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Preface

Dear Colleagues,

Computational mathematics and applied mathematics are closely related fields within

mathematics. Computational mathematics research focuses on numerical analysis and scientific

calculation methods, such as interpolation and approximation, numerical methods of differential

equations, numerical integration, matrix computation, and linear equation systems. With

the development of large-scale computing and parallel computing technology, computational

mathematics has been able to handle large-scale data and complex problems. Applied mathematics

research tends to focus on its practical applications in various fields, such as physics, engineering,

economics, finance, geophysics, computer science, social sciences, biology, and medicine. Research

in applied mathematics has made significant breakthroughs in optimization algorithms, data mining,

and machine learning, providing strong support for the development and application of science and

technology.

This reprint features a selection of 16 papers that present groundbreaking findings in theoretical

studies, along with the latest advancements in addressing practical scientific and technological

challenges.

This reprint brought together mathematicians, physicists, and engineers, as well as other

scientists. Topics covered in this reprint include the following:

Nonlinear Schrödinger equations;

Klein–Gordon equations;

Impulsive neutral differential equations;

Kepler’s equation;

Parabolic heat equations;

Nonlinear monotone equations;

Fractional differential equations;

Elliptic curves;

Inverse and ill-posed problems;

The impulsive Runge–Kutta method;

The Steffensen-type method without memory;

Reinforcement learning;

The constrained Markov decision process;

Time series;

Financial mathematics;

Biomathematics.

Tao Liu, Fazlollah Soleymani, and Qiang Ma

Guest Editors
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Abstract: The target of this work is to present a multiplication-based iterative method for two
Hermitian positive definite matrices to find the geometric mean. The method is constructed via the
application of the matrix sign function. It is theoretically investigated that it has fourth order of
convergence. The type of convergence is also discussed, which is global under an appropriate choice
of the initial matrix. Numerical experiments are reported based on input matrices of different sizes as
well as various stopping termination levels with comparisons to methods of the same nature and
same number of matrix–matrix multiplications. The simulation results confirm the efficiency of the
proposed scheme in contrast to its competitors of the same nature.

Keywords: iterative approach; geometric mean; matrix sign; fractal; basins of attraction; fourth order
of convergence

MSC: 41A25; 65F60

1. Introduction

1.1. The Sign for a Matrix

The matrix sign function (MSF) [1], alternatively referred to as the matrix signum
function or sign of a matrix, is an operation applied to matrices, producing a matrix of
identical dimensions. The origin of the function sign is taken from its scalar counterpart,
which works on real numbers, assigning +1 to positive scalars, −1 to negative scalars, and
0 to zero ([2], chapter 11). Extending the sign function to matrices was a progression aimed
at aiding the exploration of matrix theory and the development of novel algorithms for
addressing matrix equations and systems [3]. The MSF for an invertible matrix W ∈ Cn×n

can be written as
sign(W) = U, (1)

and then, computed by ([4]; p. 107)

U =
2
π

W
∫ ∞

0
(t2 I + W2)−1dt, (2)

where I is the identity matrix.
Since its inception, this function has been applied across diverse fields of mathematics

and scientific computation, playing crucial roles in numerical analysis [4,5]. Recent inves-
tigations [6,7] have concentrated on enhancing methods for effectively finding the MSF,

Mathematics 2024, 12, 1772. https://doi.org/10.3390/math12111772 https://www.mdpi.com/journal/mathematics1
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developing high-order techniques, and investigating its correlations with other matrix func-
tions and properties. This function has emerged as a valuable instrument for manipulating
and characterizing matrices in various domains.

For small to moderately sized matrices, it is feasible to compute the spectral factoriza-
tion and subsequently assess f (W). Higham [4] details numerous methods for computing
functions of matrices within this size range. Ref. [8] proposed a foundational framework
for computing several matrix functions, including (1). However, for large matrices W,
the computational cost associated with computing the spectral factorization may become
prohibitively high. Similarly, other techniques that rely on factorizing W to compute f (W)
may also become impractical for large matrices lacking an exploitable structure. In such
scenarios, iterative methods emerge as viable options.

1.2. Matrix Geometric Mean (MGM)

The geometric mean serves as a measure of central tendency for a finite set of real
numbers, computed by taking the product of their values, and then, finding the nth root.
When focusing on matrices, the MGM is a tool that averages a set of matrices with positive
definiteness. In some recent papers [9,10], the geometric mean for two positive definite
(PD) matrices has been identified as the midpoint of the geodesic joining the two matrices.

When faced with two matrices, the determination of the MGM necessitates the consid-
eration of the following function:

φ : An ×A
n → A

n, (3)

whereinAn stands for the set for all n×n HPD (Hermitian PD) matrices. Here, GMean(W, Z)
could be provided by [11]

W#Z := GMean(W, Z) = W(W−1Z)
1
2 , (4)

which is a sub-case of the formulation below for t ∈ R [12]:

W#tB := W(W−1Z)t. (5)

In [13] (p. 105), the following formulation was provided for computing the MGM:

W#Z = W
1
2 (W− 1

2 ZW− 1
2 )

1
2 W

1
2 , (6)

for the HPD W and Z matrices of suitable dimensions. For GMean(·, ·), we have

GMean(V, I) := diag(
√

v1,
√

v2, . . . ,
√

vn), (7)

wherein V = diag(v1, v2, . . . , vn) stands for a diagonal matrix with vi > 0, and I stands
for the unit matrix. It can be asserted that W#Z possesses all the attributes essential for a
geometric mean [14], such as

Z#W = W#Z. (8)

If Z and W commute with each other, then we have

W#Z = (WZ)
1
2 .

Here, X stands for the matrix square root (principal) of W and it is given by X = W
1
2

as the solution of the following matrix equation:

X2 = W, (9)

where here W does not have real non-positive eigenvalues. In fact, the matrix W#Z solves
the following Riccati equation ([13]; p. 106):

2



Mathematics 2024, 12, 1772

Z = XW−1X. (10)

Additionally, by using the characteristics of the square root (principal), one has

W(W−1Z)
1
2 = (ZW−1)

1
2 W = Z(ZW−1)

1
2 = (WZ−1)

1
2 Z = W#Z. (11)

The MGM has several important features as follows:

W#W = W,
(W#Z)−1 = W−1#Z−1,
W#Z ≤ 1

2 (W + Z).
(12)

1.3. Goals

The objective of this article is to introduce a novel approach for computing (11) for
two appropriate matrices by initially determining the MSF.

• It is demonstrated that this iterative technique achieves global convergence for this pur-
pose, provided a suitable initial approximation, with a fourth-order convergence rate.

• Detailed convergence proofs and numerical simulations are provided.
• It can be inferred that the proposed scheme serves as an effective tool for computing (4)

of two HPD matrices.
• An advantage of the proposed method is its ability to obtain larger attraction basins,

resulting in a larger convergence radius compared to similar methods for computing
the matrix sign function. This leads to faster convergence, thereby reducing the total
number of matrix multiplications.

From both practical and theoretical standpoints, the quest for the computation of the
MGM holds significance. This endeavor often relies on iterative techniques, prominently
leveraging various matrix–matrix products.

1.4. Structure

The rest of this work is structured as follows. Section 2 furnishes some techniques for
determining the MSF. Subsequently, Section 3 elucidates the utility of high-order schemes
and introduces a solver tailored for addressing nonlinear equations. The iterative approach
is extended to handle matrices and its efficacy is substantiated via analysis, showing a
convergence order of four in Section 4. In Section 5, we investigate the attraction basins to
guarantee the global convergence behavior compared to analogous methods. The stability
of the proposed matrix iteration is discussed in Section 6. Section 7 discusses the extension
of the scheme for computing the MGM for two HPD matrices. Section 8 presents the out-
comes of our numerical investigation, validating our theoretical insights and highlighting
the practicality of our approach. Finally, Section 9 offers our concluding remarks.

2. Several Existing Iterations

Let f represent a real-valued function and have the nonlinear problem [15]

f (t) = 0. (13)

In the case where f (ξ) = 0, ξ is identified as a root of f . Given that (13) typically lacks
an exact solution in a general context, it becomes imperative to seek an approximate solution
through iterative approaches [16,17]. Newton’s method stands out as a foundational
iterative technique for this purpose, boasting convergence order and efficiency index
values of 2 and 2.41, respectively. Alternatively, the root can be sought employing the
fixed-point scheme in the format below:

kq+1 = g(kq), q = 0, 1, 2, · · · . (14)

3
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The field of iterative approaches finds fruitful application in solving matrix-related
challenges, including the computation of matrix functions, as highlighted in works such
as [18,19].

Let us recall an efficient general family of methods for finding the MSF here. The
authors in [20] provided a general framework as a family of methods for calculating (1).
Considering ι1 + ι2 ≥ 1, then Ref. [20] discussed that the iteration structure below,

kq+1 =
kqPι1(1 − k2

q)

Qι2(1 − k2
q)

:= ψ2ι1+1,2ι2 , (15)

converges with convergence speed ι1 + ι2 + 1 to ±1. Therefore, the quadratically convergent
Newton’s solver can be obtained by

Kq+1 =
1
2

(
K−1

q + Kq

)
, (16)

where
K0 = W, (17)

is the initial guess and W represents the input matrix based on (1). Observing that the
reciprocal Padé approximations can be formulated using the inverses of (15), we recognize
that Newton’s method offers an iterative strategy for approximating (1); for more, see [21,22].

Employing (15), the following famous methods, specifically, the locally convergent
Newton–Schulz solver that does not require matrix inversion,

Kq+1 =
1
2

Kq(3I − K2
q), (18)

and the globally convergent Halley’s solver,

Kq+1 = [K2
q + I][Kq(3I + K2

q)]
−1, (19)

can be extracted. Further state-of-the-art developments can be observed in [23,24].

3. A Multi-Step Method for Nonlinear Equations

Initially, we introduce the following secant-type iterative technique devoid of memory
to address (30); see also the discussions in [25–27]. Let us consider the following structure:⎧⎪⎪⎪⎨⎪⎪⎪⎩

dq = kq − f ′(kq)−1 f (kq), q = 0, 1, . . . ,

yq = kq −
i1 f (kq)− i2 f (dq)

i3 f (kq)− i4 f (dq)

f (kq)

f ′(kq)
,

kq+1 = yq − f [yq, kq]−1 f (yq),

(20)

which gives the following error equation:

εq+1 =
a2(i3 − i1)

i3
ε2

q +O(ε3
q), (21)

where
aj = ( f ′(ξ)j!)−1( f (j)(ξ)), and εq = kq − ξ.

The connection described in (21) leads to the choice of i1 = i3, thus converting the
error equation to

εq+1 =
a2

2(i1 + i2 − i4)
i1

ε3
q +O(ε4

q). (22)

4
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Hence, it is imperative to ascertain the remaining undetermined coefficients in such a
manner that guarantees

i1 + i2 − i4 = 0,

thereby diminishing the newly appeared asymptotic (22). Furthermore, their choice should
strive to minimize the ensuing error equation, specifically,(

3i1a2a3(i1 + i2 − i4)− a3
2
(
−i4(5i1 + i2) + i1(3i1 + 5i2) + i24

))
i21

ε4
q .

We choose now i1 = i3 = 29, i2 = 30, and i4 = 59. The second substep outlined in (23)
marks an advancement from the procedure outlined in [28]. Moreover, this methodology
is devised to widen the attraction basins, offering a comparative advantage over other
methods with similar attributes. Hence, we derive the following iterative method:⎧⎪⎪⎪⎨⎪⎪⎪⎩

dq = kq − f ′(kq)−1 f (kq),

yq = kq −
29 f (kq)− 30 f (dq)

29 f (kq)− 59 f (dq)

f (kq)

f ′(kq)
,

kq+1 = yq − f [yq, kq]−1 f (yq),

(23)

where the divided difference operator (see, e.g., [29]) is obtained via f [l, j] := ( f (j) −
f (l))(j − l)−1.

Theorem 1. Assume ξ in D as a single zero of f : D ⊆ C → C that is a differentiable function
(sufficiently). Additionally, let us consider that k0 is sufficiently close to the solution. Consequently,
the iterates produced by (23) exhibit a convergence of at least fourth order.

Proof. By expanding f (kq) and f ′(kq) around ξ, we obtain

f (kq) = f ′(ξ)[εq + a2ε2
q + a3ε3

q + a4ε4
q + a5ε5

q +O(ε6
q)], (24)

and
f ′(kq) = f ′(ξ)[1 + 2a2εq + 3a3ε2

q + 4a4ε3
q + 5a5ε4

q +O(ε5
q)]. (25)

Now, from (24) and (25), one obtains

dq = ξ + a2ε2
l +

(
−2a2

2 + 2a3

)
ε3

l −
(
−4a3

2 + 7a2a3 − 3a4

)
ε4

l +O(ε5
l ). (26)

By expanding f (dq) around ξ and using (26), it is possible to write

yq = ξ − 1
29

a2
2ε4

l +

(
927a3

2
841

− 33a2a3

29

)
ε4

l +O(ε5
l ). (27)

From (27) and (24), one obtains that

f [yq, kq] = f ′(kq) + a2 f ′(kq)ε
1
l + a3 f ′(kq)ε

2
l

(
a4 f ′(kq)−

a3
2 f ′(kq)

29

)
ε3

l +O(ε4
l ). (28)

Now, by the use of (27) and (28) we attain

εq+1 = yq − f [yq, kq]
−1 f (yq)− ξ = − 1

29
a3

2ε4
q +O(ε5

q). (29)

The proof is complete.

5
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4. Expanding to the Matrix Context

Using (23) to address solving

F(U) := U2 − I = 0, (30)

leads to the following scheme:

Kq+1 = 2Kq

(
37I + 72K2

q + 7K4
q

)[
15I + 146K2

q + 71K4
q

]−1
. (31)

Since the convergence of the iterative methods must be performed for ±, so each
constructed iteration in this category can be written as a fraction in the scalar form, which
means that its reciprocal can be convergent to ∓. Due to this similarity, one can derive the
reciprocal version of (31) and express it as follows:

Kq+1 =
(

15I + 146K2
q + 71K4

q

)[
2Kq

(
37I + 72K2

q + 7K4
q

)]−1
. (32)

The process begins with an initial value and progressively refines the estimation
with each iterate until reaching convergence. This iterative characteristic proves beneficial
when handling intricate or sizable matrices, as direct methods might entail high computa-
tional costs. Currently, we are examining the convergence properties of (32) to establish a
convergence outcome.

Theorem 2. When determining the sign of matrix W, under the condition of no eigenvalues
residing on the imaginary axis, we begin with an initial approximation K0 sufficiently near to U,
selected using (17). This choice ensures commutativity with W. Consequently, the scheme (32) (or
equivalently (31)) converges towards the sign matrix U with a convergence rate of four.

Proof. The method we introduce requires matrix multiplications, similar to its competitors.
However, much of the convergence theory for our method relies on computing eigenvalues
(see, e.g., [30,31]) from one iteration to the next. Let us employ the Jordan block matrix J to
decompose W in the following manner using the invertible matrix L:

W = LJL−1. (33)

Utilizing this, in conjunction with the iterative approach, results in an iteration struc-
ture akin to the original iteration structure, albeit focusing on the eigenvalues transitioning
from step q to step q + 1, as demonstrated below:

λi
q+1 =

(
15 + 146λi

q
2
+ 71λi

q
4)

×
[
2λi

q

(
37 + 72λi

q
2
+ 7λi

q
4)]−1

, 1 ≤ i ≤ n, (34)

where bi = signλi
q(λ) = ±1. Generally, (34) reveals that the eigenvalues tend to bi = ±1,

i.e.,

lim
q→∞

∣∣∣∣∣λi
q+1 − bi

λi
q+1 + bi

∣∣∣∣∣ = 0. (35)

This indicates convergence and suggests that the eigenvalues approach ±1 with each
iteration, leading to eigenvalue clustering during the iterative process. Following the
examination of convergence, determining the convergence rate becomes essential. For this
purpose, it is taken into account that

Θq = 2Kq(37I + 72K2
q + 7K4

q). (36)

6
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Thus, we can write the following:

Kq+1 − U = (15I + 146K2
q + 71K4

q)Θ−1
q − U

= [15I + 146K2
q + 71K4

q − UΘq]Θ−1
q

= [15I + 146K2
q + 71K4

q − 74KqU − 144K3
qU − 14K5

qU]Θ−1
q

= [−15(Kq − U)4 + 14KqU
(

K4 − 4K3
qU + 6K2

qU2 − 4KqU3 + I
)
]Θ−1

q

= [−15(Kq − U)4 + 14KqU(Kq − U)4]Θ−1
q

= (Kq − U)4[−15I + 14KqU]Θ−1
q .

(37)

By employing (37), one can derive the following:

‖Kq+1 − U‖ ≤
(
‖Θ−1

q ‖‖15I − 14KqU‖
)
‖Kq − U‖4, (38)

indicating a convergence order of four for (32). This concludes the proof. The analysis of
error for (31) can be inferred in a similar manner.

5. Attraction Basins

It is essential to highlight how the suggested approach can be contrasted with its
counterparts from the Padé iterations for computing the MSF. The fourth-order methods
within the Padé family can be outlined as [20]

Kq+1 = [I + 6K2
q + K4

q ][4Kq(I + K2
q)]

−1, Padé [1,2], (39)

Kq+1 = [4Kq(I + K2
q)][I + 6K2

q + K4
q ]
−1, Reciprocal of Padé [1,2]. (40)

Constructing high-order schemes is only practical if they can rival existing methods in
performance and computational cost. Hence, comparing (31) and (32) to (39) and (40) is
crucial to demonstrate that the presented solver maintains the same convergence order as
the established Padé methods while requiring similar computational resources. Moreover,
its larger convergence radii, as evidenced by the corresponding basins of attractions,
underscore its superiority.

To assess the global convergence and broader attraction basins of the presented solver
compared to its counterparts, attraction basins are plotted. The region [−2, 2]× [−2, 2] ∈ C

is partitioned into a grid of initial points, each tested for convergence based on the criterion
|k2

q − 1| ≤ 10−2. Diverging points are marked in black. The numerical results are depicted in
Figures 1 and 2, with shading indicating the number of iterations required for convergence.

While Newton’s solver and iterative methods (31) and (39) exhibit global convergence,
the attraction basins for (31) and (32) show lighter areas, suggesting faster convergence
compared to their Padé counterparts.

Figure 1. Basins of attraction shaded based upon the number iterations required to fulfill the
convergence criterion for (16) (left) and (39) (right).
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Figure 2. Basins of attraction shaded based upon the number iterations required to fulfill the
convergence criterion for (31) (left) and (32) (right).

6. Stability

The stability analysis regarding (32) is presented in the following theorem. Theorem 3
extends a fundamental outcome discussed in [32] concerning the stability of pure matrix
iterations. Additionally, it mentions that:

• U2 = I;
• U−1 = U.

Theorem 3. Using (32) and considering that W does not possess any purely imaginary eigenvalues,
we can conclude that the sequence {Kq}∞

q=0, with K0 = W, remains asymptotically stable.

Proof. Suppose that βq represents a perturbation in the computational process of the
iterative method at the q-th iteration, and express this as follows:

K̃q = Kq + βq. (41)

Now, let us conduct a first-order error analysis, indicating that for all i ≥ 2,

(βq)
i ≈ 0. (42)

If βq is sufficiently small, then (42) holds well, allowing one to express

K̃q+1 =[15I + 146K̃2
q + 71K̃4

q ][2K̃q(37I + 72K̃2
q + 7K̃4

q)]
−1. (43)

As we reach a large-enough value for q, indicating the convergence phase, we assume
that Kq is approximately equal to sign(W), denoted as U. Through significant simplifica-
tions, we derive that

K̃q+1 ≈
(

U +
1
2

βq −
1
2

UβqU
)

. (44)

Using
βq+1 = K̃q+1 − Kq+1,

we can write
βq+1 ≈ 1

2
βq −

1
2

UβqU. (45)

This results in the fact that the next iteration, denoted as q + 1, remains within certain
limits, meaning

‖βq+1‖ ≤ 1
2
‖β0 − Uβ0U‖. (46)

Hence, the sequence {Kq}∞
q=0 generated by (32) achieves asymptotic stability. With

that, the proof comes to a close.

8



Mathematics 2024, 12, 1772

7. Extension to MGM

An efficient way to calculate the geometric mean of two HPD matrices W and Z,
without having to find the matrix square roots (principal), relies on (refer to [4] (page 131))

sign
([

0 W
Z−1 0

])
=

[
0 T

T−1 0

]
, (47)

and therefore, the mean can be obtained as follows:

T = W(Z−1W)−
1
2 = W(W−1Z)

1
2 = W#Z. (48)

If the starting matrix is chosen correctly and the matrices do not have eigenvalues on
the imaginary axis, there will not be any breakdown when computing the inverse matrix
for (31) or (16). It is worth mentioning that for any appropriate matrix E such that W + E is
PD, we have

sign
(

0 W + E
I 0

)
, (49)

as a fixed value of (32).

8. Computational Aspects

Various methods examined previously are contrasted under equivalent conditions
within Mathematica [33]. To demonstrate the effectiveness of the innovative approach, we
conduct computational simulations of various sizes. The subsequent termination criterion
in l∞ is employed

‖Kq+1 − Kq‖∞ ≤ ε. (50)

The Cauchy stopping criterion (50) can be employed instead of the convergence
criterion K2

q+1 − I = 0, as it is significantly easier to implement in higher dimensions.
This approach circumvents the need for additional matrix powers in the algorithmic step,
leading to faster convergence by eliminating one further matrix–matrix multiplication.

The globally convergent methods (31), (32), (39), (40), and (16) are denoted in this
section as PM1, PM2, PD1, PD2, and NM2, respectively. All the fourth-order methods
require four matrix products and one matrix inverse per cycle. Here, we tackle the Riccati
problem (10) for two HPD matrices specified by

W =

⎛⎜⎜⎜⎜⎜⎝
2 0 1
0 2 0 1
1 0 2 0
. . . . . . . . . . . . . . .

1 0 2

⎞⎟⎟⎟⎟⎟⎠
n×n

,

Z =

⎛⎜⎜⎜⎜⎝
3
2

2
3

2
3

. . . . . .

. . . . . . 2
3

2
3

3
2

⎞⎟⎟⎟⎟⎠
n×n

.

Several details are in order:

• We consider different sizes and employ the same termination criterion.
• The inverse of matrix W in (10) was calculated directly, after which both matrices were

used in the iterative methods for comparative analysis.
• The comparison outcomes for different iterative techniques are provided in Figures 3 and 4.
• All the iterative methods having fourth order examined here incur an equivalent

computational expense concerning matrix–matrix products and inverse calculations.

9
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The findings concerning the calculation of the geometric mean of the two HPD ma-
trices demonstrate the superiority of PM1 and PM2 over their counterparts of similar
order, showcasing their efficiency. Clearly the computational CPU time for PM1 and PM2
decreases in contrast to PD1 and PD2 since they use the same number of matrix–matrix
products and inverses per computing cycle but PM1 and PM2 have larger attraction basins
based on the discussions in Section 5. The MGM is applicable only to HPD matrices with
positive real eigenvalues. In contrast, the proposed method for the matrix sign function
can be applied to all matrices with complex eigenvalues, provided none of them lie on the
imaginary axis.

Figure 3. Simulation results for different tolerances in the stopping criterion. It shows PM1 and PM2
arrive at the convergence phase quicker than their competitors of the same order in a smaller number
of iterations.

Figure 4. Simulation results for different dimensions. It shows PM1 and PM2 arrive at the convergence
phase quicker than their competitors of the same order in a smaller number of iterations.

It is worth noting that such iterative approaches can be expedited (in a similar way
as in Newton’s method [4]) by computing an additional parameter at each iteration and
substituting Kq with μqKq, as outlined below:

μq =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
|det(Kq)|

−1
n , (determinantal scaling),√

ρ(K−1
q )

ρ(Kq)
, (spectral scaling),√

‖K−1
q ‖

‖Kq‖ , (norm scaling).

(51)

We conclude this section by emphasizing the significance of learning procedures
within the realm of artificial intelligence and machine learning models [34–36]. Designing
a strategy based on machine learning tools could efficiently accelerate the convergence of
such iterative structures by developing a model that quickly transitions the initial matrix
into the convergence phase. This could be focused on in future works on this field.

10
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9. Conclusions

The concept of the geometric mean, initially defined for positive scalars, can be
extended to HPD matrices in multiple ways. These extensions aim to capture essential
properties akin to those expected of a mean, to varying degrees. A practical use of the MSF
arises in determining the MGM of two HPD matrices. This is particularly necessary in
addressing a specific category of nonlinear matrix equations like (10).

In this study:

• We introduced a computationally intensive approach for determining the sign of a matrix,
which was subsequently demonstrated to exhibit a fourth-order convergence order.

• The new method demonstrates global convergence and competes favorably against
prominent alternatives from the Padé solvers.

• The stability of the scheme was brought forward.
• Computational experiments were conducted to show the efficacy of our iterative

technique (and its reciprocal) across various test scenarios.

Forthcoming research lines can be concentrated on two aspects. First, it would be more
efficient if a sharper initial matrix could be designed so as to put the iterative approach
much closer to the convergence phase, leading to a faster convergence. And second, it
is favorable to improve the results by extending them to higher orders while possessing
larger attraction basins when compared to the exiting multiplication-rich methods from the
Padé family of methods.
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Abstract: This paper proposes a method and an algorithm called Q-sorting for reinforcement learning
(RL) problems with multiple cumulative constraints. The primary contribution is a mechanism for
dynamically determining the focus of optimization among multiple cumulative constraints and the
objective. Executed actions are picked through a procedure with two steps: first filter out actions
potentially breaking the constraints, and second sort the remaining ones according to the Q values of
the focus in descending order. The algorithm was originally developed upon the classic tabular value
representation and episodic setting of RL, but the idea can be extended and applied to other methods
with function approximation and discounted setting. Numerical experiments are carried out on the
adapted Gridworld and the motor speed synchronization problem, both with one and two cumulative
constraints. Simulation results validate the effectiveness of the proposed Q-sorting in that cumulative
constraints are honored both during and after the learning process. The advantages of Q-sorting are
further emphasized through comparison with the method of lumped performances (LP), which takes
constraints into account through weighting parameters. Q-sorting outperforms LP in both ease of use
(unnecessity of trial and error to determine values of the weighting parameters) and performance
consistency (6.1920 vs. 54.2635 rad/s for the standard deviation of the cumulative performance index
over 10 repeated simulation runs). It has great potential for practical engineering use.

Keywords: reinforcement learning; cumulative constraint; constrained Markov decision process (CMDP)

MSC: 60J20

1. Introduction

Reinforcement learning [1] has been successful in areas like Atari games [2] and
the game of Go [3]. The learning processes of these applications happen in simulator
environments rather than real worlds. The sole objective is to find policies that maximize
the return without having to consider any constraints. However, there are also problems
with constraints. For example, imagine a recycling robot whose objective is to figure out
a route from the origin to the destination to collect as much garbage as possible. Apart
from the objective, the robot must keep the battery from running out before it reaches
the destination [4]. Another example is the cellular network, where the objective is the
maximum throughput and the constraints are transmission delay, service level, package
loss rate, etc. [5]. Also, in the problem of energy management for hybrid electric vehicles,
apart from the objective of minimum fuel consumption, the physical characteristics of
motors and engines should be enforced as constraints [6]. Zhang et al. [7] considered an
energy efficiency maximization problem with the power budget at the transmitter and
the quality of service as constraints and tackled it using the proximal policy optimization
framework. For heterogeneous networks, the achievable sum information rate is to be
maximized with the achievable information rate requirements and the energy harvesting
requirements as constraints [8]. In a word, there are lots of circumstances in practical
engineering projects where objectives and constraints are to be considered simultaneously.
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Decision-making problems with constraints are typically modeled and solved under
the framework of the constrained Markov decision process (CMDP). There are two kinds
of constraints: instantaneous and cumulative. The former requires that the action At taken
must be a member of an admissible set AC, which may be dependent on the current state
St. The latter can be divided into two groups: probabilistic and expected. In cases of
probabilistic constraints, the probability that the cumulative costs violate a constraint is
required to be within a certain threshold. Expected constraints, on the other hand, pose
requirements on the cumulated/averaged values of the costs. It can be further divided
into two categories: discounted sum and mean value. Liu et al. [9] provided a summary
and classification of RL problems with constraints. In this paper, the problem studied is
restricted to discounted sum constraints in an episodic setting. Details are to be provided
in Section 2.

MDPs with cumulative constraints (both discounted sum and mean value) were first
studied in [10]. It is found that if the model is completely known, the CMDP problem
can be transformed into a linear programming problem and solved. However, in practical
problems, transition dynamics are seldom known in advance, making the theoretical
solution inapplicable. Among other methods, Lagrangian relaxation is a popular one
that turns the original constrained learning problem into an unconstrained one by adding
the constraint functions weighted by corresponding Lagrange multipliers to the original
objective function [11–14]. Drawbacks of the Lagrangian relaxation include sensitivity to
the initialization of the multipliers as well as the learning rate, large performance variation
during learning, no guarantee of constraint satisfaction during learning, too slow learning
pace, etc. [9]. Furthermore, to derive the adaptive Lagrange multiplier, one has to solve the
saddle point problem in an iterative way, which may be numerically unstable [15].

Lyapunov-based methods are also popular. Originally, Lyapunov functions were a
kind of scalar function to describe the stability property of a system [16]. They can also
represent the steady-state performance of a Markov process [17] and serve as a tool to
transform the global properties of a system into local ones and vice versa [18]. The first
attempts to utilize the Lyapunov functions to tackle CMDP problems can be found in [18],
where an algorithm based on linear programming is proposed to construct the Lyapunov
functions for the constraints. It is a value-function-based algorithm and not suitable for
continuous action space. Another Lyapunov-based algorithm specifically for large and con-
tinuous action spaces using policy gradients (PG) to update the policies is proposed in [19].
The idea is to use the state-dependent linearized Lyapunov constraints to derive the set of
feasible solutions and then project the policy parameters or the actions onto it. Compared
with the Lagrangian relaxation methods, Lyapunov-based methods ensure constraint satis-
faction both during and after learning. The drawbacks of the Lyapunov methods are in two
aspects. First, to derive the Lyapunov functions on each policy evaluation step, a linear
programming problem has to be solved, which may be numerically intractable if the state
space is large [19]. Although it is possible to use heuristic constant Lyapunov functions
depending only on the initial state and the horizon, theoretical guarantees are lost [20].
Second, Lyapunov methods require the initial policy π0 to be feasible, whereas in some
problems, feasible initial policies are unavailable, and it is usually more desirable to start
with random policies [19].

Constrained Policy Optimization (CPO) [21] is an extension of the popular trust
region policy optimization (TRPO) [22] to make it applicable to problems with discounted
sum constraints. It respects the constraints both during and after learning and ensures
monotonic performance improvement. It uses a conjugate gradient to approximate the
Fisher Information Matrix and backtracking line search to determine feasible actions, which
makes it computationally expensive and susceptible to approximation error [9,20]. CPO
does not support mean-valued constraints and is difficult to extend to cases of multiple
constraints [23]. Finally, the methodology of CPO can hardly be applied to other RL
algorithms, which are not in the category of proximal policy gradient [18].
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Interior-point policy optimization (IPO) proposed by [23] is a promising algorithm for
RL problems with cumulative constraints. It is a first-order policy optimization algorithm
inspired by the interior-point method [24]. The core idea of IPO is to augment the objective
function with logarithmic barrier functions whose values go to negative infinity if the
corresponding constraint is violated and zero if it is satisfied. IPO has a lot of merits, like
its applicability to general types of cumulative constraints, including both discounted sum
and mean-valued ones, its easy extension to handle multiple constraints; easy tuning of
hyperparameters; and its robustness in stochastic environments. It is also noteworthy that
IPO is one of the few that provides simulation results for multiple constraints. The main
drawback of IPO is that the initial policy must be feasible [9]. This issue is addressed in
later works by dividing the learning process into two phases [25,26]. In the first phase, the
objective is totally ignored, and the cumulative costs are successively optimized to obtain a
feasible policy. In the second phase, the original IPO algorithm is initiated with the feasible
policy found at the end of the first phase. However, it is still not clear what should be
performed if the agent gets stuck on an infeasible policy during the learning process of the
second phase.

Although IPO demonstrates promising performances in empirical results, it does not
provide adequate theoretical guarantees other than the performance bound. Compara-
tively, Triple-Q [27] is the first model-free and simulator-free RL algorithm for CMDP with
proof on sublinear regret and zero constraint violation. It has the same low computational
complexity as SARSA [28]. Although it is claimed that Triple-Q can be extended to ac-
commodate multiple constraints, the corresponding simulation results are not provided
in the paper. Triple-Q is designed for episodic CMDPs with discounted sum constraints
only. In later works, it is integrated with optimistic Q-learning [29] to obtain another
model-free algorithm named Triple-QA for infinite-horizon CMDPs with mean-valued
constraints. Triple-QA also provides sublinear regret and zero constraint violations. In
general, thorough performance bounds are usually provided by model-based methods
like [30,31]. Triple-Q and Triple-QA are among the few exceptions.

Projection-based Constrained Policy Optimization (PCPO) [32] is an algorithm for
expected cumulative constraints. It learns optimal and feasible policies iteratively in two
steps. In the first step, it uses TRPO to learn an intermediate policy, which is better in terms
of the objective but may be infeasible. In the second step, it projects the intermediate policy
back into the constraint set to get the nearest feasible policy. The scheme of projection
ensures improvement of the policy as well as satisfaction of the constraints. The main
drawbacks of PCPO are expensive computation and limited generality, which are similar
to those of CPO since they both use TRPO to perform policy updates [9].

Backward value functions (BVF) are another useful tool for solving CMDP problems.
In typical RL settings [1], value functions are “forward,” representing expected discounted
cumulative rewards from the current state to the terminal state or the infinite end. Com-
paratively, BVF describes the expected sum of returns or costs collected by the agent so far.
It builds upon the concept of the backward Markov chain, which is first discussed in [33].
Pankayaraj and Varakantham [34] employed BVF to tackle safety in hierarchical RL prob-
lems. Satija et al. [20] proposed a method for translating trajectory-level constraints into
instantaneous state-dependent ones. This approach respects constraints both during and
after learning. It requires fewer approximations as compared to other methods, and the
only approximation error is from the function approximation. As a result, it is computa-
tionally efficient. One problem that has not been addressed well by [20], but is critical to
the practical application, as has been discussed before, is the recovery mechanism from
infeasible policies in the case of multiple constraints. This paper aims to fill this gap.

State augmentation is also another promising solution for CMDP problems. Calvo-
Fullana et al. [35] proposed a systematic procedure to augment the state with Lagrange
multipliers to solve RL problems with constraints. They also demonstrated that CMDP and
regularized RL problems are not equivalent, meaning that there exist some constrained RL
problems that cannot be solved by using a weighted linear combination of rewards (the
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method of which is called lumped performances in this paper). McMahan and Zhu [36]
proposed augmenting the state space to take constraints into consideration. They empha-
sized anytime constraint satisfaction in their methods, which requires the agent to never
violate the constraint both during and after the learning process.

Primal-dual approaches are also popular. Bai et al. [37] proposed a conservative
stochastic primal-dual algorithm that is able to achieve ε-optimal cumulative reward with
zero constraint violations. However, it has also been demonstrated that classic primal-dual
methods cannot solve all constrained RL problems [35].

Model error may significantly influence the ability of the agent to satisfy the con-
straints. Ma et al. [38] proposed a model-based safe RL framework named Conservative
and Adaptive Penalty (CAP), which considers model uncertainty by calculating it and
adaptively using it to trade off optimality and feasibility.

For safe RL applications, learning from offline data is also attractive since it avoids the
dangerous actions of trial and error online. Xu et al. [39] proposed constraints penalized
Q-learning (CPQ) to solve the distributional shift problem in offline RL.

Gaps: In RL problems with multiple cumulative constraints, the final learned policy
should have two properties, which are optimality and feasibility. In other words, the return
should be maximized, whereas the constraints should be satisfied. The two requirements
are usually in opposite directions, however, meaning that purely pursing one would cause
the other to fail. The learning process thus consists of two kinds of components, namely,
optimization and recovery. The former is to drive the policy towards a larger return.
The latter is to make it more feasible. For the existing literature, one point that has not
gained much attention but is vital to practical applications of the algorithms, however, is
the mechanism of recovery from infeasible policies. In other words, most algorithms are
expected to work with feasible policies. They operate under the assumption that updating
the current feasible policy would result in another feasible one. This property is called
consistent feasibility [18,20]. For example, it is theoretically proven that CPO, Lyapunov-
based, and BVF-based algorithms all maintain the feasibility of the policy upon updates
once the base policies being updated are feasible [18,20,23]. However, the problem remains:
what should be performed if the initial policy is infeasible, or if it is feasible at the beginning
but turns infeasible in the middle of learning due to effects like function approximation
error. In these cases, a mechanism to recover the infeasible policy back to a feasible
one is important. The design of the recovery mechanism is not the focus of the existing
literature but rather an implementation issue. A recovery method was originally proposed
along with CPO in [21], which performs policy updates to purely optimize the constraints,
ignoring the objective temporarily. This strategy is also adopted by the Lyapunov-based
algorithm [19] and the BVF-based one [20]. However, the recovery method originally
proposed with CPO only covers the case of a single constraint. It is unclear how to extend
it to accommodate multiple constraints. Chow et al. [19] suggest extending this recovery
update to the multiple-constraint scenario by doing gradient descent over the constraint
that has the worst violation but provides simulation results on the case of single constraint
only. This paper aims to fill the gap by proposing a systematic mechanism for policy
recovery that is applicable to the case of multiple cumulative constraints and accompanied
by corresponding simulation results.

Contributions: A simple method and algorithm named Q-sorting are proposed for
CMDP problems with discounted sum constraints in a tabular and episodic setting with
deterministic environments and policies. It is similar to the BVF-based algorithm in terms of
the way to predict whether a certain action potentially violates a constraint, but additionally
provides a systematic mechanism for recovering from infeasible policies. Compared to
existing recovery methods used in CPO, Lyapunov-based, and BVF-based algorithms, it
covers cases of multiple constraints. It also provides the possibility to rank the constraints
according to their importance and specify the order in which they are to be considered,
enabling finer control and configuration of the learning process. It is model-free and can be
applied online. It pursues constraint satisfaction both during and after learning. Although
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Q-sorting was originally developed in a tabular and episodic setting, it can be extended
to methods with function approximation and discounted settings, as long as they are
value-based. By using the BVF to estimate cumulative costs incurred so far, it can also be
extended to accommodate stochastic environments and policies.

The rest of this paper is organized as follows. Section 2 introduces the problem.
Section 3 discusses the proposed Q-sorting algorithm. Section 4 presents simulation results
of Q-sorting on problems of Gridworld and motor speed synchronization control with one
and two constraints and compares it to the conventional method of lumped performances.
Section 5 gives a conclusion.

2. RL Problems with Multiple Cumulative Constraints

Consider a typical MDP: an agent is in some state St and takes an action At, transits to
the next state St+1 and receives a reward Rt+1. The process continues until the terminal
state, or some exit condition, is reached. The whole objective is to learn an optimal policy
At = π(St) (supposing a deterministic one) to maximize the discounted cumulative re-
wards R1 +γR2 + . . ., namely, the return. In problems with multiple cumulative constraints,
however, the agent has to take care of not only the objective but also the constraints. After
At is taken on St, it receives not only Rt+1 but also a vector Rt+1,constraints corresponding to
“rewards” of different constraints:

Rt+1,constraints = [Rt+1,constraint1, Rt+1,constraint2, . . .] (1)

After the end of the episode, the cumulated values of Rt+1,constraint1, Rt+1,constraint2, . . .
should be above some prespecified thresholds:⎧⎪⎨⎪⎩

R1,constraint1 + γc1
R2,constraint1 + . . . ≥ c1

R1,constraint2 + γc2
R2,constraint2 + . . . ≥ c2

...

(2)

where γc1 , γc2 , . . . , are the discount rates for different constraints. The difference between
the returns of the objective and the constraints is that the former are what we are seeking
to maximize, whereas the latter only have to stay above some value. Assumptions are as
follows:

1. MDP is finite-time and episodic, which means that all discount rates γ, γc1 , γc2 , . . . are 1.
2. MDP as well as the policy are deterministic.

It should be noted that for CMDP problems, there may be one or multiple cumulative
constraints, but there should always be only one objective.

3. Q-Sorting

RL problems with one objective and multiple cumulative constraints are analogous to
those with multiple objectives. The core of the learning algorithm is to allocate learning re-
sources, for example, computing time and service, between different constraints/objective.
Due to safety requirements, it is also desired that the times when constraints are violated
be as few as possible, both during and after learning. These problems could be solved by
imposing some predefined rules specifying at each time step which objective/constraint
should be solely considered.

The idea is more obvious by supposing a value-based RL algorithm like Monte-Carlo
or Q-learning. Naturally, one Q table could be learned for each objective/constraint. And if
no constraints are imposed, the action is typically produced according to some ε-greedy
mechanism:

At =

{
argmax

a
Qobjective(St, a), a ∈ A, r ≥ ε

randomly pick one from A, r < ε
(3)
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where r represents a uniform random number in (0, 1), ε is the exploration rate, and A is
the set of all possible actions. The subscript in Qobjective emphasizes that the Q table being
used corresponds to the objective, namely, the return of which we are seeking to maximize.

Now consider the problem with one objective and multiple cumulative constraints. To
predict the effects of a certain action on satisfying or violating constraints, it is necessary
to record the rewards “up until now” and have them summed/accumulated. For example,
suppose that the cumulative constraint refers to the fact that the fuel consumption on a trip
should be within a certain amount. At each time step, to predict whether a future route
satisfies the constraint, one should first check out how much fuel has been consumed. By
subtracting the fuel already consumed from the total available amount (the constraint),
one gets the surplus quota. And by comparing the surplus quota to the predicted fuel
consumption from now on till the end, one gets a (predicted) conclusion on whether a certain
route (action) violates the constraint.

To make it clear, suppose that only one cumulative constraint exists. When making
decisions (choosing actions), two circumstances are possible. First, there is at least one action
satisfying the constraint (in terms of prediction rather than reality). To maximize the return of
the objective, one simply filters all actions violating the constraint out of A to get Ac, which
represents the set of all feasible actions, and then replace A with Ac in the greedy component
of Equation (3) to get At. Next, consider the second circumstance, where no actions satisfy
the constraint. In this case, the greedy action regarding the objective violates the constraint
and thus cannot be used. Rather, if the “constraint-first” principle is adopted, the greedy
action regarding the constraint should be used, which means that Qobjective in Equation (3)
should be replaced with Qconstraint. In other words, the focus of optimization is switched
from the objective to the constraint when no actions are feasible. This seems natural if
one observes Equation (2): requirements state that the value of cumulated Rt+1,constraint
be greater than or equal to some threshold, and not satisfying the constraint implies that
this cumulative value is too small. To move the policy in the direction of satisfying the
constraint, it is reasonable to pick the action a maximizing Qconstraint(St, a).

In the presence of multiple cumulative constraints, however, things get complicated.
On each time step, one has to decide the “focus of optimization”, not between one objective
and one constraint but among one objective and multiple constraints. Figure 1 illustrates
the idea, using an example with one objective and four constraints. In a specific state, St,
suppose that there are five action candidates. The Q values of each candidate are queried
for different constraints/objectives. The satisfaction of a certain action candidate regarding
a certain constraint is evaluated using the following equation:

isSatis f ied(At,candidate) =

{
true, Qconstraint(St, At,candidate) + RTNconstraint ≥ ci
false, Qconstraint(St, At,candidate) + RTNconstraint < ci

(4)

where RTN is for “return till now”, that is, the cumulated rewards of the constraint up
until now. Equation (4) is called a “test” for a certain action candidate At,candidate regarding a
certain constraint ci on the time step t.

The table in Figure 1 shows a possible case of the test results, where a check mark
is for satisfying the constraint and a cross mark is for violating it. Each column (except
the last one) corresponds to a specific constraint, and each row corresponds to an action
candidate. The last column corresponds to the objective.

The procedure is to test and filter all action candidates with each of the constraints, one
by one, starting from the first. For example, for the first constraint, At,candidate1, At,candidate2,
At,candidate3, and At,candidate4 pass the test, whereas At,candidate5 fails and is filtered out right
away. Then, calculate Qconstraint2(St, a) for the four survivors and test them with Equation (4).
At,candidate1, At,candidate2, and At,candidate3 pass the second test, whereas At,candidate4 fails. Aban-
don At,candidate4 and repeat the process until no candidates pass the test or the last column (the
objective) is reached. The column where all survivors settle on becomes the focus of optimization,
and all survivors become candidates to pick. In this example, the focus is constraint3 and the
candidates to pick are At,candidate1, At,candidate2, andAt,candidate3. Among the three, the action

18



Mathematics 2024, 12, 2001

that maximizes Qconstraint3(St, a) is ultimately picked. Specifically, Qconstraint3(St, At,candidate1),
Qconstraint3(St, At,candidate2), and Qconstraint3(St, At,candidate3) are sorted in descending order,
and the action candidate corresponding to the first is picked. With the learning process
going on, the focus of optimization shall move from constraint1 to constraint2, constraint3, . . .
consecutively, and finally settle on the objective. The agent focuses on one constraint/objective
at a time and strikes to find a policy that maximizes the objective performance while satisfying
all the cumulative constraints.

Figure 1. Q-sorting.

A typical optimization process for the policy is illustrated in Figure 2.

 

Figure 2. Optimization of the policy.

The pseudocode of the Q-sorting algorithm is summarized in Algorithm 1.
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Algorithm 1. Q-sorting

Algorithm parameter: small ε > 0
Initialize Qobjective(s, a), Qconstraint1(s, a), Qconstraint2(s, a), . . . for the objective and each constraint arbitrarily
except that Q(terminal, ·) = 0, for all s ∈ S, a ∈ A

Loop for each episode:
Initialize St
Initialize an empty array trajectory
Loop for each step of the episode:

Generate a uniform random number r ∈ [0, 1]
IF r < ε

Randomly pick At ∈ A

ELSE

1. Test and filter action candidates, starting from the first constraint, until no candidates
pass a specific test or all tests are passed. If all candidates fail on a constraint, the
constraint becomes the focus of optimization; on the other hand, if there is at least one
candidate satisfying all constraints (passing all the tests), the objective becomes the
focus of optimization. Record the index of focus as i,
i ∈ {constraint1, constraint2, . . . , objective}.

2. Record indices of candidates reaching i as j1, j2, . . .,
jk ∈ {candidates1, candidates2, . . .}.

3. Sort Qi
(
St, Aj1

)
, Qi

(
St, Aj2

)
, . . . in descending order and pick the action

corresponding to the first as At. If multiple actions attain the maximum Qi value at
the same time, randomly pick one from them.

Take At, observe Rt+1, Rt+1,constraint1, Rt+1,constraint2, . . . and St+1
Append the vector

move = [St, At, St+1, Rt+1, Rt+1,constraint1, Rt+1,constraint2, . . .]T

to trajectory: trajectory ← [trajectory, move]
Update the current state: St ← St+1

until the terminal state is reached
Update Qobjective, Qconstraint1, Qconstraint2, . . . with Monte Carlo,
according to the trajectory recoded

4. Simulation Results

The effectiveness of the proposed Q-sorting is verified by two problems. The first one
is the classic Gridworld, and the second one is the motor speed synchronization control. For
both problems, cases of one constraint and two constraints are investigated. All learning
processes start with random policies, which may be infeasible. The framework of Q-sorting
can be applied to any value-based RL algorithm, like Monte Carlo or Q-learning. Here, for
the simulation results, Monte Carlo is used. Source code and demos are provided in the
supplementary materials.

4.1. Gridworld

A 5 × 5 Gridworld is considered, as shown in Figure 3. In the classic setting, the agent
starts from the origin (the upper left) and tries to reach the destination (the lower right)
with as few steps as possible. There are no constraints, but only the objective. In this paper,
however, the Gridworld problem is adapted to include one or two constraints. In the case
of one constraint, the agent collects three points upon each move (even those that leave the
agent in the original position, like those against the wall). Throughout the whole episode, a
minimum of 300 points is required. The objective is the same as that of the classic version:
minimum steps. Upon simple inspection, it is quite easy to conclude that the optimal value
of steps to reach the destination while satisfying the constraint is 100.

Simulation results are reported in Figure 4, which are obtained from 10 repeated
simulations. The curve represents the mean, and the shaded region represents the standard
deviation. The first two subplots show performances corresponding to the objective and the
constraint, respectively. The last subplot illustrates the progress of the focus of optimization,
as labeled in Figure 1. For a specific episode, the focus of optimization on each step is
summed up and averaged over the whole episode to get the focus of episode, which is then
plotted. All performance indices are averaged within a moving window containing the
nearby 10 episodes.
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Figure 3. Gridworld.

 
Figure 4. Simulation results: Gridworld with one constraint.

From Figure 4, it can be observed that the averaged points collected are far above
the constraint threshold at the very beginning of learning, which is the result of random
policies upon initialization. On average, it takes the agent about 300 steps to reach the
destination in the first episode, and the corresponding collected points are about 1000,
which is certainly nonoptimal since the constraint requires only 300 points. After that,
steps taken quickly approach the optimal value of 100, with the averaged points collected
decreasing while staying above the constraint. With the decay of the exploration rate, the
policy gradually converges to the optimal and feasible one, achieving the theoretically
minimum number of steps 100.

The last subplot of Figure 4 shows the progress of the focus. Within the first 30 episodes,
the focus value quickly climbs from 1, which corresponds to the constraint, to 2, which
corresponds to the objective. This is because the random policies upon initialization easily
satisfy the constraint. However, it is not always the case. A more difficult situation is
presented later, where the agent has to consider another extra constraint.
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The mechanism of filtering and sorting (Section 3) ensures that the agent considers the
constraint in the first place while learning to maximize the return. This is reflected in the
second subplot, where the points collected stay above the required threshold (300) most of
the time. In other words, satisfaction with the constraint is ensured during the learning
process, not just after the end of it.

The optimal trajectory after learning is shown in Figure 5. It is produced by executing
the learned policy greedily. The color bar shows the number of visits for each cell.

Figure 5. Trajectory after learning: Gridworld with one constraint.

The one-constraint Gridworld problem is then extended to include one more constraint:
the number of turns. One turn is counted if both conditions are met: (a) the moving axis
(either horizontal or vertical) of the current action is different from that of the previous one;
(b) the current position is different from the previous one. At the beginning, the moving
axis is undefined (null). The moving axis is updated only if the current position is different
from the previous one.

In the simulation, two thresholds for the number of turns are tested. The first one
is 20, the results of which are shown in Figure 6. The agent is required to collect at least
300 points with at most 20 turns, using as few steps as possible. It is to be noted that the
constraint on the number of turns and the objective of the minimum steps are somehow
contradictory. To constrain the number of turns, the agent is tempted to adopt a strategy
that keeps going against the wall. However, doing so would probably increase the number
of steps. It is difficult to balance the two. In the simulation, it was found that, apart from
the horizontal and vertical positions, adding a third state variable, which represents the
number of total steps taken so far, is helpful. And different from the first constraint, which
is easily satisfied from the beginning by the random policies, the second constraint gets
satisfied late in the middle of the learning. This is indicated by the third and last subplot of
Figure 6, in which the focus index slowly increases from 1 to 3 and spends a lot of episodes
around 2.

Trajectory after learning about the two-constraint Gridworld problem is shown in
Figure 7. Comparing Figure 7 with Figure 5, the effects of the constraint on the number of
turns are obvious. To satisfy the second constraint while collecting points, the agent adopts
a strategy to keep going against the wall (the purple cell), which counts as no turns.

To make the comparison clearer, the threshold for the second constraint is further
lowered from 20 to 5. Simulation results for the learning process and the trajectory after
learning are shown in Figures 8 and 9, respectively. It is a more difficult mission for the
agent since now it has to collect at least 300 points with at most 5 turns. As a result, the focus
index climbs more slowly than in Figures 4 and 6. The agent spends a lot of time learning
to constrain the number of turns to 5. After the end of learning, however, it successfully
finds a policy that attains 300 points within 5 turns. In the final learned trajectory, the agent
spends a lot of time on the lower left corner by going left against the wall.
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Figure 6. Simulation results: Gridworld with two constraints (20 turns at most).

Figure 7. Trajectory after learning: Gridworld with two constraints (20 turns at most).

Figure 8. Simulation results: Gridworld with two constraints (5 turns at most).
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Figure 9. Trajectory after learning: Gridworld with two constraints (5 turns at most).

4.2. Motor Speed Synchronization Control

The motor speed synchronization problem can be found in [40,41]. To be short, the
speed of the motor is required to change from an initial speed to a terminal one by following
a reference trajectory. In this paper, it is modeled as a RL problem. The state variable is the
time stamp, discretized with a step size of 0.1 s. The action variable is the motor torque,
with the range [−10, 0] Nm for cases of one constraint and [−10, 5] Nm for cases of two
constraints, both discretized with the quantization step 0.5 Nm. A detailed problem setup
can be found in the supplementary materials.

Two kinds of objectives are considered here. In the first one, the motor speed is
required to decrease to negative values as fast as possible (Rt+1 = −1). Whereas in the
second one, it should be as slow as possible (Rt+1 = 1). As in the Gridworld problem, both
cases of one constraint and two constraints are considered. In the case of one constraint,
the sole requirement is that the deviation between the actual speed trajectory and the
reference be smaller than a certain threshold. The deviation between two speed trajectories
is calculated as ∑t=0 Rt+1,constraint1 where Rt+1,constraint1 is as follows:

Rt+1,constraint1 = −
∣∣∣ωt+1,re f − ωt+1,act

∣∣∣ (rad/s) (5)

The reference speed trajectory is a simple line given by the following equation:

ωre f (t) =
ω0 − ωT

0 − T
· t + ω0 (6)

where ω0 = 3000 rpm (revolutions per minute), ωT = 0, and T = 1 s. In the case of two
constraints, apart from the trajectory deviation, the number of “turns” by the actual motor
speed along the whole process is also constrained to be larger than a certain value. Here, one
“turn” is defined as a change in the sign of the rotational acceleration. For example, if the
rotational acceleration of the motor is negative (the speed is going down) on the previous
time step and positive (the speed is going up) on the current time step, it is counted as one
turn. It will be interesting to see how the agent manages to satisfy both constraints.

Figure 10 shows motor speed trajectories after the end of learning for the two cases
of objective under different thresholds of c1 ranging from −600 to −100 rad/s. Cumu-
lated Rt+1,constraint1 in Equation (2) against the threshold c1 is also shown in the form
∑t=0 Rt+1,constraint1/c1. If the value of ∑t=0 Rt+1,constraint1 is larger than that of c1, the con-
straint is successfully satisfied.
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(a) (b) 

Figure 10. Motor speed trajectory after learning (one constraint), x/y is for ∑t=0 Rt+1,constraint1/c1.
(a) Objective: shortest duration and (b) objective: longest duration.

It can be seen that all learned motor speed trajectories successfully satisfy the corre-
sponding constraints. The objective performance index is also maximized, which can be
inferred from the simulation results. For example, in the case where the objective is the
shortest duration for the motor to reach negative speed values, if we tighten the constraint
on deviation between the actual speed trajectory and the reference, the duration would
be longer since the actual speed trajectory would have to lean towards the reference. On
the other hand, if the constraint is loose, the duration would be shorter. The effects of the
objective can also be observed by comparing the two subplots in Figure 10. For the shortest
duration objective, speed trajectories are all under the reference, whereas for the longest
duration objective, they are all above, which is reasonable.

Figure 11 shows simulation results for one of the instances in Figure 10, where the
objective is the longest duration and the constraint threshold c1 is −100 rad/s. This requires
that the cumulated speed deviation along the whole process does not exceed 100 rad/s,
which is quite a difficult task. As a result, the focus index increases at a rather slow pace
because the agent spends a lot of time learning to satisfy the constraint. It is near the end of
learning that the agent starts to consider the objective completely. The return settles on the
optimal value 11, which corresponds to a duration of 1.1 s (because the time step is 0.1 s
and the agent gets one unit reward upon each transition along the timeline), after about
2000 episodes. The constraint is satisfied after about 1500 episodes.

To further emphasize the effectiveness of the algorithm in satisfying the constraint
while pursuing optimality, performances regarding different levels of the constraint in
the process of learning are shown in Figure 12. The objective is the longest duration for
the motor to reach negative speed values. Three levels of the constraint are compared,
namely, c1 = −1000 rad/s, c1 = −600 rad/s, and c1 = −∞ (which corresponds to the case
of no constraints). It can be inferred that if no constraints are posed, the optimal policy is
to output the maximum torque possible on each time step, which will also result in the
maximum deviation from the reference speed trajectory. This is exactly the case in Figure 12,
when c1 = −∞. However, if specific constraints are posed for the level of deviation, the
objective performance will be compromised in order to satisfy the constraint. Notice how
the agent pushes itself against the limit of the constraint to maintain satisfaction with it
while pursuing optimal objective performance. The tighter the constraint, the smaller
the return.
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Figure 11. Simulation results: motor speed synchronization control with one constraint (objective:
longest duration; constraint: c1 = −100 rad/s).

Figure 12. Simulation results: motor speed synchronization control with different levels of the
constraint (objective: longest duration).

Simulation results for the case of two constraints are shown in Figure 13, where c1
for the first constraint is fixed to −500 rad/s. As has been discussed before, the second
constraint corresponds to the number of “turns”, that is, the speed going up and down. A
comparison between Figures 10 and 13 will reveal the effects of the second constraint. If the
number of speed turns is unconstrained, under the threshold c1 = −500 rad/s, the shortest
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duration for the motor to reach negative speed values is 0.6 s, according to Figure 10.
However, if at least three or four turns are required, the shortest duration will increase to
0.8 s, according to Figure 13. This seems natural since alternating between acceleration
and deceleration takes the agent more time to reach the target speed than full deceleration.
In the second subplot of Figure 13, the first constraint is slightly violated (−500.828 vs.
−500), which may be due to the inaccuracy of the learned function values. Figure 14
shows simulation results for one of the instances in Figure 13a, where the objective is the
shortest duration with cumulative constraints c1 = −500 rad/s and c2 = 4 turns. The agent
learns to satisfy the first constraint after about 10 episodes and the second one after about
150 episodes.

  
(a) (b) 

Figure 13. Motor speed trajectories after learning (two constraints), x1|x2/y1|y2 is for
∑t=0 Rt+1,constraint1

∣∣∑t=0 Rt+1,constraint2 / c1|c2 . (a) Objective: shortest duration and (b) objective:
longest duration.

 
Figure 14. Simulation results: motor speed synchronization control with two constraints (objective:
shortest duration; constraints: c1 = −500 rad/s and c2 = 4 turns).
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Last but not least, the results of Q-sorting are compared with the method of lumped
performances (LP), which integrates constraints into the objective function and turns the
original problem into a constraint-free one. LP is, in effect, the Lagrangian relaxation with
a fixed multiplier. Here, only one constraint is considered, namely, the deviation from the
reference. Specifically, the reward signal is modified as follows:

Rt+1,lumped =

⎧⎨⎩−1 − β
∣∣∣ωt+1,re f − ωt+1,act

∣∣∣, objective: shortest duration

1 − β
∣∣∣ωt+1,re f − ωt+1,act

∣∣∣, objective: longest duration
(7)

The effects of the original constraint are controlled by the parameter β. Figure 15
shows learned speed trajectories for different values of β, ranging from 0.001, 0.003, . . ., to
0.025. For each trajectory, the deviation from the reference, the return, and the value of β are
shown, respectively. Obviously, the smaller the β, the smaller the effects of the constraint,
and the larger the deviation from the reference. Figure 15 coincides with intuition. It is also
observed that speed trajectories resulting from different values of β exhibit similar shapes
to those in Figure 10.

  
(a) (b) 

Figure 15. Motor speed trajectories after learning for LP (one constraint). (a) Objective: shortest
duration and (b) objective: longest duration.

The method of LP comes with two main drawbacks. First, the relationship between
the effects of the constraints and the value of β is unclear. For example, one cannot easily
determine the value of β to express the requirement that the cumulated speed deviation
should be below 300 rad/s. To attain a proper value of β, lots of trials and experiments are
needed. Comparatively, in Q-sorting, the constraint is fed directly into the algorithm; no
other proxy parameters are needed.

The second drawback is related to the performance consistency of the algorithm.
Figure 16 shows motor speed trajectories for Q-sorting and LP, simulations of which are
run repeatedly for 10 times each. The objective for both is to decrease the motor speed to
negative values with as long a duration as possible. For Q-sorting, the cumulated speed
deviation from the reference is required to be within 300 rad/s. For LP, it is controlled
through the proxy parameter β, whose value is fixed to 0.005. Here, the value of β is
determined from Figure 15b, where the cumulated speed deviation (the constraint) is
275.2579 rad/s when β = 0.005. The idea is to choose a value that results in a cumulated
speed deviation near 300 rad/s.
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(a) (b) 

Figure 16. Motor speed trajectories for Q-sorting and LP over 10 runs (objective: longest duration).
(a) Q-sorting and (b) LP.

Figure 17 shows the cumulated speed deviation for both methods in different simu-
lation instances. Q-sorting provides great consistency, with the cumulative performance
index concentrating around 300 rad/s, most of the time below it, just as the constraint
requires. Comparatively, it ranges from 300 to 500 rad/s in the cases of LP, which implies
that there is no deterministic relationship between the values of β and the cumulative
performance index of the constraint. One cannot count on the fixed value of β for the
satisfaction of a certain cumulative constraint. For reference, the standard deviations of
the cumulated speed deviation for Q-sorting and LP over 10 repeated simulation runs are
6.1920 and 54.2635 rad/s, respectively.

 
Figure 17. Cumulated speed deviation over 10 runs.

In a word, compared to the conventional LP, Q-sorting not only provides greater ease
of use by requiring only the constraint thresholds rather than trials and errors on the values
of proxy parameters but also ensures better performance consistency and is thus more
suitable for practical use.
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5. Conclusions

An algorithm named Q-sorting for RL problems with multiple cumulative constraints
is proposed. The core is a mechanism that dynamically determines the focus of optimization
among different constraints/objective, at each step of learning. The focus and the action are
determined through filtering and sorting of the Q table, which gives it the name Q-sorting.
It is a plugin that can be readily applied to any value-based RL algorithm to provide the
capability of satisfying cumulative constraints while pursuing optimality. It is verified with
two adapted problems, namely, Gridworld and the motor speed synchronization control,
each with one or two cumulative constraints. Simulation results show that the proposed
method is able to learn an optimal policy that honors all cumulative constraints both during
and after the learning process. This makes it suitable for safety-critical applications.

It has to be emphasized that although the idea of Q-sorting is effective, its perfor-
mance heavily depends on the accuracy of Q values. That is because the algorithm uses
Qconstraint(St, a) to predict whether a specific action violates the constraint. An implemen-
tation developed in MATLAB using Monte Carlo to learn the value function is provided in
the supplementary materials. Other tabular methods, such as Q-learning and SARSA, are
also possible, but performances may differ.

This paper restricts the scenario to finite-time, episodic problems with deterministic
environments and policies. Under this assumption, a determined policy with the same
initial state will always result in the same cumulative performance index, so there is no
need to express the cumulative constraints as expected/averaged values over multiple
episodes. In problems with stochastic environments and policies, however, cumulative
constraints can only be represented in an expected/averaged manner. Also, for problems
with a discounted rather than episodic setting, it is sometimes desired to limit the average
resources consumed on each step rather than the cumulated quantities. How to extend the
idea of Q-sorting to the two cases above can be a future topic.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/math12132001/s1. Source code and demos written in MATLAB
are provided in the Supplementary Materials, which can be downloaded alongside the article.
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Abstract: In this paper, two different schemes of impulsive Runge–Kutta methods are constructed
for a class of linear differential equations with delayed impulses. One scheme is convergent of
order p if the corresponding Runge–Kutta method is p order. Another one in the general case is only
convergent of order 1, but it is more concise and may suit for more complex differential equations with
delayed impulses. Moreover, asymptotical stability conditions for the exact solution and numerical
solutions are obtained, respectively. Finally, some numerical examples are provided to confirm the
theoretical results.

Keywords: impulsive Runge–Kutta methods; impulsive θ methods; convergence; asymptotical
stability

MSC: 37M05; 37M22

1. Introduction

Impulsive differential equations (IDEs) arise widely in numerous mathematics mod-
els of systems with instantaneous perturbations. Such models have been applied with
huge success in lots of application fields, such as control theory, medicine, biotechnology,
economics, population growth, etc. Some work on these systems is presented in [1–4].
Recently, more and more experts and scholars have begun to pay attention to different
kinds of differential equations with delayed impulses (DEDIs) and have achieved many
important results about the following equations: nonlinear ordinary differential equations
with delayed impulses (see [4–8], etc.), time-delay differential equations with delayed
impulses [4,9–14], and stochastic differential equations with delayed impulses [15–20].
In the present paper, asymptotical stability conditions for the zero solution of a class of
linear DEDIs are obtained, and two interesting examples are provided to reveal the effect
of delayed impulses on differential equations, which can potentially destabilize a stable
system or stabilize an unstable one.

Recently, the theory of numerical methods for impulsive differential equations has
also been developing rapidly. The convergence and stability of impulsive Runge–Kutta
methods for scalar linear IDEs [21,22], multidimensional linear IDEs [23], semilinear
IDEs [24], nonlinear IDEs [25–29], impulsive time-delay differential equations [30–35], and
stochastic impulsive time-delay differential equations [36] have been studied, respectively.
There is a lot of important and relevant literature (see [37–42], etc.). However, to our
knowledge, most of the previous literature focused on numerical methods for IDEs or
impulsive time-delay differential equations; the research on numerical methods for DEDIs
is still lacking.

The rest of this paper is organized as follows. In Section 2, asymptotical stability
conditions for the zero solution of a class of linear DEDIs and two examples are given
to show how delayed impulsive actions influence the stability of the zero solution of the
equations. In Section 3, the scheme 1 impulsive Runge–Kutta methods (S1IRKMs) are
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constructed, and the convergence and asymptotical stability of the methods are studied.
Moreover, the asymptotical stability of the scheme 1 impulsive θ method (S1IθM) is studied.
In Section 4, the scheme 2 impulsive Runge–Kutta methods (S2IRKMs) are constructed
based on classical Runge–Kutta methods, and the convergence and stability of the methods
are studied. In general, a S2IRKM is only convergent of order 1. Therefore, it is very
necessary to consider the scheme 2 impulsive θ method (S2IθM). Moreover, the asymptotical
stability of S2IθMs is studied. In Section 5, we provide some numerical examples to confirm
our theoretical results. Finally, in Section 6, conclusions and future work are provided.

2. Asymptotical Stability of DEDIs

In this section, not only are the asymptotical stability conditions for the zero solution
of DEDIs obtained but also two examples are given to illustrate that delayed impulses can
change a previously unstable problem into a stable one or a previously stable problem into
an unstable one.

2.1. Asymptotical Stability of DEDIs

In this paper, we consider the impulsive differential equation:⎧⎪⎨⎪⎩
x′(t) = ax(t), t ≥ 0, t �= kτ, k ∈ Z+ = {1, 2, · · · },
x(kτ+) = bx(rk), k ∈ Z+,
x(0 + 0) = x0,

(1)

where a �= 0, b, x0, τ, and rk are real constants, b �= 0, k ∈ Z+. There is a real constant
σ ∈ (0, 1], such that all rk, k ∈ Z+ satisfy

rk = σkτ + (1 − σ)(k − 1)τ.

Definition 1. x(t) is said to be the solution of (1) if

1. limt→0+ x(t) = x(0 + 0) = x0,
2. For t ∈ (0,+∞), t �= kτ, x(t) is differentiable and satisfies x′(t) = ax(t),
3. x(t) is left-continuous in (0,+∞) and if t = kτ, then x(kτ+) = bx(rk), where

x(kτ+) = limt→kτ+ x(t).

Problem (1) has a unique solution as follows:

x(t) = (beaστ)kx0ea(t−kτ), ∀t ∈ (kτ, (k + 1)τ]. (2)

From (2), it is easy to obtain the following theorem.

Theorem 1. The solution x(t) ≡ 0 of (1) is asymptotically stable (x(t) → 0 as t → +∞) if and
only if

|b|eaστ < 1. (3)

When σ = 1, DEDI (1) is changed into an IDE (not delayed). Consequently, when
σ = 1, the necessary and sufficient condition (3) for the asymptotical stability of DEDI (1)
(Theorem 1) is changed into the special case of the necessary and sufficient condition for
the asymptotical stability of an IDE (not delayed). Hence the result of ([21] Theorem 1.4) is
the special case of Theorem 1 of the present paper. The difference between the asymptotical
stability of the DEDI and the asymptotical stability of the IDE also can be seen from the
following two examples.

2.2. Two Interesting Examples

In this subsection, we present two differential equations with delayed impulses which
are interesting and offer simple examples to show how the delayed impulsive actions
influence the stability of the zero solution of the equations. In Example 1, the zero solutions
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of an ordinary differential equation and an impulsive differential equation are unstable, but
the same equation with delayed impulses is asymptotically stable. Conversely, in Example 2,
the zero solutions of an ordinary differential equation and an impulsive differential equation
are asymptotically stable, but the same equation with delayed impulses is unstable.

Example 1. First, consider the following simple scalar ordinary differential equation:

x′(t) = x(t), t ≥ 0, x(0) = x0. (4)

Solving this equation, we can obtain the exact solution of (4),

x(t) = x0et, t ≥ 0,

which implies that when x0 �= 0,
lim

t→+∞
x(t) = +∞,

which also implies that the zero solution of (4) is unstable.
Second, consider the same equation with impulses (not delayed):⎧⎪⎨⎪⎩

x′(t) = x(t), t ≥ 0, t �= k, k ∈ Z+,
x(k+) = ( 1

2 )x(k), k ∈ Z+,
x(0 + 0) = x0.

(5)

Solving this equation, we can obtain the exact solution of (5),

x(t) = (0.5e)kx0et−k, ∀t ∈ (k, k + 1].

which implies that when x0 �= 0,
lim

t→+∞
x(t) = +∞,

which also implies that the zero solution of (5) is unstable.
Finally, consider the same differential equation with delayed impulses:⎧⎪⎨⎪⎩

x′(t) = x(t), t ≥ 0, t �= k, k ∈ Z+,
x(k+) = ( 1

2 )x(k − 9
10 ), k ∈ Z+,

x(0 + 0) = x0.

(6)

Solving this equation, we can obtain the exact solution of (6),

x(t) =
(

0.5e
1

10

)k
x0et−k, ∀t ∈ (k, k + 1].

By Theorem 1 of the present paper, we can obtain that the zero solution of (6) is asymptotically
stable (see Figure 1).
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Figure 1. The exact solutions of an ordinary differential Equation (4), a differential equation with
(not-delayed) impulses (5), and a differential equation with delayed impulses (6) when x0 = 1.
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Example 2. First, consider the following simple scalar ordinary differential equation:

x′(t) = −x(t), t ≥ 0, x(0) = x0. (7)

Solving this equation, we can obtain the exact solution of (7),

x(t) = x0e−t, t ≥ 0.

Obviously, the zero solution of (7) is asymptotically stable.
Second, consider the same differential equation with impulses (not delayed):⎧⎪⎨⎪⎩

x′(t) = −x(t), t ≥ 0, t �= k, k ∈ Z+,
x(k+) = 2x(k), k ∈ Z+,
x(0 + 0) = x0.

(8)

Solving this equation, we can obtain the exact solution of (5),

x(t) =
(

2
e

)k
x0et−k, ∀t ∈ (k, k + 1].

By ([21] Theorem 1.4), we can obtain that the zero solution of (5) is asymptotically stable.
Finally, consider the following differential equation with delayed impulses:⎧⎪⎨⎪⎩

x′(t) = −x(t), t ≥ 0, t �= k, k ∈ Z+,
x(k+) = 2x(k − 9

10 ), k ∈ Z+,
x(0 + 0) = x0.

(9)

Solving this equation, we can obtain the exact solution of (6),

x(t) =
(

2e−
1

10

)k
x0et−k, ∀t ∈ (k, k + 1].

which implies that when x0 �= 0,
lim

t→+∞
x(t) = +∞,

which implies that the zero solution of (9) is unstable (see Figure 2).
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Figure 2. The exact solutions of an ordinary differential Equation (7), a differential equation with
(not-delayed) impulses (8), and a differential equation with delayed impulses (9) when x0 = 1.

3. S1IRKM for (1)

The special case of σ = 1 has already been studied in paper [21], and below we focus
on the case of 0 < σ < 1. All the points in the set S = {kτ, rk : k ∈ Z+} are chosen as the
numerical mesh. For convenience, we divide the intervals [(k − 1)τ, rk] and [rk, kτ] (k ∈ Z+)
equally by m, where m is a positive integer, respectively. That means the step sizes are as
follows for ∀k ∈ N = {0, 1, 2, · · · }:
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hk,l =

{
h̄1 := rk−(k−1)τ

m = στ
m , l = 1, 2, · · · , m,

h̄2 := kτ−rk
m = (1−σ)τ

m , l = m + 1, m + 2, · · · , 2m.

The mesh point tk,0 = kτ, tk,l = kτ +
l

∑
j=0

hk,j, ∀k ∈ N, l = 1, 2, · · · , 2m.⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

xk,l+1 = xk,l + ahk,l+1
v
∑

i=1
biXi

k,l+1, l = 0, 1, · · · , 2m − 1,

Xi
k,l+1 = xk,l + ahk,l+1

v
∑

j=1
aijX

j
k,l+1, i = 1, 2, · · · , v,

xk+1,0 = bxk,m, k ∈ N,
x0,0 = x0,

(10)

where v refers to the number of stages. The weights bi, the abscissae ci = ∑v
j=1 aij, and the

matrix A = [aij]
v
j=1 are denoted by (A, b, c). We denote the approximation to the solution

x(tk,l), x(rk), and x(kτ + 0) by xk,l (l = 1, 2, · · · , 2m), xk,m, and xk,0, respectively.
Equation (10) can be written as⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

xk,l+1 =
(
1 + z1bT(I − z1 A)−1e

)
xk,l = R(z1)xk,l , l = 0, 1, · · · , m − 1,

xk,l+1 =
(
1 + z2bT(I − z2 A)−1e

)
xk,l = R(z2)xk,l , l = m, · · · , 2m − 1,

xk+1,0 = bxk,m, k ∈ Z+,
x0,0 = x0,

(11)

where R(z) = 1 + zbT(I − zA)−1e, z1 = ah̄1 = aστ
m and z2 = ah̄2 = a(1−σ)τ

m .

3.1. Asymptotical Stability of S1IRKMs

Theorem 2. Assume the condition (3) holds, and the stability function of the Runge–Kutta method
is R(z) = Qr(z)

Ps(z)
, which is given by the (r, s)-Padé approximation to ez, |z| < 1 for z = z1, and

z = z2:

(i) if a > 0 and s is even, then S1IRKM (10) for (1) is asymptotically stable,

(ii) if a < 0 and r is odd, then S1IRKM (10) for (1) is asymptotically stable.

Proof. From scheme (11), we can obtain that for ∀k ∈ N, 0 ≤ l ≤ m,

xk,l =
(
b(R(z1))

m)kx0(R(z1))
l ,

and for ∀k ∈ N, m + 1 ≤ l ≤ 2m,

xk,l =
(
b(R(z1))

m)kx0(R(z1))
m(R(z2))

l−m.

Hence, the numerical method (11) is asymptotically stable if and only if

|b(R(z1))
m| < 1. (12)

(i) If a > 0 and s is even, applying ([21] Lemmas 3.3 and 3.7) and the condition (3), we
can obtain

|b|(R(z1))
m ≤ |b|ez1m = |b|eah̄1m = |b|eaστ < 1,

which implies that (12) holds.
(ii) Similarly, if a < 0 and r is odd, applying ([21] Lemmas 3.3 and 3.7) and the

condition (3), we can obtain

|b|(R(z1))
m ≤ |b|ez1m = |b|eah̄1m = |b|eaστ < 1,
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which implies that (12) holds.

3.2. Convergence of S1RKM

In order to study the convergence of an S1RKM, the case where DEDI (1) is defined
in the interval [0, T] is considered in this subsection. For convenience, assume that there
exists a positive integer N such that T = Nτ.

Lemma 1 ([21,43–45]). There exists a unique (r, s)-Padé approximation Rrs(z) =
Qr(z)
Ps(z)

to ez for
(r, s) ∈ N×N. Furthermore,

ezPs(z)− Qr(z) =
(−1)szr+s+1

(r + s)!

∫ 1

0
us(1 − u)reuzdu,

where

Qr(z) =
r!

(r + s)!

r

∑
j=0

(r + s − j)!
j!(r − j)!

zj,

Ps(z) =
s!

(r + s)!

s

∑
j=0

(r + s − j)!
j!(s − j)!

(−z)j.

In order to analyze the local truncation errors of S1IRKM (10) for DEDI (1), consider
the following problem:⎧⎪⎪⎨⎪⎪⎩

zk,l+1 = zk,l + ahk,l+1
v
∑

i=1
biZi

k,l+1, l = 0, 1, · · · , 2m − 1,

Zi
k,l+1 = zk,l + ahk,l+1

v
∑

j=1
aijZ

j
k,l+1, i = 1, 2, · · · , v,

(13)

where zk,0 = x(kτ+), zk,l = x(tk,l), k = 0, 1, 2, ·, N, l = 1, 2, ·, 2m − 1.

Theorem 3. If the corresponding Runge–Kutta method is convergent of order p, then the local
truncation errors between (13) and DEDI (1) satisfy that there exists a constant C such that for
arbitrary k = 0, 1, 2, ·, N, l = 1, 2, ·, 2m − 1,

Rk,l+1 := |zk,l+1 − x(tk,l+1)| ≤ Chp+1
k,l+1.

Proof. Because Runge–Kutta methods are convergent of order p, by Lemma 1, there exists
a constant C1 > 0 such that

Rk,l+1 := |eahk,l+1 − R(ahk,l+1)| ≤ C1hp+1
k,l+1. (14)

Obviously, (13) can be rewritten as

zk,l+1 = R(ahk,l+1)zk,l ,

where Rrs(ahk,l+1) = (1 + ahk,l+1bT(I − ahk,l+1 Ae)). From the expression (2) for the solu-
tion x(t) of DEDI (1), we have

sup
t∈(0,T]

|x(t)| ≤ M.

Hence, the local errors satisfy

Rk,l = |x(tk,l+1)− zk,l+1| ≤ |eahk,l+1 − R(ahk,l+1)||zk,l | ≤ Chp+1
k,l+1.

where C = C1M.
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Theorem 4. If Runge–Kutta methods are convergent of order p, then S1IRKM (10) for (1) is also
convergent of order p, and in the following sense, there exists a constant C5 such that for all k ∈ N,
l = 1, 2, · · · , m, the global errors satisfy

ek,l = |x(tk,l)− xk,l | ≤ C5hp,

where h = max{h̄1, h̄2} = max
k,l

{hk,l}.

Proof. From (1) and (13), we have

|Xi
k,l+1 − Zi

k,l+1| ≤ |xk,l − zk,l |+ |a|hk,l+1

(
v

∑
j=1

|aij||Xi
k,l+1 − Zi

k,l |
)

≤ |xk,l − zk,l |+ |a|h
(

max
1≤i≤v

v

∑
j=1

|aij|
)

max
1≤i≤v

{|Xi
k,l+1 − Zi

k,l |}

which implies
max
1≤i≤v

{|Xi
k,l+1 − Zi

k,l |} ≤ Λ|xk,l − zk,l |

where Λ =
(

1 − |a|h
(

max1≤i≤v ∑v
j=1 |aij|

))−1
:

|xk,l+1 − zk,l+1| ≤ |xk,l − zk,l |+ |a|hk,l+1

(
v

∑
i=1

|bi|
)

max
1≤i≤v

{|Xi
k,l+1 − Zi

k,l |}

≤ (1 + βΛ|a|hk,l+1)|xk,l − zk,l |

where β =

(
v
∑

i=1
|bi|

)
. From Theorem 3, we have

R1 := max
0≤k≤N,1≤l≤m

{Rk,l} ≤ Ch̄1hp

and
R2 := max

0≤k≤N,m+1≤l≤2m
{Rk,l} ≤ Ch̄2hp.

If 0 ≤ l ≤ m − 1,

ek,l+1 := |x(tk,l+1)− xk,l+1|
≤ |x(tk,l+1)− zk,l+1|+ |zk,l+1 − xk,l+1|
≤ (1 + βΛ|a|hk,l+1)|xk,l − zk,l |+ Rk,l+1
≤ (1 + βΛ|a|h̄1)ek,l + R1

≤
(
1 + βΛ|a|h̄1

)l+1ek,0 +
[(

1 + βΛ|a|h̄1
)l+1 − 1

]
R1

βΛ|a|h̄1

≤ e(l+1)βΛ|a|h̄1 ek,0 +
(

e(l+1)βΛ|a|h̄1 − 1
)

R1
βΛ|a|h̄1

≤ eβΛ|a|στek,0 +
(

eβΛ|a|στ − 1
)

R1
βΛ|a|h̄1

(15)
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or else, if m ≤ l ≤ 2m − 1,

ek,l+1 = |x(tk,l+1)− xk,l+1|
≤ |x(tk,l+1)− zk,l+1|+ |zk,l+1 − xk,l+1|
≤ (1 + βΛ|a|hk,l+1)|xk,l − zk,l |+ Rk,l+1
≤ (1 + βΛ|a|h̄2)ek,l + R2

≤
(
1 + βΛ|a|h̄2

)l−m+1ek,m +
[(

1 + βΛ|a|h̄2
)l−m+1 − 1

]
R2

βΛ|a|h̄2

≤ e(l−m+1)βΛ|a|h̄2 ek,m +
(

e(l−m+1)βΛ|a|h̄2 − 1
)

R2
βΛ|a|h̄2

≤ eβΛ|a|(1−σ)τek,0 +
(

eβΛ|a|(1−σ)τ − 1
)

R2
βΛ|a|h̄2

(16)

otherwise,

ek+1,0 = |x(tk+1,0)− xk+1,0|
= |bx(rk)− bxk,m| ≤ |b|ek,m

≤ |b|eβΛ|a|mh̄1 ek,0 +
(

eβΛ|a|mh̄1 − 1
)

R1
βΛ|a|h̄1

= |b|eβΛ|a|στek,0 +
(

eβΛ|a|στ − 1
)

R1
βΛ|a|h̄1

≤
(
|b|eβΛ|a|στ

)k+1
e0,0 +

(|b|eβΛ|a|στ)
k+1−1

(|b|eβΛ|a|στ)−1

(
eβΛ|a|στ − 1

)
R1

βΛ|a|h̄1

(17)

Because e0,0 = 0, i.e., x0,0 = x(0+) = x0, it follows from (17) that we can obtain that
for arbitrary k = 0, 1, ·, N − 1,

ek+1,0 ≤ (|b|eβΛ|a|στ)
k+1−1

(|b|eβΛ|a|στ)−1

(
eβΛ|a|στ − 1

)
R1

βΛ|a|h̄1

≤ (|b|eβΛ|a|στ)
k+1−1

(|b|eβΛ|a|στ)−1

(
eβΛ|a|στ − 1

)
Ch̄p

1
βΛ|a|

≤ C2hp,

(18)

where C2 =
(|b|eβΛ|a|στ)

k+1−1

(|b|eβΛ|a|στ)−1

(
eβΛ|a|στ − 1

)
C

βΛ|a| . From (15) and (18), applying Theorem 3,

we can obtain that for arbitrary k = 0, 1, 2, · · · , N − 1, 1 ≤ l ≤ m,

ek,l ≤ C3hp, (19)

where C3 = eβΛ|a|στC2 +
(

eβΛ|a|στ − 1
)

C
βΛ|a| . Similarly, from (16) and (19), applying

Theorem 3, we can obtain that for arbitrary k = 0, 1, 2, · · · , N − 1, m ≤ l ≤ 2m,

ek,l ≤ C4hp, (20)

where C4 = eβΛ|a|(1−σ)τC3 +
(

eβΛ|a|(1−σ)τ − 1
)

C
βΛ|a| .

Finally, summarizing Equations (18)–(20), we know that all the global errors satisfy

ek,l ≤ C5hp, ∀k = 0, 1, 2, · · · , N − 1, ∀l = 0, 1, 2, · · · , 2m,

where C5 = max{C2, C3, C4}.

3.3. Asymptotical Stability of S1IθMs

Similarly, the scheme 1 impulsive θ method (S1IθM) for (1) can be constructed
as follows: ⎧⎪⎨⎪⎩

xk,l+1 = xk,l + hk,l(a(1 − θ)xk,l + aθxk,l+1), l = 0, 1, · · · , 2m − 1,
xk+1,0 = bxk,m, k ∈ N,
x0,0 = x0.

(21)
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Obviously, S1IθM (21) can be written as⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
xk,l+1 =

(
1+(1−θ)ah̄1

1−θah̄1

)
xk,l =

(
1+(1−θ)z1

1−θz1

)
xk,l , l = 0, 1, · · · , m − 1,

xk,l+1 =
(

1+(1−θ)ah̄2
1−θah̄2

)
xk,l =

(
1+(1−θ)z2

1−θz2

)
xk,l , l = m, · · · , 2m − 1,

xk+1,0 = bxk,m, k ∈ Z+,
x0,0 = x0.

(22)

Theorem 5. Assume the condition (3) holds, |z1| < 1, and |z2| < 1:

(i) if a > 0 and 0 < θ < ϕ(1), then the impulsive θ method (21) for (1) is asymptotically stable,

(ii) if a < 0 and 0 < θ < ϕ(0), then the impulsive θ method (21) for (1) is asymptotically stable,

where ϕ(x) = 1
x − 1

ex−1 , x ∈ R. (The function of ϕ can be referred to in Lemma 2 in ref. [46]).

Proof. From scheme (22), we can obtain that for ∀k ∈ N, 0 ≤ l ≤ m,

xk,l =

(
b
(

1 + (1 − θ)ah̄1

1 − θah̄1

)m
)k

x0

(
1 + (1 − θ)ah̄1

1 − θah̄1

)l

,

and for ∀k ∈ N, m + 1 ≤ l ≤ 2m,

xk,l =

(
b
(

1 + (1 − θ)ah̄1

1 − θah̄1

)m
)k

x0

(
1 + (1 − θ)ah̄1

1 − θah̄1

)m(1 + (1 − θ)ah̄2

1 − θah̄2

)l−m

.

Hence, the numerical method (22) is asymptotically stable if and only if

|b
(

1 + (1 − θ)ah̄1

1 − θah̄1

)m

| < 1. (23)

(i) If a > 0 and 0 < θ < ϕ(1), applying ([21] Lemma 2.3) and the condition (3), we
can obtain

|b|
(

1 + (1 − θ)ah̄1

1 − θah̄1

)m

≤ |b|eah̄1m = |b|eaστ < 1,

which implies that (33) holds.
(ii) Similarly, if a < 0 and 0 < θ < ϕ(0), applying ([21] Lemma 2.3) and the condi-

tion (3), we can obtain

|b|
(

1 + (1 − θ)ah̄1

1 − θah̄1

)m

≤ |b|eah̄1m = |b|eaστ < 1,

which implies that (33) holds.

4. S2IRKMs for (1)

For the second scheme, we pay attention to a uniform grid with step size h = τ
m , where

m is an integer. So, the formula for the time points is

tk,l = kτ + lh, k ∈ N, l = 0, 1, 2, · · · , m.
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The impulsive Runge–Kutta method for (1) can be constructed as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

yk,l+1 = yk,l + ah
s
∑

i=1
biYi

k,l+1, l = 0, 1, · · · , m − 1,

Yi
k,l+1 = yk,l + ah

s
∑

j=1
aijY

j
k,l+1, i = 1, 2, · · · , s,

yk+1,0 = byk,�mσ�, k ∈ Z+,
y0,0 = x0.

(24)

Here, yk,l is an approximation of the exact solution x(tk,l), ∀k ∈ N, ∀l = 1, 2, · · · , m.
yk,0 is an approximation of x(kτ + 0), ∀k ∈ Z+. Obviously, if σm is an integer, xk,�σm� is
an approximation of the exact solution x(rk). Otherwise, we cannot find the numerical
solutions at t = rk. Now, xk,�σm�, which is an approximation of x(tk,�σm�) (tk,�σm� ≤ rk and
|rk − tk,�σm�| ≤ h), is viewed as an approximation of x(rk) to find the numerical solution
of (1).

The impulsive Runge–Kutta method (24) can be written as⎧⎪⎨⎪⎩
yk,l+1 =

(
1 + zbT(I − zA)−1e

)
yk,l = R(z)yk,l , l = 0, 1, · · · , m − 1,

yk+1,0 = byk,�mσ�, k ∈ Z+,
y0,0 = x0,

(25)

where z = ha.

4.1. Asymptotical Stability of Scheme 2 Impulsive Runge–Kutta Methods

Theorem 6. Assume the condition (3) holds, and the stability function of the Runge–Kutta method
is R(z) = Qr(z)

Ps(z)
, which is given by the (r, s)-Padé approximation to ez, z = ah, |z| < 1:

(i) if a > 0 and s is even, then the impulsive Runge–Kutta method (24) for (1) is asymptotically
stable,

(ii) if a < 0 and r is odd, then the impulsive Runge–Kutta method (24) for (1) is asymptotically
stable when h < 1

a ln(|b|eaστ).

Proof. From scheme (25), we can obtain that

yk,l =
(

b(R(z))�σm�
)k

y0,0(R(z))l , ∀k ∈ N, l = 0, 1, 2, · · · , m,

which implies that the numerical method (25) is asymptotically stable if and only if

|b(R(z))�σm�| < 1. (26)

(i) If a > 0 and s is even,

|b|(R(z))�σm� ≤ |b|ez�σm� ≤ |b|eahmσ = |b|eaστ < 1,

which implies that (26) holds.
(ii) If a < 0 and r is odd, h < 1

a ln(|b|eaστ) implies |b|eaστ−ah < 1. Hence, we
can obtain

|b|(R(z))�σm� ≤ |b|ez�σm� ≤ |b|eah(mσ−1) = |b|eaστ−ah < 1,

which implies that (26) holds.

4.2. Convergence of S2IRKMs

In order to study the convergence of S2IRKM (24), the case where DEDI (1) is defined
in the interval [0, T] is considered in this subsection. For convenience, assume that there
exists a positive integer N such that T = Nτ.
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To analyze the local truncation errors of S2IRKM (24) for DEDI (1), consider the
following problem:⎧⎪⎪⎨⎪⎪⎩

zk,l+1 = zk,l + ah
v
∑

i=1
biZi

k,l+1, l = 0, 1, · · · , m − 1,

Zi
k,l+1 = zk,l + ah

v
∑

j=1
aijZ

j
k,l+1, i = 1, 2, · · · , v,

(27)

where zk,0 = x(kτ+), zk,l = x(tk,l), k = 0, 1, 2, ·, N, l = 1, 2, ·, m − 1.

Theorem 7. If the corresponding Runge–Kutta method is convergent of order p, then the local
truncation errors between (27) and DEDI (1) satisfy that there exists a constant C6 such that for
arbitrary k = 0, 1, 2, ·, N, l = 1, 2, ·, m − 1,

Rk,l+1 := |zk,l+1 − x(tk,l+1)| ≤ C6hp+1.

Theorem 8. If Runge–Kutta methods are convergent of order p, then the impulsive Runge–Kutta
methods (24) for (1) are convergent at least of order 1, and in the following sense, there exists a
constant C10 such that for all k = 0, 1, 2, · · · , N − 1, l = 0, 1, 2, · · · , m, the global errors satisfy

ek,l = |x(tk,l)− xk,l | ≤ C10h.

Proof. From (24) and (27), we have

|Xi
k,l+1 − Zi

k,l+1| ≤ |xk,l − zk,l |+ |a|h
(

v

∑
j=1

|aij||Xi
k,l+1 − Zi

k,l |
)

≤ |xk,l − zk,l |+ |a|h
(

max
1≤i≤v

v

∑
j=1

|aij|
)

max
1≤i≤v

{|Xi
k,l+1 − Zi

k,l |}

which implies
max
1≤i≤v

{|Xi
k,l+1 − Zi

k,l |} ≤ Λ|xk,l − zk,l |

where Λ =
(

1 − |a|h
(

max1≤i≤v ∑v
j=1 |aij|

))−1
. So we can obtain that

|xk,l+1 − zk,l+1| ≤ |xk,l − zk,l |+ |a|h
(

v

∑
i=1

|bi|
)

max
1≤i≤v

{|Xi
k,l+1 − Zi

k,l |}

≤ (1 + βΛ|a|h)|xk,l − zk,l |,

where β =

(
v
∑

i=1
|bi|

)
. By Theorem 7, we have

R := max
k=0,1,··· ,N−1,l=0,1,··· ,m

{Rk,l} ≤ C6hp+1.

When 0 ≤ l ≤ m − 1,

ek,l+1 := |x(tk,l+1)− xk,l+1|
≤ |x(tk,l+1)− zk,l+1|+ |zk,l+1 − xk,l+1|
≤ (1 + βΛ|a|h)|xk,l − zk,l |+ Rk,l+1
≤ (1 + βΛ|a|h)ek,l + R
≤ (1 + βΛ|a|h)l+1ek,0 +

[(
1 + βΛ|a|h̄1

)l+1 − 1
]

R
βΛ|a|h

≤ e(l+1)βΛ|ahek,0 +
(

e(l+1)βΛ|a|h − 1
)

R
βΛ|a|h

≤ eβΛ|aτek,0 +
(

eβΛ|a|τ − 1
)

R
βΛ|a|h .

(28)

43



Mathematics 2024, 12, 2075

For ∀k = 1, 2, · · · , N, from Taylor’s formula, it follows that

x(rk)− x(tk,�σm�) = x′(tk,�σm�)(rk − tk,�σm�) +
1
2!

x′′(ξ)(rk − tk,�σm�)
2

which implies that
|x(rk)− x(tk,�σm�)| ≤ C7h,

which implies that

ek+1,0 = |x(kτ+)− xk+1,0|
= |bx(rk)− bxk,�σm�|

≤ |b|
(
|x(rk)− x(tk,�σm�)|+ |x(tk,�σm�)− xk,�σm�|

)
≤ |b|eβΛ|a|h�σm�ek,0 + |b|

(
eβΛ|a|h�σm� − 1

) R
βΛ|a|h + |b|C7h

≤ |b|eβΛ|a|στek,0 + |b|
(

eβΛ|a|στ − 1
) R

βΛ|a|h + |b|C7h

≤ |b|

⎛⎜⎝
(
|b|eβΛ|a|στ

)k+1
− 1(

|b|eβΛ|a|στ
)
− 1

⎞⎟⎠[(
eβΛ|a|στ − 1

) R
βΛ|a|h + |b|C7h

]

+
(
|b|eβΛ|a|στ

)k+1
e0,0.

Because e0,0 = 0, i.e., x0,0 = x(0+) = x0, we have

ek+1,0 ≤ |b|
(
(|b|eβΛ|a|στ)

k+1−1

(|b|eβΛ|a|στ)−1

)[(
eβΛ|a|στ − 1

)
R

βΛ|a|h + |b|C7h
]

≤ |b|
(
(|b|eβΛ|a|στ)

k+1−1

(|b|eβΛ|a|στ)−1

)[(
eβΛ|a|στ − 1

)
C6hp

βΛ|a| + |b|C7h
]

≤ |b|
(
(|b|eβΛ|a|στ)

k+1−1

(|b|eβΛ|a|στ)−1

)[(
eβΛ|a|στ − 1

)
C6Tp−1h

βΛ|a| + |b|C7h
]

≤ C8h,

(29)

where C8 = |b|
(
(|b|eβΛ|a|στ)

k+1−1

(|b|eβΛ|a|στ)−1

)[(
eβΛ|a|στ − 1

)
C6Tp−1

βΛ|a| + |b|C7

]
. From (28) and (29), for

k = 0, 1, · · · , N − 1, l = 1, 2, · · · , m, we obtain

ek,l ≤ C9h, (30)

where C9 = eβΛ|aτC8 +
(

eβΛ|a|τ − 1
)

C6Tp−1

βΛ|a| .
Finally, we know that all the global errors satisfy

ek,l ≤ C10h, ∀k = 0, 1, 2, · · · , N − 1, ∀l = 0, 1, 2, · · · , 2m,

where C10 = max{C8, C9}.

4.3. Asymptotical Stability of S2IθMs

Similarly, the impulsive θ method for (1) can be constructed as follows:⎧⎪⎨⎪⎩
yk,l+1 = yk,l + h(a(1 − θ)yk,l + aθyk,l+1), l = 0, 1, · · · , m − 1,
yk+1,0 = byk,�σm�, k ∈ N,
y0,0 = x0,

(31)

44



Mathematics 2024, 12, 2075

Obviously, the impulsive θ method (31) can be rewritten as⎧⎪⎪⎨⎪⎪⎩
yk,l+1 =

(
1+(1−θ)ah

1−θah

)
yk,l , l = 0, 1, · · · , m − 1,

yk+1,0 = byk,�σm�, k ∈ N,
y0,0 = x0,

(32)

Theorem 9. Assume the condition (3) holds and |ah| < 1:

(i) if a > 0 and 0 < θ < ϕ(1), then the impulsive θ method (31) for (1) is asymptotically stable.

(ii) if a < 0 and 0 < θ < ϕ(0), then the impulsive θ method (31) for (1) is asymptotically stable
when h < 1

a ln(|b|eaστ).

In the above, ϕ(x) = 1
x − 1

ex−1 , x ∈ R.

Proof. From scheme (32), we can obtain that for ∀k ∈ N, 0 ≤ l ≤ m,

yk,l =

(
b
(

1 + (1 − θ)ah
1 − θah

)�σm�)k

y0,0

(
1 + (1 − θ)ah

1 − θah

)l
,

Hence, the numerical method (22) is asymptotically stable if and only if

|b|
(

1 + (1 − θ)ah̄1

1 − θah̄1

)�σm�
< 1. (33)

(i) If a > 0 and 0 < θ < ϕ(1), applying ([21] Lemma 2.3) and the condition (3), we
can obtain

|b|
(

1 + (1 − θ)ah
1 − θah

)�σm�
≤ |b|eah�σm� ≤ |b|eahσm = |b|eaστ < 1,

which implies that (33) holds.
(ii) Similarly, if a < 0 and 0 < θ < ϕ(0), applying ([21] Lemma 2.3) and the condi-

tion (3), we can obtain

|b|
(

1 + (1 − θ)ah
1 − θah

)�σm�
≤ |b|eah�σm� ≤ |b|eah(σm−1) = |b|eaστ−ah < 1,

which implies that (33) holds.

5. Numerical Experiments

In this section, two simple numerical examples are given.

Example 3. Consider the following DEDI:⎧⎪⎨⎪⎩
x′(t) = 2x(t), t ≥ 0, t �= k, k ∈ Z+,
x(k+) = ( 1

4 )x(k − 2
3 ), k ∈ Z+,

x(0 + 0) = x0.

(34)

Solving (34), we can obtain

x(t) =
(

0.25e
2
3

)k
x0e2(t−k), ∀t ∈ (k, k + 1].

By Theorem 1, the zero solution of (34) is asymptotically stable. By Theorems 2 and 6,
both S1IRKM (10) and S2IRKM (24) for (34) are asymptotically stable if the stability function
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Rrs(z) =
Pr(z)
Qs(z)

satisfies that s is even. By Theorems 5 and 9, both S1IθM (21) and S2IθM (31)
for (34) are asymptotically stable if 0 < θ < ϕ(1).

In Tables 1–5, AE denotes the absolute errors between the numerical solutions and the exact
solutions of DEDIs. Similarly, RE denotes the relative errors between the numerical solutions and
the exact solutions of DEDIs.

As can be seen from Table 1, when the step size is halved, both the absolute and relative errors
of the scheme 1 impulsive Euler method (S1IEM) and the scheme 2 impulsive Euler method (S2IEM)
for DEDI (34) become half of the original ones, which roughly indicates that both the S1IEM and
S2IEM for DEDI (34) are convergent of order 1.

