ignored in driving decision-making.

4.4. Sensitive Analysis of Road Conditions on Driving Decisions

It can be seen from the above results that road conditions have a great influence on driving
decisions. But how does each parameter affect driving decisions? What is the degree of their effects
on each driving decision? A solution is provided to quantitatively evaluate their effects with the
SVR-DDM with weighted hybrid kernel function (all of the DDMs mentioned in the following analysis
refer to the SVR-DDM with weighted hybrid kernel function and with added road conditions).

We quantitatively evaluate the effects of each road parameter on driving decisions by analyzing
the sensitivity of DDM to the changes in each road parameter. We take the changes in the road
adhesion coefficient μ as an example. Using the driving decision samples under standard road
conditions, we first count and calculate the proportions of each driving decision at different traffic
density ranges. Then, we make the μ take values at 0.55, 0.28 and 0.18, respectively. The other three
road parameters remain standard. Every time that the μ changes, a new set of driving decision samples
is obtained and input into the DDM. From the output of DDM, the proportion of each driving decision
in different traffic density is calculated. Then, we can get the trend that the proportion of each driving
decision varies with the traffic density when μ taken at 0.75, 0.5, 0.25 and 0.18, respectively. In the
same way, we can also get the trend that the proportion of each driving decision varies with the traffic
density when the other three road parameters take different values, respectively. After this operation
and data statistics, the quantitative influence is displayed in Figure 9.
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Figure 9. Driving Decision Rate under Different Road Conditions. (The horizontal axis in these
diagrams represents the traffic flow density, and the vertical axis represents the rate of each driving
decision (between 0 and 1). The solid lines in all diagrams represent the changing trend of the
proportion of driving decisions with traffic density under standard road conditions. (a) The changing
trend of each driving decision rate with traffic density when μ takes different values; (b) The changing
trend of each driving decision rate with traffic density when ρ takes different values; (c) The changing
trend of each driving decision rate with traffic density when τ takes different values; (d) The changing
trend of each driving decision rate with traffic density when δ takes different values. From left to right,
each column represents the trend of lane changing rate, free driving rate and car-following rate with
traffic density when each road parameter is taken as different values, respectively.).
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As shown in Figure 9, it can be seen that the changes of road conditions have the greatest influence
on the driving decisions in the low traffic density range (4–16 veh/km) and almost have no influence in
the high traffic density range (28–32 veh/km). In the low and middle traffic density range (4–28 km/h),
road visibility δ has the greatest effect on driving decision, then followed by adhesion coefficient μ,
road curvature ρ, and road slope τ. So, we can conclude: in the low traffic density range, driving
decision-making is mainly restricted by the road conditions, in consequence, results are easy to be
wrong without considering road conditions. on the other hand, with the high traffic density range,
driving decision-making is mainly limited by vehicles states, so even if road conditions are not taken
into account, the reasoning results are less affected.

Take the change rate of driving decision in low traffic density range in Figure 9b as an example,
when all of the road parameters are taken as the standard values, the average rates of free driving, lane
changing, and car following are about 0.469, 0.262, and 0.269, respectively, in the low traffic density
range. If δ is changed to 100, the average rates of three driving decisions are changed to about 0.078,
0.034, 0.888, respectively, which means that about 61.9% of samples change their decisions when the
road visibility is changed from 1000 m to 100 m. Similarly, if τ is changed to 4%, then the average
rates of three driving decisions are changed to 0.515, 0.238, and 0.247, respectively, which means that
about 4.6% of samples change their decisions when the road slope is changed from 0 to 4%. The same
is true for the analysis of driving decisions corresponding to the changes in other two parameters.
Thus, it can be seen that road conditions are important indexes that cannot be ignored in DDM for
autonomous vehicle.

5. Conclusions

In this paper, a SVR model was developed to make accurate driving decisions for autonomous
vehicle. Our model was optimized by a weighted hybrid kernel function and a PSO algorithm. Road
conditions and vehicle states were simultaneously as the reference indexes of DDM. The driving
decisions that were made by DDM included free driving, car following, and lane changing. Then,
driving simulated experiments with different traffic environments were executed to extract the driving
decision samples. The optimized SVR model was trained and validated with the training and testing
samples to establish DDM. Our model was compared with: (1) a SVR model with RBF kernel function,
and (2) BPNN model. The comparison results showed that the accuracy of our optimized SVR model
was the best, with more than 92% accuracy. Besides, the results also showed that our optimized SVR
model had a better performance in free driving and car following with 93.1% and 94.7% of accuracy,
respectively, than lane changing decision with 89.1% of accuracy.

Finally, we investigated the effect of road conditions on the accuracy of DDM and quantified
their effects on each driving decision through the sensitive analysis. The results showed that road
conditions almost had almost no influence on driving decisions with high traffic density range, and
had the greatest influence with low traffic density range. In the low and middle traffic density, road
visibility δ has the greatest effect on the driving decisions, then followed by μ, ρ, and τ. To some
extent, the verified results were consistent with the actual driving experience, which indicated the
reasonability of the obtained DDM with added road conditions.

Even though the DDM based on the optimized SVR model is able to reason driving decisions,
and outperforms other models that are proposed in this paper, there are still some weak points and
limits, such as the sample size of lane changing decision is smaller than that of car following and free
driving, and that the DDM has not yet been implemented in real road environment, we will improve
them in the future. In addition, future research will focus on establishing a DDM used in dangerous
driving environments, for example, if a pedestrian or vehicle suddenly present in front of the subject
vehicle, then the subject vehicle should make proper driving decision, like steering, braking, or steering
and braking.
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Abstract: It appears clear that the future of road transport is going through enormous changes
(intelligent transport systems), the main one being the Intelligent Vehicle (IV). Automated driving
requires a huge research effort in multiple technological areas: sensing, control, and driving
algorithms. We present a comprehensible and reliable platform for autonomous driving technology
development as well as for testing purposes, developed in the Intelligent Vehicles Lab at the Technical
University of Cartagena. We propose an open and modular architecture capable of easily integrating a
wide variety of sensors and actuators which can be used for testing algorithms and control strategies.
As a proof of concept, this paper presents a reliable and complete navigation application for a
commercial vehicle (Renault Twizy). It comprises a complete perception system (2D LIDAR, 3D
HD LIDAR, ToF cameras, Real-Time Kinematic (RTK) unit, Inertial Measurement Unit (IMU)),
an automation of the driving elements of the vehicle (throttle, steering, brakes, and gearbox), a
control system, and a decision-making system. Furthermore, two flexible and reliable algorithms are
presented for carrying out global and local route planning on board autonomous vehicles.

Keywords: autonomous vehicles; intelligent vehicles; control architecture; decision-making system;
global and local path planning; Bezier curves

1. Introduction

It appears clear that the road transport will be going through enormous changes in the near
future (intelligent transport systems), although, presumably, gradual, in which new technologies will
have a prevailing role [1]. Thus, in the Horizon 2020 EU work program, smart, green, and integrated
transport are placed as the main pillars for transport in the future. Among the program lines the
following can be distinguished: “Safe and connected automation in road transport, where specific
requirements are imposed on simple automation, limiting its foreseeable scope in the short term.”
Without a doubt the most disruptive technological challenge is focused on the so called autonomous
vehicle and, the next step, autonomous cooperative vehicles [2]. However, some issues need to be
addressed: (1) the operation must be completely reliable and safe [3]: this specification is a highly
demanding requirement, which usually complies with limiting the application of these vehicles to
controlled scenarios, simple applications, or at reduced speeds of operation. Thus, it is understood
that autonomous driving is viable in dedicated lanes or areas in situations of congestion or in parking
manoeuvres, which is already a reality in many cases. Collision avoidance safety systems are more
complex, especially those that take control of the vehicle in emergency manoeuvres; (2) the cost
of sensors and control hardware must comply with what the market can assume, so that the mass
production of vehicles can be economically affordable [4]; (3) much work is still necessary concerning
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legal and social issues, i.e., the question of liability where an automated vehicle is involved in an
accident causing property damage or personal injury [5].

Regarding the above, it can be said that fully automated driving is not a technological utopia,
but its practical implementation on the roads should be carefully analysed [6]. Researchers and
manufacturers advocate for automation in successive stages, firstly approaching longitudinal control,
then simple side controls, to reach complete automation in scenarios of increasing complexity. In a few
words, the change from conventional to assisted driving is now a reality, and the leap is being made
towards automated driving in its different stages: partial, high, or fully automated.

Intelligent vehicles (IV) are one of the key elements within intelligent transport systems. When an
IV has intelligence—understood as the fact that the control relies on the onboard vehicle processing
systems, it can move autonomously. The onboard vehicle intelligence becomes aware of the situation
of the vehicle in its environment and performs all the necessary control actions to proceed towards
its destination.

Driving automation—considered a low-risk activity for humans—is a matter that needs the
continuous evaluation of two main factors: (a) the current vehicle state (position, velocity, acceleration,
direction) and (b) the environmental conditions (nearby vehicles, obstacles, pedestrians, etc.). To the
extent that these two factors are accurately assessed, appropriate decisions can be taken towards
reliable autonomous driving, and we will be closer to a vehicle-centric [6] approach to autonomous
driving, where the main goal is the safe movement of the vehicle.

