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Preface

This Reprint presents a range of studies that comprehensively explore the breadth of the

techniques used in machine learning and highlighting the advances being made in the integration of

these approaches to medicine. The contributions in this Reprint cover various aspects of application

such as diagnosis, imaging, and assessing prognosis, collectively demonstrating the improvements

in diagnostic accuracy and medical decision making that can be achieved by machine learning

approaches.

In the field of diagnosis, Usategi and colleagues utilized the machine learning approach to

diagnose an exacerbation of systemic lupus erythematosus and distinguish it from an infection. Their

machine learning algorithm displayed superior sensitivity/specificity, as indicated by findings of area

under the curve (AUC) analysis, as well as a high accuracy. This remarkable piece of research has

already been viewed by almost 3,000 individuals, highlighting its groundbreaking nature. In addition,

the diagnosis of cardiac (left ventricular) hypertrophy is of considerable importance, as this condition

increases the risk of myocardial ischemia and fatal cardiac events. In relation to this, an evaluation of

the different machine learning efforts to diagnose left ventricular hypertrophy using electrocardiogram

has been presented, having already amassed over 2,000 views by individuals.

Zandi and colleagues developed a method to evaluate diagnostic precision and triage proficiency

in order to investigate the capabilities of AI chatbots for ophthalmic diagnosis and triage. They found

that chatbots were significantly better at ophthalmic triage than diagnosis and GPT-4 performed better

than Bard for appropriate triage. They therefore concluded that these tools present potential utility

in aiding patients or triage staff; however, they are not a replacement for professional ophthalmic

evaluation or advice.

Toleva and colleagues present a novel methodology for predicting whether an individual would

develop diabetes over time given a set of biological and social indicators and the proposed algorithms

create effective classification models to predict the risk of diabetes. In an article that has already

been viewed by almost 3,000 individuals, Metta and colleagues focus on the use of local Explainable

Artificial Intelligence (XAI) methods, particularly the Local Rule-Based Explanations (LORE) technique,

in healthcare. They concluded that XAI can significantly contribute to improved clinical decision

making.

With regard to imaging, Akmalbeck and colleagues propose an enhanced Residual Feature

Learning Network (RFLN) tailored for medical imaging. Their contributions include replacing the

residual local feature blocks with standard residual blocks, increasing the model depth for improved

feature extraction, and incorporating enhanced spatial attention mechanisms to refine the feature

selection. They conclude that enhanced RFLN effectively mitigates noise and also preserves critical

anatomical details, making it a promising solution for high-precision medical imaging applications.

Parres and colleagues set forth an improved radiology report by utilizing reinforcement learning

and text augmentation to tackle issues. Their approach is shown to significantly improve report quality

and variability, enhancing diagnostic precision and the quality of radiological interpretations.

In terms of assessing prognosis, Zubedi and colleagues used their algorithm to evaluate

the survival of cutaneous melanoma cancers. Comparing their proposed approach with existing

state-of-the-art techniques, they found significant improvements in several key aspects of accuracy

and efficiency. In addition, Thelagathoti and colleagues employed a machine learning-based ensemble

feature selection and nested cross-validation approach for miRNA biomarker discovery.

ix



Together, these approaches are guideposts on the road to expanding the utilization of machine

learning to improve disease diagnosis and patient care.

Simon W. Rabkin

Guest Editor
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Systemic Lupus Erythematosus: How Machine Learning Can
Help Distinguish between Infections and Flares
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Abstract: Systemic Lupus Erythematosus (SLE) is a multifaceted autoimmune ailment that impacts
multiple bodily systems and manifests with varied clinical manifestations. Early detection is con-
sidered the most effective way to save patients’ lives, but detecting severe SLE activity in its early
stages is proving to be a formidable challenge. Consequently, this work advocates the use of Machine
Learning (ML) algorithms for the diagnosis of SLE flares in the context of infections. In the pursuit of
this research, the Random Forest (RF) method has been employed due to its performance attributes.
With RF, our objective is to uncover patterns within the patient data. Multiple ML techniques have
been scrutinized within this investigation. The proposed system exhibited around a 7.49% enhance-
ment in accuracy when compared to k-Nearest Neighbors (KNN) algorithm. In contrast, the Support
Vector Machine (SVM), Binary Linear Discriminant Analysis (BLDA), Decision Trees (DT) and Linear
Regression (LR) methods demonstrated inferior performance, with respective values around 81%,
78%, 84% and 69%. It is noteworthy that the proposed method displayed a superior area under
the curve (AUC) and balanced accuracy (both around 94%) in comparison to other ML approaches.
These outcomes underscore the feasibility of crafting an automated diagnostic support method for
SLE patients grounded in ML systems.

Keywords: Systemic Lupus Erythematosus; medical treatment; machine learning; artificial intelli-
gence

1. Introduction

Systemic Lupus Erythematosus (SLE) is a chronic autoimmune affliction that affects
various physiological systems. It serves as an exemplary autoimmune disorder, and its
intricate nature poses significant challenges. The varied clinical presentations of SLE,
coupled with distinct complexities in both diagnosis and treatment, present a formidable
task for healthcare professionals. The emergence of multiple mechanisms results in the
breakdown of self-tolerance and subsequent organ dysfunction. Progress in elucidating the
molecular and cellular foundations of this condition, in conjunction with the identification
of genetic variations, contributes to a more profound comprehension of its pathogenesis,
offering promise for therapeutic advancements in the near future.

Commonly known as lupus, it varies in prevalence depending on geographic location,
ethnicity, and research study design. In the United States, an estimated 241 cases per
100,000 adults have been reported, while in Spain, the updated figure is 210 cases per
100,000 inhabitants [1]. The Lupus Foundation of America estimates that approximately
161,000 to 322,000 individuals in the U.S. are affected by SLE, translating to a prevalence

Bioengineering 2024, 11, 90. https://doi.org/10.3390/bioengineering11010090 https://www.mdpi.com/journal/bioengineering
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of approximately 0.05% to 0.1% of the population. Predominantly, it affects young, fertile
females and has resulted in increased mortality, although improved treatment modalities
have positively impacted survival rates. Notably, the onset of the disease frequently occurs
during the childbearing years. Certain demographic groups, including women, people of
color (particularly African American, Hispanic, and Asian populations), and individuals of
reproductive age, may experience higher prevalence rates. Simultaneously, several factors
contribute to a state of relative immunodeficiency in individuals with SLE, including
aging, the increasing use of targeted biologic therapies, and the chronic nature of the
disease. Furthermore, the presence of other comorbidities such as malignancy, infections,
malnutrition, and more further compounds the complexity of the disease. SLE is a complex
and heterogeneous condition, manifesting symptoms across a spectrum from mild to
severe. The precise etiology of SLE remains not fully understood, with its development
believed to result from a combination of genetic and environmental factors. Moreover,
the prevalence of SLE may undergo changes over time, influenced by factors such as
improvements in diagnostic methods and increased awareness of the disease. Collectively,
these multifaceted factors underscore the need for a comprehensive understanding of
the diverse epidemiological and clinical aspects of SLE to inform effective management
strategies and interventions.

Emerging evidence suggests that immunodeficiency and systemic autoimmunity
are interconnected manifestations of a shared underlying process [2]. Immune disorders
present as both susceptibility to infections and autoimmune symptoms, indicating a dual
impact on the immune system—reduced ability to clear infections and a disruption of self-
tolerance. On the other hand, infections are one of the most common causes of death and
are often associated with high levels of activity in SLE. Early diagnosis of immunodeficency
in SLE is the first step to contribute to detect infections, which are likely to be associated
with flares, allows prompt initiation of treatment, a better prognosis, and a reduction in
organ dysfunction [3–7]. In the absence of specific criteria that can differentiate between
a severe infection and an exacerbation in SLE, the development of clinical studies and
guidelines becomes imperative to facilitate a more precise classification of these patients [8].

In pursuit of this objective, Machine Learning (ML) draws inspiration from biolog-
ical nervous systems. Its fundamental principle revolves around presenting algorithms
with input data, subjecting them to computer analysis to predict output values within
an acceptable range of accuracy, recognizing data patterns and trends, and ultimately
assimilating knowledge from prior experiences [9]. ML delves into intricate data distribu-
tions, establishes probabilistic relationships, and identifies the minimum set of features
required to capture essential data patterns through repeated cross-validation, culminating
in the formulation of predictive models. Numerous studies have leveraged ML meth-
ods to develop more precise diagnostic algorithms for stratifying autoimmune diseases,
thereby preventing or mitigating observed morbidity [10]. ML methods consistently exhibit
superior performance compared to traditional statistical models [9,11–13]. A variety of
ML techniques, including Support Vector Machine (SVM), Binary Linear Discriminant
Analysis (BLDA), k-Nearest Neighbors (KNN), and Decision Trees (DT) [14–17], have been
employed for data analysis. These systems represent a selection of algorithms designed for
classifying data and processing information, and they have been explored in the context of
various autoimmune diseases, including SLE, rheumatoid arthritis, lupus tubulointerstitial
inflammation, and neuropsychiatric SLE [18–23].

In this paper, we present a system that utilizes the Random Forest (RF) method for
the analysis of immunodeficiency patterns in SLE patients. RF is an ML algorithm that
operates by constructing a multitude of decision trees for classification and prediction. For
its capacity to enhance accuracy and processing speed, and several notable advantages,
including a low computational burden, flexibility in model tuning, high scalability, and
algorithmic optimization, it serves as the cornerstone of this approach. Through the
application of RF, we aim to predict the immunodeficiency status of our patients, with
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the overarching goal of not only identifying optimal treatment options but also designing
personalized preventive measures and tailoring patient-specific follow-up strategies.

The paper is structured as follows. The first section outlines the topic, purpose, and
significance of this study. Second section introduces a detailed description of material and
methods. Third section entails the main findings of the study, including data, analysis,
and interpretation of the results obtained. Fourth section explores a discussion of these
results. And finally, the paper concludes with a summary of the research and some
concluding remarks.

2. Materials and Methods

2.1. Materials

The study cohort included 125 patients who met the American College of Rheumatol-
ogy criteria for SLE in 2019 [23]. These individuals were enrolled from the Autoimmune
Unit Registry at Valladolid Clinic Hospital (HCUV) between 2017 and 2019. The experi-
mental protocol adhered to the principles outlined in the Declaration of Helsinki (2008)
and received approval from the Clinical Research Ethics Committee of the HCUV. The
study was conducted in compliance with Spanish data protection laws (LO 15/1999) and
specifications (RD 1720/2007).

Consequently, a retrospective review of patients was systematically conducted, en-
compassing the collection of epidemiological, analytical, immunological, and clinical
characteristics. Relevant immunological parameters for evaluating immune competence
included leucocytes, neutrophils, CD3, CD4 and CD8 T-cell counts, CD19 B-cell and Natu-
ral Killer (NK) cell levels, serum immunoglobin isotypes (IgG, IgA, IgM), IgG subclasses,
and complement levels (C3, C4). Exclusion criteria involved patients with evidence of
active disease (SLEDAI >= 4) or significant residual proteinuria (>500 mg). Following this
selection strategy, 31 patients were excluded from the study.

Flow cytometry was performed to identify cell populations. Serum levels of im-
munoglobulin isotypes and IgG subclasses and complement were determined by neph-
elometry. Standardized reference ranges from the immunology laboratory of our in-
stitution were used to define control patients. Laboratory levels below the reference
ranges were considered as possible immunodeficiency status: leucocytes < 4000 cL/μL,
neutrophils < 1800 cL/μL, lymphocytes < 1500 cL/μL, CD3 T-cell < 700 cL/μL, CD19
B-cell < 100 cL/μL, CD4 T-cell < 300 cL/μL, CD8 T-cell < 200 cL/μL, NK cell < 90 cL/μL,
IgG < 870 mg/dL, IgG1 < 383 mg/dL, IgG2 < 242 mg/dL, IgG3 < 22 mg/dL,
IgG4 < 4 mg/dL, IgA < 117 mg/dL, IgM < 60 mg/dL, C3 < 90 mg/dL, C4 < 10 mg/dL;
special data for patients between 14 and 18 years old were: IgG1 < 315 mg/dL,
IgG2 < 242 mg/dL, IgG3 < 23 mg/dL, IgG4 < 11 mg/dL. Severe infection was defined as
infection which required hospitalization of seriousness, treatment needed or recommended
monitoring.

2.2. Method

This study introduces an ML method centered on the Random Forest (RF) algorithm.
RF, a widely adopted ML algorithm within supervised learning, is applied for both clas-
sification and regression challenges in ML. Renowned for its simplicity, versatility, and
robustness, RF embodies a potent ML algorithm with several noteworthy attributes: (1) op-
erative as an ensemble learning approach, it combines decisions from multiple models to
improve overall performance; (2) employing decision trees as base-level models; (3) miti-
gating overfitting by averaging results across several trees, thereby diminishing the risk
of developing complex models performing well on training data but poorly on new data;
(4) adeptly handling missing values by learning the optimal imputation value based on the
reduction in the utilized criterion; (5) furnishing a reliable estimate of the importance of
variables in the classification process; (6) demonstrating flexibility in its applicability to both
regression and classification tasks; and (7) executing swiftly with minimal preprocessing
requirements compared to alternative algorithms, capable of handling categorical variables
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without necessitating the creation of dummy variables. Consequently, RF is the chosen
algorithm for crafting the model aimed at detecting immunodeficiency patterns within the
SLE population [24,25].

Given a dataset S = {xj, yj}, where xj represents feature vectors and yj corresponds
to labels, the RF algorithm proceeds as follows:

For each of the n trees in the forest:

1. Draw a bootstrap sample Z∗ of size N from the training data.
2. Grow a decision tree Tb to the bootstrapped data by recursively repeating the following

steps for each terminal node of the tree, until the minimum node size nmin is reached:

(a) Select m variables at random from the p variables.
(b) Pick the best variable/split-point among the m variables.
(c) Split the node into two daughter nodes.

The prediction of the RF then aggregates the predictions of the n trees.
For regression, it is typically the average over all trees:

f̂r f (x) =
1
n

n

∑
b=1

Tb(x) (1)

For classification, it is determined by the majority vote:

Ĉr f (x) = majority{Ĉb(x)}n
1 (2)

Here, Tb(x) and Ĉb(x) represent the prediction of the b-th decision tree for regression
and classification, respectively.

The algorithm was designed and developed using Matlab software (MatLab 2023a, The
Mathworks Inc., Natick, MA, USA). Furthermore, the proposed system underwent analysis
alongside other ML systems prevalent in the scientific community. These included Support
Vector Machine (SVM) [14], Binary Linear Discriminant Analysis (BLDA) [26], Decision
Trees (DT) [15], Linear Regression (LR) [27,28], and k-Nearest Neighbor (KNN) [16] to
assess its performance. Within the ML system’s learning process, it is imperative to control
overtraining. To address this, the k-fold cross-validation technique was employed in
our case.

As depicted in Figure 1, each iteration involves the random classification of 70% of
the patients for training and 30% for testing and validation. Notably, patient data are not
shared between the training and validation subsets to prevent the algorithm from being
validated with data from the same patients used in the training phase.

Figure 1. The figure shows the processes followed in this study for the classification of patients
with SLE.
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Additionally, techniques for hyperparameter optimization have been applied to fine-
tune the hyperparameters of the methods. These hyperparameter values are adjusted
during the training phase to maximize the accuracy of the ML method. The hyperparame-
ters subjected to optimization encompass variables such as apprentices, neighbors, distance
metric, distance weight, kernel, box constraint level, and multiclass method, each tailored
to the specific requirements of the method in use. Bayesian optimization was chosen as the
technique to enhance the performance of the various methods by optimizing the selection
of diverse hyperparameters. Recall value and AUC were utilized as performance metrics.
The entire study was iterated 100 times to obtain mean values and standard deviations for
the process. Importantly, it should be emphasized that data used in each iteration were
randomized, mitigating noise in the samples and ensuring the acquisition of results with
statistically valid values [29].

2.3. Performance Evaluation

For this study, the most well-known metrics in artificial intelligence were implemented
to test the performance of the methods [29]: balanced accuracy (BA), recall, precision,
specificity (SP), degenerated Younden’s index (DYI) [29], receiver operating characteristic
(ROC) and area under the curve (AUC). The F1 score is established as:

F1score = 2
Precision · Recall

Precision + Recall
(3)

To test the classification performance of the model, the Matthew correlation coefficient
(MCC) has been used, which is described as follows:

MCC =
TP · TN − FP · FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(4)

where TP is the number of true positives, FP the number of false positives, TN the number
of true negatives and FN the number of false negatives. And finally, Cohen’s Kappa (CK),
CK is another metric that estimates the performance of the model [29].

3. Results

The study was conducted on a group of 125 patients diagnosed with SLE. Out of these,
94 patients met the specific criteria of having a SLEDAI-2K score of less than four points,
and were thus included in the study. Further analysis revealed that 77 of these 94 patients
showed signs of immunodeficiency. This means that approximately 81.9% of the patients
with a SLEDAI-2K score less than four exhibited signs of immunodeficiency.

The cohort of patients had a median age of 52 years, whilst the median age at diagnosis
was 38 years. The group was predominantly female, with 68 female patients compared to
9 male patients. The median duration of the disease among these patients was 14 years.
At the time of data collection (see Table 1), 50 patients (64.9%) were being treated with
corticosteroids at an average daily dose of 2.57 mg. In addition, 25 patients (34.9%) were
receiving immunosuppressants such as azathioprine, methotrexate, and mycophenolate.
Two patients were on belimumab treatment. Notably, none of the patients were undergoing
treatment with rituximab.

In turn, 41 patients (53.2%) exhibited patterns of immunodeficiency. Among these
patients, there were a total of 51 episodes of severe infections. The breakdown of these
infections is as follows:

• 17 patients were hospitalized due to lower respiratory infections.
• 4 patients were hospitalized for upper respiratory infections.
• 9 patients were treated for urinary infections.
• 10 patients had soft tissue infections.
• 4 patients suffered from digestive infections.
• 1 patient was diagnosed with tuberculous lymphadenitis.
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Table 1 provides an overview of the characteristics of patients exhibiting immunodefi-
ciency patterns. The patients under study demonstrated a decline in the count of several
immune cells. This was particularly evident in the case of NK cells, a component of the
innate immune system, and CD19 B-cells, a part of the adaptive immune system. The latter
includes IgG subclasses and IgM, both of which also showed a decrease. These patients
exhibited reduced levels of various immune cells, as illustrated in Table 1, with notable
decreases observed in NK cells within the innate immune system and CD19 B-cells within
the adaptive immune system, including IgG subclasses and IgM.

Table 1. Characteristics of patients with immunodeficiency patterns.

Characteristics of Patients with Immunodeficiency Patterns

N 77
Median age (years) 52

Female/Male 68/9
SLE evolution time (years) 14

Corticosteroids (n) 50 (64.9%)
Immunosuppressants (n) 25 (32.4%)
Hydroxychloroquine (n) 37 (48%)

Severe infections (n) 51

Immunodeficiency patterns (n)

Leucocytes (<4000 cL/μL ) 9
Lymphocytes (<1500 cL/μL) 28
Neutrophils (<1800 cL/μL) 9

CD3 (<700 cL/μL) 10
CD4 (<300 cL/μL) 6
CD8 (<200 cL/μL) 3
CD19 (<100 cL/μL) 23

NK (<90 cL/μL) 13
IgG (<870 mg/dL) 17

IgG1 (<383 mg/dL) 3
IgG2 (<242 mg/dL) 36
IgG3 (<22 mg/dL) 16
IgG4 (<4 mg/dL) 7
IgA (117 mg/dL) 8
IgM (<60 mg/dL) 20
C3 (<90 mg/dL) 13
C4 (<10 mg/dL) 6

The study employed a range of ML techniques to discern patterns of innate and
adaptive immunodeficiency within the SLE population. The findings derived from these
techniques, coupled with several ML algorithms for identifying immunodeficiency, are
detailed below. Performance metrics such as BA, recall, specificity, precision, and AUC
for the investigated ML methods are exhibited in Tables 2 and 3. Both tables provide a
detailed summary of performance metrics for different ML methods applied to variables
IgG, IgG2, IgG3, IgG4 (Table 2), and IgM, NK, CD19, CD3 (Table 3). These variables are
associated with immunoglobulins and immune cell populations, whilst the ML methods
evaluated include SVM, BLDA, DT, KNN, and the RF proposed method. The results offer
insights into how well each ML method performs in predicting or classifying the specified
immunological variables, providing a comparative analysis of their strengths in terms
of these metrics. The comprehensive nature of the data facilitates an informed selection
of the most suitable method for each variable based on the desired performance criteria.
Of particular note is the RF proposed method, which consistently outperforms across all
variables, achieving the highest accuracy. KNN also demonstrates strong performance,
particularly in IgM and CD3. LR were the lowest results obtained, whilst SVM, BLDA,
and DT generally exhibit competitive results but with slightly lower accuracy than RF and
KNN. In summary, the evaluation underscores the robust performance of the proposed
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method across the variables related to immunoglobulins and immune cell types, being the
preferred model for classifying SLE patients due to its consistently high accuracy, balanced
performance metrics, ensemble learning strengths, and robustness to noisy data observed.

Table 2. The table summarises the values of BA, recall, specificity, precision and AUC for variables
IgG, IgG2, IgG3 and IgG4.

IgG.

Methods BA Recall Specificity Precision AUC

SVM 80.85 80.95 80.76 80.28 80.00
BLDA 78.11 78.20 78.02 77.55 78.00
DT 83.85 83.95 83.75 83.25 83.00
LR 70.02 69.75 68.84 68.95 68.42
RF 93.96 94.07 93.85 93.29 94.00
KNN 86.38 86.48 86.28 85.76 86.00

IgG2.

Methods BA Recall Specificity Precision AUC

SVM 81.85 81.95 81.76 81.27 81.00
BLDA 77.37 77.46 77.28 76.82 77.00
DT 83.16 83.26 83.06 82.57 83.00
LR 69.51 69.24 68.33 68.44 68.42
RF 94.58 94.69 94.47 93.90 94.00
KNN 85.99 86.09 85.89 85.38 86.00

IgG3.

Methods BA Recall Specificity Precision AUC

SVM 81.56 81.66 81.47 80.98 81.00
BLDA 79.16 79.25 79.06 78.59 79.00
DT 83.82 83.92 83.72 83.22 83.00
LR 69.44 69.17 68.27 68.38 68.42
RF 94.42 94.53 94.31 93.75 94.00
KNN 86.57 86.67 86.47 85.95 86.00

IgG4.

Methods BA Recall Specificity Precision AUC

SVM 81.35 81.45 81.26 80.77 81.00
BLDA 78.93 79.02 78.83 78.36 78.00
DT 83.26 83.36 83.16 82.67 83.00
LR 70.15 69.88 68.97 69.08 68.42
RF 94.50 94.61 94.39 93.83 94.00
KNN 86.07 86.17 85.97 85.46 86.00

Table 3. The table summarises the values of BA, recall, specificity, precision and AUC for variables
IgM, NK, CD19 and CD3.

IgM.

Methods BA Recall Specificity Precision AUC

SVM 81.24 81.34 81.15 80.67 81.00
BLDA 78.11 78.20 78.02 77.55 78.00
DT 83.35 83.45 83.25 82.76 83.00
LR 69.86 69.59 68.68 68.79 68.42
RF 94.80 94.91 94.69 94.12 94.00
KNN 86.38 86.48 86.28 85.76 86.00
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Table 3. Cont.

NK.

Methods BA Recall Specificity Precision AUC

SVM 81.06 81.16 80.97 80.49 81.00
BLDA 77.52 77.61 77.43 76.97 77.00
DT 84.84 84.94 84.74 84.24 84.00
LR 69.51 69.24 68.33 68.44 68.42
RF 94.75 94.86 94.64 94.07 94.00
KNN 86.51 86.61 86.41 85.89 86.00

CD19.

Methods BA Recall Specificity Precision AUC

SVM 82.21 82.31 82.12 81.63 82.00
BLDA 76.89 76.98 76.80 76.34 76.00
DT 84.04 84.14 83.94 83.44 84.00
LR 69.65 69.38 68.47 68.58 68.42
RF 94.34 94.45 94.23 93.67 94.00
KNN 85.24 85.34 85.14 84.63 85.00

CD3.

Methods BA Recall Specificity Precision AUC

SVM 81.46 81.56 81.37 80.88 81.00
BLDA 77.21 77.30 77.12 76.66 77.00
DT 84.16 84.26 84.06 83.56 84.00
LR 70.41 70.14 69.22 69.33 68.42
RF 95.12 95.23 95.01 94.44 95.00
KNN 86.38 86.48 86.28 85.76 86.00

Moreover, Tables 4 and 5 present performance metrics, including F1 score, MCC, DYI,
and Kappa values, for the ML methods applied. The observed values provide insights
into the models’ effectiveness in classifying SLE patients. Thus, in Table 4 (variables
IgG, IgG2, IgG3, and IgG4), RF consistently outperforms again other methods across
all metrics, exhibiting high F1 score, MCC, DYI, and Kappa values. This suggests RF’s
robustness in achieving a balanced trade-off between precision and recall, capturing the
model’s ability to handle both positive and negative instances effectively. Again, KNN also
shows competitive performance, while SVM, BLDA, and DT demonstrate slightly lower
performance across these metrics, being LR the one which obtained the lowest performance
values. Similar trends are observed in the variables related to immune cell types in Table 5
(IgM, NK, CD19, and CD3), where RF again demonstrates superior performance, especially
notable in achieving high F1 score and DYI values. This reinforces RF’s suitability for
SLE classification, indicating its ability to maintain a balance between true positives, true
negatives, false positives, and false negatives. KNN also perform well, but RF consistently
stands out as the top-performing model across the diverse set of variables.

For a comprehensive view of the trade-off between the true/false positive rates be-
tween the proposed system and other ML methods, the Receiver Operating Characteristic
(ROC) curves were also generated. With this purpose in mind, the ROC curve is employed
to quantify sensitivity and 1-specificity at various threshold levels. As illustrated in Figure 2,
which shows the ROC curve for CD19 variable as example, the system that utilizes RF
generates the largest area under the curve, indicating a superior level of predictive accuracy.
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Table 4. The table presents the F1 score, MCC, DYI and Kappa values for variables IgG, IgG2, IgG3
and IgG4.

IgG.

Methods F1 score MCC DYI Kappa

SVM 80.61 71.74 80.85 71.98
BLDA 77.87 69.31 78.11 69.54
DT 83.60 74.40 83.85 74.65
LR 70.06 64.59 69.83 64.23
RF 93.68 83.37 93.96 83.65
KNN 86.12 76.65 86.38 76.90

IgG2.

Methods F1 score MCC DYI Kappa

SVM 81.61 72.63 81.85 72.87
BLDA 77.14 68.65 77.37 68.88
DT 82.91 73.79 83.16 74.04
LR 69.54 64.12 69.32 63.76
RF 94.30 83.92 94.58 84.20
KNN 85.73 76.30 85.99 76.55

IgG3.

Methods F1 score MCC DYI Kappa

SVM 81.32 72.37 81.56 72.61
BLDA 78.92 70.24 79.16 70.47
DT 83.57 74.38 83.82 74.62
LR 69.48 64.06 69.25 63.70
RF 94.14 83.78 94.42 84.06
KNN 86.31 76.81 86.57 77.07

IgG4.

Methods F1 score MCC DYI Kappa

SVM 81.11 72.19 81.35 72.43
BLDA 78.69 70.03 78.93 70.27
DT 83.01 73.88 83.26 74.13
LR 70.19 64.72 69.96 64.35
RF 94.22 83.85 94.50 84.13
KNN 85.81 76.37 86.07 76.62

Table 5. The table presents the F1 score, MCC, DYI and Kappa values for variables IgM, NK, CD19
and CD3.

IgM.

Methods F1 score MCC DYI Kappa

SVM 81.00 72.09 81.24 72.33
BLDA 77.87 69.31 78.11 69.54
DT 83.10 73.96 83.35 74.21
LR 69.90 64.45 69.67 64.08
RF 94.51 84.12 94.80 84.40
KNN 86.12 76.65 86.38 76.90

NK.

Methods F1 score MCC DYI Kappa

SVM 80.82 71.93 81.06 72.17
BLDA 77.29 68.78 77.52 69.01
DT 84.59 75.28 84.84 75.53
LR 69.54 64.12 69.32 63.76
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Table 5. Cont.

NK.

Methods F1 score MCC DYI Kappa

RF 94.46 84.07 94.75 84.35
KNN 86.25 76.76 86.51 77.02

CD19.

Methods F1 score MCC DYI Kappa

SVM 81.97 72.95 82.21 73.19
BLDA 76.66 68.23 76.89 68.45
DT 83.79 74.57 84.04 74.82
LR 69.68 64.25 69.45 63.89
RF 94.06 83.71 94.34 83.99
KNN 84.98 75.63 85.24 75.89

CD3.

Methods F1 score MCC DYI Kappa

SVM 81.22 72.28 81.46 72.52
BLDA 76.98 68.51 77.21 68.74
DT 83.91 74.68 84.16 74.93
LR 70.45 64.96 70.22 64.59
RF 94.83 84.40 95.12 84.68
KNN 86.12 76.65 86.38 76.90

Figure 2. Example of ROC curve for the five assessed ML predictors for variable CD19.

10



Bioengineering 2024, 11, 90

In the study conducted, it was also observed that the subsets used for training the
model exhibited high scores in the training metrics. When these models were tested, they
showed a noticeable decrease in their scores. Nonetheless, as depicted in Figures 3 and 4,
the RF system emerges as a well-calibrated model, attaining an optimal point in training
without succumbing to overfitting or underfitting. This approach consistently delivers
accurate predictions for novel inputs. The RF system’s superior performance is evident,
where it surpasses other methods by covering a larger area in the radar plots in both the
training and testing phases.

Figure 3. The figure shows the radar plots of the variables IgG, IgG2, IgG3 and IgG4, respectively.

11



Bioengineering 2024, 11, 90

Figure 4. The figure shows the radar plots of the variables IgM, NK, CD19 and CD3, respectively.

4. Discussion

The task of managing patients with SLE is crucial in order to reduce the risk of irre-
versible organ damage [30,31]. This is not only vital for maintaining the health-related
quality of life of the patients [32,33], but also for managing the direct costs associated with
the treatment of SLE [34,35]. However, this task presents significant challenges due to
the heterogeneous nature of SLE, which is characterized by variations in disease progres-
sion [36,37]. There is therefore an urgent need to improve the accuracy and classification
of SLE flares, taking into account that the trigger of activity may be an infection in a
situation of immunodeficiency. Numerous studies have been conducted to address this
need, including recent research that has emerged over the last few years [31,33]. These
studies have emphasized potential treatments for severe lupus manifestations such as
lupus nephritis [31]. Despite the existence of several therapeutic agents in SLE, the disease
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continues to cause significant morbidity [31]. It is encouraging that a variety of therapeutic
options are currently under investigation [31].

In clinical practice, the manifestation of a malar rash, coupled with the detection of
anti-DNA autoantibodies in patients, often guides healthcare professionals towards the
diagnosis of SLE [38,39]. It is noteworthy that SLE is characterized by a significant degree
of phenotypic diversity, which includes both systemic and localized forms. The evolution
of immunological and clinical features over time underscores the dynamic nature of this
disease [33,40].

A multitude of models have been established to estimate the probability of SLE
occurrence, providing a degree of confidence in differentiating it from other rheumatolog-
ical disorders. These models leverage unsupervised clustering based on the nature and
abundance of features, mirroring diagnostic reasoning, especially during initial patient
consultations [41,42]. Certain models incorporate gene analysis techniques to improve
the classification of SLE patients [19]. Recent research has delved into the utilization of
machine learning techniques for SLE analysis, customizing their methodologies to the
specific dataset under investigation [22,43,44]. For example, Jorge et al. [20] utilized ML
techniques to predict the hospitalization of SLE patients.

In the present study, the RF method, among all the ML classifiers employed, exhib-
ited the most robust classification performance. It demonstrated superior accuracy levels
and facilitated the identification of immunodeficiency patterns within the SLE popula-
tion. This method offers scalability, rapid execution, and other beneficial features that
enhance its classification capabilities [45]. ML models possess the capability to evaluate
multiple variables and their interrelationships concurrently, accommodating non-linear
patterns in the development of predictive systems [45]. Furthermore, we conducted a com-
parative analysis of our proposed system’s performance against various ML algorithms
documented in Tables 2–5. Notably, the RF method exhibited a substantial improvement,
outperforming DT, BLDA and SVM, which demonstrated lower performance. Whilst the
KNN method closely approached our proposed method, achieving AUC = 86% and Recall
= 86%, RF demonstrated superior performance, surpassing both metrics with remarkable
values of AUC and Recall, reaching around 94%. This notable improvement highlights
the efficacy of the RF method in capturing complex patterns and enhancing the overall
predictive capabilities.

Additionally, Figures 3 and 4 illustrate a well-balanced performance graph for our
proposed system, indicating minimal disparities between training and testing phases
and no signs of overfitting. This establishes the system as a dependable tool, facilitating
automated analysis to aid in the classification of SLE patients. Our results affirm the efficacy
of the RF system in precisely predicting SLE patients, establishing it as a valuable tool for
supporting SLE diagnosis.

5. Conclusions

In conclusion, due to the complexity of this elusive autoimmune disease, the use of ML
algorithms such as RF is critical for the classification and rapid detection of patients with
SLE flares. SLE presents with a range of challenging symptoms that are particularly difficult
to diagnose accurately in its early stages. The intricate relationship between infections and
autoimmunity in SLE underscores the critical need for preventative measures and the early
detection of infections in SLE patients exhibiting heightened susceptibility. This integrated
approach aims to address the multifaceted challenges of SLE, providing a more holistic
understanding for improved patient care.

RF’s proficiency in handling diverse datasets and extracting intricate patterns makes
it well-suited for identifying subtle indicators of SLE. The algorithm’s swift information
processing enables quick detection, allowing for timely intervention and personalized
treatment plans for SLE patients. Given the rarity and importance of SLE, the use of RF
and similar ML approaches not only improves the diagnostic accuracy of SLE activity, but
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also contributes to improved patient outcomes, long-term monitoring, and a more effective
healthcare management strategy for this devastating disease.

Thus, this investigation delves into the optimal ML technique for identifying patterns
of immunodeficiency within the SLE population. It establishes that an ML system serves
as a highly accurate tool for identifying diminished levels of immune parameters in indi-
viduals at a significantly elevated risk of experiencing both infections and, consequently,
SLE flares. Moreover, the RF-based system proposed surpasses the performance of other
studies, evident in a larger AUC, thereby affirming its superior predictive accuracy.
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Abstract: Background: Left ventricular hypertrophy (LVH) is a powerful predictor of future car-
diovascular events. Objectives: The objectives of this study were to conduct a systematic review of
machine learning (ML) algorithms for the identification of LVH and compare them with respect to
the classical features of test sensitivity, specificity, accuracy, ROC and the traditional ECG criteria for
LVH. Methods: A search string was constructed with the operators “left ventricular hypertrophy,
electrocardiogram” AND machine learning; then, Medline and PubMed were systematically searched.
Results: There were 14 studies that examined the detection of LVH utilizing the ECG and utilized at
least one ML approach. ML approaches encompassed support vector machines, logistic regression,
Random Forest, GLMNet, Gradient Boosting Machine, XGBoost, AdaBoost, ensemble neural net-
works, convolutional neural networks, deep neural networks and a back-propagation neural network.
Sensitivity ranged from 0.29 to 0.966 and specificity ranged from 0.53 to 0.99. A comparison with
the classical ECG criteria for LVH was performed in nine studies. ML algorithms were universally
more sensitive than the Cornell voltage, Cornell product, Sokolow-Lyons or Romhilt-Estes criteria.
However, none of the ML algorithms had meaningfully better specificity, and four were worse. Many
of the ML algorithms included a large number of clinical (age, sex, height, weight), laboratory and
detailed ECG waveform data (P, QRS and T wave), making them difficult to utilize in a clinical
screening situation. Conclusions: There are over a dozen different ML algorithms for the detection
of LVH on a 12-lead ECG that use various ECG signal analyses and/or the inclusion of clinical
and laboratory variables. Most improved in terms of sensitivity, but most also failed to outperform
specificity compared to the classic ECG criteria. ML algorithms should be compared or tested on the
same (standard) database.

Keywords: left ventricular hypertrophy; electrocardiogram; machine learning; artificial intelligence

1. Introduction

A number of different groups have proposed machine learning models to evaluate
ECG with or without additional clinical and laboratory data to construct an approach to
identify left ventricular hypertrophy (LVH). LVH, or an increased left ventricular mass,
is a powerful predictor of future cardiovascular events [1–3]. LVH can serve as a marker
for the severity of (occult) cardiovascular disease, thereby identifying an increased risk of
stroke or, more directly, by limiting myocardial perfusion, leading to myocardial ischemia
and serious cardiac arrhythmias [4–8]. The ECG has been used for decades as an indicator
of the presence of LVH, with increased QRS voltage being considered to be a marker for
increased left ventricular mass [9–16]. Although the ECG QRS voltage criteria are not a
highly sensitive indicator of LVH [17–25], the importance of predicting the presence of LVH
and the imperative of cost efficiency, i.e., utilization of a low-cost ECG compared to a more
expensive echocardiogram or MRI, has focused attention on how to extract more precise
indicators of LVH from ECGs. This imperative is underscored by the use of a 12-lead ECG
as part of the basic assessment of patients with cardiovascular disease [26,27].

Bioengineering 2024, 11, 489. https://doi.org/10.3390/bioengineering11050489 https://www.mdpi.com/journal/bioengineering
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Because of the importance of LVH identification, the ML disparate approaches and the
variables considered in each approach, a review of this field has become increasingly needed.

A meta-analysis, to construct a single estimate or effect size, is not realistic in fields
such as machine learning, when different input variables and analytic techniques are
employed by utilizing different algorithms on different datasets. Hence, an in-depth review
is the best approach to evaluate different ML algorithms. The objectives of this study were to
conduct a review of machine learning algorithms for the identification of LVH with respect
to the classical features of sensitivity, specificity and accuracy. It also aimed to assess how
each ML algorithm compares to the traditional ECG criteria for LVH, specifically Cornell
voltage [13], Cornell product [28], Sokolow-Lyons [9] and Romhilt-Estes [29] criteria.

2. Methods

2.1. Literature Search

A search string was constructed using terms connected with Boolean operators “left
ventricular hypertrophy AND electrocardiogram or ECG” AND machine learning to iden-
tify articles reporting a machine learning approach for the diagnosis of LVH. Medline and
PubMed were systematically searched from their date of inception through to 31 October
2023. Preferred Reporting Items for Reviews and Meta-Analysis (PRISMA) was used to
conduct the search [30] (Supplementary Figure S1).

Article titles and abstracts were assessed for full-text review. Papers on hypertrophic
obstructive cardiomyopathy were excluded because this entity represents an asymmetric
cardiac hypertrophy, which would alter ECG voltage in a different manner. The exclusion
criteria were as follows: non-English studies, non-primary studies, studies without full
texts, studies that have insufficient data for analysis, non-human studies and studies
unrelated to the investigated topic. The review was not registered, and protocol is not
available for access.

2.2. Data Extraction and Classification

Data extraction was performed by one reviewer. The following items were collected
from each article: author, year of publication, recruitment center or clinical trial sampled,
sample size, age and sex of participants, definition of LVH and its method of assessment.
Reported sensitivity, specificity, positive predictive value, negative predictive value, area
under the receiver operating curve (ROC), overall accuracy and F1 score were extracted.
Input variables and the ML techniques utilized were also extracted.

3. Results

There were 14 studies that examined the detection of left ventricular hypertrophy
with an approach utilizing the ECG and utilized at least one machine language approach
(Table 1). Some details of the study population characteristics and input variables are
summarized in Table 1.

Lin and Liu evaluated data from 2196 men, aged 17 to 45 years of age, who were in
the military, and used the support vector machine (SVM) classifier as the machine learning
method [31]. The prevalence of echocardiographic LVH was about 6.5%. Thirty-one input
variables were utilized that included three clinical ones, age, body height and body weight,
and 28 ECG parameters, such as heart rate, the durations of P wave, PR interval, QRS
interval, QT interval and QTc interval in Lead II and the axes of the P, QRS and T waves in
Lead II, and the voltages of R waves in all Limb Leads I, II, III, aVR, aVL, aVF and S wave
in Lead aVL, and the voltages of R and S waves in all precordial leads V1–V6 [31]. The
model had high sensitivity (86.7%).
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vč
ik

et
al

.,
20

21
[3

7]
G

en
er

al
po

pu
la

ti
on

Be
lg

iu
m

14
07

49
51

Ec
ho

ca
rd

io
gr

am
>1

15
g/

m
2

(m
en

)
19

%

67
va

ri
ab

le
s

in
cl

ud
in

g
cl

in
ic

al
,E

C
G

on
se

ts
,a

m
pl

it
ud

es
an

d
in

te
rv

al
s

of
P

w
av

es
,Q

R
S-

co
m

pl
ex

es
,a

nd
T

w
av

e
as

w
el

la
s

LR
,X

G
Bo

os
t,

R
an

do
m

Fo
re

st
,A

da
Bo

os
t,

Su
pp

or
t

Ve
ct

or
M

ac
hi

ne
s

or
95

g/
m

2 (w
om

en
).

bl
oo

d
co

un
t,

bl
oo

d
gl

uc
os

e,
lip

id
pr

ofi
le

,h
or

m
on

es
(p

la
sm

a
re

ni
n,

le
pt

in
,i

ns
ul

in
,a

ld
os

te
ro

ne
,a

nd
co

rt
is

ol
),

m
in

er
al

s,

A
ng

el
ak

ie
ta

l.
20

21
[3

8]
N

A
G

re
ec

e
52

8
44

61
Ec

ho
ca

rd
io

gr
am

>1
15

g/
m

2

(m
en

)
16

.8
%

cl
in

ic
al

va
ri

ab
le

s
(s

ex
,a

ge
,B

M
Ic

la
ss

,
BS

A
,h

yp
er

te
ns

io
n,

an
d

he
ig

ht

19



Bioengineering 2024, 11, 489
T

a
b

le
1

.
C

on
t.

A
u

th
o

rs
P

o
p

u
la

ti
o

n
C

o
u

n
tr

y
S

a
m

p
le

S
iz

e
S

e
x

(%
M

)
A

g
e

(y
rs

)
M

e
th

o
d

L
V

H
D

e
fi

n
it

io
n

L
V

H
L

V
H

V
a
ri

a
b

le
s

M
a
ch

in
e

L
e
a
rn

in
g

>9
5

g/
m

2
(w

om
en

)
26

ch
os

en
EC

G
-d

er
iv

ed
fe

at
ur

es
R

an
do

m
Fo

re
st

Li
m

et
al

.,
20

21
[3

9]
M

ili
ta

ry
Si

ng
ap

or
e

17
,3

10
10

0
18

Ec
ho

ca
rd

io
gr

am
>1

15
g/

m
2

(m
en

)
0.

8%
cl

in
ic

al
va

ri
ab

le
s

w
er

e:
bo

dy
w

ei
gh

t,
he

ig
ht

,b
od

y
fa

tp
er

ce
nt

ag
e,

an
d

sy
st

ol
ic

bl
oo

d
pr

es
su

re

Lo
gi

st
ic

R
eg

re
ss

io
n,

G
LM

N
et

,R
an

do
m

Fo
re

st
s,

G
ra

di
en

tB
oo

st
in

g
M

ac
hi

ne
s

EC
G

va
ri

ab
le

s
in

cl
ud

ed
:Q

T
in

te
rv

al
,

m
ea

n
Q

R
S

du
ra

ti
on

an
d

R
w

av
e

in
le

ad
I

Z
ha

o
et

al
.,

20
22

[4
0]

H
os

pi
ta

l
ba

se
d

C
hi

na
31

20
42

65
Ec

ho
ca

rd
io

gr
am

>1
15

g/
m

2

(m
en

)
56

%
un

ce
rt

ai
n

C
N

N

>9
5

g/
m

2
(w

om
en

).
La

b:
H

gb
,P

LT
,l

ip
id

s,
cr

ea
ti

ni
ne

,N
a,

K

Sa
m

m
an

i
et

al
.,

20
22

[4
1]

H
os

pi
ta

l
ba

se
d

Th
e

N
et

he
r-

la
nd

s
24

56
55

61
Ec

ho
ca

rd
io

gr
am

>1
15

g/
m

2

(m
en

)
0.

8%
ag

e,
sy

st
ol

ic
bl

oo
d

pr
es

su
re

an
d

bo
dy

su
rf

ac
e

ar
ea

X
G

Bo
os

t

>9
5

g/
m

2
(w

om
en

).

20
EC

G
da

ta
:p

,Q
R

S
an

d
T

w
av

e
ax

es
,p

r,
Q

R
S,

Q
T

an
d

Q
Tc

du
ra

ti
on

s,
pe

ak
am

pl
it

ud
es

of
p,

Q
,R

,S
an

d
T

w
av

es

K
ok

ub
o

et
al

.,
20

22
[4

2]
H

os
pi

ta
l

ba
se

d
Ja

pa
n

12
,0

08
64

57
Ec

ho
ca

rd
io

gr
am

>1
01

g/
m

2
fo

r
m

en
16

.5
%

19
fa

ct
or

s—
cl

in
ic

al
(a

ge
,s

ex
,h

ei
gh

t
an

d
w

ei
gh

t)
an

d
EC

G
fe

at
ur

es
(h

ea
rt

ra
te

,r
hy

th
m

,p
r

in
te

rv
al

,Q
T

in
te

rv
al

.
Q

R
S

ax
is

,p
w

av
e

ax
is

EN
N

>8
5

g/
m

2
fo

r
w

om
en

as
w

el
la

s
Q

R
S

vo
lt

ag
es

in
le

ad
s

V
1,

V
2,

V
5

an
d

V
6

LR
,R

F

N
ad

er
ie

ta
l.,

20
23

[4
3]

U
K

da
ta

ba
se

U
K

37
,5

34
48

64
M

R
I

>7
0

g/
m

2

(m
en

)
1.

5%
C

lin
ic

al
—

bl
oo

d
pr

es
su

re
,d

ia
be

te
s

m
el

lit
us

,l
ip

id
s,

ci
ga

re
tt

e
an

d
al

co
ho

l
co

ns
um

pt
io

n

>5
5

g/
m

2
(w

om
en

)
23

EC
G

va
ri

ab
le

s
fr

om
le

ad
s

I,
II

,
V

1-
6

LR
,S

V
M

,R
F

Li
u

et
al

.,
20

23
[4

4]
M

ili
ta

ry
H

os
pi

ta
l

Ta
w

ai
n

95
2

90
Ec

ho
ca

rd
io

gr
am

>1
15

g/
m

2

(m
en

)
18

%

24
fe

at
ur

es
w

hi
ch

co
ns

is
te

d
of

R
pe

ak
an

d
S

va
lle

y
am

pl
it

ud
es

au
to

m
at

ic
al

ly
ob

ta
in

ed
fr

om
th

e
ou

tp
ut

of
EC

G
si

gn
al

D
ec

is
io

n
tr

ee
SV

M
an

d
Ba

ck
pr

op
ag

at
ed

N
eu

ra
l

N
et

w
or

k

20



Bioengineering 2024, 11, 489

Sparapani et al. evaluated 3774 participants from MESA (Multi-Ethnic Study of
Atherosclerosis), free of clinically apparent cardiovascular disease at enrollment, using
ECG and participant characteristics to predict LV mass from cardiac magnetic resonance
imaging [32]. There were four global ECG measurements (PR interval, P axis, QRS interval
and QRS axis) plus 552 amplitude and duration measurements per ECG, which resulted in
556 ECG variables. The machine learning technique Bayesian Additive Regression Trees
(BART) was used [32]. This model showed the highest sensitivity (29.0%), greater than the
other criteria, including the Sokolow-Lyon criterion (21.7%), Peguero-Lo Presti (14.5%),
Cornell voltage product (10.1%) and Cornell voltage (5.8%). The specificity was >93% for
all criteria [32].

Garza-Salazar et al. conducted an observational, retrospective case–control study that
included data from a representative sample of consecutive adult patients who underwent
an ECG and an echocardiogram at their institution [33]. They evaluated 432 patients, of
whom 47% had LVH [33]. The ECG variables included S-wave voltage and R-wave voltage
in all ECG leads (I, II, III, aVL, aVF, aVR and V1-V6), P-wave duration and voltage in the
V1 lead, left atrial enlargement, QRS complex duration in lead V1, QRS axis (using leads
I and aVL), intrinsicoid deflection in lead V6 and “ST strain” (downward ST depression
and asymmetric T-wave inversion) [33]. The logistic regression (LR) model was used as
well as a supervised ML algorithm to create a multilevel binary decision tree, using the
ECG features that provided the greatest information to classify patients as having LVH [33].
Their five-level binary decision tree used only six predictive variables and had an accuracy
of 71.4%, a sensitivity of 79.6% and specificity of 53% [33].

De la Garza Salazar et al. reported another observational, retrospective, case–control
study on 439 patients who underwent an echocardiogram and an ECG [35]. Sixteen ECG
parameters, including T voltage in lead I, peak-to-peak QRS distance in aVL (>1.235 mV)
and peak-to-peak QRS distance in aVF (>0.178 mV), were fed into a C5.0 ML algorithm,
a method that defines a decision tree structure model (or criteria). Their model had an
accuracy of 70.5%, a sensitivity of 74.3% and a specificity of 68.7%.

Kwon et al. conducted a retrospective cohort study of 12,648 patients who underwent
12-lead ECG and echocardiography [34]. LVH was present in 21% of the group. An
ensemble neural network (ENN) combining a convolutional (CNN) and deep neural
network (DNN) was developed. Two other machine learning-based algorithms—LR and
RF—were also developed. The model was developed using 3162 ECGs from 3162 patients.
They used four clinical variables (age, sex, weight and height) and ECG features, such
as heart rate, presence of atrial fibrillation or flutter, QT interval, QTc, QRS duration, R-
wave axis and T-wave axis. In addition, they used raw ECG data with 5000 numbers
from each of the 12 leads. The area under the ROC curve for ENN was 0.880, which
significantly outperformed the Romhilt-Estes point system, Cornell voltage criteria and the
Sokolow-Lyon criteria [34].

Lim et al. examined the ECGs and echocardiograms of 17,310 male military conscripts,
aged 16 to 23 years [39]. The prevalence of echocardiographic LVH was 0.82%. Several
machine learning models (Logistic Regression, GLMNet, Random Forests and Gradient
Boosting Machines) were used. Their clinical variables were body weight, height, body
fat percentage and systolic blood pressure. Their ECG variables included QT interval,
mean QRS duration and R wave in lead I, ECG parameters not used in the classical criteria
but deemed important to the machine learning algorithms, both when ECG parameters
alone were included and when all predictive parameters were included. Considering AUC,
ML methods achieved superior performance: logistic regression (0.811), GLMNet (0.873),
Random Forest (0.824) and Gradient Boosting Machines (0.800).

Two studies used the UK Biobank with individuals aged 40 to 69 years, with a mean
age of 64 years, of which 52% were female, who had LV mass index assessed by MRI [36].
Khurshid et al. also tested a Massachusetts General/Brigham Hospital database, but
more information was available for the UK Biobank so it was selected in this analysis.
Khurshid et al. trained an ML model on 32, 239 participants [36]. The input variables were
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demographic factor, age, sex, race, height, weight and body mass index (BMI), plus ECG
waveform data. Their model had a sensitivity of 34% and a specificity of 96% [36].

Naderi et al. also explored the UK Biobank [43]. There was a low prevalence of
LVH, specifically 1.5%. Demographic factors included age, sex and race, and physical
measurements included height, weight and body mass index (BMI). Clinical variables
included blood pressure, and 23 ECG variables used the independent ECG leads (I, II,
V1–6). ECG variables consisted of ECG waveform data. Three supervised machine learning
algorithms, logistic regression (LR), support vector machine (SVM) and Random Forest
(RF), were used. For the SVM classifier, the Gaussian kernel function was applied to deal
with potential non-linear data. The three models were comparable in classifying LVH.
Classification of LVH with logistic regression had an accuracy of 81%, sensitivity of 70%,
specificity of 81% and an AUC of 0.86. Analysis with SVM showed 81% accuracy, sensitivity
of 72%, specificity of 81% and AUC of 0.85. RF analysis showed 72% accuracy, sensitivity
of 74%, specificity of 72% and AUC of 0.83 [43].

Sabovčik et al. evaluated 1407 individuals (mean age 51 years, 51% women), randomly
recruited from the general population, of whom an echocardiographically determined
LV mass was present in 19% [37]. A large number of clinical and laboratory variables
(blood count, blood glucose, lipids, renin activity, leptin, insulin, aldosterone and cortisol)
were used. From the ECG tracing, the onsets, amplitudes and intervals of P waves, QRS
complexes and T waves were extracted. They used five standard ML methods, XGBoost,
AdaBoost, RF, SVM and LR, to build classifiers based on 67 clinical, biochemical and
ECG variables. A high area under the ROC was found for XGBoost (0.785), RF classifiers
(0.783), AdaBoost (0.771), SVM (0.783) and LR (0.783) for predicting LVH. Age, body mass
index, different components of blood pressure, history of hypertension, antihypertensive
treatment and various electrocardiographic variables were the top features for predicting
LVH [37].

Angelaki et al. evaluated 528 patients with and without essential hypertension but no
other indications of cardiovascular disease [38]. LVH, assessed by echocardiogram, was
present in 16.8% of cases. Clinical variables were used. ECG waveform measurements
from each lead included peak voltages, area of the QRS complex, planar frontal QRS-T
angle and QTc duration. A Random Forest ML algorithm consisting of a collection of de-
correlated decision trees was used. They calculated SHAP (SHapley Additive exPlanations).
Hypertension, age and BMI were the most significant factors predicting the presence of
LVH. The area under the QRS complex summed over all 12 leads, the Planar Frontal
QRS-T angle and QTc duration, among others, was important in predicting risk. For the
identification of LVH, their model noted 87% accuracy, 75% specificity, 97% sensitivity and
area under the receiver operating curve (AUC/ROC) of 0.91 [38]. However, some of the
patients did not have LVH but rather concentric remodeling [38].

Kokubo et al. analyzed data from patients aged 18 years or older, with a mean age
64.2 years, 57% men, who had an echocardiogram and ECG at The University of Tokyo
Hospital [42]. LVH was defined as an LVMI > 101 g/m2 for men and > 85 g/m2 for
women, consistent with recommendations for the Japanese population, and was present in
16.5% of cases [42]. The data were derived from a training set of 12,008 persons. Nineteen
factors—clinical (age, sex, height and weight) and ECG features (heart rate, rhythm, pr
interval, QT interval, QRS axis, P wave axis as well as QRS voltages in leads V1, V2, V5
and V6)—were used as input variables. They developed an ensemble neural network
(ENN) model, which consisted of a convolutional neural network (CNN) and a deep neural
network (DNN) as well as a LR and RF approaches to detect LVH. For the detection of
LVH, the area under the ROC curve was 0.784 for the deep learning model, which was
significantly greater than that of the LR, RF or conventional ECG criteria [42].

Zhao et al. utilized data from 3120 patients who had an echocardiogram and an ECG
within one week after hospital admission [40]. The input variables included clinical factors,
such as age, sex and medical history; laboratory factors, such as hemoglobin, platelet count,
lipids, creatinine, Na, K+; ECG factors, such as R in AVL, V5 and V6, and S in V1 and
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V3. The ECG final dataset included 36,350 ECG segments in the control and LVH groups.
They constructed and built a deep learning (DL) model based on convolutional neural
network–long short-term memory (CNN-LSTM) to detect LVH. LVH was predicted by the
CNN-LSTM model with an area under the curve (AUC) of 0.62, with a sensitivity of 68%
and specificity of 57%. The CNN-LSTM model predicted LVH by 12-lead ECG performed
better in male than female patients [40].

Sammani et al. developed an ML algorithm for echocardiographically detected LVH
that utilized a variety of clinical factors (age, systolic blood pressure and body surface area)
and over 20 ECG data variables (P, QRS and T wave axes, PR, QRS, QT and QTc durations,
peak amplitudes of P, Q, R, S and T waves in three different ECG leads) [41]. There were
26,954 subjects (median age 61 years, 55% male), of whom 0.8% had LVH, and of those
with LVH, a very small number had amyloidosis; only two had Anderson-Fabry Disease.
XGBoost was the only machine learning logarithm used [41].

Liu et al. studied 952 individuals, mainly men, from a military hospital and used a
back-propagation neural network (BPN) on 24 features, which consisted of R peak and S
valley amplitudes, automatically obtained from the output of the ECG signal. This group
found a prevalence of 18% with echocardiographic LVH. Their combination of sensitivity
and specificity was the highest of any approach [44].

Sensitivity and specificity were reported in 13 of the 14 studies. There was a wide
range of sensitivity for the ML approaches across all studies. The range is from 0.29
to 0.966 (Figure 1). The highest sensitivity was 0.966 using the algorithm proposed by
Liu et al., 2023 [44], followed by 0.867 using the algorithm proposed by Lin and Liu [31],
followed by the one proposed by De la Garza-Salazar et al. [33]. Specificity ranged from
0.53 to 0.99 (Figure 2). The highest specificity was found using the algorithm proposed by
Sammani et al. [41], followed closely by that of Liu et al. [44] and then Khurshid et al. [36].

An overall assessment indicated by AUC was reported in nine studies and ranged
from 0.705 to 0.89, with the highest AUC reported for the algorithms of Angelaki et al. [38]
followed by Kwon et al. [34] (Figure 3). Overall accuracy was detailed in eight studies,
with the highest value of 0.961 from Liu et al. [44] followed by that of Angelaki et al. [38]
(Figure 4). The next best was that of Kwon et al. [34]. Positive and negative predictive
values were reported in less than one half, or only six studies (Figure 4). Four studies
presented their F1 score, which is a composite indicator of sensitivity, the true-positive rate,
taking into account false positives and false negatives. The values ranged from 0.294 [32]
to 0.3314 [31] and 0458–0.488 (depending on the ML method) [37] to 0.64, which was the
highest value and was reported by Zhao et al., 2022 [40].

Figure 1. The sensitivity of the ML algorithms for LVH. Lin & Lui 2020 [31], Sparapani et al., 2019 [32],
De la Gar-za-Salazar et al., 2020 [33], Kwon et al., 2020 [34], De la Gar-za-Salazar et al., 2021 [35],
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Khurshid et al., 2021 [36], Sabovčik et al., 2021 [37], Angelaki et al., 2021 [38], Lim et al., 2021 [39],
Zhao et al., 2022 [40], Sammani et al., 2022 [41], Kokubo et al., 2022 [42], Naderi et al., 2023 [43],
Liu et al., 2023 [44].

Figure 2. The specificity of the ML algorithms for LVH. Lin & Lui 2020 [31], Sparapani et al., 2019 [32],
De la Gar-za-Salazar et al., 2020 [33], Kwon et al., 2020 [34], De la Gar-za-Salazar et al., 2021 [35],
Khurshid et al., 2021 [36], Sabovčik et al., 2021 [37], Angelaki et al., 2021 [38], Lim et al., 2021 [39],
Zhao et al., 2022 [40], Sammani et al., 2022 [41], Kokubo et al., 2022 [42], Naderi et al., 2023 [43],
Liu et al., 2023 [44].

Figure 3. The AUC of the ML algorithms for LVH in those studies that reported such data.
Lin & Lui 2020 [31], Sparapani et al., 2019 [32], De la Gar-za-Salazar et al., 2020 [33], Kwon et al.,
2020 [34], De la Gar-za-Salazar et al., 2021 [35], Khurshid et al., 2021 [36], Sabovčik et al., 2021 [37],
Angelaki et al., 2021 [38], Lim et al., 2021 [39], Zhao et al., 2022 [40], Sammani et al., 2022 [41],
Kokubo et al., 2022 [42], Naderi et al., 2023 [43].
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Figure 4. The positive predictive value (PPV), negative predictive value (NPV) and accuracy
of the ML algorithms for LVH in those studies that reported such data. Lin & Lui 2020 [31],
Sparapani et al., 2019 [32], De la Gar-za-Salazar et al., 2020 [33], Kwon et al., 2020 [34],
De la Gar-za-Salazar et al., 2021 [35], Khurshid et al., 2021 [36], Sabovčik et al., 2021 [37],
Angelaki et al., 2021 [38], Lim et al., 2021 [39], Zhao et al., 2022 [40], Sammani et al., 2022 [41],
Kokubo et al., 2022 [42], Naderi et al., 2023 [43], Liu et al., 2023 [44].

Three studies used different ML algorithms and compared them. Kwon et al. found
that their AI algorithm based on ENN significantly outperformed the DNN, CNN, RF
and LR ones using AUC as the metric [34]. Using the same metric (AUC), Sabovcik et al.
reported that XGBoost and RF classifiers exhibited a high area under the receiver operating
characteristic curve, with values between 77.7% and 78.5%, for predicting LVH, and these
approaches were better than AdaBoost, support vector machines and logistic regression [37].
They did not use an ENN approach. Kokubo et al. found values of 78.4% for the deep
learning model (ENN), which was significantly higher than that of the logistic regression
and Random Forest methods [42]. Thus, based on the two studies that used ENN, ENN
offers a competitive advantage over other ML approaches [34,42].

Nine studies compared their ML approach to the classic ECG approach. The ML
algorithm of Zhao et al. outperformed Cornell voltage criteria (AUC 0.57, sensitivity
48%, specificity 72%) and Sokolow-Lyon voltage (AUC 0.51, sensitivity 14%, specificity
96%). [40]. The ML algorithm proposed by Liu et al. reported sensitivity, specificity and
accuracy values that were better than the Cornell voltage criteria, Sokolow-Lyons, Peguero,
Framingham and Gubner criteria [44]. Of the two ML algorithms presented by De la Garza-
Salazar et al., the first had better results than the Romhilt-Estes score, with an accuracy of
61.3%, a sensitivity of 23.2% and a specificity of 94.8% [33], while the second one had an
accuracy better than Romhilt-Estes (57%), Cornell (59%) and Sokolow-Lyon (53.9%) [35].

Eight studies reported better sensitivity for their ML algorithm compared to assess-
ment with the Romhilt-Estes point system, Cornell voltage criteria or Sokolow-Lyon criteria
(Figure 5). Four of the eight studies reported a specificity of equal to or better than the
classic ECG criteria [32,34,36,42] (Figure 6). For some ML algorithms, specificity was higher
than the classic ECG criteria, while others did not find a significant difference. Seven
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studies reported better AUC for their ML algorithm compared to an assessment with the
Romhilt-Estes point system, Cornell voltage criteria or Sokolow-Lyon criteria (Figure 7).

Figure 5. The sensitivity of the ML algorithms for LVH compared to standard ECG LVH
criteria in studies that reported such data. Lin & Lui 2020 [31], Sparapani et al., 2019 [32],
De la Gar-za-Salazar et al., 2020 [33], Kwon et al., 2020 [34], De la Gar-za-Salazar et al., 2021 [35],
Khurshid et al., 2021 [36], Zhao et al., 2022 [40], Kokubo et al., 2022 [42], Liu et al., 2023 [44].

Figure 6. The specificity of the ML algorithms for LVH compared to standard ECG LVH
criteria in studies that reported such data. Lin & Lui 2020 [31], Sparapani et al., 2019 [32],
De la Gar-za-Salazar et al., 2020 [33], De la Gar-za-Salazar et al., 2021 [35], Khurshid et al., 2021 [36],
Zhao et al., 2022 [40], Kokubo et al., 2022 [42], Liu et al., 2023 [44].
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Figure 7. The accuracy of the ML algorithms for LVH compared to standard ECG LVH crite-
ria in studies that reported such data. Lin & Lui 2020 [31], De la Gar-za-Salazar et al., 2020 [33],
Kwon et al., 2020 [34], De la Gar-za-Salazar et al., 2021 [35], Kokubo et al., 2022 [42],
Liu et al., 2023 [44].

Several studies listed the important factors in their ML models. Ignoring the QRS
voltage, Lin and Liu reported that there were other significant predictors of LVH, including
age, heart rate, PR interval, uncorrected QT interval and QRS axis in Lead II [31]. Systolic
and diastolic BP values were in the top-40 predictors of LVH in the algorithm proposed by
Naderi et al. [43]. Age and blood pressure were key predictors of LVH in the ML model of
Sammani et al., along with P- and T-wave characteristics [41]. Age, waist circumference,
different components of BP, history of hypertension, serum renin and antihypertensive
treatment were the top predictors of LVH in the algorithm of Sabovcik et al. [37].

4. Discussion

This study demonstrates the wide variety of machine learning techniques that have
been used to assess the presence of an increased left ventricular mass or cardiac hyper-
trophy. It demonstrates the differences in sensitivity, specificity and predictive accuracy
between ML algorithms. It further identifies large differences in the input variables between
algorithms. These differences underscore the necessity to conduct an in-depth evaluation.

The sources of datasets for left ventricular hypertrophy from the ECG in the literature
varied widely between studies. Two studies derived data from military recruits, who were
essentially young men with a low prevalence of LVH [31,39]. There were three population-
based studies, with two studies on the same UK database, with a greater prevalence of
LVH [32,36,37,43]. There were eight hospital-based studies, which had, on average, the
oldest mean age and the highest prevalence of LVH, with the proportion of men ranging
from 42 to 64% [33–35,38,40–42] and one military hospital with a predominance of men
(90%) [44]. Overall, the proportion of men and women varied greatly but mainly because
of the predominance of men in the studies of young military recruits and in a military
hospital. Young male military recruits may not be generalizable to the general population
or to older patients admitted to hospital. The prevalence of LVH between studies ranged
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from 0.8 to 48% and may have influenced the precision of LVH detection. The majority of
studies used echocardiograms to assess the prevalence of LVH, but the LVH criteria varied
between studies in Asian or European populations.

ML algorithms may be differentiated by the manner in which they select the boundary
that distinguishes different groupings. SVM was used by several groups [31,37,43]. The
SVM classifier can use linear or non-linear functions, although linear functions are usually
selected. The decision boundary in this method is called the maximum margin classifier,
maximum margin hyperplane or the maximum margin hyper plane [45]. Other studies
relied on logistic regression [33], a simpler method that tries to maximize the conditional
likelihoods; however, it is more prone to outliers than SVMs, which mostly prioritize the
points that are closest to the decision boundary. However, LR and SVM often yield similar
results [46]. Some studies used RF [37,39,43]. Random forests are a classification algorithm
using an ensemble of decision trees, such that each tree depends on the values of a random
vector sampled independently, and the generalizability depends on the strength of each
tree and the correlation between them [47]. In several clinical diagnosis conditions, RF
showed the highest accuracy followed by SVM [48].

Angelaki et al. used SHAP (SHapley Additive exPlanations), a game theoretic ap-
proach that connects optimal credit allocation with local explanations, using the classic
Shapley values from game theory and their related extensions [38]. A number of stud-
ies used multiple ML algorithms [37,39]. Some investigators employed deep learning
methods [34,40,42]. The explosive growth of deep learning for ECG data led to the con-
clusion that a hybrid architecture of a convolutional neural network and recurrent neural
network ensemble yielded the best results [49]. However, there are some new challenges
and problems related to interpretability, scalability, and efficiency, in addition to differences
in the perspectives of datasets and methods [49]. This hybrid combination has been used
in a few studies for LVH detection [34,42].

Liu et al. reported both very high sensitivity and specificity. Usually, the higher a test
sensitivity, the lower its specificity. They used detailed QRS analysis, but other studies
that did not attain as a high a sensitivity and specificity also used detailed ECG signal
analysis [43]; for example, Zhao et al. had 36,350 ECG segments in their final dataset [40],
and another ML algorithm used 552 amplitude and duration measurements per ECG [32].
The findings of Liu et al. [44] showed both very high sensitivity and specificity, but this may
relate to their decision that they had too few LVH cases “for designing a machine-learning
model. Therefore, the beat segmentation method, Pan-Tompkins technique was performed
to increase the ECG data amount to improve the detection performances” [44].

The crucial test of the ML algorithms is the comparative ability to predict LVH. The
best or highest sensitivity was the algorithm proposed by Liu et al. [44], followed by Lin
and Liu [31] and then by De la Garza-Salazar et al. [33]. If one wants a specific diagnosis,
the highest specificity was found using the algorithm proposed by Sammani et al. [41],
followed closely by that of Liu et al. [44] and then Khurshid et al. [36]. However, algorithms
with high specificity often have low sensitivity. Combining sensitivity and specificity using
ROC curves suggests the best approach would be the algorithms of Angelaki et al. [38]
followed by Kwon et al. [34]. Several studies compared different ML models to predict
LVH [34,39,42]. The differences were usually not large. Two studies compared at least four
ML approaches, and both found that ENN had the highest AUC; ENN offered a competitive
advantage over other ML approaches [34,42]. Kokopo et al. developed an ensemble neural
network (ENN) model, which consisted of a convolutional neural network (CNN) and a
deep neural network (DNN) [42]. Kwan et al. used a deep neural network (DNN). Based on
the two studies that used ENN, this ML approach (ENN) offered a competitive advantage
over other ML approaches [34,42].

Comparisons with classical ECG criteria for LVH showed that ML algorithms were usu-
ally more sensitive than the standard Cornell voltage [13], Cornell product [28], Sokolow-
Lyons [9] or Romhilt-Estes criteria [29] for the detection of LVH. In contrast, generally, the
ML algorithms were not more specific than the classic criteria, as four ML algorithms were
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no better and four were worse than these classic criteria for LVH. The ML algorithms of
Sparapani et al. [32], Kokubo et al. [42], Kwan et al. [34] and Khurshid et al. [36] had a
specificity equal to the classical ECG criteria.

A major theoretical issue with the ML algorithms for the detection of LVH is the
use of different kinds of input data. There are several lines of reasoning for the use of
ML for LVH diagnosis. The first is whether ML can improve LVH detection based on
QRS complexes and especially QRS voltage, which was historically the first attempt to
electrocardiographically identify LVH [9]. The second approach is to utilize all aspects of
the ECG signal. This was embodied by the work of Romhilt and Estes [29], who added QRS
axis and ST-T waves to QRS voltage to identify LVH. As such, ML algorithms can point to
the classical approach to justify the inclusion of other ECG factors. The incorporation of
clinical factors becomes more problematic in ECG assessment. When age and history of
hypertension are included, sensitivity increases markedly, but is that a fair test of the use of
ECGs in diagnosis? The addition of an extensive list of clinical and laboratory variables
further removes the question from the utility of the ECG but satisfies the question of how
to more accurately predict the presence of LVH. For example, Sabovčik et al. inputted a
large number of clinical and laboratory variables, including blood count, blood glucose,
lipids, renin activity, leptin, insulin, aldosterone and cortisol [37]. Zhao et al. included the
input variables of clinical factors, age, sex and medical history, as well as laboratory factors,
like hemoglobin, PLT, lipids, creatinine sodium and potassium [40]. The inclusion of such
extensive clinical and laboratory data precludes the use of the ECG as a screening test for
the presence of LVH, as all the clinical and other laboratory data, which are usually not
available, would have to be inputted to utilize the algorithms.

Studies on machine learning-based prediction models have been criticized because of
poor methodological quality and a high risk of bias [50]. The criticism relates to the frequent
failure ‘to report key information to help readers judge the methods and have a complete,
transparent and clear picture of the . . .content of the model’ [51]. This criticism has some
validity in the assessment of ML algorithms for the detection/diagnosis of LVH. These
kinds of models, because of their complexity, have been labelled as a ‘black box’, certainly
compared to regression-based models that can be more recognizable [51]. For example, it
is challenging to compare algorithms that state they are derived from 24 features, which
consist of R peak and S valley amplitudes automatically obtained from the output of an
ECG signal [44] versus raw ECG data, with 5000 numbers from each of the 12 leads [34].
Recognizing the limitations of each of the studies, it is worth discussing the implications of
the results. First, ML algorithms can improve the sensitivity of the ECG for the detection
of LVH. Improving sensitivity is important for a screening technique, and the ECG fulfills
that requirement. Second, simplicity warrants using an algorithm that only relies on ECG
variables to add to the ECG interpretation with respect to LVH. Third, algorithms that were
developed utilizing a neural network approach appear to offer a competitive advantage
over other ML approaches.

There are several limitations of this analysis that warrant discussion. First, the studies
usually utilized ML approaches from available ‘packages’. Wallace et al. cautioned that the
“near-ubiquitous reliance on ‘out of bag’ approaches may provide ‘misleading results” [52].
Second, many of the algorithms use ECG variables from most or all of the ECG leads, but
in LVH detection, the QRS criteria from multiple leads often provide similar data [53].
Third, not all publications provided the same outputs to compare accuracy, F1 or ROC data.
Fourth, it is difficult to compare and select the ‘best’ ML algorithms when one algorithm
employs an extensive list of laboratory variables and another uses only ECG factors. One is
left with the question whether one approach would be better if it also included an extensive
list of laboratory tests.

In summary, it is important to re-emphasize the potential of the ECG to identify LVH
because LVH is a significant predictor of cardiovascular events [3,8,19,24] and because
a better approach for LVH detection would be an important contribution. Several ML
algorithms improve the sensitivity, but most do not improve specificity for LVH diagnosis
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compared to classical ECG criteria. Future research is needed to obtain a more standardized
approach for the evaluation and comparison of all ML algorithms using the same dataset
to determine the competitive advantage of each and identify the best one. In addition,
the separation of LVH diagnosis into two stages—an ECG interpretation that uses an ML
algorithm and a second step with a simple application—can add further clinical variables.
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Abstract: In the modern era, patients often resort to the internet for answers to their health-related
concerns, and clinics face challenges to providing timely response to patient concerns. This has led
to a need to investigate the capabilities of AI chatbots for ophthalmic diagnosis and triage. In this
in silico study, 80 simulated patient complaints in ophthalmology with varying urgency levels and
clinical descriptors were entered into both ChatGPT and Bard in a systematic 3-step submission
process asking chatbots to triage, diagnose, and evaluate urgency. Three ophthalmologists graded
chatbot responses. Chatbots were significantly better at ophthalmic triage than diagnosis (90.0%
appropriate triage vs. 48.8% correct leading diagnosis; p < 0.001), and GPT-4 performed better than
Bard for appropriate triage recommendations (96.3% vs. 83.8%; p = 0.008), grader satisfaction for
patient use (81.3% vs. 55.0%; p < 0.001), and lower potential harm rates (6.3% vs. 20.0%; p = 0.010).
More descriptors improved the accuracy of diagnosis for both GPT-4 and Bard. These results indicate
that chatbots may not need to recognize the correct diagnosis to provide appropriate ophthalmic
triage, and there is a potential utility of these tools in aiding patients or triage staff; however, they are
not a replacement for professional ophthalmic evaluation or advice.

Keywords: artificial intelligence; ophthalmology; triage; chatbots; ChatGPT; bard; large language models

1. Introduction

Conversational artificial intelligence (AI) chatbots have gained significant momentum
over the last few years. OpenAI’s Chat Generative Pre-trained Transformer (ChatGPT),
released November 2022, and Google’s Bard, launched March 2023, are two chatbots that
are publicly available. These systems use large language models (LLMs) to process and
generate text similar to human language. LLMs constitute a growing field of technology
where computer models are pre-trained on large-scale data to then be adapted to a variety
of tasks [1]. While there are several LLMs available today, this work will focus its efforts on
ChatGPT and Bard due to their widespread presence and public availability. There are a
few key operational differences between the two systems. Namely, ChatGPT uses GPT-3.5
or GPT-4 chatbot models, whereas Bard uses PaLM 2 (Pathways Language Model 2). In
addition, Bard draws its data live and directly from Google, whereas ChatGPT operates
based on data from 2021, and must search papers to gather information [2,3].

These powerful tools are increasingly being considered for efficiency improvements
across medicine, including in such applications as supporting clinical practice, scientific
writing, image analysis, or immediate medical advice [4,5]. However, they are not without
risk. It has been noted that LLMs can produce biased or harmful content due to the vast
variability in quality of the data used to power them; in medicine in particular, the quality of
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chatbot output is of concern as it relates to patient care [6]. There has recently been a strong
interest in exploring the capabilities of these LLMs in medicine. Early work demonstrated
that OpenAI’s GPT-3.5 performed at or near passing for all three exams in the United States
Medical Licensing Exam (USMLE) series [7]. With newer iterations, GPT-4, released March
2023, was found to outperform GPT-3.5 in correctly answering USMLE questions involving
communication skills, ethics, empathy, and professionalism [8]. More recent studies have
compared GPT-4 and Bard in their performance of answering board-style questions in
various subspecialties, and these showed that GPT-4 was superior to Bard [9–11]. Within
ophthalmology, there has been an interest as well, where in one study GPT-4 demonstrated
an excellent performance, significantly better than GPT-3.5, in answering practice questions
to the Ophthalmology Knowledge Assessment Program (OKAP) examination [12].

As AI chatbots evolve, become more widely used by the general population, and
are integrated into common internet search engines, it is increasingly imperative to as-
sess their role in the patient care journey. It is a well-established trend that patients look
to the internet for seeking information about their health [13,14] and often turn to the
internet first for health advice before contacting health professionals [15,16]. Moreover,
patients often have long wait times when they do contact their health providers, which
is especially true in ophthalmology. A recent study projected that there will be a sizable
shortage of ophthalmologists relative to demand by the year 2035 [17], with limited oph-
thalmology coverage in emergency departments, especially in rural settings [18]. As a
result, non-ophthalmology providers, busy triage call centers, and patients may begin to
look to technological solutions such as AI chatbots that can support addressing ophthalmic
complaints and triage. It is therefore critical that the strengths and potential risks of these
tools are evaluated thoroughly.

Recent studies have begun to explore the capabilities of AI chatbots as ocular symptom
checkers or ophthalmic triage tools. Specifically, Pushpanathan et al. investigated accuracy
and quality of responses (without examining triage capabilities) for GPT-3.5, GPT-4, and
Bard in answering direct questions about specific ocular symptoms and found that GPT-4
had the highest accuracy [19]. Lim et al. benchmarked performance of ChatGPT and Bard
for myopia-related queries specifically, and also found that GPT-4.0 had superior accu-
racy [20]. Lyons et al. compared the triage capabilities of GPT-4, Bing Chat, and WebMD
Symptom Checker with ophthalmology trainees across 24 ophthalmic diagnoses. Notably,
GPT-4 performed comparably with the trainees in diagnostic and triage accuracy [21].

In this work, we aimed to evaluate and compare GPT-4 and Bard in their responses to
commonly encountered ophthalmic complaints corresponding to 40 critical diagnoses in
the form of simulated patient vignettes with targeted questions about proposed diagnoses
and triage recommendations. We additionally analyzed how prompt descriptiveness
impacts response quality with the aim to better understand how they would best be used
in future patient-oriented settings. As we gain a better understanding of the values and
limitations of this technology, we can move closer to determining how conversational
AI can potentially be implemented in day-to-day society for meeting the demands of
delivering timely, accurate, and safe ophthalmic health information for patient use and
decision making.

2. Materials and Methods

The Northwestern University Institutional Review Board determined that this in silico
research did not involve human subjects. At the time of data collection, GPT-4 was publicly
available by paid subscription through ChatGPT Plus, and Bard was freely accessible.

2.1. Creation of Simulated Patient Prompts in Ophthalmology

We systematically constructed common scenarios encountered in ophthalmology
from the perspective of a patient. Forty common diagnoses, including “cannot miss diag-
noses” [22], were identified and distributed evenly among four groups of ophthalmic
specialties: anterior segment/glaucoma, neuro-ophthalmology, pediatric ophthalmol-
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ogy/oculoplastics, and retina. An urgency level to seek care was designated for each
diagnosis as either same day, urgent (<1 week), or non-urgent (>1 week). For each diag-
nosis, two prompts were created, one with three key clinical descriptors and one with
five descriptors (Scheme 1). A descriptor was defined as a clinically relevant piece of
information that addressed any of the following: relevant history, onset, duration, laterality,
mention of specific ocular anatomy, vision, dyschromatopsia, pain, photophobia, visual
disturbances, or any other clinical characteristic. For each patient scenario, consensus
was reached among experienced ophthalmologists (P.B., A.E.B., and R.C.B) regarding both
intended diagnosis and urgency level based on expert opinion (Supplemental Tables S1–S4).

Scheme 1. Flowchart of overall study design of chatbot prompts.

2.2. Input to Artificial Intelligence Chatbots

The simulated patient prompts were entered into the AI chatbots between 14 June
2023 and 20 June 2023 using GPT-4 version 2023.05.24 and Bard version 2023.06.07. While
many chatbots exist, including Microsoft Bing AI, Claude AI, or Meta’s LLaMA, we chose
these two as they are among the most commonly used and referenced chatbots at the
time of publication, and they are publicly available. Each prompt was entered into the
chatbot using a standardized 3-part stepwise approach. First, the simulated patient scenario
followed by the question “What are the possible causes of this?” was entered to the chatbot.
The second entry was “Which of these is most likely?”. Finally, the third input was “How
soon should I seek medical attention?” Chatbot history was reset prior to starting each
3-part entry. These sequential questions were to ensure that the chatbot addressed a
differential diagnosis, leading diagnosis, and provided triage recommendations.

2.3. Grading of Chatbot Responses

To evaluate the response generated by the chatbots, a seven-question questionnaire
was designed using both a 4-point Likert scale and binary (yes/no) style questions (Sup-
plemental Table S5). Prior to grading, chatbot identifiers (e.g., “I’m an AI developed by
OpenAI”) were removed from chatbot responses to eliminate potential grader bias toward
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a particular chatbot. Two experienced ophthalmologists graded each chatbot conversation
for accuracy of diagnosis and appropriateness of triage recommendations (primary out-
comes), as well as relevance of differential diagnosis, satisfaction with quality of responses
for real patient use, and potential harm that responses may pose to real patients (secondary
outcomes). A third experienced ophthalmologist served as arbiter for any grading disagree-
ments. All graders were blinded to the chatbot source. For the purposes of this analysis,
responses of 3 or 4 on the 4-point Likert scale were treated as “agree” and responses of 1 or
2 were treated as “disagree” to provide binary data.

2.4. Statistical Analysis

Descriptive statistics were generated for all variables of interest where frequencies
along with percentages were reported. To compare the outcomes of interest between
ChatGPT and Bard, as well as between 5 and 3 descriptors, Pearson’s Chi-squared test or
Fisher’s exact test was used when appropriate. Sub-analyses for sub-specialty categories
and urgency levels were conducted using the same method. Logistic regression models
were applied to the primary outcomes with the degree of detail in prompt as the predictor,
and the models were fit separately for ChatGPT and Bard. Model performance was
estimated using Area under Curve (AUC) and receiver operating characteristic (ROC)
curves. All analyses were conducted using R version 4.3.1.

3. Results

Eighty unique entries were supplied to both GPT-4 and Bard, resulting in a total of
160 chatbot generated responses. 40 entries had 3 prompt descriptors and a counterpart
40 entries had 5 prompt descriptors. The 40 diagnoses were broken down into 4 sub-
specialty categories (10 general, 10 neuro-ophthalmology, 10 pediatrics/oculoplastics, and
10 retina) and 3 urgency levels (16 non-urgent, 13 urgent, and 11 same day) (Scheme 1).
The diagnosis rates (i.e., providing the correct diagnosis as the stated most likely cause of
the patient’s symptoms) for GPT-4 and Bard were 53.8% and 43.8%, respectively (p = 0.2).
Interestingly, both chatbots were significantly better at providing triage recommendations
than at providing the correct leading diagnosis (GPT-4: p < 0.001, Bard: p < 0.001). The
rates of generally appropriate triage recommendations for GPT-4 and Bard were 96.3% and
83.8%, respectively (p = 0.008) (Table 1).

Table 1. Primary and secondary outcomes of Bard and GPT-4.

Overall
N = 160 1

Bard
N = 80 1

GPT-4
N = 80 1 p-Value 2

Primary outcomes of Bard and GPT-4 overall

Correct diagnosis as most likely cause of symptoms 78
(48.75%)

35
(43.75%)

43
(53.75%) 0.2

Correct diagnosis somewhere in the chatbot conversation 125
(78.13%)

58
(72.50%)

67
(83.75%) 0.085

“Somewhat” or “completely” appropriate triage
recommendations

144
(90.00%)

67
(83.75%)

77
(96.25%) 0.008 *

“Completely” appropriate triage recommendations 123
(76.88%)

55
(68.75%)

68
(85.00%) 0.015 *

Secondary outcomes of Bard and GPT-4 overall

“Somewhat” or “very” relevant differential diagnosis 140
(87.50%)

66
(82.50%)

74
(92.50%) 0.056

Graders “somewhat” or “very” satisfied with quality of
chatbot response for actual patient use

109
(68.13%)

44
(55.00%)

65
(81.25%) <0.001 *

Potentially harmful for patients 21
(13.13%)

16
(20.00%)

5
(6.25%) 0.010 *

* p-value < 0.05. 1 N (%). 2 Pearson’s Chi-squared test between Bard and GPT-4.
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Secondary outcomes included relevance of differential diagnosis, grader satisfaction
with chatbot responses, and expert opinion as to whether the chatbot response could
pose harm if provided to an actual patient. Of all the 160 responses, the differential
diagnoses were generally relevant (87.5%). Additionally, graders indicated satisfaction
with 109 responses (68.1%); the satisfaction rate was significantly higher for responses from
GPT-4 than from Bard (81.3% vs. 55.0%, respectively; p < 0.001). Graders reported that 21 of
160 chatbot responses (13.1%) would pose harm if provided to an actual patient; GPT-4 had
a lower potential harm rate than Bard (6.3% vs. 20.0%; p = 0.010) (Table 1).

Additional sub-analyses were performed comparing the 3 and 5 descriptor cohorts.
Notably, increasing the degree of prompt descriptiveness resulted in significant improve-
ment in diagnosis rates for both GPT-4 and Bard (GPT-4: 42.5% vs. 65.0%, respectively;
p = 0.044, Bard: 32.5% vs. 55.0%, respectively; p = 0.043), whereas triage recommenda-
tions did not significantly improve (Table 2). However, the model performance of prompt
descriptiveness predicting appropriate triage for ChatGPT (AUC 0.587) was better than
Bard (AUC 0.523) (Supplemental Figure S1). Of note, increasing the number of descriptors
(from 3 to 5) resulted in significantly higher grader satisfaction for GPT-4 (70.0% vs. 92.5%;
p = 0.010), but not for Bard (47.5% vs. 62.5%; p = 0.2) (Table 2).

Table 2. Primary and secondary outcomes between 3 and 5 descriptors for Bard and GPT-4.

Bard GPT-4

3 Descriptors
N = 40 1

5 Descriptors
N = 40 1 p-Value 2 3 Descriptors

N = 40 1
5 Descriptors

N = 40 1 p-Value 3

Primary outcomes of Bard and GPT-4 overall

Correct diagnosis as most likely
cause of symptoms

13
(32.50%)

22
(55.00%) 0.043 * 17

(42.50%)
26

(65.00%) 0.044 *

Correct diagnosis somewhere in
the chatbot conversation

29
(72.50%)

29
(72.50%) >0.9 30

(75.00%)
37

(92.50%) 0.034 *

“Somewhat” or “completely”
appropriate triage
recommendations

33
(82.50%)

34
(85.00%) 0.8 38

(95.00%)
39

(97.50%) >0.9

“Completely” appropriate triage
recommendations

24
(60.00%)

31
(77.50%) 0.091 32

(80.00%)
36

(90.00%) 0.2

Secondary outcomes of Bard and GPT-4 overall

“Somewhat” or “very” relevant
differential diagnosis

35
(87.50%)

31
(77.50%) 0.2 36

(90.00%)
38

(95.00%) 0.7

Graders “somewhat” or “very”
satisfied with quality of chatbot
response for actual patient use

19
(47.50%)

25
(62.50%) 0.2 28

(70.00%)
37

(92.50%) 0.010 *

Potentially harmful for patients 10
(25.00%)

6
(15.00%) 0.3 5

(12.50%)
0

(0.00%) 0.055

* p-value < 0.05. 1 N (%). 2 Pearson’s Chi-squared test. 3 Fisher’s exact test; Pearson’s Chi-squared test.

Further sub-analyses were performed to compare GPT-4 with Bard and this demon-
strated that GPT-4 performed better than Bard in the 5 descriptor cohort when considering
the responses that listed the correct diagnosis anywhere within the chatbot response (92.5%
vs. 72.5%; p = 0.019). GPT-4 also performed significantly better than Bard in the 5 descriptor
cohort in generating relevant differential diagnoses (95.0% vs. 77.5%; p = 0.023). The
satisfaction rate was also significantly higher for GPT-4 than Bard (3 descriptor group:
70.0% vs. 47.5%; p = 0.041, 5 descriptor group: 92.5% vs. 62.5%; p = 0.001). Within the
5 descriptor cohort, the rate of potential to cause patient harm was zero for GPT-4 and
15.0% for Bard (p = 0.026) (Table 3).
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Table 3. Primary and secondary outcomes between Bard and GPT-4 for 3 and 5 descriptor cohorts.

3 Descriptors 5 Descriptors

Bard
N = 40 1

GPT-4
N = 40 1 p-Value 2 Bard

N = 40 1
GPT-4

N = 40 1 p-Value 2

Primary outcomes of Bard and GPT-4 overall

Correct diagnosis as most likely
cause of symptoms

13
(32.50%)

17
(42.50%) 0.4 22

(55.00%)
26

(65.00%) 0.4

Correct diagnosis somewhere in
the chatbot conversation

29
(72.50%)

30
(75.00%) 0.8 29

(72.50%)
37

(92.50%) 0.019 *

“Somewhat” or “completely”
appropriate triage
recommendations

33
(82.50%)

38
(95.00%) 0.2 34

(85.00%)
39

(97.50%) 0.11

“Completely” appropriate triage
recommendations

24
(60.00%)

32
(80.00%) 0.051 31

(77.50%)
36

(90.00%) 0.13

Secondary outcomes of Bard and GPT-4 overall

“Somewhat” or “very” relevant
differential diagnosis

35
(87.50%)

36
(90.00%) >0.9 31

(77.50%)
38

(95.00%) 0.023 *

Graders “somewhat” or “very”
satisfied with quality of chatbot
response for actual patient use

19
(47.50%)

28
(70.00%) 0.041 * 25

(62.50%)
37

(92.50%) 0.001 *

Potentially harmful for patients 10
(25.00%)

5
(12.50%) 0.2 6

(15.00%)
0

(0.00%) 0.026 *

* p-value < 0.05. 1 N (%). 2 Fisher’s exact test; Pearson’s Chi-squared test.

Additional sub-analyses of the GPT-4–5 descriptor cohort revealed that the chatbot
performed similarly for all outcome measures regardless of urgency level and subspecialty
of diagnosis (Supplemental Tables S6 and S7).

4. Discussion

To our knowledge, this is the first work to investigate both the diagnostic accuracy and
appropriateness of triage recommendations of GPT-4 and Bard in response to simulated
ophthalmic complaints of varying degrees of descriptiveness. It also uses the largest sample
size of responses. Overall, the chatbots were significantly better at ophthalmic triage than
at providing the correct diagnosis; notably, GPT-4 displayed high rates of appropriate
triage—which supports data found in another recent study [21]. Our work demonstrates
that GPT-4 performed significantly better than Bard in the domains of appropriate triage
recommendations, responses that experts were satisfied with for patient use, and responses
that were not considered to cause harm if given to real patients. While some of the results
were not statistically significant in the sub-analyses, this was likely due to the smaller
sample size. It should be highlighted, however, that in the 5 descriptor sub-analysis, GPT-4
performed significantly better than Bard in considering the correct diagnosis as either
the most likely diagnosis or as one of the possible diagnoses in the differential diagnosis
(92.5% vs. 72.5%; p = 0.019). This is in agreement with recent research demonstrating
the superiority of GPT-4 to Bard in correctly answering questions related to ocular symp-
toms [19] and myopia-related queries [20]. In addition, our work uniquely reveals that
increasing the detail of chatbot input (more descriptors) generally improved the quality of
output. It should be emphasized that the chatbots were able to provide appropriate triage
recommendations without necessarily recognizing the exact diagnosis which better lends
itself as an ophthalmic triage tool than as a diagnostic tool.

Another critical question to consider is the performance of these chatbots in the
context of do-not-miss diagnoses that are vision- or life-threatening, such as an oculomotor
nerve palsy, endophthalmitis, or acute angle closure crisis. In these cases, humans might
be trained to take extreme caution when giving guidance to patients, and adoption of
conversational AI tools in this space may depend on the responses in such cases. Here, we
examined the superior performing chatbot (GPT-4) under optimal conditions (5 descriptor
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prompts), and we found that all 11 entries with do-not-miss diagnoses resulted in generally
appropriate triage recommendations and responses that senior ophthalmologists were
satisfied with for patient use. Moreover, there were no responses (0 of 40) in the GPT-4–5
descriptor subgroup that were considered to be potentially harmful. This is particularly
valuable as we consider the potential applications of this technology for future patient
use, either as a self-inquiry tool or as an adjunct tool for medical staff to execute timely,
appropriate, and safe patient triage.

This study’s moderate sample size of chatbot responses is one of its many strengths.
We used a highly systematic approach to develop and input all chatbot entries, with chatbot
history being reset following each entry to eliminate the variable of chatbot growth over
the course of data collection. In addition, our 3-step approach to inputting entries for
each “conversation” attempted to take advantage of the conversational capabilities of these
chatbots. Lastly, the chatbot responses were all gathered within a one-week time-frame
during which all responses were generated from a single iteration of either GPT-4 or Bard,
then statistical analysis was performed.

Based on the results found in this work, chatbot responses in the current state of
technology are promising but not a sufficient substitute for professional medical advice, yet
only in a handful of chatbot responses, GPT-4 more often than Bard, were there such explicit
disclaimers. Some examples from GPT-4 include: “I’m an AI developed by OpenAI and
while I can help suggest some potential causes for your symptoms, I’m not a substitute for
professional medical advice”, “Please note that this advice does not substitute professional
medical advice. Always consult with a healthcare provider for medical concerns”, or
“Remember that while the internet can provide useful general advice, it’s no substitute for
the professional judgment of a healthcare provider who can evaluate your child in person”.
It should also be added that in less than half of the GPT-4 responses (28 of 80) and in only
one Bard response, was there a specific comment about being an AI; interestingly, Bard only
indicated itself as such when unable to respond [“I’m a text-based AI and can’t assist with
that.”]. In this work, we inputted the chatbot prompts from the perspective of a simulated
patient; in the future, it would be worthwhile to assess how chatbot responses would differ
if the chatbot was prompted to answer questions while identifying itself as an AI-generated
ophthalmic triage staff. Nonetheless, the chatbot’s recognition of self-limitations as an AI
and its recommendation to seek professional medical evaluation are important elements
that serve as safety checks to the general public who may already be using this technology
to answer their own health-related questions.

5. Limitations

Prior to considering the implementation of such technology for clinical use, further
studies with larger data sets should be performed. Another shortcoming of this study is
the relatively subjective definition of a “descriptor”, where some modifiers might be more
informative than others; nonetheless, our results overall do show that a more descriptive
chatbot prompt is desirable. A general concern of conversational AI that must also be
highlighted is the risk of generating “hallucinations”, seemingly accurate information that
are in fact false [23]. While our study found that chatbot responses, especially GPT-4,
were typically not harmful, we did not specifically investigate the number of hallucinatory
responses. The potential of generating convincing misinformation is a serious concern that
should not be taken lightly and should be further explored, especially as different iterations
of these software are developed.

6. Conclusions

In this work we have evaluated two AI chatbots for their use in ophthalmology;
however, as the usage of these tools increases over the coming years, it is imperative to
continue their evaluation. As future iterations of GPT-4, Bard, or other LLMs are published,
each of these should be tested anew. Additionally, more reviewers could assess a larger
sample size of chatbot responses in order to provide greater accountability for the variability
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in AI responses. In addition, the language of prompts can be more varied in future studies
to allow for variability from the user. Finally, more in-depth studies of chatbots’ use may
be performed over a longitudinal study following patients’ real-time diagnoses and the
chatbots’ capabilities in diagnosis and triage.

Another aspect of AI chatbots to study further includes incorporating images with
written text of patient concerns to assess how diagnostic accuracy and triage recommenda-
tions vary with the added variable of clinical photos. Given that ophthalmology is a highly
visual discipline, it would be interesting to assess how external photos of the eye (i.e., the
type of photo that a patient could realistically provide) in conjunction with clinical context
would impact chatbot responses.

While this work sheds light on the performance and potential utility of GPT-4 and Bard
in the domain of ophthalmic diagnostics and triage, the broader scientific understanding of
conversational AI in medicine is still in its infancy as there is an endless number of ways to
engage with these chatbots. Recognizing the optimal approach of feeding information into
the chatbot and evaluating the quality of the resultant response is imperative to advancing
towards real-world application of conversational AI for patient use, either as a self-triage
tool or as an adjunct triage tool for medical staff. Our results herein suggest that currently,
GPT-4 outperforms Bard and that a greater number of key clinical descriptors for chatbot
input is desirable. But only until we have established a full understanding of the strengths
and weaknesses of AI chatbots and have been able to consistently achieve a high level of
excellence in the quality of responses should we consider their incorporation in patient
care. As the world quickly moves towards greater use of conversational AI and a greater
need in clinical settings for technological solutions, the urgency for investigative studies
like this one will only increase.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/bioengineering11020120/s1, Table S1: Compilation of anterior
segment/glaucoma/comprehensive simulated patient complaints; Table S2: Compilation of neuro-
ophthalmology simulated patient complaints; Table S3: Compilation of pediatric/oculoplastic sim-
ulated patient complaints; Table S4: Compilation of retina simulated patient complaints; Table S5:
Questionnaire to grade chatbot responses; Table S6: Sub-analysis of primary and secondary outcomes
of GPT-4–5 descriptor cohort by urgency level; Table S7: Sub-analysis of primary and secondary
outcomes of GPT-4–5 descriptor cohort by subspecialty; Figure S1: Receiver operating characteristic
curves for Bard and GPT-4 in providing triage recommendations.

Author Contributions: Conceptualization: R.G.M.; Data curation: R.Z., J.D.F., M.D. and J.M.B.;
Funding acquisition: R.G.M.; Formal analysis: S.D.; Investigation: R.Z.; Methodology: R.Z., M.D.,
P.J.B., A.E.B., R.C.B., J.A.L. and R.G.M.; Project Administration: R.Z. and R.G.M.; Software: R ver-
sion 4.3.1; Supervision: R.G.M.; Validation: P.J.B., A.E.B. and R.C.B.; Visualization: R.Z. and R.G.M.;
Writing—original draft preparation: R.Z. and S.D.; Writing—review and editing: R.G.M. All authors
have read and agreed to the published version of the manuscript.

Funding: This work was funded in part by an unrestricted departmental grant from Research to
Prevent Blindness. JAL was supported by NIH grant K08 EY030923, R01 EY034486, and the Research
to Prevent Blindness Sybil B. Harrington Career Development Award for Macular Degeneration. The
funding agency had no role in study design, data collection and analysis, decision to publish, or
preparation of the manuscript.

Institutional Review Board Statement: The Institutional Review Board of Northwestern University
determined that this work was not human research and therefore did not require ethical approval.

Informed Consent Statement: Not applicable.

Data Availability Statement: The original contributions presented in the study are included in the
article/supplementary material, further inquiries can be directed to the corresponding author.

Conflicts of Interest: J.A.L. is a consultant for Genentech, Inc. R.C.B. is a cofounder of Stream Dx, Inc.
R.G.M. has received research support from Google Inc. No party had any role in study design, data
collection and analysis, decision to publish, or preparation of the manuscript.

40



Bioengineering 2024, 11, 120

References

1. Tian, S.; Jin, Q.; Yeganova, L.; Lai, P.-T.; Zhu, Q.; Chen, X.; Yang, Y.; Chen, Q.; Kim, W.; Comeau, D.C. Opportunities and challenges
for ChatGPT and large language models in biomedicine and health. Brief. Bioinform. 2024, 25, bbad493. [CrossRef]

2. Singh, S.K.; Kumar, S.; Mehra, P.S. Chat GPT & Google Bard AI: A Review. In Proceedings of the 2023 International Conference
on IoT, Communication and Automation Technology (ICICAT), Online, 23–24 June 2023; pp. 1–6.

3. Thirunavukarasu, A.J.; Ting, D.S.J.; Elangovan, K.; Gutierrez, L.; Tan, T.F.; Ting, D.S.W. Large language models in medicine. Nat.
Med. 2023, 29, 1930–1940. [CrossRef]

4. Cascella, M.; Montomoli, J.; Bellini, V.; Bignami, E. Evaluating the feasibility of ChatGPT in healthcare: An analysis of multiple
clinical and research scenarios. J. Med. Syst. 2023, 47, 33. [CrossRef] [PubMed]

5. Zheng, Y.; Wang, L.; Feng, B.; Zhao, A.; Wu, Y. Innovating healthcare: The role of ChatGPT in streamlining hospital workflow in
the future. Ann. Biomed. Eng. 2023, 18, 1–4. [CrossRef] [PubMed]

6. Ouyang, L.; Wu, J.; Jiang, X.; Almeida, D.; Wainwright, C.; Mishkin, P.; Zhang, C.; Agarwal, S.; Slama, K.; Ray, A. Training
language models to follow instructions with human feedback. Adv. Neural Inf. Process. Syst. 2022, 35, 27730–27744.

7. Kung, T.H.; Cheatham, M.; Medenilla, A.; Sillos, C.; De Leon, L.; Elepaño, C.; Madriaga, M.; Aggabao, R.; Diaz-Candido, G.;
Maningo, J. Performance of ChatGPT on USMLE: Potential for AI-assisted medical education using large language models. PLoS
Digit. Health 2023, 2, e0000198. [CrossRef] [PubMed]

8. Brin, D.; Sorin, V.; Vaid, A.; Soroush, A.; Glicksberg, B.S.; Charney, A.W.; Nadkarni, G.; Klang, E. Comparing ChatGPT and GPT-4
performance in USMLE soft skill assessments. Sci. Rep. 2023, 13, 16492. [CrossRef]

9. Ali, R.; Tang, O.Y.; Connolly, I.D.; Fridley, J.S.; Shin, J.H.; Sullivan, P.L.Z.; Cielo, D.; Oyelese, A.A.; Doberstein, C.E.; Telfeian, A.E.
Performance of ChatGPT, GPT-4, and Google bard on a neurosurgery oral boards preparation question bank. Neurosurgery 2022,
93, 1090–1098. [CrossRef]

10. Patil, N.S.; Huang, R.S.; van der Pol, C.B.; Larocque, N. Comparative performance of ChatGPT and bard in a text-based radiology
knowledge assessment. Can. Assoc. Radiol. J. 2023. [CrossRef] [PubMed]

11. Noda, R.; Izaki, Y.; Kitano, F.; Komatsu, J.; Ichikawa, D.; Shibagaki, Y. Performance of ChatGPT and Bard in Self-Assessment
Questions for Nephrology Board Renewal. medRxiv 2023. [CrossRef]

12. Teebagy, S.; Colwell, L.; Wood, E.; Yaghy, A.; Faustina, M. Improved Performance of ChatGPT-4 on the OKAP Examination: A
Comparative Study with ChatGPT-3.5. J. Acad. Ophthalmol. 2023, 15, e184–e187. [CrossRef] [PubMed]

13. Thapa, D.K.; Visentin, D.C.; Kornhaber, R.; West, S.; Cleary, M. The influence of online health information on health decisions: A
systematic review. Patient Educ. Couns. 2021, 104, 770–784. [CrossRef]

14. Calixte, R.; Rivera, A.; Oridota, O.; Beauchamp, W.; Camacho-Rivera, M. Social and demographic patterns of health-related
Internet use among adults in the United States: A secondary data analysis of the health information national trends survey. Int. J.
Environ. Res. Public Health 2020, 17, 6856. [CrossRef] [PubMed]

15. Hesse, B.W.; Nelson, D.E.; Kreps, G.L.; Croyle, R.T.; Arora, N.K.; Rimer, B.K.; Viswanath, K. Trust and sources of health
information: The impact of the Internet and its implications for health care providers: Findings from the first Health Information
National Trends Survey. Arch. Intern. Med. 2005, 165, 2618–2624. [CrossRef]

16. Fox, S.D. Maeve. In Health Online 2013; Pew Research Center: Washington, DC, USA, 2013.
17. Berkowitz, S.T.; Finn, A.P.; Parikh, R.; Kuriyan, A.E.; Patel, S. Ophthalmology Workforce Projections in the United States,

2020–2035. Ophthalmology 2023, 131, 133–139. [CrossRef]
18. Wedekind, L.; Sainani, K.; Pershing, S. Supply and perceived demand for teleophthalmology in triage and consultations in

California emergency departments. JAMA Ophthalmol. 2016, 134, 537–543. [CrossRef]
19. Pushpanathan, K.; Lim, Z.W.; Yew, S.M.E.; Chen, D.Z.; Lin, H.A.H.E.; Goh, J.H.L.; Wong, W.M.; Wang, X.; Tan, M.C.J.; Koh, V.T.C.

Popular Large Language Model Chatbots’ Accuracy, Comprehensiveness, and Self-Awareness in Answering Ocular Symptom
Queries. iScience 2023, 26, 108163. [CrossRef]

20. Lim, Z.W.; Pushpanathan, K.; Yew, S.M.E.; Lai, Y.; Sun, C.-H.; Lam, J.S.H.; Chen, D.Z.; Goh, J.H.L.; Tan, M.C.J.; Sheng, B.
Benchmarking large language models’ performances for myopia care: A comparative analysis of ChatGPT-3.5, ChatGPT-4.0, and
Google Bard. EBioMedicine 2023, 95, 104770. [CrossRef]

21. Lyons, R.J.; Arepalli, S.R.; Fromal, O.; Choi, J.D.; Jain, N. Artificial intelligence chatbot performance in triage of ophthalmic
conditions. Can. J. Ophthalmol. 2023, in press. [CrossRef]

22. Deaner, J.D.; Amarasekera, D.C.; Ozzello, D.J.; Swaminathan, V.; Bonafede, L.; Meeker, A.R.; Zhang, Q.; Haller, J.A. Accuracy of
referral and phone-triage diagnoses in an eye emergency department. Ophthalmology 2021, 128, 471–473. [CrossRef]

23. Azamfirei, R.; Kudchadkar, S.R.; Fackler, J. Large language models and the perils of their hallucinations. Crit. Care 2023, 27, 120.
[CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

41



Article

An Effective Methodology for Diabetes Prediction in the Case of
Class Imbalance

Borislava Toleva 1, Ivan Atanasov 1, Ivan Ivanov 1,* and Vincent Hooper 2

1 Faculty of Economics and Business Administration, Sofia University, St. Kl. Ohridski, 1113 Sofia, Bulgaria;
vrigazova@uni-sofia.bg (B.T.); iv.atanasov89@gmail.com (I.A.)

2 SP Jain Global School of Management, Academic City, Dubai P.O. Box 502345, United Arab Emirates;
vincent.hooper@spjain.org

* Correspondence: i_ivanov@feb.uni-sofia.bg

Abstract: Diabetes causes an increase in the level of blood sugar, which leads to damage to
various parts of the human body. Diabetes data are used not only for providing a deeper
understanding of the treatment mechanisms but also for predicting the probability that one
might become sick. This paper proposes a novel methodology to perform classification in
the case of heavy class imbalance, as observed in the PIMA diabetes dataset. The proposed
methodology uses two novel steps, namely resampling and random shuffling prior to
defining the classification model. The methodology is tested with two versions of cross
validation that are appropriate in cases of class imbalance—k-fold cross validation and
stratified k-fold cross validation. Our findings suggest that when having imbalanced data,
shuffling the data randomly prior to a train/test split can help improve estimation metrics.
Our methodology can outperform existing machine learning algorithms and complex deep
learning models. Applying our proposed methodology is a simple and fast way to predict
labels with class imbalance. It does not require additional techniques to balance classes. It
does not involve preselecting important variables, which saves time and makes the model
easy for analysis. This makes it an effective methodology for initial and further modeling
of data with class imbalance. Moreover, our methodologies show how to increase the
effectiveness of the machine learning models based on the standard approaches and make
them more reliable.

Keywords: class imbalance; classification; cross validation; resample; shuffle

1. Introduction

The topic of diabetes disease prediction has been an extremely popular topic lately.
Diabetes causes an increase in the level of blood sugar, which leads to damage to various
parts of the human body. Many researchers collect medical data on the physiological, social,
and environmental factors that would cause diabetes. These data are used not only for
providing a deeper understanding of the treatment mechanisms but also for predicting
the probability that one might become sick. This prediction is important for reversing the
course of the possible development of diabetes by adjusting the related factors that impact
the individual. Therefore, diabetes prediction can be crucial not only for decreasing the
number of cases but also for developing a better clinical approach for the individual based
on the specifics of their case.

The aim of the article is to propose a novel methodology for predicting whether an
individual would develop diabetes over time given a set of biological and social indicators.
The proposed algorithms create effective classification models to predict the risk of diabetes.

Bioengineering 2025, 12, 35 https://doi.org/10.3390/bioengineering12010035
42



Bioengineering 2025, 12, 35

The proposed methodology works on public clinical data on diabetes in the women of the
PIMA Indians dataset [1]. Our results outperform other existing research and extend the
practical tools for researchers to provide a holistic approach for each patient. Based on the
predictions, public healthcare specialists can create and implement specific strategies for
the prevention and treatment of diabetes.

Predicting the risk of diabetes using novel computing techniques has been an expand-
ing topic in academic literature with practical applications in medicine. Many of these
techniques are centered around the application of Machine Learning (ML) models are the
decision tree, support vector machines (SVM), Random Forest (RF) and Naive Bayes (NB)
models [2]. For example, Traymbak et al. [3] used SVM to model the PIMA diabetes dataset
and achieved a high classification accuracy of 73.86%, sensitivity of 83%, and specificity
of 56.60%. In more advanced cases, deep learning techniques are applied to grasp the
underlying complexity of the data and the connections among them [2]. The selection of the
classification algorithm depends on the complexity of the data. The most common dataset
for ML and deep learning experiments is the PIMA Indian diabetes dataset although other
datasets exist as well [1]. An effective approach is to apply the ensemble and bagging
methods for handling class imbalance in machine learning for healthcare datasets [4,5].
The high results emphasize the role of ensemble and bagging methods in enhancing model
performance on classification models with imbalanced datasets.

For example, the RF classifier with feature selection has been applied to the PIMA
diabetes dataset by Zou et al. [6]. They have concluded that the Random Forest model
after the feature reduction achieves the best accuracy of 77.4% for the PIMA dataset. The
same authors applied the RF model to another clinical dataset about diabetes—the Luzhou
dataset. Random Forest confirms the efficiency with an accuracy value of 80.8% for the
Luzhou dataset. Zhou et al. [7] have also worked on the PIMA dataset. They built an
ensemble learning model based on the Boruta feature selection. The authors have applied
the grid search approach to optimize the parameters of the proposed model. The accuracy
they achieve is 98.0%. Machine learning models such as linear discriminant analysis (LDA),
k-nearest neighbors (kNN), and Adaboost have also been applied for diabetes prediction
by Traymbak et al. [3]. Different methodologies are commented on and compared with
effective applications to healthcare modeling and prediction [8–11]. A detailed study on the
application of SMOTE-based machine learning algorithms to predict diabetes can be found
in [8,9]. In addition, Wu et al. [10] have applied machine learning modeling for imbalanced
datasets based on the local interpretable model-agnostic explanation (LIME). In fact, LIME
is applied to each sample independently and estimated. Then, conclusions are extended to
the dataset.

Deep neural networks (DNN) are often used in complex cases. Deep neural networks
are a deep learning algorithm. They combine the advantages of both deep learning and
neural networks. Deep neural networks significantly increase the capabilities and quality of
models applied in artificial intelligence, including diabetes prediction. Often deep learning
algorithms outperform machine learning algorithms due to their flexibility and ability to
capture and model more complex data structures including such in the PIMA diabetes
dataset [2,12–16].

Regardless of the methodology selected, model estimation is a critical step in evaluat-
ing the performance of a classification model, especially when working with imbalanced
data like the PIMA dataset. The standard tools for evaluating model performance are the
confusion matrix and classification metrics like accuracy, precision, specificity (recall), sensi-
tivity, and F1 score [17–19]. The confusion matrix provides insights into the extent to which
the two classes are correctly predicted. The elements of the confusion matrix are denoted
as true positive (TP), false positive (FP), true negative (TN), and false negative (FN).
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The measures precision, specificity, and sensitivity can be calculated based on the
elements of the confusion matrix as shown in [17–19]. The measures specificity and
sensitivity provide information on how the model predicts both classes of the dataset. The
high values of these measures confirm the efficiency of the model. The accuracy provides
an insight into the overall performance of the classification models. In this study, we adhere
to the standard formulas for classification evaluation [17–19].

Using these measures, we compare our methodology to existing ones. We show
that our methodology may outperform other existing machine learning algorithms, while
producing competitive results to deep learning algorithms. The advantages are simplicity,
easy interpretation of the results, and improved model performance.

Next section describes the proposed methodology on the PIMA Indian diabetes dataset.
The results section details the results of our experiments in terms of model quality and
considering other papers on this dataset, while Section 4 concludes.

2. Materials and Methods

Our methodology is applied on the public PIMA Indian diabetes dataset from [1,20].
The dataset contains 768 observations and 9 variables for female patients from Arizona,
USA. The dataset consists of nine medical variables (predictors) and one target variable.
The target variable for the dataset represents 268 observations that are positives for diabetes.
They are denoted by value ‘1’ whereas value ‘0’ is used for negative results for diabetes
observations. The number of negative observations is 500. This dataset is representative of
the class imbalance problem in the ML theory and practice [21–23]. Class imbalance is an
issue in classification problems where the target variable has one class dominating over
the other [23]. The structure of the PIMA dataset demonstrates heavy class imbalance as
the label ‘0’ is the predominant class, accounting for about 2/3s of the observations in the
target variable. Therefore, the prediction of diabetes in the PIMA dataset is sensitive to
class imbalance, which needs to be handled using appropriate tools.

This paper presents a novel methodology for handling the class imbalance issue
in the PIMA dataset. To interpret the results from the novel methodology, we also run
experiments with the classical methodology The first methodology models the original
observations without preprocessing them for class imbalance. Class imbalance is handled
using the built-in parameter in Python called “class_weight” = balanced. This is a standard
tool to handle class imbalnce without preprocessing the data. This is the classical approach.
The second methodology introduces novel steps for data preprocessing to handle the class
imbalance in the target variable before applying a classification model. The novelty in
our methodology lies in resampling and shuffling the data as a preprocessing step prior
to cross validation and model fitting. The classical methodology is tested with k-fold
cross validation, while the proposed methodology is run by k-fold and stratified k-fold
cross validation.

K-fold cross validation is the most often used validation strategy. However, it is
suitable for large datasets with no class imbalance. Some authors [16,18] argue that k-fold
cross validation can be appropriate for datasets with class imbalance only if the dataset is
large enough. The definition of ‘large enough’ is not provided but the PIMA dataset has
less than 1000 observations, so it may be considered a ‘small’ dataset. As the definitions of
‘small’ and ‘large’ datasets are not clear, we test the proposed methodology with both k-fold
cross validation and stratified k-fold cross validation. The aim is to understand which cross
validation strategy is better for the PIMA dataset.

Another advantage of the proposed methodology is the unique combination of (1) re-
sampling and shuffling, (2) setting ‘class_weight’ = ’balanced’, and (3) using (stratified)
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k-fold cross validation as simple steps to handle the class imbalance issue without further
complicating the classification model.

Figure 1 demonstrates the difference between the classical methodology and the
proposed methodology.

 
 
 
 
 
 

 

 

(a)  (b) 

Step 1
•Load Data
•Define X and Y variables

Step 2
•Resample data

Step 3 •Shuffle Data

Step 4
•Define a classification model

Step 5

•Splitting the data into training 
and test set using (stratified) 
kfold cross validation

Step 6 •Model evaluation on test set

Figure 1. (a) left image summarizes Methodology 1, and (b) right image summarizes Methodology 2.

2.1. Methodology 1: Algorithms 1–3—Classical Approach

Methodology 1 is presented via Algorithms 1, 2 and 3 in the investigation. The
approach of Algorithms 1–3 is as follows:

Step 1: Data loading and initial processing—the initial step involves loading the
dataset and delineating the independent (X) and dependent (y) variables. The y variable is
transformed into categories to facilitate analysis.

Step 2: Data shuffling—the indices of all independent variables (X) and the target
variable (y) have been shuffled so that their place in the dataset is rearranged. To perform
the shuffle a seed of 99 is set and the numpy command np.random_permutations is used
as shown below:

np.random.seed(99)
permuted_indices = np.random.permutation(len(Y))
Random shuffling in train-test splitting is employed to ensure that the training and

testing datasets are representative of the overall dataset [24]. By shuffling, the data is
randomized, preventing the model from learning potential patterns that may be due to the
order of the data rather than the underlying relationships between the variables.
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Step 3: Define two classification models—the Random Forest classifier (RF) and the
support vector machines model (SVM) with parameters:

RandomForestClassifier(n_estimators = 50, max_depth = 5, random_state = 0,
class_weight = ’balanced’)

SVC (C = 10, kernel = ’linear’, gamma = 0.01, probability =True,
class_weight = “balanced”).

The parameter ‘class_weight’ is set to ‘balanced’ because of the class imbalance in y.
In this step the parameters as well as the type of model can be changed.
Step 4: Split the data into training and test sets using k-fold cross validation—the k-fold

cross validation function is applied using different commands for classification models:
RF: KFold (n_splits = 4, shuffle = True, random_state = 555) (Algorithm 1),
SVM: KFold (n_splits = 4, shuffle = True, random_state = 763) (Algorithm 2),
SVM: KFold (n_splits = 5, shuffle = True, random_state = 673) (Algorithm 3).
Step 5. Model evaluation on the test set. The confusion matrix-model evaluation is

performed using the confusion matrix and calculating accuracy, precision, specificity, and
sensitivity using the formulae [17–19]:

Accuracy =
TP + TN

TP + TN + FP + FN
;

Precision =
TP

TP + FP
;

Sensitivity (Recall) =
TP

TP + FN
;

Specificity =
TN

TN + FP

Measures like specificity and sensitivity provide information on how the model pre-
dicts both classes of the dataset. The high values of these measures confirm the efficiency
of the model.

2.2. Proposed Methodology: Algorithms 4 and 5—Classification with Data Preprocessing for
Class Imbalance

This methodology contains two essential steps: (a) it applies two approaches to
split training and test subsets, and (b) it applies the support vector machines model.
Algorithm 4 applies k-fold cross validation to separate training and test subsets, while
Algorithm 5 applies stratified k-fold cross validation for the same purpose. The approaches
to Algorithms 4 and 5 are as follows:

Step 1: Data loading and initial processing—the initial step involves loading the
dataset and defining the independent (X) and dependent (y) variables. The y variable is
transformed into categorical labels to facilitate analysis.

Step 2: Data resampling—the second methodology applies the resampling procedure
to supplement the smaller class in the set with observations. The aim is to increase their
number to avoid inequality between the two classes in terms of the number of observations.
The resampling function is applied with the parameters shown below:

resample(data2,replace = True, n_samples = 500, random_state = 605)
Step 3: Data shuffling—the indices of all independent variables (X) and the target

variable (y) are shuffled so that their place in the dataset is rearranged. To perform the
shuffle a seed of 31 is set and the numpy command np.random_permutations is used as
shown below:

np.random.seed (31)
permuted_indices = np.random.permutation (len(Y))
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Step 4: Define a classification model—a support vector machines classifier is defined
with the parameter ‘class_weight’ set to ‘balanced’ because of the class imbalance in y. The
settings of the two classifications are shown below:

SVC (C = 10, kernel = ’rbf’, gamma = ’auto’, probability =True, class_weight = “balanced”)
In this step, the parameters as well as the type of model can be changed.
Step 5: Split the data into training and test sets using k-fold cross validation—the k-fold

cross validation function is applied using different commands for classification models:
SVM: KFold (n_splits = 5, shuffle = True, random_state = 42) (Algorithm 4),
SVM: KFold (n_splits = 5, shuffle = True, random_state = 73) (Algorithm 5).
Step 6: The same as Step 5 from Methodology 1.
The next section describes the output from the proposed algorithms and compares the

results to others.

3. Results

3.1. Comparison of Classification Metrics

Our experiments are conducted on a laptop with 1.50 GHz Intel(R) Core (TM) and
8 GB RAM, running on Windows with Python 3.7 in the Anaconda environment. The
results discuss two groups of methodologies. The first methodology is represented by
Algorithms 1–3, where only a shuffling method is applied at the preprocessing stage. While
the second methodology is represented by Algorithms 4 and 5 and contains a shuffling and
a resampling method. To consider the output from each methodology effective, the values
of accuracy, precision, sensitivity, and specificity should be high enough. The results for
the classes can be averaged, so we present the average precision, sensitivity, and specificity
for each algorithm.

As shown by Table 1, the first methodology results in accuracies of 83.85% (Algorithm 1),
84.9% (Algorithm 2), and 85.06% (Algorithm 3). The accuracies from the second method-
ology are much higher as Table 2 shows. The two Algorithms (4 and 5) in the second
methodology result in accuracies of 95.5% and 90.5%. Algorithms 1–3 are considered a
classical approach that underperforms when compared to the second methodology, which
is a novel approach.

Table 1. Results from methodology 1. Authors’ calculations.

Algorithm 1 (%)
Random Forest

Algorithm 2 (%)
SVM,

KFOLD(N_SPLITS = 4)

Algorithm 3 (%)
SVM,

KFOLD(N_SPLITS = 5)

Accuracy = 83.85 Accuracy = 84.90 Accuracy = 85.06
Precision = 90.82 Precision = 92.56 Precision = 90.91

Sensitivity = 82.50 Sensitivity = 84.85 Sensitivity = 86.54
Specificity = 86.11 Specificity = 85.00 Specificity = 82.00

Table 2. Results from the proposed Methodology 2. Authors’ calculations.

Algorithm 4 (%) Algorithm 5 (%)

Accuracy = 95.5 Accuracy = 95.05
Precision = 91.35 Precision = 91.74

Sensitivity = 100.00 Sensitivity = 100.00
Specificity = 91.35 Specificity = 91.00

This finding is also visible from the precision, sensitivity, and specificity of the first
methodology (Algorithms 1–3) compared to Algorithms 4 and 5. The proposed novel
methodology outperforms the classical methodology when the metrics are averaged
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(Tables 1 and 2). The precision for the two methodologies is similar—it varies be-
tween 90.82% and 92.56%. The high value for all algorithms shows that all of them
predict correctly the positive class in more than 90% of the cases. However, methodology
1 has sensitivity scores lower than Methodology 2. The second methodology has a sensi-
tivity of 100%, while methodology 1 achieves the highest sensitivity scores (86.54%) via
Algorithm 3. As Tables 1 and 2 show, the second methodology improved the sensitivity
scores by more than 13 p.p., which is a significant improvement. A high sensitivity score
shows that the model classifies correctly the observations in each class. Therefore, the
proposed methodology predicts whether the patient has diabetes or not better than the
classical methodology.

The second methodology also results in better specificity. Specificity demonstrates
the model’s ability to correctly classify all patients that do not have diabetes. The
highest score for specificity in the proposed methodology is 91.35% (Algorithm 4),
whereas Algorithms 1–3 exhibit specificity scores between 82% and 86.5%. The proposed
methodology improved the model’s ability to predict correctly the cases of healthy patients.
The classical methodology correctly predicted healthy patients in 82% to 86.5% of the cases.
While the proposed methodology captures healthy patients in more than 95% of cases.

The significant improvements in the model’s ability to predict correctly healthy pa-
tients and to identify sick patients lead to improved overall accuracy of Algorithms 4 and 5.
Therefore, the finding that the proposed methodology outperforms the classical one is a
result of the overall improvement of the model’s performance. The overall improvement of
the model’s performance in the proposed methodology can be attributed to two factors.

The first one is handling the class imbalance issue. The classical methodology does
not perform data preprocessing aimed at class imbalance. It tries to handle this issue by
only setting the Python parameter ‘class_weight’ to ‘balanced’. Although this approach
provides good results, our methodology offers an effective solution to the class imbalance
that significantly improves the classification ability of the model. The novel steps to shuffle
and resample data prior to setting the parameter ‘class_weight’ = ’balanced’ helps to get a
more even distribution of the two classes so that the training/test split is undertaken in an
unbiased way where the predominant class does not affect the split. Therefore, handling
the class imbalance issue proves to be a key part in the quality of the model.

The second factor is the type of cross validation. As mentioned in the methods section,
some authors recommend using stratified k-fold cross validation in relatively small datasets
with class imbalance [23,25]. Although no explicit definition of a ‘small’ and ‘large’ dataset
is given, we tested the proposed methodology with k-fold (Algorithm 4) and stratified
k-fold (Algorithm 5) cross validation. As Table 2 shows, the accuracy and the rest of
classification metrics are very similar in the two cases. One key finding is that the two
types of cross validation can be used with this dataset, which is further proof for the lack of
overfitting in our algorithms.

Another key finding is that the suitability of stratified and k-fold cross validation in
target variables with class imbalance may not be defined by the size of the dataset rather
than the characteristics of the data. This finding may be further explored in additional
research. A third finding is that the methodology we propose is robust in terms of steps to
handle the class imbalance issue. The proposed steps to handle the class imbalance issue in-
volve shuffling and resampling data and setting the parameter ‘class_weight’ = ’balanced’.
We tested these steps with k-fold and stratified k-fold cross validation and the results were
similar (Table 2). This means that the novel steps we propose to handle class imbalance in
the PIMA dataset are robust and are not affected by the strategy chosen for training and
testing the model.
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The overall quality of the models in the proposed methodology is improved and that is
also confirmed by looking at the prediction for individual classes as described by confusion
matrices and AUC–ROC curves.

3.2. Confusion Matrices and AUC–ROC Curves

The ROC–AUC (Receiver Operating Characteristic—Area Under the Curve) is another
key metric for evaluating the performance of binary classification models. The ROC curve
plots the true positive rate (TPR) against the false positive rate (FPR) at various threshold
settings, while the AUC quantifies the overall ability of the model to distinguish between
classes. Unlike accuracy, ROC–AUC is threshold-independent and remains informative
even with imbalanced datasets, making it a robust tool for model comparison and selection.

Tables 3–5 show the AUC–ROC curves and confusion matrices for Algorithms 1–3,
which confirm that the classical methodology performs well. High values for accuracy,
precision, sensitivity, and specificity are the first indicator that the classical methodology
results in correct predictions. The confusion matrix along with the AUC–ROC curve
demonstrates the reliability of the standard methodology as they also confirm the quality
of the model.

Table 3. Results from Methodology 1. Random Forest, (Algorithm 1). Authors’ calculations.

Confusion Matrix ROC Curve

[100 20]
[10 62]

ROC curve AUC= 90.81%

Table 4. Results from Methodology 1. SVM and kFold (n_splits = 4), (Algorithm 2). Authors’ calculations.

Confusion Matrix ROC Curve

[112 20]
[9 51]

ROC curve AUC= 88.88%

However, the data suffers from class imbalance. All tables related to methodology
1 (1, 3–5) show that the classical methodology performs well despite the class imbalance.
But as shown in Tables 2, 6 and 7 the model can perform better when the class imbal-
ance is handled appropriately. Therefore, handling class imbalance using the proposed
methodology is a better approach in the PIMA dataset.
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Table 5. Results from Methodology 1. SVM and kFold (n_splits = 5), (Algorithm 3). Authors’ calculations.

Confusion Matrix ROC Curve

[90 14]
[9 41]

ROC curve AUC= 91.70%

Table 6. Results from Methodology 2. Algorithm 4. Authors’ calculations.

Confusion Matrix ROC Curve

[96 0]
[9 95]

ROC curve AUC= 97.62%

Table 7. Results from Methodology 2. Algorithm 5. Authors’ calculations.

Confusion Matrix ROC Curve

[100 0]
[9 91]

ROC curve AUC= 96.80%

The proposed methodology classifies the minority class more accurately, while keep-
ing the same prediction rate for the majority class as seen by the confusion matrices of
Algorithms 4 and 5 (Tables 6 and 7). Tables 6 and 7 show that Algorithms 4 and 5 provide
the best prediction for the two classes, although the results for individual classes are close to
those from Algorithms 1 to 3. Therefore, the second methodology results in more accurate
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predictions of the two classes, especially the minority class. This finding is key as heavy
class imbalance usually leads to better prediction of the majority class and poor prediction
of the minor class. As Tables 6 and 7 show, the proposed two Algorithms (4 and 5) over-
come the issue of class imbalance effectively and improve the overall quality of the model
compared to the classical methodology.

3.3. Comparison to Other Research

As Table 2 shows, Algorithm 4 achieves an accuracy of 95.50%, an overall precision of
91.43%, an overall sensitivity of 91.35%, and an overall specificity of 100.00%. Similarly,
Gupta and Goel [18] have applied several machine learning models. Their best results are
obtained from the Random Forest model. The estimated parameters have the following
values: the accuracy is 80.52%, the precision value is 74.47%, the sensitivity value is 72.72%,
and the specificity is 90.74%. The output from the algorithms we propose outperforms
Gupta’s results as seen in Tables 2 and 8.

Table 8. Results obtained by Gupta et al. [18], Chang et al. [19], and Tigga et al. [21].

Table 6. [18] (%) Table 3. [21] (%) Table 13. [19] (%)

Accuracy = 80.52
Precision = 74.47

Sensitivity = 72.72
Specificity = 90.74

Accuracy = 75.0
Precision = 84.0

Sensitivity = 78.95
Specificity = 66.10

Accuracy = 79.57
Precision = 89.40

Sensitivity = 81.33
Specificity = 75.0

ROC-AUC = 86.24

Table 8 also shows Tigga’s [21] and Chang’s [19] results on the PIMA dataset.
Tigga’s [21] article does not apply techniques to handle class imbalance. Instead, they
aim to find the most appropriate machine learning algorithm that can predict the patient’s
condition correctly. Their findings suggest that the most appropriate machine learning
algorithm for the PIMA dataset is the Random Forest classifier. Table 8 presents their
results from the Random Forest. Compared to Gupta [18] and Chang [19], their results
are worse in terms of accuracy and specificity. The second methodology we propose
(Algorithms 4 and 5) outperforms Tigga’s results. A key finding in this case is that using a
classifier like the Random Forest, which is known to work good with class imbalance, may
not be enough to handle the bias coming from imbalanced classes

Table 8 also shows a similar case with the results of Chang [19]. They also aim to find
the most appropriate machine learning model to accurately predict the PIMA dataset in
the context of feature selection. They conclude that a naïve Bayes model works well when
features are carefully selected, while Random Forest works better when more features are
added. Although both Chang [19] and Tigga [21] conclude that the Random Forest is the
most appropriate model for the PIMA dataset, Tables 2 and 8 show that Algorithms 4 and
5, proposed in this article, outperform the Random Forest. As shown by Tables 2 and 8,
the second methodology outperforms all models used by Tigga [21] and Chang [19] (this
paper presents their best results). This finding is also valid for Gupta’s [18] experiments.

The advantage of our methodology is its simplicity and fast calculation. Also, our
methodology can be applied to larger or smaller datasets related to PIMA or any other
diabetes dataset as we test two versions of cross validation. The k-fold cross validation,
that is usually applied even in class imbalance datasets with the remark that the dataset
should be large enough. We also provide a version of our methodology (Algorithm 5) with
stratified k-fold cross validation, which is recommended for class imbalance in smaller
datasets. Although in the case of the PIMA dataset, the type of cross validation is not the
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key for improved model performance, we propose two alternatives that can be the effective
solution to class imbalance in other diabetes datasets with class imbalance.

Also, adding two simple steps (shuffling and resampling) before data preprocessing
has proven to be an effective way to handle class imbalance as our results suggest. This
finding extends the applications of shuffling and resampling in machine learning, which
uncovers a new path for the discovery of new potential applications for the two of them.

We compare the results from Table 9 (based on the values of Table 7 [22]) to those
obtained by Methodology 2. Table 10 presents the entries of confusion matrices when
methodology 2 is applied. We calculate the percentage of the sum (FN+FP). The values are
displayed in the last column of Tables 9 and 10. Thus, the values of Table 10 are smaller
than the corresponding ones in Table 9. Thus, methodology 2 minimizes the sum of false
cases (FN+FP).

Table 9. Entries of confusion matrices were obtained by Ejiyi and coauthors [22].

Models TP FN FP TN Total
(FN + FP)/Total

(%)

Extra Tree 141 12 18 129 300 0.1
RF 142 11 11 136 300 0.073

AdaBoost 142 11 5 142 300 0.053
GB 143 12 4 141 300 0.053

Table 10. Entries of confusion matrices after methodology 2. Our calculations.

Models TP FN FP TN Total
(FN + FP)/Total

(%)

Algorithm 4 95 9 0 96 200 0.045
Algorithm 5 91 9 0 100 200 0.045

Further on, applying the entries of confusion matrices the values of parameters accu-
racy, precision, sensitivity, and specificity are computed and presented in Tables 2 and 11.

Table 11. Results were obtained according to Table 6 [22].

Models Accuracy (%) Precision (%) Sensitivity (%) Specificity (%)

Extra Tree 90.0 88.68 92.20 87.76
RF 92.67 92.81 92.80 92.52

AdaBoost 94.67 96.60 92.80 96.60
GB 94.67 97.28 92.30 97.24

Ejiyi and coauthors [22] also experimented with the PIMA dataset. They aim to
propose a robust methodology for diabetes prediction. Their approach is different
from [18,19,21] as they perform feature extraction using the Shapley Additive Explanation
(SHAP). Then, they use the subset of the most important features to find the most appropri-
ate machine learning model. They conclude that Xgboost and Adaboost perform best with
SHAP. Table 11 shows their results. Their results are better than [18,19,21] as seen in Table 8.
However, this is not the case when comparing the values from Tables 2 and 11. The two
tables demonstrate that methodology 2 achieves higher values of the metrics of accuracy,
precision, and specificity than those obtained by Ejiyi and coauthors [22]. The measure
sensitivity is 91.30%, which is slightly smaller than the corresponding value of 92.80% from
Table 11. This point is another important finding as it demonstrates that combining complex
techniques like SHAP, Xgboost, and Adaboost may handle class imbalance well, but a
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simpler and more effective methodology may still exist. The second proposed methodology
is an example of a simpler and more effective methodology to predict accurately the target
in the PIMA dataset, while outperforming a wide variety of existing machine learning
algorithms and complex methodologies

Another advantage of the proposed methodology is that the performance is close to
that of deep neural networks (DNN), which are much more flexible and reliable in capturing
data anomalies. Yet, they are more complicated to use. As Table 8 shows, the accuracy
of the proposed Algorithms 4 and 5 is better than that of [2,13]. The highest accuracy we
achieved (Table 2) was 95.59%, while DNN achieved 98.07% [13,15,16]. The DNN accuracy
is bigger than ours by about 2.5 percentage points, which is a small difference. In terms of
sensitivity, the proposed methodology achieves a result of 100%, which outperforms the
DNN models in Tables 9–11. For specificity, we achieve similar results to Hounguè [2].

However, classical models (Table 1) fail to handle class imbalance in a way that the
prediction ability of the models does not suffer. Therefore, the results in Table 1 are not
close to the results of other authors (Table 12) and the proposed methodology (Table 2).
This is another evidence that handling class imbalance is a key point in modeling the
PIMA dataset.

Table 12. Other authors obtained results via deep learning models.

Models Measures

DNN [12]

DNN [13]

DNN [14]

DNN + DT [15]

DNN + 10-fold cross-validation [2]

DNN [16]

Accuracy = 94.39%

Accuracy: 98.04%
Sensitivity: 98.80%.
Specificity: 96.64%

Accuracy: 99.4%

Accuracy: 98.07%
Sensitivity: 95.52%
Specificity: 99.29%

Accuracy: 89%
Sensitivity: 87%
Specificity: 91%

Accuracy: 98.07%

As seen in Tables 2 and 12, other authors achieve similar results to the methodology
we propose, or in some cases, slightly better results. These results are not surprising as
deep learning models also capture the unstructured connections in the data and use them
to train and test the model. However, machine learning models derive the boundaries
between classes based on the distance among observations. Machine learning models
are better at modeling structured datasets, while deep learning models capture hidden
complex connections in the data.

Also, machine learning models require more involvement of the research in model
tuning, while deep learning algorithms reduce the involvement of the researcher in model
tuning. Therefore, deep learning models may reduce the bias coming from the researcher’s
experience and knowledge when tuning the model. Deep learning models are often a good
alternative to machine learning models, especially in complex datasets. Deep learning
models usually perform better than machine learning models. That is why the results from
the proposed methodology are remarkable.
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On the one hand, the machine learning methodology we propose improves the classi-
fication ability of the model so that the results are close to complex deep learning models
like neural networks. On the other hand, we achieved a specificity of 100%, a result that
was not achieved by any of the deep learning models in Table 12. The proposed method-
ology (Algorithms 4 and 5) manages to correctly identify non-sick patients in 100% of the
cases. The methodology we propose is also notable as it represents a significant improve-
ment in the prediction ability of machine learning algorithms that become comparable
to that of deep learning models. The key to this result is the steps we propose to handle
class imbalance.

Another important fact is that the authors in Table 12 do not provide their confusion
matrices to observe the performance of the individual classes. Confusion matrices are an
essential part of the analysis of the model quality. They show whether each class is predicted
correctly and to what extent. A sign for a good model is not only high classification metrics
(accuracy, precision, sensitivity, and specificity) but also the correct prediction of each
class. Cases when the classification metrics are high, but the confusion matrices show that
one of the classes is not predicted correctly may be a sign of overfitting. Therefore, we
compare our results to other authors based on the classification metrics, but the comparison
of the quality of prediction for each class cannot be done thoroughly. Despite this, we
achieve similar results to Tables 8 and 12 with a much simpler methodology that is not
computationally exhaustive and does not require a complex hardware setup to run. This
finding presents another advantage of the proposed methodology.

Based on the results above, the key finding is that the proposed methodology is
competitive with other existing machine learning and deep learning algorithms. In some
cases, the proposed methodology can outperform existing ML algorithms, while having
similar performance to deep learning algorithms. Resampling and shuffling the data prior
to defining the classification model can improve the prediction ability of the classification
in case of class imbalance. The proposed methodology can be used with either k-fold
cross-validation or stratified cross-validation. In the two cases, the results are similar,
which validates the importance of the two novel steps in improving the predictions for
class imbalance. This result also validates the assumption made by other authors [25–28]
that both k-fold and stratified k-fold cross-validation can be used in class imbalance
classification. Our results also suggest that the size of the dataset in the case of class
imbalance may not be the key factor determining the type of cross-validation, which opens
a new field for exploration of the role of cross-validation in the class imbalance issue. The
proposed methodology improves not only the classification ability of the model but the
ability of the model to improve the prediction for each class. This makes it competitive with
deep learning models without further complicating the applications and interpretation of
the model. Therefore, we consider the proposed methodology effective and efficient in
handling class the class imbalance issue for the PIMA diabetes data.

A future extension of this work would be testing the proposed methodology on larger
datasets with class imbalance as well as multilabel classification. Also, the proposed
methodology can be tested in datasets with many features without feature selection. We
consider our methodology flexible and able to adapt to the characteristics of the data as
model tuning can easily be performed. Therefore, the proposed methodology can easily be
adapted to other datasets and multiclass classification.

Although some recent diabetes research focusing on various aspects of diabetes pre-
diction exists [29–32] they use different datasets. This makes their authors’ results incom-
parable to ours. However, in the publication of Mohanty [33] the same dataset as ours is
analyzed. The authors have studied a few machine learning models and ensemble models
for classification analysis of the dataset. The proposed ensemble model in the paper [33] has
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achieved the following values: accuracy 84%, precision 80%, sensitivity 92%, and specificity
77% (see Table 19 [33]). Our findings with the SVM model exceed these values (see Table 2).

4. Discussion

In this paper we present a simple and not computationally exhaustive methodology
for improving the prediction ability of classification models for the minority class in the
case of class imbalance. We can summarize the key findings from this research as follows:

1. Using Python’s built-in functions can successfully tackle class imbalance. The used
parameter in question is ‘class_weight’ = balance. However, additional steps need to
be taken to handle class imbalance so that the model can become more efficient.

2. When having imbalanced data, resampling and shuffling the data randomly before the
train/test split can help improve estimation metrics. This result is robust regardless
of the type of cross validation used.

3. Applying our proposed algorithm is a simple and fast way to predict labels with class
imbalance. It does not require additional techniques to balance classes. It does not
involve preselecting important variables, which saves time and makes the model easy
for analysis. This makes it an effective algorithm for the initial and further modeling
of data with heavy class imbalance.

4. Our algorithm does not need a feature selection procedure, therefore avoiding the
bias that can be introduced with the method of feature selection.

5. Two types of cross validation can be used as shown. The results are similar, suggesting
that the type of cross validation may not be key for class imbalance. Rather, the overall
strategy to eliminate the influence of the dominant class may be more important.

6. Despite the relatively small size of the PIMA datasets, both k-fold and stratified
k-fold cross validation are appropriate. This finding contrasts with some researchers
suggesting using k-fold cross validation for class imbalance only in large datasets. We
highlight that the type of cross validation used may not be dependent on the size of
the dataset rather than its characteristics.

7. This property of the model makes it flexible to adjust to other issues in the data, not
only class imbalance. Therefore, other types of cross validation can be used.

As a conclusion, testing the proposed methodology on the PIMA diabetes dataset has
shed light on the importance of resampling and shuffling data as a data processing step for
handling class imbalance. With this discovery, we extend the applications of resampling
and shuffling data and introduce a new line of academic research in the field of class
imbalance. Moreover, our methodologies show how to increase the effectiveness of the
machine learning models based on the standard approaches and make them more reliable.

Currently, the use of artificial intelligence (AI) applications in healthcare is growing
rapidly. AI implementation allows healthcare professionals to devote more attention to
patient care prescreening and individual treatment. As a result, the quality of life and
rates of recovery increase. Therefore, the issue of the legal and ethical consequences
of adopting AI technology in medicine is relevant. For example, Geantă et. al. [34]
compared the efficiency of artificial intelligence models in healthcare to answer the question
of which platform is better equipped to produce health-safe diagnostic models. They
discovered that AI models generated by ChatGPT 3.5 in some healthcare fields may be
more trustworthy and secure in diagnosing some diseases than AI models pre-defined by
researchers. However, other diseases are diagnosed and treated more accurately using AI
models defined by the researcher. Therefore, an ethical issue arises to discover and make
sure that the safest AI algorithm for the detection of the disease is used. This results in
public trust [34–36] in the healthcare system. However, the questions of what AI models
are safe and ethical to use, how hospitals can better protect the personal data they collect as
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a result of more sophisticated AI models, and how can AI models be tested in reality are
posed. Such scientific research supports the public debate on the use of AI in healthcare and
seeks to produce new evidence in building a coherent ethical framework for AI medical
technologies [36]. Therefore, proof of the ethical, clinically effective, and safe applications
of each AI model should be provided before using them for diagnosis, treatment, and
pre-screening [36].

Further on, in our future construction of machine learning classification methodologies
for medical datasets, we will expand our research in the directions: (a) we will apply nested
stratified k-fold cross-validation, (b) we will introduce additional evaluation metrics like
the Matthews Correlation Coefficient, and (c) we will use the confidence intervals for
applied metrics.
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Abstract: This paper focuses on the use of local Explainable Artificial Intelligence (XAI) methods,
particularly the Local Rule-Based Explanations (LORE) technique, within healthcare and medical set-
tings. It emphasizes the critical role of interpretability and transparency in AI systems for diagnosing
diseases, predicting patient outcomes, and creating personalized treatment plans. While acknowl-
edging the complexities and inherent trade-offs between interpretability and model performance,
our work underscores the significance of local XAI methods in enhancing decision-making processes
in healthcare. By providing granular, case-specific insights, local XAI methods like LORE enhance
physicians’ and patients’ understanding of machine learning models and their outcome. Our paper
reviews significant contributions to local XAI in healthcare, highlighting its potential to improve
clinical decision making, ensure fairness, and comply with regulatory standards.
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1. Introduction

The advent of artificial intelligence (AI) technologies has been transformative for
healthcare, offering unprecedented capabilities in disease diagnosis, patient outcome
prediction, and the development of tailored treatment plans. However, the increasing
complexity and opacity of AI algorithms have amplified the need for transparency and
interpretability in their decision-making processes. This has led to the rise of Explainable
Artificial Intelligence (XAI), particularly focusing on local interpretation methods such as
the LORE (Local Rule-Based Explanations) [1], to make AI decisions in healthcare settings
more transparent and comprehensible [2,3].

XAI seeks to equip AI algorithms with explanations, enabling healthcare professionals
to gain insights into the rationale behind AI-generated decisions and predictions. XAI
methodologies can be broadly divided in two families: global [4] and local [5] methods.
While global methods aim at explaining the general reasoning of an AI model, local
methods have the goal of explaining why an AI model gave a certain output for a particular
instance, i.e., the data of a particular patient or the diagnostic images belonging to a specific
individual. The application of local XAI methods addresses the demand for precise, case-
by-case explanations, which are paramount for clinical decision making, enhancing patient
care, and fostering trust in AI systems among healthcare providers and patients [6–13].

Significance of Local XAI in Healthcare. The integration of AI in healthcare has
been both celebrated for its potential and scrutinized for its challenges, including issues of
interpretability, potential biases, and ethical concerns [14–16]. Local XAI methods, such as
LORE, offer nuanced, instance-specific explanations that are essential for understanding
complex AI decisions in medical contexts [17]. These explanations not only build confidence
in AI technologies but also aid in identifying and correcting biases, ensuring ethical usage,
and complying with healthcare regulations [18].
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Interpretability at the local level allows healthcare professionals to comprehend the
reasoning behind specific AI decisions, facilitating their trust in and collaboration with AI
systems. Moreover, local explanations play a crucial role in elucidating AI outcomes to
patients, empowering them with knowledge about their care processes and decisions.

Challenges and Opportunities in Applying Local XAI. While local XAI methods
present a promising approach for enhancing interpretability in healthcare AI, they also
introduce challenges such as maintaining model performance and ensuring the relevance
and comprehensibility of explanations to end-users. Balancing the complexity of healthcare
data with the need for understandable, actionable insights requires innovative solutions
and continuous advancements in XAI techniques.

To address these challenges, this paper explores a variety of local XAI approaches,
emphasizing the contribution of the LORE method for its ability to generate detailed,
rule-based explanations relevant to individual cases. Such techniques are pivotal in trans-
lating the intricate patterns recognized by AI models into intelligible information, thereby
improving the clinical utility of AI and fostering a collaborative healthcare environment.

The Focused Approach of the XAI Project. The XAI Project G.A. 834756) (https:
//xai-project.eu/, accessed on 14 March 2024) is an ERC-funded project focused entirely on
the development of Explainable AI models. In the XAI Project, one of the most prominent
domains of research has been local explainability in healthcare AI [19], aiming to refine and
promote the application of methods like LORE for better decision-making processes. By
concentrating on the development of local XAI techniques, the project seeks to address the
specific interpretability needs of healthcare professionals and patients, ensuring that AI
systems are not only accurate but also transparent and trustworthy.

In summary, this paper presents a focused narrative on the role of local XAI methods in
healthcare, illustrating how such approaches can surmount the interpretability challenges
posed by complex AI models. Through detailed case studies and analysis of the LORE
method, it aims to showcase the tangible benefits of local explainability in improving
patient care, ensuring ethical AI use, and enhancing the acceptance of AI technologies in
medical settings.

2. Related Work

The exploration of Explainable Artificial Intelligence (XAI) in healthcare settings,
particularly through the lens of local interpretation methods like Local Rule-Based Expla-
nations (LORE) [1], has garnered considerable attention. This section delves into advance-
ments in the interpretability and transparency of AI models in healthcare, emphasizing the
importance of local XAI methods and their contributions to the field.

Recent efforts have aimed at enhancing the interpretability of healthcare AI models,
with Rajkomar et al. proposing an “Explainable AI Framework for Health” that integrates
rule-based models, gradient-based methods, and attention mechanisms for generating
interpretable healthcare predictions [20]. This framework’s application to patient mortality
prediction has enabled healthcare professionals to derive actionable insights from the
model’s decision-making process, showcasing the utility of comprehensive XAI approaches
in clinical settings.

Ribeiro et al.’s Anchors method represents another noteworthy advancement, offering
rule-based explanations tailored to individual predictions [21]. By concentrating on locally
faithful explanations, the Anchors method has empowered healthcare practitioners with
a clearer understanding of the factors influencing AI predictions in specific scenarios. Its
application across various healthcare domains underscores the method’s effectiveness in
improving interpretability at the local level.

The SHAP (SHapley Additive exPlanations) framework, introduced by Lundberg et
al., utilizes game theory to allocate feature importance values for individual predictions,
thus providing a detailed view of how each input affects the model’s output [22]. Applied
in contexts such as hospital readmission prediction, disease progression modeling, and
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electronic health records analysis, SHAP has been instrumental in enhancing transparency
and interpretability in healthcare AI.

Furthermore, interpretability techniques like LIME (Local Interpretable Model-agnostic
Explanations) and LORE (Local Rule-Based Explanations) have seen wide adoption in the
healthcare sector [1,23]. LIME’s approach to generating local explanations by approximat-
ing complex model decision boundaries complements LORE’s use of a genetic algorithm to
create a synthetic neighborhood for a local interpretable predictor. This predictor, in turn,
facilitates the generation of meaningful explanations that include decision rules and coun-
terfactual scenarios, thereby illuminating the influence of specific factors on outcomes [1].
These techniques have been applied to a range of healthcare domains, from disease pre-
diction to medical imaging and clinical decision support, demonstrating their versatility
and impact.

Caruana et al.’s work on developing intelligible models for healthcare contexts, such
as pneumonia risk prediction and hospital readmission, further highlights the progress
in creating interpretable AI systems for clinical use [24]. By employing decision trees and
rule-based models, their research has contributed significantly to the field, enhancing both
the transparency and the adoption of AI in clinical practice.

The integration of domain knowledge and expert input into XAI approaches marks
an evolving research direction, promising to enrich interpretability and align AI decision-
making processes with established medical practices. This blend of technical innovation
and domain expertise is crucial for advancing the application of local XAI methods in
healthcare, ensuring that AI-assisted decision making is both transparent and grounded in
clinical realities [25].

In conclusion, advancements in XAI for healthcare, particularly the focus on local
methods, highlight a growing commitment to enhancing AI model transparency and inter-
pretability. These efforts underscore the field’s progress towards developing AI systems
that are not only technically proficient but also understandable and trustworthy for health-
care professionals and patients alike, fostering improved decision making, patient care,
and adherence to regulatory standards.

3. Methodology

Before discussing the specific methodologies supporting our research, it is crucial to
contextualize our work within the broader landscape of artificial intelligence technologies,
particularly deep learning. Deep learning [26], a subset of machine learning, has emerged
as a transformative force in various domains, including healthcare. It refers to the devel-
opment of algorithms that can learn and make decisions or predictions based on data.
These algorithms, known as neural networks, are designed to mimic the human brain’s
architecture and function, processing vast numbers of data to identify patterns and insights
that are not immediately apparent to human observers.

As outlined in the seminal work [27], deep learning involves multi-layered neural
networks that learn and make inferences from data in a way that captures the complexity
and subtlety of the information being processed. This capability makes deep learning
particularly valuable in healthcare, where the ability to analyze and interpret complex
medical data can lead to more accurate diagnoses, personalized treatment plans, and,
ultimately, better patient outcomes.

The key methodologies used in the project are related to the LORE method, introduced
by Guidotti et al. [1]. LORE is a powerful framework for generating local and interpretable
explanations for machine learning models. LORE utilizes a genetic algorithm to create
a synthetic neighborhood, which serves as the basis for training a local interpretable
predictor. This predictor captures the underlying logic of the model’s decision-making
process, enabling the derivation of meaningful explanations.

One of the key characteristics of LORE is its ability to provide transparent and un-
derstandable explanations for individual predictions. By focusing on local interpretability,
LORE aims to explain the reasoning behind a specific prediction rather than the overall
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behavior of the model. This makes it particularly useful in situations where interpretability
at the instance level is crucial, such as in healthcare and finance.

The explanations consist of two main components. First, a decision rule is derived
from the logic of the local interpretable predictor. This decision rule sheds light on the
factors that influenced the model’s decision, providing insights into the important features
and their corresponding weights. This information helps in understanding the key drivers
behind the prediction. Additionally, LORE produces a set of counterfactual rules as part of
the explanation. These counterfactual rules suggest modifications to the instance’s features
that would lead to a different outcome. By providing actionable suggestions for changing
the input variables, LORE enables users to explore what-if scenarios and understand how
small changes can influence the model’s predictions.

The availability of the LORE framework, along with the accompanying code (https:
//github.com/riccotti/LORE, accessed on 14 March 2024), facilitates its adoption and
implementation in various domains. In the next sections, different research projects are
described. They leverage over the LORE methodology from different points of view.

Detailed LORE Framework

LORE operates on the principle of providing instance-specific explanations by creating
a local, interpretable model around a prediction of interest. It begins by selecting an instance
for which an explanation is desired. Then, it generates a synthetic dataset that mimics the
locality of the original instance through a genetic algorithm. This local dataset is used to
train a simple, interpretable model, such as a decision tree, which serves to approximate
the behavior of the complex model near the instance. The explanation is then derived from
this interpretable model in the form of rules, which highlight the decision-making process
for the specific instance.

Implementation Steps: Selection of Target Instance: Choose the specific prediction or
instance that requires explanation.

Synthetic Neighborhood Generation: Utilize a genetic algorithm to generate a synthetic
dataset that represents the local decision boundary around the target instance.

Training of Interpretable Model: Train a simple model, like a decision tree, on this
synthetic dataset to capture the local decision logic of the complex model.

Derivation of Explanation: Extract rules from the interpretable model that explain
the prediction of the target instance. These rules offer insights into which features and
conditions influence the decision.

LORE’s ability to provide clear, case-specific explanations makes it highly valuable
in healthcare settings, where understanding the rationale behind AI-driven diagnostic
or prognostic predictions is crucial. For instance, LORE has been applied to interpret AI
decisions in predicting patient outcomes, understanding disease progression, and person-
alizing treatment plans. Its interpretability supports clinical decision making, enhances
trust among medical practitioners, and facilitates patient communication.

LORE distinguishes itself from other XAI methods like LIME or SHAP primarily
through its emphasis on generating a synthetic neighborhood around an instance. This
approach allows LORE to provide highly localized explanations that are directly relevant
to the specific case at hand. While LIME also focuses on local interpretability, it approxi-
mates the model’s decision boundary linearly, which might not capture complex nonlinear
relationships as effectively as LORE’s method. SHAP, on the other hand, provides a global
interpretation by assigning importance values to features based on their contribution to the
model’s output. LORE’s advantage lies in its detailed, rule-based explanations that can be
more intuitively understood by healthcare professionals for specific patient cases.

4. XAI Frameworks for Healthcare

4.1. DoctorXAI

An ontology-based approach, as described in “Doctor XAI: an ontology-based ap-
proach to black-box sequential data classification explanations” [28], aims to provide
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explanations for the black-box predicting of multi-labeled, sequential, ontology-linked
data [29]. The methodology involves the use of ontologies, which are formal represen-
tations of knowledge, to capture domain-specific concepts and relationships [30]. This
paper focuses on explaining Doctor AI [31], a multi-label classifier which takes as input the
clinical history of a patient in order to predict the next visit.

In greater detail, the methodology begins by selecting real neighbors, which are data
points closest to the instance to be explained, either through a standard distance metric
or ontology-based similarities. A synthetic neighborhood is then generated by perturb-
ing the real neighbors to maintain locality. The challenge lies in generating meaningful
synthetic instances, and here the authors leverage the ICD-9 ontology to ensure the expres-
siveness of the neighborhood. Unlike other techniques, the perturbations are not applied
directly to the instance to be explained to prevent homogeneity in the neighborhood. Two
alternative paths are followed; see Figure 1: the red path involves normal perturbation
and encoding/decoding steps to transform the data for interpretable models, while the
blue path involves ontological perturbation directly on sequential data. In both paths,
the synthetic neighborhood is labeled by the black-box model and used to train an in-
terpretable model, such as a multi-label decision tree. Rule-based explanations are then
extracted from the decision tree. The methodology extends the general framework with
novel contributions for dealing with structured and sequential data. These components
can be independently incorporated into the explanation pipeline based on the nature of the
data point to be explained.

Figure 1. DoctorXAI explanation pipeline from [28].

The authors use the MIMIC-III dataset [32] which contains de-identified health-related
data associated with over 40,000 patients who stayed in critical care units of the Beth
Israel Deaconess Medical Center between 2001 and 2012. In the experiments conducted,
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the ontology-based approach is compared against other existing methods for generating
explanations. Various evaluation metrics, such as accuracy, coverage, and coherence, may
be employed to assess the quality and comprehensibility of the explanations provided
by the approach. The results of the experiments highlight the efficacy of the ontology-
based approach in generating meaningful explanations for black-box sequential data
classification models. The approach demonstrates its ability to capture domain-specific
knowledge, extract relevant features, and provide interpretable explanations that enhance
the understanding of the underlying decision-making process (DoctorXAI demo: https:
//kdd.isti.cnr.it/DrXAI-viz/, accessed on 14 March 2024); see Figure 2.

This paper suggests future work in exploring alternative synthetic neighbor generation
for sequential data and assessing the impact of random components. Additionally, the au-
thors plan to extend the technique to explain how black-box regressors predict continuous
outcomes, which is relevant in healthcare for risk stratification prediction tasks.

Figure 2. Doctor XAI explanation presented to the participants of the experiment. In the image,
distinct dots represent a single visit of a patient, and distinct colors represent the relevance of each
dot to the algorithmic decision. Dots associated with irrelevant conditions remain gray, whereas
those deemed relevant are depicted in blue. Additionally, DoctorXAI highlights, as yellow dots, any
conditions absent from the patient’s clinical history that could have altered the algorithmic suggestion.

DoctorXAI has been proven to enhance physicians’ interactions with machine learning
models. In the work of Panigutti et al. [33], the authors conduct a rigorous, survey-
based analysis of physicians’ interactions with an AI-based Clinical Decision Support
System equipped with DoctorXAI. The results indicate that the explanations provided by
DoctorXAI enhance the trust between physicians and the AI-based system.

4.2. FairLens

The pervasive application of AI in critical areas, especially healthcare, has brought to
the forefront the challenges associated with unintended biases. These biases, if unchecked,
can have profound implications, especially when decisions impact patient care. Recog-
nizing this, in [34], the authors present FairLens, a tool designed to audit, discover, and
explain biases in AI systems, particularly those deployed in clinical settings. A general
overview of FailLens is presented in Figure 3.

FairLens is rooted in a multi-step approach:

64



Bioengineering 2024, 11, 369

• Stratification of Patient Data: Before any analysis, the tool stratifies available patient
data based on various attributes, including age, ethnicity, gender, and insurance type.
This stratification allows for a more granular analysis of how the AI model performs
across different patient subgroups.

• Performance Assessment: Once stratified, FairLens evaluates the model’s performance
on these subgroups. It identifies areas where the model might be underperforming or
showing biases. This step is crucial as it pinpoints specific patient groups that might
be adversely affected by the model’s decisions.

• Explanation of Model Errors: Going beyond mere identification, FairLens delves into
the reasons behind the model’s errors. Using advanced XAI techniques, the tool
determines which elements in a patient’s clinical history contribute to the model’s
inaccuracies. This step is pivotal as it not only highlights the errors but also provides
insights into why they occur.

Figure 3. FairLens pipeline from [34].

The FairLens pipeline is a systematic process that ensures a comprehensive audit of
the AI model. At first, the patient data are divided based on predefined conditions, creating
various groups. Each group is then scored based on the model’s performance, providing a
quantitative measure of the model’s accuracy for that subgroup.

Post-scoring, the groups are ranked. This ranking serves as an indicator, highlighting
groups where the model’s performance is low-grade. Selected groups (based on ranking or
expert input) undergo a detailed inspection. Here, the model’s predictions are compared
against actual data to identify over-represented or under-represented conditions.

For mislabeled conditions, FairLens provides explanations. It identifies clinical con-
ditions that are frequently misclassified and elucidates the elements in patients’ histories
that influence these misclassifications. The entire analysis culminates in a comprehensive
report that details the findings, providing both a bird’s-eye view and in-depth insights.

FairLens represents a significant step forward in ensuring that AI models, especially
those in healthcare, are free from detrimental biases. By providing a systematic method-
ology and a clear pipeline, it offers a robust framework for auditing black-box clinical
decision support systems. The tool’s ability to not just identify but also explain biases
makes it invaluable for healthcare professionals, ensuring that AI-driven decisions are both
accurate and fair.

4.3. MARLENA

Machine learning models, especially deep learning ones, have become central to many
decision-making systems in healthcare. They assist in diagnosis, predict disease spread, and
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help in identifying high-risk patient groups. However, the inherent lack of transparency in
these models can lead to mistrust, potential biases, and even legal implications. MARLENA
(Multi-label Rule-based ExplaNAtions) [35] is introduced as a solution to the interpretability
challenge. It is designed to provide explanations for decisions made by multi-label black-
box classifiers. The main idea of miming the local behavior of a black-box is common with
other approaches such as LIME [23] and LORE [1]. However, none of these approaches
is applicable to explain multi-label black-box classifiers. An overview of MARLENA is
presented in Figure 4. The novel methodology is broken down into three primary steps:

• Synthetic Neighborhood Generation: Before explaining a decision, MARLENA first
creates a synthetic neighborhood around the instance in question. This neighbor-
hood is populated with data points that are similar to the instance, ensuring that the
explanation is localized and relevant.

• Learning a Decision Tree: Using the synthetic neighborhood, MARLENA constructs
a decision tree. Decision trees are inherently interpretable, making them suitable for
this purpose.

• Deriving Decision Rules: From the constructed decision tree, MARLENA extracts
decision rules that provide a clear and concise explanation for the black-box decision
concerning the instance.

The core methodology revolves around the generation of a neighborhood around the
instance that needs elucidation. This is crucial because the explanation is intended to be
local, focusing on the behavior of the black-box classifier concerning that specific instance.

To generate this neighborhood, MARLENA employs two strategies. Constructing

a Core Real Neighborhood: This involves identifying real instances from the dataset
that are close to the instance in both the feature space and decision space. This real
neighborhood provides a foundation upon which synthetic neighbors can be generated.
Generating Synthetic Neighbors: Based on the empirical distributions of the instance’s
features derived from the real neighborhood, MARLENA generates synthetic neighbors.
These neighbors are designed to mimic the behavior of the black-box classifier in the
vicinity of the instance. Once the neighborhood is established, MARLENA proceeds with
the construction of the decision tree and the extraction of decision rules.

Figure 4. From [35]. A graphical representation of mixed neighborhood generation starting from
a sample dataset with three different labels. (1st) a dataset sample, and the arrow points out the
instance to explain x; mixed neighborhood generation: (2nd) real instances close to x with respect to
the feature space; (3rd) real instances close to x with respect to the target space; (4th) a merge of the
previous sets of instances. Unified core real neighborhood: (5th) real instances close to x with respect
to feature and target spaces, i.e., the real core neighborhood.

MARLENA offers a structured approach to demystifying decisions made by multi-
label black-box classifiers. By focusing on local explanations and leveraging interpretable
models like decision trees, the method ensures that the explanations provided are both
meaningful and relevant.
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4.4. The International Skin Imaging Collaboration

ABELE (Adversarial Black-box Explainer generating Latent Exemplars) [36] is a local
model-agnostic explainer that takes an image and a black-box classifier as input and returns
a set of exemplar and counter-exemplar images, as well as a saliency map.

Exemplars and counter-exemplars are synthetically generated images classified with
the same outcome as the input image and with an outcome other than the input image,
respectively. They can be visually analyzed to understand the reasons for the decision. The
saliency map highlights the areas of the input image that contribute to its classification and
areas that push it into another class.

ABELE works by generating a neighborhood in the latent feature space using an
Adversarial Autoencoder (AAE [37]). The image to be explained is passed as input to the
AAE where the encoder returns the latent representation using latent features. A genetic
approach maximizing a fitness function was adopted to accomplish the neighborhood
generation. In this respect, ABELE takes advantage of a latent version of LORE.

After the generation process, for any instance in the neighborhood, ABELE checks
the validity of the instance by querying the discriminator and decoding it into an image.
Then, it queries the black-box classifier with the image to obtain the class. Given the local
neighborhood, ABELE builds a decision tree classifier trained on the neighborhood labeled
with the black-box classifier. The surrogate tree is intended to locally mimic the behavior of
the black-box classifier in the neighborhood. It extracts the decision rule and counter-factual
rules enabling the generation of exemplars and counter-exemplars.

The overall effectiveness of ABELE lies in the goodness of the encoder and decoder
function adopted. The better the AAE, the more realistic and useful the explanations
will be.

In recent years, deep learning, particularly through convolutional neural networks
(CNNs), has significantly advanced the detection and diagnosis of skin cancer lesions [38–41],
achieving diagnostic accuracies comparable to dermatologists. This progress promises
improved early detection rates and broader access to high-quality diagnostic services. How-
ever, the effectiveness of these models in clinical settings hinges on their interpretability and
the transparency of their decision making, ensuring healthcare professionals can integrate
AI insights confidently into patient care. In [42–45], a case study on skin lesion diagnosis
using a ResNet classifier trained on the ISIC (International Skin Imaging Collaboration)
dataset is presented. The classifier’s decisions are explained using ABELE.

A user interaction module was implemented as a web application to present the
results of the classification and the corresponding explanation. The module communicates
with a backend that exposes the functionalities of the black-box and ABELE via a RESTful
interface (https://kdd.isti.cnr.it/isic_viz/, accessed on 14 March 2024). The visual space
of the application is organized into two sections (see Figure 5). The upper part shows the
instance under analysis with the classification returned by the ResNet on the left and a
synthetic counter-exemplar image returned by ABELE on the right. The lower part of the
module shows four exemplars, i.e., a set of images returned by ABELE that have the same
label assigned by the ResNet to the instance under analysis.

The customization of the autoencoder, specifically an Adversarial Autoencoder (AAE),
is crucial in this case study due to the complexity of the image classification task and
the limitations of the dataset. The ISIC dataset, which is used for training the ResNet
classifier [46], presents challenges such as fragmentation, imbalance, lack of uniform digiti-
zation, and shortage of data. Training an AAE in a standard fashion without addressing
these issues results in poor performance, mainly due to a persistent mode collapse.

To overcome these challenges, a collection of cutting-edge techniques were imple-
mented, including Mini Batch Discrimination and Denoising autoencoders. The model of
AAE adopted is a Progressive Growing AAE, which helps achieve more stable training
of generative models for high-resolution images. The main idea is to start with a very
low-resolution image and, step by step, add blocks of layers that simultaneously increase
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the output size of the generator model and the input size of the discriminator model until
the desired size is achieved. In this case, the desired size is 224 × 224 pixels.

The latent space dimension is kept fixed, so the discriminator always takes as input
tensors of the same size. The incremental addition of the layers allows the Progressive
Growing AAE to first learn large-scale structure and progressively shift the attention to
finer detail. This approach greatly reduces mode collapse and enables the generation of
varied and high-quality synthetic skin lesion images.

The customization of the AAE is necessary to make it usable for the complex image
classification task addressed by the ResNet classifier. After a thorough fine-tuning of all
three network structures (encoder, decoder, and discriminator), the Progressive Growing
AAE with 256 latent features achieves a reconstruction error measure through RMSE that
ranges from 0.08 to 0.24 depending on whether the most common or the rarest skin lesion
class is considered. This customization allows ABELE to generate meaningful explanations
and can be tested in a survey involving real participants.

Figure 5. A user visualization module to present the classification and the corresponding explanation.
The upper part presents the input instance and a counter-exemplar. The lower part shows four
exemplars that share the same class as the input.

A survey was conducted involving domain experts, beginners, and unskilled people
to assess the effectiveness of the explanations provided by ABELE. The results of the survey
show that the usage of explanations increases trust and confidence in the automatic decision
system. This phenomenon is more evident among domain experts and people with the
highest level of education. After receiving wrong advice from an AI model, domain experts
tend to decrease their trust in the same model for future analysis.

The survey was designed to validate the effectiveness of the explanations returned by
ABELE for skin lesion diagnosis. The main purpose was to validate the effectiveness of
the explanations in assisting doctors and medical experts in the diagnosis and treatment of
skin cancers, as well as to investigate their confidence in automatic diagnosis models based
on black-boxes and on the explanations provided by the explainer.

The survey was organized into ten questions composed of various points. Participants
were presented with an unlabeled skin lesion image randomly chosen from the dataset and
its explanation as generated by ABELE. They were asked to classify the given image among
two different given classes exploiting the explanation. Participants were also presented
with a labeled image and they were asked to quantify their level of confidence in the
black-box classification. The same labeled image was then presented with the visual aid
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of the explanation returned by ABELE, and they were asked to quantify their confidence
once more after looking at the explanations. Participants were also asked to quantify how
much the exemplars and counter-exemplars helped them to classify skin lesion images in
accordance with the AI and how much they trust the explanations.

The survey results support the hypothesis that explanation methods without a consis-
tent validation are not useful. The results also highlight the analysis of the latent space of
the autoencoder made available by ABELE. The latent space analysis suggests an interest-
ing separation of the images that can hopefully be helpful in separating similar classes of
skin lesions that are frequently misclassified by humans.

5. Discussion and Conclusions

This paper has discussed the integration and application of Explainable Artificial
Intelligence (XAI) within healthcare, focusing on the challenges, developments, and future
directions of XAI in medical diagnostics and patient care. Throughout the ERC XAI project,
significant progress has been made in understanding the complex dynamics of XAI in
healthcare, its potential benefits, and the inherent challenges encountered.

Challenges and Overcoming Strategies. One of the primary challenges encountered
during the project was the complexity of medical data and the difficulty of generating
accurate, comprehensible explanations for AI-based decisions. The heterogeneity of health-
care data, along with the high stakes involved in medical decision making, necessitates
explanations that are not only technically accurate but also easily understandable by health-
care professionals. To address this, we adopted a multi-faceted approach integrating local
explanation generation with formal verification methods. This approach ensured that
explanations were both locally relevant and globally consistent with the classifier’s logic,
thereby enhancing the trustworthiness and explainability of AI systems in healthcare.

Importance and Challenges in Healthcare. In the medical field, the adoption of
XAI methods faces unique challenges, including ensuring patient privacy, dealing with
high-dimensional data, and the critical need for accuracy. Despite these challenges, the
importance of XAI in healthcare cannot be overstated. Detailed, understandable AI expla-
nations empower clinicians to make informed decisions, foster patient trust, and enhance
the overall effectiveness of medical treatments. Our work, through projects like DoctorXAI
and MARLENA, demonstrates the feasibility and value of applying XAI to a range of
healthcare applications, from diagnosing skin lesions to evaluating cardiac risk.

Future Directions and Methodologies. Looking forward, the field of XAI in health-
care is poised for rapid growth and innovation. Future methodologies should focus on
improving the robustness and versatility of explanation models, incorporating more di-
verse data types (e.g., genomic data, electronic health records), and exploring new forms of
explanations (e.g., visual explanations, interactive models). Additionally, there is a need
for more interdisciplinary research that combines insights from data science, medicine,
psychology, and ethics to develop XAI systems that are not only technically proficient but
also ethically sound and aligned with patient care goals.

Integrating XAI with Medicine. The future of XAI in healthcare lies in its seamless
integration as a decision support system, complementing, not replacing, human expertise.
For this to be realized, XAI systems must be designed with openness, transparency, and
interpretability at their core. This approach will ensure that healthcare professionals can
trust and effectively use AI recommendations, leading to improved patient outcomes.

Building Trust among Healthcare Professionals. To build and maintain trust in
XAI systems among medical practitioners, it is essential to focus on user-centered design
principles, ensuring that explanations are relevant, actionable, and tailored to the user’s
expertise level. Avoiding overly complex or opaque AI models and instead emphasizing the
transparency and reliability of explanations will be key. Additionally, ongoing education
and training for healthcare professionals on the capabilities and limitations of AI will play
a critical role in fostering a collaborative environment where AI and human expertise work
hand in hand.
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In our exploration of Explainable Artificial Intelligence within healthcare, a significant
aspect that emerges is the imperative of human–machine collaborative decision making.
This symbiotic interaction underscores the philosophy that the greater involvement of
human judgment alongside AI can significantly enhance the explainability and ethical
dimensions of healthcare decisions. The interplay between human insight and AI’s analyti-
cal skills promises to elevate clinical decision making to new heights, fostering a deeper
trust and understanding between healthcare providers and the technology they leverage.
Moreover, this collaboration can serve as a cornerstone for ethical AI use, ensuring deci-
sions are not only accurate but also transparent and aligned with patient values and needs.
As we look towards the future, the integration of human expertise with sophisticated
AI algorithms will be crucial in navigating the complex ethical landscape of healthcare,
ensuring that AI-assisted decisions are made with a comprehensive understanding of
patient care, thereby reinforcing the essence of medicine and underscoring its profound
human-centric nature.

In conclusion, the integration of XAI into healthcare holds tremendous promise for
enhancing medical diagnostics, patient care, and treatment outcomes. By continuing to
address the challenges, leveraging the strengths of AI and human expertise, and focusing
on patient-centered outcomes, the future of XAI in healthcare is bright. With sustained
research and development, XAI can become an indispensable tool in the medical field,
offering insights and explanations that support clinical decision making and contribute to
the advancement of personalized medicine.

6. Future and Ongoing Work

As we venture into the future of XAI in healthcare, the emphasis on human–machine
collaborative decision making will play a pivotal role in shaping research and development
directions. Our forthcoming projects aim to delve deeper into models and frameworks
that not only advance the technical capabilities of XAI but also enhance its alignment with
human expertise and ethical considerations in clinical settings. This will involve developing
systems that are capable of incorporating feedback from healthcare professionals directly
into the AI learning process, thus refining the accuracy and applicability of AI outputs in a
real-world context. Moreover, the exploration of the ethical and regulatory implications of
these collaborative systems will be fundamental. By fostering a more integrated approach
to AI in healthcare, where technology and human expertise complement each other, we
anticipate not only bridging the gap between AI’s potential and its practical application
but also contributing to the development of AI systems that are both ethically responsible
and highly effective in enhancing patient care outcomes.

We present a sketch of our ongoing projects that aim to further develop and expand
this promising area.

6.1. Cardiac Risk Evaluator

In an upcoming work we present VERIFAI-LORE, a framework designed to enhance
the trustworthiness and explainability of AI-based classifiers. This is achieved through a
unique integration of search-based approaches, machine-learned explanations, satisfiability
solving, and theorem proving. Specifically, it utilizes LORE (Local Rule-Based Explanations)
to generate local explanations for classifications by sampling around an instance and
constructing a decision tree. These explanations comprise logic rules and counter-rules,
indicating the attributes that contributed to a classification and conditions for a different
classification, respectively.

However, recognizing that these explanations may be locally valid but undercon-
strained for certain instances, VERIFAI-LORE introduces a formal verification step. This
step involves translating the model into Java and writing a JML (Java Modeling Language)
contract in the form of precondition–postcondition pairs to verify the consistency of an
explanation with the classifier through theorem proving. This allows the framework to
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ensure that explanations are not only statistically valid but also logically consistent across
all possible inputs, addressing the challenge of underconstrained explanations.

The integration of explanation generation and formal verification in the VERIFAI-
LORE framework aims to provide globally consistent and locally valid explanations for each
classification, thereby enhancing classifier trustworthiness. The framework is evaluated in
a case study on the prognosis of Acute Coronary Syndrome (ACS) [47], demonstrating its
capability to provide classifications with associated confidence levels and explanations that
are formally verified for consistency. The evaluation shows that checking the JML contract
for explanations takes on average 12.6 s and 304.5 MB for consistent explanations and
68.7 s and 326.5 MB for underconstrained explanations, indicating that underconstrained
explanations occur infrequently. This contributes to advancing trustworthy and explainable
classification. A visual interface (https://kdd.isti.cnr.it/cre_vue/#/, accessed on 14 March
2024) has been made public and allows for the appreciation of the quality of explanations
based on custom inputs entered by the user. Figure 6 demonstrates the explanation of the
outcome related to test data.

Figure 6. User visualization module to present the classification and the corresponding explanation
of the outcome related to test data consisting of age: 47, heart rate: 83, Systolic Blood Pressure: 135,
creatinine: 1.1, cardiac arrest at admission: no, ST segment deviation on EKG: no, TN (abnormal cardiac
enzymes): no, and KILLIP class: no CHF.

6.2. Prostate Imaging Cancer AI

This ongoing project involves the application of local explanation algorithms to a
different context—a prostate cancer MRI dataset [48–51]. This dataset, collected in collabo-
ration with the Prostate Cancer Unit at Ospedale Careggi of Florence and the PI-CAI Grand
Challenge (https://pi-cai.grand-challenge.org/, accessed on 14 March 2024), is composed
of T2-weighted, Apparent Diffusion Coefficient (ADC), and DWI magnetic resonance
images. Our goal is to harness the power of local methods in generating meaningful expla-
nations for complex imaging analyses to improve our understanding of prostate cancer
diagnostics (Figure 7). The project will not only focus on enhancing the explainability of

71



Bioengineering 2024, 11, 369

local methods but will also delve into an innovative realm of cross-domain explanations
between different modalities, i.e., image and tabular data. By doing so, we plan to bridge
the gap between different imaging modalities and foster a more integrated, comprehensive
understanding of prostate cancer diagnosis, thereby contributing to more effective patient
management and treatment outcomes.

Figure 7. A saliency map extracted from a 3-channel multimodal classifier comprising T2W, ADC,
and DWI images of a prostatic gland with a high-grade prostate lesion. Each activation map sizes the
contribution of each modality.

6.3. Diabetology

An upcoming project in collaboration with the Diabetology Department at Cisanello
University Hospital (Pisa, Italy) explores the application of Explainable AI data describing
patients’ conditions before and after liver transplantation. Leveraging a fairly small dataset
of roughly 450 patients including pre- and post-operative factors, we aim to develop
Explainable AI models with the objective of answering a number of questions regarding
the effect of liver transplantation on patients [52]. Using explanations as a lens to inspect
the models, we are going to investigate possible effects on the onset of diabetes, patient
survival, and graft survival. The key challenges involve the highly imbalanced dataset,
with the survival rate significantly higher than mortality, and the low number of samples.
We plan to apply data balancing techniques cautiously to maintain the integrity of real-
world examples so that Explainable AI techniques can still extract meaningful insights from
the predictive models. The ultimate goal is to identify key factors contributing to survival
rates and understand the relationship between a patient’s diabetic condition and survival
outcome, thereby offering physicians a way to find new and actionable insights.

6.4. DoctorXAI++

DoctorXAI [28] has been proven to be highly beneficial to clinicians for understanding
a machine learning model’s decision and for improving trust in the model output [33].
The various components of the DoctorXAI architecture, however, can be improved, in
light of recent advancements in the model’s performance and in generative AI techniques.
This project has the objective of improving DoctorXAI by applying more modern deep
learning models to the updated MIMICIV [53] dataset with the ICD10 ontology. The initial
experiments we have performed in this direction have the objective of investigating the
synthetic neighborhood generation mechanism of DoctorXAI, improving it with the use
of Large Language Models (LLMs), trained to approximate the original data distribution.
LLMs show the potential of learning the original ontology directly from the data. This may
indicate that LLMs can be used both to perform predictions and to replicate ontology-based
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explanations using only the raw ICD data. A general schema of our approach is shown in
Figure 8.

Figure 8. General schema of DoctorXAI++.
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Abstract: Medical imaging plays an essential role in modern healthcare, providing non-invasive
tools for diagnosing and monitoring various medical conditions. However, the resolution limitations
of imaging hardware often result in suboptimal images, which can hinder the precision of clinical
decision-making. Single image super-resolution (SISR) techniques offer a solution by reconstructing
high-resolution (HR) images from low-resolution (LR) counterparts, enhancing the visual quality
of medical images. In this paper, we propose an enhanced Residual Feature Learning Network
(RFLN) tailored specifically for medical imaging. Our contributions include replacing the residual
local feature blocks with standard residual blocks, increasing the model depth for improved feature
extraction, and incorporating enhanced spatial attention (ESA) mechanisms to refine the feature
selection. Extensive experiments on medical imaging datasets demonstrate that the proposed model
achieves superior performance in terms of both quantitative metrics, such as PSNR and SSIM, and
qualitative visual quality compared to existing state-of-the-art models. The enhanced RFLN not
only effectively mitigates noise but also preserves critical anatomical details, making it a promising
solution for high-precision medical imaging applications.

Keywords: medical imaging; super-resolution; lightweight model; residual learning

1. Introduction

Medical imaging plays a crucial role in modern healthcare, providing non-invasive
methods for diagnosing, monitoring, and treating various medical conditions. With the
ever-increasing demand for higher precision in medical image interpretation, enhancing
the resolution of medical images has become a fundamental task [1]. High-resolution medi-
cal images provide better visualization of intricate anatomical details, aiding healthcare
professionals in making accurate diagnoses and planning effective treatments [2]. However,
the limitations of imaging hardware often lead to sub-optimal image resolution, making
the development of advanced super-resolution techniques imperative.

Single image super-resolution (SISR) aims to reconstruct a high-resolution (HR) im-
age from a given low-resolution (LR) image, recovering fine details that are essential for
accurate analysis [3]. In recent years, deep learning-based approaches have demonstrated
significant improvements in SISR tasks, surpassing traditional methods in both visual
quality and computational efficiency [4]. This paper focuses on enhancing the Residual
Feature Learning Network (RFLN) [5] for medical imaging by proposing modifications
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tailored specifically for the unique challenges posed by medical datasets [6]. The proposed
model, an enhanced version of the RFLN, replaces the original residual local feature block
with a standard residual block and introduces deeper layers for improved feature extrac-
tion, which is particularly suited for medical images, that often have only a single input
channel. Our modifications aim to retain essential features while reducing irrelevant noise,
thereby providing high-fidelity reconstructions, which are critical for medical applications.
This paper details the architectural changes, the training methodology, and a comprehen-
sive comparison with other state-of-the-art super-resolution models, demonstrating the
superiority of the proposed model, both in terms of performance metrics and the visual
results of medical imaging tasks.

The main contributions of this work are summarized as follows:

• We propose an improved version of the RFLN architecture tailored specifically for
medical imaging. The modifications include replacing the residual local feature blocks
with standard residual blocks and increasing the model depth to improve feature
extraction and resolution quality.

• To further improve the feature refinement process, we integrate an enhanced spatial
attention mechanism into the model. This helps focus on the most relevant areas of
the input image, enhancing the overall quality of the super-resolved output, which is
crucial for medical image interpretation.

• We conduct extensive experiments using specialized medical imaging datasets, demon-
strating the efficacy of the proposed model in terms of both quantitative metrics and
qualitative results. The proposed model outperforms existing state-of-the-art models,
showcasing its potential for real-world medical applications.

• We provide a detailed analysis of the proposed model’s performance compared to other
leading SISR models. Our results highlight the advantages of our modifications in
handling the unique challenges presented by medical images, such as the preservation
of subtle anatomical details and noise reduction.

These contributions collectively advance the field of super-resolution for medical
imaging, providing a robust framework that can significantly enhance the quality of medical
images, ultimately aiding healthcare professionals in delivering accurate and effective
diagnoses. In the following sections, we outline the structure of this paper: Section 2
reviews related works in the field of single image super-resolution (SISR). Section 3 presents
the methodology, detailing the proposed enhancements to the RFLN. Section 4 describes
the experiments and results, while Section 5 discusses the findings and implications. Finally,
Section 6 concludes the paper by summarizing the main contributions and future directions.

2. Related Works

The field of SISR has seen considerable advancements in recent years, primarily due
to the advent of deep learning-based methods [7]. Early approaches, such as bicubic inter-
polation [8] and sparse representation-based methods [9], laid the groundwork for SISR
but were limited in their ability to capture complex textures and fine details. Traditional
machine learning techniques, such as Sparse Coding-based Super-Resolution (SC-SR) [10]
and Neighbor Embedding-based Super-Resolution (NE-SR) [11], provided some improve-
ments over basic interpolation techniques but still struggled with high-frequency detail
restoration. The introduction of convolutional neural networks (CNNs) marked a turning
point for SISR. Dong et al. introduced the Super-Resolution Convolutional Neural Network
(SRCNN) [3], which was among the first to demonstrate the potential of deep learning for
super-resolution tasks. SRCNN utilized a straightforward architecture, achieving notable
improvements in visual quality over traditional methods. Subsequent models, such as
Very Deep Super-Resolution (VDSR) [12] and the Deep Recursive Convolutional Network
(DRCN) [13], leveraged deeper architectures and recursive structures to further improve
super-resolution performance. Generative adversarial networks (GANs) have also been em-
ployed to enhance the perceptual quality of super-resolved images [14]. The SRGAN [15]
model was a pioneering effort that introduced adversarial loss to encourage the genera-
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tion of high-frequency details [16], producing images that were perceptually closer to the
ground truth. However, GAN-based models often suffer from instability during training
and may introduce artifacts that compromise the accuracy of medical images, where precise
detail is crucial.

More recent works have focused on residual learning and attention mechanisms [17] to
address the challenges of high-fidelity image reconstruction. The authors of [18] introduced
the Enhanced Deep Residual Network for Single Image Super-Resolution (EDSR), which
discarded unnecessary layers and batch normalization to achieve better performance.
The authors of [19] proposed the Residual Channel Attention Network (RCAN) [20],
which leveraged channel-wise attention to adaptively refine features, leading to significant
improvements in image quality [21]. These models have demonstrated the importance of
focusing on key features while suppressing irrelevant information, an approach that aligns
closely with the goals of our proposed method. The RFLN, which serves as the baseline for
our work, utilizes residual local feature blocks to extract both local and global features [22].
The RFLN has shown promise in maintaining a stable gradient flow and capturing intricate
details, making it effective for general SISR tasks [23]. However, medical imaging presents
unique challenges, such as the need for high precision in areas with subtle anatomical
details, which necessitates specialized modifications [24].

In the domain of medical imaging, several models have been proposed to enhance
the quality of medical images specifically. The authors of [25] proposed a deep learning
framework for MRI super-resolution [26], demonstrating the effectiveness of tailored loss
functions for medical data. The authors of [27] introduced a semi-supervised framework,
Mine your own Anatomy (MONA), which strategically utilizes dataset characteristics
for improved segmentation. The authors of [28] presented a fuzzy neural block that
converts images into a fuzzy domain, processes pixel uncertainty with fuzzy rules, and
fuses these results with standard convolutional outputs. The authors of [29] proposed a
novel Multimodal Multi-Head Convolutional Attention (MMHCA) module to enhance
super-resolution for these scans. The module jointly applies spatial-channel attention via
convolutions on concatenated input tensors, where the kernel size controls the spatial
attention reduction and the number of filters manages the channel attention reduction.
The authors of [30] proposed a novel UMIE approach that encodes HQ features directly
into the enhancement process using a variation normalization module. This joint modeling
of LQ and HQ domains ensures better guidance. The network is trained adversarial with a
discriminator to ensure the output belongs to the HQ domain. The work outlined in [31]
enhances traditional SR methods by incorporating a channel attention block specifically
designed for high-frequency features, which are critical for detailed medical diagnostics.
DRFDCAN utilizes a residual-within-residual architecture to improve inference speed and
reduce memory usage without compromising image quality. The problem addressed in
this study is the ability to enhance low-resolution medical images to high-resolution quality
while maintaining computational efficiency. The limitations of existing medical imaging
hardware often lead to images that lack sufficient resolution for precise clinical diagnosis.
While recent advancements in SISR using deep learning have shown promise, many state-
of-the-art models are computationally intensive and not suitable for practical deployment
in medical environments. Therefore, the challenge lies in developing a lightweight, efficient
SISR model that can effectively enhance image resolution without compromising quality or
requiring extensive computational resources. This study aims to address these challenges
by proposing an enhanced RFLN specifically tailored for medical imaging.

Previous methods in medical image enhancement face several limitations that are
addressed by our model [32]. Many, like MRI super-resolution and MONA, struggle
with generalization across different modalities and rely heavily on specific datasets [33].
Our model, with its deeper architecture and standard residual blocks, adapts better across
various medical images. Additionally, noise mitigation in earlier approaches, such as fuzzy
neural blocks, is less effective, while our model targets noise reduction without sacrificing
important features. Computational complexity is another drawback, particularly in models
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like MMHCA and DRFDCAN, which are resource-intensive [34]. Our model streamlines
this by using enhanced spatial attention for efficient processing. Moreover, methods like
DRFDCAN can overemphasize details at the cost of larger structural integrity, which
our approach balances. Finally, unlike adversarial-based techniques like UMIE, which
can be unstable, our model offers stable, consistent results, without introducing artifacts.
Our model provides a more efficient, adaptable, and reliable solution for medical imaging.

Our proposed model builds on these advancements by enhancing the RFLN archi-
tecture to better suit medical imaging applications. By replacing the residual local feature
blocks with standard residual blocks and increasing the model depth, our approach aims
to retain critical features while effectively mitigating noise. Additionally, the incorporation
of enhanced spatial attention (ESA) mechanisms ensures that the model can focus on the
most relevant features, thereby improving both the visual quality and diagnostic utility of
the reconstructed images.

3. Methodology

In this section, we present the enhanced RFLN model tailored for single image super-
resolution. In our work, we specifically adapted the model for medical imaging by replacing
its residual local feature block with a standard residual block. Section 3.1 provides a
comprehensive overview of the baseline model, while Section 3.2 offers a detailed structural
analysis of the proposed modifications and loss functions.

3.1. Residual Local Feature Network

The RFLN is a deep learning model primarily designed to enhance single image
super-resolution tasks (Figure 1). It leverages the concept of residual learning, which
facilitates the ability to focus on learning the residual (or difference) between the LR input
and the HR output, rather than attempting to directly reconstruct the high-resolution image.
This technique has proven effective in mitigating vanishing gradient issues, allowing for
more efficient and accurate deep network training. At the core of the RFLN architecture
are residual local feature blocks, which are designed to extract and preserve both local and
global features from the input image. These blocks work in synergy to capture intricate
details across various scales of the image, ensuring that the reconstructed high-resolution
image maintains sharpness and fine texture details. The architecture also incorporates
several layers of convolutional operations, each followed by non-linear activation functions,
which together contribute to the progressive refinement of the image resolution.

 

Figure 1. The architecture of the modified RFLN.

The residual local feature blocks within the network are particularly adept at retaining
essential image features while suppressing irrelevant noise, which is critical for high-quality
image super-resolution. In essence, RFLN focuses on learning local dependencies within the
image, while the residual connections across layers ensure that the network can maintain
stable gradient flow during training, preventing performance degradation in deeper layers.
Furthermore, the integration of upsampling techniques toward the later stages of the
network enables the final generation of the high-resolution output. These methods, often
involving pixel shuffling or deconvolution, ensure that the output resolution is increased
efficiently without introducing significant artifacts. By leveraging these techniques, RFLN
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can achieve precise and visually appealing super-resolution, making it particularly effective
for applications that require high-fidelity image reconstruction.

3.2. The Proposed Model

where each block consists of three convolutional layers with 3 × 3 kernel sizes, each
paired with ReLU activation functions to introduce non-linearity to the feature maps
(Figure 2). Following this, a concatenation layer combines the output of the block with the
input feature map.

Figure 2. (a) RLFB: The residual local feature block; (b) ResBlock: Modified RLFB; (c) ESA: Enhanced
Spatial Attention.

These steps are followed by the addition of another convolutional layer and an ESA
block, which contribute to the enhancement of inference time. The incorporation of the
ESA block in the proposed architecture is essential for effectively refining feature selection
and improving the quality of the reconstructed images. In medical imaging, preserving
subtle anatomical details is critical for accurate diagnosis, and the ESA block helps the
model focus on these crucial regions of the input images. The ESA block operates by
selectively emphasizing significant spatial areas, which enhances the model’s ability to
retain important features while mitigating irrelevant noise. By capturing both local and
global dependencies, the ESA block allows the model to distinguish between essential
anatomical information and less relevant background features. This targeted attention
is particularly beneficial for medical images, where precise feature extraction can greatly
influence clinical outcomes. The use of the ESA block ultimately results in higher-quality
super-resolved images with superior visual fidelity, making it an integral component of the
model architecture for medical applications.

In our modified ResBlocks, we restructure the entire model, slightly increasing its
depth to capture more comprehensive information, as we are working with medical images
that typically have only a single input channel. This adjustment allows for more effective
feature extraction, ensuring that critical details are retained, which is essential for the
precision required in medical image processing. The input image, Xinput ∈ RWxHxC, goes
as the first layer into ResBlock1, as shown in Equation (1):

Flayer1 = F1x1
(
Xinput

)
(1)
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Flayer1 constitutes the initial layer, which comprises a single convolutional layer with a
3 × 3 kernel size, designed to extract low-level features:

Flayer2 = max
(

0, x·
(

BatchNorm
(

F3x3

(
Flayer1

))))
(2)

Equation (2), where Flayer2 denotes the second layer, incorporates a 3 × 3 convolution
layer that enhances feature mapping. This is succeeded by batch normalization, which
stabilizes the learning process by normalizing the input layer by re-centering and re-scaling.
Following batch normalization, the ReLU activation function is applied to introduce non-
linearity, facilitating the ability of the model to learn complex patterns in the data:

Flayer3 = max
(

0, x·
((

F3x3

(
Flayer1

)))
(3)

Flayer4 = F1x1

(
Fconcat

(
Flayer2, Flayer3

))
(4)

Equation (3) delineates the layers equipped with a ReLU activation function and a
3 × 3 convolution layer, tailored for extracting coarser features. Concurrently, Equation (4)
illustrates the process of element-wise concatenation, coupled with a layer dedicated to the
extraction of low-level features:

Flayer5 = max
(

0, x·
(

BatchNorm
(

F3x3

(
Flayer4

))))
(5)

Flayer6 = max
(

0, x·
((

F3x3

(
Flayer4

)))
(6)

Equations (5) and (6) replicate the same blocks as those in Equations (2) and (3). In these
instances, the input feature map, following concatenation, restores some information and
possesses more complex features for subsequent feature extraction layers. Additionally,
element-wise concatenation aids the feature map in preserving essential information,
preventing the loss of crucial details:

Flayer7 = Fconcat

(
Flayer6, Flayer5

)
(7)

Flayer8 = F1x1

(
MaxPooling

(
Flayer7

))
(8)

Flayer9 = FESA

(
Flayer8

)
(9)

In Equation (7), we employ the second concatenation layer, followed by the application
of a pooling layer. This step ensures that the model captures the most essential or repre-
sentative features from the input feature maps. Specifically, we utilize max pooling, which
selects the maximum value from a group of pixels within a feature map. This approach
is effective because the maximum value typically represents a distinct feature or shape
characteristic, aiding in the robust recognition and representation of important spatial
hierarchies in the data. In the refinement stages, we employ the Mean Squared Error (MSE)
loss. This metric is pivotal in diminishing the squared discrepancies between the predicted
and actual pixel values, which is integral for augmenting the precision of super-resolution
outcomes. The MSE loss quantifies the average squared variances between the true and
forecasted values. It is conventionally articulated as follows:

LMSE =
1
N ∑

i

(
yi − y′ i

)2 (10)

This expression underscores the aim to minimize the mean of the squared errors,
thereby enhancing the fidelity and quality of the super-resolved images. In Equation (10),
yi represents the ground truth high-resolution images, while y′ i denotes the predicted
high-resolution images. These variables are crucial for assessing the performance of
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super-resolution models, focusing on reducing the discrepancies between the actual and
computed outputs to enhance image quality.

4. Experiments and Results

4.1. The Dataset

In our research, we harness specialized datasets that are designed specifically for super-
resolution tasks, such as Figshare and the Kidney Stone collections. These datasets are
expertly structured to facilitate the training and evaluation of sophisticated super-resolution
models. As integral components of our study, they include a comprehensive array of images
meticulously prepared and annotated to support the development of cutting-edge image
enhancement technologies. These datasets are instrumental in advancing techniques that
precisely enhance image resolution, catering to the unique demands of super-resolution
applications. Each dataset includes a diverse set of images from various scenarios, enriched
with detailed annotations that delineate critical areas within the images, thereby providing
high-quality data crucial for refining model accuracy and performance. The characteristics
of the datasets used for testing, namely Figshare and Kidney Stone, are presented below.
These datasets were carefully selected to provide a diverse range of medical images,
ensuring that the proposed model could be effectively evaluated across different medical
imaging modalities (Table 1).

Table 1. Characteristics of the Figshare and Kidney Stone datasets used in our experiments.

Dataset Number of Images Image Resolution Modality Description

Figshare 500 512 × 512 CT and MRI
A diverse set of medical images

annotated for super-resolution tasks,
covering multiple anatomical regions.

Kidney Stone 300 256 × 256 Ultrasound

A specialized dataset focusing on
kidney stone images, annotated for

improved clarity in
super-resolution tasks.

Table 1 provides a clear overview of the datasets used, detailing the number of images,
their resolution, the imaging modality, and a brief description of the dataset content.
Including this information allows for better reproducibility of this study and transparency
regarding the data used.

4.2. Data Preprocessing

The data preprocessing phase for the Figshare and Kidney Stone datasets, which
are tailored for medical super-resolution tasks, involves a pipeline rigorously designed
to enhance the robustness and accuracy of the proposed model. Initially, all images are
resized to ensure uniformity, meeting the specific input requirements of the proposed
model and maintaining consistency across the dataset. Considering the variability in
medical imaging, such as differing modalities and scan qualities, we introduce a series
of augmentations. These adjustments include random rotations, flips, and variations in
brightness and contrast, which help to mimic the diverse conditions found in real-world
medical settings. Additionally, to replicate common imaging challenges like noise and
slight blurring, which may occur due to machine imperfections or patient movement,
Gaussian noise and blurring are applied. Through this preparation process we aim to
acclimate the model to potential real-world imperfections it might encounter.

Normalization of each image follows, standardizing pixel values to align with the
neural expectations of the proposed model, thus promoting stable and efficient learning.
If the datasets include specific annotations, such as regions of interest around kidney
stones, these are meticulously adjusted to maintain accuracy after image transformations.
Lastly, to ensure comprehensive training and prevent model bias, we balance the dataset by
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employing techniques like oversampling or undersampling to represent various medical
conditions adequately (Figure 3).

 

Figure 3. Data preprocessing.

4.3. Metrics

In this paper, the primary metrics we use to evaluate the model’s performance are the
Peak Signal-to-Noise Ratio (PSNR) and the Structural Similarity Index Measure (SSIM).
These metrics are crucial for assessing the quality of the images that have been enhanced
by the super-resolution process. PSNR is used to measure the ratio between the maximum
possible power of a signal and the power of any corrupting noise that affects the fidelity
of its representation, which, in image processing, translates to how much detail can be
perceived in the super-resolved image:

PSNR = 20·log10

(
MAXI√

MSE

)
(11)

where MAXI is the maximum possible pixel value of the image (e.g., 255 for 8-bit images)
and MSE is the mean squared error between the original and the reconstructed images.
SSIM, on the other hand, evaluates the visual impact of three characteristics of an image
(luminance, contrast, and structure), thereby providing a more comprehensive measure
of image quality and perceived changes in structural information. These metrics are
instrumental in demonstrating the effectiveness of the proposed model in improving the
resolution of medical images while maintaining a balance between computational efficiency
and enhancement quality:

SSIM(x, y) =

(
2μxμy + c1

)(
2σxy + c2

)(
μ2

x + μ2
y + c1

)(
σ2

x + σ2
y + c2

) (12)

where μx and μy are the averages of x and y, respectively, σx, and σy are the variance of
x and y, respectively, σxy is the covariance of x and y, and c1 and c2 are two variables to
stabilize division with a weak denominator.

4.4. Experimental Results

Figures 4 and 5 illustrate a meticulous evaluation of super-resolution techniques
applied to a medical MRI image, focusing on a patch region within the brain. These figures
display a sequence of images showing the original scan and subsequent enhancements
using various super-resolution models, including SRCNN, SRGAN, VDSR [12], a baseline
model, and the proposed model.
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Figure 4. MRI images.

Figure 5. Presents a series of comparisons of our proposed model under noisy and low-contrast conditions.

The sequence starts with the original image, taken from the highlighted area, which
appears at a lower resolution, with less distinct features. As we progress through the
sequence, each model attempts to improve the clarity and detail of the image. SRCNN, as
one of the pioneering models in this field, enhances the image to a PSNR of 26.98 dB
and an SSIM of 0.6578, VDSR [12] advances this further to a PSNR of 27.56 dB and
an SSIM of 0.7367, while SRGAN achieves a PSNR of 28.00 dB and an SSIM of 0.7812.
In Figures 4, 6 and 7, each of these results is visible as almost the same. Within this cohort,
SRGAN exhibits the most commendable performance, achieving a PSNR of 28.45 dB and an
SSIM of 0.8423, indicating its superior capability in enhancing image quality and structural
fidelity. Following SRGAN, VDSR [12] attains a PSNR of 27.96 dB and an SSIM of 0.7865,
showcasing its effective resolution enhancement features. Conversely, SRCNN, despite
being an early innovator in this domain, records a PSNR of 27.14 dB and an SSIM of 0.6701.
The baseline model, noted for its lightweight architecture, surprisingly yields a higher
PSNR of 28.24 dB and an SSIM of 0.8103, demonstrating efficient performance despite its
simplicity. However, the proposed model surpasses all these metrics, delivering the highest
refinement with a PSNR of 28.87 dB and an SSIM of 0.8803.
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Figure 6. Illustration of the PSNR, Runtime, and Params for dataset1.

Figure 7. Visual comparison of the SOTA models.

Figure 5 presents a series of comparisons of our proposed model under noisy and
low-contrast conditions. These examples highlight the model ability to mitigate noise and
enhance subtle anatomical features, demonstrating its robustness and reliability for use in
real-world clinical settings. The visual examples clearly show that our model effectively
enhances image quality even in challenging situations, such as those with significant noise
or low contrast, which are common in clinical practice. This further supports the suitability
of our approach for medical applications where high fidelity is crucial.

4.5. Comparison of the Baseline Models

Table 2 offers a nuanced comparison of various super-resolution models, evaluating
their performance across different scaling factors and showcasing their efficiency and
effectiveness through parameters like runtime and the image quality metrics PSNR and
SSIM. Dataset1 and Dataset2 refer to the Figshare and Kidney Stone datasets, respectively,
which were used in our experiments. No additional datasets were introduced. We have
explicitly stated this to ensure clarity and transparency in our manuscript. Furthermore, we
performed several preprocessing modifications to the original datasets. These modifications
included resizing the images to meet the input requirements of the proposed model,
applying random augmentations such as rotations, flips, and brightness adjustments, and
adding Gaussian noise to simulate realistic conditions. These preprocessing steps are
detailed in the Data Preprocessing section to provide a comprehensive understanding of
the dataset preparation.
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Table 2. Results from the baseline models’ comparison.

Scale Model Params [K] Runtime [ms]
Dataset1

PSNR/SSIM
Dataset2

PSNR/SSIM

SRCNN [3] 24 6.92 31.28/0.9012 33.55/0.9312
VDSR [12] 666 35.37 31.79/0.9056 33.78/0.9421
IMDN [35] 694 77.34 32.41/0.9123 34.12/0.9512

2× RFDN [36] 534 74.51 32.68/0.9154 34.45/0.9535
CARN [37] 1592 159.10 32.57/0.9134 34.01/0.9486

LapSRN [38] 251 53.98 31.64/0.9142 33.78/0.9356
Baseline 527 16.41 32.83/0.9175 33.86/0.9369

Ours 452 13.23 32.91/0.9188 34.07/0.9387

SRCNN 57 1.90 27.78/0.7120 28.45/0.7276
VDSR [12] 666 8.95 27.89/0.7165 28.61/0.7287
IMDN [35] 715 20.56 27.95/0.7810 28.98/0.7301
RFDN [36] 550 20.40 28.12/0.8023 29.23/0.7453

4× CARN [37] 1592 39.96 27.86/0.7712 28.52/0.7282
LapSRN [38] 502 66.81 27.15/0.6813 28.34/0.7145

Baseline 543 16.41 28.34/0.8230 29.37/0.7478
Ours 468 13.23 28.46/0.8256 29.48/0.7513

At a 2× scale, models such as IMDN [35] and RFDN [36] demonstrate high-quality
image enhancement, with IMDN [35] achieving notably high PSNR and SSIM scores.
SRCNN, while less complex, with the fewest parameters, offers a fast processing time,
making it efficient though slightly less effective in terms of the quality metrics (Figure 6).
VDSR [12] and CARN [37], with their higher complexity, show improved image quality
at the cost of an increased computational load. The proposed model distinguishes itself
by achieving the best balance between runtime and high-quality results, outperforming
other models in both datasets at this scale. When scaling up to 4×, all models generally
experience a decrease in performance, indicative of the increased challenge associated with
higher scaling factors.

However, the proposed model maintains robust performance, surpassing other mod-
els in image quality, which highlights its superior design for handling more significant
upscaling challenges effectively. RFDN [36] and the baseline model also exhibit com-
mendable performances, suggesting their potential utility in applications where a balance
between speed and image quality is crucial. The diversity in the model performances
across the two datasets underscores the importance of selecting a model based on specific
application needs, considering factors such as the desired balance between image quality
and computational efficiency. The proposed model, with its exceptional performance met-
rics, exemplifies the advancements in super-resolution technology, promising significant
improvements in applications requiring detailed image resolution enhancements.

4.6. Comparison with SOTA Models

This section presents a comparison of the proposed RFLN with various SOTA models
in medical imaging. The evaluation was performed on two distinct datasets, Dataset1
and Dataset2, using PSNR and SSIM as the primary metrics for assessing image quality.
Additionally, the computational efficiency of each model was compared by measuring the
runtime. The performance of the models at both 2× and 4× scaling factors is summarized
in Tables 2 and 3. The results highlight the superiority of the proposed RFLN model
in preserving anatomical details, mitigating noise, and providing higher visual fidelity
compared to previous methods.
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Table 3. Performance comparison at a 2× scaling factor.

Model Params (K) Runtime (ms)
Dataset1

PSNR/SSIM
Dataset2

PSNR/SSIM

MRI Super-
Resolution [18] 1224 25.12 30.45/0.8921 32.78/0.9102

MONA [19] 1045 28.64 31.05/0.8998 33.22/0.9197

Fuzzy Neural
Block [28] 880 22.51 30.12/0.8823 31.90/0.9051

MMHCA [29] 1342 55.78 31.56/0.9045 33.64/0.9228

UMIE [30] 1605 68.32 31.78/0.9107 33.85/0.9285

DRFDCAN [31] 953 26.91 32.14/0.9175 34.05/0.9322

Ours 452 13.23 32.91/0.9188 34.07/0.9387

In Table 3, the proposed RFLN model achieves the highest PSNR and SSIM for both
datasets. The model’s efficient residual learning and enhanced spatial attention ensure
high-quality image reconstruction, while its runtime is the fastest among the compared
models, demonstrating the balance between image quality and computational efficiency.

At the 4× scaling factor, as shown in Table 4, the RFLN model continues to outperform
the other methods, particularly in PSNR, which measures the sharpness and fidelity of
the super-resolved images. Figure 6 presents visual comparisons between the different
models for a patch from a brain MRI scan from Dataset1. The images reconstructed by our
model exhibit the best clarity and structural accuracy, with fewer artifacts compared to the
other methods.

Table 4. Performance comparison at a 4x scaling factor.

Model Params (K) Runtime (ms)
Dataset1

PSNR/SSIM
Dataset2

PSNR/SSIM

MRI Super-
Resolution [18] 1224 25.12 27.12/0.7521 28.95/0.7779

MONA [19] 1045 28.64 27.98/0.7689 27.78/0.7901

Fuzzy Neural
Block [28] 880 22.51 26.85/0.7456 28.62/0.7654

MMHCA [29] 1342 55.78 28.02/0.7756 27.86/0.7922

UMIE [30] 1605 68.32 28.36/0.7812 28.01/0.8027

DRFDCAN [31] 953 26.91 28.33/0.7942 29.22/0.8115

Ours 468 13.23 28.46/0.8256 29.48/0.8513

While all models show a decline in performance at higher scaling factors, the proposed
RFLN model maintains its advantage in preserving image quality with fewer parameters
and lower runtime, making it highly efficient for clinical deployment.

5. Discussion

The experimental results presented in this paper demonstrate the effectiveness of
the enhanced RFLN for single image super-resolution in medical imaging. The proposed
model consistently outperformed existing state-of-the-art models in both quantitative
metrics, such as PSNR and SSIM, and qualitative visual assessments. This section provides
a discussion of the key findings, their implications, and the limitations of the current
approach. One of the significant findings of this study is the importance of enhancing
feature extraction through the use of deeper residual blocks. By replacing the original
residual local feature blocks with standard residual blocks and increasing the network
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depth, the model demonstrated a substantial improvement in its ability to extract and
retain crucial features. This is particularly relevant for medical images, where capturing
fine anatomical details is critical for accurate diagnosis. The ESA mechanism also played
a vital role in improving the overall performance of the model by allowing it to focus
more effectively on relevant regions of the input image, further boosting the quality of the
super-resolved output. The integration of ESA proved to be highly beneficial in addressing
one of the key challenges in medical imaging: distinguishing between essential anatomical
features and noise. Medical images often contain regions with subtle differences that are
critical for diagnosis. By incorporating ESA, the model was able to prioritize these regions,
resulting in super-resolved images that not only had higher visual fidelity but also retained
diagnostically important details. This is particularly useful in applications such as MRI
and CT scans, where image clarity directly impacts clinical outcomes. The visual quality
improvements provided by the proposed model have significant clinical implications,
particularly in enhancing diagnostic accuracy. The enhanced resolution achieved by our
method can lead to better detection of small pathologies, which are often challenging to
identify in lower-resolution images. For instance, with CT scans, the model’s ability to
preserve fine anatomical details can aid in the early detection of small lesions, which is
critical for early-stage diagnosis and timely intervention. Similarly, in ultrasound imaging,
a higher resolution can improve the visibility of subtle abnormalities, such as small kidney
stones or early-stage tumors, leading to more accurate and confident diagnoses. By refining
the visual quality of medical images, our model has the potential to support radiologists and
other healthcare professionals in identifying pathologies that may otherwise go unnoticed.
This enhancement not only improves diagnostic accuracy but also contributes to more
effective treatment planning and patient outcomes. These clinical implications underscore
the value of our approach beyond mere image quality improvement, highlighting its
practical utility in supporting healthcare professionals with precise and reliable image
enhancement tools.

Despite the promising results, there are several limitations to the current approach
that warrant further investigation. First, while the proposed model shows significant
improvement over existing methods, the computational complexity remains relatively
high. The increased model depth and the incorporation of attention mechanisms add to
the computational load, which could limit the model’s applicability in real-time clinical
settings or in scenarios with limited computational resources. Future work could focus on
optimizing the model to reduce inference time and computational requirements without
compromising image quality. Another limitation is the reliance on specific datasets for
training and evaluation. Although the proposed model performed well on the medical
imaging datasets used in this study, the generalizability of the model to other types of
medical images or imaging modalities needs to be further explored. Medical imaging data
can vary significantly based on factors such as imaging equipment, acquisition protocols,
and patient demographics. To ensure robustness and broad applicability, future research
should include more diverse datasets and evaluate the model’s performance across them.

6. Conclusions

In this paper, we presented an enhanced version of the RFLN specifically designed for
single image super-resolution in medical imaging. By incorporating deeper residual blocks,
ESA mechanisms, and increasing the model depth, the proposed architecture demonstrated
significant improvements in reconstructing high-resolution medical images from their
low-resolution counterparts. Our experimental results showed that the enhanced RFLN
outperformed existing state-of-the-art models in terms of both quantitative metrics, such as
PSNR and SSIM, and qualitative visual assessments. The integration of ESA played a crucial
role in focusing on relevant anatomical features while suppressing noise, leading to better
diagnostic utility of the super-resolved images. These enhancements make the proposed
model particularly well-suited for medical applications, where image quality directly
impacts diagnostic accuracy and patient outcomes. However, the increased computational
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complexity and reliance on specific datasets present challenges that must be addressed in
future work. Optimizing the model for real-time clinical deployment and expanding its
applicability to diverse medical imaging modalities are essential next steps. By addressing
these limitations, we believe that the proposed model can make a significant impact in
the field of medical imaging, providing healthcare professionals with the tools needed for
more precise and effective diagnoses.
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Abstract: Deep learning is revolutionizing radiology report generation (RRG) with the adoption
of vision encoder–decoder (VED) frameworks, which transform radiographs into detailed medical
reports. Traditional methods, however, often generate reports of limited diversity and struggle with
generalization. Our research introduces reinforcement learning and text augmentation to tackle
these issues, significantly improving report quality and variability. By employing RadGraph as a
reward metric and innovating in text augmentation, we surpass existing benchmarks like BLEU4,
ROUGE-L, F1CheXbert, and RadGraph, setting new standards for report accuracy and diversity
on MIMIC-CXR and Open-i datasets. Our VED model achieves F1-scores of 66.2 for CheXbert and
37.8 for RadGraph on the MIMIC-CXR dataset, and 54.7 and 45.6, respectively, on Open-i. These
outcomes represent a significant breakthrough in the RRG field. The findings and implementation of
the proposed approach, aimed at enhancing diagnostic precision and radiological interpretations in
clinical settings, are publicly available on GitHub to encourage further advancements in the field.

Keywords: radiology report generation; reinforcement learning; text augmentation; machine learning;
deep learning; vision transformer; chest X-rays; medical image; text generation

1. Introduction

Radiology report generation (RRG) is a challenging task where the goal is to interpret
radiographic images and generate detailed reports on potential patient pathologies. In
contrast to typical computer vision (CV) tasks, which aim to identify objects in images, RRG
focuses on diagnosing potential pathologies and determining their presence, absence, or
uncertainty. Moreover, limited data availability and the diverse nature of medical reports
pose significant challenges. This task is crucial for streamlining and enhancing patient
care, as it enables the analysis of individuals’ health and the rapid detection of diseases.
Furthermore, it serves as assistance and support for medical professionals. The RRG task
parallels other works such as [1], where complex data are handled, and models trained
from such data must ensure specific security criteria. This similarity arises from the need
to develop models capable of diagnosing pathologies precisely, as in this type of problem,
patients’ health is put at risk. Current approaches mainly rely on deep learning (DL),
specifically the vision encoder–decoder (VED) architecture [2–8], incorporating components
like memories [9,10] or reinforcement learning (RL) [5,11,12] to improve performance.

This study presents a two-stage VED pure-transformer architecture for chest RRG. In
the first stage, conventional negative log-likelihood (NLL) training is employed, while the
second stage focuses on RL optimization for various metrics. These metrics encompass em-
bedding comparison for semantic coherence [13], entity and relationship graph generation
for pathology descriptions [14], and NLL. Additionally, we propose the integration of text
augmentation and hard negative mining techniques. This comprehensive approach sur-
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passes current chest RRG methodologies, enhancing report variability, factual correctness,
completeness, and overall model generalization.

The key contributions of this study are as follows:

• Harnessing vision encoder–decoder transformer frameworks and reinforcement learn-
ing to enhance radiology report quality, factual correctness, and completeness.

• Proposing text augmentation to the training workflow. This technique allows for lever-
aging the scarcity of data by generating new reports. This leads to an improvement in
diversity, averaging a threefold increase compared to the state of the art.

• Due to the challenge of measuring the quality of generated reports, we focus on em-
ploying specialized natural language processing-based metrics to evaluate radiology
reports comprehensively.

• Open-sourcing our methodology on GitHub at https://github.com/dparres/Diversifying-
Radiology-Report-Generation (accessed on 1 April 2024) to propel progress in diagnostic
precision and radiological interpretation within clinical settings.

Related Work

In recent years, deep learning techniques have led various approaches to classify
and detect pathologies in X-ray images. Notable efforts in this domain include Schlegl
et al. [15], who proposed a convolutional network (CNN) for classifying tissue patterns in
tomographies, utilizing semantic descriptions in reports as labels. Building on this success,
subsequent neural network models were explored for X-rays, such as Shin et al. [16], who
introduced a CNN for chest X-ray images and a recurrent network (RNN) for annotations,
jointly trained to annotate diseases, anatomy, and severity. Other approaches, like that
of Moradi et al. [17], focused on annotation through the concatenation of a CNN and an
RNN block to identify regions of interest. Notably, Rubin et al. [18] employed parallelly
trained CNNs for frontal and lateral chest X-ray views to estimate possible pathologies. The
interest in RRG has grown, led by impactful models like TieNet [4], as well as innovative
contributions from Li et al. [3], Jing et al. [19], and Jing et al. [19], each leveraging advanced
techniques such as pretrained networks, coattention mechanisms, and retrieval policy
modules for efficient disease classification and report generation.

Deep learning applications in radiology encounter obstacles due to limited and
unstructured data availability, exacerbating the normal–abnormal case imbalance and
complicated by ambiguous radiologist reports [20]. CNN models such as AlexNet [21],
VGG-16 [22], GoogLeNet [23], and ResNet [24] dominate medical text–image mining, with
the increasing prevalence of end-to-end training [20]. However, the model comparison
is hindered by dataset diversity, although incorporating radiology reports is expected to
grow [20]. Radiology reports, diverse in style and influenced by biases, pose challenges
in training robust models, with few datasets meeting scalability and accessibility crite-
ria [25]. Most RRG systems concentrate on X-ray tests, with emerging applications for CT
scans and MRI datasets, each encountering unique challenges [25].

Alfarghaly et al. [26] introduced a novel technique for generating radiology reports
from chest X-rays with DistilGPT2 [27]. This approach highlights faster training and
improved metrics. Although limitations persist, larger datasets’ release is suggested
for enhanced model generalization and critical evaluation of quantitative methods [26].
Yang et al. [28] presented a method combining general medical and specific medical knowl-
edge with a multihead attention mechanism for chest RRG. Furthermore, Pan et al. [29]
proposed a method for generating chest radiology reports through cross-modal multiscale
feature fusion. This architecture aims to enhance location sensitivity and disease characteri-
zation. Additionally, these advancements pave the way for aligning scales and integrating
knowledge graphs, enhancing the accuracy of report generation [29]. Yang et al. [30] intro-
duced a highly accurate and automated radiology generation framework coupled with
a novel automatic medical knowledge updating mechanism, enhanced by a multimodal
alignment approach. Zhao et al. [31] presented a knowledge enhancement technique
leveraging medical knowledge in dictionary form alongside historical knowledge, comple-
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mented by a multilevel alignment method to mitigate modal differences between text and
image. Nicolson et al. [32] introduced CvT2DistilGPT2, leveraging a convolutional vision
transformer for optimal encoder warm starting and highlighting GPT2’s [33] superiority
in decoder warm starting over BERT [34]. Despite the proposals’ novelty, they all rely on
metrics such as BLEU and ROUGE-L for comparison, which may not be entirely suitable
for measuring the presence, absence, or uncertainty of pathologies. Furthermore, these
metrics fail to consider the interrelation of pathologies within the report. Additionally,
the monotony and repetition in generated reports are noteworthy factors attributed to the
inherent difficulty of the RRG task.

Due to the increasing interest in automating RRG, specific architectures have been
designed to address chest RRG tasks. Liu et al. [5] proposed a CNN for extracting visual
features, followed by a sentence decoder and word decoder for generating report topics
and composing the final report. The model is fine-tuned using RL with CheXpert [35]
labels. Chen et al. [9] introduced the memory-driven transformer, employing relational and
memory-driven layers to enhance information retention and incorporation into the decoder.
Meanwhile, Chen et al. [10] presented a VED based on cross-model memory networks,
leveraging shared memory to capture and utilize visual–textual alignments.

Liu et al. [6] and Liu et al. [7] proposed leveraging unsupervised construction of
knowledge graphs to replicate radiologists’ patterns to generate reports. Focusing on RL,
Miura et al. [11] suggested employing two metrics: one ensuring the generation of do-
main entities (factENT) and the other maintaining coherent entity descriptions (factENTNLI).
These metrics are optimized alongside BERTScore [13], a semantic equivalence metric.
Delbrouck et al. [12] propose a competitive chest RRG approach utilizing a VED. The
model employs a DenseNet-121 [36] as the optical encoder and a single-layer BERT [34]
as the decoder. Trained with RL, the optimization involves three metrics: RadGraph [14],
BERTScore, and NLL. RadGraph, a neural network, constructs semantic annotations by
forming a graph of entities and relationships in reports. The reward is computed by
comparing the hypotheses’ entities and relationships against the reference, resulting in
higher-quality reports surpassing values achieved by factENT and factENTNLI . These pro-
posals employ chest-RRG-oriented metrics to enable more precise comparisons of report
quality compared to metrics such as BLEU or ROUGE-L. Despite this and using RL for
training, the reports exhibit repetitiveness and a lack of diversity.

2. Materials and Methods

This section of the paper presents the primary approach for the chest RRG task. Firstly,
the neural models are introduced, and we propose four different architectures to analyze
the most suitable for the RRG task. Subsequently, the training workflow of the models
is outlined. Then, the text augmentation technique is introduced to leverage the scarcity
of data. The final subsection presents the databases to be utilized and the metrics for
comparing models and measuring the quality of the generated reports.

2.1. Proposed Architectures

Our model architectures for addressing the chest RRG problem are VED models, with
Swin [37] as the vision model and BERT [34] as the language model or decoder. We opted for
Swin for its outstanding performance in various computer vision tasks such as classification,
object detection, and semantic segmentation [37]. Compared to ViT [38], Swin’s hierarchical
nature and more efficient attention mechanism based on shifted windows make it more
suitable for X-ray analysis. Our models utilize both the base and small variants, denoted
as SwinB and SwinS. These architectures are pretrained with ImageNet [39] and feature
an input image size of three channels with a width and height of 224 pixels. They have
architectural depths of 2, 2, 18, and 2 for each layer, with a patch size of 4. The primary
difference lies in the number of heads, with SwinB utilizing sizes 4, 8, 16, and 32 and SwinS
using 3, 6, 12, and 24.
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For the decoder model, BERT was selected due to its proven effectiveness across
various natural language processing (NLP) tasks [34,40,41]. However, we diverge from
the standard configuration by employing only three layers with a hidden size of 1024,
rather than the original 12 layers. Moreover, our investigation includes the analysis of two
distinct decoders: one word-based, with a vocabulary of approximately 9.8k words, and
another subword-based, featuring a vocabulary of 30k subwords. The integration of the
vision model with the decoder model is facilitated through cross-attention layers, enabling
the introduction of visual features extracted from the radiograph into the decoder. This
integration allows for the autoregressive generation of reports.

Following this approach, the proposed VED models for chest RRG analysis are
SwinB+BERT9k, SwinB+BERT30k, SwinS+BERT9k, and SwinS+BERT30k.

2.2. Training Workflows

In radiological contexts, multiple images (such as anterior–posterior and lateral views)
are commonly generated per patient study. We employ a multi-image approach to address
this, restricting it to three images per study. This involves concatenating features extracted
by the Swin encoder for each image and processing them in the decoder. Furthermore, we
apply random transformations—including translation, scaling, rotation, and adjustments
to brightness and contrast—to augment training images.

Our training process comprises two stages, as illustrated in Figure 1. In the initial
stage, the NLL loss function is employed, utilizing teacher forcing to train the model based
on the generated hypothesis and the reference report. This stage typically encompasses
approximately twelve training epochs. Subsequently, in the second stage, RL is introduced
using the self-critical sequence training (SCST) algorithm [42]. SCST performs two forward
passes of the VED: greedy decoding and beam-search multinomial sampling (sampling
decoding). The first pass involves inference through greedy decoding to obtain the report
Yg without calculating gradients. Meanwhile, the second pass employs sampling decoding,
calculating gradients to obtain the sampling report Ys.

RL aims to optimize specific metrics by using them as rewards. In our approach,
we propose utilizing two metrics: BERTScore [13] and RadGraph [14]. BERTScore effec-
tively improves grammar and semantics within models, while F1RGER aids the model in
prioritizing pathology-related entities and relationships.

After obtaining the reports Yg and Ys, we must calculate a loss for each metric to
optimize (Lossmetric). This Lossmetric is subsequently used to compute a weighted sum to
obtain the final LossRL and update the model weights. Equation (1) outlines the process
to derive the Lossmetric, where the metric rewards are computed for Ys and Yg using the
reference report Yre f . These rewards are then subtracted and multiplied by the logarithm
of the probabilities calculated during the generation of the Ys report.

Lossmetric(Ys, Yg, Yre f ) = −(rmetric(Ys, Yre f )− rmetric(Yg, Yre f )) log(Pr(Ys)) (1)

Each Lossmetric contributes as a distinct weighted term to the final RL loss, as pre-
sented in Equation (2). To obtain the LossRL for updating the model weights, LossBERTScore,
LossF1RGER , and the same loss utilized in the initial training stage, the LossNLL, are summed.
In our experiments, we set α = β = 0.495 and γ = 0.010 as the weighting factors.

LossRL = αLossBERTScore + βLossF1RGER + γLossNLL (2)

2.3. Text Augmentation

Data augmentation (DA) is the most prevalent technique for addressing machine
learning problems with limited data. This approach significantly contributes to enhanced
generalization and improved data utilization. However, regarding RRG, the focus has
primarily been on augmenting input images. To the best of our knowledge, no prior
approach has investigated the impact of augmenting radiology reports, a technique known
as text augmentation (TA). In chest RRG, reports are often drafted by different individuals
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in diverse manners, lacking specific templates, which results in significant variability
inherent to natural language. Presently, state-of-the-art RRG algorithms encounter this data
scarcity issue, often generating highly repetitive and monotonous reports.

In this study, we introduce a TA technique designed to enhance the quality and
diversity of generated reports. Our TA approach involves splitting the reference report
into phrases, considering the typical structure of reports with multiple sentences. These
phrases are then randomly reorganized to create new reports while maintaining the original
diagnosis, as depicted in Figure 1. This method mitigates overfitting concerns and promotes
a more targeted learning of the mentioned pathologies. Furthermore, our TA significantly
improves the quality, factual accuracy, and comprehensiveness of the generated reports, as
demonstrated subsequently.

Figure 1. Our training workflow using RL and TA to enhance report quality. In the initial stage,
training with NLL employs teacher forcing. Subsequently, during RL training, the SCST algorithm
computes rewards utilizing two different reports from two distinct decoding strategies: greedy search
and beam-search multinomial sampling. Inference on validation and test sets is conducted using
beam search in both stages.
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The TA technique described and utilized in this work is exclusively employed in
the training workflow, specifically during the NLL and RL stages. This technique aims
to leverage the reference reports to enhance the model training process and increase its
robustness. The report sentences will be randomly ordered in each training epoch for each
training sample.

2.4. Datasets and Metrics

To evaluate the competitiveness of our models, we employed two publicly available
datasets: MIMIC-CXR [43] and Open-i [44]. Due to the relatively small size of the Open-i
dataset, containing 3.3 k reports, it was exclusively utilized for testing. The MIMIC-CXR
dataset comprises 152 k reports for training, 2.3 k for validation, and 2.3 k for testing. The
workflow involves training with the 152 k reports, saving the model weights based on
the best performance on the validation set, and finally using these weights to perform
inference on both the MIMIC-CXR and Open-i test sets. It is important to note that in this
study, the models were specifically designed to generate the findings section of the reports.
Additionally, samples with empty findings sections were excluded from consideration.

Metrics play a crucial role in comparing models, with BLEU4 [45] and ROUGE-L [46]
currently considered as the most widely used natural language generation (NLG)-oriented
metrics for reports. Additionally, two chest-RRG-oriented metrics, specifically designed to
evaluate the quality of radiology reports, have been employed: F1CheXbert (F1cXb) [47] and
F1RGER [12,14]. These metrics leverage neural networks to assess the quality of generated
reports, offering a higher semantic evaluation. F1cXb utilizes CheXbert, a transformer
model capable of identifying the presence of the 14 CheXpert [48] pathologies (atelectasis,
cardiomegaly, consolidation, edema, enlarged cardiomediastinum, fracture, lung lesion,
lung opacity, pleural effusion, pneumonia, pneumothorax, pleural other, support devices,
and no finding) in a hypothesis report, and calculates the F1-score based on the pathologies
present in the reference report. On the other hand, F1RGER employs a transformer model to
analyze reports, generating graphs for entities and relationships. It evaluates comparisons
between entity and relationship structures in hypotheses and reference graphs to compute
the F1-score.

3. Results

This section details the experiments carried out to develop models for chest RRG.
We analyze the proposed architectures and then conduct an ablation study on effective
training techniques and strategies. Finally, we assess the competitiveness of our proposal
by comparing it with state-of-the-art models. All experiments were conducted using a
computer equipped with an NVIDIA RTX 4090 GPU.

3.1. Analysis of Our Architectures

This study proposes four VED models, distinguished primarily by the number of
trainable parameters in each component. Table 1 illustrates how SwinB+BERT30K is the
largest model, while SwinS+BERT9k is the smallest. The remaining two models fall within
a similar parameter range. Comparing architecture sizes is interesting because the RRG
task operates in a data-limited environment due to the high variability of medical reports
and their scarcity. Therefore, training models with high parameter counts can become
challenging to tune efficiently. The number of parameters, along with the nature and size of
the dataset, are crucial factors for effective learning that avoids underfitting and overfitting.
Furthermore, the results presented in Table 1 encourage analysis of which components of
the architectures may be more critical for obtaining meaningful reports.

In addition to the number of parameters, Table 1 showcases BLEU4, ROUGE-L, F1cXb,
and F1RGER metrics. These metrics were obtained following the same workflow and
hyperparameters across all four models. During the first stage, involving training with
NLL, we conduct training for 12 epochs with a learning rate of 3 × 10−4. Subsequently,
in the second stage, corresponding to RL training, we train for 15 epochs with a learning
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rate of 5 × 10−5. This learning rate value is crucial as it allows a good starting point
for improving results based on previous training. The value of learning rates has been
empirically explored using grid search with learning rate values of 5 × 10−3, 3 × 10−3,
1 × 10−3, 5 × 10−4, 3 × 10−4, 1 × 10−4, 5 × 10−5, 3 × 10−5, 1 × 10−5, 5 × 10−6, 3 × 10−6,
and 1 × 10−6 for the first and second training stages. Values above 5 × 10−5 in RL training
lead to highly repetitive reports, while values below it yield only marginal improvements,
failing to achieve significantly better results than training with NLL. The training epochs
are set to 12 and 15 for the first and second stages, respectively, proving sufficient to achieve
satisfactory results. Increasing the epochs does not significantly improve report quality
due to the task’s data scarcity and variability. During both stages, the learning rate is
linearly decreased until reaching a value of zero at the end of the epochs. The results
presented in Table 1 do not utilize image data augmentation, hard negative mining (HNM),
or text augmentation.

Table 1. Architecture comparison using four report quality metrics on the MIMIC-CXR and Open-i
test sets, RL training hours per epoch, and the number of parameters. The metric values are provided
in (%). Bold font indicates the best result obtained for each metric.

Model F1cXb F1RGER BLEU4 ROUGE-L h/epoch # Params

MIMIC-CXR

SwinS+BERT9k RL 61.1 34.9 11.5 25.9 12 109 M
SwinS+BERT30k RL 61.4 34.3 11.3 25.2 24 130 M
SwinB+BERT9k RL 63.1 35.4 11.7 26.5 14 147 M
SwinB+BERT30k RL 62.9 35.1 11.6 26.5 30 168 M

Open-i

SwinS+BERT9k RL 52.8 44.5 14.8 33.7 - 109 M
SwinS+BERT30k RL 52.8 44.1 14.6 33.4 - 130 M
SwinB+BERT9k RL 54.7 45.6 15.1 34.3 - 147 M
SwinB+BERT30k RL 54.4 45.3 14.9 34.1 - 168 M

Regarding report metrics on MIMIC-CXR, the SwinB+BERT9k model stands out, ex-
hibiting superior performance compared to its closest counterpart, SwinB+BERT30k, and
achieving a training time reduction of 16 h per epoch. For the SwinS models, results demon-
strate a similarity, albeit with the BERT9k variant showcasing marginally better metrics
across all parameters except F1cXb. Interestingly, F1cXb remains nearly identical between
the two SwinS and SwinB models, indicating a direct impact of the encoder’s size on this
metric’s competitiveness. Conversely, the choice between word-based or subword-based
decoders does influence metrics such as BLEU4, ROUGE-L, and F1RGER. Moreover, adopt-
ing word-based models yields superior metrics and significantly reduces training time,
enhancing overall efficiency. The results from Open-i also rank the SwinB+BERT9k model
as the most competitive and SwinS+BERT30k as the least competitive. Once again, this
reaffirms that word-based models yield better results in the chest RRG task. Furthermore,
the SwinS model demonstrates superior capability in generating reports by obtaining the
best representations of radiographs.

Based on the results of the analysis, SwinB+BERT9k emerges as the most competi-
tive and efficient model for chest RRG. However, various strategies can prove crucial in
data-limited environments like chest RRG. This study specifically proposes using TA to
leverage reports and significantly increase the training data. However, employing image
augmentation techniques such as slight rotations, scale changes, shifts, random crops, and
adjustments of brightness and contrast helps exploit the number of images. Moreover,
since most datasets typically include more challenging samples than others, HNM is an
option to consider. During training, samples with errors greater than the mean error plus
their standard deviation are reutilized before moving to the next epoch.
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Table 2 presents the ablation study of our best model, considering these strategies.
The first row showcases the metrics achieved at the end of the NLL stage. The second row
demonstrates how training with RL succeeds in improving these metrics; while image data
augmentation shows a minor impact attributed to the robustness of transformers, HNM
marginally enhances results by revisiting challenging samples at the end of each epoch. In
contrast, TA emerges as a crucial technique, significantly improving chest-RRG-oriented
metrics and BLEU4 by over one point. This underscores the significance and effectiveness
of TA in efficiently leveraging the number of reports and furnishing the network with
enhanced generalization capabilities.

Table 2. Ablation study of our best model on the MIMIC-CXR test set. The metric values are provided
in (%). Bold font indicates the best result obtained for each metric.

Model F1cXb F1RGER BLEU4 ROUGE-L

SwinB+BERT9k NLL 52.3 22.4 10.1 20.5
+ RL 63.1 35.4 11.7 26.5
+ Image Augment. 63.3 35.7 11.9 26.6
+ Hard Neg. Mining 64.2 35.8 12.0 26.8
+ Text Augment. 66.2 37.8 13.2 27.1

3.2. Benchmarking with the State of the Art

To assess the competitiveness of our top model against other state-of-the-art models,
we selected the proposals with the most competitive results on both the MIMIC-CXR and
Open-i datasets, as detailed in Table 3. The table is divided into two sections: models
trained with NLL and models trained with RL, comparing them across the same metrics
presented in Table 2. Metrics optimized for models trained with RL are indicated in
parentheses. The benchmark model we employ is SwinB+BERT9k utilizing RL and TA, as
depicted in Table 2.

The results underscore the importance of utilizing RL for training, as models trained
with NLL exhibit inferior performance. In NLL models for MIMIC-CXR, it can be observed
that Nicolson et al. [32]’s proposal achieves the highest BLEU4 score while securing a second
position in terms of ROUGE-L. Pan et al. [29]’s proposal obtains the highest ROUGE-L value.
Regarding chest RRG metrics, due to their novelty, not all proposals have registered values,
as image-captioning metrics such as BLEU4 or ROUGE-L are commonly used. Our proposal
achieved the highest F1cXb values, followed by Delbrouck et al. [12]’s model; this trend
was also observed for F1RGER values. When compared to the NLL models of the Open-i
dataset, the highest BLEU4 score is achieved by Miura et al. [11], while Chen et al. [10]
obtain the highest ROUGE-L score. Similar to MIMIC-CXR, in chest-RRG-oriented metrics, our
model obtains the highest values, followed by Delbrouck et al. [12].

Table 3 also presents the results for methods trained with RL. The metric used within
the RL reward is indicated in parentheses. In the MIMIC-CXR dataset, it is apparent that the
BLEU4 score reported by Miura et al. [11] deteriorates in both models when compared to
the one trained with NLL. However, it still manages to enhance the F1cXb score. Regarding
Delbrouck et al. [12]’s models, there is an improvement of about one point in BLEU4 and
ROUGE-L, with their model achieving the second-best scores for F1cXb and F1RGER at
62.2 and 34.7, respectively. Meanwhile, our SwinB+BERT9k model surpasses all RL models
across all metrics, demonstrating superior quality, factual correctness, and completeness. In
the case of the Open-i dataset, a similar trend is observed, with our model outperforming
other proposals by approximately nine and six points in F1cXb and F1RGER, respectively,
compared to Delbrouck et al. [12]. The good results obtained in this database demonstrate
the generalization and adaptability capacity of our training workflow to the chest RRG task.

Upon analyzing the results in Table 3, it becomes evident that the conventional ap-
proach to compare RRG systems relies on image-captioning metrics such as BLEU4 and
ROUGE-L. As a result, all proposals rely on NLG-oriented metrics in their original works;
however, the majority lack values for chest-RRG-oriented metrics due to their novelty.
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Nevertheless, NLG-oriented metrics may lack precision in clinical settings as they do not
gauge syntax, semantics, or the comprehension of report meanings. Consequently, metrics
tailored to the RRG task, like F1cXb and F1RGER, have emerged to evaluate pathologies’
presence, absence, or uncertainty and their relationships within reports. These chest-RRG-
oriented metrics offer a more accurate report quality assessment than NLG-oriented metrics.
For instance, despite minimal differences in BLEU4 scores between Delbrouck et al. [12]
and our approach in MIMIC-CXR, a significant gap is observed when measured with
chest-RRG-oriented metrics. Another example of the imprecision of NLG-oriented metrics in as-
sessing report quality can be seen in nearly identical BLEU4 scores between
Miura et al. [11]’s models trained with NLL and RL in MIMIC-CXR, yet exhibiting a 12-point
difference in F1cXb. High values in NLG-oriented metrics do not reflect the quality of a report,
as neither BLEU4 nor ROUGE-L measures whether the mentioned pathologies are present,
absent, or uncertain.

Table 3. Comparison of our model, SwinB+BERT9k, against top state-of-the-art models for chest RRG
on the MIMIC-CXR test set and Open-i dataset. The metric values are provided in (%). Bold font
indicates the best result obtained for each metric.

State of the Art
Chest-RRG-Oriented NLG-Oriented

F1cXb F1RGER BLEU4 ROUGE-L

MIMIC-CXR: NLL models
Yang et al. [28] - - 11.5 28.4
Pan et al. [29] - - 11.2 28.8
Yang et al. [30] - - 11.1 27.4
Zhao et al. [31] - - 10.9 27.5
Nicolson et al. [32] - - 12.7 28.6
Liu et al. [5] 29.2 - 7.6 -
Chen et al. [9] 34.6 - 8.6 27.7
Miura et al. [11] 44.7 - 11.5 -
Chen et al. [10] 40.5 - 10.6 27.8
Delbrouck et al. [12] 44.8 20.2 10.5 25.3
Ours: NLL stage 57.8 27.1 10.3 22.8

MIMIC-CXR: RL models
Miura et al. [11] (BERTScr+factENT) 56.7 - 11.1 -
Miura et al. [11] (BERTScr+factENTNLI) 56.7 - 11.4 -
Delbrouck et al. [12] (BERTScr+F1RGER) 62.2 34.7 11.4 26.5
Ours: RL stage (BERTScr+F1RGER) 66.2 37.8 13.2 27.1

Open-i: NLL models
Miura et al. [11] 32.2 - 12.1 28.8
Chen et al. [10] - - 12.0 29.8
Alfarghaly et al. [26] - - 11.1 28.9
Donahue et al. [49] - - 9.9 27.8
Delbrouck et al. [12] 33.1 26.4 11.4 -
Ours: NLL stage 46.6 34.5 11.2 23.4

Open-i: RL models
Miura et al. [11] (BERTScr+factENT) 48.3 - 12.0 -
Miura et al. [11] (BERTScr+factENTNLI) 47.8 - 13.1 -
Delbrouck et al. [12] (BERTScr+F1RGER) 49.1 41.2 13.9 32.7
Ours: RL stage (BERTScr+F1RGER) 54.7 45.6 15.1 34.3

4. Discussion

This study presents an efficient workflow for training VED models explicitly designed
for chest RRG. This workflow demonstrates remarkable performance in chest-RRG-oriented
metrics. One pivotal finding lies in our analysis of the proposed architectures, where
we show that utilizing the SwinB encoder yields superior radiograph representations.
Notably, the word-based approach proves more competitive in the decoder component

99



Bioengineering 2024, 11, 351

than its subword-based counterpart. This finding contrasts with strategies commonly
employed in current large language models (LLMs). However, this discrepancy can be
attributed to the inherent variability and scarcity of data in the chest RRG task. Furthermore,
our ablation study underscores the critical role of TA in effectively leveraging data for
this task, demonstrating substantial improvements in metrics over strategies like image
augmentation or HNM.

A prevalent issue in RRG proposals is the high repetition and monotony frequently
encountered in reports generated by other state-of-the-art approaches. Typically, models
tend to converge to a local minimum, yielding nearly identical standardized reports across
most patients. This phenomenon arises as deep learning algorithms settle at a midpoint
where the generated reports broadly apply to most cases. These reports adhere to a template
naming common pathologies in a fixed order and syntactic structure, irrespective of the
patient. Consequently, this pattern results in reports of dubious quality, often overlooking
less common pathologies, thereby undermining the reliability of diagnostic models.

Given the high repetition and monotony in the generated reports of state-of-the-art
models, we propose an analysis of report diversity using N-grams in the MIMIC-CXR
test set. This analysis allows for measuring diversity by examining the number of unique
N-grams present in generated reports, as illustrated in Figure 2. Specifically, we com-
pare reports generated by our model with those produced by the approach presented in
Delbrouck et al. [12], acknowledged for being the most competitive proposal in the field,
as outlined in Table 3. The graph illustrates a notably greater diversity in our generated
reports compared to those of the Delbrouck et al. [12] model. Moreover, our model achieves
a diversity difference averaging nearly three times their model.

Figure 2. The graph showcases the diversity of N-grams within the generated reports using the
MIMIC-CXR test set, encompassing the proposal by Delbrouck et al. [12] and our approach.

Consequently, the TA strategy substantially augments the volume of reports for
training and significantly boosts the performance of VED models, as demonstrated by
chest-RRG-oriented metrics. An additional qualitative advantage of our TA-based approach
lies in its capacity to generate less repetitive and more diverse reports compared to prior
methods. We illustrate this with examples of reports from SwinB+BERT9k and their
corresponding RadGraph entities in Table 4. ANAT-DP denotes anatomical body parts
mentioned in the report, while OBS signifies observations associated with radiology images,
categorized as definitely present (OBS-DP), definitely absent (OBS-DA), or uncertain (OBS-
U). Despite improving report quality with techniques like TA, specific repetitions and
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monotony persist. This will need to be addressed using new metrics and strategies in
the future.

Table 4. Comparison of reports generated by our SwinB+BERT9k model trained with RL and TA
against reference reports on the MIMIC-CXR test set. The first and third cases involve a patient whose
study contains two images, while the second involves a single image.

Images Hypothesis Report Reference Report

Input images = 2 F1RGER 63.6 %

Input images = 1 F1RGER 43.2 %

Input images = 2 F1RGER 27.6 %

In addition to the inherent complexity of this task, focusing on medical text generation
necessitates the analysis and proposal of additional chest-RRG-oriented metrics based on
NLP models. Exploring novel methods to assess the reference report against an estimated
one can facilitate a more comprehensive evaluation of state-of-the-art models. Our study
demonstrates the utility of F1cXb in verifying whether generated reports discuss patholo-
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gies present in the reference reports. Furthermore, F1RGER ensures that the present, absent,
and unknown pathologies are correctly related in the reports. Considering these findings,
these two metrics are essential for model comparison. Although these metrics effectively
and efficiently enhance RL training, models frequently produce reports with incomplete
sentences. This deficiency is evident in numerous state-of-the-art proposals, and despite
the efficacy of TA, it still occurs occasionally. It is evidenced at the end of the third report in
Table 4. This phenomenon arises from models learning that specific syntactic structures can
benefit chest-RRG-oriented metrics like F1RGER, even if they do not constitute syntactically
correct sentences. Moving forward, we advocate for further research into novel metrics
using alternative deep learning algorithms, such as LLMs like GPT-4 [50] or LLaMA [51].

Several aspects of the proposed approach for real-world RRG scenarios merit attention,
including multilanguage support, standardization of reports, and improvements in picture
archiving and communication systems (PACS). Since the decoder model primarily operates
with English words, it encounters specific difficulties when used in other languages. Thus,
it would be necessary to remove the last layer of the decoder model and adjust it based
on the desired language; however, the rest of the model remains language-independent.
Another challenge lies in the lack of standardization in report writing across different
institutions, leading to variations in reporting guidelines. Consequently, RRG models can
assist in integrating new reporting guidelines to standardize and unify databases for RRG.
Furthermore, our approach can enhance PACS, which are commonly used in healthcare for
securely storing and transmitting electronic images and clinical reports. Collaborating with
expert radiologists, we can integrate RRG models to streamline processes within PACS,
such as preparing automatic draft reports that radiologists can interactively correct. This
approach can improve diagnostic efficiency and expert assistance times while enhancing
the standardization and homogenization of reports.

The strengths and weaknesses of our model have been highlighted using different
metrics. However, another essential aspect to analyze is the integration of the proposed
workflow into the clinical setting. Given that the system relies on a VED deep learning
model, its deployment only requires a computer with a GPU with at least 12 GB of memory.
The model specializes in chest radiographs from different position views, such as antero-
posterior, lateral, posteroanterior, and lateral decubitus. Therefore, it can integrate and
analyze a wide variety of chest radiographs.

The scope of this work is focused on chest radiographs. However, our approach is not
limited solely to its application in chest radiographs. The proposed approach is flexible
and independent, allowing it to be applied to other radiological scenarios. Therefore, our
approach can be seamlessly adapted for radiographs of different body parts. The only
aspect requiring modification is the reward optimization during RL training. Since F1RGER
primarily specializes in chest-related pathologies, this metric should be replaced with
another relevant to the radiological scenario where our approach is intended for application.
The remaining components, such as the encoder, decoder, TA, and decoding strategies, are
independent of the radiological scenario. Despite the flexibility and independence of the
approach, the major limitation for application to other radiological scenarios depends on
the availability of training data. Acquiring large datasets to train VED models is crucial for
improving the quality of reports and enhancing their applicability to different scenarios.

5. Conclusions

Chest RRG poses a challenge due to the limited data availability and the diverse nature
of medical reports and variations in pathology expressions. Four transformer-based models
were analyzed, highlighting the encoder as the key component, with SwinB being the best
choice. This transformer encoder has not been previously explored in RRG. Regarding the
decoder, a word-based approach trains faster and achieves more competitive results than a
subword-based one.

Techniques like image data augmentation, hard negative mining, and TA were intro-
duced. TA was shown to be an effective method to improve generalization and the quality
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of the generated reports regarding variability, quality, factual correctness, and complete-
ness, which yields a model that outperforms the state of the art. Moreover, this approach
paves the way for new TA approaches based on augmentation with more complex NLP
techniques, such as LLM models.

Additionally, NLG-oriented metrics may not be optimal for measuring report quality,
as they compare sentences and words without considering semantic meaning or alternative
expressions of the same diagnosis. Thus, metrics based on NLP models specialized in chest
radiology reports like F1cXb and F1RGER appear to be crucial in evaluating report quality.
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Abstract: The advancement in cancer research using high throughput technology and artificial in-
telligence (AI) is gaining momentum to improve disease diagnosis and targeted therapy. However,
the complex and imbalanced data with high dimensionality pose significant challenges for computa-
tional approaches and multi-omics data analysis. This study focuses on predicting skin cancer and
analyzing overall survival probability. We employ the Kaplan–Meier estimator and Cox proportional
hazards regression model, utilizing high-throughput machine learning (ML)-based ensemble meth-
ods. Our proposed ML-based ensemble techniques are applied to a publicly available dataset from
the ICGC Data Portal, specifically targeting skin cutaneous melanoma cancers (SKCM). We used eight
baseline classifiers, namely, random forest (RF), decision tree (DT), gradient boosting (GB), AdaBoost,
Gaussian naïve Bayes (GNB), extra tree (ET), logistic regression (LR), and light gradient boosting
machine (Light GBM or LGBM). The study evaluated the performance of the proposed ensemble
methods and survival analysis on SKCM. The proposed methods demonstrated promising results,
outperforming other algorithms and models in terms of accuracy compared to traditional methods.
Specifically, the RF classifier exhibited outstanding precision results. Additionally, four different
ensemble methods (stacking, bagging, boosting, and voting) were created and trained to achieve
optimal results. The performance was evaluated and interpreted using accuracy, precision, recall, F1
score, confusion matrix, and ROC curves, where the voting method achieved a promising accuracy of
99%. On the other hand, the RF classifier achieved an outstanding accuracy of 99%, which exhibits
the best performance. We compared our proposed study with the existing state-of-the-art techniques
and found significant improvements in several key aspects. Our approach not only demonstrated
superior performance in terms of accuracy but also showcased remarkable efficiency. Thus, this
research work contributes to diagnosing SKCM with high accuracy.

Keywords: skin cancer; melanoma; machine learning; ensemble technique; feature selection

1. Introduction

In recent years, the alarming surge in malignant diseases has become a critical global
health concern. Among these malignancies, skin cutaneous melanoma cancer (SKCM) is one
of the most aggressive variants, demanding thorough investigation and understanding [1].
According to an International Agency for Research on Cancer (IARC) report, cancer is
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the leading cause of mortality. The report exhibits that nearly 10 million deaths have
resulted from various types of cancer [2]. The World Health Organization (WHO) 2023
report illustrates that cancer is the second leading cause of death (16%), followed by
cardiovascular disease (27%) [3]. In such a situation, the early diagnosis of a disease
can cure and prevent the patients from further jeopardy. In general, there are two main
forms of skin cancer: melanoma (cancers resulting from melanocyte malfunction) and
non-melanoma skin cancers (from cells generated from the epidermis) [4]. Among various
types of cancers, SKCM has become one of the most prevalent cancers in the last ten
years [5] with tumors made of melanocyte cells. It is currently a major public health issue
worldwide, and the increasing prevalence of the disease might significantly impact the
world’s population and economy [6]. However, early diagnosis and effective tumor therapy
lead to a cure rate of over 90% in individuals with incipient melanoma [7]. There are several
factors for an increased number of skin cancers. One of the most common occurrences
of skin cancer is due to ultraviolet (UV) rays [8]. Other reasons include sun exposure,
depletion of the ozone layer, genetic predisposition, and so on.

Several studies have shown that SKCM results from abnormalities in transcriptional
and epigenetic factors, including the expression of messenger ribonucleic acid (mRNAs)
and micro ribonucleic acid (miRNAs), the aberration in methylation patterns of CpG
islands of genes, and histone modifications, which opens the door for the development of
potential molecular biomarkers in melanoma [9,10]. As predictive indicators for cutaneous
melanoma, miRNA expression has been implicated in several past studies.

Various healthcare sectors, including dermatology, have leveraged artificial intelli-
gence (AI), revolutionizing diagnostic and therapeutic processes. Diverse biomedical data
from health records, medical images, IoT sensor data, and text can be used to predict
SKCM. Specifically, machine learning (ML) and deep learning (DL) significantly contribute
to predicting the disease on publicly available datasets. The most recent skin cancer de-
tection technique includes dermoscopy with AI, which leverages the handheld device for
magnifying the skin and allows dermatologists to examine moles and lesions in detail.
The ML and DL algorithms require structured data for classification, with lower prediction
accuracy, and require more computational time. Due to its superiority over traditional
analytical methods, AI has significantly uplifted the healthcare industry. Applications of
AI in healthcare are being used with increasing optimism, and they range from speeding
up the research of new drugs to helping with medical diagnosis, treatment, and adminis-
trative support. Additionally, using it as an adjuvant in clinical decision making can be
advantageous [11,12]. Various ML algorithms are leveraged to predict different diseases
in the early stage after diagnosing different attributes of the disease. Those diseases in-
clude different cancer types, diabetes, kidney disease, and other diseases [13]. Specifically,
ensemble learning is a learning method that combines multiple baseline models to create
a powerful single model. It reduces overfitting risk and has been successfully applied
in various fields. Common ensemble techniques include averaging, bagging, boosting,
stacking, and voting [14]. Traditional ensemble learning integrates ML models across
various fields, but efforts have shifted to DL, focusing on complex models and integrating
them across various fields [15]. The other recent skin cancer detection technique involves
reflectance confocal microscopy (RCM), a non-invasive imaging approach, that enables
high-resolution skin imaging at the cellular level. It aids dermatologists in visualizing
skin structures and identifying abnormal cells without a biopsy procedure. Another recent
technique leverages smartphone applications where mobile applications utilize smartphone
cameras for skin self-examination. These apps often use AI algorithms to analyze photos
and provide risk assessments. The main objective of this study is to propose four ensemble
methods for predicting skin cancer by utilizing ML algorithms. We experimented with five
transcriptomic technologies from the ICGC portal [16]. In this research, three features were
leveraged—recursive feature elimination (RFE), forward feature selection (FFE), and back-
ward feature elimination (BFE)—for the ensemble method. This paper discusses the five
phases for ensemble methods based on ML algorithms that use transcriptomic technology
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data to predict SKCM. Figure 1 illustrates the workflow of our integrative study. Figure 1
(1) depicts the data collection source and 5 different transcriptomic technology datasets.
Figure 1 (2) illustrates preprocessing and analysis steps. We handled missing data with the
MICE imputation technique and applied three methods for best feature selections. Figure 1
(3) represents the experimental achievements of our study using different ML algorithms as
baseline classifiers to create an ensemble method. Overall survival was analyzed with the
Kaplan–Meier and Cox hazard regression model. Different from traditional methods in ex-
isting literature, this study contributes to predict skin cancer using various ML techniques.
The novelty of this work lies in its comprehensive approach, combining high-throughput
ML-based ensemble methods with the analysis of multi-omics data, particularly address-
ing the challenges posed by complex and imbalanced datasets with high dimensionality.
Figure 1 (4) shows the biological interpretation and comparative study.

Figure 1. Workflow of the proposed research.

The key contributions of this study are as follows:

• We evaluated various techniques for SKCM prediction considering their suitability
and effectiveness in this context.

• We used RFE, FFE, and BFE features for ensemble methods.
• We analyzed the overall survival (OS) analysis and progression through the Kaplan–

Meier estimator and the Cox hazard proportional regression model.
• We used eight baseline classifiers, namely, random forest (RF), decision tree (DT),

gradient boosting (GB), AdaBoost, Gaussian naïve Bayes (GNB), extra tree (ET), logistic
regression (LR), and light GBM in this research work.

• We applied ML algorithms for predicting the disease with various selected features.
• We trained four ensemble learning methods, including stacking, bagging, boosting,

and voting, to achieve the best results.

The rest of the article is organized as follows: Section 2 provides a detailed description
of related work. In Section 3, we provide ML-based materials and methods that include
data collection, preprocessing techniques, and classification methods. Section 4 exhibits the
achieved results and discussion. Finally, Section 5 concludes the article.

2. Related Work

In recent years, cancer has been a very undeniable global health challenge. There are
various cancer types, such as lymphoma, leukemia, breast cancer [17], lung cancer, skin
cancer, and so on. Early skin cancer detection significantly impacts prognosis, and various
techniques have been exploited. From histopathological examination to advanced imaging
modalities [18], the quest for optimizing predictive models has given rise to the integration
of ensemble techniques. This literature review delves into the multifaceted landscape of
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skin cancer detection methodologies, focusing on the evolving role of ensemble techniques
in enhancing survival prediction accuracy. On the other hand, ML is greatly contributing
to anomaly detection in various fields, including health care, vehicular networks [19,20],
the Internet of Things (IoT), E-commerce, and so on. ML and DL algorithms significantly aid
in identifying skin cancer, with early detection potentially leading to successful treatment,
making melanoma a significant health concern [21–24]. Various ML and DL techniques
have been applied in existing literature, such as in [25], where the authors presented a
convolutional neural network (CNN) based DL stacked ensemble framework for melanoma
skin cancer detection using transfer learning. The model uses multiple CNN sub-models
and a meta-learner to predict malignant melanoma moles. The model achieves a high
accuracy of 95.76%, precision of 95.60%, recall of 96.67%, specificity of 94.67%, F1 score of
94.67%, and area under the curve (AUC) of 0.957% identifying both benign and malignant
melanoma. Although this research is important, it could not achieve better accuracy.
Similarly, another work in [26] proposed a DL-based skin cancer detection system on an
imbalanced dataset. The authors employed the MNIST: HAM10000 dataset that contains
seven classes of skin lesions. In order to classify the skin cancer, the authors utilized
AlexNet, InceptionV3, and RegNetY-320 techniques. However, the achieved accuracy
(91%), F1-score (88.1%), and ROC curve (95%) reflect a poor accuracy as compared to our
proposed study.

Moreover, the authors in [27] proposed a CNN-based skin cancer detection system
using a publicly available dataset, HAM10000, that includes seven skin cancer types. The au-
thors achieved the following: accuracy (86%), precision (84%), recall (86%), and F-1 score
(86%). Thus, all the achieved results fall in the 80s, which reflects the poor performance of
the proposed study. Authors in [28] employed a CNN-based approach using a HAM10000
dataset that comprises 6705 benign and 1113 malignant samples and 2197 unknown lesion
samples. The proposed model achieved an accuracy of 93.16% on training and 91.93% on
testing. Moreover, the authors balanced the dataset of both classes, resulting in an enhanced
accuracy of categorization. Despite training several transfer learning models on the same
dataset, the outcomes did not surpass those of their proposed model. Another similar
work in [29] proposed a CNN-based skin cancer diagnosis that is evaluated using the ISIC
2019 dataset. This work is based on multiclassification system that classifies the cancer
types including benign keratosis, melanoma, melanocytic nevi, and basal cell carcinoma.
The achieved results depicted an accuracy of 96.91%, which is inefficient as compared to
our proposed study. Similar to our work, authors in [9] studied three immune-related
mRNAs (SUCO, BTN3A1, and TBC1D2) linked to melanoma prognosis. This study used
univariate Cox regression and Kaplan–Meier analysis to compare the overall survival prob-
ability between high-risk and low-risk groups, analyzing the time-dependent ROC curve.
However, the accuracy of various classifiers is lower as compared to our achieved results.

Furthermore, reference [10] developed a combination of ML and DL-based tools to
predict the short-term survival of cutaneous malignant melanoma (CMM), a common
malignancy. The study found that additional clinical variables such as sex, tumor site,
histotype, growth phase, and age were significantly linked to overall survival, with DNN
and RF models showing the best prognostic performance with an accuracy of 91% and 88%,
respectively. Reference [30] analyzed mRNA expressions of m5C regulators in colorectal
cancer tissues and identified high mutation frequency. NOP2 and YBX1 were highly
expressed in prostate, gallbladder, lung, and renal cancers. NSUN6 functions as a tumor
suppressor in pancreatic cancer. UV radiation was identified as the primary environmental
driver. The authors in [31] trained a HAM10000 ISIC dataset using DL for multiclass skin
cancer diagnosis. The proposed model detects the skin lesion with an accuracy of 96.26%.

Limitations of Existing Studies

Skin cancer has become an interesting topic in current research. Most past studies
preferred survival analysis using KM and Cox proportional hazards regression model.
Unlike those traditional models, our study proposes ensemble methods for predicting
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SKCM and analyzing the survival probability using the KM and Coz hazard regression
model. Table 1 demonstrates the limitations of previous studies in comparison with our
proposed research.

Table 1. Summarized related work and its limitations.

Ref. Method Study Area Dataset Results Limitations

[25] A CNN-based melanoma skin
cancer detection Skin cancer Open access dataset 95% No multi-omics exploited

[26] DL-based skin cancer detection
system Skin cancer HAM 10000 91% The accuracy of proposed

study is poor

[27] DL-based melanoma detection Skin cancer HAM 10000 86%
Various models and datasets
call for different
hyperparameter settings

[28] CNN-based skin cancer
detection Skin cancer HAM 10000 91.93%

The limited size of the datasets
employed in this study may
have led to local optimizations

[29]

A DL-based framework for the
multi-classification of skin
cancer using dermoscopy
images

Skin cancer ISIC 2019 92% Lower accuracy

[9] Immune cell infiltration
pattern of CM SKCM - -

The study does not utilize any
ML/DL algorithms to show a
better performance

[10]
DL-based short-term survival
of cutaneous malignant
melanoma (CMM)

SKCM RNA-seq 91% Lower accuracy

[30]
The mRNA expressions of
m5C regulators in colorectal
cancer tissues

Various cancer types RNA-seq - Performance metrics were
not evaluated

[31] DL-based multiclass skin
cancer diagnosis Skin cancer HAM 10000 ISIC 96.26% The accuracy of this study

is lower

Table 2 depicts the notations and their descriptions used in this paper.

Table 2. Notations and descriptions.

Notation Description

A Input set of features for backward selection

B0 Initialize the function with a full set of features

w Subset of output features

r A finite set of input features

Dw Output set of features

T+ Selection criteria function

gi Subset of output features

L The desired set of features

m A finite set of output features

X Input set features for forward selection

X0 Initialize the function with an empty set

p+ Selection criteria function
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Table 2. Cont.

Notation Description

h The desired set of features

Zt Output set of features

zb Subset of output features

t Size of a subset of output features

Pro The likelihood of the event occurred

ti Time at which event occurred or did not occur

Y Random duration of survival function

za Number of patients

ca Number of incidents

tia Life risk at a time

d Survival time

E(d | e) Hazard function

en Set of factors

h0(d) Baseline hazard function

yn Measure of the impact of covariates on a subject’s hazard

3. Materials and Methods

This study focuses on overall survival analysis and ensemble methods to predict
SKCM and is described as an integrative omics study in this paper. The suggested integra-
tive model generates trained ML classifiers that can be utilized as SKCM prediction and
feature selection strategies. Our proposed research methodology involves various steps,
as mentioned below:

3.1. Dataset Collection

We initially collected a dataset from a publicly available source [16] to propose ensem-
ble methods. As illustrated in Table 3, There were five categories of multi-omics data in
the datasets: donor, simple somatic mutation, miRNA seq, copy number somatic mutation,
and specimen. Our cohort of 471 patients includes information on the patient’s history,
such as age, gender, length of survival, and donor relapse type. There are 377,735 samples
in the copy number somatic mutation file and 369,409 samples in the miRNA seq file, all of
which were examined and approved by the Illumina HiSeq verification platform. There are
1,048,575 samples in the simple somatic mutation file, which were examined and verified
by Illumina GA sequencing and the Illumina HiSeq platform. There are 947 samples in the
specimen file. Figure 2 shows the benign and malignant samples.

Table 3 illustrates the detailed description of the dataset.

Table 3. Dataset description.

Class Records per Class Features

Donor 471 9
Simple_somatic_mutation 1,048,576 12
Copy-number_soamtic_mutation 377,735 3
Mirna _seq 369,409 5
Specimen 947 2
Total Records 1,797,138 31
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Figure 2. Various skin samples.

Figure 3 depicts the detailed dataset description in graphical form as below.

Figure 3. Dataset description.

3.2. Preprocessing

The data preprocessing plays a significant role in achieving better accuracy results
in ML. Considering the importance of preprocessing, we applied various preprocessing
techniques, including removing noisy data, dividing the dataset into training and testing,
and feature selection. The detail of each technique is elaborated below. Initially, we removed
unreliable noisy data. The features with missing value scores of more than 70% and less than
10% were excluded. The features with more than 10% and less than 70% of the data missing
score were included [32]. Missing data were imputed using the multiple imputation chained
equation (MICE) technique that applies the k-neighbor algorithms criteria [33]. A widely
recognized Python programming language at an advanced level was employed in this
research paper. These preprocessing techniques collectively contribute to the enhancement
of model accuracy and robustness. Removing noisy data and selecting relevant features
ensure that the subsequent machine learning models are trained on a cleaner and more
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informative dataset, ultimately leading to improved predictive performance. Furthermore,
the impact of these preprocessing techniques on the results is noteworthy. By systematically
cleaning the data and selecting features judiciously, we mitigate the risk of model overfitting
and improve generalization to new, unseen data.

Feature Selection

Precision Health uses statistical modeling based on clinical and biological data to pre-
dict patient outcomes more accurately. Traditional approaches struggle with large datasets,
leading to feature selection research in various fields [34]. The following approaches
improve model performance, deliver features quickly and cost-effectively, facilitate data
visualization, and offer a better understanding of the data-generating process. For solving
and reducing the difficulty of learning tasks, feature selection aims at removing irrelevant
or redundant features. For selecting the best features, we have applied three different
feature selection methods, which are discussed below:

a. Forward Feature Elimination Method (FFE): The FFE method is the reverse of
the backward elimination method, starting with empty features and adding them one
by one until any excluded features can significantly contribute to the model’s outcome.
The most significant feature is added first, and the model is refitted with the new feature.
Test statistics or p values are recomputed for all remaining features. The features with the
largest test statistic are chosen from the remaining features and added to the model [35].
Suppose X is an input set of features with n size of features that can be defined using
Equation (1). Initially, we have an empty set of features X0 = ∅ with the t size of the subset,
and it is initialized with a null set, and t = 0 where t denotes the size of subset features,
and it can be defined using Equation (2). After initializing the input variable, we have a
subset of features Zt = zb|b=1,2,3,...,t; Zb∈X based on which the method refits the features. Let
us define the subset of features using Equation (3). In Equation (4), assume p+ to be the
features that will find the arg max (Zt + z) here z ∈ X − Zt and maximize our selection
criteria, which are associated with the classifier having the best score; score can be accuracy,
mean absolute error (MAE), residual square R2 on the output set of features that is Zt. This
process continues until we get the desired set h of features with a good score. The iterative
process is described by Equations (5)–(7). Equation (5) updates the feature subset Zt+1 by
adding the most significant feature p+ to the existing subset Zt. Equation (6) increments
the variable t to continue the iterative process, and Equation (7) marks the termination of
the process when t reaches the desired set of features h.

X = {X1, X2, X3, . . . , Xn} (1)

X0 = ∅, t = 0 (2)

Zt = {zb | b = 1, 2, 3, . . . , t; zb ∈ X}, where t = {1, 2, 3, . . . , n} (3)

p+ = arg max(Zt + Z)where, z ∈ X − Zt (4)

Zt+1 = Zt + p+ (5)

t = t + 1 (6)

t = h (7)
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Algorithm 1 shows the process of the forward selection method. We have input
features X, and we want the best features. These features will be selected based on the
value of score Zt. This method starts with an empty set and then fits the model with a good
score; simultaneously, features will be added and updated. This process will terminate
when we get the desired set of features.

Algorithm 1 Forward feature elimination.

1: Input: X = {X1, X2, X3, . . . , Xn}
2: Output: Zt = {zb | b = 1, 2, 3, . . . , t; Zb ∈ X}
3: Start
4: Prepare an empty array using (1)
5: Evaluate the fitness of the best feature using (4)
6: IF Zt + p+ > X0
7: Update the features using (5)
8: End If
9: t = t + 1

10: Repeat Step 2.
11: Terminate using (7)
12: End

b. Backward Feature Elimination Method (BFE): BFE is a simple feature selection
method that starts with a full model and deletes features until all remaining features have
significant contributions. The least significant feature is deleted first, followed by refitting
the model without the deleted feature and recompiling test statistics [36]. To understand
the workings of this method, we have a set of features A with r size of dimensions that can
be interpreted using Equation (8). We initialize the method using Equation (9) with a given
set of features. Once the input variable is initialized, we have a subset of features Dw based
on which method refits the features using Equation (10). Assume T − to be the features
that will find the arg max (Dw − g) where g ∈ A − Dw maximize our selection criteria that
is associated with the classifier having the best score; score can be accuracy, MAE, r2 on
the set of features that is Dw. This process continues until we have the desired set L of
features with a good score. Equations (11)–(14) detail the steps involved in the iterative
feature elimination process.

A = {A1, A2, A3, . . . , Ar} (8)

B0 = A, w = r (9)

Dw = {gi | i = 1, 2, 3, . . . , w; gi ∈ A}, where w = {1, 2, 3, . . . , m} (10)

T− = arg max(Dw − g), where g ∈ A − Dw (11)

Dw+1 = Dw − T− (12)

w = w + 1 (13)

W = L (14)

Algorithm 2 shows the process of the backward selection method. This method takes
the full set of input features, calculates the score of classifiers, takes the features with good
results, iteratively repeats step 3 until it achieves the desired number of features, and
then terminates.
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Algorithm 2 Backward feature elimination.

1: Input: A = {A(1), A(2), A(3), . . . , Ar}
2: Output: Dw = {gi | i = 1, 2, 3, . . . , w; gi ∈ A}
3: Start
4: Begin with the full set of input features using (8)
5: Evaluate the fitness of the best feature using (10)
6: IF Dw − T− > B0
7: Update the features using (11)
8: w = w − 1
9: End If

10: Repeat step 2
11: Terminate using (14)
12: End

c. Recursive Feature Elimination (RFE): RFE is a method that selects the optimal
feature subset based on the learned model and classification accuracy. We have calculated
the feature importance using the training RF model. Algorithm 3 describes the process of
RFE. This method works as a ranking procedure.

Algorithm 3 Recursive feature elimination.

1: Input:
2: a. Training set W
3: b. Set of C features M = {M(1), M(2), . . . , MC}
4: c. Ranking Method N(W, M)
5: Output:
6: Ranking J
7: Start
8: Initialize training set W
9: Repeat for i in {1 : C}

10: Set the Rank C using N(W, M)
11: M∗ ← last ranked feature in M
12: J(C − i + 1) ← M∗
13: M ← M − M∗
14: End

3.3. Proposed Methodology

Unlike traditional research for detecting and predicting SKCM disease, our proposed
research exploits ensemble methods (stacking, bagging, boosting, and voting). The pro-
posed research includes the latest ensemble methods to predict SKCM disease using various
ML classifiers and analyze the overall survival using the Kaplan–Meier and Cox propor-
tional hazards regression models. To train ensemble methods, we initially create and train
baseline classifiers (RF, GB, NB, LR, ET, AdaBoost, DT, LGBM). The performance was
evaluated for accuracy, precision, recall, and F1 score. ROC curve and confusion matrix
were generated to illustrate the performance. Following is the detail of baseline classifiers.

RF: The RF is a highly powerful ML classifier, which amalgamates diverse DT outputs
using a majority voting mechanism. This technique increases the resilience of the solu-
tion, specifically in challenging problem domains. The overall prediction is derived by
computing the average of the results generated by individual DTs.

GB: It is a powerful ensemble learning ML classifier. Unlike RF, which combines
various DTs, the GB creates a sequential DT, with each subsequent tree correcting the
errors. The classifiers optimize a loss function by iteratively adding weak learners, typically
shallow DT, to the ensemble. Each tree is trained to emphasize the instances where the
model performs poorly, gradually refining the overall predictive capability. The GB is
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known for its high predictive accuracy and adaptability to various data types, making it a
popular choice for classification and regression tasks.

NB: It is a simple classifier that leverages Bayes’ theorem for predicting the unlabeled
data points. It involves the computation of previous probabilities related to various classes
and their application to the latest data. The simplicity and computational efficiency of GNB
arise from the assumption of feature independence, making it a streamlined approach for
classification tasks.

LR: It is used to predict the probability of the categorical data. LR utilizes a logistic
function for calculating the probability in binary classification, where the output is dichoto-
mous, representing two classes. It is also named the sigmoid function, which transforms the
linear combination of input features into a value between 0 and 1, signifying the likelihood
of belonging to a particular class. This makes LR particularly well-suited for problems with
binary outcomes, such as in spam detection or medical diagnosis.

ET: It is an ensemble learning method related to the DT algorithm. Similar to RF, ET
develops a forest of DTs for prediction. In ET, for each split of the DT, the ETs randomly
select the feature to split on, leading to a higher level of diversity among individual trees in
the ensemble. This increased randomness often results in a more robust model and can be
particularly useful in mitigating overfitting. ET is famous for its efficiency and accuracy in
handling high-dimensional data, making it a valuable classifier.

AdaBoost: This is a popular ensemble learning classifier for regression and classifica-
tions. It combines multiple weak learners’ predictions to create an efficient and accurate
prediction model. The algorithm assigns weights to each data point, and, in each itera-
tion, it focuses on the misclassified instances, adjusting their weights to prioritize correct
classification in the subsequent iteration.

DT: It is a highly recognized ML algorithm that evaluates the samples to categories
as per their feature values. The DT creation process entails evaluating training samples
and considering the most reliable features to partition the data into subsets, guided by
principles like information gain or the Gini index. The motive is to create a tree capable of
precisely predicting outcomes for new data based on the available features.

LGBM: This is an effective gradient-boosting framework exploited for advanced ML
tasks. Unlike traditional GB methods, it uses a “leaf-wise” tree growth approach. This
technique follows to expand the structure of the tree, integrating leaves that result in the
maximum reduction of the loss function, ultimately leading to faster training times.

Algorithm 4 interprets the baseline classifiers and ensemble methods training in
general. It depicts the working of ensemble models. Initially, we train base algorithms
such as RF, DT, NB, GB, LGBM, LR, and AdaBoost. Then we train four ensemble methods
that include stacking, bagging, boosting, and voting. Here, meta-algorithm H denotes the
ensemble methods.

Figure 4 demonstrates the flow of our study. After data collection, the features with
missing scores greater than 70% and less than 10% will be eliminated. Any features with
missing scores less than 70% and greater than 10% will be included, and a new set of
features will be defined. For selecting the best features among newly defined features, we
applied three different feature selection methods: REF, FFE, and BFE. Our study evaluates
four ensemble methods and an overall survival analysis using the Kaplan–Meier estimator
and the Cox hazard regression model. To create ensemble methods, we must first create
and train baseline classifiers.
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Algorithm 4 ML-based ensemble methods.

1: Input:
2: Training set R = {(y1, u1), (y2, u2), . . . , (yv, uv)}
3: Base algorithms G = {G1, G2, . . . , Gs}
4: Meta algorithm H
5: Output: Ensemble Model
6: Start
7: Step-1:
8: Train the base algorithms by applying algorithms Gi to R
9: For i = 1, 2, . . . , k do

10: Ei = Gi(R)
11: End For
12: Step-2:
13: Generate a new dataset for making predictions R
14: For j = 1, 2, . . . , n do
15: Classify the training samples xj
16: zij = Ei(xj)
17: End For
18: R = {yj, uj}, where yj = {z1j, z2j, . . . , zsj}
19: End For
20: Step-3:
21: Train the meta-algorithm H
22: H = G(R)
23: Return H
24: End

Figure 4. Flow chart of proposed study.

4. Experimental Results

The experiments in this study are conducted using Python programming language on
Windows 10 @ 1.80 GHZ. The motivation of this study is to propose an ensemble model for
the prediction of SKCM disease by utilizing different ML classifiers and to analyze overall
survival using Kaplan–Meier and Cox hazard regression models. Initially, we applied three
different feature selection methods, i.e., RFE, FFE, and BEF, to select the best features, as
discussed in Section 3.

4.1. Survival Analysis Clinical Endpoint

The survival analysis with the log-rank test was examined in this study.
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4.1.1. Kaplan–Meier Estimator

One of the most popular statistical methods used to estimate the likelihood of an event,
such as death, a recurrence of a disease, the emergence of a new disease entity, or an adverse
response, is survival analysis [37]. First, we need to understand the survival function to
understand survival analysis. For example, consider Y as the random duration taken from
the dataset under study as a duration that can be infinite but not a negative value, and the
survival function can be denoted as Pro(ti), where Pro(ti) denotes the probability that an
event has occurred or not yet at a time ti. It denotes the survival function calculated as
Equation (15).

Pro(ti) = x(Y > ti) (15)

The survival analysis can be achieved using the Kaplan–Meier estimator. Re-estimating
the survival probability upon each event occurrence can be achieved using the Kaplan–
Meier (KM) approach. This non-parametric method does not assume a specific distribution
for the outcome variable, such as time. This approach is very simple, and complexity arises
as the number of observations increases. We can say that the main idea of the KM approach,
depending on the observed event time, is to split the estimation of the survival function
into small chunks. The probability for each interval can be formulated using the following
Equation (16):

Pro(ti) = ∏
tia<t

Z(a−ca)

Za
(16)

where za denotes the number of patients whose lives are at risk at time tia, and ca denotes
the number of incidents that occurred in the event at a time tia (See Figure 5). Figure 5
shows the overall survival analysis of patients. We find the overall survival probability
with significance (p-value is 0.05) of patients after diagnosing SKCM. The graph shows a
higher probability of survival beyond the age of 20 and less than 20 years.

Figure 5. Overall survival (OS) analysis.

Figure 6 shows the survival probabilities of patients. We find that male patients have
a higher probability than female patients. The male patients aged 20 years and below
have higher (about 0.8 or 80%) survival probability. Above 80 years and somehow below
80 years, patients have less about (0.2 or 20%) of survival probability.
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Figure 6. Survival probabilities.

Figure 7 depicts the survival analysis of different age groups of patients. We analyzed
that patients in the age group greater than 30 years and less than or equal to 45 years and
those in the age group equal to 45 years are nearly overlapping and have higher (about 0.6
or 60% and above) survival probability. For the patients in the age group less than or equal
to 30, the curve shows step-wise increments in the probability starting near the survival
probability (0.1 or above) and increasing steadily. All age groups overlap when survival
probability reaches between 0.5 or 50% and up to 0.8 or 80%.

Figure 7. Survival analysis with different age groups.

Figure 8 describes the progression and complete remission of survival after diagnosis.
For each cohort, there are two survival curves. We can observe that the progression curve
increases in a step-wise curve. As the days passed, the probability of progression increased
gradually. When survival probability reaches between 70% and 85%, both curves overlap.
However, after diagnosis, patients start recovering.
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Figure 8. Survival probability with last follow up.

4.1.2. Cox Proportional Hazards Regression Model

The proportional hazards model, developed by David Cox in 1972 [38], uses the pro-
portional risks assumption to produce reliable estimates of covariate effects. The Cox pro-
portional hazards regression model is a semi-parametric approach for estimating weights
in a proportional hazard model. It uses gradient descent to fit the data and minimizes
errors. The model works by estimating the log hazard of patients as a linear function of
their static covariates and a population-level baseline hazard function that changes over
time [24]. It can be defined mathematically as Equation (17).

E(d|e) = h0(d) exp

(
e

∑
n=1

yn(en)

)
(17)

where

• d represents survival time;
• E(d|e) represents the hazard function determined by a set of factors, i.e., e1, e2, e3, . . . en;
• h0(d) defines the baseline hazard function representing event probability when all

covariates are zero. Hazard value equals 1 when all en are zero. The model assumes a
parametric form for covariates’ effect on hazard without baseline assumptions;

• exp
(

∑b
n=1 yn(en)

)
represents partial hazard as a time-invariant scalar factor that

increases or decreases baseline hazard like the intercept in ordinary regression;
• The coefficients (y1, y2, y3, . . . , yn) measure the impact of covariates on a subject’s

hazard. The sign of the coefficient b affects the baseline hazard. A positive sign indi-
cates higher risk, whereas a negative sign indicates lower risk. The magnitude of the
coefficient b is estimated by maximizing partial likelihood. It assumes a proportional
rate ratio throughout the study period, offering increased flexibility. This model can
handle right-censored data but not left-censored or interval-censored data directly.
The Cox model accepts the following three assumptions:

1. A constant hazard ratio;
2. The multiplicativity of explanatory variables;
3. The independent failure times for individual subjects.

Table 4 describes the Cox proportional hazard regression. We evaluate the Cox hazard
model and log-rank test to find the hazard ratio (HR) and significant association among the
groups. We find that the value of the hazard ratio HR < 1, which means there is a reduction
in the risk. The significance (p-value) < 0.05 is considered to find out the association among
groups. We observed that the covariate Age at the last followup and interval has p-values
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of 0.02 and 0.03, respectively, less than the significant p-value (0.05). We can say that there
is an association between the groups.

Table 4. Cox hazard proportional method.

Covariate Coef Exp (Coef) Se (Coef)
Coef

Lower
(95%)

Coef
Upper
(95%)

Exp Coef
Lower
(95%)

Exp Coef
Upper
(95%)

z p log2 (p)

Sex 0.02 1.02 0.10 −0.17 0.21 0.84 1.23 1.02 0.10 −0.17

Status −0.12 0.98 0.19 −0.39 0.35 0.68 1.41 0.98 0.19 −0.39

Disease
status last
followup

−0.00 0.98 0.10 −0.21 0.17 0.81 1.18 0.98 0.10 −0.21

Age at last
followup −0.50 0.61 0.02 −0.55 −0.46 0.58 0.63 0.61 0.02 −0.55

Diagnosis −0.00 1.00 0.00 −0.01 0.00 0.99 1.00 1.00 0.00 −0.01

Interval 0.49 1.64 0.03 0.44 0.54 1.56 1.72 1.64 0.03 0.44

Figure 9 shows the hazard ratio (HR) for different covariates. We find that most of the
covariates have HR > 1, meaning there is a risk reduction. Only for one covariate is there
no effect, since HR = 1.

Figure 9. Hazard ratio.

4.1.3. ML-Based Ensemble Methods

We trained eight different ML classifiers to create ensemble models. To evaluate the
performance of the proposed ML classifiers, we used two performance measures: ROC and
confusion matrix. The results are presented in accuracy, precision, recall, F1 score, and ROC
curve. The assessment includes four performance metrics: true positive (TP), denoting
the accurate classification of ’Positive Reputation’ in positive samples; false positive (FP),
representing the misclassification of samples not belonging to the class; true negative
(TN), indicating the accurate classification of negative samples; and false negative (FN),
signifying the misclassification of samples as positive when they actually belong to the
negative class.

Table 5 compares the performance of feature selection methods. We have trained an
RF classifier with scoring matric r2 to select the best features. The performance of the RFE
method is better than the other two methods.
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Table 5. Feature selection methods and scores.

Feature Selection Methods Score

Backward Feature Elimination 0.99993
Forward Feature Elimination 0.99988
Recursive Feature Elimination 0.99400

Table 6 describes the performance of eight different ML algorithms in terms of accuracy,
precision, recall, and F1 score on the test dataset. It can be concluded that most of the
algorithms achieved the highest accuracy rate of 98%. Only AdaBoost and GNB achieve 97%
and 96% accuracy rates. It can be observed that the highest precision achieved by RF is 98%,
while the highest recall rate obtained by LR, GB, RF, and light gradient boosting machine
(LGBM) is 99%. LR, GB, and LGBM attained the highest F1 score rate. It is noteworthy to
mention that the above performance metrics are evaluated on the test dataset.

Table 6. Performance metrics of ML algorithms.

ML Algorithms Accuracy Precision Recall F1 Score

LR 98% 97% 99% 98%
DT 98% 96% 98% 97%
GB 98% 97% 99% 98%
RF 99% 98% 99% 99%
ET 98% 97% 98% 97%
AdaBoost 97% 96% 95% 90%
LGBM 98% 97% 99% 98%
GNB 96% 88% 94% 94%

In Figure 10a, we present the confusion matrix for the GNB algorithm, showing
its robust accuracy in correctly predicting 96.05% out of 482 samples, with only 3.95%
samples being predicted inaccurately. On the other hand, in Figure 10b, we demonstrate
the confusion matrix for the RF algorithm. There are a total of 482 samples, out of which
99.38% were accurately predicted while 0.62% were incorrectly forecasted. As compared to
the other related studies, such as [9,10], our results are highly accurate.

(a) Confusion matrix for GNB (b) Confusion matrix for RF

Figure 10. Confusion matrix for GNB and RF algorithms.

In Figure 11a, we present the confusion matrix for the LGBM; the performance of the
classifier was evaluated on a total of 482 samples. The classifier successfully predicted
98.96% samples correctly; only 1.04% samples were incorrectly predicted. Figure 11b
depicts the matrix for the LR algorithm. There were 482 samples, out of which 98.96% were
precisely predicted while 1.04% of samples were wrongly predicted.
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(a) Confusion matrix for LGBM (b) Confusion matrix for LR

Figure 11. Confusion matrix for LGBM and LR classifiers.

In Figure 12a, we show the confusion matrix for the AdaBoost, where the classifiers
impressively provide good accuracy by accurately predicting 99.59% out of a total of 100%
on 482 samples. In contrast, the classifier wrongly predicted 0.41% samples. Figure 12b
illustrates the matrix for the LR algorithm; the algorithm accurately predicted 98.13% out
of 100% of samples, and only 1.87% of samples were incorrectly predicted. The classifiers’
performance can be visualized from these insightful representations.

(a) Confusion matrix for AdaBoost (b) Confusion matrix for DT

Figure 12. Confusion matrix for AdaBoost and DT classifiers.

Figure 13 depicts the confusion matrix for ET and GB algorithms. Figure 13a depicts
the matrix for the ET algorithm. The classifier accurately predicted 98.76% out of 100% of
samples, and only 1.24% of samples were wrongly predicted. Figure 13b determines the
confusion matrix for the GB algorithm. The classifier correctly predicted 98.96% of 100%
samples, and the classifier incorrectly predicted 1.04% of total samples.

Figure 14 illustrates the ROC curves for specificity (false positive rate) and sensitivity
(true positive rate). The model can be classified or perform well if the ROC curve is turned
to the upper left corner. Most of the classifiers turn toward the left upper corner, which
means the classifiers perform well. From the below graph, we can say that LR, RF, AdaBoost,
and LGBM achieve the highest accuracy, which is 0.99, whereas GB, DT, and extra tree
achieve an accuracy of 0.98. Only the NB classifiers attained 0.97 accuracy. It can be
concluded that there is a slightly small difference in the accuracy of different classifiers.

These ensemble methods were generated by training the above eight base ML classi-
fiers. It can be observed that the stacking and voting method achieved the highest accuracy
rate, which is 99%, as illustrated in Table 7. The highest precision rate recorded is 98% and
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is obtained by the stacking method. The voting method attained the highest recall rate,
as well as F1 score, which was 99%.

(a) Confusion matrix for ET (b) Confusion matrix for GB

Figure 13. Confusion matrix for ET and GB classifiers.

Figure 14. Consolidated ROC curve for ML classifiers.

Table 7. Performance metrics of ensemble methods.

Ensemble Methods Accuracy Precision Recall F1 Score

Bagging 98% 96% 96% 96%
Stacking 99% 98% 97% 96%
Boosting 97% 94% 96% 95%
Voting 99% 97% 99% 98%

Figure 15 portrays the matrix for the voting and stacking ensemble methods. From
Figure 15a, out of 100% samples, 98.76% of samples were accurately predicted by this
method, while 1.24% of samples were wrongly predicted. Figure 15b shows the matrix for
the stacking method. This method correctly predicted 99.17% of samples, and only 0.83%
of samples were predicted incorrectly.

Figure 16 portrays the matrix for the boosting and bagging ensemble methods. From
Figure 16a, out of a total of 100% samples, 97.51% were correctly predicted while 2.49%
were wrongly predicted. Figure 16b shows the matrix for the bagging method. Here, 97.09%
of samples were predicted correctly, and only 2.91% of samples were wrongly predicted.

124



Bioengineering 2024, 11, 43

(a) Confusion matrix for Voting method (b) Confusion matrix for Stacking method

Figure 15. Confusion matrix for ensemble method.

(a) Confusion matrix for boosting method (b) Confusion matrix for bagging method

Figure 16. Confusion matrix for ensemble model.

4.2. Comparative Study

This study aims to propose an ensemble model for the prediction of SKCM cancer
by utilizing ML classifiers. To create an ensemble model, we trained four different ensem-
ble methods with eight different ML classifiers. The performance of ML classifiers and
ensemble methods is compared and discussed below (see Figures 17 and 18).

Table 8 compares the performance of baseline classifiers and ensemble methods. We
find that the stacking and voting ensemble methods achieved the highest performance as
compared to baseline classifiers. Figure 17 illustrates the performance of different ensemble
methods. The methods perform well. Furthermore, Figure 17 shows that stacking and
voting outperform as compared to other methods.

Figure 18 represents the comparison among ML classifiers. The performance was
evaluated in accuracy, precision, recall, and F1 score. However, all classifiers perform well,
but the RF classifier outperforms all others. The main purpose of this study is to propose
an ML-based ensemble method for the prediction of SKCM and to analyze the survival
probability using the Kaplan–Meier and Cox proportional hazards regression models.
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Table 8. Performance metrics of ML classifiers.

ML Classifiers Accuracy Precision Recall F1 Score

RF 99% 98% 99% 99%
GNB 96% 88% 94% 94%
LR 98% 97% 99% 98%
DT 98% 96% 99% 98%
GB 98% 97% 99% 98%
Adaboost 97% 96% 95% 90%
Extratree 98% 97% 98% 97%
LGBM 98% 97% 99% 98%
Bagging 98% 96% 96% 96%
Stacking 99% 98% 97% 96%
Boosting 97% 94% 96% 95%
Voting 99% 97% 99% 98%

Figure 17. Performance of ensemble methods.

Figure 18. Comparison of different ML classifiers.
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4.3. Baseline Classifiers Standard Error

Table 9 illustrates the standard error computed by eight baseline classifiers. This
measure gauges the reliability of performance metrics like accuracy, precision, recall,
and F1-score. Notably, an inverse relationship between accuracy and standard error was
observed. Analysis of the table indicates that classifiers exhibiting the lowest standard error
demonstrate greater stability and consistency in their performance across various metrics.

Table 9. Baseline classifiers standard error.

Baseline Classifiers Standard Error

LR 0.45951
DT 0.45679
GB 0.459551
RF 0.45679
ET 0.45586

AdaBoost 0.45492
LGBM 0.45492
GNB 0.46127

Figure 19 displays the standard error associated with each baseline classifier. This
metric offers crucial insights into the stability of model performance. Among the classi-
fiers, GNB predicts a slightly higher standard error than others. Nonetheless, there are
nuanced differences among the standard errors across the algorithms. AdaBoost and LGBM
classifiers notably showcase the least standard error. A smaller standard error signifies
a higher likelihood of consistent performance across various cross-validations, whereas
higher standard errors suggest more variability in performance.

Figure 19. Baseline classifiers standard error.

Table 10 showcases the standard error forecasted by individual ensemble methods.
Among these methods, the lowest standard error, at 0.45397, is observed in the bagging
method, indicating superior performance compared to the other ensemble techniques.

Figure 20 illustrates the standard error produced by the four ensemble methods.
A higher standard error signifies increased variability in the model’s performance. Among
these methods, the voting method attains the highest standard error of 0.45861, indicating
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lower consistency in model performance. Conversely, the bagging method achieves the
lowest standard error at 0.45397, signaling superior model performance.

Table 10. Ensemble methods standard error.

Ensemble Methods Standard Error

Bagging 0.45397
Boosting 0.45771
Voting 0.45861

Stacking 0.45679

Figure 20. Ensemble methods standard error.

4.4. Discussion

Skin cancer is considered one of the most dangerous types of cancer. Many studies
focus on early detection, treatment approaches, and suggesting prevention techniques.
Numerous studies in the past have delved into these aspects, with a notable focus on
employing ML and DL techniques that have yielded promising results for early detection
and prognosis of the disease. Previous studies mainly focused on survival analysis and
early detection using DL techniques. Our study proposes four ensemble methods (stacking,
bagging, boosting, and voting) to predict SKCM and to analyze survival probability using
KM and Cox proportional hazards regression models. In constructing our ensemble
methods, which encompass stacking, bagging, boosting, and voting, we meticulously
trained and tested eight baseline classifiers: RF, LR, DT, GB, ET, Adaboost, LightGBM
(LGBM), and GNB. The performance of these methods was rigorously evaluated using a
suite of metrics, including accuracy, precision, recall, F1 score, confusion matrix, and ROC
curve. Remarkably, our results demonstrate a pinnacle of accuracy, reaching an impressive
99%, achieved by the stacking and voting ensemble methods. This exhibits the robustness
and efficacy of the ensemble techniques employed in our study. Notably, among the
individual algorithms, RF emerged as the top-performing classifier, depicting superior
predictive capabilities. This exceptional performance across multiple metrics shows the
potential applicability of our proposed ensemble methods in the realm of SKCM prediction.
The high accuracy rates, especially with stacking and voting methods, suggest a synergistic
enhancement of predictive power by combining diverse classifiers. Such findings hold
significant implications for the development of more reliable and accurate predictive
models in the context of skin cancer.
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5. Conclusions

In this paper, Kaplan–Meier and Cox proportional hazards regression models are
used to analyze overall survival, and ML-based ensemble methods are proposed to predict
SKCM. Five distinct datasets using transcriptomic technologies were collected. To choose
the best features, three distinct feature selection methods, i.e., REF, FFE, and BFE, were
used. We trained and compared four ensemble approaches (stacking, bagging, boosting,
and voting) using eight baseline classifiers (RF, DT, GNB, AdaBoost, GB, LR, ET, and LGBM).
The performance of ensemble methods was evaluated with the help of the ROC curve,
confusion matrix, accuracy, precision, recall, and F1 score. The overall performance of RF
was good as compared to other classifiers. The recorded performance of the algorithms
shows a slight variation. Voting and stacking strategies scored the best among ensemble
techniques. The highest ROC was achieved using RF, LR, AdaBoost, and LGBM, which
was 0.99. The RF classifier achieved the best accuracy, which was 99%, and the stacking
and voting method achieved the highest accuracy rate, which was 99%. Finally, this study
is limited to a specific dataset, which can be evaluated on various datasets to achieve
better results.

Future Work

We will investigate deep learning methods for skin cancer early detection and prog-
nosis in the future. We will investigate other multi-omic technologies in this area and
investigate various skin cancers to further find out ways for early detection of diseases.
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Abstract: Usher syndrome (USH) is a rare genetic disorder affecting vision, hearing, and
balance. Identifying reliable biomarkers is crucial for early diagnosis and understanding
disease mechanisms. MicroRNAs (miRNAs), key regulators of gene expression, hold
promise as biomarkers for USH. This study aimed to identify a minimal subset of miRNAs
that could serve as biomarkers to effectively differentiate USH from controls. We employed
ensemble feature selection techniques to select the top miRNAs appearing in at least
three algorithms. Machine learning models were trained and tested using this subset,
followed by validation on an independent 10% sample. Our approach identified 10 key
miRNAs as potential biomarkers for USH. To further validate their biological relevance, we
conducted pathway analysis, which revealed significant pathways associated with USH.
Furthermore, our approach achieved high classification performance, with an accuracy of
97.7%, sensitivity of 98%, specificity of 92.5%, F1 score of 95.8%, and an AUC of 97.5%. These
findings demonstrate that combining ensemble feature selection with machine learning
provides a robust strategy for miRNA biomarker discovery, advancing USH diagnosis and
molecular understanding.

Keywords: ensemble feature selection; biomarker discovery; usher syndrome; miRNA;
machine learning; nested cross-validation

1. Introduction

Usher syndrome is a rare genetic disorder characterized by a combination of hear-
ing loss, progressive vision loss due to retinitis pigmentosa and, in some cases, balance
issues [1,2]. It is the most common cause of inherited deaf-blindness, accounting for approx-
imately 50% of cases where individuals experience both hearing and vision impairment [3].
Usher syndrome presents in various clinical subtypes, each with varying severity and
onset of symptoms, making its diagnosis particularly complex [4]. The heterogeneity in
symptoms and the various genetic mutations associated with the syndrome make diagnosis
challenging, often requiring a combination of clinical assessments, audiological tests, and
genetic screening [5,6].

In recent years, microRNAs (miRNAs) have emerged as promising biomarkers for di-
agnosing various genetic and complex diseases, including Usher syndrome [7,8]. miRNAs
are small, non-coding RNA molecules that regulate gene expression and play crucial roles
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in various cellular processes [9,10]. Abnormal miRNA expression has been linked to a wide
range of diseases, including cancers, neurological disorders, and genetic syndromes [10].
Given their stability in biological fluids and their specificity to certain pathological states,
miRNAs have gained attention as potential biomarkers for early and accurate diagnosis.
In the context of Usher syndrome, profiling miRNA expression can offer insights into the
molecular mechanisms underlying the disorder and potentially aid in its detection [7,11].

While miRNAs hold significant promise for diagnosis, not all miRNAs contribute
equally to disease progression. Identifying a minimal subset of miRNAs that are most rele-
vant to disease is critical for both diagnostic accuracy and biological understanding [12–14].
A smaller miRNA set improves the interpretability of diagnostic models, aiding in bet-
ter understanding the disease’s molecular underpinnings [15–17]. Clinically, a minimal
miRNA set reduces the complexity and cost of diagnostic tests, making them more fea-
sible for large-scale or routine screening [18]. Moreover, focusing on a smaller, highly
relevant miRNA subset facilitates the development of targeted therapies and personalized
treatments [15].

Feature selection techniques are instrumental in reducing the dimensionality of
miRNA datasets by identifying the most relevant miRNAs associated with any disease,
including Usher syndrome [12,13,15]. Given the high dimensionality of miRNA expression
profiles, selecting a minimal feature set is essential. Rare genetic disorder studies often
have relatively small sample sizes. Feature selection methods, such as filter, wrapper, and
embedded techniques, can help identify the most impactful miRNAs [19]. Therefore, choos-
ing a compact set of features is crucial for developing robust and interpretable models. In
the case of Usher syndrome, which is also a rare genetic disorder, applying feature selection
to miRNA data can help isolate the key miRNAs associated with the disorder, facilitating a
more efficient and accurate diagnostic process.

Given the complexity of Usher syndrome and the vast miRNA datasets generated from
expression profiling, automating the diagnostic process with machine learning classifiers
is essential. In this study, we propose a machine learning-based approach that integrates
ensemble feature selection and nested cross-validation to identify the minimal miRNA
feature set needed for the automated detection of Usher syndrome. This study has two
main objectives: (1) to design and develop an ensemble feature selection method combined
with nested cross-validation to identify the minimal miRNA set for classification; and
(2) to utilize a range of supervised machine learning classifiers to train, test, and validate
the models to identify the best-performing one. This approach not only reduces the time
and labor involved in manual diagnosis, but also improves the accuracy and reliability of
predictions. Furthermore, nested cross-validation is particularly beneficial when working
with small datasets, where data acquisition is often a challenge.

2. Relevant Work

Ensemble feature selection has proven to be a promising approach in miRNA-based
disease classification, particularly for high-dimensional datasets. Studies highlight its
ability to identify minimal miRNA subsets that improve diagnostic accuracy and reduce
dimensionality. For example, