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Editorial
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1. Introduction
The 3OM concept was introduced in 2008 and combines three complementary do-

mains: opto-mechatronics, opto-mechanics, and optical metrology.
Opto-Mechatronics was introduced in 2005 by Prof. Hyungsuck Cho in a seminal

book with the same name [1]. It combines optics and mechatronics, the latter of which is
a blend of precision mechanics, electronics, control, and automation, as well as IT. This
multidisciplinary approach is beneficial in the engineering and design of complex systems,
adding value to each of the component fields. A good example can be seen in the form
of laser scanning techniques [2,3], which involve, for example, galvanometer-based [4–6],
polygon mirror [7–9], or Risley prisms [10–13] and can be designed for a wide range
of applications, from commercial to industrial and high-end purposes. These include
applications in areas as diverse as biomedical imaging [14] and remote sensing [15].

Opto-Mechanics addresses positioning issues and errors in optical components [16,17]
and tolerances of both mechanical and optical parts, as well as methods for tackling these
aspects. Researchers in this field strive to fill the gap between the high (theoretical) pre-
cision and requirements of optical design and the practical capabilities that are inherent
in mechanical technologies [2]. Another aspect that is often overlooked is related to the
kinematics and dynamics of systems with optical moving parts (i.e., mirrors, lenses, and
prisms). This imposes finite element analyses (FEAs), especially of fast-moving (for exam-
ple, rotational) parts, in order to control structural integrity issues, as well as deformation
levels [3,9]. FEAs and various other mechanical analyses are necessary, even for systems
with non-moving or slow-moving (but large and heavy) optical parts (and mounts), for
example, with refractive elements (e.g., Risley prisms [18]) or segmented mirrors [19].
These aspects bridge opto-mechanics and opto-mechatronics. This relationship is strength-
ened by the necessity for control and automation (as included in mechatronics) in (precise
positioning and displacements in) systems with moving components [20–22].

Optical Metrology comprises a wide area of applications that are related to both do-
mains above, especially opto-mechatronics. It includes domains that range from industrial
measurements to imaging, with the latter being used both in industry, with non-destructive

Photonics 2025, 12, 557 https://doi.org/10.3390/photonics12060557
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testing (NDT), and in the biomedical field, with a wide range of techniques, for example,
optical coherence tomography (OCT) [23–25], confocal microscopy [26], or photoacoustics.

3OM also enhances laser manufacturing, which, in turn, implies robotics, machine
vision, and machine learning, the latter with AI algorithms. Besides biomedical imaging,
it is closely connected to various laser techniques in medicine. Finally, its field of interest
extends to include remote sensing, as well as security and defense.

Regarding devices and specific technologies, we must highlight the rapidly evolving
field of micro-electro-mechanical systems (MEMSs), which has applications in all the above
fields [24,27–30].

2. An Overview of the Articles in This Special Issue
In the work described in Contribution 1, the reflectivity of a cholesteric liquid crystal

was numerically investigated for an anisotropic defect layer inside. The optical phenomena
were modeled for different parameters of the system, as well as adjusting the external
applied electric field. The possibilities of controlling the reflection spectrum were obtained.

The authors of Contribution 2 studied a shock wave that may be induced with a high-
power laser pulse. A theoretical model of laser material processing was developed, with
experimental validation via piezo-resistive methods. The field of laser micromachining
was also approached in Contribution 3 for laser drilling. Optical detection achieved a >95%
accuracy for tens-of-micrometer-deep holes with a micrometer diameter. Contribution 4
focuses on optical vortices (i.e., ultra-intense laser pulses with helical phases), assessing
their field distributions.

The authors of Contribution 5 approached an opto-mechatronic device, introducing
and demonstrating a low-cost 3D-printed 1-DOF laser scanner. Its parameters were deter-
mined and validated experimentally, offering an alternative to the more expensive (and
most common) galvanometer scanners.

Optical metrology was targeted for Contribution 6, with the Digital Image Correlation
(DIC) method used for displacement- and stress–strain-invariant deformation measure-
ments. A reverse retrieval strategy was also developed. The DIC measurements allowed
for robust and efficient displacement invariance measurement, with an average accuracy of
0.1% observed for the stress–strain results.

A system development is proposed in Contribution 7, with a broadband mode coupler
for multimode OCT in the O-band (1.26–1.36 µm). Key design parameters were studied.
Reflected signals from the sample were separated using the same fiber device before
interfering with the reference light, which had not been previously possible. The proposed
fiber device is expected to represent a key component in efficiently achieving multimode
OCT operation with better signal collection efficiency and improved penetration depth for
deep tissue imaging.

Contribution 8 explores high-performance focal plane arrays and their fields of ap-
plication, including remote sensing, astronomical, and surveillance instruments. Whereas
in the analysis of an instrument performance analysis, it is assumed that the image of a
point source is at the center of a detector pixel, in reality, it may fall at any position in the
detector pixel. Pointing errors and jitter may lead to errors of up to 20%. Critical factors
that impact the performance estimate include the optical centroid efficiency (OCE) and the
ensquared energy (i.e., the energy on the rectangular detector pixel (EOD)). Simulations
were performed for imaging with and without a generalized rectangular central obscura-
tion. Contribution 10 represents the second part of this study, analyzing the performance
of the OCE vs. the EOD. The three Seidel primary aberrations of an optical component (i.e.,
spherical, coma, and astigmatism, plus defocus) were considered. The study concluded
that the choice of the larger pixel might be advantageous for low-aberration instruments
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in dynamic and unpredictable environments. Thus, for pixels larger than a certain thresh-
old, a small pixel shows better performance in the face of jitter, misalignment, and other
environmental conditions.

The authors of Contribution 9 utilized computer simulations to approach microstruc-
ture observations using speckle interferometry. This study demonstrates that the separation
of two close points is not impossible when coherent light is used. The condition examined
comprised different light phases between the two points. This discussion on the resolution
of microstructure observations based on speckle interferometry led to a new interpretation
of the Rayleigh criterion in super-resolution techniques.

3. Conclusions
In summary, 3OM research is multidisciplinary, bridging several optical, mechanical,

and electrical engineering fields. The ten contributions to this Special Issue represent an
enticing taster of the many areas of interest involving 3OM. Two of the works were prepared
for the second edition of the International Conference Advances in 3OM [31]. During the
publishing process, the third edition of this Conference was under development [32], and,
linked to it, the second edition of this Special Issue of Photonics was launched [33]. Another
Special Issue, this time of Sensors, also addresses a 3OM topic of high interest: laser scanning
and its various applications [34]. We hope that these Special Issues offer readers an insight
into these fields and inspire scholars to contribute to advancing our knowledge on these
topics for the benefit of humankind.
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Abstract: In this study, first, we numerically investigated the reflectivity of a cholesteric liquid crystal
with an anisotropic defect layer inside. To model optical phenomena in the examined system, a
4 × 4 matrix method was employed. The tests were carried out for different thicknesses of the whole
system, different thicknesses of the defect layer, as well as different defect layer locations inside
the cell. Next, a cholesteric liquid crystal comprising a defect layer and held between two parallel
electrical conductors was also considered. In this case, the optical properties of the system could
also be adjusted by an external applied electric field. Some interesting simulation results of the
reflection coefficient (i.e., the fraction of electromagnetic energy reflected) were obtained, illustrated,
and discussed. The simulation results showed a significant influence of both the defect and the
external electric field on the selective reflection phenomenon, and the possibility of controlling the
shape of the reflection spectrum. Finally, some potential applications of the analyzed optical system
were discussed.

Keywords: photonic materials; cholesteric liquid crystal; optical metrology; reflectivity; reflection;
bandgap; defect mode; defect layer; director field; electric field

1. Introduction

Photonic crystals consisting of artificial or organic self-organizing periodic structures have opened
up new possible applications in modern electronic devices. Some of the possible practical applications
of such materials in different branches of science and technology can be found, for instance, in recent
review papers [1–5]. Especially attractive is the use of cholesteric liquid crystals (CLCs) since the
macroscopic properties of such optical structures can be manipulated by external stimuli.

CLCs are organic materials with unique and useful optical properties. They are composed of
optically anisotropic and uniaxial elements (molecules), with one major and two minor principal axes,
which are also mutually perpendicular locally. In cholesteric liquid crystals, there is a long-range
orientational order of the elongated molecules with locally preferred common direction called the
director. Whereas in nematic liquid crystals, the elastic forces and torques tend to establish a uniform
orientation of the director, the chiral molecules in CLCs lead in equilibrium to a helical arrangement
with the director perpendicular to the helix axis [6]. This way, they have a one-dimensional periodic
modulation of dielectric constants, which leads to interesting optical effects.

Owing to the optical anisotropy and helical twist, CLCs are characterized by the so-called selective
reflection. It means that for the light incident along the helical axis (normal incidence), the circularly
polarized light with the same handedness as that of CLC, is totally reflected in the specific wavelength
range. The edges of this bandwidth are defined by two sharp optical modes which correspond to
circularly polarized standing waves in which the electric field in the bulk of the sample is aligned
along either the ordinary or the extraordinary molecular axes [7]. This unique feature of the selective
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reflection is widely used in numerous applications such as reflective displays, tunable color filters, or
mirrorless lasers [8].

In isotropic periodic media, defects have been created by the removal or addition of a material, or
by an alteration of the refractive index of one or a number of elements of photonic crystals [9]. In the
anisotropic optical structures considered in this study, defects can be introduced by replacing a part of
the host medium with a material that has a different dielectric constant and can make defect modes in
the forbidden bands [10]. The defect makes such structures more useful (such as doped semiconductors)
and can be successfully used for constructing narrowband filters [11–13], low threshold lasers [14,15],
and other optical devices. A broad overview of the properties of all currently existing defective
modes in CLCs, including both the proposed theoretical approaches and the performed experimental
observations, can be found in monography [16]. In particular, efficient applications of localized modes
for low-threshold lasing at the frequencies of localized modes are presented in this study as the most
recent achievements in this area.

Generally, two ways to introduce a defect in CLCs have been proposed (and discussed in more
detail below): either by replacing a thin layer of the CLC with an isotropic material [10], or by
introducing a phase jump in the cholesteric helix [7]. In the first case, in analogy with isotropic periodic
structures, a defect can be produced in a helical structure by adding an isotropic layer in the middle of
a CLC. In the second case, a chiral twist defect can be created by rotating one part of the sample about
its helical axis without separating the two parts.

Yang et al. [10] theoretically studied the reflection and transmission of light from a one-dimensional
system consisting of two layers of cholesteric liquid crystal sandwiching a thin layer of the isotropic
medium as a defect. Reflection spectra for normal incidence, calculated by using the so-called “faster
Berreman method”, were studied to obtain the wavelengths and intensities of defect modes when the
refractive index and the thickness of the defect layer were varied.

Gevorgyan and Harutyunyan [17] considered some properties of defect modes in chiral photonic
crystals with an anisotropic defect layer. They solved the problem by the Ambartsumian’s layer
addition method previously developed for the solution of astrophysical problems of multiple scattering
in turbid media, and further extended to optical wave propagation through inhomogeneous media [18].
As a result, the influence of the defect layer thickness variation and its location in the chiral photonic
crystal on defect mode properties were investigated. However, the amplitudes of the reflected and
transmitted fields related to the incident wave were expressed by using 2 × 2 Jones matrix method,
in which both the effect of refraction and multiple reflections between plate interfaces (dielectric
discontinuities) are neglected [19].

Kopp and Genack [7] considered photonic properties of a defect created by twisting one part of
an anisotropic structure relative to the rest of the sample. The authors restricted their discussion to
samples with a chiral twist of 90◦ in the center of the sample, which creates a photonic defect at a
frequency in the center of the stopband. However, varying the chiral twist angle in the range 0–180◦
tunes the defect frequency from the low to the high-frequency band edge. The study demonstrated that
twisting one part of a chiral photonic structure about its helical axis creates a single circularly polarized
localized mode that gives rise to an anomalous crossover in propagation. This is in contrast to a defect
in a binary layered medium that produces two orthogonally polarized degenerate localized modes.

In another study, Schmidtke et al. [13] used two layers of a highly cross-linked CLC polymer film
to create a phase jump of 90◦ in the cholesteric structure. They observed experimentally enhanced
fluorescence inside the photonic stopband and laser emission due to a photonic defect mode in a
dye-doped cholesteric polymer network. The observed emission peak can be attributed to the localized
defect mode generated by the phase jump of the cholesteric helix and it agrees with the simulation
results of Kopp and Genack [7], who have theoretically predicted the presence of a defect mode in the
center of the stopband.

In the study [20], the twist defect mode inducted by a discontinuity of the director rotation
around the helix axis at an interface of two photopolymerized cholesteric liquid crystal layers has
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been experimentally demonstrated in the transmission spectrum. The existing self-organized helical
structure of such composite film acts as a one-dimensional photonic crystal. Finally, the authors
observed optically pumped laser action based on the twist defect mode.

Ha et al. [21] considered quasi-periodic Fibonaccian phase defects in single-pitched cholesteric
liquid crystalline systems. Fundamental optical properties were discussed as functions of phase
jump (orientational defect angles), unit lengths, and the orders of Fibonacci systems. The performed
simulations of reflection spectra demonstrated simultaneous red, green, and blue reflections or multiple
photonic bandgaps, and the color of reflections could be controlled by an orientational defect angle.

Motivated by the literature review presented above, in this study, we considered a defect in the
form of an anisotropic layer with different thicknesses, different locations of the defect layer inside the
analyzed CLC cell, as well as different total thicknesses of the investigated system. To model optical
phenomena, we implemented the 4 × 4 matrix method which gives accurate numerical results and was
used in many previous papers [9,20–31]. On the contrary to numerous former studies examining the
defect modes in nondeformed CLCs, we also investigated the influence of an external electric field
applied to the considered CLC optical system with a defect layer inside. This is important from a
technological point of view since the investigated optical system can also be additionally tuned during
operation by altering the director field of the CLC.

The study is organized as follows. Section 2 presents the considered optical system, i.e., CLC
cell with a defect layer inside, sandwiched between two homogenous and isotropic conducting glass
samples. Section 3 shortly summarizes the most essential steps in the computational method of
the director field of the CLC deformed by an externally applied electric field and the 4 × 4 matrix
calculation method. Some interesting numerical simulations of the reflectance obtained for different
configurations of the system, different values of the parameters, as well as different director fields of
the CLC are reported and discussed in Section 4. Lastly, a brief summary and the conclusions of the
study are outlined in Section 5.

2. Model of the Considered Optical System

Generally, in a liquid crystal cell under a given boundary condition and an externally applied
field, the liquid crystal is in the director field configuration that minimizes the total free energy of
this system [32]. In other words, there is a critical amplitude of the electric field below which the
internal elastic strength of the liquid crystal exceeds the electric forces; therefore, the system remains
undeformed from its base state. When a relatively large external electric field is applied to the cell, the
liquid crystal will reorient because of the dielectric interaction between the crystal and the applied
field. This bifurcation field-induced reorientation of the liquid crystal is referred to as the Fréedericksz
transition [32].

Generally, determining the director field in a cholesteric liquid crystal device is complicated due
to the large number of material parameters that characterize it. The tendency of the director to take on
a particular spatial distribution can be understood in terms of the well-known elastic continuum theory.
For instance, in papers [33–35], the problem of the continuum theory for nematic and cholesteric liquid
crystals is exhaustively reported, and, therefore, it is not considered in detail in this study. According
to this theory, elastic forces arising from the molecular structure of the material resist any distortion
to the director field from its equilibrium state. Such distortions can arise for a number of reasons,
including interaction with external electric/magnetic fields, coupling with the material flow of the
liquid, or from interactions with confining surfaces [36]. When subjected to competing influences,
the director will adjust throughout the sample and, as a result, must be treated as both space- and
time-dependent function.

In our analysis, we considered situations, where the electric field interacts with the liquid crystal
deformation. In the case of positive dielectric anisotropy of the CLCs, the molecules tend to align
parallel to the electric field if voltage (electric field) is applied across the cell. As boundary conditions,
we assumed the strong anchoring of the molecules of the CLC at surfaces of substrates and the
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deformation of the CLC characterized by the so-called tilt angle and twist angle of the molecules,
which depends on the applied electric field, the anisotropy of the electrical permittivity of the liquid
crystal, and the anisotropy of the elastic stiffness of the liquid crystal. The anisotropic defect layer is
manifested by a locally constant director in the area of the defect layer.

Motivated by the structure of the simplest electro-optic devices, also in our system, a thin layer of
a cholesteric liquid crystal is sandwiched between two plates (substrates) which are treated in a way
which leads to the surface interaction imposing a specified orientation on the liquid crystal (boundary
conditions of the director field). The optical properties of the investigated system can be additionally
adjusted by applying an external electric field whose distorting influence on the CLC opposes that of
the surfaces.

Figure 1 presents two configurations of the structure of the modeled optical system, i.e., CLC
cell with a defect layer (DL) inside, and sandwiched between two (lower and upper substrates)
homogenous isotropic media. Figure 1a presents the nondeformed director field, whereas Figure 1b
shows the deformed director field caused by the applied electric field. The studied system is located
in the right-handed Cartesian coordinate system, where the z-axis was chosen to be the twist axis of
the CLC.
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Figure 1. A structure of the modeled cholesteric liquid crystal with a defect layer inside that is
sandwiched between isotropic substrates, with the orientation of the director: (a) before the electric
field is applied; (b) after the electric field is applied. The anisotropic defect layer is manifested by a
locally constant director field in the range of the coordinate z from z = d1 to z = d1 + d2.

The considered system can be treated as a multilayer system CLC1-DL-CLC2 with thicknesses
of d1, d2, and d3, respectively. In all considered cases, the whole CLC cell with the total thickness
D = d1 + d2 + d3 was divided into N equal multiple elementary layers (sliced into a large number
of slabs) of the thickness 1 nm, which was parallel to the substrates (i.e., xy plane). Each imaginary
elementary n-th layer can be treated as a homogenous layer with the same orientation of the optical
axis, characterized by two angles, i.e., tilt angle and twist angle. The tilt angle was measured from
the z-axis to the direction of the optical axis of the molecule, while the twist angle was measured
from the x-axis to the projection of the optical axis of the molecule on the xy plane. As a result, each
elementary layer can be treated locally as an anisotropic homogenous medium. The spatial period of
the helical structure of the CLC characterized by the pitch p can be easily varied by adding dopants
and changing temperature. The ordinary and extraordinary refractive indices were no = 1.4639 and ne

= 1.5133, respectively, whereas the pitch of the right-handed periodic helical structure was p = 420 nm.
These values corresponded to the CLC cholesteryl-nonanoate–cholesteryl-chloride–cholesterylacetate
(20:15:6) composition at the temperature 298 K [37]. As a result, the light with right circular polarization
and normally incident onto a single CLC layer had a bandwidth in the range of λ ~ (615–635) nm,
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whereas the light with the left circular polarization did not have any. The considered system was
surrounded by the optical media with the refraction index ns on its both sides, equal to ns = 1.4 (the
value that corresponds to glass medium). We assumed that both CLC and DL were not absorbing, and
the values of the parameters ns, no, and ne did not depend on the wavelength of the incident light.

The incident light propagated in the lower substrate (n = 0), then in the CLC1, DL, and CLC2 (n = 1,
2, . . . , N), and finally in the upper substrate (n = N + 1). The optical axis of the molecules of cholesteric
liquid crystals laid on the xy plane which was parallel to the substrates and changed periodically
along the z-direction. The orientation of the wave vector of the oblique incident nonpolarized beam of
monochromatic light with wavelength λ in the lower substrate was represented by angles θ and φ.
The angle θ was measured from the z-axis to the direction of the wave vector of the incident beam
of light, while the angle φ was measured from the x-axis to the projection of the director of the wave
vector of the incident beam of light on the xy plane [38,39].

3. Calculation Methods

We considered a cholesteric liquid crystal confined between parallel plates at z = 0 and z = D
and subject to strong planar anchoring at these surfaces as boundary conditions. We applied electric
potential between the plates giving rise to an electric field parallel to the z-axis. We took into account
the liquid crystal with positive electric anisotropy; therefore, the director tended to align parallel to the
local electric field, and at the same time, the director was in competition with the direction of the strong
planar anchoring. The deformation of the director occurred in two planes, in which it was possible
to describe the director by two angles, namely the abovementioned tilt angle θc (measured from the
z-axis to the direction of the optical axis of the molecule), and the twist angle φc (measured from the
x-axis to the projection of the optical axis of the molecule on the xy plane).

For our calculations, the equations governing the static behavior of the liquid crystal with the
variables θc and φc of the director field could be obtained from the equations expressing conservation
of momentum, angular momentum, and Maxwell equations for the electric displacement field, with
the appropriate boundary conditions that reflected the assumption of strong planar anchoring and
that the voltage dropped across the considered cell was equal to the applied voltage. The solution
of these equations in the nondimensional form depended on nondimensional parameters, i.e., the
nondimensional elastic anisotropy, the nondimensional electric anisotropy, and the nondimensional
applied voltage. In turn, the abovementioned nondimensional parameters depended on a large number
of material parameters that characterized the investigated system. However, from the point of view
of the optical properties of the system, such as reflectivity or transmissivity, the spatial distribution
of the director had fundamental importance. Therefore, in our research, during the analysis of the
considered optical cell in an external electric field, we took into account directly different distributions
of the director field that corresponded to different amplitudes E of the applied electric field. In this way,
the obtained results were more general and they could be directly adopted to systems with different
material properties, both mechanical and optical.

To model optical phenomena in the analyzed system, we used the 4× 4 matrix method implemented
based on the mathematical formalism presented in [40]. More detailed information regarding the
realized computer algorithm of the applied computation technique was presented in detail in one of
our previous papers [39]. Below, only the main stages of this method are listed:

• Entering values of all required parameters of the considered optical system, i.e., ns, no, ne, d1, d2,
d3, p, λ, θ, and φ;

• Calculation of the dielectric tensors ε(n) of the substrates (n = 0 and n = N + 1) and the dielectric
tensors ε(n) of the individual elementary crystal/defect layers (n = 1, 2, . . . , N);

• Calculation of the wave vectors kσ(n) of all four elementary waves (σ = 1, 2, 3, 4) in all elementary
layers based on the wave equation;
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• Computation of the optical polarization vectors pσ(n) of the individual elementary waves
representing the directions of the electric field as well as the corresponding vectors qσ(n) of the
magnetic field;

• Computation of the 4 × 4 transition matrix, which describes the relationships between amplitudes
As, Ap of the electric field of the incident waves, amplitudes Bs, Bp of the electric field of the
reflected waves, and amplitudes Cs, Cp of the electric field of the transmitted waves, both for s
and p waves, respectively;

• Calculation of the reflection coefficient R (the fraction of the electromagnetic energy reflected) or
optionally the transmission coefficient T (the fraction of the electromagnetic energy transmitted)
of the incident light.

This mathematical approach is an effective technique in describing the optical properties of
multi-layered structures and has been widely employed by many researchers in numerous problems,
including the investigation of liquid crystal displays [41], the propagation of electromagnetic waves in
stratified bianisotropic chiral structures [42], the study of various uniaxial, biaxial dielectric, magnetic
materials [43,44], the investigation of the effect of stress-induced anisotropy on localized mode in
photonic crystal [31], and the study of different kinds of cells of CLC lasers [45].

4. Results and Discussion

First, we examined the optical system for d1 = d3 = 10 p (further referred to as model 1) and for
different values of the thickness d2. In this case, the defect layer was located in the center of the studied
cell. A beam of a monochromatic nonpolarized light was incident normally on the surface of the
investigated optical system, i.e., perpendicular to the xy plane. For the sake of completeness and to
increase the transparency of the obtained results, the results were presented in a few charts together
with the curve obtained for the ideal system as a reference, i.e., without the defect layer (plotted by
the dashed curve). The presented simulation results show that the thickness of the defect layer had a
significant impact on the shape of the simulated spectral curves, especially in the band of the selective
reflection. As one can see, visible dips in the spectral curves were induced by the introduction of the
defect layer. Moreover, if the defect layer thickness was changed, the defect mode bandwidth of the
incident light was changed too. Generally, the defect effect was present near the center and these
curves had a certain asymmetry. However, for some values of the defect layer thickness, this effect was
exactly in the center of the bandwidth and the spectral curves were symmetric. It should be noted that
a similar effect can also be obtained in another way. For instance, a peak in transmission was observed
in the middle of the bandgap, when a system with a spacerless defect was created in sculptured thin
films by rotation of the substrate by an additional 90◦ in the middle of the film fabrication process [12].

The regularities in spectra presented in Figure 2 are easy to understand. When the thickness
of the defect increased, the characteristic peak of the maximum value shifted toward the long-wave
boundary of the bandwidth, while the second maximum appeared simultaneously on the left side of
the spectral curve. For the layer thickness equal to 0.25 p (Figure 2a), the spectral curve had a form of
two symmetrical maxima with a slightly smaller amplitude around the wavelength of the maximum
reflection for the system without the defect. With a further increase in the thickness of the defect (see
Figure 2b), a similar situation occurred, but on the other side of the band gap (i.e., mirror image in
comparison to the results presented in Figure 2a). For d2 = 0.5 p, the obtained spectral curve was
almost identical to the curve obtained for the system without the defect (only a very small narrowing
of the selective reflection bandwidth was visible). Increasing the defect thickness from 0.5 p to p (see
Figure 2c,d) caused a similar effect to changing the value of the d2 parameter in the range from 0 to
0.5 p (compare these curves with the curves presented in Figure 2a,b, respectively).
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Figures 4 and 5 show curves similar to those seen in Figures 2 and 3, but for the optical system 
with d1 = d3 = 20 p and different values of the thickness d2 (further referred to as model 2). Through the 
analysis of the results of numerical simulations for the considered model 2, one can come to the same 

Figure 2. Reflection spectra for different values of the thickness d2 of the defect layer (model 1): (a) d2

equal to 0.1 p, 0.2 p and 0.25 p; (b) d2 equal to 0.3 p, 0.4 p and 0.5 p; (c) d2 equal to 0.6 p, 0.7 p and 0.75 p;
(d) d2 equal to 0.8 p, 0.9 p and 1.0 p.

Figure 3a shows a comparison of curves obtained for the defect layer thickness of 0.5 p, p, 1.5 p,
and 2 p, while Figure 3b shows the comparison for d2 = 0.25 p, 0.75 p, 1.25 p, and 1.75 p, respectively.
In the first case (Figure 3a), we obtained similar results to for the system without the defect layer.
The increase in the thickness of the defect layer (i.e., d2 equal to 0.5 p, p, 1.5 p, or 2 p) caused only a
very small and gradual narrowing of the bandwidth and a significant increase in the amplitude of the
side peaks. In turn, for the value of the parameter d2 tested in Figure 3b (i.e., d2 equal to 0.25 p, 0.75 p,
1.25 p, and 1.75 p), two symmetrical peaks were obtained with a slightly smaller amplitude and with a
zero reflection coefficient for λ = (no + ne)·p/2 ≈ 625 nm. This gradual increase in the defect thickness
resulted in a gradual but slight flattening of these spectral curves.
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analysis of the results of numerical simulations for the considered model 2, one can come to the same 
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Figures 4 and 5 show curves similar to those seen in Figures 2 and 3, but for the optical system
with d1 = d3 = 20 p and different values of the thickness d2 (further referred to as model 2). Through
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the analysis of the results of numerical simulations for the considered model 2, one can come to the
same conclusions as for model 1. However, for greater values of the total thickness of the considered
system, the observed selective reflection phenomenon was more pronounced. In the case of model 1,
we observed a significant expansion of the selective reflection bandwidth (two adjacent peaks), with
the simultaneous reduction in the average amplitude of the reflection coefficient. On the other hand,
for model 2, the bandwidth extension was slightly smaller, but there was no significant reduction in the
reflection coefficient in the bandwidth. This effect resulted from a larger value of the total twist angle
of the liquid crystal optical axis, due to which the interference effects inside the crystal was stronger,
and the selective reflection coefficient was greater.

Photonics 2020, 7, x FOR PEER REVIEW 8 of 19 

 

conclusions as for model 1. However, for greater values of the total thickness of the considered system, 
the observed selective reflection phenomenon was more pronounced. In the case of model 1, we 
observed a significant expansion of the selective reflection bandwidth (two adjacent peaks), with the 
simultaneous reduction in the average amplitude of the reflection coefficient. On the other hand, for 
model 2, the bandwidth extension was slightly smaller, but there was no significant reduction in the 
reflection coefficient in the bandwidth. This effect resulted from a larger value of the total twist angle 
of the liquid crystal optical axis, due to which the interference effects inside the crystal was stronger, 
and the selective reflection coefficient was greater. 
 

 
(a) 

 
(b) 

Figure 4. Reflection spectra for different values of the thickness d2 of the defect layer (model 2): (a) d2 
equal to 0.1 p, 0.2 p and 0.25 p; (b) d2 equal to 0.3 p, 0.4 p and 0.5 p. 

 
(a) 

 
(b) 

Figure 5. Reflection spectra for different values of the thickness d2 of the defect layer (model 2): (a) d2 
equal to 1.0 p, 2.0 p and 3.0 p; (b) d2 equal to 0.25 p, 0.75 p and 1.25 p. 

It is known that in the case of CLCs without defects, the value of the reflection coefficient is 
almost the same within the entire forbidden band λ in the range (nop, nep). Figure 6 shows the 
relationship between the reflection coefficient for the wavelength λ = (no + ne)∙p/2 ≈ 625 nm and the 
thickness of the defect layer, for both model 1 and model 2. In addition, we also presented similar 
curves obtained for other wavelengths, i.e., λ = no p ≈ 615 nm and λ = ne∙p ≈ 635 nm. 

The simulation results presented in Figure 6 show that the reflection coefficient for individual 
wavelengths varied significantly depending on the thickness of the defect layer (in the range from 0 
to 0.5), which was already observed in previous figures. Figure 6a shows that for the wavelength of 
625 nm, the total reflection occurred for d2 = 0, 0.5 p and p, while no reflection occurred for d2 = 0.25 p 
and 0.75 p. Similar changes occurred for other wavelengths, i.e., 615 and 635 nm, with their maximum 
and minimum values occurring for other thicknesses of the defect layer. More interesting results are 
presented in Figure 6b. They were obtained for a greater total thickness of the investigated optical 
system. In addition, in this case, for the wavelength 625 nm and d2 = 0.25 p, there was practically 
complete quenching of the selective reflection. However, for d2 = 0.75 p, the value of the reflection 
coefficient no longer reached zero. This effect, also for larger values of the d2 parameter (i.e., d2 = 1.25 
p), is clearly visible in Figure 5b. As the value of the thickness d2 increased, the values of the reflection 

Figure 4. Reflection spectra for different values of the thickness d2 of the defect layer (model 2): (a) d2

equal to 0.1 p, 0.2 p and 0.25 p; (b) d2 equal to 0.3 p, 0.4 p and 0.5 p.

Photonics 2020, 7, x FOR PEER REVIEW 8 of 19 

 

conclusions as for model 1. However, for greater values of the total thickness of the considered system, 
the observed selective reflection phenomenon was more pronounced. In the case of model 1, we 
observed a significant expansion of the selective reflection bandwidth (two adjacent peaks), with the 
simultaneous reduction in the average amplitude of the reflection coefficient. On the other hand, for 
model 2, the bandwidth extension was slightly smaller, but there was no significant reduction in the 
reflection coefficient in the bandwidth. This effect resulted from a larger value of the total twist angle 
of the liquid crystal optical axis, due to which the interference effects inside the crystal was stronger, 
and the selective reflection coefficient was greater. 
 

 
(a) 

 
(b) 

Figure 4. Reflection spectra for different values of the thickness d2 of the defect layer (model 2): (a) d2 
equal to 0.1 p, 0.2 p and 0.25 p; (b) d2 equal to 0.3 p, 0.4 p and 0.5 p. 

 
(a) 

 
(b) 

Figure 5. Reflection spectra for different values of the thickness d2 of the defect layer (model 2): (a) d2 
equal to 1.0 p, 2.0 p and 3.0 p; (b) d2 equal to 0.25 p, 0.75 p and 1.25 p. 

It is known that in the case of CLCs without defects, the value of the reflection coefficient is 
almost the same within the entire forbidden band λ in the range (nop, nep). Figure 6 shows the 
relationship between the reflection coefficient for the wavelength λ = (no + ne)∙p/2 ≈ 625 nm and the 
thickness of the defect layer, for both model 1 and model 2. In addition, we also presented similar 
curves obtained for other wavelengths, i.e., λ = no p ≈ 615 nm and λ = ne∙p ≈ 635 nm. 

The simulation results presented in Figure 6 show that the reflection coefficient for individual 
wavelengths varied significantly depending on the thickness of the defect layer (in the range from 0 
to 0.5), which was already observed in previous figures. Figure 6a shows that for the wavelength of 
625 nm, the total reflection occurred for d2 = 0, 0.5 p and p, while no reflection occurred for d2 = 0.25 p 
and 0.75 p. Similar changes occurred for other wavelengths, i.e., 615 and 635 nm, with their maximum 
and minimum values occurring for other thicknesses of the defect layer. More interesting results are 
presented in Figure 6b. They were obtained for a greater total thickness of the investigated optical 
system. In addition, in this case, for the wavelength 625 nm and d2 = 0.25 p, there was practically 
complete quenching of the selective reflection. However, for d2 = 0.75 p, the value of the reflection 
coefficient no longer reached zero. This effect, also for larger values of the d2 parameter (i.e., d2 = 1.25 
p), is clearly visible in Figure 5b. As the value of the thickness d2 increased, the values of the reflection 

Figure 5. Reflection spectra for different values of the thickness d2 of the defect layer (model 2): (a) d2
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It is known that in the case of CLCs without defects, the value of the reflection coefficient is almost
the same within the entire forbidden band λ in the range (nop, nep). Figure 6 shows the relationship
between the reflection coefficient for the wavelength λ = (no + ne)·p/2 ≈ 625 nm and the thickness of the
defect layer, for both model 1 and model 2. In addition, we also presented similar curves obtained for
other wavelengths, i.e., λ = no·p ≈ 615 nm and λ = ne·p ≈ 635 nm.

The simulation results presented in Figure 6 show that the reflection coefficient for individual
wavelengths varied significantly depending on the thickness of the defect layer (in the range from 0
to 0.5), which was already observed in previous figures. Figure 6a shows that for the wavelength of
625 nm, the total reflection occurred for d2 = 0, 0.5 p and p, while no reflection occurred for d2 = 0.25 p
and 0.75 p. Similar changes occurred for other wavelengths, i.e., 615 and 635 nm, with their maximum
and minimum values occurring for other thicknesses of the defect layer. More interesting results are
presented in Figure 6b. They were obtained for a greater total thickness of the investigated optical
system. In addition, in this case, for the wavelength 625 nm and d2 = 0.25 p, there was practically
complete quenching of the selective reflection. However, for d2 = 0.75 p, the value of the reflection
coefficient no longer reached zero. This effect, also for larger values of the d2 parameter (i.e., d2 = 1.25
p), is clearly visible in Figure 5b. As the value of the thickness d2 increased, the values of the reflection
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coefficient for λ = 615 and λ = 635 nm also increased. As a result, it can be stated that for the thicker
tested optical system and thicker defect layers, the selective reflection bandwidth was significantly
broadened without an undesired decrease in its amplitude.
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Figure 6. Reflection as a function of the thickness d2 of the defect layer obtained for different values of
the wavelength λ of the incident light: (a) model 1; (b) model 2. The curves interpolated based on the
chosen computed values of the reflection represented by markers.

As it has been already noted, the abovementioned numerical tests were obtained for normal
incidence of light. However, in our research, we also considered the oblique direction of the incident
light. The direction of the beam of obliquely incident light can be described by two angles (θ andφ), and
it was presented in detail in our previous papers [38,39]. Figure 7 presents color plots of the reflection
coefficient R for the light with the wavelength λ = 625 nm incident onto model 1 and for different
values of the thickness d2, whereas Figure 8 shows similar plots computed for model 2. Numerical
simulations presented in Figures 7 and 8 show that the reflection coefficient practically did not change
when the angle φ changed (especially for thicker layers of the investigated system (see Figure 8), while
the distribution of the reflection coefficient changes when the θ angle changes. However, for the θ
angle close to zero (almost perpendicular incidence of light), the reflection coefficient was practically
constant. Significant changes could be observed only for large values of the θ angle, i.e., around 80–90◦.
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Figure 7. Color plots of the reflection coefficient R (model 1) obtained for different values of the thickness
d2 of the defect layer: (a) d2 = 0; (b) d2 = 0.5 p; (c) d2 = 0.75 p; (d) d2 = 3 p.
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The above figures present the simulations obtained for symmetrical systems (d1 = d3). Here we
also examined the influence of the location of the defect layer inside the investigated CLC cell. To do
it, we compared previously tested model 2 (i.e., d1 = d3 = 20 p, further referred to as case A), with two
examples of the asymmetrical location of the defect layer, namely d1 = 10 p, d3 = 30 p (further referred
to as case B) and d1 = 30 p, d3 = 10 p (further referred as case C). Again, we considered the case of normal
incidence of light first. For comparison, the presented figures also show the case where there was no
defect layer (marked as “without DL”). The analysis of the results presented in Figure 9 leads to the
conclusion that in asymmetrical systems (i.e., case B and case C), the spectral curves differed slightly
from the curves obtained for the symmetrical system (case A). In addition, the influence of the defect
location in the reflection spectra for case B and case C was practically unobservable. Namely, we did
not find a significant difference in spectral characteristics between case B and case C.

We also calculated the reflectance distribution (color plots) for the oblique incident light for all
three cases (i.e., case A, case B, and case C). Color plots presenting these calculations in a graphical form
are depicted in Figure 10. The presented results (here calculated for d2 = 0.1 p) confirmed the previous
conclusions obtained on the basis of spectral curves and distributions of the reflection coefficient.
Practically, no differences in the reflection spectra were observed for case B and case C, which is clearly
shown in Figure 10d.

At the end of our research, we analyzed our optical system with a deformed director distribution
caused by an externally applied electric field. As it was mentioned in Section 3, from the point
of view of the optical properties of the examined system, the spatial distribution of the director
field is fundamentally important. Therefore, in the present study, we directly took into account the
different director distributions that corresponded to different amplitudes E of the electric field, without
considering material parameters of the examined system. This approach was sufficient for the planned
qualitative analysis.
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Figure 9. Reflection spectra (model 2) for different locations of the defect layer and different values of
the thickness d2: (a) d2 = 0.1 p; (b) d2 = 0.25 p; (c) d2 = 0.5 p; (d) d2 = 0.8 p.

Figure 11 presents the applied distributions of the director characterized by the tilt and twist
angles as functions of the coordinate z. For better clarity of the presented results, Figure 11b shows the
relative deformations of the angle, i.e., φc–φc0, in relation to the angle φc0 obtained for the case of the
undeformed director field. The presented curves correspond to different values of the amplitude E of
the applied electric field, where the following relation was preserved: E6 > E5 > E4 > E3 > E2 > E1 > E0

= 0. To increase the transparency of the obtained curves representing the director field, the results were
presented together with the curve obtained for the undeformed director field as a reference, i.e., for the
electric field E0 = 0 (plotted by the dashed black curve). As it can be seen, the curves obtained for E1,
E2, and E3 were characterized by a relatively low director field deformation, while the curves obtained
for E4, E5, and E6 were characterized by a relatively large director field deformation. Therefore, the
electric fields with the amplitudes E1, E2, and E3 can be regarded as low electric fields, whereas electric
fields with the amplitudes E4, E5, and E6 can be regarded as high electric fields.

For further analysis, we considered only the optical system marked as model 2. Figures 12–14
show the spectral reflectance curves obtained for normal incidence of light, when the director field
was deformed by an electric field with different amplitudes. The results shown in Figure 12 were
obtained for the system without a defect layer (d2 = 0), and the results depicted in Figure 13 were
obtained for d2 = 0.25 p, whereas Figure 14 presents the results calculated for d2 = 0.5 p. Moreover,
Figure 12a, Figure 13a, and Figure 14a correspond to the director field deformations obtained for the
low electric field (E1, E2, and E3), while Figure 12b, Figure 13b, and Figure 14b correspond to the
director field deformations obtained for the high electric field (E4, E5, and E6). The same results as
those depicted in Figures 12–14 are shown again in Figure 15. However, Figure 15 directly shows the
influence of different values of the thickness of the defect layer for a fixed director field, i.e., under the
given electric field.
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Figure 10. Color plots of the reflection coefficient (model 2) obtained for d2 = 0.1 p and different locations
of the defect layer: (a) case A; (b) case B; (c) case C. (d) Reflection as a function of the angle θ computed
for φ = 0 and different locations of the defect layer.
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Figure 13. Reflection spectra of model 2 with a defect layer d2 = 0.25 p calculated for different values of 
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Figure 14. Reflection spectra of model 2 with a defect layer d2 = 0.5 p calculated for different values of 
the amplitude of the external applied electric field: (a) low electric field with the amplitudes E1, E2, 
and E3; (b) high electric field with the amplitudes E4, E5, and E6. 

Figure 12. Reflection spectra of model 2 without the defect layer (d2 = 0) calculated for different values
of the amplitude of the external applied electric field: (a) low electric field with the amplitudes E1, E2,
and E3; (b) high electric field with the amplitudes E4, E5, and E6.

17



Photonics 2020, 7, 58

Photonics 2020, 7, x FOR PEER REVIEW 13 of 19 

 

 
(a) 

 
(b) 

Figure 12. Reflection spectra of model 2 without the defect layer (d2 = 0) calculated for different values 
of the amplitude of the external applied electric field: (a) low electric field with the amplitudes E1, E2, 
and E3; (b) high electric field with the amplitudes E4, E5, and E6. 

 
(a) 

 
(b) 

Figure 13. Reflection spectra of model 2 with a defect layer d2 = 0.25 p calculated for different values of 
the amplitude of the external applied electric field: (a) low electric field with the amplitudes E1, E2, 
and E3; (b) high electric field with the amplitudes E4, E5, and E6. 

 
(a) 

 
(b) 

Figure 14. Reflection spectra of model 2 with a defect layer d2 = 0.5 p calculated for different values of 
the amplitude of the external applied electric field: (a) low electric field with the amplitudes E1, E2, 
and E3; (b) high electric field with the amplitudes E4, E5, and E6. 

Figure 13. Reflection spectra of model 2 with a defect layer d2 = 0.25 p calculated for different values of
the amplitude of the external applied electric field: (a) low electric field with the amplitudes E1, E2, and
E3; (b) high electric field with the amplitudes E4, E5, and E6.
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In the case of the system without a defect layer, the application of a relatively low electric field
caused a dip in the spectral curve near the right edge of the bandgap (see Figure 12a). With the increase
in the amplitude of the electric field, the existing dip became more visible and shifted toward the
short-wave boundary of the bandwidth. As a result, the applied electric field gave a similar effect
to the introduction of a defect layer in the case of an undeformed director field of the CLC. What is
more, the position of this dip can be precisely tuned within the range of the bandgap that exists for
the undeformed director field. Similar conclusions can also be outlined when considering the results
presented in Figure 14a that correspond to the system with a defect layer equal to 0.5 p. For the system
with the defect layer thickness equal to 0.25 p, a dip in the spectral curve occurred in each presented
case (see Figure 13a). For an undeformed director field, this dip was observed in the middle of the
bandgap. The application of a low external electric field changed the position of this dip within the
bandgap. It is worth noting that the shift of this dip can be both in the direction of the long-wave
and the short-wave boundary of the bandwidth, depending on the amplitude of the applied electric
field. The observation allowed the change in position of this narrow range. For example, this property
can be useful when it is necessary to compensate the position of the dip due to the appearance of
undesired external stimuli, such as mechanical or thermal stresses, acting on the considered system.
In turn, the analysis of the results presented in Figure 12b, Figure 13b, Figure 14b clearly shows that in
a high electric field applied to the tested system with or without a defect layer, the system lost the
properties of the selective reflection and the defect modes. Finally, the analysis of the results presented
in Figure 15 led to similar conclusions. In particular, for a fixed value of the electric field, the spectral
curves were similar for both the system with no defect and the half-wavelength defect layer. In turn,
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the spectral curves obtained for the quarter-wavelength defect layer differed significantly from the
spectral curves obtained for the system without the defect and with the half-wavelength defect layer,
even if the applied electric field had the same value.Photonics 2020, 7, x FOR PEER REVIEW 14 of 19 
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The results of the present research may be of significant practical importance, since the considered
model of the optical system is often found in engineering applications. Namely, in real engineering
applications, CLCs are usually sandwiched between two parallel substrates coated with transparent
conductive electrode, and voltage is applied across the cell. The applications of such systems can
be greatly extended if the reflection can be electrically adjusted. This problem was considered in
previous papers. As an example, Yang et al. [46] developed a (polymer network/nematic liquid
crystal/chiral dopant) composite exhibiting the bandwidth of the selective reflection spectrum, which
is wider and narrower reversibly with increasing and decreasing temperature, respectively. Lu and
Chien [47] reported a method of fabricating single-layer color cholesteric liquid crystal displays from
a polymer-stabilized cholesteric liquid crystal, where the reflective wavelength can be electrically
switched to reflect blue or green from a cell initially reflecting the red color. Bailey et al. [48] investigated
the electrical tuning of negative dielectric anisotropy cholesteric liquid crystals under the influence
of AC and DC electric fields. They showed an electric effect with potential applications in tunable
optical filters, optical pressure/stress sensors, or tunable lasers. In recent years, the application of
polymer stabilization in CLCs provides a new dimension to achieve color tuning (for instance, see
paper [8] and references cited therein). In the abovementioned paper [8], the authors experimentally
investigated the broadening of the reflection band caused by an external electric field applied to
the CLC cell. They studied a variety of factors affecting the reflection band broadening of polymer
stabilized cholesteric liquid crystals, including the effect of moisture, the effect of alignment layer
thickness, the effect of ionic additives, the relation between reflection band broadening and impedance,
and the influence of morphology of the polymer network. As a result, by controlling these factors, they
observed a wide reflection band to cover the entire visible region under low voltages.
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The simulation results presented above concern the analysis of the CLC cell with a defect layer
inside and a director field deformed by an external applied electric field. In these studies, we assumed
that the spatial director’s field distribution could be easily changed by an electric field. In general,
studying the dynamic behavior of the considered cholesteric structures in an electric field is not an easy
task, and some theoretical aspects in this area can be found in paper [6]. It should also be emphasized
that the theoretical stability analysis of the orientation pattern of cholesteric liquid crystals both in
electric and magnetic fields has been considered for a few decades. For instance, the unstable behavior
of the planar texture between two conducting glass samples at voltages much below those needed
to unwind the cholesteric helix was noticed [49]. More intensively, the problem of obtaining a stable
and homogeneous uniform lying helix structure has been reported since the late eighties. However,
most recently, the developed cholesteric liquid crystal device with the uniform lying helix structure
shows stable and reversible characteristics with a short time response [50]. As a result, this enabled the
solving of the long-standing problem of stability and hysteresis particularly to meet the manufacturing
requirements dedicated to engineering applications.

The presented simulations regarding the appearance of similar defect modes agree with the related
theoretical, numerical, or experimental results presented in the literature [51,52], where amplitudes
and spectral positions can be elastically tuned. Moreover, our research leads to analogical conclusions
as in other references, where it has been demonstrated that the amplitude, the number, and the position
of the optical defect modes induced in the bandwidth depend on the thickness, the refractive index,
and the anisotropy of the defect layer [17,53–57]. The proposed combination of the study of the defect
modes caused by the defect layer inside and the tuning of the optical properties of the system by means
of an electric field extends the existing research found in the literature and increases the possibility of
its potential real applications.

5. Conclusions

First, we investigated the influence of an existing defect in the form of an anisotropic layer
sandwiched by CLC. Numerical tests were carried out for different thicknesses of the system, different
thicknesses of the defect layer, and different locations of this defect inside the investigated cell.
In addition, we also studied the influence of an external electric field applied to the considered optical
system that is important from a viewpoint of the technological aspects. Some interesting numerical
simulations were obtained, illustrated, and discussed. The results were presented in the form of
the reflection spectra for the normal incidence of light or color planar distributions of the reflection
coefficient calculated for the oblique incident light. We showed that a defect layer placed inside
CLC has a significant influence on the selective reflection phenomenon, and both the shape and the
bandwidth of the spectral curve can be tuned by a dopant defect layer. In particular, the results
obtained for model 2 showed that defect modes can have an extremely narrow spectral width (narrow
dip in the reflection spectrum or narrow peak in the transmission spectrum) on the order of a few Å.

The considered optical system serves as a model for more complex and realistic cholesteric liquid
crystal devices. The obtained numerical results give a new insight into the behavior of practical devices
based on the CLC with defect layers and additionally tuned by the external electric field. The analysis
presented here demonstrates that there is a significant benefit for the industry to be gained from
applying similar methods to models of liquid crystals in more general settings.

The research presented in this paper reflects current issues related to the new approach of modern
optics, in which optical properties are determined by geometric factors, including dopants. An example
of such a successful implementation is the investigated CLC cell with a defect inside. For instance,
such a defect layer with a controlled anisotropy can be created by introducing a layer of a nematic
liquid crystal, in which the orientation of the optical axis can be controlled electrically. In other cases,
the thickness of the defect layer can be adjusted by the change of the applied voltage. This anisotropic
defect provides an additional degree of freedom for tuning the defect modes. As a result, the analyzed
CLC with a defect layer can work as an optical diode, which transmits light in one direction and
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prevents its propagation in the opposite direction. Currently, such research goals seem justified in
engineering due to the expected conversion of electric signals to optical ones.

When it comes to using an external electric field in the considered system, the simplest operating
regime is to switch between two states by the sudden application or removal of an electric field. In this
way, in the absence of an external electric field, the analyzed system shows a selective reflection,
including defect modes resulting from the existing defect layers. By means of small changes in the
electric field, it is possible to precisely tune the optical properties of the system, which gives a similar
effect to introducing defect layers with different thicknesses. In turn, the application of a high electric
field causes the abovementioned optical properties to vanish.

In conclusion, in many technological applications, active tuning and switching of defect modes is
desired. By introducing defect layers and applying an external electric field, the propagation of light
can be precisely controlled through tailoring of the periodic dielectric structure of the CLC.
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Abstract: A shock wave is a mechanical high-pressure pulse that travels inside a medium with
a full width at half-maximum of a few nanoseconds that may be induced with a high-power
laser pulse. A piezo-resistive measurement method to determine the shock wave pressure has
been widely employed even though there is inner inaccuracy in the calibration process. We are
interested in developing a precise theoretical model of laser material processing for applications
in material sciences that includes the frequency dependence of the electronic post processing. We
show an approach to determine the correction factor to frequency response at a high frequency
of a piezo-resistive experimental setup and the results of the pressure measurements obtained in
this experimental setup. The theoretical and experimental work demonstrates the feasibility of
piezo-resistive methods to measure a laser-induced shock wave pressure in the nanosecond range.
The correction factor of the frequency dependence calibration allows the technique to be applied in
different shock wave experiments.

Keywords: shock wave; strain gauge; laser pulse; signal conditioner; laser shock processing (LSP);
laser shock wave (LSW)

1. Introduction

A laser shock wave (LSW) is a mechanical pressure wave in a gigapascal (GPa) range
with a full width at half-maximum (FWHM) in the order of nanoseconds (ns), induced
by a high-power-density laser pulse [1–4]. An LSW propagates through a medium at
a velocity greater than the sound speed (Mach > 1). The medium might be a solid, a
liquid, or a gas. Some physical variables, including pressure, temperature, and particle
velocity, to list a few, change discontinuously as the LSW propagates [5]. While the
LSW propagates in a solid medium, some material characteristics improve through the
relaxation of the compressive residual stresses [6].

Measurements of the LSW pressure inside a solid under controlled conditions are
essential to regulate the optimal processing conditions (no ringing, for example) that
result in the highest continuous pressure shock event. These material treatment applica-
tions include applied material science for high-performance metals, as in the aerospace,
automotive, health, and defense industries, among others [7,8].

Several successful techniques have been proposed to measure the pressure induced
by the LSW in solids. They include some piezoelectric methods [4,9], techniques that
incorporate optical fibers [10,11], and piezo-resistive methods [12,13]. Such techniques
developed in the previous decades presented some technological limitations. Piezoelectric
methods have a nonlinearity response that needs to be considered. Fiber optic methods
have a limited sensitivity and pressure range, restricting low-pressure measurements.
Among the techniques mentioned, the piezo-resistive method has demonstrated, with
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excellent results, its outstanding features including a wide detection range, linearity, and
temporal response in the nanosecond range [14].

In piezo-resistive methods, the signal processing system has two stages: a Wheat-
stone bridge (WB) and an instrumentation amplifier (IA). A WB is used to provide a
sensor linearization if the sensor requires it and impedance coupling to the second stage.
Additionally, the WB can be calibrated as a null method and is coupled to the IA. In the
second stage, an IA is used to set the gain and reduce the common-mode signals. This
gain is frequency-dependent [15], and it decreases with increasing frequency. In previous
work [16], we observe that this relation of the gain with respect to the frequency produces
an error in the LSW pressure measurement accuracy.

In this work, we propose an approach to determine a correction factor of the mea-
surement system frequency response at a high frequency of a piezo-resistive experimental
setup. In addition, we present the results of the shock wave pressure measurements
obtained in this experimental setup when applying the correction factor. According to
this mathematical model, we may adjust the critical parameters required for the LSW
optimized operation, including the minimization of energy use. Our experimental results
demonstrate that we may use a piezo-resistive method to measure a laser-induced shock
wave pressure in the nanosecond range.

The Principle of the Shock Wave Induction

Figure 1 presents the concept of induction of the LSW generation in solids. A lens,
covered with an antireflection coating, focuses a high-power laser beam on a small surface
sample area of 0.3 cm2. Most of the laser beam’s energy is absorbed in the sample,
subject to its specific optical material properties, as absorption and reflectivity at the laser
wavelength.

Figure 1. The physical principle of the laser shock wave induction. A high-power-density laser
beam focused on the surface of a solid sample generates plasma. A high amplitude pressure wave
with the magnitude of several GPa and a full width at half-maximum of a few nanoseconds is
induced in the sample. It propagates from the sample’s front surface to the backside while the
plasma transfers its energy to the sample in an adiabatic process.

A thin layer of the sample surface is sublimated due to a rapid and large increase
in the surface layer’s temperature to about 10,000 K [17]. As described by Z. Zhang
et al. [18], this process is separated into three stages: stage I, the absorption of laser pulse;
stage II, the formation and expansion of laser-induced plasma; and stage III, the plastic
deformation on the target surface due to the laser shock loading. We will focus on stages
I and II, since stage III is beyond our study’s scope.
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Stage I begins after the laser pulse is focused on the solid surface. Electrons in-
stantaneously absorb the photons’ energy on the Fermi surface. This instant energy
absorption thermalizes the electrons through high temperatures in the picosecond range.
Thus, vibration on the lattice begins to transmit their energy through phonons’ emissions.
This energy exchange tends to thermal equilibrium after decades of picoseconds and is
described by the two-temperature model of the thermal conservation of energy expressed
in terms of the electron temperature diffusion:

Ce
∂Te

∂t
= ∇·(κe∇Te)− Γei(Te − Ti)−

(
∂Ee

∂V
+ pe

)
∂V
∂t

+ RAbs − REmis + S, (1)

Ci
∂Ti
∂t

= ∇·(κi∇Ti)− Γei(Te − Ti)−
(

∂Ei
∂V

+ pi

)
∂V
∂t
− q

∂V
∂t

, (2)

where the subscript e and i correspond to electrons and ions, respectively; Ce,i are the
heat capacities per unit volume; Te,i are the temperature; Ee,i are specific internal energies;

Γei = CeZ2 ln Λei

(
A2VT3/2

e

)
is the electron-phonon coupling constant, which describes

the energy exchange rate between electrons and ions where Z is the charge index, A is the
relative atomic mass, and Λei is the Coulomb term for electron–ion collisions; pe,i are the
energy density; q is the Von-Neumann artificial viscosity; and V is the specific volume.
Therefore, κe,i are the thermal conductivities, which are described by

κe,i = 20
(

2
π

)3/2 (kBTe,i)
5/2kBτe,i

m1/2
e e4Z ln Λei,ii

, (3)

where kB is the Boltzmann constant, me is the electron mass, e is the electron charge, and
Λii is the Coulomb term for ion–ion collisions, and τi = 1 and τe = 0.43Z/(3.44 + Z + 0.26
ln Z). RAbs and REmis are radiation absorption and emission terms, which are given by

RAbs = c
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∑
g

(
σPA

g ER,g

)
, (4)
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8π(kBTe)
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c2h3
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∑
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g
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xg

x3

ex + 1
dx
)

, (5)

where g is the frequency group index, NF is the number of frequency groups, c is the
speed of light, ER,g is the radiation energy density for group g, σPA

g and σPE
g are Planck

mean opacities for emission and absorption, respectively, and x = }ω/kBTe where h is
Planck’s constant, and ω is the angular frequency. Finally, S is the laser source in Equation
(1), described by

S = α(1− R)I(t)
(w0

w

)2
e−2r2/w2

e−αz, (6)

where α = 1/δ is the absorption coefficient of the sample, which is determined by the
skin-depth δ = 1/

√
πµ f σ0 of the electromagnetic wave penetrating into the solid, where

µ is the magnetic permeability, f is the frequency of the wave, and σ0 is the electrical
conductivity; R is the reflectivity of the sample surface; I(t) is the laser intensity as a
function of time; w0 is the radius at the beam waist; w is the radius of the beam spot the
size on the metal surface; and z is the depth measured perpendicular to the surface of the
target. Equation (6) relates the intensity of the laser and the solid sample’s optomechanical
properties for the laser heating.

In stage II, even if the laser pulse’s fluence is near tens of J/cm2, it is not sufficiently
high to ionize all material. The ionization observed at the end of the stage I is due to
collisions between fast electrons, multiphoton processes, and an ionization field near the
laser focus area. This ionization is not symmetrical due to the collisions’ incident, and
reflected angles are not equal under an electromagnetic field. This asymmetry leads to
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the rupture of the ionization field. However, in every collision between fast electrons and
ions, there is energy gain in the form of the probability of the number of ionizations:

(
dEe

dt

)

gain
=

(
8kB
π

)1/2 ne2 I
m3/2ε0cω2 σT1/2

e , (7)

where σ is the collision cross-section, n is the number density, and ε0 is the vacuum
permeability. If this energy gained from collisions is greater than the sum of the mean
ionization energy or other energy dissipation components, an avalanche process induces
a plasma breakdown. The plasma breakdown is described with a macroscopic two-fluid
Vlasov model assuming the Maxwell-Boltzmann conditions to obtain the velocity moment,
density, and pressure.
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∂
→
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→
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→
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→
v

dt
= ∑

α

Cσα( fσ), (8)

where the distribution function is denoted by f(x,v,t) to characterize the instantaneous
configuration of a large number of particles, such as the density of particles at each point
in the phase spatial. If a one-dimensional (1D) approach is used, the conservation of mass
equation with Lagrangian coordinates can be written as

∂V
∂t

= V
∂u
∂r

=
∂u

∂m0
, (9)

where V = 1/ρ is the specific volume, u is the velocity fluid, and m0 is the Lagrangian mass
variable. This mass density can be obtained by Equation (8) if the results are adapted to
the number density of electrons and ions. If we assumed an isotropic system, the scalar
pressure Pσ is obtained by multiplying Equation (8) with velocity and integrating it over
the velocity space, taking into account the temporal evolution of the mean fluid velocity
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−∇Pσ −

→
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where mσ is the mass of the particle, qσ is the particle charge, and Rσα is the net frictional
drag force due to collisions of species σ with species α. Furthermore, the momentum
conservation equation is

∂u
∂t

= −1
ρ

∂

∂r
(P + q) = − ∂

∂m0
(P + q) +

.
uTN , (11)

P = Pe + Pi + Pr is the total fluid pressure due to electrons, ions, and radiations;
q is the von Neumann artificial viscosity; and uTN is the velocity change momentum
exchange from the slowing down of fast particles. If the Vlasov equation of Equation (8)
is multiplied with a factor of mσv2/2 and integrated over the N-dimensional velocity
space, a so-called Vlasov second moment is defined as
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)

Eσα

, (12)

Equations (1), (2), (6), (10), and (12) describe the laser–matter interaction involved
in the induction of LSW. The other steps in obtaining the equations that explain all
procedures of laser–matter–plasma interaction are described in [18].

As a remark, the amount of the laser power needed to heat a thin surface layer of the
sample to the point of sublimation depends on the full width at half-maximum (FWHM)
of the laser pulse, the irradiated spot area, and the relative area of the irradiation with
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respect to the sample linear dimension [19]. The large amount of the energy absorbed
in the thin surface layer transforms the state of matter into plasma. Consequently, the
plasma transfers its energy to the solid in an adiabatic process. This process induces a
mechanical, high-amplitude pressure wave of several GPa inside the sample with an
FWHM of a few nanoseconds. The pressure wave travels through the material from
the front surface called the impact zone, to the back surface. We determined that the
FWHM of the LSW is about 50 ns in our experiment. This parameter was determined at a
frequency of 20 MHz. We consider that the LSW initiates a fast change in pressure (~25
ns), and it achieves peak pressure at a time of about one-half of this interval (13 ns).

A dielectric layer, referred to as a confining medium, is used to confine the plasma,
delay its expansion, and increase the LSW pressure. The confining medium may be
chosen as air, water, or glass, to name a few [20]. In many cases, water is preferred
due to practical industrial considerations. It is coupled perfectly to the geometry. It is
replaced easily after a pulse, has a low cost, and produces acceptable confinement. Two
arrangements of confining plasma with water are possible: immersion and flow. In the
immersion confinement, the confining medium surrounds the sample, assuring a single
medium between the sample and the incident laser pulse. However, the immersion type
generates a collapsing bubble that induces a secondary shock wave in the sample. That
problem is overcome using water that absorbs a fraction of the laser pulse energy. Thus,
the flow type, or so-called water jet, does not have this disadvantage. The water layer is
only a few millimeters thick. Therefore, the water flow is considered laminar, avoiding
the creation of the cavitation bubble.

2. Materials and Methods

The experimental procedure to obtain LSW pressure within solids using the piezo-
resistive detection method and correction factor consists of two parts: First, we measured
the pressure of the LSW. Then, we found the frequency response of the second stage
to determine the correction factor and the attenuation of the gain. We used two plate
samples to induce an LSW and perform the requisite pressure measurements; one was a 5
mm aluminum 6061-T6, and the other was a 1.3 mm aluminum 6063-T5. The mechanical
properties for both samples are shown in Table 1. In this study, we chose aluminum
blocks without absorbent coating [21–23] since they are used in many applications where
lightweight metals are required (for example, in the aerospace industry). However, any
other material, titanium or iron, may be used in the future, applying our proposed
method.

Table 1. Aluminum alloy mechanical properties.

Aluminum
Alloy

Tensile
Strength

Elastic
Limit Elongation Young’s

Modulus
Fatigue

Strength
Thermal

Shock Re-
sistanceMPa MPa % GPa MPa

6061-T6 290 241 10 69 96 14
6063-T5 160 97 11 68 70 8

2.1. Experimental Setup

Figure 2 shows the experimental setup’s typical schematic layout to induce an LSW
in a solid sample. The power source is a Q-switched (Quantel Brilliant B Nd:YAG laser)
with a wavelength of 1064 nm and a spot diameter of about 10 mm. It is operated in a
single pulse mode, for the duration of 6 ns, with an energy density equal to 0.77 J cm−2.
These settings of the laser power source are typical for laser shock processing (LSP). A
high-reflectivity, dielectric-coated planar mirror DM turns the beam direction for compact
layout and decreases back-reflection into the laser cavity [24]. A biconvex lens L covered
with an antireflection coating, a focal length of fL = 1 m, and a transmission of about
96% is used to focus the laser beam onto a spot diameter of about 1.2 mm on the sample
surface. The local fluence on the laser spot is 68.08 J cm−2. A fast silicon photodiode
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(Thorlabs DET10A) is connected to trigger the oscilloscope. This photodiode has a spectral
responsivity interval of 200–1100 nm and a 1 ns rise time. A water flow (in blue) confines
the medium.

Figure 2. Experimental setup to induce a shock wave in a solid (aluminum, in our case). A single pulse from the Nd:YAG
high power laser with λ = 1064 nm, an energy density of 0.77 J cm−2, 6 ns pulse duration, and a spot diameter of 10 mm is
focused on the sample surface with a bi-convex lens L covered with an antireflection coating to decrease a spot diameter to
about 1.2 mm. A manganin piezo-resistive sensor is attached to the backside of the sample. The output signal from the
sensor is connected to a signal conditioning system SC (WB, IA and a high-pass filter).

We measured the pressure induced by the shock wave through embedding a manganin piezo-
resistive sensor (VISHAY LM-SS-125CH-048) in the back of the sample probe at a distance d = 3 mm
below the laser spot, as shown in Figure 3. This distance corresponds to the length between the center
and the boundary of the sensor active region. The sensor is attached by a thin film of bond M-Bond
200 (cyanoacrylate) for pressure gauges. This film is smaller (<2 µm) than the wavelength of the shock
wave (320 µm for Al [25]), and its effects on the shockwave propagation may be negligible. Further,
this alloy of the sensor has a quasi-linear response for wide pressure ranges, as shown by Duan Z.
et al. [26]. Its output signal is connected to a quarter Wheatstone bridge transducer. Then, the signal
is conditioned by an IA with a gain G = 670. The output signal is filtered with a first-order passive
high-pass filter, with a cut-on frequency of 300 kHz to reduce the 1/f noise. The detector output signal
is exhibited in an oscilloscope (Tektronix TDS 7054) that measures data with a 500 MHz bandwidth,
time-gated at 2 GS/s and within a time window of 1 µs. Data is recorded for further processing on a PC.

We used a quarter Wheatstone bridge as a conditioning piezo-resistive sensor. The resistance of
the sensing element (in our experiment, manganin) is denoted by RGauge = RxNOM + ∆RGauge, where
RxNOM = 48 Ω is the nominal resistance with no disturbance and ∆RGauge = 0.1× 106 × P× SS ×
RxNOM is the resistance change due to a shock wave transit (the steady-state of the sensor is ∆RGauge

6= 0), where P is the shock wave pressure in [Bar] (1 Bar = 100×103 Pa) and SS is sensor sensitivity in
[ΩΩ−1(kPa)−1]. Subsequently, an instrumentation amplifier (IA) is connected to the WB terminals
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to reduce the two inputs’ common-mode signals. The output voltage Vout of the IA is related to the
pressure P in terms of sensitivity Ss and gain G(f) of the measurement system:

P(G( f ), Vout) = 0.1× 106[G( f )SSRxNOM]−1
[(

R3(R2α + β)

R1α− β

)
− RxNOM

]
, (13)

where α = GVS and β = Vout(R1 + R2). The gain of the measurement system decreases with frequency.
Thus, an attenuation factor G(f) is included for the gain explicitly in the mathematical model. Its
frequency response is experimentally measured in the following subsections. Appendix A shows the
electronic details of the experiment and the mathematical manipulation to obtain Equation (13).

Figure 3. The manganin piezo-resistive sensor is embedded in the back of the solid sample. It is placed 3 mm
below the impact zone, between the center and the active region boundary, at the middle of the sample.

2.2. Frequency Dependence Correction

The experimental setup to determine the correction factor G(f) of the frequency dependence is
exhibited in Figure 4. This correction factor is used to accurately determine the pressure signal in
Equation (13). A sweep generator (Rode & Schwarz SWM05, 10–18,000 MHz) produces a sinusoidal
signal that increases its frequency in a time window of 30 seconds, with an amplitude of 448 mV
peak-to-peak. This sweep generator is used as the signal source to obtain a Bode diagram of the
measurement system. The initial and the final window frequency of the signal source are 10 MHz and
30 MHz (20 MHz bandwidth), respectively. The output signal of the measurement system is recorded
with a spectrum analyzer (HP8593A), with a 9–26.5 GHz bandwidth, a span bandwidth of 20 MHz, and
the center frequency at 30 MHz. A Tektronix TDS 2024B oscilloscope is connected with a temporal base
to observe the sweep signal. A Faraday cage with a cut-off frequency of 60 GHz is set all around the
measurement system to minimize external noise and electrical interference. A cooling system has been
implemented to reduce the thermal (Johnson) noise. The electrical characteristics of the measurement
system are listed in Table 2.

Table 2. Electrical characteristics of the measurement system.

IA Voltage Source WB Voltage Source Output Impedance Current Consumption

[Vdc] [Vdc] [Ω] [mA]

±4 10 50 205
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Figure 4. Functional pictographic diagram of the experimental setup to measure the system frequency response. A
sweep generator produces a variable frequency sinusoidal signal probe to use as the input signal. A spectrum
analyzer is connected to the output of the measurement system to find the frequency response curve, including its
associated gain attenuation function.

3. Results and Discussions
3.1. Frequency Dependence Correction

The Bode diagram of the pressure measurement system is displayed in Figure 5a to determine the
correction factor. The vertical axis corresponds to the gain of the measurement system with respect to
the frequency. The usual response of the LSW in the experimental setup is expected in the frequency
range of 10 MHz to 50 MHz. The gain decreases with frequency and may be approximately described
as a cubic curve. Examining Figure 5a, we can read that it is about −27 dB at 20 MHz, corresponding to
a correction factor G(f) = 0.0006. Dots represent a cubic polynomial fit, and a fourth-degree polynomial
fit is shown with dashes, G(f)1 and G(f)2. Their corresponding functions, with frequency measured in
MHz, are as follows:

G( f )1 = −1.3 f 3 + 7.5× 10−3 f 2 − 0.66 f − 17, (14)

G( f )2 = −6.4× 10−6 f 4 + 0.76× 10−3 f 3 − 0.025 f 2 − 0.12 f − 20. (15)

Figure 5. (a) Bode diagram of the frequency response of the pressure measurement system. Two polynomial fits
were used to obtain a mathematical model for the frequency correction factor curve, a cubic and a quartic one. (b)
The relative error of fourth- and third-degree polynomial fits. The fourth-order polynomial fit has a lower relative
error than the cubic; however, the improvement is relatively small.
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The relative error for each gain function is graphed in Figure 5b. We summarize, according to
errors obtained in the polynomial fits, the fourth polynomial order fit is used in the mathematical
model of the correction factor curve.

3.2. Shock Wave Pressure

We measured the parameters describing the behavior of the shock wave pressure in our experi-
mental setup. The shock wave pressure was calculated using Equation (13) for two aluminum samples:
1.3-mm thick Al 6063-T5 and 5-mm thick Al 6061-T6. Figure 6 shows the shock wave pressure in both
Al 6061-T6 5-mm thick slab (gray) and Al 6063-T5 1.3-mm thick slab (black) for a 1-µs time interval
after the irradiation pulse.

Figure 6. Shock wave pressure profile in both Al 6061-T6 5-mm thick (gray) and Al 6063-T5 1.3-mm thick (black)
in a 1 µs time interval. It shows the two first pressure peaks. The second pressure peak represents one cycle,
corresponding to the shock wave’s travel from a sample rear surface to the sample front side. Peak pressure for the
1.3-mm thick sample is 3.8 GPa, and the 5-mm thick sample is 1.68 GPa. Similar profile tendencies are observed
between the highest consecutive peaks.

The shock wave pressure in Al 6063-T5 is 3.8 GPa, and for Al 6061-T6 it is 1.68 GPa. The pressure
peak recorded for the Al 6063-T5 sample is about two-times higher than that of the four-times thicker
Al 6061-T6 sample. A higher amount of energy is dissipated after the shock wave is transmitted into
a thicker slab of material, producing a decreased peak amplitude. This is interpreted as the whole
block reacting to the shock imposed by the thermal impulse. The pressure difference between samples
is due to the shock wave traveling a longer distance on the 5-mm thick specimen than the 1.3-mm
thick specimen. In this more extended route, the shock wave undergoes a rapid pressure amplitude
decrement due to dissipation in the form of heat. Moreover, in the 5 mm sample, the thermal shock
resistance (shown in Table 1) causes a more noticeable pressure difference. The pressure difference does
not have a linear relationship with the material thickness due to nonlinear shock wave propagation
inside the medium. This is also in agreement with the results reported by H. Hu et al. [27].

Figure 6 presents a similar profile for the first and the second pressure peaks and an approximate
mirror profile for the first compression peak. We refer to the positive peak as a pressure peak, and a
negative peak is a compression peak. The difference between a pressure peak and a compression peak
is their trajectories. We consider pressure as the wave traveling from the induction surface towards the
sensor and compression as the wave traveling from the sensor towards the induction surface. The time
elapsed between the first pressure peak at 140 ns and the second pressure peak at 620 ns for Al 6063-T5
sample of 480 ns is significantly lower than the time difference for Al 6061-T6 of 520 ns (200 ns, 720 ns).
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We ascribe it to different slab thicknesses. The shock wave takes longer to reach the rear surface for the
second time in Al 6061-T6 as compared to that in Al 6063-T5. The shock wave period is about 50 ns. In
making this assessment, we consider the onset of the abrupt increase in pressure after a steady state.

We show the pressure signals displaced along the time scale to the onset of the first pressure pulse
in Figure 7. The time delay between the beginning of the first pressure peak and the beginning of
the first pressure valley for the 1.3-mm thick sample is 348 ns, and for the 5 mm sample, it is 365 ns.
This is a time difference of 17 ns or 5% (negligible) between two samples. The time delay between
the beginning of the first pressure valley and the beginning of the second top pressure peak is 136 ns
for a 1.3-mm thick sample and 156 ns for a 5 mm sample. This is a time difference of 20 ns between
two samples. Analyzing the beginning of the second pressure peak in samples, we can appreciate
a different initial time. This difference in time is about 44 ns. These three time differences indicate
a general increase in times between complete shock wave reflections cycles in the 5 mm sample to
those in the 1.3 mm sample; that is, the shock wave propagation times increase between each reflection
from the rear surface to the front surface. This difference in time arises because the aluminum slabs
have different chemical compositions. The specimen Al 6061-T6 has an improved elasto-mechanical
property and thermal shock resistance compared to those of aluminum 6063-T5, as shown in Table 1.
This enhanced composition produces more shock wave dissipation, exhibited as a signal deceleration.

Figure 7. The peak pressure signals are displaced versus time from the beginning of the first pressure pulse. The
difference in time between both samples, marked as vertical lines, at the beginning of the first pressure peak and
origin of the first compression peak is 17 ns. At the beginning of the first compression peak and the beginning of
the second pressure peak, the delay time is 20 ns. The difference between the beginning of the second pressure
peak between both samples is 44 ns.

4. Conclusions

We demonstrate the signal-processing stages effects on the measurement quality, and its precision
needs to be considered to measure the LSW pressure with a piezo-resistive method. We have shown
that the manganin-based piezo-resistive method may be used to measure pressure in nanoseconds
with fast response time, high sensitivity, linearity, and low cost.
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We measured the pressure in two different aluminum alloy samples in thickness and composition,
obtaining high-accuracy results. Energy dissipation and propagation of the shock wave exhibit a
nonlinear relation to material thickness. Similarly, the time increase between complete reflection cycles
in both samples has not indicated a linear relationship to the material thickness increases.

We presented and characterized a novel method to determine the frequency correction factor of
the gain due to frequency dependence of a piezo-resistive measurement system for laser shock wave
pressure measurements in nanoseconds, within 10 to 50 MHz, corresponding to a shock of 20 ns to
100 ns. We custom-designed the signal processing system to handle such rapid events, obtaining its
correction factor curve.

We expanded the application of the piezo-resistive method to the laser-induced pressure mea-
surement using a manganin sensor and a custom-designed signal processing system. This allows a
systematic performance comparison for different frequencies, not only for the laser induced shock, but
also for other shock wave phenomena.
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Appendix A

We used a quarter Wheatstone bridge (WB) for our experiment, as exhibited in Figure A1. This
electronic, passive-component device is used as a conditioning piezo-resistive sensor. The resistance
of the sensing element (in our experiment, manganin) is denoted RGauge. The voltage VCD, called the
differential voltage, measured between terminals C and D, is different from zero as the pressure wave
travels through the sensor, generated upon a change in sensor resistance.

Figure A1. The Wheatstone bridge is an electronic, passive-component, null-detection sensor incorporated into the
piezo-resistive sensors. The components R1, R2, R3 are fixed-value resistors. The RGauge represents the manganin
as the piezo-resistive gauge element. The incremental change in resistance of the piezo-resistive sensor due to the
creation of the shock wave yields a differential voltage increase between points C and D.
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The voltage VCD of the bridge is obtained analytically using the Thevenin’s theorem. The resistors
R1, R2, and R3 are selected in such a way to linearize the sensor responsivity. Linearity of the bridge
is achieved by decreasing sensitivity with appropriated values of R1/R2 and R3/RGauge [16]. The WB
resistances are R1 = 470 kΩ, R2 = 10 kΩ, R3 = 2.256 kΩ, and RGauge = 48 Ω (null detection). These
values yield a ratio of 47 for R1/R2 and R3/RGauge relationships. The increase in voltage VCD may be
related to ∆RGauge resistance.

VCD = VS

(
R1

R1 + R2
− R3

R3 + RGauge

)
, (A1)

where VS is WB voltage source and RGauge = RxNOM + ∆RGauge is the resistance change. RxNOM = 48 Ω
is the nominal resistance. If a shock wave disturbs the steady-state of the sensor (∆RGauge 6= 0), the
resistance change ∆RGauge is defined as follows:

∆RGauge = 0.1× 106 × P× SS × RxNOM, (A2)

here, P is pressure in [Bar] (1 Bar = 100×103 Pa) and SS is sensor sensitivity in [ΩΩ−1(kPa)−1]. Subse-
quently, an instrumentation amplifier (IA), shown in Figure A2, is connected to the WB terminals C and
D. Further signal processing and conditioning results in noise reduction and signal magnification. The
instrumentation amplifier reduces common-mode signals of the two inputs. It has a gain obtained by G
= 1 + (2R6/RGain). The output voltage Vout corresponds to the differential voltage of the Wheatstone
bridge VCD multiplied by gain G

Vout = ∆VCD × G. (A3)

Solving for pressure P, we substitute Equation (A1), and Equation (A2) into Equation (A3), then
we obtain pressure P in terms of sensitivity SS of the measurement system, output voltage Vout, and
system gain G:

P(G( f ), Vout) = 0.1× 106[G( f )SSRxNOM]−1
[(

R3(R2α + β)

R1α− β

)
− RxNOM

]
, (A4)

here α = GVS and β = Vout(R1 + R2) + R2. The total gain of the measurement system decreases with
frequency. Thus, an attenuation factor G(f) is included for the gain explicitly in the mathematical model.

Figure A2. An instrumentation amplifier is used to subtract sensor signal, reject common mode voltage signals,
and amplify the signal. A three-operational amplifier topology is implemented to obtain experimentally measured
pressure data.
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Abstract: Precision laser micromachining plays an important role in the biomedical, electronics, and
material processing industries. During laser drilling, precision depth detection with micrometer-
level resolution is required, particularly with blind-hole or heterogeneous structures. We present an
optical detection system utilizing an optical confocal structure, experimentally confirmed to achieve
a >95% accuracy for micron-diameter holes that are tens-of-microns deep. This system can be easily
integrated into commercial laser micromachining processes, and can be employed in laser drilling
and three-dimensional active-feedback laser printing.

Keywords: laser machining; depth measurement; confocal structure

1. Introduction

Precision laser micromachining plays a key role in the biomedical, electronics, and
material processing industries, providing high-precision control of drilling depth for
blind holes and heterogeneous structures. Q-switched lasers, which are also known as
giant pulse lasers, can deliver giant pulses for use in laser machining, with their ablation
rate during drilling decreasing with hole depth [1]. The drilling rate is highly nonlinear
with depth and machining time, due to a number of effects involving the laser drilling
process, including laser defocusing, the production of laser-induced plasmas, and varying
material specifications. Several inline and repeatable methods designed for real-time
monitoring or in-situ measurements of the laser ablation depth have been reported but
continue to have limitations. Currently, the standard industrial process is to adopt a
trial-and-error approach to determine laser machining curves for each sample, which
outline the drilling depth over time under specific laser conditions. However, during laser
drilling, machining conditions may be affected by unpredicted circumstances, such as
laser power decay, clearance of the focusing system, optical misalignments resulting from
mechanical vibrations, and human action. High throughput and quality assurance are
required during offline, high-sampling-rate inspections, and are, therefore, costly. Indeed,
many techniques for monitoring of laser ablation depth in real-time have been reported.

Optodynamical methods for monitoring laser micro-drilling have been proposed and
developed by Yeack et al. [2]. One can verify that laser drilling occurs by simultaneously
detecting the laser-induced ultrasonic waves in a workpiece and in its surrounding air
caused by ablation [3]. Such methods can directly measure the hole depth using piezo
electric pressure sensors [4] or a laser beam deflection probe (LBDP) [5] that measures the
time-of-flight of the shock resulting from laser ablation. Use of a LBDP is implemented
experimentally by means of a digital micrographic system that enables the acquisition
of images of the plasma plume and the hole cross-section during a drilling sequence.
Optodynamic techniques have been applied to determining ablation depth in situations
where the time-of-flight of the acoustic shock wave originating from a pulse can be de-
tected using piezoelectric or interferometric techniques as it exits the rear of a material.
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This approach is easy to set up and can be integrated with commercial laser machin-
ing systems. However, one challenge in using this method is that workpieces may be
heterogeneously structured. A technique that uses open piezoelectric acoustic sensors
placed above the workpiece has been developed, but the characteristics of the acoustic
pulse are dependent on the material properties [5] making it unsuitable for industrial
situations where differing or non-homogeneous materials are common. Another approach
to the real-time monitoring of laser processing uses the current induced by an electric
field applied to a laser-produced plasma [6]. The resulting design for a new electrode
circuit has allowed for an increased probing distance between the electrodes and the
processed sample surface, thereby avoiding the direct contact of the electrodes with the
plasmas and reducing sputtering. Papazoglou and coworkers [7] demonstrated the depth-
resolved analysis of multi-layer structures is carried out by employing laser-induced
breakdown spectroscopy (LIBS) and white light interferometry, which enables accurate
in-situ depth monitoring. On-line LIBS determination of magnesium coating thickness [8]
was performed by Ruiz et al. Several optical distance-measurement techniques have been
proposed and implemented, with nanometer precision and the multi-millimeter depth
ranges required in laser micro-hole drilling. Direct distance measurement techniques
utilizing an autofocusing probe using two cylindrical lenses for profile measurement [9]
or pure interferometric techniques [10,11] have been used to measure the distances re-
quired with great accuracy, and could be suitable for ablation depth measurement. Direct
interferometric techniques have been used to measure micron and sub-micron distances
in several applications [9–11], but such techniques rely on high-intensity, directly-reflected
light to discern the interference fringes. This limitation has been overcome in optical
coherent tomography [12], where a coherent confocal imaging system is used to determine
distance [13]. However, this method lacks simplicity and can be difficult to integrate into
an industrial setting. All optical techniques are of value in their particular applications,
but are inadequately flexible when applied to detecting laser-generated micron-scale hole
depths in difficult geometries.

In this work, we present an approach for the inline, precise monitoring of laser
ablation depth as applied to blind-hole laser drilling for single and multilayer bulk
heterogeneous structures, and for different materials, an alloy and a silicon wafer. The
detection method was based on the reflection of the probe beams from the bottom surfaces
of the drilled holes. Using theoretical modeling and practical use cases, this method can
be implemented to control error to within 5% for 100-µm hole depths.

2. Materials and Methods

The principle of confocal structure was described by Marvin Minsky in 1957 [14] and
has been applied to many sophisticated laser-scanning systems designed for a range of
biomedical applications. Major improvements to the instrumentation photon efficiency,
coupled with the development of novel fluorescent reporters, have enabled the multi-
dimensional imaging of living cells and tissues [15]. Confocal microscopy uses point
illumination and a pinhole in an optically conjugate plane in front of the detector to
filter out defocused image information. Only light emanating from the focal plane is
detected, allowing image quality to be far superior to that of wide-field fluorescence
images. More-over, the thickness of the focal plane is inversely proportional to the square
of the numerical aperture of the objective lens used, and is dependent on the optical
properties of the specimen and ambient index of refraction [12]. This model of confocal
microscopy applies to the confocal structure of laser ablation depth detection. A confocal
microscope only receives the signal reflected back from the focal plane of the objective in
a specimen, a property of confocal systems that is implemented here. By scanning the
pinhole, the position of maximum signal intensity can be found that corresponds to the
depth of a hole′s bottom surface being drilled during laser machining.

The method proposed here uses a probe laser beam to illuminate the workpiece
with a confocal structure. The experimental scheme is shown in Figure 1. The confocal
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optical system was integrated with a commercial laser machining station. The machining
laser was a 1064-nm Q-switched Nd:YVO4 laser. The probe laser was a continuous
wave 50-mW 532-nm frequency-doubling Nd:YVO4 laser. Its beam size was about 1 mm
without focusing lens. The pulse repetition frequency was tunable from 1 to 120 kHz. A
set of half-wave plates (HWP) and a polarizer (PL) were placed after the machining and
probe lasers in order to allow for output power adjustment. A 45◦ dichroic mirror (DM)
was employed to combine the beams from the machining and probe lasers.
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The probe beam was reflected by a 50/50 beam splitter (BS) and a DM, focused on
the workpiece by Lens 1 (L1), and then reflected back from the bottom surface of the
ablated area of the workpiece where the beam was gathered by the same focusing lens.
The quasi-collimated gathered light was then reflected by a DM, passed through a BS, and
focused on a 10-µm-diameter pinhole by another focusing lens (L2). The diffracted light
after the pinhole was focused on a photo detector (PD) by a focusing lens (L3). The signals
from the PD were sent to the oscilloscope connected to a computer. The pinhole and
focusing lens (L3) were arranged on a linear motion stage (New Focus 9066, Newport, IR,
USA) driven by an iPico module (New Focus 8763, Newport, IR, USA). The simultaneous
search for the maximum intensity position on the PD while the line motional stage moved
was driven by a function generator with triangle waveform. The laser drilling process on
the samples typically induced the debris, nanosized dust, and even plasma. They may
cause the fluctuation along the optical path and result in the measurement noises. So, we
performed the measurements after the laser drilling processes. Each position scan of a
linear motion stage costs 1.2 s. Each measurement process was performed after the laser
drilling process. And the 0.5-s interval between them. The durations of data acquisitions
and the depth calculations of the drilled hole was less than 0.1 s. A complete drilling
and measurement cost about 3 s. Therefore, the operation time was still long for mass
productions. Higher measurement accuracy for a pulse-to-pulse operation within 1 s was
still studied.

Inserting a BS into the optical path of a machining laser can result in defocusing.
This defocusing results in z-position shift of the focal point, and can be solved by finding
a new z-axis distance. In short (ns) and ultrashort pulse (ps/fs) laser machining, pulse
shape deformation may be induced by optical elements in the optical path [16]. Here,
the BS thickness was 2 mm and the pulse duration of the machining laser was 10 ns.
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After checking the pulse shape by a PD with a gigahertz response frequency, pulse shape
deformation was monitored.

To increase the position sensitivity, the focal lengths of Lenses 1 and 2 were chosen.
We analyzed a theoretical model by numerically simulating two cases, and then compared
the experimental data with the model.

3. Theoretical Model Using Numerical Simulation

A schematic of the test platform is shown in Figure 2a. The optical layout of Figure
1 was simplified as Figure 2a. The focal length of the machining laser focusing lens (L1)
in the two cases was set to 50 mm. For the confocal lens (L2), the focal length was set to
50 mm in Case 1, and 100 mm in Case 2. The distance (d) between lenses L1 and L2 was
the sum of their focal lengths. The results of the simulation are presented in Figure 2b. In
Case 1, the travel distance of the focusing lens shifted 1 mm, and the intensity peak in the
confocal setup shifted 1 mm, yielding a lateral sensitivity ratio of 1:1 over 1 mm of travel. In
Case 2, the travel distance of the focusing lens shifted 1 mm, and the intensity peak in the
confocal setup shifted 4 mm, yielding a lateral sensitivity ratio of 1:4 over 1 mm of travel.
Some degradation in the resolution of the system was observed due to mechanical vibration
and imperfect optical alignment. The simulation works were performed with Matlab.
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Figure 2. (a) Illustration of simplified confocal depth detection system; and (b) simulation results
of the lateral sensitivity gain of 1:1 (blue line) and 1:4 (red line) over 100 µm of travel, respectively.
(Case 1: f1 = 50 mm, f2 = 50 mm; Case 2: f1 = 50 mm, f2 = 100 mm).

4. Results and Discussion
4.1. Confocal System Tested Using Polished Stainless Steel

The optical system was configured to utilize a probe laser as previously described,
and parameters were chosen as discussed in the numerical simulation section. A 10-µm
pinhole was utilized for the confocal element, and a confocal lens with a focal length of
100 mm and a suitable collecting lens were chosen to focus the light passing through the
pinhole onto the PD.

A piece of polished stainless steel was first affixed to the laser workstation as a sample
workpiece. Initially, the probe laser beam was aligned collinearly with the machining
laser beam. The vertical stage was fine-tuned through a portion of its range to simulate
the movement of the surface of the machined bottom of the drilled hole. The relation
of the object distance and the pinhole distance using acquired data is plotted in Figure
3a. The sample was measured at different vertical positions in 20 µm increments from
0 to 120 µm. The data obtained while scanning the object distance at varied vertical
positions using Cases 1 and 2 are shown in Figure 3b,c, respectively. In Figure 3a, the
root-mean-square (RMS) uncertainty of curve fitting for Case 1 was calculated as 0.046 µm.
And, the RMS uncertainty of curve fitting for Case 2 was 0.025 µm. These experimental
results confirm that, as indicated by the theoretical and numerical studies, the confocal
mechanism for micron-precision hole depth detection effectively tracked the change in
relative distance of the workpiece. In particular, as the workpiece moved away from the
focus of the focusing lens, the signal intensity and signal-to-noise ratio decreased.
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4.2. The Designed Experiments for Laser Drilling in Aluminum Alloy

A series of experiments was designed to showcase the capability of the system. After
the alignment of the optics was checked, a small piece of aluminum (Al) alloy was cut and
prepared, then affixed to the stage. Then, the Al alloy workpiece was drilled by 20–60 pulses
by focusing a 1064-nm pulsed laser with a 0.5-J pulse energy onto the workpiece. The
pinhole was then scanned over its entire range of travel, and data were collected with the
depth-monitoring system. After the sample was drilled and measured, a three-dimensional
(3D) image map of the sample was obtained using a 3D laser microscope (Keyence VK-9700,
Tokyo, Japan).

The surface of the Al alloy was drilled by 20 pulses with 0.5-J pulse energies. Figure 4a
shows a 3D image map from the laser microscope, with a cross-section included as Figure 4b.
Figure 4c,d show the scan data using Cases 1 and 2, respectively. The hole depth was
measured to be 34.04 µm using the 3D laser microscope. In Case 1, the hole depth was
measured to be 35 µm with the confocal optical design, with an error of ~2.94%. In Case 2,
the position of the maximum intensity measured was 136 µm, so assuming the numerical
simulation of the 4:1 ratio of transverse position, the hole was calculated to be 33.75 µm deep
with an error of ~0.85%. At different drilling depths, the number of machining laser pulses
was increased to 40 and 60 pulses. These experimental data are shown in Figures 5 and 6,
and summarized in Table 1. The experimental processes were performed more than three
times, and the error was generated from the standard derivation of data sets. The more than
10 % measurement variations occurred and when the hole depth was larger than 170 µm.
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Table 1. Summary of experimental data.

Number of Laser Pulses
Hole Depth and Error (Unit: µm (%))

3D Laser
Microscope Case 1 Case 2

20 34.04 35 (2.94%) 33.75 (0.85%)
40 44.81 45 (0.44%) 45.5 (1.56%)
60 51.15 50.4 (1.37%) 53 (3.71%)

5. Conclusions

This study performed theoretical simulations and experiments pertaining to the
development of an all-optical real-time laser drilling depth detection method. The ap-
proach is based on a confocal optical structure, achieves a precision of <1 µm and an
inaccuracy of <5% for ~100-µm-deep holes. This precision and accuracy are sufficient for
real-time machining depth monitoring during laser micro-hole drilling, and the system
is sufficiently robust for use in industrial and research applications. Furthermore, this
method is independent of the wavelengths of the machining lasers, and can be integrated
with commercial laser-machining systems in general. A reliable control process can be
easily implemented for automatic control of machining depth in applications that are sen-
sitive to the required depth of blind holes, eliminating the need for expensive back-wall
protection, and highly-skilled and experienced operators. A >100-µm-deep detections
can be realized with a low-divergence-angle beam on the targeted sample surfaces. This
study is still on-going.

Author Contributions: Conceptualization, X.C. and H.-C.C.; Data Measurement, Y.X. and S.S.; Data
Analysis, Y.X. and N.-K.C.; Writing and Supervision, H.-C.C. All authors have read and agreed to
the published version of the manuscript.

Funding: Ministry of Science and Technology, Taiwan (MOST 107-2622-E-006-014-CC3), and by the
Fundamental Research Funds for the Central Universities, China (DUT18RC(3)047 and DUT20RC(5)028).

43



Photonics 2021, 8, 493

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available in the article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Petkovsek, R.; Panjan, I.; Babnik, A.; Mozina, J. Optodynamic study of multiple pulses micro drilling. Ultrasonics 2006, 44, E1191–E1194.

[CrossRef]
2. Yeack, C.E.; Melcher, R.L.; Klauser, H.E. Transient photo-acoustic monitoring of pulsed laser drilling. Appl. Phys. Lett. 1982,

41, 1043–1044. [CrossRef]
3. Strgar, S.; Mozina, J. An optodynamic determination of the depth of laser-drilled holes by the simultaneous detection of ultrasonic

waves in the air and in the workpiece. Ultrasonics 2002, 40, 791–795. [CrossRef]
4. Stafe, M.; Negutu, C.; Popescu, I.M. Real-time determination and controlof the laser-drilled holes depth. Shock Waves 2005,

14, 123–126. [CrossRef]
5. Petkovsek, R.; Babnik, A.; Diaci, J.; Mozina, J. Optodynamic monitoring of laser micro-drilling of glass by using a laser probe.

Appl. Phys. A-Mater. Sci. Process. 2008, 93, 141–145. [CrossRef]
6. Idris, N.; Madjid, S.N.; Ramli, M.; Kurniawan, K.H.; Lee, Y.I.; Kagawa, K. Monitoring of laser processing using induced current

under applied electric field on laser produced-plasma. J. Mater. Process. Technol. 2009, 209, 3009–3021. [CrossRef]
7. Papazoglou, D.G.; Papadakis, V.; Anglos, D. In situ interferometric depth and topography monitoring in LIBS elemental profiling

of multi-layer structures. J. Anal. At. Spectrom. 2004, 19, 483–488. [CrossRef]
8. Ruiz, J.; González, A.; Cabalín, L.M.; Laserna, J.J. On-Line Laser-Induced Breakdown Spectroscopy Determination of Magnesium

Coating Thickness on Electrolytically Galvanized Steel in Motion. Appl. Spectrosc. 2010, 64, 1342–1349. [CrossRef]
9. Rhee, H.G.; Kim, D.I.; Lee, Y.W. Realization and performance evaluation of high speed autofocusing for direct laser lithography.

Rev. Sci. Instrum. 2009, 80, 073103. [CrossRef]
10. Lading, L.; DamHansen, C.; Rasmussen, E. Surface light scattering: Integrated technology and signal processing. Appl. Opt. 1997,

36, 7593–7600. [CrossRef]
11. Hofstetter, D.; Zappe, H.P.; Dandliker, R. Optical displacement measurement with GaAs/AlCaAs-based monolithically integrated

Michelson interferometers. J. Lightwave Technol. 1997, 15, 663–670. [CrossRef]
12. Webb, R.H. Confocal optical microscopy. Rep. Prog. Phys. 1996, 59, 427–471. [CrossRef]
13. Arons, E.; Leith, E. Coherence confocal-imaging system for enhanced depth discrimination in transmitted light. Appl. Opt. 1996,

35, 2499–2506. [CrossRef] [PubMed]
14. Minsky, M. Memoir on inventing the confocal scanning microscope. Scanning 1988, 10, 128–138. [CrossRef]
15. Paddock, S. Over the rainbow: 25 years of confocal imaging. Biotechniques 2008, 44, 643–648. [CrossRef]
16. Tan, B. Deep micro hole drilling in a silicon substrate using multi-bursts of nanosecond UV laser pulses. J. Micromech. Microeng.

2006, 16, 109–112. [CrossRef]

44



photonics
hv

Article

Influence of Spatio-Temporal Couplings on Focused
Optical Vortices
Anda-Maria Talposi 1,2, Vicentiu Iancu 1,2 and Daniel Ursescu 1,2,*

1 ELI-NP, Horia Hulubei National Institute for Physics and Nuclear Engineering, 30 Reactorului Street,
077125 Magurele, Romania; maria.talposi@eli-np.ro (A.-M.T.); vicentiu.iancu@eli-np.ro (V.I.)

2 Faculty of Physics, University of Bucharest, 405 Atomistilor Street, 077125 Magurele, Romania
* Correspondence: daniel.ursescu@eli-np.ro

Abstract: Ultra-intense laser pulses with helical phases are of interest in laser-driven charged par-
ticle acceleration and related experiments with extreme light. However, such optical vortices can
be affected by the presence of residual spatial-temporal couplings. Their field distributions after
propagating in free-space and in the focal plane of an ideal focusing mirror were assessed through
numerical modeling, based on the Gaussian decomposition method for a 25 fs pulse with a Super-
gaussian spatial profile. The wash-out of the central hole in the doughnut-shaped profile in the focal
plane corresponds to the rotation of the phase discontinuity.

Keywords: high-power lasers; ultra-short pulses; helical phase; optical vortex; spatio-temporal
couplings; laser pulse propagation; Gauss decomposition

1. Introduction

Femtosecond laser systems have opened new frontiers in the study of matter at an ultra-
fast timescale, using broad-spectral-bandwidth pulses. The chirped pulse amplification
(CPA) technique [1], combined with broad-gain-bandwidth optical parametric chirped
pulse amplification (OPCPA) [2], made it possible to observe peak powers in excess of 1016

W, as reported for the high-power laser system (HPLS) at the Extreme Light Infrastructure-
Nuclear Physics (ELI-NP) facility [3].

Ever since the concept of optical vortices (OVs) was proposed in [4,5] and then ob-
served experimentally in [6,7], the continuous interest and developments in his area have
spawned a broad range of potential applications, including their use high-power lasers.
The idea that orbital angular momentum (OAM) can exist within OVs, and a method of
generating it, was first suggested by Allen et al. [8], thus providing a new way to study the
effects of the connection between quantum and classical optics (paraxial beams). Studies
that involve OVs range from research on the use of optical tweezers for particle trapping
and manipulation [9], quantum applications [10–13], biomedical applications [14], super-
high-resolution imaging [15–17], optical communications [18], and ultraviolet and X-ray
light [19,20].

OVs can be generally defined as a stream of photons propagating with a singularity in
the phase field. The helical phase associated with the light beam corresponds to a spiral
rotation of the wavefront along the direction of propagation.

A unique property of OVs resides in the fact that the azimuthal gradient associated
with the propagating helical phase, exp(ilϑ), is responsible for the OAM, where ϑ is
the angle cylindrical coordinate and l is an integer called topological charge. Therefore,
the OAM component, directed along the propagation axis, is known as helicity [21]. This
means that the phase exhibits a turn/revolution of 2π radians around the dislocation axis
over an interval of l wavelengths. The amplitude of the electric field of the light wavefronts
becomes zero in the dislocation center.
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The light beams with OAM are represented in terms of LGl
p (Laguerre–Gaussian)

modes, where l gives the number of intertwined helices (azimuthal indices), and p, the num-
ber of radial modes. LG1

0 beams, also known as “doughnut” beams, can be set apart from
the LG0

0 modes (Gaussian beams) due to the zero-intensity dark spot at the center of
their beam profile and the helical wavefront with singularity in the center, generating a
screw-like dislocation in the electric field structure.

It has been shown in theory that helical beams can be used in the direct laser acceler-
ation of electrons, and also that the OAM associated with helical beams can be partially
transferred to electrons [22]. Experimentally, it was demonstrated in [23], that upon gen-
erating OV beams in a PW laser system, the energy of ions accelerated by a helical laser
beam was lower compared to the laser-driven ions with Gaussian focal spots, but the gain
in energy was higher for the same initial laser pulse energy.

Light beams with OAM can be produced in laboratory conditions using various
methods, including the control of laser modes in the cavity, diffractive optical elements,
lenses, spiral phase plates, helical phase plate mirrors and spatial light modulators [24].
For high power laser systems, spiral phase plates are available for the generation of ultra-
intense OV. As a consequence, several theoretical and experimental investigations have
been carried out.

Experiments that require intense laser fields with a helical shape can be compromised
if the helical focus is deformed. Therefore, studying and understanding possible sources of
distortion will allow the optimization of the focal spot and provide useful input information
for the analysis of the experimental data.

In high-power laser systems, the beam diameters, as well as the bandwidths, are
very large (hundreds of millimeters and tens of nanometers, respectively). This is why
the variation of the temporal properties across the spatial beam profile is not negligible
and may cause detrimental distortions of the field on target. These distortions are of
the spatio-temporal type and are generated by so-called spatio-temporal couplings (STC).
Even careful design and alignment procedures cannot ensure a perfectly smooth spatio-
temporal field. Residual STC can originate from dispersive optical components in the
beam path, from small defects and even from a minimal misalignment of the temporal
compressor [25,26].

The effects of STC create specific patterns in the focus region of helical high power
laser fields. In order to assess their impact, we present here a theoretical model, based
on the Gaussian decomposition method, of the free-space propagation of pulsed optical
vortices in the spatio-temporal domain. The propagation code simulates the cases in
which a high-power laser field with a helical spatial profile, with or without residual STC,
propagates inside the transport system under vacuum, towards the target place.

The paper is organized as follows. In Section 2, we present the theoretical framework
of the numerical calculations, the characteristic properties of optical vortices and the
characteristics of the input laser field. In Section 3, the results pertaining to helical laser
fields, with different spatio-temporal distortions, such as spatial chirp, angular dispersion
and pulse front tilt, are shown. Section 4 concentrates on the specific physics aspects of the
ultrashort optical vortex propagation phenomena. Section 5 summarizes the conclusions
we drew from this analysis.

2. Description of the Method

The propagation of laser fields has been a widespread concern, at first for monochro-
matic (narrowband) beams and then for pulsed, broadband lasers. Although the monochro-
matic cases can be approached using ray tracing, the beam propagation method (BPM),
diffraction integrals based on Huygens’ principle or Fourier optics, the propagation of
pulsed-beams is more complex. The evolution in space and time of pulsed laser fields can
be calculated as a superposition of monochromatic waves, applying the Fourier temporal
transformation, but one can also use more rigorous approaches such as solving the Maxwell
equations via the finite-difference time-domain (FDTD) technique.
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More recently, a Gaussian decomposition method has been used to determine the
propagation of pulsed beams. The method consists in the decomposition of the laser field
as a superposition of Gaussian beams, which are then individually propagated to the point
of interest, and then the reconstructed field in the region of interest is obtained as the
superposition of the propagated Gaussian fields. Although this method was initially used
for monochromatic beams [27,28], it can also be extended to time-limited waves [29,30].

The results in this paper were obtained using the propagation method described in
greater detail in [30]. First, the amplitude of the spatial field is defined: here, a Supergaus-
sian profile of order n = 6 was used, with the following distribution on x and y:

Es,S(x, y, z = 0) = A0S × exp

[
−
(√

x2 + y2

w0S

)n]
+ N. (1)

A0S is the amplitude of the Supergaussian function, which was set to A0S = 1 in this
work. w0S is the width (half-diameter) and was set to w0S = 55/2 mm, to have similar
parameters as those of the 100 TW beamline from the HPLS at ELI-NP in Romania [3].
The initial phase is considered to be flat (zero). N is a small random noise of amplitude
0.002. The Supergaussian shape of the beam profile is also relevant because it is often used
in CPA laser systems, as it provides optimal energy extraction from the laser amplifiers.
Therefore, an LG mode cannot be generated in high-power lasers, but a “modified LG
mode” can be obtained using specific spiral optical elements [31].

The spatial distribution of the electric field in the xy plane is then decomposed into
many Gaussian terms, using the fitting algorithm from Wolfram Mathematica [32]. Here,
121 terms are distributed on an 11× 11 rectangular grid. The center X0i,j and Y0i,j of each
Gaussian is allowed to vary during slightly the fitting process. Therefore, the Gaussian
parameters of amplitude E0i,j, central positions X0i,j and Y0i,j, and waist W0i,j, are obtained
for each element i, j in the decomposition such that

Es,S(x, y, z = 0) ≈
11

∑
i,j=1

E0i,j × exp

[
−
(
(x− X0i,j)

2 + (y−Y0i,j)
2

W2
0i,j

)]
. (2)

Each of these Gaussian terms can be further propagated using the Gaussian beam
theory [33], assuming that the waists are placed at z = 0. The RMS error for this decompo-
sition was 0.2%, of which approx. 90% was caused by the random noise N in Equation (1).
A better accuracy can be obtained by increasing the number of Gaussian terms in the
decomposition. However, this number is limited by the fact that the width of each Gaussian
should be much larger than the wavelength, to keep the paraxial approximation.

Furthermore, each spatial Gaussian Esi,j(x, y, z) becomes time-dependent via a simple
multiplication with a narrow-band temporal Gaussian:

EGi,j,m(x, y, z, t) = Esi,j(x, y, z) · Et,m(t), (3)

the index m refers to element m in the temporal/spectral decomposition.
Therefore, one can neglect the intrinsic spatio-temporal couplings of each Gausslet.

However, they can have different parameters from each other, causing their superposition
(i.e., the full laser field) to manifest spatio-temporal dependences, as shown here further
in Section 3. The temporal Gaussian terms used in Equation (3) are also determined by
decomposing an initial broadband pulse using a fitting algorithm that considers both the
spectral amplitude and the spectral phase [30].

In this work, the temporal distribution of the initial pulse was considered to be the
Gaussian of 25 fs FWHM irradiance at the Fourier limit (FL), centered at λ0 = 800 nm.
We considered the case in which the pulse has a flat spectral phase, as well as the case in
which it is stretched to 4 times its FL pulse duration. Such a temporal distribution was
decomposed into 23 pulselets of Gaussian shape, of narrow bandwidths and different
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central wavelengths [30]. The RMS error of the spectral fit decomposition was 1.2% for the
FL pulse.

In this way, the propagation of the initial, full wave in free space or after a focusing
mirror can be calculated as a superposition of the spatio-temporal Gausslets from the
decomposition. For free-space, one can apply the well-known formula of Gaussian beam
propagation:

Es,G(x, y, z) = As(z) · exp
[
− (x− X0)

2 + (y−Y0)
2

w2(z)

]
· exp

[
i
k
2
(x− X0)

2 + (y−Y0)
2

R(z)

]
·

· exp[−iϕ(z)] · exp(ikz).
(4)

where k is the wavenumber, A(z) the amplitude, w(z) the width at 1/e of the maximum
electric field at the z position, R(z) is the radius of curvature of the wavefront and ϕ(z)
is the Gouy phase [30,33]. Note that the width w(z) is the smallest at the waist, where,
conventionally, z = 0.

The method used to focus the beam with f = 1500 mm focal length optics was to
rotate the axis of the Gaussian element towards the focal point and to calculate its new
waist w0 f i,j,m considering that the initial Supergaussian beam was placed in the front focal
plane of the focusing optics.

w0 f i,j,m =
λm · fi,j

πW0i,j
, (5)

where fij was determined using the parabola equation:

fij =

√√√√X2
0,ij + Y2

0,ij +

(
X2

0,ij + Y2
0,ij

4 f
− f

)2

(6)

and Equation (5) was found using ABCD matrices [33] for a 2-f system. Note that Equa-
tion (5) is different than the one given in [30], but they are approximately the same if
2 fi,jλm � πW2

0i,j.
Moreover, to obtain a helical-type spatial phase to the full laser field, the approach

was to simulate the reflection of the beam on a “helical” mirror. The mirror would imprint
a specific phase distribution upon the beam due to its surface topology, defined by:

∆z(x, y) = s ·Θ(x, y), (7)

where s is the step between the two edges of the helical mirror and Θ(x, y) is proportional
to the cylindrical coordinate tan ϑ = y/x, with some modifications to include the full
(0, 2π) domain:

Θ(x, y) =
1
2
·
(

arctan (y/x)
π

− sign x
2

)
. (8)

The function Θ(x, y) that describes the helical wavefront is depicted in Figure 1.
The reflection on a helical mirror described by Equation (7) would imprint a corre-

sponding phase on each i, j, m Gausslet:

2π

λm
· 2∆z(X0i,j, Y0i,j). (9)

There is also a shift in the temporal factor of the Gausslet due to the delays caused
by the helical mirror. Each individual Gausslet centered initially at X0i,j and Y0i,j, Et,m
is modified by the terms containing s and therefore becomes dependent on the spatial
positions i and j:
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Eti,j,m = exp


−

 t− z−2·s·Θ(X0i,j ,Y0i,j)

c0

τm




2

 · exp(−iωmt) (10)

τm and ωm are the pulse duration and central angular frequency of the m pulselet
term in the decomposition. c0 is the speed of light. Please note the difference between the
imaginary number i and the index i.

Figure 1. The variation of Θ(x, y) in Equation (8) with the spatial coordinates x and y, represents the
topology of the helical mirror.

3. Results of the Simulations

The propagation code, described previously and detailed in [30], helped to simulate
the behavior of the 55 mm Supergaussian laser field, with 25 fs at FL. The full electric
field E(x, y, z, t) was reconstructed through the superposition of all the spatio-temporal
i, j, m Gausslets.

In the following, several helical cases are presented and discussed: without or with
spatio-temporal distortions. Please note that several wavefront distortions were analyzed
elsewhere by Ohland and co-authors [31] and will not be discussed here further.

3.1. Ultrashort Laser Fields with Helical Phases

In this subsection, we consider the case of pulses without STC in three configurations:
a non-distorted laser field with a helical phase of OAM = 1, at best compression, then with
phase jumps corresponding to fractional or higher-order OAM and, finally, with OAM = 1
for pulses chirped in time.

Through this preliminary analysis, we intend to present the ideal case and the impact
of small helicity and chirp deviations on the overall field distribution, in the absence of
the STC.

3.1.1. Helical Mirror with Matched Step–Wavelength

The case of the perfect helical phase at best compression, OAM = 1 corresponding to
s = λ0/2 is presented in Figure 2, for the Supergaussian field. The reconstructed wavefront
in Figure 2a reproduces the 2π phase jump introduced using Equation (7), corresponding
to the theoretical wavefront from Figure 1. The phase values are not relevant on the edges
of the plot, because the beam does not cover the full area (the beam size is visible in plot b
of Figure 2).

Furthermore, in Figure 2b one can observe the expected “doughnut” shape of the
time-integrated irradiance profile associated with the Supergaussian beam, which is visible
through the use of detection cameras in the laboratory [34]. The number of Gausslets in the
decomposition was 121 (spatial) × 23 (temporal), as previously mentioned.
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It is also possible to propagate and reconstruct the complete structure of the field in
the focal plane, including the carrier modulation, as presented in Figure 2c. The π phase
shift between the upper and lower lobes in the xz plane cut is reproduced, as expected,
indicating the spiral field structure in the propagation direction z. Moreover, the channel in
the middle is preserved after focusing and the doughnut shape is preserved in the focal
plane shown in Figure 2d, as pointed out also in [35]. It is well known that the behavior of
the focused fields corresponds to the fields propagating in free space at infinity–known as
the far field (FF). Therefore, similar behavior must appear at long propagation distances in
free space.
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Figure 2. (a) The phase profile of the laser field after being reflected by the helical mirror, at z = 0.
(b) The fluence profile (|E|2 time-integrated) of the laser field after being reflected by the helical
mirror, at z = 0. (c) The field profile (Re{E}) on x− z of the laser field after being reflected by the
helical mirror and focused with an f = 1500 mm mirror. (d) The fluence profile (|E|2 time-integrated)
of the laser field after being reflected by the helical mirror and focused with an f = 1500 mm mirror.
The dots are marking the positions where the temporal profiles are plotted in Figure 3, with the
corresponding color.

The pulse temporal shape remains Gaussian in different spatial positions from the
doughnut profile. The field varies in intensity, as one can see in Figure 3a–where each
temporal profile is represented with the color of the corresponding dot from the fluence
profile in Figure 2d. Figure 3b was obtained by normalizing the temporal envelopes in
Figure 3a in order to prove that the temporal shape envelope remained the same for all
the dots. The shape of the light orange curve corresponds to the one in the center of the
doughnut and it is not relevant, as its signal was very low (almost zero compared to the
others, i.e., 2200 arb.u. at the peak, or 0.3% of the largest peak, so it cannot be seen in the
non-normalized plot). This is also the case for the light green curve, corresponding to the
edge of the beam profile.

3.1.2. Helical Mirror with Different Surface Steps

It can be observed sometimes that the doughnut shape is asymmetric, indicated by
the fact that one of the lobes is more intense than the other, as in Figure 4a. Simulating the
helical laser field introduced above, with different values of the step sK = K · s, showed
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that variations of a few percentage points in the factor K lead to noticeable lobe amplitude
variations.Therefore, not matching the central laser wavelength with the step of the helical
mirror causes distortions in the ring shape.

b)a)

Figure 3. The temporal profile (|E|2(t)) of the laser field after being reflected by the helical mirror and
focused with an f = 1500 mm mirror. The colors correspond to the positions where the fluence profile
is marked in Figure 2d: (a) non-normalized and (b) normalized. The light orange plot corresponds
to x = y = 0, where the signal is only an irrelevant, small amount of noise. Normalization was
performed so that the maximum of each plot reached 1. The maximum value of the light orange plot
appeared close to t = −20 fs, whereas at t = 0 the signal dropped.

On the other hand, the higher the factor K, the higher the OAM and therefore the
beam size increases, as one can see in Figure 4a,b. As an example, the shape for K = 2
corresponding to OAM = 2 looks irregular in Figure 4b, this time due to the decomposition
of the full beam into a limited number of Gaussian terms (121). The larger the spatial
modulations of the beam, the more terms are needed in the decomposition to decrease
the reconstruction error. In the following sections, we restrict the analysis to OV with
OAM = 1, as this value is the most accessible for practical implementation in high-power
laser experiments.
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Figure 4. (a) The fluence profile (|E|2 time-integrated) on x, when y = 0, of the laser field after being
reflected by the helical mirror of sK = K · s and focused with an f = 1500 mm mirror. The K value is
given in the legend. (b) The fluence profile (|E|2 time-integrated) of the laser field after being reflected
by the helical mirror with sK = 2 λ0

2 and focused with an f = 1500 mm mirror.

3.1.3. Chirped Laser Pulse and Helical Spatial Phase

Chirping of the laser field can be achieved by adding dispersion to the FL pulse.
Therefore, the spectral amplitude remains the same, but the spectral phase becomes non-
flat and the pulse duration increases. In these simulations, the pulse duration was chirped
from the pulse width at FL τF to τ = 4τF. The spatial phase of this field also becomes
helical after reflection on the helical mirror of step s.

The channel in the center, both in the near field (NF), shown in Figure 5a, and in the
focus, shown in Figure 5b,c, is similar to the FL case, with the difference that the pulse
duration is four times longer. Furthermore, the field amplitude decreases, according to
the energy conservation principle. Figure 5a,b demonstrate that the wavefronts exhibited
the helical beam characteristic shift between the upper and the lower lobes, indicating
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that a spiral pattern (and the doughnut) was also preserved. The plots in Figure 5a,b are
represented at a smaller scale for z, in order to resolve the wavefront oscillations.
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Figure 5. The field profile (Re{E} on x− z at t = 0 and y = 0) of the chirped laser, with duration
τ = 4τF after being reflected by the helical mirror (a) in the NF and (b) in the focal region of an
f = 1500 mm mirror (the back focal plane is considered in z = 0 for simplicity). (c) The corresponding
amplitude profile (|E| on x− z at t = 0 and y = 0) for the focused field shown in plot (b).

3.2. Laser Fields with Helical Phases and Spatio-Temporal Distortions

In order to model the STC of the initial laser field, specific variations in the parameters
of the Gausslets were considered. The helical phase was introduced to these STC fields.
The results of the simulations are presented and commented upon in the following.

3.2.1. Spatial Chirp

Spatial chirp (SPC) is the linear variation of the spatial properties for each frequency
component in the spectrum: SPC = ∂x

∂ν [30,36,37]. Here, we considered the initial Gaussian
to be 25 fs FL at λ0 = 800 nm, with the temporal pulse shape measured in the spatial center
of the beam, at x = 0. When there is SPC in the field, then the central frequency of the wave
will change according to the SPC variation, meaning that the spectrum will be a different
one at each position x: νSPC,ijm = νm + X0,ij/SPC, where νm is the central frequency of the
m pulselet in the decomposition. Simulations were performed with SPC on the x axis with
the value of SPC = −1100 mm/PHz, for a consistent comparison with the non-helical case
in [30].

Figure 6 presents the NF, FF and focused distributions of the field in the y = 0 plane
(upper row) and in the x = 0 plane (lower row). Figure 6a,d correspond to the NF profiles
on x− z and y− z, respectively. In addition to the characteristic fan of the SPC and the
channel that appears due to the helicity, a slightly tilted channel in the x = 0 plane can be
distinguished. In Figure 6b,e the wavefront is still slightly curved, as the divergence of the
beams at 3 · zR is not perfectly zero.

As previously mentioned, the behavior of the focused fields corresponds to the fields
in the FF. The reconstructed focused field is presented in Figure 6c,f. The wavefront
curvature vanishes here, as expected. A gap is apparent on the longitudinal z axis in both
FF and focus profiles, which can be associated with the temporal shape, in the y− z profiles.
Therefore, there is a spatio-temporal vortex that appears. A comparable behavior of the
field was described in [38,39], where the production of spatio-temporal optical vortices was
investigated in simulations and in experiments.

Figure 7 presents the time-integrated |E|2 profile in the focus area, that corresponds
in practice to an image recorded with a camera sensor. The field in the central part of
the doughnut is not going down to zero anymore, as in the case of non-distorted laser
pulses. The SPC from the NF generates a tilt in the pulse front in the focus [30] and the time-
integrated |E|2 (fluence) profile has a positive value in the center, as shown in Figure 7b.
This can be interpreted as a distinctive signature of the presence of SPC in the helical pulse
and it appears at relatively small residual SPC values. This sensitivity can be turned into an
advantage through the design of a camera-based device that includes a focusing element
and a helical phase plate that can detect such small SPC.
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Figure 6. The electric field profile (Re{E}) of a laser field with SPC = −1100 mm/PHz, after being
reflected by the helical mirror (a) on x− z, in the NF (z = 0 region), at t = 0, (b) in the FF at z = 3 · zR

region, at t = 3 · zR/c0and (c) in the focal region after being reflected by the helical mirror and
focused by means of an f = 1500 mm mirror (at t = 0). Similarly, Re{E} of the same laser field,
but on y− z (d) in the NF (z = 0 region), (e) in the FF at z = 3 · zR region and (f) in the focal region.
For simplicity, the z coordinate at z = 3 · zR and at focal plane was translated to z = 0.
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Figure 7. (a) The fluence profile (|E|2 time integrated) of a laser field with SPC = −1100 mm/PHz,
in the focal region after being reflected by the helical mirror and focused by means of an f = 1500
mm mirror. (b) The fluence profile from (a) along the x axis, when y = 0 (green curve), compared
with the fluence profile of the laser field without SPC (black curve).

3.2.2. Angular Dispersion

The angular dispersion, or angular chirp (AGC), is the variation of the angle at which
a specific laser field propagates with its frequency, AGC = ∂θ

∂ν . For example, it can be
generated when different frequency components in the spectrum are diffracted at different
angles by a grating and, therefore, each of the spectral components will be tilted with
different angles.

The implementation of the AGC in the code used here was performed by tilting
each Gausslet with a specific propagation angle θm (around the axis Oy). The linear
correspondence with each m component in the temporal/spectral decomposition was as
in [30]: θm = AGC · (ν0 − νm) and the AGC value was AGC = 1.28 mrad/PHz on the
x axis, generated, for example, by an approximately 125 µrad grating misalignment in a
double-grating compressor.

In Figure 8a,b one can observe the NF pattern in the y = 0 and in the x = 0 planes,
with the specific central singularity of the helical phase. The pulse front tilt associated
with the AGC is present, as expected, in the x− z profile. The focused field is depicted in
Figure 8c,d in the focal region. The expected spatial chirp is present and can be observed as
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a variable front tilt in the y = 0 plane, in Figure 8c, along with a diagonal phase dislocation
in the longitudinal profile on y− z from Figure 8d.
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Figure 8. The electric field profile (Re{E}) of the laser field with AGC = 1.28 mrad/PHz in the NF
region, after being reflected by the helical mirror (a) on x− z when y = 0 and (b) on y− z when x = 0.
The Re{E} profile for the helical field with AGC = 1.28 mrad/PHz in the focal region, after being
focused by a mirror of f = 1500 mm, (c) on x− z when y = 0 and (d) on y− z when x = 0.

Changing the perspective, the time-integrated |E|2 profile is depicted in Figure 9a.
The doughnut tends to form two symmetric lobes with respect to the y = 0 axis. Further-
more, the field in the central hole does not drop to zero, as shown in the time-integrated
profile at y = 0, Figure 9b. This indicates, similarly to the SPC case, a signature of the high
sensitivity of the intensity profile to the presence of AGC in the helical phase pulses.
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Figure 9. The fluence profile(time-integrated |E|2) of the laser field with AGC = 1.28 mrad/PHz in
the focal plane, after being reflected by the helical mirror and the focusing mirror of f = 1500 mm
(a) on x− y and (b) on x when y = 0 (blue curve). The AGC case is compared with the same laser
field, but without STC (black curve). The colored dots in (a) represent the positions at which the time
profiles from Figure 10 are calculated.
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Furthermore, the temporal behavior of the pulse was analyzed in the focus, in Fig-
ure 10. The temporal evolution of the irradiance is depicted in the non-normalized (inset
a) and normalized cases (inset b). One striking difference with respect to the ideal helical
case depicted in Figure 3 is the presence of two temporal lobes. They can be symmetric or
unbalanced in the field envelope. Further, the position of the maxima of the lobes shifts in
time, whereas the lobe width varies, indicating the variable local pulse duration.

a) b)

Figure 10. Thetemporal profiles of the laser field (|E|2) with AGC = 1.28 mrad/PHz in the focal
plane, after being reflected by the helical mirror and the focusing mirror of f = 1500 mm, (a) non-
normalized and (b) normalized. The colors of the curves are the same as the ones of the dots depicted
in the fluence profile in Figure 9a to indicate the positions at which they were calculated.

Several temporal envelopes can be observed in Figure 10, corresponding to horizontal
cuts in the field representation of focused pulses with AGC from Figure 8c,d. This occurred
due to the fact that there was a linear mapping between the propagation axis z and the
temporal coordinate t. Hence, the presence of the two temporal lobes indicates the existence
of the phase jump in the y = 0 plane, as shown in Figure 8c, whereas the shifts of the lobes
and the asymmetry correspond to the tilted phase dislocation channel depicted in Figure 8d
in the x = 0 plane.

3.2.3. Pulse Front Tilt

In lasers with STC it can happen that the wavefront and the pulse front do not coincide.
When there is a linear coupling between the temporal and spatial coordinates in the formula
of the laser field, this factor is known as pulse front tilt (PFT): PFT = ∂t

∂x [36].
In the current work, PFT was implemented as in [30] such that the central time

coordinate t0m (the average of each temporal Gaussian m) is shifted proportionally to
the spatial position X0i,j: t0m = PFT · X0i,j. A value of PFT = 0.8 fs/mm was used for
consistent comparison with the plots from [30].

Figure 11a,b depict the detailed field distribution in the NF in the y = 0 and x = 0
planes. These results look similar to the ones obtained in the case of AGC, presented in
Figure 8. This is due to the fact that the PFT is equivalent with the AGC (in the absence
of frequency chirp) [36,37]). The same qualitative behavior is also observed after the
propagation of the helical PFT pulses to the focal plane, as shown in Figure 11c,d in the
y = 0 and x = 0 planes.

In Figure 12, the time integrated |E|2 profile is depicted for the helical pulse with
PFT = 0.8 fs/mm, after propagation to the focal plane. Furthermore, a similar qualitative
behavior is also observed here with respect to the AGC case. The depth of central hole in the
beam profile is reduced in the presence of the PFT, as shown in Figure 12b, in comparison
with the ideal case where no STC is present in the helical pulse.
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Figure 11. The electric field profile (Re{E} at t = 0) of the laser field with PFT = 0.8 fs/mm,
after being reflected by the helical mirror: in the NF (a) on x− z for y = 0 and (b) on y− z for x = 0;
in the focus of the f = 1500 mm mirror (c) on x− z for y = 0 and (d) on y− z for x = 0. For simplicity,
z = 0 in the focus.
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Figure 12. (a) The fluence profile (time-integrated |E|2) on xy of the laser field with PFT = 0.8 fs/mm in
the focal plane, after being reflected by the helical mirror and the focusing mirror of f = 1500 mm (a) in
the xy plane and (b) along the x axis when y = 0 (brown curve)).

4. Discussion

In this study, the four-dimensional propagation of ultrashort optical vortices was
simulated, for the first time to our knowledge, using a Gaussian decomposition code.
The expected behavior in the case of non-distorted ultrashort optical vortices was obtained.
Stretching and compressing the temporal shape proved that the phase displacements
were maintained so that the beam profile remained of the doughnut type both in the NF
and focus regions.

However, when residual STC was present in the laser field of OV, the behavior of
the singularity was modified. One effect that could be easily observed in the experiments
was that the central deep areain the beam profile started to wash out. As shown in
Figure 7 for the case of SPC, in Figure 9 for AGC and in Figure 12 for PFT initial distortions,
the amplitude of the signal in the center became significant and this can be clearly measured
with a video camera. Small values of these STC distortions were enough to provide this
effect, indicating a high sensitivity of the central deep amplitude of the doughnut shape.

The presence of the singularity was clearly observed in the detailed cuts in the focus
areas of the SPC-, AGC- and PFT-distorted OV pulses. In order to illustrate this effect
specifically for the PFT case, Figure 13 presents, at scale, a three-dimensional region plot
of the pulse corresponding to the two-dimensional cuts from Figure 11c,d. It indicates
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that the singularity was rotated but it did not disappear. The wash out effect in the beam
profile was the consequence of this rotation of the singularity orientation in the pulse along
the propagation. The same rotation was responsible for the wash-out of the hole in the
beam profile in the case of SPC and AGC. This rotation, even in the presence of small STC,
provides additional challenges in the implementation of experiments.
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Figure 13. A 3-dimensional plot irradiance profile of the laser field (|E|2) with initial PFT = 0.8 fs/mm,
after being reflected by the helical mirror and the focusing mirror of f = 1500 mm, in the focus. The surface
was chosen at 2% of the maximum.

Moreover, as discussed in [30], the SPC in NF generates PFT in the focus. AGC and
PFT are equivalent in the absence of temporal chirp, and both of them in NF generate
SPC in the focus. This behavior can also be distinguished for optical vortexes, as the field
distribution is influenced by both helicity and STC. The effect of generating a specific vortex
pattern in time as well, aside from the spatial effect, is an outcome of these processes [39].

Consequently, the high sensitivity of the helical pulses to the residual STCs might provide
a simple path towards practical implementation of spatio-temporal optical vortices [39,40] in
CPA laser systems by simply misaligning the optical stretcher or the compressor. This
comes with the more subtle effects of local double pulses in the temporal profile, as shown
in Figure 10.

Experiments that use helical beams—such as proton acceleration [23,41] indicating
the enhanced behavior of the accelerated particles when using doughnut beams—need
to take into account the effects of the STCs in the implementation and metrology phase,
in order to produce the expected results. There have been many proposals of experiments
using ultrashort helical pulses, e.g., in the production of gamma rays [42] and positron
production [43], attosecond electron bunches with OAM [44] and relativistic electron
mirrors [45], and in all these, the laser intensity distribution on the target must be optimized
through systematic measurements of the STC of the vortex-free laser field.

5. Conclusions

The introduction of ultrashort laser pulses and of the CPA technique during the last
quarter of the 20th century raised the need for an in-depth understanding of STC in the
propagation of laser fields. This was accomplished through the development of complex
metrology techniques, and also through the software development of four-dimensional
propagation codes for broadband ultrashort laser pulses, such as the one used here.

In a complimentary fashion, pulse shaping techniques that implement deformable
mirrors, spatial light modulators or specific optical components have enabled advances in

Figure 13. A 3-dimensional plot irradiance profile of the laser field (|E|2) with initial PFT = 0.8 fs/mm,
after being reflected by the helical mirror and the focusing mirror of f = 1500 mm, in the focus. The surface
was chosen at 2% of the maximum.

Moreover, as discussed in [30], the SPC in NF generates PFT in the focus. AGC and
PFT are equivalent in the absence of temporal chirp, and both of them in NF generate
SPC in the focus. This behavior can also be distinguished for optical vortexes, as the field
distribution is influenced by both helicity and STC. The effect of generating a specific vortex
pattern in time as well, aside from the spatial effect, is an outcome of these processes [39].

Consequently, the high sensitivity of the helical pulses to the residual STCs might provide
a simple path towards practical implementation of spatio-temporal optical vortices [39,40] in
CPA laser systems by simply misaligning the optical stretcher or the compressor. This
comes with the more subtle effects of local double pulses in the temporal profile, as shown
in Figure 10.

Experiments that use helical beams—such as proton acceleration [23,41] indicating
the enhanced behavior of the accelerated particles when using doughnut beams—need
to take into account the effects of the STCs in the implementation and metrology phase,
in order to produce the expected results. There have been many proposals of experiments
using ultrashort helical pulses, e.g., in the production of gamma rays [42] and positron
production [43], attosecond electron bunches with OAM [44] and relativistic electron
mirrors [45], and in all these, the laser intensity distribution on the target must be optimized
through systematic measurements of the STC of the vortex-free laser field.

5. Conclusions

The introduction of ultrashort laser pulses and of the CPA technique during the last
quarter of the 20th century raised the need for an in-depth understanding of STC in the
propagation of laser fields. This was accomplished through the development of complex
metrology techniques, and also through the software development of four-dimensional
propagation codes for broadband ultrashort laser pulses, such as the one used here.

In a complimentary fashion, pulse shaping techniques that implement deformable
mirrors, spatial light modulators or specific optical components have enabled advances in
spatially-tailored laser pulses. In particular, OVs were proposed to be used in conjunction
with ultra-intense pulses from CPA laser systems in order to enhance the desired light–
matter interaction effects in processes such as electron and proton acceleration. Although

57



Photonics 2022, 9, 389

the impact of wavefront distortions on OVs has been reported in [31], one type of spatio-
temporal distortions had not been investigated to date, to our knowledge.

A Gaussian decomposition code was used to investigate the joint presence of the
OV and STC in ultrashort laser pulses and their effects in the focal plane, as required in
several proposed experiments. We took as a reference the HPLS laser parameters available
at ELI-NP, as these are also common to several petawatt class facilities: a Supergaussian
spatial profile and a 25 fs pulse duration at a 800 nm central wavelength.

The simulations showed the evolution of the OV phase dislocation in space and time.
We have also pointed out that the sensitivity of the far field to the residual STCs can
help in the design of new metrology devices that provide quantitative evaluations of the
STC. The results of this study will help researchers to understand better the effects of
residual STCs, enabling the advanced design and implementation of future extreme light
experiments with complex OV pulses.
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BPM Beam propagation method
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HPLS High-power laser system
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NF Near field
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Abstract: In this paper, we demonstrate 3D-printed 1-DOF (one torsional axis; 1 degree of free-
dom) optical scanners with large mirror areas (up to 20 × 20 mm2). Each device consists of an
aluminum-coated square silicon substrate serving as the mirror, two miniature permanent magnets,
an electromagnet, and a 3D-printed structure including the mirror frame, torsion springs, and base.
One device can reach a static half optical scan angle of 14.8 deg., i.e., a full optical scan angle of
29.6 deg., at 12 VDC; this particular device exhibits a mechanical resonance frequency of 84 Hz. These
scanners can be a potential, low-cost alternative to the expensive conventional galvanometer scanners.

Keywords: electromagnetically driven; 1-DOF scanning mirrors; 3D printing

1. Introduction

Optical scanners have been frequently found in various types of optical systems.
Among them, the galvanometer scanners [1,2] are perhaps most popular thanks to their
commercial availability and reasonable pricing; outstanding efforts have also been put
into analyzing and optimizing the scanning functions [2,3]. They can be found widely
in the market [4–6]. Their sizes fall within the range from a few millimeters to a few
centimeters. Some of them can even reach an optical scan angle of 40 degrees [4]. They
are commonly seen in early optical coherence tomography (OCT) systems, either to direct
the light beam to the sample [7], or to generate the necessary optical pathlength difference
for depth scanning [8]. Other applications include laser scanning microscopy, LiDAR,
etc. [9,10]. Although affordable, the cost ranges from a few thousand US dollars to more
than ten US dollars [5]; therefore, galvanometer scanners are usually not considered as
a low-cost option. Particularly, at the developing phase of a system or experiment that
involves galvanometer scanners, the required specifications of the scanners may still be
unclear. The price tags of the galvanometer scanners prevent researchers from moving
rapidly forwards for a practical trial; contrarily, they spend much effort carefully designing
“on paper” in advance just to make sure they get the right scanners later for their systems.
This philosophy exists in most research groups in academia and industry, and somewhat
slow down the technology development progress.

Riding on the shoulders of the MEMS fabrication technologies, various MEMS optical
scanners have been developed. The common driving mechanisms of MEMS scanners
include electrostatic actuation [11,12], electromagnetic actuation [13,14], electrothermal
actuation [15,16], and piezoelectric actuation [17]. Many electrostatic micromirrors require
undesirable high voltages that sometimes approach a hundred volts [18]; electrothermal
actuation and electromagnetic actuation both lead to direct heating of the mirror, which
can potentially change the mirror parameters such as the curvature; piezoelectric material
is less popular in semiconductor fabrication business. Despite these shortcomings, MEMS
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scanners (mostly micromirrors) make it feasible to accomplish system miniaturization and
portability. The fabrication normally requires cleanroom usage and the extremely expensive
and heavy equipment such as the etching and deposition machines. Their costs can be
lowered by using wafer-level fabrication processes for mass production. However, this is
only possible with mature products of high demand; in other words, academia or business
developing new products mostly still suffers the high cost per device resulting from the
cleanroom microfabrication process. Moreover, the typical sizes of MEMS scanners are
between a few hundred microns and a few millimeters, which makes them unsuitable
for handling light beams with large cross sections; this limits the number of resolvable
spots [19] in a laser scanning system such as the laser scanning microscope and laser
scanning projector.

Prism scanners belong to another category which has drawn a great deal of atten-
tion [20–22]. Distinct from mirrors, prims are transparent optical components whereby
the light paths do not need to be folded, making it easier to design and construct the
optical systems. Beautiful scan patterns were previously presented using rotational Risley
prisms [20]. The only concern about prism scanners is the prisms’ bulky sizes, which make
fast scanning somewhat challenging.

In this paper, we demonstrate 3D-printed optical scanners with large mirror areas (up
to 20 × 20 mm2). The main mechanical structure of the device is fabricated by FDM (fused
deposition modeling) 3D printing; an aluminum-coated silicon chip is mounted on the
top to serve as the reflecting surface. Each scanner is equipped with miniature permanent
magnets and driven by an electromagnet; both the permanent magnets and electromagnet
are off the shelf with extremely low prices. No electric current is delivered to the mirror
so there is no issue of heating the mirror. The devices presented in this paper exhibit low
driving voltages and are positioned to be an extremely low-cost alternative to the expensive
conventional galvanometer scanners. The estimated cost per device is less than ten US
dollars. Furthermore, thanks to the rapid prototyping of 3D printing, the turnaround time
to complete fabrication and delivery is <1 week.

2. Device Design and Fabrication

We propose using FDM (fused deposition modeling) 3D printing to fabricate our
devices. FDM 3D printing possesses the advantages of low cost, high speed, and large
area printing. Compared to other printing techniques such as stereolithography (SLA) 3D
printing and selective laser sintering (SLS) 3D printing, it is more environment-friendly
because it avoids the use of the photocurable resin and polymer powder. The printed
material is polylactic acid (PLA), which is low-cost and environment-friendly; the printer
used in this study is Ultimaker 2+.

Each device consists of an aluminum-coated square silicon substrate serving as the
mirror, two miniature permanent magnets, an electromagnet, and a 3D-printed structure
including the mirror frame, torsion springs, and base; if needed, a soft iron core can be used
to extend the magnetic field produced by the electromagnet. As shown in Figure 1, the
exploded view drawing of the device, the two miniature permanent magnets are attached
beneath the mirror frame, oriented in opposite directions. When an electric current is
sent through the electromagnet, attracting and repelling forces and, therefore, a torque are
generated to rotate the mirror. The magnetic flux density generated by the electromagnet is
200 G at 5 V.

The two practical arrangements are shown in Figure 2, one without the soft iron core
for extension (type I) and the other with it (type II). For type I devices, the electromagnet
generates a magnetic field to directly attract or repel the miniature permanent magnets
(oriented in opposite directions) under the mirror frame to drive the mirror to rotate. For
type II devices, a soft iron core is connected to the electromagnet to make the magnetic field
extend upward along the soft iron core. In this way, the distance between the electromagnet
and the miniature permanent magnets can be increased.
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Figure 2. Two practical arrangements: (a) Type I without the soft iron core for extension; (b) Type II
with the soft iron core for extension.

The main structure of the device is made by FDM 3D printing. An aluminum-coated
silicon chip (slice) is mounted on the frame to serve as the mirror. Then, the miniature
permanent magnets are attached to the back of the mirror frame, and the electromagnet is
placed on the base.

In our study, five different designs are employed. Their schematic 3D drawings (not
to scale) and designed dimensions can be found in Table 1. Table 2 summarizes the specifi-
cations of all of the designs. Figure 3 shows the photos of the actual fabricated devices.

63



Photonics 2022, 9, 484

Table 1. Schematic 3D drawings and designed dimensions of the five different designed devices.
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Table 2. Specifications of the designed devices.

A (Type I) B (Type I) C (Type II) D (Type I) E (Type II)

Mirror frame
size (mm3) 20 × 20 × 3 10 × 10 × 1 10 × 10 × 1 10 × 10 × 1 10 × 10 × 1

Torsion spring
size (mm3) 10 × 1.5 × 1 10 × 1 × 0.5 10 × 1 × 0.5 5 × 1 × 0.5 5 × 1 × 0.5
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3. Device Characterization and Results
3.1. Experiment Setup and Characterization

The device characterization mainly focuses on measuring the scan angles of all of
the designs. Specifically, for each design we will experimentally find out the static optical
deflection angles at different applied dc voltages, i.e., the dc characteristic. The scanner
will also be driven with a sinusoidal voltage for dynamic characterization; the frequency
of the sinusoidal waveform will be tuned and the scan range at each frequency will be
recorded; this measurement can lead to the discovery of the frequency response and
resonance frequency.

Figure 4a is the schematic drawing of the experimental setup used to obtain the dc
characteristic. A 632.8 nm HeNe laser is incident on the mirror and reflected toward a
screen. The power supply provides a dc voltage which is applied to the electromagnet
while the oscilloscope measures the exact voltage drop across the electromagnet. When
the voltage is tuned, the reflected laser spot on the screen moves and the displacement d
is recorded. As shown in Figure 4b, given the distance L between the scanner and screen,
the optical deflection angle at a certain voltage is then tan−1(d/L), which is considered
as the optical half angle θhalf. Flipping the voltage polarity overturns the polarity of the
electromagnet, and rotates the mirror toward the opposite direction; therefore, in the
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ideal case the full scan range of the scanner is twice the maximum optical half angle, i.e.,
2θhalf, max.
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Figure 4. dc characterization: (a) experimental setup; (b) the optical half angle (θhalf) can be found
using the given L and measured d.

The measurement setup for dynamic characterization is similar to that for dc charac-
terization, as shown in Figure 5a, with the replacement of the power supply by a function
generator. With a sinusoidal voltage applied to the electromagnet, the electromagnet’s
polarity flips periodically; this enables the mirror to swing to the two extremes alternately.
As shown in Figure 5b, θfull = 2 θhalf = 2tan−1(d/2L) is the full optical scan range at a
certain voltage amplitude and frequency. To find the frequency response of the device,
the frequency of the sinusoidal waveform is swept manually while keeping the amplitude
across the electromagnet constant, and the full optical scan ranges at several frequencies
are recorded.

66



Photonics 2022, 9, 484

Photonics 2022, 9, 484 7 of 14 
 

 

voltage amplitude and frequency. To find the frequency response of the device, the fre-
quency of the sinusoidal waveform is swept manually while keeping the amplitude across the 
electromagnet constant, and the full optical scan ranges at several frequencies are recorded. 

 
(a) 

 
(b) 

Figure 5. Dynamic characterization: (a) experimental setup; (b) the full optical scan range [θfull = 2 
θhalf = 2tan−1(d/2L)] at a certain voltage amplitude and frequency can be found using the given L and 
measured d; the frequency response can be obtained by sweeping the frequency of the function 
generator. 

3.2. Experiment Results 
Figure 6 shows the static characteristics, optical half angle vs. voltage, of all of the 

devices. Among all of the devices, Device A has the largest mirror size (20 × 20 mm2) and 
does not have the soft iron core for extension; it exhibits the largest optical deflection an-
gle. At a 12 V dc voltage, the optical half angle θhalf is as large as 14.8 degrees, which means 
the full scan range of this scanner is 29.6 degrees under quasi-static operation. This is a 
considerable angular range for a mirror-type beam scanner. 

Figure 5. Dynamic characterization: (a) experimental setup; (b) the full optical scan range [θfull = 2
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3.2. Experiment Results

Figure 6 shows the static characteristics, optical half angle vs. voltage, of all of the
devices. Among all of the devices, Device A has the largest mirror size (20 × 20 mm2) and
does not have the soft iron core for extension; it exhibits the largest optical deflection angle.
At a 12 V dc voltage, the optical half angle θhalf is as large as 14.8 degrees, which means
the full scan range of this scanner is 29.6 degrees under quasi-static operation. This is a
considerable angular range for a mirror-type beam scanner.
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Figure 6. Static characteristics: optical half angle θhalf vs. dc voltage for different devices.

Figure 7 is the frequency response of Device D. The peak-to-peak voltage is kept a
constant when the frequency is swept. Based on the frequency response curve, when the
driving frequency is 341 Hz, the full optical scan range θfull reaches the maximum; 341 Hz
is then the resonance frequency of the device.
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Figure 8 shows the traces of the reflected light spot on the screen of Device D at several
selected frequencies, including the resonance frequency 341 Hz. It can be seen that the
longest trace does occur at the resonance frequency. No rotation around the orthogonal
axis is observed.
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Table 3 lists the measured mirror frame thickness, spring size, and torsional resonance
frequency of each device, as well as the estimated mirror mass (including the silicon
slice, coated aluminum, and permanent magnets), estimated torsion and bending spring
constants, and predicted torsional and bending resonance frequencies. When calculating
the spring constants and mirror mass and predicting the resonance frequencies, we take
the measured dimensions instead of the designed values.

Table 3. Estimated and measured parameters of each device.

Devices

Measured
Mirror Frame

Thickness
(mm)

Measured Spring
Size (mm3, Length ×
Width × Thickness)

Est. Mirror
Mass (g)

Est. Torsion
Spring Const.

(N m/rad)

Est. Bending
Spring Const.

(N/m)

Predicted
Torsional

Resonance
Freq. (Hz)

Predicted
Bending

Resonance
Freq. (Hz)

Measured
Torsional

Resonance
Freq. (Hz)

Device A 2.57 9.82 × 1.6 × 0.99 2.58 3.24 × 10−2 4460 91.25 209.19 84
Device B 1.13 9.97 × 1.01 × 0.65 0.279 5.56 × 10−3 761.2 243.94 263.02 229
Device C 1.12 9.83 × 1.1 × 0.62 0.278 5.76 × 10−3 750.6 248.66 261.77 227
Device D 1.16 4.9 × 1.02 × 0.59 0.271 9.1 × 10−3 4844 316.42 673.05 341
Device E 1.15 4.87 × 1.02 × 0.62 0.281 10.34 × 10−3 5724 331 718.07 348

As expected, the resonance frequency is mainly related to the mirror geometry and
torsion springs. Whether the electromagnet has an iron core for extension or not should
not affect the resonance frequency.

The predicted torsion spring constant kt and resonance frequency ft are calculated
using the following equations:

kt = 2K × G
L

(1)

ft =
1

2π

√
kt

I
(2)
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where G is the shear modulus of PLA, L is the length of the spring, I is the rotational
moment of inertia of the mirror, and K is the shape factor of the spring’s cross section which
can be expressed as

K ≈ ab3
[

16
3

− 3.36
b
a

(
1 − b4

12a4

)]
(3)

where a is half of the spring width, and b is half of the spring thickness [23].
The predicted bending spring constant kb and resonance frequency fb are calcu-

lated with:

kb =
32Eab3

L3 (4)

fb =
1

2π

√
kb
m

(5)

where E is the Young’s modulus of PLA, and m is the mass of the mirror. The Young’s
modulus and mass density of PLA chosen for our calculation are 1.36 GPa and 1240 kg/m3,
respectively. We will present a further discussion regarding the calculation in the next section.

4. Discussion

The PLA’s Young’s modulus can vary within a wide range [24]. Apparently, the
modulus of our device is on the lower side. We assume 1.36 GPa as the Young’s modulus,
and the difference between the prediction and actual performance of the torsion mode
is smaller than 10%. With the Young’s modulus and mass density set to 1.36 GPa and
1240 kg/m3, respectively, and with the measured spring dimensions and mirror frame’s
thickness, we are able to calculate/estimate/predict the resonance frequencies of the
bending modes, torsional and bending spring constants, and mass, which are all included
in Table 3 above.

In Devices A, D, and E, the bending mode exhibits a frequency far higher than that of
the torsion mode, so coupling should be insignificant. In Devices B and C, the difference
between the bending and torsion mode frequencies is not as large, but it is still greater
than the measured resonance mode width of the torsion mode; therefore, coupling should
also be negligible. Furthermore, the two permanent magnets of each mirror are oriented
in opposite directions so the net force on the mirror should be minimized, if not zero,
making it hard to excite the bending mode significantly. In summary, coupling should be
insignificant, and it is unlikely to excite a substantial bending motion. We did verify this
experimentally. In our experiments (referring to Figure 5 which shows the setup to find the
resonance), we found that d increased with L as expected at any tested frequency, which
would not have been possible if the out-of-plane motion, instead of rotation, had been
excited; an out-of-plane motion would have resulted in a lateral shift of the laser beam
instead of a deflection angle. Moreover, a significant out-of-plane motion would cause the
laser beam to miss the mirror, which was never observed during the experiments.

Regarding the effect of any possible misalignment of the permanent magnets, if we
take Device A as an example, misalignments of 0.5 mm of the permanent magnets may
result in an estimated 7% change in the static angle. In Devices B–E, such misalignments of
the permanent magnets may result in an estimated 14% change in the static angle.

Another concern is the consistency between prints, and we can infer from the measured
resonance frequencies. Devices B and C have the same mirror frame design, while Devices
D and E share the same mirror frame design. As shown in Table 3, the measured resonant
frequencies of Devices B and C are 229 and 227 Hz, respectively, i.e., <0.9% difference; the
measured resonant frequencies of Devices D and E are 341 and 348 Hz, respectively, i.e., 2%
difference. This demonstrates decent consistency between prints.

In terms of device lifetime, the parameters of the printed material can indeed change
with time because of environmental factors, such as humidity and temperature. One of our
future plans is to perform a long-term monitoring of the devices to study the effect of those
factors. From a different point of view, our low-cost devices can be disposable had they
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become unusable due to those long-term effects from the environmental factors; the rapid
prototyping nature of 3D printing can provide fast delivery of a new device.

Our goal is to propose an extremely low-cost scanner solution. The 3D printer costed
about 4000 USD, and our estimated material cost per scanner is merely <10 USD (PLA: <0.4
USD; silicon slice + aluminum coating: <2.5 USD; electromagnet: <6.5 USD; permanent
magnets: <0.2 USD); no other charge was incurred.

Closed-loop control has been a popular approach for improving scanner perfor-
mance [25]. However, since we position our work as an extremely low-cost scanner
solution, we intentionally avoid the closed-loop control to keep the cost low. We have
tested a scanner with a modified but similar design under open-loop operation using a
PSD (position sensing detector); the results show good angular repeatability with an error
of only ~1.6% (Figure 9).
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with variation of <0.08 V, i.e., ~1.6%.

A scanner can be dedicated to either quasi-static scanning or dynamic scanning. The
static characterization demonstrated in Section 3 has proven the ability of our scanners
to perform quasi-static scanning. Dynamic scanning includes raster scanning [14], spiral
scanning [26], Lissajous scanning [27], etc. Our scanners exhibit static optical full angles
of >4 deg.; Devices A and B can even reach 29 deg. and 16 deg., respectively. Moreover,
all of the measured resonance frequencies are greater than 60 Hz. Therefore, our devices
can serve as the slow-axis scanner for raster scanning with a 60 Hz frame rate. As for
Lissajous scanning, using a pair of our revised scanners with minor modification (mainly
to increase the mirror area), we are able to generate a nice Lissajous pattern (Figure 10).
The frequencies of the x and y scans are 70 and 58 Hz, respectively.
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Lastly, an expanded laser beam is shined on a 1 × 3 scanner array (Device B ×2;
Device C ×1). The three scanners are intentionally oriented along slightly different direc-
tions so that the reflected beams from the scanners can be separated. Figure 11a shows
the reflected spots on a screen when no mirror is driven; in Figure 11b the traces of the
reflected spots under a driving frequency of 217 Hz are presented. This type of scanner
array can potentially be used for simultaneous multiple-beam steering.
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5. Conclusions

In this paper, we have presented the designs and experimental results of 3D-printed
1-DOF optical scanners with large mirror areas (up to 20 × 20 mm2). Five different
designs have been studied. Each device consists of an aluminum-coated square silicon
substrate serving as the mirror, two miniature permanent magnets, an electromagnet,
and a 3D-printed structure including the mirror frame, torsion springs, and base. The
scanner with a 20 × 20 mm2 mirror area and a measured resonance frequency 84 Hz
reaches a static half optical scan angle of 14.8 deg., i.e., a full optical scan angle of 29.6
deg., at 12 V. These scanners can be an extremely low-cost alternative to the conventional
expensive galvanometer scanners. Although we have not achieved the 40 deg. seen in some
galvanometer scanners, 29.6 deg. at a low voltage of 12 V and operation without needing
an amplifier and closed-loop control are definitely attractive. Specifically, the cost of each
scanner is <10 USD, which is an overwhelming margin against many competing devices. A
short turnaround time of <1 week to complete fabrication and delivery is also appealing.

We have shown good angular repeatability of the scanner and also presented a Lis-
sajous scanning pattern. A 1 × 3 scanner array has also been assembled, and multiple-beam
steering implemented by this array has been demonstrated.

Author Contributions: Conceptualization, J.-c.T.; experiment, C.-K.S., Y.-N.H., G.-Y.L., W.-A.T.,
Y.-W.C., P.-H.Y.; writing, C.-K.S. and J.-c.T. All authors have read and agreed to the published version
of the manuscript.

Funding: This research was supported by the Ministry of Science and Technology of Taiwan under
Grant MOST 109-2221-E-002-019 and Grant MOST 110-2221-E-002-076.

Data Availability Statement: Data supporting the results reported in this paper may be obtained
from the authors upon reasonable request.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Aylward, R.P. Advances and technologies of galvanometer-based optical scanners. In Proceedings of the SPIE’S International

Symposium on Optical Science, Engineering, and Instrumentation, Denver, CO, USA, 18–23 July 1999.
2. Duma, V.-F. Laser scanners with oscillatory elements: Design and optimization of 1D and 2D scanning functions. Appl.

Math. Model. 2018, 67, 456–476. [CrossRef]
3. Li, Y. Single-mirror beam steering system: Analysis and synthesis of high-order conic-section scan patterns. Appl. Opt. 2008, 47,

386–398. [CrossRef] [PubMed]
4. Novanta Photonics. 62xxK and 83xxK Series, Galvanometers. Available online: https://novantaphotonics.com/product/62xxk-

and-83xxk-series-galvanometers/ (accessed on 22 June 2022).

72



Photonics 2022, 9, 484

5. Thorlabs. Galvanometers. Available online: https://www.thorlabs.com/navigation.cfm?guide_id=2269 (accessed on
22 June 2022).

6. Scanlab. Galvanometer Scanners. Available online: https://www.scanlab.de/en/products/galvanometer-scanners (accessed on
22 June 2022).

7. Salimi, M.H.; Villiger, M.; Tabatabaei, N. New Model for Understanding the Relationship between Tissue Composition and
Photothermal Optical Coherence Tomography Signals. In Proc. SPIE 11655, Label-Free Biomedical Imaging and Sensing (LBIS) 2021;
SPIE Proceedings: Bellingham, WA, USA, 2021. [CrossRef]

8. Luo, Y.; Arauz, L.J.; Castillo, J.E.; Barton, J.K.; Kostuk, R.K. Parallel optical coherence tomography system. Appl. Opt. 2007, 46,
8291–8297. [CrossRef] [PubMed]

9. Cui, M.; Lin, J.; Cheng, Z.; Gan, W. Jitter suppression for resonant galvo based high-throughput laser scanning systems. Opt.
Express 2020, 28, 26414–26420. [CrossRef]

10. Li, Y.; Cui, T.; Li, Q.; Zhang, B.; Bai, Y.; Wang, C. A study of correction method to the pincushion distortion based on dual
galvanometer LiDAR scanning system. Optik 2019, 181, 555–561. [CrossRef]

11. Wang, Q.; Wang, W.; Zhuang, X.; Zhou, C.; Fan, B. Development of an Electrostatic Comb-Driven MEMS Scanning Mirror for
Two-Dimensional Raster Scanning. Micromachines 2021, 12, 378. [CrossRef] [PubMed]

12. Strathman, M.; Liu, Y.; Keeler, E.G.; Song, M.; Baran, U.; Xi, J.; Sun, M.T.; Wang, R.; Li, X.; Lin, L.Y. MEMS scanning micromirror
for optical coherence tomography. Biomed. Optics Express 2015, 6, 211–224. [CrossRef] [PubMed]

13. Gorecki, C.; Bargiel, S. MEMS Scanning Mirrors for Optical Coherence Tomography. Photonics 2020, 8, 6. [CrossRef]
14. Yalcinkaya, A.D.; Urey, H.; Brown, D.; Montague, T.; Sprague, R. Two-Axis Electromagnetic Microscanner for High Resolution

Displays. J. Microelectromech. Syst. 2006, 15, 786–794. [CrossRef]
15. Tanguy, Q.A.A.; Gaiffe, O.; Passilly, N.; Cote, J.-M.; Cabodevila, G.; Bargiel, S.; Lutz, P.; Xie, H.; Gorecki, C. Real-time Lissajous

imaging with a low-voltage 2-axis MEMS scanner based on electrothermal actuation. Opt. Express 2020, 28, 8512–8527. [CrossRef]
[PubMed]

16. Hashimoto, M.; Taguchi, Y. Design and Fabrication of a Kirigami-Inspired Electrothermal MEMS Scanner with Large Dis-
placement. Micromachines 2020, 11, 362. [CrossRef] [PubMed]

17. Senger, F.; Albers, J.; Hofmann, U.; Piechotta, G.; Giese, T.; Heinrich, F.; von Wantoch, T.; Gu-Stoppel, S. A bi-axial vacu-
um-packaged piezoelectric MEMS mirror for smart headlights. In MOEMS and Miniaturized Systems XIX; SPIE Proceedings:
Bellingham, WA, USA, 2020; Volume 1129305.

18. Kim, J.; Lee, H.; Kim, B.; Jeon, J.; Yoon, J.; Yoon, E. A high fill-factor micro-mirror stacked on a crossbar torsion spring for
electrostatically-actuated two-axis operation in large-scale optical switch. In Proceedings of the Sixteenth Annual International
Conference on Micro Electro Mechanical Systems, Kyoto, Japan, 23–23 January 2003. [CrossRef]

19. Conant, R.A.; Nee, J.T.; Lau, K.Y.; Muller, R.S. A flat high-frequency scanning micromirror. In Proceedings of the Technical Digest
2000 Solid-State Sensor & Actuator Workshop, Hilton Head Island, SC, USA, 4–8 June 2000; pp. 6–9.

20. Duma, V.-F.; Dimb, A.-L. Exact Scan Patterns of Rotational Risley Prisms Obtained with a Graphical Method: Multi-Parameter
Analysis and Design. Appl. Sci. 2021, 11, 8451. [CrossRef]

21. Li, A.; Yi, W.; Zuo, Q.; Sun, W. Performance characterization of scanning beam steered by tilting double prisms. Opt. Express 2016,
24, 23543. [CrossRef]

22. Li, Y. Third-order theory of the Risley-prism-based beam steering system. Appl. Opt. 2011, 50, 679–686. [CrossRef] [PubMed]
23. Urey, H. Torsional MEMS scanner design for high-resolution scanning display systems. In Optical Scanning; SPIE Proceedings:

Bellingham, WA, USA, 2002; Volume 4773, pp. 27–38. [CrossRef]
24. Farah, S.; Anderson, D.G.; Langer, R. Physical and mechanical properties of PLA, and their functions in widespread applications—

A comprehensive review. Adv. Drug Delivery Rev. 2016, 107, 367–392. [CrossRef] [PubMed]
25. Hayakawa, T.; Watanabe, T.; Senoo, T.; Ishikawa, M. Gain-compensated sinusoidal scanning of a galvanometer mirror in

proportional-integral-differential control using the pre-emphasis technique for motion-blur compensation. Appl. Opt. 2016, 55,
5640–5646. [CrossRef] [PubMed]

26. Carrasco-Zevallos, O.M.; Viehland, C.; Keller, B.; McNabb, R.P.; Kuo, A.N.; Izatt, J.A. Constant linear velocity spiral scanning
for near video rate 4D OCT ophthalmic and surgical imaging with isotropic transverse sampling. Biomed. Opt. Express 2018, 9,
5052–5070. [CrossRef] [PubMed]

27. Hwang, K.; Seo, Y.-H.; Ahn, J.; Kim, P.; Jeong, K.-H. Frequency selection rule for high definition and high frame rate Lissajous
scanning. Sci. Rep. 2017, 7, 14075. [CrossRef] [PubMed]

73



photonics
hv

Article

Deformation Measurement of a SS304 Stainless Steel Sheet
Using Digital Image Correlation Method
Appurva Jain 1,*, Abhishek Mishra 1, Vikrant Tiwari 2, Gurminder Singh 3, Ravinder Pal Singh 4

and Sunpreet Singh 5,6

1 Department of Mechanical Engineering, National Institute of Technology Delhi, New Delhi 110036, India
2 Department of Applied Mechanics, Indian Institute of Technology Delhi, New Delhi 110016, India
3 Department of Mechanical Engineering, Indian Institute of Technology Bombay, Mumbai 400076, India
4 Department of Mechanical Engineering, MMEC, Maharishi Markandeshwar (Deemed to be University),

Mullana 133207, India
5 Department of Mechanical Engineering, National University of Singapore, Singapore 117549, Singapore
6 Department of Mechanical Engineering, Chandigarh University, Sahibzada Ajit Singh Nagar 140413, India
* Correspondence: appurva@nitdelhi.ac.in

Abstract: The digital image correlation (DIC) method is widely used in deformation measurements
as it has the advantages of being a non-contact, high precision method that provides full field
measurements, and requires simple experimental equipment. Traditionally, the grayscale speckle
patterns captured by a monochromatic camera are used in the DIC method. With the growing
development of consumer color cameras, there is great potential for developing color information in
the DIC method. This paper proposes a displacement- and stress–strain-invariant DIC deformation
measurement method based on the integer-pixel matching approach for speckle patterns during
a tension test. For the integer-pixel matching stage, the load and displacement and stress–strain-
invariant histories feature is used to estimate the initial value of the deformation parameters. In
addition, this paper proposes a reverse retrieve strategy, instead of a forward search, to reduce the
search time. Experiments show that the proposed DIC deformation measurement approach is not
only capable of displacement invariance measurement, with robustness and high efficiency, but also
that the average accuracy of the stress–strain result can reach 0.1%.

Keywords: digital image correlation; displacement measurement; numerical simulation; stress–strain
comparison; speckle pattern

1. Introduction

Demand for lightweight parts, better product performance, efficiency, and higher
safety is rising in the automotive sector [1–3]. Detailed measurements of crucial material
parameters, such as strain limit, strength coefficients, and anisotropy coefficients, are
necessary to optimize the design and production of these components [4–6]. Tension testing
with an extensiometer is the technique most frequently used to determine a material’s
properties [7]. However, this system is not appropriate for post-diffuse necking and only
provides an average strain over the specimen gauge length. A cutting-edge method for
precise strain assessment is Digital Image Correlation (DIC) [8]. This method is ideal
for characterizing material properties in the elastic and plastic ranges, since it allows
for quick data collection. Additionally, it provides a noncontact method for carrying
out complete-field, extremely high-precision measurement of displacement and strain.
In the consideration of affordable and lightweight goods, the modern industrial sector
needs materials with better strengths, such as SS304. To determine the material qualities
needed for industrial applications, SS304 must be tested. For material processing, including
stretching, stamping, bending, and other processes, tensile test data, such as the stress–
strain relation, are essential [9–11]. The classic extensiometer method is typically used to
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calculate the average strain over a region by measuring the tensile strain between two sites.
Using a tensile test machine with an extensiometer to determine the strain information
at the necking point is nearly impossible. The entire measurement area between the
extensiometerprobes is where the measured strain is spread out. During the tensile test,
the DIC system measures the full-range strain distribution [8,12–14]. This study will
examine field deformation using DIC strain measurement in tension testing, and contrast
the results with the load vs. displacement and stress–strain relationship obtained using
the conventional approach. Testing was conducted on SS304, which is an example of an
advanced high-strength steel (AHSS) material. The measurement of SS304 is used in this
paper as an example of how the test procedure works. Strain fields can be quantified using
a variety of techniques, including photo elasticity, electronic speckle-pattern interferometry,
and digital image correlation (DIC) [4,14–16].

The last 10 years have seen rapid progress in data processing and digital imaging
technologies, which has increased interest in optical digital image techniques for strain
assessment [8,13,14,17–20]. Strain fields of different sizes can be measured using the
optical digital-image approach. Failure and damage can result from the localization of
deformation within the tiny zones of the specimen. As a result, localization effects are
crucial for comprehending material failure. To fully appreciate the localization impact,
strain measurement and residual stress measurement appear to be crucial. There are
several approaches for measuring residual stress, including X-ray diffraction, and the
ultrasonic, eddy current, active magnetic, and passive magnetic methods [4,21]. The digital
image correlation approach for measuring strain is the main topic of this study. In this
study, a local deformation pattern is visualized using the digital image strain measuring
approach, which is integrated with DIC. In recent years, DIC has been applied to numerous
materials and mechanics research laboratories for full-field strain mapping applications.
Theoretically, DIC can attain high accuracy and dependability. In reality, a number of other
variables, including the deformation of a speckle on the specimen’s surface, and the fixture
method of the image capture instruments, might affect measurement precision during a
mechanical test.

The range and frequency response of conventional contact measurement methods,
such as mechanical extensometers and strain gauges, are limited, and thus do not give
enough data to address the complexity of dynamic mechanical behavior. To quantify stress
and deformation fields in tests, non-contact full-field approaches, such as photoelasticity,
Moiré, caustics, coherent gradient sensors, and digital image correlation (DIC), have
significant advantages [22]. The DIC technique, first proposed by [23], is a promising tool
for ductile heterogeneous materials across a wide range of length and time scales [24–32].
This is due to the recent advancement of image processing methods and the introduction
of CCD (charge-coupled device) cameras. On the one hand, the method is applicable to
studies encompassing a wide range of fields of view, from the nano-/micro-scale to the
field-scale, as well as from two-dimensional (2D) to three-dimensional, because it has
no inherent length scale (3D). On the other hand, the DIC methodology has also been
tested over a wide variety of loading rates, leading to improvements in the advent of CCD-
cameras with high spatial and temporal resolutions, modern image processing algorithms,
and numerical computations. Assessing the performance of the DIC approach for materials
testing is one of the goals of the current paper.

The structure of this paper is as follows. In order to confirm the accuracy of the strain
estimation utilizing the load vs. displacement obtained through the DIC technique, a direct
comparison experiment of the elastic strain measurement is first offered. Then, in order
to observe the strain distribution during the test, the application of the DIC approach to
assess the nonhomogeneous deformation of an SS304 rectangular sample during a tensile
test is shown.
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2. DIC Methodology

DIC is a non-contact 3D full-field optical method for detecting contours, deformation,
vibration, and strain on practically any material. The method is applicable to a wide range
of static and dynamic tests, including tensile, torsion, bending, and combination loads. DIC
is less costly and simpler than other techniques, such as speckle interferometry, and it is
more accurate and subjective than manual measuring methods, offering up a wide range
of possible applications. To monitor a group of pixels (called subsets) in the distorted and
reference pictures, as shown in Figure 1, DIC measurement uses temporal matching and
correlation functions.

A charge-coupled device (CCD) camera collects picture data, which is then converted
into digital form and stored in a computer for analysis. The DIC technique includes tracking
the position of many surface points in two consecutive images using a correlation algorithm
to determine displacement information. Displacements must be interpolated as weight
functions in finite element form in order to calculate stress and strains using the correlation
function. The correlation algorithm is based on tracking the intensity (Gray value) pattern
in discrete subsets of neighborhoods during movement (shown in the area with a dashed
line; one pane represents an image pixel), as shown in Figure 1. By contrasting the two
picture subsets, the correlation algorithm calculates the local displacement values, U and V.
A (n × m) pixel area that is rectangular in shape defines the area of interest in the reference
image. The appropriate subset, which is likewise a (n × m) pixel region, is estimated at a
specific point with a certain range in the distorted image. The range in the deformed image
is searched for carefully, pixel by pixel.

By entwining the subset from the deformed image with the broader subset from the
reference image, the algorithm produces the cross-correlation factor, C (Equation (1)) for a
domain of theoretical displacements, (U, V), in 1-pixel increments as described in:

Figure 1. Temporal matching for the correlation function generation of unreformed and deformed images.

Stress and Strain Calculation from the Correlation Function

DIC measurement uses temporal matching and correlation functions, shown in
Equation (1).

The working procedure is explained as follows:

• The digital image is first separated into smaller parts known as subsets.
• Subset shape functions are imposed on the reference subset to account for the deformed

shape of the subset in the deformed picture.
• The distorted position of the subset may not be at the integer location.
• The correlation function (C) is constructed to match the similarity of the subset in the

un-deformed and deformed images.

C =

∮ 0
Am(F(x, y)(G(X0 + U, Y0 + V))dA

[∫ 0
AM[(F(x, y)]2

∫ 0
Am[(G(X0 + U, Y0 + V))]2dA

] 1
2

(1)
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where G is the severity of the pixels in the reference subset, dA is the severity of the pixels
in the deformed subset, and (X0, Y0) are positional subset coordinate axes. Its origin is at
the center of the subset at the control point.

In this paper, the Newton–Raphson method is used to estimate strain and stress. If we
want to calculate the strains at the current position, we first choose a square window that
contains discrete points that are (2m + 1) by (2m + 1) all around it. This window is known
as the strain calculation window. The displacement distributions within it can be roughly
represented as a linear plane if the strain calculation window is small enough.

Thus, we have the following equation:

U(i, j) = a0 + a1x + a2y
V(i, j) = b0 + b1x + b2y

(2)

where a,b is the unknown polynomial coefficient that determines the displacement rela-
tionship with the m coordinate frame. U, V are the reference displacement at location (i,j)
obtained by DIC, as indicated in Figure 1. Equation (2) can be rewritten in matrix form:




1 m m
1 m − 1 m
...

...
...

1 0 0
...

...
...

1 −m + 1 −m
1 −m −m







a0
a1
a2


 =




U(m.m)
U(m − 1, m)

...
U(0, 0)

...
U(−m,−m)

U(−m + 1,−m)




(3)

Therefore, it is possible to solve the unknown polynomial coefficients using the
Newton–Raphson method. It is vital to remember that the strain calculation window
may contain fewer points than (2m + 1) (2m + 1) for points at the image boundary or in
the region of the discontinuity area. However, by ignoring these faulty points within the
local strain calculation window from the above equation, we can still compute the strain
components using the Newton–Raphson iteration method.

ui = u0 +
∂u
∂x ∆xi +

∂u
∂y ∆yi

vi = v0 +
∂v
∂x ∆xi +

∂v
∂y ∆yi

After obtaining the displacements and displacement gradients at the point (x,y), the
full field strain can be calculated under the small deformation assumption:

εx =
∂u
∂x

(4)

εy =
∂v
∂y

(5)

γxy =
∂u
∂y

+
∂v
∂x

(6)

The unknown parameters
(

u, v, ∂u
∂x , ∂u

∂y , ∂v
∂x , ∂v

∂y

)
are determined by using the Newton–

Raphson method to minimize the correlation function.

3. Experiments

The experiments were performed on a universal testing machine (Zwick Roell 250
with a maximum capacity of 250 kN, as shown in Figure 2b) with homogenous work-
ing conditions at room temperature. The strain rate was kept

.
ε = 1 × 10−3 per sec-

ond. The material used for the tensile test was SS304 with 1 mm thickness. A series
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of samples were cut in a 0◦ rolling direction. Rectangular cross sections with dimension
200 mm × 20 mm × 1 mm were cut out from the steel sheet. While performing the experi-
ments, 50 mm from both ends was constrained, and the remaining mid-section (100 mm in
length) was kept under loading conditions. The samples’ length, width, and thickness were
measured along the y-axis, the x-axis, and the z-axis, respectively. The load was applied in
the y-direction along the length. The tests were conducted for the samples in the rolling
direction until three reproducible curves were produced.

Figure 2. (a) Test specimen with dimensions and a coordinate frame. (b) Experimental setup for the
tension test with the DIC devices.

The test specimen with dimensions and a coordinate frame is shown in Figure 2a. The
strain was measured using the DIC device and a POINTGREY® camera. The DIC system
is helpful for measuring strain distribution in the plastic zone of the sample. The Cauchy
stress vs. logarithmic strain curves were computed using results from the DIC system
that were acquired after post-processing. The strain was measured using a digital image
correlation device (DIC). This guarantees that the results are accurate and removes the
impact of any impurities or porosity in the material from the results.

The contour plot image was obtained from the DIC Vic-3D software, which was
applied under tensile load conditions. Figure 3 shows the contour plot of the measured
strain under tensile loading, which provides some parameters such as analysis types,
the DIC radius, step analysis, image correspondence, units for pixel, and the correlation
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coefficient. Figure 3a shows the contour plot of the strain value on the stainless steel
material, which recorded the development trend of the strain value. The necking area
was detected and observed using the experimental DIC method, as shown in Figure 3b.
Moreover, the maximum strain value red colour was 35 mm and minimum strain value
blue colour was around 0 mm.
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4. Results
4.1. Experimental Results and Discussion

The stress–strain curve is plotted using data obtained from the DIC for the tension test
samples. The plot for the 0◦ rolling direction is shown in Figure 4. While Cauchy stress
vs. logarithmic strain curves are plotted up to the necking, nominal stress vs. logarithmic
strain curves are plotted up to the rupture. The data are unreliable because, after necking,
the nominal stress in the stress–strain curves starts to decrease. The outcomes show that the
curves can be replicated. Reproducible results were obtained from similar tests carried out
on the tensile test materials in each orientation. Figure 3b shows one from each orientation
of the nominal stress–logarithmic-strain curve and the Cauchy stress–logarithmic-strain
curve. This demonstrates that there is no discernible difference in the highest value of
nominal stress and between curves from all orientations.
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Figure 4. Nominal and Cauchy stress vs. logarithmic strain for reproducible experiments.

4.2. Numerical Results and Discussion

Using an elasto-plastic model with homogeneous material properties, the tensile test
sample was numerically simulated. The material’s mechanical properties were utilized
in accordance with the experimental sections stated above. As shown in Figure 5, the
simulation with symmetry boundary conditions was run as per the eighth sample along
the x, y, and z directions. The sample’s 3D model was created using the following di-
mensions: 50 mm × 10 mm × 0.5 mm. As shown in Figure 5, a 5 mm displacement was
applied to the model’s top surface, along the y-axis. The commercial finite element code
ABAQUS/Standard was used for the simulation. Only the area subjected to the load was
taken into consideration for the numerical simulation of the sample, disregarding the area
beneath the grips during the experiments (50 mm at both ends of the sample). Calculations
of various stresses and strains were made using the simulation. The stress–strain data
were post-processed using several macroscopic criteria to compute the damage factor, as
mentioned in the preceding sections. The C3DR element was used to generate the mesh.
The linear mesh was defined as 0.2 mm to 20 mm in length, away from the sample’s center
(half-length under the extensometer, as the symmetric sample is considered). After that, a
biased mesh was taken along the length, ranging in size from 0.2 to 0.5 mm. A linear mesh
with a 0.2 mm size was taken across the width. Young’s modulus and the hardening curve
were taken into consideration as typical properties when simulating the sample at 0◦/RD.
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Figure 5. Tension test samples; (a) original sample and (b) sample after rupture.

The simulation result was considered up to the point when the extensiometer displace-
ment in the simulation reached the same value as in the experiment (i.e., the rupture point).
The various stress–strain data obtained from the numerical simulation of the tensile test
sample are presented in Figure 6. They indicate the distribution of (a) von-Mises stress,
(b) maximum principal stress, (c) equivalent plastic strain, and (d) hydrostatic stress at the
point of rupture. The load–extensiometer-displacement curve is presented in Figure 7. It
indicates that there is good agreement between the experimental curve and the simulated
curve. The maximum load value reached in experiment was 13,702 N and in the simulation
it was 13,331 N, whereas the extensiometer displacement at the rupture point was 27 mm
in both the experiment and the simulation.
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Figure 6. Tensile test: images of the specimen; (a) distribution of strain along length (via digital image
correlation (DIC)) and (b) logarithmic strain distribution just before rupture.
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5. Validation

A reverse retrieve strategy was used to validate the proposed deformation mea-
surement approach. In this strategy, a pixel of speckle samples was used to evaluate
deformation by node-point matching during the simulation. To verify the feasibility of
this matching technique, it was further compared with experiment results. Moreover,
traditional equations were used to obtain stress and strain data for the experiment and for
the numerical simulation.

5.1. Simulation

The first validation concerns the displacement invariance of the samples, whereby a
speckle pattern was used for verification, as shown in Figure 5. Figure 5a was displaced by
0 and Figure 5b was obtained after rupture. To better conform the actual measurement situa-
tion, the load in the experiments was homogenously added to these samples. Subsequently,
in the numerical simulation, a node point at the highest strain deformation was uniformly
selected in Figure 6a,b, and this node point was matched in the tension test experiment
using the DIC device. Since the deformation is known from the true displacement of the
generated samples, the true displacement of these node points is known. The performance
of the DIC deformation measurement technique was evaluated by the error between the
simulated results and the true displacements, as shown in Figure 6. On samples with
node points, it can be demonstrated that the DIC deformation measurement technique
can match displacement with a maximum inaccuracy of roughly 3%. The precision of the
DIC deformation measurement technique fully satisfies the experimental value’s accuracy
criterion, as the convergence range of the simulation approach is roughly 7% [16].

The validation of the stress–strain curve obtained from the tension test experiment
is concerned with the numerical simulation in same rolling direction. The simulation
was run in the same working conditions as were employed in the experiments. In the
simulation, the calculation was performed by taking the centroidal node element and
extracting the parameters of Cauchy stress and logarithmic strain value; these values were
further compared with the DIC-obtained data. The experimentally obtained load value
needed to be converted into Cauchy stress, as DIC gives logarithmic strain values.

5.2. Experimental

Traditional calculations were performed for the deformation measurement. Stress and
strain are vital parameters which indicate the deformation of any material. The calculation
was conducted by continuously measuring gauge length (l0) (i.e., the calibrated distance
between two marked surfaces of a specimen) until rupture. The strain yield leads to the

82



Photonics 2022, 9, 912

measurement of sample deformation. This is then calculated using the ratio of the increase
in the specimen gauge’s length to its initial gauge length, represented in Equation (7):

δ =
(L − L0)

L0
(7)

Tensile stress σ is calculated as the ratio of the tensile load (F) that was applied to it
and the specimen’s initial cross-section area (A0), represented in Equation (8):

σ =
F

A0
(8)

As DIC measures strain at every instant, Cauchy stress and logarithmic strain were
obtained for the test sample in the 0◦ rolling direction. Relative elongation and relative
reduction of area are obtained as parameters of the deformation measurement of the
material.

Relative elongation is represented by Equation (9):

δ =
(Lm − l0)

L0
(9)

where (Lm) is the maximum length of the specimen.
Relative reduction in area is the ratio between the decrease in the area of the specimen’s

cross section before its rupture and its original cross-sectional area, represented by Equation
(10):

ψ =
(A0 − Amin)

A0
(10)

where (Amin) is the minimum specimen cross-sectional area.
The comparison of the numerical simulation and the experimental values was plotted

into a stress–strain curve, which shows an error of roughly 0.1% (see Figure 7).

5.3. Reverse Retrieve Strategy

The numerical simulation and experimental displacement of the DIC measurement
uses color histogram features, which have the advantages of scaling and rotation invari-
ance. The reverse retrieve strategy can also be used to improve the efficiency of the DIC
deformation technique. In addition, the stress–strain comparison makes the efficacy of DIC
measurement technique more accurate. Therefore, in the experimental section, simulation
experiments were conducted for the evaluation of the displacement invariance, deforma-
tion invariance, and computational efficiency of the DIC measurement technique. It can be
seen from the experimental results that the reverse retrieve strategy can also be used for
validation, and meets the accuracy requirements of deformation measurement methods.
Furthermore, the search strategy based on reverse retrieval can greatly improve the match-
ing speed, which is faster than the state-of-the-art DIC displacement measurement method.
In actual experiments, the test specimen was stretched and measured using an extensiome-
ter and tension test equipment. The deformation of the test specimen was measured using
the DIC deformation measurement technique, and the error was estimated to be around
0.1%, which satisfies the majority of measurement criteria. The suggested approach focuses
on addressing the measurement of sample deformation during mechanical testing. At this
time, color paint must be properly sprayed in a speckle pattern, rather than as a naturally
occurring surface. To solve this issue, it is anticipated that feature acquisition and matching
methods will be improved.

When using the above strategy, the computational burden is greatly increased due
to the use of pixel-to-node point matching in the simulation. The different scales need to
be extracted and matched. For instance, the area of the subset of interest is 30 pixels for
obtaining the highest strain value at the rupture point, and then the simulation contains a
total of 390 nodes, which means that the computational burden of obtaining the highest
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strain value is increased by 13 times. Moreover, when the range of the scaling factors is
unclear, the computational burden will be much greater. To improve efficiency, this paper
proposes a search strategy based on the reverse retrieve method.

The traditional method adopts a forward strategy; that is, the reference sub-region is
searched pixel by pixel in all deformed images to find the best matching position, as shown
in Figure 8. With the rupture of the material, the deformation feature of forward matching
will also change. Once the feature is changed, it is necessary to perform feature extraction
on all nodes in the new simulation, which is very time consuming. To avoid redundant
calculations, a reverse retrieve strategy is proposed, in which some deformed subregions
are selected and matched with the reference image, as shown in Figure 8. By using this
method, the search space is the reference image, i.e., before loading, which is constant and
can be precalculated. The reverse search strategy only needs to perform feature extraction
on the search space once; therefore, it is more efficient than the forward search strategy.

Figure 8. The figures show that the reverse search method searches the deformed sub-regions (the
red and blue boxes) in the deformed image, which is constant and precalculated.
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Before the matching, the displacement feature of the multiscale templates in the
reference image are extracted pixel by pixel and stored in a feature set Q, which is constant
and does not need to be updated. When the deformed images are updated, only the
displacement features of the new deformed subregion need to be extracted, and then they
are retrieved in feature set Q. The value of the displacement is quantized and the retrieval-
method-based search space is used to speed up image retrieval. Finally, the reverse retrieval
strategy avoids the repeated feature extraction of the search space and greatly improves
research efficiency.

The figures show that the reverse search method searches the deformed sub-regions
(the yellow and green boxes) in the reference image, which is constant and precalculated.
For clarity, only two deformed images are displayed.

6. Conclusions

The speckle-pattern matching information has brought great advantages to the fields
of computer vision and image retrieval. However, it has not been fully utilized in relation
to the DIC method. To exploit the additional pattern information provided by color speckle
patterns, this paper improves the DIC deformation measurement in two respects: displace-
ment measurement and stress–strain curve matching. Specifically, this paper proposes
that the performance of the DIC deformation measurement method can be enhanced by:
(i) load vs displacement measurements based on integer-pixel matching; and (ii) a com-
parison based on the stress–strain histories strategy. For validation, experiments with
simulated color images were performed, and show that our method have the advantages
of measurement in displacement invariance, high efficiency, and deformation invariance.
For the property measurement of the real material, uniaxial tension tests were conducted,
where the average error of the strain results reached 0.1%.

The traditional extensiometer method for tensile tests can only provide a stress–strain
curve before the tensile load reaches its peak value or before substantial strain localization
occurs. An important and unique feature of the DIC-assisted tensile test is that it can
provide a more complete true stress–strain curve after the tensile load passes its peak and
drops into a “necking” stage, until the specimen’s complete separation. This material me-
chanical response information is critical for numerical simulations that correctly visualize
the formation history.

A comparison of the DIC technique with the traditional extensiometer-based technique
is presented in Tables 1 and 2.

Table 1. Comparison of the strain measurements produced by different mechanisms and their
possible applications.

Type Approach
Mechanism of

Mechanical Strain
Evaluation

Test Image
Analysis Advantage Disadvantage

Electro-based
(1) Strain gauge [28]
(2) Strain

transducers [29]

The deformation of
the material
induces the electrical
signal
changes, which can be
converted into the
strain values of the
materials.

Discrete
In vivo
Ex vivo

N/A Cheap; offline
work

Invasive; low
anti-interference

Light -based
(1) Microscopy

camera [30]

The relative strain is
assessed by
comparing the images
before and after the
material deformation.

Serial
Ex vivo

Marker-
tracking
algorithm

Cheap; easy
operation

Transparent or
translucent
samples

(2) Photo-elastic [15]
Strain measurement
based on load-induced
(stress-induced)
birefringence.

Cheap; easy
application time-consuming

Regional phase
unwrapping
algorithm

85



Photonics 2022, 9, 912

Table 1. Cont.

Texture-
correlation-based

(1) Speckle
interferometry
[31]

Strain is quantified
from changed search
space patterns in the
images during the
deformation of the
materials.

Serial
In vivo
Ex vivo

Simple
structure Complex analysis

Baseband speckle
tracking
algorithm;
Registration
algorithm

Imaging-based
(1) Moiré [22]

The Moiré effect is the
mechanical
interference of light
by a superimposed
network of lines.

In-plane
fringes;
out-plane
fringes

Fast;
non-invasive;
portable;
cost-efficient
and has no
harmful
radiation

Resolution; costly

Moiré fringe
phase shifting
measurement
algorithm

(2) DIC [16]

Strain is evaluated by
tracking the subsets
including markers or
speckles on the
surface of tissues.

Serial
Ex vivo

Relatively
fast imaging;
relatively low
cost

Expensive; high
contrast

Computed
tomography

(3) DVC [32]

Strain is evaluated by
tracking image
subsets by tracking
the natural pattern in
the tissues.

Serial
In vivo Ex
vivo

Correlation-
based
algorithm

Table 2. Comparison between DIC system and Extensiometer.

DIC System Externsiometer

Non-contact measurement Contact measurement

Unlimited number of deformation
measurements

An extensometer can be used only once (a
glued extensometer cannot be peeled off

without damaging it)

The possibility of testing samples of any shape
and material; the tested surface of the sample

does not have to be flat

A surface on which the extensometer is glued
has to be flat

The ability to measure deformation in all
directions (along the X-axis, Y-axis, and Z-axis),

on a plane or in three-dimensional space

The ability to measure deformation only in the
chosen direction

Full-field deformation analysis
Results of the deformation at selected points of
the sample, i.e., at the points where the sensors

are attached

A measurement of the real maximum
displacements and deformations

A measurement limited by the maximum value
of the deformation of an extensometer

A quick preparation of a random pattern of
black dots on a white background on the

sample surface by spraying paint

A time-consuming process of placing the
extensometer on the surface of a sample

(gluing, etc.)

The need to clean the surface of a sample before testing
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Abstract: In this paper, we propose an optical fiber-based broadband mode coupler for multimode
optical coherence tomography (OCT) in the O-band (1.26–1.36 µm). The proposed device uses a
tapered few-mode fiber (FMF) to lower the effective mode index of the selected higher-order mode,
which can be phase matched to the fundamental mode of the single-mode fiber (SMF). The tapered
FMF and the SMF are side polished to reduce the core-to-core separation to achieve efficient mode
coupling. Key design parameters such as the tapering ratio of the FMF, FMF core to SMF core
separation, coupler length, and coupling ratio in the O-band are studied thoroughly. Higher-order
modes of the FMF will be effectively coupled from the fundamental mode of SMF in the sample arm
of the multimode OCT system. The reflected signals of the higher-order modes from the sample will
be separated into several single-mode signals using the same fiber device before interfering with the
reference light, which was not possible before. The proposed fiber device will be a key component to
efficiently achieve multimode OCT operation with better signal collection efficiency and improved
penetration depth for deep tissue imaging.

Keywords: multimode optical coherence tomography; few-mode fiber (FMF); broadband fiber optic
mode coupler

1. Introduction

Optical coherence tomography (OCT) has been established as a standard-of-care tool
for the diagnosis of a wide spectrum of ocular diseases and a powerful tool for the diagnosis
of coronary artery disease and gastrointestinal diseases [1–3]. However, penetration depth
and resolution degradation in deep tissue are two major limitations of the technology for
existing and potential clinical use [4,5]. For example, OCT is very limited in imaging the
choroid, sclera, and optic nerve head due to limited penetration depth, making it unfit for
examining abnormalities in these tissues [6–9]. In intravascular and endoscopic applications,
the penetration limit precludes the technology for assessing deep lesions such as invasive
tumors in digestive tracts and large plaques in coronary arteries [10–13]. In the single mode
regime, OCT has reached shot-noise limited detection, which is the fundamental limitation
on penetration given a certain maximum permissible exposure [14–18]. The way to improve
penetration depth is to shift to the multimode regime, where signal collection efficiency
can be improved by an order of magnitude by collecting backscattered light from tissue
with a larger fiber core size and larger numerical aperture. Few mode fiber (FMF)-based
simultaneous bright and dark field OCT imaging has demonstrated good prospects to
achieve improved detection efficiency, although still suffering from crosstalk and sensitivity
drop due to mode mismatch between the higher-order modes and the reference [19,20].
The key to addressing these limitations in multimode OCT is to separate OCT signals of
different modes with a mode-selective device and detect them individually. More recently,
a modally specific photonic lantern was used to achieve mode-dependent coupling and
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solved the sensitivity issue in multimode OCT at 930 nm [21]. However, 930 nm is not a
commonly used center wavelength where the quantum efficiency of either Si or InGaAs-
based linear cameras is low. In this paper, we present the design of a detection module with
mode selectivity for the multimode OCT in 1.26–1.36 µm, typically used for OCT imaging
applications. In the simulation study, a two-mode FMF is used to construct the mode-
selective device. The simulation results suggest that the proposed few-mode detection
module could enable multimode OCT detection, totaling approximately 1.69 times of
conventional OCT signal.

2. Operating Principle of the Proposed Multimode OCT System and the Broadband
Fiber Optic Mode Coupler

In the standard OCT operating in a single-mode regime, only backscattered (ballistic)
photons coupled into the LP01 mode are detected. Different from the standard OCT, in the
proposed multimode OCT setup, an FMF guides both LP01 and higher-order modes to the
mode-selective coupler, which separates the signals of multiple modes with high coupling
efficiency. For simplicity, we chose a two-mode FMF in the study, which only supports
LP01 and LP11 modes.

In the proposed multimode OCT setup, a portion of the back-reflected or backscattered
light from the sample will be picked up by the beam splitter (BS) and coupled into FMF.
This portion of the signal is coupled to the FMF in both LP01 and LP11 modes, which are
shown as the red rays for LP01 mode and black rays for LP11 mode reflected by the BS in
Figure 1a. Compared with the standard single-mode detection, there is a significant portion
of the signal in the LP11 mode carrying useful information that can be detected in the
proposed multimode OCT system. The rest of the sample light, i.e., the backscattered light,
is directed to pass the BS and coupled back to the same SMF that delivers the excitation
light, as shown in the red rays in Figure 1a.
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Figure 1. (a) Multimode OCT schematic with the FMF-based mode-selective coupler. SMF: single
mode fiber; FMF: few-mode fiber; BPD: balanced photodetectors; BS: beam splitter; (b) Proposed
FMF detection module.

The detection of signals of both LP01 and LP11 modes will result in better signal
collection efficiency compared with the standard single-mode OCT, where only the signal
of LP01 mode is detected. Since the OCT noise is dominated by the shot noise of the
reference light, i.e., short noise limited, the sensitivity (signal-to-noise ratio with a perfect
reflector) is solely dependent on the signal detected [18]. On the other hand, the penetration
depth of OCT is proportional to the sensitivity.

The reference light is split into three beams, and each of the reference beams will
independently interfere with the signals guided in the excitation SMF, the LP01 mode of
FMF, and the LP11 mode of FMF, respectively. The three interference signals are separately
detected by the use of three balanced detectors.

FMF has been used extensively in communication applications to augment the trans-
mission capacity and for selective mode couplers [22–26]. For example, an FMF-based
mode-selective coupler was developed to achieve mode division multiplexing from
1515–1590 nm. The fundamental mode of the SMF LP01 mode is selectively coupled to
higher-order modes in FMF for transmission [26]. There are two parts of detection from
mode coupling in the proposed FMF detection module, as shown in Figure 1b. Firstly,
a tapered FMF is used to phase match its LP11 mode to the LP01 mode in SMF. In this
study, the FMF only supports two modes for simplicity. If FMF supports more than one
higher-order mode, each higher-order mode needs to be selectively phase matched to the
LP01 mode in SMF for selective mode coupling. Both FMF and SMF are side polished to
reduce the core-to-core separation to achieve effective mode coupling between “the LP11 in
FMF coupled to LP01 in SMF” occurring in the mode-selective coupler; the corresponding
output port (lower left SMF in Figure 1b) is guiding LP01 mode in SMF to interfere with
reference. Secondly, at the other output port of the coupler module (upper left FMF in
Figure 1b), the LP01 mode in FMF is coupled to LP01 mode in SMF through butt coupling or
fusion splicing [27]. Then the LP01 mode in SMF will interfere with another reference. For
desirable OCT imaging applications, the detection module is targeted to achieve broadband
selective mode coupling in the O-band (1.26–1.36 µm).

3. Results and Discussion

In this section, the phase matching conditions and the selective mode coupling
between the FMF and SMF in the proposed selective mode coupler structure is pre-
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sented. Firstly, the side coupling between the tapered FMF LP11 mode and SMF LP01
mode is modeled by two parallel waveguides of FMF and SMF with the simulation pa-
rameters as shown in Table 1, including the core diameters, the refractive index of the
cladding, which is calculated based on Sellmeier equation for fused silica to account
for material dispersion, numerical aperture (NA) which can be used to calculate the
refractive index of the core, the tapering ratio of the FMF, SMF core to FMF core sepa-
ration, wavelength band, and coupler length. The Sellmeier equation used in this work

is nclad(λ) =
√

1 + 0.6961633λ2

λ2 − 0.06840432 +
0.4079426λ2

λ2 − 0.11624142 +
0.8974794λ2

λ2 − 9.8961612 [28], where λ is the wave-
length with the unit of µm, and nclad is the refractive index of the cladding. The refractive
index of the core is calculated by ncore =

√
nclad

2 + NA2. In this study, a commercial
software (BeamProp®—RSOFT Design®) was used to model the beam propagation and
mode coupling in the optical coupler device.

Table 1. Simulation parameters in the side coupling.

Fiber Parameters SMF FMF

Core diameter (untapered) 8 µm 19 µm

Refractive index of the cladding Sellmeier Equation for silica Sellmeier Equation for silica

Numerical aperture (NA) 0.12 0.12

Tapering ratio 1 0.7–0.9

SMF core to FMF core separation 4–4.9 µm

Wavelength 1.26–1.36 µm

Coupler length Up to 20 mm

The effective mode indices in FMF and SMF are shown in Figure 2. The mode curves
in untapered FMF are depicted by red and yellow curves, which are higher than the
LP01 mode index curve of the SMF. Tapered FMF has lower mode indices compared with
untapered FMF. The phase match condition is satisfied when the LP01 mode curve in SMF
and the LP11 mode curve in tapered FMF are intersected in the O-band, as depicted by the
blue curve and green circles curve, respectively. The tapered FMF has a core diameter of
15.1 µm
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Figure 2. Phase matching curves of the modes in FMF and SMF.

The mode coupling between the two parallel coupled waveguides can be analyzed
by coupled mode theory [29]. The SMF core to FMF core distance is a critical parameter
for the mode coupling in two parallel coupled waveguides as the coupling coefficient
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kc is inversely dependent on it [30,31]. In addition, the coupling length is dependent on
the coupling coefficient. Thus, it is also dependent on the core-to-core separation. The
coupling ratio η in this dissimilar fiber coupler determines how much power is transferred
from one core to the other, so it is essential to analyze the wavelength-dependent coupling
ratio to ensure sufficient coupling for all wavelengths in the chosen band. The coupling
between the LP11 mode in tapered FMF and the LP01 mode in SMF is analyzed by the beam
propagation method. The normalized launch field is LP11 mode in the FMF core, and the
mode power in both the FMF core and the SMF core is monitored along the propagation
length. As shown in Figure 3a, the normalized mode power of LP11 mode in the FMF core
(solid curves) is coupled to LP01 mode in SMF (dashed and dotted curves) and vice versa
along the entire length of the coupler. The core-to-core separation is 4 µm in this simulated
structure. The maximum coupling occurs at the coupling length Lc, corresponding to
the maximum achievable coupling ratio η or the normalized coupled mode power of
LP01 mode in SMF. The mode coupling curves are plotted at two wavelengths of 1.26 and
1.36 µm, with different Lc and η values of 5575 µm, 0.94 and 8210 µm, 0.97, respectively.
Figure 3b shows the mode coupling curves at wavelength of 1.26 µm for coupler structures
with core-to-core separation d of 4 µm and 4.9 µm. Clearly, when d is larger, both cores
are further apart, leading to a weaker coupling thus longer coupling length Lc of 8210 µm
associated with η of 0.88.

The coupling length Lc, and the maximum coupling ratio η, present dependence on
the core-to-core separation d and vary in different wavelengths as shown in Figure 4a,b,
respectively. In general, coupler structures with larger d values have weaker coupling
coefficients, thus, are associated with longer coupling length Lc for maximum power
transfer [29]. As shown in Figure 4b, all the maximum power transfers occur at 1.31 µm, as
the phase matching condition is satisfied at this wavelength.
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Figure 3. (a): Mode coupling varies with coupler length wavelength; (b) Mode coupling varies with
core-to-core separation.
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Figure 4. (a): Coupling length as a function of wavelength and core-to-core separation d; (b) coupling
ratio η as a function of wavelength and core-to-core separation d.

The coupler length L is another critical design parameter shown in the colormap of the
broadband coupling ratio η in Figure 5a. The simulated coupler structure has core-to-core
separation d = 4 µm. The two solid lines mark the permissible coupler length range to
ensure the chosen coupler structure achieves a broadband coupling ratio above a threshold
value of 0.9. For other selected threshold values of the broadband coupling ratio varying
from 0.9 to 0.55 with an interval of 0.05 and varying core-to-core separation from 4 to 4.9 µm,
the allowed coupler length range is plotted in Figure 5b. As the threshold value increases,
the range of the coupler length becomes narrower. For a high coupling ratio threshold
value of 0.9, the selection of core-to-core diameter values is critical as the maximum and
minimum L curves close at d around d = 4.2 µm. In other words, coupler structures with d
values above 4.2 µm would not provide a broadband coupling ratio at 0.9 regardless of the
coupler length.

For a fixed coupler length, e.g., L = 5 mm, the coupling ratio in the O-band as a
function of the core-to-core separation d varying from 4 to 4.9 µm is plotted in Figure 6a.
Couplers with smaller separations are associated with a higher coupling ratio and are
more desirable to achieve broadband coupling above a chosen threshold value. Specifically,
the coupler with d = 4 µm can achieve broadband coupling above 0.9, as shown by the
solid blue curve. For estimation purposes, assuming the LP11 mode power is equivalent to
LP01 mode power and assuming the BS ratio is 90:10, the multimode detection using the
selective mode coupler with output to BPD2 in the multimode OCT system as shown in
Figure 1a could achieve 0.81 (0.9 × 0.9 = 0.81) or more for all wavelengths in the O-band.

The coupling of FMF LP01 to SMF LP01 mode is through direct fusion splicing between
both fibers. The coupling ratio varies from 0.87 to 0.89 for tapered FMF with a diameter of
15.1 µm, whereas it varies from 0.74 to 0.77 for untapered FMF, as shown in Figure 6b. The
LP01 mode detection using a conventional OCT signal is normalized to 1. The LP01 mode
detection through two paths, by BPD1 and BPD3, could achieve greater than 0.88 (0.1 + 0.9
× 0.87 ≈ 0.88) if using tapered FMF butt coupled to SMF. The total detected power in the
multimode OCT system is approximately 1.69 times of the conventional OCT signal.
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Figure 5. (a): Color map of the coupling ratio η as a function of coupler length and wavelength.
Two lines represent the allowed coupler length range to achieve the broadband coupling ratio 0.9;
(b) Allowed coupler length range for chosen coupling ratio threshold, varying from 0.9 to 0.55 with
an interval of 0.05.
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Allowed coupler length range for chosen coupling ratio threshold, varying from 0.9 to 0.55 with an

interval of 0.05.

For a fixed coupler length, e.g., L = 5 mm, the coupling ratio in the O‐band as a func‐
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Figure 6. (a) Broadband coupling of the device with varying core-to-core separation d, from 4 to
4.9 µm, and a fixed coupler length L of 5 mm. (b) Mode coupling of SMF LP01 to FMF LP01 mode in
tapered FMF (solid line) and untapered FMF (solid line with circles) through direct fusion splicing.

The FMF LP01 mode and SMF LP01 mode are not phase-matched. Thus, the coupling
efficiency would be very small. For example, the experiment result reported in a previous
paper shows the coupling efficiency was 0.1% between the FMF LP01 mode and SMF LP01
mode as compared to the coupling efficiency of 78.9% for desirable mode coupling between
the FMF LP11 mode and SMF LP01 mode at 1550 nm [26]. In addition, the noise primarily
comes from the reference light. The mode coupling is restricted to the sample arm, and
there is little effect on the imaging for two reasons. First of all, the optical path length
difference between the crosstalk and the reference is very large so that the interference
fringes due to crosstalk will not be detected by the detection electronics since it is essentially
a low-pass filter. Second, for biomedical applications, in most cases, the sample reflectivity
is a few orders of magnitude smaller than that of the reference light. Therefore, the sample
power (or its variations) can be negligible in calculating the noise. According to Eq. 2 in
Nassif et al. [18], the overall noise in electrons squared per readout cycle and per detector
element is given by:

σ2 = σ2
r+d +

ηe2Pre f τi

Ev
+

(
ηe2Pre f τi

Ev

)2
1
τi

τcoh

[
e2
]
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where e is the electron charge; Pre f is the reference arm power per detector element at the
detection arm fiber tip; τi is the integration time, and Ev is the photon energy. σ2

r+d is the

electrical noise term,
ηe2Pre f τi

Ev
is the shot noise term, which is equal to the electrons from

the reference light, and the rest of the right-hand side is the RIN term. In shot-noise OCT

devices, the equation above can be reduced to
ηe2Pre f τi

Ev
.

Therefore, the improvement in SNR is the improvement in signal power, which is
dependent on the beam-splitting ratio. The light attenuation in turbid media in biological
tissue is normally modeled with the Beer-Lambert law, which means the penetration depth
is approximately linearly related to the SNR. However, the improvement in penetration
depth is dependent on the attenuation coefficient of the sample, so without knowledge of
the sample, it is not possible to quantify penetration improvement. However, a simpler
way to understand the advantage of the proposed method is in terms of imaging speed. For
example, with a 90:10 beam splitter, the signal power will be 69% higher, thus improving
SNR by 69%.

If FMF supports more than one higher-order mode, e.g., in addition to LP11 mode,
LP21 and LP02 or even higher-order modes are also supported, the proposed FMF detection
module will be modified to cascade additional mode-selective coupler to selectively phase
match each higher-order mode to the LP01 mode in SMF for selective mode coupling in
the O-band. In each mode-selective coupler, the tapering ratio of the FMF and the core-to-
core separation need to be optimized specifically for the coupling between the selective
higher-order mode of FMF and the LP01 mode in SMF. The optimization for other higher-
order modes can be performed by the same procedure presented in this work. Taking
the assumption of equal power distribution among all the optical modes in the FMF, the
FMF detection module can be designed to achieve broadband mode coupling of coupling
efficiency over η between each higher-order mode and the LP01 mode in SMF, e.g., for
an N higher-order mode FMF, the proposed detection module could achieve 0.88 + Nη ×
0.9 times of conventional OCT signal. However, it should be noted that propagating more
higher-order modes in the FMF demands a good extinction ratio in the mode-selective
coupler. The extinction ratio determines the ratio of the selective mode coupling to the
desired mode compared to unwanted modes [26]. The extinction ratio will be a critical
parameter to minimize crosstalk among higher-order modes at the detector, and thus it
needs further study in the FMF coupler design optimization.

The presented results are based on simulations of the optimized FMF coupler only. We
have not built the system yet. We will report the experimental results in future publications.

4. Conclusions

Our preliminary simulation results demonstrate that multimode detection in OCT can
be efficiently realized using a broadband all-fiber mode coupler in the O-band. It enhances
signal strength as the simulation demonstrates over 1.69 times of conventional OCT signal
could be achieved. This approach will also improve penetration depth in OCT imaging.
Furthermore, the proposed detection module makes it possible to suppress speckle noise by
incoherent averaging OCT images of different modes as their speckles are not correlated.
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Abstract: High-performance megapixel focal plane arrays with small pixels have been widely used
in modern optical remote sensing, astronomical, and surveillance instruments. In the prediction
models applied in the traditional instrument performance analysis, the image of a point source is
assumed to fall on the center of a detector pixel. A geometrical image of a point source in the realistic
optical system may actually fall on any position on the detector pixel because the sensor’s line of
sight includes pointing errors and jitter. This traditional assumption may lead to an optimistic error,
estimated at between 10% and 20%. We present the critical factors that impact the performance
estimate in a realistic instrument design based on the prediction for the noise-equivalent power
(NEP). They are the optical centroid efficiency (OCE) and the ensquared energy, or more precisely, the
energy on the rectangular detector pixel (EOD). We performed the simulation studies for imaging
with an optical system with and without a generalized rectangular central obscuration.

Keywords: optical system performance; image quality; figure of merit; radiometry; optical centroid
efficiency, OCE; ensquared energy; energy on detector, OED; sensors; optomechatronics; optical devices

1. Discrete Pixels

The advances in IR sensor technology are arising to a large degree due to the im-
provements in focal plane array (FPA) technologies. These include an increase in FPA
size, reduced detector pixel dimensions, low dark current, low readout noise, and high
responsivity. A larger FPA covers a wider footprint in the object space, while a smaller
pixel may lead to a reduction in the object-space footprint. For example, the Teledyne
H2RG FPA, integrated into the James Webb Space Telescope (JWST), features a 2048 by
2048-pixel array with an 18 µm pixel pitch (distance between pixel centers) [1]. Raytheon
produced a 2048 × 2048 detector array with a 20 µm-pixel pitch for the UK Visible and
Infrared Survey Telescope for Astronomy (VISTA) [2]. The analysis presented here applies
to the instruments operating from the UV to the microwaves. The sensor figures of merit
were originally developed consistently using radiometric concepts for the IR part of the
electromagnetic spectrum, so we rely and build our theory on those.

Modern instrument design procedures continue to rely on parameters such as en-
closed energy and the noise-equivalent power (NEP) for their performance assessment
and prediction. In Figure 1, we illustrate how the previously important quantity encircled
energy increases as a function of the radius of the enclosing circle. We can also read the
approximate amount of energy that would be incident, or enclosed, within a (circular) pixel
equal to the radial distance r.

Photonics 2023, 10, 254. https://doi.org/10.3390/photonics10030254 https://www.mdpi.com/journal/photonics101
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radial distances that correspond to the zero-rings, due to the absence of radiation there. 

In Section 2, we introduce the concept of the energy on detector (EOD) to consider a 
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when the pixel axis and optical system axis do not coincide, the real situation in most 
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3, we develop a theoretical model to represent the imaging of a point source onto an arbi-
trary point on a detector pixel, to evaluate the NEP more realistically. We describe the 
relationship of the point spread function, psf, to both the EOD and the OCE. In the follow-
ing section, the imaging theory is developed for the case when the optical system and the 
detector pixel are misaligned. In Section 4, the simulation methodology is described in 
detail. Next, we analyze the performance of an optical system with and without central 
obscuration. Finally in Section 6, we discuss the significance of using the OCE to predict 
the future performance of an instrument during its conceptual design stage. The conclu-
sions are summarized in Section 7. 

2. Energy Interception by Discrete Pixels 
2.1. Energy on Detector (EOD) 

The concept of the EOD became important when rectangular pixels were introduced, 
their dimensions became ever smaller, and their dimensions started to define the instru-
ment resolution. Figure 2a presents the image that the optical system with a circular ap-
erture delivers onto the focal plane, where an array of sensing elements detect the incident 
radiation. The inset shows the corresponding grayscale intensity, assuming low exposure. 
The first bright ring is barely visible. Theoretically, there is zero intensity in the first min-
imum, measured from the central peak.  

This zero defines the first dark ring, or the radius of the resolution spot, according to 
the Rayleigh criterion, as illustrated in Figure 2b. In the 1980s, during the early periods of 
the design of the Mars orbiter, we required four pixels per resolution distance of the opti-
cal system to ensure the shape recognition of 1 m rocks or holes. Due to the 1 m diameter 
rover wheels, 1 m diameter holes were considered most detrimental, because the vehicle 
could become stuck inside. A hole would, then, bring its exploration to an end [3–5]. The 

Figure 1. The normalized integrated, encircled energy as a function of radius r of the enclosing
circle for an ideal, diffraction-limited optical system with a circular aperture. The obscuration ratio
ε is a parameter (ratio of radii), varying from 0 (no obscuration) to 0.8 in increments of 0.2. The
degree of compactness of the central spot may be recognized from the average slope of these curves
for radial values less than 1. About 84% of the energy is enclosed within the first dark ring of a
diffraction-limited optical system without the central obscuration. All the curves also flatten to zero
slope for radial distances that correspond to the zero-rings, due to the absence of radiation there.

In Section 2, we introduce the concept of the energy on detector (EOD) to consider a
rectangular pixelated image plane. We also account for the fact that the EOD is diminished
when the pixel axis and optical system axis do not coincide, the real situation in most
instruments. This leads us to introduce the optical centroiding efficiency (OCE). In Section 3,
we develop a theoretical model to represent the imaging of a point source onto an arbitrary
point on a detector pixel, to evaluate the NEP more realistically. We describe the relationship
of the point spread function, psf, to both the EOD and the OCE. In the following section, the
imaging theory is developed for the case when the optical system and the detector pixel
are misaligned. In Section 4, the simulation methodology is described in detail. Next, we
analyze the performance of an optical system with and without central obscuration. Finally
in Section 6, we discuss the significance of using the OCE to predict the future performance
of an instrument during its conceptual design stage. The conclusions are summarized in
Section 7.

2. Energy Interception by Discrete Pixels
2.1. Energy on Detector (EOD)

The concept of the EOD became important when rectangular pixels were introduced,
their dimensions became ever smaller, and their dimensions started to define the instrument
resolution. Figure 2a presents the image that the optical system with a circular aperture
delivers onto the focal plane, where an array of sensing elements detect the incident
radiation. The inset shows the corresponding grayscale intensity, assuming low exposure.
The first bright ring is barely visible. Theoretically, there is zero intensity in the first
minimum, measured from the central peak.

This zero defines the first dark ring, or the radius of the resolution spot, according to
the Rayleigh criterion, as illustrated in Figure 2b. In the 1980s, during the early periods of
the design of the Mars orbiter, we required four pixels per resolution distance of the optical
system to ensure the shape recognition of 1 m rocks or holes. Due to the 1 m diameter
rover wheels, 1 m diameter holes were considered most detrimental, because the vehicle
could become stuck inside. A hole would, then, bring its exploration to an end [3–5]. The
orbiter was tasked to find a suitable lander landing site in the middle of an initial Mars
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Rover exploration area. At that time, we were optimistically designing an autonomous
rover with optical navigation system for autonomous navigation on its surface.
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Here, psf(x,y) is the point spread function of the optical system. In theory, it is unitless, but 
in practice, it is measured in units of [watts/cm2] or [#photons/(cm2 s)] [6–8]. We note that 
the (degree of) coherence of the object point source is not of interest. The source coherence 
may only change the form of the psf(x,y) function to some degree, but not the theoretical 
development presented here. For the image centered at the origin (0,0), the psf(x,y) attains 

Figure 2. (a) Image by an optical system of a point object at infinity, with the central spot often
referred to as the Airy disc; (b) Rayleigh resolution distance is equal to the Airy disc radius.

Figure 3 illustrates schematically how the pixel dimension relative to the size of the
Airy disc affects the amount of energy that is incident on the detector pixel. The radius of
the Airy disc is dependent on the optical system, rA = 1.22 λF/#. The wavelength is denoted
by λ, and the instrument is characterized by its ratio f/D = F/#. D is the aperture diameter,
f is the focal distance, and F/# (sometimes also f/#) is the f-number. The pixel size is
equal to the Airy disc diameter in the third illustration from the left. The two pixels on its
left are larger by 20% and 40% than the diameter of the Airy disc. Both also include two
point-sources positioned at the Rayleigh resolution limit. In this case, the pixel dimension
acts to define the instrument resolution. The pixel on the furthest right would resolve the
two point-sources at the Rayleigh’s resolution limit, but only if it were correctly centered.
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Figure 3. A schematic illustration of how the pixel dimension relative to the size of the Airy disc
affects the amount of energy that is incident on and absorbed by the detector pixel.

We first modified the concept of energy enclosed within a circle, due to the existence
of rectangular pixels. We then introduced a modified term due to the random position of
the image centroid on the pixel. The EOD is a multiplicative correction factor that was
invoked in the system design to account for the spread of an image of a point source over
several detector pixels. The EOD may be formally defined as the fraction of energy incident
on the signal-carrying detector pixel over the total energy within the image. This definition
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implicitly assumes that the centroid of the image of the point source is located at the pixel
center. The pixel area is 4dxdy for the pixel dimensions of 2dx by 2dy.

EOD
(
dx, dy

)
=

∫ dy
−dy

∫ dx
−dx

ps f (x, y)dx dy
∫ ∞
−∞

∫ ∞
−∞ ps f (x, y)dx dy

[unitless] (1)

Here, psf(x,y) is the point spread function of the optical system. In theory, it is unitless,
but in practice, it is measured in units of [watts/cm2] or [#photons/(cm2 s)] [6–8]. We
note that the (degree of) coherence of the object point source is not of interest. The source
coherence may only change the form of the psf(x,y) function to some degree, but not the
theoretical development presented here. For the image centered at the origin (0,0), the
psf(x,y) attains the maximum value at x = y = 0 in this EOD formulation. The denominator
is the total energy in the image of a point source. In practice, the total energy only includes
the summation of energy incident on the few neighboring pixels.

In Figure 4, we see two images of point sources at infinity incident on the pixel
distribution in the focal plane. In part (b), we see a pixel that is nearly centered on the
optical axis, while in part (b), we show the displacement of the optical axis to the pixel
corner. The image that is of approximately of the same size as the pixel (upper right, darker
pinkish color) does not necessarily fall on a single pixel. The image centroid may be located
anywhere on the specific pixel with equal probability. Even a significant fraction of its
image, or energy, may be incident on the neighboring pixels.
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Figure 4. (a) The image of a point source is in general not aligned with a pixel center. (b) When in the
extreme, limiting case, the image falls on the corner of four pixels, the detected signal in upper right
pixel is equal to the noise in three neighboring pixels. In fact, there is no image detected against the
noise, or possibly a broadly blurred image.

The pixel size is the most important parameter that determines the amount of the
energy on detector, followed by the aperture configuration, and the aberrations that include
any manufacturing and assembly errors. We consider a general aperture, incorporating
an ideal circular aperture of diameter D with a rectangular obscuration, 0.27 D × 0.46 D,
where D is the diameter of the entrance pupil. Figure 5a presents the aperture geometry,
while part (b) shows the diffraction pattern in the image plane. The rectangular obscuration
results in an asymmetrical psf. Such an obscuration has the effect of moving the energy out
in an asymmetric fashion. The primary consequence of having an optical system with an
obscured aperture is a decreased EOD.

The energy EOD, and, by derivation, the NEP and other figures of merit, were tradi-
tionally calculated under the assumption that the image of a point source on the optical axis,
or the image centroid, is located exactly at the center of a detector pixel. This assumption
would imply that the center of the central pixel of a large FPA is aligned within nanometers
with the instrument optical axis. In the true and realistic operational environments, there
exists too much image jitter for this assumption to be valid.
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Figure 5. (a) Transmission profile of a circular pupil featuring a general rectangular central obscu-
ration. Gray indicates zero-transmission. The size of the obscuration rectangle is 0.27 D × 0.46 D,
where D is the diameter of the entrance pupil. (b) Point spread function, psf, of the circular pupil
with the internal central obscuration shown in part (a). Different profiles are obtained along the x-
and y-dimensions because the rectangular obscuration is asymmetrical.

2.2. Optical Centroiding Efficiency (OCE)

The image of a point source is, in general, not aligned with a pixel center. In an extreme
case, the image may fall on the corner of four pixels, as in Figure 4b. The energy in the
signal-carrying upper-right pixel is equal to the noise in three neighboring pixels. In fact,
there is no image detected against the noise.

The probability of finding the image centroid in the pixel center (that itself is located
on the optical axis) is negligibly small. In the first approximation, we may reasonably
assume that the position of the image centroid is uniformly distributed over the pixel area,
defined as the product of the pitch along the two perpendicular directions. A correction
analysis, hopefully leading to a single correction factor, is needed to formulate realistic
design concepts applicable to the actual operational conditions. This is precisely what we
endeavor to achieve here.

For a modern space/ground remote sensing instrument or a telescope with a large
FPA, it is practically impossible to image a remote point source at the very center of a
detector pixel, due to the image jitter and randomness in the line of sight. Toward a more
realistic instrument modeling, we introduced a parameter, related to the EOD, that we call
the optical centroiding efficiency (OCE). This statistical quantity tells us how much the
EOD changes on average when the image centroid is displaced to a position on the pixel at
(±∆dx, ±∆dy) where these two quantities lie between 0 and dx, dy, respectively.

3. Imaging Theory When Optical and Detector Axes Are Arbitrarily Displaced
3.1. Image Radiometry of a Point Source

The power collected from a distant point source by the aperture of the optical sys-
tem in the image (the focal) plane, EP, is most easily obtained from the power transfer
equation [9,10]. This formulation considers a continuous detection process, such as the film
used in the past, prior to the introduction of the digital sensors.

EP = ΦP ASτ [W] (2)

Here, ΦP is the irradiance at the instrument aperture [watts/cm2] or [#photons/(cm2 s)].
As is the sensor/instrument aperture area [cm2]; τ is the instrument optical transmission
factor, including any aperture obscuration or obstruction.

When the image of a point object in the object space is spread over several neighboring
detector pixels in the image space, only the central pixel contributes to the image formation.
The radiation that falls on the neighboring pixels represents the energy lost to the image-
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forming pixel, while it is added as the optical noise to the neighboring pixels [11]. This
formulation includes the consideration that the pixels have a rectangular shape.

Next, we consider the absorption of the energy by a signal-carrying pixel. We may
write ΦP in Equation (2) as a product of relative power ϕP and the EOD, introduced in
Equation (1).

ΦP
(
dx, dy

)
= EOD

(
dx, dy

)
ϕP = ϕP

∫ dy
−dy

∫ dx
−dx

ps f (x, y)dx dy
∫ ∞
−∞

∫ ∞
−∞ ps f (x, y)dx dy∞

[
W/cm2

]
(3)

Using this expression, Equation (2) becomes

EP
(
dx, dy

)
= τϕP AS EOD

(
dx, dy

)
= τϕP AS

∫ dy
−dy

∫ dx
−dx

ps f (x, y)dx dy
∫ ∞
−∞

∫ ∞
−∞ ps f (x, y)dx dy∞

[W] (4)

This power, referred colloquially to as energy, has traditionally been referred to as
“encircled”, when the integration limit is the radial distance from the origin, or “enclosed”
energy [12–21]. The maximum energy on a rectangular pixel, or the EOD, is obtained when
the image centroid coincides with the center of the detector pixel. We denote this energy as
the energy-on-detector pixel Ed(dx, dy).

Ed
(
dx, dy

)
= max

[
τϕP AS EOD

(
dx, dy

)]
= max


τϕP AS

∫ dy
−dy

∫ dx
−dx

ps f (x, y)dx dy
∫ ∞
−∞

∫ ∞
−∞ ps f (x, y)dx dy


 [W] (5)

An optical system afflicted with coma is an obvious case of an instrument in which the
image centroid is displaced from its geometric image. In systems without coma, however,
the image centroid and the center of the geometric image coincide.

The modern astronomical, space, or ground remote sensing instruments and tele-
scopes, equipped with a large FPA, feature the state-of-the-art line-of-sight and pointing-
control systems. Nevertheless, in a realistic environment with many sources of random
motion, the image of a point source does not necessarily come to focus on the center of a
desired detector pixel. This model was reasonable in the past, prior to pixelated detection
schemes. The practitioners accept, to some degree, the unavoidable randomness in the
pixel position [22–24].

The possibility of the displacement of the optical axis to an off axis point on the pixel
may be described as a probability. We call this probability the optical centroiding efficiency,
the OCE. We insert it as a correction factor into Equation (5) next to the EOD to obtain an
accurate estimate of the radiative power transfer from a point source onto a detector pixel
in a modern focal plane architecture.

Ed
(
dx, dy; ∆dx, ∆dy

)
= τΦP AS

[
EOD

(
dx, dy

)][
OCE

(
∆dx, ∆dy

)]
[W] (6)

The need for such a correction factor has occasionally been accepted implicitly in earlier
publications, employing a somewhat different terminology. We ascribe this unintentional
historical oversight to the difficulty associated with its estimate for conditions of random
environmental disturbances. The product EOD × OCE must be included in important
radiometric concepts, such as the NEP and the figures of merit derived from it.

A realistic formula for the NEP of the point-source imaging sensor may then be
reformulated, recalling its definition [25].

NEP =
1[

EOD
(
dx, dy

)][
OCE

(
∆dx, ∆dy

)] σ

R
[C/W] (7)

Here, σ is the detector noise in [counts] and R is the sensor responsivity in [counts/W]
or [counts/(#photon s)]; C denotes counts.
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3.2. Instrument Characteristic Function

The instrument characteristic function, or a point response function, prf, of a linear
system is the convolution of the individual point response functions of the constituent
subsystems [6]. The prf(x,y) of an optical instrument is the 2-D convolution of the psf(x,y),
the point spread function of the optical system (the imaging system of the camera or the
telescope), with the detector response function drf(x,y).

pr f (x, y) = ps f (x, y) ∗ ∗dr f (x, y) (8)

The computer-assisted design, analysis, and optimization of optical systems has
progressed to such an advanced degree that that psf(x,y) may be considered known. The
magnitude of its Fourier transform, the modulation transfer function, is employed as one
of the basic figures of merit for its performance evaluation. For the rectangular pixel, the
detector (considered spatial here) response function, drf(x,y), has the usual form,

dr f (x, y) =





1
{−dx < x < dx
−dy < y < dy

0 elsewhere
.
[
cm2

]
(9)

We may also consider drf(x,y) as the pixel aperture function. We use 2dx by 2dy as
pixel dimensions. This function is sometimes denoted as rect(x,y). It has the property that
its one-dimensional Fourier transform is a sinc(x) = sinx/x. The pixel center is, in general,
not aligned with the axis of the optical system; the pixel center is displaced randomly, in
direction and magnitude, from the optical axis of the image-forming system. The image
centroid falls on point (∆dx, ∆dy). We consider that the coordinates of the detector-pixel
center define the origin of the coordinate system, because the detector-pixel geometry
introduces a fixed reference in the image detection and readout.

Using Equation (8) and displaced psf (x−∆dx, y−∆dy), we obtain the instrument point
response function, prf, or the instrument function,

pr f
(
x, y; ∆dx, ∆dy

)
= ps f

(
x − ∆dx, y − ∆dy

)
∗ ∗rect

(
x

2dx
,

y
2dy

)
(10)

As a reference, the psf(x,y) of a perfect optical system with a circular aperture is a
Bessel function, presented in Figure 2a. Using the definition of convolution, we find

pr f
(

x, y; ∆dx, ∆dy
)
=
∫ ∞

−∞

∫ ∞

−∞
ps f
(
s − ∆dx, t − ∆dy

)
rect

(
x − s
2dx

,
y − t
2dy

)
dsdt. (11)

We could limit the spatial extend of the PSF (the Fourier Transform of psf ) to 10-
pixel sizes, meaning that the integration limits are equal to +/−10dx, +/−10dy (see also
Figure 1).

prf
(
x, y; ∆dx, ∆dy

)
=
∫ 10dy

−10dy

∫ 10dx

−10dx
psf
(
s − ∆dx, t − ∆dy

)
rect
(

x − s
2dx

,
y − t
2dy

)
dsdt (12)

The rect-function of the pixel dimensions just defines the integration limits to
smaller values.

pr f
(

x, y; ∆dx, ∆dy
)
=
∫ dy

−dy

∫ dx

−dx
ps f
(
v − x − ∆dx, w − y − ∆dy

)
dvdw (13)

The instrument function is, then, the psf, displaced by the optical axis displacement,
integrated for each value of (v,w), over the area of overlap of the psf function and the pixel
extent. Its maximum value, for a given psf (x,y) of the optical system and the detector sides,
is found when their coordinate axes coincide, that is, when ∆dx, ∆dy are zero.
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The peak value of the prf(x,y), the instrument response function, is the EOD of the
point source, found when ∆dx, ∆dy are zero. Thus, recalling Equation (1) for the energy
on detector, the EOD, we modify Equation (8), resulting in the normalized prfn(x,y). We
denote the pixel area, 4dxdy, with Ad.

pr fn(x, y) =
ps f (x, y) ∗ ∗dr f (x, y)

Ad
∫ ∞
−∞

∫ ∞
−∞ ps f (x, y)dx dy

(14)

The EODd(x,y) is the ensquared energy, that is, the energy enclosed within a pixel of
dimensions 2dx by 2dy when the image centroid is not coincident with the pixel center. In
this equation (∆dx, ∆dy) are the coordinates of the image centroid. Inserting the decentering
in Equation (1), we have

EODd
(
dx, dy; ∆dx, ∆dy

)
=

∫ dy
−dy

∫ dx
−dx

ps f
(

x − ∆dx, y − ∆dy
)
dx dy

∫ ∞
−∞

∫ ∞
−∞ ps f (x, y)dx dy

[unitless] (15)

This is the energy on the detector pixel that is misaligned by (∆dx,∆dy) with respect to
the optical axis. The OCE is, then, a single number that is defined as the ratio of the energy-
on-detector pixel that is misaligned by (∆dx,∆dy) with respect to the optical axis, averaged
over all possible misalignments, to the ensquared energy on the aligned detector pixel.

We treat the numerator of Equation (15) statistically, because of the lack of knowledge.
By averaging over all possible displacements of the optical axis from the pixel center, we
find the most likely value for the OCE(dx,dy).

OCE
(
dx, dy

)
=

(
1

Ad

) ∫ dy
−dy

∫ dx
−dx

EODd
(
dx, dy; ∆dx, ∆dy

)
d(∆dx)d

(
∆dy

)

EOD
(
dx, dy

) [unitless] (16)

The EODd(dx,dy;∆dx,∆dy) is given in Equation (15) and the EOD(dx,dy) in Equation (1).
The OCE(dx,dy) is a statistical variable that depends only on the relationship between
the pixel dimensions and the point spread function through EODd(dx,dy;∆dx,∆dy) and
EOD(dx,dy).

The OCE(dx,dy) is, therefore, defined as the normalized EOD(dx,dy) average over a
detector area, given the equal probability that the image centroid falls anywhere on the
detector pixel. It may be computed when we know the psf(x,y) of the optical system and
the detector pixel size, 2dx and 2dy. We are interested in the product of the OCE and the
EOD because it enters the figures of merit of radiometric systems, as in Equation (7).

4. Modeling and Methods

Both the EOD and OCE depend on the point spread function psf(x,y) of the optical
system. The psf(x,y) may be interpreted as the irradiance distribution of the image of a
distant point source, normalized to 1 at the origin. In an imaging optical system, it may be
found according to the wave diffraction theory of aberrations [26].

ps f (x, y) =
1

(λR)4

∣∣∣∣∣∣

∞∫

−∞

∞∫

−∞

P(ξ, η)e−πi(xξ+yη)D/λRdξdη

∣∣∣∣∣∣

2

(17)

Here, λ is the wavelength of the radiation emitted by the point source and i is (−1)1/2.
D denotes the aperture diameter. Both ξ and η coordinates are assumed to have non-zero
values in the image plane within the range [(−dx,+dx), (−dy,+dy)]. According to the formal
analysis, the limits of integration range from minus infinity to plus infinity while the image
is formed in the far field. R is the image distance. Furthermore, by the definition of the
f-number, F/#, (λR/D) = λF/#, the dimensions in the image plane may be normalized by the
system (λF/#)-product.
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The pupil function P(ξ,η) describes the pupil transmission characteristics. It is zero
outside of the projected aperture and at the obstruction. Inside, it may be expressed as a
wavefront aberration function W(x,ï) [27,28].

P(ξ, η) = A(ξ, η)e2πiW(ξ,η)/λ (18)

Here, A(ξ,η) and W(ξ,η) are the amplitude and the phase of the wavefront aberration
function, respectively. For a perfect optical system with circular aperture and no aberration,
the diffraction generates an image as a Bessel function of the first order. Its square, or
normalized irradiance, is also known as the Airy function (see Figure 2a).

We used a simple and straightforward approach to compute both the EOD(dx,dy) and
the OCE(dx,dy), presented schematically in Figure 6. We set up a lens in CodeV and calculated
psf(x,y) directly. We then exported psf(x,y) to MatLab, where the EOD was verified one more
time to ensure the consistency of numerical and ray-trace results. The OCE was obtained with
MatLab, employing the formulas here derived. We modeled the detector pixel as a square
with a dimension of 2d. For the sake of due diligence, part of our work was also numerically
evaluated (using Equations in Figure 6) with Mathcad. Both approaches agreed.
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Figure 6. Block diagram to determine the EOD and OCE, using CodeV or some other lens design
program to calculate the optical system psf(x,y).

Next, we describe a study as an illustration of the process, related to the pixel dimen-
sions. We discuss the determination of the OCE for an optical system with and without
a generalized rectangular obscuration. The difficulties and the repetition inherent to a
statistical analysis indicate why the concepts of energy on detector and optical centroid-
ing efficiency have not been implemented previously. The implementation through the
numerical evaluations are quite time consuming.

5. Effects of Pixel Size and Central Obscuration

We start this analysis with the detector size effects for an ideal optical system with
and without a central obscuration. We examine the cases of a circular aperture with and
without a rectangular central obscuration.

5.1. Aperture Configuration: No Central Obscuration

We analyzed two aperture types: an ideal circular aperture of diameter D and an
ideal circular aperture with a rectangular central obscuration. The obscuration size was
0.27 D × 0.46 D, where D is the diameter of the entrance pupil (see Figure 5a).

We first analyzed the case of unobstructed aperture. We present its OCE as a function
of detector size from 1.67 λF/# to 15 λF/# in Figure 7. We recall that the radius of the Airy
disc was 1.22 λF/#. Thus, we started with the pixel size that did not quite enclose the
central peak of the psf(x,y) or the Airy disc, even when the image of the point source fell on
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the center of the pixel. For the larger detector sizes, the radius of the image of the central
disc was increasingly smaller than the pixel dimensions. This figure shows that the OCE
increased with the pixel size.

Photonics 2023, 10, x FOR PEER REVIEW 9 of 16 
 

 

 
Figure 6. Block diagram to determine the EOD and OCE, using CodeV or some other lens design 
program to calculate the optical system psf(x,y). 

Next, we describe a study as an illustration of the process, related to the pixel dimen-
sions. We discuss the determination of the OCE for an optical system with and without a 
generalized rectangular obscuration. The difficulties and the repetition inherent to a sta-
tistical analysis indicate why the concepts of energy on detector and optical centroiding 
efficiency have not been implemented previously. The implementation through the nu-
merical evaluations are quite time consuming. 

5. Effects of Pixel Size and Central Obscuration 
We start this analysis with the detector size effects for an ideal optical system with 

and without a central obscuration. We examine the cases of a circular aperture with and 
without a rectangular central obscuration.  

5.1. Aperture Configuration: No Central Obscuration 
We analyzed two aperture types: an ideal circular aperture of diameter D and an 

ideal circular aperture with a rectangular central obscuration. The obscuration size was 
0.27 D × 0.46 D, where D is the diameter of the entrance pupil (see Figure 5a).  

We first analyzed the case of unobstructed aperture. We present its OCE as a function 
of detector size from 1.67 λF/# to 15 λF/# in Figure 7. We recall that the radius of the Airy 
disc was 1.22 λF/#. Thus, we started with the pixel size that did not quite enclose the cen-
tral peak of the psf(x,y) or the Airy disc, even when the image of the point source fell on 
the center of the pixel. For the larger detector sizes, the radius of the image of the central 
disc was increasingly smaller than the pixel dimensions. This figure shows that the OCE 
increased with the pixel size. 

 
Figure 7. Optical centroid efficiency vs. detector pixel size in units of [λF/#] for a perfect optical 
system with a circular aperture, without a central obscuration. 

From the block diagram presented on Figure 6, we noted that the construction of the 
OCE requires that the EOD(dx,dy) and EODd(dx,dy) be first determined. Therefore, we first 
calculated the prf(x,y). Figure 8 presents the instrument point response function, prf(x,y), 

A lens is set up in Code V. 
Its psf(x,y) is calculated.

EOD(dx ,dy ) =
psf x, y( )dx dy−dx

dx−dy

dy
psf x, y( )dxdy−∞

∞−∞

∞
( )

( )

( )

,
,

,

y x

y x

d d

d d
d

psf x s y t dsdt
EOD x y

psf s t dsdt

− −
∞ ∞

−∞ −∞

− −
=
 

 

OCE = 1
EOD(dx ,dy )

1
Ad

EODd (x, y)dxdy−dx

dx−dy

dy

Figure 7. Optical centroid efficiency vs. detector pixel size in units of [λF/#] for a perfect optical
system with a circular aperture, without a central obscuration.

From the block diagram presented on Figure 6, we noted that the construction of
the OCE requires that the EOD(dx,dy) and EODd(dx,dy) be first determined. Therefore,
we first calculated the prf(x,y). Figure 8 presents the instrument point response func-
tion, prf(x,y), vs. pixel number for two orthogonal directions and two different pixel sizes,
2d = 3.33 λF/# in (a), and 2d = 13.33 λF/# in (b).
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Figure 8. Two prf -s vs. pixel number shown for two orthogonal directions, x and y (in the inset
denoted as red, rows, and blue, columns): (a) 2d = 3.33 λF/# and (b) 2d = 13.33 λF/#. Pixel coordinates
along both dimensions are, in both cases, normalized to the pixel size. The general features of the
curves for the small (left) and large (right) pixel sizes are quite similar, except that the peak for
the smaller pixel (3.33 λF/#) is decreased by about 4% with respect to the peak of the large pixel.
Additionally, the top of the profile for the smaller pixel size (left) is more rounded and narrower than
that of the large pixel (right).

We next analyze a small detector pixel with a dimension of 3.33 λF/# to present our
methodology and to illustrate the salient steps.

5.1.1. Case 1: Small Pixel, No Central Obscuration

When the detector size was small, 3.33 λF/#, the pixel comfortably enclosed the
complete image of the point source. The diameter of the Airy disc (2.44 λF/#) was equal to
about 2/3 of the pixel side. The convolution of the detector area with the Airy function
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started to produce ripples on both sides of the maximum of the prf -profile. More energy
was distributed outside of the reference detector pixel, resulting in a reduced OCE. We
present this case in Figure 8a, exhibiting the prf(x,y) cross-section as a function of pixel
number for a 3.33 λF/#-pixel size. Rows and columns are superimposed because the optical
system is rotationally symmetric.

We note that the peak portion looks like a flat top with rounded edges, with a peak
value (that is, EOD) of 0.889. The curve is broadened at the base. The OCE for this case
was calculated by convolution and averaging to be 0.855. The values (3.33 λF/#, 0.855) are
entered as a single point in Figure 7. By neglecting the effects of the OCE, we overestimated
the instrument performance. The product of EOD by OCE was 0.760.

Next, we analyze the case of the detector pixel with dimension of 13.33 λF/# to illustrate
the effect of the pixel size.

5.1.2. Case 2: Large Pixel, No Central Obscuration

Figure 8b presents a prf(x,y) vs. pixel number for two orthogonal directions, x (red,
row) and y (blue, column) for 13.33 λF/# pixel size. The curves along the horizontal and
vertical direction overlap because we analyzed a rotationally symmetric circular aperture
and an ideal, diffraction-limited system. The detector physical extent ranges from −0.5
to +0.5 along the x- and y-axis. The pixel size of 13.33 λF/# is approximately 5 times the
diameter of the Airy disc; thus, the image of a point source is contained completely inside
this pixel. The pixel-side dimension on the abscissa is normalized to 1.0 (in units of λF/#).
The peak of the curve is centered at the origin because the square pixel intercepted the
highest amount of radiation when the image was centered at the origin. Furthermore,
because the pixel size is so much larger than the Airy disc diameter, the peak is nearly flat.
This means that the image may be appreciably decentered over the pixel surface, nearly to
the edge, before the prf changes.

The peak value of prf is the EOD. From Figure 8b, we read that EOD(dx,dy) was 0.967
for the 13.33 λF/#-pixel size. The psf of the optical system was convolved with the detector
pixel response function (drf ) to find EODd(dx,dy). Next, the OCE value was calculated by
integrating the prf(x,y) over the detector area (−0.5 < x < 0.5, −0.5 < y < 0.5). We calculated
a value of 0.926 for this OCE. The product of the EOD by OCE (0.967 × 0.926) was 0.895.

The size of the Airy disc, or more precisely, the diameter of the first dark ring, was
2.44 λF/#. For a relatively large detector size of 13.33 λF/#, the resulting prf(x,y) presented
a rather flat response similar to a hat, except for the slightly rounded corners, as seen in
Figure 8b. These values (13.33 λF/#, 0.926) are entered as a single point in Figure 7. By
neglecting the effects of the OCE, we overestimated the instrument performance.

In addition to the pixel size, the pupil geometry also plays an important role in the
amount of radiation collected at the image pixel for a point object at infinity.

5.2. Aperture Configuration: Circular, Incorporating Rectangular Central Obscuration

The optical system features a rectangular central obscuration of Figure 5a. The ob-
scuration size was 0.27 D × 0.46 D, where D is the diameter of the entrance pupil. The
rectangular central obscuration breaks the circular symmetry, resulting in an increased rela-
tive intensity level in the first ring and decreased diameter of the Airy disc [27]. Figure 5b
presents the point spread function, psf(x,y), as a function of pixel number, in units of [λF/#],
for two orthogonal directions, x (rows, red) and y (columns, blue).

Case 3: Small Pixel, Round Aperture with a Central Rectangular Obscuration

The pupil geometry-driven diffraction patterns incident on the pixel resulted in a rise
in additional features in the shape of the OCE and the EOD curves. This may be observed
in the OCE vs. detector size curves generated for the special case of an optical system with
the central obscuration, exhibited in Figure 9. We modeled the case where the diameter
of the first zero–zero ring was equal to 2 pixels (in units of λF/#). We observed a small
negative spike in the small pixel-size regime, at about 3.4 λF/#. Afterwards, the curve
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resumed a trend, like that presented in Figure 7. With nearly 60 percent obstruction by area,
this curve was expected to behave similarly to the lowest one in Figure 1. However, the
rectangular pixel and rectangular obstruction were somewhat in resonance to produce a
pronounced peak, followed by an unexpected dip in the small pixel-size regime.
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We investigated further the first six data points in the unusual spike region where 
the detector size ranged from 1.67 λF/# to 4.23 λF/#. We followed the same analysis steps 
as we did in Cases 1 and 2. We plotted the corresponding prf(x,y) cross-section graphs for 
the six key points indicated in Figure 9 as parts (a) through (f) in Figure 10.  

Figure 9. The OCE as a function of pixel size in [λF/#] for an optical system with a central rectangular
obscuration (see Figure 5a). We observed a sharp increase in the OCE value toward the first peak to
about 0.93 at about 2.05 pixels (Point B), followed by a sharp dip to about 0.82 (Point E) at about 4
pixels. Only from this, the lowest point on the curve, its shape starts to increase in a monotonical
fashion.

We investigated further the first six data points in the unusual spike region where the
detector size ranged from 1.67 λF/# to 4.23 λF/#. We followed the same analysis steps as we
did in Cases 1 and 2. We plotted the corresponding prf(x,y) cross-section graphs for the six
key points indicated in Figure 9 as parts (a) through (f) in Figure 10.
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If we simply applied the calculated value of the EOD (of 0.967) to characterize the perfor-
mance of the FPA with a detector pitch of, for instance, 13.33 λF/#, this would imply that 
the centroid of each point source is always imaged at the pixel center. This assumption 
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Figure 10. Cross-sections of the prf as a function of two orthogonal directions, x and y, or rows and
columns, for the points labeled in Figure 9. We modeled the case where the diameter of the first zero
in the ideal diffraction pattern was equal to 2 pixels (in λF/# units) with the rectangular obscuration
of Figure 4a. We observed that the EOD value increased with increasing detector pixel size. EOD
is the value of the prf at the pixel center. Concurrently, the shape of the prf(x,y) became modified
with increasing detector size from that with explicit support at the base to that with a thin base and
without features there.
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The pixel size was equal to the diameter of the Airy disc just before Point C. When the
pixel size was smaller than the disk diameter, the increase in the pixel size resulted in an
increased energy on detector. Moving the beam center around the detector surface area
did not affect the amount of collected energy, because the Airy function is relatively flat
at the central part. Therefore, the overestimation in the collected energy for this region is
quite significant.

Case 4, presenting a large pixel and circular aperture with central rectangular obscura-
tion, does not warrant a separate analysis. The OCE on Figure 9 for large pixel sizes has a
similar trend as that in Figure 7.

6. Discussion

Even when a sensor is equipped with a high-quality line-of-sight control, the centroid
of the image of a point source falls somewhere between the center and the edge of a detector
pixel for most realistic cases. This results in a decreased signal-carrying energy on detector.

6.1. Signal-Carrying Energy on Detector

We demonstrated that each point on the prf curve is the value of the energy on detector
at that point when the image centroid of a point source comes into focus at that point. If we
simply applied the calculated value of the EOD (of 0.967) to characterize the performance
of the FPA with a detector pitch of, for instance, 13.33 λF/#, this would imply that the
centroid of each point source is always imaged at the pixel center. This assumption would
generate an overly optimistic performance prediction for this FPA sensor because some
energy is spilled on the neighboring pixels when the image of a point source is imaged at
another position on the detector pixel. The more the image centroid is displaced from the
pixel center, the more energy is spilled on the neighboring pixels and, correspondingly, less
energy is contributed to the image formation.

Thus, a properly determined energy on detector used in the development of the detector
and system figures of merit would have the peak EOD value modified by the factor of OCE
which accounts for all possible misalignments between the optical system axis and the pixel
axis. Including the calculated OCE of 0.926, the product of EOD by OCE is 0.895. This is a more
realistic figure of merit of the sensor performance. By neglecting the effects misalignment, and
therefore those of the OCE, we overestimate the instrument performance by about 10% in the
optical system with a circular aperture without a central obscuration.

In summary, comparing both sides of Figure 8, we may form the first significant
conclusion for a diffraction-limited case with no central obscuration. As the detector pixel
size increases relative to the image size, the EOD increases together with the associated
OCE. By considering that the image of a point source falls on the pixel center, at least 10%
energy is overestimated in performance measures.

6.2. Small, Medium, and Large Pixels to Collect Signal-Carrying Energy

We performed an illustrative study of the OCE vs. detector pixel size for a circular
aperture with and without the rectangular central obscuration, displayed in Figure 11. We
treated three regions of interest separately.

We first consider the case without the central obscuration. When the pixel size (2d) is
smaller than the psf diameter, used in applications of shape recognition and object height
contouring, the EOD increases together with the associated OCE. Additionally, the EOD
increases according to the traditional concept of the enclosed energy. The OCE, however,
increases at a much faster rate than the EOD, because psf is nearly constant over the pixel
up to the pixel edge.

For the intermediate regions of pixels being equal to two to four central spots, the
energy on detector still increases, but less rapidly than in the small pixel regime. The
OCT increases in this region because the energy on detector is still relatively large at the
pixel edge.
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Figure 11. The OCE as a function of pixel size in [λF/#] for an optical system with and without a
central rectangular obscuration. A sharp increase in the OCE value toward the first peak at about
2.05 pixels is followed by a sharp dip at about 4 pixels only for the case of the circular aperture with a
central obscuration. The OCE curve for a circular aperture without a central obscuration increases in
a monotonical fashion. CA denotes a circular aperture.

When the detector pixel size becomes larger than four central spots, the EOD increases
start to moderate according to the traditional concept of the enclosed energy. The OCE
increases slow down with the increase in the detector pixel size, because at large distances,
there is increasingly small increment in detected energy. At the edge of a relatively large
pixel, the psf is already small, resulting in a large fraction of the pixel area where the image
may not be completely detected to produce a large OCE, approaching its limiting value of
nearly 0.90.

The situation is appreciably different in the case of optical systems with a sizable
central obscuration. They are characterized as having a smaller spot diameter, and more
energy is spread into outer rings than those with a circular aperture without central
obscuration. Thus, such a system could be required to have somewhat larger pixels to
collect a slightly spread-out spot.

In the region where the pixel size is smaller than the central spot diameter, the EOD
for a system with a large central obscuration increases with the pixel size more slowly than
for a clear system. We already observed this phenomenon in the enclosed energy graphs
in Figure 1. The OCE, however, increases very rapidly when the central spot is smaller
than the pixel. The value of the sensor point response function prf at the pixel edge is
still high just because the pixel is smaller than the central spot. Table 1 summarizes the
point numbers, the pixel size, the EOD from Figure 9, the OCE values from Figure 10, and
their product.

Table 1. The EOD, the OCE, and their product for small and medium pixel sizes and a circular
aperture with a rectangular obscuration.

Point
on Figure 9

2d
[λF#]

EOD
from Figure 10

OCE
from Figure 9 OCE × EOD

A 1.69 0.581 0.864 0.502

B 2.12 0.609 0.922 0.561

C 2.54 0.673 0.901 0.606

D 3.39 0.805 0.836 0.673

E 3.81 0.847 0.820 0.694

F 4.23 0.866 0.825 0.714
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When the pixel size is equal to about two to four spot diameters, the psr value at the
pixel edge stars becoming increasingly smaller, close to zero. The EOD still increases with
the detector pixel size because energy is spread out to higher-order rings nearly linearly
(see Figure 1, bottom curve). The outer pixel regions, however, start to make a decreased
contribution to the overall OCE, because the prf value there is low. In this region, we
observe a pronounced decrease in the OCE as a function of the pixel size.

For pixel sizes equal to or larger than about four bright spots, the OCE starts to increase
at a somewhat faster rate than in the case of the clear aperture. In this region, the EOD
also increases at a rate that depends on the amount of obscuration. Yet, the side lobes have
a lot of energy, so increasing the pixel dimension also results in a steady increase in the
OCE values.

The energy on detector always increases with the detector size because a larger area of
the detector always intercepts more energy.

Based on this analysis, we may conclude that the OCE is a meaningful quantity in the
case when the detector pixel size is sufficiently large that it collects a significant fraction of
energy in the image of a point source. In the case of a large obscuration with a transmission
loss of about 0.6, the smallest reasonable value for EOD is about 0.85. This means that in
diffraction-limited cases, the concept of the OCE is applicable and relevant for cases with
relatively small central obscurations.

The OCE analysis does not apply to the cases where large amount of energy is spread
out from the central spot, or where the detector is smaller than the central spot diameter.

The size of the pixel, which is smaller than the diameter of the Airy disc, corresponds
to the case when imaging that requires high topographic details is performed, as in the
Mars landing survey, and where the amount of incident energy is not an issue. Thus, one
would one expect to analyze the displacement of the pixel and the optical system axes for
such cases.

7. Summary and Conclusions

We introduced novel concepts and rationale for more appropriate terminology to
describe the image detection process in modern digital instruments. The first one is the
energy on detector (EOD), that replaces the old concept of energy enclosed inside a circle
to assist with the performance measures of the pixelated sensors. We further argued that
the image of a point source at infinity neither usually nor generally falls in the center of
a pixel. Rather, in modern instruments, the axis of an optical system intersects a pixel at
any point on the pixel surface. Considering that this point is unknown, we proposed as the
second novel concept the optical centroiding efficiency (OCE). It is found by convolving
the point spread function (psf ) of the optical system with the detector responsivity function
for all possible positions on the pixel. The product of these two quantities (EOD × OCE) is
proposed as a more realistic quantity to assess the sensor figures of merit.

Using the linear system theory in the instrument analysis, we developed a theory to
evaluate the EOD and the OCE. We implemented it numerically on the CodeV and MatLab.

We performed two studies to illustrate the usefulness of these new concepts. (i) The
OCE vs. detector pixel size for an ideal circular aperture. (ii) The OCE vs. detector pixel
size for a circular aperture with a rectangular central obscuration. Based on this analysis,
we may conclude that the OCE as a design parameter is a meaningful quantity in the case
when the detector pixel size is sufficiently large that it collects a significant fraction of
energy in the image of a point source. In the case of a large obscuration with a transmission
loss of about 0.6, the smallest reasonable value for the EOD is about 0.85.

The OCE is proposed as the meaningful concept in the system performance assessment
and in the development of figures of merit when the resolution of optical system is matched
to the pixel size.

In the future, we want to extend this study to aberrations. We also plan to apply this
theory to other telescopes and remote sensing instruments.
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Abstract: This study sought to explain the physical phenomenon that eludes the constraints of
the Rayleigh criterion in the microstructure observation method using speckle interferometry, for
which super-resolution has been experimentally proven; the study was conducted using computer
simulations. Separating the light from two light sources in close proximity, which exceeded the
Rayleigh criterion under incoherent light, was believed to be impossible. The simulation results,
however, showed that when coherent light is used, the separation of two close points is not necessarily
impossible if the light phases between the two points are different. Furthermore, the resolution
of microstructure observation techniques based on speckle interferometry was discussed. A new
interpretation of the Rayleigh criterion in super-resolution techniques based on speckle interferometry
was reported.

Keywords: Rayleigh criterion; super-resolution; coherent light source; speckle interferometry;
computer simulation

1. Introduction

Super-resolution technology is an important observational technique that supports
advances in biotechnology. When super-resolution technology is viewed from a broad
viewpoint, it can be broadly divided into two categories: optical subjects that must be con-
sidered when collecting images of micro-objects that exceed the diffraction limit of the lens
and subjects that must be considered when processing the collected images. The previous
category is based on the Rayleigh criterion in observation optics, Abbe’s theory of image
formation, etc. [1,2]. The second category can be considered image processing techniques,
such as the Lucy–Richardson method [3,4], which processes the collected images.

In these categories, this study discusses the problems of super-resolution, which has
already been reported as a technique for observing microstructures beyond the diffraction
limit, based on speckle interferometry.

Traditionally, microstructural observations have been performed using optical mi-
croscopy. However, it is widely acknowledged that optical microscopy cannot observe
microstructures that exceed the diffraction limit of observation optics, as indicated by the
Rayleigh criterion [1,2].

Several techniques have been proposed to avoid the Rayleigh criterion in order to
achieve super-resolution. For example, in biotechnology, fluorescent proteins have recently
been used to observe microstructures [5–15]. Specifically, new techniques, such as pho-
toactivated localisation microscopy (PALM) and stimulated emission depletion (STED),
have been developed to facilitate new biotechnological research. In addition, imaging of
nanoscale objects has been achieved by bringing dielectric microspheres into contact with
the subject [16,17]. Furthermore, new nanoscale observation techniques have been reported,
such as superlens imaging [18] of objects several nanometres in size has been attempted.

Although image acquisition beyond the Rayleigh criterion is considered impossible
in optical microscopy, if it were possible, it would be conceivable to capture moving
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images for extended periods as well as high-speed photographs of dynamically active
living organisms in two dimensions. If such techniques can be developed, image-capturing
techniques using optical microscopy will become an attractive technology to support
developments in bio-research. Therefore, the development of such technology is eagerly
awaited.

Recently, a technique for observing the shape of microstructures beyond the diffraction
limit, which analyses the phase of light based on speckle interferometry [19–21], has
been reported [22–26]. This new observation technique achieves super-resolution by
detecting the phase distribution of light from the observed object, instead of processing
only information from images captured as a light intensity distribution, as in conventional
techniques. Super-resolution is obtained by analysing the information from the viewed
object as a phase distribution of light using the speckle interferometry method.

In this method, based on Abbe’s image theory [27], scattered light with many ray
vectors is used as illumination light to increase the number of rays passing through the lens
aperture. The phase change at the confocal on the imaging element on the surface under
test is reconstructed in the computer as a two-dimensional phase distribution, and the
surface shape of the object under test is observed as a three-dimensional shape distribution.

However, this technique based on speckle interferometry has been able to achieve,
albeit experimentally, observations that exceed the Rayleigh criterion, which for many
years was thought to be unreachable. However, there is no clear explanation as to what
kind of physical phenomena enable this observation technique to exceed the Rayleigh
criterion.

In this study, physical phenomena that elude the constraints of the Rayleigh criterion
in microstructure observation methods using speckle interferometry were explained with
computer simulations using COMSOL Multiphysics [25], which is capable of electromag-
netic field simulation analysis.

This study clarifies that the Rayleigh criterion [2], which is based on the analysis of the
intensity distribution of light assuming traditional incoherent light, must take into account
the phase variation between nearby light sources when dealing with coherent light.

2. Materials and Methods
2.1. Techniques for Observing Microstructures beyond the Diffraction Limit Based on Speckle
Interferometry

In the light of the microstructure observation technique used in this study, for example,
it is assumed that the cross section of the measured object shown in Figure 1a can be defined
as f(x).

Based on this assumption, when a lateral shift δx is given to the measurement object,
as shown in Figure 1b, the shape displacement occurring at each measurement point can be
defined as f(x) − f(x + δx) from the speckle interferometric measurement method presented
in a previous report [22]. The displacement of the shape is then accurately measured using
speckle interferometry, and the pseudo-differential value {f(x) − f(x + δx)}/δx in the shift
direction with respect to the shape is obtained by dividing the detected displacement by the
lateral shift value. Furthermore, the shape of the measurement object can be reconstructed
by integrating pseudo-differential values.

In the calculation process, the phase distribution obtained by integration is aligned
in two dimensions based on the relationship between the positions of each confocal point
(P’c) at each measurement point (Pc), as shown in Figure 1c, resulting in the reconstruction
of a three-dimensional shape f(x).

If the Rayleigh criterion is exceeded at nearby measurement points, the microstruc-
ture cannot be observed according to the traditional idea. However, super-resolution
has been experimentally performed using this method based on speckle interferometry
under beyond the diffraction limit. Simulations were performed in this study to answer
this question.
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Figure 1. Principle of the measurement system. (a) Section of the measured object at the original
position. (b) Section of the measured object at the shifted position. (c) Detection of two-dimensional
phase distribution using the perfect optical system.

2.2. Simulation Model

As shown in a previous report [26], a speckle interferometer was constructed using a
laser source with a wavelength of 532 nm, an objective lens (Mitutoyo M Plan Apo 200×)
with a magnification of 200×, and an aperture (NA) of 0.62.

In speckle interferometry, only two speckle patterns are captured before and after
the lateral shift of the measured object. Super-resolution images can be produced at a
resolution of several tens of nanometers [23,24] using the speckle patterns.

However, it is extremely difficult to remove disturbances completely, such as the
effects of stray light on the actual optical system, to confirm the principle of this method, as
attempted in this study. In addition, it is difficult to discuss physical phenomena in detail
owing to the limitations of measurement accuracy and the experimental environment.

This study investigates how electromagnetic simulation software (COMSOL Multi-
physics) [25] can be used to observe microstructures beyond the diffraction limit.

The computer simulation model used in the study is shown in Figure 2a.
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Figure 2. Computer simulation model. (a) Optical system. (b) Measured object.

In experimental optics, a reflective diffraction grating made of glass and a microstruc-
ture drawn on a silicon wafer using an EB lithography machine were used as the measured
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objects. The light reflected from the measured object [22–26] was analysed. The simulation
described in a previous paper [25] set up a sinusoidal shape on the glass surface as the
measurement object model. However, because this study is concerned with the Rayleigh
criterion, the measurement objects were further simplified.

In other words, when a flat plane is the measurement object, as shown in Figure 2b,
spherical wave light sources with the same phase are assumed to be lined up on the
same surface.

When a surface with protrusions or steps is the object to be measured, the spherical
wave light sources are arranged with the phase given according to the shape of the object
by setting the wavelength of the light source to 2π rad so that it corresponds to the height
of the protrusions.

In this way, the measurement object is set up, with the projection shape expressed as a
phase distribution.

In the simulation model shown in Figure 2a, the mesh size was set to 1/12 of the
wavelength, which was confirmed to have no effect on the calculation results even if the
mesh size was not chopped any finer, in order to set conditions where the mesh size does
not affect the calculation results as much as possible, while considering the load on the
computer memory. As a result, it was confirmed that even when the mesh size was set to
1/12 of the wavelength, the difference in calculation results did not change more than 1%
from the results with a mesh size of 1/20. In addition, the arrangement of light sources
as measurement objects was also set with 0.4 nm as the minimum unit interval, while
considering the load on the computer’s memory. To effectively use the limited memory
available, the parallel side walls and the right-side wall of the computational domain
were defined as perfectly matched layers (PMLs). The simulation model was designed to
minimise the load on the memory capacity by defining the computational domain with the
minimum possible memory size (2 TB), as in a previous study [25].

The light sources used in the simulations were plane-wave and spherical-wave light
sources defined by Equations (1) and (2), which are derived from Maxwell’s equation [2]

EP = Va × exp{i(2py/λ + φ)} (1)

Es = Va ×
exp

{
i(2p/λ

√
x2 + y2 +φ)

}

√
x2 + y2

(2)

In this study, the spherical wave source was used as the model for the scattered light
used in speckle interferometry. In the light source model, Va is the electromagnetic field in-
tensity, λ is the wavelength, and φ is the initial phase of light from the source. As described
before, the phase distribution was used to set the shape of the measurement object.

The simulation model assumed the objective used is a thin biconvex lens; the refractive
indices of air and the lens were defined as 1.0 and 1.5, respectively. Furthermore, as shown
in Figure 3a, the focal length (f = 37.8 µm) was specified by determining the lens focal
point as the point where the highest electromagnetic field intensity is focused by the lens
when plane waves as collimated light are irradiated from the left wall surface to the lens.
Furthermore, when the spherical wave source (Pd) is positioned on the optical axis of the
left wall surface, as shown in Figure 3b, and the lens is positioned at a distance from the
left wall surface by the focal length of the lens defined in Figure 3a, the electromagnetic
field intensity after passing through the lens is confirmed to be collimated light.

From these results, the focal length f of this optical system was confirmed to be 37.8 µm.
In general, the lens used here is designed with a glass with a refractive index of 1.5 by
means of arcs with a radius of 40 µm. Since both convex surfaces of the lens are formed
by arcs of radius 40 µm, the focal length can be obtained as 40 µm if the thickness of the
lens is sufficiently thin [1,2]. However, since the thickness of the lens is not necessarily
thin enough, 5.83 µm in relation to the lens diameter, the focal length in this study was
determined using the procedure shown in Figure 3. As a result, the NA of the objective lens
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could be estimated as 0.37 [= 1 × sin (tan−1 (15/37.8))]. The diffraction limit as a Rayleigh
criterion could then be obtained as 877 nm (=0.61 × λ/NA = 0.61 × 532/0.37).
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Figure 3. Focus length of the optical model. (a) Checking the focal point in the case of collimated
light incidence. (b) Confirmation of collimated light at the focal point light source.

To further investigate the characteristics of the optical system, as shown in Figure 4, a
spherical wave light source Pd (wavelength 532 nm) shown in Figure 3b was placed on the
optical axis on the left wall of the optical system, and the focal length of the lens was set to
37.8 µm, as calculated in Figure 3.
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The distance a between the lens and the light source and the distance bs between the
lens and the point Pe where the electromagnetic field intensity is the highest near the image
formation position after passing through the lens were examined based on the Gaussian
lens formula [1,2].

In this study, the distance bs between the lens and the point Pe where the electromag-
netic field intensity is the highest near the image formation position after passing through
the lens was compared with the distance bc obtained based on the lens formula. The results
calculated using the values of the distance a to the light source and the focal length f of the
lens yielded the values as bc shown in Table 1.
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Table 1. Factors of the optical system (µm).

a f bc (Calculation) bs (Simulation) bc–bs

60 37.8 102.2 105.8 −3.6

70 37.8 82.2 84.5 −2.3

80 37.8 71.7 74.7 −3

Comparing the value calculated based on the lens formula [1,2] with the distance
between the point of highest intensity in the electromagnetic field intensity distribution
obtained with computer simulation and the distance to the lens (bs), it was confirmed
that the values of bc and bs are approximately similar when a is set to 60, 70, or 80 µm,
considering the thickness of the lens. Based on these results, the computer simulation
model set up in this study is considered to reproduce the actual optical system. Based on the
results of the study, a focal length of 37.8 µm was used in the following simulation model.
Furthermore, by setting the distance between the measurement object and the lens to
70 µm, the simulation was conducted using the bs (84.5 µm) values in Table 1 for the image
formation position of the illumination light source. In this case, the lens magnification was
1.2×. Since this is a computer simulation, the phase distribution can be easily calculated
using not only the intensity distribution of the light but also the real and imaginary parts
of the intensity distribution.

In this case, the intensity distribution on the image plane (A-A in Figure 4a) is shown
in Figure 4b and the phase distribution in Figure 4c.

On the imaging plane, an intensity distribution symmetrical in the x direction (Figure 4b)
with a peak (Pe) on the optical axis can be confirmed. However, the phase distribution is
obtained in the range of −π to π rad, since the calculation result as a simulation result is
not phase-unwrapped as an inverse tangent function of the ratio of the real and imaginary
parts of the intensity distribution. It can be confirmed that the phase is 0 rad at point Pe on
the imaging plane, which is considered confocal for a spherical light wave source with an
initial phase of 0 rad.

Using this computer simulation model that identifies the fundamental properties of
the optical system, this study examines the physical effects of the Rayleigh criterion on the
measurement results in a super-resolution technique based on speckle interferometry.

3. Results and Discussion
3.1. Consideration of Rayleigh Criterion in Super-Resolution Technology Based on Speckle
Interferometry by Simulation
3.1.1. Consideration of the Case Where the Two Light Sources do Not Exceed the
Rayleigh Criterion

The spherical wave light source located on the optical axis on the left wall of the model
shown in Figure 4a was newly replaced on the left wall as a spherical wave light source
symmetrical to the optical axis separated by 2 µm across the optical axis with the same
phase. The electromagnetic field intensity distribution when light is emitted from the two
light sources is shown in Figure 5a. The intensity and phase distributions on the imaging
plane in this case are shown in Figure 5b,c.

The distance between the light sources was 2 µm, and the diffraction limit of the optics
was 877 nm, which means that the two light sources are set at positions that do not exceed
the Rayleigh criterion. As a result, spherical wave beams from two points 2 µm apart
interfere, and Young’s fringes [1,2] are formed in the intensity distribution, as is generally
well known. In the B-B section of the imaging plane, as shown in Figure 5b, although
the intensity distributions are not completely separated, the two peaks can be observed
because they do not exceed the Rayleigh criterion. It can also be clearly observed that the
zeroth-order and ±first-order light of the Young’s fringes pass through the lens aperture
and are focused at the image formation plane. The phase distribution on the imaging plane
in this case is shown in Figure 5c.
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bution in section B-B.

When looking at the nearby optical axis in Figure 5c, the phase difference between
the two light sources at x = −1.2 and x = 1.2 as the confocal where the light sources are set
up was 0 rad, because the initial phases of the two spherical wave light sources set up in
Figure 5a were both 0 rad.

That is, light from two spherical wave light sources with the same phase set at a
distance that does not exceed the Rayleigh criterion can be considered not only as two light
sources in terms of the intensity distribution on the image plane but also as the same phase
in terms of phase distribution. This means that when considering the Rayleigh criterion in
super-resolution technology based on speckle interferometry using coherent light as a light
source, it is necessary not only to discuss the intensity distribution but also to investigate
the phase distribution in detail, which has not been sufficiently investigated in the past.

3.1.2. Consideration of the Case where Light Sources Are Located at a Proximity Distance
Exceeding the Rayleigh Criterion

Next, the case when the Rayleigh criterion in the earlier section is not exceeded
occurred, and the distance between two spherical wave sources decreased from 2 µm
specified in Figure 5 to 0.5 µm, as illustrated in Figure 6a.
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Figure 6a shows that as the distance between the two light sources becomes closer, the
±first-order light of the Young’s fringes spreads out greatly to the left and right, clearly
not passing through the lens aperture, and only the zeroth-order light passes through the
lens and is focused at the image formation position. As a result, the intensity distribution
on the imaging plane when emitting light from two points simultaneously, as shown in
Figure 6b, cannot be observed as two separate light sources, even though the light was
emitted separately from each of the two points. Instead, it is observed as a single peak with
a maximum value near the centre between the peaks of the separately emitted lights. That
is, the well-known phenomenon based on the Rayleigh criterion can be observed [1,2].

In this case, since the initial phase of the light source placed as a spherical wave
source was set at the same value as 0 rad for both light sources, the phase difference of the
observed light was 0 rad at the two points x = −0.3 and x = 0.3 close to the nearby axis
surrounded by the red dashed line, as shown in Figure 6c.

It is considered that the phase difference corresponding to the initial phase of the
two light sources is detected between the confocal points of the two light sources installed
as the measurement object, as shown in Figure 5, on the image formation plane of the
two light sources placed at a distance closer than the Rayleigh criterion. This means that
when the diffraction limit based on the Rayleigh criterion is exceeded, the phase of the two
light sources can be detected as the phase difference between the two points, although the
intensity distribution can only be confirmed as a single point due to diffraction phenomena.

Thus, it can be understood that according to the traditional Rayleigh-criterion-based
approach, imaging the shape of a measured object structure is a process based on intensity
distribution, and therefore, due to phenomena caused by diffraction, it is not possible to
observe microstructures beyond the diffraction limit using imaging techniques.

However, by treating the phase distribution and especially the phase difference be-
tween two light sources, it is possible to analyse the phase of light from each point, even
if they are two points in close proximity, and there is a possibility that the shape of the
measurement object can be reconstructed.

3.1.3. Consideration of Different Initial Phases of Light Sources Located at Close Proximity
Distances Exceeding the Rayleigh Criterion

The difference between the experimental conditions based on super-resolution technol-
ogy based on speckle interferometry and the simulation conditions when dealing with light
from light sources of the same phase, as described in the previous section, is discussed next.

In the super-resolution technique based on speckle interferometry, when observing
a microstructure, reflected light with a different phase is reflected from each point on the
surface of the measured object, depending on the shape of the microstructure, and this
reflected light is analysed.

However, the simulation in the previous section differs in that the light sources in
close proximity have the same phase.

In this study, it was considered that the reflected light with different phases plays an
important role in realising high resolution beyond the Rayleigh criterion in super-resolution
technology based on the speckle interferometry technique.

Therefore, different from Figure 6, the initial phases of the two light sources were set
as 0 rad and π rad, and the phase on the image formation plane was examined next when
the distance between two points was set at 0.5 µm, as in Figure 6. The results are shown
in Figure 7.

Comparing the electromagnetic field intensity distribution in Figure 7a with the result
in Figure 6a, it can be seen that the phase of the intensity distribution reversed and the
intensity of light near the optical axis weakened.

It can also be seen that the intensity of light in the diagonal directions, where the
existence of intensity could not be observed in Figure 6a, became stronger. Since the
initial phase differs by π rad between the two light sources, it is a natural result that the
zeroth-order and ±first-order phases of Young’s fringes in Figure 6a change by π rad.
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As a result, light with strong intensity in the space between the zeroth- and ±first-order
light in Figure 6a is considered to be generated, as shown in Figure 7a. In short, it can be
understood that the separation of the two image points is due to destructive interference
between the two images, as already suggested by microsphere-assisted microcopy [16,17].
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With this change in the direction of light, there is light that passes through the lens
aperture, which did not exist in the in-phase case. This is thought to be the phenomenon
of two bright spots on the image formation plane. In this case, when the light in this new
direction is observed as an intensity distribution on the imaging plane, two intensity peaks
can be observed near the optical axis, as shown in Figure 7b. Detailed observation of this
phenomenon in Figure 7a shows that light emitted from the two points forms interference
fringes known as Young’s fringes and that the phase of the fringes is inverted and divided
into two directions (upper and lower). Next, a part of the light from each of the two
directions passes through the lens and reaches the image plane, forming two peaks as the
intensity distribution. That is, Figure 7a,b confirms that there are two light points at the
observation point on the image formation plane.

Furthermore, when observing the nearby optical axis of the phase distribution in
Figure 7c in detail, the phase difference at the position of each white circle at x = −0.3 and
x = 0.3, the confocal point of the two spherical wave light sources changed by π rad.

When the phase between the two light sources on the left wall differs by π rad, it can
be confirmed that even if the two light sources are located beyond the Rayleigh criterion,
the phase difference at the confocal point corresponding to the position of each light source
set as the measurement object in the observed phase distribution differs by π rad. This
means that even if the distance between two light sources exceeds the Rayleigh criterion,
the phase difference between the light sources set up as light sources is preserved at the
observation point.

This phenomenon suggests that the shape of an object can be measured beyond
the diffraction limit as a phase distribution by detecting the phase at each point of the
object with high resolution in super-resolution technology based on speckle interferometry
technology. It can then be understood that for a phase distribution to exist, the existence of
a geometrical unevenness distribution on the measured surface is required.

3.2. Experimental Verification of a Phenomenon Obtained in Simulation Results That Occurs
Based on a Phase Change between Two Light Sources Located beyond the Diffraction Limit

In the simulation, it was shown that when the phases of two light sources in close
proximity beyond the diffraction limit are different, the existence of the two light sources
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can be confirmed by detecting the phase difference between the two light sources if the
light is coherent. In other words, if two light sources are based on the diffraction limit,
which was thought to be impossible to confirm the existence of two points that exist beyond
the Rayleigh criterion, based on the simulation results, the separation of the existence of
two light sources beyond the diffraction limit is considered possible by detecting the phase
difference between the two points with high resolution. Therefore, it was experimentally
verified whether the phenomena based on the simulation results could occur in reality
using a real optical model that was simplified as much as possible.

In the optical system used in the experiment, the diffracted image shown in Figure 8a
with a circular aperture, formed by a laser light source with a source wavelength of 532
nm, was used as the diffracted image model [2] when the light source was observed using
a circular lens. Two diffraction image models were prepared with light emitted from the
same laser and with no phase difference between the two diffraction image models, and
the two models were superimposed so that they overlapped from the left and right.
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Figure 8. Overlap of diffracted lights with phase information. (a) Diffracted light source model.
(b) Overlap of two light sources with phase difference 0 rad. (c) Overlap of two light sources with
phase difference π rad.

In this case, if the overlap exceeds the Airy disk, the light source is considered only
one light point. The general situation regarding diffraction limits based on the well-known
Rayleigh criterion [2] arises. Furthermore, when the two lights are superimposed so that
they gradually coincide spatially, the interior of the Airy disk is observed as a single
bright light source because the phases of the two lights are originally equal, as shown in
Figure 8b. This is also a well-known phenomenon that generally occurs when dealing with
the Rayleigh criterion [2].

In this case, the E-E section of the intensity distribution in Figure 8b is shown in
Figure 9a. It can be observed that the entire inner surface of the Airy disk is brightened.
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Figure 9. Section of intensity. (a) Two light sources with phase difference 0 rad. (b) Two light sources
with phase difference π rad.

Next, the phase difference between the two overlapping lights was changed to π rad
by changing the optical path length of one of the lights. It could be confirmed that the
bright state inside the Airy disk, as shown in Figure 8b, changes to a dark state at the
centre of the light, as shown in Figure 8c. In this case, the intensity distribution in the F-F
cross section of Figure 8c is shown in Figure 9b. Clearly, the central area becomes darker
and the peripheral area becomes brighter, just as in Figure 7b, which was observed in
the simulation.
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Thus, if the two light sources in close proximity beyond the Rayleigh criterion are
coherent and the phases of the two light sources are different, experimental results confirm
that the two light sources can be separated by detecting the phase difference between the
two points on the image formation plane, as in the simulation results.

3.3. Influence on the Detection Phase of two Coherent Light Sources with Different Phases as the
Distance between them Changes

As shown in this study, it was found that even two light sources exceeding the Rayleigh
criterion can be observed as two points using phase analysis of coherent light.

In Figure 7, two light sources 0.5 µm apart were observed. Therefore, the next case in
which the two light sources are even closer to each other was discussed.

The results for the case where the distance between the two light sources is 0.25 µm
are shown in Figure 10. Figure 10a–c shows the results when the two light sources have
the same phase (0 rad). Similar to the results shown in Figure 6, the two light sources
placed beyond the diffraction limit cannot be separated. In the intensity distribution in
Figure 10b, two light sources cannot be considered as two light sources. However, in
the phase distribution in Figure 10c, it can be clearly confirmed that the phase difference
between the two light sources is 0, as shown by the red dashed line.
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Figure 10. Simulated results with two light sources in close proximity to 0.25 µm, exceeding the
Rayleigh criterion when the initial phases of the two light sources are in the same phase and differ by π

rad. (a) Electromagnetic simulation results for the same phase. (b) Intensity distribution for the same
phase in section G-G. (c) Phase distribution for the same phase in section G-G. (d) Electromagnetic
field simulation results differ by π rad. (e) Intensity distributions differ by π rad in section H-H.
(f) Phase distributions differ by π rad in section H-H.

In contrast, in Figure 10d–f, where the phase difference between the two light sources
changes to π rad, two peaks can be observed in the intensity distribution in Figure 10e.

Furthermore, in the phase distribution in Figure 10f, it can be confirmed that the phase
difference between the two points changes by π rad at the confocal point where the light
source is located.

These results show that in an optical system with a diffraction limit of 877 nm, if two
light sources 250 nm apart are coherent light sources and their phases are detected, it is
possible to observe them as two light sources beyond the diffraction limit.

Furthermore, how an observation becomes possible when two light sources are in
close proximity was investigated using simulation.
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First, the light source wavelength was 532 nm, and the phase difference between the
two light sources was set as π rad when the distance between the two light sources varied
from 0.01 to 0.5 times the light source wavelength (λ).

In Figure 11, the horizontal axis is the distance between the two light sources (w) and
is given as a multiple of the wavelength λ. The vertical axis is the detected phase difference
between the two light sources.
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In the result for the wavelength of 532 nm indicated by the black circle (•), it can be
observed that the phase of two light sources in close proximity can be detected as π rad,
which is set as the phase difference, up to about 0.2 λ (actual length: about 100 nm). Next,
as the distance becomes closer than 100 nm (0.2 λ), the phase difference gradually becomes
increasingly smaller, and even if the phase difference is set as π rad, it can no longer be
detected as π rad.

However, even if it is no longer possible to accurately detect dimensions related to the
shape of the object, it is still possible to observe the approximate shape of the measured
object. For example, in the experimental results of a previous report [26], although the
groove depth of a 100-nm-wide groove could be detected almost accurately when observing
a 100-nm-wide groove, the groove depth of a 60-nm-wide groove could not be accurately
detected as the actual groove depth, although it could be captured as a groove.

Thus, in the observation of microstructures using speckle interferometry, there are
several measurement limits in the experimental measurement process, such as the range
where dimensions can be accurately measured (e.g., Region-A in Figure 11), the range where
dimensions cannot be accurately measured but shapes can be captured (e.g., Region-B in
Figure 11), and the range where the state of the measurement is not yet clearly understood
(e.g., Region-C in Figure 11).

It is thought that there are several levels of measurement limits.
Therefore, it is necessary to investigate in detail the regions below 0.2 λ in Figure 11

(Region-B and Region-C in Figure 11) in the future. Furthermore, based on the results of
this study, it is also necessary to discuss the causes of why such regions occur. Based on the
results of these further investigations, the measurement limits of this method should be
considered in more detail.

In this study, simulations were performed on the basis of the experimental results
already reported. As a result, the wavelength was considered 532 nm. However, as a general
concept in optical measurement, it is important to know how a change in wavelength affects
the measurement results. Therefore, next, a simulation was performed to see how a light
source with a different wavelength, as well as 532 nm, affected the measurement results.
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For the light source wavelength, it was decided to consider visible light lasers, which
are commonly used for measurements. The case of a long wavelength of 630 nm, modelled
after a He-Ne laser (wavelength: 632.8 nm), is indicated by a white circle (#) in Figure 11.

The results are also shown in Figure 11 as double white circles (
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For different light source wavelengths in Figure 11, it can be found that the phase
difference between the two light sources can be accurately detected up to approximately
one-fifth of the wavelength (0.2 λ), regardless of the wavelength. This indicates that even
when the diffraction limit is exceeded, observation of finer structures becomes possible as
the light source wavelength becomes shorter.

These results show that in the observation technique for structures with geometries
beyond the diffraction limit using speckle interferometry, the phase difference between two
nearby light sources is preserved during detection, even between two points beyond the
diffraction limit, when coherent light is used.

By using this phenomenon, it is thought that super-resolution beyond the Rayleigh
limit, which has been thought to be undetectable using the conventional Rayleigh criterion
based on incoherent light, is realised by detecting the phase difference at each position in
the microstructure observation technique based on speckle interferometry technology.

The discussion in this study also focused on super-resolution technology during image
sampling, particularly for optical observation of microstructures. However, the sensing
technology obtained in this study, which reveals the possibility of realising super-resolution
based on phase manipulation of light waves with coherent properties, could also be applied
to other sensing fields using electromagnetic waves, such as radar sensor technology [28].

In the future, the results of this research may lead to the use of phase manipula-
tion technology in sensing related to super-resolution using electromagnetic waves with
coherent properties, not only in the field of optics, but also in a wide range of other fields.

4. Conclusions

In this study, a physical explanation for the super-resolution phenomenon in a new
microstructure observation technique using speckle interferometry [22], in which the
realisation of super-resolution has been experimentally confirmed, was discussed. In
this explanation, a computer simulation was used to investigate why the observation
of microstructures exceeding the Rayleigh criterion, which had long been considered
unexceedable, could be realised.

The simulation results show that when coherent light is used as a light source and the
phase difference between two light sources is different, the phase difference is preserved at
the image formation position at the time of detection, even if the two light sources are close
to each other beyond the Rayleigh criterion.

By using this physical phenomenon, it was shown that light from two points in
proximity exceeding the Rayleigh criterion can be detected as light from two points in
proximity exceeding the Rayleigh criterion by capturing the phase distribution, although
it was previously thought that light from two points in proximity exceeding the Rayleigh
criterion cannot be separated on the basis of incoherent light.

Furthermore, regarding the measurement limit of super-resolution technology based
on the speckle interferometry technique, the simulation model used in this study clarified
that the phase difference between two light sources can be accurately detected up to a
distance as close as about 20% of the light source wavelength. In the discussion that led
to this conclusion, it became clear that this super-resolution technology has three types of
measurement limits: (1) the range where dimensions can be accurately measured, (2) the
range where dimensions cannot be accurately measured but shapes can be captured, and
(3) the range where it is difficult to accurately measure differences in the object’s steps, etc.
In addition, it was confirmed that the discussion of these measurement limits is consistent
with the results of the previous experiments.
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Abstract: We previously proposed that the optical centroid efficiency (OCE) might be a preferred
figure-of-merit to the enclosed energy of a rectangular pixel (EOD) for an instrument subject to
unpredictable environmental jitter and alignment conditions. Here we follow the same symbols for
the corresponding quantities, particularly the width of the pixel as being equal to 2d. Here we analyze
the performance of the OCE vs. the EOD for the three Seidel primary aberrations of an optical com-
ponent: spherical, coma, and astigmatism, plus defocus. We show that the OCE has an approximate
U-shape when graphed against the EOD, for the aberrations ranging from 0 to 1.25λ. We conclude
that for pixels larger than 2d = 3λF/#, a small pixel will feature better performance when expecting
jitter, misalignment, and other environmental and unpredictable conditions. When evaluating the
performance of low-aberration instruments in dynamic and unpredictable environments, the choice
of the lager pixel 2d = 7λF/# might be advantageous. Its selection will result in the deterioration of
image resolution.

Keywords: optical centroid efficiency; OCE; ensquared energy (energy on detector; OED); sensors;
opto-mechatronics; opto-mechanics; numerical simulations; optical devices; spherical aberration;
coma; astigmatism; defocus; environmental conditions; vibration; jitter; misalignment

1. Introduction

In a modern sensor, the perturbations of figure-of-merit include inherent design aber-
rations, manufacturing uncertainties and misalignment, and some unrealized environment
impacts, including jitter, and other unpredictable opto-mechatronics conditions. In the
previous work, the correlation between the detector pixel sizes as well as the central obscu-
ration of the optical sensor and the OCE has been presented in detail [1]. In order to explore
more characteristics of the OCE, in this follow-up study of previous work some of the most
prominent aberrations in a sensor are included. Please note that when dealing with pixel
size, we do not study sampling, which is a different phenomenon [2,3]. Similarly, we do
not consider any image processing and enhancement that might facilitate or improve the
acquisition of the information content in the image [4–7].

2. Aberration in an Optical Sensor

Descriptions of optical aberrations may be founded in many optical textbooks [8–11].
In general, the five Seidel sum, “spherical, coma, astigmatism, Petzval curvature, distortion
and defocus”, are an excellent representation. In this work we focus on the evaluation of
OCE caused by each of the three typical aberrations (spherical, coma, and astigmatism) and

Photonics 2024, 11, 855. https://doi.org/10.3390/photonics11090855 https://www.mdpi.com/journal/photonics133



Photonics 2024, 11, 855

defocus in Sections 3–6. The image is located at the best focus. Also, all the terminologies
employed in the following sections are identical to the previous work.

We investigate the relationship between the OCE and the EOD. The prf is based on
the chief ray selection. The centroid is calculated after statistical averaging. All aberration
studies are performed for two different pixel sizes, 2d = 3λF/# and 2d = 7λF/#, where the
linear detector pixel dimension is 2d. This choice corresponds to a relatively small and
relatively large pixel size in comparison to the diameter of the Airy disc. The former is
a bit larger than the Airy disc diameter, while the latter is somewhat smaller than three
Airy discs. In Code V, the aberration represented with an appropriate coefficient in Zernike
polynomials for each aberration is added at the entrance pupil of our optical model.

3. Spherical Aberration Studies, a40ρ4

3.1. Spherical for Small Pixel Values, 2d = 3λF/#

We investigate the relationship between the OCE and the EOD for the increase in
spherical aberration from a40 = 0 to a40 = 1.25λ. The results for small pixel size 2d = 3λF/#
are presented as the OCE vs. EOD graph in Figure 1. The EOD values are arranged in the
ascending order from about 0.3 to about 0.9, corresponding to the decrease in the amount of
the spherical aberration from bottom left (a40 = 1.25λ) to top right (a40 = 0) of the graph. As
the amount of spherical aberration increases, the energy in the central peak of the psf -s is
pushed out symmetrically to the side lobes in the radial direction. The addition of spherical
aberration results in the reduction of the EOD.
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nearly equal to the case of zero (0) aberration around the aberration value a40 = 1λ. When 
the aberration further increases, the lowest value is achieved for the OCE, equal to 0.80 for 
an EOD of 0.25.  

Here we note that the OCE is proportional to the EOD for about half of the EOD 
interval and inversely proportional over the other half. We may simply observe that they 
are not correlated. We use the description that two quantities are correlated when they 
either increase or decrease under similar circumstances. Two quantities are not correlated 
when their changes occur under different circumstances. 

For a small pixel size of 2d = 3λF/#, the OCE first rapidly increases with increasing 

values of EOD, reaching a maximum of 0.872 when the EOD is equal to 0.31. The low value 
of the EOD is caused by the fact that the energy moves from the central spot to the higher-
order rings for a high amount of aspherical aberration. When the optical axis relative to 

Figure 1. OCE vs. EOD for a lens with the spherical aberration (ρ4-term) for a detector pixel size of
2d = 3λF/#. The amount of spherical aberration decreases from the lower left corner with the value of
a40 = 1.25λ along the curve to the upper right corner with a40 = 0.

When there is no aberration, the OCE achieves a value of 0.88 for the maximum
energy on the detector enclosed by the square pixel, and an EOD value of 0.88 for pixel
size 2d = 3λF/#. The OCE first smoothly decreases with increasing amount of aberration,
arriving at a local minimum of 0.82 for the EOD of 0.58. Then OCE climbs to a sharp peak,
nearly equal to the case of zero (0) aberration around the aberration value a40 = 1λ. When
the aberration further increases, the lowest value is achieved for the OCE, equal to 0.80 for
an EOD of 0.25.

Here we note that the OCE is proportional to the EOD for about half of the EOD
interval and inversely proportional over the other half. We may simply observe that they
are not correlated. We use the description that two quantities are correlated when they
either increase or decrease under similar circumstances. Two quantities are not correlated
when their changes occur under different circumstances.

For a small pixel size of 2d = 3λF/#, the OCE first rapidly increases with increasing
values of EOD, reaching a maximum of 0.872 when the EOD is equal to 0.31. The low
value of the EOD is caused by the fact that the energy moves from the central spot to
the higher-order rings for a high amount of aspherical aberration. When the optical axis
relative to the pixel position moves around in the OCE determination, the position of the
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image centroid has no deteriorating consequence because the amount of energy is about the
same all over the pixel surface. The OCE value is relatively high because the normalization
with the EOD is included in its definition.

The OCE peak around 1λ aberration is followed by a sharp decrease in the OCE
values when the EOD is further increased, until a broad minimum is attained at EOD =
0.53, with the still-high value of 0.82 for the OCE. In this region, the amount of spherical
aberration has decreased, so the spot is becoming better defined, resulting in increased
energy collection over the pixel surface. A more compact spot results in smaller average
energy on detector for a displaced pixel center and increased energy on detector for the
centered image. Both effects combine to decrease the OCE for small pixel size 2d = 3λF/#.
Here, the displacement of the spot position over the pixel area is very sensitive. Only with
decreasing aberration values are the OCE and the EOD correlated as expected when the
spot over the pixel surface becomes compact under conditions of no or a small amount of
aberration.

Figure 2 presents cross-sections of the instrument point response function prf as a
function of a radial coordinate, normalized to pixel size for the points labeled in Figure 1,
that is, A, B, C, D, E, and F.
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Figure 2. The instrument point response function prf corresponding to selected points in Figure 1
as a function of two orthogonal directions, x and y, or rows and columns, for the case of spherical
aberration. The amount of aberration decreases from about a40 = 1λ to a40 = 0.5λ, going from (a–f).
With the decrease in the aberration, the power in the image becomes increasingly more centralized.
The figures are arranged in order of increasing energy on the detector, which corresponds to a
decreasing amount of aberration. The graphs in the first row correspond to the peak in the OCE
vs. EOD graph in Figure 1, while those in the second row correspond to the valley. The common
features of the prf -graphs for the peak are a decreased peak value, an increased amount of the
compact support, and the fact that the images carry a significant amount of aberration. The valley
is characterized by a relatively high peak value, the absence of compact support, and a decreased
amount of aberration. Due to the symmetry of the problem, the red line overlaps over the blue line.
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First, we study the three points near the narrow and sharp peak, that is, Points A, B,
and C. The corresponding prf -graphs are plotted in Figure 2a–c. At first glance, these three
graphs, lined in the first row, appear to be quite like the ones in the second row.

The most important difference to note is the relatively large difference in the prf -values
between the center (0) and edge of the detector pixel (0.5). Point B has the highest difference
between these two values; therefore, it is located near the local peak for the lower EOD
regime. The prf -value at the pixel center (0.) is equal to 0.30. The value of the prf at the
pixel edge (0.5) is 0.17. The difference in the prf -values at the center and the edge of the
detector pixel is 0.13, for a small pixel value of 2d =3λF/#.

The point A is located at nearly the lowest value of the EOD, 0.279. The prf -value at
the pixel center is equal to 0.279. The value of the prf at the pixel edge (0.5) is 0.22. The
difference in the prf -values at the center and the edge of the detector pixel is 0.123, a value
smaller than that at Point B; therefore, the OCE is also smaller for Point A than for Point B.
Point C is located at the value of the EOD higher than that for the highest point (B), at 0.345.
The prf -value at the pixel center is equal to 0.345. The value of the prf at the pixel edge (0.5)
is 0.24. The difference in the prf -values at the center and the edge of the detector pixel is
0.105, a value smaller than that of Point B; therefore, the OCE is also smaller for Point C
than for Point B.

Next, we investigate the OCE vs. EOD relationship around the minimum. Figure 2d–f
display the three prf plots for Points D, E, and F around the minimum. Point F, featured on
Figure 2f, exhibits a peak of the prf graph, that is, the EOD, of 0.66. We see that the value of
the prf at the pixel edge (0.5) is 0.36. The difference in the prf at the center, or the EOD, and
that the edge of the pixel (0.5) is 0.30.

We examine the minimum next, approaching it from the large EOD values. Point E,
at the very minimum of the OCE vs. EOD curve is presented in Figure 2e. It features an
EOD value of 0.53, a value smaller than that of Point F. We see that the value of the prf at
the pixel edge (0.5) is 0.33. This prf graph exhibits a relatively small difference in the prf
values between the center and edge of the pixel of 0.20. Therefore, the value of the OCE
is the lowest there. Figure 2d features the prf for point D. The peak of the prf, the EOD, is
low among the triplets, at 0.446. The value of the prf at the pixel edge (0.5) is 0.32. This is a
relatively smaller difference in the prf -values between the center and edge of the pixel of
0.13. Because of the relatively low peak value of the prf at the center and the relatively high
value of the prf at the pixel edge, Point D has a higher OCE value than the neighboring
Point E.

3.2. Spherical with Large Pixel Values, 2d = 7λF/#

The next interesting result is observed when the detector size is increased from
2d = 3λF/# to 2d = 7λF/#. Figure 3 presents the OCE vs. the EOD for a lens with the
spherical aberration (a40 -- term) for the pixel size 2d = 7λF/#. For the larger pixel size
discussed here, we start graphing the OCE with the value of 0.4 for the EOD with spherical
aberration equal to a40 = 1.25λ. Traveling along the curve, the spherical aberration decreases
in the upper right corner to zero.

General features of the OCE vs. EOD curve in Figure 3 for large pixel 2d = 7λF/# are
quite similar to those for the small pixel in Figure 1. The OCE values increase for very
small values of the EOD and for large values of the EOD with the increasing amount of
aberration. A peak and a valley arise between these two regions, like the shape in Figure 1.
The amount of spherical aberration decreases from the lower left corner with the value of
a40 = 1.25λ along the curve to the upper right corner with a40 = 0.

In the absence of aberration, the maximum energy on the detector enclosed by the
square pixel is 0.95. When the amount of spherical aberration increases from 0 to a40 = 1.25λ,
the EOD decreases from about 0.95 to 0.4 when using a pixel size of 2d = 7λF/#. When
there is no aberration, the OCE achieves the value of 0.89. The OCE first rapidly decreases
with increasing amount of aberration, achieving the valley bottom of the OCE = 0.78 at the
EOD = 0.80. The OCE then, with a slope of about (minus) 45 degrees, approaches and forms

136



Photonics 2024, 11, 855

a rounded peak, nearly equal to the case of no aberration around the aberration value of
a40 = 1λ. When the aberration further increases, about an average value is achieved for the
OCE, equal to 0.84 for the EOD of 0.4. Here we note that the OCE is proportional to the
EOD in about one half of the EOD interval and inversely proportional in the other half.
They are not correlated.
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aberration. We model a case where the detector pixel size equals 7λF/#. With an increase in the ab-
erration, the energy spreads out. The energy on detector EOD for the same pixel size decreases with 
increasing amount of aberration. The figures are arranged in order of increasing energy on the de-
tector, which corresponds to a decreasing amount of aberration. Due to the symmetry of the prob-
lem, the red line overlaps over the blue line. 

The prf-curve corresponding to Point C has the highest EOD value (that is, prf(0)), and 
a more narrowly formed cone at the center than the other two. Additionally, it also fea-
tures a relatively larger difference in the prf-values between the center and edge of the 
detector pixel than that of Point B. The edge value is 0.32, and the center value is 0.5, re-
sulting in the difference from the center to the edge of 0.18. Thus, Point C presents a larger 
variation in the prf-values across the pixel surface. Therefore, Point C ends up having a 
somewhat lower OCE value than Point B. 

Figure 3. OCE vs. EOD for a lens with the spherical aberration (ρ4-term) for a detector pixel size of
2d = 7λF/#. The amount of spherical aberration decreases from the middle-left region with the value
of a40 = 1.25λ along the curve to the upper right corner with a40 = 0.

Next, we endeavor to explain the first one-third of the curve for the small EOD values,
featuring a narrow, sharp OCE peak. The prf -s corresponding to the three points around
the local peak (Points A, B, and C) are plotted in Figure 4. Point response functions prf -s
for Points A, B, and C have a similar profile across the pixel surface. For these points, the
EOD increases from 0.42 through 0.47 to 0.50. The prf (0) and prf (0.5) for Point A are 0.421
and 0.25, resulting in their difference of 0.17. The prf (0) and prf (0.5) for Point B are 0.47
and 0.31, resulting in their difference of 0.16. Even so, Point A has a lower EOD value than
Point B. This leads to a relative higher variation of the EOD across the pixel surface and
therefore a lower OCE value for Point A.
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Figure 4. The instrument point response function prf corresponding to selected points in Figure 3
as a function of two orthogonal directions, x and y, or rows and columns, for the case of spherical
aberration. We model a case where the detector pixel size equals 7λF/#. With an increase in the
aberration, the energy spreads out. The energy on detector EOD for the same pixel size decreases
with increasing amount of aberration. The figures are arranged in order of increasing energy on
the detector, which corresponds to a decreasing amount of aberration. Due to the symmetry of the
problem, the red line overlaps over the blue line.

The prf -curve corresponding to Point C has the highest EOD value (that is, prf (0)), and
a more narrowly formed cone at the center than the other two. Additionally, it also features
a relatively larger difference in the prf -values between the center and edge of the detector
pixel than that of Point B. The edge value is 0.32, and the center value is 0.5, resulting in
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the difference from the center to the edge of 0.18. Thus, Point C presents a larger variation
in the prf -values across the pixel surface. Therefore, Point C ends up having a somewhat
lower OCE value than Point B.

In the presence of 3rd order spherical aberration in an otherwise ideal lens-optical
detector combination, the EOD decreases in the presence of aberration because the energy
in the central spot is being pushed out to the outer rings. The amount of energy that is
incident on a given pixel and the average prf across the detector determine the relationship
between EOD and OCE. For a different size pixel, with its value somewhere between
2d = 3λF/# and 2d = 7λF/#, the initial points and the end points would be lying between the
corresponding points on Figures 1 and 3. The OCE-vs-EOD curve would exhibit a shape
similar to the two limiting cases presented here and lying in-between them.

4. Coma-y: a31 ρ3sinθ

4.1. Coma-y for Small Pixel Size, 2d = 3λF/#

We present the OCE vs. the EOD graph for the case of coma aberration for small
pixel size 2d = 3λF/# in Figure 5. In the absence of aberration, the maximum energy on
the detector enclosed by the square pixel is 0.88. When the amount of coma aberration
increases from a31 = 0 to a31 = 1.25λ, the EOD decreases from about 0.88 to 0.25 when using
a pixel size of 2d = 3λF/#. Except for the outer regions of the interval under study, the
increase in the amount of aberration appears to affect the EOD moderately.
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Figure 5. OCE vs. EOD for a lens with the coma aberration (a31 = ρ3sinθ) for a detector pixel size of
2d = 3λF/#. The amount of coma aberration decreases from the upper left corner with the value of
a31 = 1.25λ along the curve to the right middle area with a31 = 0.

When there is no aberration, the OCE achieves the value of 0.88. At first the OCE
sharply, nearly vertically, decreases with increasing amount of aberration; then, it rolls off
to an approximately constant value, at about OCT = 0.85. It features two small valleys
of OCT = 0.84, at EOD = 0.74 and 0.41. The OCE starts to increase again with increasing
aberration at about a31 = 1λ. When the aberration further increases to a31 = 1.25λ, the OCE
increases, achieving a value of 0.91 for an EOD of 0.25.

Here we note that the OCE is roughly independent of the EOD for the middle half of
the EOD interval. During the first quarter of the interval, it is inversely proportional. It is
proportional in the last quarter. We can also say that the OCE and the EOD are independent
of each other in the case of the coma aberration. We may simply observe that coma affects
differently the EOD and the OCE. We may simply observe that the OCE and the EOD are
not correlated under the effects of coma for small pixel size in the study.

4.2. Coma-y with Large Pixel Value, 2d = 7λF/#

We present the OCE vs. the EOD graph for the case of coma aberration for large
pixel size 2d = 7λF/# in Figure 6. In the absence of aberration, the maximum energy on

138



Photonics 2024, 11, 855

the detector enclosed by the square pixel is 0.95. When the amount of coma aberration
increases from a31 = 0 to a31 = 1.25λ, the EOD decreases from about 0.96 to 0.6 when using
a pixel size of 2d = 7λF/#, while the OCE decreases from 0.95 to 0.83.
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Figure 6. OCE vs. EOD graph for a lens with the coma aberration (a31 ρ3sinθ) for a detector pixel size
of 2d = 7λF/#. The amount of coma aberration decreases from the lower left corner with the value of
a31 = 1.25λ along the curve to the upper right corner with a31 = 0.

In absence of aberration, the OCE achieves the value of 0.95. From there, it first rapidly
decreases with increasing amount of aberration, arriving to its elbow at the EOD = 0.88.
The OCE then remains approximately constant with increasing aberration, achieving a
small hump for the aberration value of a31 = 1λ for the EOD of 0.68. When the aberration
further increases, the OCE decreases to 0.825 for the EOD value of 0.6.

Here we note that the OCE is roughly independent of the EOD for more than one half
of the EOD interval. During about the last third of the interval, the OCE is proportional
to the EOD. We may simply conclude that for large amounts of coma aberration, the OCE
and the EOD are independent of each other. For small amounts of the coma aberration, the
OCE is proportional to the EOD.

5. Astigmatism: a22 ρ2cos2θ

5.1. Astigmatism a22 ρ2cos2θ for Small Pixel Size, 2d = 3λF/#

We present the OCE vs. the EOD graph for the case of astigmatism aberration for
small pixel size 2d = 3λF/# in Figure 7.
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Figure 7. OCE vs. EOD graph for a lens with the astigmatism aberration (a22 ρ2cos2θ) for a detector
pixel size of 2d = 3λF/#. The first zero of the Bessel function is located at 1.22 λF/#. In the absence of
aberration, the pixel encloses somewhat more than the Airy disc diameter. The amount of astigmatism
aberration decreases from the upper left corner with the value of a22 = 1.25 λ along the curve to the
right middle area with a22 = 0.

In the absence of aberration, the maximum energy on the detector enclosed by the
square pixel is 0.88. When the amount of astigmatism aberration increases from a22 = 0

139



Photonics 2024, 11, 855

to a22 = 1.25 λ, the EOD decreases from about 0.88 to 0.35 when using a pixel size of
2d = 3λF/#. When there is no aberration, the OCE achieves the value of 0.88. For an initial
short interval, the OCE first smoothly decreases with increasing amount of astigmatism
aberration, achieving the minimum value of 0.85 for the EOD = 0.74; afterwards, it climbs
with about a 45-degree slope to its rounded peak at practically 1, while the EOD is only
0.35 for the aberration value a22 = 1.25λ.

For about the first two-thirds of the EOD interval, the OCE is inversely proportional to
the EOD. During the last third, the OCE is proportional to the EOD. We note that the general
curve has the same shape as the central part of the corresponding spherical aberration
curve. We may simply observe that the OCE and the EOD are not correlated for small
pixel sizes.

5.2. Astigmatism a22 ρ2cos2θ for Large Pixel Value, 2d = 7λF/#

We present the OCE vs. the EOD graph for the case of astigmatism aberration for large
pixel size 2d = 7λF/# in Figure 8.
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Figure 8. OCE vs. EOD graph for a lens with the astigmatism aberration (a22 ρ2cos2θ) for a detector
pixel size of 2d =7λF/#. The first zero of the Bessel function is located at 1.22 λF/#. In the absence
of aberration, the pixel encloses 2.87 Airy discs (nearly 3). The amount of astigmatism aberration
decreases from the upper left corner with the value of a22 = 1.25λ along the curve to the right middle
area with a22 = 0.

In the absence of aberration, the maximum energy on the detector enclosed by the
square pixel is 0.95. When the amount of astigmatism aberration increases from a22 = 0
to a22 = 1.25λ, the EOD decreases from about 0.95 to 0.35 when using a pixel size of
2d = 7λF/#. When there is no aberration, the OCE achieves the value of 0.88. For an initial
short interval, the OCE first smoothly decreases with increasing amount of astigmatism
aberration, achieving the minimum value of OCE = 0.78 at the EOD = 0.86; afterwards, it
climbs with about a 45-degree slope to its elongated rounded peak for the OCE = 0.97 at
the EOD = 0.3, for the aberration value a22 = 1.25λ.

For about the fourth or fifth EOD interval, the OCE is inversely proportional to the
EOD. During the last fifth, the OCE is proportional to the EOD. We note that the general
curve has a distorted shape of the central part of the corresponding spherical aberration
curve. We may observe that the OCE and the EOD are not correlated for large pixels.

6. Defocus/Power: a20 ρ2

6.1. Defocus/Power a20 ρ2 for Small Pixel 2a = 3λF/#

We present the OCE vs. the EOD graph for the case of defocus aberration for small
pixel size 3λF/# in Figure 9. In the absence of defocus aberration, the maximum energy on
the detector enclosed by the square pixel is 0.88. When the amount of defocus aberration
increases from a20 = 0 to a20 = 1.25λ, the EOD decreases from about 0.88 to 0.31 when using
a pixel size of 2d = 3λF/#. When there is no aberration, the OCE achieves the value of
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0.88. The OCE first smoothly decreases with increasing amount of aberration, achieving a
minimum of 0.82 for the EOD of 0.62. From there, the curve looks like a quadratic function
tilted to the side.
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Figure 9. OCE vs. EOD graph for a lens with the defocus aberration (a20 ρ2) for a detector pixel size
of 2d = 3λF/#. The amount of defocus aberration decreases from the upper left corner with the value
of a20 = 1.25 λ along the curve to the right middle region with a20 = 0.

When the aberration further increases, the highest value is achieved for the OCE of
0.95 at the EOD of 0.31. Here we note that for defocus aberration, the OCE is proportional
to the EOD for half of the EOD interval and inversely proportional to the other half. We
may simply observe that they are not correlated.

6.2. Defocus/Power with Large Pixel Value, 2d = 7λF/#

We present the OCE vs. the EOD graph for the case of defocus aberration for large
pixel size 2d = 7λF/# in Figure 10.
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square pixel is 0.88 for a small pixel size of 2d = 3λF/#. The maximum energy on the detec-
tor for the larger pixel size of 2d = 7λF/# increases to 0.95. This increment of 0.07 is reason-
able because a larger pixel encloses more energy for an aligned system. In the absence of 
aberration, the pixel size has minimal effects on possible displacement of the optical axis 

Figure 10. OCE vs. EOD graph for a lens with the defocus aberration (a20) for a detector pixel size
of 7λF/#. The amount of defocus aberration decreases along the curve from the upper left corner
through the minimum and then to the upper right corner with a20 = 0.

In the absence of defocus aberration, the maximum energy on the detector enclosed by
the square pixel is 0.95. When the amount of defocus aberration increases from a20 = 0 to
a20 = 1.25λ, the EOD decreases from about 0.95 to 0.3 when using a pixel size of 2d = 7λF/#.
In the absence of aberration, the OCE achieves the value of 0.89. It first rapidly decreases
with increasing amount of aberration, achieving a minimum of 0.68 at the EOD of 0.77.
From there, the curve looks like a quadratic function with unequal sides. The OCE graph vs.
EOD graph increases with about a 45-degree inclination angle with increasing aberration.
When the aberration further increases, the highest value is achieved for the OCE, equal to
0.98 for the EOD of 0.31.
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Here we note that for the defocus aberration, the OCE is proportional to the EOD for
a quarter of the EOD interval. It is inversely proportional for about three-quarters of the
EOD interval. We may simply observe that the OCE and the EOD are not correlated for the
defocus in the case of the large pixel.

7. Discussion
7.1. Spherical Aberration

We present the OCE vs. the EOD graph for the case of spherical aberration for two
pixel sizes 2d = 3λF/# and 2d = 7λF/# in Figure 11. The first point on the left of each graph
corresponds to the amount of spherical aberration, a40 = 1.25λ, while the last point on the
right of the graph corresponds to the case of no aberration, a40 = 0.
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Figure 11. OCE vs. EOD graph for the case of spherical aberration for two pixel sizes 2d = 3λF/# and
2d = 7λF/#. The first point on the left of each graph corresponds to the amount of spherical aberration,
a40 = 1.25 λ, while the last point on the right of each graph corresponds to the case of no aberration,
a40 = 0.

The most interesting aspect in comparison of these two graphs is that they are quite
similar in general shape. The graph for the small pixel appears to be compressed along the
OCE axis and displaced toward smaller values along the EOD axis. They both feature peaks,
corresponding to the absence of aberration that has nearly the same value, OCE = 0.87. The
peak is displaced for the smaller pixel by about DEOD = 0.12. Both graphs also include
valleys, displaced by DEOD = 0.2 and DOCE = 0.12. The minimum for the larger pixel is
deeper and displaced to larger EOD values.

In the absence of aberration, the maximum energy on the detector enclosed by the
square pixel is 0.88 for a small pixel size of 2d = 3λF/#. The maximum energy on the
detector for the larger pixel size of 2d = 7λF/# increases to 0.95. This increment of 0.07
is reasonable because a larger pixel encloses more energy for an aligned system. In the
absence of aberration, the pixel size has minimal effects on possible displacement of the
optical axis on the collected energy or other environmental effects. From the local maximum
characterized by no aberration, graphs then decrease to a valley, with the graph for the
large pixel size having a slope larger than 45 degrees and that for the smaller pixel having
a smaller slope.

When the amount of spherical aberration increases from a40 = 0 to a40 = 1.25λ, the EOD
decreases to 0.25 for a pixel size of 2d = 3λF/#. At the same time, the EOD increases to 0.4
for pixel size 2d = 7λF/#. This increase of 0.15 for the larger pixel in the enclosed energy
is also reasonable because a large amount if spherical aberration spreads the energy to a
larger spot. A small pixel intercepts a smaller fraction of energy of a large spot than a large
pixel; therefore, the small pixel is impacted by aberration more than the large one. The
increase in the EOD for the large pixel is twice the increase for the small pixel. Because the
displacement of the optical axis still allows a large amount of energy to be intercepted.

142



Photonics 2024, 11, 855

7.2. Coma-y

We present the curve of the OCE vs. the EOD graph for the case of coma-y aberration
for two pixel sizes (2d = 3λF/# and 2d = 7λF/#) in Figure 12. The first point on the left of
each graph corresponds to the amount of coma, a31 = 1.25 λ, while the last point on the
right of the graph corresponds to the case of no aberration, a31 = 0.
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Figure 12. OCE vs. EOD graph for the case of coma-y aberration for two pixel sizes 2d = 3λF/# and
2d = 7λF/#. The first point on the left of each graph corresponds to the amount of coma aberration,
a31 = 1.25λ, while the last point on the graph corresponds to the case of no aberration, a31 = 0. For a
large portion of the aberration under study, from about a31 = 0.25λ to roughly a31 = 1.25λ, the OCE
seems to be independent of the amount of aberration.

In the absence of aberration, the EOD enclosed by the square pixel is 0.88, for the small
pixel size 2d = 3λF/#. In the absence of aberration, the maximum energy on the detector
enclosed by the square pixel is 0.95 for the case of the large pixel size, 2d = 7λF/#. This is a
small shift of 0.07. When the amount of coma aberration increases to a31 = 1.25λ, the EOD
decreases from to 0.25 in the case of a small pixel size 2d = 3λF/#. When the amount of
coma aberration increases from a31 = 0 to a31 = 1.25λ, the EOD decreases to 0.6 when using
a pixel size of 2d = 7λF/#. When there is no aberration, the OCE achieves the value of 0.98
for the small pixel size 2d = 3λF/#. When there is no aberration, the OCE achieves a value
of 0.95 in the case of the large pixel size 2d = 7λF/#.

For the small pixel size 2d = 3λF, the OCE initially sharply vertically decreases with
increasing amounts of aberration, taking a sharp turn for the EOD value of 0.84. The OCE
then rolls off to an approximately constant value, at about 0.85, with two small valleys of
0.84 at 0.77 and 0.41. F for the case of the large pixel size 2d = 7λF/#, the OCT initially nearly
vertically rapidly decreases with increasing amount of aberration, taking a sharp turn at
the EOD value of 0.84. The OCE then remains approximately constant, achieving a small
hump for aberration value a31 = 1λ for the EOD of 0.68.

The OCE starts to increase again at the aberration of a31 = 1λ. When the aberration
further increases, the OCE increases, achieving a value of 0.91 for an EOD of 0.25 for the
small pixel size 2d = 3λF/#. When the aberration further increases, the OCE decreases to
0.825 for the EOD value of 0.60, for the case of the large pixel size 2d = 7λF/#.

For a large portion of the aberration under study, from about a31 = 0.25λ to roughly
a31 = 1.25λ, the OCE seems to be independent of the amount of aberration. The EOD
for the aberration a31 = 1.25λ nearly doubles from small (EOD = 0.32) to the large pixel
(EOD = 0.60). This means that the coma is very sensitive to the pixel size for large aberra-
tions. For a small amount of aberration, the EOD has low sensitivity on the coma aberration,
while the OCE changes rapidly with the aberration.

7.3. Astigmatism

We present the curve of the OCE vs. the EOD graph for the case of astigmatism
aberration for two pixel sizes 2d = 3λF/# and 2d = 7λF/# in Figure 13. The first point on the
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left on each graph corresponds to the amount of astigmatism aberration a22 = 1.25λ, while
the last point on the right side of the graph corresponds to the case of no aberration.
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and 2d = 7λF/#. The first point on the left of each graph corresponds to the amount of astigmatism
aberration, a22 = 1.25λ, while the last point on the right of the graph corresponds to the case of no
aberration, a22 = 0.

In the absence of aberration, the maximum energy on the detector enclosed by the
square pixel is 0.88 for the small pixel size 2d = 3λF/#. In the absence of aberration, the
maximum EOD enclosed by the square pixel is 0.89, for the case of the large pixel size
2d = 7λF/#. When the amount of astigmatism aberration increases from 0 to 1.25 λ, the
EOD decreases from about 0.88 to 0.35 when using a pixel size of 2d = 3λF/#.

In the absence of aberration, the OCE achieves the value of 0.89 at the EOD of 0.88
for the small pixel size 2d = 3λF/#. When there is no aberration, the OCE achieves the
value of 0.89 for the large pixel size 2d = 7λF/#. For the small pixel size 2d = 3λF/#, the
OCE first slowly and smoothly decreases with increasing amount of aberration, achieving
the minimum value of 0.85 at about 0.74. The OCE first rapidly decreases with increasing
amount of aberration, achieving the minimum at 0.78 at EOD of 0.84, for the case of the
large pixel size 2d = 7λF/#.

After the valley, the OCEs climb with an about 45-degree slope to rounded peaks at
different heights. Practically 1 is achieved for the case of the small pixel size 2d = 3λF/#,
at the EOD of only 0.35 for the aberration value 1.25 λ. In the case of the large pixel size
2d = 7λF/#, the slope is somewhat higher, but the curve rounds off sooner to a nearly
horizontal extended hump around 1λ. When the aberration further increases, the OCE
slowly increases to a value of 0.96 for the EOD of 0.31, for the case of the large pixel size
2d = 7λF/#.

The shapes of two astigmatism curves for the small and large pixel are, in general,
quite similar. For the small amount of aberration, the OCE decreases together with the EOD,
but more quickly for the large pixel than for the small one. Both curves attain a minimum,
but the one for the larger pixel is achieved for a longer EOD value and it is deeper than
for the small pixel. With an increasing amount of aberration, the OCE increases with the
decreasing EOD. The interval of the EOD is about the same for both pixel sizes, except that
graph is displaced by 0.03 to the longer EOD values for the larger pixel.

7.4. Defocus/Power

We present the OCE vs. EOD graph for the case of defocus aberration for two pixel
sizes 2d = 3λF/# and 2d = 7λF/# in Figure 14. The first point on the left of each graph
corresponds to the amount of defocus aberration a20 = 1.25λ, while the last point on the
right of the graph corresponds to the case of no aberration.
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Figure 14. OCE vs. EOD graph for the case of defocus aberration for two pixel sizes 2d = 3λF/# and
2d = 7λF/#. The first point on the left of each graph corresponds to the amount of defocus aberration,
a20 = 1.25 λ, while the last point on the graph corresponds to the case of no aberration, a20 = 0.

In the absence of aberration, the maximum EOD enclosed by the square pixel is 0.88
for the small pixel size 2d = 3λF/#. In the absence of aberration, the maximum energy on the
detector enclosed by the square pixel is 0.89; for the case of the large pixel size, 2d = 7λF/#.
When the amount of defocus aberration increases to a20 = 1.25 λ, the EOD decreases to 0.31,
when using a pixel size of 2d = 3λF/#. When the amount of defocus aberration increases
from 0 to 1.25λ, the EOD decreases to 0.31, when using a pixel size of 2d = 7λF/#. The pixel
size has no effect on the EOD for the large amount of defocus aberration.

When there is no aberration, the OCE achieves the value of 0.88 for the EOD value of
0.84 for the small pixel size 2d = 3λF/#. When there is no aberration, the OCE achieves the
value of 0.89 for the EOD values of 0.95, for the case of the large pixel size 2d = 7λF/#.

The OCE first smoothly decreases with increasing amount of aberration, achieving
a minimum at 0.82 for EOD of 0.62 for the small pixel size 2d = 3λF/#. The OCE rapidly
decreases with increasing amount of aberration, achieving a minimum at 0.68 for the EOD
of 0.77 in the case of the large pixel size 2d = 7λF/#.

From the minimum, the curve for the OCE looks like a quadratic function with unequal
sides. When the aberration further increases, the highest value is achieved for the OCE,
equal to 0.95 at the EOD of 0.31, for the small pixel size 2d = 3λF/#. From the minimum, the
OCE curve increases with the increasing aberration. The highest OCE value achieved is
equal to 0.99 for the EOD of 0.31, for the case of the large pixel size 2d = 7λF/#.

The shapes of two defocus curves for the small and large pixel are in general quite
similar. For a small amount of aberration, the OCE decreases together with the EOD, but
more quickly for the large pixel than for the small one. Both curves attain a minimum,
but the one for the larger pixel is achieved for a longer EOD value, and it is deeper than
for the small pixel. With the increasing amount of aberration, the OCE increases with
the decreasing EOD. The OCE for the large pixel starts to climb up slowly to the highest
possible value of 1, but it cuts off at 0.99 for the OCE final value. For the smaller pixel, the
curve is still increasing sharply at the maximum aberration, achieving OCE = 0.94, while it
slowly approaches to this value. The interval of the EOD is about the same for both pixel
sizes, except that graph is displaced by 0.03 to the longer EOD values for the larger pixel.

8. Summary and Conclusions

In the cases of the individual aberration that we evaluated, we note that the effect
of aberration is less pronounced on the OCE than on the EOD. Most importantly, the
conventional wisdom would expect that the OCE increases with the EOD linearly regardless
of the pixel size and the type of aberrations. In this work, we demonstrate for all aberrations
that the OCE increases with the EOD for small amounts of aberration, except for the smaller
pixel size in astigmatism, in which the asymmetrical nature of psf cannot be collected
completely. However, as the amount of aberration reaches a certain point (as the EOD
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keeps getting smaller), the trend reverses and the OCE starts to increase. Furthermore,
when the pixel is sufficiently large to include enough energy, this correlation is even
more pronounced.

With respect to the pixel size, the most interesting aspect of the comparison of the
OCE vs. the EOD graphs for two pixels under study is that they are quite similar; however,
they appear to be compressed and slightly displaced along the EOD-axis.

The EOD is more sensitive to the amount of aberration than the OCE. The aberrations
and their amount affect the EOD differently for both pixel sizes studied here. For smaller
pixels, the aberration amount ranging from 0 to 1.25λ subtends quite a large interval on
the EOD axis, from 0.25 to 0.95, while the OCE domain varies from 0.80 to 1. The width
of the EOD interval is approximately the same for all aberrations studied here. The same
amount of aberration, that is, aii = 1.25λ, decreases the EOD for the spherical to 0.24, the
coma to 0.29, the defocus to 0.30, and the astigmatism to 0.34. Therefore, if the EOD is to be
maximized while allowing some aberration, the astigmatism is the aberration to permit
when imaging with a smaller pixel.

For the larger pixel, the aberrations cover quite a large interval on the EOD axis, while
the OCE varies from 0.68 to 0.95. The width of the EOD interval is significantly different for
all aberrations studied here. The same amount of aberration, that is, aii = 1.25λ, decreases
the EOD for the defocus and the astigmatism to 0.31, for the spherical to 0.40, and the coma
to 0.60. Therefore, if the EOD is to be maximized while allowing some aberration, the coma
is the aberration to permit when imaging with the large pixel.

Based on these studies, we consider that the energy enclosed within the square pixel,
the EOD, remains an interesting parameter but not necessarily the most informative one
as an aid in design specifications. However, due to the high probability that the pixel
center and the axis of the optical system are misaligned—for all pixels in the focal plane
array—the energy that spills on the neighboring pixel is usually not lost to the signal. It
is added to its nearest neighbors, where it most likely still contributes to the signal. This
is particularly relevant for those cases where the small pixel intercepts small amounts of
energy due to a large amount of aberration producing a large signal spread.

As a design guideline, then, we see that a small pixel 2d = 3λF/# results in a high OCE
even for a large amount of aberration for all aberrations studied. For zero and very small
amounts of aberration, the large pixel 2d = 7λF/# in general achieves a better OCE than
the small pixel. In the intermediate aberration region, there does not appear to be much
difference in the OCE for the two pixels studied here, except in the case of the spherical
aberration, where a small pixel is preferable for most of the aberration interval.

In conclusion, for pixels larger than 2d = 3λF/#, a small pixel will feature better
performance when expecting jitter, misalignment, and other environmental and unpre-
dictable external conditions for all but minimal aberration. When counting on the perfect
aberration-free design, the choice of lager pixel is expected to have better energy collection
properties, but such design will be plagued by the deterioration of another figure-of-merit,
the image resolution.

In the future, we intend to extend this study to a mixture of aberrations to mimic a
realistic optical system as close as possible. In a follow-up publication, we will address a
mixture of aberrations on the performance of an instrument in an environment subjected to
jitter and misalignments. With that, the same amounts of aberrations will be applied to
both refractive and reflective optical systems so that we can explore and have better insight
over the OCE vs. EOD relationships. We also plan to apply this theory to other remote
sensing instruments.
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