It is not an easy task to define what an IV with autonomous abilities is, although it is possible to
describe its capacities, as detailed in Table 1 [7].

Table 1. Capacities of an IV.

Capacity Means to Achieve That Capacity

Acquisition of information about the environment
(at different distances)

Onboard sensors (self-positioning, obstacle detection,
driver monitoring)

Network connection for long-distance information

Vehicular interconnection

Processing of environment information
Onboard software for critical analysis

Cloud processing for route planning, traffic control, etc.

Making driving decisions

Cognitive systems

Agent systems

Evolutionary algorithms

But, what exactly does autonomous driving mean? Following the policy defined by the NHTSA
(National Highway Traffic Safety Administration, USA) [8], the International Society of Automotive
Engineers (SAE) has set three categories of advanced driving automation, which imply the automation
of both the driving actions (steering, throttle, and break) and the monitoring of the driving environment
(see Table 2) [9].

Table 2. Three categories of advanced driving automation.

Category Main Features Fault Correction Rely on
Automated Driving

Modes Covered

Level 3. Conditional
Automation

All dynamic driving tasks are automated. The
human driver is expected to act correctly when
required. Human driver

Some driving modes:

Parking maneuvers

Low speed traffic jam

Level 4. High
Automation

All dynamic driving tasks are automated. The
human driver is not expected to act correctly
when required.

System
Some driving modes:

High-speed cruising

Level 5. Full Automation
All dynamic driving tasks are automated for
any type of road and environmental conditions
usually managed by a human driver.

System
All driving modes

Urban driving
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Platforms for Autonomous Driving Development

The mass production of autonomous vehicles still has to wait because of different concerns, such
as reliability, safety, cost, appearance, and social acceptance, to say just a few [10]. Advances in the
state-of-the-art of sensing and control software have allowed great improvements in the reliability and
safe operation of autonomous vehicles in real-world conditions, in part thanks to a great variety of
development platforms [7,11–13]. Table 3 shows the main features of some of the prominent ones.

Table 3. Some platforms for autonomous driving development.

PLATFORM Vehicle Basis
Automated

Systems
Control
System

Sensors Performances Navigation

BOSS
(DARPA) Chevrolet Thaoe

Steering
Brake

Throttle

Proprietary
(based on

multiprocessor
system)

1 HD 3D LIDAR
4 Cameras
6 radars
8 2D LIDAR
1 Inertial GPS
navigation system.

Obstacle
avoidance
Lane keeping
Crossing
detection

Anytime D*
Algorithm

JUNIOR
(DARPA) VW Passat wagon

Steering
Brake

Throttle

Proprietary
(based on

multiprocessor
system)

1 HD 3D LIDAR
4 Cameras
6 radars
2 2D LIDAR
1 Inertial GPS
navigation system.

Object detection
Pedestrian
detection

Moving
Frame

BRAiVE
(VisLab) VW Passat

Steering
Brake

Throttle

Proprietary
dSpace

10 cameras
4 lasers
16 laser beams
1 radar
1 Inertial GPS
navigation system.

Close loop
manoeuvring NA

AUTOPIA CITRÖEN C3
Pluriel

Steering
Brake

Throttle

Proprietary
ORBEX (based

on fuzzy
coprocessor)

2 front cameras
1 RTK-DGPS+IMU

Following a
leading vehicle
Pedestrian
detection

Fuzzy logic

The latest approach to autonomous driving is the so-called cloud-based autonomous
driving [14,15]. These clouds provide essential services to support autonomous vehicles. Currently,
these services include simulation tests for new algorithm deployment, offline deep learning model
training, and High-Definition (HD) map generation. Autonomous driving clouds have infrastructures
that include distributed computing, distributed storage, as well as heterogeneous computing.
When driving algorithms and strategies are ready, they must be implemented in real control systems
for adjusting and testing purposes before getting the car into real traffic conditions. Reliable control
systems will be very useful for this purpose. This implies the interest of having a hardware–software
development platform for control purposes that can be easily adapted to any car, thus allowing the
autonomous driving system developers to concentrate exclusively on the sensory and algorithmic
aspects of the prototypes. On the other hand, it is interesting to continue integrating new sensing
techniques that allow a better and faster characterization of the environment, thus making possible to
develop driving algorithms with a more precise behaviour.

The rest of the manuscript has been divided into three sections. Section 2 details the mechanical,
electrical, and electronics modifications carried out to create the CICar platform. Section 3 shows
the three components of high-level architecture proposed: a control system, a perception system,
and a decision-making system. Furthermore, two novel algorithms are presented and used by the
decision-making system for global and local path planning. Finally, Section 4 presents our conclusions.

2. Cloud Incubator Car Platform

As described above, autonomous driving technologies are making the transition from laboratories
to the real world, and so must the vehicle platforms used to test and develop them. Research teams
develop their own experimental platforms and also develop proprietary control systems.
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In the Intelligent Vehicles Lab at the Technical University of Cartagena we have developed a
comprehensible and reliable platform for autonomous driving technology development as well as
for testing purposes: the CICar (Cloud Incubator Car, Figure 1a). This platform allows a complete
experimentation of the aspects related to the integration of third-party sensors (laser range finders,
global positioning systems, vision cameras, etc.), control of devices (motors, actuators, etc.), and
industrial buses for communication. Software development has been made a comprehensible task by
using a well-known hardware–software development platform for control purposes: RIO architecture
and LabVIEW [16].

The aforementioned platform is based on an electric commercial vehicle—Renault Twizy—that
has been conveniently modified in order to meet the specifications mentioned above. The modifications
compound the low label architecture and include: (a) automation of driving elements (throttle, brake,
steering, gearbox); (b) installation of external anchors capable of holding a wide variety of sensors;
(c) installation of interior racks to accommodate the different control and processing systems (Figure 2b);
(d) installation of electrical facilities and communication buses to feed and connect the different sensors
and the control and processing hardware.

2.1. Modification of the Steering System

The modification of the steering system is a basic mechanical solution, as shown in Figure 1b,
which consists of acting on the steering column or axis. A mechanical gear motor assembly is fixed
to the steering column with gears, allowing the axis to turn. The original axis has not been modified,
and this allows both steering control modes: automatic and manual. The mechanical implementation
of the steering automation complies with the requirements of angular position range and precision,
in addition to those of axis movement maximum speed (60 rpm). The steering system actuator is
composed of an electronic driver EPOS2 and a motor from MAXON (EC60fl-GP52C-1024IMP-100W
from Maxon Motor, Sachseln, Switzerland, acquired in Spain delegation).

2.2. Modification of the Braking System

The modification of the braking system, in the same way as that of the steering system, is not
invasive of the original system. It has been implemented using a mechanical assembly with a motor
comprising a gear coupled to a cam that presses the brake pedal by means of a short displacement of
about 15◦ with force control (see Figure 1c). The braking system actuator is composed of an electronic
driver EPOS2 and a motor from MAXON (EC60fl-GP52C-1024IMP-100W from Maxon Motor, Sachseln,
Switzerland, acquired in Spain delegation).

2.3. Throttle and Gearbox Modifications

We have devised an electronic solution for the throttle and gearbox automation. After scanning
the control signals, it is possible that the electronic device, which is attached to the throttle pedal,
exchanges data with the vehicle’s ECU (Electronic Control Unit). In the same way, it is possible to
select PDNR (P=Park, D=Driver, N=Neutral, R=Reverse) in the gearbox by means of the control
system. We have developed a software module which emulates its operation through an analogue
card. It works in parallel with the original system, so both manual and automatic throttle control are
offered (see Figure 1d).
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(a)

(b) (c) (d)

Figure 1. Automation of driving elements. (a) Renault Twizy; (b) steering modification; (c) braking
system modification; (d) throttle modification.

2.4. Sensor Holders

We have installed on the CICar vehicle a varied set of supports capable of holding different types
of sensors (cameras VIS, Time of Flight cameras, LIDAR 2D and 3D, IMU, GPS, etc.). For this, quick
coupling devices have been used together with electrical connectors and secure communications.

2.5. Electrical and Communications Infrastructure

New electrical facilities have been installed that allow the electrical supply of both the sensors
and the control and processing systems. The communication infrastructure is composed of:

(1) A serial Controller Area Network (CAN bus), because of its suitability for high-speed applications
using short messages, its robustness, and reliability [17].

(2) A gigabyte Ethernet Network which allows the implementation of TCP and UDP protocols.
They are used by the 2D [18] and 3D LIDAR [19], respectively.

(3) A point-to-point set communications, such as RS232 and USB.

Figure 2a shows all the components which compound the low-level architecture.
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(a) (b)

Figure 2. (a) Low-level architecture; (b) rack to host the control and decision making systems.

3. High-Level CICar Architecture

From a higher abstraction layer point of view, the architecture of the CICar is divided into:
(1) a control system, (2) a perception system, and (3) a decision-making system. Figure 3 shows the
distribution of the high-level architecture components of the CICar.

Figure 3. Distribution of the high-level architecture components of the CICar.