As can be seen from Table 2, when the step size is halved, both the absolute and relative errors
of the scheme 1 impulsive classical 4-stage 4-order Runge–Kutta method (S1ICRKM) for DEDI (34)
become one-sixteenth of the original ones, which roughly indicates that he S1ICRKM for DEDI (34)
is convergent of order 4. On the other hand, when the step size is halved, both the absolute and
relative errors of the scheme 2 impulsive classical 4-stage 4-order Runge–Kutta method (S2ICRKM)
for DEDI (34) become half of the original ones, which roughly indicates that the S2ICRKM for
DEDI (34) is convergent of order 1.

Table 1. The errors between the exact solution of DEDI (34) and the numerical solutions obtained
from the S1IEM and S2IEM for (34) at t = 6.

S1IEM S2IEM

m AE RE AE RE

100 0.00441823021 0.02184293837 0.01660106964 0.08207271326
200 0.00222814668 0.01101555787 0.01171428183 0.05791331011
400 0.00111888657 0.00553157470 0.00432256363 0.02136997995
800 0.00056065360 0.00277177093 0.00300716613 0.01486689045

Ratio 1.98999866598 1.98999866598 1.85487233434 1.85487233434

Table 2. The errors between the exact solution of DEDI (34) and the numerical solutions obtained
from the S1ICRKM and S2ICRKM for (34) at t = 6.

S1ICRKM S2ICRKM

m AE RE AE RE

100 8.34915193 × 10−11 4.12767109 × 10−10 0.00663129 0.03278391
200 5.24716381 × 10−12 2.59410376 × 10−11 0.00663129 0.03278390
400 3.28126415 × 10−13 1.62219819 × 10−12 0.00167860 0.00829871
800 2.04836148 × 10−14 1.01267321 × 10−13 0.00167860 0.00829871

Ratio 15.97400003 15.97400003 1.98349430 1.98349430

Example 4. Consider the following DEDI:⎧⎪⎨⎪⎩
x′(t) = −2x(t), t ≥ 0, t �= k, k ∈ Z+,
x(k+) = 3x(k − 1 + π

4 ), k ∈ Z+,
x(0 + 0) = x0.

(35)

Solving (34), we can obtain

x(t) =
(

3e−
π
2

)k
x0e−2(t−k), ∀t ∈ (k, k + 1].

By Theorem 1, the zero solution of (35) is asymptotically stable. By Theorems 2 and 6,
both S1IRKM (10) and S2IRKM (24) for (35) are asymptotically stable if the stability function
Rrs(z) satisfies that r is odd. By Theorems 5 and 9, both S1IθM (21) and S2IθM (31) for (35) are
asymptotically stable if 0 < θ < ϕ(0) = 0.5.
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As can be seen from Table 3, when the step size is halved, both the absolute and relative errors
of the S1IEM and S2IEM for DEDI (35) become half of the original ones, which roughly indicates
that both the S1IEM and S2IEM for DEDI (35) are convergent of order 1.

As can be seen from Table 4, when the step size is halved, both the absolute and relative errors
of the S1ICRKM for DEDI (35) become one-sixteenth of the original ones, which roughly indicates
that the S1ICRKM for DEDI (35) is convergent of order 4. On the other hand, when the step size is
halved, both the absolute and the relative errors of the S2ICRKM for DEDI (34) become one-fifth of
the original ones, which roughly indicates that the S2ICRKM for DEDI (35) is convergent but not
up to order 4.

As can be seen from Table 5, which is different from Table 4 and Table 4, the S2ICRKM
for DEDI (5) is convergent of order 4 when the step sizes satisfy h = τ

m and mσ = �mσ�, i.e.,
rk = tk,�mσ�, k = 0, 1, 2, · · · .

Table 3. The errors between the exact solution of DEDI (35) and the numerical solutions obtained
from the S1IEM and S2IEM for (35) at t = 10.

S1IEM S2IEM

m AE RE AE RE

100 2.27936431 × 10−4 0.11803342 1.22261651 × 10−4 0.06331134
200 1.16948119 × 10−4 0.06055981 1.37787810 × 10−4 0.07135133
400 5.92344257 × 10−5 0.03067365 6.32341966 × 10−5 0.03274487
800 2.98092526 × 10−5 0.01543627 2.49977644 × 10−5 0.01294471

Ratio 1.97016040 1.97016040 1.86530675 1.86530675

Table 4. The errors between the exact solution of DEDI (35) and the numerical solutions obtained
from the S1ICRKM and S2ICRKM for (35) at t = 10.

S1ICRKM S2ICRKM

m AE RE AE RE

100 1.55947583 × 10−11 8.07550914 × 10−9 1.97059664 × 10−4 0.10204436
200 9.68306381 × 10−13 5.01422777 × 10−10 1.38899240 × 10−5 0.00719269
400 6.03074448 × 10−14 3.12292958 × 10−11 1.38899215 × 10−5 0.00719269
800 3.75264056 × 10−15 1.94324801 × 10−12 1.38899213 × 10−5 0.00719269

Ratio 16.077341944 16.077341944 5.39574622 5.39574622

Table 5. The errors between the exact solution of DEDI (5) and the numerical solutions obtained from
the S1ICRKM and S2ICRKM for (5) at t = 10.

S1ICRKM S2ICRKM

m AE RE AE RE

10 5.96296636 × 10−9 4.56638794 × 10−7 1.90245209 × 10−8 1.45688132 × 10−6

20 3.86900800 × 10−10 2.96285278 × 10−8 1.23953019 × 10−9 9.49221475 × 10−8

40 2.46385915 × 10−11 1.88680198 × 10−9 7.91000980 × 10−11 6.05741693 × 10−9

80 1.55444234 × 10−12 1.19037847 × 10−10 4.99548319 × 10−12 3.82549772 × 10−10

Ratio 15.65520355 15.65520355 15.61763152 15.61763152

6. Conclusions and Future Works

In this paper, two different schemes of impulsive Runge–Kutta methods are con-
structed for DEDI (1) based on different ways to approximate the states x(rk), where k ∈ Z+

is required for the delayed impulses. When constructing S1IRKMs, the approximations
of x(rk) are the numerical solutions obtained from Runge–Kutta methods at moments rk,
k ∈ Z+. The S1IRKMs have better convergence and are convergent of order p if the corre-
sponding Runge–Kutta method is p order. On the other hand, when constructing S2IRKMs,
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the approximations of x(rk) are the numerical solutions obtained from Runge–Kutta meth-
ods at moments at tk,�σm�, where tk,�σm� ≤ rk, |rk − tk,�σm�| ≤ h, h = τ

m , m, k ∈ Z+. The
S2IRKMs in the general case are only convergent of order 1, but they are more concise and
may suit for more complex differential equations with delayed impulses. Therefore, it is
very necessary to consider S2IθM. Moreover, the asymptotical stability of the exact solution
and the numerical solutions of DEDI (1) was studied.

Here, we only studied the asymptotical stability of the exact solution of linear DEDI (1);
the asymptotical stability of the exact solution of nonlinear DEDIs still needs further study.
Moreover, applying S2IθMs to solve nonlinear DEDIs, time-delay differential equations
with delayed impulses, and stochastic differential equations with delayed impulses will
be future work. Applying impulsive continuous Runge–Kutta methods to solve these
equations will also be future work.
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Abstract: Although Kepler’s laws can be empirically proven by applying Newton’s laws to the
dynamics of two particles attracted by gravitational interaction, an explicit formula for the motion
as a function of time remains undefined. This paper proposes a quasi-analytical solution to address
this challenge. It approximates the real dynamics of celestial bodies with a satisfactory degree of
accuracy and minimal computational cost. This problem is closely related to Kepler’s equation, as
solving the equations of motion as a function of time also provides a solution to Kepler’s equation.
The results are presented for each planet of the solar system, including Pluto, and the solution is
compared against real orbits.

Keywords: Kepler’s equation; quasi-analytical solution; celestial bodies; Kepler’s laws
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1. Introduction

Kepler’s laws offer an empirical mathematical model for describing the motion of
orbiting bodies, later proven by Newton’s analytical results [1,2]. Therefore, they are
of fundamental importance in astrophysics, celestial mechanics, and Earth science [3].
Nevertheless, Kepler’s laws do not describe the motion of celestial bodies as a function
of time. It is the so-called Kepler’s equation (KE) that provides the time dependence of
the position of orbiting celestial bodies. Since Kepler first established this equation in
1609, several solutions of different types have been proposed, continuing up to the present
day [2,4–9]. One of the significant early attempts was made by Carlini in 1819, later refined
by Jacobi [9]. Because of its transcendental nature, an exact explicit solution remains
elusive. There exist a vast variety of numerical methods renowned for their remarkable
accuracy. These methods typically involve calculating infinite series or employing high-
order iterative approaches. It is hardly possible to refer here to all these works, but we cite
the most relevant ones [3,10–19]. Recently, some methods that use artificial intelligence
have been proposed [20].

In this work, we present a quasi-analytical solution that gives explicit equations of
motion as a function of time. This solution is quasi-analytical, because even though it gives
explicit formulas, it depends on six numerical coefficients, which in turn depend on the
orbital eccentricity. Our results provide an explicit solution to KE.

The Orbit Equation

The classical problem begins then, with the description of the motion of the planets
according to the following equations [21]:

Mathematics 2024, 12, 2108. https://doi.org/10.3390/math12132108 https://www.mdpi.com/journal/mathematics50
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t(θ) =
α2 μ

l

∫ θ

0

1
(1 + ε cos ϕ)2 dϕ, (1)

and

r(θ) =
α

1 + ε cos θ
. (2)

Here, (r, θ) are the coordinates of the planet in the polar coordinate system, with the
origin at the Sun; t is the time; ε is the eccentricity; and α, μ, and l are the focal parameter,
the reduced mass, and the angular momentum, respectively [2]. The angle θ is called the
true anomaly, defined as θ = 0 at the pericenter [19].

The inverse of the solution of Equation (1), θ(t) is closely related to KE (the explicit
relation will be shown in Section 4):

E − ε sin E = M, (3)

where E is the eccentric anomaly and M is the mean anomaly, expressed as

M =
2π

T
t , t ∈ [0, T] , (4)

T is the orbital period. As was pointed out before, usually, E needs to be estimated by
iterative methods [8] or series expansions [22]. Thus, the accuracy of the position and/or
velocity of a celestial object moving in the Keplerian orbit, which may be obtained from
the solution of KE, depends on the approximation method used. Figure 1 illustrates the
variables involved in the problem.

Equations (1) and (3) are both transcendental. The solution of Equation (1) gives
the solution of Equation (3), and vice-versa, which has led to a vast literature concerning
alternative approaches [3]. A detailed description of the different works presented in the
literature on this problem can be found in [3,19].

Figure 1. Illustration of the relative position of the Sun and planet (a) and Kepler’s equation (b).

a b

The remainder of this paper is structured as follows. In Section 2, we present in
detail, step by step, a quasi-analytical solution of Equation (1). In Section 3, the results are
presented and compared with the real orbit of each planet of the solar system. In Section 4
we present the solution to KE based on the solution of Equation (1). Finally, in Section 5,
we give a brief discussion and conclusions about the results obtained in this work.
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2. Methodology

In the present section, a quasi-analytical method is established for solving Equation (1).
For clarity, we divide the method into sections that we call steps. All calculations and
graphics were performed with MATLAB 2020b (MathWorks Inc., Natick, MA USA). Now,
we briefly describe each step.

Step 0: In this step, we integrate Equation (1) and introduce a normalized time τ,
which maps the real time t from the interval [0, T] to the interval [0, π], which leads us to
Equation (7) for τ(θ).

Step 1: In this step, we separate τ(θ) into two parts, τa(θ) and τb(θ). Based on the
observation that τa(θ) resembles the behavior of τ(θ) (especially for small values of ε), and,
taking into account its analytical form, we find the inverse of τa(θ), θ0(τ) as our zeroth
approximation for θ(τ).

Step 2: Assuming the exact solution has the form of Equation (14), we introduce the
true argument of the arctangent function, ϕ(τ), which gives the exact solution. Then, we
introduce the function ψ0(τ) (Equation (17)) as the quotient of the true argument ϕ(τ) and
the argument of the zeroth approximation, ϕ0(τ). Finally, we define the first approximation
θ1(τ) by adjusting the argument ϕ0(τ) of the arctangent function, which appears in the
zeroth approximation θ0(τ). The main idea is to make a series of adjustments in such a
way that the quotient mentioned above approaches 1 as closely as possible.

Step 3: Following the logic of Step 2, we introduce the function ψ1(τ) (Equation (22))
and the argument ϕ2(τ) (Equation (25)) in order to obtain the second approximation θ2(τ)
(Equation (26)). First, we propose two kinds of approximations for ψ1(τ): linear and
harmonic. This gives the approximations θ2.1(τ) and θ2.2(τ) (Equations (27) and (28)),
respectively. These approximations give corresponding precisions of 3400 km and 470 km,
respectively, for the position of the Earth and are completely analytical. They may be used
in certain applications that do not require high precision.

Next, we proceed to improving the function ψ1(τ) as an analytical expression (Equation (29)),
involving an arctangent function, with an argument which, in turn, is an expression that de-
pends on six numerical coefficients (Equation (30)). In order to calculate these coefficients,
we propose two methods, namely Method A and Method B.

Method A consists in calculating the coefficients for each given value of the orbital eccen-
tricity, while Method B allows us to express these coefficients as another analytical function
with corresponding numeric coefficients that are calculated for ranges of the eccentricity.

2.1. Step 0

Our first step is integrating Equation (1) to obtain t(θ). The solution is (see Appendix A).

t(θ) =
α2 μ

l

[
2

(1 − ε2)
3
2

arctan

(√
1 − ε

1 + ε
tan

θ

2

)
− 2ε

1 − ε2
tan θ

2

1 + ε + (1 − ε) tan2 θ
2

]
. (5)

This solution is periodic, with a period equal to 2π, and coincides with the actual
time behavior in the interval θ ∈ [−π, π]. Since the time evolution should be monotonic,
we illustrate a way to extend Equation (5) to depict the time evolution by applying the
following mapping:

t1(θ) = 2 t(π)

⌊
1 +

θ − π

2π

⌋
+ t(θ) , (5a)

where 2t(π) = max(t(θ)) − min(t(θ)). In order to avoid complications related to the
periodicity of the functions of θ involved, and the monotony of time, in what follows, we
focus our work only on the half-period of the orbit, namely θ ∈ [0, π]. The second half of
the orbit may be obtained from the first part using the symmetry of the orbit.

We now propose the following change of variable:

τ =
l

α2 μ

(1 − ε2)
3
2

2
t . (6)
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Thus, Equation (5), in terms of τ and θ has the form:

τ(θ) =

⎧⎪⎪⎨⎪⎪⎩
arctan

(√
1−ε
1+ε tan θ

2

)
− ε

√
1 − ε2 tan θ

2
1+ε+(1−ε) tan2 θ

2
for θ ∈ [0, π) ,

π
2 for θ = π .

(7)

Let us seek for the solution to Equation (7) in the form θ(τ) on the interval θ ∈ [0, π],
and, as deduced from Equation (7), in τ ∈ [0, π

2 ].
Note the relationship between τ and the mean anomaly M:

τ =
M
2

. (8)

2.2. Step 1

We rewrite Equation (7) as follows:

τ(θ) =

⎧⎪⎨⎪⎩
τa(θ)− τb(θ) for θ ∈ [0, π) ,

π
2 for θ = π ,

(9)

where

τa(θ) = arctan

(√
1 − ε

1 + ε
tan

θ

2

)
, (10)

τb(θ) = ε
√

1 − ε2 tan θ
2

1 + ε + (1 − ε) tan2 θ
2

. (11)

Figure 2 shows the behavior of τ(θ), τa(θ), and τb(θ) with ε as parameter.
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Figure 2. Plots of τ(θ), τa(θ), and τb(θ) with ε = 0.1 (left) and ε = 0.5 (right).

Figure 2 shows how τa(θ) is similar to τ(θ); therefore, as our zeroth approximation
θ0(τ), we will solve the following equation:

τ(θ) = τa(θ) = arctan

(√
1 − ε

1 + ε
tan

θ

2

)
. (12)

To solve the Equation (12), we apply the tangent function to both parts. Solving for θ,
we obtain

θ0(τ) =

⎧⎪⎪⎨⎪⎪⎩
2 arctan

(√
1+ε
1−ε tan τ

)
for τ ∈ [0, π

2 ) ,

π for τ = π
2 .

(13)
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Figure 3 shows plots of θ(τ) and θ0(τ) with ε as parameter. θ(τ) was obtained using
Equation (7) and interchanging axes.
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Figure 3. Plots of θ(τ) and θ0(τ) with ε = 0.1 (left) y ε = 0.5 (right).

2.3. Step 2

We introduce the functions ϕ(τ) and ϕ0(τ) as follows:

θ(τ) = 2 arctan[ϕ(τ)], (14)

ϕ0(τ) =

√
1 + ε

1 − ε
tan τ, (15)

so that
θ0(τ) = 2 arctan[ϕ0(τ)]. (16)

Now, we introduce another function ψ0(τ), defined on the open interval τ ∈ (0, π
2 ):

ψ0(τ) =
ϕ(τ)

ϕ0(τ)
. (17)

Appendix B proves the following limits (the former is used immediately to introduce
the function ϕ1(τ), and the latter is used in step 3):

lim
τ→0

ψ0(τ) =
1

1 − ε
, (18)

and
lim

τ→ π
2

ψ0(τ) = 1 + ε . (19)

Now, we introduce, using Equations (15) and (18), the function ϕ1(τ) as follows:

ϕ1(τ) = lim
τ→0

ψ0(τ) ϕ0(τ) =
1

1 − ε
ϕ0(τ) =

√
1 + ε

(1 − ε)
3
2

tan τ . (20)

54



Mathematics 2024, 12, 2108

We define approximation one, θ1(τ), as follows:

θ1(τ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

2 arctan[ϕ1(τ)] = 2 arctan
( √

1+ε

(1−ε)
3
2

tan τ

)
for τ ∈ (0, π

2 ) ,

0 for τ = 0 ,

π for τ = π
2 .

(21)

Figure 4 shows plots of θ(τ) and θ1(τ) with ε as parameter.
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Figure 4. Plots of θ(τ) and θ1(τ) with ε = 0.1 (left) and ε = 0.5 (right).

In Figure 4, we observe an evident improvement in the θ1(τ) approximation compared
to θ0(τ) shown in Figure 3.

2.4. Step 3

We introduce a new function, ψ1(τ), defined on the open interval τ ∈ (0, π
2 ):

ψ1(τ) =
ϕ(τ)

ϕ1(τ)
. (22)

As follows from Equations (18)–(20),

lim
τ→0

ψ1(τ) = 1 , (23)

lim
τ→ π

2

ψ1(τ) = 1 − ε2 . (24)

Figure 5 shows the plot of ψ1(τ) for different values of the parameter ε.
We introduce the function ϕ2(τ) as follows:

ϕ2(τ) = ψ1(τ) ϕ1(τ) = ψ1(τ)

√
1 + ε

(1 − ε)
3
2

tan τ . (25)

The definition of ϕ2(τ) as the product of ψ1(τ) and ϕ1(τ) leads us to an apparent
logical paradox, since, as follows from Equation (22), ϕ2(τ) = ϕ(τ). The solution to this
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paradox is the fact that ψ1(τ) is an unknown function, which we are trying to approximate
with the best precision possible. The existence of such a function is obvious, for it can be
theoretically constructed point-wise. However, in this work, we are looking for a quasi-
analytical expression for ψ1(τ), since the exact analytical expression for it, in principle, may
not even exist.
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Figure 5. Plot of ψ1(τ) with ε as parameter.

Now, we define approximation two, θ2(τ), as follows:

θ2(τ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

2 arctan[ϕ2(τ)] = 2 arctan
(

ψ1(τ)
√

1+ε

(1−ε)
3
2

tan τ

)
for τ ∈ (0, π

2 ) ,

0 for τ = 0 ,

π for τ = π
2 .

(26)

It should be noted that the approximation θ1(τ) (Equation (21)) can be considered as
the approximation θ2(τ) with ψ1(τ) = 1. For small values of ε, such as Earth’s (ε = 0.0167),
ψ1(τ) has a small range (for the Earth, it will be of [0.9997, 1]) so that the approximation
ψ1(τ) = 1 already gives us an acceptable result for certain applications. Thus, for the
Earth, the maximum error of θ1(τ) is of 1.8 × 10−4 rad, which, translated to the error in
the position and taking into account the average distance from the Earth to the Sun as
1.5 × 108 km, is equivalent to 27,000 km, which is a little more than two diameters of the
Earth. Now, approximating ψ1(τ) in a linear form, and as a cosine with period π and
amplitude adjusted to the range [1 − ε2, 1], the following corresponding approximations
are obtained:

θ2.1(τ) =

⎧⎪⎪⎨⎪⎪⎩
2 arctan

[(
1 − 2 ε2

π τ
) √

1+ε

(1−ε)
3
2

tan τ

]
for τ ∈ [0, π

2 ) ,

π for τ = π
2 ,

(27)

θ2.2(τ) =

⎧⎪⎪⎨⎪⎪⎩
2 arctan

[(
1 + ε2

2 (cos 2 τ − 1)
) √

1+ε

(1−ε)
3
2

tan τ

]
for τ ∈ [0, π

2 ) ,

π for τ = π
2 .

(28)
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The approximation θ2.1(τ) gives a maximum error of 2.24× 10−5 rad, which translates
to 3400 km in this position (slightly more than half the Earth’s radius), and the approxima-
tion θ2.2(τ) gives a maximum error of 3.11× 10−6 rad, which corresponds to approximately
470 km in this position.

In Figure 5, we notice that the shape of the curves resembles an arctangent function,
with a mapping of the argument from (−∞, ∞) to ( π

2 , 0), with the range mapping from (−π
2 ,

π
2 ) to (1 − ε2, 1), and with the behavior of the argument being asymmetric and nonlinear.
As before, we search for the approximation of the function ψ1(τ) in the following form:

ψ1(τ) = 1 +
ε2

2

(
2
π

arctan[ξ(ε, τ)]− 1
)

, (29)

where

ξ(ε, τ) = a1 τ−2 + a2 τ−1 + a3 τ + b1

(
τ − π

2

)−2
+ b2

(
τ − π

2

)−1
+ b3

(
τ − π

2

)
, (30)

with ai y bi (i = 1, 2, 3) being functions of ε.
In order to evaluate the coefficients ai and bi (the six numerical coefficients mentioned

in the introduction), two methods were developed, Method A and Method B. In Method A,
the coefficients are calculated for each value of ε, while in Method B, they are expressed as
analytical functions that, in turn, depend on other numeric coefficients, which are calculated
for ranges of ε. As will be seen subsequently, Method A is more accurate, but less general,
while Method B is slightly less accurate (especially after a certain value of ε), but more
general and easier to use in applications.

2.4.1. Method A

The coefficients ai(ε) and bi(ε) were calculated numerically for each eccentricity value,
corresponding to every planet of the solar system, by means of RMSE (root mean square
error) minimization, using MATLAB 2020b.

Figure 6 shows the behavior of ai(ε) and bi(ε) in the range of ε ∈ (0, 0.5) (this range
was selected because some absolute values of ai(ε) and bi(ε) grow drastically after ε = 0.5,
which does not allow us to appreciate the behavior before ε = 0.5).
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Figure 6. Plots of ai(ε) (left) and bi(ε) (right).
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Table 1 shows the values of ai(ε) and bi(ε), as well as the error of θ(τ) for the Earth
and Pluto, in radians, where ME is the maximum absolute error, MAE is the mean absolute
error, and RMSE is the root mean square error.

Table 1. Values of ai and bi and error in θ(τ) for the Earth and Pluto.

Planet ε a1 a2 a3 b1 b2 b3 ME MAE RMSE

Earth 0.0167 0.310 −0.073 −0.363 −0.340 −0.087 −0.357 6.1 × 10−9 2.9 × 10−9 3.4 × 10−9

Pluto 0.2488 0.146 −0.001 −0.472 −0.647 −0.274 −0.331 6.6 × 10−6 2.8 × 10−6 3.4 × 10−6

Since Table 1 serves just for illustrative purposes, the values of ai(ε) and bi(ε) were
rounded to three decimal places. A detailed table including more accurate values for all
planets will be shown in Section 3. For now, let us mention that the absolute maximum
error in the position of the Earth is 915 meters and approximately 39,000 km (close to the
value of the circumference of the Earth, or 16 Pluto diameters) for the position of Pluto (the
average distance of Pluto to the Sun is approximately 5.9 billion kilometers).

2.4.2. Method B

Analyzing Figure 6, it can be seen that the shapes of the curves have the behavior of a
cubic polynomial, so we search for the coefficients ai(ε) and bi(ε) in the following form:

ai(ε) = aijε
j ,

bi(ε) = bijε
j ,

i = 1, 2, 3 ,

j = 0, 1, 2, 3 ,

(31)

where repeated indices imply summation.
We introduced the approximation θ3(τ)with the same form of θ2(τ) given by Equations (26),

(29) and (30), where Equation (31) was now used to approximate the ai and bi in Equation (30).
The attempt to calculate the coefficients aij and bij in the complete range of ε ∈ (0,1)

was not successful. Thus, it was decided to divide the range into five intervals: ε ∈ (0,0.1],
ε ∈ (0.1,0.25], ε ∈ (0.25,0.5], ε ∈ (0.5,0.7], and ε ∈ (0.7,1). In the next section, we will present
the values of aij and bij by ranges, and compare the precision of the approximation θ2(τ),
which uses values of ψ1(τ) calculated using Method A, with that of θ3(τ).

3. Results

We now compare the results of our quasi-analytical solution with the real orbits of the
planets of the solar system. First, we review the results obtained above in the following
equations. By a change of variable,

τ =
1

α2μ

(1 − ε2)
3
2

2
t , (32)

the equations of motion in the polar coordinate system with the origin at the Sun, and in
the interval of time τ ∈ [0, π

2 ] (t ∈ [0, T
2 ]), θ ∈ [0, π] are the following:

θ(τ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

2 arctan
[(

1 + ε2

2 (
2
π arctan[ξ(ε, τ)]− 1)

) √
1+ε

(1−ε)
3
2

tan τ

]
for τ ∈ (0, π

2 ) ,

0 for τ = 0 ,

π for τ = π
2 ,

(33)
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r(τ) =
α

1 + ε cos θ(τ)
, (34)

where ξ(ε, τ) is given by the following expression:

ξ(ε, τ) = a1τ−2 + a2τ−1 + a3τ + b1

(
τ − π

2

)−2
+ b2

(
τ − π

2

)−1
+ b3

(
τ − π

2

)
, (35)

ai and bi (i = 1, 2, 3) are functions of ε. In what follows, we present the two methods
developed for the calculation of the coefficients ai and bi.

3.1. Method A

As mentioned above, in this method, the values of ai and bi were calculated for each
eccentricity by means of RMSE minimization in MATLAB 2020b. Table 2 shows the values
of ai and bi, ME, MAE, and RMSE errors in θ(τ), in radians, with Ds being the average
distance of the planet to the Sun in kilometers, and Ep being the maximum error of the
position in kilometers with respect to the real orbit.

Table 2. Values of ai, bi, corresponding errors in θ(τ), and absolute position for celestial bodies.

Mercury Venus Earth Mars Jupiter Saturn Uranus Neptune Pluto

ε 0.2056 0.0067 0.0167 0.0935 0.0489 0.0565 0.0457 0.0113 0.2488

a1 0.17053517 0.31862395 0.30977503 0.24694331 0.28234256 0.27609996 0.28499728 0.31453377 0.14561949
a2 −0.01166110 −0.07705003 −0.0728542 −0.04432541 −0.06014655 −0.05731287 −0.06135776 −0.07510434 −0.0012376
a3 −0.43861374 −0.36086494 −0.36274460 −0.38289299 −0.36985666 −0.37179675 −0.36907139 −0.36171170 −0.47217706
b1 −0.57282655 −0.33074668 −0.34005421 −0.42023391 −0.37170483 −0.37957121 −0.36843946 −0.33499871 −0.64694223
b2 −0.22240872 −0.08288098 −0.08742593 −0.12920751 −0.10334339 −0.10741403 −0.10166725 −0.08494978 −0.27396065
b3 −0.33681377 −0.35855961 −0.35697508 −0.34764211 −0.35253989 −0.35161930 −0.35294044 −0.35781706 −0.33108759

ME 3.6 × 10−6 9.5 × 10−10 6.1 × 10−9 3.5 × 10−7 6.6 × 10−8 9.4 × 10−8 5.6 × 10−8 2.7 × 10−9 6.6 × 10−6

MAE 1.5 × 10−6 4.5 × 10−10 2.9 × 10−9 1.5 × 10−7 2.9 × 10−8 4.1 × 10−8 2.5 × 10−8 1.3 × 10−9 2.8 × 10−6

RMSE 1.9 × 10−6 5.3 × 10−10 3.4 × 10−9 1.8 × 10−7 3.5 × 10−8 5.0 × 10−8 3.0 × 10−8 1.5 × 10−9 3.4 × 10−6

Ds 5.8 × 107 1.1 × 108 1.5 × 108 2.3 × 108 7.9 × 108 1.4 × 109 2.9 × 109 4.5 × 109 5.9 × 109

Ep 208 0.11 0.92 80 52 131 163 12 39,000

The results in Table 2 show that for small values of ε, the accuracy was high. However,
for values of ε∼0.2 the error increased significantly (for Mercury and Pluto the error
increased by 2–3 orders in comparison to the errors for the other planets).

3.2. Method B

As was pointed out before, in this method, we calculate the coefficients of a third-
degree polynomial (Equation (31)) by minimizing the RMSE for the ranges of ε. Therefore,
in this case, it is not necessary to calculate the ai and bi for each value of the eccentricity.
Table 3 shows the values of the coefficients aij and bij for the different ranges of ε. Obviously,
using this method results in errors greater than those of Method A.

Table 3. Values of aij and bij calculated in ranges of ε.

Range of ε (0,0.1] (0.1,0.25] (0.25,0.5] (0.5,0.7] (0.7,1.0)

a10 0.32464090 0.32455984 0.32493519 0.33117795 0.34799892
a11 −0.90342437 −0.90136299 −0.90443788 −0.94434644 −1.02378174
a12 0.79798292 0.77956682 0.78688870 0.87179816 0.99672027
a13 −0.24897861 −0.19074605 −0.19470806 −0.25486105 −0.32027157
a20 −0.07992819 −0.07920359 −0.07197522 −0.06646582 −0.11098658
a21 0.43404410 0.41648507 0.33665965 0.29615322 0.50088661
a22 −0.64017363 −0.49188569 −0.19208276 −0.09396227 −0.40748236
a23 0.75341116 0.31132787 −0.07256170 −0.15093252 0.00894242
a30 −0.35968044 −0.35742442 −0.15675162 6.29837377 154.50791377
a31 −0.17220655 −0.22278632 −2.20357719 −41.92862343 −715.24316797
a32 −0.64666864 −0.26055305 6.28024901 87.40520959 1105.82612363
a33 −1.78408496 −2.80408480 −10.06884121 −65.08749455 −577.96129585
b10 −0.32463507 −0.32142203 −0.09294215 6.21933680 138.39317241
b11 −0.90434048 −0.97722350 −3.24616805 −42.18802414 −643.15766068
b12 −1.11071449 −0.54525397 7.00356134 86.74796714 996.53861794
b13 −1.63153199 −3.15712303 −11.61829996 −65.86504267 −524.44755555
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Table 3. Cont.

Range of ε (0,0.1] (0.1,0.25] (0.25,0.5] (0.5,0.7] (0.7,1.0)

b20 −0.07992299 −0.07527391 0.29080466 11.97863173 287.23614950
b21 −0.43571269 −0.54094614 −4.16198706 −76.07319110 −1326.12648115
b22 −0.78063318 0.03353877 12.02291626 158.84151291 2048.91985911
b23 −2.10660888 −4.29567159 −17.65734989 −117.20310761 −1068.68369232
b30 −0.35968350 −0.36025835 −0.44346730 −3.54853992 −81.17535211
b31 0.17171182 0.18402819 0.99888552 20.06864682 372.42195877
b32 −0.59524043 −0.68312683 −3.34688052 −42.20159066 −574.67488149
b33 1.45594036 1.66666199 4.58818969 30.87266047 298.77577747

Figure 7 shows a comparison of the errors between methods A and B. As can be
seen, the error in Method B was slightly higher (especially for ME) up to values of ε = 0.8.
For values of ε > 0.8, the errors of Method B increased significantly with respect to those of
Method A.
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Figure 7. Logarithmic plots of the error in θ(τ) as a function of ε for both methods.

3.3. Equations of Motion for the Planets

Finally, let us express the equations of motion of both position and velocity in the
Cartesian coordinate system, with the origin at the Sun.

The equations for the position are as follows:

x(τ) = r(τ) cos θ(τ) ,

y(τ) = r(τ) sin θ(τ) ,
(36)

where θ(τ) and r(τ) are given by Equations (33) and (34), respectively.
The equations for the velocity are as follows:

vx = ṙ(τ) cos θ(τ)− rθ̇(τ) sin θ(τ) ,

vy = ṙ(τ) sin θ(τ) + rθ̇(τ) cos θ(τ) ,
(37)
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where

θ̇(τ) = 2
√

1 + ε

(1 − ε)
3
2

ψ̇(τ) tan τ + ψ(τ) sec2 τ

1 + 1+ε
(1−ε)3 ψ2(τ) tan2 τ

,

ṙ(τ) =
α ε θ̇(τ) sin θ(τ)

(1 + ε cos θ(τ))2 ,

(38)

and

ψ(τ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1 + ε2

2 ( 2
π arctan[ξ(ε, τ)]− 1) for τ ∈ (0, π

2 ) ,

1 for τ = 0 ,

1 − ε2 for τ = π
2 ,

(39)

ψ̇(τ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ε2

π
ξ̇(τ)

1+ξ2(τ)
for τ ∈ (0, π

2 ) ,

0 for τ = 0 ,

0 for τ = π
2 .

(40)

The function ξ(τ) defined in the interval τ ∈ (0, π
2 ) is given by Equation (35) and its

derivative is the following:

ξ̇(τ) = −2a1τ−3 − a2τ−2 + a3 − 2b1

(
τ − π

2

)−3
− b2

(
τ − π

2

)−2
+ b3 . (41)

Figure 8 shows a comparison plot between the real orbit, calculated numerically using
Equation (7), and the orbit obtained by numerical integration of Equation (37) (where
Method A was used). Additionally, the velocity vectors are shown at an arbitrary scale at
certain points of the trajectory.
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Figure 8. Plot of the orbits, real and integrated, with α = 1 and ε = 0.5.

As can be seen in Figure 8, the integrated orbit closely resembles the behavior of the
real orbit. This shows that our Method A is sufficiently accurate, even for eccentricities of
the order of up to ε = 0.5.

4. Solution to Kepler’s Equation

As can be seen from Figure 1b, it is trivial to obtain the following expression, which
gives the formula for E (the eccentric anomaly), appearing in Equation (3) as a function of
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the polar coordinates (ρ, θ) with the center in the focus F. In what follows, we set the major
semi-axis equal to one (a = 1):

E = arccos(F + ρ cos θ) , (42)

where F = |OF| (Figure 1b). As is well known from the theory of conic sections, F = εa = ε,
since we set a = 1. Thus, Equation (42) acquires the following form:

E = arccos(ε + ρ cos θ) . (43)

Due to the normalization a = 1, the expression for ρ is as follows:

ρ =
r
a

. (44)

The functions θ(τ) and r(τ) are given by our final quasi-analytical solution
(Equations (33) and (34)).

Now, in order to obtain the final explicit expression for the solution of KE, E(M), we
need to express θ and ρ as functions of M (the mean anomaly given by Equation (4)). So far,
θ and r are functions of τ (where τ is given by Equation (6)). Thus, by expressing τ as a
function of M, θ and r automatically become functions of M. The expression for τ(M) is
the following:

τ(M) =
M
2

. (45)

In order to obtain ρ as a function of M, we use Kepler’s third law to express a as follows:

a =

(
l

2πμ
√

1 − ε2
T

) 1
2

. (46)

The final solution to KE is given by Equation (43), using the quasi-analytical solution
for the motion given by Equations (33) and (34) and taking into account the relations (44),
(45) and (46).

5. Remarks and Conclusions

In this work, we obtained a quasi-analytical solution for the motion of the celestial
bodies as an explicit function of time in four steps. We called this solution quasi-analytical,
due to the dependency on certain numerical coefficients, which in turn themselves depend
on the orbital eccentricity. We proposed two methods for evaluating these coefficients:
Method A and Method B. The former gives a higher degree of accuracy, but involves cal-
culations for each value of the eccentricity, while the latter is less accurate (especially for
values of ε > 0.8) but more practical, since it works for ranges of the eccentricity. Although
there exist methods for solving Kepler’s equation up to machine precision, e.g., [11], these
methods are completely numerical and require an initial guess. The aim of our work was
to find a relatively simple explicit analytical solution with acceptable precision. In future
work, we plan to use our results as an initial guess for the iterative procedures mentioned
previously. We hypothesize that this approach will lead to highly precise results with
fewer iterations.
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Appendix A. Integration of Equation (1)

To solve the integral, we propose the Weierstrass change of variable:

u = tan
ϕ

2
. (A1)

From Equation (A1), it follows that

cos ϕ =
1 − u2

1 + u2 , dϕ =
2 du

1 + u2 . (A2)

Substituting Equation (A2) into Equation (1), and with a little algebra, we obtain
the following:

F(ϕ) =
2 α2 μ

l

∫ 1 + u2

(a + b u2)
2 du , (A3)

which will be left undefined for now and will eventually be evaluated in the original
variables. Here, a = 1 + ε and b = 1 − ε. To facilitate the integration, the integrand is
simplified using partial fractions, leaving the integral as follows:

F(ϕ) =
2 α2 μ

l

[
b − a

b

∫ du
(a + b u2)2 +

1
b

∫ du
a + b u2

]
. (A4)

Performing a bit of algebra and making the trigonometric substitution

u = c tan v ,

du = c sec2 v dv ,

where c2 = a
b . Finally, Equation (A4) reads

F(ϕ) =
2 α2 μ

l

[
b − a

b3

∫ c sec2 v dv
c4 sec4 v

+
1
b2

∫ c sec2 v dv
c2 sec2 v

]
=

2α2μ

l

[
b − a
b3c3

∫
cos2 v dv +

1
b2c

∫
dv
]

. (A5)

The latter integral is trivial, and the former is solved using the identity cos2 v =
1
2 (1 + cos 2v), such that F(ϕ) is left as

F(ϕ) =
2α2μ

l

[(
b − a + 2bc2

2b3c3

)
v +

b − a
2b3c3 sin v cos v

]
. (A6)

Returning to the variable u, recalling that c2 = a
b and performing some algebra,

Equation (A6) reads

F(ϕ) =
α2μ

l

[
a + b

(ab)
3
2

arctan

(√
b
a

u

)
+

b − a
ab

u
a + bu2

]
. (A7)

Finally, recalling Equation (A1), expressing a and b in terms of ε, performing algebra,
and evaluating the limits of integration, we arrive at our final result:

t(θ) =
α2μ

l

[
2

(1 − ε2)
3
2

arctan

(√
1 − ε

1 + ε
tan

θ

2

)
− 2ε

1 − ε2
tan θ

2

1 + ε + (1 − ε) tan2 θ
2

]
, (A8)

which is in agreement with Equation (5).
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Appendix B. Proofs of Limits Equations (18) and (19)

We begin by solving for ϕ(τ) from Equation (14):

ϕ(τ) = tan
θ

2
. (A9)

Next, in Equation (15), we substitute τ by the expression Equation (7):

ϕ0(τ) =

√
1 + ε

1 − ε
tan

[
arctan

(√
1 − ε

1 + ε
tan

θ

2

)
− ε

√
1 − ε2 tan θ

2

1 + ε + (1 − ε) tan2 θ
2

]
. (A10)

We introduce the variable β as follows:

β = tan
θ

2
. (A11)

For the sake of simplicity, we will evaluate the limit ϕ0(τ)
ϕ(τ)

instead of ϕ(τ)
ϕ0(τ)

.
In order to prove limit Equation (18), we will use the Taylor expansion about zero of

the following functions:
tan x = x + o(x) ,

arctan x = x + o(x).
(A12)

Using Equation (A12), we obtain

lim
τ→0

ϕ0(τ)

ϕ(τ)
= lim

β→0

ϕ0(β)

ϕ(β)
= lim

β→0

1
β

√
1 + ε

1 − ε
tan

(√
1 − ε

1 + ε
β − ε

√
1 − ε2β

1 + ε + (1 − ε)β2 + o(β)

)

= lim
β→0

1
β

√
1 + ε

1 − ε

(√
1 − ε

1 + ε
β − ε

√
1 − ε2β

1 + ε + o(β)
+ o(β)

)

= lim
β→0

1
β

√
1 + ε

1 − ε
β

(√
1 − ε

1 + ε
− ε

√
1 − ε2

1 + ε
+ O(β)

)
= lim

β→0
[(1 − ε + O(β)] = 1 − ε,

which is equivalent to

lim
τ→0

ϕ(τ)

ϕ0(τ)
=

1
1 − ε

, (A13)

which agrees with Equation (18).
In order to demonstrate Equation (19), we use the following trigonometric identity:

tan(a − b) =
tan a − tan b

1 + tan a tan b
. (A14)

Using Equation (A12) and Equation (A14), we have

lim
τ→ π

2

ϕ0(τ)

ϕ(τ)
= lim

β→∞

ϕ0(β)

ϕ(β)
= lim

β→∞

1
β

√
1 + ε

1 − ε
tan

[
arctan

(√
1 − ε

1 + ε
β

)
− ε

√
1 − ε2β

1 + ε + (1 − ε)β2

]

= lim
β→∞

1
β

√
1 + ε

1 − ε

√
1−ε
1+ε β − ε

√
1−ε2β

1+ε+(1−ε)β2 + o
(

1
β

)
1 +

√
1−ε
1+ε

ε
√

1−ε2β2

O
(

1
β2

)
+(1−ε)β2

+ O
(

1
β

)

= lim
β→∞

1
β

√
1 + ε

1 − ε

√
1−ε
1+ε β + o

(
1
β

)
1 +

√
1−ε
1+ε

ε
√

1−ε2

1−ε + O
(

1
β

) = lim
β→∞

1 + o
(

1
β

)
1 + ε + O

(
1
β

) =
1

1 + ε
,
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which is equivalent to

lim
τ→ π

2

ϕ(τ)

ϕ0(τ)
= 1 + ε , (A15)

which agrees with Equation (19).
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Abstract: We propose a new methodology to transform a time series into an ordered sequence of
any entropic and information functionals, providing a novel tool for data analysis. To achieve this,
a new algorithm has been designed to optimize the Probability Density Function (PDF) associated
with a time signal in the context of non-parametric Kernel Density Estimation (KDE). We illustrate
the applicability of this method for anomaly detection in time signals. Specifically, our approach
combines a non-parametric kernel density estimator with overlapping windows of various scales.
Regarding the parameters involved in the KDE, it is well-known that bandwidth tuning is crucial for
the kernel density estimator. To optimize it for time-series data, we introduce an adaptive solution
based on Jensen–Shannon divergence, which adjusts the bandwidth for each window length to
balance overfitting and underfitting. This solution selects unique bandwidth parameters for each
window scale. Furthermore, it is implemented offline, eliminating the need for online optimization
for each time-series window. To validate our methodology, we designed a synthetic experiment using
a non-stationary signal generated by the composition of two stationary signals and a modulation
function that controls the transitions between a normal and an abnormal state, allowing for the
arbitrary design of various anomaly transitions. Additionally, we tested the methodology on real
scalp-EEG data to detect epileptic crises. The results show our approach effectively detects and
characterizes anomaly transitions. The use of overlapping windows at various scales significantly
enhances detection ability, allowing for the simultaneous analysis of phenomena at different scales.

Keywords: time series; anomaly detection; Jensen–Shannon divergences; kernel method; generalised
entropy

MSC: 94A16; 94A17

1. Introduction

In the ever-evolving landscape of data-driven decision-making, time-series analysis
stands as a pivotal tool for extracting valuable insights from sequential data points. The
increase of sources relying on real-time data has revived interest in time-series analy-
sis methods.

Entropic and information functionals [1–3] have proven to be effective tools for
analysing time-series signals across various applications. For example, Gupta and Pa-
chori [4] demonstrated the promising capabilities of combining Rényi permutation entropy
with Fourier–Bessel series expansion to train different machine-learning algorithms effec-
tively for seizure detection. Rosso et al. [5] utilized discrete Wavelet information tools for
quantitative EEG record analysis, showing that the relative wavelet energy information ap-
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proach can capture epileptic rhythm characteristics without applying parametric inference
solutions to the EEG.

Mateos et al. [6] combined permutation entropy with permutation Lempel–Ziv com-
plexity to describe different states of consciousness, demonstrating how these transforma-
tions are potential tools for quantifying cognitive mental states. Martin et al. [7,8] showed
that Shannon entropy, Fisher information, and Tsallis entropy, combined with a discrete
non-parametric inference window approach, can detect EEG seizures. In another study,
Lerga et al. [9] proposed a solution to classify hand movements based on short-term Réyni
entropy over EEG signals. Alkahtani et al. [10] combined statistical feature extraction,
including Shannon entropy, approximate entropy, and power spectral entropy, with feature
selection solutions like LASSO applied over different machine-learning methods to detect
paediatric attention deficit hyperactivity disorder. Bezerianos et al. [11] found that Shannon
and Tsallis entropies could discriminate different injury levels during recovery from global
ischemia in Wistar rats. Additionally, Kalimeri et al. [12] demonstrated that Tsallis entropy,
in combination with symbolic dynamics, provides a quantitative strategy for monitoring
states in a focal area leading up to an impending earthquake. Guignard et al. [13] utilized
the kernel density estimator method to calculate information measures, particularly the
Fisher–Shannon complexity measure, on nonlinear time series of high-frequency wind, suc-
cessfully describing the time signal evolution. Conejero et al. [14] assessed the effectiveness
of different entropy formulations for non-linear signal classification using chaotic mapping.
Zhu et al. [15] utilized graph entropy, various node degrees, and support vector machines
to detect major depressive disorder from a single-channel EEG signal.

All the previous methods observed in the literature are case-specific applications, in
the sense that there is no focus on how the transformation parameters have been optimized,
limiting the generalization of results across different application domains. Furthermore,
most of the used inference solutions return discrete probability mass functions, which do
not allow the computation of differentiable entropic and information measures.

Entropy functionals have shown their capability as feature-extraction tools to describe
and detect anomalies inside time signals, providing information about the complexity and
dynamic behaviour.

One application of these new feature-extraction methods is to enhance the detectability
of anomalies in time series. Broadly speaking, an anomaly within a time series can be
characterized as an unusual pattern that deviates from what is considered normal behaviour.
Identifying unusual patterns or outliers within time-series data is crucial for maintaining
the integrity and reliability of various systems, ranging from industrial processes, and
financial markets to healthcare and cybersecurity. Anomalies in time series can be classified
into three categories: point anomaly, contextual anomaly, and collective anomaly. A point
anomaly refers to a data instance that deviates from the normal range of values. For the
second type of anomaly, contextual anomaly, the abnormality is not determined by the
absolute value; rather, it is assessed based on its position within the time series. The third
category, collective anomaly, pertains to a sequence of instances that diverges from the
expected normal behaviour, yet the anomaly is not necessarily associated with any specific
data point [16,17].

The main difference is that point anomalies can be detected using upper and lower
control limits, whereas contextual and collective anomalies cannot. While there is no
universally accepted definition of an anomaly in time series, it is often associated with
shifts in frequency content. For example, in the context of machine fault detection, an
anomaly may arise from a change in machine stiffness, impacting its modal response [18].
In medical applications, critical information for detecting epileptic seizures is gleaned from
variations in specific frequency bands in EEG signals [5].

Entropic techniques for feature extraction first require time localization criteria, when
applied to time series. Subsequently, an inference solution is needed to transform the data
into a probability function. This approach can be referred to as Time-Dependent Entropy
(TDE) [11]. Therefore, the parameters governing this transformation can be divided into
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two groups, the time-localization and the inference parameters, the latter specific for each in-
ference solution utilized. Those two sets of parameters are related. Combining the window
localization with the inference solution, the result is an ordered set of windowed probability
distributions. To accomplish this goal, various inference solutions have been tested, such
as symbolic solutions [12,19], non-parametric discrete inference or histogram [7,8,11,20],
power spectral density [21], approximate entropy [22], wavelet entropy [5,22], sample and
fuzzy entropy [23–25], Kraskov entropy [26], and neural network entropy [14]. Among
them, few efforts have been applied to testing continuous non-parametric inference so-
lutions, such as kernel density estimation (also called Parzen–Rosenblatt window) [13].
Moreover, for detecting anomalies, the utilization of different window scales for time
localization is crucial for the sensitivity of the transformation [20], yet almost all the cited
works only employ one window size.

Among the inference solutions analysed, the only one that returns a probability
density function is Kernel Density Estimation (KDE) [27], whose output is a continuous
probability density function. This reflects the continuous nature of the underlying real-
time-series signal and allows for the application of entropic feature-extraction techniques,
such as differential Shannon entropy and non-parametric Fisher information. Moreover,
in the discrete case, not all measures are uniquely defined, as is the case of the Fisher
information [28]. Therefore, it is important to study continuous entropic formulations
since those are not the limit case of the discrete scenario, given the fact that the limit
diverges [1,29]. Based on our knowledge, the capability of this solution combined with
information/entropic differential measures for time anomaly detection has not yet been
thoroughly explored in the literature. Telesca et al. [30] demonstrated the superiority of the
Parzen window methodology over the histogram technique to estimate Fisher information
and Shannon entropy for the time signal generated with a Gaussian process. To adapt
the KDE transformation for specific data, the bandwidth optimization of the kernel is a
crucial point. The main optimization solutions in the literature are designed for identically
independently distributed (i.i.d.) data. Some works adapted KDE to time-series data [31],
with specific inference parameter optimization designed for this type of data. Despite this,
to the best of our knowledge, no one has designed an algorithm to select a bandwidth
specifically optimized for time-series anomaly detection.

In light of all the above observations, in this work, we devise a novel methodology for
estimating the continuous Probability Density Function (PDF) associated with an arbitrary
time signal via KDE.

The application of overlapping windows allows for obtaining time-dependent entropy
and information measures, freeing the window length scale parameter from the time step,
which governs the resolution of the sequences of feature-extraction measures.

For window size selection, given the absence of a defined main periodicity in the
time series and the unknown scale of malfunction, our approach employs multiple syn-
chronous scales for window division. The utilization of different synchronous scales is
crucial to enhancing sensitivity to malfunctions. Overestimation of the window size could
overlook anomalies, while underestimation reduces the ability to capture long-term time
dependencies in the time series, both normal and abnormal [20,32].

As an inference algorithm, we utilize KDE, and to select the bandwidth we devised
an algorithm utilizing Jensen–Shannon Divergences (JSD), which act as metrics to balance
underfitting and overfitting (or the bias-variance trade-off) of the final PDF concerning
the data, that can be executed offline over a normal reference time signal. Because the
bandwidth value and the window length are highly related, for each window length
considered a bandwidth has to be selected.

To test our methodology, we designed synthetic experiments based on a multi-tone
signal where, at a specific timestamp, the signal incorporates additional “anomaly har-
monics”. Afterwards, we also tested the methodology on a seizure-affected time signal
from the CHB-MIT open dataset [33]. Our solution demonstrates effectiveness in synthetic
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experiments, which makes it suitable to be part of a robust and adaptive framework for
real-world applications.

The main contribution can be summarized as follows:

• The proposal of a methodology for feature extraction to transform a time series into a
sequence of continuous entropic and information functionals.

• The introduction of a new algorithm to optimize the bandwidth of the Kernel Density
Estimation, based on the Jensen–Shannon divergence, to balance the overfitting–
underfitting trade-off across multiple PDFs.

• The implementation of the methodology for time-series anomaly detection, including:

– A synthetic experiment, where a contextual collective anomaly is transformed
into a new series where the anomaly can be simply detected with upper and
lower control bands.

– The final application in a real case of seizure detection using Scalp-EEG.

The article is structured as follows: The theory background is introduced in Section 2.1.
The methodology is illustrated in Section 2.2. The synthetic experiment and the application
in a real scenario are illustrated in Section 3. Finally, the discussion and conclusions are
presented in Section 4.

2. Materials and Methods

2.1. Theory Background
2.1.1. Kernel Density Estimation

The transformation of a time-series window into a PDF is a crucial aspect of our
methodology. There are various methods available in the literature for inferring PDFs from
a time-series window, and each of them has its own drawbacks and/or limitations. Other
techniques include frequency polygons, nearest neighbour methods, splines, restricted
maximum likelihood estimators, and neural network-based density estimation [34,35].
When dealing with large amounts of data, it is often necessary to employ an automatic
technique that does not require the inference parameters to be adjusted manually. In our
case, we have chosen a non-parametric inference solution, the Kernel Density Estimation
(KDE) method, also known as the Parzen window method [36]. The choice of a non-
parametric approach allows one to bypass constraints that can arise from making prior
assumptions, unlike a parametric approach. The KDE method involves estimating the PDF
at a specific point by summing up the contributions of the experimental data points in
its vicinity.

Giving a set of points, {xi}n
i=1, the equation that describes the KDE transformation is

given by

p̂(x) = Kh[{xi}n
i=1] =

1
hn

n

∑
i=1

K
(

x − xi
h

)
, (1)

where p̂(x) is the estimate probability distribution, n is the sample size, K(x) is the kernel,
and h is the kernel’s bandwidth. The kernel, K(x), is assumed to be an even regular
function, with unit variance and zero mean. The method provides the elements needed
to build a PDF from a random dataset (for a review on KDE solutions, see [27]). Between
the two parameters, the bandwidth exerts a greater influence on the outcome compared
to the choice of kernel, thereby reducing the kernel’s impact on the results. However, in
our specific case, the differentiability of the kernel is pivotal in ensuring the methodology’s
suitability for various differential entropic and information measures. Thus, in our case, we
use the Gaussian one, which consists of a Gaussian distribution with zero mean and unit
variance. Since the transform is the scaled summation of centred kernels to data points, the
resulting PDF will inherit its main properties, such as infinite differentiability. Nevertheless,
as mentioned before, more influential on the result than the chosen kernel is the bandwidth.
The influence of varying bandwidth values on the estimation of the PDF using a synthetic
dataset is visually depicted in Figure 1.
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Numerous studies have been undertaken to determine the optimal bandwidth tailored
to specific datasets [27].

Figure 1. Applying the Kernel Density Estimation (KDE) method with various bandwidths (h)
to a known Probability Density Function (PDF) (depicted by the blue line) using finite samplings
(illustrated by red points). A low value of h leads to overfitting of the empirical data by the PDF,
while a high value of h results in underfitting, leading to an overly smoothed distribution.

The importance of this (hyper)parameter relies on the fact that it is responsible for the
delicate balance between overfitting and underfitting the data. Underestimated bandwidth
(small h) leads to small bias and large variances, with the increased complexity of the
resulting PDF that overfits the training set. Overestimated bandwidth (large h) leads to
an increase in bias and small variances (e.g., underfitting). Hence, achieving this balance
is crucial for a successful application of the KDE method [37]. Although the problem of
the automatic selection of the kernel’s bandwidth estimation has been explored by many
authors, no procedure has yet been considered the best in every situation [27].

The more common bandwidth optimization solution relies on the minimization of the
Mean Integrated Squared Error (MISE):

MISE(h) = E

[∫ +∞

−∞
|p(x)− p̂h(x)|2 dx

]
, (2)

where p(x), the real density, is unknown and E[ f (x)] =
∫

Ω f (x)ρ(x) dx denotes the ex-
pected value of the continuous function, f (x), with respect to the PDF, ρ(x). Based on a
certain assumption (AMISE assumption [37]; p′′(x) is continuous, square-integrable, and
ultimately monotone independently and identically distributed (i.i.d.) data), the MISE can
be rewritten using the Taylor series be expansion after decomposing the MISE into the
variance and bias terms:

MISE(h) = AMISE(h) + o
(

1
nh

+ h5
)

, (3)

where the Asymptotic Mean Integrated Squared Error (AMISE) is composed of

AMISE(h) =
1

Nh
R(K) +

1
4

h4μ2(K)2R
(

p′′
)
, (4)

and
R(g) =

∫
R

g(x)2dx, μ2(g) =
∫

R
x2g(x)dx . (5)
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The left component of the AMISE corresponds to the variance; meanwhile, the right
term corresponds to the bias. From the previous formulation, the h that minimizes the
AMISE is given by

h =

(
R(K)

nσ4
KR(p′′)

)1/5

, (6)

where σK denotes the standard deviation of the Kernel and p′′ is the second derivative
of p. Different h optimization solutions have been proposed using the AMISE. Based on
simplistic assumptions, Silverman (7) and Scott (8) proposed the well-known heuristic rules,

h = 1.06 × min
(

σ̂,
IQR
1.34

)
× n−1/5, (7)

h =

(
4σ̂5

3n

)1/5

, (8)

where σ̂ is the sample standard deviation, IQR is the interquartile range, and n is the
sample size.

Apart from that, more complex solutions are based on plug-in solutions, substituting
the real p′′ with its approximated version p̂′′ [38].

Regarding the specific application of KDE in time-series analysis, Harvey et al. [31]
proposed the integration of kernel density estimation with weighted schemes derived from
time-series analysis theory, where both bandwidth and the scale parameter are optimized
together through maximum likelihood or likelihood cross-validation, respectively, for
filtering and smoothing applications.

Despite these efforts, the optimization of h remains an open problem. In a recent article,
Garcin [39] proposes complexity measures to strike a balance between overfitting and
underfitting, particularly when applied to financial time-series data. The measure estimates
a pseudo-distance to the maximum overfitting solution (the empirical distribution) and
the maximum underfitting solution (a parametric Gaussian applied over the data). In this
case, the window is fixed at one year in order to obtain a finance estimator. When dealing
with time-series data, we must exercise caution in assuming independence and identical
distribution, as inherent temporal dependencies and patterns may not be removable.

Moreover, in time-series anomaly detection applications, instead of focusing on indi-
vidual instances, we need to evaluate shifts relative to a reference situation. Therefore, a
quantitative measure that balances the overfitting–underfitting trade-off with respect to a
set of reference PDFs, rather than a single PDF, would be more suitable for this scenario. To
the best of the author’s knowledge, such a strategy is not available in the literature.

2.1.2. Entropic Functionals and Fisher Non-Parametric Information

In this section, we explore various formulations of entropic functions, including
Shannon entropy (9) [1], Tsallis entropy (10) [40], and Rényi entropy (11) [2], denoted
by H[p], Hq[p], and Hα[p], respectively. Here, p(x) represents a PDF (

∫
Ω p(x) = 1 and

p(x) ≥ 0 ∀x ∈ Ω ⊆ R).

H[p] = −
∫

Ω
p(x) ln p(x)dx, (9)

Hq[p] =
1

1 − q

(
1 −

∫
Ω

p(x)qdx
)

q ∈ R, (10)

Hα[p] =
1

1 − α
ln
(∫

Ω
p(x)αdx

)
α ∈ R. (11)

Both Rényi and Tsallis entropies converge to Shannon entropy as α → 1 and q → 1,
respectively. Let us mention that these two entropies belong to the so-called “generalised

71



Mathematics 2024, 12, 2396

entropies” group, composed of entropic formulations that do not fulfil axiom 4 Shan-
non–Khinchin (see [41]).

The parameter q (or α in the case of Rényi entropy) plays a crucial role in determining
the emphasis on the centre of mass or the tails of the probability distribution. When q > 1,
the entropic puts more weight on frequent events, whereas for q < 1 it privileges rare events
[42]. Therefore, adjusting the q parameter allows for a flexible exploration of different
aspects of the PDF.

For more information about Tsallis entropy, please refer to [3]. For comprehensive
insights into Shannon, Rényi, and Tsallis entropies, please consult [41].

Besides those generalised entropic functionals, another complementary measure has
been utilised to analyse the signal, the so-called non-parametric Fisher information [1,13,43],
defined as:

I[p] =
∫

Ω

(
d

dx p(x)
)2

p(x)
dx = E

[(
∂

∂x
log p(x)

)2
]

. (12)

Regarding the parametric version [1], here, θ is a location parameter. For (12) to
be well-defined, it is assumed that p(x) is differentiable and both p(x) and d

dx p(x) are
quadratically integrable on R [44].

Fisher information is a non-negative functional that quantifies the average of the
proportional change of p(x) per unit change in x. Hence, Fisher information is able to
detect the degree of oscillatory character of a given PDF.

It is essential to emphasize that finding an optimal entropic or information measure is
not possible before analysing the actual data. Consequently, the most promising approach in
order to apply entropic/information measures to analyse a time series involves combining
several such quantities that relate to different aspects, whether structural or dynamic
properties [19].

2.1.3. Jensen–Shannon Divergences Measure

Lin et al. [45] introduced a new divergence formulation, the discrete JSD. Unlike the
well-known Kullback–Leibler divergence, the JSD is symmetric, bounded, and does not
require absolute continuity between the distributions. Even more, satisfying the triangle
inequality, the square root of the JSD qualifies as an actual mathematical metric [46].

JSπ(p1, p2) = π1KL(p1||m) + π2KL(p2||m) =

= H[m]− π1H[p1]− π2H[p2], (13)

with m(x) = π1 p1(x) + π2 p2(x) and π is a discrete Probability Mass Function (PMF). JSD
is upper-bounded by the entropy of the weight distribution, π, as

JSπ(p1, p2) ≤ H[π]. (14)

In the case of uniform weights, π1 = π2 = 0.5, H[π] = ln(2).
Moreover, JSD can be applied to more than two PDFs (M ≥ 2),

JSπ({pj}M
j=1) =

M

∑
j=1

πjKL(pj||m) =

= H

[
M

∑
j=1

πj pj

]
−

M

∑
j=1

πjH
[
pj
]
. (15)

Hence, the JSD can be formulated as the weighted average of Kullback–Leibler diver-
gence of each PDF, pi(x), to the weighted average distribution m = ∑M

j=1 πj pj.
The upper bound of the JSD in (13) is given in terms of the entropy of the PDF weight

distribution as
JSπ({pj}M

j=1) ≤ H

[
{πj}M

j=1

]
. (16)
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2.2. Methodology

In this work, a methodology based on multiscale overlapping window division, KDE
inference, and differential entropic/information measures is proposed to detect anomalies
within a time signal.

For KDE optimization, a specific bandwidth offline algorithm selection has been
designed specifically for this application scenario, based on the JSD, providing a metric to
balance overfitting and underfitting about the reference time signal.

The multiscale approach is adopted because the scale of the window significantly
impacts the transformation sensitivity and cannot be solely optimized without considering
the specific anomaly [11]. Therefore, using several windows in parallel allows us to increase
the range of scales analysed simultaneously, enhancing the ability to detect unknown
anomalous behaviour [20].

An illustration of the methodology can be seen in Figure 2.

Figure 2. This figure illustrates the methodology employed. By implementing an overlapping
window division with a window length of Δz and a window step of δ, a segment of the signal is
extracted and then transformed into a PDF using a KDE inference solution. Subsequently, by applying
various information/entropic measures, we derive an entropic/information measure vector, ajz.

2.2.1. Overlapping Window Divisions

Consider a discrete signal composed of N equispaced samples, {xi}N
i=1 = {x(ti) =

xi ∈ R, i = 1, . . . , N}. The overlapping window division is defined through a sliding
temporal window as:

Wj(δ, Δ) = {xi, i = 1 + jδ − Δ, . . . , jδ} . (17)

In this approach, Δ ∈ N, where Δ � N represents the window length and δ ∈ N is
the sliding factor. This separation distinguishes the resolution parameter, δ, from the scale
coefficient, Δ. The subscript j ∈

[
0,
⌊

N−Δ
δ

⌋]
∩N denotes the temporal order of the windows,

and the window temporal reference is defined as τj = t0 +
jδ
fs

, where fs is the sampling
frequency of the signal. This definition ensures that the temporal reference is independent
of Δ, enabling the output of a multiscale synchronous sequence of entropic/information
measures. Moreover, placing the time reference at the end of the window aligns with
the moment when all information within the window becomes available, as illustrated
in Figure 3. The case δ < Δ, overlapping windows, is the one considered in this work.
The maximum resolution achievable by the transformation equals the original sampling
frequency, attained when δ = 1. Standardizing each window ensures that the subsequent
transformation result is independent of the signal’s absolute amplitude, x̃i. This procedure
is reiterated across a range of predefined window lengths, represented by Δ, to encompass
a broad spectrum of scales. The approach described above enables the simultaneous
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analysis of the signal with varying synchronous scales, avoiding any prior assumption of
the optimal length of Δ, without considering the specific anomaly.

Figure 3. Illustration of the synchronous multiscale feature-extraction solution. At each time instance,
τj, a matrix, Aj, is constructed, containing L information/entropic measures for each of the Z window
scales considered.

The time series is annotated with timestamps tb and te, indicating the beginning and
end of the anomaly, respectively. This annotation allows the assignment of a label to each
window, indicating whether or not it is affected by the anomaly. A positive label, yj = 1, is
assigned if tb < τj < te, and a negative label, yj = 0, otherwise .

2.2.2. Jensen–Shannon Divergence H-Selection Algorithm

In order to select the bandwidth, h, with respect to a reference time series, a solution
based on the Jensen–Shannon divergence (13) has been designed. The main scope is
to look for a balance between overfitting and underfitting over a reference time series
not affected by the anomaly, and the JSD serves as an intuitive parameter that controls
over- or under-smoothing of the KDE transformation, functioning as a similarity metric
between PDFs. The main advantage of the proposed solution is that it does not make any
assumptions about the nature of the data. Moreover, it can be executed offline, eliminating
the need for online bandwidth optimization, which is a key problem when KDE is applied
to time signals.

By using the JSD, we can control the bias-variance trade-off, not only for a single
instance but for a set of instances to achieve a bandwidth suitable for all of them, making
the transformation adapted to a reference time signal, and then be sensitive when the
underlying condition of the system changes. The JSD measure is applied to PDFs obtained
from a anomaly-free time signal with yj = 0, recognised as the normal state. This approach,
on one hand, allows an offline optimization of the bandwidth, making it unreliable over
the malfunction signal and, on the other, reduces the risk of oversmoothing the differences
between no anomaly and anomaly windows.

The JSD score utilised to pick the bandwidth, h, is defined as

S(JS)(h, Δ, δ) = JSπ
[{

Kh[Wj(δ, Δ)]
}M∗

j=1

]
= JSπ

⎡⎣{ 1
hΔ

δ·j+Δ

∑
i=δ·j

K
(

x − xi
h

)}M∗

j=1

⎤⎦, (18)

where M∗ is the total number of anomaly-free PDFs.
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Then, it is analysed how S(JS) changes when acting on one variable while keeping the
other two constants. Starting with h, the score decreases monotonically as the bandwidth
increases. This occurs because a wider kernel reduces the distance between the inferred
PDFs. An illustrative example of this phenomenon can be observed in Figure 4. Specifically,
as h approaches 0, the KDE tends to coincide with the empirical distribution, allowing
for the computation of the exact maximum JSD score based on the relative frequency
distribution. Conversely, as h approaches +∞, the differences between the distributions are
annealed, resulting in S(JS)(h, Δ, δ) = 0. Further information is available in Appendix A.

Figure 4. Jensen–Shannon Divergence (JSD) computed between three simple PDFs, represented by
the blue, red, and green lines. These PDFs are generated using KDE applied to two distinct sets of
points, with varying values of the smoothing parameter h. The maximum JSD in this scenario is
log(3).

Shifting the focus to how S(JS) changes concerning Δ, it tends to decrease as a wider
window is considered, accommodating more points in each instance. This trend aligns with
results obtained by applying other, more classical techniques. However, this behaviour is
not strictly monotonic, as the periodicities of the time signal could interact with the window
scale in unpredictable ways. Lastly, the δ parameter has the role of a resolution scale. The
optimal value for δ is 1, as it maximizes the number of windows extracted from a predefined
time signal. However, to reduce computational costs, δ can be increased. Up to a certain
limit, the score remains constant before becoming unstable. This limit value is dependent
on the type of data being dealt with, as observed through numerical experiments.

Among the various information divergences, the choice of Jensen–Shannon Divergence
(JSD) arises from its defining characteristics. Notably, JSD is non-negative, symmetric, and
bounded. Moreover, it serves as a well-defined metric, whose square root satisfies the trian-
gle inequality, and can effectively compute similarities among more than two distributions.
This is not the case, for, e.g, the Kullback–Leibler and Jeffrey’s divergences [47].

When determining the appropriate parameter for use, the hyperparameter thJS be-
comes crucial. This hyperparameter governs the chosen value of the JSD, allowing the
desired balance between bias and variance. The selection of thJS can be accomplished
through cross-validation when employing a classification algorithm, or by visually inspect-
ing the resulting PDFs. The target score is computed as a percentage of the maximum
value, which is contingent upon the number of normal state windows generated by the
non-anomalous reference signal, M∗. Subsequently, for each Δ within the predefined
multiscale vector, Δ, h∗ is determined by taking into account its monotonically decreasing
behaviour, which allows us to use the bisection method. Finally, a parameter, δ, is chosen
to ensure score stability,

S(JS)(h, Δ) = thJS log M∗ → h∗(Δ). (19)

This approach allows us to control the bandwidth at each scale, Δ, with only one
hyperparameter, thJS.

With respect to the convergence to h∗, the main parameter influencing it is the number
of windows considered, M∗, in the reference time signal. Additionally, the integration
parameters, such as discretization in the case of Simpson’s integral, and the minimum error
allowed in the bisection method also affect the convergence.
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2.2.3. Time Dependent Multiscale Entropy

In this context, we consider z window scales, i.e., Δ ∈ NZ. At each instance, τj, Z
PDFs are generated. Over each PDF, a predetermined set of information/entropic measures
is computed. Since determining the optimal information entropic measures in advance
is challenging, and each one analyzes a different aspect of the time signal, employing a
combination of such measures improves anomaly detection capabilities. Consequently, we
obtain an ordered sequence of matrices A1, A2, . . . , AM, where Aj ∈ RZ×L. Each aj ∈ RL

comprises L distinct entropic or information outputs. The simultaneous use of various
measures reveals unique characteristics of the underlying time signal dynamic [5,13].

3. Results

3.1. Synthetic Signal Generation

To assess the efficacy of the proposed algorithm, a synthetic simulation was devised.
Based on the discussions highlighted in the Introduction, where the definition of anomaly
can be subject to various interpretations, we observed a common trend in many application
scenarios: anomalies are often associated with variations in signal frequency content.
Therefore, in our synthetic simulation, the temporal signal has been crafted as a multi-tone
time series, with anomalies represented as variations in the signal tones.

The equation describing our synthetic signal is

x(t) = g(t)
Kn

∑
k=1

Re
(

Ak e−i(2π fkt+φk)
)
+ (1 − g(t))

Ka

∑
k=1

Re

(
A(a)

k e−i
(

2π f (a)
k t+φ

(a)
k

))
+ ε(t), (20)

which consists of a normal state signal, comprising Kn tones, and an anomaly signal
composed of Ka tones. Each tone is characterized by an amplitude, Ak, a characteristic
frequency, fk, and a phase, φk. The design of Equation (20) allows the simulation of various
types of anomalies. For instance, we can simply generate an anomaly signal by adding
new tones, modifying the amplitude of the normal ones, or a combination of both. The
transition between the two signals is controlled by a modulation function, g(t), adding
flexibility to the experiment. In particular, g(t) can be a function gradually transitioning
from the normal state to an anomalous one, or a localized function to pinpoint the anomaly
at a specific time spam. The last term in Equation (20), ε(t) = N (t|0, σε), represents white
noise applied to the signal.

3.2. Synthetic Experiment Settings

The parameters associated with the methodology explained above are contained in
Table 1, whereas the parameters used to generate the synthetic signal are listed in Table 2.

Table 1. Main transformation parameters employed to analyse the synthetic signal.

fs 4096
δ 256
Δ 2[4,5,...,11]

thJS 0.001

Table 2. Synthetic signal parameters. Time in [s] and frequencies in [Hz].

φk 440.0, 220.0, 22.0
Ak 1.5, 2.0, 1.0

φ
(a)
k

440.0, 220.0, 22.0, 50.0, 1000.0

A(a)
k

1.0, 1.0, 0.5, 2.0, 0.5
σε 0.5

To define the parameters in these two tables, an artificial signal was first created. The
anomaly was defined by adding higher and lower frequency harmonics to the signal. All
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the parameters were adjusted to create a non-trivial time-series anomaly that could not be
detected simply by applying upper and lower control limits.

The sampling frequency fs was selected to be higher than the Nyquist rate of the signal
to avoid aliasing problems. Other parameters were tuned to allow a clear representation
of the anomaly. In particular, δ was kept as high as possible to reduce the computational
cost, even though this reduced the resolution of the resulting sequence. Meanwhile, Δ
was set to achieve the widest spectrum of scales while keeping the simulation within
a reasonable duration. A power of 2 was employed for window scale selection. The
threshold thJS was determined through visual inspection of both the final time-dependent
entropic/information plots.

For the anomaly signals, we devised a simulation in which, during the anomaly
period, new tones are added to the original normal state signal, and the amplitude of
the different tones is adjusted to maintain a constant total amplitude. The purpose of
this approach was to create an anomaly that could not be easily detected using upper or
lower threshold criteria. The normal and anomaly signal settings remained constant while
different modulation signals g(t) were tested. In this study, we present two cases: a linearly
increasing modulation function, Equation (21), and a localized version represented by a
normalized Gaussian modulation function, Equation (22).{

g(t) = 1 if t ≤ tb

g(t) = 1 − t−tb
t f −tb

if t > tb,
(21)

{
g(t) = 1 if t ≤ tb

g(t) = 1 − f (t)
max( f (t)) if t > tb,

(22)

where tb and t f are the timestamps indicating the beginning and the end of the anomaly,
respectively.

The resulting datasets can be observed in Figure 5, with linear anomaly characterized
by tb = 5 s and t f = 10 s, and in Figure 6 for a localised anomaly. For the latter, the
localization function, f (t), is a normalised Gaussian with mean μ = 7.5 s and standard
deviation σ = 0.1 s.

In Figure 7, all the PDFs generated by the dataset are plotted, both with and without
anomalies, at each scale. For each scale, a value, h∗, has been selected using the JSD-h
algorithm. The PDFs obtained can exhibit multimodal distributions, as observed for higher
Δ values. In this simulation, the selected h∗ decreases monotonically with respect to Δ.

Figure 5. Example of a synthetic signal, where g(t) is depicted with a continuous red line, representing
the linear increasing anomaly function.
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Figure 6. Example of a synthetic signal, where g(t) is depicted with a continuous red line, representing
the Gaussian localization anomaly function.

Figure 7. PDFs generated from the sythetic signal at different scales, Δ. A bandwidth, h, has been
selected for each using the JSD-h algorithm. The red color gradient indicates the intensity of anomalies
in the PDFs.

In Figure 8, the information/entropic time-dependent plots of the linear increasing
anomaly case is depicted. Each subplot contains different entropic/information measures.
For Tsallis and Rényi entropies, parameters q and α greater and lower than 1, respectively,
have been chosen. In the case of Fisher information, the results are standardized to enable
a proper graphic representation.

Figure 8. Entropic and information time-dependent plots related to the synthetic experiment. The
color gradient indicates the Δ scale of the signal.

To begin with, a complementary behaviour of Fisher information can be observed
compared to Shannon entropy. The anomaly generates an increase in the entropy compo-
nent and a reduction in the information content, showing that the signal tends to enter into
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a state of greater uncertainty, consistent with the structure of the underlying real signal,
which is generated at that time by the combination of two multi-tonal signals. The non-
parametric Fisher information measure method shows a less stable behaviour with respect
to the entropic measures. Concerning the effect of the scales on the results, the substantial
impact of parameter Δ becomes evident, significantly influencing both the signal’s normal
condition and its response to anomalies. Regarding the normal condition, an increase in
Δ tends to lower the entropic levels and increase the information content of the signal.
However, for high values of Δ, this tendency is stabilised at a specific entropic content.
For anomaly response, in this specific simulation the measures tend to show a monotonic
variation, reflecting the anomaly linear modulation signal, g(t), applied (21). Analyzing
the different results of the various measures, Rényi and Tsallis entropies with parameters
lower than 1 show a less variable signal compared to the other measures. Nevertheless, in
this specific case, all of them detected the anomaly.

Meanwhile, in Figure 9 the time-dependent plots with the localised anomaly are
depicted. As in the previous case, the anomaly is detected by wider windows; however, it
is possible to notice whether or not the window generates a delay in the detection of the
anomaly. An important difference from the former case is that, when the localised anomaly
is active, generalized entropies with parameters higher than 1 blur the anomaly detection
for lower window scales. As before, the anomaly causes an increase in the uncertainty and a
decrease in the information content of the signal. From an analysis of both experiments, it is
clear how the methodology transforms the time signal containing the collective contextual
anomaly into a new sequence, where the same anomaly can be easily detected using upper
and lower control limits. Moreover, as can be seen in both cases, the intensity of the shift is
related to the intensity of the anomaly itself.

Figure 9. Entropic and information time-dependent plots related to the synthetic experiment. The
color gradient indicates the Δ scale of the signal.

3.3. Real-Case Scenario Application: Scalp-EEG Seizure Detection

To evaluate the proposed methodology on real data, a test was conducted over a
record of a specific patient from the open dataset Children’s Hospital Boston CHB-MIT.
This dataset comprises pediatric subjects with intractable seizures and is available at
https://physionet.org/content/chbmit/1.0.0/ (accessed on 31 January 2023). According to
the International League Against Epilepsy and the International Bureau for Epilepsy [48],
“an epileptic seizure is defined as a transient occurrence of signs and/or symptoms resulting from
abnormal excessive or synchronous neuronal activity in the brain”. Scalp Electroencephalogram
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(EEG) is a non-invasive diagnostic tool widely used to assess brain activity, especially in
the clinical diagnoses of epilepsy. By monitoring the brain’s processes using electrodes
attached to the scalp, EEG generates a signal that can detect abnormalities or changes in
brain function. The signal in the CHB-MIT dataset is characterized by a sampling frequency
of fs = 256 Hz with a 16-bit resolution. For more information about the dataset, refer
to [33].

The test was conducted on a single patient operating data from one channel of the
EEG. Specifically, a record without a seizure (see Figure 10) was used as the normal state
to select the bandwidths. Subsequently, time-dependent entropic/information measures
were computed using a record affected by a seizure attack (see Figure 11). The parameters
employed for this simulation are reported in Table 3.

Figure 10. EEG signal: record chb01-01 Channel 1 (FP1-F7).

Figure 11. EEG signal: record chb01-03 Channel 1 (FP1-F7).

Table 3. Main transformation parameter employed to analyse chb01 scalp-EEG.

fs 256
δ 256
Δ 2[4,5,...,13]

thJS 0.01

In Figure 12, the selected combinations of Δ − h parameters are depicted along with
all the PDFs generated in a healthy state. In this case, we notice that the selected values of
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h do not decrease monotonically with Δ from the beginning, but instead maintain almost a
constant value until Δ = 1028 (or 4 s), after which they start to decrease.

Figure 12. Plots of PDFs generated from the EEG signal at various scales, Δ. A bandwidth, hm, has
been selected for each scale using the JSD-h algorithm.

Observing the time-dependent plots in Figure 13, it can be seen how the largest
windows recorded a decrease in entropy and an increase in information, right before and
after the epileptic attack.

Figure 13. Entropic and information time-dependent plots related to the record chb01-03 Channel 1
(FP1-F7). The colour gradient indicates the Δ scale of the signal.

4. Discussion and Conclusions

The proposed methodology for detecting anomalies in time series represents a novel
approach that combines multiscale window division with entropic/information time-
dependent measurements. In the inference step, a Kernel Density Transformation (KDE) is
utilized alongside a unique bandwidth selection algorithm based on the Jensen–Shannon
divergence. This algorithm, tailored for anomaly detection, strikes a balance between
bias and variance over a set of instances generated from a reference time signal for offline
optimization. The main advantages of the proposed bandwidth optimization algorithm lie
in the ability for it to be executed offline, without making assumptions about the nature of
the data. This stands in contrast to classical optimization methods for h, which are designed
for i.i.d. data. The offline characteristic eliminates the need for an online optimization of a
specific bandwidth for each windowed time-series instance.

One of the key strengths of this methodology lies in its flexibility, allowing for the
application of any differential entropic/information measures with a multiscale approach to
characterize a time series. Unlike previous approaches that were often confined to specific
application scenarios, our methodology offers a generalized framework for utilizing these
feature-extraction tools across various domains.
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Our results show the efficacy of this methodology in describing different types of
anomalies through time-dependent differential entropy/information plots. Notably, the
importance of scale in anomaly detection is highlighted, although it is acknowledged that
wider windows may introduce a delay in detecting localized anomalies. Across the various
generalized entropic measures, all proved capable of detecting anomalies with varying
window sizes. Particularly noteworthy were the Shannon, Tsallis, and Rényi entropies
with parameters lower than 1, which successfully identified localized anomalies, even
with smaller windows. In both synthetic and real EEG experiments, the JSD-h algorithm
effectively balanced bias and variance, selecting appropriate bandwidths for each scale to
accurately characterize both the normal signal state and the anomalies.

5. Limitations and Future Works

The proposed methodology enables the extraction of any continuous entropic, infor-
mational, and complexity functionals from a time series, without application limitations
when dealing with time signals. It can also be generalized beyond the measures used here.

Regarding potential difficulties with the methodology, there is no established method
to determine the optimal set of entropic and informational measures before computing
them over the data. For the JSD-h algorithm, one challenge is selecting the threshold
thJS, which is currently based on empirical tests and depends on the specific classification
algorithm used. A potential solution might involve using a complexity distance instead of
a divergence measure to find a specific minimum, though this would shift the challenge to
determining which complexity measure to use. Another aspect that could be improved is
the convergence speed of the JSD-h algorithm. While this optimization can be performed
offline, tuning the parameters that influence convergence could speed up the algorithm’s ex-
ecution. Once optimized, it would eliminate the need for the instance-specific optimization
of h, as required by other solutions.

Regarding possible improvements and the next applications of the methodology, the
JSD-h algorithm could be improved by incorporating weighted parameters using filter
methods, rather than a uniform weight scheme. This adjustment would allow the adapta-
tion of the reference signal in non-stationary time series. Additionally, our methodology
will address collective contextual anomalies, where anomalies can be characterized by
shifts in frequency content. However, the method could also be applied to contextual
point anomalies, as these should reflect significant changes in the PDF obtained without
any data filtering or smoothing. Furthermore, while we have considered various entropic
and informational functionals, we have not yet explored other types of measures, such
as entropic and informational divergences, information planes, and complexities, which
could potentially enhance our results. Future research will also aim to integrate this feature-
extraction solution with machine-learning classification techniques in real-world scenarios,
although this extension is beyond the scope of the current work.
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Abbreviations

The following abbreviations are used in this manuscript:

i.i.d. independently and identically distributed
EEG Electroencephalogram
KDE Kernel Density Estimation
TDE Time-Dependent Entropy
PMF Probability Mass Function
PDF probability density function
JSD Jensen–Shannon Divergence
AMISE Asymptotic Mean Integrated Squared Error

Appendix A. JSD Scores: Relation with h

As the bandwidth, h, tends to 0, the KDE of the data {xi}n
i=1, with xi ∈ R for all i,

collapses to the empirical density function, i.e.,

lim
h→0

p̂(x) = lim
h→0

1
hn

n

∑
i=1

K
(

x − xi
h

)
=

1
n

n

∑
i=1

δ(x − xi), (A1)

where δ(x) denotes the Dirac distribution [49]. In this case, the Shannon entropy of the
empirical density distribution is equal to

H[ p̂(x)] = −
∫ ∞
−∞ p̂(x) log p̂(x) dx =

= −
∫

Ω
1
n

n
∑

i=1
δ(x − xi) log p̂(x) dx =

= − 1
n

n
∑

i=1
log p̂(xi) =

= − 1
n

log
(

n
∏
i=1

p̂(xi)

)
.

(A2)

Assuming 0 log 0 = 0, if the collection {xi}n
i=1 is a set (with only unique elements),

p̂(xi) =
1
n for all i. Thus, in this specific case, H[ p̂(x)] = − 1

n log
(

1
n

)n
= log n.

Considering two distinct empirical density functions, p̂(1)(x) and p̂(2)(x), generated

by sets
{

x(1)i

}n

i=1
and

{
x(2)i

}n

i=1
, each containing the same number of elements, if the union

of the two sets is another set, and if the two sets are disjoint, the JSD will be given by

JSD[ p̂(1)(x), p̂(2)(x)] = H[ ¯̂p(x)]− 1
2H[ p̂(1)(x)]− 1

2H[ p̂(2)(x)]

= log 2n − 1
2 log n − 1

2 log n = log(2),
(A3)

where, ¯̂p(x) = p̂(1)(x)+ p̂(2)(x)
2 is the empirical distribution of

{
x(1)i

}n

i=1
∪
{

x(2)i

}n

i=1
.

Generalizing this result, JSD
[{

p̂(j)(x)
}M

j=1

]
= log(M). In case the sets overlap,

JSD
[{

p̂(j)(x)
}M

j=1

]
< log(M).

In the opposite case, with h → +∞, one has

lim
h→+∞

p̂(x) = lim
h→+∞

1
hn

n
∑

i=1
K
(

x − xi
h

)

= K

⎛⎜⎝ x − ∑n
i=1 xi

n
h

⎞⎟⎠.

(A4)
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In this situation, it is conjectured that the estimate retains the shape of the used kernel,
centred on the mean of the samples (completely smooth).

Appendix B. Further Experiments

To have a representation of how the bandwidth influences the results of the PDFs,
in Figure A1 a grid of values of h − Δ is shown. Each box displays PDFs generated both
with and without anomalies. This plot vividly illustrates how the bandwidth serves as a
crucial factor in striking a balance between overfitting and underfitting the data. When
the bandwidth, h, is low, the distributions closely align with the empirical one. Conversely,
with a larger bandwidth, the output of the kernel density estimator tends to mirror the
kernel itself.

Figure A1. PDFs comparative grid. Each square shows the PDFs generated with that specific Δ − h
pair. Normal state PDFs are depicted in blue, and anomaly PDFs are in red. The green borders show
which is the best Δ − h combination closer to the JSD score utilised.
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Abstract: This paper proposes an improved three-term conjugate gradient algorithm designed to
solve nonlinear equations with convex constraints. The key features of the proposed algorithm are
as follows: (i) It only requires that nonlinear equations have continuous and monotone properties;
(ii) The designed search direction inherently ensures sufficient descent and trust-region properties,
eliminating the need for line search formulas; (iii) Global convergence is established without the
necessity of the Lipschitz continuity condition. Benchmark problem numerical results illustrate
the proposed algorithm’s effectiveness and competitiveness relative to other three-term algorithms.
Additionally, the algorithm is extended to effectively address the image denoising problem.

Keywords: nonlinear monotone equations; conjugate gradient method; convergence analysis; image
denoising
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1. Introduction

Consider the following constrained nonlinear monotone equations of the form:

E(x) = 0, x ∈ E, (1)

where E : Rn → Rn is a monotonic and continuous mapping, and E ⊆ Rn is a convex set.
The monotonic property of the mapping is defined as

〈E(x)− E(y), x − y〉 ≥ 0, ∀x, y ∈ R
n. (2)

Numerous practical and theoretical problems can be transformed into nonlinear
equations, such as those arising from nonlinear mathematical physics [1,2], compressed
sensing [3,4], economic equilibrium [5], and optimal power flow control [6]. This broad
applicability has driven extensive research into efficient solution methods. Among the
various numerical methods that have been developed, derivative-free methods have gained
significant attention due to their unique advantages. These methods include spectral
gradient methods [7–9], two-term conjugate gradient methods [10–15], and three-term
conjugate gradient methods [16–20]. To be specific, these methods leverage the structure of
first-order optimization methods, inheriting the advantages of simplicity and low storage
requirements, making them highly effective for solving a wide range of practical problems.
However, it has been observed that the convergence properties of the aforementioned
derivative-free methods often require mapping to satisfy the Lipschitz continuity condition,
which is a stringent theoretical requirement. Hence, our goal in this paper stems from the
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need to develop a more robust algorithm that operates under the non-Lipschitz continuity
condition.

Before presenting our new algorithm, it is essential to review the three-term conjugate
gradient method designed for unconstrained optimization problems, specifically those of
the form min{ f (x) | x ∈ Rn}. Here, f : Rn → R represents a continuously differentiable
function, with its gradient at any point xk ∈ Rn denoted by gk := ∇ f (xk). The iterative
formula for the three-term conjugate gradient method can be formulated as follows:

xk+1 = xk + αkdk, dk = −gk + β̃kdk−1 + θ̃kyk−1, k ≥ 1, d0 = −g0,

where αk is the step length determined by a specific line search formula, β̃k and θ̃k are
scalar parameters, and yk−1 = gk − gk−1. The choice of β̃k and θ̃k is critical, as different
values of these parameters lead to different variants of the three-term conjugate gradient
method [21–23]. Recently, leveraging the memoryless BFGS approach, Li [24] developed a
three-term Hestense–Stiefel (HS)-type conjugate gradient for unconstrained optimization
problems. This method’s search direction closely approximates that of the memoryless
BFGS method, offering improved performance and robustness. Additionally, Li [25] intro-
duced a three-term Polak–Ribière–Polyak (PRP)-type conjugate gradient method, which
modified the search direction by replacing 〈dk−1, yk−1〉 with ‖gk−1‖2, thereby enhancing
the efficiency in solving optimization problems. Furthermore, through comprehensive
analysis [24,25], Li [26] developed a family of three-term conjugate gradient methods for
unconstrained optimization problems. A notable feature of these methods is that their
search directions consistently satisfy the sufficient descent property, ensuring reliable and
effective convergence. Hence, our goal for this paper was to extend and modify these
methods for solving nonlinear monotone equations with constraints.

Drawing inspiration from three-term conjugate gradient methods [24–26] and the
projection technique, our goal was to extend these methods and propose an improved three-
term conjugate gradient projection algorithm to solve the problem (1) without requiring the
Lipschitz continuity condition. The advantages of our proposed algorithm are multifaceted,
addressing several key challenges in solving nonlinear equations with convex constraints:
minimal requirements, eliminates the need for line search formulas, global convergence
without Lipschitz continuity, effective and competitive performance, and extension to
image denoising. The remainder of this paper is structured as follows: In Section 2, we
detail the process of the proposed algorithm. Section 3 is dedicated to establishing the
convergence analysis of the proposed algorithm. Sections 4 and 5 present numerical
experiments for nonlinear monotone equations with convex constraints and the image
denoising problem, respectively. Finally, the conclusions are given in Section 6. Throughout
the paper, the symbols ‖ · ‖ and 〈·, ·〉 denote the Euclidean norm and the product of two
vectors. For convenience, we abbreviate E(xk) to Ek.

2. Algorithm

In this section, we detail the formulation of our proposed algorithm, outlining its
mathematical foundation and the derivation of key parameters. We start by defining
the search direction and associated parameters that ensure efficiency and robustness. In
addition, we provide a step-by-step description of the algorithm and discuss the theoretical
underpinnings of the designed search direction.

To facilitate our formulation, we define several key parameters as follows: We intro-
duce a notation ỹk−1, which is given by [27]

ỹk−1 = yk−1 + vk−1‖Ek−1‖a1 dk−1,

where vk−1 = a2 + max{0,−〈dk−1,yk−1〉
‖dk−1‖2 }‖Ek−1‖−a1 and yk−1 = Ek − Ek−1 with a1, a2 > 0.

These parameters play a crucial role in the formulation of our proposed search direction.
After making a careful modification, we propose the following search direction:
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dk =

{ −E0, k = 0,
−Ek + βkdk−1 + θkỹk−1 k ≥ 1.

(3)

Here, the coefficients βk and θk are defined by the following expressions:

βk =
〈Ek, ỹk−1〉

�k
− ‖ỹk−1‖2〈Ek, dk−1〉

�2
k

and

θk =
δk〈Ek, dk−1〉

�k
,

where �k = b1(‖dk−1‖+ ‖ỹk−1‖)2 + b2 max
{
‖Ek−1‖2, 〈dk−1, ỹk−1〉

}
with 0 ≤ δk ≤ δ̄ < 1

and b1, b2 > 0. Note that the inclusion of �k can be mathematically justified by its role in
ensuring the sufficient descent property and trust-region characteristics. These properties
are essential for the global convergence of the algorithm.

Before detailing our algorithm, it is essential to define the projection operator, which
ensures the feasibility of our solutions. The projection operator is defined as follows:

TE[x] = arg min{‖x − y‖ | y ∈ E}, x ∈ R
n.

Projecting x onto the closed convex set E guarantees that the subsequent iterative point
determined by our algorithm remains within the set E. Additionally, this operator possesses
a well-known non-expansive property, which can be expressed as

‖TE[x]− TE[y]‖ ≤ ‖x − y‖, ∀x, y ∈ R
n. (4)

Now, we illustrate the steps of our algorithm designed to efficiently solve nonlinear
monotone equations subject to convex constraints. For convenience, Algorithm 1 is referred
to as Algorithm ITTCG.

Algorithm 1 Improved Three-Term Conjugate Gradient Algorithm

Step 0. Choose σ, ρ ∈ (0, 1), ξ ∈ (0, 2), a1, a2, b1, b2, ε > 0, δ̄ ∈ (0, 1), and an initial point
x0 ∈ Rn. Set k := 0.
Step 1. Set dk = −Ek.
Step 2. Set the trial point zk = xk + αkdk, where the step length α = max{ρi | i = 0, 1, . . . , }
satisfies

−〈E(zk), dk〉 ≥ σαk‖E(zk)‖‖dk‖2. (5)

Step 3. If zk ∈ E and ‖E(zk)‖ ≤ ε, xk+1 := zk and stop. Otherwise, continue to Step 4.
Step 4. Compute the next iterative point as

xk+1 = TE[xk − ξτkE(zk)], τk =
〈E(zk), xk − zk〉

||E(zk)||2
.

Step 5. If ‖E(xk+1)‖ ≤ ε, stop. Otherwise, compute the search direction dk+1 by (3).
Step 6. Set k := k + 1 and go to Step 2.

Remark 1. Based on the definitions of ỹk−1 and vk−1, we can derive the following expression:

〈dk−1, ỹk−1〉 = 〈dk−1, yk−1〉+ vk−1‖Ek−1‖a1‖dk−1‖2

≥ 〈dk−1, yk−1〉+ a2‖Ek−1‖a1‖dk−1‖2 − 〈dk−1,yk−1〉
‖dk−1‖2 ‖Ek−1‖−a1‖Ek−1‖a1‖dk−1‖2

= a2‖Ek−1‖a1‖dk−1‖2 > 0.

This derivation shows that 〈dk−1, ỹk−1〉 is always positive. Consequently, this implies that the
definitions of βk and θk are valid and feasible within the context of our algorithm.
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The following lemma indicates that the search direction determined by Algorithm
ITTCG meets both the sufficient descent and trust-region properties. These properties are
crucial for establishing the global convergence of Algorithm ITTCG.

Lemma 1. Let the sequences {dk} and {Ek} be determined by Algorithm ITTCG. Then, we have
the following results:

〈Ek, dk〉 ≤ −c1‖Ek‖2 (6)

and
c1‖Ek‖ ≤ ‖dk‖ ≤ c2‖Ek‖, (7)

where c1 = 1 − (1+δ̄)
2

4 and c2 = 1 + 1+δ̄
4b1

+ 1
16b2

2
.

Proof. (i) We will show that (6) holds. For k = 0, we have 〈E0, d0〉 = −‖E0‖2 ≤ −c1‖E0‖2.
For k ≥ 1, using the search direction defined in (3), we obtain

〈Ek, dk〉 = −‖Ek‖2 + βk〈Ek, dk−1〉+ θk〈Ek, ỹk−1〉
= −‖Ek‖2 +

〈Ek ,ỹk−1〉〈Ek ,dk−1〉
�k

− ‖ỹk−1‖2〈Ek ,dk−1〉2

�2
k

+
δk〈Ek ,dk−1〉〈Ek ,ỹk−1〉

�k

= −‖Ek‖2 + (1 + δk)
〈Ek ,dk−1〉〈Ek ,ỹk−1〉

�k
− ‖ỹk−1‖2〈Ek ,dk−1〉2

�2
k

.

(8)

In addition, using the inequality 2〈ek, lk〉 ≤ ‖ek‖2 + ‖lk‖2 with ek = 1+δk
2 Ek and lk =

〈Ek ,dk−1〉
�k

ỹk−1, we obtain

(1 + δk)
〈Ek, dk−1〉〈Ek, ỹk−1〉

�k
≤ (1 + δk)

2

4
‖Ek‖2 +

〈Ek, dk−1〉2

�2
k

‖ỹk−1‖2. (9)

Substituting (9) into (8), we have

〈Ek, dk〉 ≤ −‖Ek‖2 +
(1 + δk)

2

4
‖Ek‖2 ≤ −

(
1 −

(
1 + δ̄

)2

4

)
‖Ek‖2.

(ii) We will show that (7) holds. For k = 0, we have c1‖E0‖ ≤ ‖d0‖ = ‖E0‖ ≤ c2‖E0‖.
For k ≥ 1, from the definition of �k and using the inequality (e − l)2 = e2 − 2el + l2 =
(e + l)2 − 4el ≥ 0, we obtain

�k ≥ 4b1‖dk−1‖‖ỹk−1‖.

Using this relation and the definitions of βk and θk, we obtain

|βk| ≤
‖Ek‖‖ỹk−1‖

4b1‖dk−1‖‖ỹk−1‖
+

‖ỹk−1‖2‖Ek‖‖dk−1‖
(4b1‖dk−1‖‖ỹk−1‖)2 ≤

(
1

4b1
+

1
16b2

1

)
‖Ek‖
‖dk−1‖

and

θk ≤
δk〈Ek, dk−1〉

4b1‖dk−1‖‖ỹk−1‖
≤ δ̄‖Ek‖‖dk−1‖

4b1‖dk−1‖‖ỹk−1‖
≤ δ̄‖Ek‖

4b1‖ỹk−1‖
.

Combining these inequalities with the definition of dk, we obtain

‖dk‖ ≤ ‖Ek‖+
(

1
4b1

+ 1
16b2

1

)
‖Ek‖
‖dk−1‖ ‖dk−1‖+ δ̄‖Ek‖

4b1‖ỹk−1‖ ‖ỹk−1‖

≤
(

1 + 1+δ̄
4b1

+ 1
16b2

2

)
‖Ek‖.

Additionally, together with (6), we have

−‖Ek‖‖dk‖ ≤ 〈Ek, dk〉 ≤ −c1‖Ek‖2,
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which implies that ‖dk‖ ≥ c1‖Ek‖.

3. Convergence Analysis

In this section, we analyze the global convergence of the proposed algorithm without
assuming the Lipschitz continuity condition. We assume that E(x) �= 0 for any x /∈ E∗,
where E∗ represents the solution set of problem (1). If E(x) = 0 for some x ∈ E∗, this
indicates that the solution to problem (1) has already been achieved.

The following lemma indicates that the line search Formula (5) of the proposed
algorithm is well-defined.

Lemma 2. Let the sequences {dk} and {xk} be generated by Algorithm ITTCG. Then, in each
iteration, there exists a step length αk that satisfies the line search Formula (5).

Proof. We begin by contradiction and assume that there exists k0 ≥ 0 such that the line
search formula (5) does not hold for any non-negative integer i, i.e.,

−〈E(xk0 + ρidk0), dk0〉 < σρi‖E(xk0 + ρidk0)‖‖dk0‖2.

Given the continuity of E and the fact that 0 < ρ < 1, we take the limit as i → ∞ and obtain
the relation 〈E(xk0), dk0〉 ≥ 0. This contradicts with 〈E(xk0), dk0〉 ≤ −c1‖E(xk0)‖2 < 0 from
(6). Therefore, there must be a step length αk that satisfies the line search formula.

The following lemma indicates that the sequence {xk} generated by Algorithm ITTCG
is monotonic with respect to the solution from the set E∗ of problem (1).

Lemma 3. Let the sequences {xk} and {zk} be generated by Algorithm ITTCG, then we have

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 − σ2(2ξ − ξ2)‖xk − zk‖4, x∗ ∈ E∗. (10)

Moreover, the sequence {xk} is bounded.

Proof. From the inequality (2), we have

〈E(zk), xk − x∗〉 = 〈E(zk), xk − zk〉+ 〈E(zk), zk − x∗〉
≥ 〈E(zk), xk − zk〉+ 〈E(x∗), zk − x∗〉
= 〈E(zk), xk − zk〉
≥ σα2

k‖E(zk)‖‖dk‖2,

(11)

where the second inequality follows from the definition of zk and the search line Formula (5).
Additionally, using the definition of τk and the inequality (11), we have

τk =
〈E(zk), xk − zk〉

‖E(zk)‖2 ≥ σα2
k‖E(zk)‖‖dk‖2

‖E(zk)‖2 =
σα2

k‖dk‖2

‖E(zk)‖
. (12)

Utilizing the inequalities (4), (11), and (12), we have

‖xk+1 − x∗‖2 = ‖TE[xk − ξτkE(zk)]− TE[x∗]‖2

≤ ‖xk − ξτkE(zk)− x∗‖2

= ‖xk − x∗‖2 − 2ξτk〈E(zk), xk − x∗〉+ ξ2τ2
k ‖E(zk)‖2

≤ ‖xk − x∗‖2 − 2ξτk〈E(zk), xk − zk〉+ ξ2τ2
k ‖E(zk)‖2

= ‖xk − x∗‖2 − 2ξτ2
k ‖E(zk)‖2 + ξ2τ2

k ‖E(zk)‖2

= ‖xk − x∗‖2 − (2ξ − ξ2)τ2
k ‖E(zk)‖2

≤ ‖xk − x∗‖2 − (2ξ − ξ2)

(
σα2

k‖dk‖2

‖E(zk)‖

)2
‖E(zk)‖2

= ‖xk − x∗‖2 − (2ξ − ξ2)σ2α4
k‖dk‖4

= ‖xk − x∗‖2 − (2ξ − ξ2)σ2‖xk − zk‖4,

(13)
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which implies that the sequence {‖xk − x∗‖} is monotonically non-increasing and conver-
gent. Hence, the sequence {xk} is bounded.

To be specific, if the sequence {xk} is finite, then the last iterative point is the solution
to problem (1). If the sequence {xk} is infinite, we assume this to prove the following result:

Theorem 1. Let the sequences {xk}, {zk}, {dk}, and {Ek} b generated by Algorithm ITTCG, then
we have

lim
k→+∞

inf ‖Ek‖ = 0. (14)

Proof. We begin by contradiction and assume that there exists a constant ε1 > 0 such that
‖Ek‖ > ε1 for any k ≥ 0. This, combined with (7), yields

‖dk‖ ≥ c1‖Ek‖ > c1ε1, ∀k ≥ 0. (15)

According to the continuity of E and the boundedness of {xk}, the sequence {Ek} is also
bounded. That is, there exists a non-negative constant ε2 such that ‖Ek‖ ≤ ε2 for any k ≥ 0.
This, combined with (7), yields

‖dk‖ ≤ c2‖Ek‖ ≤ c2ε2, ∀k ≥ 0. (16)

The inequalities (15) and (16) imply that the sequence {dk} is bounded.
Moreover, from (10), we deduce that

∞

∑
k=0

‖xk − zk‖4 ≤ 1
σ2(2ξ − ξ2)

∞

∑
k=0

(
‖xk − x∗‖2 − ‖xk+1 − x∗‖

)
≤ ‖x0 − x∗‖2

σ2(2ξ − ξ2)
,

which implies that
lim
k→∞

‖xk − zk‖ = lim
k→∞

αk‖dk‖ = 0.

Together with the boundedness of the sequence {dk}, it follows that

lim
k→∞

αk = 0. (17)

Given the boundedness of the sequences {xk} and {dk}, there exists two convergent
subsequences {xkn} and {dkn} such that

lim
n→∞,n∈K

xkn = x̄, lim
n→∞,n∈K

dkn = d̄,

where K is an infinite index set. The inequality (6) yields

−〈Ekn , dkn〉 ≥ c1‖Ekn‖2.

By allowing n → ∞ in the above inequality, the continuity of E shows that

−〈E(x̄), d̄〉 ≥ c1‖E(x̄)‖2 > c1ε2
1 > 0. (18)

Next, considering the line search Formula (5), we have

−〈E(xkn + ρ−1αkn dkn), dkn〉 < σρ−1αkn‖E(xkn + ρ−1αkn dkn)‖‖dkn‖2.

By allowing n → ∞ in the above inequality, the continuity of E implies that

−〈E(x̄), d̄〉 ≤ 0,

which contradicts with (18). Therefore, the desired result holds.
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4. Numerical Experiments

In this section, we conducted numerical experiments to demonstrate the effectiveness
and competitiveness of Algorithm ITTCG. We compared it with two existing three-term
algorithms: Algorithm HTTCGP [18] and Algorithm ZYL [28]. All experiments were
performed on an Ubuntu 20.04.2 LTS 64 bit operating system, utilizing an Intel(R) Xeon(R)
Gold 5115 CPU at 2.40 GHz.

The parameters for Algorithm ITTCG were configured as follows: σ = 10−4, ρ = 0.74,
ξ = 1.3, a2 = 0.001, b1 = 0.3, b2 = 1, ε = 10−6, δ̄ = 0.1, and τk is computed by

τk = min
{

δ̄, max
{

0, 1 − 〈yk−1, sk−1〉
‖yk−1‖2

}}
.

The parameters for Algorithms HTTCGP and ZYL were set according to their respective ref-
erences. We selected benchmark problems with dimensions n = [1000 5000 10, 000 50, 000
100, 000]. The benchmark problems were formulated as E(x) = (E1(x), E2(x), . . . , En(x))T

with x = (x1, x2, . . . , xn)T. For each benchmark problem, we utilized the following initial points:
x1 = (1, 1, . . . , 1)T, x2 = ( 1

3 , 1
32 , . . . , 1

3n )T, x3 = ( 1
2 , 1

22 , . . . , 1
2n )T, x4 = (0, 1

n , 2
n , . . . , n−1

n )T,
x5 = (1, 1

2 , . . . , 1
n ), x6 = ( 1

n , 2
n , . . . , n

n ), x7 = (1 − 1
n , 1 − 2

n , . . . , 1 − n
n ), x8 = rand(n, 1). For

each benchmark problem, each algorithm was terminated when ‖Ek‖ ≤ ε or the number of
iterations exceeded 2000.

Problem 1. Set

E1(x) = ex1 − 1,

Ei(x) = exi + xi − 1, for i = 2, 3, · · · , n,

and E = Rn
+.

Problem 2. Set
Ei(x) = exi − 1, for i = 1, 2, · · · , n,

and E = Rn
+. Clearly, this problem has a unique solution x∗ = (0, 0, · · · , 0)T.

Problem 3. Set

E1(x) = 2x1 + sin(x1)− 1,

Ei(x) = 2xi−1 + 2xi + sin(xi)− 1, for i = 2, 3, · · · , n − 1,

En(x) = 2xn + sin(xn)− 1,

and E = Rn
+.

Problem 4. Set
Ei(x) =

i
n

exi − 1, for i = 1, 2, · · · , n,

and E = Rn
+.

Problem 5. Set
Ei(x) = 2xi − sin(xi), for i = 1, 2, · · · , n,

and E = [−2,+∞).
Problem 6. Set

Ei(x) = (exi )2 + 3 sin(xi) cos(xi)− 1, for i = 1, 2, · · · , n,

and E = Rn
+.

Problem 7. Set

E1(x) = x1 − ecos( x1+x2
2 ),

Ei(x) = xi − ecos(
xi−1+xi+xi+1

i ), for i = 2, 3, · · · , n − 1,

En(x) = xn − ecos(
xn−1+xn

n ),
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and E = Rn
+.

Problem 8. Set

E1(x) = x1 + sin(x1)− 1,

Ei(x) = −xi−1 + 2xi + sin(xi)− 1, for i = 2, 3, · · · , n − 1,

En(x) = xn + sin(xn)− 1,

and E = {x ∈ Rn : x ≥ −3}.

The numerical results of benchmark problems solved by Algorithms ITTCG, HTTCGP,
and ZYL are presented in Tables 1–8. In these tables, “Init(n)” refers to the initial points
and the dimension multiplied by 1000. The detailed results are formatted as Time/Nfunc
/Niter/Norm, where “Time” represents the CPU time in seconds, “Nfunc” represents the
number of function evaluations, “Niter” represents the number of iterations, and “Norm”
represents the norm of the function at the approximate optimal point. These tables illustrate
that all three algorithms were capable of solving the benchmark problems across various
initial points and dimensions. Notably, Algorithm ITTCG exhibited superior performance
in most cases. To clearly demonstrate the performance of Algorithm ITTCG, we utilized the
performance profiles developed by Dolan and Moré [29]. These profiles visually compared
the performance in terms of CPU time, Nfunc, and Niter, as shown in Figures 1–3. From
these figures, we can observe that Algorithm ITTCG won about 59%, 77%, and 80% of the
experiments in terms of CPU time, Nfunc, and Niter, respectively. The results indicate that
Algorithm ITTCG outperformed Algorithm HTTCGP and ZYL on the given benchmark
problems.

Table 1. Numerical results for Problem 1.

Init (n) ITTCG HTTCGP ZYL
Time/Nfunc/Niter/Norm Time/Nfunc/Niter/Norm Time/Nfunc/Niter/Norm

x1(1) 8.30 × 10−3/7/1/0.00 × 100 2.89 × 10−3/7/1/0.00 × 100 3.77 × 10−3/90/18/9.93 × 10−7

x2(1) 7.84 × 10−4/4/1/0.00 × 100 1.11 × 10−4/4/1/0.00 × 100 5.27 × 10−4/25/8/1.84 × 10−7

x3(1) 1.53 × 10−3/78/16/5.89 × 10−7 1.56 × 10−3/84/17/4.60 × 10−7 4.51 × 10−3/261/62/6.28 × 10−7

x4(1) 1.16 × 10−3/53/11/3.86 × 10−7 1.44 × 10−3/69/15/2.46 × 10−7 1.84 × 10−3/100/20/5.05 × 10−7

x5(1) 1.93 × 10−3/69/14/6.42 × 10−7 8.06 × 10−4/38/8/6.62 × 10−7 6.76 × 10−3/288/68/8.66 × 10−7

x6(1) 1.49 × 10−3/53/11/3.94 × 10−7 1.52 × 10−3/69/15/3.14 × 10−7 2.03 × 10−3/100/20/5.09 × 10−7

x7(1) 1.35 × 10−3/53/11/3.44 × 10−7 1.78 × 10−3/69/15/1.28 × 10−7 2.96 × 10−3/100/20/5.60 × 10−7

x8(1) 1.28 × 10−3/53/11/8.69 × 10−7 2.57 × 10−3/108/21/9.53 × 10−7 1.95 × 10−3/100/20/4.68 × 10−7

x1(5) 1.35 × 10−3/7/1/0.00 × 100 8.77 × 10−4/7/1/0.00 × 100 1.23 × 10−2/90/18/8.21 × 10−7

x2(5) 5.94 × 10−4/4/1/0.00 × 100 5.96 × 10−4/4/1/0.00 × 100 4.38 × 10−3/25/8/1.84 × 10−7

x3(5) 6.18 × 10−4/4/1/0.00 × 100 4.95 × 10−4/4/1/0.00 × 100 3.91 × 10−3/25/8/2.00 × 10−7

x4(5) 5.79 × 10−3/44/9/3.64 × 10−7 8.06 × 10−3/69/15/2.23 × 10−7 1.18 × 10−2/105/21/4.48 × 10−7

x5(5) 8.99 × 10−3/69/14/6.60 × 10−7 5.43 × 10−3/38/8/6.39 × 10−7 3.46 × 10−2/288/68/8.67 × 10−7

x6(5) 5.24 × 10−3/44/9/3.72 × 10−7 8.65 × 10−3/69/15/4.01 × 10−7 1.04 × 10−2/105/21/4.49 × 10−7

x7(5) 5.48 × 10−3/44/9/3.98 × 10−7 7.85 × 10−3/69/15/3.15 × 10−7 1.16 × 10−2/105/21/4.60 × 10−7

x8(5) 6.42 × 10−3/53/11/5.88 × 10−7 8.85 × 10−3/69/15/9.92 × 10−9 1.16 × 10−2/105/21/4.40 × 10−7

x1(10) 1.28 × 10−3/7/1/0.00 × 100 1.25 × 10−3/7/1/0.00 × 100 1.50 × 10−2/90/18/8.80 × 10−7

x2(10) 8.37 × 10−4/4/1/0.00 × 100 7.26 × 10−4/4/1/0.00 × 100 5.07 × 10−3/25/8/1.84 × 10−7

x3(10) 7.53 × 10−4/4/1/0.00 × 100 7.21 × 10−4/4/1/0.00 × 100 5.80 × 10−3/25/8/2.00 × 10−7

x4(10) 8.52 × 10−3/44/9/1.54 × 10−7 1.28 × 10−2/69/15/3.77 × 10−7 1.82 × 10−2/105/21/6.34 × 10−7

x5(10) 1.33 × 10−2/69/14/6.62 × 10−7 6.92 × 10−3/38/8/6.36 × 10−7 5.57 × 10−2/288/68/8.67 × 10−7

x6(10) 9.67 × 10−3/44/9/1.58 × 10−7 1.39 × 10−2/69/15/5.06 × 10−7 1.91 × 10−2/105/21/6.34 × 10−7

x7(10) 9.01 × 10−3/44/9/1.69 × 10−7 1.37 × 10−2/69/15/4.45 × 10−7 1.92 × 10−2/105/21/6.42 × 10−7

x8(10) 1.15 × 10−2/53/11/2.05 × 10−8 1.39 × 10−2/69/15/2.94 × 10−8 1.83 × 10−2/105/21/6.17 × 10−7

x1(50) 5.84 × 10−3/7/1/0.00 × 100 3.71 × 10−3/7/1/0.00 × 100 5.84 × 10−2/95/19/5.74 × 10−7

x2(50) 2.75 × 10−3/4/1/0.00 × 100 2.56 × 10−3/4/1/0.00 × 100 1.56 × 10−2/25/8/1.84 × 10−7
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Table 1. Cont.

Init (n) ITTCG HTTCGP ZYL
Time/Nfunc/Niter/Norm Time/Nfunc/Niter/Norm Time/Nfunc/Niter/Norm

x3(50) 2.46 × 10−3/4/1/0.00 × 100 2.31 × 10−3/4/1/0.00 × 100 1.60 × 10−2/25/8/2.00 × 10−7

x4(50) 5.49 × 10−2/81/17/5.07 × 10−7 4.94 × 10−2/69/15/9.57 × 10−7 6.51 × 10−2/110/22/5.60 × 10−7

x5(50) 4.53 × 10−2/69/14/6.64 × 10−7 2.60 × 10−2/38/8/6.34 × 10−7 1.84 × 10−1/288/68/8.67 × 10−7

x6(50) 5.33 × 10−2/76/16/8.44 × 10−7 5.10 × 10−2/74/16/6.93 × 10−8 6.71 × 10−2/110/22/5.60 × 10−7

x7(50) 5.21 × 10−2/76/16/4.33 × 10−7 4.64 × 10−2/69/15/9.88 × 10−7 6.74 × 10−2/110/22/5.62 × 10−7

x8(50) 3.59 × 10−2/48/10/0.00 × 100 5.82 × 10−2/78/17/7.67 × 10−7 6.84 × 10−2/110/22/5.55 × 10−7

x1(100) 9.61 × 10−3/7/1/0.00 × 100 9.45 × 10−3/7/1/0.00 × 100 1.29 × 10−1/95/19/7.76 × 10−7

x2(100) 6.76 × 10−3/4/1/0.00 × 100 5.55 × 10−3/4/1/0.00 × 100 3.12 × 10−2/25/8/1.84 × 10−7

x3(100) 5.52 × 10−3/4/1/0.00 × 100 5.36 × 10−3/4/1/0.00 × 100 3.02 × 10−2/25/8/2.00 × 10−7

x4(100) 7.97 × 10−2/52/11/0.00 × 100 1.12 × 10−1/74/16/6.18 × 10−8 1.42 × 10−1/110/22/7.92 × 10−7

x5(100) 9.69 × 10−2/69/14/6.64 × 10−7 5.44 × 10−2/38/8/6.33 × 10−7 3.61 × 10−1/288/68/8.67 × 10−7

x6(100) 7.86 × 10−2/52/11/0.00 × 100 1.10 × 10−1/74/16/8.59 × 10−8 1.40 × 10−1/110/22/7.92 × 10−7

x7(100) 8.00 × 10−2/52/11/0.00 × 100 1.15 × 10−1/74/16/7.44 × 10−8 1.82 × 10−1/110/22/7.94 × 10−7

x8(100) 1.02 × 10−1/62/13/5.59 × 10−7 1.25 × 10−1/78/17/9.11 × 10−7 1.43 × 10−1/110/22/7.88 × 10−7

Table 2. Numerical results for Problem 2.

Init(n) ITTCG HTTCGP ZYL
Time/Nfunc/Niter/Norm Time/Nfunc/Niter/Norm Time/Nfunc/Niter/Norm

x1(1) 3.05 × 10−3/5/1/0.00 × 100 1.26 × 10−4/5/1/0.00 × 100 6.58 × 10−4/36/11/1.82 × 10−7

x2(1) 9.14 × 10−5/4/1/0.00 × 100 1.24 × 10−4/4/1/0.00 × 100 4.13 × 10−4/25/8/1.84 × 10−7

x3(1) 4.95 × 10−4/22/8/9.13 × 10−7 4.36 × 10−4/23/8/1.61 × 10−7 1.46 × 10−3/94/31/5.23 × 10−7

x4(1) 1.06 × 10−3/47/15/2.08 × 10−7 1.23 × 10−3/59/19/9.26 × 10−7 2.11 × 10−3/117/38/7.52 × 10−7

x5(1) 5.70 × 10−4/24/8/6.49 × 10−8 5.69 × 10−4/28/9/6.46 × 10−8 1.43 × 10−3/81/26/9.56 × 10−7

x6(1) 9.49 × 10−4/40/13/5.57 × 10−7 7.91 × 10−4/38/13/8.06 × 10−9 2.14 × 10−3/121/39/4.72 × 10−7

x7(1) 1.06 × 10−3/47/15/2.08 × 10−7 1.15 × 10−3/59/19/9.26 × 10−7 2.06 × 10−3/117/38/7.52 × 10−7

x8(1) 1.03 × 10−3/39/14/1.88 × 10−7 9.06 × 10−4/40/13/4.75 × 10−7 1.42 × 10−3/76/24/8.46 × 10−7

x1(5) 5.79 × 10−4/5/1/0.00 × 100 4.40 × 10−4/5/1/0.00 × 100 4.36 × 10−3/36/11/4.07 × 10−7

x2(5) 3.91 × 10−4/4/1/0.00 × 100 4.16 × 10−4/4/1/0.00 × 100 2.82 × 10−3/25/8/1.84 × 10−7

x3(5) 5.10 × 10−4/4/1/0.00 × 100 4.63 × 10−4/4/1/0.00 × 100 3.11 × 10−3/25/8/2.00 × 10−7

x4(5) 6.11 × 10−3/45/15/3.16 × 10−7 6.60 × 10−3/55/18/1.08 × 10−12 1.27 × 10−2/126/41/8.02 × 10−7

x5(5) 2.69 × 10−3/24/8/9.08 × 10−8 2.99 × 10−3/28/9/8.18 × 10−8 8.06 × 10−3/81/26/9.57 × 10−7

x6(5) 4.58 × 10−3/44/14/5.94 × 10−7 4.47 × 10−3/43/15/6.72 × 10−8 1.00 × 10−2/106/34/9.43 × 10−7

x7(5) 4.87 × 10−3/45/15/3.16 × 10−7 6.44 × 10−3/55/18/1.08 × 10−12 1.11 × 10−2/126/41/8.02 × 10−7

x8(5) 6.10 × 10−3/50/17/7.67 × 10−8 4.00 × 10−3/38/13/7.39 × 10−7 1.15 × 10−2/123/40/6.51 × 10−7

x1(10) 6.70 × 10−4/5/1/0.00 × 100 6.54 × 10−4/5/1/0.00 × 100 4.92 × 10−3/36/11/5.75 × 10−7

x2(10) 5.04 × 10−4/4/1/0.00 × 100 5.16 × 10−4/4/1/0.00 × 100 3.03 × 10−3/25/8/1.84 × 10−7

x3(10) 5.41 × 10−4/4/1/0.00 × 100 6.07 × 10−4/4/1/0.00 × 100 3.99 × 10−3/25/8/2.00 × 10−7

x4(10) 9.40 × 10−3/52/16/7.66 × 10−7 8.07 × 10−3/56/18/5.41 × 10−10 1.80 × 10−2/129/42/6.00 × 10−7

x5(10) 4.74 × 10−3/24/8/9.43 × 10−8 4.19 × 10−3/28/9/8.42 × 10−8 1.18 × 10−2/81/26/9.57 × 10−7

x6(10) 8.57 × 10−3/51/16/8.19 × 10−7 8.58 × 10−3/58/19/2.93 × 10−7 1.59 × 10−2/112/36/4.86 × 10−7

x7(10) 1.06 × 10−2/52/16/7.66 × 10−7 9.62 × 10−3/56/18/5.41 × 10−10 1.94 × 10−2/129/42/6.00 × 10−7

x8(10) 1.30 × 10−2/50/17/5.50 × 10−7 9.49 × 10−3/58/19/1.09 × 10−7 2.12 × 10−2/120/39/8.17 × 10−7

x1(50) 3.13 × 10−3/5/1/0.00 × 100 1.94 × 10−3/5/1/0.00 × 100 2.00 × 10−2/39/12/2.06 × 10−7

x2(50) 1.69 × 10−3/4/1/0.00 × 100 1.39 × 10−3/4/1/0.00 × 100 1.03 × 10−2/25/8/1.84 × 10−7

x3(50) 1.71 × 10−3/4/1/0.00 × 100 1.64 × 10−3/4/1/0.00 × 100 1.12 × 10−2/25/8/2.00 × 10−7

x4(50) 3.51 × 10−2/60/19/4.83 × 10−7 3.23 × 10−2/57/18/4.68 × 10−14 6.65 × 10−2/129/42/9.70 × 10−7

x5(50) 1.48 × 10−2/24/8/9.72 × 10−8 1.68 × 10−2/28/9/8.62 × 10−8 4.04 × 10−2/81/26/9.57 × 10−7

x6(50) 3.64 × 10−2/54/18/1.53 × 10−7 2.29 × 10−2/39/14/3.40 × 10−7 5.72 × 10−2/117/38/5.84 × 10−7
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Table 2. Cont.

Init(n) ITTCG HTTCGP ZYL
Time/Nfunc/Niter/Norm Time/Nfunc/Niter/Norm Time/Nfunc/Niter/Norm

x7(50) 3.77 × 10−2/60/19/4.83 × 10−7 3.44 × 10−2/57/18/4.68 × 10−14 6.29 × 10−2/129/42/9.70 × 10−7

x8(50) 3.82 × 10−2/58/18/2.83 × 10−7 2.89 × 10−2/41/14/4.10 × 10−7 6.26 × 10−2/129/42/8.15 × 10−7

x1(100) 4.75 × 10−3/5/1/0.00 × 100 3.72 × 10−3/5/1/0.00 × 100 3.23 × 10−2/39/12/2.91 × 10−7

x2(100) 3.49 × 10−3/4/1/0.00 × 100 2.62 × 10−3/4/1/0.00 × 100 1.60 × 10−2/25/8/1.84 × 10−7

x3(100) 3.94 × 10−3/4/1/0.00 × 100 3.03 × 10−3/4/1/0.00 × 100 1.60 × 10−2/25/8/2.00 × 10−7

x4(100) 4.69 × 10−2/41/15/3.94 × 10−8 3.74 × 10−2/41/14/3.81 × 10−7 1.06 × 10−1/132/43/8.32 × 10−7

x5(100) 2.63 × 10−2/24/8/9.75 × 10−8 2.77 × 10−2/28/9/8.64 × 10−8 6.34 × 10−2/81/26/9.57 × 10−7

x6(100) 5.50 × 10−2/47/18/3.93 × 10−7 4.14 × 10−2/43/15/4.35 × 10−8 1.04 × 10−1/129/42/5.76 × 10−7

x7(100) 4.78 × 10−2/41/15/3.94 × 10−8 4.06 × 10−2/41/14/3.81 × 10−7 1.10 × 10−1/132/43/8.32 × 10−7

x8(100) 6.30 × 10−2/48/17/3.01 × 10−7 5.47 × 10−2/45/16/4.28 × 10−15 1.07 × 10−1/129/42/7.87 × 10−7

Table 3. Numerical results for Problem 3.

Init(n) ITTCG HTTCGP ZYL
Time/Nfunc/Niter/Norm Time/Nfunc/Niter/Norm Time/Nfunc/Niter/Norm

x1(1) 5.36 × 10−3/250/33/5.87 × 10−7 5.72 × 10−3/293/36/9.74 × 10−7 8.26 × 10−3/439/73/9.64 × 10−7

x2(1) 3.93 × 10−3/180/23/7.99 × 10−7 5.81 × 10−3/307/38/8.37 × 10−7 7.07 × 10−3/367/61/9.94 × 10−7

x3(1) 4.19 × 10−3/208/27/8.37 × 10−7 6.63 × 10−3/349/43/8.55 × 10−7 7.49 × 10−3/385/64/8.74 × 10−7

x4(1) 4.51 × 10−3/222/29/6.50 × 10−7 8.57 × 10−3/433/54/9.46 × 10−7 7.66 × 10−3/391/65/9.70 × 10−7

x5(1) 4.73 × 10−3/237/31/6.04 × 10−7 6.64 × 10−3/337/42/8.37 × 10−7 7.42 × 10−3/391/65/9.80 × 10−7

x6(1) 4.61 × 10−3/222/29/6.49 × 10−7 8.58 × 10−3/410/51/9.15 × 10−7 8.01 × 10−3/397/66/9.25 × 10−7

x7(1) 5.08 × 10−3/250/33/5.41 × 10−7 6.35 × 10−3/330/41/8.54 × 10−7 7.97 × 10−3/421/70/9.17 × 10−7

x8(1) 6.45 × 10−3/308/41/5.09 × 10−7 8.47 × 10−3/413/51/9.89 × 10−7 9.79 × 10−3/480/80/9.21 × 10−7

x1(5) 3.76 × 10−2/243/32/6.03 × 10−7 3.64 × 10−2/299/37/8.62 × 10−7 5.50 × 10−2/445/74/8.19 × 10−7

x2(5) 2.20 × 10−2/173/22/8.68 × 10−7 3.98 × 10−2/338/42/1.00 × 10−6 4.94 × 10−2/403/67/9.85 × 10−7

x3(5) 2.43 × 10−2/201/26/8.32 × 10−7 3.75 × 10−2/319/39/9.75 × 10−7 4.98 × 10−2/415/69/9.21 × 10−7

x4(5) 2.67 × 10−2/229/30/8.15 × 10−7 4.77 × 10−2/418/52/3.03 × 10−7 5.21 × 10−2/421/70/7.23 × 10−7

x5(5) 2.62 × 10−2/216/28/5.92 × 10−7 3.86 × 10−2/316/39/7.17 × 10−7 5.17 × 10−2/415/69/8.21 × 10−7

x6(5) 2.92 × 10−2/229/30/8.14 × 10−7 5.12 × 10−2/417/52/9.34 × 10−7 5.52 × 10−2/415/69/8.50 × 10−7

x7(5) 3.48 × 10−2/271/36/7.63 × 10−7 7.09 × 10−2/560/70/9.12 × 10−7 5.42 × 10−2/439/73/7.95 × 10−7

x8(5) 4.21 × 10−2/309/41/5.34 × 10−7 5.09 × 10−2/413/51/5.52 × 10−7 6.69 × 10−2/522/87/9.37 × 10−7

x1(10) 4.56 × 10−2/236/31/6.73 × 10−7 6.37 × 10−2/338/42/3.92 × 10−7 8.78 × 10−2/451/75/9.13 × 10−7

x2(10) 3.39 × 10−2/187/24/9.18 × 10−7 6.63 × 10−2/338/42/9.20 × 10−7 7.80 × 10−2/415/69/9.61 × 10−7

x3(10) 3.83 × 10−2/208/27/9.16 × 10−7 6.19 × 10−2/335/42/6.78 × 10−7 7.91 × 10−2/427/71/9.89 × 10−7

x4(10) 4.54 × 10−2/236/31/7.88 × 10−7 6.21 × 10−2/359/45/4.72 × 10−7 6.89 × 10−2/397/66/6.98 × 10−7

x5(10) 4.12 × 10−2/223/29/5.94 × 10−7 5.37 × 10−2/302/37/5.30 × 10−7 7.13 × 10−2/409/68/9.04 × 10−7

x6(10) 4.33 × 10−2/236/31/7.88 × 10−7 6.24 × 10−2/369/46/3.53 × 10−7 6.95 × 10−2/397/66/7.00 × 10−7

x7(10) 5.05 × 10−2/264/35/8.21 × 10−7 9.77 × 10−2/568/71/5.46 × 10−7 7.02 × 10−2/397/66/9.17 × 10−7

x8(10) 5.65 × 10−2/309/41/7.30 × 10−7 6.72 × 10−2/387/48/8.03 × 10−7 8.77 × 10−2/486/81/7.25 × 10−7

x1(50) 1.75 × 10−1/236/31/7.21 × 10−7 2.01 × 10−1/292/36/6.60 × 10−7 3.00 × 10−1/427/71/9.67 × 10−7

x2(50) 1.31 × 10−1/180/23/9.41 × 10−7 2.50 × 10−1/350/44/9.18 × 10−7 2.97 × 10−1/427/71/9.94 × 10−7

x3(50) 1.44 × 10−1/209/27/4.76 × 10−7 2.80 × 10−1/412/52/8.85 × 10−7 3.02 × 10−1/415/69/7.96 × 10−7

x4(50) 1.60 × 10−1/229/30/8.95 × 10−7 2.65 × 10−1/394/50/8.74 × 10−7 2.90 × 10−1/416/69/9.13 × 10−7

x5(50) 1.62 × 10−1/237/31/6.63 × 10−7 1.95 × 10−1/288/36/9.73 × 10−7 3.12 × 10−1/439/73/8.44 × 10−7

x6(50) 1.52 × 10−1/229/30/8.95 × 10−7 2.64 × 10−1/387/49/8.40 × 10−7 2.90 × 10−1/416/69/9.17 × 10−7

x7(50) 1.80 × 10−1/264/35/8.82 × 10−7 2.63 × 10−1/381/48/7.31 × 10−7 2.79 × 10−1/410/68/9.11 × 10−7

x8(50) 2.24 × 10−1/324/43/6.03 × 10−7 3.16 × 10−1/451/56/7.36 × 10−7 3.41 × 10−1/481/80/9.57 × 10−7
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Table 3. Cont.

Init(n) ITTCG HTTCGP ZYL
Time/Nfunc/Niter/Norm Time/Nfunc/Niter/Norm Time/Nfunc/Niter/Norm

x1(100) 4.19 × 10−1/222/29/8.67 × 10−7 5.07 × 10−1/261/32/7.78 × 10−7 8.75 × 10−1/433/72/8.25 × 10−7

x2(100) 3.24 × 10−1/180/23/9.00 × 10−7 5.38 × 10−1/265/33/7.48 × 10−7 8.16 × 10−1/415/69/8.73 × 10−7

x3(100) 3.84 × 10−1/216/28/4.70 × 10−7 6.33 × 10−1/320/40/4.66 × 10−7 7.70 × 10−1/415/69/9.78 × 10−7

x4(100) 4.77 × 10−1/243/32/9.84 × 10−7 5.49 × 10−1/378/48/8.73 × 10−7 7.55 × 10−1/416/69/7.31 × 10−7

x5(100) 4.32 × 10−1/230/30/7.85 × 10−7 6.88 × 10−1/344/43/9.43 × 10−7 9.14 × 10−1/451/75/9.94 × 10−7

x6(100) 4.56 × 10−1/243/32/9.84 × 10−7 6.98 × 10−1/347/44/9.61 × 10−7 8.11 × 10−1/416/69/7.31 × 10−7

x7(100) 4.67 × 10−1/244/32/5.07 × 10−7 6.55 × 10−1/317/40/6.90 × 10−7 8.56 × 10−1/422/70/9.36 × 10−7

x8(100) 6.35 × 10−1/345/46/8.22 × 10−7 9.66 × 10−1/475/59/7.73 × 10−7 9.91 × 10−1/493/82/8.45 × 10−7

Table 4. Numerical results for Problem 4.

Init(n) ITTCG HTTCGP ZYL
Time/Nfunc/Niter/Norm Time/Nfunc/Niter/Norm Time/Nfunc/Niter/Norm

x1(1) 2.21 × 10−3/89/20/2.89 × 10−7 2.83 × 10−3/119/27/8.70 × 10−8 2.78 × 10−3/118/38/8.33 × 10−7

x2(1) 1.57 × 10−3/51/19/1.61 × 10−7 1.56 × 10−3/56/21/9.69 × 10−7 2.28 × 10−3/96/33/6.03 × 10−7

x3(1) 1.23 × 10−3/39/15/8.04 × 10−7 1.53 × 10−3/54/18/3.13 × 10−7 2.20 × 10−3/93/32/7.55 × 10−7

x4(1) 4.91 × 10−3/223/39/4.76 × 10−7 4.59 × 10−3/237/35/7.19 × 10−7 2.80 × 10−3/123/39/8.83 × 10−7

x5(1) 9.47 × 10−4/29/12/4.29 × 10−7 1.40 × 10−3/52/19/6.57 × 10−8 2.37 × 10−3/102/35/8.01 × 10−7

x6(1) 4.47 × 10−3/212/36/8.45 × 10−7 5.37 × 10−3/279/43/1.69 × 10−7 2.77 × 10−3/123/39/8.74 × 10−7

x7(1) 1.12 × 10−3/37/14/1.06 × 10−7 1.41 × 10−3/53/19/8.14 × 10−7 2.05 × 10−3/87/30/7.34 × 10−7

x8(1) 6.41 × 10−3/328/44/6.49 × 10−7 6.04 × 10−3/320/44/7.16 × 10−7 4.16 × 10−3/207/50/6.30 × 10−7

x1(5) 2.23 × 10−2/231/36/1.93 × 10−7 1.77 × 10−2/216/33/5.67 × 10−7 1.50 × 10−2/132/42/7.97 × 10−7

x2(5) 5.03 × 10−3/39/16/7.13 × 10−7 6.34 × 10−3/50/18/4.49 × 10−7 1.02 × 10−2/102/35/6.85 × 10−7

x3(5) 5.63 × 10−3/39/16/8.49 × 10−7 7.93 × 10−3/68/26/5.31 × 10−7 1.03 × 10−2/96/33/6.96 × 10−7

x4(5) 3.01 × 10−2/373/49/6.04 × 10−7 4.30 × 10−2/567/65/2.84 × 10−7 1.33 × 10−2/133/42/8.46 × 10−7

x5(5) 4.56 × 10−3/36/14/2.40 × 10−7 7.41 × 10−3/62/23/9.87 × 10−7 9.95 × 10−3/99/34/6.30 × 10−7

x6(5) 3.07 × 10−2/376/50/1.06 × 10−7 4.29 × 10−2/570/62/1.23 × 10−7 1.31 × 10−2/141/45/7.46 × 10−7

x7(5) 6.42 × 10−3/45/17/3.98 × 10−7 6.82 × 10−3/61/22/7.17 × 10−7 1.05 × 10−2/96/33/5.87 × 10−7

x8(5) 4.89 × 10−2/637/69/9.82 × 10−7 4.17 × 10−2/562/63/6.41 × 10−8 1.70 × 10−2/189/44/9.43 × 10−7

x1(10) 2.08 × 10−2/93/24/3.59 × 10−7 3.40 × 10−2/265/34/3.37 × 10−7 2.11 × 10−2/118/38/7.24 × 10−7

x2(10) 1.13 × 10−2/42/16/1.55 × 10−7 6.60 × 10−3/35/13/3.54 × 10−7 2.09 × 10−2/108/37/5.11 × 10−7

x3(10) 1.12 × 10−2/45/17/3.65 × 10−7 1.33 × 10−2/55/20/9.85 × 10−7 1.98 × 10−2/108/37/5.70 × 10−7

x4(10) 6.45 × 10−2/464/57/8.15 × 10−8 1.00 × 10−1/811/87/5.54 × 10−7 2.51 × 10−2/138/44/7.43 × 10−7

x5(10) 1.15 × 10−2/37/15/9.00 × 10−7 9.85 × 10−3/51/19/2.68 × 10−7 1.91 × 10−2/102/35/5.79 × 10−7

x6(10) 6.39 × 10−2/461/56/9.13 × 10−7 1.17 × 10−1/1002/101/2.35 × 10−7 2.36 × 10−2/138/44/9.78 × 10−7

x7(10) 1.23 × 10−2/43/17/4.03 × 10−7 1.32 × 10−2/53/21/7.96 × 10−7 2.08 × 10−2/109/37/8.60 × 10−7

x8(10) 8.19 × 10−2/633/66/5.97 × 10−7 1.11 × 10−1/1005/92/2.54 × 10−7 4.14 × 10−2/276/54/8.07 × 10−7

x1(50) 1.73 × 10−1/401/46/1.44 × 10−7 2.90 × 10−1/724/73/8.61 × 10−7 9.25 × 10−2/186/46/7.62 × 10−7

x2(50) 4.29 × 10−2/57/20/2.84 × 10−7 4.22 × 10−2/65/22/4.43 × 10−7 6.37 × 10−2/108/37/8.56 × 10−7

x3(50) 3.75 × 10−2/57/19/3.18 × 10−7 3.22 × 10−2/46/18/8.01 × 10−7 6.17 × 10−2/108/37/8.41 × 10−7

x4(50) 3.34 × 10−1/788/76/5.24 × 10−7 8.21 × 10−1/2118/166/6.17 × 10−7 8.29 × 10−2/139/43/9.48 × 10−7

x5(50) 3.79 × 10−2/45/17/2.58 × 10−7 5.17 × 10−2/70/24/4.35 × 10−7 6.62 × 10−2/108/37/8.69 × 10−7

x6(50) 3.40 × 10−1/805/78/9.22 × 10−7 6.01 × 10−1/1542/130/6.18 × 10−7 7.45 × 10−2/133/41/7.02 × 10−7

x7(50) 4.43 × 10−2/58/21/1.15 × 10−7 4.87 × 10−2/75/26/3.42 × 10−8 6.55 × 10−2/112/38/9.59 × 10−7

x8(50) 4.03 × 10−1/968/91/8.15 × 10−7 7.75 × 10−1/2002/154/3.01 × 10−7 1.63 × 10−1/371/61/9.71 × 10−7

x1(100) 3.19 × 10−1/422/51/5.34 × 10−8 6.89 × 10−1/943/93/3.29 × 10−7 2.17 × 10−1/267/58/9.06 × 10−7

x2(100) 5.56 × 10−2/42/16/6.16 × 10−7 8.42 × 10−2/75/25/3.72 × 10−7 1.19 × 10−1/118/40/4.98 × 10−7

x3(100) 5.52 × 10−2/42/16/6.54 × 10−8 1.17 × 10−1/103/33/7.65 × 10−7 1.17 × 10−1/118/40/5.08 × 10−7

x4(100) 5.75 × 10−1/771/77/2.88 × 10−7 1.34 × 100/1932/156/7.33 × 10−7 1.24 × 10−1/133/39/7.09 × 10−7

x5(100) 8.06 × 10−2/66/23/7.79 × 10−8 7.31 × 10−2/58/20/1.15 × 10−7 1.17 × 10−1/118/40/5.29 × 10−7

x6(100) 5.64 × 10−1/774/80/6.88 × 10−7 1.28 × 100/1883/150/7.31 × 10−8 1.25 × 10−1/133/39/7.55 × 10−7

x7(100) 8.95 × 10−2/76/24/2.56 × 10−7 8.48 × 10−2/71/25/6.40 × 10−7 1.10 × 10−1/109/37/9.37 × 10−7

x8(100) 8.61 × 10−1/1225/105/7.94 × 10−7 1.92 × 100/2868/204/7.36 × 10−7 2.37 × 10−1/320/49/9.81 × 10−7
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Table 5. Numerical results for Problem 5.

Init(n) ITTCG HTTCGP ZYL
Time/Nfunc/Niter/Norm Time/Nfunc/Niter/Norm Time/Nfunc/Niter/Norm

x1(1) 3.96 × 10−4/12/5/5.48 × 10−8 5.80 × 10−4/24/10/3.72 × 10−7 5.63 × 10−4/31/10/6.08 × 10−7

x2(1) 2.51 × 10−4/10/4/1.65 × 10−8 3.69 × 10−4/18/7/5.57 × 10−8 3.90 × 10−4/25/8/3.43 × 10−7

x3(1) 5.97 × 10−4/20/7/8.62 × 10−7 8.13 × 10−4/33/11/8.36 × 10−7 1.04 × 10−3/52/17/5.45 × 10−7

x4(1) 1.06 × 10−3/42/16/6.01 × 10−7 8.85 × 10−4/44/14/1.09 × 10−7 1.57 × 10−3/88/29/8.47 × 10−7

x5(1) 6.14 × 10−4/26/9/6.17 × 10−8 1.25 × 10−3/61/19/6.07 × 10−7 1.39 × 10−3/79/26/9.94 × 10−7

x6(1) 1.04 × 10−3/40/16/4.36 × 10−7 7.10 × 10−4/35/11/4.13 × 10−7 1.69 × 10−3/88/29/9.04 × 10−7

x7(1) 1.08 × 10−3/42/16/6.01 × 10−7 9.01 × 10−4/44/14/1.09 × 10−7 1.56 × 10−3/88/29/8.47 × 10−7

x8(1) 7.76 × 10−4/32/11/5.11 × 10−7 1.13 × 10−3/56/17/3.91 × 10−7 1.45 × 10−3/79/26/7.43 × 10−7

x1(5) 2.17 × 10−3/12/5/1.39 × 10−7 3.04 × 10−3/24/10/8.33 × 10−7 3.11 × 10−3/34/11/2.17 × 10−7

x2(5) 1.18 × 10−3/10/4/1.65 × 10−8 1.87 × 10−3/18/7/5.57 × 10−8 2.36 × 10−3/25/8/3.43 × 10−7

x3(5) 9.94 × 10−4/8/3/2.00 × 10−7 1.70 × 10−3/14/5/7.19 × 10−8 2.78 × 10−3/25/8/4.88 × 10−7

x4(5) 8.32 × 10−3/37/13/5.39 × 10−7 5.83 × 10−3/47/16/5.29 × 10−7 9.94 × 10−3/91/30/9.14 × 10−7

x5(5) 3.12 × 10−3/26/9/6.15 × 10−8 3.98 × 10−3/39/14/5.16 × 10−7 7.61 × 10−3/79/26/9.95 × 10−7

x6(5) 4.18 × 10−3/37/13/5.25 × 10−7 5.90 × 10−3/56/18/6.52 × 10−7 8.74 × 10−3/91/30/9.26 × 10−7

x7(5) 4.40 × 10−3/37/13/5.39 × 10−7 4.87 × 10−3/47/16/5.29 × 10−7 1.31 × 10−2/91/30/9.14 × 10−7

x8(5) 5.04 × 10−3/37/13/5.20 × 10−7 4.02 × 10−3/40/13/3.87 × 10−8 8.56 × 10−3/91/30/7.14 × 10−7

x1(10) 2.64 × 10−3/12/5/2.15 × 10−7 5.83 × 10−3/27/11/4.48 × 10−8 4.55 × 10−3/34/11/3.08 × 10−7

x2(10) 1.68 × 10−3/10/4/1.65 × 10−8 2.94 × 10−3/18/7/5.57 × 10−8 3.62 × 10−3/25/8/3.43 × 10−7

x3(10) 1.27 × 10−3/8/3/2.00 × 10−7 2.51 × 10−3/14/5/7.19 × 10−8 3.17 × 10−3/25/8/4.88 × 10−7

x4(10) 7.97 × 10−3/40/14/2.70 × 10−7 8.08 × 10−3/49/17/7.74 × 10−7 1.51 × 10−2/97/32/4.85 × 10−7

x5(10) 4.56 × 10−3/26/9/6.15 × 10−8 9.67 × 10−3/42/16/1.01 × 10−7 1.26 × 10−2/79/26/9.95 × 10−7

x6(10) 1.00 × 10−2/40/14/2.69 × 10−7 7.89 × 10−3/45/16/4.43 × 10−7 1.55 × 10−2/97/32/4.88 × 10−7

x7(10) 8.85 × 10−3/40/14/2.70 × 10−7 9.63 × 10−3/49/17/7.74 × 10−7 1.61 × 10−2/97/32/4.85 × 10−7

x8(10) 7.50 × 10−3/37/13/9.78 × 10−7 1.09 × 10−2/59/20/4.61 × 10−8 1.50 × 10−2/91/30/9.04 × 10−7

x1(50) 8.56 × 10−3/12/5/6.49 × 10−7 2.03 × 10−2/27/11/1.00 × 10−7 1.79 × 10−2/34/11/6.88 × 10−7

x2(50) 5.63 × 10−3/10/4/1.65 × 10−8 9.17 × 10−3/18/7/5.57 × 10−8 9.69 × 10−3/25/8/3.43 × 10−7

x3(50) 4.62 × 10−3/8/3/2.00 × 10−7 6.75 × 10−3/14/5/7.19 × 10−8 9.82 × 10−3/25/8/4.88 × 10−7

x4(50) 2.99 × 10−2/40/14/3.65 × 10−7 3.13 × 10−2/47/17/4.20 × 10−8 5.09 × 10−2/100/33/8.67 × 10−7

x5(50) 1.85 × 10−2/26/9/6.15 × 10−8 2.43 × 10−2/39/13/7.07 × 10−8 4.00 × 10−2/79/26/9.95 × 10−7

x6(50) 3.18 × 10−2/40/14/3.65 × 10−7 2.60 × 10−2/42/14/8.30 × 10−8 5.30 × 10−2/100/33/8.68 × 10−7

x7(50) 2.55 × 10−2/40/14/3.65 × 10−7 3.04 × 10−2/47/17/4.20 × 10−8 5.10 × 10−2/100/33/8.67 × 10−7

x8(50) 2.91 × 10−2/40/14/3.61 × 10−7 3.75 × 10−2/63/20/7.11 × 10−8 4.94 × 10−2/97/32/9.80 × 10−7

x1(100) 1.97 × 10−2/14/6/1.09 × 10−8 3.18 × 10−2/27/11/1.42 × 10−7 3.09 × 10−2/34/11/9.72 × 10−7

x2(100) 9.06 × 10−3/10/4/1.65 × 10−8 1.52 × 10−2/18/7/5.57 × 10−8 1.74 × 10−2/25/8/3.43 × 10−7

x3(100) 7.64 × 10−3/8/3/2.00 × 10−7 1.07 × 10−2/14/5/7.19 × 10−8 1.55 × 10−2/25/8/4.88 × 10−7

x4(100) 4.34 × 10−2/40/14/7.05 × 10−7 4.65 × 10−2/45/16/3.74 × 10−7 8.37 × 10−2/103/34/5.77 × 10−7

x5(100) 2.98 × 10−2/26/9/6.15 × 10−8 4.12 × 10−2/41/14/4.50 × 10−7 6.93 × 10−2/79/26/9.95 × 10−7

x6(100) 4.34 × 10−2/40/14/7.05 × 10−7 4.32 × 10−2/41/14/6.54 × 10−7 8.85 × 10−2/103/34/5.78 × 10−7

x7(100) 5.00 × 10−2/40/14/7.05 × 10−7 4.74 × 10−2/45/16/3.74 × 10−7 9.16 × 10−2/103/34/5.77 × 10−7

x8(100) 4.77 × 10−2/40/14/7.04 × 10−7 6.10 × 10−2/54/19/6.43 × 10−7 8.39 × 10−2/103/34/5.47 × 10−7

Table 6. Numerical results for Problem 6.

Init(n) ITTCG HTTCGP ZYL
Time/Nfunc/Niter/Norm Time/Nfunc/Niter/Norm Time/Nfunc/Niter/Norm

x1(1) 2.71 × 10−4/6/1/0.00 × 100 2.30 × 10−4/6/1/0.00 × 100 1.25 × 10−3/57/9/6.00 × 10−7

x2(1) 1.63 × 10−4/9/1/0.00 × 100 1.48 × 10−4/9/1/0.00 × 100 6.92 × 10−4/43/7/1.85 × 10−7

x3(1) 1.63 × 10−3/96/12/3.75 × 10−15 2.41 × 10−3/151/19/2.45 × 10−7 2.70 × 10−3/174/28/9.86 × 10−7

x4(1) 2.26 × 10−3/114/14/5.42 × 10−7 3.11 × 10−3/163/20/0.00 × 100 4.31 × 10−3/219/35/5.14 × 10−7

x5(1) 1.66 × 10−3/81/11/7.63 × 10−7 2.88 × 10−3/152/19/3.07 × 10−8 3.36 × 10−3/182/29/4.94 × 10−7

x6(1) 2.33 × 10−3/115/15/0.00 × 100 3.59 × 10−3/200/24/0.00 × 100 4.57 × 10−3/237/38/2.96 × 10−7

x7(1) 2.25 × 10−3/114/14/5.42 × 10−7 3.02 × 10−3/163/20/0.00 × 100 4.16 × 10−3/219/35/5.14 × 10−7

x8(1) 2.19 × 10−3/95/12/1.03 × 10−7 3.90 × 10−3/185/23/2.29 × 10−7 4.09 × 10−3/186/30/5.18 × 10−7
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Table 6. Cont.

Init(n) ITTCG HTTCGP ZYL
Time/Nfunc/Niter/Norm Time/Nfunc/Niter/Norm Time/Nfunc/Niter/Norm

x1(5) 1.31 × 10−3/6/1/0.00 × 100 1.12 × 10−3/6/1/0.00 × 100 7.51 × 10−3/63/10/1.25 × 10−7

x2(5) 1.05 × 10−3/9/1/0.00 × 100 8.05 × 10−4/9/1/0.00 × 100 4.20 × 10−3/43/7/1.85 × 10−7

x3(5) 3.70 × 10−4/3/1/0.00 × 100 4.07 × 10−4/3/1/0.00 × 100 3.86 × 10−4/3/1/0.00 × 100

x4(5) 1.65 × 10−2/179/22/3.86 × 10−7 1.36 × 10−2/163/21/9.04 × 10−7 2.00 × 10−2/244/39/4.27 × 10−7

x5(5) 1.26 × 10−2/136/18/0.00 × 100 1.13 × 10−2/143/18/2.74 × 10−7 1.59 × 10−2/194/31/8.94 × 10−7

x6(5) 1.58 × 10−2/185/23/4.39 × 10−7 1.13 × 10−2/141/18/2.33 × 10−7 2.13 × 10−2/255/41/4.07 × 10−7

x7(5) 1.55 × 10−2/179/22/3.86 × 10−7 1.34 × 10−2/163/21/9.04 × 10−7 1.94 × 10−2/244/39/4.27 × 10−7

x8(5) 7.83 × 10−3/81/10/0.00 × 100 1.40 × 10−2/154/20/8.32 × 10−7 1.93 × 10−2/225/36/4.26 × 10−7

x1(10) 9.42 × 10−4/6/1/0.00 × 100 8.92 × 10−4/6/1/0.00 × 100 6.75 × 10−3/63/10/1.76 × 10−7

x2(10) 8.31 × 10−4/9/1/0.00 × 100 8.03 × 10−4/9/1/0.00 × 100 4.85 × 10−3/43/7/1.85 × 10−7

x3(10) 5.54 × 10−4/3/1/0.00 × 100 4.58 × 10−4/3/1/0.00 × 100 3.31 × 10−4/3/1/0.00 × 100

x4(10) 1.20 × 10−2/105/13/1.67 × 10−9 1.65 × 10−2/157/20/5.74 × 10−7 2.66 × 10−2/244/39/4.95 × 10−7

x5(10) 1.61 × 10−2/122/16/0.00 × 100 1.56 × 10−2/154/19/0.00 × 100 1.93 × 10−2/182/29/4.08 × 10−7

x6(10) 1.10 × 10−2/90/11/2.02 × 10−9 1.44 × 10−2/134/17/2.39 × 10−7 2.34 × 10−2/226/36/7.42 × 10−7

x7(10) 1.21 × 10−2/105/13/1.67 × 10−9 1.60 × 10−2/157/20/5.74 × 10−7 2.61 × 10−2/244/39/4.95 × 10−7

x8(10) 1.21 × 10−2/98/12/0.00 × 100 1.66 × 10−2/131/17/0.00 × 100 2.84 × 10−2/255/41/8.67 × 10−7

x1(50) 3.23 × 10−3/6/1/0.00 × 100 2.94 × 10−3/6/1/0.00 × 100 2.81 × 10−2/63/10/3.94 × 10−7

x2(50) 2.65 × 10−3/9/1/0.00 × 100 2.75 × 10−3/9/1/0.00 × 100 1.46 × 10−2/43/7/1.85 × 10−7

x3(50) 1.44 × 10−3/3/1/0.00 × 100 1.66 × 10−3/3/1/0.00 × 100 1.39 × 10−3/3/1/0.00 × 100

x4(50) 4.61 × 10−2/103/13/1.41 × 10−7 6.50 × 10−2/157/20/3.17 × 10−7 1.04 × 10−1/250/40/5.94 × 10−7

x5(50) 8.27 × 10−2/186/24/9.60 × 10−8 6.28 × 10−2/148/19/3.83 × 10−7 7.85 × 10−2/194/31/5.49 × 10−7

x6(50) 4.52 × 10−2/103/13/1.43 × 10−7 5.55 × 10−2/134/17/2.22 × 10−16 1.00 × 10−1/238/38/5.59 × 10−7

x7(50) 4.50 × 10−2/103/13/1.41 × 10−7 6.59 × 10−2/157/20/3.17 × 10−7 1.06 × 10−1/250/40/5.94 × 10−7

x8(50) 4.76 × 10−2/96/12/1.33 × 10−7 5.49 × 10−2/117/15/8.48 × 10−7 1.03 × 10−1/238/38/6.93 × 10−7

x1(100) 8.14 × 10−3/6/1/0.00 × 100 6.15 × 10−3/6/1/0.00 × 100 4.80 × 10−2/63/10/5.57 × 10−7

x2(100) 5.83 × 10−3/9/1/0.00 × 100 4.69 × 10−3/9/1/0.00 × 100 2.41 × 10−2/43/7/1.85 × 10−7

x3(100) 3.14 × 10−3/3/1/0.00 × 100 2.90 × 10−3/3/1/0.00 × 100 2.63 × 10−3/3/1/0.00 × 100

x4(100) 1.27 × 10−1/166/21/2.91 × 10−7 1.31 × 10−1/173/22/5.65 × 10−7 1.81 × 10−1/250/40/9.26 × 10−7

x5(100) 1.04 × 10−1/146/19/0.00 × 100 1.04 × 10−1/148/19/5.90 × 10−7 1.18 × 10−1/175/28/1.08 × 10−7

x6(100) 1.25 × 10−1/166/21/3.23 × 10−7 9.50 × 10−2/134/17/2.71 × 10−15 1.71 × 10−1/238/38/9.99 × 10−7

x7(100) 1.19 × 10−1/166/21/2.91 × 10−7 1.23 × 10−1/173/22/5.65 × 10−7 1.76 × 10−1/250/40/9.26 × 10−7

x8(100) 9.91 × 10−2/111/14/9.76 × 10−9 1.06 × 10−1/126/16/3.64 × 10−15 2.06 × 10−1/273/44/9.01 × 10−7

Table 7. Numerical results for Problem 7.

Init(n) ITTCG HTTCGP ZYL
Time/Nfunc/Niter/Norm Time/Nfunc/Niter/Norm Time/Nfunc/Niter/Norm

x1(1) 9.76 × 10−3/90/19/1.33 × 10−7 1.35 × 10−2/120/24/3.94 × 10−7 3.80 × 10−2/381/90/9.43 × 10−7

x2(1) 8.69 × 10−3/84/18/8.04 × 10−7 1.28 × 10−2/133/27/6.50 × 10−7 4.29 × 10−2/434/103/6.56 × 10−7

x3(1) 1.10 × 10−2/98/21/6.30 × 10−7 1.32 × 10−2/132/26/9.64 × 10−7 4.17 × 10−2/426/101/6.50 × 10−7

x4(1) 9.65 × 10−3/102/22/8.39 × 10−7 1.07 × 10−2/109/22/5.40 × 10−7 4.01 × 10−2/418/99/5.99 × 10−7

x5(1) 7.44 × 10−3/76/16/9.56 × 10−7 9.36 × 10−3/96/19/6.21 × 10−7 4.00 × 10−2/401/95/7.48 × 10−7

x6(1) 1.01 × 10−2/101/22/9.38 × 10−7 1.17 × 10−2/117/23/2.55 × 10−7 4.17 × 10−2/418/99/5.98 × 10−7

x7(1) 8.83 × 10−3/89/19/3.19 × 10−7 1.24 × 10−2/129/25/2.52 × 10−7 3.56 × 10−2/357/84/5.14 × 10−7

x8(1) 8.88 × 10−3/91/20/2.65 × 10−7 1.71 × 10−2/167/33/4.74 × 10−7 4.15 × 10−2/417/99/9.79 × 10−7

x1(5) 4.95 × 10−2/94/20/5.32 × 10−7 5.72 × 10−2/111/22/5.98 × 10−7 1.94 × 10−1/369/87/5.58 × 10−7

x2(5) 5.82 × 10−2/113/25/1.86 × 10−7 6.32 × 10−2/129/27/5.34 × 10−7 2.32 × 10−1/458/109/6.29 × 10−7

x3(5) 5.97 × 10−2/112/25/8.38 × 10−7 6.88 × 10−2/137/29/4.35 × 10−7 2.40 × 10−1/458/109/6.29 × 10−7

x4(5) 5.91 × 10−2/111/24/2.77 × 10−7 4.96 × 10−2/94/19/7.52 × 10−7 2.31 × 10−1/446/106/5.82 × 10−7

x5(5) 5.37 × 10−2/103/23/1.59 × 10−7 8.01 × 10−2/166/31/5.77 × 10−7 2.40 × 10−1/458/109/6.07 × 10−7

x6(5) 6.43 × 10−2/122/27/6.59 × 10−7 4.75 × 10−2/94/19/6.85 × 10−7 2.28 × 10−1/446/106/5.81 × 10−7

x7(5) 5.11 × 10−2/96/21/3.29 × 10−7 5.95 × 10−2/115/23/8.71 × 10−7 2.29 × 10−1/454/108/6.09 × 10−7

x8(5) 5.29 × 10−2/103/22/5.52 × 10−7 5.48 × 10−2/111/23/7.31 × 10−7 2.06 × 10−1/405/96/7.94 × 10−7
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Table 7. Cont.

Init(n) ITTCG HTTCGP ZYL
Time/Nfunc/Niter/Norm Time/Nfunc/Niter/Norm Time/Nfunc/Niter/Norm

x1(10) 1.14 × 10−1/118/26/7.92 × 10−7 1.24 × 10−1/132/27/4.22 × 10−7 4.45 × 10−1/474/113/7.04 × 10−7

x2(10) 1.04 × 10−1/108/24/5.78 × 10−7 1.06 × 10−1/112/23/4.30 × 10−7 3.78 × 10−1/395/94/6.07 × 10−7

x3(10) 1.04 × 10−1/109/24/5.61 × 10−7 9.55 × 10−2/101/21/4.62 × 10−7 3.72 × 10−1/395/94/6.07 × 10−7

x4(10) 1.15 × 10−1/123/27/4.37 × 10−7 1.13 × 10−1/122/25/6.26 × 10−7 4.19 × 10−1/446/106/7.30 × 10−7

x5(10) 1.29 × 10−1/135/30/4.75 × 10−7 1.22 × 10−1/132/27/1.79 × 10−7 3.48 × 10−1/370/88/9.63 × 10−7

x6(10) 1.24 × 10−1/130/29/5.79 × 10−7 1.19 × 10−1/129/27/7.05 × 10−7 4.25 × 10−1/446/106/7.30 × 10−7

x7(10) 1.07 × 10−1/112/25/2.50 × 10−7 1.20 × 10−1/127/27/4.10 × 10−7 4.28 × 10−1/444/106/9.47 × 10−7

x8(10) 1.05 × 10−1/109/24/3.00 × 10−7 1.24 × 10−1/133/27/9.07 × 10−7 4.46 × 10−1/466/111/6.03 × 10−7

x1(50) 6.01 × 10−1/118/26/8.42 × 10−7 5.36 × 10−1/106/22/8.97 × 10−7 2.45 × 100/468/112/7.75 × 10−7

x2(50) 5.22 × 10−1/102/23/3.61 × 10−7 6.67 × 10−1/130/27/2.68 × 10−7 2.42 × 100/464/111/8.61 × 10−7

x3(50) 5.24 × 10−1/102/23/3.92 × 10−7 6.79 × 10−1/133/27/9.03 × 10−7 2.39 × 100/464/111/8.57 × 10−7

x4(50) 5.01 × 10−1/98/22/6.48 × 10−7 7.64 × 10−1/150/31/2.72 × 10−7 2.35 × 100/452/108/8.91 × 10−7

x5(50) 5.68 × 10−1/111/25/4.20 × 10−7 7.90 × 10−1/155/32/7.32 × 10−7 2.41 × 100/464/111/8.34 × 10−7

x6(50) 5.04 × 10−1/98/22/6.48 × 10−7 7.17 × 10−1/141/29/5.02 × 10−7 2.34 × 100/452/108/8.91 × 10−7

x7(50) 6.01 × 10−1/115/26/4.87 × 10−7 6.63 × 10−1/128/27/9.58 × 10−7 2.40 × 100/460/110/9.28 × 10−7

x8(50) 5.11 × 10−1/98/22/7.88 × 10−7 6.79 × 10−1/131/28/5.48 × 10−7 2.30 × 100/432/103/7.76 × 10−7

x1(100) 9.81 × 10−1/97/22/8.53 × 10−7 1.08 × 100/112/23/5.11 × 10−7 4.53 × 100/456/109/9.55 × 10−7

x2(100) 1.19 × 100/118/27/8.34 × 10−7 1.33 × 100/129/26/4.22 × 10−7 4.91 × 100/497/119/6.39 × 10−7

x3(100) 1.25 × 100/127/29/2.67 × 10−7 1.38 × 100/143/30/9.45 × 10−7 4.77 × 100/481/115/6.26 × 10−7

x4(100) 1.06 × 100/107/24/3.28 × 10−7 1.17 × 100/122/25/7.53 × 10−7 4.52 × 100/456/109/8.83 × 10−7

x5(100) 9.93 × 10−1/101/23/6.39 × 10−7 1.14 × 100/119/24/4.93 × 10−7 4.92 × 100/493/118/6.21 × 10−7

x6(100) 1.06 × 100/107/24/3.29 × 10−7 1.25 × 100/128/26/3.82 × 10−8 4.56 × 100/456/109/8.83 × 10−7

x7(100) 9.94 × 10−1/98/22/9.49 × 10−8 1.25 × 100/128/26/3.81 × 10−7 4.85 × 100/485/116/6.04 × 10−7

x8(100) 1.02 × 100/102/23/3.43 × 10−7 1.09 × 100/113/23/5.86 × 10−7 4.82 × 100/485/116/6.34 × 10−7

Table 8. Numerical results for Problem 8.

Init(n) ITTCG HTTCGP ZYL
Time/Nfunc/Niter/Norm Time/Nfunc/Niter/Norm Time/Nfunc/Niter/Norm

x1(1) 4.04 × 10−3/44/14/6.03 × 10−7 1.97 × 10−3/26/8/4.64 × 10−8 2.25 × 10−3/29/7/5.31 × 10−7

x2(1) 1.03 × 10−2/159/23/6.90 × 10−7 1.31 × 10−2/205/28/9.90 × 10−7 1.02 × 10−2/160/28/5.49 × 10−7

x3(1) 9.97 × 10−3/164/24/8.26 × 10−7 1.26 × 10−2/215/30/7.18 × 10−7 9.64 × 10−3/159/28/5.57 × 10−7

x4(1) 7.67 × 10−3/128/19/9.28 × 10−7 8.69 × 10−3/140/20/5.23 × 10−7 9.64 × 10−3/159/30/4.97 × 10−7

x5(1) 9.63 × 10−3/159/23/7.20 × 10−7 1.32 × 10−2/213/30/6.66 × 10−7 9.20 × 10−3/155/27/4.53 × 10−7

x6(1) 7.92 × 10−3/128/19/9.28 × 10−7 8.39 × 10−3/144/20/5.73 × 10−7 1.03 × 10−2/159/30/4.88 × 10−7

x7(1) 7.57 × 10−3/128/19/7.06 × 10−7 9.54 × 10−3/155/22/5.75 × 10−7 9.33 × 10−3/155/29/9.48 × 10−7

x8(1) 1.15 × 10−2/187/27/5.73 × 10−7 1.32 × 10−2/221/30/5.32 × 10−7 7.11 × 10−3/120/20/9.25 × 10−7

x1(5) 2.10 × 10−2/47/15/3.88 × 10−7 1.00 × 10−2/26/8/1.04 × 10−7 1.21 × 10−2/33/8/6.70 × 10−8

x2(5) 5.09 × 10−2/165/24/7.30 × 10−7 6.85 × 10−2/230/32/9.16 × 10−7 4.22 × 10−2/144/25/8.58 × 10−7

x3(5) 5.39 × 10−2/177/26/9.37 × 10−7 6.29 × 10−2/213/30/9.98 × 10−7 4.46 × 10−2/148/26/4.02 × 10−7

x4(5) 4.28 × 10−2/133/20/9.06 × 10−7 4.55 × 10−2/147/21/7.30 × 10−7 4.27 × 10−2/137/26/4.54 × 10−7

x5(5) 5.68 × 10−2/183/27/7.21 × 10−7 6.18 × 10−2/197/27/5.19 × 10−7 4.93 × 10−2/155/27/7.52 × 10−7

x6(5) 4.07 × 10−2/133/20/9.04 × 10−7 5.31 × 10−2/175/25/7.40 × 10−7 4.29 × 10−2/137/26/4.73 × 10−7

x7(5) 4.01 × 10−2/133/20/5.99 × 10−7 5.52 × 10−2/182/26/5.60 × 10−7 4.15 × 10−2/135/26/9.26 × 10−7

x8(5) 6.15 × 10−2/206/30/5.21 × 10−7 7.30 × 10−2/239/33/2.79 × 10−7 4.02 × 10−2/126/21/5.03 × 10−7

x1(10) 3.57 × 10−2/47/15/5.49 × 10−7 1.98 × 10−2/26/8/1.47 × 10−7 2.13 × 10−2/33/8/9.47 × 10−8

x2(10) 9.53 × 10−2/165/24/8.88 × 10−7 1.21 × 10−1/215/30/5.80 × 10−7 8.14 × 10−2/144/25/6.81 × 10−7

x3(10) 9.90 × 10−2/172/25/5.14 × 10−7 1.15 × 10−1/202/28/3.43 × 10−7 8.20 × 10−2/136/24/8.97 × 10−7

x4(10) 7.54 × 10−2/133/20/4.98 × 10−7 7.96 × 10−2/144/21/3.17 × 10−7 8.38 × 10−2/141/27/4.63 × 10−7

x5(10) 9.17 × 10−2/165/24/9.01 × 10−7 1.07 × 10−1/193/27/7.56 × 10−7 8.60 × 10−2/150/26/5.92 × 10−7

x6(10) 7.73 × 10−2/133/20/4.98 × 10−7 1.12 × 10−1/206/29/3.42 × 10−7 8.49 × 10−2/141/27/4.68 × 10−7

x7(10) 7.29 × 10−2/126/19/8.04 × 10−7 1.17 × 10−1/204/29/4.02 × 10−7 8.39 × 10−2/140/27/8.91 × 10−7

x8(10) 1.13 × 10−1/200/29/7.31 × 10−7 1.32 × 10−1/222/30/3.73 × 10−7 7.25 × 10−2/126/21/6.66 × 10−7
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Table 8. Cont.

Init(n) ITTCG HTTCGP ZYL
Time/Nfunc/Niter/Norm Time/Nfunc/Niter/Norm Time/Nfunc/Niter/Norm

x1(50) 1.83 × 10−1/50/16/3.53 × 10−7 9.11 × 10−2/26/8/3.28 × 10−7 1.12 × 10−1/33/8/2.12 × 10−7

x2(50) 5.21 × 10−1/171/25/8.48 × 10−7 5.41 × 10−1/177/25/7.99 × 10−7 4.51 × 10−1/143/25/5.60 × 10−7

x3(50) 5.16 × 10−1/171/25/8.84 × 10−7 7.61 × 10−1/251/35/5.12 × 10−7 4.13 × 10−1/131/23/8.83 × 10−7

x4(50) 4.21 × 10−1/138/21/5.04 × 10−7 4.63 × 10−1/150/22/8.39 × 10−7 4.68 × 10−1/150/29/9.54 × 10−7

x5(50) 5.25 × 10−1/171/25/8.61 × 10−7 7.06 × 10−1/231/33/7.37 × 10−7 4.45 × 10−1/143/25/4.76 × 10−7

x6(50) 4.20 × 10−1/138/21/5.04 × 10−7 4.90 × 10−1/164/24/3.00 × 10−7 4.77 × 10−1/150/29/9.67 × 10−7

x7(50) 4.06 × 10−1/131/20/6.58 × 10−7 4.65 × 10−1/152/22/7.21 × 10−7 5.08 × 10−1/156/30/4.61 × 10−7

x8(50) 5.92 × 10−1/195/28/8.22 × 10−7 8.47 × 10−1/281/39/2.74 × 10−7 4.11 × 10−1/132/22/6.17 × 10−7

x1(100) 3.58 × 10−1/50/16/4.99 × 10−7 1.80 × 10−1/26/8/4.64 × 10−7 2.12 × 10−1/33/8/3.00 × 10−7

x2(100) 1.05 × 100/177/26/5.90 × 10−7 1.42 × 100/244/34/4.53 × 10−7 8.12 × 10−1/137/24/6.64 × 10−7

x3(100) 1.04 × 100/178/26/5.25 × 10−7 9.33 × 10−1/158/22/9.92 × 10−7 7.95 × 10−1/131/23/7.50 × 10−7

x4(100) 7.89 × 10−1/131/20/5.53 × 10−7 1.33 × 100/226/33/7.44 × 10−7 9.26 × 10−1/149/29/6.70 × 10−7

x5(100) 1.06 × 100/177/26/5.21 × 10−7 1.47 × 100/242/34/5.15 × 10−7 8.52 × 10−1/137/24/7.67 × 10−7

x6(100) 7.95 × 10−1/131/20/5.53 × 10−7 1.26 × 100/206/30/2.16 × 10−7 9.38 × 10−1/149/29/6.70 × 10−7

x7(100) 7.34 × 10−1/124/19/8.94 × 10−7 8.96 × 10−1/151/22/7.80 × 10−7 9.80 × 10−1/158/31/6.50 × 10−7

x8(100) 1.20 × 100/202/29/5.27 × 10−7 1.35 × 100/231/32/9.96 × 10−7 7.90 × 10−1/132/22/9.92 × 10−7

Figure 1. Performance profiles for time.
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Figure 2. Performance profiles for Nfunc.

Figure 3. Performance profiles for Niter.
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5. Applications in Image Denoising

Image denoising, a well-known inverse problem in the field of compressive sensing,
poses significant challenges due to various sources of image noise. This noise can originate
from faulty pixels in camera sensors, errors in hardware storage locations, or transmission
through noisy channels. Some pixels in the image are contaminated by Gaussian noise,
known as additive white Gaussian noise (AWGN), or impulse noise, known as salt-and-
pepper noise. Our primary focus is on images affected by salt-and-pepper noise. This
type of noise is particularly challenging because it can obscure important image details
and edges, which are critical for various image processing applications such as medical
imaging, remote sensing, and object recognition. In the works [30,31], a robust two-phase
scheme was proposed to detect and remove salt-and-pepper noise. The first stage involves
using an adaptive median filter to identify noisy pixels. The adaptive median filter is
effective because it can handle varying noise densities and preserve image edges better than
standard median filters. Once the noisy pixels have been detected, the second stage employs
variational methods to restore the image. Variational methods are advantageous because
they formulate image restoration as an optimization problem, balancing between data
fidelity and the smoothness of the image. To enhance readability and comprehensiveness,
we now provide an in-depth and concise explanation of this method.

Given an original image x with dimensions m × n, let xi,j represent the grayscale
level at the pixel location (i, j) ∈ A = {1, 2, . . . , m} × {1, 2, . . . , n}. To facilitate image
processing and analysis, we often consider the neighborhood of each pixel. Let Vi,j denote
the neighborhood of (i, j), defined as Vi,j = {(i, j − 1), (i, j + 1), (i − 1, j), (i + 1, j)}. This
represents the four direct neighbors of the pixel at (i, j): left, right, up, and down. A
common type of noise is salt-and-pepper noise, which randomly alters the pixel values to
either the minimum or maximum grayscale level, creating a ”salt-and-pepper“ appearance.
When the image x is corrupted by salt-and-pepper noise, the observed noisy image is
presented by y. The grayscale level at pixel location (i, j) in the noisy image y is given by
the following probabilistic model:

yi,j =

⎧⎨⎩
xi,j, with probability 1 − r,
smin, with probability p,
smax with probability q,

where [smin, smax] is the range of xi,j, and r = q + p represents the overall noise level. To
obtain the denoised image u∗, we employ a comprehensive two-phase scheme. In the first
stage, we apply an adaptive median filter to the noisy image y. This process results in an
intermediate image, denoted as ỹ. Based on the differences between the noisy image y and
the filtered image ỹ, we define the noise candidate set as follows:

N = {(i, j) ∈ A : ỹi,j �= yi,j and yi,j = smin or smax}.

In the second stage, we proceed with the recovery of the noisy pixels identified in the set N .
For each pixel (i, j) ∈ N , if it is not contaminated by noise, we retain its original value, i.e.,
u∗

i,j = yi,j. For noisy pixels yi,j, (i, j) ∈ N , we need to perform recovery. We set u∗
m,n = ym,n

for (m, n) ∈ Vi,j \ N , ensuring that neighboring non-noisy pixels are preserved. For the
pixels (m, n) ∈ Vi,j ∩N , which are in the neighborhood and are also candidates for noise,
we must also recover their values. To restore the image, we aim to minimize the following
function:

min
u

E(u) = ∑
(i,j)∈N

⎧⎨⎩ ∑
(m,n)∈Vi,j\N

2φα(ui,j − ym,n) + ∑
(m,n)∈Vi,j∩N

φα(ui,j − um,n)

⎫⎬⎭,

where φα is an even edge-preserving potential function with parameter α. We know
from [11] that if φα is convex, then ∇E(u) is monotone.
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We utilized the well-known grayscale test images: lighthouse (512 × 512), peppers
(256 × 256), boat (512 × 512), Kiel (512 × 512), fruits (256 × 256), brain (256 × 256),
clown (512 × 512), couple (512 × 512), trucks (512 × 512), baboon (256 × 256), Barbara
(512 × 512), and cameraman (256 × 256). Each image was affected by 30% salt-and-
pepper noise, and the experiments were repeated 10 times with different noise samples.
The detailed numerical results are presented in Table 9, where Niter, Time, PSNR, and
SSIM represent the number of average iterations, the average CPU time in seconds, the
average peak signal-to-noise ratio, and the average structural similarity index, respectively.
Additionally, we display the noisy images with 30% salt-and-pepper noise and the images
restored using the ITTCG, HTTCGP, and ZYL algorithms (see Figures 4 and 5). From the
results in Table 9, and Figures 4 and 5, we can draw the following conclusions: (i) All images
affected by 30% salt-and-pepper noise were successfully recovered by the ITTCG, HTTCGP,
and ZYL algorithms. (ii) With a similar average structural similarity index, Algorithm
ITTCG generally required less CPU time, fewer iterations, and achieved a lower peak
signal-to-noise-ratio than the HTTCGP and ZYL algorithms, indicating that Algorithm
ITTCG was efficient and competitive in image denoising.

Table 9. Efficiency comparison for different algorithms.

Image ITTCG HTTCGP ZYL

Niter/Time/PSNR/SSIM Niter/Time/PSNR/SSIM Niter/Time/PSNR/SSIM

lighthouse 28.2/5.73/30.85/0.97 50.5/11.51/31.32/0.97 58.7/14.24/31.12/0.97
peppers 19.4/1.18/33.24/0.96 51.5/3.19/33.77/0.96 29.4/1.94/33.37/0.96
boat 14.4/3.19/33.96/0.98 48.0/11.00/34.46/0.98 24.4/5.98/34.08/0.98
kiel 25.5/5.25/27.81/0.97 49.0/10.93/27.94/0.97 47.5/11.37/27.88/0.97
fruits 21.3/1.33/30.01/0.94 69.3/4.34/30.25/0.95 27.1/1.80/30.01/0.94
brain 14.2/0.90/31.07/0.87 23.9/1.51/31.13/0.87 18.7/1.28/31.10/0.87
clown 14.1/3.15/36.62/0.99 42.4/9.68/37.17/0.99 24.9/6.02/36.80/0.99
couple 14.4/3.15/34.26/0.99 36.1/8.38/34.60/0.99 24.2/5.90/34.33/0.99
trucks 12.1/2.77/34.07/0.98 25.0/5.89/34.13/0.98 18.4/4.66/34.08/0.98
baboon 32.9/1.72/24.68/ 0.87 35.8/1.85/24.67/0.87 72.1/4.47/24.68/0.87
barbara 15.6/3.31/29.03/0.96 46.1/10.39/29.07/0.96 27.2/6.47/29.04/0.96
Cameraman 19.0/1.13/29.95/0.96 37.6/2.33/30.14/0.96 38.9/2.54/30.13/0.96

Figure 4. Cont.
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Figure 4. The noise images for lighthouse, peppers, boat, Kiel, fruits, and brain with 30% salt
and pepper noise (first column) and the images recovered by Algorithms ITTCG (second column),
HTTCGP (third column), and ZYL (forth column).

Figure 5. Cont.
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Figure 5. The noise images for clown, couple, trucks, baboon, Barbara, and cameraman with 30% salt
and pepper noise (first column) and the images recovered by Algorithms ITTCG (second column),
HTTCGP (third column), and ZYL (forth column).

6. Conclusions

In this paper, we proposed a projection-based improved three-term conjugate gradient
algorithm for solving constrained nonlinear monotone equations. Its search direction
automatically satisfies the sufficient descent and trust-region properties. The global conver-
gence of the proposed algorithm is established under the assumption that the mapping is
continuous and monotonic. A notable theoretical advantage of the proposed algorithm is
that it does not require Lipschitz continuity of the mapping, unlike traditional algorithms
for similar problems. Numerical results on benchmark problems demonstrated the ef-
fectiveness and competitiveness of the proposed algorithm. Furthermore, the proposed
algorithm could successfully recover noise images.

Author Contributions: Conceptualization, D.L. and S.W.; Formal analysis, Y.L.; Funding acquisition,
Y.L. and S.W.; Methodology, D.L.; Resources, Y.L.; Software, D.L.; Validation, D.L., Y.L. and S.W.;
Writing—original draft, D.L.; Writing—review and editing, Y.L. and S.W. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation in China (grant
number 11661009), the Natural Science Foundation in Guangxi Province, PR China (grant number

106



Mathematics 2024, 12, 2556

2024GXNSFAA010478; 2020GXNSFAA159069), the Special projects in key areas of ordinary univer-
sities in Guangdong Province (grant number 2023ZDZX4069), and the Research Team Project of
Guangzhou Huashang University (grant number 2021HSKT01).

Data Availability Statement: The original contributions presented in the study are included in the
article, further inquiries can be directed to the corresponding author.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Garcke, H.; Hüttl, P.; Knopf, P. Shape and topology optimization involving the eigenvalues of an elastic structure: A multi-phase-
field approach. Adv. Nonlinear Anal. 2021, 11, 159–197. [CrossRef]

2. Garcke, H.; Knopf, P.; Yayla, S. Long-time dynamics of the Cahn–Hilliard equation with kinetic rate dependent dynamic boundary
conditions. Nonlinear Anal. 2022, 215, 112619. [CrossRef]

3. Liu, J.; Du, X. A gradient projection method for the sparse signal reconstruction in compressive sensing. Appl. Anal. 2018, 97,
2122–2131. [CrossRef]

4. Xiao, Y.; Zhu, H. A conjugate gradient method to solve convex constrained monotone equations with applications in compressive
sensing. J. Math. Anal. Appl. 2013, 405, 310–319. [CrossRef]

5. Dirkse, S.; Ferris, M. MCPLIB: A collection of nonlinear mixed complementarity problems. Optim. Methods Softw. 1995, 5, 319–345.
[CrossRef]

6. Wood, A.; Wollenberg, B. Power Generation, Operation, and Control; Wiley: New York, NY, USA, 1996.
7. Li, D.; Wang, S.; Li, Y.; Wu, J. A convergence analysis of hybrid gradient projection algorithm for constrained nonlinear equations

with applications in compressed sensing. Numer. Algorithms 2024, 95, 1325–1345. [CrossRef]
8. Li, D.; Wu, J.; Li, Y.; Wang, S. A modified spectral gradient projection-based algorithm for large-scale constrained nonlinear

equations with applications in compressive sensing. J. Comput. Appl. Math. 2023, 424, 115006. [CrossRef]
9. Liu, J.; Duan, Y. Two spectral gradient projection methods for constrained equations and their linear convergence rate. J. Inequal.

Appl. 2015, 2015, 8. [CrossRef]
10. Sulaiman, I.M.; Awwal, A.M.; Malik, M. A derivative-free mzprp projection method for convex constrained nonlinear equations

and its application in compressive sensing. Mathematics 2022, 10, 2884. [CrossRef]
11. Li, D.; Wang, S.; Li, Y.; Wu, J. A projection-based hybrid PRP-DY type conjugate gradient algorithm for constrained nonlinear

equations with applications. Appl. Numer. Math. 2024, 195, 105–125. [CrossRef]
12. Yin, J.; Jian, J.; Jiang, X. A generalized hybrid CGPM-based algorithm for solving large-scale convex constrained equations with

applications to image restoration. J. Comput. Appl. Math. 2021, 391, 113423. [CrossRef]
13. Liu, P.; Jian, J.; Jiang, X. A new conjugate gradient projection method for convex constrained nonlinear equations. Complexity

2020, 2020, 8323865. [CrossRef]
14. Yuan, G.; Li, T.; Hu, W. A conjugate gradient algorithm for large-scale nonlinear equations and image restoration problems. Appl.

Numer. Math. 2020, 147, 129–141. [CrossRef]
15. Ali E.; Mahdi S. Adaptive hybrid mixed two-point step size gradient algorithm for solving non-linear systems. Mathematics 2023,

11, 2102. [CrossRef]
16. Kumam, P.; Abubakar, A.B.; Malik, M. A hybrid HS-LS conjugate gradient algorithm for unconstrained optimization with

applications in motion control and image recovery. J. Comput. Appl. Math. 2023, 433, 115304. [CrossRef]
17. Ullah, N.; Shah, A.; Sabi’u, J. A one-parameter memoryless DFP algorithm for solving system of monotone nonlinear equations

with application in image processing. Mathematics 2023, 11, 1221. [CrossRef]
18. Yin, J.; Jian, J.; Jiang, X. A hybrid three-term conjugate gradient projection method for constrained nonlinear monotone equations

with applications. Numer. Algorithms 2021, 88, 389–418. [CrossRef]
19. Gao, P.; He, C. An efficient three-term conjugate gradient method for nonlinear monotone equations with convex constraints.

Calcolo 2018, 55, 53. [CrossRef]
20. Yuan, G.; Zhang, M. A three-terms Polak–Ribière–Polyak conjugate gradient algorithm for large-scale nonlinear equations. J.

Comput. Appl. Math. 2015, 286, 186–195. [CrossRef]
21. Jiang, X.; Liao, W.; Yin, J. A new family of hybrid three-term conjugate gradient methods with applications in image restoration.

Numer. Algorithms 2022, 91, 161–191. [CrossRef]
22. Liu, Y.; Zhu, Z.; Zhang, B. Two sufficient descent three-term conjugate gradient methods for unconstrained optimization problems

with applications in compressive sensing. J. Appl. Math. Comput. 2022, 1–30. [CrossRef]
23. Kim, H.; Wang, C.; Byun, H. Variable three-term conjugate gradient method for training artificial neural networks. Neural

Networks 2023, 159, 125–136. [CrossRef]
24. Li, M. A modified Hestense-Stiefel conjugate gradient method close to the memoryless BFGS quasi-Newton method. Optim.

Methods Softw. 2018, 33, 336–353. [CrossRef]
25. Li, M. A three-term polak-ribière-polyak conjugate gradient method close to the memoryless BFGS quasi-Newton mthod. J. Ind.

Manag. Optim. 2017, 13, 1–16.

107



Mathematics 2024, 12, 2556

26. Li, M. A family of three-term nonlinear conjugate gradient methods close to the memoryless BFGS method. Optim. Lett. 2018, 12,
1911–1927. [CrossRef]

27. Ding, Y.; Xiao, Y., Li, J. A class of conjugate gradient methods for convex constrained monotone equations. Optimization 2017, 66,
2309–2328. [CrossRef]

28. Zheng, L.; Yang, L.; Liang, Y. A conjugate gradient projection method for solving equations with convex constraints. J. Comput.
Appl. Math. 2020, 375, 112781. [CrossRef]

29. Dolan, E.; Moré, J.; Benchmarking optimization software with performance profiles. Math. Program. 2002, 91, 201–213. [CrossRef]
30. Chan, R.; Ho, C.; Nikolova, M. Salt-and-pepper noise removal by median-type noise detectors and detail-preserving regularization.

IEEE Trans. Image Process. 2005, 14, 1479–1485. [CrossRef]
31. Cai, J.; Chan, R.; Fiore, D. Minimization of a detail-preserving regularization functional for impulse noise removal. J. Math.

Imaging Vis. 2007, 29, 79–91. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

108



mathematics

Article

Identification of Time-Wise Thermal Diffusivity, Advection
Velocity on the Free-Boundary Inverse Coefficient Problem

M. S. Hussein 1, Taysir E. Dyhoum 2,3,*, S. O. Hussein 4,* and Mohammed Qassim 5

1 Department of Mathematics, College of Science, University of Baghdad, Baghdad 10071, Iraq;
mmmsh@sc.uobaghdad.edu.iq

2 Department of Computing and Mathematics, Faculty of Science and Engineering,
Manchester Metropolitan University, Manchester M15 6BX, UK

3 Department of Mathematics, Misurata University, Misurata P.O. Box 2478, Libya
4 Department of Mathematics, College of Science, University of Sulaymaniyah, Sulaymaniyah 46001, Iraq
5 Department of Energy, College of Engineering Al-Musayab, University of Babylon, Babylon 51002, Iraq;

mq63582@gmail.com
* Correspondence: t.dyhoum@mmu.ac.uk (T.E.D.); shilan.husen@univsul.edu.iq (S.O.H.)

Abstract: This paper is concerned with finding solutions to free-boundary inverse coefficient prob-
lems. Mathematically, we handle a one-dimensional non-homogeneous heat equation subject to initial
and boundary conditions as well as non-localized integral observations of zeroth and first-order heat
momentum. The direct problem is solved for the temperature distribution and the non-localized
integral measurements using the Crank–Nicolson finite difference method. The inverse problem is
solved by simultaneously finding the temperature distribution, the time-dependent free-boundary
function indicating the location of the moving interface, and the time-wise thermal diffusivity or
advection velocities. We reformulate the inverse problem as a non-linear optimization problem and
use the lsqnonlin non-linear least-square solver from the MATLAB optimization toolbox. Through
examples and discussions, we determine the optimal values of the regulation parameters to en-
sure accurate, convergent, and stable reconstructions. The direct problem is well-posed, and the
Crank–Nicolson method provides accurate solutions with relative errors below 0.006% when the
discretization elements are M = N = 80. The accuracy of the forward solutions helps to obtain
sensible solutions for the inverse problem. Although the inverse problem is ill-posed, we determine
the optimal regularization parameter values to obtain satisfactory solutions. We also investigate
the existence of inverse solutions to the considered problems and verify their uniqueness based on
established definitions and theorems.

Keywords: parabolic heat equation; finite-difference method (FDM); Crank–Nicolson method; inverse
coefficient identification problem; optimization tool; MATLAB; free-boundary problem

MSC: 65K05; 65K10; 65R30; 65R32; 65Y15; 65N12

1. Introduction

Partial differential equations (PDEs) subject to various non-local initial and boundary
conditions are common expressions of mathematical models that arise when solving real-
world problems. These real-world applications emerge in several scientific and engineering
disciplines and fields, including geology, hydrodynamics, biological fluid dynamics, vibra-
tion materials, heat transfer, control theory, and thermoelastic problems [1–7]. Recent work
on flow, heat, and thermal conductivity considers essential physical aspects, including
Thompson and Troian slip effects on ternary hybrid nanofluid flow across a porous plate
with a chemical reaction [8].

Due to the difficulty of obtaining analytical solutions, researchers employ various
mathematical, statistical, and computer vision techniques to generate numerical approxi-
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mated values to determine PDE systems’ direct and inverse solutions. The sought solutions
are represented by various physical quantities and medium properties, such as potential
and damping parameters [9], the force source function [4], constant voltage and values of
contact impedance [10], and reaction coefficients [5]. Such quantities appear as unknown
time- and space-dependent coefficients or functions in the model, turning the problem into
inverse coefficient problems (ICPs). Many empirical and theoretical studies focused on
adapting and applying numerical techniques to solve ICPs. These include implicit finite dif-
ference methods [11,12], lattice-free finite difference methods [13], Fourier regularization to
solve one-dimensional non-local coefficient heat problems [14], the collocation method [15],
and iterative boundary element methods [16,17].

In this work, we consider solving ICPs with free-boundary (non-local) conditions.
These conditions can mathematically represent phase-changing processes such as the
freezing of water or the ground, solidifying of metals, melting of ice, forming of crystals,
evaporation of chemicals, and so on, in which the heat associated with the phase change
is either generated or absorbed [18–20]. Finding the solutions means determining the
domain’s temperature distribution, the location of the movable boundaries and dynamic
interface, and the unknown functions of time-wise thermal diffusivity or time- and space-
dependent diffusion. This process poses a significant computational challenge, requiring
numerical strategies to accurately estimate free boundaries and complex energetic interfac-
ing. Because these inverse problems are ill-posed, we ensure that the solutions exist and are
unique (locally) by aligning the considered cases with previous theoretical studies [21–23].
To investigate the inverse problem with non-localized conditions, we structure the model as
a non-homogeneous one-dimensional heat equation subject to a set of initial and boundary
conditions plus over-determined conditions of the zeroth and first-order heat momentum.

In this study, we apply the Crank–Nicolson (CN) finite difference method to solve the
free-boundary (non-local) problem. We then utilize Tikhonov regularization techniques to
stabilize the inverse problem and sort out the non-linearity issue by using the MATLAB
R2023a optimization toolbox lsqnonlin. We find the time-dependent free-boundary func-
tion, which indicates the location of the moving interface, the temperature distribution
at the boundaries, and the time-wise thermal diffusivity or advection velocities simulta-
neously. There are many alternative techniques to solve similar problems. For example,
Martín-Vaquero and Sajavičius [24] used the two-level finite difference method (FDM) to
solve one-dimensional parabolic equations subject to initial conditions represented in non-
local discrete integrals and other homogeneous boundary conditions. A minimal surface
equation, a two-dimensional nonlinear elliptic equation subject to additional boundary
non-local integral conditions, has been solved iteratively using a system of difference
equation approximations [2]. A novel iteration scheme based on the domain decomposition
method is applied to determine the time-dependent coefficients in heat and Volterra integral
equations, as presented in [7,25]. Recently, Huntul and Lesnic [26,27] used multilevel finite
difference approximations to retrieve unknown time-dependent intensity and convection
coefficients in free-boundary two-dimensional heat problems. We have previously used
this numerical approach to identify the temperature distribution and other time-dependent
parameters, such as the intensity of reaction, perfusion, and radioactive coefficients, based
on over-specified conditions of Stefan-type, zeroth-order heat momentum [28,29].

This paper is organized as follows. In Section 2, the mathematical formulations of the
problem are set up, including ensuring that the existence and uniqueness requirements
are satisfied. The use of the CN technique to identify the problem’s forward solutions is
demonstrated in Section 3. We calculate the inverse solutions in Section 4; this section
covers the CN solver, Tikhonov’s regularization method, and the lsqnonlin MATLAB solver.
A couple of numerical examples (simulations) are discussed and investigated in Section 5.
Section 6 summarizes the findings and suggests further research.
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2. Mathematical Formulation

Consider the domain DT = {(x, τ) : 0 < x < s(τ), 0 < τ < T} for the following
mathematical problem. The primary goal of this research is to find the free boundary
s(τ), and the time-wise thermal diffusivity a(τ) or advection velocity b(x, τ). Thermal
diffusivity is the heat transfer property of a medium; the advection velocity refers to the
flow of molecules in the examined medium.

∂

∂τ
u(x, τ) = a(τ)

∂2

∂x2 u(x, τ) + b(x, τ)
∂

∂x
u(x, τ) + c(x, τ)u(x, τ) + f (x, τ), in DT , (1)

is subject to the initial and non-homogeneous Dirichlet boundary conditions

u(x, 0) = ϕ(x), 0 ≤ x ≤ s(τ), (2)

u(0, τ) = γ1(τ), u(s(τ), τ) = γ2(τ), 0 ≤ τ ≤ T, (3)

where {c(x, τ), f (x, τ), ϕ(x), γ1(τ), γ2(τ)} are given functions and {u(x, τ), s(τ), a(τ), b(x, τ)}
are unknown functions that will be numerically approximated.

If the functions {s(τ), a(τ), b(x, τ)} are given, Equations (1)–(3) form a direct well-
posed problem. If some or all of the function terms (s(τ), a(τ)) or (s(τ), b(x, τ)) of
Equations (1)–(3) are not defined, the above set of equations is insufficient to determine
them uniquely. Such a situation leads to handling a solution of the inverse ill-posed
problem [21]. In this case, we must impose additional data to retain uniqueness:

∫ s(τ)

0
x�u(x, τ)dx = γ3+�(τ), τ ∈ [0, T], � ∈ {0, 1}. (4)

Equation (4) represents the zeroth (� = 0) and first-order (� = 1) heat momentum.
To solve the inverse ill-posed problem in Equations (1)–(4), we first convert the free domain
function s(τ) to a fixed domain by setting η = x

s(τ) and τ = τ. This implies that u(x, τ) =

u(ηs(τ), τ) = v(η, τ) and QT = {(η, τ) : 0 < η < 1, 0 < τ < T}. Therefore, using the
previous transformation, Equations (1)–(4) can be rewritten in compact notation as

vτ =
a(τ)
s2(τ)

vηη +
b(ηs(τ), τ) + ηs′(τ)

s(τ)
vη + c(ηs(τ), τ)v + f (ηs(τ), τ), (η, τ) ∈ QT , (5)

v(η, 0) = ϕ(s(0)η), η ∈ [0, 1], (6)

v(0, τ) = γ1(τ), v(1, τ) = γ2(τ), τ ∈ [0, T], (7)

s�+1(τ)
∫ 1

0
v(η, τ)dη = γ3+�(τ), τ ∈ [0, T], � ∈ {0, 1}. (8)

Based on well-established theories on the uniqueness of this inverse problem [21–23],
we assume the problem in Equations (5)–(8) requires the existence and uniqueness criteria
as follows.

Definition 1. The solution of the inverse problem in Equations (5)–(8) can be:
Case 1. When b(ηs(τ), τ) is known, it is the triplet class (a(τ), s(τ), v(η, τ)) ∈ C[0, T] ×
C1[0, T]× C2,1(QT).
Case 2. If a(τ) is given and b(ηs(τ), τ) only depends on time (b(ηs(τ), τ) = b(τ)), it is the
triplet class (s(τ), b(τ), v(η, τ)) ∈ C1[0, T]×C[0, T]×C2,1(QT), where a(τ) > 0 and s(τ) > 0
for τ ∈ [0, T].

Theorem 1. Consider the case where b(ηs(τ), τ) is known (Case 1) and assume the input data for
the problem in Equations (5)–(8) satisfy the following three conditions:

1. γi ∈ C1[0, T], γi(τ) > 0, for i = 1, 4, γ′
4(τ) > 0, s(τ)ux(0, τ) − γ2(τ) + γ1(τ) > 0,

b(0, τ)γ1(τ) + γ′
3(τ) ≤ 0, for τ ∈ [0, T].

111



Mathematics 2024, 12, 2629

2. ϕ ∈ C2[0, s(0)], ϕ(x) > 0, ϕ′(x) > 0, for x ∈ [0, s(0)], where s0 = s(0) > 0 by the
solution of

∫ s0
0 h(0)ϕ(ηs(0))dη = γ3(0).

3. b, c, f ∈ C1,0([0, H1]× [0, T]), f (x, τ) ≥ 0, b(x, τ) ≥ 0, c(x, τ)− bx(x, τ) ≥ 0, for (x, τ) ∈

[0, H1]× [0, T] where, H1 = max γ3(τ)
τ∈[0,T]

(
min

(
min ϕ(x)

x∈[0,s0]

, min γ1(τ)
τ∈[0,T]

, min γ2(τ)
τ∈[0,T]

))−1

.

4. ϕ(0) = γ1(0), ϕ(s(0)) = γ2(0) and s2(0)
∫ 1

0 ηϕ(s(0)dη = γ4(0).

Then, there exists a unique solution for the inverse problem in Equations (5)–(8) where τ0 ∈ [0, T]
is defined as input data for this problem.

To solve the inverse problem in Equations (5)–(8) in Case 1, with given b(ηs(τ), τ),
we start by finding the initial values of the unknown quantities a(0) and s′(0). This step is
essential to find stable numerical reconstructions later. Then, we derive the derivative of
the integral equations of the over-determination condition in Equation (4) concerning time:

γ′
3+�(τ) = s�(τ)γ2(τ)s′(τ) +

∫ s(τ)

0
x�uτ(x, τ)dx. � ∈ {0, 1}. (9)

To obtain the second term on the right-hand side of Equation (9), we integrate the
one-dimensional parabolic governing Equation (1) over the interval [0, s(τ)] with respect
to space x. To get the second term on the right-hand side of Equation (9) when � = 1, we
multiply Equation (1) by x and integrate over the same period

∫ s(τ)

0
uτdx = a(τ)[ux(s(τ), τ)− ux(0, τ)] +

∫ s(τ)

0

[
b(x, τ)ux + c(x, τ)u + f (x, τ)

]
dx, (10)

multiplying by x

∫ s(τ)

0
xuτdx = a(τ)[s(τ)ux(s(τ), τ)− γ2(τ) + γ1(τ)]

+
∫ s(τ)

0
x
[

b(x, τ)ux + c(x, τ)u + f (x, τ)

]
dx. (11)

Finally, by substituting Equation (10) into (9) (� = 0), Equation (11) into (9) (� = 1),
and conducting some re-arrangements taking into account that s′(τ) and a(τ) are unknown
functions, we obtain

γ2(τ)s′(τ) + [ux(s(τ), τ)− ux(0, τ)]a(τ) = γ′
3(τ)− δ1(τ) := L3(τ),

s(τ)γ2(τ)s′(τ) + [s(τ)ux(s(τ), τ)− γ2(τ) + γ1(τ)]a(τ) = γ′
4(τ)− δ2(τ) := L4(τ).

The above equations can be written in matrix form as[
γ2(τ) ux(s(τ), τ)− ux(0, τ)

s(τ)γ2(τ) s(τ)ux(s(τ), τ)− γ2(τ) + γ1(τ)

][
s′(τ)
a(τ)

]
=

[
L3(τ)
L4(τ)

]
(12)

where

δ1(τ) =
∫ s(τ)

0

(
b(x, τ)ux + c(x, τ)u + f (x, τ)

)
dx,

δ2(τ) =
∫ s(τ)

0
x
(

b(x, τ)ux + c(x, τ)u + f (x, τ)

)
dx.

To obtain a unique solution of the above 2 × 2 system, the determinant must not
vanish in [0, T],
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Δ1(τ) =

∣∣∣∣ γ2(τ) ux(s(τ), τ)− ux(0, τ)
s(τ)γ2(τ) s(τ)ux(s(τ), τ)− γ2(τ) + γ1(τ)

∣∣∣∣
= γ2(τ)[s(τ)ux(s(τ), τ)− γ2 + γ1]− s(τ)γ2[ux(s(τ), τ)− ux(0, τ)]

= s(τ)γ2(τ)ux(s(τ), τ)− γ2
2(τ) + γ2(τ)γ1(τ)− s(τ)γ2(τ)ux(s(τ), τ) + s(τ)γ2(τ)ux(0, τ)

= −γ2
2(τ) + γ2(τ)γ1(τ) + s(τ)γ2(τ)γ2(τ)ux(0, τ).

Therefore,

s′(τ) =
L4(τ)ux(0, τ) + s(τ)L3(τ)ux(s(τ), τ)− L4(τ)ux(s(τ), τ) + L3(τ)γ1(τ)− L3(τ)γ2(τ)

Δ1(τ)
,

a(τ) =
γ2(τ)L4(τ)− γ2(τ)s(τ)L3(τ)

Δ1(τ)
,

and making τ = 0 in the last two expressions results in

s′(0) =
L4(0)ux(0, 0) + h(0)L3(0)ux(h0, 0)− L4(0)ux(h0, 0) + L3(0)γ1(0)− L3(0)γ2(0)

Δ1(0)
, (13)

a(0) =
γ2(0)L4(0)− γ2(0)h0L3(0)

Δ1(0)
. (14)

Theorem 2. Consider the case where a(τ) = 1, the function b(ηs(τ), τ) = b(τ) is unknown
(Case 2), and the following conditions are satisfied:

1. γi(τ) ∈ C1[0, 1], γi(τ) > 0, i = 1, 4 and f ∈ C([0, ∞) × [0, T]), f (x, τ) ≥ 0 for
x ∈ [0,+∞), τ ∈ [0, T]. Also, ϕ ∈ C2[0, s(0)], ϕ′(x) > 0 for x ∈ [0, h(0)].

2. The compatibility conditions are

ϕ(0) = γ1(0), ϕ(s(0)) = γ2(0),

γ′
1(0) =

1
s2(0)

ϕ′′(0) +
b(0)
s(0)

ϕ′(0) + c(0, 0)ϕ(0) + f (0, 0),

γ′
2(0) =

1
s2(0)

ϕ′′(s(0)) +
[

b(0)
s(0)

+
s′(0)
h(0)

]
ϕ′(h(0)) + c(s(0), 0)ϕ(s(0)) + f (s(0), 0).

Then, we can determine T1 ∈ (0, T] such that there exists a local solution to the inverse problem in
Equations (1)–(4) or (5)–(8) for (y, τ) ∈ QT1 .

Theorem 3. Assume the following conditions hold for the previous case:

1. f , c ∈ C1,0([0,+∞)× [0, T]),
2. ϕ(x) ≥ ϕ0 and f (x, τ) ≥ 0, for x ∈ ([0,+∞)× [0, T]),
3. γi(τ) > 0, i = 1, 4 for τ ∈ [0, T] and ϕ′(x) > 0 for x ∈ [0, h0].

Then, the problem in Equations (5)–(8) cannot have more than one solution in the domain QT1 .

It is necessary to calculate the values of s′(0) and b(0) in Case 2 to find the inverse
solution of Equations (5)–(8). We apply the same approach used for Case 1. We find the
equations corresponding to Equation (9) when � ∈ {0, 1} and substitute a(τ) = 1, b(x, τ) =
b(τ) into the equations corresponding to Equations (10) and (11), respectively. This yields
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∫ s(τ)

0
uτdx =

∫ s(τ)

0

[
uxx + c(x, τ)u + f (x, τ)

]
dx + b(τ)

∫ s(τ)

0
uxdx,

∫ s(τ)

0
xuτdx =

∫ s(τ)

0
x
[

uxx + c(x, τ)u + f (x, τ)

]
dx + b(τ)

∫ s(τ)

0
xuxdx.

Then, we apply integration by parts to calculate the exact values of the latest τ terms
in the previous equations, which leads to the following equations. In addition, we replace
them with Equation (9) (� ∈ {0, 1}):

γ2(τ)s′(τ) + [γ2(τ)− γ1(τ)]b(τ) = γ′
3(τ)−

∫ s(τ)

0
[uxx + c(x, τ)u + f (x, τ)]dx = L1(τ),

s(τ)γ2(τ)s′(τ) + [s(τ)γ2(τ)− γ3(τ)]b(τ) = γ′
4(τ)−

∫ s(τ)

0
x[uxx + c(x, τ)u + f (x, τ)]dx = L2(τ).

To join the previous differential equations, we express them in the following ma-
trix form: [

γ2(τ) γ2(τ)− γ1(τ)
γ2(τ)s(τ) s(τ)γ2(τ)− γ3(τ)

][
s′(τ)
b(τ)

]
=

[
L1(τ)
L2(τ)

]
,

where

s′(τ) =
(γ1(τ)− γ2(τ))L2(τ) + L1(τ)(s(τ)γ2(τ)− γ3(τ))

γ2(s(τ)γ1(τ)− γ3(τ))
τ ∈ [0, T],

b(τ) =
−s(τ)L1(τ) + L2(τ)

s(τ)γ1(τ)− γ3(τ)
τ ∈ [0, T],

and setting τ = 0 results in

s′(0) =
(γ1(0)− γ2(0))L2(0) + L1(0)(s(0)γ2(0)− γ3(0))

γ2(0)(s(0)γ1(0)− γ3(0))
, (15)

b(0) =
−s(0)L1(0) + L2(0)
s(0)γ1(0)− γ3(0)

. (16)

Equations (15) and (16) are both required for compatibility with Condition 2 of Theo-
rem 2 to prove the existence of the solutions to the problem in Equations (5)–(8).

3. Applied CN Method to Obtain the Direct Solutions to the Problem

In this section, we take into account the initial boundary value problem in Equa-
tions (5)–(7), where {a(τ), b(ηs(τ), τ), c(ηs(τ), τ), ϕ(ηs(0)), γi(τ)} with i = 1, 2 are known
functions that meet the existence and uniqueness conditions in Theorems 1–3. We seek to
compute the direct solution v(η, τ). Furthermore, we can figure out the numerical values
of Equation (8) (� ∈ {0, 1}) by employing the CN finite difference method. This method
is unconditionally stable, and the solutions have second-order accuracy in the time and
spatial dimensions.

To discretize the domain QT = (0, 1)× (0, T), we divide it into small M and N intervals
of equally spaced length Δη and Δτ, denoting the uniform space and time increments by
Δη = 1

M and Δτ = T
N , respectively. We refer to the solution at the node point (i, j) as

vi,j = v(ηi, τj), a(τj) = aj, b(ηi, τj) = bi,j, c(ηi, τj) = ci,j, and f (ηi, τj) = fi,j, where ηi = iΔη,
τj = jΔτ for i = 0, M, j = 0, N [4,30].

We rename the right-hand side of Equation (5) as Θ(τ, η, v, vη , vηη), i.e.,

Θ(τ, η, v, vη , vη) =
a(τ)
s2(τ)

vηη +

(
b(ηs(τ), τ) + s′(τ)η

s(τ)

)
vη + c(ηs(τ), τ)v + f (ηs(τ), τ), (η, τ) ∈ QT .
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By discretizing the previous equation using the FDM, we obtain

Θi,j =

(
a(τj)

s2(τj)

)
vi+1,j − 2vi,j + vi−1,j

Δη2 +

(
b(ηis(τj)) + s′(τj)yi

s(τj)

)
vi+1,j − vi−1,j

2Δη

+ ci,jvi,j + fi,j, i = 0, M, j = 0, N.

Benefiting from the fact that CN techniques are unconditionally stable and provide
convergence of the second order in time and space for such problems [12,31,32], we apply
them to Equations (5)–(7) to obtain

vi,j+1 − vi,j

Δτ
=

1
2
(Θi,j+1 + Θi,j), (17)

v(ηi, 0) = ϕ(ηis(0)), i = 0, M, (18)

v(0, τj) = γ1(τj), v(1, τj) = γ2(τj), j = 0, N. (19)

By substituting Θi,j and Θi,j+1 into Equation (17), we obtain the system of equations

− Ai,j+1vi−1,j+1 + [1 − Bi,j+1]vi,j+1 − Ci,j+1vi+1,j+1 =

Ai,jvi−1,j + [1 + Bi,j+1]vi,j + Ci,jvi+1,j +
Δτ

2
( fi,j + fi,j+1), (20)

with the matrices Ai,j =
Δτ

2Δη2
aj

s2
j
− Δτ

4Δη

bi,j+s′jηi
sj

, Bi,j =
Δτ
2 ci,j − Δτ

Δη2
aj

s2
j
, and Ci,j =

Δτ
2Δη2

aj

s2
j
+

Δτ
4Δη

bi,j+s′jηi
sj

.
There are three values on the right-hand side of Equation (20): vi−1,j, vi,j, and vi+1,j.

Conversely, the values on the left-hand side remain unknown.
For j = 0 (i.e, the initial time) and i = 1, M − 1, Equation (20) represents a linear

system of M − 1 equations with M − 1 unknown variables, namely v1,1, v2,1, . . . , vM−1,1.
The first time steps in terms of the initial values v0,0, v1,0, . . . , vn,0 and from the Dirichlet
boundaries v0,1 and vM,1 have specific values γ1(τ0) and γ2(τ0), respectively. We perform
a similar procedure for the following iteration time step (τj) with j = 1, N − 1; that is,
for each time step τj for j = 1, N − 1.

We rewrite Equation (20) in metric form as a (M − 1)× (M − 1) system of algebraic
linear equations (that can be solved by the Gaussian elimination method) as follows:

Avn+1 = Bvn + d, (21)

where vn+1 = (v1,j+1, v2,j+1, ...., vM−1,j+1)
t, vn = (v1,j, v2,j, ...., vM−1,j)

t, and A and B are
(M − 1)× (M − 1) matrices as follows:

A =

⎡⎢⎢⎢⎢⎢⎣
1 − B1,j+1 −C1,j+1 0 . . . · · · 0 0 0
−A2,j+1 1 − B2,j+1 −C2,j+1 . . . 0 0

...
...

...
0 0 0 . . . − AM−2,j+1 1 − BM−2,j+1 −CM−2,j+1
0 0 0 . . . 0 −AM−1,j+1 1 − BM−1,j+1

⎤⎥⎥⎥⎥⎥⎦

B =

⎡⎢⎢⎢⎢⎢⎣
1 + B1,j C1,j 0 . . . 0 0 0

A2,j 1 + B2,j C2,j . . . 0 0 0
...

...
...

0 0 0 . . . AM−2,j 1 + BM−2,j CM−2,j
0 0 0 . . . 0 AM−1,j 1 + BM−1,j

⎤⎥⎥⎥⎥⎥⎦
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d =

⎡⎢⎢⎢⎢⎢⎢⎣
A1,j+1v0,j+1 + A1,jv0,j +

Δτ
2 ( f1,j + f1,j+1)

Δτ
2 ( f2,j + f2,j+1)

...
Δτ
2 ( fM−2,j + fM−2,j+1)

CM−1,j+1vM,j+1 + CM−1,jvM,j +
Δτ
2 ( fM−1,j + fM−1,j+1)

⎤⎥⎥⎥⎥⎥⎥⎦.

The trapezium rule (numerical integration) is applied to discretize Equation (8)
(� ∈ {0, 1}) into different equations:

γ3(τj) =
s(τj)

2N

(
v0,j + vM,j + 2

M−1

∑
i=1

vi,j

)
, j = 1, N, (22)

γ4(τj) =
s2(τj)

2N

(
η0v0,j + ηMvM,j + 2

M−1

∑
i=1

ηivi,j

)
, j = 1, N. (23)

4. Numerical Approximations of the Inverse Problems

In this section, we find the approximated solutions of different quantities of the
inverse problem in Equations (1)–(4) in Case 1 to obtain {(u(x, τ), a(τ), s(τ))} when b(x, τ)
is explicitly is given. Then, we find the corresponding solution of the inverse problem in
Equations (1)–(4) in Case 2, where {(u(x, τ), b(τ), s(τ))} require identification when a(τ)
is given.

Handling these inverse problems means solving non-linear optimization problems that
minimize the gap between measured data and computed solutions. The minimization of
the objective function, subject to the straightforward physical lower-bound constraint s > 0,
can be achieved by using the lsqnonlin non-linear least-square solver from the MATLAB
optimization toolbox, which applies the trust region reflective algorithm (TRR) [33,34].
The lsqnonlin solver aims to determine the minimum sum of squares by starting from initial
guesses. This toolbox routine does not require a supplement of the gradient of the objective
function. It uses the TRR algorithm [33,35,36], so it effectively relies on the interior-reflective
Newton method. Each iteration results in a large system of linear equations, which we
solve by applying the preconditioned conjugate gradient method [37,38].

As we mentioned earlier, Case 1 concerns finding the thermal diffusivity a(τ), the free-
boundary condition s(τ) > 0 of one-dimensional heat in Equation (1), and the temperature
distribution u(x, τ)/v(η, τ). Equations (14) and (13) are used to calculate a(0) and s′(0),
respectively, when the initial time is τ = 0. Given the ill-posed nature of the problem,
Tikhonov regularization (ridge regression) can be applied to ensure the suitability and
accuracy of the solution [39,40].

From the over-determination conditions in Equation (8) (� ∈ {0, 1}), we reconstruct
Tikhonov’s regularization as follows:

J(a, s) :=
∥∥∥∥s(τ)

∫ 1

0
v(η, τ)dη − γ3(τ)

∥∥∥∥2

+

∥∥∥∥s2(τ)
∫ 1

0
ηv(η, τ)dη − γ4(τ)

∥∥∥∥2

+ β1‖s(τ)‖2 + β2‖a(τ)‖2. (24)

The previous Tikhonov regularization functional reconstruction can be expanded and
rewritten in the following form:

J(a, s) =
N

∑
j=1

(
sj

∫ 1

0
v(η, τj)dη − γ3(τj)

)2

+
N

∑
j=1

(
s2

j

∫ 1

0
ηv(η, τj)dη − γ4(τj)

)2

+ β1

N

∑
j=1

s2
j + β2

N

∑
j=1

a2
j . (25)
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J(a, s), which is subject to the physical constraints s > 0 (free boundary) and a > 0
(thermal diffusivity), is minimized using the optimization package lsqnonlin.

We apply the same procedure for Case 2, where a(τ) = 1, and we need to identify
b(x, τ) = b(τ) as well as the free boundary s(τ) and the temperature u(x, τ)/v(η, τ).
Again, we consider the first initial value for the time τ = 0, which helps to calculate b(0)
in Equation (16) and s′(0) in Equation (15). Moreover, we use the over-determination
conditions in Equation (8) (� ∈ {0, 1}) to form the corresponding Tikhonov regularization:

G(s, b) :=
∥∥∥∥s(τ)

∫ 1

0
v(η, τ)dη − γ3(τ)

∥∥∥∥2

+

∥∥∥∥s2(τ)
∫ 1

0
ηv(η, τ)dη − γ4(τ)

∥∥∥∥2

+ β1‖s(τ)‖2 + β2‖b(τ)‖2, (26)

which can be rewritten as

G(s, b) =
N

∑
j=1

(
sj

∫ 1

0
v(η, τj)dη − γ3(τj)

)2

+
N

∑
j=1

(
s2

j

∫ 1

0
ηv(η, τj)dη − γ4(τj)

)2

+ β1

N

∑
j=1

s2
j + β2

N

∑
j=1

b2
j . (27)

Then, G(s, b) is minimized using the lsqnonlin solver. In both the examined cases,
βi ≥ 0 and i = 1, 2 are the regularization parameters identified and regulated according to
a specific selection procedure, and the norm is taken in the space L2[0, T].

To ensure the stability of the inverse solutions, we include random errors (noise) in
the input data for Equation (8) (� ∈ {0, 1}) and monitor the effect of the change.

γε1
3 (τj) = γ3(τj) + ε1,j; γε2

4 (τj) = γ4(τj) + ε2,j, j = 0, N, (28)

where ε1 and ε2 are arbitrary vectors engendered from a Gaussian normal distribution that
has mean zero and standard deviations denoted as σ1 and σ2, respectively:

σ1 = p × max
τ∈[0,T]

|γ3(τ)|, σ2 = p × max
τ∈[0,T]

|γ4(τ)|. (29)

The quantity p refers to the percentage of added noise. The MATLAB bulletin function
normrnd was used to generate the random variables ε1 = (ε1,j) and ε2 = (ε2,j) for j = 0, N
as follows:

ε1 = normrnd(0, σ1, N), ε2 = normrnd(0, σ2, N).

5. Discussions and Numerical Examples for Cases 1 and 2

In this section, we calculate, discuss, and interpret the numerical results of the time-
dependent coefficients a(τ) and b(τ) along with s(τ) > 0 and the temperature distribution
v(η, τ). We compare the obtained direct solutions with the analytical ones. Because finding
the exact solutions to such a problem is not always possible, we run simulations after
applying a trim level of noise to the measurements of the direct solver. Then, we seek the
best value for the regulation parameters to ensure the accuracy, convergence, and stability
of the obtained inverse solutions (reconstructions). We also consider the root mean square
error (RMSE), which is given as follows:

RMSE(a) =

[
T
N

N

∑
j=1

(anumerical(τj)− aexact(τj))
2

] 1
2

, (30)
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RMSE(b) =

[
T
N

N

∑
j=1

(bnumerical(τj)− bexact(τj))
2

] 1
2

, (31)

RMSE(s) =

[
T
N

N

∑
j=1

(snumerical(τj)− sexact(τj))
2

] 1
2

. (32)

We use the RMSE regression method to understand the relationships between anumerical ,
bnumerical , and snumerical (the predicted values) and aexact, bexact, and sexact (the observed
values), respectively, for the jth observation. For simplicity, we fix T = 1 throughout the
simulations.

5.1. Numerical Example for Case 1

Considering the data inputs in the work of Hussein and Lesnic [41], we define

a(τ) =
√

1 + τ, c(x, τ) = 0, b(x, τ) = 0, s(τ) =
√

2 − τ, f (x, τ) = 8 − 2
√

1 + τ, (33)

u(x, τ) = 8τ + (1 + x)2.

Inserting the exact value of u(x, τ) into the integral in Equation (4) (� ∈ {0, 1}) helps
to analytically compute γ3(τ) and γ4(τ). Thus,

γ3(τ) =
∫ s(τ)

0
u(x, τ)dx =

√
2 − τ(

5
3
+
√

2 − τ +
23τ

3
), (34)

γ4(τ) =
∫ s(τ)

0
xu(x, τ)dx = (2 − τ)(1 +

2
√

2 − τ

3
+

15τ

4
), (35)

and using the earlier transformation

η =
x

s(τ)
=

x√
2 − τ

allows us to analytically calculate the exact values of v(y, τ) and f (y, τ). This leads to

v(η, τ) = 8τ + (1 + η
√

2 − τ)2, f (η, τ) = 8 − 2
√

1 + τ, (36)

which involves the inchoate and boundary conditions in Equations (6) and (7) and results
in the following defined functions:

ϕ(η) = (1 +
√

2η)2; γ1(τ) = u(0, τ) = 1 + 8τ; γ2(τ) = u(s(τ), τ) = (1 +
√

2 − τ)2.

For the transformed direct problem in Equations (5)–(8), γ3(τ) and γ4(τ) can be
calculated numerically using the trapezium rule as shown in Equations (22) and (23).
Tables 1 and 2 compare the exact values of γ3(τ) and γ4(τ), which are defined in
Equations (34) and (35) respectively, and the corresponding numerical values approxi-
mated via CN techniques (Equations (22) and (23)) at equally-spaced time steps in the
interval τ ∈ (0, 1).

We focus on solving the inverse problem in Equations (5)–(8) in Case 1. When b(x, τ)
is given, the functions s(τ) and a(τ) must be detected using the previous data inputs. We
set initial guesses for s(τ) and a(τ) at τ = 0 to start the optimization procedure. We achieve
this by using Equations (13) and (14), respectively. Therefore, s(0) = s0 =

√
2 and a(0) = 1.

We work with this particular example because all of the conditions in Theorem 1 are met,
which ensures the existence and uniqueness of the inverse solutions.
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Table 1. Real and numerically approximated values of γ3(τ) at various times and mesh sizes.

τ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

M = N = 10 2.2585 6.0973 6.8756 7.5906 8.2391 8.8176 9.3217 9.7466 10.0867
(Relative error) (57.01452%) (0.06565%) (0.05384%) (0.04481%) (0.03643%) (0.03176%) (0.02683%) (0.02155%) (0.01884%)

M = N = 20 5.2552 6.0943 6.8728 7.5881 8.2369 8.8155 9.3198 9.745 10.0853
(Relative error) (0.02093%) (0.01641%) (0.01309%) (0.01186%) (0.00971%) (0.00794%) (0.00644%) (0.00513%) (0.00496%)

M = N = 40 5.2544 6.0935 6.8721 7.5875 8.2363 8.815 9.3194 9.7446 10.0849
(Relative error) (0.00571%) (0.00328%) (0.00291%) (0.00395%) (0.00243%) (0.00227%) (0.00215%) (0.00103%) (0.00099%)

M = N = 80 5.2542 6.0933 6.872 7.5873 8.2361 8.8149 9.3193 9.7445 10.0848
(Relative error) (0.00190%) (0%) (0.00146%) (0.00132%) (0%) (0.00113%) (0.00107%) (0%) (0%)

Exact 5.2541 6.0933 6.8719 7.5872 8.2361 8.8148 9.3192 9.7445 10.0848

Table 2. Real and numerically approximated values of γ4(τ) at various times and mesh sizes.

τ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

M = N = 10 4.3762 4.7761 5.1048 5.3624 5.549 5.6647 5.7098 5.6843 5.5885
(Relative error) (0.40610%) (0.33824%) (0.28683%) (0.24677%) (0.21310%) (0.18393%) (0.15963%) (0.13917%) (0.12362%)

M = N = 20 4.3629 4.764 5.0938 5.3525 5.5402 5.6569 5.7029 5.6783 5.5833
(Relative error) (0.10095%) (0.08403%) (0.07072%) (0.06169%) (0.05418%) (0.04598%) (0.03859%) (0.03347%) (0.0305%)

M = N = 40 4.3592 4.761 5.0911 5.3501 5.538 5.655 5.7012 5.6769 5.5821
(Relative error) (0.01606%) (0.02101%) (0.01769%) (0.01682%) (0.01445%) (0.01238%) (0.00877%) (0.00881%) (0.00896%)

M = N = 80 4.3588 4.7602 5.0904 5.3494 5.5374 5.6545 5.7008 5.6765 5.5817
(Relative error) (0.00689%) (0.00420%) (0.00393%) (0.00374%) (0.00361%) (0.00354%) (0.00175%) (0.00176%) (0.00179%)

Exact 4.3585 4.76 5.0902 5.3492 5.5372 5.6543 5.7007 5.6764 5.5816

We use the same data inputs above (Equation (33)) and consider the numerical estima-
tions of γ3 and γ4 when there is no noise applied to Equation (28). Then, we visualize the
minimized objective function in Equation (25) against the number of iterations when the
regularization parameters β1 and β2 are set to zero. Figure 1 shows a fast convergence on
the measured minimized objective function as the number of iterations rises, reaching a
monotonic stage in 31 iterations. The non-regularized objective function’s curve diminishes
rapidly in the first five iterations and then reaches a steady stage with a high order of
accuracy of O(10−9).
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Figure 1. Visualization of the minimized objective function defined in Equation (25) when no noise is
imposed and no regularization is applied.

The associated numerical solutions for the unknown functions s(τ) and a(τ) are
calculated simultaneously and plotted in Figure 2a and b, respectively.
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Figure 2. Exact solutions (solid lines) and numerical solutions (squares) for (a) s(τ) and (b) a(τ)
when noise and regularization are not applied.

We successfully retrieve an accurate and steady solution for the free-boundary function
s(τ). Figure 2 shows minor instability in the thermal diffusivity values of the function
a(τ) close to both edges. The oscillations are more evident on the left-hand side of the
approximated a(τ), increasing as the time gets closer to zero. Consequently, s(τ) does
not need to be regularized. Hence, we fix β1 = 0 in Equation (25) and use the Tikhonov
regularization method for a(τ).

Next, we find the inverse solution for Case 1 when a small level of noise of ε = 0.01%
is included in the over-determination conditions γ3(τ) and γ4(τ), as in Equation (28). We
emphasize that the regularization procedure has not yet been used to solve the problem.
Figure 3 shows the objective minimization function against the number of iterations when
noise is applied. The figure illustrates that the non-regularized objective function’s con-
vergence is fast in the first few iterations, settled in the next few, and then becomes steady.
The objective function reaches a stationary stage in 140 iterations, with a high order of
accuracy of O(10−7). Not considering the exact solutions of γ3(τ) and γ4(τ) and applying
some noise to them results in a slower convergence and a lower level of accuracy, as seen by
comparing the minimized objective functions shown in Figures 1 and 3.
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Figure 3. Visualization of the minimized objective function defined in Equation (25) when the noise
level ε = 0.01% is imposed and no regularization is applied.

Exploring the associated numerical results in Figure 4 illustrates that the free boundary
maintains stability, while the thermal diffusivity shows more severe oscillatory behavior
compared to Figure 2b.

Finally, we apply the Tikhonov regularization method to obtain a stable, accurate,
and efficient reconstruction for the unknown function a(τ). The L-curve method, the RMSE
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curve, and trial and error are used to identify the most appropriate regularization parameter
β2 [15,42–44].
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Figure 4. Real and numerically approximated values for (a) s(τ) and (b) a(τ) with noise level
ε = 0.01% and no regularization applied.

Finding the optimal value of the regularization parameter using the L-curve method
is impossible since we cannot see the L-shaped curve in the line graph in Figure 5. Instead,
we apply the RMSE regression method; as shown in Figure 6, the curve’s minimum
value occurs at β2 = 10−4. Thus, β2 is considered an optimal value of the regularization
parameter to obtain the best numerical values for a(τ).
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Figure 5. L-curve line graph where potential values for β2 are tested and the noise level ε = 0.01%
is imposed.
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Figure 6. Minimum RMSE line graph where potential values for β2 are tested and the noise level
ε = 0.01% is imposed.
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Figure 7 shows the calculated minimized objective functions using Equation (25)
against the number of iterations when the regularization parameter β2 is set to 10−3, 10−4,
and 10−5. The objective function with β2 = 10−4 converges faster than the others and
reaches a steady distribution in 10 iterations, taking 380 s. The objective functions with
β2 = 10−3 and β2 = 10−5 have slower convergences and reach their stationary distributions
in 12 iterations after 447 and 449 s, respectively.
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Figure 7. Visualization of the minimized objective function defined in Equation (25) when the noise
level ε = 0.01% is imposed and various regularization parameters are considered.

Figure 8 illustrates the reconstructions of the inverse solutions s(τ) and a(τ) in Case 1,
taking into account various regularization parameters, including the optimal value.
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Figure 8. Real and numerically approximated values for (a) s(τ) and (b) a(τ) with p = 0.01% noise
and various regularization parameters for Case 1.
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The free-boundary function s(τ) is estimated very well even when its corresponding
regularization parameter is set to zero, β1 = 0. Since the reconstruction is performed
simultaneously for all model parameters, selecting the best regularization parameter for
the thermal diffusivity a(τ) positively impacts the obtained free-boundary values; this
is evident in the right-hand side of the curve in Figure 8a. Moreover, β2 = 10−4 has
significantly smoothed a(τ) and increased the solutions’ accuracy compared to the other
examined regularization parameters.

5.2. Numerical Example for Case 2

In this section, we solve the inverse problem stated in Equations (5)–(8) for Case 2,
where s(τ) and b(τ) are unknown functions and the temperature is v(η, τ). We solve this
inverse problem with fed-in data:

ϕ(η) = (1 + η)2, γ1(τ) = 1 + 10τ, γ2(τ) = 10t + (2 + τ)2

f (η, τ) = 8 − 2(−1 − τ)(1 + (1 + τ)η),

γ3(τ) = (1 + τ)

(
7
3
+

35τ

3
+

τ2

3

)
, τ ∈ [0, T]

γ4(τ) =
∫ s(τ)

0
xu(x, τ)dx =

1
12

(1 + τ)2(17 + 74τ + 3τ2), τ ∈ [0, T].

The exact and numerical values for input data γ3 and γ4 with their relative errors
are listed in Tables 3 and 4, respectively. The conditions in Theorems 2 and 3 concerning
the uniqueness and existence of the solution hold. Therefore, the local existence and
uniqueness of the solution are guaranteed. The analytical solution of this problem is
provided as follows:

u(x, τ) = 10τ + (1 + x)2, b(τ) = −1 − τ, s(t) = 1 + τ,

and the transformed solution is

v(η, τ) = 10τ + (1 + (1 + τ)η)2, b(τ) = −1 − τ, s(τ) = 1 + τ. (37)

At the beginning of our investigation, we started with a noise-free case, i.e., p = 0 in
Equation (28). Figure 9 shows the objective function in Equation (27) as a function of the
number of iterations where no regularization is applied, i.e., β1 = β2 = 0. The figure shows
the speedy convergence of the minimization problem toward local minima with a meagre
value of order O(10−9) in 19 iterations. The corresponding numerical results are presented
in Figure 10. From this figure, we can see the overlap between the exact and numerical
solutions of the unknown functions s(τ) and b(τ), which indicates an excellent agreement
with RMSE(b) = 7.9 × 10−4 and RMSE(h) = 4.9 × 10−5 from Equations (31) and (32),
respectively.

Table 3. Real and numerically approximated solutions of γ3(τ) at various times and mesh sizes for
the direct problem.

τ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

N = M = 10 3.8559 5.6189 7.626 9.8792 12.3806 15.1322 18.1359 21.3937 24.9078
(Relative error) (0.05709%) (0.05164%) (0.04854%) (0.04557%) (0.04525%) (0.04562%) (0.04523%) (0.045361%) (0.04619%)

N = M = 20 3.8542 5.6167 7.6232 9.8758 12.3764 15.127 18.1297 21.3864 24.8992
(Relative error) (0.01297%) (0.01246%) (0.01181%) (0.01114%) (0.01131%) (0.01124%) (0.01103%) (0.01122%) (0.01165%)

N = M = 40 3.8538 5.6162 7.6226 9.875 12.3754 15.1258 18.1282 21.3846 24.897
(Relative error) (0.00259%) (0.00356%) (0.00394%) (0.00304%) (0.00323%) (0.00331%) (0.00276%) (0.00281%) (0.00282%)

N = M = 80 3.8537 5.616 7.6224 9.8747 12.3751 15.1254 18.1278 21.3842 24.8965
(Relative error) (0%) (0%) (0.00131%) (0%) (0.00081%) (0.00066%) (0.00055%) (0.00094%) (0.00080%)

Exact 3.8537 5.616 7.6223 9.8747 12.375 15.1253 18.1277 21.384 24.8963
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Table 4. Real and numerically approximated solutions of γ4(τ) at various times and mesh sizes for
the direct problem.

τ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

N = M = 10 2.4715 3.8413 5.5732 7.7085 10.2895 13.3591 16.9606 21.1381 25.9361
(Relative error) (0.32881%) (0.28457%) (0.26085%) (0.24448%) (0.23282%) (0.22507%) (0.21981%) (0.21667%) 0.21406%)

N = M = 20 2.4654 3.8331 5.5623 7.6944 10.2716 13.3366 16.9327 21.1038 25.8946
(Relative error) (0.08119%) (0.07049%) (0.06476%) (0.06112%) (0.05844%) (0.05627%) (0.05495%) (0.05405%) (0.05371%)

N = M = 40 2.4639 3.8311 5.5596 7.6909 10.2671 13.3309 16.9257 21.0953 25.8842
(Relative error) (0.02029%) (0.01827%) (0.01619%) (0.01561%) (0.01461%) (0.01350%) (0.01359%) (0.01375%) (0.01352%)

N = M = 80 2.4635 3.8306 5.5589 7.69 10.266 13.3295 16.9239 21.0931 25.8816
(Relative error) (0.0041%) (0.00522%) (0.00359%) (0.00390%) (0.00389%) (0.00300%) (0.00295%) (0.00332%) (0.00348%)

Exact 2.4634 3.8304 5.5587 7.6897 10.2656 13.3291 16.9234 21.0924 25.8807
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Figure 9. The objective function in Equation (27) when noise and regularization are not applied in
Case 2.
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Figure 10. Actual and numerically approximated solutions for (a) s(τ) and (b) b(τ) when noise and
regularization are not applied in Case 2.

Figure 10b displays the numerical solution of s(τ), which nearly follows their corre-
sponding precise solutions, with some noticeable small instability despite not yet applying
any errors/noise in the inputs. When we add p = 0.01% noise to the input data in
Equation (28), the solutions often follow the same pattern as in Case 1. As shown in
Figure 11, we obtain an accurate and stable solution for s(τ) and an unstable solution for
b(τ), indicating that regularization is necessary.

We expect such unusable behavior of the calculated solution because we are investi-
gating an ill-posed problem. A small error in the input data (γ3, γ4) leads to major errors
in the output solutions (s(τ), b(τ)). Regularization should be applied to overcome this
difficulty. We apply Tikhonov regularization by adding a penalty term (β1‖s‖2 + β2‖b‖2)
to the objective function in Equation (27).
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Similar to the corresponding case in Case 1, noise does not affect s(τ). By contrast, b(τ)
applies regularization on b(τ) only and fixes β1 = 0. To obtain the optimal regularization
parameter β2, which gives accurate and stable results, different selection methods were
considered. These include the L-curve method, minimum RMSE, and trial and error using
Equations (31) and (32). Figures 12 and 13 present the L-curve plot and the minimum RMSE
values as a function of the regularization parameter β2, respectively. From these figures, it
can be concluded that the best choice for β2 is 10−3, which has the lowest value of RMSE(b).
The objective function in Equation (27) is plotted for some β2 ∈ {10−5, 10−4, 10−3, 10−2} in
Figure 14.
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From Figures 12 and 13, one can conclude that the optimal choice for β2 is 10−3; this is
also clear in Figure 15.
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6. Conclusions

This research describes a successful approach to finding the numerical solutions (tem-
perature distributions, free boundary, and thermal diffusivity or advection velocities) to
time-dependent free-boundary inverse coefficient problems while ensuring the approxi-
mations’ existence, uniqueness, and reliability. First, we converted the moving boundary
function to a fixed domain function by choosing a simple transformation. Then, due to the
unconditional stability and convergence of the Crank–Nicholson finite difference scheme,
we used it to solve the forward problem (an initial boundary value problem). The ob-
tained numerical values of non-localized integral observations, γ3(τ) and γ4(τ) in the
over-determined conditions, are used to generate and feed in the reconstruction code, which
uses the lsqnonlin non-linear least-square optimization routine. This MATLAB toolbox uses
the trust region reflective algorithm based on the inner-reflective Newton technique and
does not call for an additional gradient for the objective function. We used the Tikhonov
regularization approach (ridge regression) to overcome the problem’s ill-posed nature,
ensuring the solution’s applicability and correctness. We also used the root mean square
error and L-curve to test and select the optimal values for the regularization parameters to
obtain excellent approximations, as the numerical examples show. The numerical approach
in this paper could be extended to two- or three-dimensional problems. Additionally, fu-
ture studies could consider time- and spatial-dependent coefficient identification problems.
Moreover, deep learning techniques could be integrated into the mathematical methods
used in this work to increase the speed and accuracy of solutions for such inverse problems.
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Abstract: This paper presents a new numerical scheme for a class of linear impulsive neutral
differential equations with constant coefficients based on the Euler method. We rigorously establish
the first-order convergence of the proposed numerical approach. Additionally, the asymptotical
stability of the exact solutions and numerical solutions of impulsive neutral differential equations
are studied. To substantiate our findings, two illustrative examples are provided, demonstrating the
theoretical conclusions of this paper.
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1. Introduction

Impulsive delay differential equations (IDDEs) have garnered significant attention
due to their applicability across various domains, such as in neural networks [1–3], dynam-
ics [4], control theory [5,6], engineering [7], etc. In particular, the theoretical exploration of
impulsive neutral delay differential equations (INDDEs) has been enriched by numerous
researchers, focusing on aspects like existence [8–12], oscillation [13–15], and stability:
in [16], Xiaodi Li et al. apply the Razumikhin method for impulsive functional differential
equations of the neutral type to analyze the stability; Bainov Drumi Dimitrov et al., in [17],
studied the uniform asymptotic stability of impulsive differential-difference equations of
the neutral type via Lyapunov’s direct method; and Refs. [18,19] discussed the exponential
stability of INDDEs.

In general, it is difficult or even impossible to obtain explicit solutions for INDDEs.
Therefore, it is necessary to study numerical solutions of INDDEs. But there is very little
research on the numerical solutions of INDDEs. The stability and asymptotical stability of
numerical methods for linear and nonlinear INDDEs with special fixed impulsive moments
are studied by applying the method of transformation in [20,21]. The convergence of a
numerical format of the Euler method for INDDEs is studied in [22]. However, in Ref. [22],
the authors ignore the fact that the exact solution of an INDDE is continuous everywhere
except the points at the moments of impulsive effect. Hence, our present paper introduces
a new numerical method based on the Euler method for INDDEs, addressing this oversight
in the aforementioned study.

The structure of this paper is as follows. Section 2 details the construction of the
numerical method and its convergence proof. In Section 3, according to the distribution
of the roots of a characteristic INDDE, the conditions of stability, asymptotical stability,
and instability for the exact solution of INDDEs are given. Moreover, according to the
distribution of the roots of the characteristic equation of the discrete equation obtained
from the Euler method for INDDEs, the conditions of stability, asymptotical stability,
and instability for the numerical solution of INDDEs are provided. Section 4 presents
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two examples to validate the main results. Finally, Section 5 concludes the paper with a
summary of the findings and suggestions for future research directions.

2. Convergence of Euler’s Method for INDDEs

In this paper, we investigate the following impulsive neutral differential equation:

(x(t) + cx(t − σ))′ = ax(t) + bx(t − τ), t ≥ 0, t �= τk, (1)

Δx(τk) = lk, k ∈ Z
+ = {1, 2, · · · }, (2)

x(t) = φ(t), −r ≤ t ≤ 0, (3)

where σ and τ are positive constants and r = max{σ, τ}; a, b, c, and lk are real constants;
x′(t) denotes the right-hand derivative of x(t); and Δx(t) = x(t+)− x(t−). The impulse
times τk satisfy 0 < τ1 < · · · < τk < τk+1 < · · · and lim

k→∞
τk = ∞. The initial function

φ : [−r, 0] → R is a given continuous function.

Definition 1 ([23]). A real valued right continuous function x(t) is said to be the solution of the
initial value problem (1)–(3) if the following conditions are satisfied:

(a) x(t) is continuous everywhere except the points τk, k ∈ Z+;

(b) the function x(t) + cx(t − σ) is continuously differentiable for t ≥ 0 and τk, k ∈ Z+;

(c) x(τ+
k ) and x(τ−

k ) exist and x(τ+
k ) = x(τk), k ∈ Z+;

(d) x(t) satisfies the differential Equation (1) for t ≥ 0, satisfies the impulsive conditions at t = τk,
and satisfies (3).

Based on Euler’s method, the new numerical scheme for Equations (1)–(3) is con-
structed as follows:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Xn+1 = Xn + ahXn + bhXn−m2 − cXn−m1+1 + cXn−m1 , n �= ηk − 1, n − m1 �= ηj − 1,
Yk = Xn + ahXn + bhXn−m2 − cXn−m1+1 + cXn−m1 , n = ηk − 1,
Xn+1 = Xn + ahXn + bhXn−m2 − cYj + cXn−m1 , n − m1 = ηj − 1,
Xηk = Yk + lk,
Xi = φi = φ(ih), ih ∈ [−r, 0], i = −m, · · · ,−1, 0,

(4)
where h = σ

m1
, m2 = � τ

h �, m1, m2, j, k ∈ Z+, h is a stepsize, and 0 < h < min{σ, τ}; the floor
function � τ

h � denotes the largest integer less than or equal to τ
h . Let η0 = 0 and

ηk =

{
τk
h , τk

h ∈ Z+,
� τk

h �+ 1, otherwise.
(5)

Xn is an approximation of exact solutions x(tn) for arbitrary tn = nh, n ∈ Z+. Yk is an
approximation of exact solutions x(τ−

k ) if ηk =
τk
h ; otherwise, Yk is a virtual value obtained

from the Euler method. Here, Yk is a virtual value, meaning that Yk is not an approximation
of the exact solution at any given time. The reason why Yk, k ∈ N are calculated is so that
the numerical solution does not make additional jumps, but instead jumps only once in the
vicinity of each moment of impulsive effect.

In order to study the convergence of INDDEs, Equations (1)–(3) are considered on the
finite interval [−r, T], where T is a given positive constant. For convenience, we assume that
there exist p, N ∈ Z+ such that T = pmh and 0 < τ1 < · · · < τk < · · · < τN ≤ T < τN+1,
where m = max{m1, m2}. From [9], we know that x(t) and x′(t) are bounded. Therefore,
we assume that there exists an M > 0, such that the solution x(t) of Equations (1) and (2)
satisfies |x(t)| ≤ M and |x′(t)| ≤ M for t ∈ [−r, T]. For the sake of simplicity, we also
assume that
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|φ(t)− φ(s)| ≤ M|t − s| (6)

and
|φ′(t)− φ′(s)| ≤ M|t − s|. (7)

Let en = |x(nh)− Xn|, which denotes the global error. The following theorem will
demonstrate that the convergence order of the Euler method for Equations (1)–(2) is 1 by
analyzing the global error en.

Theorem 1. The convergence order of Euler scheme (4) is 1—that is, there exists a C > 0, such
that en ≤ Ch, 1 ≤ n ≤ pm.

Proof. We shall show that there exists a Ck > 0, such that

en ≤ Ckh, n ∈ Ik = [ηk−1 + 1, ηk]
⋂

Z, k = 1, 2, 3, · · · , N. (8)

First, we show there exists a C1 > 0 such that en ≤ C1h, n ∈ I1. For the sake of
simplicity, we only consider the following situation, but others can be proved similarly.
Assume that τ = m2h + δ, 0 ≤ δ < 1, r = max{σ, τ} = σ, m = m1 and 0 < τ < σ < τ1.

When 0 ≤ tn ≤ τ < σ < τ1, we have

en = |x(nh)− Xn|

= |x((n − 1)h) +
∫ nh

(n−1)h
ax(t) + bx(t − τ)− cx′(t − σ)dt − Xn−1 − ahXn−1

− bhXn−m2−1 + cXn−m1 − cXn−m1−1|

≤ en−1 + |
∫ h

0
ax((n − 1)h + t)dt − ahXn−1 +

∫ h

0
bx((n − m2 − δ − 1)h + t)dt

− bhXn−m2−1 −
∫ h

0
cx′((n − m1 − 1)h + t)dt + cXn−m1 − cXn−m1−1|

≤ en−1 +
∫ h

0
|a||x((n − 1)h + t)− Xn−1|+ |b||x((n − m2 − δ − 1)h + t)

− Xn−m2−1|dt + |c||
∫ h

0
−x′((n − m1 − 1)h + t)dt + Xn−m1 − Xn−m1−1|,

(9)

where

|x((n − 1)h + t)− Xn−1|

= |x((n − 1)h) +
∫ t+(n−1)h

(n−1)h
ax(u) + bx(u − τ)− cx′(u − σ)du − Xn−1|

≤ en−1 +
∫ t

0
|a||x((n − 1)h + u)|+ |b||x((n − m2 − δ − 1)h + u)|

+ |c||x′((n − m1 − 1)h + u)|du

≤ en−1 + (|a|+ |b|+ |c|)Mh,

(10)

based on Equation (6)

|x((n − m2 − δ − 1)h + t)− Xn−m2−1|
= |φ(t + (n − m2 − δ − 1)h)− φ((n − m2 − 1)h)|
≤ M|t − δh|
≤ Mh

(11)
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and

|
∫ h

0
−x′((n − m1 − 1)h + t)dt + Xn−m1 − Xn−m1−1|

= |x((n − m1 − 1)h)− x((n − m1)h) + Xn−m1 − Xn−m1−1|
= |φ((n − m1 − 1)h)− φ((n − m1)h) + φ((n − m1)h)− φ((n − m1 − 1)h)|
= 0.

(12)

Substituting Equations (10)–(12) into Equation (9), we find that

en ≤ en−1 + |a|h[en−1 + (|a|+ |b|+ |c|)Mh] + |b|Mh2 + |c| · 0

= en−1(1 + |a|h) + Mh2[|a|(|a|+ |b|+ |c|) + |b|]
≤ C1,1,1h.

(13)

Let e0 = 0, and, according to Gronwall inequality, we can calculate

C1,1,1 =
[|a|(|a|+ |b|+ |c|) + |b|]M

|a| e|a|T .

When τ < tn ≤ 2τ < σ < τ1, we have

en = |x(nh)− Xn|

≤ en−1 +
∫ h

0
|a||x((n − 1)h + t)− Xn−1|+ |b||x((n − m2 − δ − 1)h + t)

− Xn−m2−1|dt + |c||
∫ h

0
−x′((n − m1 − 1)h + t)dt + Xn−m1 − Xn−m1−1|.

(14)

As discussed in Equation (10), for t ∈ [0, h], we find that

|x((n − 1)h + t)− Xn−1| ≤ en−1 + (|a|+ |b|+ |c|)Mh, (15)

|x((n − m2 − δ − 1)h + t)− Xn−m2−1|

= |x((n − m2 − 1)h) +
∫ (n−m2−δ−1)h+t

(n−m2−1)h
ax(u) + bx(u − τ)− cx′(u − σ)du

− Xn−m2−1|

≤ en−m2−1 + |
∫ t−δh

0
ax(u + (n − m2 − 1)h) + bx(u + (n − 2m2 − δ − 1)h)

− cx′(u + (n − m1 − m2 − 1)h)du|
≤ en−m2−1 + (|a|+ |b|+ |c|)Mh.

(16)

Similar to Equation (12), we obtain

|
∫ h

0
−x′((n − m1 − 1)h + t)dt + Xn−m1 − Xn−m1−1| = 0. (17)

Substituting Equations (15)–(17) into Equation (14) yields

en ≤ en−1 + |a|h(en−1 + (|a|+ |b|+ |c|)Mh) + |b|h(en−m2−1 + (|a|+ |b|+ |c|)Mh)

≤ en−1(1 + |a|h) + Mh2(|a|+ |b|)(|a|+ |b|+ |c|) + |b|C1,1,1h2

≤ C1,1,2h,

where

C1,1,2 =
M(|a|+|b|)(|a|+|b|+|c|)+|b|C1,1,1

|a| e|a|T .
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When (k − 1)τ < tn ≤ kτ for some k ∈ [3, � σ
τ �], similarly to the discussion above, we

can obtain

C1,1,k =
M(|a|+ |b|)(|a|+ |b|+ |c|) + |b|C1,1,k−1

|a| e|a|T ,

such that en ≤ C1,1,kh.
When �σ

τ �τ < tn < σ, an analogous calculation can be performed to calculate C1,1,� σ
τ �+1,

such that the inequality en ≤ C1,1,� σ
τ �+1h holds. Taking C1,1 = max{C1,1,1, C1,1,2, · · · , C1,1,� σ

τ �+1},
we have en ≤ C1,1h for 1 ≤ n < m1 < η1.

When σ ≤ tn < 2σ < τ1, m1 ≤ n < 2m1 < η1 is satisfied, we prioritize σ ≤ tn <
σ + τ < 2σ < τ1, which gives us

en = |x(nh)− Xn|

≤ en−1 +
∫ h

0
|a||x((n − 1)h + t)− Xn−1|+ |b||x((n − m2 − δ − 1)h + t)

− Xn−m2−1|dt + |c||
∫ h

0
−x′((n − m1 − 1)h + t)dt + Xn−m1 − Xn−m1−1|.

(18)

For t ∈ [0, h], as discussed in Equation (10) and Equation (3), we have

|x((n − 1)h + t)− Xn−1| ≤ en−1 + (|a|+ |b|+ |c|)Mh, (19)

|x((n − m2 − δ − 1)h + t)− Xn−m2−1|
≤ en−m2−1 + (|a|+ |b|+ |c|)Mh,

≤ C1,1h + (|a|+ |b|+ |c|)Mh

(20)

and

|
∫ h

0
−x′((n − m1 − 1)h + t)dt + Xn−m1 − Xn−m1−1|

= |x((n − m1 − 1)h)− x((n − m1)h) + Xn−m1 − Xn−m1−1|
= |en−m1−1 − en−m1 |
≤ en−m1−1|a|h + Mh2(|a|+ |b|)(|a|+ |b|+ |c|) + |b|C1,1h2

= (|a|+ |b|)C1,1h2 + Mh2(|a|+ |b|)(|a|+ |b|+ |c|).

(21)

Substituting Equations (19)–(21) into Equation (18) yields

en ≤ en−1 + |a|h(en−1 + (|a|+ |b|+ |c|)Mh) + |b|h(C1,1h + (|a|+ |b|+ |c|)Mh) + |c|
((|a|+ |b|)C1,1h2 + Mh2(|a|+ |b|)(|a|+ |b|+ |c|))
≤ (1 + |a|h)en−1 + Mh2(|a|+ |b|+ |c|)(|a|+ |b|)(1 + |c|) + (|b|+ |c|(|a|+ |b|))C1,1h2

≤ C1,2,1h,

where C1,2,1 =
M(|a|+|b|+|c|)(|a|+|b|)(1+|c|)+(|b|+|c|(|a|+|b|))C1,1

|a| e|a|T .

When σ + τ ≤ tn < σ + 2τ, similarly to the discussion above, we can conclude that

en ≤ en−1 + |a|h(en−1 + (|a|+ |b|+ |c|)Mh) + |b|h(C1,2,1h + (|a|+ |b|+ |c|)Mh)

+ |c|((|a|+ |b|)C1,1h2 + Mh2(|a|+ |b|)(|a|+ |b|+ |c|))
≤ en−1(1 + |a|h) + Mh2(|a|+ |b|+ |c|)(|a|+ |b|)(1 + |c|) + (|b|+ |c|(|a|+ |b|))C1,2,1h2

≤ C1,2,2h,

where C1,2,2 =
M(|a|+|b|+|c|)(|a|+|b|)(1+|c|)+C1,2,1(|b|+|c|(|a|+|b|))

|a| e|a|T .
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When σ + (k − 1)τ ≤ tn < σ + kτ for some k ∈ [3, � σ
τ �], similarly to the discussion

above, we can calculate C1,2,k =
M(|a|+|b|+|c|)(|a|+|b|)(1+|c|)+C1,2,k−1(|b|+|c|(|a|+|b|))

|a| e|a|T .
When σ + � σ

τ �τ ≤ tn < 2σ, an analogous calculation can be performed to obtain
C1,2,� σ

τ �+1, such that the inequality en ≤ C1,2,� σ
τ �+1h holds.

Taking C1,2 = max{C1,2,1, C1,2,2, · · · , C1,2,� σ
τ �+1}, we have en ≤ C1,2h for m1 ≤ n <

2m1 < η1.
Let Bi+1 = � ηi+1−ηi

m1
�. When (j − 1)σ < tn ≤ jσ, (j − 1)m1 < n ≤ jm1, 3 ≤ j ≤ B1, and

en ≤ C1,jh, where C1,j = max{C1,j,1, C1,j,2, · · · , C1,j,� σ
τ �+1}, and C1,j,k can thus be obtained

as follows:

en ≤ en−1(1 + |a|h) + Mh2(|a|+ |b|+ |c|)(|a|+ |b|)(1 + |c|)
+ (|b|+ |c|(|a|+ |b|))C1,j,k−1h2

≤ C1,j,kh.

When B1σ ≤ tn < τ1, an analogous calculation can be performed to obtain C1,B1+1, such
that the inequality en ≤ C1,B1+1h holds.

If we take C̃1 = max{C1,1, C1,2, · · · , C1,B1+1}, we have en ≤ C̃1h for 1 ≤ n < η1.
If tn = τ1, n = η1, it is possible to derive

en = |x(η1h)− Xη1 | = |x(η1h)− Y1 − l1|

= |x(τ1) +
∫ η1h

τ1

ax(t) + bx(t − τ)− cx′(t − σ)dt − Xη1 |

= |l1 + x(τ−
1 ) +

∫ η1h

τ1

ax(t) + bx(t − τ)− cx′(t − σ)dt − (l1 + Xη1−1

+ ahXη1−1 + bhXη1−m2−1 − cXη1−m1 + cXη1−m1−1)|

≤ |x((η1 − 1)h) +
∫ τ1

(η1−1)h
ax(t) + bx(t − τ)− cx′(t − σ)dt +

∫ η1h

τ1

ax(t)

+ bx(t − τ)− cx′(t − σ)dt − (Xη1−1 + ahXη1−1 + bhXη1−m2−1

− cXη1−m1 + cXη1−m1−1)|

≤ eη1−1 + |
∫ τ1

(η1−1)h
ax(t) + bx(t − τ)− cx′(t − σ)dt +

∫ (η1−1)h

τ1

ax(t)

+ bx(t − τ)− cx′(t − σ)dt +
∫ η1h

(η1−1)h
ax(t) + bx(t − τ)− cx′(t − σ)dt

− ahXη1−1 − bhXη1−m2−1 + cXη1−m1 − cXη1−m1−1|

≤ eη1−1 +
∫ h

0
|a||x(t + (η1 − 1)h)− Xη1−1|+ |b||x(t + (η1 − m2 − δ − 1)h

− Xη1−m2−1)dt + |
∫ h

0
−cx′(t + (η1 − m1 − 1)h)dt + cXη1−m1 − cXη1−m1−1|

≤ eη1−1 + |a|h(eη1−1 + (|a|+ |b|+ |c|)Mh) + |b|h(eη1−m2−1 + (|a|+ |b|
+ |c|)Mh) + |c||eη1−m1−1 − eη1−m1 |

≤ (1 + |a|h)eη1−1 + Mh2(|a|+ |b|)(1 + |c|)(|a|+ |b|+ |c|) + C̃1h2(|b|+ |c|
(|a|+ |b|))
≤ C1h.

(22)

If we let C1 = M(|a|+|b|)(1+|c|)(|a|+|b|+|c|)+C̃1(|b|+|c|(|a|+|b|))
|a| e|a|T , we can obtain the inequality

en ≤ C1h, which holds for n ∈ I1.
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When n ∈ I2, an analogous calculation can be performed to obtain en ≤ C2,1h for
η1 < n < η1 + m1 − 1, but in this paper we omit the proof of this calculation. Next, for
n = η1 + m1,

en = |x(nh)− Xn|

= |x((n − 1)h) +
∫ nh

(n−1)h

[
ax(t) + bx(t − τ)− cx′(t − σ)

]
dt − Xn−1 − ahXn−1

− bhXn−m2−1 + cY1 − cXn−m1−1|

≤ en−1 + |a|
∫ h

0
|x((n − 1)h + t)− Xn−1|dt + |b|

∫ h

0
|x((n − m2 − δ − 1)h + t)

− Xn−m2−1|dt + |c||
∫ nh

(n−1)h
−x′(t − σ)dt + Y1 − Xn−m1−1|.

(23)

As discussed in Equations (11) and (17) for t ∈ [0, h], we have

|x((n − 1)h + t)− Xn−1| ≤ en−1 + (|a|+ |b|+ |c|)Mh (24)

and

|x((n − m2 − δ − 1)h + t)− Xn−m2−1|
≤ en−m2−1 + (|a|+ |b|+ |c|)Mh

≤ C2,1h + (|a|+ |b|+ |c|)Mh

(25)

and

|
∫ nh

(n−1)h
−x′(t − σ)dt + Y1 − Xn−m1−1|

= |
∫ η1h

(η1−1)h
−x′(s)ds + Y1 − Xn−m1−1|

= |−
∫ τ1

(η1−1)h
x′(s)ds −

∫ η1h

τ1

x′(s)ds + Y1 − Xn−m1−1|

= |
∫ τ1

(η1−1)h

[
−ax(s)− bx(s − τ) + cx′(s − σ)

]
ds +

∫ η1h

τ1

[−ax(s)− bx(s − τ)

+ cx′(s − σ)]ds + ahXη1−1 + bhXη1−m1−1 − cXη1−m1 + cXη1−m1−1|

≤ |a|
∫ τ1−(η1−1)h

0
|x(s + (η1 − 1)h)− Xη1−1|ds + |b|

∫ τ1−(η1−1)h

0
|x(s + (η1 − m2 − δ − 1)h)

− Xη1−m2−1|ds + |a|
∫ h

τ1−(η1−1)h
|x(s + (η1 − 1)h)− Xη1−1|ds

+ |b|
∫ h

τ1−(η1−1)h
|x(s + (η1 − m2 − δ − 1)h)− Xη1−m2−1|ds + |

∫ τ1

(η1−1)h
cx′(s − σ)ds

+
∫ η1h

τ1

cx′(s − σ)ds − cXη1−m1 + cXη1−m1−1|

≤ |a|h
(
eη1−1 + (|a|+ |b|+ |c|)Mh

)
+ |b|h

(
eη1−m2−1 + (|a|+ |b|+ |c|)Mh

)
+ |c||eη1−m2 − eη1−m2−1|

≤ Mh2(|a|+ |b|)(1 + |c|+ |c|2)(|a|+ |b|+ |c|) + C1h2(|a|+ |b|)(1 + |c|+ |c|2).

(26)

136



Mathematics 2024, 12, 2833

Substituting Equations (24)–(26) into Equation (23), we find that

en ≤ en−1 + |a|h[en−1 + (|a|+ |b|+ |c|)Mh] + |b|h[C2,1h + (|a|+ |b|+ |c|)Mh]

+ |c|Mh2(|a|+ |b|)(1 + |c|+ |c|2)(|a|+ |b|+ |c|)
+ |c|C1h2(|a|+ |b|)(1 + |c|+ |c|2)

= en−1(1 + |a|h) + Mh2(|a|+ |b|+ |c|)(|a|+ |b|)(1 + |c|+ |c|2 + |c|3)
+ |b|C2,1h2 + |c|C1h2(|a|+ |b|)(1 + |c|+ |c|2)
≤ D1h,

(27)

where D1 =
M(|a|+|b|+|c|)(|a|+|b|)(1+|c|+|c|2+|c|3)+C2,1|b|+|c|C1(|a|+|b|)(1+|c|+|c|2)

|a| · e|a|T .

The same as before, we take C̃2 = max{C2,1, C2,2, · · · , C2,B2+1, D1}. So, en ≤ C̃2h holds
for n ∈ I2.

Assume that Equation (10) holds for n ∈ Is−1—that is, en ≤ Cs−1h holds for n ∈ Is−1.
Now, we will show that Equation (8) holds for n ∈ Is.

When τs−1 ≤ tn ≤ τs−1 + τ < τs−1 + σ,

en = |x(nh)− Xn|

≤ en−1 +
∫ h

0
|a||x((n − 1)h + t)− Xn−1|+ |b||x((n − m2 − δ − 1)h + t)

− Xn−m2−1|dt + |c||
∫ h

0
−x′((n − m1 − 1)h + t)dt + Xn−m1 − Xn−m1−1|.

According to Equation (10), Equation (3), and Equation (21) and the related discussions
above, for t ∈ [0, h], we have

|x((n − 1)h + t)− Xn−1| ≤ en−1 + (|a|+ |b|+ |c|)Mh,

|x((n − m2 − δ − 1)h + t)− Xn−m2−1| ≤ en−m2−1 + (|a|+ |b|+ |c|)Mh,

and

|
∫ h

0
−x′((n − m1 − 1)h + t)dt + Xn−m1 − Xn−m1−1|

≤ en−m1−1|a|h + Mh2(|a|+ |b|)(|a|+ |b|+ |c|) + |b|Cs−1h2.

Then, we find

en ≤ (1 + |a|h)en−1 + Mh2(|a|+ |b|+ |c|)(|a|+ |b|)(1 + |c|)
+ (|b|+ |c|(|a|+ |b|))Cs−1h2

≤ Cs,1,1h.

Just as in the discussion of C1,1,k, we can obtain Cs,1,k, such that en ≤ Cs,1,kh, for k =
1, 2, · · · , � σ

τ � . When τs−1 + � σ
τ �τ ≤ tn < τs−1 + σ, we also find that Cs,1,� σ

τ �+1 satisfies
en ≤ Cs,1,� σ

τ �+1h.
Taking Cs,1 = max{Cs,1,1, Cs,1,2, · · · , Cs,1,� σ

τ �+1}, we have en ≤ Cs,1h, for ηs−1 + 1 ≤
n < ηs−1 + m2. Then, there is a finite number of Cs,j, and the number of Cs,j does not
depend on the stepsize h.
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Also, when n − m1 = ηs, similarly to Equation (27), we have

en ≤ en−1 + |a|h[en−1 + (|a|+ |b|+ |c|)Mh] + |b|h[Cs,1h + (|a|+ |b|+ |c|)Mh]

+ |c|Mh2(|a|+ |b|)(1 + |c|+ |c|2)(|a|+ |b|+ |c|)
+ |c|Cs−1h2(|a|+ |b|)(1 + |c|+ |c|2)

= en−1(1 + |a|h) + Mh2(|a|+ |b|+ |c|)(|a|+ |b|)(1 + |c|+ |c|2 + |c|3)
+ |b|Cs,1h2 + |c|Cs−1h2(|a|+ |b|)(1 + |c|+ |c|2)
≤ Ds−1h,

(28)

where Ds−1 =
M(|a|+|b|+|c|)(|a|+|b|)(1+|c|+|c|2+|c|3)+Cs,1|b|+|c|Cs−1(|a|+|b|)(1+|c|+|c|2)

|a| · e|a|T .
Taking

C̃s = max{Cs,1, Cs,2, · · · , Cs,Bs+1, Ds−1},

we have

en ≤ C̃sh, ηs−1 + 1 ≤ n < ηs.

When tn = τs and n = ηs, performing a calculation analogous to that in Equation (22)
yields the following:

en = |x(ηsh)− Xηs |
≤ (1 + |a|h)eηs−1 + Mh2(|a|+ |b|)(1 + |c|)(|a|+ |b|+ |c|)
+ C̃sh2(|b|+ |c|(|a|+ |b|))
≤ Csh.

If we let Cs =
M(|a|+|b|)(1+|c|)(|a|+|b|+|c|)+C̃s(|b|+|c|(|a|+|b|))

|a| e|a|T , we obtain en ≤ Csh for n ∈ Is.

When ηN < n ≤ pm = T
h , the same as n ∈ [ηs−1 + 1, ηs), we can calculate that CN+1,1

satisfies en ≤ CN+1,1h.
Taking

C = max{C1, C2, · · · , CN , CN+1,1},

we find that en ≤ Ch holds for 1 ≤ n ≤ pm. This completes the proof.

3. Asymptotical Stability of INDDEs

In this section, we study the asymptotical stability not only of the exact solutions of
INDDEs but also of the numerical solutions of INDDEs.

3.1. Asymptotical Stability of the Exact Solutions of INDDEs

In order to study the asymptotical stability of INDDE (1) and (2), we consider the
same equation with another initial function:

(x̃(t) + cx̃(t − σ))′ = ax̃(t) + bx̃(t − τ), t ≥ 0, t �= τk, (29)

Δx̃(τk) = lk, k ∈ Z
+, (30)

x̃(t) = φ̃(t), −r ≤ t ≤ 0, (31)

where σ and τ are positive constants and r = max{σ, τ}, a, b, c and lk are real constants,
x̃′(t) denotes the right-hand derivative of x̃(t), and Δx̃(t) = x̃(t+)− x̃(t−). The impulse
times τk satisfy 0 < τ1 < · · · < τk < τk+1 < · · · and lim

k→∞
τk = ∞. The initial function

φ̃ : [−r, 0] → R is a given continuous function.
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Definition 2. The solutions x(t) of INDDE (1)–(3) and x̃(t) of (29)–(31) are said to be stable if
for every ε > 0, there exists a number δ = δ(ε) > 0, such that

‖φ − φ̃‖ = max
−r≤t≤0

|φ(t)− φ̃(t)| < δ,

which implies that
‖x(t)− x̃(t)‖ < ε, for all t ≥ 0.

The solutions x(t) of INDDE (1)–(3) and x̃(t) of (29)–(31) are said to be asymptotically stable
if they are stable and there exists a number δ0 > 0 such that ‖φ − φ̃‖ < δ0 implies

lim
t→∞

‖x(t)− x̃(t)‖ = 0.

Assume that x(t) is the solution of INDDE (1)–(3) and x̃(t) is the solution of (29)–
(31). Then, y(t) = x(t)− x̃(t), t ≥ −r, satisfying the following NDDE without impulsive
perturbations: {

(y(t) + cy(t − σ))′ = ay(t) + by(t − τ), t ≥ 0,
y(t) = ϕ(t), −r ≤ t ≤ 0,

(32)

where a, b, c, σ, and τ are real constants; τ > 0, σ > 0, ϕ(t) = φ(t)− φ̃(t) for all t ∈ [−r, 0];
and ϕ ∈ C([−r, 0],R) is the initial function.

Definition 3 ([24,25]). The zero solution of (32) is stable if for every ε > 0, there exists a number
δ = δ(ε) > 0 such that

‖ϕ‖ = max
−r≤t≤0

|ϕ(t)| = max
−r≤t≤0

|φ(t)− φ̃(t)| < δ

implies |y(t)| < ε.
The zero solution of (32) is asymptotically stable if the zero solution of (32) is stable and there

exists a number δ0 > 0 such that ‖ϕ‖ < δ0 implies

lim
t→∞

|y(t)| = 0.

Due to Definitions 2 and 3, we can easily reveal the following theorem.

Theorem 2. The solutions x(t) of INDDE (1)–(3) and x̃(t) of (29)–(31) are stable if and only if
the zero solution of (32) is stable.

Moreover, the solutions x(t) of INDDE (1)–(3) and x̃(t) of (29)–(31) are asymptotically stable
if and only if the zero solution of (32) is asymptotically stable.

The characteristic equation for an NDDE (i.e., the first of (32)) is as follows:

λ(1 + ce−λσ) = a + be−λτ . (33)

According to Refs. [24,25], the following lemma is a special case of their main results;
the associated proof is omitted from this paper for brevity.

Lemma 1. Assume that λ0 is a real root of characteristic Equation (33) and satisfies

μ(λ0) = |b|τe−λ0τ + |c|e−λ0σ(1 + |λ0|σ) < 1. (34)

Then, the solution y(t) of (32) satisfies

lim
t→∞

[e−λ0ty(t)] =
L(λ0, ϕ)

1 + β(λ0)
, (35)
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where

L(λ0, ϕ) = ϕ(0) + cϕ(−σ) + be−λ0τ
∫ 0

−τ
e−λ0s ϕ(s)ds − cλ0e−λ0σ

∫ 0

−σ
e−λ0s ϕ(s)ds

and
β(λ0) = bτe−λ0τ + ce−λ0σ(1 − λ0σ). (36)

Based on this, we can utilize the following statement to illustrate the stability and
asymptotic stability of (32).

Theorem 3. Assume that λ0 is a real root of characteristic Equation (32) and satisfies μ(λ0) < 1.
Let β(λ0) be defined by (36) and set

R(λ0; ϕ) = max
{

1, max
−r≤t≤0

|ϕ(t)|, max
−r≤t≤0

eλ0t|ϕ(t)|
}

.

Then, the solution y(t) of (32) satisfies

|y(t)| ≤ N(λ0)R(λ0; ϕ)eλ0t, ∀t ≥ 0,

where

N(λ0) = μ(λ0) + k(λ0)

(
1 + μ(λ0)

1 + β(λ0)

)
and

k(λ0) = 1 + |b|τe−λ0τ + |c|(1 + |λ0|σe−λ0σ).

Moreover, the zero solution of (32) is described as follows:

(i) The solution is stable if λ0 = 0, or, equivalently, if the following conditions are satisfied:

a + b = 0, |b|τ + |c| < 1;

(ii) The solution is asymptotically stable if λ0 < 0;
(iii) The solution is unstable if λ0 > 0.

Proof. Assume that

z(t) = e−λ0ty(t), ẑ(t) = z(t)− L(λ0; ϕ)

1 + β(λ0)
.

We can show that for t ≥ 0,

z(t) ≤ μ(λ0)H(λ0; ϕ) +
|L(λ0; ϕ)|
1 + β(λ0)

.

Obviously, we can affirm that

|L(λ0; ϕ)| ≤ |ϕ(0)|+ |c||ϕ(−σ)|+ |b|e−λ0τ
∫ 0

−τ
e−λ0s|ϕ(s)|ds

+|c||λ0|e−λ0σ
∫ 0

−σ
e−λ0s|ϕ(s)|ds

≤
(

1 + |c|+ |b|τe−λ0τ + |c||λ0|σe−λ0σ
)

R(λ0; ϕ)

= k(λ0)R(λ0; ϕ).
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We also can find that

|H(λ0; ϕ)| ≤ max
{

1, R(λ0; ϕ) +
L(λ0; ϕ)

1 + β(λ0)

}
≤ R(λ0; ϕ) +

L(λ0; ϕ)

1 + β(λ0)

≤ R(λ0; ϕ) +
k(λ0)R(λ0; ϕ)

1 + β(λ0)

=

(
1 +

k(λ0)

1 + β(λ0)

)
R(λ0; ϕ).

So, for t ≥ 0, we have

|z(t)| ≤ μ(λ0)

(
1 +

k(λ0)

1 + β(λ0)

)
R(λ0; ϕ) +

k(λ0)R(λ0; ϕ)

1 + β(λ0)

=

[
μ(λ0)

(
1 +

k(λ0)

1 + β(λ0)

)
+

k(λ0)

1 + β(λ0)

]
R(λ0; ϕ)

= N(λ0)R(λ0; ϕ).

Finally, from the definition of z, we calculate

|y(t)| = N(λ0)R(λ0; ϕ)e−λ0t, t ≥ 0. (37)

When λ0 = 0,
|y(t)| = N(0)R(0; ϕ), t ≥ 0.

Obviously, ‖ϕ‖ = max−r≤t≤0 |ϕ(t)| ≤ R(0; ϕ), and thus it follows that

|y(t)| = N(0)R(0; ϕ), t ≥ −r.

For arbitrary ε > 0, there exists a constant δ = ε
N(0) such that ‖ϕ‖ ≤ R(0; ϕ) ≤ δ. Then,

|y(t)| = N(0)R(0; ϕ) < N(0)δ = ε.

In addition, for λ0 < 0, the inequality (37) guarantees that

lim
t→∞

y(t) = 0.

Hence, the zero solution of (32) is asymptotically stable when λ0 < 0.

According to Theorem 2 and Theorem 1, we can obtain the following theorem.

Theorem 4. Assume that λ0 is a real root of characteristic Equation (33) and satisfies (34). Then,
the solutions x(t) of (1)–(3) and x̃(t) of (29)–(31) satisfy

lim
t→∞

[
e−λ0t(x(t)− x̃(t))

]
=

L(λ0; φ − φ̃)

1 + β(λ0)
.

Using Theorem 2 and Theorem 3, we can obtain the following theorem.

Theorem 5. Assume that λ0 is a real root of the characteristic Equation (32) and satisfies μ(λ0) <
1. Then, the solution x(t) of (1)–(3) and x̃(t) of (29)–(31) satisfies

|x(t)− x̃(t)| ≤ N(λ0)R(λ0; φ − φ̃)eλ0t, ∀t ≥ 0,
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where

N(λ0) = μ(λ0) + k(λ0)

(
1 + μ(λ0)

1 + β(λ0)

)
and

k(λ0) = 1 + |b|τe−λ0τ + |c|(1 + |λ0|σe−λ0σ).

Moreover, the solution of (1)–(3) is described as follows:

(i) The solution is stable if λ0 = 0, or, equivalently, if the following conditions are satisfied:

a + b = 0, |b|τ + |c| < 1; (38)

(ii) The solution is asymptotically stable if λ0 < 0;
(iii) The solution is unstable if λ0 > 0.

3.2. Asymptotical Stability of Euler’s Method for IDDEs

To analyze the stability of the numerical method (4) for (1)–(3), we also consider the
Euler method for IDDE (29)–(31), as follows:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

X̃n+1 = X̃n + ahX̃n + bhX̃n−m2 − cX̃n−m1+1 + cX̃n−m1 , n �= ηk − 1, n − m1 �= ηj − 1
Ỹk = X̃n + ahX̃n + bhX̃n−m2 − cX̃n−m1+1 + cX̃n−m1 , n = ηk − 1,
X̃n+1 = X̃n + ahX̃n + bhX̃n−m2 − cỸj + cX̃n−m1 , n − m1 = ηj − 1,
X̃ηk = Ỹk + lk,
X̃i = φ̃i = φ̃(ih), ih ∈ [−r, 0], i ∈ [−m, 0].

(39)

Definition 4. The Euler method for INDDE (1)–(3) is said to be stable if for every ε > 0, there
exists a number δ = δ(ε) > 0 such that

max
−m≤i≤0

|φi − φ̃i| < δ,

which implies that
|Xn − X̃n| < ε, for all n ≥ 0,

where Xn and X̃n are obtained from (4) and (39), respectively.
The Euler method for INDDE (1)–(3) is said to be asymptotically stable if it is stable and there

exists a number δ1 > 0 such that max−m≤i≤0 |φ(ih)− φ̃(ih)| < δ1 implies

lim
n→∞

|Xn − X̃n| = 0.

Denote yn = δXn = Xn − X̃n,n ≥ −m, δφi = φ(ih)− φ̃(ih), i = −m, · · · , 0. It is very
interesting that we can obtain the following neat difference equation from (4) and (39):

yn+1 = yn + ahyn + bhyn−m2 − cyn−m1+1 + cyn−m1 , ∀n ∈ N, (40)

yi = δφi, i = −m, · · · , 0. (41)

The characteristic equation of (40) is

(λ − 1)(1 + cλ−m1) = ha + hbλ−m2 . (42)

Applying [26] (Theorem 1) to the differential Equations (40) and (41), we can obtain
the following theorem of the Euler method for INDDEs.
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Theorem 6. Assume that λ1 is a positive root of characteristic Equation (42) and satisfies

μλ1 = |c| − m1λ−m1
1 |c||1 − 1

λ1
|+ 1

λ1
hm2|b|λ−m2

1 < 1. (43)

Then, the solutions Xn obtained from (4) and X̃n obtained from (39) satisfy

lim
n→∞

λ−n
1 |Xn − X̃n| =

Lλ1(φ)

1 + γλ1

,

where

Lλ1(φ) = φ0 + cφ−m1 − (1 − 1
λ1

)cλ−m1
1

−1

∑
s=−m1

λ−s
1 φs +

1
λ1

hbλ−m2
1

−1

∑
s=−m2

λ−s
1 φs

and

γλ1 = ∑ c
(

1 − (1 − 1
λ1

)m1

)
λ−m1

1 +
1

λ1
bm2λ−m2

1 .

Similarly, applying [26] (Theorem 2) to (40) and (41), we can obtain the following theo-
rem.

Theorem 7. Assume that λ1 is a real root of characteristic Equation (42) and satisfies μλ1 < 1.
Then, the solutions Xn obtained from (4) and X̃n obtained from (39) satisfy

|Xn − X̃n| ≤ Nλ1‖φ‖λn
1 , ∀n ≥ 0,

where

Nλ1 =
1 + μλ1

1 + γλ1

+

(
1 +

1 + μλ1

1 + γλ1

)
μλ1 max{1, λr

1}.

Moreover, the Euler method (4) for INDDE (1)–(3) is described as follows:

(i) The solution is stable if λ1 = 1, or, equivalently, if the following conditions are satisfied:

a + b = 0, |c|+ h|b|m2 < 1; (44)

(ii) The solution is asymptotically stable if λ1 < 1;
(iii) The solution is unstable if λ1 > 1.

Corollary 1. If the condition (38) holds, the Euler method (4) preserves the stable property of
INDDE (1)–(3) without additional restrictions on the stepsize.

Proof. Using Theorem 5, we find that the solution x(t) of INDDE (1)–(3) is stable. Because
m2 = � τ

h �, it is easy to conclude that m2h ≤ τ. Hence, the condition (38) holds, implying
that (44) holds. Based on Theorem 7, we can affirm that the Euler method (4) for INDDE
(1)–(3) is also stable.

4. Numerical Examples

In this section, two examples are given to illustrate the conclusions of this paper.

Example 1. Consider the following INDDE:(
x(t)− 1

3e
x(t − 1

2
)

)′
=

1
3

x(t)− 1
e

x(t − 1
5
), t ≥ 0, t �= k, (45)

Δx(τk) =

(
−1

e

)k
, τk = k, k ∈ Z

+, (46)
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x(t) = φ(t), −1
2
≤ t ≤ 0. (47)

The characteristic equation of (45) is

λ

(
1 − 1

3e

)
=

1
3
− 1

e
e−

λ
5 . (48)

Solving (48), we find that λ1 ≈ −3.94 and λ2 ≈ −0.043. Let λ0 = λ2, which implies that
μ(λ0) < 1. Using Theorem 5, we can conclude that the exact solution of (45)–(47) is asymptotically
stable in the sense of Definition 2.

Let h = 1
i , i ∈ Z+, with i being divisible by 10. The characteristic Equation (42) of (40) for

(45) is then changed into

(λ − 1)(1 − λ− i
2

3e
) =

1
3i

− λ− i
5

ie
. (49)

When i = 10, (49) is changed into f (λ) = 0, where

f (λ) = (λ − 1)(1 − λ−5

3e
)− 1

30
+

λ−2

10e
. (50)

A root of f (λ) = 0 is λ1 ≈ 0.995685180437323 < 1. It is easy to verify that μλ1 < 1. Applying
Theorem 7, we can conclude that the Euler method (4) for (45)–(47) is asymptotically stable for
h = 1

10 (see Figure 1).
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Figure 1. The Euler method (4) for (45)–(47), when h = 1
10 .

In Table 1, the global errors at t = 6
5 and t = 7

5 of the Euler method (4) for (45)–(47) are
represented by e6/5 and e7/5, respectively. As can be seen from the ratios in this table, when the
stepsizes are halved, the global errors become about half of the originals, which roughly shows that
the Euler method (4) for (45)–(47) is convergent of order 1.

Table 1. The global errors of the Euler scheme for INDDE (45)–(47).

Stepsize e6/5 Ratio e7/5 Ratio

1/20 0.0066590383 6.0532924880 × 10−4

1/40 0.0033576411 0.5042231270 3.3600485518 × 10−4 0.5550778454
1/80 0.0016859400 0.5021203734 1.7654071490 × 10−4 0.52541120220
1/160 8.4476115143 × 10−4 0.5010624028 9.0430888108 × 10−5 0.5122381438
1/320 4.2282978351 × 10−4 0.5005317572 4.5758856992 × 10−5 0.5060091519

According to Figure 2, the numerical solution obtained from (4) for (45)–(47) does not make
additional jumps, but rather only jumps near t = k, k ∈ N, which is consistent with the nature of
the exact solution (see (a) of Definition 1).
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Figure 2. Comparison of the numerical solution obtained from (4) for (45)–(47) in this paper with
that obtained from the numerical format constructed in Ref. [22], when h = 1

10 .

Example 2. Consider the following INDDE:(
x(t) +

1
2

x(t − 1)
)′

= x(t) +
1
2

x(t − 1), t ≥ 0, t �= 2k (51)

Δx(τk) = k, τk = 2k, k ∈ Z
+, (52)

x(t) = φ(t), −1 ≤ t ≤ 0. (53)

The characteristic equation of (51) is

λ
(

2 + e−λ
)
= 2 + e−λ, (54)

which implies that λ = 1 is the unique real root of (54). For λ0 = λ = 1,

μ(λ0) =
1
2e

+
1
e
< 1.

Consequently, the exact solution of (51)–(53) is unstable, based on Theorem 3.
Let h = 1

i , i ∈ Z+, with i being divisible by 10. The characteristic Equation (42) of (40) for
(51) is then changed into

(λ − 1)(1 +
λ−i

2
) =

1
i
+

λ−i

2i
. (55)

When i = 10, (55) is changed into g(λ) = 0, where

g(λ) = (λ − 1)(1 +
λ−10

2
)− 1

10
− λ−10

20
. (56)

A root of g(λ) = 0 is λ1 ≈ 1.1 > 1. It is easy to verify that μλ1 < 1. Applying Theorem 7, we can
affirm that the Euler method (4) for (51)–(53) is unstable for h = 1

10 (see Figure 3).
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Figure 3. The Euler method (4) for (45)–(47), when h = 1
10 .

In Table 2, the global errors at t = 3 and t = 4 of the Euler method (4) for (51)–(53) are
represented by e3 and e4, respectively. As can be seen from the ratios in this table, when the stepsizes
are halved, the global errors decrease to about half of the originals, which roughly shows that the
Euler method (4) for (51)–(53) is convergent of order 1.

Table 2. The global errors of the Euler scheme for INDDE (51)–(53).

Stepsize e3 Ratio e4 Ratio

1/100 0.0134679990 0.0730382471
1/200 0.0067647055 0.5022799238 0.0367309910 0.5029007739
1/400 0.0033900841 0.5011428898 0.0184189152 0.5014543502
1/800 0.0016969818 0.5005721798 0.0092228697 0.5007281696
1/1600 8.4897669001 × 10−4 0.5002862740 0.0046147951 0.5003643339

5. Conclusions and Future Work

In this research, we have introduced a new numerical scheme based on the Euler
method for solving linear impulsive neutral differential equations. It is rigorously proven
that the constructed numerical method is convergent of order 1. Additionally, we have
determined the conditions under which the numerical solutions maintain the asymptotic
stability of the exact solutions.

Overall, we find that the numerical methods constructed in this article are only
convergent of order 1. Future work will focus on developing higher-order numerical
methods for INDDEs.
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Abstract: The Klein–Gordon equation plays an important role in mathematical physics, such as
plasma and, condensed matter physics. Exploring its exact solution helps us understand its complex
nonlinear wave phenomena. In this paper, we first propose a new extended Jacobian elliptic function
expansion method for constructing rich exact periodic wave solutions of the (2+1)-dimensional
Klein–Gordon equation. Then, we introduce a novel wave transformation for constructing nonlinear
complex waves. To demonstrate the effectiveness of this method, we numerically simulated several
sets of complex wave structures, which indicate new types of complex wave phenomena. The results
show that this method is simple and effective for constructing rich exact solutions and complex
nonlinear wave phenomena to nonlinear equations.

Keywords: (2+1)-dimensional Klein–Gordon equation; Jacobian elliptic function; auxiliary equation;
nonlinear evolution equation; complex wave structure

MSC: 37N15; 37N30; 35Q40; 35Q51

1. Introduction

Under specific approximate conditions, many nonlinear wave phenomena can be ex-
pressed as nonlinear mathematical problems in the form of nonlinear evolution equations
(NLEEs). In research in fields such as physics and engineering, many well-known NLEEs
have been developed to explain the dynamics of some nonlinear waves [1–7]. Therefore,
it is very important to obtain the exact solutions of these NLEEs for understanding the
spatiotemporal dynamics of physics phenomena. In order to obtain the exact traveling
wave solutions of the NLEEs, a number of methods have been proposed, such as the
F-expansion method [8,9], tanh–sech method and its extension [10,11], Jacobi elliptic func-
tion method [12–15], auxiliary equation method in refs. [15–19], (G’/G)-expansion method
and its extension [20–23] and so on. These methods can basically provide a large number
of exact solutions when dealing with certain types of NLEEs. However, there are still some
issues that need further research in the field of nonlinear science. For example, developing
a simple and universal method to construct complex and diverse exact analytical solutions
and nonlinear wave structures for NLEEs is a development direction in nonlinear physics
research. In ref. [24], an extended Jacobi elliptic function method is proposed to solve
the (2+1)-dimensional asymmetric Nizhnik–Novikov–Veselov (aNNV) equation. A large
number of new types of exact Jacobian elliptic function solutions have been obtained
and various nonlinear wave structures are constructed through different arbitrary wave
transformations. However, this type of arbitrary wave transformation only exists as a
traveling wave solution in most nonlinear systems, and there are still other forms of wave
transformations and wave structures in these nonlinear systems, which is the creative
purpose of this paper.
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Among the NLEEs, the Klein–Gordon equation plays an important role in nonlin-
ear mathematical physics, such as plasma electromagnetic interactions, the relativistic
hydrogen spectrum, coulomb scattering, nonlinear optics, solid state physics, quantum
field theory, etc. [25–27]. In this paper, we consider the following (2+1)-dimensional Klein–
Gordon equation [28,29]:

uxx + uyy − utt + αu − βu3 = 0, (1)

Equation (1) and its general formula have been solved by various methods, and a large num-
ber of exact solutions have been obtained [15,28–31]. There are still some other solutions
applied to Klein–Gordon-type equations, such as the solitonic, rogue wave and lump wave
solutions in Ref. [32], the doubly periodic function solutions in ref. [33] and the hyperbolic,
trigonometric and rational functions solutions in ref. [34]. Although these methods are
effective in solving (2+1)-dimensional Klein–Gordon equations, there are still some new
types of solutions and nonlinear wave structures to be explored. The main work of this
paper is to apply a new extended Jacobian elliptic function expansion method to solve the
(2+1)-dimensional Klein–Gordon equation. As a result, we have obtained a large number
of new and more general solutions of the (2+1)-dimensional Klein–Gordon equation, which
may provide useful help for physicists studying more complicated physical phenomena.
Then, we obtained a large number of complex wave structures through a new nonlinear
wave construction method.

The structure of the manuscript is as follows: In Section 2, many new solutions of
the Jacobian elliptic equation were constructed through two transformation relationships.
In Section 3, a detailed introduction is given on how to use this scheme to handle the
(2+1)-dimensional Klein–Gordon equation, and general expressions of the solutions were
obtained. In Section 4, a set of Jacobian elliptic function solutions is used as an example to
prove that this method is powerful and effective. Multiple complex wave structures have
been constructed using a new nonlinear wave construction method in Section 5. Finally,
Section 6 is the conclusion and discussion.

2. New Jacobian Elliptic Function Solutions of Elliptic Equation

We consider the following form of elliptic equation,[
g′(ξ)

]2
= pg4(ξ) + qg2(ξ) + r, (2)

where p, q and r are undetermined constants. Equation (2) has Jacobian elliptic function
solutions as shown in Table 1, where i2 = −1. It should be pointed out that in the first
column of the table, sn(ξ), cd(ξ) = cn(ξ)/dn(ξ) mean g(ξ) = sn(ξ), and g(ξ) = cd(ξ) =
cn(ξ)/dn(ξ).

Table 1. The Jacobi elliptic function solutions of Equation (2).

g(ξ) p q r

sn(ξ), cd(ξ) = cn(ξ)/dn(ξ) m2 −
(
1 + m2) 1

cn(ξ) −m2 −1 + 2m2 1 − m2

dn(ξ) −1 2 − m2 −1 + m2

ns(ξ) = 1
sn(ξ) ,

dc(ξ) = dn(ξ)/cn(ξ)
1 −

(
1 + m2) m2

nc(ξ) = 1/ cn(ξ) 1 − m2 −1 + 2m2 −m2

nd(ξ) = 1/ dn(ξ) −1 + m2 2 − m2 −1

cs(ξ) = cn(ξ)/sn(ξ) 1 2 − m2 1 − m2

sc(ξ) = sn(ξ)/cn(ξ) 1 − m2 2 − m2 1
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Table 1. Cont.

sd(ξ) = sn(ξ)/dn(ξ) m2(−1 + m2) −1 + 2m2 1

ds(ξ) = dn(ξ)/sn(ξ) 1 −1 + 2m2 m2(−1 + m2)
m cn(ξ)± dn(ξ) −1/4

(
1 + m2)/2 −

(
1 − m2)2/4

ns(ξ)± cs(ξ),
cn(ξ)/

(√
1 − m2sn(ξ)± dn(ξ)

msn(ξ)± idn(ξ),
sn(ξ)/(1 ± cn(ξ)

1/4
(
1 − 2m2)/2 1/4

nc(ξ)± sc(ξ), cn(ξ)/(1 ± sn(ξ))
(
1 − m2)/4

(
1 + m2)/2

(
1 − m2)/4

ns(ξ)± ds(ξ) 1/4
(
−2 + m2)/2 m4/4

sn(ξ)± icn(ξ),
dn(ξ)/

(√
m2 − 1sn(ξ)± cn(ξ)

) m2/4
(
−2 + m2)/2 m2/4

dn(ξ)/(
√

m2−1
m2 ± cn(ξ)) 1

4m2

(
1 − 2m2)/2 m2/4

sn(ξ)/(1 ± dn(ξ)) m2/4
(
−2 + m2)/2 1/4

dn(ξ)/(1 ± msn(ξ))
(
−1 + m2)/4

(
1 + m2)/2

(
−1 + m2)/4

sn(ξ)/(cn(ξ)± dn(ξ))
(
1 − m2)2/4

(
1 + m2)/2 1/4

cn(ξ)/
(√

1 − m2 ± dn(ξ)
)

m4/4
(
−2 + m2)/2 1/4

sn(ξ)/(cn(ξ)dn(ξ))
(
1 − m2)2 2

(
1 + m2) 1

cn(ξ)dn(ξ)/ sn(ξ) 1 2
(
1 + m2) (

1 − m2)2

cn(ξ)
sn(ξ)dn(ξ) ,

sn(ξ)dn(ξ)/cn(ξ)
1 2

(
1 − 2m2) 1

sn(ξ)cn(ξ)/dn(ξ) m4 2
(
−2 + m2) 1

dn(ξ)/(sn(ξ)cn(ξ)) 1 2
(
−2 + m2) m4

To construct new solutions for Equation (2), we introduce the elliptic equation shown below,[
f ′(ξ)

]2
= p1 f 4(ξ) + q1 f 2(ξ) + r1, (3)

where p1, q1 and r1 are undetermined constants. Next, we will solve Equation (3) through
two different transformation relationships. Firstly, we assume that f (ξ) and g(ξ) satisfy
the following relationship,

Case 1

f (ξ) =
g(ξ)

a0g2(ξ) + a1g′(ξ) + a2
, (4)

where a0, a1 and a2 are constants that are not all zero at the same time. Substituting
Equation (4) into Equation (3) and solving the resulting system of equations, we can obtain
the following families of equations.

Family 1

p1 = r, q1 = q, r1 = p, a0 = 1, a1 = 0, a2 = 0. (5)

Family 2

p1 = p, q1 = q, r1 = r, a0 = 0, a1 = 0, a2 = 1. (6)
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Family 3

p1 = q2 − 4pr, q1 = −2q, r1 = 1, a0 = 0, a1 = 1, a2 = 0. (7)

Family 4

p1 = 8r ± 4q
√

r
p

, q1 = q ± 6
√

pr, r1 = p, a0 = 1, a1 = 0, a2 = ∓
√

r
p

. (8)

Family 5

p1 = pr − 3
4

q2 ± 3q
√

pr, q1 =
q
2
± 3

√
pr, r1 =

1
4

, a0 = ±√
p, a1 = 1, a2 = ±

√
r. (9)

We again assume that f (ξ) and g(ξ) satisfy the following relationship:

Case 2

f (ξ) =
√

ag2(ξ) + bg′(ξ) + c. (10)

By solving this case, we can obtain the following relationship equations,

Family 6

a = ±b
√

p, c = −b
√

r, p1 = ±
√

p
2b , q1 = 1

4 (q ± 6
√

pr), r1 =
(q

√
r±2r

√
p)b

2 , b �= 0. (11)

Family 7

a = ±b
√

p, c = ± bq
2
√

p
, p1 = ±

√
p

2b
, q1 = − q

2
, r1 = ±

(
q2 − 4pr

)
b

8
√

p
, b �= 0. (12)

By using the two transformation relationships of f (ξ) and g(ξ) mentioned above,
we obtain the solutions of Equations (4) and (10) for two sets of general expressions
of Equation (3). Through Table 1, different forms of complex Jacobian elliptic function
solutions can be obtained.

3. Method and Application to the (2+1)-Dimensional Klein–Gordon Equation

We assume Equation (1) has the following nonlinear wave solution,

u(x, y, t) = u(ξ), ξ = Φ(x, y, t), (13)

where Φ(x, y, t) is an arbitrary wave function about x, y and t. Substituting Equation (13)
into Equation (1) yields(

Φx
2 + Φy

2 − Φt
2
)

u′′ +
(
Φxx + Φyy − Φtt

)
u′ + αu − βu3 = 0. (14)

where u′, Φx, Φy and Φt mean du(ξ)
dξ , ∂Φ(x,y,t)

∂x , ∂Φ(x,y,t)
∂y and ∂Φ(x,y,t)

∂t . Then, according to the
method in Ref. [24], we assume Equation (14) has the following formal solutions,

u(ξ) = a0 + a1 f (ξ) + b1
1

f (ξ)
+ c1

f ′(ξ)
f (ξ)

, (15)

where a0, a1, b1 and c1 are constants determined later, and f (ξ) represents the solutions of
the Equation (3). Substituting Equation (15) into Equation (14) and setting the coefficients
of f i(ξ) and f i(ξ) f ′(ξ) to zero yields a set of algebraic equations about a0, a1, b1, c1, Φx, Φy,
Φt, Φxx, Φyy and Φtt. Solving the resulting equations, the following sets of coefficients can
be obtained:

151



Mathematics 2024, 12, 2867

Set 1

a0 = 0, a1 = ±
√
− 2p1α

q1β , b1 = 0, c1 = 0, Φxx + Φyy − Φtt

= 0, Φx
2 + Φy

2 − Φt
2 = − α

q1
.

(16)

Set 2

a0 = 0, a1 = 0, b1 = ±
√
− 2r1α

q1β , c1 = 0, Φxx + Φyy − Φtt

= 0, Φx
2 + Φy

2 − Φt
2 = − α

q1
.

(17)

Set 3

a0 = 0, a1 = 0, b1 = 0, c1 = ±
√

α
q1β , Φxx + Φyy − Φtt

= 0, Φx
2 + Φy

2 − Φt
2 = α

2q1
.

(18)

Set 4

a0 = 0, a1 = ±
√

2p1α

(q1±6
√

p1r1)β
, b1 = ±

√
2r1α

(q1±6
√

p1r1)β
, c1

= 0, Φxx + Φyy − Φtt = 0, Φx
2 + Φy

2 − Φt
2 = α

q1±6
√

p1r1
.

(19)

Set 5

a0 = 0, a1 = ±
√

p1α

(q1±6
√

p1r1)β
, b1 = ±

√ r1α

(q1±6
√

p1r1)β
, c1

= ±
√

α

(q1±6
√

p1r1)β
, Φxx + Φyy − Φtt

= 0, Φx
2 + Φy

2 − Φt
2 = − 2α

q1±6
√

p1r1
.

(20)

From the solution set obtained above, we can obtain the general expression of the
Jacobian elliptic function solutions of the (2+1)-dimensional Klein–Gordon equation in the
following forms:

u1(ξ) = ±
√
−2p1α

q1β
f (ξ), (21)

where ξ = Φ(x, y, t), Φxx + Φyy − Φtt = 0, Φx
2 + Φy

2 − Φt
2 = − α

q1
.

u2(ξ) = ±
√
−2r1α

q1β

1
f (ξ)

, (22)

where ξ = Φ(x, y, t), Φxx + Φyy − Φtt = 0, Φx
2 + Φy

2 − Φt
2 = − α

q1
.

u3(ξ) = ±
√

α

q1β

f ′(ξ)
f (ξ)

, (23)

where ξ = Φ(x, y, t), Φxx + Φyy − Φtt = 0, Φx
2 + Φy

2 − Φt
2 = α

2q1
.

u4(ξ) = ±
√

2p1α(
q1 ± 6

√
p1r1

)
β

f (ξ)±
√

2r1α(
q1 ± 6

√
p1r1

)
β

1
f (ξ)

, (24)
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where ξ = Φ(x, y, t), Φxx + Φyy − Φtt = 0, Φx
2 + Φy

2 − Φt
2 = α

q1±6
√

p1r1
.

u5(ξ) = ±
√

p1α

(q1±6
√

p1r1)β
f (ξ)±

√ r1α

(q1±6
√

p1r1)β
1

f (ξ)

±
√

α

(q1±6
√

p1r1)β

f ′(ξ)
f (ξ) ,

(25)

where ξ = Φ(x, y, t), Φxx + Φyy − Φtt = 0, Φx
2 + Φy

2 − Φt
2 = 2α

q1±6
√

p1r1
.

The solutions of Equations (21)–(25) are the general form of the (2+1)-dimensional Klein–
Gordon equation expressed by f (ξ), and the value of f (ξ) is determined by Equation (3).
Through Equations (2)–(12), p1, q1 and r1 in Equation (3) can be expressed by p, q and r in
Equation (2). Then, according to p, q and r in Table 1, the various Jacobian elliptic function
solutions of the (2+1)-dimensional Klein–Gordon equation can be obtained. These five
sets of solutions contain a large number of Jacobi elliptic function solutions, trigonometric
function solutions when the modulus m = 0 and hyperbolic function solutions when the
modulus m = 1. These solutions are generally new exact solutions to the (2+1)-dimensional
Klein– Gordon equation, which have not been found in other literature.

4. Example of a Set of Solutions

In the following, we will provide a set of examples to demonstrate the power and
effectiveness of this method. According to Table 1, if we select p = m2, q = −

(
1 + m2) and

r = 1, g(ξ ) = cn(ξ)/dn(ξ), from Equation (5), we can obtain

p1 = 1, q1 = −
(

1 + m2
)

, r1 = m2, a0 = 1, a1 = 0, a2 = 0. (26)

Substituting Equation (26) into Equations (21)–(25), we can obtain the following
Jacobian elliptic function solutions of the (2+1)-dimensional Klein–Gordon equation:

u11(ξ) = ±
√

2α

(1 + m2)β

dn(ξ)
cn(ξ)

, (27)

where ξ = Φ(x, y, t), Φxx + Φyy − Φtt = 0, Φx
2 + Φy

2 − Φt
2 = α

1+m2 .

u12(ξ) = ±
√

2m2α

(1 + m2)β

cn(ξ)
dn(ξ)

, (28)

where ξ = Φ(x, y, t), Φxx + Φyy − Φtt = 0, Φx
2 + Φy

2 − Φt
2 = α

1+m2 .

u13(ξ) = ±
√

α

(1 + m2)β

(
m2 − 1

)
sn(ξ)

cn(ξ)dn(ξ)
, (29)

where ξ = Φ(x, y, t), Φxx + Φyy − Φtt = 0, Φx
2 + Φy

2 − Φt
2 = − α

2(1+m2)
.

u14(ξ) = ±
√

2α

[−(1 + m2)± 6m]β

dn(ξ)
cn(ξ)

±
√

2m2α

[−(1 + m2)± 6m]β

cn(ξ)
dn(ξ)

, (30)

where ξ = Φ(x, y, t), Φxx + Φyy − Φtt = 0, Φx
2 + Φy

2 − Φt
2 = α

−(1+m2)±6m .

u15(ξ) = ±
√

α
[−(1+m2)±6m]β

dn(ξ)
cn(ξ) ±

√
2m2α

[−(1+m2)±6m]β
cn(ξ)
dn(ξ)

±
√

α
[−(1+m2)±6m]β

(m2−1)sn(ξ)
cn(ξ)dn(ξ) ,

(31)

where ξ = Φ(x, y, t), Φxx + Φyy − Φtt = 0, Φx
2 + Φy

2 − Φt
2 = 2α

−(1+m2)±6m .
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Due to the construction form of the solution in Equation (5), the solutions obtained in
Family 2 are the same as those in Family 1. From Equation (7) we can obtain the following:

Family 3

p1 =
(

1 − m2
)2

, q1 = 2
(

1 + m2
)

, r1 = 1, a0 = 0, a1 = 1, a2 = 0. (32)

According to Equations (32) and (21)–(25), the solutions of the (2+1)-dimensional
Klein–Gordon equation read as follows:

u31(ξ) = ±
√
− α

(1 + m2)β

cn(ξ)dn(ξ)
sn(ξ)

, (33)

where ξ = Φ(x, y, t), Φxx + Φyy − Φtt = 0, Φx
2 + Φy

2 − Φt
2 = − α

2(1+m2)
.

u32(ξ) = ±
√
− α

(1 + m2)β

(
m2 − 1

)
sn(ξ)

cn(ξ)dn(ξ)
, (34)

where ξ = Φ(x, y, t), Φxx +Φyy −Φtt = 0, Φx
2 +Φy

2 − Φt
2 = − α

2(1+m2)
, which is the same

as u13(ξ).

u33(ξ) = ±
√
− α

2(1 + m2)β

1 − m2sn4(ξ)

sn(ξ)cn(ξ)dn(ξ)
, (35)

where ξ = Φ(x, y, t), Φxx + Φyy − Φtt = 0, Φx
2 + Φy

2 − Φt
2 = α

4(1+m2)
.

u34(ξ) = ±
√

α
[(1+m2)±3(1−m2)]β

cn(ξ)dn(ξ)
sn(ξ)

±
√

α
[(1+m2)±3(1−m2)]β

(m2−1)sn(ξ)
cn(ξ)dn(ξ) ,

(36)

where ξ = Φ(x, y, t), Φxx + Φyy − Φtt = 0, Φx
2 + Φy

2 − Φt
2 = α

2(1+m2)±6(1−m2)
.

u35(ξ) = ±
√

α
[2(1+m2)±6(1−m2)]β

cn(ξ)dn(ξ)
sn(ξ)

±
√

α
[2(1+m2)±6(1−m2)]β

(m2−1)sn(ξ)
cn(ξ)dn(ξ)

±
√

α
[2(1+m2)±6(1−m2)]

1−m2sn4(ξ)
sn(ξ)cn(ξ)dn(ξ) ,

(37)

where ξ = Φ(x, y, t), Φxx + Φyy − Φtt = 0, Φx
2 + Φy

2 − Φt
2 = α

(1+m2)±3(1−m2)
.

From Equation (8) we can obtain the following:

Family 4

p1 = 8 ∓ 4(1+m2)
m , q1 = −(1 + m2)± 6m, r1 = m2, a0 = 1, a1 = 0, a2 = ∓ 1

m . (38)

According to Equations (36) and (21)–(25), the solutions of the (2+1)-dimensional
Klein–Gordon equation read as follows:

u41(ξ) = ±m

√√√√ 2
[
8 + λ

4(1+m2)
m

]
α

[(1 + m2) + 6λm]β

cn(ξ)dn(ξ)
mcn2(ξ) + λdn2(ξ)

, (39)

where ξ = Φ(x, y, t), Φxx + Φyy − Φtt = 0, Φx
2 + Φy

2 − Φt
2 = α

(1+m2)−6λm , λ2 = 1.

u42(ξ) = ±m

√
2α

[(1 + m2) + 6λm]β

[
cn(ξ)
dn(ξ)

+
λdn(ξ)
mcn(ξ)

]
, (40)

154



Mathematics 2024, 12, 2867

where ξ = Φ(x, y, t), Φxx + Φyy − Φtt = 0, Φx
2 + Φy

2 − Φt
2 = α

(1+m2)+6λm , λ2 = 1.

u43(ξ)

= ±
√

α
[−(1+m2)+6λm]β

m3cn4(ξ)sn(ξ)−msn(ξ)cn2(ξ)dn2(ξ)−λsn(ξ)dn4(ξ)+λm2sn(ξ)cn2(ξ)dn2(ξ)

m2cn3
(ξ)dn(ξ)−λmdn3(ξ)cn(ξ)

, (41)

where ξ = Φ(x, y, t), Φxx + Φyy − Φtt = 0, Φx
2 + Φy

2 − Φt
2 = α

2[−(1+m2)+6λm]
, λ2 = 1.

u44(ξ) = ±

√√√√√√ 2
[

8−λ
4(1+m2)

m

]
α[

−(1+m2)+6λm±6m

√
8− 4λ(1+m2)

m

]
β

mcn(ξ)dn(ξ)
mcn2(ξ)−λdn2(ξ)

±m
√√√√ 2α[

−(1+m2)+6λm±6m

√
8− 4λ(1+m2)

m

]
β

[
cn(ξ)
dn(ξ)

− λdn(ξ)
mcn(ξ)] ,

(42)

where ξ = Φ(x, y, t), Φxx +Φyy −Φtt = 0, Φx
2 +Φy

2 −Φt
2 = α

−(1+m2)+6λm±6m

√
8− 4λ(1+m2)

m

,

λ2 = 1.

u45(ξ)

= ±

√√√√√√
[

8−λ
4(1+m2)

m

]
α[

−(1+m2)+6λm±6m

√
8− 4λ(1+m2)

m

]
β

mcn(ξ)dn(ξ)
mcn2(ξ)−λdn2(ξ)

±m
√

α[
−(1+m2)+6λm±6m

√
8− 4λ(1+m2)

m

]
β

[
cn(ξ)
dn(ξ) −

λdn(ξ)
mcn(ξ)

]
±
√

α[
−(1+m2)+6λm±6m

√
8− 4λ(1+m2)

m

]
β

m3cn4(ξ)sn(ξ)−msn(ξ)cn2(ξ)dn2(ξ)−λsn(ξ)dn4(ξ)+λm2sn(ξ)cn2(ξ)dn2(ξ)

m2cn3
(ξ)dn(ξ)−λmdn3(ξ)cn(ξ)

,

(43)

where ξ = Φ(x, y, t), Φxx +Φyy −Φtt = 0, Φx
2 +Φy

2 −Φt
2 = 2α

−(1+m2)+6λm±6m

√
8− 4λ(1+m2)

m

,

λ2 = 1.
From Equation (9) we can obtain the following:

Family 5

p1 = m2 − 3
4 (1 + m2)

2
+ 3λμm(1 + m2), q1 = − 1+m2

2 − 3λμm, r1 = 1
4 , a0

= λm, a1 = 1, a2 = μ, λ2 = 1, μ2 = 1.
(44)

According to Equations (44) and (21)–(25), the solutions of the (2+1)-dimensional
Klein–Gordon equation read as follows:

u51(ξ)

= ±
√

2
[
m2− 3

4 (1+m2)
2
+3λμm(1+m2)

]
α[

1+m2
2 +3λμm

]
β

cn(ξ)dn(ξ)
λmcn2(ξ)+(m2−1)sn(ξ)+μdn2(ξ)

,
(45)

where ξ = Φ(x, y, t), Φxx +Φyy −Φtt = 0, Φx
2 +Φy

2 −Φt
2 = − α

1+m2
2 +3λμm

, λ2 = 1, μ2 = 1.

u52(ξ) = ±
√√√√ α

2
[

1+m2

2 + 3λμm
]

β

λmcn2(ξ) +
(
m2 − 1

)
sn(ξ) + μdn2(ξ)

cn(ξ)dn(ξ)
, (46)
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where ξ = Φ(x, y, t), Φxx + Φyy − Φtt = 0, Φx
2 + Φy

2 − Φt
2 = − α

1+m2
2 +3λμm

, λ2 = 1, μ2 = 1.

u53(ξ) = ±
√
− α[

1+m2
2 +3λμm

]
β

−λm(m2−1)sn(ξ)cn2(ξ)−m2cn4(ξ)+dn4(ξ)+μsn(ξ)dn2(ξ)

λmcn3(ξ)dn(ξ)+(m2−1)sn(ξ)cn(ξ)dn(ξ)+μcn(ξ)dn3(ξ)
, (47)

where ξ = Φ(x, y, t), Φxx + Φyy − Φtt = 0, Φx
2 + Φy

2 − Φt
2 = α

− 1+m2
2 −3λμm

, λ2 = 1, μ2 = 1.

u54(ξ)

= ±
√√√√ 2

[
m2− 3

4 (1+m2)
2
+3λμm(1+m2)

]
α[

− 1+m2
2 −3λμm±3

√
m2− 3

4 (1+m2)
2
+3λμm(1+m2)

]
β

cn(ξ)dn(ξ)
λmcn2(ξ)+(m2−1)sn(ξ)+μdn2(ξ)

±
√

α

2
[
− 1+m2

2 −3λμm±3
√

m2− 3
4 (1+m2)

2
+3λμm(1+m2)

]
β

λmcn2(ξ)+(m2−1)sn(ξ)+μdn2(ξ)

cn(ξ)dn(ξ) ,

(48)

where ξ = Φ(x, y, t), Φxx + Φyy − Φtt = 0, Φx
2 + Φy

2 − Φt
2 =

α

− 1+m2
2 −3λμm±3

√
m2− 3

4 (1+m2)
2
+3λμm(1+m2)

, λ2 = 1, μ2 = 1.

u55(ξ)

= ±
√√√√ [

m2− 3
4 (1+m2)

2
+3λμm(1+m2)

]
α[

− 1+m2
2 −3λμm±3

√
m2− 3

4 (1+m2)
2
+3λμm(1+m2)

]
β

cn(ξ)dn(ξ)
λmcn2(ξ)+(m2−1)sn(ξ)+μdn2(ξ)

±
√

α

4
[
− 1+m2

2 −3λμm±3
√

m2− 3
4 (1+m2)

2
+3λμm(1+m2)

]
β

λmcn2(ξ)+(m2−1)sn(ξ)+μdn2(ξ)

cn(ξ)dn(ξ)

±
√

α[
− 1+m2

2 −3λμm±3
√

m2− 3
4 (1+m2)

2
+3λμm(1+m2)

]
β

−λm(m2−1)sn(ξ)cn2(ξ)−m2cn4(ξ)+dn4(ξ)+μsn(ξ)dn2(ξ)

λmcn3(ξ)dn(ξ)+(m2−1)sn(ξ)cn(ξ)dn(ξ)+μcn(ξ)dn3(ξ)
,

(49)

where ξ = Φ(x, y, t), Φxx + Φyy − Φtt = 0, Φx
2 + Φy

2 − Φt
2 =

2α

− 1+m2
2 −3λμm±3

√
m2− 3

4 (1+m2)
2
+3λμm(1+m2)

, λ2 = 1, μ2 = 1.

Since Family 6 and Family 7 represent the same type of solution, we only provide a
demonstration represented by Family 6. From Equation (11) we can obtain the following:

Family 6

a = ±bm, c = −b, p1 = ± m
2b , q1 = 1

4 [−(1 + m2)± 6m], r1 =
[−(1+m2)±2m]b

2 , b �= 0.
(50)

Therefore, the corresponding solutions of the (2+1)-dimensional Klein–Gordon equation
can be represented as follows:

u61(ξ) = ±
√

4λmα

(−1 − m2 + 6λm)β

√
−λm

cn2(ξ)

dn2(ξ)
− m2 sn(ξ)cn2(ξ)

dn2(ξ)
+ sn(ξ) + 1, (51)

where ξ = Φ(x, y, t), Φxx + Φyy − Φtt = 0, Φx
2 + Φy

2 − Φt
2 = 4α

1+m2−6λm , λ2 = 1.

u62(ξ) = ±
√

4(1 + m2 − 2λm)α

(1 + m2 − 6λm)β

1√
−λm cn2(ξ)

dn2(ξ)
− m2 sn(ξ)cn2(ξ)

dn2(ξ)
+ sn(ξ) + 1

, (52)

where ξ = Φ(x, y, t), Φxx + Φyy − Φtt = 0, Φx
2 + Φy

2 − Φt
2 = 4α

1+m2−6λm , λ2 = 1.

u63(ξ) = ±
√

4(1+m2−2λm)α
(−1−m2+6λm)β

λm sn(ξ)cn3(ξ)
dn3(ξ)

−λ
sn(ξ)cn(ξ)

dn(ξ) +
m4sn2(ξ)cn

3
(ξ)

dn3(ξ)
+

1
2 m

2
cn3(ξ)−m2sn2(ξ)cn(ξ)

dn(ξ) −cn(ξ)dn(ξ)

λm cn2(ξ)
dn2(ξ)

+m2 sn(ξ)cn2(ξ)
dn2(ξ)

−sn(ξ)−1
, (53)
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where ξ = Φ(x, y, t), Φxx + Φyy − Φtt = 0, Φx
2 + Φy

2 − Φt
2 = 2α

−1−m2+6λm , λ2 = 1.

u64(ξ)

= ±
√

λmα[
1
4 (−1−m2+λ6m)±3

√
−λ(1+m2)m+2m2

]
β

√
λm cn2(ξ)

dn2(ξ)
+ m2 sn(ξ)cn2(ξ)

dn2(ξ)
− sn(ξ)− 1

±
√

[−(1+m2)+2λm]α[
1
4 (−1−m2+6λm)±3

√
−λ(1+m2)m+2m2

]
β

1√
λm cn2(ξ)

dn2(ξ)
+m2 sn(ξ)cn2(ξ)

dn2(ξ)
−sn(ξ)−1

,

(54)

where ξ = Φ(x, y, t), Φxx + Φyy − Φtt = 0, Φx
2 + Φy

2 − Φt
2 =

α
1
4 (−1−m2+6λm)±3

√
−λ(1+m2)m+2m2

, λ2 = 1.

u65(ξ)

= ±
√

1
2 λmα[

1
4 (−1−m2+6λm)±3

√
−λ(1+m2)m+2m2

]
β

√
λm cn2(ξ)

dn2(ξ)
+ m2 sn(ξ)cn2(ξ)

dn2(ξ)
− sn(ξ)− 1

±
√

1
2 [−(1+m2)+2λm]α[

1
4 (−1−m2+6λm)±3

√
−λ(1+m2)m+2m2

]
β

1√
λm cn2(ξ)

dn2(ξ)
+m2 sn(ξ)cn2(ξ)

dn2(ξ)
−sn(ξ)−1

±
√

α[
1
4 (−1−m2+6λm)±3

√
−λ(1+m2)m+2m2

]
β

λm sn(ξ)cn3(ξ)
dn3(ξ)

−λ
sn(ξ)cn(ξ)

dn(ξ) +
m4sn2(ξ)cn

3
(ξ)

dn3(ξ)
+

1
2 m

2
cn3(ξ)−m2sn2(ξ)cn(ξ)

dn(ξ) −cn(ξ)dn(ξ)

λm cn2(ξ)
dn2(ξ)

+m2 sn(ξ)cn2(ξ)
dn2(ξ)

−sn(ξ)−1
,

(55)

where ξ = Φ(x, y, t), Φxx + Φyy − Φtt = 0, Φx
2 + Φy

2 − Φt
2 =

2α
1
4 (−1−m2+6λm)±3

√
−λ(1+m2)m+2m2

, λ2 = 1.

From this set of example solutions, it can be seen that this method is very effective
and powerful for constructing complex exact solutions. In addition, these solutions also
include early simple forms of Jacobian elliptic function solutions of the (2+1)-dimensional
Klein– Gordon equation. Among these solutions, Equations (39)–(55) are the new exact
solutions of the (2+1)-dimensional Klein–Gordon equation that we have discovered for the
first time. Of course, there are still many new types of Jacobian elliptic function solutions
for the (2+1)-dimensional Klein–Gordon equation, which may also include corresponding
trigonometric and hyperbolic function solutions under limit conditions. Due to space
limitations, we will not provide examples one-by-one.

5. Local Nonlinear Wave Structures of (2+1)-Dimensional Klein–Gordon Equation

For all the Jacobian elliptic function solutions mentioned above, under the conditions
of general traveling wave transformation, we can obtain the periodic wave solutions of the
equation. However, since Equation (13) is a general wave transformation, it indicates that
the equation can have complex wave solutions. In this paper, we present a novel nonlinear
wave construction method to explore complex wave solutions that have not been mentioned
in other literatures. Through this method, we can construct various nonlinear complex
wave structures for the (2+1)-dimensional Klein–Gordon equation. In the following section,
the local nonlinear wave structure of the (2+1)-dimensional Klein–Gordon equation is
discussed by taking the solutions of Equation (39) as examples. In this set of solution, the
general wave ξ = Φ(x, y, t) satisfies

Φxx + Φyy − Φtt = 0, (56)

Φx
2 + Φy

2 − Φt
2 =

α

(1 + m2)∓ 6m
, (57)

Equation (56) can have the following general solution:

Φ(x, y, t) = Ψ1(kx + ly + ωt) + Ψ2(kx + ky − ωt) + h(x, y, t), (58)
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where k, l and ω are any nonzero constants and satisfy k2 + l2 = ω2, Ψ1, Ψ2, and h is any
second order differentiable function and satisfies hxx + hyy − htt = 0. Taking Equation (58)
into Equation (57), we can get the following limiting condition:

2(k2 + l2 + ω2)Ψ′
1Ψ′

2 + 2khx
(
Ψ′

1+Ψ′
2
)
+ 2lhy

(
Ψ′

1+Ψ′
2
)
− 2ωht

(
Ψ′

1−Ψ′
2
)
+ hx

2

+hy
2 − ht

2 = α
(1+m2)∓6m . (59)

In Equation (58), if h(x, y, t) is not introduced, Equation (59) can only have traveling wave
solutions. The traveling wave solutions commonly used in solving the Klein–Gordon
equation in the literature were mentioned above. The introduction of h(x, y, t) makes
Equation (59) have complex wave solutions. So, we can construct various nonlinear waves
of the (2+1)-dimensional Klein–Gordon equation by selecting different values for Ψ1, Ψ2,
and h that can meet Equations (56) and (59). In the following section, we will provide
several nonlinear wave examples.

Case 1

If we choose Ψ1 = 0, Ψ2 = 0 and h(x, y, t) = k1x+ l1y+ω1t, and α =
(

k1
2 + l12 + ω1

2
)

[(
1 + m2)∓ 6m

]
, where k1, l1 and ω1 are nonzero constants, we can obtain the peri-

odic wave structure of the (2+1)-dimensional Klein–Gordon equation shown in Figure 1.
This is a common wave structure that undergoes periodic changes with the phase space
(x, y, t). Although Equation (39) is a novel periodic wave solution of the (2+1)-dimensional
Klein–Gordon equation, the wave structure is similar to the periodic wave structure in
ref. [7].

   

Figure 1. Three-dimensional plots in (x, y) phase space (a) and (x, t) phase space (b), as well as a
two-dimensional contour plot (c) for t = 0 and a two-dimensional plot (d) in y = 0 and t = 0 rep-
resent the periodic wave solution of Equation (39), under conditions of k = 1, l = 1, ω =

√
2,

k1 = 2, l1 = 2, ω1 = 1, m = 0.2, λ = 1, Ψ1 = 0, Ψ2 = 0, h(x, y, t) = k1x + l1y + ω1t and
α =

(
k1

2 + l1
2 + ω1

2
)[(

1 + m2)∓ 6m
]
.

Case 2

If we choose Ψ1 = − kk1x+ll1y+ωω1t
ω2 (kx + ky + ωt), Ψ2 = cosh(kx + ly − ωt), h(x, y, t) =

k1x2 + l1y2 + ω1t2, and α = (lk1x+kl1y)2

ω2 [(1 + m2)∓ 6m], we can obtain the new type of com-
plex wave structure of the (2+1)-dimensional Klein–Gordon equation shown in Figure 2.
This is a nonlinear wave propagating along the x or y direction in two-dimensional space
under certain conditions. The center of the (x, t, u) or (y, t, u) contour is an approxi-
mately circular wave structure, and many harmonic waves will appear as time increases
or decreases.
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Figure 2. Three-dimensional plots in (x, t) phase space (a) and (y, t) phase space (b), as well as
a two-dimensional contour plot (c) and a two-dimensional plot (d) represent the complex wave
solution of Equation (39), under the conditions of k = 1, ω =

√
2, k1 = 2, l1 = 2, ω1 = 1, m = 0.2,

λ = 1, α = 4, Ψ1 = − kk1x+ll1y+ωω1t
ω2 (kx + ky + ωt), Ψ2 = cosh(kx + ly − ωt), h(x, y, t) = k1x2 +

l1y2 + ω1t2, and α = (lk1x+kl1y)2

ω2 [(1 + m2)∓ 6m].

Case 3

If we choose Ψ1 = − kk1x+ll1y+ωω1t
ω2 (kx + ky+ωt), Ψ2 = sin(kx + ly − ωt), h(x, y, t) =

k1x2 + l1y2 + ω1t2 and α = (lk1x+kl1y)2

ω2 [(1 + m2)∓ 6m], we can obtain another new type
of complex wave structure of the (2+1)-dimensional Klein–Gordon equation shown in
Figure 3. This is a nonlinear wave that periodically propagates along the x or y direction
in two-dimensional space under certain conditions. The (x, t, u) or (y, t, u) contour is an
approximately elliptical nonlinear wave structure, in which the amplitude remains constant
except for the center position during propagation.

   

Figure 3. Three-dimensional plots in (x, t) phase space (a) and (y, t) phase space (b), as well as
a two-dimensional contour plot (c) and a two-dimensional plot (d) represent the complex wave
solution of Equation (39), under the conditions of k = 1, ω =

√
2, k1 = 2, l1 = 2, ω1 = 1, m = 0.2,

λ = 1, α = 4, Ψ1 = − kk1x+ll1y+ωω1t
ω2 (kx + ky + ωt), Ψ2 = sin(kx + ly − ωt), h(x, y, t) = kk1x2 +

l1y2 + ω1t2, andα = (lk1x+kl1y)2

ω2 [(1 + m2)∓ 6m].

Case 4

If we choose Ψ1 = − kk1x+ll1y+ωω1t
ω2 (kx + ky + ωt), Ψ2 = ln(kx + ly − ωt)2,h(x, y, t) =

k1x2 + l1y2 + ω1t2 and α = (lk1x+kl1y)2

ω2 [(1 + m2) ∓ 6m], we can obtain the new type of
complex wave structure of the (2+1)-dimensional Klein–Gordon equation shown in Figure 4.
This is a nonlinear wave that periodically propagates along the x or y direction in two-
dimensional space under certain conditions, and the amplitude remains constant except
for the center position during propagation.
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Figure 4. Three-dimensional plots in (x, t) phase space (a) and (y, t) phase space (b), as well as a
two-dimensional contour plot (c) and a two-dimensional plot (d) represent the complex wave solution
of Equation (39), under the conditions of k = 1, ω =

√
2, k1 = 2, l1 = 2, ω1 = 1, m = 0.2, λ = 1,

α = 4, Ψ1 = − kk1x+ll1y+ωω1t
ω2 (kx + ky + ωt), Ψ2 = ln(kx + ly − ωt)2 and h(x, y, t) = kk1x2 + l1y2 +

ω1t2, α = (lk1x+kl1y)2

ω2 [(1 + m2)∓ 6m].

Case 5

If we choose Ψ1 = − kk1x+ll1y+ωω1t
ω2 (kx+ ky+ωt), Ψ2 = tan(kx + ly − ωt), h(x, y, t) =

k1x2 + l1y2 + ω1t2, and α = (lk1x+kl1y)2

ω2 [(1 + m2) ∓ 6m], we can obtain the new type of
complex wave structure of the (2+1)-dimensional Klein–Gordon equation shown in Figure 5.
This is a nonlinear wave that propagates along the x or y direction in two-dimensional
space under certain conditions. The propagation period and amplitude of this wave will be
interrupted by the singularity brought by Ψ2 = tan(kx + ly − ωt).

   

Figure 5. Three-dimensional plots in (x, t) phase space (a) and (y, t) phase space (b), as well as
a two-dimensional contour plot (c) and a two-dimensional plot (d) represent the complex wave
solution of Equation (39), under the conditions of k = 1, ω =

√
2, k1 = 2, l1 = 2, ω1 = 1, m = 0.2,

λ = 1, α = 4, Ψ1 = − kk1x+ll1y+ωω1t
ω2 (kx + ky + ωt), Ψ2 = tan(kx + ly − ωt), h(x, y, t) = k1x2 + l1y2 +

ω1t2, and α = (lk1x+kl1y)2

ω2 [(1 + m2)∓ 6m].

Case 6

If we choose Ψ1 = − kk1+ll1+ωω1
2ω2 (kx + ky + ωt), Ψ2 = sin(kx + ly − ωt), h(x, y, t) =

k1x + l1y + ω1t, and α = (lk1+kl1)
2

ω2 [(1 + m2)∓ 6m], we can obtain the new type of complex
wave structure of the (2+1)-dimensional Klein–Gordon equation shown in Figure 6. This is
a nonlinear wave that propagates along the x and y direction in two-dimensional space. As
shown in the figure, they are still quasi-periodic waves in the (x, y) phase space and the
(x, t) phase space, but their amplitudes are modulated by a sine wave.
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Figure 6. Three-dimensional plots in (x, y) phase space (a) and (x, t) phase space (b), as well as
a two-dimensional contour plot (c) in y = 0 and a two-dimensional plot (d) in y = 0 and t = 0
represent the complex wave solution of Equation (39), under the conditions of k = 1, ω =

√
2,

k1 = 2, l1 = 2, ω1 = 1, m = 0.2, λ = 1, Ψ1 = − kk1+ll1+ωω1
2ω2 (kx + ky + ωt), Ψ2 = sin(kx + ly − ωt),

h(x, y, t) = k1x + l1y + ω1t, and α = (lk1+kl1)
2

ω2 [(1 + m2)∓ 6m].

Case 7

If we choose Ψ1 = − kk1+ll1+ωω1
2ω2 (kx + ky + ωt), Ψ2 = ln(kx + ly − ωt)2, h(x, y, t) =

k1x + l1y + ω1t, and α = (lk1+kl1)
2

ω2 [(1 + m2)∓ 6m], we can obtain the new type of complex
wave structure of the (2+1)-dimensional Klein–Gordon equation shown in Figure 7. This is
a nonlinear wave that propagates along the x and y direction in two-dimensional space.
Figure 7a,b shows the central structure of this nonlinear wave. As a matter of fact, this
nonlinear wave propagates periodically in addition to its central position.

   

Figure 7. Three-dimensional plots in (x, y) phase space (a) and (x, t) phase space (b), as well as
a two-dimensional contour plot (c) in y = 0 and a two-dimensional plot (d) in y = 0 and t = 0
represent the complex wave solution of Equation (39), under the conditions of k = 1, ω =

√
2,

k1 = 2, l1 = 2, ω1 = 1, m = 0.2, λ = 1, Ψ1 = − kk1+ll1+ωω1
2ω2 (kx + ky + ωt), Ψ2 = ln(kx + ly − ωt)2,

h(x, y, t) = k1x + l1y + ω1t, and α = (lk1+kl1)
2

ω2 [(1 + m2)∓ 6m].

Case 8

If we choose Ψ1 = − kk1+ll1+ωω1
2ω2 (kx + ky + ωt), Ψ2 = ekx+ly−ωt, h(x, y, t) = k1x +

l1y + ω1t, and α = (lk1+kl1)
2

ω2 [(1 + m2)∓ 6m], we can obtain the new type of complex wave
structure of the (2+1)-dimensional Klein–Gordon equation shown in Figure 8. This is a
nonlinear wave propagating along the x-direction, which is a quasi-periodic nonlinear
wave with gradually changing periods due to the exponential increase in the value of
Ψ2 = ekx+ly−ωt.
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Figure 8. Three-dimensional plots in (x, y) phase space (a) and (x, t) phase space (b), as well as a
two-dimensional contour plot (c) in y = 0 and a two-dimensional plot (d) in y = 0 and t = 2 represent
the complex wave solution of Equation (39), under the conditions of k = 1, ω =

√
2, k1 = 2, l1 = 2,

ω1 = 1, m = 0.2, λ = 1, Ψ1 = − kk1+ll1+ωω1
2ω2 (kx + ky + ωt), Ψ2 = ekx+ly−ωt, h(x, y, t) = k1x + l1y +

ω1t, and α = (lk1+kl1)
2

ω2 [(1 + m2)∓ 6m].

6. Discussion and Conclusions

This paper utilizes a new extended Jacobian elliptic function expansion method to
construct many Jacobian elliptic equation solutions for the (2+1)-dimensional Klein–Gordon
equation. This is a new expansion method proposed by us, resulting in a large number
of new types of Jacobian elliptic function solutions. The method we used is simple and
effective. In this paper, we applied it to handle the (2+1) Klein–Gordon equation as
an example. In fact, it can also handle more complex equations, such as the Benjamin
equation with n = 2 in ref. [15]. We only need to substitute Equations (5)–(12) in this
paper into Equations (31)–(35) in ref. [15] to obtain solutions that include the solutions
listed in that reference but far exceed those expressed in their structural forms, such
as Equations (4) and (10) in this paper. Compared to early Jacobian expansion methods,
such as refs. [12–14], their solutions are only a few special cases of our solution. For the
F-expansion method in refs. [8,9], their solution is only a special case under the conditions
given in Equation (6). The tanh–sech expansion method and its extensions in refs. [10,11]
have fewer solutions than the ones we obtained, yet they are included in the limit conditions
of the solutions in m→1 in this paper.

The solutions obtained in this article can be used to describe the propagation of
nonlinear waves in plasma, condensed matter physics, and so on. Then, we proposed
a new method of Equations (56)–(59) for constructing complex nonlinear waves, which
has not been reported in other literature. Through this method, various nonlinear wave
structures for this equation were constructed, which indicate new types of complex wave
phenomena. To provide an intuitive understanding of the structure of complex non-
linear waves and their propagation in time and space, we set the parameters of the
(2+1)-dimensional Klein–Gordon equation and complex waves to given values and applied
the mathematical software MATLAB 2021b to draw three-dimensional, two-dimensional
and two-dimensional contour plots of some examples (see Figures 1–8). These waves
exhibit complex composite wave structures propagating in spacetime. Different parameters
of the (2+1)-dimensional Klein–Gordon equation, different travelling wave parameters and
different composite waves can cause different changes in the types, amplitude and period of
these nonlinear waves. The images shown in Figures 1–8 indicate that under specific condi-
tions, different composite waves can be excited, which may experience unstable amplitude
growth, attenuation or oscillation, as well as the generation of high-order harmonics.

All the solutions and formulas obtained in this paper have been checked by MATLAB
2021b. By applying the same scheme, the method used in this paper can also be used
to handle other types of NLEEs to obtain various complex wave structures. However,
the construction method of nonlinear complex waves in Section 5 can only be applied to
nonlinear Klein–Gordon-type equations. In the future, we will derive this type of nonlinear
complex wave transformation for other NLEEs.
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numerical examples are provided to confirm the theoretical results.
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1. Introduction

Impulsive differential equations (IDEs) are widely applied in numerous fields of
science and technology: theoretical physics, mechanics, population dynamics, pharmacoki-
netics, industrial robotics, chemical technology, biotechnology, economics, etc. (see [1–5]
and references therein). Recently, there has been growing interest in the study of impulsive
differential equations with delayed impulses (DEDIs) [5–17]. In particular, the stability
of the exact solutions of DEDIs has been widely studied [5–13]. However, to the best of
our knowledge, our present paper is the first paper to study the asymptotical stability of
nonlinear DEDIs under Lipschitz conditions.

In recent years, the theory of numerical methods for IDEs has been developed rapidly.
The convergence and stability of numerical methods for scalar linear IDEs [18–20], mul-
tidimensional linear IDEs [21], semi-linear IDEs [22], nonlinear IDEs[23–29], impulsive
time-delay differential equations [30–35] and stochastic impulsive time-delay differen-
tial equations [36] have been studied. But little work has been conducted on numerical
methods for DEDIs. In [37], we investigated asymptotical stability and convergence of
impulsive discrete Runge–Kutta methods for linear DEDIs. In our present paper, we further
investigate the convergence and stability of impulsive discrete Runge–Kutta methods for
nonlinear DEDIs.

Continuous numerical methods are widely applied to delay differential equations
without impulsive perturbations (see [38–43], etc.). But the exact solutions of impulsive
differential equations are not continuous, so the continuous numerical methods are not
applicable for impulsive differential equations. In [20], asymptotical stability and conver-
gence of impulsive collocation methods for impulsive ordinary differential equations were
studied. In [35], the convergence of the impulsive continuous Runge–Kutta methods was
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studied. As far as we know, our present paper is the first to study the convergence and
stability of impulsive continuous Runge–Kutta methods (ICRKMs) for nonlinear DEDIs.

The Runge–Kutta method ([44–47]) is applicable to various types of ordinary differen-
tial equations and its advantages mainly include high accuracy, generally good numerical
stability and convergence. A natural question is, when applying the Runge–Kutta method
to solve DEDIs, does the Runge–Kutta method method still have good stability and conver-
gence when we treat the impulse terms in different ways? The continuous Runge–Kutta
method ([39,46]) is described above and is suitable for solving ordinary differential equa-
tions and delay differential equations. It is also important for many practical questions
such as graphical output, and even location or treatment of discontinuities in differential
equations. Another natural question is whether the application of the continuous Runge–
Kutta method to solve DEDIs also has good stability and convergence. This paper will
answer both of these questions.

The remainder of this paper is arranged as follows. In Section 2, sufficient conditions
for asymptotical stability of the exact solution of a class of nonlinear DEDIs are provided.
In Section 3, the scheme 1 are correct. impulsive Runge–Kutta methods (S1IRKMs) are
constructed. It is proved that S1IRKM is convergent of order p if the corresponding Runge–
Kutta method is p-th order. S1IRKMs are obtained to preserve asymptotical stability of the
exact solutions under the sufficient conditions obtained in Section 2, applying the theory of
Padé approximation. Moreover, the scheme 1 impulsive θ method (S1IθM) are obtained
to preserve asymptotical stability of the exact solutions under the sufficient conditions.
In Section 4, the scheme 2 impulsive Runge–Kutta methods (S2IRKM) are constructed. It
is proved that S2IRKM is only convergent of order 1 if the corresponding Runge–Kutta
method is p-th order. S2IRKMs are obtained to preserve asymptotical stability of the
exact solutions under the sufficient conditions applying the theory of Padé approximation.
Moreover, the scheme 2 impulsive θ method (S2IθM) is obtained to preserve asymptotical
stability of the exact solutions under sufficient conditions. In Section 5, the convergence
and asymptotical stability of ICRKMs are studied. In Section 6, we provide two numerical
examples to confirm our theoretical results. Finally, in Section 7, conclusions and future
work are provided.

2. Asymptotical Stability of the Exact Solutions of DEDIs

Consider the DEDI [6] of the following form⎧⎪⎨⎪⎩
x′(t) = f (t, x(t)), t ≥ t0, t �= τk, k ∈ Z+,
x(τ+

k ) = Ik(x(r−k )), rk ∈ Fσ
τk

, k ∈ Z+,
x(t0) = x0,

(1)

where Z+ = {1, 2, · · · }, x(t+) is the right limit of x(t), t0 = τ0 < τ1 < τ2 < · · · ,
limk→∞ τk = ∞, the function f : [t0,+∞) × Rd → Rd is continuous in t and Lipschitz
continuous with respect to the second variable in the following sense: there is a positive
real constant α such that

‖ f (t, x1)− f (t, x2)‖ ≤ α‖x1 − x2‖ (2)

for arbitrary t ∈ [t0, ∞), x1, x2 ∈ Rd, where ‖ · ‖ is any convenient norm on Rd. Define
the functions Ik to be from Rd to Rd, k ∈ Z+. Assume that each function Ik (k ∈ Z+ ) is
Lipschitz continuous, i.e., there is a positive constant βk such that

‖Ik(x)− Ik(y)‖ ≤ βk‖x − y‖, for ∀x, y ∈ R
d. (3)

For any given impulse sequence τk, k ∈ Z+ and any constant σ ∈ (0, 1], the set F δ
τk

is
defined as follows

Fσ
τk
= {rk : rk = (1 − σ)τk−1 + στk, k ∈ Z

+}.
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Definition 1. A function x : [t0, ∞) → Rd is said to be a solution of (1) , if

(i) lim
t→t+0

x(t) = x0,

(ii) For t ∈ (t0,+∞), t �= τk, k = 1, 2, · · · , x(t) is differentiable and x′(t) = f (t, x(t)),
(iii) x(t) is right continuous in (t0,+∞) and x(τk) = Ik(x(r−k )), k = 1, 2, · · · .

In order to investigate the asymptotical stability of x(t), consider Equation (1) with
another initial datum:⎧⎨⎩

y′(t) = f (t, y(t)), t > t0, t �= τk, k ∈ Z+,
y(τk) = Ik(y(r−k )), rk ∈ F δ

τk
, k ∈ Z+,

y(t0) = y0.
(4)

Definition 2. The exact solution x(t) of (1) is said to be

1. stable if, for an arbitrary ε > 0, there exists a positive number δ = δ(ε) such that, for any
other solution y(t) of (4), ‖x0 − y0‖ < δ implies

‖x(t)− y(t)‖ < ε, ∀ t > t0;

2. asymptotically stable, if it is stable and lim
t→∞

‖x(t)− y(t)‖ = 0.

Theorem 1. Assume that there exists a positive constant γ such that τk − τk−1 ≤ γ, k ∈ Z+. The
exact solution of (1) is asymptotically stable if there is a positive constant C such that

βkeασ(τk−τk−1) ≤ C < 1 (5)

for arbitrary k ∈ Z+.

Proof. For arbitrary t ∈ [τk, τk+1), k = 0, 1, 2, · · · , we can obtain that

‖x(t)− y(t)‖ = ‖x(τk)− y(τk) +
∫ t

τk−1

( f (s, x(s))− f (s, y(s)))ds‖

≤ ‖x(τk)− y(τk)‖+
∫ t

τk

‖ f (s, x(s))− f (s, y(s))‖ds

≤ ‖x(τk)− y(τk)‖+ α
∫ t

τk

‖x(s)− y(s)‖ds

By Gronwall’s Theorem, for arbitrary t ∈ [τk, τk+1), k = 0, 1, 2, · · · , we have

‖x(t)− y(t)‖ ≤ ‖x(τk)− y(τk)‖eα(t−τk),

which implies

‖x(r−k+1)− y(r−k+1)‖ ≤ ‖x(τk)− y(τk)‖eα(rk+1−τk) = ‖x(τk)− y(τk)‖eασ(τk+1−τk).

Consequently, we can obtain that

‖x(τk+1)− y(τk+1)‖
= ‖Ik+1(x(r−k+1))− Ik+1(y(r−k+1))‖
≤ βk+1‖x(r−k+1)− y(r−k+1)‖
≤ ‖x(τk)− y(τk)‖βk+1eασ(τk+1−τk).
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Therefore, by the method of introduction and the conditions (3) and (5), for arbitrary
t ∈ [τk, τk+1), k = 0, 1, 2, · · · , we can obtain that

‖x(t)− y(t)‖

≤ ‖x0 − y0‖eα(t−τk)
k

∏
i=1

βieασ(τi−τi−1)

≤ Ck‖x0 − y0‖eα(t−τk)

≤ Ck‖x0 − y0‖eα(τk+1−τk)

≤ Ck‖x0 − y0‖eαγ,

which implies ‖x(τ−
k+1)− y(τ−

k+1)‖ ≤ Ck‖x0 − y0‖eαγ and ‖x(τk+1)− y(τk+1)‖ ≤ ‖x0 −
y0‖Ck+1. Hence for an arbitrary ε > 0, there exists δ = e−αγε such that ‖x0 − y0‖ < δ
implies

‖x(t)− y(t)‖ ≤ Ck‖x0 − y0‖eαγ ≤ ‖x0 − y0‖eαγ < ε

for arbitrary t ∈ [τk, τk+1), k = 0, 1, 2, · · · , i.e.,

‖x(t)− y(t)‖ < ε, ∀ t > t0.

So the exact solution of (1) is stable. Obviously, for arbitrary t ∈ [τk, τk+1), k = 0, 1, 2, · · · ,

‖x(t)− y(t)‖ ≤ Ck‖x0 − y0‖eαγ → 0, k → ∞.

Similarly, we can also obtain that

‖x(τ−
k+1)− y(τ−

k+1)‖ ≤ Ck‖x0 − y0‖eαγ → 0, k → ∞,

and
‖x(τ+

k+1)− y(τ+
k+1)‖ ≤ Ck+1‖x0 − y0‖ → 0, k → ∞.

Consequently, the exact solution of (1) is asymptotically stable.

From the proof of Theorem 1, we can obtain the following result.

Remark 1. If condition (5) of Theorem 1 is changed into the weaker condition

βkeασ(τk−τk−1) ≤ 1, ∀ k ∈ Z
+, (6)

then the exact solution of (1) is stable.

3. Scheme 1 Impulsive Discrete Runge–Kutta Methods

In the following part of this paper, we will focus on the case of 0 < σ < 1; the special
case of σ = 1 has already been studied in paper [29]. The simplest and most straightforward
idea is to take all points in the set {τk, rk : Z+} as the numerical mesh. For convenience, we
divide the intervals [τk−1, rk] and [rk, τk) (k ∈ Z+) equally by m; m is a positive integer. In
this case, for k ∈ N, the step sizes are as follows

hk,l =

{
h̄k,1 := rk−τk

m , l = 1, 2, · · · , m
h̄k,2 := τk+1−rk

m , l = m + 1, m + 2, · · · , 2m,
(7)

which implies that the mesh point tk,0 = τk, tk,2m = τ−
k+1, tk,l = τk + ∑l

j=0 hk,j, ∀k ∈ N,
l = 1, 2, · · · , 2m − 1.
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The S1IRKM for DEDI (1) can be constructed as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Xi
k,l+1 = xk,l + hk,l+1

v
∑

j=1
aij f (tj

k,l+1, Xj
k,l+1), k ∈ N, i = 1, 2, · · · , v,

xk,l+1 = xk,l + hk,l+1
v
∑

i=1
bi f (ti

k,l+1, Xi
k,l+1), l = 0, 1, · · · , 2m − 1,

xk+1,0 = Ik+1(xk,m),
x0,0 = x0,

(8)

where v is referred to as the number of stages, ti
k,l = tk,l + cihk,l+1, xk,l is an approximation

to the exact solution x(tk,l) and Xi
k,l+1 is an approximation to the exact solution x(ti

k,l+1),

k ∈ N, l = 0, 1, · · · , 2m − 1, i = 1, 2, · · · , v. The weights bi, the abscissae ci =
v
∑

j=1
aij and the

matrix A = [aij]
v
i,j=1 will be denoted by (A, b, c).

3.1. Convergence of S1IRKMs

In order to study the convergence of S1IRKMs, the DEDI (1) is restricted to the interval
[0, T] in this subsection. For convenience, assume that there exists a positive integer N such
that T = τN .

To analyze the local truncation errors of S1IRKM (8) for DEDI (1), consider the follow-
ing local problem⎧⎪⎪⎨⎪⎪⎩

Zi
k,l+1 = zk,l + hk,l+1

v
∑

j=1
aij f (tj

k,l+1, Zj
k,l+1), k ∈ N, i = 1, 2, · · · , v,

zk,l+1 = zk,l + hk,l+1
v
∑

i=1
bi f (ti

k,l+1, Zi
k,l+1), l = 0, 1, · · · , 2m − 1,

(9)

where zk,l = x(tk,l), k = 0, 1, 2, · · · , N − 1, l = 0, 1, 2, · · · , 2m − 1.
Because it can be seen as a problem of ordinary differential equation (see [44–46])when

we consider the local problem, we can directly obtain the following result.

Theorem 2. Consider the DEDI (1) where f (t, x) is Cp-continuous in [t0, T]×Rd. If the corre-
sponding Runge–Kutta method is convergent of order p, then local errors between the numerical
solutions obtained from (9) and the exact solutions obtained from DEDI (1) satisfy that there exists
a constant C such that, for arbitrary k = 0, 1, 2, · · · , N − 1, l = 0, 1, 2, · · · , 2m − 2,

Rk,l+1 := ‖zk,l+1 − x(tk,l+1)‖ ≤ Chp+1
k,l+1

and
Rk,2m := ‖zk,2m − x(τ−

k+1)‖ ≤ Chp+1
k,2m.

Theorem 3. Assume that f (t, x) of DEDI (1) is Cp-continuous in [t0, T]×Rd, the functions Ik
are bounded, and Lipschitz conditions (2) and (3) hold. If the corresponding Runge–Kutta method
is convergent of order p, then the global errors ek,l between the numerical solutions xk,l obtained
from (8) and the exact solutions x(tk,l) obtained from DEDI (1) satisfy that there exists a constant
C1 such that, when h is small enough, for arbitrary k = 0, 1, 2, · · · , N − 1, l = 0, 1, 2, · · · , 2m − 1,

ek,l := ‖xk,l − x(tk,l)‖ ≤ C1hp (10)

and
ek,2m := ‖xk,2m − x(τ−

k+1)‖ ≤ C1hp, (11)

where h = max
k,l

{hk,l} = max
k

{h̄k,1, h̄k,2}.
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Proof. From (8) and (9), we can obtain that

‖Xi
k,l+1 − Zi

k,l+1‖

= ‖xk,l − zk,l + hk,l+1

v

∑
j=1

aij( f (tj
k,l+1, Xj

k,l+1)− f (tj
k,l+1, Zj

k,l+1))‖

≤ ‖xk,l − zk,l‖+ hk,l+1

v

∑
j=1

|aij|‖ f (tj
k,l+1, Xj

k,l+1)− f (tj
k,l+1, Zj

k,l+1)‖

≤ ‖xk,l − zk,l‖+ αhk,l+1

v

∑
j=1

|aij|‖Xj
k,l+1 − Zj

k,l+1‖

≤ ‖xk,l − zk,l‖+ αh

(
max
1≤i≤v

v

∑
j=1

|aij|
)

max
1≤j≤v

{‖Xj
k,l+1 − Zj

k,l+1‖}

which implies that, for h < α−1
(

max1≤i≤v ∑v
j=1 |aij|

)−1
,

max
1≤i≤v

{‖Xi
k,l+1 − Zi

k,l+1‖} ≤ Λ1‖xk,l − zk,l‖.

where Λ =

(
1 − αh

(
max
1≤i≤v

∑v
j=1 |aij|

))−1
. Hence,

‖xk,l+1 − zk,l+1‖

= ‖xk,l − zk,l + hk,l+1

v

∑
j=1

bj( f (tj
k,l+1, Xj

k,l+1)− f (tj
k,l , Zj

k,l))‖

≤ ‖xk,l − zk,l‖+ hk,l+1

v

∑
j=1

|bj|‖ f (tj
k,l+1, Xj

k,l+1)− f (tj
k,l+1, Zj

k,l+1)‖

≤ ‖xk,l − zk,l‖+ αhk,l+1

(
v

∑
j=1

|bj|
)

max
1≤i≤v

{‖Xi
k,l+1 − Zi

k,l+1‖}

≤ (1 + αBΛhk,l+1)‖xk,l − zk,l‖

where B =
v
∑

j=1
|bj|. From Theorem 2, we have

R̄k,1 := max
1≤l≤m

Rk,l ≤ Ch̄k,1hp,

/R̄k,2 := max
m+1≤l≤2m

Rk,l ≤ Ch̄k,2hp.

If 0 ≤ l ≤ m − 1,

ek,l+1 := ‖x(tk,l+1)− xk,l+1‖
≤ ‖x(tk,l+1)− zk,l+1‖+ ‖zk,l+1 − xk,l+1‖
≤
(
1 + αBΛh̄k,1

)
ek,l + R̄k,1

≤
(
1 + αBΛh̄k,1

)l+1ek,0 +
((

1 + αBΛh̄k,1
)l+1 − 1

)
R̄k,1

αβΛh̄k,1

≤ e(l+1)αBΛh̄k,1 ek,0 +
(

e(l+1)αBΛh̄k,1 − 1
)

R̄k,1
αBΛh̄k,1

≤ eαBΛσ(τk+1−τk)ek,0 +
(

eαBΛσ(τk+1−τk) − 1
)

Chp

αBΛ

≤ eαBΛσTek,0 +
(
eαBΛ1σT − 1

) Chp

αBΛ

(12)
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Otherwise, if m ≤ l ≤ 2m − 1,

ek,l+1 := ‖x(tk,l+1)− xk,l+1‖
≤ ‖x(tk,l+1)− zk,l+1‖+ ‖zk,l+1 − xk,l+1‖
≤
(
1 + αBΛh̄k,2

)
ek,l + R̄k,2

≤
(
1 + αBΛh̄k,2

)l−m+1ek,m +
((

1 + αBΛh̄k,2
)l−m+1 − 1

)
R̄k,2

αBΛh̄k,2

≤ e(l−m+1)αBΛh̄k,2 ek,m +
(

e(l−m+1)αBΛh̄k,2 − 1
)

R̄k,2
αβΛh̄k,2

≤ eαBΛ(1−σ)(τk+1−τk)ek,m +
(

eαBΛ(1−σ)(τk+1−τk) − 1
)

Chp

αβΛ

≤ eαBΛ(1−σ)Tek,m +
(

eαBΛ(1−σ)T − 1
)

Chp

αBΛ

≤ eαBΛTek,0 +
(
eαBΛT − 1

) Chp

αBΛ

(13)

Otherwise,

ek+1,0 := ‖xk+1,0 − x(tk+1,0)‖ = ‖xk+1,0 − x(τk+1)‖
= ‖Ik+1(xk,m)− Ik+1(x(τ−

k+1))‖
≤ βk+1‖xk,m − x(t−k,m)‖
≤ βk+1eαBΛσTek,0 + βk+1

(
eαBΛσT − 1

) Chp

αBΛ
≤ B̄eαBΛσTek,0 + B̄

(
eαBΛσT − 1

) Chp

αBΛ

≤
(

B̄eαBΛσT)k+1e0,0 +
((

B̄eαBΛσT)k+1 − 1
)

Chp

αBΛ ,

(14)

where B̄ = max{β1, β2, · · · , βN}. In fact, we can choose ‖x0,0 − x0‖ = O(hp)); that is,
‖e0,0‖ = O(hp). For convenience, we only choose x0,0 = x0, which impiles that e0,0 = 0. So
from (14), for arbitrary k = 0, 1, 2, . . . , N, we have

ek+1,0 ≤ C2hp (15)

where C2 =
((

B̄eαBΛσT)N − 1
)

C
αBΛ . Combining (12) and (15), for 0 ≤ l ≤ m − 1, we can

obtain that
ek,l+1 ≤ C3hp (16)

where C3 = eαBΛσTC2 +
(
eαBΛσT − 1

) C
αBΛ . Similarly, combining (13) and (16), for m ≤ l ≤

2m − 1, we obtain
ek,l+1 ≤ C4hp (17)

where C4 = eαBΛTC2 +
(
eαBΛT − 1

) Chp

αBΛ . Consequently, from (15), (16) and (17), we know

that (10) and (11) hold for C1 = max{C2, C3, C4} and h < α−1
(

max1≤i≤v ∑v
j=1 |aij|

)−1
.

3.2. Asymptotical Stability of S1IRKMs

In order to study asymptotical stability of S1IRKMs, we also consider S1IRKM for
DEDI (4) as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Yi
k,l+1 = yk,l + hk,l+1

v
∑

j=1
aij f (tj

k,l+1, Yj
k,l+1), k ∈ N, i = 1, 2, · · · , v,

yk,l+1 = yk,l + hk,l+1
v
∑

i=1
bi f (ti

k,l+1, Yi
k,l+1), l = 0, 1, · · · , 2m − 1,

yk+1,0 = Ik+1(yk,m),
y0,0 = y0.

(18)

Definition 3. The S1IRKM (8) for DEDI (1) is said to be

1. stable, if ∃h̄ > 0,
(i) I − zk,l A is invertible for all zk,l = αhk,l , hk,l ≤ h̄, ∀ ∈ N, l = 1, 2, · · · , 2m,
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(ii) for an arbitrary ε > 0, there exists such a positive number δ = δ(ε) that, for any other
numerical solutions of (29), ‖x0 − y0‖ < δ implies

‖Xk − Yk‖ < ε, ∀ k ∈ N,

where Xk = (xk,0, xk,1, · · · , xk,m)
T and Yk = (yk,0, yk,1, · · · , yk,m)

T.
2. asymptotically stable, if it is stable and if ∃h̄1 > 0, for hk,l ≤ h̄1, k ∈ N, l = 1, 2, · · · , 2m;

the following holds:
lim
k→∞

‖Xk − Yk‖ = 0.

Lemma 1. ([44–46,48]). The (j, k)-Padé approximation to ez is given by

R(z) =
Pj(z)
Qk(z)

, (19)

where

Pj(z) = 1 +
j

j + k
· z +

j(j − 1)
(j + k)(j + k − 1)

· z2

2!
+ · · ·+ j!k!

(j + k)!
· zj

j!
,

Qk(z) = 1 − k
j + k

· z +
k(k − 1)

(j + k)(j + k − 1)
· z2

2!
+ · · ·+ (−1)k · k!j!

(j + k)!
· zk

k!
,

with error
ez − R(z) = (−1)k · j!k!

(j + k)!(j + k + 1)!
· zj+k+1 + O(zj+k+2).

It is the unique rational approximation to ez of order j + k, such that the degrees of numerator and
denominator are j and k, respectively.

Lemma 2. ([49–51]). Assume that R(z) is the (j, k)-Padé approximation to ez. Then R(z) < ez

for all z > 0 if and only if k is even.

Theorem 4. Assume that R(z) is the stability function of S1IRKM (8); that is,

R(z) = 1 + zbT(I − zA)−1e =
Pj(z)
Qk(z)

,

where e = (1, 1, · · · , 1)T is a v-dimensional vector. Let the coefficients of the corresponding Runge–
Kutta method of S1IRKM (8) be nonnegative, that is, aij ≥ 0 and bi ≥ 0, 1 ≤ i ≤ v, 1 ≤ j ≤ v.
Under the conditions of Theorem 1, S1IRKM (8) for (1) is asymptotically stable when the step sizes
satisfy (7) and m > M, if k is even, where M = inf{m : I − zA is invertible and (I − zA)−1e ≥
0, z = αh, h = max

k,l
{hk,l}}. (The last inequality should be interpreted entrywise.)

Proof. Because aij ≥ 0 and bi ≥ 0,1 ≤ i ≤ v, 1 ≤ j ≤ v, we can obtain that

‖Xi
k,l+1 − Yi

k,l+1‖

= ‖xk,l − yk,l + hk,l+1

v

∑
j=1

aij( f (tj
k,l+1, Xj

k,l+1)− f (tj
k,l+1, Yj

k,l+1))‖

≤ ‖xk,l − yk,l‖+ hk,l+1

v

∑
j=1

aij‖ f (tj
k,l+1, Xj

k,l+1)− f (tj
k,l+1, Yj

k,l+1)‖

≤ ‖xk,l − yk,l‖+ αhk,l+1

v

∑
j=1

aij‖Xj
k,l+1 − Yj

k,l+1‖.
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Since m > M, (I − αhk,l+1 A)−1e ≥ 0. Hence

[‖Xi
k,l+1 − Yi

k,l+1‖] ≤ (I − αhk A)−1e‖xk,l − yk,l‖

where [‖Xi
k,l+1 − Yi

k,l+1‖] = (‖X1
k,l+1 − Y1

k,l+1‖, ‖X2
k,l+1 − Y2

k,l+1‖, · · · , ‖Xv
k,l+1 − Yv

k,l+1‖)T .
By Lemmas 1 and 2, we can obtain

‖xk,l+1 − yk,l+1‖

= ‖xk,l − yk,l + hk,l+1

v

∑
j=1

bj( f (tj
k,l+1, Xj

k,l+1)− f (tj
k,l , Yj

k,l))‖

≤ ‖xk,l − yk,l‖+ hk,l+1

v

∑
j=1

bj‖ f (tj
k,l+1, Xj

k,l+1)− f (tj
k,l+1, Yj

k,l+1)‖

≤ ‖xk,l − yk,l‖+ αhk,l+1

v

∑
j=1

bj‖Xj
k,l+1 − Yj

k,l+1‖

= ‖xk,l − yk,l‖+ αhk,l+1bT [‖Xi
k,l+1 − Yi

k,l+1‖]
≤ (1 + αhk,l+1bT(I − αhk,l+1 A)−1e)‖xk,l − yk,l‖
= R(αhk,l+1)‖xk,l − yk,l‖
≤ eαhk,l+1‖xk,l − yk,l‖.

Hence for arbitrary k = 0, 1, 2, · · · and l = 0, 1, · · · , 2m, we have

‖xk,l − yk,l‖ ≤ ‖xk,0 − yk,0‖eα(tk,l−τk).

which implies

‖xk+1,0 − yk+1,0‖ = ‖Ik+1(xk,m)− Ik+1(yk,m)‖
≤ βk+1‖xk,m − yk,m‖
≤ βk+1‖xk,0 − yk,0‖eα(tk,m−τk)

= βk+1‖xk,0 − yk,0‖eασ(τk+1−τk).

Therefore, by the method of introduction and condition (5), we can obtain that

‖xk,l − yk,l‖
≤ ‖x0 − y0‖

(
β1eασ(τ1−τ0)

)(
β2eασ(τ2−τ1)

)(
βkeασ(τk−τk−1)

)
eα(tk,l−τk)

≤ ‖x0 − y0‖Ckeαγ

which implies that S1IRKM for DEDI (1) is asymptotically stable.

Remark 2. For z sufficiently close to zero, the matrix I − zA is invertible and (I − zA)−1e ≥ 0.
Therefore, taking step sizes according to (7) and m ≥ M and M = inf{m : I− zA is invertible and (I−
zA)−1e ≥ 0, z = αh, h = max

k,l
{hk,l}} in Theorem 4 is reasonable.

Remark 3. When the corresponding Runge–Kutta method chooses these formats as follows, which
is also the special case k = 0, the S1IRKM satisfies Theorem 4.
(1) Explicit Euler method
(2) Two-stage second-order explicit Runge–Kutta methods
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0 0 0
1
2

1
2 0
0 1

0 0 0
1 1 0

1
2

1
2

0 0 0
3
4

3
4 0
1
3

2
3

Modified Euler method Heun′s method, order 2 Ralston′s method

(3) Three-stage third-order explicit Runge–Kutta methods

0 0 0 0
1
3

1
3 0 0

2
3 0 2

3 0
1
4 0 3

4

0 0 0 0
2
3

2
3 0 0

2
3

1
3

1
3 0

1
4 0 3

4
Heun′s method, order 3 Runge −−Kutta method, order 3

(4) The classical four-stage fourth-order explicit Runge–Kutta method

0 0 0 0 0
1
2

1
2 0 0 0

1
2 0 1

2 0 0
1 0 0 1 0

1
6

1
3

1
3

1
6

Unfortunately, we cannot obtain the p-stage explicit Runge–Kutta methods of order p
for p ≥ 5 because of the Butcher Barriers (See [44] (Theorem 370B, pp.259) or [46] (Theorem
5.1 pp.173)).

3.3. Asymptotical Stability of S1IθMs

Similar to (8), the scheme 1 impulsive θ method (S1IθM) for (1) is constructed as follows:⎧⎪⎨⎪⎩
xk,l+1 = xk,l + hk,l+1((1 − θ) f (tk,l , xk,l) + θ f (tk,l+1, xk,l+1)), l = 0, 1, . . . , 2m − 1
xk+1,0 = Ik+1(xk,m), k ∈ N

x0,0 = x0.

(20)

From [49] (Lemma 2 and Lemma 3) or [18] (Theorem 2.2 and Lemma 2.3), we can
obtain the following result.

Lemma 3. When z is small enough,

1 +
z

1 − zθ
≤ ez

if and only if 0 ≤ θ ≤ ϕ(1), where ϕ(x) = 1
x − 1

ex−1 .

Theorem 5. Under the conditions of Theorem 1, if 0 ≤ θ ≤ ϕ(1), S1IθM (20) for DEDI (1) is
asymptotically stable when the step sizes satisfy (7) and are small enough.

Proof. Obviously, we can obtain

‖xk,l+1 − yk,l+1‖
≤ ‖xk,l − yk,l + (1 − θ)hk,l+1( f (tk,l , xk,l)− f (tk,l , yk,l))‖
+ θhk,l+1‖ f (tk,l+1, xk,l+1)− f (tk,l+1, yk,l+1)‖

≤ (1 + (1 − θ)αhk,l+1)‖xk,l − yk,l‖+ θαhk,l+1‖xk,l+1 − yk,l+1‖
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which implies

‖xk,l+1 − yk,l+1‖ ≤ 1 + (1 − θ)αhk,l+1

1 − θαhk,l+1
· ‖xk,l − yk,l‖

Therefore, by Lemma 3 and the method of introduction, we can obtain that

‖xk,l+1 − yk,l+1‖ ≤ eαhk,l+1‖xk,l − yk,l‖.

Similar to the proof of Theorem 4, we can obtain that S1IθM (20) for DEDI (1) is asymptoti-
cally stable.

4. Scheme 2 Impulsive Discrete Runge–Kutta Methods

In this section, S2IRKM for DEDI (1) can be constructed as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Xi
k,l+1 = xk,l + hk

v
∑

j=1
aij f (tj

k,l+1, Xj
k,l+1), k ∈ N, i = 1, 2, · · · , v,

xk,l+1 = xk,l + hk
v
∑

i=1
bi f (ti

k,l+1, Xi
k,l+1), l = 1, 2, · · · , m − 1,

xk+1,0 = Ik+1(xk,�σm�),
x0,0 = x0,

(21)

where hk =
τk+1−τk

m , tk,l = τk + lhk, ti
k,l = tk,l + cihk, xk,l is an approximation to the exact

solution x(tk,l) and Xi
k,l+1 is an approximation to the exact solution x(ti

k,l+1), k ∈ N =
{0, 1, 2, · · · }, l = 0, 1, · · · , m − 1, i = 1, 2, · · · , v; v is referred to as the number of stages.

4.1. Convergence of S2IRKMs

In order to study the convergence of S2IRKMs, DEDI (1) is restricted to the interval
[0, T] in this subsection. For convenience, assume that there exists a positive integer N such
that T = τN .

To analyze the local truncation errors of S2RKM (21) for DEDI (1), consider the follow-
ing local problem⎧⎪⎪⎨⎪⎪⎩

Zi
k,l+1 = zk,l + hk

v
∑

j=1
aij f (tj

k,l+1, Zj
k,l+1), k ∈ N, i = 1, 2, · · · , v,

zk,l+1 = zk,l + hk
v
∑

i=1
bi f (ti

k,l+1, Zi
k,l+1), l = 0, 1, · · · , m − 1,

(22)

where zk,l = x(tk,l), k = 0, 1, 2, · · · , N − 1, l = 0, 1, 2, · · · , m − 1.
Because it can be seen as a problem of ordinary differential equation (see [44–46])

when we consider the local problem, we can directly obtain the following result.

Theorem 6. Consider DEDI (1) where f (t, x) is Cp-continuous in [t0, T] × Rd. If the corre-
sponding Runge–Kutta method is convergent of order p, then local errors between the numerical
solutions obtained from (22) and the exact solutions obtained from DEDI (1) satisfy that there exists
a constant C5 such that, for arbitrary k = 0, 1, 2, · · · , N − 1, l = 0, 1, 2, · · · , m − 2,

Rk,l+1 := ‖zk,l+1 − x(tk,l+1)‖ ≤ C5hp+1
k

and
Rk,m := ‖zk,m − x(τ−

k+1)‖ ≤ C5hp+1
k .
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Theorem 7. Assume that f (t, x) of DEDI (1) is Cp-continuous in [t0, T]×Rd, the functions Ik
are bounded, and Lipschitz conditions (2) and (3) hold. If the corresponding Runge–Kutta method
is convergent of order p, then the global errors ek,l between the numerical solutions xk,l obtained
from (8) and the exact solutions x(tk,l) obtained from DEDI (1) satisfy that there exists a constant
C6 such that, for arbitrary k = 0, 1, 2, · · · , N − 1, l = 0, 1, 2, · · · , m − 1,

ek,l := ‖xk,l − x(tk,l)‖ ≤ C6h (23)

and
ek,m := ‖xk,m − x(τ−

k+1)‖ ≤ C6h, (24)

where h = max
0≤k<N

{hk}.

Proof. From (8) and (9), we can obtain that

‖Xi
k,l+1 − Zi

k,l+1‖

= ‖xk,l − zk,l + hk

v

∑
j=1

aij( f (tj
k,l+1, Xj

k,l+1)− f (tj
k,l+1, Zj

k,l+1))‖

≤ ‖xk,l − zk,l‖+ hk

v

∑
j=1

|aij|‖ f (tj
k,l+1, Xj

k,l+1)− f (tj
k,l+1, Zj

k,l+1)‖

≤ ‖xk,l − zk,l‖+ αhk

v

∑
j=1

|aij|‖Xj
k,l+1 − Zj

k,l+1‖

≤ ‖xk,l − zk,l‖+ αh

(
max
1≤i≤v

v

∑
j=1

|aij|
)

max
1≤j≤v

{‖Xj
k,l+1 − Zj

k,l+1‖}

which implies that
max
1≤i≤v

{‖Xi
k,l+1 − Zi

k,l+1‖} ≤ Λ‖xk,l − zk,l‖,

where Λ =

(
1 − αh

(
max
1≤i≤v

∑v
j=1 |aij|

))−1
. Hence

‖xk,l+1 − zk,l+1‖

= ‖xk,l − zk,l + hk

v

∑
j=1

bj( f (tj
k,l+1, Xj

k,l+1)− f (tj
k,l , Zj

k,l))‖

≤ ‖xk,l − zk,l‖+ hk

v

∑
j=1

|bj|‖ f (tj
k,l+1, Xj

k,l+1)− f (tj
k,l+1, Zj

k,l+1)‖

≤ ‖xk,l − zk,l‖+ αhk

(
v

∑
j=1

|bj|
)

max
1≤i≤v

{‖Xi
k,l+1 − Zi

k,l+1‖}

≤ (1 + αBΛhk)‖xk,l − zk,l‖.

From Theorem 2, we have

R̄k := max
1≤l≤m

Rk,l ≤ C5hkhp.
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For 0 ≤ l ≤ m − 1,

ek,l+1 := ‖x(tk,l+1)− xk,l+1‖
≤ ‖x(tk,l+1)− zk,l+1‖+ ‖zk,l+1 − xk,l+1‖
≤ (1 + αBΛhk)ek,l + R̄k

≤ (1 + αBΛhk)
l+1ek,0 +

(
(1 + αBΛhk)

l+1 − 1
)

R̄k
αβΛhk

≤ e(l+1)αBΛhk ek,0 +
(

e(l+1)αBΛhk − 1
)

R̄k
αBΛhk

≤ eαBΛσ(τk+1−τk)ek,0 +
(

eαBΛσ(τk+1−τk) − 1
)

C5hp

αBΛ

≤ eαBΛσTek,0 +
(
eαBΛσT − 1

)C5hp

αBΛ .

(25)

Applying Taylor’s formula, for any k = 1, 2, · · · , N,

x(rk)− x(tk,�σm�) = x′(tk,�σm�)(rk − tk,�σm�) +
1
2!

x′′(ξ)(rk − tk,�σm�)
2

which implies that
‖x(rk)− x(tk,�σm�)‖ = C7h,

where ξ ∈ (tk,�σm�, rk). Consequently, we can obtain that

ek+1,0 := ‖xk+1,0 − x(tk+1,0)‖
= ‖Ik+1(xk+1,�σm�)− Ik+1(x(r−k+1))‖
≤ βk+1‖xk+1,�σm� − x(tk,�σm�)‖+ βk+1‖x(tk,�σm�)− x(r−k+1)‖
≤ βk+1‖xk+1,�σm� − x(r−k+1)‖+ βk+1C7h
≤ βk+1eαBΛσTek,0 + βk+1

(
eαBΛσT − 1

)C5hp

αBΛ + βk+1C7h
≤ B̄eαBΛσTek,0 + B̄

(
eαBΛσT − 1

)C5hp

αBΛ + (k + 1)B̄C7h
≤
(

B̄eαBΛσT)k+1e0,0 +
(((

B̄eαBΛσT)k+1 − 1
)

C5Tp−1

αBΛ + (k + 1)B̄C7

)
h.

(26)

For convenience, we choose x0,0 = x0, which impiles that e0,0 = 0. So from (26), for
arbitrary k = 0, 1, 2, . . . , N, we have

ek+1,0 ≤ C8h (27)

where C8 =
((

B̄eαBΛσT)N − 1
)

C5Tp−1

αBΛ + NB̄C7. Combining (25) and (27), for 0 ≤ l ≤ m− 1,
we can obtain that

ek,l+1 ≤ C9h (28)

where C9 = eαBΛσTC8 +
(
eαBΛσT − 1

)C5Tp−1

αBΛ . Consequently, from (27) and (28), we know

that (23) and (24) hold for C6 = max{C8, C9} and h < α−1
(

max1≤i≤v ∑v
j=1 |aij|

)−1
.

4.2. Asymptotical Stability of S2IRKMs

In order to study the asymptotical stability of S2IRKMs, we consider S2IRKM for (4)
as follows: ⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Yi
k,l+1 = yk,l + hk

v
∑

j=1
aij f (tj

k,l+1, Yj
k,l+1), k ∈ N, i = 1, 2, · · · , v,

yk,l+1 = yk,l + hk
v
∑

i=1
bi f (ti

k,l+1, Yi
k,l+1), l = 1, 2, · · · , m − 1,

yk+1,0 = Ik+1(yk,�σm�),
y0,0 = y0.

(29)
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Theorem 8. Assume that R(z) is the stability function of S2IRKM (21), that is

R(z) = 1 + zbT(I − zA)−1e =
Pj(z)
Qk(z)

,

where e = (1, 1, · · · , 1)T is a v-dimensional vector. Let the coefficients of the corresponding Runge–
Kutta method of S2IRKM (21) be nonnegative; that is, aij ≥ 0 and bi ≥ 0, 1 ≤ i ≤ v, 1 ≤ j ≤ v.
Under the conditions of Theorem 1, S2IRKM (21) for (1) is asymptotically stable for hk =

τk+1−τk
m ,

k ∈ N, m ∈ Z+ and m ≥ M, if k is even, where M = inf{m : I − zA is invertible and (I −
zA)−1e ≥ 0, z = αh, h = maxk{hk}, m ∈ Z+}.

Proof. Because aij ≥ 0 and bi ≥ 0, 1 ≤ i ≤ v, 1 ≤ j ≤ v, we can obtain that

‖Xi
k,l+1 − Yi

k,l+1‖

= ‖xk,l − yk,l + hk

v

∑
j=1

aij( f (tj
k,l+1, Xj

k,l+1)− f (tj
k,l+1, Yj

k,l+1))‖

≤ ‖xk,l − yk,l‖+ hk

v

∑
j=1

aij‖ f (tj
k,l+1, Xj

k,l+1)− f (tj
k,l+1, Yj

k,l+1)‖

≤ ‖xk,l − yk,l‖+ αhk

s

∑
j=1

aij‖Xj
k,l+1 − Yj

k,l+1‖.

When m ≥ M, (I − zA)−1e ≥ 0, z = αhk, k ∈ Z+, so

[‖Xi
k,l+1 − Yi

k,l+1‖] ≤ (I − αhk A)−1e‖xk,l − yk,l‖

where [‖Xi
k,l+1 − Yi

k,l+1‖] = (‖X1
k,l+1 − Y1

k,l+1‖, ‖X2
k,l+1 − Y2

k,l+1‖, · · · , ‖Xv
k,l+1 − Yv

k,l+1‖)T .
By Lemmas 1 and 2, we can obtain

‖xk,l+1 − yk,l+1‖

= ‖xk,l − yk,l + hk

s

∑
j=1

bj( f (tj
k,l+1, Xj

k,l+1)− f (tj
k,l+1, Yj

k,l+1))‖

≤ ‖xk,l − yk,l‖+ hk

s

∑
j=1

bj‖ f (tj
k,l+1, Xj

k,l+1)− f (tj
k,l+1, Yj

k,l+1)‖

≤ ‖xk,l − yk,l‖+ αhk

s

∑
j=1

bj‖Xj
k,l+1 − Yj

k,l+1‖

= ‖xk,l − yk,l‖+ αhkbT [‖Xi
k,l+1 − Yi

k,l+1‖]
≤ (1 + αhkbT(I − αhk A)−1e)‖xk,l − yk,l‖
= R(αhk)‖xk,l − yk,l‖
≤ eαhk‖xk,l − yk,l‖.

Hence, for arbitrary k = 0, 1, 2, · · · and l = 0, 1, · · · , m, we have

‖xk,l − yk,l‖ ≤ ‖xk,0 − yk,0‖eαlhk .
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which implies

‖xk+1,0 − yk+1,0‖ = ‖Ik+1(xk,�σm�)− Ik+1(yk,�σm�)‖
≤ βk+1‖xk,�σm� − yk,�σm�‖
≤ βk+1‖xk,0 − yk,0‖eα�σm�hk

≤ βk+1‖xk,0 − yk,0‖eασ(τk+1−τk).

Therefore, by the method of introduction and condition (5), we can obtain that

‖xk,l − yk,l‖
≤ ‖x0 − y0‖

(
β1eασ(τ1−τ0)

)(
β2eασ(τ2−τ1)

)(
βkeασ(τk−τk−1)

)
eαlhk

≤ ‖x0 − y0‖Ckeαγ

which implies that the Runge–Kutta method for (1) is asymptotically stable for hk =
τk+1−τk

m ,
k ∈ N, m ∈ Z+ and m ≥ M.

4.3. Asymptotical Stability of S2IθM

S2IθM for (1) can be constructed as follows:⎧⎨⎩
xk,l+1 = xk,l + hk(1 − θ) f (tk,l , xk,l) + hkθ f (tk,l+1, xk,l+1)
xk+1,0 = Ik+1(xk,�σm�),
x0,0 = x0,

(30)

where hk =
τk+1−τk

m , m ≥ 1, m ∈ Z+ , k ∈ N.

Theorem 9. Under the conditions of Theorem 1, if 0 ≤ θ ≤ ϕ(1), there is a positive M such that
S2IθM (30) for (1) is asymptotically stable for hk =

τk+1−τk
m , k ∈ N, m ∈ Z+ and m ≥ M .

Proof. Obviously, we can obtain

‖xk,l+1 − yk,l+1‖
≤ ‖xk,l − yk,l + (1 − θ)hk( f (tk,l , xk,l)− f (tk,l , yk,l))‖
+ θhk‖ f (tk,l+1, xk,l+1)− f (tk,l+1, yk,l+1)‖

≤ (1 + (1 − θ)αhk)‖xk,l − yk,l‖+ θαhk‖xk,l+1 − yk,l+1‖

which implies

‖xk,l+1 − yk,l+1‖ ≤ 1 + (1 − θ)αhk
1 − θαhk

· ‖xk,l − yk,l‖

Therefore, by Lemma 2 and the method of introduction, we can obtain that

‖xk,l+1 − yk,l+1‖ ≤ eαhk‖xk,l − yk,l‖.

Similarly to the proof of Theorem 8, we can prove that S2IθM (30) for (1) is asymp-
totically stable for hk =

τk+1−τk
m , k ∈ N, m ∈ Z+ and m > α(τk+1 − τk), k ∈ Z+ if

0 ≤ θ ≤ ϕ(1).

5. Impulsive Continuous Runge–Kutta Methods

The purpose of this section is to construct impulsive continuous Runge–Kutta meth-
ods (ICRKMs) for DEDI (1) and study the convergence and stability of the constructed
numerical methods, respectively.
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To ensure the high-order convergence of the numerical methods, the mesh

S̄ = {t0, t1, · · · , tn, · · · }

includes all discontinuous points (the points at the moments of impulsive effect), i.e., S ⊂ S̄,
where S = {τk : k ∈ Z+}.

Remark 4.

(1) The same as S1IRKMs in Section 3, all points in the set {τk, rk : k ∈ Z+} are chosen as the
numerical mesh. We can divide the intervals [τk−1, rk] and [rk, τk) (k ∈ Z+) equally by m;
m is a positive integer. In this case, ICRKM (31) in this section and S1IRKM (8) have the
same values at the discrete points, if they have the same corresponding Runge–Kutta method.
Because they have similar properties, we ignore this case for the sake of brevity.

(2) For convenience, in the next part of this section, we divide the intervals [τk−1, τk] (k ∈ Z+)
equally by m; m is a positive integer. Unlike the S2IRKMs, when we compute the numerical
solutions at the moments of impulsive effect, the numerical solutions of ICRKMs at points
{rk : k ∈ Z+} can be obtained directly without substituting nearby values.

When interpolants (constructed using no extra stages) of the corresponding continuous
Runge–Kutta method are interpolants of the first class, ICRKM for DEDI (1) is constructed
as follows.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Xi
n+1 = xn + hn+1

v
∑

j=1
aij f (tj

n+1, Xj
n+1), i = 1, 2, · · · , v,

η(tn + ϑhn+1) = xn + hn+1
v
∑

i=1
bi(ϑ) f (ti

n+1, Xi
n+1), 0 ≤ ϑ < 1,

η(t−n+1) = xn + hn+1
v
∑

i=1
bi f (ti

n+1, Xi
n+1),

xn+1 = η(tn+1) =

{
Ik(η(r−k )), if ∃k such that tn+1 = τk,
η(t−n+1), otherwise,

x0 = x(t0)

(31)

where yn = η(tn), tn+1 = tn + hn+1, ti
n+1 = tn + cihn+1, bi(0) = 0, bi = bi(1), ci =

v
∑

j=1
aij,

i = 1, 2, · · · , v, for j = 1, 2, · · · , v,

Xj
n+1 =

{
η(t−n+1), if ∃k ∈ Z+, such that tj

n+1 = τk and cj = 1,

η(tj
n+1), otherwise.

According to Remark 4 (2), the step sizes are chosen as follows, for km < n ≤ (k + 1)m,
k ∈ N,

hn = h̃k =
τk+1 − τk

m
,

where m is a positive integer.
When interpolants (constructed by means of additional stages) of the corresponding

continuous Runge–Kutta method are interpolants of the second class, ICRKM for DEDI (1)
is constructed as follows.
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Xi
n+1 = xn + hn+1

v
∑

j=1
aij f (tj

n+1, Xj
n+1), i = 1, 2, · · · , v,

Xi
n+1 = xn + hn+1

s
∑

j=1
aij f (tj

n+1, Xj
n+1), i = v + 1, · · · , s,

η(tn + ϑhn+1) = xn + hn+1
s
∑

i=1
bi(ϑ) f (ti

n+1, Xi
n+1), 0 ≤ ϑ < 1,

η(t−n+1) = yn + hn+1
s
∑

i=1
bi f (ti

n+1, Xi
n+1),

xn+1 = η(tn+1) =

{
Ik(η(r−k )), if ∃k such that tn+1 = τk,
η(t−n+1), otherwise,

(32)

where

bi(0) = 0, i = 1, 2, · · · , s;

bi(1) = bi, i = 1, 2, · · · , v;

bi(1) = 0, i = v + 1, v + 2, · · · , s.

5.1. Convergence of ICRKMs

To analyze the local truncation errors of ICRKM for DEDI (1), consider the following
local problem of (31) on [tn, tn+1], n = 0, 1, 2, · · · , M − 1,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Zi
n+1 = zn + hn+1

v
∑

j=1
aij f (tj

n+1, Zj
n+1), i = 1, 2, · · · , v,

ζ(tn + ϑhn+1) = zn + hn+1
v
∑

i=1
bi(ϑ) f (ti

n+1, Zi
n+1), 0 ≤ ϑ < 1,

ζ(t−n+1) = zn + hn+1
v
∑

i=1
bi f (ti

n+1, Zi
n+1),

zn+1 = ζ(tn+1) =

{
Ik(ζ(r−k )), if ∃k such that tn+1 = τk,
ζ(t−n+1), otherwise,

(33)

and the following local problem of (32) on [tn, tn+1],⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Zi
n+1 = zn + hn+1

v
∑

j=1
aij f (tj

n+1, Zj
n+1), i = 1, 2, · · · , v,

Zi
n+1 = zn + hn+1

s
∑

j=1
aij f (tj

n+1, Zj
n+1), i = v + 1, · · · , s,

ζ(tn + ϑhn+1) = zn + hn+1
s
∑

i=1
bi(ϑ) f (ti

n+1, Zi
n+1), 0 ≤ ϑ < 1,

ζ(t−n+1) = zn + hn+1
s
∑

i=1
bi f (ti

n+1, Zi
n+1),

zn+1 = ζ(tn+1) =

{
Ik(ζ(r−k )), if ∃k such that tn+1 = τk,
ζ(t−n+1), otherwise,

(34)

where zn = x(tn) and for j = 1, 2, · · · , v,

Zj
n+1 =

{
ζ(t−n+1), if ∃k ∈ Z+, such that tj

n+1 = τk and cj = 1,

ζ(tj
n+1), otherwise.

Because it can be seen as a problem of ordinary differential equations when we
consider the local problem, from [39] (page 114, Definition 5.1.3), we can directly obtain the
following result.

181



Mathematics 2024, 12, 3002

Theorem 10. Consider DEDI (1) where f (t, x) is Cp-continuous in [t0, T]× Rd. If the corre-
sponding continuous Runge–Kutta method is consistent of order p, then local errors between the
numerical solutions obtained from (33) (or (34)) and the exact solutions obtained from DEDI (1)
satisfy that there exists a constant C such that, for arbitrary n = 0, 1, 2, · · · , N − 1, if tn+1 �= τk,
for ∀k,

Rn := ‖zn+1 − x(tn+1)‖ ≤ Chp+1
n+1; (35)

otherwise, there exists an integer k such that tn+1 = τk,

‖ζ(t−n+1)− x(τ−
k )‖ ≤ Chp+1

n+1, (36)

If the corresponding continuous Runge–Kutta method is consistent of uniform order q,
then local errors between the numerical solutions obtained from (33) (or (34)) and the exact so-
lutions obtained from DEDI (1) satisfy that there exists a constant C such that, for arbitrary
n = 0, 1, 2, · · · , N − 1, when tn+1 �= τk, for ∀k,

‖ζ(t)− x(t)‖ ≤ Chq+1
n+1, ∀t ∈ [tn, tn+1]; (37)

otherwise, there exists an integer k such that tn+1 = τk,

‖ζ(t)− x(t)‖ ≤ Chq+1
n+1, ∀t ∈ [tn, τk). (38)

Theorem 11. Assume that f (t, x) of DEDI (1) is Cp-continuous in [t0, T]×Rd, the functions
Ik are bounded, and Lipschitz conditions (2) and (3) hold. If the corresponding continuous Runge–
Kutta method is consistent of order p and is consistent of uniform order q, then the global errors
e(t) = ‖x(t)− η(t)‖ between the numerical solutions η(t) obtained from (31) (or (32)) and the
exact solutions x(t) obtained from DEDI (1) satisfy that there exists a constant C1 such that, for
arbitrary n = 0, 1, 2, · · · , N − 1, when tn+1 �= τk, k ∈ Z+

e(t) = ‖x(t)− η(t)‖ ≤ C1hq′ , t ∈ [tn, tn+1] (39)

when ∃k ∈ Z+, tn+1 = τk,

e(t) = ‖x(t)− η(t)‖ ≤ C1hq′ , t ∈ [tn, τk) (40)

and
e(τk) = ‖x(τk)− η(τk)‖ ≤ C1hq′ , (41)

where q′ = min{p, q + 1}.

Proof. From (8) and (9), we can obtain that

‖Xi
n+1 − Zi

n+1‖

= ‖xn − zn + hn+1

v

∑
j=1

aij( f (tj
n+1, Xj

k,l+1)− f (tj
n+1, Zj

n+1))‖

≤ ‖xn − zn‖+ hn+1

v

∑
j=1

|aij|‖ f (tj
n+1, Xj

n+1)− f (tj
n+1, Zj

n+1)‖

≤ ‖xn − zn‖+ αhn+1

v

∑
j=1

|aij|‖Xj
n+1 − Zj

n+1‖

≤ ‖xn − zn‖+ αh

(
max
1≤i≤v

v

∑
j=1

|aij|
)

max
1≤j≤v

{‖Xj
n+1 − Zj

n+1‖}
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which implies that
max
1≤i≤v

{‖Xi
n+1 − Zi

n+1‖} ≤ Λ‖xn − zn‖.

where Λ =

(
1 − αh

(
max
1≤i≤v

∑v
j=1 |aij|

))−1
. Hence

‖xn+1 − zn+1‖

= ‖xn − zn + hn+1

v

∑
j=1

bj( f (tj
n+1, Xj

n+1)− f (tj
n+1, Zj

n+1))‖

≤ ‖xn − zn‖+ hn+1

v

∑
j=1

|bj|‖ f (tj
n+1, Xj

n+1)− f (tj
n+1, Zj

n+1)‖

≤ ‖xn − zn‖+ αhn+1

(
v

∑
j=1

|bj|
)

max
1≤i≤v

{‖Xi
n+1 − Zi

n+1‖}

≤ (1 + αBΛhn+1)‖xn − zn‖.

From Theorem 2, we have

R̄k := max
km≤n<(k+1)m

Rn = max
km≤n<(k+1)m

‖zn − x(tn)‖ ≤ Ch̃khp,

where h = max1≤n≤N hn.
For km ≤ n < (k + 1)m − 1, (tn+1 �= τk+1), k ∈ N,

en+1 := ‖x(tn+1)− η(tn+1)‖
≤ ‖x(tn+1)− zn+1‖+ ‖zn+1 − xn+1‖
≤
(
1 + αBΛh̃k

)
en + R̄n+1

≤
(
1 + αBΛh̃k

)n+1−kmekm +
(
(1 + αBΛhn+1)

n+1−km − 1
) R̄k

αβΛh̃k

≤ eαBΛ(τk+1−τk)ekm +
(

eαBΛ(τk+1−τk) − 1
) Chp

αBΛ

≤ eαBΛTekm +
(

eαBΛT − 1
) Chp

αBΛ

(42)

and on the interval [tn, tn+1],

‖x(tn + ϑhn+1)− η(tn + ϑhn+1)‖
≤ ‖x(tn + ϑhn+1)− ζ(tn + ϑhn+1)‖+ ‖ζ(tn + ϑhn+1)− η(tn + ϑhn+1)‖+ Chq+1

≤ ‖xn − zn‖+ hn+1

v

∑
i=1

bi(ϑ)‖ f (ti
n+1, Xi

n+1)− f (ti
n+1, Zi

n+1)‖+ Chq+1

≤ ‖xn − zn‖+ hn+1B̃ max
1≤i≤v

‖ f (ti
n+1, Xi

n+1)− f (ti
n+1, Zi

n+1)‖+ Chq+1

≤ (1 + hn+1αΛB̃)‖xn − zn‖+ Chq+1

≤ eαΛB̃h̃k en + Chq+1

≤ eαΛB̃h̃k eαBΛTekm + eαΛB̃h̃k
(

eαBΛT − 1
) Chp

αBΛ
+ Chq+1

≤ eα(B+B̃)ΛTekm + eαΛB̃T
(

eαBΛT − 1
) Chp

αBΛ
+ Chq+1.

(43)
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where B̃ = max0≤ϑ≤1 ∑v
i=1 bi(ϑ). For n = (k + 1)m − 1, (tn+1 = τk+1), k ∈ N, from (43), we

can obtain

en+1 := ‖x(tn+1)− η(tn+1)‖ = ‖x(τk+1)− η(τk+1)‖
= ‖Ik+1(x(r−k+1))− Ik+1(η(x(r−k+1))‖
≤ βk+1‖x(r−k+1)− η(x(r−k+1)‖

≤ B̄eα(B+B̃)ΛTekm + B̄eαΛB̃T
(

eαBΛT − 1
) Chp

αBΛ
+ B̄Chq+1

≤ B̄eα(B+B̃)ΛTekm + Dhq′ .

(44)

where B̄ = max{β1, β2, · · · , βN} and D = B̄eαΛB̃T(eαBΛT − 1
) C

αBΛ + B̄C. By (44) and
mathematical induction, we know that

e(τk) = ekm ≤ B̄NeNα(B+B̃)ΛTe0 +

(
B̄NeNα(B+B̃)ΛT − 1

B̄eα(B+B̃)ΛT − 1

)
Dhq′ . (45)

If the inital data η(t0) = x(t0), e0 = 0. Combining (43) and (45), the theorem holds for C1 =

max{
(

B̄NeNα(B+B̃)ΛT−1
B̄eα(B+B̃)ΛT−1

)
D, eα(B+B̃)ΛT

(
B̄NeNα(B+B̃)ΛT−1

B̄eα(B+B̃)ΛT−1

)
D + eαΛB̃T(eαBΛT − 1

) C
αBΛ + C}.

5.2. Asymptotical Stability of ICRKMs

In order to study the asymptotical stability of ICRKMs, we first consider that ICRKM
for DEDI (4) is constructed as follows.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ȳi
n+1 = ȳn + hn+1

v
∑

j=1
aij f (tj

n+1, Ȳj
n+1), i = 1, 2, · · · , v,

η̄(tn + ϑhn+1) = ȳn + hn+1
v
∑

i=1
bi(ϑ) f (ti

n+1, Ȳi
n+1), 0 ≤ ϑ < 1,

η̄(t−n+1) = ȳn + hn+1
v
∑

i=1
bi f (ti

n+1, Ȳi
n+1),

ȳn+1 = η̄(tn+1) =

{
Ik(η̄(r−k )), if ∃k such that tn+1 = τk,
η̄(t−n+1), otherwise,

ȳ0 = y(t0)

(46)

where

Ȳj
n+1 =

{
η̄(t−n+1), if ∃k ∈ Z+, such that tj

n+1 = τk and cj = 1,

η̄(tj
n+1), otherwise.

Theorem 12. Assume that f (t, x) is Cp-continuous in [t0, T]× Rd and satisfies the Lipschitz
conditions (2) and (3); η(t) and η̄(t) are the numerical solutions obtained from ICRKMs (31)
and (46) for DEDI (1) and (4), respectively. If there are positive constants h̄0 and C such that
βkeαΛB̃[σ(τk−τk−1)+h̄0] < C < 1 for all k ∈ Z+, then ICRKMs (31) and (46) for DEDI (1) and (4)
are asymptotically stable.
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Proof. Because of the Lipschitz condition of f , we can obtain that

‖ f (ti
n+1, Xi

n+1)− f (ti
n+1, Ȳi

n+1)‖
≤ α‖Xi

n+1 − Ȳi
n+1‖

≤ α‖xn − ȳn‖+ hn+1α
v

∑
j=1

|aij|‖ f (tj
n+1, Xj

n+1)− f (tj
n+1, Ȳj

n+1)‖

≤ hn+1α(max
1≤i≤s

s

∑
j=1

|aij|) max
1≤i≤s

‖ f (tj
n+1, Xj

n+1)− f (tj
n+1, Ȳj

n+1)‖

+ α‖xn − ȳn‖

Therefore, if hn+1 ≤ h̄1 for some h̄1 < (α max
1≤i≤v

v
∑

j=1
|aij|)−1, then

max
1≤i≤v

‖ f (ti
n+1, Xi

n+1)− f (ti
n+1, Ȳi

n+1)‖ ≤ αΛ‖xn − ȳn‖

where

Λ = (1 − hα max
1≤i≤v

v

∑
j=1

|aij|)−1.

Hence

‖η(tn + ϑhn+1)− η̄(tn + ϑhn+1)‖

≤ ‖xn − ȳn‖+ hn+1

v

∑
i=1

bi(ϑ)‖ f (ti
n+1, Xi

n+1)− f (ti
n+1, Ȳi

n+1)‖

≤ ‖xn − ȳn‖+ hn+1B̃ max
1≤i≤v

‖ f (ti
n+1, Xi

n+1)− f (ti
n+1, Ȳi

n+1)‖

≤ (1 + hn+1αΛB̃)‖xn − ȳn‖
≤ eαΛB̃hn+1‖xn − ȳn‖

(47)

which implies
‖xn+1 − ȳn+1‖ ≤ eαΛB̃hn+1‖xn − ȳn‖.

So, for km ≤ n < (k + 1)m,

‖xn − ȳn‖ ≤ eαΛB̃(tn−tkm)‖xkm − ȳkm‖. (48)

From (47) and (48), we obtain

‖x(k+1)m − ȳ(k+1)m‖ = ‖η(τk+1)− η̄(τk+1)‖
≤ βk+1‖η(r−k+1)− η̄(r−k+1)‖
≤ βk+1eαΛB̃h̄0‖xkm+�σm� − ȳkm+�σm�‖
≤ βk+1eαΛB̃h̄0eαΛB̃(tkm+�σm�−tkm)‖xkm − ȳkm‖
≤ βk+1eαΛB̃[σ(τk+1−τk)+h̄0]‖xkm − ȳkm‖.

(49)

Combining (47), (48) and (49) and applying mathematical induction, we can obtain that
ICRKMs (31) and (46) for DEDI (1) and (4) are asymptotically stable when the step sizes
satisfy hn ≤ min{h̄0, h̄1}, ∀n ∈ Z+.
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6. Numerical Experiments

In this section, two simple numerical examples in real space are given.

Example 1. Consider the following scalar DEDI:⎧⎪⎨⎪⎩
x′(t) = sin(x(t)), t > 0, t �= k, k ∈ Z+,
x(k) = ( 1

2 )x((k − π
4 )

−), k ∈ Z+,
x(0) = x0.

(50)

Obviously, σ = 1 − π
4 , βk =

1
2 , τk = k, k ∈ Z+. For arbitrary x, y ∈ R, we can obtain that

| sin(x)− sin(y)| = |2 cos(
x + y

2
) sin(

x − y
2

)| ≤ 2| x − y
2

| = |x − y|,

which implies the Lipschitz coefficient α = 1. Hence

βkeασ(τk−τk−1) =
e1− π

4

2
< 1.

Therefore, by Theorem 1, the exact solution of (50) is asymptotically stable.

This statement is correct. By Theorems 4 and 8, if the stability function R(z) =
Pj(z)
Qk(z)

with
nonnegative coefficients of S1IRKM (8) (or S2IRKM (21)), then S1IRKM (8) (or S2IRKM (21))
for (50) is asymptotically stable if k is even and the step sizes are small enough. For example, the
scheme 1 impulsive Heun’s method (S1IHM) (see Figure 1) and scheme 1 impulsive four-stage
four-order classical Runge–Kutta method (S1IRKM) (see Figure 2) for (50) is asymptotically stable.

When x0 = 1, solving (50), we can obtain

x(t) = arccos
(

C0e−2t − 1
C0e−2t + 1

)
, t ∈ (0, 1),

x(1) = (
1
2
)x((1 − π

4
)−) =

(
1
2

)
arccos

(
C0e−2(1− π

4 ) − 1

C0e−2(1− π
4 ) + 1

)
,

x(t) = arccos
(

C1e−2t − 1
C1e−2t + 1

)
, t ∈ (1, 2),

x(2) = (
1
2
)x((2 − π

4
)−) =

(
1
2

)
arccos

(
C1e−2(2− π

4 ) − 1

C1e−2(2− π
4 ) + 1

)
,

x(t) = arccos
(

C2e−2t − 1
C2e−2t + 1

)
, t ∈ (2, 3),

x(3) = (
1
2
)x((3 − π

4
)−) =

(
1
2

)
arccos

(
C2e−2(3− π

4 ) − 1

C2e−2(3− π
4 ) + 1

)
,

...
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where

C0 =
1 + cos 1
1 − cos 1

,

C1 = e2

⎛⎜⎜⎜⎜⎝
1 + cos

[(
1
2

)
arccos

(
C0e−2(1− π

4 )−1

C0e−2(1− π
4 )+1

)]

1 − cos

[(
1
2

)
arccos

(
C0e−2(1− π

4 )−1

C0e−2(1− π
4 )+1

)]
⎞⎟⎟⎟⎟⎠,

C2 = e4

⎛⎜⎜⎜⎜⎝
1 + cos

[(
1
2

)
arccos

(
C1e−2(2− π

4 )−1

C1e−2(2− π
4 )+1

)]

1 − cos

[(
1
2

)
arccos

(
C1e−2(2− π

4 )−1

C1e−2(2− π
4 )+1

)]
⎞⎟⎟⎟⎟⎠.
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Figure 1. The S1IHM for DEDI (50) with initial values x0 = 1 and y0 = 2, respectively.
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Figure 2. The S1IRKM with corresponding classical 4-stage 4-order Runge–Kutta method for
DEDI (50) with intitial values x0 = 1 and y0 = 2, respectively.

From the theory in the previous part of this paper, we can see that the numerical solutions
obtained by scheme 1 impulsive discrete Runge–Kutta methods (See Section 3) converge best. From
Tables 1–4, we can also see that the scheme 1 impulsive discrete Runge–Kutta methods have the
best convergence when we use computational simulation, even when the step sizes are not precise
enough to have truncation errors. From Figure 3, we can see that the curves of the exact solution
of DEDI (50) seem to overlap with those obtained by the S1IRKM and the difference between the
curves of the exact solution and those obtained by the S1IHM is not very large. Even if we take the
maximum step sizes h̄k,1 = 1 − π

4 and h̄k,2 = π
4 , k ∈ N (m = 1), the scheme 1 impulsive discrete

Runge–Kutta methods are simulated very well.
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Figure 3. The exact solution of DEDI (50) and the numerical solutions obtained from S1IRKM and
S1IHM for DEDI (50), respectively, when the initial values x0 = 1.

Table 1. The errors between the numerical solutions obtained from different impulsive schemes with
corresponding Heun’s method for (50) and the exact solution of (50) at t = 3.

S1IHM S2IHM ICHM

m AE RE AE RE AE RE

10 7.553082 × 10−6 3.375092 × 10−5 0.008562 0.038261 9.937190 × 10−5 4.440430 × 10−4

20 1.902566 × 10−6 8.501609 × 10−6 0.008458 0.037796 6.538494 × 10−5 2.921723 × 10−4

40 4.774370 × 10−7 2.133426 × 10−6 0.008431 0.037674 2.077670 × 10−5 9.284060 × 10−5

80 1.195843 × 10−7 5.343618 × 10−7 0.001232 0.005504 1.88584928 × 10−6 8.426910 × 10−6

Ratio 3.982459 3.982459 2.953555 2.953555 5.227996 5.227996

Table 2. The errors between the numerical solutions obtained from different impulsive schemes with
corresponding classical 4-stage 4-order Runge–Kutta method for (50) and the exact solution of (50) at
t = 3.

S1IRKM S2IRKM ICCRKM

m AE RE AE RE AE RE

10 1.626758 × 10−10 7.269161 × 10−10 0.008422 0.037633 3.287970 × 10−7 1.469228 × 10−6

20 1.022230 × 10−11 4.567829 × 10−11 0.008422 0.037633 4.455852 × 10−8 1.991096 × 10−7

40 6.374623 × 10−13 2.848498 × 10−12 0.008422 0.037633 1.003505 × 10−9 4.484159 × 10−9

80 3.674838 × 10−14 1.642100 × 10−13 0.001229 0.005492 5.924100 × 10−10 2.647182 × 10−9

Ratio 16.432140 16.432140 2.950583 2.950583 17.825269 17.825269

Table 3. The errors between the numerical solutions obtained from different impulsive schemes with
corresponding Heun’s method for (51) and the exact solution of (51) at t = 3.

S1IHM S2IHM ICHM

m AE RE AE RE AE RE

10 1.818238 × 10−5 1.806009 × 10−4 0.009707 0.096421 1.826220 × 10−4 0.001814
20 4.602998 × 10−6 4.572040 × 10−5 0.009614 0.095489 4.296101 × 10−5 4.267208 × 10−4

40 1.157979 × 10−6 1.150191 × 10−5 0.002496 0.024787 1.073603 × 10−5 1.066382 × 10−4

80 2.904017 × 10−7 2.884486 × 10−6 0.002488 0.024715 2.638715 × 10−6 2.620969 × 10−5

Ratio 3.970884 3.970884 1.955017 1.955017 4.107037 4.107037
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Table 4. The errors between the numerical solutions obtained from different impulsive schemes with
corresponding classical 4-stage 4-order Runge–Kutta method for (51) and the exact solution of (51) at
t = 3.

S1IRKM S2IRKM ICCRKM

m AE RE AE RE AE RE

10 1.007330 × 10−9 1.000556 × 10−8 0.009581 0.095163 2.293592 × 10−6 2.278166 × 10−5

20 6.376583 × 10−11 6.333697 × 10−10 0.009581 0.095163 2.057541 × 10−7 2.043703 × 10−6

40 3.940667 × 10−12 3.914164 × 10−11 0.002486 0.0246901 3.088753 × 10−8 3.067981 × 10−7

80 1.746658 × 10−13 1.734911 × 10−12 0.002486 0.0246901 3.531197 × 10−9 3.507448 × 10−8

Ratio 18.180002 18.180002 1.9514301 1.9514301 8.851896 8.851896

Example 2. The above theory also holds for the following linear DEDI:⎧⎪⎨⎪⎩
x′(t) = x(t), t ≥ 0, t �= k, k = 1, 2, · · · ,
x(k) = ( 1

3 )x((k − 2
3 )

−), k ∈ Z+,
x(0) = x0.

(51)

Applying mathematical induction, the exact solution to DEDI (51) can be obtained by direct
calculation as follows, for k ∈ N,

x(t) = x0

(
1
3

e
1
3

)k
et−k, t ∈ [k, k + 1).

Obviously, α = 1, σ = 1
3 , τk = k, βk =

1
3 , k ∈ Z+. So

βkeασ(τk−τk−1) = (
1
3
)e(

1
3 )(k−(k−1)) =

e
1
3

3
< 1.

Therefore, by Theorem 1, the exact solution of (51) is asymptotically stable.

By Theorems 4 and 8, if the stability function R(z) =
Pj(z)
Qk(z)

with nonnegative coefficients
of S1IRKM (8) (or S2IRKM (21)), then S1IRKM (8) (or S2IRKM (21)) for (51) is asymptotically
stable if k is even and the step sizes are small enough. For example, the S1IHM (see Figure 4) and
S1IRKM (see Figure 5) for (51) is asymptotically stable.
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Figure 4. The S1IHM for DEDI (51) with initial values x0 = 1 and y0 = 2, respectively.
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Figure 5. The S1IRKM for DEDI (51) with initial values x0 = 1 and y0 = 2, respectively.

Even if we take the maximum step sizes h̄k,1 = 2
3 and h̄k,2 = 1

3 , k ∈ N, (m = 1), the scheme 1
impulsive discrete Runge–Kutta methods (See Section 3) are simulated very well. From Figure 6,
we can see that the curves of the exact solution of DEDI (51) seem to overlap with those obtained by
the S1IRKM and the difference between the curves of the exact solution and those obtained by the
S1IHM is not very large.
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Figure 6. The exact solution of DEDI (51) and the numerical solutions obtained from S1IRKM and
S1IHM for DEDI (51), respectively, when the initial values x0 = 1.

Consider the following impulsive continuous Heun’s method (ICHM) with corre-
sponding two-stage Heun’s method of order p = 2, interpolated by its unique natural
continuous extension of order q = 1.

0 0 0
1 1 0

1
2

1
2

b1(ϑ) =
ϑ
2 ,

Heun′s method, order 2 b2(ϑ) =
ϑ
2 .

From Theorem 3, S1IHM for DEDIs (1), (50) and (51) is convergent of order 2. From
Theorem 7, S2IHM for DEDIs (1), (50) and (51) is convergent at least of order 1. Applying
Theorem 11, we know that the above ICHM for DEDIs (1), (50) and (51) is convergent of
order q′ = 2. These results are in general agreement with those obtained from the numerical
experiments in Tables 1 and 3.

Similarly, consider the following impulsive continuous classical Runge–Kutta method
(ICCRKM) with corresponding four-stage classical Runge–Kutta method of order p = 4,
interpolated by its unique natural continuous extension of order q = 2.
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0 0 0 0 0
1
2

1
2 0 0 0

1
2 0 1

2 0 0
1 0 0 1 0

1
6

1
3

1
3

1
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b1(ϑ) =
(
− ϑ

2 + 2
3

)
ϑ,

b2(ϑ) =
ϑ
3 ,

b3(ϑ) =
ϑ
3 ,

b4(ϑ) =
(

ϑ
2 − 1

3

)
ϑ.

Classical 4 − stage Runge −−Kutta method

From Theorem 3, S1IRKM with corresponding classical four-stage four-order Runge–
Kutta method for DEDIs (1), (50) and (51) is convergent of order 4. From Theorem 7,
S2IRKM for DEDIs (1), (50) and (51) is convergent at least of order 1. Applying Theorem
11, we know that the above ICCRKM for DEDIs (1), (50) and (51) is convergent of order
q′ = 3. These results are in general agreement with those obtained from the numerical
experiments in Tables 2 and 4.

AE denotes the absolute errors between the numerical solutions and the exact solutions
of DEDIs in Tables 1–4. Similarly, RE denotes the relative errors between the numerical
solutions and the exact solutions of DEDIs.

As can be seen from Tables 1 and 3, when the step size is halved, both AE and RE of
the scheme 1 impulsive Heun’s method (S1IHM) and impulsive continuous Heun’s method
((ICHM)) for DEDIs (50) and (51) become one-quarter of the original ones, respectively,
which roughly indicates that both the S1IHM and ICHM for DEDIs (50) and (51) are
convergent of order 2. On the other hand, when the step size is halved, both AE and RE
of the scheme 2 impulsive Heun’s method (S2IHM) for DEDIs (50) and (51) become one
half of the original ones, respectively, which roughly indicates that both the S2IHM for
DEDIs (50) and (51) are convergent of order 1.

As can be seen from Tables 2 and 4, when the step size is halved, both AE and RE of
the scheme 1 impulsive classical four-stage four-order Runge–Kutta method (S1IRKM) for
DEDIs (50) and (51) become one-sixteenth of the original ones, which roughly indicates that
the S1ICRKM for DEDIs (50) and (51) is convergent of order 4. On the other hand, when the
step size is halved, both AE and RE of the scheme 2 impulsive classical four-stage four-order
Runge–Kutta method (S2IRKM)for DEDIs (50) and (51) become half of the original ones,
which roughly indicates that the S2IRKM for DEDIs (50) and (51) is convergent of order 1.

As can be seen from Table 4, when the step size is halved, both AE and RE of ICCRKM
for DEDI (51) become one-eighth of the original ones, which roughly indicates that ICRKM
for DEDI (51) is convergent of order 3. However, in Table 2, the magnitude of the ratios of
AE and RE of ICCRKM for DEDI (50) vary a little bit, but the overall look of convergence is
faster than one-eighth.

7. Conclusions and Future Works

The first innovation of this paper is to consider nonlinear Lipschitz continuous function
f (t, x) for the dynamic system and for the impulsive term a Lipschitz continuous function
Ik, which also implies new sufficient conditions for asymptotical stability of the exact
solutions, and numerical solutions of DEDIs are obtained. Another innovation of this paper
is that different numerical methods are constructed in order to obtain efficient numerical
formats for higher-order convergence, as follows. (1) The simplest and most straightforward
idea is to select the times at discontinuous points τk, (the moments of impulsive effects)
k ∈ Z+ and the past times rk involved in calculating the exact (or numerical) solution of
the discontinuities as step nodes of the numerical method, which is also the numerical
method (S1RKM) with the best convergence. The S1IRKMs are convergent of order p if the
corresponding Runge–Kutta method is p-order. (2) The second idea is to select only the
discontinuities τk as step nodes and instead of the past times rk being selected as step nodes
for the numerical method, the times tk,�σm� near the past times rk are taken and selected
as step nodes, which is the main idea behind the construction of S2RKM. The S2IRKMs
for DEDI (1) in the general case are only convergent of order 1, but are more efficient and
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may be suitable for more complex DEDIs. Thus in this case, we only need to use the S2θM,
which is also convergent of order 1 and simpler. (3) When the past times rk are not chosen
as step nodes, in order to overcome the convergence order problem that occurs, in the
second idea, we can use the ICRKM. In this article, we prove that ICRKM for DEDI (1) is
convergent of order q′ = min{p, q}, if the corresponding continuous Runge–Kutta method
is consistent of order p and is consistent of uniform order q.

When the past times rk involved in DEDIs at the moments of impulsive effects are
state-dependent or stochastic, it is difficult or impossible for the past moments to be taken
as step nodes, which is a problem we will address in the future. In other words, applying
S2IθMs or ICRKMs to solve time-delay differential equations with state-dependent delayed
impulses or differential equations with stochastic delayed impulses will be the future work.
What happens if the function Ik in an impulsive term is not a continuous Lipschitz function?
This is also a question we will study in the future.

Author Contributions: Conceptualization, G.-L.Z.; Software, Z.-Y.Z., Y.-C.W. and G.-L.Z.; Writ-
ing—original draft, G.-L.Z.; Writing—review and editing, G.-L.Z. and C.L. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was supported by the National Natural Science Foundation of China
(No. 11701074) and Hebei Natural Science Foundation (No. A2020501005).

Data Availability Statement: The datasets generated during the current study are available from the
corresponding author on reasonable request.

Conflicts of Interest: The authors declare no competing interests.

References

1. Bainov, D.D.; Simeonov, P.S. Systems with Impulsive Effect: Stability, Theory and Applications; Ellis Horwood: Chichester, UK, 1989.
2. Bainov, D.D.; Simeonov, P.S. Impulsive Differential Equations: Asymptotic Properties of the Solutions; World Scientific: Singapore, 1995.
3. Lakshmikantham, V.; Bainov, D.D.; Simeonov, P.S. Theory of Impulsive Differential Equations; World Scientific: Singapore, 1989.
4. Samoilenko, A.M.; Perestyuk, N.A.; Chapovsky, Y. Impulsive Differential Equations; World Scientific: Singapore, 1995.
5. Li, X.D.; Song, S.J. Impulsive Systems with Delays: Stability and Control; Science Press: Beijing, China, 2022.
6. Li, X.D.; Song, S.J.; Wu, J.H. Exponential stability of nonlinear systems with delayed impulses and applications. IEEE Trans.

Automat. Control 2019, 64, 4024–4034. [CrossRef]
7. Yu, Z.Q.; Ling, S.; Liu, P.X. Exponential stability of time-delay systems with flexible delayed impulse. Asian J. Control. 2024, 26,

265–279. [CrossRef]
8. Jiang, B.; Lu, J.; Liu, Y. Exponential stability of delayed systems with average-delay impulses. SIAM J. Control Optim. 2020, 58,

3763–3784. [CrossRef]
9. He, Z.L.; Li, C.D.; Cao, Z.R.; Li, H.F. Stability of nonlinear variable-time impulsive differential systems with delayed impulses.

Nonlinear Anal. Hybrid Syst. 2021, 39, 100970. [CrossRef]
10. Lu, Y.; Zhu, Q.X. Exponential stability of impulsive random delayed nonlinear systems with average-delay impulses. J. Frankl.

Inst. 2024, 361, 106813. [CrossRef]
11. Chen, X.Y.; Liu, Y.; Ruan, Q.H.; Cao, J.D. Stabilization of nonlinear time-delay systems: Flexible delayed impulsive control. Appl.

Math. Model. 2023, 114, 488–501. [CrossRef]
12. Chen, W.H.; Zheng, W.X. Exponential stability of nonlinear time-delay systems with delayed impulse effects. Automatica 2011, 47,

1075–1083. [CrossRef]
13. Cui, Q.; Li, L.L.; Cao, J.D. Stability of inertial delayed neural networks with stochastic delayed impulses via matrix measure

method. Neurocomputing 2022, 471, 70–78. [CrossRef]
14. Li, X.D.; Zhang, X.L.; Song, S.J. Effect of delayed impulses on input-to-state stability of nonlinear systems. Automatica 2017, 76,

378–382. [CrossRef]
15. Liu, W.L.; Li, P.; Li, X.D. Impulsive systems with hybrid delayed impulses: Input-to-state stability. Nonlinear Anal. Hybrid Syst.

2022, 46, 101248. [CrossRef]
16. Niu, S.N.; Chen, W.H.; Lu, X.M.; Xu, W.X. Integral sliding mode control design for uncertain impulsive systems with delayed

impulses. J. Frankl. Inst. 2023, 360, 13537–13573. [CrossRef]
17. Kuang, D.P.; Li, J.L.; Gao, D.D. Input-to-state stability of stochastic differential systems with hybrid delay-dependent impulses.

Commun. Nonlinear Sci. Numer. Simul. 2024, 128, 107661. [CrossRef]
18. Ran, X.J.; Liu, M.Z.; Zhu, Q.Y. Numerical methods for impulsive differential equation. Math. Comput. Model. 2008, 48, 46–55.

[CrossRef]

192



Mathematics 2024, 12, 3002

19. Liu, X.; Song, M.H.; Liu, M.Z. Linear multistep methods for impulsive differential equations. Discrete Dyn. Nat. Soc. 2012,
2012, 652928. [CrossRef]

20. Zhang, Z.H.; Liang, H. Collocation methods for impulsive differential equations. Appl. Math. Comput. 2014, 228, 336–348.
[CrossRef]

21. Liu, M.Z.; Liang, H.; Yang, Z.W. Stability of Runge–Kutta methods in the numerical solution of linear impulsive differential
equations. Appl. Math. Comput. 2007, 192, 346–357. [CrossRef]

22. Zhang, G.L. Asymptotical stability of numerical methods for semi-linear impulsive differential equations. Comput. Appl. Math.
2020, 39, 17. [CrossRef]

23. Liang, H.; Song, M.H.; Liu, M.Z. Stability of the analytic and numerical solutions for impulsive differential equations. Appl.
Numer. Math. 2011, 61, 1103–1113. [CrossRef]

24. Liang, H.; Liu, M.Z.; Song, M.H. Extinction and permanence of the numerical solution of a two-preyone-predator system with
impulsive effect. Int. J. Comput. Math. 2011, 88, 1305–1325. [CrossRef]

25. Liang, H. hp-Legendre-Gauss collocation method for impulsive differential equations. Int. J. Comput. Math. 2015, 94, 151–172.
[CrossRef]

26. Wen, L.P.; Yu, Y.X. The analytic and numerical stability of stiff impulsive differential equations in Banach space. Appl. Math. Lett.
2011, 24, 1751–1757. [CrossRef]

27. Zhang, G.L. Convergence, consistency and zero stability of impulsive one-step numerical methods. Appl. Math. Comput. 2022,
423, 127017. [CrossRef]

28. Liu, X.; Zhang, G.L.; Liu, M.Z. Analytic and numerical exponential asymptotic stability of nonlinear impulsive differential
equations. Appl. Numer. Math. 2014, 81, 40–49. [CrossRef]

29. Zhang, G.L. Asymptotical stability of Runge–Kutta methods for nonlinear impulsive differential equations. Adv. Differ. Equ. 2020,
2020, 42. . [CrossRef]

30. Ding, X.; Wu, K.N.; Liu, M.Z. The Euler scheme and its convergence for impulsive delay differential equations. Appl. Math.
Comput. 2010, 216, 1566–1570. [CrossRef]

31. Zhang, G.L.; Song, M.H.; Liu, M.Z. Asymptotical stability of the exact solutions and the numerical solutions for a class of
impulsive differential equations. Appl. Math. Comput. 2015, 258, 12–21. [CrossRef]

32. Zhang, G.L.; Song, M.H. Asymptotical stability of Runge–Kutta methods for advanced linear impulsive differential equations
with piecewise constant arguments. Appl. Math. Comput. 2015, 259, 831–837. [CrossRef]

33. Zhang, G.L.; Song, M.H.; Liu, M.Z. Exponential stability of the exact solutions and the numerical solutions for a class of linear
impulsive delay differential equations. J. Comput. Appl. Math. 2015, 285, 32–44. [CrossRef]

34. Zhang, G.L. High order Runge–Kutta methods for impulsive delay differential equations. Appl. Math. Comput. 2017, 313, 12–23.
[CrossRef]

35. Zhang, G.L.; Song, M.H. Impulsive continuous Runge–Kutta methods for impulsive delay differential equations. Appl. Math.
Comput. 2019, 341, 160–173. [CrossRef]

36. Wu, K.N.; Ding, X. Convergence and stability of Euler method for impulsive stochastic delay differential equations. Appl. Math.
Comput. 2014, 229, 151–158. [CrossRef]

37. Zhang, G.L.; Liu, C. Two schemes of impulsive Runge–Kutta methods for linear differential equations with delayed impulses.
Mathematics 2024, 12, 2075. [CrossRef]

38. Bellen, A. One-step collocation for delay differential equations. J. Comput. Appl. Math. 1984, 183, 275–283. [CrossRef]
39. Bellen, A.; Zennaro, M. Numerical Methods for Delay Differential Equations; Clarendon Press: Oxford, UK, 2003.
40. Brunner, H. Collocation Methods for Volterra Integral and Related Functional Differential Equations; Cambridge University Press:

Cambridge, UK, 2004.
41. Brunner, H.; Liang, H. Stability of collocation methods for delay differential equations with vanishing delays. BIT Numer. Math.

2010, 50, 693–711. [CrossRef]
42. Liang, H.; Brunner, H. Collocation methods for differential equations with piecewise linear delays. Commun. Pure Appl. Anal.

2012, 11, 1839–1857. [CrossRef]
43. Engelborghs, K.; Luzyanina, T.; Houty, K.J.I.; Roose, D. Collocation methods for the computation of periodic solutions of delay

differential equations. SIAM J. Sci. Comput. 2001, 5, 1593–1609. [CrossRef]
44. Butcher, J.C. Numerical Methods for Ordinary Differential Equations; Wiley: Hoboken, NJ, USA, 2003.
45. Dekker, K.; Verwer, J.G. Stability of Runge–Kutta Methods for Stiff Nonlinear Differential Equations; North-Holland: Amsterdam,

The Netherlands, 1984.
46. Hairer, E.; Nørsett, S.P.; Wanner, G. Solving Ordinary Differential Equations I; Nonstiff Problems; Springer: New York, NY, USA, 1993.
47. Hairer, E.; Nørsett, S.P.; Wanner, G. Solving Ordinary Differential Equations II; Stiff Problems; Springer: New York, NY, USA, 1993.
48. Wanner, G.; Hairer, E.; Nφrsett, S.P. Order stars and stability theorems. BIT 1978, 18, 475–489. [CrossRef]
49. Song, M.H.; Yang, Z.W.; Liu, M.Z. Stability of θ-methods for advanced differential equations with piecewise continuous arguments.

Comput. Math. Appl. 2005, 49, 1295–1301. [CrossRef]

193



Mathematics 2024, 12, 3002

50. Wang, Q.; Qiu, S. Oscillation of numerical solution in the Runge–Kutta methods for equation x′(t) = ax(t) + a0x([t]). Acta Math.
Appl. Sin. Engl. Ser. 2014, 30, 943–950. [CrossRef]

51. Yang, Z.W.; Liu, M.Z.; Song, M.H. Stability of Runge–Kutta methods in the numerical solution of equation u′(t) = au(t) +
a0u([t]) + a1u([t − 1]). Appl. Math. Comput. 2005, 162, 37–50. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

194



mathematics

Article

Solving Nonlinear Equation Systems via a Steffensen-Type
Higher-Order Method with Memory

Shuai Wang 1, Haomiao Xian 2,3, Tao Liu 4 and Stanford Shateyi 5,*

1 Foundation Department, Changchun Guanghua University, Changchun 130033, China;
math_wangshuai@126.com

2 School of Statistics, Beijing Normal University, Beijing 100875, China; xian_haomiao@163.com
3 IT Department, Sichuan Rural Commercial United Bank, Chengdu 610000, China
4 School of Mathematics and Statistics, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China;

liutao@neuq.edu.cn
5 Department of Mathematics and Applied Mathematics, School of Mathematical and Natural Sciences,

University of Venda, P. Bag X5050, Thohoyandou 0950, South Africa
* Correspondence: stanford.shateyi@univen.ac.za

Abstract: This article introduces a multi-step solver for sets of nonlinear equations. To achieve this,
we consider and develop a multi-step Steffensen-type method without memory, which does not
require evaluations of the Fréchet derivatives, and subsequently extend it to a method with memory.
The resulting order is

√
5 + 2, utilizing the identical number of functional evaluations as the solver

without memory, thereby demonstrating a higher computational index of efficiency. Finally, we
illustrate the advantages of the proposed scheme with memory through various test problems.

Keywords: with memory; Steffensen-type; higher-order methods; fractal attraction basins; efficiency
index

MSC: 65H10; 41A15

1. Introductory Notes

Consider a set of square algebraic nonlinear problems as [1,2]:

H(η) = 0, (1)

wherein H(η) = (ν1(η), ν2(η), . . . , νω(η))T and νi(η), 1 ≤ i ≤ ω are coordinate functions.
Assume that H(η) is an enough differentiable function of η within a convex open set
denoted by D ⊆ Rω . Now we first revisit some pioneering iterative methods to address (1).
Newton’s method (NM), widely used for such problems, is formulated as follows [3]:{

H′(g(χ))δ(χ) = −H(g(χ)), χ = 0, 1, 2, . . . ,
g(χ+1) = δ(χ) + g(χ).

(2)

This approach achieves second-order convergence, provided that the starting vector g(0) is
adequately near to the true root θ. To overcome certain constraints associated with the NM,
alternative solvers [4,5] have been developed, including Steffensen’s method (SM), which
operates without the need for derivative calculations [6]. The formulation of the SM for
addressing nonlinear systems is outlined in [7]:{

λ(χ) = H(g(χ)) + g(χ),
g(χ+1) = −[g(χ), λ(χ); H]−1H(g(χ)) + g(χ), χ = 0, 1, 2, . . . ,

(3)
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which utilizes the divided difference operator (DDO). The first-order DDO of H for high-
dimensional knots ς and ζ is defined via (1 ≤ i, j ≤ ω):

[ς, ζ; H]i,j =
−Hi(ς1, . . . , ς j−1, ζ j, . . . , ζω) + Hi(ς1, . . . , ς j, ζ j+1, . . . , ζω)

−ζ j + ς j
. (4)

More generally, the DDO for H on Rω can be defined as [7]:

[·, ·; H] : D ⊂ R
ω ×R

ω → L(Rω), (5)

that satisfies [ζ, ς; H](−ς + ζ) = H(ζ)− H(ς), ∀ς, ζ ∈ D. Using h = ζ − ς, the first-order
DDO can also be given by [8]:

[ς + h, ς; H] =
∫ 1

0
H′(ς + th) dt. (6)

However the definitions (4)–(6) mainly yield in dense matrices for the representation of the
DDO, which restrict the applicability of the SM for tackling (1) to some extent.

The author in [9] provided another procedure to compute the DDO in a similar way
as follows:{

[g(χ) + F(χ), g(χ); H] =

(H(g(χ) + F(χ)e1)− H(g(χ)), . . . , H(g(χ) + F(χ)eω)− H(g(χ)))F(χ)−1
,

(7)

with F(χ) = diag(ν1(g(χ)), ν2(g(χ)), . . . , νω(g(χ))). Traub (TM) introduced an improvement
to NM with local cubic convergence [9]:{

γ(χ) = g(χ) − H′(g(χ))−1H(g(χ)),
g(χ+1) = γ(χ) − H′(g(χ))−1H(γ(χ)).

(8)

Another well-known and effective method for resolving (1) is the fourth-order Jarratt
technique (JM) [10,11], which is described as:⎧⎪⎪⎪⎨⎪⎪⎪⎩

y(χ) = g(χ) − 2
3

H′(g(χ))−1H(g(χ)),

g(χ+1) = g(χ) − 1
2
(3H′(y(χ))− H′(g(χ)))−1

·(3H′(y(χ)) + H′(g(χ)))H′(g(χ))−1H(g(χ)).

(9)

An improvement of (3) was furnished in [12,13] as:{
z(χ) = g(χ) − [g(χ), w(χ); H]−1H(g(χ)),
g(χ+1) = z(χ) − [g(χ), w(χ); H]−1H(z(χ)),

(10)

where
w(χ) = g(χ) + ϑH(g(χ)), ϑ ∈ R. (11)

The distinction in (10), as opposed to (3), lies in its utilization of two iterations and
consequently two ω-D function assessments, enabling it to achieve a rate superior to
quadratic. The core concept is to stabilize the DDO during each cycle and subsequently
augment the substeps to maximize order enhancement and contribute to the computational
efficiency index (CEI) of the solver.

This manuscript is motivated by the objective of creating a multi-step fast iterative
solver that improves both accuracy and efficiency in addressing nonlinear equation sets
via (10). By eliminating the reliance on Fréchet derivatives, our proposed method based
on an extension over TM seeks to alleviate the complexities and computational demands
associated with derivative-involved approaches, thereby advancing the domain of this field.
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The primary objective is to furnish a higher-order derivative-free Steffensen-type solver
capable of addressing nonlinear systems, encompassing both complex and real solutions.
Our intention is to enhance computational efficiency by reducing the frequency of matrix
inversions and functional evaluations, in accordance with the principles of numerical anal-
ysis. In this work, functional evaluations refer to both function and derivative evaluations,
which differ from the concept typically used in the Calculus of Variations.

This article is constructed as comes next. Section 2 explores the memorization tech-
nique utilized in the Steffensen-type scheme for addressing nonlinear sets of equations.
Section 3 formulates a multistep approach comprising several substeps to achieve rapid
convergence while minimizing the number of LU decompositions using a with memory
structure to accelerate the convergence as much as possible. Section 4 presents an error
analysis and assesses the rate of convergence. Subsequently, Section 5 examines the CEI
of various methods, focusing on the number of functional assessments and the flops-type
index. Furthermore, Section 6 demonstrates the applicability and advantages of the pro-
posed method with memory through its application to several problems. Finally, Section 7
offers concluding remarks.

2. With Memorization of the Iterative Methods

In this context, our objective is to enhance the CEI of (10) without adding additional
steps or further DDOs for every iterate; see [14]. To achieve this, we utilize the concept of
memory-based methods, which suggest that the speed of convergence and overall efficiency
of iterative techniques can be enhanced by retaining and utilizing previously calculated
function values.

Noting that the error equation for (10) (the notations here will be pointed out further
in Section 3):

ε(χ+1) = (I + ϑA′(θ))(2I + ϑA′(θ))C2ε(χ)
3
+O(ε(χ)

4
), (12)

contains a term expressed as follows:

I + ϑH′(θ) = 0. (13)

Here the non-zero scalar ϑ in (13) significantly influences both the convergence domain and
the enhancement of the convergence speed. When addressing a nonlinear set of problems,
and since θ is unknown, one could approximate H′(θ) to bring the entire relation in (13)
close to zero. Thus, we can express this as

ϑ � −H′(θ̄)−1, (14)

where θ̄ represents an estimation of the root (for each iteration).
It is crucial to elaborate on how one estimates the matrix ϑ := A(χ), (χ ≥ 1) by

utilizing certain approximations of −H′(θ) derived from the available data [15].
To enhance the performance of (10) through the principle of memory-based meth-

ods [13], we take into account the following iterative expression without memory shown
as PM1: ⎧⎪⎪⎪⎨⎪⎪⎪⎩

w(χ) = g(χ) + ϑH(g(χ))
q(χ) = g(χ) − [g(χ), w(χ); H]−1H(g(χ)),
z(χ) = q(χ) − [g(χ), w(χ); H]−1H(q(χ)),

g(χ+1) = z(χ) − [g(χ), w(χ); H]−1H(z(χ)).

(15)

This solver reads the following error equation:

ε(χ+1) = (I + ϑH′(θ))(2I + ϑH′(θ))C2
2ε(χ)

4
+O(ε(χ)

5
). (16)

Without loss of generality, we focus on the scalar case to analyze the dynamical behavior of
the iterative methods in the complex plane, rather than extending to the multi-dimensional
case for (19). Visualizing the fractal attraction basins of iterative methods for polynomial
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equations of various degrees in the complex plane is critical for several reasons [16,17],
particularly when shading the plot based on the number of iterations required for con-
vergence. In this context, different polynomial roots correspond to distinct regions of
attraction. By mapping these basins, one can illustrate where initial guesses converge to
specific roots. This step is essential in our work, demonstrating how the use of memory
and small free parameter values can expand the convergence radii, thereby enlarging the
region for selecting initial approximations.

Shading the plot based on the number of iterations needed for convergence offers
insights into the solver’s effectiveness. Regions where the method converges rapidly can
be identified as more stable or efficient, whereas areas requiring more iterations (or failing
to converge) suggest potential inefficiencies or instability. Such analyses are illustrated in
Figures 1–4 over the domain [−2, 2]× [−2, 2], with a maximum iteration count of 150 and a
tolerance of 10−2 for the residual as the stopping criterion. They reveal that the higher the
order is for Steffensen-type methods, the larger the attraction basin is. Note that PM1 and
PM2 both are Steffensen-type methods. In these new methods, the number of iterations
to get the root is lower than SM; due to this, they have lighter and fewer shaded areas in
their attraction basins. Moreover, the convergence radii could be enlarged by selecting
small values for the free non-zero scalar ϑ. Thus, memorization will not only contribute to
a higher-efficiency index but also to larger attraction basins, which means higher stability
for such a solver in contrast to the Steffensen-type method without memory.

Figure 1. Fractal attraction basins for z3 − 1 = 0, SM on the left and PM1 on the right using ϑ = 0.2.

Figure 2. Fractal attraction basins for z3 − 1 = 0, SM on the left and PM1 on the right using ϑ = 0.02.
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Figure 3. Fractal attraction basins for z4 − 1 = 0, SM on the left and PM1 on the right using ϑ = 0.2.

Figure 4. Fractal attraction basins for z4 − 1 = 0, SM on the left and PM1 on the right using ϑ = 0.02.

Figures 1–4 also reveal that by observing how the number of iterations varies across
the complex plane, one can assess the convergence properties of any methods. The fractal
boundaries highlight regions where small changes in the initial guess can yield drastically
different outcomes (i.e., converging to different roots or diverging). This sensitivity is crucial
to understand, especially when implementing these methods in practical applications
where precision of the initial guess might be limited. They are used later in the paper by
implying to select a small value for the free nonzero parameter (carried forward the relation
(37)) and how memorization can enhance the convergence domain.

3. Derivation of the Scheme

To facilitate the implementation of the memory-based scheme (15), we will first examine

ϑ := A(χ) = −[w(χ−1), g(χ−1); H]−1 ≈ −H′(θ)−1, (17)

and ⎧⎪⎨⎪⎩
N(χ−1)δ(χ) = −H(g(χ)),
N(χ−1)γ(χ) = −H(q(χ)),
N(χ−1)ψ(χ) = −H(z(χ)).

(18)

Consequently, we now present the subsequent scheme (PM2) as our main contribution, (A(χ) =
−[w(χ−1),g(χ−1); H]−1, χ ≥ 1):⎧⎪⎪⎪⎨⎪⎪⎪⎩

w(χ) = g(χ) + A(χ)H(g(χ)), χ ≥ 1,
q(χ) = g(χ) + δ(χ), χ ≥ 0,
z(χ+1) = q(χ) + γ(χ),
g(χ+1) = z(χ) + ψ(χ).

(19)

The error equation of this solver with memory will be given in the next section.
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It is well known [15] when D ⊂ Rω represents a convex nonempty domain. Then,
assume that H is three-times Fréchet smooth over D, and [u, v; H] ∈ L(D, D) for any
distinct points u, v ∈ D (where v �= u). Additionally, let the starting vector g(0) and the
zero θ be in close proximity to each other. By defining A(χ) = −[w(χ−1), g(χ−1); H]−1 and
setting d(χ) := I + A(χ)H′(θ), finally we can derive the equation below

d(χ) ∼ e(χ−1). (20)

The relation (20) will be used later in Section 4 of this work.
To implement (19), it is essential to resolve a series of linear algebraic sets of equations.

This entails performing a new LU factorization at each iteration, without leveraging any
information from preceding steps. Nevertheless, a substantial body of the literature exists
regarding the recycling of such information to derive updated preconditioners for iterative
solvers [18]. The advantage of (19) lies in the fact that all linear systems share the identical
coefficient matrix. Consequently, a single LU factorization suffices; by retaining this
decomposition, it can be applied to several distinct right-hand side parts to obtain the
resolution vectors for each sub-cycle of (19).

The solution of the nonlinear equation systems that we consider here are in D ⊆ Rω

as stated in Section 1. The roots that we are seeking for are assumed to be simple zeros.
Both real and complex roots can be obtained by the discussed methods (if existed). In fact,
by choosing a suitable complex initial guess, a complex root (if existed), can be obtained.

4. Convergence Order

Here, we furnish a theoretical analysis of the convergence speed of the iterative
scheme presented in (19). Before introducing the main contribution, we represent the
ω-dimensional Taylor expansion.

The rate at which the iteration without memory PM1 converges is determined via
ω-dimensional Taylor expansions. Let ε(χ) = g(χ) − θ denote the error at the χ-th iterate.
As noted in [19]:

ε(χ+1) = Gε(χ)
p
+O(ε(χ)

p+1
), (21)

this error equation implies G is a p-linear functional, where G ∈ L(Rω ,Rω , . . . ,Rω) and p
is the speed. Additionally, we have:

ε(χ)
p
= (ε(χ), ε(χ), . . . , ε(χ)︸ ︷︷ ︸

p terms

). (22)

Assume that H : D ⊆ Rω → Rω is sufficiently differentiable in the Fréchet sense in D.
Following [10], the ω-th derivative of H at u ∈ Rω, ω ≥ 1, is the ω-linear functional, i.e.,

H(ω)(u) : Rω × · · · ×R
ω → R

ω, (23)

so that H(ω)(u)(v1, . . . , vω) ∈ Rω. For θ + h ∈ Rω located in a vicinity of the solution θ of
(1), the Taylor expansion can be formulated as [10]:

H(θ + h) = H′(θ)

[
h +

p−1

∑
ω=2

Mωhω

]
+O(hp), (24)

where Mω =
1

ω!
[H′(θ)]−1H(ω)(θ), ω ≥ 2. It follows that Mωhω ∈ Rω, as H(ω)(θ) ∈

L(Rω × · · · ×Rω,Rω) and [H′(θ)]−1 ∈ L(Rω). Additionally, for H′, we have:

H′(θ + h) = H′(θ)

[
I +

p−1

∑
ω=2

ωMωhω−1

]
+O(hp), (25)

200



Mathematics 2024, 12, 3655

wherein I shows the unit matrix. Additionally, ωMωhω−1 ∈ L(Rω).

Theorem 1. Let in (1) H : D ⊆ Rω → Rω be adequately Fréchet differentiable at every point
in D and that H(θ) = 0 at θ ∈ Rω. Additionally, let H′(η) be continuous and nonsingular at θ.
Next, {g(χ)}χ≥0 produced by (19) with memory with a selection of an appropriate starting value
has 4.23607 R-convergence order.

Proof. For proving the convergence speed, we consider (24) and (25) to write

H(g(χ)) = H′(θ)
[
ε(χ) + M2ε(χ)

2
+ M3ε(χ)

3]
+O(ε(χ)

4
). (26)

In the context of the scheme (15), when operating without memory (i.e., PM1) and applying
(24)–(26), we ultimately derive

ε(χ+1) = (I + ϑH′(θ))(2I + ϑH′(θ))C2
2ε(χ)

4
+O(ε(χ)

5
). (27)

Now by considering the with memorization in (19), we shall express (27) in its asymptotic
form as follows:

ε(χ+1) ∼ d(χ)1 ε(χ)
4
, (28)

where ∼ shows for the error equation without the asymptotical term. A variety of sym-
bolic computations conducted by considering that the coefficients of the error terms in
our ω-D scenario are all matrices, and applying (20), along with the understanding that
multiplication does not allow for commutativity, we can deduce

d(χ)1 ∼ ε(χ−1), ∀χ ≥ 1. (29)

Consequently, one arrives at

d(χ)1

2
∼ ε(χ−1)2

, ∀χ ≥ 1. (30)

By imposing (29) and (30) into (28), we obtain:

ε(χ+1) ∼ ε(χ−1)1
ε(χ)

4
. (31)

This demonstrates that 1
p + 4 = p, where the convergence R-order is expressed as

p =
(√

5 + 2
)
� 4.23607. (32)

The proof is concluded.

Before ending this section, it is pointed out that with a simple change the structure of
PM2, it is possible to provide another iteration scheme with memory of a similar kind as
follows (PM3), (this time: A(χ) = [w(χ−1), g(χ−1); H]−1, χ ≥ 1):⎧⎪⎪⎪⎨⎪⎪⎪⎩

w(χ) = g(χ) − A(χ)H(g(χ)), χ ≥ 1,
q(χ) = g(χ) + δ(χ), χ ≥ 0,
z(χ+1) = q(χ) + γ(χ),
g(χ+1) = z(χ) + ψ(χ).

(33)

If we aim to further improve the convergence order, two possible approaches can be
considered. First, we could construct a solver by incorporating additional subsets and then
apply the memorization procedure. Second, one might explore faster methods to accelerate
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the free parameter using alternative types of interpolation, which, however, falls beyond
the scope of this paper.

5. Computational Efficiency Comparisons

For the proposed solver with memory, PM2 (or equivalently PM3), only a single
LU factorization is required, followed by matrix-vector multiplications, which enhances
computational efficiency by eliminating the need to compute multiple matrix inverses in
each iteration. The CEI for iterative solvers is defined as follows [7]:

CEI = p1/C , (34)

where C represents the total computational cost and p signifies the convergence speed,
considering the quantity of functional evaluations. The cost of computing each scalar func-
tion is considered a unit, while the costs associated with other calculations are expressed
as multiples of this unit cost. To evaluate the CEI for PM2, we first outline the number
of functional evaluations (cost) required for ω-dimensional functions, as detailed below
(excluding the indicator χ):

• In H(g), H(w), H(q), H(z): 4ω evaluations.
• In the DDO: ω2 evaluations.

Furthermore, we consider the costs to solve two triangular systems, all quantified
in floating-point operations (flops). The flops necessary for executing the LU procedure
amount to (2ω3)/3, while resolving the two related triangular systems requires approxi-
mately 2ω2 flops. Noting that, here, we assume that the cost for one functional evaluation
is roughly equal to the cost for one flop. The findings displayed in Table 1 demonstrate
that for varying ω, the CEI of our method surpasses that of competing approaches. Com-
parisons of different derivative-free Steffensen-type solvers with and without memory
based on various choices of ω are illustrated in Figures 5 and 6, confirming the superiority
and improvement in both classic and flops-type efficiency indices of PM relative to its
main competitors.

Table 1. Efficiency indices for several Steffensen-type methods.

Compared Methods SM PM1 PM2

Order 2 4 4.23607
Function assessments ω + ω2 4ω + ω2 4ω + ω2

The classical CEI 2
1

ω+ω2 4
1

4ω+ω2 4.23607
1

4ω+ω2

No. of LU decomposition 1 1 1
Assessments for LU decompositions (flops) 2ω3

3
2ω3

3
2ω3

3
Assessments for linear systems (flops) 2ω3

3 + 2ω2 2ω3

3 + 6ω2 2ω3

3 + 6ω2

Flops-type CEI 2
1

2ω3
3 +3ω2+ω 4

1
2ω3

3 +7ω2+4ω 4.23607
1

2ω3
3 +7ω2+4ω

In real-world applications, there is a trade-off between eliminating Fréchet-derivatives
and increasing the method’s overall computational complexity. Generally speaking, it
relies on the specific problem, which leads to a nonlinear system of equations. How-
ever, by eliminating the Fréchet derivative, we make the solver derivative-free, which is
suitable for problems, in which the derivative is not available. Moreover, the concept of
memorization can be accompanied in methods without Fréchet derivatives to increase the
computational complexity.

It is also remarked that in the absence of Fréchet derivatives, one might ask that what
specific mechanisms ensure that the proposed Steffensen-type technique remains robust
over a variety of problem sets? To tackle this, it is stated that in the absence of Fréchet
derivatives, the convergence radius mainly reduced tremendously, which is one weak
point of Steffensen-type techniques at first sight. However, this can simply be improved by
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choosing very small values for the free non-zero parameter (as seen in the attraction basins
of Section 2), as well as imposing the with memorization concept.

Figure 5. Comparison of classic CEIs for various values of ω.

Figure 6. Comparison of flops-type CEIs for various values of ω.

6. Numerical Aspects

The objective of this section is to facilitate the implementation of our proposed scheme,
PM2. The computations were executed using Mathematica 13.3 [20] in standard machine
precision to handle the round-off errors. The linear systems were resolved employing
LU decomposition via LinearSolver[]. All computational examples were conducted in a
uniform environment. We adopt the stopping criterion as follows:

||H(g(χ+1))||∞ ≤ 10−6. (35)

A significant challenge in implementing (19) involves the integration of A(χ), which is no
longer constant and must be characterized as a matrix. Here, A(0) is delineated follows:

A(0) = diag(−0.01). (36)

In fact due to Figures 1–4 and the results discussed previously in [13], other small values
for the free parameter can also be used which can yield in different choices such as

A(0) = diag(−0.001), (37)
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or
A(0) = diag(−0.0001), (38)

or
A(0) = diag(−0.00001). (39)

In fact, for implementation of method with memory, here, for the first iterate, we start
with the without memory version of the method and after that, from the second iterate,
the information of the previous step can be used to update the parameters and thus with
memorization of the scheme can be done. The selection of A(0) has a direct impact on the
entire process, influencing the speed at which convergence is achieved. Here, (37) aligns
with the dynamic investigations of Steffensen-type solvers with memory, where larger
basins of attraction occur when the free parameter is near zero.

To validate the analytical convergence rate in the computational experiments, we
determine the numeric speed of convergence using [7]

ρ ≈ ln(||H(g(χ+1))||2/||H(g(χ))||2)
ln(||H(g(χ))||2/||H(g(χ−1))||2)

. (40)

Example 1 ([14]). We investigate a nonlinear system H(η) = 0, which possesses a complex root,
as detailed below

H(η) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

η1 sin (η2)− 2η10
η8 + η10 − 5η6 − 10η9,

10η1 + η3
2 − 5η5

2 + 10η6
η8 − sin (η7) + 2η9,

cos−1 (−10η10 + η8 + η9) + η4 sin (η2) + η3 − 15η5
2 + η7,

η1η2
η7 − η8

η10 + η3
5 − 5η5

3 + η7,
10η1

2 − η10 + cos (η2) + η3
2 − 5η6

3 − 2η8 − 4η9 ,
cos−1(η1

2) sin (η2)− 2η10η5
4η6η9 + η3

2,
2 tan (η1

2) + 2η2 + η3
2 − 5η5

3 − η6 + η8
cos (η9),

η1
2 − η10η5η6η7η8η9 + tan (η2) + 2η3

η4 − 5η6
3,

5 tan (η1 + 2) + cos (η9
η10) + η2

3 + 7η3
4 − 2 sin3 (η6),

5 exp (η1 − 2)η2 + 2η7
η10 + 8η3

η4 − 5η6
3 − η9,

(41)

in which the precise solution is presented up to eight floating points as

θ � (1.32734904 + 0.35029249i, 1.0585993 − 1.7487246i,
1.02761867 − 0.01413080i, 3.2739500 + 0.1278283i,
0.83182439 + 0.00175519i,−0.4853245912 + 0.68487764i,
0.16936676 + 0.1840917i, 1.5344199 − 0.3212147i,
2.0863796 + 0.42634275i,−1.9895923 + 1.4783953i)∗.

(42)

The computational evidence and the numerical speed, denoted as ρ, are detailed in
Table 2. We utilized 1000 fixed floating points, with the initial value set as g(0) = (1.20 +
0.30i, 1.10 − 1.90i, 1.00 − 0.10i, 2.50 + 0.50i, 0.80 − 0.10i,−0.40 + 1.00i, 0.10 + 0.10i, 1.30 −
0.70i, 2.00 + 0.50i,−1.90 + 1.40i)∗. The choice of this is based on g(0) [14]. Rather than g(0)

and (37), no other parameters should be chosen and the method works based on satisfying
(35). Additionally, the residual norm is expressed using the ‖ · ‖2 notation. The numerical
pieces of evidence seen in Table 2 support the observations in Figures 1–4, discussing
that the smaller the choice of the free parameter for PM2 would results in arriving at the
convergence phase faster than consider larger values for this parameter.
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Table 2. Comparisons of different methods with and without memory in Example 1.

Methods ‖H(g(3))‖ ‖H(g(4))‖ ‖H(g(5))‖ ‖H(g(6))‖ ‖H(g(7))‖ ‖H(g(8))‖ ‖H(g(9))‖ ρ

NM 8.19 × 10−1 2.73 × 10−2 1.79 × 10−5 1.28 × 10−11 2.52 × 10−23 8.28 × 10−47 2.50 × 10−94 2.02
SM 7.68 × 10−1 1.83 × 10−2 7.33 × 10−6 5.17 × 10−12 1.51 × 10−24 2.03 × 10−49 3.91 × 10−99 1.99
PM1 1.01 × 10−4 6.95 × 10−20 1.19 × 10−80 2.12 × 10−323 3.99
PM2 with (36) 2.19 × 10−3 6.12 × 10−16 3.29 × 10−69 7.45 × 10−295 4.23
PM2 with (37) 1.44 × 10−4 2.99 × 10−21 7.96 × 10−92 1.09 × 10−390 4.23
PM2 with (38) 1.60 × 10−4 2.88 × 10−21 1.05 × 10−91 2.88 × 10−390 4.23
PM2 with (39) 1.58 × 10−4 2.61 × 10−21 8.16 × 10−92 9.18 × 10−391 4.24

Example 2 ([21]). In this test, we investigate the nonlinear systems extracted through the compu-
tational resolution of the following Partial Differential Equation (PDE)⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

uτ + uuz = ρ̄uzz,

u(1, τ) = 0, τ ≥ 0,

u(0, τ) = 0, τ ≥ 0,

u(z, 0) =
2ρ̄ϑ̄π sin(πz)
ξ + ϑ̄ cos(πz)

, 0 ≤ z ≤ 2,

(43)

where the coefficient of diffusion is ρ̄. If we take into account u = u(z, τ), then the computational
resolution is represented by:

�i,j � u(zi, τj), (44)

at the grid points (i, j) on a equidistant mesh. Let �1 and �2 show the number of steps in spatial
and temporal variables, respectively. The parameters are set as follows [21]: ξ = 5, T = 1, ρ̄ = 0.5,
and ϑ̄ = 4. The parameters have been chosen so as to obtain a unique and well-defined numerical
solution and stay away from stiffness or irregularity for the solution of PDEs.

To address this, we may utilize the first-order backward FD method for the first
differentiation in temporal τ:

uτ(zi, τj) �
�i,j − �i,j−1

k
, (45)

wherein k denotes the time step size. For the spatial terms of the PDE, we apply the
second-order central difference FD method as follows:

uz(zi, τj) �
�i+1,j − �i−1,j

2h
, (46)

and

uzz(zi, τj) �
�i+1,j − 2�i,j + �i−1,j

h2 , (47)

where h represents the spatial step size along z. Following this discretization and im-
posing the boundary conditions will lead a to a set of nonlinear equations that must be
tackled iteratively.

The numerical solutions using PM2 are illustrated in Figure 7, and Table 3 provides the
comparative evidence for this case in double precision when the residual of the numerical
obtained solution is less than 10−5. We set �1 = �2 = 21, i.e., 21 equally spaced nodes
in both space and time direction and after imposing the initial and boundary conditions,
we derive to a set of nonlinear system of the dimension 400 × 400, where the initial vector
g(0) = 1. Along space, we have used central three-point second-order FD approximations,
and along time, we have employed first order forward FD approximations to discretize
the problem.
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For an alternative set of parameters, specifically �1 = �2 = 31, representing 31 equally
spaced points in both the spatial and temporal directions, we obtained a nonlinear system
of dimension 900 × 900 after applying the initial and boundary conditions. The initial
vector is again defined as g(0) = 1. Figure 8 presents the numerical simulations for this
setup, further demonstrating the effectiveness of PM2 and the concept of memorization.

Table 3. Computational outcomes obtained in Example 2.

Different Solvers SM PM1 PM2 with (37)

No. of iterates 7 2 1
Time (in seconds) 6.12 5.11 3.27

Figure 7. Numerical solutions using PM2 with (37) based on the given grid and �1 = �2 = 21 in left
and its contour plot in right for Example 2.

Figure 8. Numerical solutions using PM2 with (37) based on the given grid and �1 = �2 = 31 in left
and its contour plot in right for Example 2.

The numerical performance of the proposed solver is demonstrated through root-
finding for various nonlinear equations. Results from the numerical tests clearly indicate that
the solver achieves convergence in fewer iterations and with higher accuracy per iteration.

We finish this section by pointing out the following matter. Another concern may arise
regarding how the method handles convergence issues in nonlinear systems with multiple
solutions or when the initial guess significantly influences convergence behavior. To address
this, the focus of this article is on simple roots, not multiple roots; while the methods can
be applied to find multiple zeros, their orders of convergence drop significantly in such
cases. In fact, if a nonlinear system has multiple roots (whether the multiplicity is known or
unknown), specialized solvers designed for multiple roots, along with appropriate initial
guesses, must be developed to maximize efficiency.
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7. Concluding Summaries

In this paper, we have presented an advanced Steffensen-type iteration expression
aimed at solving nonlinear systems of equations, specifically tailored to eliminate the need
for computing Fréchet derivatives. This approach has exhibited significant computational
efficiency by reducing the number of matrix inversions and functional evaluations, as
outlined in Sections 3–5. Our examination has validated the efficacy of the proposed
method. Future endeavors will focus on further improving the efficiency of the scheme and
expanding its applicability to a wider variety of nonlinear challenges, including nonlinear
stochastic differential equations as highlighted in [22].
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Abstract: The variable coefficient nonlinear Schrödinger equation has a wide range of applications in
various research fields. This work focuses on the wave propagation based on the variable coefficient
nonlinear Schrödinger equation and the variable coefficient fractional order nonlinear Schrödinger
equation. Due to the great challenge of accurately solving such problems, this work considers
numerical simulation research on this type of problem. We innovatively consider using a mesoscopic
numerical method, the lattice Boltzmann method, to study this type of problem, constructing lattice
Boltzmann models for these two types of equations, and conducting numerical simulations of wave
propagation. Error analysis was conducted on the model, and the convergence of the model was
numerical validated. By comparing it with other classic schemes, the effectiveness of the model has
been verified. The results indicate that lattice Boltzmann method has demonstrated advantages in
both computational accuracy and time consumption. This study has positive significance for the
fields of applied mathematics, nonlinear optics, and computational fluid dynamics.

Keywords: lattice Boltzmann method; numerical simulation; variable coefficient nonlinear Schrödinger
equation; variable coefficient fractional order nonlinear Schrödinger equation

MSC: 37M05

1. Introduction

The Schrödinger equation is a class of partial differential equations, and it is a very
important fundamental equation in the field of quantum mechanics. Every microscopic
system has a Schrödinger equation corresponding to it, which can be used to describe the
motion of microscopic particles and is widely used in several fields. In recent years, in
many fields, such as fluid mechanics, nonlinear optics, and biology, models that can be
described using the variable coefficient nonlinear Schrödinger equation have emerged, and
the corresponding soliton solutions can provide further scientific explanations for many
phenomena. Therefore, the variable coefficient nonlinear Schrödinger equation is widely
used in disciplines, such as nonlinear optics and quantum mechanics [1,2]. The study of the
variable coefficient nonlinear Schrödinger equation has received much attention. And how
to solve the variable coefficient nonlinear Schrödinger equation has become an important
branch of nonlinear science and a research focus for scholars due to its significant value.

For most nonlinear partial differential equations, to solute their exact solutions is
challenging, and the presence of variable coefficients in partial differential equations fur-
ther enhances the nonlinearity of the equation, making soluting its solution increasingly
difficult. Moreover, due to practical needs, people have introduced the variable coefficient
fractional order Schrödinger equation to more accurately describe real-world problems.
The addition of fractional derivatives further increases the difficulty of solving variable
coefficient fractional partial differential equations. So far, some methods have been used
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to analytically study the variable coefficient nonlinear Schrödinger equation, including
the bilinear technique and symbolic computations, the generalized Darboux transforma-
tion, the general algebraic method, the extended (G′/G)-expansion method, the inverse
scattering transformation method [3–7], etc. Due to the difficulty of solving these equa-
tions, in addition to further developing research methods for exact solutions of these
equations, it is also necessary to develop numerical research methods to numerically solve
these equations. However, there are currently not many numerical studies on these equa-
tions, such as fourth-order split-step Runge–Kutta, split-step Fourier and Runge–Kutta
methods, the Crank-Nicolson (CN) implicit finite-difference method, the deep learning
method [8–10], etc., and each method has its advantages and disadvantages. However,
for rich nonlinear systems, these studies are still far from sufficient, and we need to de-
velop more numerical methods for research. Therefore, this work innovatively considers
developing a new numerical method, namely the lattice Boltzmann method, to numerically
simulate the propagation of waves in optical fibers described by the variable coefficient
nonlinear Schrödinger equation and the variable coefficient fractional order nonlinear
Schrödinger equation. This study has positive implications for many research fields, such
as applied mathematics, nonlinear optics, and fluid mechanics.

The lattice Boltzmann method (LBM) is a new modeling and numerical simulation
method developed in recent years [11–19], which is a mesoscopic scale method based on
the fundamental theory of nonequilibrium statistical physics and molecular dynamics
theory, which is not limited to the macroscopic equations, but connects the macroscopic
and mesoscopic levels, and the particles transfer the energy through motion and collision.
Compared with traditional numerical methods, the lattice Boltzmann method has unique
advantages, such as simple programming, stable algorithms, and easy boundary handling.
It also shows advantages in computational accuracy and time consumption. In recent
years, the lattice Boltzmann method has become a powerful tool in the field of computa-
tional fluid dynamics and has made many achievements in the field of nonlinear partial
differential equations.

Next, we will construct lattice Boltzmann models for two types of variable coeffi-
cient nonlinear Schrödinger equations and variable coefficient fractional order nonlinear
Schrödinger equations and numerically simulate the wave propagation described by them.

2. Basic Theory of Lattice Boltzmann Model

In the lattice Boltzmann method, regular lattices are usually used to discretize the
space, such as the D1Q3 model, D1Q5 model, D2Q5 model, D2Q7 model, etc., and particles
can only move along the lines on the grid. At each time step, particles move to adjacent
neighboring grid points or stay at their original grid points. In this work, we choose the
D1Q3 model to discretize the one dimensional space; see Figure 1. In the D1Q3 model, the
particle velocity is eα = [e0, e1, e2] = [0, c,−c], and α = 0, 1, 2 represent the three directions
of particle motion, respectively, where α = 0 represents stationary particles.

Figure 1. D1Q3 model.

Let f σ
α (x, t) be the single-particle distribution function with velocity eα. at position

x, time t, and f σ,eq
α (x, t) be the corresponding equilibrium distribution function, where σ

represents the component number. Assuming that the distribution function satisfies the
conservation condition,

∑
α

f σ
α (x, t) = ∑

α

f σ,eq
α (x, t). (1)
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The evolution of the distribution function satisfies the lattice Boltzmann equation:

f σ
α (x + eα, t + 1)− f σ

α (x, t) = − 1
τ
[ f σ

α (x, t)− f σ,eq
α (x, t)] + Ωσ

α(x, t), (2)

where τ is the single relaxation time and Ωσ
α is an additional term. By applying Taylor

expansion, the multiscale expansion technique, and Chapman–Enskog expansion to the
lattice Boltzmann equation, a series of partial differential equations on different time scales
can be obtained [20]. Please see Appendix A for the detailed derivation.

3. Lattice Boltzmann Model and Numerical Simulation of Variable Coefficient
Nonlinear Schrödinger Equation

3.1. Variable Coefficient Nonlinear Schrödinger Equation with Perturbation Term

We consider constructing a lattice Boltzmann model for a class of nonlinear Schrödinger
equations with perturbation terms:

iφt = φxx + λ(x, t)φ + βφ∗
x + γ(x, t)|φ|2φ. (3)

where λ(x, t), β, and γ(x, t) represent the loss factor of the optical fiber, disturbance
coefficient, and nonlinear coefficient, respectively. Due to the presence of perturbation
terms in the equation, for the convenience of solving, we separate the imaginary and real
parts of the equation. Let φ = u + iv, then the Equation (3) is rewritten as a coupled
equation system in the following form:

ut = vxx + λ(x, t)v − βvx + γ(x, t)
(

u2 + v2
)

v. (4)

vt = −uxx − λ(x, t)u − βux − γ(x, t)
(

u2 + v2
)

u. (5)

Next, we will use the series of equations at different time scales to recover the coupled
equation system.

3.1.1. Recovery of Macroscopic Equations

Define the macro quantity u and v as

u = ∑
α

f 1
α (x, t), (6)

v = ∑
α

f 2
α (x, t). (7)

According to the conservation conditions (1), there yields

u = ∑
α

f 1,(0)
α (x, t), (8)

v = ∑
α

f 2,(0)
α (x, t), (9)

Let the moments of the equilibrium distribution function be

m1,0 = ∑
α

f 1,(0)
α eα = βv, (10)

m2,0 = ∑
α

f 2,(0)
α eα = βu, (11)

π1,0 = ∑
α

f 1,(0)
α e2

α = β2u − v
εc2

. (12)

211



Mathematics 2024, 12, 3807

π2,0 = ∑
α

f 2,(0)
α e2

α = β2v +
u

εc2
. (13)

We assume that Ωσ
α = ε2Ωσ,(2)

α , i.e., Ωσ,(n)
α = 0, n �= 2, σ = 1, 2. Summing up the

parameter α for (A7) + ε × (A8), which yields

ut = vxx − βvx + ε∑
α

Ω1,(2)
α + O(ε2). (14)

vt = −uxx − βux + ε
3

∑
α=1

Ω2,(2)
α + O(ε2). (15)

Equations (14) and (15) comprise an approximate formula for the recovered macroscopic
Equations (4) and (5).

We choose to make the additional source term meet

∑
α

Ω1,(2) = λ(x, t)v + γ(x, t)
(

u2 + v2
)

v, (16)

∑
α

Ω2,(2) = −λ(x, t)u − γ(x, t)
(

u2 + v2
)

u. (17)

Ωσ,(2)
α is also assumed to be independent of α, then

Ω1,(2) =
λ(x, t)v + γ(x, t)

(
u2 + v2)v

3ε
, (18)

Ω2,(2) =
−λ(x, t)u − γ(x, t)

(
u2 + v2)u

3ε
. (19)

Combining Equations (8)–(13) and the D1Q3 model, the expressions of equilibrium
distribution function can be obtained as

f 1,(0)
α =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
βv
2c + β2u

2c2 − v
2c2εc2

, α = 1,
β2u
2c2 − v

2c2εc2
− βv

2c , α = 2,

u − β2u
c2 + v

c2εc2
, α = 3.

. (20)

f 2,(0)
α =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
βu
2c + u

2c2εc2
+ β2v

2c2 , α = 1,
u

2c2εc2
+ β2v

2c2 − βu
2c , α = 2,

v − u
c2εc2

− β2v
c2 , α = 3.

. (21)

Summing (A7) + ε × (A8) + ε2 × (A9) over α, which yield

ut = vxx + λ(x, t)v − βvx + γ(x, t)
(

u2 + v2
)

v + E1
2 + O(ε3), (22)

vt = −uxx − λ(x, t)u − βux − γ(x, t)
(

u2 + v2
)

u + E2
2 + O(ε3). (23)

where Eσ
2 is the second-order error term. Through error analysis, the error terms are

obtained as

E1
2 = −ε2

{
3βC3

εC2

∂3u
∂x3 + C3(c2β − β3)

∂3v
∂x3 − βτ

ε
[λ(x, t) + γ(x, t)(u2 + v2) + 2γ(x, t)v2]

∂u
∂x

− 2τβγ(x, t)
ε

uv
∂v
∂x

}
, (24)

E2
2 = −ε2

{
−3βC3

εC2

∂3v
∂x3 + C3(c2β − β3)

∂3u
∂x3 +

βτ

ε
[λ(x, t) + γ(x, t)(u2 + v2) + 2γ(x, t)u2]

∂v
∂x

+
2τβγ(x, t)

ε
uv

∂u
∂x

}
. (25)
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3.1.2. Numerical Simulation of Wave Propagation

In this part, we will provide numerical examples of the variable coefficient nonlinear
Schrödinger Equations (4) and (5).

Case I in this example, λ(x, t) = 1, β = 2, and γ(x, t) = −1, refer to [2], and the exact
solution is

u(x, t) =
u0

1 + exp[
√

λx + (β
√

λ − λ)t + x0]
, (26)

v(x, t) =
u0 exp[

√
λx + (β

√
λ − λ)t + x0]

1 + exp[
√

λx + (β
√

λ − λ)t + x0]
, (27)

The initial condition and the boundary condition are given according to the exact
solution

u(x, 0) =
u0

1 + exp[
√

λx + x0]
,−10 ≤ x ≤ 10, (28)

v(x, 0) =
u0 exp[

√
λx + x0]

1 + exp[
√

λx + x0]
,−10 ≤ x ≤ 10. (29)

The boundary conditions are

u(xB, t) =
u0

1 + exp[
√

λxB + (β
√

λ − λ)t + x0]
,t > 0. (30)

v(xB, t) =
u0 exp[

√
λxB + (β

√
λ − λ)t + x0]

1 + exp[
√

λxB + (β
√

λ − λ)t + x0]
,t > 0. (31)

where xB represents the boundary point, u2
0 = − λ

γ , x0 = 0. The calculation interval is
[−10, 10]. The computational parameters are the number of lattices M = 101, Δt = 0.001,
Δx = 0.02, and τ = 1.021. We use the software Fortran Powerstation 4.0 to write code
for numerical operations, and the numerical results are shown in Figures 2–6. Figure 2
shows the wave propagation simulated by the lattice Boltzmann method. Figure 3 shows
the comparison between the lattice Boltzmann solution and the exact solution. Figure 4
shows the error curves, Er =

∣∣uN − uE
∣∣ and

∣∣vN − vE
∣∣, where uN and vN represent the

lattice Boltzmann solution, and uE and vE represent the exact solution. The results show
that the lattice Boltzmann solution agrees with the exact solution. We use the infinite
norm of error of u, ‖Er‖∞ = max{Er} = max

{∣∣uN − uE
∣∣}, to evaluate the performance

of the constructed lattice Boltzmann model. Figure 5 shows the relationship between the
infinite norm of error ‖Er‖∞ and the Knudsen coefficient ε. Through linear fitting, the fitted
line is obtained, log10(

∣∣∣∣Er
∣∣∣∣∞) = 1.5174 × log10 ε+0.58836 . The slope of the straight line

represents the order of convergence of the model, and the results show that the constructed
model is convergent. In the lattice Boltzmann model, ε is equal to the time step Δt and the
spatial step Δx = cΔt = cε. For a fixed parameter c, the order of convergence of the model in
both time and space is 1.5174. Figure 4 also shows the relationship between the truncation
error and the Knudsen number.

To verify the effectiveness of our lattice Boltzmann model, we compared our model
with several classical schemes. The comparison results are shown in Figure 6 and Table 1.
Figure 6a shows the comparison of solitary waves simulated by these different schemes,
and Figure 6b shows the error comparison of these schemes. It can be seen from the
results that our lattice Boltzmann model error is lower than that of other schemes. We also
compared the errors and time consumption of different schemes, and the results are listed
in Table 1. From the data in Table 1, it can be seen that compared with other classic schemes,
our lattice Boltzmann method exhibits advantages in both accuracy and time consumption.
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(a) (b) 

Figure 2. Wave propagation simulated by the lattice Boltzmann method. (a) Wave of u; (b) wave of v.

  
(a) (b) 

Figure 3. Comparison of the lattice Boltzmann solution and exact solution, t = 1.0. (a) Wave solution
of u; (b) wave solution of v.

  
(a) (b) 

Figure 4. Error curve, t = 1.0. (a) Error curve of u; (b) error curve of v.
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Figure 5. Infinite method of error ‖Er‖∞ versus Knudsen number curve.

  
(a) (b) 

Figure 6. Comparison of different schemes, t = 1.0. (a) Wave solution of u; (b) error curve of u.

Table 1. Comparison table of different schemes.

Scheme Time t = 0.2 Time t = 0.4 Time t = 0.6 Time t = 0.8 Time t = 1.0

Classic Explicit
Scheme

‖Er‖∞ 2.236962 × 10−4 3.646016 × 10−4 6.057620 × 10−4 8.040071 × 10−4 9.397864 × 10−4

CPU Time (s) 0.094 0.213 0.259 0.263 0.310

Three-Level
Explicit Scheme

‖Er‖∞ 3.236234 × 10−4 6.066561 × 10−4 8.515120 × 10−4 1.037896 × 10−3 1.171649 × 10−3

CPU Time (s) 0.133 0.232 0.268 0.284 0.311

Hopscotch
Scheme

‖Er‖∞ 3.938675 × 10−4 7.615089 × 10−4 1.185596 × 10−3 1.506567 × 10−3 1.693845 × 10−3

CPU Time (s) 0.132 0.241 0.297 0.325 0.388

LBM
‖Er‖∞ 1.530647 × 10−4 2.858341 × 10−4 5.033910 × 10−4 6.718934 × 10−4 7.652342 × 10−4

CPU Time (s) 0.078 0.140 0.171 0.188 0.203

Case II In this example, λ(x, t) = 1, β = 1, γ(x, t) = −1. The initial conditions are

u(x, 0) =
u0 exp[

√
λx + x0]

1 + exp[
√

λx + x0]
,−10 ≤ x ≤ 10, (32)

v(x, 0) =
u0

1 + exp[
√

λx + x0]
,−10 ≤ x ≤ 10. (33)
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The boundary conditions are

u(xB, t) =
u0 exp[

√
λxB + (β

√
λ + λ)t + x0]

1 + exp[
√

λxB + (β
√

λ + λ)t + x0]
,t > 0. (34)

v(xB, t) =
u0

1 + exp[
√

λxB + (β
√

λ + λ)t + x0]
,t > 0. (35)

where xB represents the boundary point, u2
0 = − λ

γ , x0 = 0. The calculation interval is
[−10, 10]. The computational parameters are the number of lattices M = 101, Δt = 0.001,
Δx = 0.02, τ = 0.944, and the numerical results are shown in Figures 7–9.

 
(a) (b) 

Figure 7. Wave propagation simulated by the lattice Boltzmann method. (a) Wave of u; (b) wave of v.

  
(a) (b) 

Figure 8. Comparison between the lattice Boltzmann solution and exact solution, t = 1.0. (a) Wave
solution of u; (b) wave solution of v.
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(a) (b) 

Figure 9. Error curve, t = 1.0. (a) Error curve of u; (b) error curve of v.

Case III In this example, λ(x, t) = 1, β = 2, γ(x, t) = 1. The initial conditions are

u(x, 0) = u1sech(a1
√
−λx + x0),−10 ≤ x ≤ 10, (36)

v(x, 0) = a2u1sech(a1
√
−λ(x + x0),−10 ≤ x ≤ 10, (37)

The boundary conditions are

u(xB, t) = u1sech(a1
√
−λxB − a1a2β

√
−λt + x0),t > 0. (38)

v(xB, t) = a2u1sech(a1
√
−λ(xB − βa2t + x0)),t > 0. (39)

where xB represents the boundary point, a1 = 1, a2 = 1, u1 = 1. The calculation interval is
[−10, 10]. The computational parameters are the number of lattices M = 101, Δt = 0.001,
Δx = 0.02, τ = 0.96, and the numerical results are shown in Figures 10–12.

  
(a) (b) 

Figure 10. Wave propagation simulated by the lattice Boltzmann method. (a) Wave of u; (b) wave
of v.
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(a) (b) 

Figure 11. Comparison of the lattice Boltzmann solution and exact solution, t = 1.0. (a) Wave solution
of u; (b) wave solution of v.

  
(a) (b) 

Figure 12. Error curve, t = 1.0. (a) Error curve of u; (b) error curve of v.

3.2. Variable Coefficient Fractional Order Nonlinear Schrödinger Equation

In this part, we consider constructing a lattice Boltzmann model for a class of variable
coefficient fractional order nonlinear Schrödinger equation:

iut + λ(t)
∂βu

∂|x|β
+ v(x)u + γ(t) |u|2u = 0, a ≤ x ≤ b, 0 ≤ t ≤ T. (40)

where u(x, t) is a complex valued wave function; λ(t), v(x), and γ(t) are bounded real
functions; 1 < β ≤ 2, ∂βu

∂|x|β
is the Riesz fractional derivative of order β, defined through

Riemann Liouville integration as

∂βu

∂|x|β
= −θ(I−β

+ + I−β
− )u. (41)

where θ = 1
2 cos(βπ/2) , I−β

± = ∂2

∂x2 I2−β
± u(x, t). According to Riemann Liouville’s integral

definition, it can be inferred that(
I2−β
+ u

)
(x, t) =

1
Γ(2 − β)

∫ x

a
(x − ξ)1−βu(ξ, t)dξ, x > a, (42)
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(
I2−β
− u

)
(x, t) =

1
Γ(2 − β)

∫ b

x
(ξ − x)β−1u(ξ, t)dξ, x < b. (43)

Therefore, Equation (40) can be expressed in the following form:

iut − λ(t)θ
∂2

∂x2 (I2−β
+ + I2−β

− )u + v(x)u + γ(t)|u|2u = 0, a ≤ x ≤ b, 0 ≤ t ≤ T. (44)

Next, We will use the series of equations at different time scales to recover Equation (44).

3.2.1. Recovery of Macroscopic Equation

We define the macroscopic quantity u as

iu = ∑
α

fα(x, t). (45)

Here, component number σ = 1 is omitted and not written. According to conservation
condition ∑

α
f (x, t) = ∑

α
f eq
α (x, t), it can be concluded that

iu = ∑
α

f (0)α (x, t), (46)

let the moments of the equilibrium distribution function be

m0 = ∑
α

f (0)α eα = 0, (47)

π0 = ∑
α

f (0)α e2
α = −λ(t)θ

εC2
I2−β
± u. (48)

where the Riemann–Liouville integral I2−β
± u can be approximately calculated based on the

Grünwald–Letnikov fractional derivative definitions on the left and right sides,

I2−β
+ u(x, t) ≈ h2−β

[
x − a

h
]

∑
r=0

[
2 − β

r

]
u(x − rh, t), a < x < b, (49)

I2−β
− u(x, t) ≈ h2−β

[
b − x

h
]

∑
r=0

[
2 − β

r

]
u(x + rh, t), a < x < b. (50)

where
[

2 − β
r

]
= (2−β)(2−β+1)···(2−β+r−1)

r! , for r > 0, and
[

2 − β
r

]
= 1, for r = 0.

Assuming that Ωα = ε2Ω(2)
α , i.e., Ω(n)

α = 0, n �= 2. Then, from ∑
α
[(A7) + ε × (A8)], it

can be concluded that

iut − λ(t)θ
∂2

∂x2 (I2−β
+ + I2−β

− )u = ε∑
α

Ω(2)
α + O(ε2). (51)

Equation (51) is an approximate formula for the recovered macroscopic Equation (44).
We set

∑
α

Ω(2)
α = −V(x)u − γ(t)|u|2u, (52)

If it is assumed that Ω(2)
α is independent of α, combining the D1Q3 model we

can obtain
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Ω(2)
α = Ω(2) =

−V(x)u − γ(t)|u|2u
3ε

. (53)

Solving Equations (46)–(48), the equilibrium distribution function is obtained

f (0)α =

{−λ(t)θ
2c2εC2

(I2−β
+ + I2−β

− )u, α = 1, 2 ,

iu − 2 f (0)1 , α = 0.
(54)

Summing (A7) + ε×(A8) + ε2×(A9) over α yields

iut − λ(t)θ
∂2

∂x2 (I2−β
+ + I2−β

− )u = ε∑
α

Ω(2)
α + E2 + O(ε3). (55)

E2 is the second-order error term. Through error analysis, it can be obtained that

E2 = −ε2
(

C3∑
α

Δ3 f (0)α + 2C2∑
α

Δ
∂

∂t1
f (0)α + τ∑

α
ΔΩ(2)

α

)
= −3εC3γ

C2

∂3

∂t0∂x2

[
I2−β
+ u(x, t) + I2−β

− u(x, t)
] . (56)

Thus, the macroscopic Equation (44) is recovered as

iut − λ(t)θ
∂2

∂x2 (I2−β
+ + I2−β

− )u + v(x)u + γ(t)|u|2u = O(ε). (57)

3.2.2. Numerical Example

We will numerically simulate the wave propagation of the equation in this section. A
numerical example is given, λ(t) = t/30, v(x) = sin x, γ(t) = t/8.

The initial conditions and the boundary conditions in this example are [21] as follows:

u(x, 0) = sech(x) · exp(2ix),−20 ≤ x ≤ 20, (58)

u(−20, t) = u(20, t) = 0. 0 ≤ t ≤ 1. (59)

The computational parameters are the number of lattices, M = 101, Δt = 0.001,
Δx = 0.02, c = Δx/Δt, τ = 1.0755. The propagation of the solitary wave solution using
the lattice Boltzmann method for α = 1.2, 1.4, 1.6, 1.8 from t = 0 to t = 0.5 is shown in
Figures 13–16.

  
(a) (b) 

Figure 13. Solitary wave propagation using the lattice Boltzmann method, α = 1.2. (a) Waterfall plot;
(b) solitary wave propagation.
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(a) (b) 

Figure 14. Solitary wave propagation using the lattice Boltzmann method, α = 1.4. (a) Waterfall plot;
(b) solitary wave propagation.

  

(a) (b) 

Figure 15. Solitary wave propagation using the lattice Boltzmann method, α = 1.6. (a) Waterfall plot;
(b) solitary wave propagation.

 
(a) (b) 

Figure 16. Solitary wave propagation using the lattice Boltzmann method, α = 1.8. (a) Waterfall plot;
(b) solitary wave propagation.
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4. Conclusions

In this paper, we use the lattice Boltzmann method to numerically simulate wave
propagation based on the variable coefficient nonlinear Schrödinger equation and the
variable coefficient fractional order Schrödinger equation.

Lattice Boltzmann models are constructed for the two types of equations, a series
of partial differential equations on different time scales are obtained by using the Taylor
expansion, the Chapman–Enskog expansion, and the time multiscale expansion based
on the basic Lattice Boltzmann equation. The macroscopic equations are recovered by
choosing appropriate expressions for the moments of the equilibrium distribution function.

The solutions of the equations are numerically simulated together with numerical
examples. By comparing the lattice Boltzmann solution with the exact solution and combin-
ing it with the error analysis, it is found that the lattice Boltzmann solution agrees with the
exact solution. Furthermore, the effectiveness of our method was verified by comparing the
lattice Boltzmann model with other classical schemes. The comparison results indicate that
our method has shown advantages in both computational accuracy and time consumption.
The convergence of the model has also been numerically verified.

The research results indicate that the lattice Boltzmann method is effective in studying
wave propagation based on the variable coefficient nonlinear Schrödinger equation and the
variable coefficient fractional order Schrödinger equation. These two types of equations
are of great research value in various fields, so this work investigates the strong research
significance of the lattice Boltzmann method for solving the solitary wave solutions of these
two types of equations. In our future work, we will further research a high-precision and
high-efficiency numerical method.
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Appendix A

Let us define the Knudsen number ε as the ratio between the mean free path l and
the characteristic length L. Taking ε to be equal to the time step Δt, the lattice Boltzmann
Equation (2) in physical units is expressed as Equation (A1).

f σ
α (x + εeα, t + ε)− f σ

α (x, t) = − 1
τ
[ f σ

α (x, t)− f σ,eq
α (x, t)] + Ωσ

α(x, t). (A1)

In Equation (A1), it is assumed that the Knudsen number ε is small. Performing a
Taylor expansion on the left-hand side of Equation (A1), keeping terms up to O(ε4), yields

f σ
α (x + εeα, t + ε)− f σ

α (x, t)=
3

∑
n=1

εn

n!

(
∂

∂t
+ eα

∂

∂x

)n
f σ
α (x, t)+O

(
ε4
)

. (A2)

Under the assumption of a small Knudsen number, the Chapman–Enskog expansion
is performed on f σ

α ,

f σ
α = f σ,(0)

α +
∞

∑
n=1

εn f σ,(n)
α , (A3)
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where f σ,(0)
α ≡ f σ,eq

α . Introducing t0, t1, t2, t3 as different scale times, defined as

ti = εit, i = 0, 1, 2, 3. (A4)

and
∂

∂t
=

3

∑
n=0

εn ∂

∂tn
+ O(ε4). (A5)

The Chapman–Enskog expansion is also performed on Ωσ
α ,

Ωσ
α =

∞

∑
n=1

εnΩσ,(n)
α . (A6)

From Equations (A3) to (A6), the equations for each order of ε are given as follows:

C1Δ f σ,(0)
α = − 1

τ
f σ,(1)
α + Ωσ,(1)

α , (A7)

∂

∂t1
f σ,(0)
α + C2Δ2 f σ,(0)

α + ΔτΩσ,(1)
α = − 1

τ
f σ,(2)
α + Ωσ,(2)

α , (A8)

C3Δ3 f σ,(0)
α + 2C2Δ ∂

∂t1
f σ,(0)
α + ∂

∂t2
f σ,(0)
α + τ ∂

∂t1
Ωσ,(1)

α + C2τΔ2Ωσ,(1)
α

+τΔΩσ,(2)
α = − 1

τ f σ,(3)
α + Ωσ,(3)

α .
(A9)

where the partial differential operator Δ ≡ ∂
∂t0

+ eα
∂
∂x , f σ,(0)

α = f σ,eq
α .

Equations (A7)–(A9) represent a series of partial differential equations across various
time scales. In these equations, Ci is the polynomial of the relaxation time factor τ.

C1 = 1, (A10)

C2 =
1
2
− τ, (A11)

C3 = τ2 − τ +
1
6

, (A12)

Based on Equations (1) and (A3), it follows that

∑
α

f σ,(n)
α (x,t) = 0, for n ≥ 1. (A13)

Equation (A13) indicates that the moment at zero vanishes for each order n ≥ 1 of ε.
The equilibrium distribution function is characterized by certain moments, which are

denoted in the following manner:

∑
α

f σ,(0)
α (x, t)eα ≡ mσ,0(x, t), (A14)

∑
α

f σ,(0)
α (x, t)e2

α ≡ πσ,0(x, t), (A15)

∑
α

f σ,(0)
α (x, t)e3

α ≡ Pσ,0(x, t). (A16)
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Abstract: Reducing the computation time of scalar multiplication for elliptic curve cryp-
tography is a significant challenge. This study proposes an efficient scalar multiplication
method for elliptic curves over finite fields GF(2m). The proposed method first converts
the scalar into a binary number. Then, using Horner’s rule, the binary number is divided
into fixed-length bit-words. Each bit-word undergoes repeating point doubling, which
can be precomputed. However, repeating point doubling typically involves numerous
inverse operations. To address this, significant effort has been made to develop formulas
that minimize the number of inverse operations. With the proposed formula, regardless of
how many times the operation is repeated, only a single inverse operation is required. Over
GF(2m), the proposed method for scalar multiplication outperforms the sliding window
method, which is currently regarded as the fastest available. However, the introduced
formulas require more multiplications, squares, and additions. To reduce these operations,
we further optimize the square operations; however, this introduces a trade-off between
computation time and memory size. These challenges are key areas for future improvement.

Keywords: elliptic curve; scalar multiplication; inverse operation; finite field

MSC: 68P25

1. Introduction

Elliptic curve cryptography (abbreviated as ECC) was introduced by Miller [1] in
1986 and Koblitz [2] in 1987. ECC is typically defined over prime finite fields GF(p) or
binary finite fields GF(2m). Public key cryptographic primitives can be implemented using
abelian groups generated by elliptic curves over GF(p) or GF(2m). ECC provides the same
level of security as traditional public key cryptography, but with a smaller number of
parameters. In practical applications, ECC over GF(p) and GF(2m) each possess distinct
advantages, and the choice between them depends on the specific requirements of the
application. For example, GF(p) is often preferred in scenarios demanding high security
and versatility, such as financial transactions, digital signatures, and SSL/TLS protocols.
ECC over GF(p) generally provides stronger security guarantees and is well supported in
both hardware and software implementations. On the other hand, GF(2m) is particularly
suitable for resource-constrained environments, such as embedded systems and Internet of
Things (IoT) devices, due to its computational efficiency. Operations over GF(2m) can be
significantly accelerated through hardware optimization, making them more advantageous
in scenarios where high computational efficiency is critical.
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ECC designs over prime fields generally offer stronger resistance to side-channel
attacks, while designs over binary fields benefit from a carry-free feature, making arithmetic
operations more suitable for hardware implementation. ECC employs an encryption
technique based on the discrete logarithm problem. The discrete logarithm problem is
defined as follows: Given an elliptic curve E over a finite field and two points P and Q on E,
the task is to find the value of k such that Q = kP. However, scalar multiplications and point
inversions both are computationally intensive and represent key challenges. Regarding
ECC defined over finite fields, numerous methods have been developed to optimize scalar
multiplication and point inversion, including algebraic theorem-based designs [3], bit-
slicing techniques [4], lookup tables [5], non-adjacent forms (NAFs) [6], and so on. For
instance, the method in [7] minimizes the number of non-zero bits using the direct recoding
method [8] to enhance scalar multiplication. Implementing ECC arithmetic operations on
various coordinates can lead to faster computations. In [9], Jacobian coordinates are used
to achieve high-efficiency point addition and doubling without requiring point inversions.
In [10], the authors derive formulas for 3P in λ-projective coordinates and for 5P in both
affine and λ-projective coordinates, marking the first study in λ-projective coordinates.

The methods presented in [11–13] transform scalar multiplication processes from
affine to projective coordinate systems, with implementations verified on FPGA boards.
For a more in-depth analysis on using various coordinates, we refer the reader to [14]. In
terms of hardware implementations, the lookup table approach in [15] optimizes double
point-doubling operations, while the triple-based chain method [16] reduces time con-
sumption in elliptic curve cryptosystems. A low-latency window algorithm [17] enhances
security, as does an enhanced comb method for point addition and doubling. In [18], a
configurable ECC crypto-processor defined with the Weierstrass equation over prime fields
was implemented and verified on a Xilinx FPGA board. Modular multipliers over GF(2m)

are discussed in [19], and algorithmic improvements for computational complexity in
low-power devices are presented in [20].

Reducing the number of inverse operations in scalar multiplication is crucial, as
inversion over finite fields is the most time-consuming of all basic operations. In this
work, a modified Horner’s rule based on binary scalar representation and a grouping
technique are employed to accelerate scalar multiplication. Using the grouping technique,
the scalar is partitioned into bit-words, where each represents a sum of repeating point
doublings that can be precomputed and stored. Instead of traditional point doubling, this
study derives formulas for performing repeating point doubling. These formulas require
only one inversion operation regardless of the number of repetitions. Unlike projective
coordinate systems, the derived formulas are based on the affine coordinate system. To the
best of our knowledge, these formulas are the first to compute scalar multiplication in this
manner. Additionally, the proposed method is suitable for both software and hardware
implementations, as the arithmetic operations are simple and consistent in execution.
From a software perspective, the proposed method achieves faster scalar multiplication
computation compared with the sliding window algorithm [21]. While the sliding window
method [21] is a highly efficient general-purpose technique and is widely regarded as the
fastest available, it may not be optimal for all scenarios. Integrating the proposed method
with the sliding window algorithm can further enhance its performance.

The contributions of this study are as follows:

• We propose an efficient repeating point-doubling algorithm that relies solely on
standard inversion operations.

• A generalizable accelerated squaring method is introduced, which can be applied to
inverse element computation.
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• The proposed repeating point-doubling algorithm can enhance the performance
of the sliding window method or any other technique requiring repeating point-
doubling operations.

• The calculation of repeated point doubling is a critical component in algorithms for
computing scalar multiplication. By replacing these operations with our proposed
method, we can achieve further improvements in efficiency. For instance, our ap-
proach demonstrates significant performance gains when applied to techniques such
as the sliding window algorithm, as evidenced by the experimental data presented in
Section 4.

The rest of this paper is organized as follows: Section 2 introduces finite field arith-
metic on elliptic curves. In Section 3, formulas for repeating point doubling are derived,
which significantly reduce the computation time compared with traditional point dou-
bling. Additionally, a modified square operation is introduced to further improve efficiency.
Section 4 presents the results of the simulation implemented in Python 3.9 and executed on
an Intel Core i9-14900K processor, showcasing the performance of the proposed methods.
Finally, conclusions are provided in Section 5.

2. Preliminaries

2.1. Basic Operations on GF(2m)

In the following, the binary operator “+” will denote an addition operation, which
may vary depending on the context, such as addition of real numbers, bits, polynomials,
or points on an elliptic curve. The exact meaning of “+” will be clear from the context in
which it is used. When a, b ∈ {0, 1}, the operation a + b refers to the addition modulo 2
(i.e., binary addition).

Let A = am−1am−2 . . . a1a0 be an element in GF(2m), where ai ∈ {0, 1} for
0 ≤ i ≤ m − 1. Then, A can be represented as a polynomial A(x) = ∑m−1

i=0 aixi. For
simplicity, A(x) is referred to as being defined over GF(2m). Let B(x) = ∑m−1

i=0 bixi be
defined over GF(2m). Then, the addition of A(x) and B(x), denoted as A(x) + B(x), is
defined by ∑m−1

i=0 (ai + bi)xi. For example, suppose that A = 10101110 and B = 11011011
are elements in GF(28). We can express these binary elements as polynomials A(x) =

x7 + x5 + x3 + x2 + x and B(x) = x7 + x6 + x4 + x3 + x + 1. Now, performing the addition
A(x) + B(x), which is equivalent to bitwise addition modulo 2, we obtain the following:

A(x) + B(x) = (1 + 1)x7 + (0 + 1)x6 + (1 + 0)x5 + (0 + 1)x4 + (1 + 1)x3

+(1 + 0)x2 + (1 + 1)x + (0 + 1)
= x6 + x5 + x4 + x2 + 1.

(1)

or equivalently, in binary form: A + B = 01110101. In programming, (ai + bi) is the XOR
operation of ai and bi. The multiplication of A(x) and B(x) is the remainder R(x) of the
product of A(x) and B(x) by dividing an irreducible polynomial f (x) of degree m defined
over GF(2m). Symbolically, the multiplication of A(x) and B(x) in GF(2m) is denoted as
R(x) ≡ A(x)B(x) mod f (x).

Over GF(2m), the Extended Euclidean Algorithm is employed to compute the re-
mainder of the product of A(x) and B(x) by dividing f (x). However, there are many
time-consuming divisions in the algorithm. In order to avoid the divisions, Fermat’s Little
Theorem is usually employed to compute the remainder or inverse. A polynomial B(x) is
said to be the inverse of a polynomial A(x) if

A(x)B(x) ≡ mod f (x).
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We denote B(x) as A−1(x). In Fermat’s Little Theorem, suppose that A is an element in
GF(2m). Then, the inverse A−1 of A is equal to A2m−2; moreover, A2m−2 = ∏m−1

i=1 A2i
.

2.2. Point Addition and Point Doubling on Elliptic Curve

The elliptic curve E(x, y) defined in GF(2m) is given by y2 + xy = x3 + Ax2 + B,
where A and B are elements in GF(2m). Let P = (x1, y1) and Q = (x2, y2) be two points in
E(x, y). The point addition of P and Q, denoted by P + Q, is the point (x3, y3) in E(x, y)
obtained as follows:

1. If P �= Q, P + Q is defined by the negative of the point that is the intersection of
E(x, y) and the line passing through P and Q. Let λ denote the slope of the line. Then,

λ =
y1 + y2

x1 + x2
= (y1 + y2)(x1 + x2)

−1, x3 = λ2 + λ + x1 + x2 + A, and y3 = y1 + (x1 + x3)λ + x3.

2. If P = Q, P + P is the negative of the point that is the intersection of E(x, y) and the
tangent line passing through the point P. P + P is written as 2P = (x2, y2) and is
called the point doubling of P, and we have

λ = x1 +
y1

x1
= x1 + y1x−1

1 , x2 = λ2 + λ + A, and y2 = x2
1 + (λ + 1)x2. (2)

An illustrative example is presented based on the definitions of point addition and
point doubling as follows. Over GF(25), let P = (x1, y1) = (00110, 10000), Q = (x2, y2) =

(01010, 10010) be points on y2 + xy = x3 + Ax2 + B, where A = 0001, B = 0001, and an
irreducible polynomial f (x) = x5 + x + 1. Let R = (x3, y3) = P + Q. Then,

λ = y1+y2
x1+x2

= 10000+10010
00110+01010

= 00010
01100 = (00010)(00111) = 01110,

x3 = λ2 + λ + x1 + x2 + A

= (01110)2 + 01110 + 00110 + 01010 + 00001 = 11101, and

y3 = y1 + (x1 + x3)λ + x3

= 10000 + (00110 + 11101)(01110) + 11101 = 11011.

Let P + P = (x2, y2). Then,

λ = x1 +
y1
x1

= 00110 + 10000
00110

= 00110 + (10000)(01110) = 00110 + 11011 = 11101

x2 = λ2 + λ + A

= (11101)2 + 11101 + 00001

= 10110 + 11101 + 00001 = 01010, and

y2 = x2
1 + (λ + 1)x2

= (00110)2 + (11101 + 00001)(01010)

= 10100 + 00110 = 10010.
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3. Optimizing Scalar Multiplications

3.1. Scalar Multiplication

Let k ≥ 2 be an integer and P be a point in E(x, y) : y2 + xy = x3 + Ax2 + B. The
scalar multiplication kP of P is defined by kP = P + P + · · ·+ P︸ ︷︷ ︸

k

. The computation of kP is

lengthy. To reduce the duration, first, k is converted to a binary representation, as follows:

km−12m−1 + km−22m−2 + · · ·+ k121 + k020, (3)

where ki ∈ {0, 1} for 0 ≤ i ≤ m − 1. Let d, w, r be non-negative integers such that
m = w · d + r with 0 ≤ r ≤ w − 1. Then, using Horner’s rule, Equation (3) can be repre-
sented as

k = ((· · · (︸ ︷︷ ︸
d

km−12w−1 + km−22w−2 + · · ·+ km−(w−1)2 + km−w)2w

+ km−w−12w−1 + km−w−22w−2 + · · ·+ km−w−(w−1)2 + km−w−w)2w + · · ·

+ km−(d−1)w−12w−1 + km−(d−1)w−22w−2 + · · ·+ km−(d−1)w−(w−1)2 + km−(d−1)w−w)2
r

+ kr−12r−1 + kr−22r−2 + · · · k12 + k0.

For example, suppose that k = 214 + 212 + 211 + 29 + 28 + 26 + 25 + 24 + 2 + 1 and
w = 3. Then,

k = ((((22 + 0 · 21 + 20)23 + 22 + 0 · 21 + 20)23 + 22 + 0 · 21 + 20)23

+22 + 21 + 0 · 20)23 + 0 · 22 + 21 + 20.
(4)

As the idea behind the proposed method comes from the sliding window [21], let us
briefly introduce the basic concept of the sliding window by the following example. For k
in Equation (4) with window size w = 3, k can be written as

k = 101 101 101 110 011. (5)

In accordance with the sliding window method, the precomputations are (�15/3� − 1)
point additions; a point doubling number of 9; and 2P, 3P(2P + P), 5P(3P + 2P), and
7P(5P + 2P). The number of point doubling is the number of times a window with length
w is successively shifted one place from left to right, skipping the zeros if they are not in
the window. More details on the sliding window method can be found in [21]. With the
proposed method, kP is written as

kP = ((· · · (︸ ︷︷ ︸
d

km−12w−1P + km−22w−2P + · · ·+ km−(w−1)2P + km−wP)2w

+ km−w−12w−1P + km−w−22w−2P + · · ·+ km−w−(w−1)2P + km−w−wP)2w

+ · · ·
+ km−(d−1)w−12w−1P + km−(d−1)w−22w−2P + · · ·

+ km−(d−1)w−(w−1)2P + km−(d−1)w−wP)2r

+ kr−12r−1P + kr−22r−2P + · · · k12P + k0P.

(6)

In Equation (6), for 0 ≤ i ≤ d − 1, each

km−iw−12w−1P + km−iw−22w−2P + · · ·+ km−iw−(w−1)2P + km−iw−wP (7)
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is referred to as a w-bit word, denoted as (ki
w−1, ki

w−2, · · · , ki
1, ki

0). For the last r terms,

kr−12r−1P + kr−22r−2P + · · ·+ k12P + k0P (8)

in Equation (6) is also represented as a w-bit word (kd
w−1, kd

w−2, · · · , kd
r , kd

r−1, kd
r−2, · · · , kd

1, kd
0)

with kd
j = 0 for r ≤ j ≤ w − 1.

For Equations (7) and (8), it is evident that any scalar multiplication operation can
be equivalently expressed as the computation of 2P, 22P, · · · , 2w−1P for each i. For a
small value of w, the points 2P, 22P, · · · , (2w − 1)P can be precomputed and stored in
advance, as illustrated in Table 1. In this table, given the point P, the scalar k, and the
word length w, the result of Equation (7) or (8) can be directly retrieved from the entry
L(km−iw+w−1, km−iw+w−2, · · · , km−iw+w−(w−1), km−iw+w−w), provided that ki

j = km−iw+j

for 0 ≤ i ≤ d and 0 ≤ j ≤ w − 1.

Table 1. Precomputations for Equations (7) and (8).

L(km−iw+w−1, km−iw+w−2, · · · , km−iw+w−(w−1), km−iw+w−w) ∑w−1
j=0 km−iw−(w−j)2jP

L(0, 0, 0, · · · , 0, 0, 0) 0

L(0, 0, 0, · · · , 0, 0, 1) P

L(0, 0, 0, · · · , 0, 1, 0) 2P

L(0, 0, 0, · · · , 0, 1, 1) L(0, 0, 0, · · · , 0, 0, 1) + L(0, 0, 0, · · · , 0, 1, 0) = 3P

L(0, 0, 0, · · · , 1, 0, 0) 22P

...
...

L(1, 0, 0, · · · , 0, 0, 0) 2w−1P

L(1, 0, 0, · · · , 0, 0, 1) L(1, 0, 0, · · · , 0, 0, 0) + L(0, 0, 0, · · · , 0, 0, 1) = 2w−1P + P

...
...

L(1, 1, 1, · · · , 1, 1, 1) L(1, 0, 0, · · · , 0, 0, 0) + L(0, 1, 1, · · · , 1, 1, 1) = (2w − 1)P

We will use the following example to demonstrate how to look up values in Table 1.
Suppose that w = 3; we precompute all eight possible combinations, as shown in the
following table. For the value of k according to Equation (5), for the combination 110, we
obtain the result from the table entry L(1, 1, 0), which is 6P.

L(k2, k1, k0) k2P2 + k1P + k0P

L(0, 0, 0) 0

L(0, 0, 1) P

L(0, 1, 0) 2P

L(0, 1, 1) 2P + P

L(1, 0, 0) 4P

L(1, 0, 1) 4P + P

L(1, 1, 0) 4P + 2P

L(1, 1, 1) 4P + 3P

Therefore, given point P, scalar k, and word length w, kP can be computed with the
following Algorithm 1, ScalarMUL.
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Algorithm 1 ScalarMUL(k, P, w)

1. Set Q = 0
2. Using P to create table L, as shown in Table 1
3. Set d = �m/w� and r = m − w · d
4. For i ← d − 1 downto 0
5. do

6. Q ← Q + L(km−iw+w−1, km−iw+w−2, · · · , km−iw+w−(w−1), km−iw+w−w)
7. Q ← 2wQ
8. Enddo

9. Q ← 2rQ
10. Q ← Q + L(0, 0, · · · , 0, kr−1, kr−2, · · · , k1, k0)
11. return Q

3.2. Reducing Inverse in the Repeating Point Doubling

The sliding window method [21] shifts a window of length w > 0 and skips over
runs of zeros between them while disregarding the fixed digit boundaries. However, in
the ScalarMUL algorithm, the binary representation of k is partitioned into fixed-length
bit-words of size w, where each word is processed sequentially. This approach can also
be extended to the sliding window method, as will be demonstrated in Section 4 with the
experimental results. Within the ScalarMUL algorithm, it is necessary to compute 2wQ in
step 7 and 2rQ in step 9.

According to the definition of scalar multiplication kQ of Q and the associative prop-
erty of point addition on the elliptic curve E(x, y), for any positive integer n, 2nQ can be
expressed as the point doubling of 2n−1Q. Specifically, 2nQ = 2n−1Q + 2n−1Q = 2(2n−1Q).
Traditionally, as described in Equation (2), 2nQ can be computed using the following
Algorithm 2, referred to as Tradition. In the Tradition algorithm, line 4 employs
Equation (2) to compute 2Q. Each iteration performs a point-doubling operation on Q
requiring five XORs (additions), two multiplications, and one inverse operation. The
addition, multiplication, and square operations mentioned here are all operations defined
within GF(2m).

Algorithm 2 Tradition(n, P)
1. Set Q = P
2. For i ← n − 1 downto 0
3. do

4. Q ← 2Q
5. Enddo

6. return Q

To obtain 2nQ, we have to compute 2Q(Q + Q), 4Q(2Q + 2Q), · · · , 2n(2n−1Q +

2n−1Q). Therefore, in the computation, there are n inverse operations, 5n XORs, 2n multipli-
cations, and 2n squares. Since the inverse operation is computationally expensive, we have
developed optimized formulas to replace the point-doubling computation in the Tradition
algorithm. The derived formulas are designed to ensure that only a single inverse operation
is required when computing 2nQ of a given point Q, significantly improving computational
efficiency. Let Q0 = (x0, y0) be a point in E(x, y). For n ≥ 1, let Qn = (xn, yn) be the point
doubling of Qn−1. Then, Qn is the scalar multiplication 2nQ0 of Q0. Let λn be the slope of
the tangent line passing through the point Qn−1. Then, to derive formulas for Qn obtained
from Q0 via the iteration of point doubling, first, consider Q1 = (x1, y1). We have
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λ1 = x0 +
y0
x0

=
x2

0+y0
x0

= v1
x0

,

x1 = λ2
1 + λ1 + A =

(
v1
x0

)2
+ v1

x0
+ A =

Ax2
0+v1x0+v2

1
x2

0
= u1

x2
0
, and

y1 = x2
0 + (λ1 + 1)x1,

(9)

where v1 = x2
0 + y0 and u1 = Ax2

0 + v1x0 + v2
1.

In what follows, the formula for yn will be omitted until λn and xn are obtained.
For Q2 = 2Q1 = (x2, y2),

λ2 = x1 +
y1
x1

= λ2
1 + (A + 1) + x2

0
x1

=
v2

1
x2

0
+ (A + 1) + x2

0x2
0

u1
,

=
(A+1)u1x2

0+u1v2
1+x2

0(x2
0)

2

u1x2
0

= v2
u1x2

0
and

x2 = λ2
2 + λ2 + A =

v2
2

(u1x2
0)

2 +
v2

u1x2
0
+ A =

A(u1x2
0)

2+v2(u1x2
0)+v2

2
(u1x2

0)
2 = u2

(u1x2
0)

2 ,

(10)

where v2 = (A + 1)u1x2
0 + u1v2

1 + x2
0(x2

0)
2 and u2 = A(u1x2

0)
2 + v2(u1x2

0) + v2
2.

For Q3 = 2Q2 = (x3, y3),

λ3 = x2 +
y2
x2

= λ2
2 + (A + 1) + x2

1
x2

=
v2

2
(u1x2

0)
2 + (A + 1) + u2

1/x4
0

(u2/u1x2
0)

2

=
(A+1)u2(u1x2

0)
2+u2v2

2+(u2
1)

2(u1x2
0)

2

u2(u1x2
0)

2 = v3
u2(u1x2

0)
2 and

x3 = λ2
3 + λ3 + A =

v2
3

(u2(u1x2
0)

2)2 +
v3

u2(u1x2
0)

2 + A

=
A(u2(u1x2

0)
2)2+v3(u2(u1x2

0)
2)+v2

3
(u2(u1x2

0)
2)2 = u3

(u2(u1x2
0)

2)2 ,

(11)

where v3 = (A + 1)u2(u1x2
0)

2 + u2v2
2 + (u2

1)
2(u1x2

0)
2 and u3 = A(u2(u1x2

0)
2)2 +

v3(u2(u1x2
0)

2) + v2
3.

For Q4 = 2Q3 = (x4, y4),

λ4 = x3 +
y3
x3

= λ2
3 + (A + 1) + x2

2
x3

=
v2

3
(u2(u1x2

0)
2)2 + (A + 1) + u2

2/((u1x2
0)

2)2

(u3/(u2(u1x2
0)

2)2

=
(A+1)u3(u2(u1x2

0)
2)2+u3v2

3+(u2
2)

2(u2(u1x2
0)

2)2

u3(u2(u1x2
0)

2)2 = v4
u3(u2(u1x2

0)
2)2 and

x4 = λ2
4 + λ4 + A =

v2
4

(u3(u2(u1x2
0)

2)2)2 +
v4

u3(u2(u1x2
0)

2)2 + A

=
A(u3(u2(u1x2

0)
2)2)2+v4(u3(u2(u1x2

0)
2)2)+v2

4
(u3(u2(u1x2

0)
2)2)2 = u4

(u3(u2(u1x2
0)

2)2)2 ,

(12)

where
v4 = (A + 1)u3(u2(u1x2

0)
2)2 + u3v2

3 + (u2
2)

2(u2(u1x2
0)

2)2

and
u4 = A(u3(u2(u1x2

0)
2)2)2 + v4(u3(u2(u1x2

0)
2)2) + v2

4.
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The formulas for xn and λn can be extended iteratively for arbitrarily large values of n,
allowing us to compute 2nQ for any desired n. However, the derivation process becomes
increasingly laborious and cumbersome as n grows larger, making it impractical for manual
computation. Before establishing that there is only one inverse operation involved in the
computation of scalar multiplication, it will be helpful to introduce the following recurrence
relations. By following Equations (9)–(12), let t1 = x0, t2 = u1x2

0, and t3 = u2(u1x2
0)

2. Then,

v3 = (A + 1)t3 + u2v2
2 + (u2

1)
2t2

2 and u3 = At2
3 + v3t3 + v2

3 (13)

For n ≥ 3, the following relationships can be easily derived:

tn = un−1t2
n−1,

vn = (A + 1)tn + un−1v2
n−1 + (u2

n−2)
2t2

n−1, and

un = At2
n + vntn + v2

n.

Table 2 is an illustration of Equations (9)–(12) to compute λ4 and x4. In the example,
the curve is defined over GF(2163). For m = 233, 283, 409, 571, the computations of λ4 and
x4 are shown in Appendix A.

Table 2. Computations of λ4 and x4 for four times point doubling of Q0 for m = 163.

A = 0x1, primitive polynomial f (x) = x163 + x7 + x6 + x3 + 1, Q0 = (x0, y0)
x0 = 0x02FE13C0537BBC11ACAA07D793DE4E6D5E5C94EEE8
y0 = 0x0289070FB05D38FF58321F2E800536D538CCDAA3D9

t1 = x0 0x2FE13C0537BBC11ACAA07D793DE4E6D5E5C94EEE8
v1 = t2

1 + y0 0x4F80CD7EF766D64506FDDADAE0D599F74B2227367
u1 = At2

1 + v1t1 + v2
1 0x32FBC2266652998D2D2F03AFD6241F309DDE4AE1B

t2 = u1t2
1 0x5A40058EDE40D0A67D4BD8CB03557EEC05F034063

v2 = (A + 1)t2
2 + u1v2

1 + (x2
0)

2t2
1 0x2792546E8CB0EE4CC70AB686063CA9C9EABCE3A12

u2 = At2
2 + v2t2 + v2

2 0x52D96F1338F1AA0962CBCED0BF145D810E7F7E174

t3 = u2t2 0x17EA26AC56E2A438890799BFBDF518C44B1769326
v3 = (A + 1)t2

3 + u2v2
2 + (u2

1)
2t2

2 0x1A26B8B369A2A6FE9FE00452B82B49FFE32453AC
u3 = At2

3 + v3t3 + v2
3 0x1415E6A7EE1563767A757312679BA44FCFA9C42DF

t4 = u3t2
3 0x2B4B1B80260F6CA1D0BE900A98486B175408B673D

v4 = (A + 1)t2
4 + u3v2

3(u
2
2)

2t2
3 0x79C9EAD3F5B5A625DF7C1D6E3F3C572181F7128E7

u4 = At2
4 + v4t4 + v2

4 0x5DB8FC493F7495E19777B26FAF97457756AD27E2E

t = t−1
4 0x145E47AFC3228B6070CCC6D1F3B9D178EA838006E

λ4 = v4t 0x7FDE58E3AE8F043ECDE437CA1581911B725743721
x4 = u4t2 0x2E8D15536960EB926E78D9E15CE721DFAE4FE3134

Lemma 1. For n ≥ 3, λn = vn
tn

and xn = un
t2
n

.

Proof of Lemma 1. We will proceed with induction on n. Equations (9)–(12) show the basis
step for λn and xn. For the inductive step,

λn = λ2
n−1 + (A + 1) +

x2
n−2

xn−1

=
(

vn−1
tn−1

)2
+ (A + 1) +

(
un−2/t2

n−2

)2

un−1/t2
n−1

=
v2

n−1
t2
n−1

+ (A + 1) +
u2

n−2t2
n−1

un−1t4
n−2

=
v2

n−1
t2
n−1

+ (A + 1) +
(u2

n−2)
2

un−1

=
(A+1)un−1t2

n−1+un−1v2
n−1+(u2

n−2)
2t2

n−1
un−1t2

n−1
= vn

tn
and

xn = λ2
n + λn + A =

(
vn
tn

)2
+ vn

tn
+ A = At2

n+vntn+v2
n

t2
n

= un
t2
n

.

(14)
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This lemma holds.

Corollary 1. For n ≥ 3, yn =
u2

n−1u2
n−1+(λn+1)un

t2
n

.

Proof of Corollary 1. According to Lemma 1, λn = vn
t2
n
· tn,

yn = x2
n−1 + (λn + 1)xn =

(un−1

t2
n−1

)2
+ (λn + 1)

un

t2
n

=
u2

n−1

t4
n−1

+ (λn + 1)
un

(un−1t2
n−1)

2
=

u2
n−1u2

n−1 + (λn + 1)un

(un−1t2
n−1)

2

=
u2

n−1u2
n−1 + (λn + 1)un

t2
n

.

Given a point Q = (x, y) and a positive integer n, the n-times point doubling 2nQ of
Q can be efficiently computed using the following Algorithm 3, referred to as PDNTimes.

Algorithm 3 PDNTimes(Q = (x, y), n)
1. Set Q1 = (0, 0)
2. If x �= 0, then
3. x0 ← x; y0 ← y
4. u0 ← x0; t1 ← x0
5. v1 ← t2

1 + y0
6. u1 ← A · t2

1 + v1 · t1 + v2
1

7. For i ← 2 upto n
8. do

9. ti ← ui−1 · t2
i−1

10. vi ← (A + 1) · ti + ui−1 · v2
i−1 + (u2

i−2)
2 · t2

i−1
11. ui ← A · t2

i + vi · ti + v2
i

12. Enddo

13. t ← t−1
n

14. λn ← vn · t
15. t′ ← t2

16. xn ← un · t′

17. yn ← ((u2
n−1)

2 + (λn + 1) · un) · t′

18. Q1 ← (xn, yn)
19. EndIf

20. return Q1

In the PDNTimes algorithm, the computational complexity can be broken down
as follows:

• Lines 5 and 6: These lines involve 3 XOR operations, 2 multiplications, and 2 square
operations.

• Lines 9–11: Each iteration of the loop in these lines requires 5 XOR operations, 6 multi-
plications, and 6 square operations.

• Lines 13–17: These lines consist of 2 XOR operations, 4 multiplications, 3 square
operations, and 1 inverse operation.

Therefore, a total of 5n XORs, 6n multiplications, and 6n − 1 squares are required.
However, in the case of hardware devices, the time complexity of adding any two n-bit
numbers is currently O(1), while the time complexity of their multiplication is O(n).
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Lemma 2. Over GF(2m), let n ≥ 2 be an integer and Q be a point in E(x, y) : y2 + xy =

x3 + Ax2 + B. The computation of n times point doubling 2nQ of Q requires O(n) multiplications,
O(n) squares, and one inverse operation.

For the repeating point doubling on GF(2m), Table 3 demonstrates the execution
times of the Tradition algorithm and the PDNTimes algorithm involved in the ScalarMUL

algorithm. In other words, in line 7 of the ScalarMUL algorithm, the computation of 2wQ
is compared using PDNTimes and Tradition. Let tprev and tprop denote the execution time
of the previous method and the proposed method, respectively. Then, in the table, the
decreasing ratio is given by

tprev − tprop

tprev
× 100 (15)

When comparing the performance of Tradition with that of PDNTimes for different
values of m, it is observed that while the reduction in inverse operations has led to a
decrease in computation time, the increased number of multiplication and square op-
erations in the formula results in a slowdown of the computation time reduction as n
approaches 8. This trend is illustrated in Figure 1. This trend is attributed to the increase
in word length, which leads to longer table construction times and a corresponding rise
in memory consumption. Furthermore, as depicted in the figure, this behavior remains
consistent across different values of m, indicating that the trade-off between reduced in-
versions and increased multiplication and square operations persists regardless of the
specific parameters.

Table 3. The execution times (10−3 s) for Tradition and PDNTimes over GF(2m) and the decreasing
ratio, where m = 163, 233, 283, 409, 571.

m
Method n

Ratio 2 3 4 5 6 7 8

163
Tradition 11.024 17.369 25.359 31.436 36.060 41.873 48.851

PDNTimes 6.217 6.462 6.641 6.762 7.034 7.205 7.319

ratio 43.60 62.80 73.81 78.49 80.49 82.79 85.02

233
Tradition 24.701 37.534 50.078 61.188 73.936 89.568 99.046

PDNTimes 12.859 13.195 13.374 13.557 14.197 14.222 14.541

ratio 47.94 64.85 73.29 77.84 80.80 84.12 85.32

283
Tradition 39.671 62.621 79.533 103.221 123.985 144.111 163.431

PDNTimes 20.762 21.181 21.731 21.733 22.341 22.653 23.138

ratio 47.66 66.18 72.68 78.95 81.98 84.28 85.84

409
Tradition 88.431 132.481 176.825 218.813 262.292 306.032 349.894

PDNTimes 44.307 45.134 45.792 46.015 46.691 47.969 48.554

ratio 49.90 65.93 74.10 78.97 82.20 84.33 86.12

571
Tradition 176.102 264.810 348.533 433.089 526.804 606.048 693.713

PDNTimes 87.794 88.223 88.982 89.849 91.223 91.481 92.432

ratio 50.15 66.68 74.47 79.25 82.68 84.91 86.68
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Figure 1. The decreasing behavior shown by the data shown in Table 3.

3.3. Reducing Square Operation Time

In the PDNTimes algorithm, there are many square operations in ti, vi, and ui. To
further reduce the computation time for scalar multiplication or repeating point doubling,
precomputations for square operations are employed again. The method we propose below
will enable the square operation to utilize three main operations: XOR, bit shifting, and
table lookup. Recall that A(x) = ∑m−1

i=0 aixi is a polynomial defined over GF(2m). Then,
given an integer w ≥ 2, let d and r be integers such that m = w · d + r and 0 ≤ r ≤ w − 1.
Using Horner’s rule again (note that the m we are considering is odd),

A2(x) ≡ ((· · · ((((
w−1

∑
j=0

am−w+jx2j)x2w +
w−1

∑
j=0

am−2w+jx2j)x2w mod f (x)

+
w−1

∑
j=0

am−3w+jx2j)x2w +
w−1

∑
j=0

am−4w+jx2j)x2w mod f (x)

+ · · ·

+
w−1

∑
j=0

am−(d−1)w+jx
2j)x2w +

w−1

∑
j=0

am−dw+jx2j)x2r mod f (x)

+
r−1

∑
j=0

ajx2j. (16)

In Equation (16), the computation of A2(x) involves sequentially evaluating
the expression

((
w−1

∑
j=0

am−iw+jx2j)x2w +
w−1

∑
j=0

am−(i+1)w+jx
2j)x2w mod f (x) (17)

for increasing values of i. Similar to Equation (7) (respectively, Equation (8)), the ex-
pression ∑w−1

j=0 am−iw+jx2j (respectively, ∑r−1
j=0 ajx2j) represents a w-bit word, denoted

as (ai
w−1, ai

w−2, · · · , ai
1, ai

0) (respectively, (ad+1
w−1, ad+1

w−2, · · · , ad+1
1 , ai

0)). The result of com-
puting ∑w−1

j=0 am−iw+jx2j, for 1 ≤ i ≤ d, and ∑r−1
j=0 ajx2j can be found in the entry

TE(aw−1, aw−2, · · · , a0) in Table 4 provided that am−iw+j = aj for 0 ≤ j ≤ w − 1. In
the subsequent discussion, the notation “• << n” will be used to denote shifting • to the
left by n positions, with all the least significant bits set to zero, where n is a positive integer.
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In Equation (17), since the maximum degree before applying the modulo operation
with respect to f (x) is less than m, the remainder obtained through traditional long division
depends on the polynomial f (x) + xm. The result of this modulo operation, denoted as
RD(r2w−1, r2w−2, · · · , r0), is provided in Table 5, which represents the remainder of (17).
Table 5 comprehensively lists all possible outcomes for r2w−1, r2w−2, · · · , r0.

Therefore, the square operation A2(x) mod f (x) can be computed with the following
Algorithm 4, SquareMod(A, f , m, w).

Algorithm 4 SquareMod(A, f , m, w)

1. Set C = (c2w−1, c2w−2, · · · , c0) = (0, 0, · · · , 0), d = �m
w �, r = m − w · d

2. Make table TE and RD such as Table 4 and Table 5, respectively

3. For i = 1 to d − 1
4. do

5. C ← C + TE(am−iw+w−1, am−iw+w−2, · · · , am−iw+1, am−iw)
6. C ← C(x2w) + RD(c2w−1, c2w−2, · · · , c0)
7. Enddo

8. C ← C + TE(ar+w−1, ar+w−2, · · · , ar+1, ar)
9. C ← C(x2r) + RD(c2w−1, c2w−2, · · · , c0)

10. C ← C + TE(0, 0, · · · , 0, ar−1, ar−2, · · · , a1, a0)
11. return C

Table 4. The precomputations for ∑w−1
j=0 am−iw+jx2j.

TE(am−iw+w−1, am−iw+w−2, · · · , am−iw+1, am−iw) ∑w−1
j=0 am−iw+jx2j

TE(0, 0, · · · , 0, 0, 0) 0

TE(0, 0, · · · , 0, 0, 1) 1

TE(0, 0, · · · , 0, 1, 0) TE(0, 0, · · · , 0, 1) << 2

TE(0, 0, · · · , 0, 1, 1) TE(0, 0, · · · , 0, 1) + TE(0, 0, · · · , 1, 0)

TE(0, 0, · · · , 1, 0, 0) TE(0, 0, · · · , 0, 1, 0) << 2

TE(0, 0, · · · , 1, 0, 1) TE(0, 0, · · · , 0, 1) + TE(0, 0, · · · , 1, 0, 0)

...
...

TE(1, 1, · · · , 1, 1, 1) TE(1, 0, · · · , 0, 0, 0) + TE(0, 1, · · · , 1, 1, 1)

Table 5. The precomputations for (17). f ′ = f (x) + xm.

RD(r2w−1, r2w−2, · · · , r0) Result

RD(0, 0, · · · , 0, 0, 0) 0

RD(0, 0, · · · , 0, 0, 1) f ′

RD(0, 0, · · · , 0, 1, 0) f ′ << 1

RD(0, 0, · · · , 0, 1, 1) RD(0, 0, · · · , 0, 0, 1) + RD(0, 0, · · · , 0, 1, 0)

RD(0, 0, · · · , 1, 0, 0) f ′ << 2

RD(0, 0, · · · , 1, 0, 1) RD(0, 0, · · · , 1, 0, 0) + RD(0, 0, · · · , 0, 0, 1)

RD(0, 0, · · · , 1, 1, 0) RD(0, 0, · · · , 1, 0, 0) + RD(0, 0, · · · , 0, 1, 0)

RD(0, 0, · · · , 1, 1, 1) RD(0, 0, · · · , 1, 0, 0) + RD(0, 0, · · · , 0, 1, 1)

...
...

RD(1, 1, · · · , 1, 1, 1) RD(1, 0, · · · , 0, 0, 0) + RD(0, 1, · · · , 1, 1, 1)
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In the SquareMod algorithm, for each iteration i, the result of the equation of
Equation (17) is represented as C = (c2w−1, c2w−2, · · · , c1, c0). In practical implementa-
tion, the term x2w in Equation (17) implies that each cj in C is shifted to the left by 2w
positions, with all lower-order bits set to zero, where 0 ≤ j ≤ 2w − 1. Let m′ denote the
maximum degree of the polynomial in Equation (17) before applying the modulo operation
with f (x), and let f ′ = f (x) + xm. As A2(x) is stored in an m-bit array in the code, there is
a constraint on the shifting of C. Specifically, m′ must be greater than the sum of 2w + 1
and the maximum degree of f ′. This ensures that the shifting operation does not exceed
the bounds of the array and that the modulo operation can be correctly applied.

In the SquareMod algorithm, the computational time can be broken down as follows:

• Lines 5 and 6: Each iteration of the loop in these lines requires 2 XOR operations,
1 shift, and 2 table lookups.

• Lines 8–10: These lines consist of 3 XOR operations, 1 multiplication, and 3 ta-
ble lookups.

Therefore, a total of (2d + 1) XORs, d shifts, and (2d + 1) table lookups are required.
From the perspective of time complexity, this time is negligible compared with the time
required for multiplication.

In the ScalarMUL and SquareMod algorithms, scalar multiplication corresponds to
retrieving precomputed values stored in Tables 1, 4, and 5. As a result, this approach signif-
icantly enhances computational efficiency by reducing the need for repeated calculations.

Lemma 3. Given an integer w, the scalar multiplication of a point on y2 + xy = x3 + Ax2 + B
over GF(2m) can be computed in �m

w � iterations in the algorithms ScalarMUL and SquareMod.

In Lemma 3, the �m
w � iterations imply that a scalar multiplication of the form 2�

m
w �Q

of a given point Q is performed on a given point Q. To evaluate the execution time of the
SquareMod algorithm, a test code was implemented to execute the algorithm 100,000 times
for each word length w with 2 ≤ w ≤ 8. Additionally, the memory size required for the
lookup table in SquareMod was measured for each word length. For instance, in the case
of GF(2163), Table 6 summarizes the execution time and the corresponding memory size
needed for the lookup table in SquareMod. Figure 2 provides a graphical representation of
the data presented in Table 6. As evident from the table or figure, there is a trade-off between
execution time and memory usage. While increasing the word length w can enhance
computational efficiency, it also results in a significant increase in the memory size required
and construction times for the lookup table. This highlights the need to carefully balance
performance optimization with memory constraints when implementing the SquareMod

algorithm. Finding the optimal word length will also determine the performance of scalar
multiplication, meaning the efficiency of scalar multiplication is adjustable. Taking GF(2163)

as an example, in our program execution environment, the memory size required for each
word length w is shown in Table 7. The execution time can be optimized by selecting an
appropriate value of w based on the hardware and software specifications of the specific
execution environment.
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Table 6. The execution time (seconds) and memory size (2w × 163 bits/8 bits) of the implementation
of the SquareMod algorithm for w = 2, 3, . . . , 8 in computing A(x)2 over GF(2163).

w Time
Memory Size

RD(•) TE(•) Total

2 0.180 82 82 0.16

3 0.122 163 163 0.32

4 0.094 326 326 0.64

5 0.07 652 652 1.27

6 0.69 304 1304 2.55

7 0.060 2608 2608 5.09

8 0.054 5216 5216 10.19

Figure 2. The execution time and memory size used for the algorithm SquareMod over GF(2163).

Table 7. The execution time and memory size (2w × m bits/8 bits) of the ScalarMUL algorithm for
w = 2, 3, . . . , 8 over GF(2m), where m = 163, 233, 283, 409, 571. Note that the memory size does not
include the RD(•) and TE(•) values listed in Table 6.

m
Time w
Size 2 3 4 5 6 7 8

163
seconds 1.18 0.83 0.71 0.70 0.83 1.22 2.07

bytes 82 163 326 652 1304 2608 5216

233
seconds 3.36 2.32 1.89 1.81 2.08 2.79 4.46

bytes 117 233 466 932 1864 3728 7456

283
seconds 6.44 4.46 3.63 3.40 3.62 4.85 7.47

bytes 142 283 566 1132 2264 4528 9056

409
seconds 19.98 13.64 10.71 9.62 9.96 12.01 17.33

bytes 205 409 818 1636 3272 6544 13,088

571
seconds 50.36 33.67 26.29 22.74 21.91 25.40 34.24

bytes 286 571 1142 2284 4568 9136 18,272

4. Inverse Algorithm Use ScalarMUL
ECC parameters over GF(2m) used in the ScalarMUL algorithm and the sliding win-

dow method [21] are provided in Table A5 of Appendix A. The execution times for each
word length, both with and without the formulas utilized in the ScalarMUL algorithm, as
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well as for each window size in the sliding window method [21], are presented in Table 8.
Note that the scalar k used in the algorithm ScalarMUL and the sliding window are the
extension degree m of GF(2m). Additionally, Table 9 illustrates the decreasing ratio, which
compares the execution time of the proposed method with that of the sliding window
method [21], highlighting the efficiency improvements achieved by the proposed approach.
The decreasing trend in execution time is illustrated in Figure 3. The proposed formulas
are specifically tailored for scenarios that involve repeating point-doubling operations,
enabling a significant reduction in the number of inverse operations required. The applica-
tion of our proposed method to the sliding window technique simply requires replacing
the formulas we derived for repeating point doubling in Algorithm 2 in [21] with our
proposed formulas. Furthermore, these formulas can be seamlessly integrated into the
sliding window method to further improve its computational efficiency, as demonstrated
by the results presented in Table 9. From Table 9, we observe that the sliding window
method with formulas exhibits better efficiency. This is because the sliding window method
utilizes a window based on the positions of the bit 1s in the binary representation of k for
repeated point doubling. In contrast, our method uses a fixed word length, which requires
more precomputation. However, this also demonstrates the value of our derived formulas.
This integration highlights the versatility and effectiveness of the proposed approach in
optimizing elliptic curve operations.

Table 8. The execution times (seconds) for the ScalarMUL algorithm (both the PDNTimes and
SquareMod algorithms are utilized) and sliding window method [21] over GF(2m).

m Methods
Window Size or Word Length, w

2 3 4 5 6 7 8

163
Sliding window 1.72 1.51 1.42 1.43 1.48 1.67 2.08

ScalarMUL without formulas 1.66 1.50 1.46 1.50 1.73 2.13 2.98

ScalarMUL with formulas 1.18 0.83 0.71 0.70 0.83 1.22 2.07

233
Sliding window 5.08 4.51 4.21 4.14 4.25 4.58 5.44

ScalarMUL without formulas 4.96 4.44 4.31 4.32 4.63 5.46 7.18

ScalarMUL with formulas 3.36 2.32 1.89 1.81 2.08 2.79 4.46

283
Sliding window 9.60 8.56 8.08 7.98 8.09 8.59 9.89

ScalarMUL without formulas 9.48 8.49 8.10 8.24 8.71 9.88 12.6

ScalarMUL with formulas 6.44 4.46 3.63 3.40 3.62 4.85 7.47

409
Sliding window 29.97 26.57 24.93 24.30 24.14 25.24 27.96

ScalarMUL without formulas 29.54 26.31 24.98 24.80 25.71 28.44 34.29

ScalarMUL with formulas 19.98 13.64 10.71 9.62 9.96 12.01 17.33

571
Sliding window 74.58 66.62 63.20 61.38 60.52 61.29 66.18

ScalarMUL without formulas 74.17 67.25 62.87 61.56 61.61 65.59 76.50

ScalarMUL with formulas 50.36 33.67 26.29 22.74 21.91 25.40 34.24

Over GF(2m), given a point Q, word length w, and setting n = m, Figure 4 illustrates
the advantages of the PDNTimes algorithm in reducing the number of inverse operations
required. In line 7 of the ScalarMUL algorithm, the operation Q ← 2wQ requires computing
2wQ, which involves performing w consecutive point doublings on the point Q. We
compare the performances based on the number of multiplication operations required.
In finite fields, the performance is largely determined via the inverse operations, as they
require multiple multiplication operations to compute. The exact number of multiplications
depends on the algorithm used. For example, if the Extended Euclidean Algorithm is used,
an inverse operation generally takes about 2m to 3m multiplications, depending on the
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implementation’s optimization. The exact number of multiplications required for an inverse
operation using Fermat’s Little Theorem is m − 2. In line 13 of the PDNTimes algorithm,
we utilize Fermat’s Little Theorem to compute the inverse t′n. For the PDNTimes algorithm,
(m − 2) + 6w multiplication operations are required. If we replace the computation of
Q ← 2wQ in line 7 of PDNTimes with Equation (2) (in line 4 of Tradition) to compute 2wQ,
we will require w(m − 2) + 2w multiplication operations.

Table 9. For m = 163, 233, 283, 409, 571, on w = 2, 3, . . . , 8 over GF(2m), the decreasing ratio for the
ScalarMUL algorithm with formulas for the sliding window method [21] and the sliding window
method with formulas to the sliding window method.

m Algorithm
w

2 3 4 5 6 7 8

163
ScalarMUL 31 45 50 51 44 27 0.5

sliding window 33 47 55 58 57 52 43

233
ScalarMUL 34 49 55 56 51 39 18

sliding window 34 49 56 60 61 57 49

283
ScalarMUL 33 48 55 57 55 44 24

sliding window 34 48 58 62 64 61 54

409
ScalarMUL 33 49 57 60 59 52 38

sliding window 33 49 58 64 65 65 59

571
ScalarMUL 32 49 58 63 64 59 48

sliding window 32 50 58 64 67 68 64

Figure 3. The decreasing behavior based on the data shown in Table 9.

In the affine coordinate system, both point addition and point doubling require one
inverse to compute the slope λ. Additionally, each operation involves five multiplications,
as follows:

• Two multiplications for calculating λ;
• Two multiplications for determining the new x-coordinate;
• One multiplication for determining the new y-coordinate.

Although our algorithm demonstrates reduced time complexity compared with the
sliding window method, as shown in Table 10, its practical execution requires the con-
struction of a larger lookup table. As a result, while our approach still outperforms the
sliding window method in terms of efficiency, the performance gap is not as significant as
indicated in Table 10.
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Figure 4. Comparison of the number of multiplications required for n iterations in Tradition
and PDNTimes.

Table 10. Summary of the number of operations required for scalar multiplication over GF(2m) in
the affine coordinate system.

Algorithm Multiplications Inverse Operations

Double and Add [22] 7.5m 3m
2

Sliding Window 5m + 5m
w+1 m + m

w+1

Montgomery Ladder [23] 10m 2m

The proposed methods m − 2 + 6w 1

5. Conclusions

In this work, we focused on significantly reducing the computation time of scalar
multiplication, which can be easily implemented in software, by further expanding the
application of Horner’s rule and optimizing the square operations, specifically, through
the introduction of several formulas for the inverse operations involved in repeating
point doubling.

In elliptic curve cryptography and other cryptographic protocols, scalar multiplication
is a critical operation that can be computationally expensive, primarily due to the repeated
use of inverses and point doubling, which are key to optimizing efficiency.

The introduced formulas can help to minimize the number of inverse operations
needed, thereby streamlining the computational process. Computation using the introduced
formulas for λn and xn requires more multiplication, square, and addition operations. We also
developed the ScalarMod algorithm to reduce the computation time for square operations.

Figure 1 demonstrates that if the ScalarMul algorithm does not optimize for square
operations, the overall reduction in computation time begins to plateau when the word
length w reaches 8. This highlights the importance of optimizing square operations to
achieve consistent performance improvements. On the other hand, Figure 2 illustrates
that while the Square algorithm optimizes square operations, a trade-off must be made
between execution time and the required memory size. These two phenomena represent
key challenges that we aim to overcome and improve upon in future work.

From a theoretical perspective, analyzing the trade-off between execution time and
memory usage is an intriguing research topic and a promising direction for future explo-
ration. Understanding this balance could lead to more efficient algorithms that are both fast
and resource efficient, making them suitable for a wider range of applications, including
resource-constrained environments such as embedded systems and IoT devices.

On the other hand, an important consideration lies in the potential trade-offs between
security and implementation complexity. While the primary focus of our work was to
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reduce the number of inverse operations in scalar multiplication—a critical bottleneck in
ECC—any optimization technique must be carefully assessed for its impact on both security
and practical implementation.

• Security Considerations
Our proposed method is based on well-established mathematical principles and
does not introduce new assumptions or structures that could weaken the crypto-
graphic security of the system. The repeating point-doubling formulas and grouping
technique are derived directly from the affine coordinate system, ensuring that the
underlying security properties of the elliptic curve are preserved. However, we rec-
ognize that side-channel attacks (e.g., timing or power analysis) could still pose a
risk, as with any cryptographic implementation. While our current work does not
explicitly address side-channel resistance, we plan to investigate this aspect in future
research, potentially integrating countermeasures such as constant-time execution or
masking techniques.

• Implementation Complexity
The proposed method is designed to be simple and consistent in execution, making it
suitable for both software and hardware implementations. The grouping technique
and modified Horner’s rule introduce minimal overhead in terms of precomputation
and memory usage, as the bit-words and repeated point-doubling results can be
efficiently stored and reused. Our approach achieves faster scalar multiplication with
a comparable level of implementation complexity in comparison with traditional
methods like the sliding window algorithm. That said, we acknowledge that fur-
ther evaluation is needed to assess its performance in highly resource-constrained
environments, such as IoT devices or embedded systems.

• Future Work
While our initial results demonstrate significant improvements in computational
efficiency, we agree that a more comprehensive evaluation of security and implemen-
tation complexity is essential. Future work will involve the following:

1. A thorough security analysis, including resistance to side-channel attacks;
2. Evaluation of the performance of methods in a wider range of hardware and

software environments; particularly in resource-constrained settings.
3. Comparison of the proposed method with other state-of-the-art techniques to

identify potential trade-offs and optimize its practical applicability.

Finally, the formulas we derived are completely independent of B in the elliptic curve
equation E(x, y) : y2 + xy = x3 + Ax2 + B. This independence simplifies the application
of our formulas across different elliptic curves. However, we are also curious whether
it is possible to derive formulas that are independent of the parameter A in the equa-
tion. Exploring this possibility could lead to even more generalized and versatile results,
potentially opening new avenues for optimization in elliptic curve cryptography. Such
advancements could further enhance the efficiency and applicability of cryptographic
protocols in real-world scenarios.
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Appendix A

Table A1. Computations of λ4 and x4 for four times point doubling of Q0 for m = 233.

A = 0x1, primitive polynomial f (x) = x233 + x74 + 1, Q0 = (x0, y0)
x0 = 0x017232BA853A7E731AF129F22FF4149563A419C26BF50A4C9D6EEFAD6126
y0 = 0x01DB537DECE819B7F70F555A67C427A8CD9BF18AEB9B56E0C11056FAE6A3

t1 0x17232BA853A7E731AF129F22FF4149563A419C26BF50A4C9D6EEFAD6126
v1 0xC8EFD200D0B85E058BEB9366C7B9D7C0D0323D4A7084B2ABAE8EBB7B92
u1 0x46B65EFCDD714E1FB3D046F17BFA928F300C397396A6D72A7BCEE4623E

t2 0x1282331550168DE9B9630E825A5E58AB9A1D2D81F63051833AD8662D99C
v2 0x277012D40FD385CB18ABFB705129D6A9709385C81D184AF636C800F25D
u2 0x3E6B5DE2E8141083DAC00140C5936CD62A17ACE5620EEF8BD6763661FF

t3 0xE7DC44EEB5FB14897829274A375A200B9D227AB7277745638B12045E3C
v3 0x1D42DB6C4FC88A78613881210C5DCD474641567C546AFD60F1F3C70A52
u3 0xC90CB3BA4AFEF4FC089394671D12533FA38AC99B369E16AE91D06E541C

t4 0xD5E4BAC01DB2D0DDF4B5818595D13B649FE1C22CAC6AE6DFF91A267AB6
v4 0x1F255D6098337C7B333913B56B4208769192550D64956C18F2DC35ABDF4
u4 0x1DFAC578A9A7E1742AA21F99C4BD2233A785F011584EF8BD203D7899E0

t−1
4 0x1FFF77FF7E8D784B371FB9F83CFD834653F1BA3F507898E3536808A7651

λ4 0x66B6351AF207F92AA3F52AE7BDF78E1E6F8CDF51E918A8CB63AD38741A
x4 0x30BD692E27C7A151D6CC09E18FEA36E6EB710B197A6A96D0840183BBAA

Table A2. Computations of λ4 and x4 for four times point doubling of Q0 for m = 283.

A = 0x1, primitive polynomial f (x) = x283 + x12 + x7 + x5 + 1, Q0 = (x0, y0)
x0 = 0x00FAC9DFCBAC8313BB2139F1BB755FEF65BC391F8B36F8F8EB7371FD558B
y0 = 0x01006A08A41903350678E58528BEBF8A0BEFF867A7CA36716F7E01F8105

t1 0xFAC9DFCBAC8313BB2139F1BB755FEF65BC391F8B36F8F8EB7371FD558B
v1 0x54515111155544512B1CF113BF10D7F74CDDDFA7FE4BAFCED7

D841A5294DD45E322F068
u1 0xCE238EFFA4284AF0160D29B4F683E93BAC0F38BDC8B297AE78

B59107EA9443D30936D9

t2 0x1CB0EDF1BB4103B60965BF4190FB920B757DDACEF61CC7603C0
E001ECE6278B3C48085E

v2 0x17C10F70CF0C20F2ABECDA0639B1E878BD05271DF7A8FB00A42
3673F8426B106AF66A61

u2 0x2A2FD15E5F8B390EAE362C83D0337A73D290A9FEBC241E5244D
8B6F32BDE4828821B7F9

t3 0x1CF2B34F4C12286EB5EE15DDD1A49369CF15CDF44DD8B69C421
DCC278F977F68CF7B750

v3 0x6BF096B1D4E3B3CCA95469A1794EF15B1AD97DADA461C6F350EA
B6C32507AE181D9339C

u3 0x1F1DA1BD7AAFBB0B823DBA1653B4A5D866F57845BE0099617B7
D2EDD3405B74A9F0B23B

t4 0x245783E6BD266915C279EEAB5E9E657FFA5749E367E8E996655
72D234B01C95C5BC9E89

v4 0x26FA03DF5515517EF2501202F38AF8C04B7F1F8773941DCCFD2
C38C54F35E0CA419A372

u4 0x2195B07257881D6D374F60B424FC79F4229C30C8207EC6B07EDF
E3C86232B41CED9F992

t−1
4 0x1C161B5BF6C81EF2CC6E80280A98CC5CFD395F0EA246525B10A

930DCCC2734A208D49D9
λ4 0x6553144C06D11F234DE640CF8CF399B2B85634FEFDE4089350B

C151CBD12EC5306113EE
x4 0x3A55D77017BA6EC0D6AF87B67F8C33B3F7661FD7D3FF5033DBB9523

F5625EBB78BF623F
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Table A3. Computations of λ4 and x4 for four times point doubling of Q0 for m = 409.

A = 0x1, primitive polynomial f (x) = x409 + x87 + 1, Q0 = (x0, y0)
x0 = 0x0060F05F658F49C1AD3AB1890F7184210EFD0987E307C84C27ACC

FB8F9F67CC2C460189EB5AAAA62EE222EB1B35540CFE9023746
y0 = 0x01E369050B7C4E42ACBA1DACBF04299C3460782F918EA427E632516

5E9EA10E3DA5F6C42E9C55215AA9CA27A5863EC48D8E0286B

t1 0x60F05F658F49C1AD3AB1890F7184210EFD0987E307C84C27ACCFB8
F9F67CC2C460189EB5AAAA62EE222EB1B35540CFE9023746

v1 0x1AC786F8F21F08DA00A37308FA9787E4DA69A59142AD5B7C8EC95C4E
0BD5522A561845C2DC240CBFFD1E788D8C28EEEC557F1AF

u1 0x1026BFE44829CBA15B8C26B8E906F2241E47775A7C5D996AAA9AD28
88EC57CEDB82F6BB23EFD18F5F269C4D34984B7BA0B1F3CB

t2 0xFC0EF81DA9679D4FC66DB292971CABBB552D78D6A48C67650940273
F4CB7957F8FAAE7F94D5DA38A03A74C6CA3111BE362DEAF

v2 0x3B899DCBB8BE70261408872B757C476E5F89DE93E596B68B36ECD6EB
75649E82B6723804E3B2959FE7CE14F0E2DF1F8E9242AB

u2 0x117EDD4AF7D8EF95B46D0DE4548C89B872F3D1A00198675B0490AFBEA
BE3413E19237E92A1FC940F2289E9E3F2AE2BC69502DDB

t3 0x7588FD6A097CF42FA6B4A8F8C315A33012989C406217A7FC23E034632B
43C0C8C8797EB2A2FD0643611B1E499858B2C9F8E9D8

v3 0xA150FFB3B4919CD47A10A2AABA0486114E2BDB2C63FEDC14CD2B71695
BF91868E9533CBC63E811EC16BEEB8DF8A3941D2C551F

u3 0x93682A817E4F27E418633D540CAC43A6952FABC521CBD6DC88A6EA6B1B4
B2CEC6C603276E6E3B267468E4A034134FBDF25EB4A

t4 0xC0B0B103E854D8505C71151018952F6E4955B646F001C28ECA78B73E0
53E6E2B7BC849150054F0040D0C9F3204869ED4106EE5

v4 0x18F980F54D4A5327DAB97A7DB060A75D44BBA63B6AE60E1E1DF3B8495
BD0D06304CA90EB77B145E5885ED59EFDD49BB25426A1E

u4 0x1AF76EEA319ED639010848C7FC6F027FD701D8F2063348E0920BAF9AC
EEBCC07033951B6FBF140957DB90DA12292F80B0819528

t−1
4 0x1DF450CBAC4D70BBF94C8E5219AB0C775EE4F37CF033275682BEA7

8F7C25E2DB292A52B95F2B92FB1588AD285A7570570175A69
λ4 0x1E8F34968A9C9C65B1D056D71ABCF13D93C2211550AB0F59FBE9

01756646108E70960C750069112300120BA1A1DE6A31D5FADBA
x4 0x528673FF64BD082F3A60914056944B3BA99AC518D0D93F5F1CB3FB3DA0B

6F4579BC9C1125345DAE9BFCE973BC477747BA4CAF5

Table A4. Computations of λ4 and x4 for four times point doubling of Q0 for m = 571.

A = 0x1, primitive polynomial f (x) = x571 + x10 + x5 + x2 + 1, Q0 = (x0, y0)
x0 = 0x026EB7A859923FBC82189631F8103FE4AC9CA2970012D5D46024804801

841CA44370958493B205E647DA304DB4CEB08CBBD1BA39494776FB988
B47174DCA88C7E2945283A01C8972

y0 = 0x0349DC807F4FBF374F4AEADE3BCA95314DD58CEC9F307A54FFC61E
FC006D8A2C9D4979C0AC44AEA74FBEBBB9F772AEDCB620B01A7BA7
AF1B320430C8591984F601CD4C143EF1C7A3

t1 0x26EB7A859923FBC82189631F8103FE4AC9CA2970012D5D460248048018
41CA44370958493B205E647DA304DB4CEB08CBBD1BA39494776FB988B4
7174DCA88C7E2945283A01C8972

v1 0x2BF4AB0A0654BCC72510BA7C97DE64A1AE0751E2026B571B207ED40B
A71667E4E8D88ED0A7687C20E786092A0294F91246B0B76338CD70EC3803
B75A92F06BBD9314CE03131BCA0

u1 0x2BCCA12217DE9277B0B2011E225EBA18027DDE7E54A78221DF115074
3866EE6BD3A301D14243961C0694AF2A124E2DF0889112E9D9809D
9BAE9B7B41AFA4C39C7E33100BC1E6A6E

t2 0x16E7B7EF519ADF86BF01ED25CCFC6CABD4933D1BFEF9B6ADE7818
AFB872580F2C0A2D07A5533568596888DCAFCA4C627C14697BCC4BD599
F40F62C1952916F4B20C9943FE59ECA7

v2 0x13BEE3A1BF46B5DEBD2D827F158FB4205CDBBD0B37670FD4D249C
C9776C6E7475D4C58ECB7003E1464AA655B176564DF251B223642D965E
546EA2028A35700AC5A1CE1C25833E20

u2 0xE19CBC6A4D57A6E1465C2A9E87F34207EC3C4FE70B69D1B1A83CD
55E6A02D8978215F4AD2BBFB14BD9F444A2FB169502D8114D47D9FE
4582FA470F1EA7CF73700D7D66EC5FACE6
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Table A4. Cont.

t3 0x705810F304A19E653B1DB8A1451F3F6296CB174243A86AFDDA06C1E74
62EF1D3FE6AE540FA775BF61E2B5D4B3CC5C7E77818B24A1E88BF3CA
43C793F358BFFF6DD70292113EBA0D

v3 0x5BCF313A3AFC4D794C9D0366461F019BC343BC25AF970EBC81E3CD
B42B4E221C771B70C4B76D89DE5472FBB67973B22EA76112AD3F63A8F
D0DB845970466D1401CE97EFAED1906C

u3 0x3768E085616E1041183FC92AB605B4D66A5906561BB66AD2283DC6B
2BC8026699AF02C9B9996ED727B1B5E2DBBE62D6C5923A33205D23A011
693DE482988480ECC227E76710AB9

t4 0x12775DC1600EBA8175A61AC35380F29868603C6803BD2F25FB5ABBEF
3C34E67EA50E983E1A265C3FBF30BCD1817B98A9F24AA1B18E04423B5
018A73710941EDEE3494B316CDBCD

v4 0x16E89D4D47B7DDAAFC8F25CDD200F0FF3DAC8D687E17325C2594566
BAD586676E6E138D5A352DDB278D9D86BF1BDBA1A8E72D18C9F5E0226
10340AA8055B9CD03CF94312FFC215C

u4 0xED089CC8CF79B26383A0082FE34EA885C6FF7EC123FAE8D8C3178
AF2792318011E71377D481BB784EE048DE9C0309AB1936ADA2A60C19
DA67C6663F3DEF1D61740F0D5E1F76883

t−1
4 0x253E10151FF41A3EA108024F484D4C65AB81A3E49901BD2DC858F63C

87C865A28737A9BE47407ABD3166C39915E445AAB5B902B1009DB20E37
0A47F02EF03D29E5C071C8089D50F

λ4 0x500477AFFF704DE6EF4846F7F4CAA9E48DB443466E6F8C2B85F1A75
2A31110DBC30E2491C17F308B248A57CC5E31794BBD7F2915B243053C
65045830F12D50581BA869AF7F09D24

x4 0x2F04E2F7C2D35C1D42E68075890653DC3B65B112780C70521590A79E4
3288E7ACB0F03B5189825F11A64729F492668EBB67A7129A61DCD33E47
A4E36B8F51769439D8E82C4E77C8

Table A5. Recommended elliptic curve domain parameters over GF(2m).

A = 0x1, m = 163, f (x) = x163 + x7 + x6 + x3 + 1, f (x) + xm = 0xc9

x0 0x02FE13C0537BBC11ACAA07D793DE4E6D5E5C94EEE8

y0 0x0289070FB05D38FF58321F2E800536D538CCDAA3D9

A = 0x1, m = 233, f (x) = x233 + x74 + 1, f (x) + xm = 0x4000000000000000001

x0 0x017232BA853A7E731AF129F22FF4149563A419C26BF50A4C9D6EEFAD6126

y0 0x01DB537DECE819B7F70F555A67C427A8CD9BF18AEB9B56E0C11056FAE6A3

A = 0x1, m = 283, f (x) = x283 + x12 + x7 + x5 + 1, f (x) + xm = 0x10a1

x0 0x00FAC9DFCBAC8313BB2139F1BB755FEF65BC391F8B36F8F8EB7371FD558B

y0 0x01006A08A41903350678E58528BEBF8A0BEFF867A7CA36716F7E01F8105

A = 0x1, m = 409, f (x) = x409 + x87 + 1, f (x) + xm = 0x8000000000000000000001

x0
0x0060F05F658F49C1AD3AB1890F7184210EFD0987E307C84C27ACCFB8F9F67C
C2C460189EB5AAAA62EE222EB1B35540CFE9023746

y0
0x01E369050B7C4E42ACBA1DACBF04299C3460782F918EA427E6325165E9EA10E
3DA5F6C42E9C55215AA9CA27A5863EC48D8E0286B

A = 0x1, m = 571, f (x) = x571 + x10 + x5 + x2 + 1, f (x) + xm = 0x425

x0

0x026EB7A859923FBC82189631F8103FE4AC9CA2970012D5D46024804801841CA4
4370958493B205E647DA304DB4CEB08CBBD1BA39494776FB988B47174DCA88C
7E2945283A01C8972

y0

0x0349DC807F4FBF374F4AEADE3BCA95314DD58CEC9F307A54FFC61EFC006D
8A2C9D4979C0AC44AEA74FBEBBB9F772AEDCB620B01A7BA7AF1B320430C85
91984F601CD4C143EF1C7A3
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Abstract: This paper studies the dynamic behavior of a three-dimensional mathematical
model of effector–tumor cell interactions that incorporates the impact of chemotherapy.
The well-known logistic function is used to model tumor growth. Elementary concepts
of singularity theory are used to classify the model steady-state equilibria. I show that
the model can predict hysteresis, isola/mushroom, and pitchfork singularities. Useful
branch sets in terms of model parameters are constructed to delineate the domains of such
singularities. I examine the effect of chemotherapy on bifurcation solutions, and I discuss
the efficiency of chemotherapy treatment. I also show that the model cannot predict a
periodic behavior for any model parameters.
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1. Introduction

Cancer is the primary cause of death worldwide and is regarded as a costly medical
condition, particularly in developing nations. According to data from the World Health
Organization, there were 20 million new cases of cancer globally in 2022 alone, accounting
for 10 million deaths [1].

Quantitative models are commonly used in the field of mathematical oncology [2–4] to
forecast tumor growth and treatment response. In cancer research, mathematical oncology
has proven to be extremely helpful. Through it, we have been able to better understand the
underlying biological interactions between tumors and effector cells [5], personalize cancer
treatments [6], and understand drug efficiency and resistance [7,8].

Numerous mathematical models explaining the interactions between effectors–tumor
cells have been proposed and investigated in the literature [9–22]. Many of these models
were formulated based on the interactions between predators and preys [9–11,19–22].
Indeed, the relationship between cytotoxic immune cells and tumor cells can be compared to
the dynamics observed in predator–prey interactions. Once activated, immune cells take on
the role of predators, actively hunting for cells that exhibit their respective antigens, which
are perceived as their prey. Upon identification of a target, these immune cells attach to and
destroy the target cell. The comparison to predator–prey dynamics provides a framework
for examining the variations in tumor cell populations during the immunoediting process,
along with the immune system’s responses to these changes [19,21,22].
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However, this analogy does not completely convey the reality of the situation. Several
assumptions and outcomes associated with predator–prey models are not observable in the
interactions that take place between tumor cells and immune cells. First, classical predator–
prey models assume that the biomass of prey consumed is directly transformed into the
biomass of the predator. Although the predator depends on the prey for its survival, tumor
cells and immune cells are in competition for critical shared resources, such as glucose
and amino acids. Immune cells are required to compete with cancer cells for available
resources, yet they do not gain any direct metabolic advantage from effectively targeting
these malignant cells [22].

The second key area where the analogy between predator–prey relationships and
tumor–immune interactions diverges is linked to the manifestation of oscillations. Con-
tinuous fluctuations in the populations of predators and preys are a natural aspect of
predator–prey relationships [19,23], yet this type of oscillatory behavior has not been
observed in interactions involving tumor and immune cells [19].

In another regard, the complexity of mathematical models that describe the interac-
tions between tumors and immune cells can differ based on the particular types of immune
cells involved, including CD8+ “killer” (cytotoxic) T cells and CD4+ “helper” T cells,
among others [24]. However, it is recognized that the essential elements in the interactions
between tumors and immune cells should include cancer cells, activated effector (cytotoxic)
cells, and antigen-presenting cells (APCs) [19]. In numerous instances [9,19,20], it is reason-
able to presume that the engagement with antigen-presenting cells, along with the ensuing
activation of T cells, attains a quasi-steady state prior to influencing the dynamics of cancer
cells. This enables the depiction of the interaction between immune cells and cancer cells
through the use of just two populations: one representing cytotoxic cells and the other
representing cancer cells, thus forming a predator–prey community model.

Some of the aforementioned research on mathematical modeling of tumor–immune
interactions has specifically concentrated on the analysis of steady-state multiplicity oc-
currences within these interactions [9,20,25–28]. Notably, Kuznetsov et al. [9] put forth
one of the earliest and most basic predator–prey models to explain the occurrence of mul-
tiple equilibria in tumor–immune cell interactions. Only two different cell types made
up the model: effector cells, which were the predator, and tumor cells, which were the
prey. The existence of “dormant cells”, or regions with low concentrations of tumor cells,
“active cells”, and regions of coexistence, or domains where “dormant cells” can elude
effector regulation and become active, were all predicted by the model [9]. De Pillis and
Radunskaya [25] subsequently examined a model of tumor and immune cells that was
experimentally validated, and they demonstrated the presence of bistability between the
disease-free equilibrium and the unhealthy steady state. López et al. [26], on the other hand,
formulated and examined a model of tumor–immune cell interactions under chemotherapy,
demonstrating consistency with experimental data. The authors showed the existence
of bistability between the disease-free state and the malignant state through a number
of bifurcations mechanism such as saddle node and transcritical bifurcations. Recently,
Bashkirtseva et al. [20] added the effect of chemotherapy treatment to the system examined
in [9]. The authors uncovered steady-state multiplicity as well as periodic behavior in the
studied model.

The aforementioned research applied numerical methods, specifically continuation
techniques [29], to construct bifurcation diagrams that represent the dependence of the
model state variables on a designated system parameter. These techniques, while advan-
tageous, are constrained in their ability to deliver a full representation of all branching
phenomena (singularities) that the model is capable of exhibiting. This is particularly true
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when the model comprises a substantial number of parameters. In contrast, the singularity
theory [30] is a considerably more effective mathematical tool for examining bifurcation
solutions. The theory offers a structured approach to ascertain the number of topologically
unique bifurcation diagrams present in a nonlinear dynamic system. Additionally, it facili-
tates the division of the model’s multidimensional parameter space into distinct regions,
with each corresponding to various types of bifurcation diagrams. This information serves
to classify control parameters, which are vital in shaping system dynamics by managing
transitions between various bifurcation diagrams. By condensing the steady-state equa-
tions of the model into a singular function, it becomes possible to identify the properties
of numerous solutions of a bifurcation equation by investigating a number of derivatives
associated with the singular function. Examples of the application of the theory in chemical
reactors and bioreactors can be found in [31,32].

The motivation behind this study stems from the inquiry into whether a simple
and classical model [9] of tumor–immune interactions to which we add chemotherapy
effects can yield more intriguing dynamics than those previously documented in the
literature [9,16,20,25–28]. For this purpose, I sought to provide a general framework for the
analysis of bifurcation behavior in the model using elementary concepts of the singularity
theory. The relative simplicity of the model allows for a description of the steady-state
equilibria of the system in the form of a single nonlinear algebraic equation. The singularity
theory can thus serve as an effective instrument for categorizing the various branching
phenomena within the model. To my knowledge, no such analysis was used before for
tumor–immune cell interaction models. I examine the existence of basic singularities such
as hysteresis, isola/mushroom, and pitchfork singularities within the model. Addition-
ally, I analyze the effect of the model’s biological parameters and those associated with
chemotherapy on these bifurcation solutions.

The second aim of this paper is to conduct an analytical examination of the model’s
capacity to forecast periodic behavior. I have successfully established general and note-
worthy conditions for the presence of Hopf points within the model. The rest of the paper
is organized as follows. In the next section, the model is presented, followed in Section 3
by the analysis of model equilibria. In Section 4, static analysis is carried out, followed by
dynamic analysis in Section 5. Numerical simulations are carried out in Section 6, followed
by the discussion and conclusions in the last sections.

2. The Mathematical Model

The model, based on the work of [9] and in which chemotherapy terms were added,
consists of two types of cells: effector cells E (predator) and tumor cells T (prey). The equa-
tions of the model are the following:

dE
dt

=s +
pET

g + T
− mET − dE − kE ME. (1)

dT
dt

=αT(1 − βT)− nET − kT MT. (2)

dM
dt

=− γM + v. (3)

The concentrations of effector and tumor cells are denoted by E (cells) and T (cells), re-
spectively, while the concentration of chemotherapy drug is denoted by M (mg/m2).
The effector cells have a normal growth rate of s (cells/day) and a constant death rate
of d (1/day). The decay of E cells as a result of their interactions with tumor cells is
represented by the term mET, and it occurs at a rate of m (1/cells.day). Drugs used in
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chemotherapy also kill effector cells at a rate of kE (1/day). The Michaelis–Menten growth
of effector cells in response to tumor cells is represented by the term pET

g+T , where g (cells)
and p (1/day) are the parameters of the growth rate.

It is assumed in (Equation (2)) that tumor cells increase in accordance with the logistic
function, where the model’s coefficients for the isolated population of tumor cells are
α (1/day) and β (1/cells). Tumor cell reduction owing to effector cells presence is denoted
by the term nET, whereas tumor cell lysis is denoted by n (1/cells.day). Additionally,
tumor cells are killed by chemotherapy at a rate of kT (1/day).

The third equation (Equation (3)) represents the change in concentration of chemother-
apy drug over time, with γ (1/day) being the rate of elimination of the drug from the body
and v (mg/m2.day) being the amount of drug administered to the body.

A note should be added regarding the selection of the tumor growth model. Various
such models were proposed and scrutinized in the literature [12,14]. These include linear,
logistic, Mendelsohn, exponential, Gompertz, Surface, and Bertalanffy models [12,14]. It
is generally accepted that the selection of a suitable growth model is strongly dependent
on the specific type of tumors involved [12,14]. In the context of general mathematical
analysis, akin to the methodology employed in this paper, the literature, as referenced
in [9,16,20,25–28], has predominantly favored the logistic growth rate. This preference
is primarily due to the mathematical convenience offered by the logistic function when
compared to other tumor growth models.

The following variables are used to render the model dimensionless:

Ē =
E
E0

, T̄ =
T
T0

, M̄ =
M
M0

, s̄ =
s

nE0T0
, p̄ =

p
nT0

, ḡ =
g
T0

, m̄ =
m
n

, d̄ =
d

nT0
. (4)

k̄E =
kE

nT0
, k̄T =

kT
nT0

, ᾱ =
α

nT0
, β̄ = βT0, v̄ =

v
nT0M0

, γ̄ =
γ

nT0
, t̄ = nT0t. (5)

E0, T0, and M0 are reference concentrations for E, T, and M respectively.
The dimensionless model is

dĒ
dt̄

=s̄ +
p̄ĒT̄

ḡ + T̄
− m̄ĒT̄ − d̄Ē − k̄E M0M̄Ē. (6)

dT̄
dt̄

=ᾱT̄(1 − β̄T)− ĒT̄ − kT M0M̄T̄. (7)

dM̄
dt̄

=− γ̄M̄ + v̄. (8)

In the rest of this paper, the (bar) notation is dropped from all variables and parameters.

3. Analysis of Model Equilibria

The model always has a trivial steady-state solution obtained when T = 0, i.e.,

E =
s

d + kE M0
v
γ

, M =
v
γ

. (9)

When T �= 0, Equation (7) yields

E =α(1 − βT)− kT M0
v
γ

. (10)
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Substituting Equation (10) into the steady-state form of Equation (6) yields the following
cubic equation for T:

F := a3T3 + a2T2 + a2T + a0, (11)

where

a3 =αβγ2
1m. (12)

a2 =αβdγ2 − αγ2m + αβgγ2m − αβγp + (αβγ − kE M0 + γkTmM0)v; (a2 := a20 + a21v). (13)

a1 =− αdγ2 + αβdgγ2 − αgγ2m + αγ2 p + γ2s + (−αγkE M0 + αβgγkE M0 + dγkT M0+

gγkTmM0 − γkT M0 p)v + kEkT M2
0v2; (a1 = a10 + a11v + a12v2). (14)

a0 =g(−αdγ2 + γ2s + (−αγkE M0 + dγkT M0)v + kEkT M2
0v2); (a0 := g(a00 + a01v + a02v2)). (15)

The coefficient a3 is always positive, and the number of possible positive solutions of
Equation (11) can be determined using Descartes rule, as shown in Table 1.

Table 1. Number of positive roots of Equations (11)–(15).

Case a3 a2 a1 a0 Number of Sign Changes Number of Positive Roots

1 + + + + 0 0
2 + + + − 1 1
3 + + − + 2 2, 0
4 + + − − 1 1
5 + − + + 2 2, 0
6 + − + − 3 3, 1
7 + − − + 2 2, 0
8 + − − − 1 1

Moreover, it can be seen from Equation (11) that the nontrivial steady state crosses the
trivial steady state (T = 0) when a0 = 0. The quadratic equation of a0 = 0 in terms of v
(Equation (15)) makes it possible to analytically solve for the critical value vc where the two
steady states cross. Beyond this critical value vc, the tumor is completely suppressed.

4. Static Analysis

We start by carrying out a steady-state analysis of the system. The steady-states
equations of the model were conveniently reduced to a single nonlinear equation in T
(Equation (11)). The singularity theory can therefore be readily applied to analyze the
system. The chemotherapy dose (v) is the most convenient parameter to vary and is
selected as the main bifurcation parameter. The steady-state equation (Equation (11))
is cubic in T. Within the framework of this equation, singularity theory delineates two
forms of codimension-one singularities: hysteresis, which describes the development of
an isola that consists of a closed locus of a solution branch bordered by two fold points,
and the evolution of this isola into mushroom singularities. Additionally, a pitchfork
singularity, recognized as codimension two, is defined for a cubic single-scalar function.
The fundamental singularities are depicted in Figure 1a–d. It is essential to note that
even minor variations in model parameters can lead to the disintegration of the perfect
pitchfork, resulting in the appearance of four additional bifurcation patterns, as illustrated
in Figure 1e.
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Figure 1. Basic singularities: (a) hysteresis; (b) isoal; (c) mushroom; (d) perfect pitchfork; (e) perturbed
bifurcation diagrams for the pitchfork.

4.1. Hysteresis Singularity

The conditions for the appearance/disappearance of a hysteresis loop are the following:

F = FT = FTT = 0. (16)

In addition, a number of other derivatives must remain nonzero, namely, Fv, FTv, and FTTT .
The hysteresis conditions for the system are the following:
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F = a3T3 + a2T2 + a1T + a0 = 0. (17)

FT = 3a3T2 + 2a2T + a1 = 0. (18)

FTT = 6a3T + 2a2 = 0. (19)

Equation (19) has one solution that is T = − a2
3a3

. Substituting this solution in Equation (17)
and in Equation (18) yields the following relations for the hysteresis singularity:

a2
2

3a3
= a1. (20)

a3
2

27a2
3
= −1. (21)

These two equations are also equivalent to a2 = −3a
2
3
3 and a1 = 3a

1
3
3 . Recasting the

expressions of a2 and a1 from Equations (13) and (14) and using the last two equations
yields the following two relations:

v =
−3a

2
3
3 − a20

a21
. (22)

a10 + a11v + a12v2 = 3a
1
3
3 . (23)

These two equations form the hysteresis boundary. It remains to check that the other
derivatives Fv, FTv, and FTTT at these conditions remain nonzero. It can be noted that FTTT

cannot vanish for any values of strictly positive model parameters, since FTTT = 6a3 �= 0.
The rest of conditions will be evaluated numerically along the boundary.

4.2. Isola/Mushroom Singularity

The second possible qualitative change that can occur in the steady-state locus is the
appearance of an isola and the growth of an isola into a mushroom. The requirements for
these two changes are that

F = FT = Fv = 0, (24)

with the additional requirements that

FTv �= 0, FTT �= 0, Fvv �= 0. (25)

The expression for Fv (Equations (11)–(15)) is

Fv = a21T2 + (a11 + 2a12v)T + a01 + 2a02v. (26)

Solving for Fv = 0 yields

v = − a21T2 + a11T + a01
2a12T + 2a02

. (27)

Substituting Equation (27) into F = 0 (Equation (17)) and into FT = 0 (Equation (18))
establishes the isola/mushroom boundary. The rest of the conditions Equations (25) will be
evaluated numerically along the obtained boundary.
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4.3. Pitchfork Singularity

The conditions for the single-scalar function to undergo a pitchfork bifurcation are

F = FT = FTT = 0. (28)

Fv = 0. (29)

and

FTv �= 0, FTTT �= 0. (30)

Equations (28) yields the hysteresis conditions of Equations (22) and (23). Equation (29),
on the other hand, yields Equation (27). Therefore, the pitchfork singularity is represented
by equating Equations (22) and (23) with Equation (27). The condition FTTT �= 0 is always
satisfied, while FTv �= 0 will be evaluated numerically along the boundary.

5. Dynamic Bifurcation

The conditions for the three dimensional model (Equations (6)–(8)) to predict a Hopf
points are [29] as follows:

F1 := S1S2 − S3 = 0. (31)

S2 > 0, (32)

where S1, S2, and S3 are given by

S1 = j11 + j22 + j33. (33)

S2 = det(
j11 j12

j21 j22
) + det(

j22 j23

j32 j33
) + det(

j11 j13

j31 j33
). (34)

S3 = det(J). (35)

The j11, j12, · · · are the elements of the Jacobean J. The elements of J are given explicitly by
taking the derivatives of Equations (6)–(8), yielding

j11 = −d +
pT

g + T
− kE M0M − mT, j12 =

pE
g + T

− pET
(g + T)2 − mE, j13 = −kE M0E. (36)

j21 = −T, j22 = α − 2αβT − E − kT M0M, j23 = −kT M0T. (37)

j31 = 0, j32 = 0, j33 = −γ. (38)

The expressions for the terms Si (i = 1, 3) (Equations (33)–(35)) are

S1 =− αβT + α(1 − βT)− d − E +
pT

g + T
− γ − kE MM0 − kT MM0 − mT. (39)

S2 =− γ

(
−d +

pT
g + T

− kE MM0 − mT
)
− γ(−αβT + α(1 − βT)− E − kT MM0)

−
(

pE
g + T

− pET
(g + T)2 − mE

)(
−d +

pT
g + T

− kE MM0 − mT
)

+ (−αβT + α(1 − βT)− E − kT MM0)

(
−d +

pT
g + T

− kE MM0 − mT
)

. (40)
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S3 =γ

(
pE

g + T
− pET

(g + T)2 − mE
)(

−d +
pT

g + T
− kE MM0 − mT

)
−γ(−αβT + α(1 − βT)− E − kT MM0)

(
−d +

pT
g + T

− kE MM0 − mT
)

. (41)

The expressions of Si (i = 1, 3) (Equations (39)–(41)) can be simplified using the steady states
of Equations (6)–(8). In particular, Equations (6) and (7) at the steady state can be rewritten
to yield, respectively,

E
(
−d +

pT
g + T

− kE MM0 − mT
)
= −s. (42)

α(1 − βT)− kE M0M − E = 0. (43)

Substituting Equations (42) and (43) into Equations (39)–(41) yields

S1 = −γ − s
E
− αβT. (44)

S2 =
γs
E

+ αβγT +
αβsT

E
+ s(−m +

gp
(g + T)2 ). (45)

S3 = −αβγsT
E

− γs(−m +
gp

(g + T)2 ). (46)

Algebraic manipulations yield the following useful relation:

γ̄S2 + S3 = −γ2(S1 + γ). (47)

Substituting Equation (47) in the first Hopf condition F1 := S1S2 − S3 = 0 yields

F1 := (S1 + γ)(S2 + γ2) = 0. (48)

Since S2 is required to be positive, the Hopf conditions (Equations (31) and (32)) are
reduced to

(S1 + γ) = 0 and S2 > 0. (49)

But, we have the following expression for S1 + γ (Equation (44)):

S1 + γ = −αβT − s
E

, (50)

which can never equal zero for positive values of α, β, s, E, and T. We conclude therefore
that no Hopf points can occur for any model parameters.

Numerical Simulations

The model parameters’ nominal values were carefully selected to represent realistic
ranges [9,16]:

d = 0.0407
1

day
, g = 2 × 104 cells, kE = 0.6

1
day

, kT = 0.6
1

day
, m = 5.505 × 10−10 1

cells.day
.

n = 1.101 × 10−7 1
cells.day

, p = 0.124
1

day
, s = 1.321 × 104 cells

day
, α = 0.1801

1
day

.
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β = 2 × 10−9 1
cells

, γ = 0.9
1

day
, M0 = 103 mg

m2 , T0 = E0 = 106 cells. (51)

The dimensionless values (omitting the bar) are the following:

d = 0.37, g = 0.02, kE = 0.45, kT = 0.45, m = 0.005, n = 1, p = 1.13

s = 0.12, α = 1.636, β = 2 × 10−3, γ = 8.18 (52)

The branch sets for the different singularities are next constructed, for example, in the
parameter space (m, d). Figure 2 shows the hysteresis and isola/mushroom boundaries
for the nominal values of the parameters in Equation (52). Region (1) has a unique solution.
Figure 3 shows an example of a bifurcation diagram in this region in terms of drug intensity,
for example, for (m = 0.002, d = 0.1). It can be seen that for values of v larger than the
bifurcation point BR, the trivial solution, i.e., T = 0 is the sole stable steady state. For v
values below the BR, the system settles on a unique stable steady state. A feature of the
model for this case is that as the drug intensity increases, the tumor continues to grow until
it reaches a maximum value; beyond that, the tumor decreases until its eradication.

0 0.004 0.008 0.012 0.016 0.02

m

0

0.2

0.4

0.6

d

(1)

(2)

(3)

Figure 2. Hysteresis singularity (solid) and isola/mushroom singularity (dashed line) for model
nominal values shown in Equation (52).

In region (2) of the branch set of Figure 2, two static limit points are born as a result
of crossing the hysteresis line. An example of a bifurcation diagram is shown in Figure 4
for (m = 0.002, d = 0.4). Two static limit points LP1 and LP2 occur at v = 0.001048 and
v = 0.001316, respectively. The following regimes are therefore expected: For v smaller
than LP1, the system settles on the low-concentration tumor cells (the trivial solution T = 0
is unstable). Between LP1 and LP2, there is bistability where the system can settle on
low-tumor cells, but any changes in the initial conditions/external stimulations can push
the system to sneak to a higher tumor concentration despite the administration of the drug.
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As the value of v increases beyond LP2, the tumor cell concentration decreases with the
drug intensity. Values of v larger than the BR lead to suppression of the tumor.

0 1.5 3

v 10-3

0

0.1

0.2

0.3

T

BR

Figure 3. Bifurcation diagram for region (1) of Figure 2 for (m = 0.002, d = 0.1); solid line (stable
branch); dashed line (unstable branch); BR (bifurcation point). Blue color nontrivial steady-state; Red
color trivial steady-state (T = 0).

1 1.5 2 2.5

v 10-3

0

45

90

135

180

T

LP1

LP2
BR

Figure 4. Bifurcation diagram for region (2) of Figure 2 for (m = 0.002, d = 0.4): solid line (stable
branch); dashed line (unstable branch); BR (bifurcation point). LP1 and LP2 limit points. Blue color is
nontrivial steady state. Red color is trivial steady state (T = 0).

For region 3 of the branch set of Figure 2, an example of a bifurcation diagram is shown
in Figure 5, for example, for (m = 0.0125, d = 0.2). The diagram is more complex and shows

258



Mathematics 2025, 13, 1032

the existence of a stable low-tumor concentration steady state (spiral), an unstable middle
concentration steady state (saddle), and an upper stable steady state (node). Figure 5b
shows a logarithmic plot (in y scale) for easier viewing. It can be seen that for v values
smaller than LP1, (v = 0.00171), the low-cell branch coexists with the high-cell branch.
Values of v larger than LP1 and smaller than LP2, (v = 0.00211) lead to high-tumor-cell
concentration. In the small region between LP2, (v = 0.00211) and LP3, (v = 0.00218),
the high-tumor-cell branch coexists with the no-tumor steady state. As v values increase
past LP3, the tumor cell concentration continues to decrease. Values of v larger than the
BR lead to the suppression of the tumor. Time variations showing bistability are shown in
Figure 6 for the value of v = 5 × 10−4 and two sets of initial conditions. Start-up conditions
(E, T, M) = (1.3× 10−2, 2.6× 10−2, 6× 10−5) lead after some transient oscillations (because
of the spiral nature of the steady state) to the low-tumor steady state. On the other hand,
the initial conditions (E, T, M) = (1.3× 10−2, 10−1, 6× 10−5) lead to the high-tumor steady
state. Next, we examine the effect of the model parameters (other than m and d) on the
hysteresis and isola/mushroom singularities. Figure 7 shows the results of the sensitivity
analysis. In each case, a 25 percent change in the parameter is assumed. Figure 7a shows
that an increase in the normal growth rate of effector cells from s = 0.12 to s = 0.15
increases the region of uniqueness as the regions of hysteresis and isola/mushroom move
to higher values of d. Figure 7b shows that an increase in the value of p from 1.13 to 1.41
increases the region of uniqueness further compared to the effect of s. A decrease in the
effect of kE from 5.45 to 4.08 (Figure 7c) has the effect of increasing the region of unique
solution, while an increase in the value of kT from 5.45 to 6.81 (Figure 7d) has the same
effect. Finally, the effect of g is the least pronounced, as shown in Figure 7e.

0 0.5 1 1.5 2 2.5

v 10-3

0

100

200

300

400

500

T

0 0.5 1 1.5 2 2.5

v 10-3

10-1

101

103

T

LP1
LP2

LP3

LP1 BR

(a)

(b)

Figure 5. Bifurcation diagram for region (3) of Figure 2 for (m = 0.0125, d = 0.2): (a) diagram in linear
scale; (b) diagram in semi-logarithmic scale (in T); solid line (stable branch); dashed line (unstable
branch); BR (bifurcation point); LP1, LP2, and LP3 limit points; blue color is nontrivial steady state;
red color is trivial steady state (T = 0).

259



Mathematics 2025, 13, 1032

0 10 20 30 40 50

t

0

0.5

1

T
(a)

0 10 20 30 40 50

t

0

200

400

600

T

(b)

Figure 6. Simulations illustrating bistability in Figure 5, for example, for v = 5 × 10−4. (a) Initial
conditions (E, T, M) = (1.3 × 10−2, 2.6 × 10−2, 6 × 10−5) lead to low-tumor steady state. (b) Initial
conditions (E, T, M) = (1.3 × 10−2, 3, 6 × 10−5) lead to the high-tumor steady state.

Figure 7. Effect of the different model parameters on the hysteresis and isola/mushroom singularities
of Figure 2: (a) solid line (s = 0.12), dashed line (s = 0.15). (b) solid line (p = 1.13), dashed line
(p = 1.41). (c) solid line (kE = 5.45), dashed line (kE = 4.087). (d) solid line (kT = 5.45), dashed line
(kT = 6.81). (e) solid line (g = 0.02), dashed line (g = 0.015).
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Next, we examine the occurrence of pitchfork singularity. Figure 8 shows the pitchfork
boundary in the parameter space (m, d). Figure 9 shows an example of a bifurcation
diagram on the boundary itself of Figure 8, for example, for (m = 0.004, d = 0.1528). A
perfect pitchfork can be observed. (Figure 9b shows a logarithmic plot on the y axis of
Figure 9a). For values of v up to the LP, there is coexistence between the low-tumor-cell and
the high-tumor-cell branch. Beyond the LP and up to the BR, the tumor cell concentration
decreases steadily as v increases. Beyond the value of the BR, the tumor is suppressed.

3.3 4.5 6

m 10-3

0

0.05

0.1

0.15

0.2

d (1)

(2)

Figure 8. Pitchfork singularity for nominal values shown in Equation (52).
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Figure 9. (a) Bifurcation diagram showing a perfect pitchfork for the model parameters
(m = 0.004, d = 0.1528) in the boundary between region (1) and (2) of Figure 8. (b) Diagram in
semi-logarithmic scale (in T). Solid line (stable branch); dashed line (unstable branch); BR (bifurcation
point); LP1 (limit point); blue color is nontrivial steady state; Red color is trivial steady state (T = 0).
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Figure 10 shows the behavior in region (1) of Figure 8, for example, for (m = 0.004,
d = 0.11). The perfect pitchfork of Figure 9 is perturbed, and the lower and upper stable
branches are no longer connected. Values of v smaller than the LP lead to bistability, while
values larger than the LP and up to the BR lead to low-concentration stable steady state.
Values of v larger than the BR lead to suppression of the tumor.
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Figure 10. (a) Bifurcation diagram for the model parameters (m = 0.004, d = 0.11) in region (1) of
Figure 8. (b) Diagram in semi-logarithmic scale (in T). Solid line (stable branch); dashed line (unstable
branch); BR (bifurcation point); LP (limit point); blue color is nontrivial steady state; red color is
trivial steady state (T = 0).

Figure 11 shows an example of a bifurcation diagram in region (2) of Figure 8, for ex-
ample, for (m = 0.004, d = 0.18). The perfect pitchfork is again perturbed. However, from a
practical point of view, the behavior of Figure 11 is similar to that of Figure 10. The only
difference between Figure 10 and Figure 11 is the presence of a maximum in Figure 10,
while the tumor cell concentration in Figure 11 decreases steadily after the LP.

Figure 12 shows the effect of model parameters on the limits of pitchfork singularity.
It can be seen that compared to the nominal case (blue line), an increase in the value of s by
25% (yellow line) increases the pitchfork boundary, as the boundary occurs at larger values
of d. The effect of the increase in p by 25% (red line) is very pronounced. A decrease in the
value of kE (magenta line) or an increase in kT (black line) increases the pitchfork boundary.

Finally, we saw in all the aforementioned bifurcation diagrams that if the drug intensity
is increased past a critical point (vc) solution of a0 = 0 (Equation (15)), the tumor is
completely suppressed. Figure 13 shows the effect of the different model parameters on
the critical value (vc). It can be seen that as s is increased, vc decreases, while the opposite
can be seen for d. As kE increases, vc increases, while kT has the opposite effect and is more
pronounced. The value of vc is independent of β, g, p, and m.
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Figure 11. (a) Bifurcation diagram for the model parameters (m = 0.004, d = 0.18) in region (2) of
Figure 8. (b) Diagram in semi-logarithmic scale (in T). Solid line (stable branch); dashed line (unstable
branch); BR (bifurcation point); LP (limit point); blue color is nontrivial steady state; red color is
trivial steady state (T = 0).
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Figure 12. Effect of the different model parameters on the pitchfork singularity of Figure 8. Blue
line nominal case (s = 0.12, p = 1.13, kE = 5.45, kT = 5.45); yellow line (s = 0.15); red line (p = 1.41);
magenta line (kE = 4.63); black line (kT = 5.72).
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Figure 13. Effect model parameters on the critical value of drug intensity, past of which the tumor is
suppressed. (a) Effect of s. (b) Effect of d. (c) Effect of kE. (d) Effect of kT .

6. Discussion

The theoretical analysis using the singularity theory has shown that small variations
in the model’s biological parameter values can lead to a number of bifurcation patterns.
In real life, it is feasible for biological parameter values to vary given that both effector
and tumor cell populations are heterogeneous, comprising different subpopulations that
possess distinct parameter values influencing their behavior.

The model without chemotherapy was studied in [9], and the authors showed the
presence of hysteresis, which is marked by the coexistence of areas with low-tumor-cell
concentrations alongside regions with high concentrations as well as regions where “dor-
mant cells” can evade regulatory effects from effectors and subsequently become active.
Saddle node and transcritical bifurcations were also shown to exist [25,26] in such models.

With the introduction of chemotherapy, the analysis has revealed that the model is
capable of predicting a greater range of behaviors than what was identified in earlier
studies [9,25,26].

For some values of model biological parameters, the effector system is efficient, and
the model can only predict a low-tumor-cell steady state. However, when the level of
administrated drug is increased, the tumor cell concentration does not, as expected,
decrease monotonically. Rather, and as result of the complex interactions between the
model’s biological parameters and those associated with the chemotherapy, the tumor cell
concentration increases and reaches a maximum before decreasing. Only drug levels past a
critical level (Equation (15)) can completely suppress the tumor. For this combination of
biological and chemotherapy parameters, the administration of the drug at intermediate
doses (relative to the critical value, Equation (15)) can be detrimental to the disease outcome.

For other values of model biological parameters, the model forecasts a hysteresis. It
was observed that relatively low drug levels can stabilize the system at low-tumor-cell
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populations. However, increasing the drug level may push the system into the zone of
hysteresis, where a sneaking phenomenon can push the tumor from low- to high-tumor-cell
populationss as a result of changes in the initial conditions and/or external stimulations.
Again, only large values of drug administration past a critical threshold can eradicate the
tumor. For this scenario, it is advised to avoid administrating the drug at levels within the
hysteresis region.

Pitchfork singularities, either perfect or in perturbed forms, were found to also occur
in the model for some range of parameters. In these cases, the effector system is less
efficient, and even for small doses of chemotherapy, the system exhibits bistability between
the low-tumor and high- (uncontrolled) tumor-cell populations. If the drug levels are
increased past the bistability domain of the pitchfork, then either the tumor cells decrease
monotonically or unexpectedly increase, reaching a maximum before decreasing. For these
sets of conditions, it is advised to increase the drug past low values of bisability but below
the peak of tumor cell concentration.

Together with chemotherapy, immunotherapy may act as a treatment that influences
systemic parameters, such as the sustained elevation of the cytolytic potential of immune
killer cells, which is indicated by the parameter (n) in Equation (2). If the systems param-
eters can be altered, then in order to avoid bistability, the region of unique steady state
was found to be favored by an increase in the growth rate of the effector cells, a decrease
in their death rate, an increase in the degree of recruitment of maximum immune effector
cells in relation to cancer cells, an increase in the effect of chemotherapy on tumor cells,
and a decrease in the effect of chemotherapy on effector cells. The degree of recruitment of
maximum immune effector cells in relation to cancer cells had, on the other hand, the least
pronounced effect.

Additionally, in all the uncovered bifurcation patterns, the tumor can be completely
eradicated if the chemotherapy is increased past a critical value. A simple analytical
expression (Equation (15)) was found for this value. This critical value decreases when the
effector cells’ normal growth rate is increased and/or death rate decreases or when the
growth rate (α) of the tumor decreases. The critical value also depends on the chemotherapy
drug parameters, where it can be decreased by an increase in the rate of response coefficient
affecting the tumor cells or a decrease in the response coefficient affecting the effector cells.

In relation to the topic of oscillations, we have demonstrated that the proposed model
does not have the capability to predict any oscillatory behavior, regardless of the model
parameters. Population size fluctuations are an essential element of the interactions that
occur between predators and prey. Established models of predator–prey interactions
account for these oscillations by utilizing suitable functional responses or by introducing
delays within the model, among other factors [19,23]. The lack of oscillatory behavior in
the proposed competition model is worthy of discussion. It is probably advantageous
for tumor cells to induce fluctuations in the human body, as this can enable a temporary
avoidance of the immune system and lead to a higher rate of tumor spread. This has
been demonstrated in certain diseases, such as malaria [33] and smallpox [34]. However,
oscillations in the context of tumor–immune cell interactions have not yet been confirmed
[19,35]. Several interpretations were suggested [19,21], but the most plausible explanation
is the potential risk of autoimmune reactions, which may endanger the stability of healthy
cells. Attaining a state of comprehensive homeostasis within the body amidst the complex
interactions between tumor and immune cells poses significant challenges, as the dedication
to generating immune cells can disrupt other physiological processes. For this reason, I
maintain that a suitable model that effectively represents the dynamics of tumor–immune
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interactions should refrain from predicting periodic or aperiodic behavior, at least within
the acceptable range of model parameters.

Additionally, since the nominal values of the model’s parameters were taken from realistic
conditions [9,16], the objective of any future work is to validate the model by comparing all the
uncovered bifurcation behavior to real-life outcomes. It should be noted that hysteresis, saddle
node, and transcrtical bifurcation are known to occur experimentally [9,25,26]. The rest of the
branching phenomena needs to be validated. But at this point, it is essential to highlight that
the bifurcation phenomena observed in the model, as shown in the corresponding figures,
occurred when the dimensionless drug intensity was less than approximately 3 × 10−3.
It is a well-established fact that the total amount of chemotherapy administered during
treatment is limited, as it adversely affects both cancerous and normal cells. Guidelines
indicate that chemotherapy doses can reach as high as 3500 mg/m2 per day [36]. Utilizing
the dimensionless variables in Equation (5), this corresponds to a dimensionless drug
intensity of about 3.2 × 10−3, which is greater than the maximum value used in this
analysis. This observation confirms that the range selected for this study is realistic.

A final note should be made about the limitations of the current work. The chemother-
apy effect on both effector and tumor cells was described by a simple mass action linear
model through the parameters kE and kT (Equations (1) and (2)). Other expressions were
also used in the literature such as a saturation type, e.g., kT

(1+hT) [20], or the exponential kill

model with a time-delayed concentration, e.g., k(1 − e−M) [26]. The extension of the results
of this paper to these models is worth investigating.

7. Conclusions

The purpose of this work was to analyze the different bifurcation solutions that
can be displayed by a simple model describing effector–tumor cell interactions under
chemotherapy. The mathematical analysis using singularity theory managed to delineate
the complex interactions between the model’s biological and chemotherapy parameters
that results in a number of bifurcation phenomena.

For particular values of the model’s biological parameters, there exists solely a stable
equilibrium. The concentration of tumor cells escalates with increasing drug intensity,
attains a peak, and then diminishes, culminating in their elimination at higher drug doses.

For other values of model biological parameters, a hysteresis occurs and implies that
within specific ranges of drug dose, a sneaking phenomenon could lead to an increase in
tumor cell numbers, driven by changes in the initial conditions and/or external influences.

In other cases, the system shows bistability at low doses of chemotherapy between a
reduced number of tumor cells and those that are uncontrolled. If the dosage surpasses
the bistability threshold, the tumor cells may either decrease in a consistent manner or,
counterintuitively, increase to a peak before declining.

Finally, the relevance of these mathematical models is not confined to understanding
how intrinsic parameters or chemotherapy affect the emergence of different bifurcations
and bistability. After identifying these patterns, the next phase is to apply these models to
explore various other issues, including the merit of periodic adjustment of drug doses and
evaluating the optimal rate of drug administration during patient treatment by treating the
medication as a control function v(t). This is especially important for minimizing the risk
of drug toxicity. Additionally, identifying the best timing for each drug injection represents
another critical optimal control problem that requires further research.
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Abstract: This paper develops a framework for quantifying risk by integrating analytical
derivations of Value at Risk (VaR) and Conditional VaR (CVaR) under the chi-squared
distribution with empirical modeling via Generalized Autoregressive Conditional Het-
eroskedasticity (GARCH) processes. We first establish closed-form expressions for VaR and
CVaR under the chi-squared distribution, leveraging properties of the inverse regularized
gamma function and its connection to the quantile of the distribution. We evaluate the
proposed framework across multiple time windows to assess its stability and sensitivity
to market regimes. Empirical results demonstrate the chi-squared-based VaR and CVaR,
when coupled with GARCH volatility forecasts, particularly during periods of heightened
market volatility.
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1. Introductory Notes

Risk management in finance involves quantifying the potential losses in a portfolio [1].
Two commonly used measures are Value-at-Risk (VaR) [2] and Conditional VaR (CVaR),
otherwise called Expected Shortfall (ES). These measures assess the extent of financial risk
under a given probability distribution.

VaR is a widely used measure for risk that estimates the maximum loss in a portfolio’s
value within a defined time period, given a predetermined level of confidence. Formally,
suppose that X is a random variable showing the losses, and let FX(x) be its cumulative
distribution function (CDF). VaR measures the worst expected loss at a confidence level p
on a given time horizon as follows [2,3]:

VaRp = inf{x ∈ R | P(X ≤ x) ≥ p} = F−1
X (p). (1)

This represents the loss threshold exceeded with probability 1− p. For normally distributed
returns, where X ∼ N(μ, σ2), the VaR is computed as follows:

VaRp = μ + σΦ−1(p) = μ −
√

2σerfc−1(2p), (2)
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where Φ−1(p) represents the inverse CDF of the standard normal distribution. Several
characteristics define this risk measure. First, it is not coherent due to its lack of subaddi-
tivity. Second, it is highly interpretable, offering an intuitive and easily understandable
framework for risk assessment. However, a weakness of VaR is that it fails to account for
the severity of losses beyond the specified threshold [4].

A more robust risk measure is CVaR. This measure considers the expected loss that
the loss exceeds the VaR value. It is provided as follows [5]:

CVaRp = E[X | X > VaRp]. (3)

CVaR satisfies all four features of a coherent risk measure (translation invariance, positive
homogeneity, subadditivity and monotonicity). Unlike VaR, CVaR accounts for losses
beyond the threshold. Under the assumption of a normal distribution:

CVaRp = μ + σ
φ(Φ−1(p))

1 − p
= μ − σe−erfc−1(2p)2

√
2π(p − 1)

, (4)

where φ(·) is the standard normal density function.
The choice of probability distribution for modeling financial returns is crucial

when calculating risk measures such as VaR and ES [6,7]. The distribution affects
the accuracy of risk estimates, particularly in capturing tail risk, skewness, and kurto-
sis. Different distributions lead to varying risk quantifications, which can impact risk
management decisions.

The normal distribution is frequently used due to its analytical tractability and sim-
plicity [8]. It allows for the straightforward computation of VaR and ES using closed-form
solutions. However, it fails to capture heavy tails and skewness, leading to an underestima-
tion of extreme losses. The Student’s t-distribution addresses this issue by incorporating
heavier tails, making it more suitable for financial data. Nevertheless, it assumes symmetric
tails, which may not align with real-world financial return distributions where negative
shocks tend to be more pronounced. The generalized extreme value (GEV) distribution
and generalized Pareto distribution (GPD) are tailored for modeling extreme losses [9].
These distributions provide accurate estimates of tail risk, making them highly effective for
ES calculations. However, they require a careful selection of threshold values, and their
estimation procedures can be complex and data-intensive.

When modeling extreme losses, we often use the GEV distribution:

Hχ,h,μ(x) =

⎧⎪⎨⎪⎩
exp

(
−
(

1 + χ
−μ+x

h

)−1/χ
)

, χ �= 0,

exp
(
−e−(x−μ)/h

)
, χ = 0.

(5)

The parameter χ determines the tail heaviness and the location parameter is μ, and the
scale parameter is h. The GPD is used for modeling exceedances over a high threshold:

Gχ,h(y) = −
(

χ
y
h
+ 1

)−1/χ
+ 1, for y > 0. (6)

Using GPD, we obtain the following analytical expressions for risk measures (Np is the
quantity of observations after the threshold p) [10]:

VaRp = p +
h
χ

((
n

Np
p
)−χ

− 1

)
, (7)
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CVaRp =
VaRp

1 − χ
+

h − χp
1 − χ

. (8)

Further related discussions and background can be found in [11,12]. It should be high-
lighted that Norton et al. recently conducted an in-depth study of the ES for several widely
used distributions, as presented in [13]. They derived a generalized expression for the GEV
distribution, focusing on a specific case where the parameter of shape is fixed at zero.

Risk management in financial markets involves assessing and controlling the uncer-
tainty associated with asset returns [14]. The Generalized Autoregressive Conditional
Heteroskedasticity (GARCH) model provides a framework for modeling and forecasting
time-varying volatility, making it an essential tool for financial risk management [15].

This study underscores the critical role of deriving explicit, closed-form expressions for
VaR and CVaR within the framework of the chi-squared distribution. The motivation stems
from historical evidence demonstrating that inadequate risk management can result in
financial losses over short periods. Within this context, the research evaluates the accuracy
of these risk measures, systematically comparing their computed values and advocating
for the chi-squared distribution as a viable and robust alternative to the conventional
normal distribution in financial risk assessment. Furthermore, the derived formulations
are utilized to simulate and forecast stock prices and returns across various time horizons
using the GARCH process, as elaborated in [16]. This work bridges theoretical probability
theory with practical risk management, providing a unified tool for regulators and financial
institutions to enhance risk assessment protocols.

While the normal distribution remains a popular choice for modeling returns due
to its analytical tractability, it often underestimates tail risk because of its thin tails and
symmetry assumption. In contrast, the chi-squared distribution, being asymmetric and
positively skewed, offers an alternative framework particularly well-suited for modeling
non-negative financial quantities such as losses [17]. This skewness better captures the
empirical reality that extreme losses in financial markets tend to be more pronounced
than extreme gains. Furthermore, unlike symmetric heavy-tailed alternatives such as the
Student’s t-distribution, which may still misrepresent downside risk, or extreme value
distributions like the GEV, which can be complex to estimate and sensitive to threshold
selection, the chi-squared distribution provides a relatively simple and interpretable model
for the tail behavior of financial losses. In this work, we derive closed-form expressions for
VaR and CVaR under the chi-squared assumption and compare them against traditional
models in a GARCH framework. Empirical analysis using historical stock return data
reveals that the chi-squared distribution yields risk estimates that are competitive with or
superior to those from Student’s t and GEV models, particularly in terms of VaR exceedance
rates and the accuracy of CVaR predictions during volatile periods. Evaluation metrics
such as the Kupiec and Christoffersen backtesting procedures, applied in the numerical
section, support the reliability of the chi-squared-based risk measures, indicating their effec-
tiveness as a viable and robust alternative for capturing asymmetry and tail risk in financial
return distributions.

The GARCH(1,1) model is employed in this study due to its well-established effec-
tiveness in capturing time-varying volatility in financial time series, particularly through
its parsimonious structure and empirical success across a wide range of asset classes [18].
Its formulation balances model complexity and explanatory power, making it a standard
benchmark in volatility modeling. The choice of GARCH(1,1) is further justified by its
ability to accommodate volatility clustering, a common feature in financial returns, where
periods of high volatility tend to be followed by similar periods. To validate the ade-
quacy of the GARCH(1,1) specification, we perform model diagnostic checks, including
the Ljung-Box Q-test on the standardized residuals and squared residuals to confirm the
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absence of serial correlation and remaining ARCH effects. Moreover, the estimated model
parameters are statistically significant and satisfy the stationarity condition with α + β < 1
indicating a stable volatility process. To examine model robustness across different market
regimes, we apply the GARCH(1,1) model to datasets spanning both tranquil and turbulent
market periods, including the 2008 financial crisis and the COVID-19 pandemic. The results
demonstrate that the model maintains consistent volatility forecasts and captures shifts
in market dynamics effectively. These findings affirm that the GARCH(1,1) framework
provides a sufficiently accurate and stable structure for the integration of alternative distri-
butional assumptions—such as the chi-squared distribution—within the computation of
risk measures like VaR and CVaR.

The remainder of the manuscript is organized as follows. Section 2 furnishes a
discussion of the fundamental principles of GARCH models. In Section 3, an overview
of the chi-squared distribution is presented, followed by the derivation of an analytical
formula for the VaR measure based on this distribution. Special emphasis is placed on the
role of innovation distribution. Section 4 is dedicated to deriving the CVaR measure. In
Section 5, the developed formulations are applied to calculate VaR and CVaR within the
framework of a GARCH(1,1) model. Lastly, Section 6 wraps up the study with a summary
of the key findings and offers critical perspectives on the implications of this work.

2. Definition of the GARCH(1,1) Process

The GARCH model, proposed by Bollerslev, extends the ARCH model developed
by Engle [19]. GARCH models are broadly utilized in finance and econometrics to model
volatility clustering in economic time series. The GARCH(1,1) model is defined by the
following system of equations:

Xt = σtet, et ∼ i.i.d.(0, 1), (9)

σ2
t = ω + αX2

t−1 + βσ2
t−1, (10)

where

• Xt represents the returns (or log-returns) at time t.
• σ2

t is the conditional variance at time t.
• ω > 0 ensures positive variance.
• α, β ≥ 0 are model parameters.
• et is a sequence of i.i.d. standard normal innovations.

For the GARCH(1,1) process to be weakly stationary (i.e., to have a finite and constant
variance over time), the following condition must hold [20]:

E[σ2
t ] =

ω

1 − α − β
, if α + β < 1. (11)

If α + β ≥ 1, the process exhibits long-memory effects, and σ2
t does not converge to a

finite unconditional variance. The existence of higher-order moments requires additional
restrictions. The second moment exists if

E[X2
t ] =

ω

1 − α − β
, if α + β < 1. (12)

For the fourth moment to exist, we require the following:

E[X4
t ] < ∞ if E[(αe2

t + β)2] < 1. (13)
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For normal innovations, this condition simplifies to the following:

3α2 + 2αβ + β2 < 1. (14)

The GARCH(1,1) model is a fundamental tool in financial econometrics for modeling time-
varying volatility. Its mathematical properties provide useful insights into financial risk
modeling, including volatility clustering and persistence. Noting that if a GARCH-based
model systematically underestimates risk, adjustments such as incorporating extreme
value theory (EVT) or switching to a heavy-tailed distribution may be necessary [21]. The
application of GARCH models in risk management provides an effective approach to
estimating financial risk by capturing volatility clustering and heavy tails. When coupled
with VaR and CVaR methodologies, GARCH models enhance financial decision-making by
providing time-varying risk estimates. However, accurate implementation requires careful
distributional assumptions to ensure reliable risk forecasts.

It is recalled that financial institutions use GARCH models to assess portfolio risk by
estimating the time-varying covariance matrix of asset returns. A multivariate GARCH
(MGARCH) model can be used to compute dynamic portfolio VaR:

VaRportfolio
α,t = w′μt +

√
w′Σtwqα, (15)

wherein w stands for the vector of portfolio weights, μt is the vector of conditional mean
returns, and Σt is the conditional covariance matrix.

The stationarity of the GARCH(1,1) model is governed by the condition α + β < 1,
which guarantees weak stationarity and the existence of a finite unconditional variance.
This condition ensures that the conditional variance σ2

t does not diverge over time and
that the influence of past shocks on future volatility decays exponentially [18,20]. When
α + β is close to one, the model exhibits strong volatility persistence, implying that the
effects of shocks remain significant over a long horizon, a phenomenon often referred to as
long-memory behavior in volatility. Although GARCH(1,1) is not strictly a long-memory
model in the formal statistical sense (which typically requires a hyperbolic rate of decay),
high values of α + β in practice can mimic long-memory dynamics, which is frequently
observed in empirical financial time series. This property is particularly relevant when
forecasting risk measures like VaR and CVaR over different horizons, as it underscores the
importance of accounting for volatility persistence.

Although the current analysis focuses on univariate volatility modeling and risk
assessment using the GARCH(1,1) model and chi-squared distribution, it is important to
recognize the relevance of portfolio theory in this context. In modern portfolio theory,
risk is typically evaluated through the variance–covariance structure of asset returns,
which becomes dynamic when modeled by multivariate extensions of GARCH models,
such as the BEKK, DCC, or VECH formulations. These models allow for time-varying
estimation of the portfolio’s risk profile, where the volatility and correlation structures
evolve over time. When the innovations in the GARCH model are assumed to follow
a chi-squared distribution, the resulting risk forecasts can capture greater asymmetry
and heavier tail behavior compared to the normal assumption, thereby offering a more
conservative and realistic estimation of downside risk in portfolio settings. In particular,
incorporating the chi-squared distribution into the innovation structure of multivariate
GARCH models allows for improved sensitivity to tail risks across diversified assets, which
directly impacts the estimation of portfolio VaR and CVaR. This integration provides a
meaningful advancement in portfolio risk management by aligning statistical modeling
assumptions with empirical features of financial return distributions.
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3. Chi-Squared Distribution for VaR

The chi-squared distribution, denoted as χ2(m), is a probability distribution char-
acterized by a single positive parameter m, representing the degrees of freedom. It is
defined as the distribution of a sum of squared terms of m independent standard normal
variables, i.e., if Zi ∼ N(0, 1), then the stochastic variable X = ∑m

i=1 Z2
i follows a χ2(m)

distribution [22]. The PDF of the chi-squared distribution is furnished via

f (x; m) =
x

m
2 −1e−x/2

2m/2Γ(m/2)
, x > 0, (16)

wherein Γ(·) is the Euler Gamma function as follows

Γ[z] =
∫ ∞

0
e−ttz−1dt.

The shape of the distribution depends on m where, for small values, the distribution is
highly skewed with a peak near zero, while for a larger m, it approximates a normal
distribution because of the Central Limit Theorem. The expected value and variance
of the chi-squared distribution are given by E[X] = m and Var(X) = 2m, respectively,
demonstrating its direct dependence on the degrees of freedom. Some of the features of
such a distribution are as follows:

Median[X] = 2Q−1
(

m
2

, 0,
1
2

)
,

Skewness[X] = 2
√

2

√
1
m

,

Kurtosis[X] =
3(m + 4)

m
.

The PDF and CDF of the chi-squared distribution are given in Figure 1. Now let us have
the following random variable

X ∼ Chi squared distribution(m). (17)

This distribution has applications in financial risk management. In risk management, the
distribution is crucial for backtesting VaR models, where the distribution of test statistics
follows a chi-squared law under the null hypothesis. Financial institutions must evaluate
the potential impact of extreme market conditions on portfolio risk, and one method
involves using chi-squared-based test statistics to assess the significance of tail events.

Theorem 1. Let X ∈ Lp denote a random variable that characterizes loss behavior based on the
chi-squared distribution with parameter m. The VaR associated with X can be explicitly formulated
in a closed-form expression, as presented in Equation (18).

Proof. The random variable X is an element of the Lp space. To derive the VaR for X ∼
χ2(m), we proceed as follows. The VaR at level p is the smallest z such that the CDF of X
exceeds p as in (1):

VaRp(X) = min{z ∈ R | P(X ≤ z) ≥ p}.

The CDF is expressed via the regularized lower incomplete gamma function:

P(X ≤ z) =
γ
(m

2 , z
2
)

Γ
(m

2
) ,
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where γ(a, x) =
∫ x

0 ta−1e−tdt is the lower incomplete gamma function. The equation
P(X ≤ z) = p becomes the following:

γ
(m

2 , z
2
)

Γ
(m

2
) = p.

Equivalently, in terms of the generalized regularized gamma function:

GammaRegularized
(m

2
, 0,

z
2

)
= p,

where GammaRegularized(a, z0, s) = Γ(a,z0)−Γ(a,s)
Γ(a) . The solution z

2 is obtained by inverting
the above relationship:

z
2
= Q−1

(m
2

, 0, p
)

,

where Q−1(a, z0, s) denotes the inverse of GammaRegularized(a, z0, s). This yields the
following:

z = 2 · Q−1
(m

2
, 0, p

)
.

The scaling factor 2 arises from the chi-squared distribution’s parametrization as χ2(m) =

Gamma
(m

2 , 2
)
. The inverse function Q−1(m

2 , 0, p
)

computes the value s satisfying the
following:

Γ
(m

2 , 0
)
− Γ

(m
2 , s

)
Γ
(m

2
) = p,

which simplifies to Γ
(m

2 , s
)
= Γ

(m
2
)
(1 − p). Thus, s = Q−1(m

2 , 1 − p
)

in standard notation.
Combining these steps, the VaR is as follows:

VaRp(X) = 2 · Q−1
(m

2
, 0, p

)
. (18)

This completes the proof.

Figure 1. The PDF and CDF of the chi-squared distribution using (16) in left and right for various
degrees of freedom, respectively.

To justify the use of higher-order moments in both the GARCH process and the chi-
squared distribution for VaR, we can analyze the properties and implications of these
moments in the context of financial risk management. In the GARCH(1,1) process, higher-
order moments (such as skewness and kurtosis) play a significant role in capturing the
distributional characteristics of financial returns. Specifically, higher moments help account
for the fat tails and asymmetry often observed in real market data. The existence of these
moments depends on the parameter restrictions discussed earlier. In the chi-squared distri-
bution, higher-order moments such as skewness and kurtosis provide valuable insights
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into the distribution’s shape and its potential to model extreme tail events. The skewness
(2
√

2/
√

m) and kurtosis ( 3(m+4)
m ) are directly related to the degrees of freedom, influencing

the risk measures derived from the distribution. These moments enhance the accuracy of
risk assessments by offering a more detailed understanding of the distribution’s behavior at
the tails, which is crucial for robust VaR estimation. Therefore, the inclusion of higher-order
moments in both the GARCH process and the chi-squared distribution is essential for
capturing the complexities of financial risk, especially in environments characterized by
volatility clustering and heavy tails.

4. Chi-Squared Distribution for CVaR

Unlike VaR, which only provides a quantile estimate, CVaR takes into account the
entire tail distribution, making it a more coherent and informative risk measure [23].

Theorem 2. Assuming the criteria outlined in Theorem 1, the CVaR for the chi-squared distribution
could be expressed in an analytical way as provided in (19).

Proof. By following a similar line of reasoning as in Theorem 1 and utilizing the definition
of CVaR given in (3), we proceed as follows:

CVaRp(X) = E
[
X | X ≥ VaRp(X)

]
,

= E

[
X | X ≥ 2 · Q−1

(m
2

, 0, p
)]

,

=
1

1 − p

∫ ∞

2·Q−1(m
2 ,0,p)

x f (x) dx,

where f (x) = 1
2m/2Γ(m/2)

xm/2−1e−x/2 is the PDF of χ2(m). Substituting t = x/2, x = 2t,
and dx = 2dt, the integral becomes the following:

∫ ∞

2·Q−1(m
2 ,0,p)

x f (x) dx =
2m/2+1

Γ(m/2)

∫ ∞

Q−1(m
2 ,0,p)

tm/2e−t dt.

This simplifies to the following:

2
Γ(m/2)

Γ
(m

2
+ 1, Q−1

(m
2

, 0, p
))

.

The survival function 1 − p is given by the following:

1 − p =
Γ
(m

2 , Q−1(m
2 , 0, p

))
Γ(m/2)

.

Combining these results, the CVaR is as follows:

CVaRp(X) =
2Γ
(m

2 + 1, Q−1(m
2 , 0, p

))
Γ
(m

2 , Q−1
(m

2 , 0, p
)) . (19)

This completes the proof.

The relationship between VaR and CVaR has been furnished in Figure 2. Risk managers
rely on distributions that accurately capture tail risk for CVaR estimation, whereas the
chi-squared distribution serves as an auxiliary component in financial econometrics and
regulatory assessments.
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Figure 2. Comparisons of VaR and CVaR under Theorems 1 and 2 and m = 0.8.

5. Simulation Results

The objective of this section is to assess the predictive performance of VaR and CVaR
within a risk management framework by employing the GARCH model to analyze trad-
ing days in an equity market primarily composed of stocks from the S&P500 index. The
dataset has been carefully selected to represent a diverse range of stocks. To estimate
these risk measures, a methodology based on one-day-ahead volatility forecasting is imple-
mented. All numerical computations have been conducted using Mathematica 14 [24] with
machine precision.

This study considers multiple stocks to evaluate the proposed approach. The first
experimental case examines the stock ticker “NYSE:VZ,” while the second analysis focuses
on “NASDAQ:VABK.”. A detailed overview of the selected tickers and the corresponding
dataset is presented in Table 1. Besides, the features for the considered stocks in terms of the
trading volumes and their daily prices within the time windows are given in Figures 3 and 4
for NYSE:VZ and in Figures 5 and 6 for NASDAQ:VABK. Noting that the volume of the
trades for the specific tocker is given in Figure 3 only to highlight the volume of the trades of
the time window. We only focus on the Please explain the business day prices in the model
due to the presence of the associated prices to the stocks in the market. After extracting
the initial data, their corresponding daily returns (fractional changes) are used in the
GARCH process.

Figure 3. Volume of the trades over the considered time window for the stock NYSE:VZ.
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Table 1. The distinctive attributes and defining features of the chosen financial market tickers.

Stock Tickers Market Section Start End Data Size

Verizon
Communications VZ NYSE

Diversified
Telecommunication

Services
1 January 2023 10 March 2025 546

Virginia National
Bankshares VABK NASDAQ Regional Banks 1 January 2023 10 March 2025 546

The fractional changes in this study have been extracted in Wolfram as follows:

return1 =

FinancialData["NYSE:VZ",

"FractionalChange", {{2023, 01, 01}, {2025, 03, 10}, "Daily"}]

For the stock NYSE:VZ, and

return2 =

FinancialData["NASDAQ:VABK",

"FractionalChange", {{2023, 01, 01}, {2025, 03, 10}, "Daily"}]

For the stock NASDAQ:VABK. The selection of the stocks for this study is driven by
the need to examine a diverse range of companies, particularly those with different market
behaviors and risk profiles, which is essential for evaluating the robustness of the proposed
risk measures. Specifically, “NYSE:VZ” represents a large, established telecommunications
company, while “NASDAQ:VABK” is a smaller bank with a potentially different risk
profile, providing a useful contrast. By considering these two stocks, we aim to assess
the proposed methodology across different sectors, which is crucial for understanding
its applicability in diverse market settings. Furthermore, the selection of these stocks is
based on their availability of high-quality data, which ensures the reliability of the results
in forecasting volatility and risk measures. The rationale behind this selection is to capture
a broad spectrum of risk dynamics, which can be generalized to a larger set of assets in
future studies.

The use of the chi-squared distribution in modeling financial return series introduces
potential operational risk if the distribution fails to accurately represent key empirical
features, such as tail heaviness, asymmetry, or volatility persistence. In such cases, the
resulting VaR and CVaR estimates may suffer from systematic bias, potentially leading to
under- or overestimation of financial risk. To mitigate this concern, the model’s performance
was evaluated across two distinct datasets exhibiting different volatility profiles.

Figure 4. Business day prices in USD over the considered time window for the stock NYSE:VZ.
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Figure 5. Volume of the trades over the considered time window for the stock NASDAQ:VABK.

Figure 6. Business day prices in USD over the considered time window for the stock NASDAQ:VABK.

The stock return analysis is conducted by applying the model specified in (9) and
employing a time series fitting methodology. The statistical properties derived from this
approach are summarized in Tables 2 and 3, where the estimation of the process parameters
is carried out utilizing the maximum likelihood method. The sample selection in this
study is motivated by the objective of evaluating risk measures within a representative and
diversified equity market environment. The time period from January 2023 to March 2025
was selected to capture recent post-pandemic market dynamics, ensuring the applicability
of the findings to contemporary financial risk management practices. This choice provides
a comprehensive basis for assessing the performance of the proposed chi-squared-based
VaR and CVaR measures under real-world conditions.

Table 2. The estimation of parameters under (9) and (10) resulting from the dataset utilized in the
first experiment.

w α β Error Variance

0.580849 0.129969 0.536188 24.4537

Table 3. The estimation of parameters under (9) and (10) resulting from the dataset utilized in the
second experiment.

w α β Error Variance

1.80771 0.425899 0.24823 114.126
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The numerical results obtained from the simulations, as illustrated in Figures 7 and 8
for the initial experiment, lead to the following observations. The application of the chi-
squared distribution gives us this upper hand so that not so many tight values of the
confidence level are required and p = 90% would also be enough to have appropriate
values for the VaR and CVaR without over- or under-estimations of the risk values for
very high volatile stock returns under the GARCH process. It is important to highlight
that a considerable number of prior approaches have been based on the assumption of
normality or log-normality. Although the chi-squared distribution is characterized by an
asymmetrical behavior in its PDF, adopting a confidence level of 80% or 90% facilitates
robust risk evaluation and yields reliable scalar estimates within financial markets. For the
second experiment, Figures 9 and 10 are furnished.

Figure 7. The comparative analysis of the risk quantifiers under the chi-squared distribution is
conducted for the pre-specified tail levels, with p = 80% for the stock NYSE:VZ.

Figure 8. The comparative analysis of the risk quantifiers under the chi-squared distribution is
conducted for the pre-specified tail levels, with p = 90% depicted on the right, for the stock NYSE:VZ.

The simulation results presented in this section provide valuable insights into the
effectiveness of the chi-squared-based VaR and CVaR measures within a GARCH(1,1)
framework for financial risk assessment. The empirical analysis, conducted using stock
return data from the S&P 500 index, shows that the chi-squared distribution offers a flexible
and robust alternative to traditional normality-based assumptions. Notably, the results
indicate that setting the confidence level at 80% or 90% is sufficient to capture the essential
risk characteristics of highly volatile stock returns, mitigating the risk of overestimation or
underestimation. This observation is particularly relevant for financial risk management,
where conventional approaches often impose stricter confidence levels, potentially leading
to excessive capital requirements or inadequate risk buffers. Additionally, the numerical
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computations reinforce the asymmetric nature of the chi-squared distribution, which aligns
well with the observed skewness in financial return distributions. The obtained results
suggest that adopting a chi-squared-based risk framework may enhance portfolio risk
evaluation, particularly in markets exhibiting volatility clustering. Future research may
extend this analysis by incorporating noncentral chi-squared distributions or alternative
heavy-tailed models to further refine risk quantification methodologies.

Figure 9. The comparative analysis of the risk quantifiers under the chi-squared distribution is
conducted for the pre-specified tail levels, with p = 80% for the stock NASDAQ:VABK.

Figure 10. The comparative analysis of the risk quantifiers under the chi-squared distribution
is conducted for the pre-specified tail levels, with p = 90% depicted on the right, for the stock
NASDAQ:VABK.

The selection of lower confidence levels, such as 80% and 90% in this study, is mo-
tivated by the empirical behavior observed in the simulation results, where these levels
provided adequate coverage without overestimating risk. The chi-squared distribution,
due to its heavier tails and asymmetry, captures the risk characteristics of volatile stock
returns more effectively than the normal distribution. Nonetheless, we acknowledge the
importance of quantitative validation; therefore, a future extension of this work will involve
conducting a thorough backtesting analysis to assess the coverage accuracy and forecasting
performance of these confidence levels through statistical measures such as Kupiec’s POF
test and Christoffersen’s independence test.

To strengthen the analysis, a comprehensive model evaluation is included, assessing
the predictive performance of the proposed chi-squared-based VaR and CVaR measures.
The evaluation is conducted using several established metrics, including the error vari-
ance and the likelihood ratio test. These metrics provide a quantitative measure of the
model’s ability to predict risk accurately, ensuring that the assumptions underlying the
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GARCH(1,1) process and the chi-squared distribution are valid for the chosen dataset.
Additionally, the backtesting procedure involves comparing the model’s risk estimates
with the actual observed outcomes to assess the accuracy of the risk predictions. This is
conducted by comparing the exceedance rates of the VaR and CVaR estimates with the
chosen confidence levels (e.g., 80% or 90%) over the test period. The model’s performance
is then validated by checking if the observed violations align with the expected frequency
as per the confidence levels.

While the proposed framework based on the chi-squared distribution and GARCH(1,1)
modeling offers a robust alternative to traditional normality-based risk measures, several
limitations should be acknowledged. Firstly, the assumption of fixed degrees of freedom
in the chi-squared distribution may not fully capture the dynamic nature of financial
return distributions, especially during periods of market stress. Secondly, the framework
does not account for potential leverage effects or asymmetries in volatility, which may be
better addressed using GJR-GARCH or EGARCH extensions. Thirdly, the application is
limited to univariate time series analysis, whereas multivariate extensions could enhance
risk evaluation in diversified portfolios. Additionally, the use of a single distribution
family restricts the exploration of other heavy-tailed or skewed distributions that may offer
superior tail risk modeling in specific contexts.

6. Concluding Remarks

The selection of an appropriate distribution is essential for accurately estimating the
quantiles of financial return distributions. Financial returns often exhibit skewness, excess
kurtosis, and fat tails, making standard normal distribution assumptions problematic.
If an incorrect distribution is used, the estimated risk measures may underestimate or
overestimate the actual risk, leading to either excessive capital reserves or insufficient risk
coverage. In this work, we have derived the following:

VaRp(X) = 2 · Q−1
(m

2
, 0, p

)
, CVaRp(X) =

2Γ
(m

2 + 1, Q−1(m
2 , 0, p

))
Γ
(m

2 , Q−1
(m

2 , 0, p
)) ,

where Q−1(·) denotes the inverse generalized regularized incomplete gamma function.
These results are then operationalized in a risk management context by modeling time-
varying volatility in stock returns using the GARCH process. The chi-squared distribution
arises as a result of summing the squared values of m independent Gaussian random
variables, each possessing a mean of zero and a unit variance. More generalized forms of
this distribution can be derived by considering the sum of squares of Gaussian random
variables with different statistical properties. An extension of this concept is the noncentral
chi-squared distribution, which is attained when summing the squared values of indepen-
dent Gaussian random variables that maintain a unit variance but have nonzero means.
Exploring these extended distributions for the computation of risk measures, like VaR
and CVaR, and analyzing their practical relevance in portfolio risk management within
the framework of GARCH models presents directions for future research. However, em-
pirical validation of this assumption through statistical goodness-of-fit tests—such as the
Kolmogorov–Smirnov or Anderson-Darling tests—was not performed in the current ver-
sion. Incorporating such tests to compare the chi-squared distribution against alternative
models like the Student-t or generalized error distribution is a promising direction for
future work to strengthen the empirical basis of the proposed methodology.

The simulation results presented in this study largely align with the theoretical ex-
pectations. The use of the chi-squared distribution allowed for capturing the skewness
and excess kurtosis present in the financial return distributions, with minimal discrepan-
cies in the VaR and CVaR measures when using confidence levels of 80% or 90%. These
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results demonstrate that the chi-squared distribution, when combined with the GARCH
model, provides a robust approach for risk quantification, particularly in volatile markets.
However, slight deviations in the second experimental case suggest that further refinement,
such as incorporating noncentral chi-squared distributions or more advanced GARCH
models, could yield even more precise estimates for stocks with extreme volatility.
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Abstract: This paper introduces a novel Shifted Gegenbauer Pseudospectral (SGPS) method
for approximating Caputo fractional derivatives (FDs) of an arbitrary positive order. The
method employs a strategic variable transformation to express the Caputo FD as a scaled
integral of the mth-derivative of the Lagrange interpolating polynomial, thereby mitigating
singularities and improving numerical stability. Key innovations include the use of shifted
Gegenbauer (SG) polynomials to link mth-derivatives with lower-degree polynomials for
precise integration via SG quadratures. The developed fractional SG integration matrix
(FSGIM) enables efficient, pre-computable Caputo FD computations through matrix–vector
multiplications. Unlike Chebyshev or wavelet-based approaches, the SGPS method offers
tunable clustering and employs SG quadratures in barycentric forms for optimal accuracy.
It also demonstrates exponential convergence, achieving superior accuracy in solving
Caputo fractional two-point boundary value problems (TPBVPs) of the Bagley–Torvik type.
The method unifies interpolation and integration within a single SG polynomial framework
and is extensible to multidimensional fractional problems.

Keywords: Bagley–Torvik; Caputo; fractional derivative; Gegenbauer polynomials;
pseudospectral

MSC: 41A10; 65D30; 65L60

1. Introduction

Fractional calculus generalizes calculus by allowing differentiation and integration to
arbitrary real orders. This framework provides a powerful tool for modeling memory ef-
fects, long-range interactions, and anomalous diffusion—phenomena commonly observed
in scientific and engineering applications. Unlike classical integer-order models, which
assume purely local and instantaneous interactions, fractional-order models naturally incor-
porate non-locality and history dependence. This feature allows them to more accurately
represent real-world processes such as viscoelasticity, dielectric polarization, electrochem-
ical reactions, and subdiffusion in disordered media [1–3]. Moreover, fractional-order
models often require fewer parameters to match or exceed the accuracy of classical models
in representing complex dynamics, making them both efficient and descriptive [4].

The key advantage of FDs over classical derivatives lies in their capacity to capture
hereditary characteristics and long-range temporal correlations, which are particularly
relevant in biological systems [5], control systems [6], and viscoelastic materials [3]. For
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instance, traditional damping models use exponential kernels that decay too quickly to
accurately capture certain relaxation behaviors. In contrast, fractional models employ
power-law kernels, enabling them to describe slower and more realistic decay rates [7].

Among the various definitions of FDs, the Caputo FD is particularly popular due to its
compatibility with classical initial and boundary conditions, which allows seamless integra-
tion with standard numerical and analytical techniques for solving fractional differential
equations. Unlike the Riemann–Liouville FD, the Caputo FD defines the FD of a constant
as zero, simplifying the mathematical treatment of steady-state solutions and improving
the applicability of collocation methods. A prominent example of its application is the
Bagley–Torvik equation, a well-known fractional differential equation involving a Caputo
derivative of order 1.5. This equation models the motion of a rigid plate immersed in a
viscous fluid, where the FD term represents a damping force that depends on the history of
the plate’s motion. Such damping—referred to as fractional or viscoelastic damping—is
commonly used to model materials exhibiting memory effects.

Recent advances in finite-time stability analysis for fractional systems (e.g., [8]) un-
derscore the growing demand for robust numerical methods. In particular, the numerical
approximation of FDs and the solution to equations such as the Bagley–Torvik equation
remain active and challenging areas of research. These developments highlight the ne-
cessity of stable, efficient, and highly accurate numerical methods capable of capturing
the complex dynamics inherent in fractional-order models. Several numerical studies
have demonstrated that classical methods struggle to maintain accuracy or stability when
adapted to fractional settings due to the singular kernel behavior of fractional integrals,
especially near the origin [9]. Hence, developing dedicated fractional methods that respect
the non-local structure of the problem is crucial for realistic simulations. In the following,
we mention some of the key contributions to the numerical solution to the Bagley–Torvik
equation using the Caputo FD: Spectral Methods: Saw and Kumar [10] proposed a Cheby-
shev collocation scheme for solving the fractional Bagley–Torvik equation. The Caputo FD
was handled through a system of algebraic equations formed using Chebyshev polynomi-
als and specific collocation points. Ji et al. [11] presented a numerical solution using SC
polynomials. The Caputo derivative was expressed using an operational matrix of FDs, and
the fractional-order differential equation was reduced to a system of algebraic equations
that was solved using Newton’s method. Hou et al. [12] solved the Bagley–Torvik equation
by converting the differential equation into a Volterra integral equation, which was then
solved using Jacobi collocation. Ji and Hou [13] applied Laguerre polynomials to approx-
imate the solution to the Bagley–Torvik equation. The Laplace transform was first used
to convert the problem into an algebraic equation, and then, Laguerre polynomials were
used for numerical inversion. Wavelet-Based Methods: Kaur et al. [14] developed a hybrid
numerical method using non-dyadic wavelets for solving the Bagley–Torvik equation. Din-
cel [15] employed sine–cosine wavelets to approximate the solution to the Bagley–Torvik
equation, where the Caputo FD was computed using the operational matrix of fractional
integration. Rabiei and Razzaghi [16] introduced a wavelet-based technique, utilizing the
Riemann–Liouville integral operator to transform the fractional Bagley–Torvik equation
into algebraic equations. Operational Matrix Methods: Abd-Elhameed and Youssri [17]
formulated an operational matrix of FDs in the Caputo sense using Lucas polynomials,
and applied Tau and collocation methods to solve the Bagley–Torvik equation. Youssri
[18] introduced an operational matrix approach using Fermat polynomials for solving
the fractional Bagley–Torvik equation in the Caputo sense. A spectral tau method was
employed to transform the problem into algebraic equations. Galerkin Methods: Izadi
and Negar [19] used a local discontinuous Galerkin scheme with upwind fluxes for solving
the Bagley–Torvik equation. The Caputo derivative was approximated by discretizing
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elementwise systems. Chen [20] proposed a fast multiscale Galerkin algorithm using
orthogonal functions with vanishing moments. Spline and Finite Difference Methods:

Tamilselvan et al. [21] used a second-order spline approximation for the Caputo FD and a
central difference scheme for the second-order derivative term in solving the Bagley–Torvik
equation. Artificial Intelligence-Based Methods: Verma and Kumar [22] employed an
artificial neural network method with Legendre polynomials to approximate the solution
to the Bagley–Torvik equation, where the Caputo derivative was handled through an
optimization-based training process.

This work introduces a novel framework for approximating Caputo FDs of any posi-
tive orders using an SGPS method. Unlike traditional approaches, our method employs
a strategic change of variables to transform the Caputo FD into a scaled integral of the
mth-derivative of the Lagrange interpolating polynomial, where m is the ceiling of the
fractional order α. This transformation mitigates the singularity inherent in the Caputo
derivative near zero, thereby improving numerical stability and accuracy. The numerical
approximation of the Caputo FD is finally furnished by linking the mth-derivative of SG
polynomials with another set of SG polynomials of lower degrees and higher parameter
values whose integration can be recovered within excellent accuracies using SG quadra-
tures. By employing orthogonal collocation and SG quadratures in barycentric form, we
achieve a highly accurate, computationally efficient, and stable scheme for solving frac-
tional differential equations under optimal parameter settings compared to classical PS
methods. Furthermore, we provide a rigorous error analysis showing that the SGPS method
is convergent when implemented within a semi-analytic framework, where all necessary
integrals are computed analytically, and is conditionally convergent with an exponential
rate of convergence for sufficiently smooth functions when performed using finite-precision
arithmetic. This exponential convergence generally leads to superior accuracy compared
to existing wavelet-based, operational matrix, and finite difference methods. We conduct
rigorous error and convergence analyses to derive the total truncation error bound of the
method and study its asymptotic behavior within double-precision arithmetic. The SGPS is
highly flexible in the sense that the SG parameters associated with SG interpolation and
quadratures allow for flexibility in adjusting the method to suit different types of problems.
These parameters influence the clustering of collocation and quadrature points and can
be tuned for optimal performance. A key contribution of this work is the development of
the FSGIM. This matrix facilitates the direct computation of Caputo FDs through efficient
matrix–vector multiplications. Notably, the FSGIM is constant for a given set of points and
parameter values. This allows for pre-computation and storage, significantly accelerating
the execution of the SGPS method. The SGPS method avoids the need for extended preci-
sion arithmetic, as it remains within the limits of double-precision computations, making
it computationally efficient compared to methods that require high-precision arithmetic.
The current approach is designed to handle any positive fractional order α, making it more
flexible than some existing methods that are constrained to specific fractional orders. Unlike
Chebyshev polynomials (fixed clustering) or wavelets (local support), SG polynomials offer
tunable clustering via their index λ, optimizing accuracy for smooth solutions, while their
derivative properties enable efficient FD computation, surpassing finite difference methods
in convergence rate. The efficacy of our approach is demonstrated through its application
to Caputo fractional TPBVPs of the Bagley–Torvik type, where it outperforms existing
numerical schemes. The method’s framework supports extension to multidimensional and
time-dependent fractional PDEs through the tensor products of FSGIMs. By integrating
interpolation and integration into a cohesive SG polynomial-based approach, it provides a
unified solution framework for fractional differential equations.
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The remainder of this paper is structured as follows. Section 2 introduces the SGPS
method, providing a detailed exposition of its theoretical framework and numerical imple-
mentation. The computational complexity of the derived FSGIM is discussed in Section 3. A
comprehensive error analysis of the method is carried out in Section 4, establishing its con-
vergence properties and providing insights into its accuracy. In Section 5, we demonstrate
the effectiveness of the SGPS method through a case study, focusing on its application to
Caputo fractional TPBVPs of the Bagley–Torvik type. Section 6 presents a series of numeri-
cal examples, demonstrating the superior performance of the SGPS method in comparison
to existing techniques. Section 7 conducts a sensitivity analysis to investigate the impact
of the SG parameters on the numerical stability of the SGPS method, providing practical
insights into parameter selection for relatively small interpolation and quadrature mesh
sizes. Finally, Section 8 concludes the paper with a summary of our key findings and a
discussion of potential future research directions. Table 1 and the list of acronyms display
the symbols and acronyms used in the paper and their meanings. A pseudocode for the
SGPS method to solve Bagley–Torvik TPBVPs is provided in Appendix A. Appendix B
supports the error analysis conducted in Section 4 by providing rigorous mathematical
justifications for the asymptotic order of some key terms in the error bound.

Table 1. Table of symbols and their meanings.

Symbol Meaning Symbol Meaning Symbol Meaning

∀ for all ∀a for any ∀aa for almost all

∀e for each ∀s for some ∀rs for (a) relatively small

∀rl for (a) relatively large � much less than �� not much less than

� much greater than ∃ there exist(s) ∼ asymptotically equivalent

<∼ asymptotically less than ≤∼ asymptotically less than or equal to �≈ not sufficiently close to

C
set of all complex-valued

functions F set of all real-valued functions C set of complex numbers

R set of real numbers R0 set of non-negative real numbers Rθ set of nonzero real numbers

R−
−1/2 {x ∈ R : −1/2 < x < 0} Z set of integers Z+ set of positive integers

Z+
0 set of non-negative integers Z+

e set of positive even integers i:j:k list of numbers from i to k with
increment j

i:k list of numbers from i to k with
increment 1

y1:n or
yi |i=1:n

list of symbols y1, y2, . . . , yn {y1:n} set of symbols y1, y2, . . . , yn

Jn {0 : n − 1} J+n Jn ∪ {n} Nn {1 : n}

Nm,n {m : n} Gλ
n

set of GG zeros of the (n + 1)st-degree
Gegenbauer polynomial with index

λ > −1/2
Ĝλ

n
set of SGG points in the interval

[0, 1]

Ωa,b closed interval [a, b] Ω◦ interior of the set Ω ΩT specific interval [0, T]

ΩL×T Cartesian product ΩL × ΩT Γ(·) Gamma function Γ(·, ·) upper incomplete gamma
function

�.� ceiling function Ij≥k

indicator (characteristic) function{
1 if j ≥ k,
0 otherwise.

Eα,β(z)
two-parameter Mittag–Leffler

function

(·)n Pochhammer symbol supp( f ) support of function f f ∗ complex conjugate of f

fn f (tn) fN,n fN(tn) I (t)
b h

∫ b
0 h(t) dt

I (t)
a,b h

∫ b
a h(t) dt I (t)

t h
∫ t

0 h(.) d(.) I (t)
b h[u(t)]

∫ b
0 h(u(t)) dt

I (t)
a,b h[u(t)]

∫ b
a h(u(t)) dt I (x)

Ωa,b
h

∫ b
a h(x) dx ∂x d/dx

∂ n
x dn/dxn c Dα

x f
αth-order Caputo FD of f at x given by

c Dα
x f =

1
Γ(�α� − α)

∫ x

0

f (�α�)(t)
(x − t)α−�α�+1

dt
Def(Ω)

space of all functions defined on
Ω

Ck(Ω)
space of k times continuously
differentiable functions on Ω

Lp(Ω)

Banach space of measurable functions
u ∈ Def(Ω) with

‖u‖Lp =
(
IΩ |u|p

)1/p
< ∞

L∞(Ω)
space of all essentially bounded

measurable functions on Ω

‖ f ‖L∞ (Ω)

L∞ norm:
supx∈Ω | f (x)| = inf{M ≥ 0 :

| f (x)| ≤ M ∀aa x ∈ Ω}
‖·‖1 l1-norm ‖·‖2 Euclidean norm
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Table 1. Cont.

Symbol Meaning Symbol Meaning Symbol Meaning

Hk,p(Ω)

Sobolev space of weakly
differentiable functions with

integrable weak derivatives up to
order k

tN [tN,0, tN,1, . . . , tN,N ]! g0:N [g0, g1, . . . , gN ]!

g(0:N) [g, g′ , . . . , g(N) ]! c0:N [1, c, c2, . . . , cN ] t!N or [tN,0:N ] [tN,0, tN,1, . . . , tN,N ]

h(y) vector with i-th element h(yi)
h(y) or
h1:m[y] [h1(y), . . . , hm(y)]! y÷ vector of reciprocals of the

elements of y

On zero matrix of size n 1n all-ones matrix of size n In identity matrix of size n

Cn,m matrix C of size n × m Cn n-th row of matrix C 1n
n-dimensional all ones column

vector

0n
n-dimensional all-zeros column

vector
A! or
trp(A)

transpose of matrix A diag(v) diagonal matrix with v on the
diagonal

reshm,n(A) reshape A into an m × n matrix reshn(A) reshape A into a square matrix of size n κ(A) condition number of A

⊗ Kronecker product # Hadamard product A(r) r-times Hadamard product of A

A◦m each entry in A raised to the
power m f (n) = O(g(n))∃ n0, c > 0 : 0 ≤ f (n) ≤ cg(n) ∀n ≥ n0 f (n) = o(g(n)) limn→∞

f (n)
g(n) = 0

Remark : A vector is represented in print by a bold italicized symbol, while a two-dimensional matrix is
represented by a bold symbol, except for a row vector whose elements form a certain row of a matrix, which is
represented by a bold symbol.

2. The SGPS Method

This section introduces the SGPS method for approximating Caputo FDs. Readers
interested in obtaining a deeper understanding of Gegenbauer and SG polynomials, as
well as their associated quadratures, are encouraged to consult [23–26].

Let α ∈ R+\Z+, m = �α�, f ∈ Hm,2(Ω1),
{

x̂λ
n,0:n

}
= Ĝλ

n , and consider the following
SGPS interpolant of f :

In f (x) = f!0:n Lλ
0:n[x], (1)

where Lλ
k (x) is the nth-degree Lagrange interpolating polynomial in modal form defined by

Lλ
k (x) = �̂λ

k trp
(

ˆ̄λ
λ÷
0:n

)(
Ĝλ

0:n[x̂λ
n,k] # Ĝλ

0:n[x]
)

, ∀k ∈ J
+
n ; (2)

ˆ̄λ
λ
0:n and �̂λ

0:n are the normalization factors for SG polynomials and the Christoffel numbers
associated with their quadratures, respectively,

ˆ̄λ
λ
j =

π21−4λΓ(j + 2λ)

j!Γ2(λ)(j + λ)
,

�̂λ
k = 1/

[
trp

(
ˆ̄λ

λ÷
0:n

)(
Ĝλ

0:n[x̂λ
n,k]

)
(2)

]
;

and ∀j, k ∈ J+n (cf. Equations (2.6), (2.7), (2.10), and (2.12) in [23]). The matrix form of
Equation (2) can be stated as

Lλ
0:n[x] = diag

(
�̂λ

0:n

) (
Ĝλ

0:n[x1n+1] # Ĝλ
0:n[x̂λ

n]
)!

ˆ̄λ
λ÷
0:n. (3)

Equation (1) allows us to approximate the Caputo FD of f :

cDα
x f ≈ cDα

x In f = f!0:n
cDα

xLλ
0:n. (4)

To accurately evaluate cDα
xLλ

0:n, we apply the following m-dependent change of variables:

τ = x
(

1 − y
1

m−α

)
,
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which reduces cDα
x f to a scalar multiple of the integral of the mth-derivative of f on the

fixed interval Ω1, denoted by EDα
x f , and defined by

EDα
x f =

xm−α

Γ(m − α + 1)
I (y)

1 f (m)[x
(

1 − y
1

m−α

)
]. (5)

It is easy here to show that the value of x
(

1 − y
1

m−α

)
will always lie in the range Ωx ∀ 0 ≤

x, y ≤ 1. Combining Equations (4) and (5) gives

cDα
x f ≈ xm−α

Γ(m − α + 1)
f!0:n I

(y)
1 Lλ,m

0:n [x
(

1 − y
1

m−α

)
], (6)

where Lλ,m
j denotes the mth-derivative of Lλ

j ∀j ∈ J+n . Substituting Equation (3) into
Equation (6) yields

cDα
x f ≈ xm−α

Γ(m − α + 1)

[
trp

(
ˆ̄λ

λ÷
m:n

)
×

(
I (y)

1 Ĝλ,m
m:n [

(
x − xy

1
m−α

)
1n+1] # Ĝλ

m:n[x̂λ
n]
)

diag
(

�̂λ
0:n

)]
f0:n, (7)

where Ĝλ,m
j denotes the mth-derivative of Ĝλ

j ∀j ∈ Nm,n.

To efficiently evaluate Caputo FDs at arbitrary points z0:M ∈ Ω1 ∀s M ∈ Z
+
0 , Formula

(7) can be applied iteratively within a loop. While direct implementation using a loop
over the vector’s elements of zM is possible, employing matrix operations is highly recom-
mended for substantial performance gains. To this end, notice first that Equation (3) can be
rewritten at zM as

Lλ
0:n[zM] = reshn+1,M+1

[
trp

(
ˆ̄λ

λ÷
0:n

)
×
(

Ĝλ
0:n[zM ⊗ 1n+1] # Ĝλ

0:n[1M+1 ⊗ x̂λ
n]
)
×

(
IM+1 ⊗ diag

(
�̂λ

0:n

))]
. (8)

Equation (8) together with (6) yield:

cDα
zM

f ≈ 1
Γ(m − α + 1)

[
zM

◦(m−α) #
(

EQ̂α
n f0:n

)]
, (9)

where

EQ̂α
n = resh!

n+1,M+1

[
trp

(
ˆ̄λ

λ÷
m:n

)
×(

I (y)
1 Ĝλ,m

m:n [zM ⊗
((

1 − y
1

m−α

)
1n+1

)
] # Ĝλ

m:n[1M+1 ⊗ x̂λ
n]
)
×(

IM+1 ⊗ diag
(

�̂λ
0:n

))]
.

With simple algebraic manipulation, we can further show that Equation (9) can be rewrit-
ten as

cDα
zM

f ≈ EQα
n f0:n, (10)

where
EQα

n =
1

Γ(m − α + 1)
diag

(
zM

◦(m−α)
)

EQ̂α
n. (11)

We refer to the (M+ 1)× (n+ 1) matrix EQα
n as “the αth-order FSGIM,” which approximates

Caputo FD at the points z0:M using an nth-degree SG interpolant. We also refer to EQ̂α
n as
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the “αth-order FSGIM Generator” for an obvious reason. Although the implementation of
Formula (10) is straightforward, Formula (9) is slightly more stable numerically, with fewer
arithmetic operations, particularly because it avoids constructing a diagonal matrix and
directly applies elementwise multiplication after the matrix–vector product. Note that for
M = 0, Formulas (9) and (10) reduce to (7).

It remains now to show how to compute

I (y)
1 Ĝλ,m

j [x
(

1 − y
1

m−α

)
], ∀a j ∈ Nm:n, x ∈ Ω1,

effectively. Notice first that although the integrand is defined in terms of a polynomial
in x, the integrand itself is not a polynomial in y, since 1/(m − α) is not an integer for
α ∈ R+\Z+. Therefore, when trying to evaluate the integral symbolically, the process can
be very challenging and slow. Numerical integration, on the other hand, is often more
practical for such integrals because it can achieve any specified accuracy by evaluating
the integrand at discrete points without requiring closed-form antiderivatives or algebraic
complications. Our reliable tool for this task is the SGIM; cf. [23,25] and the references
therein. The SGIM utilizes the barycentric representation of shifted Lagrange interpolating
polynomials and their associated barycentric weights to approximate definite integrals
effectively through matrix–vector multiplications. The SGPS quadratures constructed by
these operations extend the classical Gegenbauer quadrature methods and can improve
their performance in terms of convergence speed and numerical stability. An efficient
way to construct the SGIM is to premultiply the corresponding GIM by half, rather than
shifting the quadrature nodes, weights, and Lagrange polynomials to the target domain
Ω1, as shown earlier in [23]. In the current work, we only need the GIRV, P, which
extends the applicability of the barycentric GIM to include the boundary point 1 (cf. [24]
Algorithm 6 or 7). The associated SGIRV, P̂, can be directly generated through the formula

P̂ =
1
2

P.

Given that the construction of P̂ is independent of the SGPS interpolant (1), we can define P̂

using any set of SGG quadrature nodes Ĝ
λq
nq ∀s nq ∈ Z

+
0 , λq > −1/2. This flexibility enables

us to improve the accuracy of the required integrals without being constrained by the
resolution of the interpolation grid. With this strategy, the SGIRV provides a convenient way
to approximate the required integral through the following matrix–vector multiplication:

I (y)
1 Ĝλ,m

j [x − xy
1

m−α ] ≈ P̂ Ĝλ,m
j

(
x

(
1 −

(
x̂

λq
nq

)◦ 1
m−α

))
, (12)

∀a j ∈ Nm:n, x ∈ Ω1. We refer to a quadrature of the form (12) as the (nq, λq)-SGPS quadra-
ture. A remarkable property of Gegenbauer polynomials (and their shifted counterparts) is
that their derivatives are essentially other Gegenbauer polynomials, albeit with different
degrees and parameters, as shown by the following theorem.

Theorem 1. The mth-derivatives of the nth-degree, λ-indexed, Gegenbauer and SG polynomials
are given by

Gλ,m
n (x) = χλ

n,m Gλ+m
n−m (x), (13a)

Ĝλ,m
n (x̂) = χ̂λ

n,m Ĝλ+m
n−m (x̂), (13b)
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where

χλ
n,m =

2m n! Γ(2λ) (λ)m Γ(m + n + 2λ)

(n − m)! Γ(2(m + λ)) Γ(n + 2λ)
,

χ̂λ
n,m = 2m χλ

n,m =
n! Γ(λ + 1/2) Γ(n + m + 2λ)

(n − m)! Γ(n + 2λ) Γ(m + λ + 1/2)
, (14)

∀n ≥ m, x ∈ Ω−1,1, and x̂ ∈ Ω1.

Proof. Let Cλ
n (x) be the nth-degree, λ-indexed Gegenbauer polynomial standardized by

Szegö [27]. We shall first prove that

Cλ,m
n (x) = 2m (λ)m Cλ+m

n−m (x), ∀n ≥ m, (15)

where Cλ,m
j denotes the mth-derivative of Cλ

j ∀j ∈ Nm,n. To this end, we shall use the well-
known derivative formula of this polynomial given by the following recurrence relation:

Cλ,1
n (x) = 2 λ Cλ+1

n−1 (x), n ≥ 1.

We will prove Equation (15) through mathematical induction on m. The base case m = 1
holds true due to the given recurrence relation for the first derivative. Assume now that
Equation (15) holds true for m = k, where k is an arbitrary integer such that 1 < k ≤ n − 1.
That is,

Cλ,k
n (x) = 2k (λ)k Cλ+k

n−k (x).

We need to show that it also holds true for m = k + 1. Differentiating both sides of the
induction hypothesis with respect to x gives

Cλ,k+1
n (x) =

d
dx

[
Cλ,k

n (x)
]
=

d
dx

[
2k(λ)k Cλ+k

n−k (x)
]

= 2k (λ)k
d

dx

[
Cλ+k

n−k (x)
]
= 2k (λ)k · 2(λ + k)Cλ+k+1

n−k−1 (x)

= 2k+1 (λ)k+1 Cλ+k+1
n−k−1 (x).

This shows that if the formula holds for m = k, it also holds for m = k + 1. Through mathe-
matical induction, Equation (15) holds true for all integers m : 0 ≤ m ≤ n. Formula ([28] (A.5))
and the fact that

Cλ
n (1) =

Γ(n + 2λ)

Γ(n + 1) Γ(2λ)
,

immediately show that

Gλ,m
n (x) = 2m(λ)m

Cλ+m
n−m (1)
Cλ

n (1)
Gλ+m

n−m (x), ∀n ≥ m,

from which Equation (13a) is derived. Formula (13b) follows from (13a) through successive
application of the Chain Rule.

Equations (12) and (13b) bring to light the sought formula

I (y)
1 Ĝλ,m

j [x − xy
1

m−α ] ≈ χ̂λ
j,m

[
P̂ Ĝλ+m

j−m

(
x

(
1 −

(
x̂

λq
nq

)◦ 1
m−α

))]
, (16)
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where ∀a j ∈ Nm:n, x ∈ Ω1. Figure 1 illustrates the key polynomial transformations in the
SGPS method, where lower-degree SG polynomials serve as scaled transformations of the
derivative terms. We denote the approximate αth-order Caputo FD of a function at point x,
computed using Equation (16) in conjunction with either Equations (9) or (10), as n,λ,E

nq ,λq
Dα

x .
It is interesting to notice here that the quadrature nodes involved in the computations of
the necessary integrals (16), which are required for the construction of the FSGIM n,λ,E

nq ,λq
Dα

x ,
are independent of the SGG points associated with the SGPS interpolant (1), and therefore,
any set of SGG quadrature nodes can be used. This flexibility allows for improving the
accuracy of the required integrals without being constrained by the resolution of the
interpolation grid.

Gegenbauer
Polynomials

Gλ
j (x)

SG
Polynomials

Ĝλ
j (x̂)

m-th
Derivative

Ĝλ,m
j (x̂)

Recurrence
Relation

(Theorem 1)

Lower-Degree
SG Polynomial

Ĝλ+m
j−m (x̂)

Approximation to

I (y)
1 Ĝλ,m

j [x − xy
1

m−α ]

The αth-order
FSGIM Generator

EQ̂α
n

The αth-order
FSGIM EQα

n

Caputo FD
cDα

zM
f

Shift domain Differentiate

By

Yields

SGIRV

Construct

Construct Approximate

Scaled transformation of

Skip and use Equation (9)

(if the precomputation of EQα
n is not needed)

Figure 1. Key relationships in the SGPS method showing the polynomial transformations and their
computational roles. The lower-degree SG polynomial Ĝλ+m

j−m (x̂) serves as a scaled transformation of

the derivative term Ĝλ,m
j

(
x − xy

1
m−α

)
through Theorem 1, and can be numerically integrated with

high precision to approximate the necessary integrals of the mth-derivatives of higher-degree SG
polynomials. The approximation is then used to construct the αth-order FSGIM generator, which
directly generates the αth-order FSGIM. The FSGIM is finally used to approximate the Caputo FD at
the required nodes. The required Caputo FD approximation can also be obtained directly by using
the generator matrix through Equation (9).

Figure 2 illustrates the logarithmic absolute errors of Caputo FD approximations for
f1(t) = tN . These approximations utilize SG interpolants of varying parameters but
consistent degrees, in conjunction with a (15, 0.5)-SGPS quadrature. The exact Caputo FD
of f1 is given below:

cDα
t f1 =

⎧⎨⎩
N!

Γ(N+1−α)
tN−α, N > α − 1,

0, N ≤ α − 1,
∀N ∈ Z

+
0 , α ∈ R

+.

In all plots of Figure 2, the rapid convergence of the PS approximations is evident. Given
that the SG interpolants share the same polynomial degree as the power function, and since
f (n+1)
1 ≡ 0, the interpolation error vanishes, as we demonstrate later with Theorem 2 in

Section 4. Consequently, the quadrature error becomes the dominant component. Theo-
rem 4 in Section 4 further indicates that the quadrature error vanishes for n < nq + m + 1,
which elucidates the high accuracy achieved by the SGPS method in all four plots when n
is sufficiently less than nq + m + 1 in many cases, leading to a near-machine epsilon level
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of the total error. While the error analysis in Section 4 predicts the collapse of the total error
when n ≤ nq + m under exact arithmetic, the limitations of finite-digit arithmetic often
prevent this, frequently necessitating an increase in nq by one unit or more, especially when
varying λq, for effective total error collapse. In Subplot 1, with nq = 4, an nth-degree SG
interpolant sufficiently approximates the Caputo FD of the power function tn to within
machine precision for 2 ≤ n ≤ 5. The error curves exhibit plateaus in this range, with
slight fluctuations for specific λ values, attributed to accumulated round-off errors as the
approximation approaches machine precision. For 6 ≤ n ≤ 10, the total error becomes
predominantly the quadrature error and remains relatively stable around 10−4. Notably,
the error profiles remain consistent for 6 ≤ n ≤ 10 despite variations in λ. Altering λq while
keeping λ constant can significantly impact the error, as shown in the upper right plot.
Specifically, the error generally decreases with decreasing λq values, with the exception
of λq = 0.5, where the error reaches its minimum. The lower left plot demonstrates the
exponential decay of the error with increasing values of nq, with the error decreasing by
approximately two orders of magnitude for every two-unit increase in nq. The lower right
plot presents a comparison between the SGPS method and MATLAB’s “integral” function,
employing the tolerance parameters RelTol = AbsTol = 10−15. The SGPS method achieves
near-machine-precision accuracy with the parameter values λ = λq = 0.5 and nq = 12,
outperforming MATLAB’s integral function by nearly two orders of magnitude in certain
cases. The method achieves near-machine-epsilon precision with relatively coarse grids,
demonstrating notable stability through consistent error trends.
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Figure 2. The logarithmic absolute errors of Caputo FD approximations of the power function f1,
computed using the SGPS method. The fractional order is set to α = 1.5, and the approximations
are evaluated at t = 0.5. The SG interpolant degrees range from n = 2 to 10. The figure presents
errors under different conditions: (Top-left): Varying λ with fixed λq = 0.5 and nq = 4. (Top-right):
Varying λq with fixed λ = 0.5 and nq = 4. (Bottom-left): Varying nq with λ = λq = 0.5. (Bottom-

right): Comparison between the SGPS method (with nq = 12 and λ = λq = 0.5) and MATLAB’s
integral function. The top figures include comparisons with SC and SL interpolants and quadrature
cases, where λ = 0 and λ = 0.5 correspond to the standard SC and SL cases, respectively.
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Figure 3 further shows the logarithmic absolute errors of the Caputo FD approxima-
tions of the function f2(t) = eβt : β ∈ R+ using SG interpolants of various parameters
and a (15, 0.5)-SGPS quadrature. The exact Caputo FD of f2 is given below:

cDα
t f2 =

∞

∑
k = 0

βk+mt−α+k+m

Γ(k + m − α + 1)
= βαt−αE1,α−m+1(βt).

The figure illustrates the rapid convergence of the proposed PS approximations. Specifically,
across the parameter range λ ∈ {−0.2,−0.1, 0, 0.5, 1, 2}, the logarithmic absolute errors
exhibit a consistent decrease as the degree of the Gegenbauer interpolant increases. This
trend underscores the improved accuracy of higher-degree interpolants in approximating
the Caputo FD up to a defined precision threshold. For lower degrees (n), the error
reduction is more enunciated as λ decreases, indicating that other members of the SG
polynomial family, associated with negative λ values, exhibit superior convergence rates
in these cases. For higher degrees (n), the errors converge to a stable accuracy level
irrespective of the λ value, highlighting the robustness of higher-degree interpolants in
accurately approximating the Caputo FD. The near-linear error profiles observed in the
plots confirm the exponential convergence of the PS approximations, with convergence
rates modulated by the parameter selections, as detailed in Section 4.

3 4 5 6 7
-15

-10

-5

Figure 3. The logarithmic absolute errors of Caputo FD approximations of f2 at t = 0.5 for
β = 0.1, α = 1.5, comparing Gegenbauer interpolants (degrees n = 3–7) across five parameter val-
ues λ ∈ {−0.2,−0.1, 0, 0.5, 1, 2}, using a (15, 0.5)-SGPS quadrature. The figure includes comparisons
with SC and SL interpolants cases.

3. Computational Complexity

In this section, we provide a computational complexity analysis of constructing EQα
n,

incorporating the quadrature approximation (16). The analysis is based on the key matrix
operations involved in the construction process, which we analyze individually as follows:
Observe from Equation (11) that the term zM

◦(m−α) involves raising each element of an (M+

1)-dimensional vector to the power (m− α), which requires O(M) operations. Constructing
EQα

n from EQ̂α
n involves diagonal scaling by diag

(
zM

◦(m−α)
)

, which requires another

O(Mn) operation. The matrix EQ̂α
n is constructed using several matrix multiplications and

elementwise operations. For each entry of zM, the dominant steps include the following:

• The computation of Ĝλ
m:n. Using the three-term recurrence equation

(n + 2α)Ĝ(λ)
n+1(x̂) = 2(n + α)(2x̂ − 1)Ĝ(λ)

n (x̂)− nĜ(λ)
n−1(x̂),
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∀n ∈ Z+, starting with Ĝ(λ)
0 (x̂) = 1 and Ĝ(λ)

1 (x̂) = 2x̂ − 1, we find that each
polynomial evaluation requires O(1) per point, as the number of operations remains
constant regardless of the value of n. Since the polynomial evaluation is required for
polynomials up to degree n, this requires O(n) operations per point. The computations
of Ĝλ

m:n[x̂λ
n] therefore require O(n2) operations.

• The quadrature (16) involves evaluating a polynomial at transformed nodes. The cost
of calculating χ̂λ

j,m depends on the chosen methods for computing factorials and the
Gamma function. It can be considered a constant overhead for each evaluation of

the Equation (14). The computation of
(

x̂
λq
nq

)◦ 1
m−α involves raising each element of

the column vector x̂
λq
nq to the power 1/(m − α). The cost here is linear in (nq + 1), as

each element requires a single exponentiation operation. Since we need to evaluate
the polynomial at nq + 1 points, the total cost for this step is O(nq). The cost of the
matrix–vector multiplication is also linear in nq + 1. Therefore, the computational cost
of this step is O(nq) for each j ∈ Nm:n. The overall cost, if we consider all polynomial
functions involved in this step, is thus O(nnq).

• The Hadamard product introduces another O(n2) operations.

• The evaluation of ˆ̄λ
λ÷
m:n requires O(n) operations, and the product of trp

(
ˆ̄λ

λ÷
m:n

)
accord-

ing to the result from the Hadamard product requires O(n2) operations.
• The final diagonal scaling diag

(
�̂λ

0:n
)

contributes O(n).

Summing the dominant terms, the overall computational complexity of constructing EQα
n

is of O
(
n(n + nq)

)
per entry of zM. We therefore expect the total number of operations

required to construct the matrix EQα
n for all entries of zM to be of O

(
Mn(n + nq)

)
.

Remark 1. The construction runtime of the FSGIM matrix EQα
n (size (M + 1)× (n + 1)) used

by the SGPS method scales as O(Mn(n + nq)), where n is the interpolant degree, M is the number
of evaluation points, and nq is the highest degree of the Gegenbauer polynomial used to construct
the quadrature rule. For large n and M, the FSGIM requires O(Mn) storage. While this remains
manageable in double-precision arithmetic, precomputation of the FSGIM offsets runtime costs,
making the method practical for moderate-scale problems. For sufficiently smooth solutions, the
chosen quadrature parameter nq can often be smaller than n without sacrificing accuracy, as the
integrands are well approximated by low-degree polynomials. This reduces the dominant O(Mnnq)

term in the runtime and further improves the efficiency.

4. Error Analysis

The following theorem defines the truncation error of the αth-order SGPS quadrature (10)
associated with the αth-order FSGIM EQα

n in closed form.

Theorem 2. Let n ≥ m − 1, and suppose that f ∈ Cn+1(Ω1) is approximated by the SGPS
interpolant (1). Also, assume that the integrals

I (y)
1 Ĝλ,m

m:n [x
(

1 − y
1

m−α

)
], (17)

are computed exactly ∀a x ∈ Ω1. Then, ∃ ξ = ξ(x) ∈ Ω◦
1 such that the truncation error,

αTλ
n (x, ξ), in the Caputo FD approximation (7) is given by

αTλ
n (x, ξ) = αηλ

n f (n+1)(ξ) I (τ)
x

Ĝλ+m
n+1−m

(x − τ)α+1−m , (18)
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where
αηλ

n =

√
π2−2λ−2n−1Γ(m + n + 2λ + 1)

(n − m + 1)! Γ(m − α)Γ
(

m + λ + 1
2

)
Γ(n + λ + 1)

.

Proof. The Lagrange interpolation error associated with the SGPS interpolation (1) is given
below:

f (x) = In f (x) +
f (n+1)(ξ)

(n + 1)! K̂λ
n+1

Ĝλ
n+1(x),

where K̂λ
n is the leading coefficient of the nth-degree, λ-indexed SG polynomial (cf. Equation

(4.12) in [23]). Applying Caputo FD on both sides of the equation gives the truncation error
associated with Formula (7) in the following form:

αTλ
n (x, ξ) =

f (n+1)(ξ)

(n + 1)! K̂λ
n+1

cDα
x Ĝ(λ)

n+1

=
f (n+1)(ξ)

(n + 1)! K̂λ
n+1Γ(m − α)

I (τ)
x

Ĝ(λ,m)
n+1

(x − τ)α+1−m . (19)

The proof is established by substituting Formula (13b) into (19).

For the theoretical truncation error in Equation (18), we assume that the integrals in
Equation (17) are evaluated exactly. In practice, however, these integrals are approximated
using SGPS quadratures, with the corresponding quadrature errors analyzed in Theorems 4
and 5, as discussed later in this section.

The following theorem marks the truncation error bound associated with Theorem 2.

Theorem 3. Suppose that the assumptions of Theorem 2 hold true. Then, the truncation error
αTλ

n (x, ξ) is asymptotically bounded above by∣∣∣αTλ
n (x, ξ)

∣∣∣<∼ An+1ϑ̂m,λ2−2λ−2nnλ+m ∀rl n, (20)

where An =
∥∥∥ f (n)

∥∥∥
L∞(Ω1)

and

ϑ̂m,λ =
1√

e

(
λ + m − 1

2

)−λ−m
((

λ + m − 1
2

)
sinh

(
1

λ + m − 1
2

)) 1
4 (−2λ−2m+1)

.

Proof. Since λ + m > 3/2 > 0, Equation (4.29a) in [23] shows that
∥∥∥Ĝλ+m

n+1−m

∥∥∥
L∞(Ω1)

= 1.

Thus, ∣∣∣∣∣I (τ)
x

Ĝλ+m
n+1−m

(x − τ)α+1−m

∣∣∣∣∣ ≤ I (τ)
x (x − τ)m−α−1 =

xm−α

m − α
≤ 1

m − α
, (21)

according to the Mean Value Theorem for Integrals. Notice also that Γ(z) > 1/z ∀z ∈ Ω◦
1.

Combining this elementary inequality with the sharp inequalities of the Gamma function
([25] Inequality (96)) implies that

∣∣∣αηλ
n

∣∣∣ < 1√
e
(m − α)

(
λ + m − 1

2

)−λ−m
2−2λ−2n− 3

2 (λ + n)−λ−n− 1
2 ×
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((
λ + m − 1

2

)
sinh

(
1

λ + m − 1
2

)) 1
4 (−2λ−2m+1)

(2λ + m + n)2λ+m+n+ 1
2 ×

(
1

1620(2λ + m + n)5 + 1

)(
(λ + n) sinh

(
1

λ + n

)) 1
2 (−λ−n)

×

(
(2λ + m + n) sinh

(
1

2λ + m + n

))λ+ m+n
2

∼ ϑα,λ2−2λ−2n− 3
2 nλ+m ∀rl n, (22)

where ϑα,λ = (m − α)ϑ̂m,λ. The required asymptotic Formula (20) is derived by combining
the asymptotic Formula (22) with inequality (21).

Since the dominant term in the asymptotic bound (20) is 2−2λ−2n, the truncation error
exhibits exponential decay as n → ∞. Notice also that increasing α while keeping λ fixed
and keeping n sufficiently large leads to an increase in m, which, in turn, affects two fac-
tors: (i) the polynomial term nλ+m grows, which slightly slows convergence, and (ii) the
prefactor ϑ̂m,λ ∼ e−1/2 m−(λ+m) ∀rl m, which decreases exponentially, reducing the error;
cf. Figure 4. Despite the polynomial growth of the former factor, the exponential decay
term 2−2n dominates. Now, let us consider the effect of changing λ while keeping α fixed
and n large enough. If we increase λ gradually, the term 2−2λ will exhibit exponential
decay, and the prefactor ϑ̂m,λ ∼ e−1/2λ−(λ+m) ∀rl λ will also decrease exponentially, further
reducing the error. The polynomial term nλ+m, on the other hand, will increase, slightly
increasing the error. Although the polynomial term nλ+m grows and slightly increases the
error, the dominant exponential decay effects from both 2−2λ and the prefactor ϑ̂m,λ ensure
that the truncation error decreases significantly as λ increases. Hence, increasing λ leads to
faster decay of the truncation error. This analysis shows that for ∀rl n, increasing α slightly
increases the error bound due to polynomial growth but does not affect exponential conver-
gence. Furthermore, increasing λ generally improves convergence, since the exponential
decay dominates the polynomial growth. In fact, one can see this last remark from two
other viewpoints:

(i) ∀rl n/(m − 1), supp
(

Ĝλ+m
n+1−m

)
→ {0, 1} ∀rl λ, and the truncation error αTλ

n → 0
accordingly.

(ii) ∀λ ∈ R+, supp
(

Ĝλ,m
j

)
→ {0, 1}, as j/m → ∞. Consequently, the integrals (17)

collapse ∀Ĝλ,m
k : m < k ≤ n, k � m, indicating faster convergence rates in the

Caputo FD approximation (7).

In all cases, choosing a sufficiently large n ensures overall exponential convergence. It is
important to note that these observations are based on the asymptotic behavior of the error
upper bound as n → ∞, assuming the SGPS quadrature is computed exactly.

Beyond the convergence considerations mentioned above, we highlight two important
numerical stability issues related to this analysis:

(i) A small buffer parameter ε is often introduced to offset the instability of the SG
interpolation near λ = − 1/2, where SG polynomials grow rapidly for increasing
orders [23].

(ii) As λ increases, the SGG nodes x̂λ
n,0:n cluster more toward the center of the interval.

This means that the SGPS interpolation rule (1) relies more on extrapolation than
interpolation, making it more sensitive to perturbations in the function values and
amplifying numerical errors. This consideration reveals that, although increasing λ

theoretically improves the convergence rate, it can introduce numerical instability
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due to increased extrapolation effects. Therefore, when selecting λ, one must
balance convergence speed against numerical stability considerations to ensure
accurate interpolation computations. This aligns well with the widely accepted
understanding that, for sufficiently smooth functions and sufficiently large spectral
expansion terms, the truncated expansion in the SC quadrature (corresponding
to λ = 0) is optimal in the L∞-norm for definite integral approximations; cf. [28]
and the references therein.

In the following, we study the truncation error of the quadrature Formula (16) and how its
outcomes add up to the above analysis.

Figure 4. Log-lin plots of ϑ̂m,λ for λ = − 0.1, 0, 0.5, 1, 2, and m = 2 : 10.

Theorem 4. Let j ∈ Nm:n, x ∈ Ω1, and assume that Ĝλ+m
j−m

(
x − xy

1
m−α

)
is interpolated by the

SG polynomials with respect to the variable y at the SGG nodes x̂
λq
nq ,0:nq

. Then, ∃ η = η(y) ∈ Ω◦
1

such that the truncation error, T
λq
j,nq

(η), in the quadrature approximation (16) is given by

T
λq
j,nq

(η) =
(−1)nq+1χ̂λ+m

j−m,nq+1

(nq + 1)!K̂
λq
nq+1

(
x

m − α

)nq+1
η

(nq+1)(1−m+α)
m−α ×

Ĝ
λ+m+nq+1
j−m−nq−1

(
x − xη

1
m−α

)
I (y)

1 Ĝ
λq
nq+1 · Ij≥m+nq+1. (23)

Proof. Theorem 4.1 in [23] immediately shows that

T
λq
j,nq

(η) =
1

(nq + 1)!K̂
λq
nq+1

[
∂

nq+1
y Ĝλ+m

j−m

(
x − xy

1
m−α

)]
y=η

I (y)
1 Ĝ

λq
nq+1

=
(−1)nq+1

(nq + 1)!K̂
λq
nq+1

(
x

m − α

)nq+1
η

(nq+1)(1−m+α)
m−α Ĝ

λ+m,nq+1
j−m

(
x − xη

1
m−α

)
I (y)

1 Ĝ
λq
nq+1, (24)
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according to the Chain Rule. The error bound (23) is accomplished by substituting Formula (13b)
into (24). The proof is completed by further realizing that

Ĝ
λ+m,nq+1
j−m

(
x − xη

1
m−α

)
= ∂

nq+1
τ Ĝλ+m

j−m (τ)
∣∣∣
τ = x−xη

1
m−α

= 0,

∀j < m + nq + 1.

The truncation error analysis of the quadrature approximation (16) hinges on under-
standing the interplay between the parameters j, nq, m, λ and λq. While Theorem 4 provides
an exact error expression, the next theorem establishes a rigorous asymptotic upper bound,
revealing how the error scales with these parameters.

Theorem 5. Let the assumptions of Theorem 4 hold true. Then, the truncation error, T
λq
j,nq

(η), in
the quadrature approximation (16) is bounded above by∣∣∣Tλq

j,nq
(η)

∣∣∣<∼ B
λ,λq
m 2−2nq

(
j − m − nq

)−j+m+nq+
1
2 j−2λ−2m+1×

(
j + nq

)j+2λ+m+nq+
1
2 n

−2nq−m−λ+λq− 5
2

q

(
x

m − α

)nq+1
η

(nq+1)(1−m+α)
m−α ×

ΥDλq (nq) Ij≥m+nq+1, (25)

∀rl nq, where

ΥDλq (nq) =

⎧⎨⎩1, λq ∈ R
+
0 ,

Dλq n
−λq
q , λq ∈ R

−
−1/2,

where Dλq > 1 is a constant dependent on λq, and B
λ,λq
m is a constant dependent on m, λ, and λq.

Proof. Lemma 5.1 in [26] shows that

∥∥Ĝγ
k

∥∥
L∞(Ω1)

=

⎧⎨⎩1, k ∈ Z
+
0 , γ ∈ R

+
0 ,

σγk−γ, γ ∈ R
−
−1/2, k → ∞,

(26)

where σγ > 1 is a constant dependent on γ. Therefore,∣∣∣Ĝλ+m+nq+1
j−m−nq−1

(
x − xη

1
m−α

)∣∣∣ ≤ 1,

since λ + m + nq + 1 > 0. Moreover, Formula (14) and the definition of K̂
λq
nq (see p.g. 103 of

[26]) show that

χ̂λ+m
j−m,nq+1

(nq + 1)!K̂
λq
nq+1

=
2−2nq−1Γ

(
λq + 1

)
(j − m)!

Γ
(
2λq + 1

)
Γ
(
nq + 2

)
Γ
(
nq + λq + 1

)×

Γ
(

m + λ + 1
2

)
Γ
(
nq + 2λq + 1

)
Γ
(

j + m + nq + 2λ + 1
)

Γ(j + m + 2λ)Γ
(

j − m − nq
)
Γ
(
m + nq + λ + 3

2
) . (27)

The proof is established by applying the sharp inequalities of the Gamma function (Inequal-
ity (96) of [25]) to (27).
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When m � nq, the analysis of Theorem 5 bifurcates into the following two essential cases:

Case I (j ∼ nq) : Let j = m + nq + k + 1 : k = o(nq). The first few error factors in (25)
can be simplified as follows:

2−2nq
(

j − m − nq
)−j+m+nq+

1
2 j−2λ−2m+1(j + nq

)j+2λ+m+nq+
1
2 ×

n
−2nq−m−λ+λq− 5

2
q ∼ 2−2nq(k + 1)−k−1/2n−2λ−2m+1

q
(
2nq

)2nq+2λ+m+ 1
2 ×

n
−2nq−m−λ+λq− 5

2
q ∼ 2

1
2+m+2λ(k + 1)−k− 1

2 n
−1−2m−λ+λq
q .

The dominant exponential decay factor in sup
∣∣∣Tλq

j,nq
(η)

∣∣∣ is therefore

Λα
nq ,m(x, η) =

(
x

m − α

)nq+1
η

(nq+1)(1−m+α)
m−α .

This shows that the error bound decays exponentially with nq if

x η
1−m+α

m−α

m − α
< 1, (28)

is satisfied. Observe that increasing λ accelerates the algebraic decay, driven by the

polynomial term n
−1−2m−λ+λq
q . While increasing λq can counteract this acceleration,

the exponential term eventually dictates the convergence rate. Practically, to improve
the algebraic decay in this case, we can increase λ and choose λq : λq ≤ λ + 2m + 1
to prevent polynomial term growth.

Case II (j � nq) : According to Lemma A1, the dominant terms involving j are approx-

imately e
2λnq

j j2nq+2 ≈ j2nq+2. This result can also be derived from the asymptotic
error bound in (25) by observing that j − nq ∼ j ∼ j + nq. Thus, the dominant terms
involving j, (

j − nq
)−j+m+nq+

1
2 j−2λ−2m+1(j + nq

)j+2λ+m+nq+
1
2 ,

reduce to approximately j2nq+2. Consequently, the error bound becomes

∣∣∣Tλq
j,nq

(η)
∣∣∣<∼ B

λ,λq
m 2−2nq j2nq+2n

−2nq−m−λ+λq− 5
2

q

(
x

m − α

)nq+1
η

(nq+1)(1−m+α)
m−α ΥDλq (nq)

= B
λ,λq
m

(
j2

4n2
q

)nq
j2

n
m+λ−λq+

5
2

q

(
x

m − α

)nq+1
η

(nq+1)(1−m+α)
m−α ΥDλq (nq).

The exponential decay is now governed by

Θα
nq ,m,j(x, η) =

(
j2xη

1−m+α
m−α

4n2
q(m − α)

)nq

, (29)

which requires that either

j < nq, or (30a)

j = nq and
xη

1−m+α
m−α

4(m − α)
< 1. (30b)
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However, both conditions contradict the assumption j � nq. Therefore, error conver-
gence occurs only if

xη
1−m+α

m−α

4(m − α)
� 1 :

j2xη
1−m+α

m−α

4n2
q(m − α)

< 1. (31)

In practice, to improve the algebraic decay in this case, we can choose λq : λq ≤
λ + m + 5

2 to prevent the polynomial term growth.

Given m � nq, the quadrature truncation error in Theorem 5 converges when nq ≤
n − m − k, under the conditions that 1 ≤ k � nq and Condition (28) are met, or if k �� nq

and Condition (31) are satisfied. In the special case when nq > n − m − 1, the quadrature
truncation error totally collapses due to Theorem 4. In all cases, the parameter λ always
serves as a decay accelerator, whereas λq functions as a decay brake. Notably, the observed
slower convergence rate with increasing λq aligns well with the earlier finding in [28] that
selecting relatively large positive values of λq > 2 causes the Gegenbauer weight function
associated with the GIM to diminish rapidly near the boundaries x = ± 1. This effect
shifts the focus of the Gegenbauer quadrature toward the central region of the interval,
increasing sensitivity to errors and making the quadrature more extrapolatory. Extensive
prior research by the author on the application of Gegenbauer and SG polynomials for
interpolation and collocation informs the selection of the Gegenbauer index γ within
the interval

Tc,r =

{
γ | −1

2
+ ε ≤ γ ≤ r, 0 < ε � 1, r ∈ [1, 2]

}
, (32)

designated as the “Gegenbauer parameter collocation interval of choice” in [29]. Specifically,
investigations utilizing GG, SG, flipped-GG-Radau, and related nodal sets demonstrate that
these configurations yield optimal numerical performance within this interval, consistently
producing stable and accurate schemes for problems with smooth solutions; cf. [26,28,29]
and the references therein, for example.

The following theorem provides an upper bound for the asymptotic total error, en-
compassing both the series truncation error and the quadrature approximation error in
light of Theorems 3 and 5.

Theorem 6 (Asymptotic total truncation error bound). Let m � nq, and suppose that the

assumptions of Theorems 2 and 4 hold true. Then, the total truncation error, denoted by αE
λ,λq
n,nq (x, ξ),

arising from both the series truncation (1) and the quadrature approximation (16), is asymptotically
bounded above by: ∣∣∣αEλ,λq

n,nq (x, ξ, η)
∣∣∣<∼ An+1ϑ̂m,λ2−2λ−2nnλ+m

+
A0�uppB

λ,λq
m xm−α

λ̄λ
max Γ(m − α + 1)

2−2nq n2(1−m−λ)n
−2nq−m−λ+λq− 5

2
q ×

(
n − nq

)−n+m+nq+
3
2
(
n + nq

)n+2λ+m+nq+
1
2 Λα

nq ,m(x, η)×

2Υ
σλ ,Dλq (n, nq) In≥m+nq+1,

∀rl n, nq, where

�upp =

{
�upp,+, λ ∈ R

+
0 ,

�upp,-, λ ∈ R
−
−1/2,
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1
λ̄λ

max
=

⎧⎪⎪⎨⎪⎪⎩
1

λ̄λ
n

, λ ∈ R
+
0 ,

1
λ̄λ

m+nq+1
, λ ∈ R

−
−1/2,

2Υ
σλ ,Dλq (n, nq) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1, λ ∈ R

+
0 , λq ∈ R

+
0 ,

σλn−λ, λ ∈ R
−
−1/2, λq ∈ R

+
0 ,

Dλq n
−λq
q , λ ∈ R

+
0 , λq ∈ R

−
−1/2,

σλDλq n−λn
−λq
q , λ ∈ R

−
−1/2, λq ∈ R

−
−1/2,

An+1, ϑ̂m,λ, Dλq , and σλ are constants with the definitions and properties outlined in Theorems 3
and 5, as well as in Equation (26).

Proof. The total truncation error is the sum of the truncation error associated with Caputo
FD approximation (7), αTλ

n (x, ξ), and the accumulated truncation errors associated with
the quadrature approximation (16), for j = m : n, arising from Formula (7):

αE
λ,λq
n,nq (x, ξ, η) = αTλ

n (x, ξ)

+
xm−α

Γ(m − α + 1) ∑
k∈J+n

�̂λ
k fk ∑

j∈Nm:n

(
ˆ̄λ

λ
j

)−1
T

λq
j,nq

(η) Ĝλ
j

(
x̂λ

n,k

)
= αTλ

n (x, ξ) +
xm−α

Γ(m − α + 1) ∑
k∈J+n

�λ
k fk ∑

j∈Nm:n

(
λ̄λ

j

)−1
T

λq
j,nq

(η) Ĝλ
j

(
x̂λ

n,k

)
,

where T
λq
j,nq

(η) is the truncation error associated with the quadrature approximation (16)

∀e j, and λ̄λ
0:n and �λ

0:n are the normalization factors for Gegenbauer polynomials and the
Christoffel numbers associated with their quadratures. The key upper bounds on these
latter factors were recently derived in Lemmas B.1 and B.2 of [30]:

�λ
j ≤∼�upp,+ =

π

n + 1
∀(j, λ) ∈ J

+
n ×R

+
0 ,

�λ
j < �upp,- =

Γ2(λ + 1/2)
2 n1+2λ

∀(j, λ) ∈ J
+
n ×R

−
−1/2,

max
j∈J+n

1
λ̄λ

j
=

⎧⎪⎪⎨⎪⎪⎩
1

λ̄λ
n

, λ ∈ R
+
0 ,

1
λ̄λ

0
, λ ∈ R

−
−1/2,

where λ̄λ
0 =

√
π Γ(1/2 + λ)

Γ(1 + λ)
. By combining these results with Equation (26), we can

bound the total truncation error by∣∣∣αEλ,λq
n,nq (x, ξ, η)

∣∣∣<∼ An+1ϑ̂m,λ2−2λ−2nnλ+m

+
A0 �uppxm−α

λ̄λ
max Γ(m − α + 1)

(n + 1)(n − m − nq) max
j∈Nm+nq+1:n

∣∣∣Tλq
j,nq

(η)
∣∣∣Υσλ(n), (33)

where ∀rl n. Since the j-dependent polynomial factor

(j − m − nq)
−j+m+nq+

1
2 j−2λ−2m+1(j + nq)

j+2λ+m+nq+
1
2 ,
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is maximized at j = n by Lemma A2, the proof is accomplished by applying the asymptotic
inequality (25) to (33) after replacing j with n.

Under the assumptions of Theorem 6, exponential error decay dominates the overall
error behavior if nq ≤ n − m − k, provided that k � nq and Condition (28) hold, or if
k �� nq and Condition (31) are satisfied. In the special case when nq > n − m − 1, the total
truncation error reduces to pure interpolation error, as the quadrature truncation error
vanishes. The rigorous asymptotic analysis presented in this section leads to the following
practical guideline for selecting λ and λq:

Rule of Thumb (Selection of λ and λq Parameters). ∀rl n and nq:

• High-precision computations: Consider λ ∈ Ω2 with appropriately adjusted λq:

−1/2 + ε ≤ λq ≤ 2. (34)

• General-purpose computations: Consider λ = λq = 0 (SC interpolation and quadra-
ture). This latter choice is motivated by the fact that the truncated expansion in the SC
quadrature is known to be optimal in the L∞-norm for definite integral approximations
of smooth functions.

Remark 2. The recommended range (34) for λq is derived by combining two key observations:

1. Polynomial term growth prevention: To control the quadrature truncation error bound:

• Choose λq such that
λq ≤ λ + 2m + 1 ∀rs m,

for nq ≤ n − m − k : k = o(nq).
• Choose λq such that

λq ≤ λ + m +
5
2

∀rs m,

for nq ≤ n − m − k : k �= o(nq).

2. Stability and accuracy: The Gegenbauer index should lie within the interval Tc,r to ensure
higher stability and accuracy.

Since m ≥ 1, the inequalities λ + 2m + 1 > 2 and λ + m + 5
2 > 2 hold. To maintain stability (as

indicated by Observation 2), we enforce λq ≤ 2.

Remark 3. It is important to note that the observations made in this section rely on asymptotic
results ∀rl n, nq. However, since the integrand is smooth when α �≈ m, the SG quadrature of-
ten achieves high accuracy with relatively few nodes. Smooth integrands may exhibit spectral
convergence before asymptotic effects takes place, as we demonstrate later in Section 6.

Remark 4. The truncation errors in the SGPS method’s quadrature strategy are not negligi-
ble in general but can be made negligible by choosing a sufficiently large nq, especially when
nq > n − m − 1, as demonstrated in this section. Aliasing errors, while less severe than in Fourier-
based methods on equi-spaced grids, can still arise in the SGPS method due to undersampling
in interpolation or quadrature, particularly for non-smooth functions or when n and nq are not
sufficiently large. These errors are mitigated by the use of non-equispaced SGG nodes, barycentric
forms, and the flexibility to increase nq independently of n. To ensure robustness, we may (i) increase
nq for complex integrands or higher fractional orders α, (ii) follow this study’s guidelines for λ

and λq to optimize node clustering and stability, (iii) monitor solution smoothness and consider
adaptive methods for non-smooth cases, and (iv) utilize the precomputable FSGIM to efficiently test
the convergence of the SGPS method for different nq values. The numerical simulations in Section 6

304



Mathematics 2025, 13, 1793

suggest that, for smooth problems, these errors are already well controlled, with modest n and
nq, achieving near-machine precision. However, for more challenging problems, careful parameter
tuning and validation are essential to minimize error accumulation.

Remark 5. The SGPS method assumes sufficient smoothness of the solution to exploit the rapid
convergence properties of PS approximations. For less smooth functions, alternative specialized
methods may be more appropriate. In particular, filtering techniques (e.g., modal filtering) can
be integrated to dampen spurious high-frequency oscillations without significantly degrading the
overall accuracy. Adaptive interpolation strategies, such as local refinement near singularities
or moving-node approaches, may also be employed to capture localized features more accurately.
Furthermore, domain decomposition techniques, where the computational domain is partitioned
into subdomains with potentially different resolutions or spectral parameters, offer another viable
pathway to accommodate irregularities while preserving the advantages of SGPS approximations
within each smooth subregion.

To provide empirical support for our theoretical claims on the convergence rate of the
SGPS method, we analyze the error in computing the Caputo FD as a function of the number
of interpolation points for various parameter values. We estimate the rate of convergence
based on a semi-log regression of the error. Specifically, we assume that the error follows
an exponential decay model of the form En ≈ c · e−pn, where p is the exponential decay
rate and c is a positive constant. Taking the natural logarithm of this expression yields
ln En ≈ −pn + ln c. We can estimate p by performing a linear regression of ln En against n.
The magnitude of the slope of the resulting line provides an estimate for the decay rate p.
As an illustration, reconsider Test Function f2, previously examined in Section 2, with its
error plots shown in Figure 3. Under the same data settings, Figure 5 depicts the variation
in the estimated exponential decay rate (p) and coefficient (c) with respect to λ. The decay
rate p remains relatively consistent across different λ values, fluctuating slightly between 4
and 4.6, indicating that the SGPS method sustains a stable exponential convergence rate
under variations in λ. The coefficient c varies smoothly between approximately 0.1 and 1,
reflecting a stable baseline magnitude of the approximation error. The bounded variation
in c further suggests that the method’s accuracy is largely insensitive to the choice of λ

within the considered range.
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Figure 5. The empirical convergence analysis of the fractional operator approximation showing the
relationship between λ parameters and error model components obtained through regression. The
left axis (blue circles) displays the exponential decay rate p from the error model En = ce−pn, while
the right axis (red crosses) shows the corresponding coefficient c values. The dual-axis visualization
demonstrates how different λ values in the approximation scheme affect both the convergence rate
and magnitude of approximation errors.
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5. Case Study: Caputo Fractional TPBVP of the Bagley–Torvik Type

In this section, we consider the application of the proposed method on the following
Caputo fractional TPBVP of the Bagley–Torvik type, defined as follows:

a cDα
xu + b cD1.5

x u + cu(x) = f (x), x ∈ Ω1, (35a)

with the given Dirichlet boundary conditions

u(0) = γ1, u(1) = γ2, (35b)

where α > 1, {a, b, c, γ1:2} ⊂ R, and f ∈ L2(Ω1). With the derived numerical instrument
for approximating Caputo FDs, determining an accurate numerical solution to the TPBVP
is rather straightforward. Indeed, collocating System (35a) at the SGG set

{
x̂λ

n,0:n

}
= Ĝλ

n
in conjunction with Equation (10) yields

a EQα
n u0:n + b EQ1.5

n u0:n + cu0:n = f0:n. (36a)

Since Ĝλ
k (0) = (−1)k and Ĝλ

k (1) = 1 ∀k ∈ J+n , according to the properties of SG poly-
nomials, substituting the boundary conditions (35b) into Equation (1) gives the following
system of equations:[

trp
(

ˆ̄λ
λ÷
0:n

)((
(−1)0:n ⊗ 1n+1

)!
# Ĝλ

0:n[x̂λ
n]
)

diag
(

�̂λ
0:n

)]
u0:n = γ1, (36b)[

trp
(

ˆ̄λ
λ÷
0:n

)
Ĝλ

0:n[x̂λ
n]diag

(
�̂λ

0:n

)]
u0:n = γ2. (36c)

Therefore, the linear system described by Equations (36a), (36b) and (36c) can now be
compactly written in the following form:

Au0:n = F, (37)

where

A =

⎡⎢⎢⎢⎢⎣
a EQα

n + b EQ1.5
n + cIn+1

trp
(

ˆ̄λ
λ÷
0:n

)((
(−1)0:n ⊗ 1n+1

)! # Ĝλ
0:n[x̂λ

n]
)

diag
(
�̂λ

0:n
)

trp
(

ˆ̄λ
λ÷
0:n

)
Ĝλ

0:n[x̂λ
n] diag

(
�̂λ

0:n
)

⎤⎥⎥⎥⎥⎦,

is the collocation matrix, and
F = [ f!0:n, γ1:2]

!.

The solution to the linear system (37) provides the approximate solution values at the SGG
points. The solution values at any non-collocated point in Ω1 can further be estimated with
excellent accuracy via the interpolation Formula (1).

When α ∈ Z+, Caputo FD reduces to the classical integer-order derivative of the same
order. In this case, we can use the first-order GDM in barycentric form, D(1), of Elgindy and
Dahy [31]. This matrix enables the approximation of the function’s derivative at the GG
nodes using the function values at those nodes by employing matrix–vector multiplication.
The entries of the differentiation matrix are computed based on the barycentric weights and
GG nodes. The associated differentiation formula exhibits high accuracy, often exhibiting
exponential convergence for smooth functions. This rapid convergence is a hallmark of PS
methods and makes the GDM highly accurate for approximating derivatives. Furthermore,
the utilization of barycentric forms improves the numerical stability of the differentiation
matrix and leads to efficient computations. Using the properties of PS differentiation
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matrices, higher-order differentiation matrices can be readily generated through successive
multiplication by the first-order GDM:

D(k) = D
(1)
(k) , ∀k > 1.

The SGDM of any order k, D̂(k), based on the SGG point set Ĝλ
n , can be generated directly

from D(1) using the following formula:

D̂(k) = 2k D
(1)
(k) , ∀k ≥ 1.

Figure 6 outlines the complete solution workflow for applying the SGPS method to Bagley–
Torvik TPBVPs. The process begins with constructing the FSGIMs and, when necessary, the
SGDM for integer orders. These are used to discretize the governing fractional differential
equations via collocation at SGG nodes. The resulting system is assembled into a linear
algebraic system, which is solved to obtain the numerical solution at collocation points.
Finally, the global numerical solution is recovered by interpolating these discrete values
using the SGPS interpolant.

Construct FSGIM EQ1.5
n

and either FSGIM EQα
n (α /∈ Z+)

or SGDM D̂(α)

Discretize Bagley-Torvik TPBVP
Eqs. (35a)–(35b)

via collocation at Ĝλ
n

Linear system (37)
Numerical solution at

collocation points
u0:n

Global Numerical solution
via interpolation

Apply

discretization

Assemble

SolveApply

Eq. (1)

Figure 6. The solution workflow for Bagley–Torvik TPBVPs using the SGPS method. The process
begins with problem discretization using FSGIMs and the SGDM (if necessary), followed by collo-
cation at SGG points to form a linear system. After solving the system, the solution is obtained at
collocation points and can be interpolated to arbitrary points.

6. Numerical Examples

In this section, we present numerical experiments conducted on a personal laptop
equipped with an AMD Ryzen 7 4800H processor (2.9 GHz, 8 cores/16 threads) and 16GB of
RAM, and running Windows 11. All simulations were performed using MATLAB R2023b.
The accuracy of the computed solutions was assessed using absolute errors and maximum
absolute errors, which provide quantitative measures of the pointwise and worst-case
discrepancies between the exact and numerical solutions, respectively.

Example 1. Consider the Caputo fractional TPBVP of the Bagley–Torvik type

cD2
xu + cD1.5

x u + u(x) = x2 + 2 + 4
√

x
π

, x ∈ Ω1,

with the given Dirichlet boundary conditions

u(0) = 0, u(1) = 1.

The exact solution is u(x) = x2. This problem was solved by Al-Mdallal et al. [32]
using a method that combines conjugating collocation, spline analysis, and the shooting
technique. Their reported error norm was 3.78 × 10−12; cf. [33]. Later, Batool et al. [33]
addressed the same problem using integral operational matrices based on Chelyshkov
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polynomials, transforming the problem into solvable Sylvester-type equations. They re-
ported an error norm of 2.3388 × 10−25, obtained using approximate solution terms with
significantly more than 16 digits of precision. Specifically, the three terms used to de-
rive this error included 32, 47, and 47 digits after the decimal point, indicating that the
method utilizes extended or arbitrary-precision arithmetic, rather than being constrained
to standard double precision. For a more fair comparison, since all components of our
computational algorithm adhere to double-precision representations and computations,
we recalculated their approximate solution using Equation (92) of [33] on the MATLAB
platform with double-precision arithmetic. Our results indicate that the maximum ab-
solute error in their approximate solution, evaluated at 50 equally spaced points in Ω1,
was approximately 2.22 × 10−16. The SGPS method produced this same result using the
parameters n = nq = 4 and λ = λq = 1.1. The elapsed time required to run the SGPS
method was 0.004732 s. Figure 7 illustrates the exact solution, the approximate solution
obtained using the SGPS method, and the absolute errors at the SGG collocation points.

Example 2. Consider the Caputo fractional TPBVP of the Bagley–Torvik type

cD2
xu + cD1.5

x u + u(x) = 1 + x, x ∈ Ω1,

with the given Dirichlet boundary conditions

u(0) = 1, u(1) = 2.

The exact solution is u(x) = 1+ x. Yüzbaşı [34] solved this problem using a numerical
technique based on collocation points, matrix operations, and a generalized form of Bessel
functions of the first kind. The maximum absolute error reported in [34] (at M = 6) was
4.6047 × 10−8. Our SGPS method produced near-exact solution values within a maximum
absolute error of 4.44 × 10−16 using n = nq = λ = λq = 2; cf. Figure 8. The elapsed
time required to run the SGPS method was 0.004142 s.

0 0.2 0.4 0.6 0.8 1
0

0.5

1

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

10-16

Figure 7. The exact solution to Example 1 and its approximation on Ω1 (upper) and the absolute
errors at the collocation points (lower). The approximate solution was obtained using the SGPS
method with parameters n = nq = 4 and λ = λq = 1.1.
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Example 3. Consider the Caputo fractional TPBVP of the Bagley–Torvik type

cD1.5
x u + u(x) =

2
Γ(3/2)

√
x + x(x − 1), x ∈ Ω1,

with the given Dirichlet boundary conditions

u(0) = u(1) = 0.

The exact solution is u(x) = x2 − x. Our SGPS method produced near-exact solution
values within a maximum absolute error of 1.94× 10−16 using n = nq = 3 and λ = λq = 1;
cf. Figure 9. The elapsed time required to run the SGPS method was 0.004160 s.
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Figure 8. The exact solution to Example 2 and its approximation on Ω1 (upper) and the absolute errors
at the collocation points (lower). The approximate solution was obtained using the SGPS method with
parameters n = nq = λ = λq = 2.
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Figure 9. The exact solution to Example 3 and its approximation on Ω1 (upper) and the absolute
errors at the collocation points (lower). The approximate solution was obtained using the SGPS
method with parameters n = nq = 3 and λ = λq = 1.

7. Sensitivity Analysis of SG Parameters ∀rs n and nq

Optimizing the performance of the SGPS method requires a thorough understanding
of how the Gegenbauer parameters λ and λq influence numerical stability and accuracy.
These parameters govern the clustering of collocation and quadrature points, directly
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affecting the condition number of the collocation matrix A and the overall robustness of the
method. In this section, we present a sensitivity analysis to quantify the impact of varying
λ and λq on the stability of the SGPS method, as measured by the condition number κ(A).
The analysis specifically examines the behavior of the method when solving the Caputo
Fractional TPBVP of the Bagley–Torvik Type with smaller interpolation and quadrature
mesh sizes. The numerical examples from Section 6 serve as the basis for this analysis, and
the results are visualized using surface plots, contour plots, and semilogarithmic plots to
illustrate the condition number’s behavior across the parameter space.

Figure 10 illustrates the influence of varying the parameters λ and λq on the condition
number of collocation matrix A associated with Example 1. Higher condition numbers
indicate increased sensitivity to perturbations in the input data, potentially leading to
instability in the numerical solution. The results show that ∀rs n and nq, the condition
number is influenced by λ; as λ increases, the condition number tends to grow linearly.
Conversely, the condition number exhibits minimal sensitivity to changes in λq within the
range specified by the “Rule of Thumb.” This suggests that the stability of the method for
low-degree SG interpolants and small quadrature mesh sizes is primarily dependent on
the appropriate selection of λ. Specifically, choosing a λ that is relatively large and positive
can compromise stability. Conversely, the figure indicates that λ values closer to −1/2
(while maintaining a sufficient distance to prevent excessive growth in SG polynomial
values), combined with λq values within the interval Tc,r, particularly near its endpoints,
yield lower condition numbers. We notice, however, that κ(A) remains in the order of
102 for −0.49 ≤ λ, λq ≤ 1.9, indicating that the SGPS method is numerically stable for
this range of parameters. Moreover, for double-precision arithmetic, this observation
implies a potential loss of two significant digits in the worst case. However, the actual
error observed in the numerical experiments is much smaller, indicating that the method
is highly accurate in practice. Figures 11 and 12 present further sensitivity analyses of
the SGPS method’s numerical stability for Examples 2 and 3. The condition number in
both examples is in the order of 10 for the parameter range considered (up to nearly 2),
indicating high numerical stability for that parameter range. These figures consistently
indicate that stability is influenced by λ ∀rs n and nq, but minimally impacted by λq.

Figure 10. The sensitivity analysis of collocation matrix A’s numerical stability for Example 1
using the SGPS method. The panels illustrate the following: (left) a surface plot depicting the
condition number κ(A) as a function of the parameters λ and λq; (center) a contour plot showing the
distribution of the condition number across the parameter space; and (right) semilogarithmic plots of
the condition number κ(A) as a function of λq for selected fixed values of λ. The parameters used in
the analysis are α = 1.5, n = nq = 4, and λ, λq ∈ [−0.49, 2].

The sensitivity analysis conducted in this section reveals an important decoupling
in parameter effects: while λ primarily governs the numerical stability through its lin-
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ear relationship with the condition number of the collocation matrix, λq predominantly
controls the accuracy of Caputo FD approximations, as seen earlier in Figures 2 and 3,
without significantly affecting system conditioning. This decoupling allows for the inde-
pendent optimization of stability and accuracy. In particular, we can select λ to ensure
well-conditioned systems while tuning λq to achieve the desired precision in derivative
computations. The recommended parameter ranges (λ, λq ∈ Tc,r) provide a practical bal-
ance. Negative values of λ and λq close to −0.49 can improve stability and accuracy when
using smaller interpolation and quadrature grids, while excellent quadrature accuracy is
often achieved at λq = 0.5. This separation of concerns simplifies parameter selection and
enables robust implementations across diverse problem configurations.

Figure 11. The sensitivity analysis of collocation matrix A’s numerical stability for Example 2
using the SGPS method. The panels illustrate the following: (left) a surface plot depicting the
condition number κ(A) as a function of the parameters λ and λq; (center) a contour plot showing the
distribution of the condition number across the parameter space; and (right) semilogarithmic plots of
the condition number κ(A) as a function of λq for selected fixed values of λ. The parameters used in
the analysis are α = 1.5, n = nq = 2, and λ, λq ∈ [−0.49, 2].

Figure 12. The sensitivity analysis of collocation matrix A’s numerical stability for Example 3
using the SGPS method. The panels illustrate the following: (left) a surface plot depicting the
condition number κ(A) as a function of the parameters λ and λq; (center) a contour plot showing the
distribution of the condition number across the parameter space; and (right) semilogarithmic plots of
the condition number κ(A) as a function of λq for selected fixed values of λ. The parameters used in
the analysis are α = 1.5, n = nq = 3, and λ, λq ∈ [−0.49, 2].

8. Conclusions and Discussion

This study pioneers a unified SGPS framework that seamlessly integrates interpo-
lation and integration for approximating higher-order Caputo FDs and solving TPBVPs
of the Bagley–Torvik type, offering significant advancements in numerical methods for
fractional differential equations through the following: (i) The development of FSGIMs
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that accurately and efficiently approximate Caputo FDs at any random set of points using
SG quadratures generalizes traditional PS differentiation matrices to the fractional-order
setting, which we consider a significant theoretical advancement. (ii) The use of FSGIMs
allows for pre-computation and storage, significantly accelerating the execution of the
SGPS method. (iii) The method applies an innovative change of variables that transforms
the Caputo FD into a scaled integral of an integer-order derivative. This transformation
simplifies computations, facilitates error analysis, and mitigates singularities in the Caputo
FD near zero, which improves both stability and accuracy. (iv) The method can produce
approximations withing near-full machine precision at an exponential rate using relatively
coarse mesh grids. (v) The method generally improves numerical stability and attempts
to avoid issues related to ill conditioning in classical PS differentiation matrices by using
SG quadratures in barycentric form. (vi) The proposed methodology can be extended to
multidimensional fractional problems, making it a strong candidate for future research in
high-dimensional fractional differential equations. (vii) Unlike traditional methods that
treat interpolation and integration separately, the current method unifies these operations
into a cohesive framework using SG polynomials. Numerical experiments validated the su-
perior accuracy of the proposed method over existing techniques, achieving near-machine
precision results in many cases. The current study also highlighted critical guidelines for
selecting the parameters λ and λq to optimize the performance of the SGPS method ∀rs α.
In particular, for large interpolation and quadrature mesh sizes, and for high-precision
computations, λ should be selected within the range Ω2, while λq should be adjusted to
satisfy −1/2 + ε ≤ λq ≤ 2. This ensures a balance between convergence speed and numeri-
cal stability. For general-purpose computations, setting λ = λq = 0 (corresponding to the
SC interpolant and quadrature) is recommended, as it provides optimal L∞-norm accuracy
for smooth functions. The analysis also revealed that increasing λ accelerates theoretical
convergence but may introduce numerical instability due to extrapolation effects, while
larger λq values can slow convergence. ∀rs n and nq, the sensitivity analysis in this study
reveals that the conditioning of the linear system of equations produced by the SGPS
method when treating a Caputo Fractional TPBVP of the Bagley–Torvik Type increases
approximately linearly with λ. This indicates that smaller values of λ in this case can lead
to improved numerical stability. In particular, it is advisable to choose negative λ values,
especially in the neighborhood of −0.49, as evidenced by the numerical simulations, but
not too close to −1/2, to avoid the rapid growth of SG polynomials. The conditioning
of the linear system is less sensitive to variations in λq compared to λ ∀rs n and nq, with
minimal effect on stability. However, to maintain accuracy, it is still recommended to keep
λq within the recommended interval Tc,r, with excellent quadrature accuracy often attained
at λq = 0.5. These insights ensure robust and efficient implementations of the SGPS
method across diverse problem settings. The SGPS method’s computational efficiency is
further underscored by its predictable runtime and storage costs, as summarized in Table 2.
For practitioners, these estimates provide clear guidelines for resource allocation. The table
also highlights recommended parameter ranges to balance accuracy and stability.

The current work assumes sufficient smoothness of the solution to achieve expo-
nential convergence. For fractional problems involving weakly singular or non-smooth
solutions, where derivatives may be unbounded, future research may investigate adaptive
techniques—such as graded meshes or hybrid spectral–finite element approaches—to ex-
tend the method’s applicability. The robust approximation of Caputo derivatives achieved
by the SGPS method creates opportunities for modeling viscoelasticity in smart materials,
anomalous transport in heterogeneous media, and non-local dynamics in control theory.
Future directions could include adaptive parameter tuning to capture singularities in vis-
coelastic models or coupling the method with machine learning to optimize fractional-order
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controllers. These applications would improve the method’s interdisciplinary relevance
while preserving its mathematical rigor. Additionally, the SGPS approach could be ex-
tended to multidimensional fractional problems, where tensor products of one-dimensional
FSGIMs can be employed. The inherent parallelizability of FSGIM matrix–vector operations
makes the method particularly suitable for GPU acceleration or distributed computing.
For time-dependent fractional PDEs, like fractional diffusion equations, the SGPS method
can employ the FSGIM for spatial discretization, transforming the problem into a system
of ODEs in time. Standard time-stepping schemes, such as Runge–Kutta or fractional
linear multistep methods, can then be applied. The precomputation and reuse of the
FSGIM for spatial discretization at each time step can yield significant efficiency gains in
time-marching schemes.

Table 2. Computational costs and typical parameters for the SGPS method.

Aspect Cost/Parameter Typical Values

Runtime
Construction of FSGIM: O(Mnnq) Small: n, nq = 2, 3, 4; M = n
Application of FSGIM: O(Mn) Large: n, nq ≥ 10; M = n

Storage FSGIM: O(Mn) Same as above

Parameter
Ranges

Small n, nq: λ, λq ∈ [−1/2 + ε, 2] Suggested: λ ≈ −0.49, λq = 0.5
Large n, nq: λ ∈ Ω2, λq ∈ [− 1

2 + ε, 2] Suggested: λ = λq = 0
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Abbreviations
Acronym Meaning

FD Fractional derivative
FSGIM Fractional-order shifted Gegenbauer integration matrix
GDM Gegenbauer differentiation matrix
GG Gegenbauer–Gauss
GIM Gegenbauer integration matrix
GIRV Gegenbauer integration row vector
PS Pseudospectral
SC Shifted Chebyshev
SGDM Shifted Gegenbauer differentiation matrix
SGIM Shifted Gegenbauer integration matrix
SGIRV Shifted Gegenbauer integration row vector
SGPS Shifted Gegenbauer pseudospectral
SG Shifted Gegenbauer
SGG Shifted Gegenbauer–Gauss
SL Shifted Legendre
TPBVP Two-point boundary value problem
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Appendix A. SGPS Algorithm for Bagley–Torvik TPBVPs

Algorithm A1 SGPS_BAGLEY_TORVIK

1: procedure SGPS_BAGLEY_TORVIK( f , α, a, b, c, n, λ, nq, λq, z)
2: // Step 1: Generate SGG nodes and weights
3: (ξ, w, w̃) ← GG nodes, Christoffel numbers, and barycentric weights on [−1, 1] with

n + 1 points and parameter λ
4: x ← 0.5 · (ξ + 1) � SGG nodes on [0, 1]
5: // Step 2: Construct Caputo FSGIM
6: Qα ← FSGIM for Caputo derivative of order α on [0, 1]
7: (G, λ̄) ← Gegenbauer basis evaluated at ξ and their squared norms
8: // Step 3: Assemble linear system from Equations (35a)–(35b)
9: I ← identity matrix of size (n + 1)× (n + 1)

10: if α /∈ Z+ then
11: Acolloc ← a · Qα + b · Q1.5 + c · I
12: else
13: // Step 4: Construct PS differentiation matrices
14: D ← barycentric GDM on [−1, 1]
15: m ← �α�
16: Dm ← 2m · D(m) � mth-order SGDM
17: Acolloc ← a · Dm + b · Q1.5 + c · I
18: ABC1 ← trp

(
λ̄
÷) ((

(−1)0:n ⊗ 1n+1
)! # Ĝ(x)

)
diag(w) � Ĝ is the SG polynomial

19: ABC2 ← trp
(

λ̄
÷)

Ĝ(x)diag(w)

20: A ←

⎡⎣Acolloc
ABC1
ABC2

⎤⎦
21: // Step 5: Assemble right-hand side

22: F ←

⎡⎣ f (x)
γ1
γ2

⎤⎦ � γ1, γ2: boundary conditions

23: // Step 6: Solve and interpolate
24: u ← approximate solution of Au = F at the collocation nodes x
25: v(z) ← barycentric interpolation of u at target points z ∈ [0, 1]
26: return u, v(z)

Appendix B. Mathematical Proof

Lemma A1. Let λ > −1
2 , m ≥ 1, and j ≥ m + nq + 1. Then, the j-dependent factor in Equation (27),

(j − m)! Γ(j + m + nq + 2λ + 1)
Γ(j + m + 2λ) Γ(j − m − nq)

, (A1)

has the asymptotic order O
(

j2nq+2) as j → ∞, ∀rl nq.

Proof. We analyze the asymptotic behavior of the expression as j → ∞ using Stirling’s
approximation for the Gamma function:

Γ(z) ≈
√

2π zz− 1
2 e−z ∀rl z.
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By also realizing that (j − m)! = Γ(j − m + 1), we have

Γ(j − m + 1) ≈
√

2π jj−m+ 1
2 e−j,

Γ(j + m + nq + 2λ + 1) ≈
√

2π (j + nq)
j+m+nq+2λ+ 1

2 e−j−nq ,

Γ(j + m + 2λ) ≈
√

2π jj+m+2λ− 1
2 e−j,

Γ(j − m − nq) ≈
√

2π (j − nq)
j−m−nq− 1

2 enq−j.

Since (j ± nq)k ≈ jk(1 ± nq
j )

k ≈ jke±knq/j ∀rl j, we can write the key ratio (A1) as follows:

Γ(j − m + 1)Γ(j + m + nq + 2λ + 1)
Γ(j + m + 2λ)Γ(j − m − nq)

≈ jj−m+ 1
2 (j + nq)

j+m+nq+2λ+ 1
2

jj+m+2λ− 1
2 (j − nq)

j−m−nq− 1
2

e−2nq

≈ jj−m+ 1
2 jj+m+nq+2λ+ 1

2 e(j+m+nq+2λ+ 1
2 )nq/j

jj+m+2λ− 1
2 jj−m−nq− 1

2 e−(j−m−nq− 1
2 )nq/j

e−2nq

= e
2λnq

j j2+2nq = O
(

j2nq+2
)

, as j → ∞, ∀rl nq.

The following lemma is useful in analyzing the error bound of Theorem 5.

Lemma A2. Let λ > − 1
2 and m ≥ 1 be an integer. The function

E(j) = j−2λ−2m+1(j − m − nq)
−j+m+nq+

1
2 (j + nq)

j+2λ+m+nq+
1
2 ,

is strictly increasing with j ∀j ≥ m + nq + 1 ∀rl nq.

Proof. Suppose that the assumptions of the lemma hold true. We show first that the
logarithmic derivative of E(j) is positive ∀j ≥ m + nq + 1. To this end, take the natural
logarithm

ln E(j) = A ln j + B ln(j − m − nq) + C ln(j + nq),

where

A = −2λ − 2m + 1,

B = −j + m + nq +
1
2 ,

C = j + 2λ + m + nq +
1
2 .

Differentiating with respect to j yields

∂j ln E(j) =
A
j
− ln(j − m − nq) +

B
j − m − nq

+ ln(j + nq) +
C

j + nq

= ln
(

j + nq

j − m − nq

)
+

A
j
+

B
j − m − nq

+
C

j + nq
.

For j ≥ m + nq + 1, we have

• ln
(

j + nq

j − m − nq

)
> 0, since

j + nq

j − m − nq
> 1.

•
A
j
→ 0−.
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•
B

j − m − nq
= − 1 +

1
2(j − m − nq)

∈ (−1,−1/2].

•
C

j + nq
= 1 +

2λ + m + 1/2
j + nq

= 1+.

The rational terms combine to give a positive quantity. Thus, the logarithmic derivative,
∂j ln E(j), is positive ∀j ≥ m + nq + 1. Since the natural logarithm is strictly increasing, it
follows that E(j) itself must be strictly increasing with j in that range.
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