3.1. Control System

The goal of the control system is to translate the actions generated by the decision-making
system into actuations of the elements which govern the vehicle. The control system has been
implemented with a compactRIO 9082 (from National Instruments). The compactRIO processing
unit is composed of two processors: an INTEL i7 and a Xilinx FPGA, which confer high performance
capacities and flexibility for the testing and implementation of algorithms in the control system.
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The compactRIO allows soft and hard real-time processes to be run. The INTEL processor allows
less critical processes to be executed, while FPGA allows time-critical processes to be executed with
higher clock frequencies. The control system is governed by a Real-Time Operating System (VxWorks
from WindRiver). The kernel of the CICar is designed with Finite State Machines implemented in C++
through the QS framework [20].

3.2. Perception System

The perception system is divided into two subsystems: short- (SRS) and long-range (LRS).
The perception system forms two concentric rings overlapping around the vehicle (Figure 4). The SRS
allows objects to be detected up to 10 m from the front and the rear of the vehicle (2D LIDARs) and
around 3 m from the right and left side of the vehicle (ToF cameras). ToF cameras are a seldom used
technology in autonomous vehicles but they result to be a very attractive solution for the vehicle
for short-range detection. ToFs allow 3D object detection with a high frame rate, are less affected by
light conditions and shadows, and have an acceptable cost [21,22]. The objects that enter into the
short-range ring suppose an inherent risk and danger for the actions of the CICar. For this reason, the
sensors involved in the SRS are commanded by the RT processing unit. On the other hand, the LRS
perception is based on a 3D High-Definition LIDAR (HDL64SE from Velodyne) [19]. Its 64 laser beams
turn at 800 rpm and can detect objects up to 100 m away with an accuracy of 2 cm. The 3D LIDAR
allows trajectories to be established (lane change, obstacle avoidance, speed reduction depending on
the traffic conditions, etc.), object tracking, object classification, and behaviour prediction of other
drivers. The information from the two subsystems is fused and processed to detect obstacles such as:
cars, bikes, pedestrians, traffic lights, and so on. A colour camera is placed on the roof of the vehicle
and is used to detect the road, lanes, road lines, and traffic signs.

Figure 4. (a) CICar 3D model with reference frames; (b,c) plant and side views of the perception system
ranges and components.

The CICar has a localization system based on an RTK unit (Real-Time Kinematic), an IMU (Inertial
Measurement Unit), and a relative position encoder installed on the wheel of the vehicle. RTK satellite
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navigation consists of a technique used to enhance the precision of the position data derived from
satellite-based positioning systems (global navigation satellite systems, GNSS) such as GPS, GLONASS,
Galileo, and BeiDou. The RTK is composed of a base station and a mobile unit (or rover) and it supplies
an accuracy from 20 cm to 1 cm. The localization system cancels out the RTK positioning when the
number of satellites detected is less than or equal to four or when the HDOP (Horizontal Dilution of
Precision) is greater than five [23,24]. In these cases, the IMU and the positioning encoder installed on
the vehicle are used for the localisation task. Table 4 presents a summary of the onboard sensors in
the CICar.

Table 4. Sensors features of the perception system.

Sensor Characteristics and Configurations

SICK LASER scanner 2D TIM551 Operating range: 0.05 m ... 4 m, Aperture angle: 270◦

LIDAR VELODYNE HDL64 scanner 3D 120 m range, 1.3 Million Points per Second, 26.9◦ Vertical FOV

Prosilica GT1290 cam 1.2 Megapixel Ethernet gigabit, RJ45 Ethernet connector, colour

DGPS GPS aided AHRS

ToF Sentis3D-M420Kit cam Range Indoor: 7 m Outdoor: 4 m, Horizontal FOV: 90◦

IMU Moog Crossbow NAV440CA-202 Pitch and roll accuracy of < 0.4◦, Position Accuracy < 0.3 m

EMLID RTK GNSS Receiver 7 mm positioning precision

3.3. Decision-Making System

To operate reliably in the real world, an autonomous vehicle must evaluate and make decisions
about the consequences of its possible actions, anticipating the intentions of other traffic participants.
The new Intelligent Decision-Making Systems are based on cognitive systems [25], agent systems [26],
fuzzy systems [27], neural networks [28], evolutionary algorithms [29], multi-criteria [30] or rule-based
methods [31]. The main element of the CICar is a Decision-Making System which incorporates a new
local trajectory planner [32] based on Bezier curves [33].

Path-Planning System (PPS)

The main task of the PPS is to establish a global route for short or medium distance from the
initial position of the vehicle until the goal. The PPS is composed of a global planner (Figure 5) and a
local planner (Figure 6).

Global Planner

Global planners are a key element in autonomous navigation systems. The development of
intelligent transport systems and autonomous vehicles has increased the demand for route planners
that allow dynamic route generation, capable of adapting to the varying aspects of the road, such as
traffic, roadworks, roads that have been cut off, or unexpected events. The initial requirements for the
CICar global planner are listed below:

(1) It must be able to create global routes using digital map sources
(2) It should allow an easy introduction of traffic restrictions or unplanned events.
(3) It should be executed in an agile manner and produce results in an acceptable time.

For the map source used for the global route planning, Google maps was selected, the reasons for
this being:

(1) It has an easily accessible Application Programming Interface (API) and is multiplatform.
(2) The maps can be downloaded with different layers of information.
(3) It allows georeferencing of the map points.
(4) It is constantly updated and is available for free.
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The first algorithm evaluated for global route generation was the A* Algorithm [34,35].
The following disadvantage was reported with the use of the A* algorithm: the algorithm was
not capable of generating routes in a reasonable time using the 512 × 512 resolution binary maps tested.
To increase the performance, the size of the binary maps was reduced by a constant factor (2, 3, or 4).
The size reduction of the binary map speeded up the calculation time, but, because of the pixelisation
effects, the following problems occurred: (1) the destruction of narrow roads, (2) the deterioration of
main roads, and, as a result, (3) the routes generated were not smooth and were very abrupt.

As a solution to the problems reported, a new heuristic search algorithm for global route planning,
called SCP (Search for Cross Points for obtaining global routes), was developed.

The SCP algorithm is based on a binary map of nxm pixels where the navigable routes are given a
value of “1” and the non-navigable areas a value of “0”, and an initial point p0, a goal point pg, and an
initial angle θ0 are set.

The stages performed by the SCP algorithm to obtain the global route are:

1. A search direction is chosen (‘N’-North, ‘S’-South, ‘E’-East, ‘W’-West) according to the position
of the angle between the positions pg and p0. Equation (1) shows how the search directions are
obtained by the algorithm in function of the angle θ0g
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45º
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o pg 
o pg 

o pg 

0g 

2. A clear path is chosen from p0 to the goal pg. A route is considered clear if all the points that
form the line that joins p0 and pg have a value equal to ‘1’.

2.1 If the path is not free:

a. The SCP algorithm searches for the first pair of cross points [CPi; CPi+1] according to
the search direction set as shown in Equation (1). To achieve this, the algorithm goes
through the map, starting from p0 according to an angle θ1, until it finds a value
equal to ‘0’. The point found is labelled as the first cross point CPi. Starting from CPi,
and according to the search angle θ2, the algorithm searches for the next point with
a value of ‘0’. This new point is labelled as the second cross point CPi+1. The angles
θ1, θ2 are calculated according to the search direction and the following table.

During the search for the cross points [CPi; CPi+1], the candidate points pi(xi, yi) are
calculated by alternating the values of θ = θ1 and θ = θ2, based on Equation (2):

xi = xi−1 + d cos(θ)
yi = yi−1 + d sin(θ)

(2)

with (xi−1, yi−1) being the previous value calculated, and d a constant that allows
the CPi search to advance more quickly.

b. The Euclidean distance between two consecutive cross points CPi and CPi+1 is
calculated.

i. If the distance is 0, the search direction is changed by evaluating the position
of pg with respect to the last CPi+1 that was calculated, p0 is set to p0 = CPi+1,
and the algorithm goes to step 2.
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ii. If the distance is not equal to 0, p0 is set to p0 = CPi+1, and the algorithm
goes to step 2.

2.1 If there is a clear route, the algorithm finishes, and the path is composed of the points
[p0,pm1, . . . ,pmn−1;pg], with pm1, . . . ,pmn−1 being the midpoints obtained from the
pairs of points from the cross-point vector [p0,CP1,CP2, . . . ,CPn;pg].

Figure 5 shows a binary map in the form of a square which will demonstrate the SCP algorithm
in operation. Figure 5a shows how the SCP algorithm generates the cross points in the direction ‘N’,
given the information (p0, pg, θ0). In the example with θ0 = 60◦ and Table 5, the angles θ1 y θ2 are
−120◦ and −60◦ respectively.

(a) (b)

(c) (d)

2 

1 

2 

1 

Figure 5. Example of the Search for Cross Points (SCP) working between p0 and pg with initial angle
θ0 = 60◦. (a) Scenario without change of direction; (b) Obtained trajectory in scenario without change
of direction; (c) Scenario with change of direction; (d) Obtained trajectory in scenario with change
of direction.
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Table 5. Calculation of angles θ1, θ2, depending on the direction.

Directions Angle θ1 Angle θ2

N −180 + θ0 −θ0
S θ0 180 − θ0
E θ0 −θ0
W −180 + θ0 180 − θ0

As shown in Figure 5a, the cross points CPi are generated in a zigzag in the direction ‘N’ until a
direct path to the destination is found. Figure 5b shows the route generated between the midpoints of
the segments from the set [p0CP1; CP1CP2; CP2CP3; CP3CP4; CP4pg]. In Figure 5c, a more complex
scenario with a different pg is shown. In this case, when the SCP algorithm reaches CP5, an end of
route occurs when it no longer follows the ‘N’ direction. At this point, the Euclidean distance between
CP4 and CP5 is 0, and the algorithm changes the search direction from ‘N’ to ‘E’, with θ1 = 60◦ and
θ2 = −60◦. With the change of direction, it is possible to calculate a new CP5. Figure 5d shows the
route generated between the midpoints of the segments from the set [p0CP1, . . . , CP14pg].

The SCP algorithm can increase the number of routes calculated with a greater number of initial
starting angles. Figure 6a shows a real map of the Technical University of Cartagena where an initial
point p0 and a final point pg (blue and red crosses) have been selected.

The SCP algorithm has been executed with initial angles θ0 from 20 to 80 degrees, with 2-degree
increments. After its execution, the SCP has calculated three possible trajectories. Figure 6b shows
the cross points found, and Figure 6c the trajectories created from the set of midpoints from the three
calculated trajectories. Figure 6d shows the optimal path calculated as the shortest between points p0

and pg.
The optimal path is partitioned in waypoints (WP0, . . . , WPi, . . . , WPn). The waypoints will be

used by the CICar to establish short missions between them using the local planner module. The CICar
location is provided by a DGPS unit on board the vehicle.

(a) (b)

Figure 6. Cont.
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(c)
(d)

Figure 6. SCP applied on a real map. (a) Selection of the initial point on the real map; (b) cross
points found on a binary map; (c) possible trajectories on a binary map; (d) optimum trajectory on the
real map.

Local Planner

The local planner uses a pair of waypoints (WPi, WPi+1) supplied by the global planner to generate
a set of possible trajectories to reach WPi+1 from WPi (see Figure 7).

For that, the perception system supplies a local map of up to 100 m around the vehicle (Figure 8a),
which is completed with three constraint types: (a) the constraints that the vehicle detects on the way
by means of the perception system (vehicles, pedestrian, bikes, curbs, and so on), (b) the limitations
inherent in the vehicle characteristics (wide, high, kinematic model), c) the constraints derived from
the traffic rules (one way, bidirectional way, traffic signs, etc.). To decrease the number of computations
and to increase the performance, the perception system supplies a set of keypoints which are a
representation of the surroundings of the vehicle. The keypoint set is obtained after applying a filtering
process composed of two stages:

1. Distance filter. All XYZ points beyond a maximum distance (dmax) will be rejected.
2. High filter. All Z points higher than a maximum value (Zmax) will be discarded.

As shown in Figure 8b, we have simplified the initial XYZ local map to obtain a compact profile
of the XYZ representation of the objects in the scene.
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Figure 7. Local planner flowchart.

(a) (b)

Figure 8. (a) Local map; (b) local filtered map.
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After this, the corners of the objects in the scene are computed using the Harris algorithm [36].
The Harris algorithm is applied over an ROI (Region of Interest) in the forward direction of the vehicle.
Figure 9 shows the results of corner detection in the ROI of two scenarios extracted from Figure 9b.
This group of points calculated by the Harris algorithm are called keypoints (KPi) and will be used in
the next stage of the PPS to create a set of trajectories.

(a) (b)

Figure 9. Waypoints (WPi, WPi+1), ROI, and keypoints in two scenarios (a,b).

In Figure 9, green crosses represent the keypoint set, a triangle with a 2 metre base represents
the vehicle, a rectangle shows the ROI where the Harris detector is computed, and two red circles
represent the origin and goal locations (WPi, WPi+1).

The trajectory generator module receives two waypoints (WPi, WPi+1) and a set of keypoints
{KP0, . . . ,KPk} representative of the environment around the vehicle for computing a set of trajectories
between a pair of waypoints. The module uses the Bezier curves to generate possible trajectories
between the waypoints, using the keypoints as control points.

A Bezier curve of grade n can be generalized by the Equation (3) [33]:

B(t) =
n

∑
i=0

(
n
i

)
Pi(1 − t)n−iti, t ∈ [0, 1] (3)

For example, the second-grade curve (n = 2) is (see Equation (4)):

B(t) = (1 − t)2P0 + 2 t (1 − t) P1 + t2 P2 , t ∈ [0, 1] (4)

Being P0, P1, and P2 the control points, and t a real value between 0 and 1. A higher step of t
allows a higher number of points to be obtained in the Bezier curve generation B(t).

The trajectory generator module implements a set of second-grade Bezier curves displaced along
the X-axis control point P1. The development algorithm is shown in Algorithm 1, where nCurves
indicates the number of trajectory candidates which have been calculated. However, only one set will
pass the security distance constraints and will be adopted as the trajectory (Ti[]). For each of them,
a new control point P1 is defined, one half to the left of the midpoint between P0 and P2, and the
other half to the right. In Figure 9, line 1.2., a control point displacement increment equal to 3.0 is
defined. fB is a function that generates a second-grade Bezier curve between P0 and P2. The function
fP1 searches for the Pi point with the lowest Euclidean distance to set the Bezier points of B(t).
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After a set of trajectories is obtained Ti = {B(t)0,..., B(t)m}, the optimal trajectory can be established
under different criteria depending on the conditions in each moment during autonomous driving.
In this work, we have implemented three criteria to select the optimal trajectory: (a) the minimum
distance travelled, (b) the maximum angle travelled, and (c) the medium trajectory.

Algorithm 1 Trajectory generator algorithm.

Point P0(x0, y0), P1(x1, y1), P2(x2, y2), WPi, WP(i+1)
Point KPi[] % array: set of keypoints
Trajectories (set of points): B(t)
Trajectories: Ti[] % array: set of trajectories
INTEGER: cnt = 0, nCurves % for the WHILE iteration
REAL: distance, safety_dist % safety distance
% Initial assignments:

INPUT nIter, safety_dist , KPi[]
P0 = WPi , P2 = WP(i+1)
P1: ((WPi.x + WP(i+1).x) / 2, (WPi.y + WP(i+1).y) / 2)
P1.x = P1.x – nCurves * 3.0 / 2

% Process:
BEGIN
1. WHILE cnt < nCurves

1.1. IF P1 is in ROI
1.1.1. B(t) = fB(P0, P1, P2)
1.1.2. P1 = fP1(KP)
1.1.3. cnt = cnt + 1;
1.1.4. IF distance >= safety_dist AND all B(t) points are in ROI

1.1.4.1. Ti[] = B(t) is accepted as candidate to trajectory
END IF % (1.1.4.1)

END IF % (1.1)
1.2. P1.x = P1.x + 3.0
1.3. nCurves = nCurves + 1
END WHILE % (1)

END

The optimal trajectory returns a new group of subwaypoints (SWP0, . . . , SWPi, . . . , SWPn), which
compound the local route between (WPi, WPi+1) under local and environment constraints.

To show how the trajectory generator algorithm works, four scenarios have been selected where
a car drives back and interrupts the initial trajectory (scenario 1, Figure 10a) between WPi to WPi+1

of the CICar. The scenarios (1 to 4, Figure 10) present an increasing complexity, where the trajectory
generator must recalculate the set of trajectories depending of the new keypoints location.

Figure 10 shows how the trajectory generator is capable of resolving a normal traffic situation
successfully. The trajectory generator module was configured with 30 iterations and a safety distance
of 1 m, and the optimal trajectory criteria were set to the lowest distance travelled. In all the scenarios
proposed in Figure 10, the trajectory generator module generated 30 trajectories, but the safety distance
constraint only passed: 16 in scenario 1, 11 in scenario 2, 1 in scenario 3, and 2 in scenario 4. In each
trajectory set the optimal trajectory was selected according to the lowest distance travelled.
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(a) (b)

(c) (d)

Figure 10. (a) Scenario 1; (b) scenario 2; (c) scenario 3; (d) scenario 4 (nCurves = 30, safety distance = 1 m,
criteria = minimum distance).

Figure 11 shows the behaviours of the trajectory generator when other criteria and parameters of
the algorithm are chosen. In Figure 11a,b, the maximum angle criteria and medium trajectory criteria
have been selected from scenario 1, respectively. It is possible to observe that the change in the selection
criteria affect the smoothness of the trajectory. In Figure 11c,d, the number of possible trajectories was
set to 25. With this change in criteria, the trajectory generator cannot avoid the obstacle and cannot
supply any solution in this scenario (see Figure 8c). Nevertheless, a decrement of the safety distance to
0.5 m allows four reliable trajectories to be generated (see Figure 11d).
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(a) (b)

(c) (d)

Figure 11. (a) Scenario 1 (nCurves = 30, safety distance = 1 m, criteria = maximum angle); (b) scenario 1
(nCurves = 30, safety distance = 1 m, criteria = medium trajectory); (c) scenario 4 (nCurves = 25, safety
distance = 1 m, criteria = minimum distance); (d) scenario 4 (nCurves = 25, safety distance = 0.5 m,
criteria = minimum distance).

4. Conclusions

The Intelligent Vehicle (IV) will play a central role in the so-called Intelligent Transport Systems.
For this reason, a great research effort is devoted to developing algorithms and control strategies for
autonomous driving. It is essential, therefore, to have real driving platforms ready to implement and
test these algorithms and control strategies.

This paper describes the work done to develop and implement low- and high-level open
architectures for an autonomous vehicle: the CICar. The low-level architecture is presented in detail,
and comprises a detailed description of all hardware components, sensors, and communication
infrastructures on board. Also, the high-level architecture is described, which brings together those
systems that provide the vehicle with a certain degree of intelligence.
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Unlike other platforms presented, which use proprietary control systems, in the Intelligent
Vehicles Lab we propose an approach based on well-known hardware–software development platforms
for control purposes: RIO architecture and LabVIEW. This means that the current software development
approach for self-driving can be easily transferred to control actions on any vehicle equipped with the
general purpose control hardware proposed for the CICar.

The sensing infrastructure includes ToF cameras for lateral surveillance. This sensing technology
offers advantages compared with the current 2D LIDAR, since a better characterization of the scene is
possible, thus offering better capabilities such as: 3D object detection with a high frame rate, lower
influence of the light conditions and shadows, and acceptable cost.

As a proof of concept, this paper shows a case study where the implementation of a PPS
(path-planning system) on the CICar platform is presented. The implemented PPS uses a map to
establish a global route and a local planner to solve the usual traffic issues. The global planer has been
resolved by means of the development of a new heuristic algorithm based on a search for cross points
(SCP) using binary maps. The SCP algorithm has improved the flexibility, the computing time, and
the performance in global route computation. Furthermore, a local planner has also been presented
in this work, which implements a trajectory generator based on Bezier curves, which supplies high
flexibility during the resolution of unforeseen situations. The trajectory generator allows the setting
of: (a) the number of possible trajectories to generate; (b) a safety distance; (c) a criterion to select the
optimal trajectory. The CICar autonomous vehicle offers a comprehensible and reliable platform for
autonomous driving technology development and testing, which greatly facilitates the development
of technology for autonomous driving.

Concerning the PPS, we currently continue to work towards increasing the intelligence to
implement it on board the vehicle. We focus our developments on: (a) the improvement of the
evaluation criteria for the optimal trajectory; (b) the dynamic modification of the ROI, depending on
external driving factors; (c) the incorporation of machine learning technology for the classification of
the objects detected by the perception systems.
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Abstract: Nowadays, with highly developed instrumentation, sensing and actuation technologies,
it is possible to foresee an important advance in the field of autonomous and/or semi-autonomous
transportation systems. Intelligent Transport Systems (ITS) have been subjected to very active research
for many years, and Bus Rapid Transit (BRT) is one area of major interest. Among the most promising
transport infrastructures, the articulated bus is an interesting, low cost, high occupancy capacity
and friendly option. In this paper, an experimental platform for research on the automatic control
of an articulated bus is presented. The aim of the platform is to allow full experimentation in real
conditions for testing technological developments and control algorithms. The experimental platform
consists of a mobile component (a commercial articulated bus) fully instrumented and a ground test
area composed of asphalt roads inside the Consejo Superior de Investigaciones Científicas (CSIC)
premises. This paper focuses also on the development of a human machine interface to ease progress
in control system evaluation. Some experimental results are presented in order to show the potential
of the proposed platform.

Keywords: Intelligent Transportation Systems (ITS); Bus Rapid Transit (BRT); autonomous driving;
autonomous bus; automatic vehicle control; lateral control; longitudinal control; obstacle detection;
human machine interface

1. Introduction

As it is well known, the California Program on Advanced Technology for the Highway (PATH),
a collaboration between the Institute of Transportation Studies at the University of California at
Berkeley and the California Department of Transportation (Caltrans), with funding provided by
Caltrans and the U.S. Department of Transportation, has done pioneering work on Automatic
Vehicle Control (AVC) since 1986 and provided an outstanding stream of new ideas, methods and
developments [1]. It is worth mentioning also that at Ohio State University (OSU), a program running
from 1964–1980 included studies on headway safety policy, longitudinal control, lateral control and
highway system operations [2]. Moreover, the interest in the Intelligent Vehicle Highway System
(IVHS) was emphasized by the 1973–1979 projects funded by the Ministry of International Trade
and Industry (MITI) of Japan [3]. Early considerations concerning safety implications of vehicle
automation using the drive-by-wire concept and the driver workload with respect to the transformation
from Cruise Control (CC) to Adaptive Cruise Control (ACC) were presented in [4]. More recently,
the problems of adaptive cruise control, stop and go [5], as well as the overtaking maneuvers [6] have
been investigated, and solutions based on artificial intelligence have been proposed and experimentally
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tested by researchers of the AUTOPIA Group at the Centre for Automation and Robotics (CAR) of the
Consejo Superior de Investigaciones Científicas (CSIC), Spain. In addition to these works, a vehicle
of AUTOPIA (Spanish research project) ran driverless 100 km, in 2012, from El Escorial to Arganda
del Rey (Madrid). A leading vehicle, which was driven manually, dynamically generated a high
accuracy map to be tracked by the fully-autonomous following car. The journey covered a wide
range of driving scenarios, including urban zones, secondary roads and highways, in standard traffic
conditions (https://www.car.upm-csic.es/autopia/).

In a motivating survey paper [7] published in 2000, a substantial increment of research in
intelligent vehicles and their application areas was acknowledged, where sectors of interest and key
supporting technologies were considered. Applications related to passenger cars, heavy trucks, bus
and public transport applications, as well as special vehicle applications were analyzed, and relevant
functionalities/requirements were identified (collision warning, collision avoidance and driver
assistance, driver impairment monitoring intelligent speed adaptation, automated operation, industrial
automation, military operations).

Nowadays, especially in urban/suburban areas, there is a clear conflict among collective
transportation (high occupancy vehicle) and individual transportation, which results in overcrowding
that makes transportation uncomfortable, lengthy, polluting and more expensive than needed.
This situation decreases substantially the quality of collective transportation services. Because of this
general concern, the development of new concepts and technology for urban/suburban transportation
is of major importance. In these circumstances, the interest in Intelligent Transportation Systems (ITS)
and Intelligent Vehicles (IV) is increasing because the wide range of possible applications [8].

Among several current developments for urban/suburban transportation, the concepts of Light
Rail or Light Rail Transit (LRT) and Bus Rapid Transit (BRT) are some of the most attractive. LRT is
a kind of urban public transport using rolling stock quite similar to a tramway, but operating at a higher
capacity, while BRT aims to provide a high-quality bus-based transit system with the main advantages
of being a flexible and cost-effective urban mobility transit system [9,10]. Both systems operate in
segregated paths, and while LRT bear a resemblance to trams, the BRT is essentially characterized
by using public transportation vehicles on tires (buses). Furthermore, both systems require a strong
support from Intelligent Transportation System (ITS) elements, this aspect being more critical to BRT,
which, in the end, has the intrinsic possibility of reaching the state of a truly autonomous system.
The Institute of Transportation & Development Policy (ITDP) [11] defines BRT as “a high-quality
bus-based transit system that delivers fast, comfortable and cost-effective urban mobility through the
provision of segregated right-of-way infrastructure, rapid and frequent operations, and excellence
in marketing and customer service”. The BRT goal is to combine the capacity and speed of a metro
with the flexibility, lower cost and simplicity of a bus system. BRT systems come in many shapes
and forms. However, they all aim, to varying degrees, to mimic the high-capacity, high-performance
characteristics of urban rail at a much lower price [12]. According to one study, this reduction can
be as much as 4–20-times less than Light Rail Transit (LRT) and 10–100-times less than metro rail
systems [13]. BRT uses buses on a wide variety of right-of-ways, including mixed traffic, dedicated
lanes on surface streets and busways separated from traffic. In fact, BRT has a greater potential for
innovation, and it could be considered as the evolution of present collective transportation systems.

Moreover, the added value provided by the latest advances in control, artificial perception and
Information and Communication Technologies (ICT) might facilitate the development of new concepts
enabling the creation in the near future of more flexible, fast, reliable, economic and efficient BRT
systems of wider and safer use in populated areas [14]. In this regard, an interesting analysis has
been released [10] reporting the full picture of the successful dissemination of BRT systems in several
Latin America cities, providing the additional encouraging side-effect of environmental conditions’
enhancement. Some BRT systems incorporated guidance (mechanical, optical and magnetic) to increase
speed in narrow corridors, which also implies better safety and the possibility of precision docking [9],
and this is why BRT could be considered as an intermediate step from classical urban transport
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(conventional bus services) to fully-autonomous systems [8]. Within this context, the relevance of
autonomous guidance in urban transportation targeting improvement of ITS efficiency has been
recognized by several authors [8,15].

The advancement of ITS technology takes advantage of previous and parallel research on
Autonomous Guided Vehicles (AGVs) and mobile robots [16]. A theoretical contribution to the
automatic steering of a city bus was presented in [17], where two different approaches, linear and
nonlinear controllers, were compared. The works related to the kinematic and dynamic models of
wheeled mobile robots [18] have been important to understand modelling and therefore to set up the
grounds for motion planning and control. For example, in [19], the implementation of intelligent and
stable fuzzy Proportional Derivative-Proportional Integral (PD-PI) controllers for steering and speed
control of an AGV consisting of an electrically-powered golf car suitably modified for autonomous
navigation and control was reported. In [20] active steering under model predictive control was
researched. In [21], a small electric mini-bus was used to demonstrate the autonomous driving
capability and obstacle avoidance using GPS for localization and LIDAR for environment recognition.

Lateral vehicle control [22] is one major issue that has been studied because of its relevance [23],
both for warning about lateral vehicle displacement and possible automated intervening in manual
driving [24], as well as for full automation, as was shown in the California PATH program [25] and
more recently in the DARPA Urban Challenge 2007. In this competition, Caltech contributed with
a highly modified Ford E-350 van, nicknamed Alice [26,27], and the Team AnnieWAY demonstrated
the results of the Cognitive Automobiles Project [28], an autonomous vehicle that is capable of
driving through urban scenarios. Another very relevant and cited contribution in the field was
offered by [29], where a prototype nicknamed Babieca (a modified Citroen Berlingo), equipped with
a color camera combined with DGPS and on-board controls, allowed lateral and orientation position
of the ego-vehicle with regard to the center of the lane, so steering an autonomous vehicle using
vision. For lateral control and guidance, the use of magnetic markers on the floor was thoroughly
investigated [30,31], and also, the fusion of magnetic markers with encoders has been considered [32].
Significant works on lateral control of heavy-duty vehicles like tractor semitrailers have been produced
by the PATH program, implementing nonlinear and adaptive controllers for lateral control of heavy
vehicles and presenting an experimental comparative study [33–35]. Other relevant problems for
vehicle automation have been investigated, and, in particular, those related to control systems have
received ample consideration: nonlinear control [36,37], observation of lateral vehicle dynamics [38],
external disturbance estimation [39], driver assistance systems based on artificial potential fields [40]
and fault-tolerant lateral control for heavy vehicles [41].

While lateral control aims to keep the vehicle at the minimum departure distance from the
required path, the longitudinal control [42,43] mission is to properly control the vehicle advance
along the desired trajectory, and, to achieve this, a number of critical adaptations need to be
implemented. The main issues are start/stop, acceleration and deceleration, velocity control, obstacle
detection/avoidance [43] and several others related to the safety of the overall operation [44].
From another side, it is important also to consider that for improved accuracy and reliability of
autonomous vehicles’ lateral and longitudinal controllers should be integrated because there is
a coupling between steering and velocity actions, and the cross-effects of each one on the other
need to be taken into account [45]. This is especially relevant when increasing the speed of operation,
in platoon formation, and in variable road and vehicle conditions (slippage, cornering, tire traction
forces, etc.).

An interesting work regarding automatic steering control based on how drivers steer has been
performed by using the data of drivers’ steering obtained through a number of experiments, showing
that drivers in effect execute a naturally robust controller that allows high-gain corrections and is
insensitive to variations in vehicle dynamics and speeds [46]. This controller has been implemented
and validated on an 18.3 m articulated bus for revenue service [47].
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Having examined briefly the major components that could be needed to achieve autonomous
vehicle driving, it is worth mentioning that there is a great interest in the development of more complex
strategies like those regarding cooperative autonomous driving [48] aiming to obtain intelligent
vehicles that could share roads and streets [49–51]. More recently and regarding bus automation,
a small electric Cyberbus was used to demonstrate a parametric-based path generation algorithm
for roundabouts [52]. Other related works have been concentrated on automated parking [53]. It is
also worth mentioning the works using artificial intelligence methods based on fuzzy logic to control
autonomous vehicles [54–56] and the latest developments regarding traffic sign detection [57] and
an automatic system to detect distraction and drowsiness in drivers [58].

In this paper, an experimental platform for research on the automatic control of an articulated
bus is presented [14,15]. The aim of the platform is to allow full experimentation in real conditions
for testing technological developments and control algorithms. The experimental platform consists
of a mobile unit (a commercial articulated bus, Volvo B10M-ART-RA-IN) fully instrumented and
a ground test area composed of asphalt roads inside CSIC’s premises. This paper focuses also on the
development of an HMI to ease progress in the control system evaluation. Some experimental results
are also presented in order to show the potential of the proposed experimental platform.

The paper is structured as follows: Section 2 presents an overview of the experimental platform for
the autonomous bus development with details about its instrumentation and the control architecture;
Section 3 is devoted to the discussion of the longitudinal and lateral control approaches, as well as
showing some experimental results. The paper is completed with the main conclusions, in Section 4.

2. Materials and Methods

2.1. Experimental Platform Overview

The purpose of the experimental platform is to provide a reliable base to carry out research
and feasibility studies on automatic control of vehicles of large dimensions. Figure 1 shows the
main elements of the experimental platform setup: (a) Volvo B10M-ART-RA-IN articulated bus
(18 m in length); (b) private inner road facility located at CSIC’s premises in Arganda del Rey (Madrid),
with a total length of 385 m. This experimental road has been designed to contain “enough difficult”
curvature sections to permit experimentation in demanding situations. Figure 1c shows an analysis of
a possible bus trajectory in one section of the path.

Research on autonomous bus control requires deploying multiple sensors and actuators so that
they can be used for both monitoring and control. Furthermore, a control system of this kind involves
many variables to analyze and monitor during the testing period of the system and also during the
various stages of implementation and demonstration. Therefore, it is of considerable importance to
organize a robust observation and acquisition information architecture to gather the sensor signals
that are set up in the system. The analysis and interpretation of those variables will benefit the design
and the comparison of the different control strategies to be implemented for the automation of the
articulated bus. Additionally, experimentation with transport systems of large dimensions requires
special care for safety, and this requires knowing the state of the vehicle at all times. This information
must be known to both the people who go on board the vehicle and to those working at different
points of the test facilities. The electronic instrumentation system includes the elements shown in
Table 1. In Figure 2, some sensors are shown during the operating tests carried out in the laboratory.

Table 1. Sensors, actuators and computing and control equipment. CSIC, Consejo Superior de
Investigaciones Científicas.

Instrument Function Model

Sensors

Incremental and absolute optical encoders HEDS 550X; Industrial encoder DH05

Proximity sensors NBB2-12GM50-E0-V1, E2EL cylindrical proximity sensor

Velocity measurement system (magnetic pick-up) KATLAX M18 Digital magnetic pick-up sensor
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Table 1. Cont.

Instrument Function Model

Inertial Measurement Units (IMUs) (MEMS inertial
sensor with three accelerometers) and high precision
IMU

MEMS inertial sensor LIS3LO2AL IMU440CA

Catadioptric omnidirectional stereovision system (with
CCD RGB cameras) Ueye UI-1485LE-C/M, resolution 2560 × 1920 pixels

LIDAR systems (IP67, statistical error 5 mm, angular
resolution 0.25◦, range 80 m, view angle 180◦) SICK LMS221, LMS291

GPS for localization and tracking TRIMBLE 5700

Magnetometer systems for magnetic markers detection Honeywell HMC1501

Actuators
DC motor for steering wheel control MAXON 24-volt DC motor (150 watts) with a gearbox

(74:1) and encoder

DC motor for brake control MAXON 24-volt DC motor (70 watts) with gearbox (74:1)
and encoder

Computing
and control

Telemetry System
PCL-818, 16 I/O channels multifunction board
Wireless-G Ethernet Bridge
Wireless access point (WAP54G)

On-board computers Industrial PCs running QNX RTOS

DC motors microcontroller-based control boards CM3 and CM4, proprietary CSIC control boards

 

Figure 1. Experimental platform main elements. (a) Articulated bus Volvo B10M-ART-RA-IN; (b) inner
road facility dimensions; (c) Bus trajectory analysis in one section of the path.
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Figure 2. Some sensors used in the proposed experimental platform. (a) Industrial-grade absolute
optical encoders; (b) LIDAR sensors being tested in the lab; (c) MEMS inertial sensor testing.

2.2. Velocity Control

The bus velocity control aiming for longitudinal control is performed in the on-board computer
by means of two main actions: (1) using an I/O board electronically connected with the bus
electronics, where the desired reference advance velocity (throttle) is sent to the bus engine; (2) using
the aforementioned I/O board for sending a brake reference signal to the DC motor driver that
mechanically controls the brake (pedal) position.

In more detail, and for greater flexibility in the experimental development, the velocity control
can be achieved in three ways: (1) the control computer sends the throttle commands to the bus
potentiometer that regulates the bus’s own throttle control system; (2) one additional potentiometer
is installed near the driver’s seat and can be used manually to alter the computer command; (3) the
driver, if seated, can use the throttle pedal to change the commanded velocity directly.

The implemented brake control system consists of a 24-volt DC motor (70 watts) with a gearbox
(74:1) and encoder and a pulley with a steel cable whose free end is connected mechanically to
the brake pedal (Figure 3). This system works under digital PID closed-loop control receiving the
desired reference velocity from the high level control system and comparing it with the actual velocity
(provided by different sensors like encoders installed in the bus wheels or others). This system is very
useful in practice, not only to stop the vehicle, but especially to regulate, working in combination
with the throttle control, the bus velocity according to the desired values. There is an additional
advantage consisting of the automatic regulation of the velocity independently of the road slope
(positive or negative). Figure 4 shows the flowchart for the velocity control.

Figure 3. Actuator implementation for the brakes.
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Figure 4. Implemented flowchart for velocity control.

2.3. Steering Control

The steering of the articulated bus aiming for lateral control has been achieved by incorporating
a 24-volt DC motor (150 watts) with a gear reduction box (74:1) and an incremental optical encoder
(2000 ppr) coupled to the steering wheel axis through a 1:1 toothed gear (Figure 5). Both the DC
motor and gearbox were calculated to deliver the required torque to the axis of the bus steering wheel.
The optical encoder provides the angular steering wheel value to the PID digital controller in charge of
the lateral control. Figure 5 serves to illustrate this assembly.

 

Figure 5. Actuator assembly for driving the steering wheel.

192



Appl. Sci. 2017, 7, 1131

The steering control system has been designed to allow input from different location information
sources, the idea being to permit the exploration of using different sensors to assess the accomplishment
of the desired trajectory for the bus. Moreover, as will be explained in more detail in Section 2.6,
when dealing with the control architecture, it will be possible to employ several location sensors: GPS,
magnetometer systems for magnetic markers’ detection (hidden magnets buried along the desired bus
path), odometer, computer vision and LIDAR. Depending on the chosen sensor, a processing algorithm
is needed to transform the supplied data into a reference command signal to the steering control
system so that the bus will be able to track the desired trajectory. The experimental setup prepared
for this research has been configured to permit the simultaneous use of different, heterogeneous,
location sensors, and so, an intelligent combination of sensors (i.e., GPS and computer vision) could
be chosen to investigate their complementarity and advantages, normally requiring additional data
fusion algorithms.

Regarding the desired trajectory, there are many possible ways to determine it, like manually
driving the bus and recording the GPS coordinates, navigation with computer vision or LIDAR and
logging data with the odometer or GPS, or just in real time with a magnetometers array looking for
(detecting) hidden magnets on the path, among others. In Figure 6, the flowchart for the steering
control implemented in this work is shown.

 

Figure 6. Implemented flowchart for steering control.

2.4. Obstacle Detection

The development of a practical obstacle detection and safety system for vehicles often involves
working in complex scenarios. The experimental platform includes two LIDAR systems, the LMS-221
and LMS-291. Both lasers (electronic device based) provide non-contact measurement of the
surrounding environment in the form of a cloud of 2D data points. This experimental platform
is completed by a catadioptric omnidirectional stereovision system [59,60], which together with the
LIDAR make up a reliable obstacle detection system, and it could be useful for other related tasks.
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The chosen system is designed to work in harsh conditions (rain, snow, fog, warm or cold weather),
mainly using the LMS-221. Some of the applications are: objects’ measurement, positioning with
respect to other vehicles and obstacle detection (in particular, pedestrian detection). The LIDAR can
be used also to calculate the slope of the road, which can help the control system with additional
useful information.

Figure 7a shows the LIDAR system installed at the bus front, at a height of 930 mm and 1490 mm
above the soil plane. The supporting structure is mechanically adjustable to permit several angles of
inclination for these sensors. Figure 7b shows the omnidirectional stereo tracking system, which has
been attached to the LIDAR system, with the aim of being used in some experimental trials to evaluate
the efficiency of the obstacle detection process. With a range of angular action of 180 degrees and its
real-time capabilities, the LIDAR can be used to detect animate or inanimate objects. This system can
be used for the bus’s own safety and that of its passengers in the case of finding inanimate obstacles
close to the bus front and/or for the safety of a moving object crossing the bus path.

 
(a)                                 (b) 

 
(c) 

Figure 7. (a) LIDAR sensors placed at the bus front; (b) omnidirectional stereo tracking system;
(c) dynamic obstacle detection (more critical close up (Section 1), intermediate (Section 2) and less
critical (Section 3)).
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In order to test the capabilities of the experimental vehicle, a simplified object classification
method is proposed, where the sensory system classifies the sensed scenario into two groups: sections
with obstacles and safe path lane areas. The combination of LIDAR systems and cameras is widely
used because of its complementary capabilities, and several techniques have been proposed for data
fusion [61,62]. In these works, a standard chessboard was utilized to calculate the transformation
matrix between sensors. To compute obstacle detection, the data measurements from lasers are split
into several subsets/segments by using the jump distance condition. Then, the subsets are classified
into one of the two-defined groups by analyzing the geometrical properties of the segments such as the
average deviations from the median and the jump distance to each succeeding segment, as described
in [63]. The laser segments detected as obstacles are considered as inputs for computing disparities of
the regions of interest of the omnidirectional images.

Obstacles detected along the vehicle trajectory are sorted into the three warning sections
(see Figure 7c). This classification relies on the distance and position between obstacles and the
vehicle. When objects are placed in Section 3 or in Section 2, the vehicle decreases its velocity to 40% or
80%, respectively. In that way, a safety distance of 8–12 m could be achieved. However, when an object
is detected within Section 1 (2.5 m), a full stop is carried out. Movement is resumed automatically
when the obstacle disappears. Due to the vehicle characteristics, an avoidance maneuver was not
considered. Many experimental tests were carried out with success.

2.5. Software and HMI

To speed-up the research of the automatic control system for the articulated bus and to monitor its
performance during the experiments, it is convenient to incorporate a Human Machine Interface (HMI).
In this section the main characteristics of this HMI will be described. The environmental constraints are
considered a key point for designing this HMI. First, the mobile system is a long vehicle, with multiple
variables, working in tough conditions under a real-time operation system. Because it must cover large
displacements, the operator’s safety (and comfort whenever possible) is a priority. The HMI must
display comprehensible and significant information, and the real-time requirements must be satisfied.

The main purpose of the HMI is to establish friendly, remote and intuitive communications
between the vehicle and the people who operate it, and it also includes an adaptable and open
configuration. Thus, the HMI contains the following properties:

• Multiple sensors and variables can be visualized; two and three dimensions are considered for
some sensors.

• Real-time visualization of the information.
• Multiple and simultaneous clients connection can be accepted.
• Adaptable according to the requirements/configuration of every client.
• Data storage for every testing session.
• The old session can be visualized: offline mode.
• The TCP/IP communication protocol has been used to communicate between the vehicle and the

users (researchers).

The HMI client-server architecture is based on a server running on-board the vehicle, operated on
the RTOS (real-time operating system) named QNX® [64] and a client that can run on any PC and that
has been developed in MATLAB® [65]. A simultaneous connection of several clients, from i = 1 . . . n,
is possible, where each client is denoted as the i-client. Figure 8 shows the general diagram of the
remote system communication between the server and the n-clients.
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Figure 8. General diagram of the remote system communication.

The server consists of a “Clients Manager”, whose purpose is to create and control the
communication channels with every connected i-client. It also has to handle the clients’ requests
considering the clients’ initial configuration. In order to communicate between the server and the
main controller, an interface has been created called “data_devices Manager”, which is in charge of
acquiring the information of the active devices and variables of the system.

The i-client consists of a graphical interface and a “Configuration_Profile Manager”. The graphical
environment is intended to display the multiple variables of the vehicle; the variables are classified
and positioned in four groups or modules (see Figure 9). Module #1 displays the variables strongly
associated with the steering control: the steering wheel position (angle) and the trajectory deviation
angle. Module #2 shows the variables related to vehicle movement, i.e., the velocity and the
interpretation of the brake and accelerator pedals. Module #3 is used for the depiction of the
information acquired by the range sensor (LIDAR), whether it is displaying the data in 2D or 3D.
Module #4 shows the bus trajectory. The Configuration_Profile Manager is in charge of supervising
the execution of the i-client, according to the user’s requirements.

Figure 9. HMI graphical environment.

The remote communication begins by means of any i-client. The first action is the i-client
identification; then, it sends its initial configuration profile, previously established, where the user
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chooses the variables of the system to be monitored. Once the configuration has been confirmed,
the server starts the data sending procedure. This process will be performed until one of the linked
parts breaks the connection. Due to the communication system being designed to operate with
multiple and simultaneous clients/users, the server performance is not affected when an i-client is
disconnected or a new i-client is connected. The Clients Manager creates an independent channel for
every i-client, and when the server is disconnected, it sends a shutting down signal to all connected
clients. The communication experiments were carried out at the CSIC premises where the network and
the data traffic were monitored by the IT services. An optimal wireless connection for the on-board
and the client PCs was created with the combination of an access point and range extender devices.
In that way, the maximum bandwidth of the network was available. Although a detailed scaling
analysis was not performed, because it was not needed for the experiments, there was a testing of the
communication channels and the multiple-thread safety situation, and the maximum number of clients
connected at the same time was ten. With ten connected clients, no significant problem regarding the
server and the channel resources was detected. Figure 10 shows the HMI on board the bus during
a test on the CSIC inner road.

 

Figure 10. HMI graphical environment on board the bus during a test on the CSIC inner road.

2.6. System Architecture

In order to achieve great flexibility in the experimental platform, the reference trajectory for the
lateral control might be provided by different systems that could be employed as a single source
of reference points or to investigate a suitable combination of sensors and sensor fusion algorithms:
GPS, computer vision (B&W, RGB, stereo, omnidirectional), LIDAR, TOF, magnetometers detecting
hidden magnets and odometers whose data are provided by encoders. Some of these sensors could
be used also for longitudinal control (i.e., to detect obstacles like pedestrians with computer vision
or LIDAR, to locate and identify traffic signals, to determine distance and velocity approach to other
vehicles, etc.).

The source data for the bus’s desired trajectory are processed by the control system, and specific
filtering is applied depending on the selected source. The overall system architecture is illustrated in
Figure 11, and a general view of the installed instrumentation inside the bus is shown in Figure 12.
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Figure 11. The architecture of the experimental platform.

 

Figure 12. On-board instrumentation and control system of the experimental platform.

3. Results and Discussion

The automatic control of an articulated bus, presents, at a high level, some features similar to other
automatic vehicles, mainly regarding instrumentation and communications [66–69]. However, from the
point of view of practical implementation and low-level control, there are some challenging differences.
One major difference is inertia, which means greater power is involved and, so, more demanding
control and safety measures must be applied, those being of special relevance when coping with
down slopes. As a consequence, braking strategies and accelerations (longitudinal, lateral) are now
of greater relevance with respect to those of cars or small buses as is the case of the European project
CityMobil2 [70]. A second key difference with automatic cars or small buses [66] is the very long
length of an articulated bus (about 18 m), which, adding the position of the steering wheel ahead
of the front wheels (the bus driver is seated ahead of the front wheels), makes turning maneuvers
very cumbersome (in fact, during our experiments, one of the most “striking” sensations was when
approaching a curve and the steering wheel did not turn for a while, then it started to turn when the
front wheels where required to follow the curve). Furthermore, because of the bus length and the
presence of its central articulation, the trajectories of the front, middle and rear wheels present more
differences than in the case of a shorter vehicle [66], where practically the rear wheels are able to track
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the front wheels’ trajectory [27]. This intrinsic articulated bus characteristic requires special attention
when calculating the required steering angles for the desired bus trajectory.

The longitudinal control of the articulated bus is carried out so that the vehicle will be able to
move ahead of the test lane at a desired speed. The speed used in most experiments was relatively
slow due to safety reasons and to the intricacy of the trajectory (please refer to Figure 1) intended more
for checking control performance than to go very fast. The average speed in the experiments was
ranging from 10 km/h to 25 km/h. However, in the straight section of the path, in some controlled
experiments, the speed went up to 60 km/h.

Figure 13 shows the longitudinal and lateral control scheme implemented in the bus Volvo B10M
ART-RA-IN. Regarding longitudinal control, the system acts on the PotBox of the bus, which has
an action range of 0 to 5 DC volts, rather than acting on the throttle, because the control over
acceleration/speed of the bus is better in this case and more controllable. The acceleration is limited
(saturated) in order to protect the PotBox and not to exceed the desired speed over limits that cannot
be controlled, according to the experimental tests.

Figure 13. Longitudinal and lateral control scheme.

When the bus exceeds the desired speed, then the acceleration controller stops and selects the
brake controller. The brake controller has minimum and maximum limits, which determine the
workspace for this controller. Within these limits, the brake controller generates a saw-tooth signal
to act on the brake actuator, which consists of a DC servomotor (see Figure 3). This makes the
brake subsystem perform stopping of the bus as a gentle deceleration. When the speed decreases to
a pre-set threshold, the brake subsystem stops acting and starts the accelerator subsystem. The bus
speed is measured by a speed sensor whose resolution is greater than that offered by the original
bus tachometer.

Regarding lateral control, an electric actuator composed of a DC motor, gearbox and encoder has
been installed on the steering column (see Figure 5). The actuator receives commands from the lateral
control system, so that the vehicle will track the desired trajectory. It takes into account the steering
limit, which in this case is ±900◦. At the same time, it makes the axle of the front wheel range between
±45◦. The feedback to the lateral control system is obtained by means of actual (lateral) position
information in the form of the angular position (obtained from the different sensing possibilities: GPS,
magnetometers, encoders, etc.), which is compared with the angular position command.
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The results of longitudinal control for one of the experiments can be noticed in Figure 14,
where a comparison among the speed of the vehicle, the position of the brake and the acceleration
along the longitudinal axis (bus forward motion) obtained through an IMU installed on the front
axle is presented. In this experiment and during most of the trajectory, the commanded speed was
about 10 km/h, because the test lane contains small radii of curvature and slopes. In the last trajectory
segment of the test lane (straight line), the speed was increased up to 20 km/h. It can be noticed
in Figure 14 that 25 s after the start, the brake system applies a brake signal to check if the system
is working properly. Then, the main application of the brake controller is to regulate the speed
commanded mainly during the downward slope section. This takes place between the times 125 and
300 s, approximately. It can be noticed in Figure 14, for this period of time, that the brake signal (and
correspondingly, the acceleration signal) shows an oscillation due to the chosen algorithm for the
brake system, where a command signal in the shape of a saw-tooth is entered into the brake controller,
which acts as a Proportional-Integral (PI) action and provides a comfortable sensation of very near
constant speed, as should be expected.

Figure 14. Comparison among bus speed, brake position and x-acceleration during the tracking
trajectory. Brake control is applied 25 s after the start and from the times 125 to 300 s to cope with
a downslope in the circuit.

Figure 15 shows the experimental results obtained by applying the lateral control of the bus for
tracking the required trajectory. This figure shows the steering command, the lateral acceleration of
the bus and the angular rate on the z-axis (azimuth). The angular rate sensor follows the curves of the
trajectory commanded by the bus steering. The azimuthal speeds have been measured at two different
points; the first, on the bus front axle, and the second, on the rotatory junction of the bus, in order to
know both characteristics of its behavior. One of them is to know the position of the last section with
respect to the first section of the bus. The lateral acceleration signal can be used in a feedback loop
lateral control to improve the tracking of the trajectory. Using this signal in the control system, small
lateral movements will be diminished.
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Figure 15. Comparison among steering command, lateral acceleration and angular rate in the z-axis
during the tracking of the trajectory.

The lateral error during the trajectory tracking was relatively small and within the safety margins
established in the control strategy. Figure 16 shows that the maximum peaks of the lateral error were
approximately 0.35 m, these peaks being located in the smallest curvature radii sections, where the
bus front is more separated from the theoretical trajectory to precisely cope with the curvature.
During most of the trajectory, the lateral error was about or less than 0.10 m, which is acceptable for
a bus of these dimensions.

Figure 16. Lateral error during the tracking of the test lane.

Many experiments have been performed within the CSIC experimental test area. Figure 17
illustrates the automatic control of the articulated bus following a required trajectory. The steering
wheel angular rotation experimental data are shown as the correlation with the real trajectory. In this
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way, many longitudinal and lateral control algorithms were compared using this experimental platform,
where reliable external references, sensors and electronic instrumentation have been demonstrated
to be very useful. Figure 18 shows the steering wheel in automatic mode in several positions
(video snapshots) when the bus is passing by one curved section of the test lane, during one of
the experimental proofs.

Figure 17. (a) Test lane and trajectory at the CSIC; (b) steering wheel angular value during an experiment
conducted on the test lane.

 

Figure 18. Details of the steering wheel during one curved section of the experimental tests.
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4. Conclusions

In this paper, an experimental platform for research on the automatic control of an articulated
bus aiming to allow full experimentation in real conditions for testing technological developments
and control algorithms in the field of Intelligent Transportation Systems (ITS) has been introduced.
A short review of the state of the art in ITS served as a motivation for the undertaken work, and it was
followed by the presentation of the experimental platform, which consisted of a mobile component
(a commercial articulated bus fully instrumented) and of a ground test area composed of asphalt
roads inside the CSIC premises in Madrid. A robust information acquisition architecture composed of
a heterogeneous and complementary set of sensors was implemented and integrated on the platform in
order to provide real-time monitoring and control of the multiple variables involved in the autonomous
operation of the articulated bus. Details regarding instrumentation and the implementation of bus
velocity and steering control, as well as obstacle detection and a human machine interface developed
to ease progress in the control system evaluation were provided.

Experimental testing of longitudinal and lateral control approaches were also presented and
illustrated with the results of many tests performed within the experimental area. Experimental results
exhibit that the proposed velocity control, which is based on a PID closed-loop controller, is capable of
providing automatic regulation of the velocity independently of the road slope and the demanding
layout of the bus track. On the other hand, the steering control was shown to keep the lateral error
below 0.10 m during the trajectory tracking experiments, which is quite acceptable for a bus of these
dimensions. The safety system was confirmed to be effective in detecting dynamic obstacles and
sorting them into three predefined warning sections. This strategy allows the articulated bus either to
stop or to reduce its velocity depending on the distance between the obstacle and the vehicle. Finally,
the HMI proved to be a friendly and intuitive means of communication between the human operator
and the controlled articulated bus. The adaptable and open configuration of the HMI enables the
real-time control of the system, as well as the real-time visualization of the multiple variables of interest
acquired by the sensors.

In future works, we will implement and evaluate different controllers for this experimental
platform in order to compare them in order to reach new conclusions.
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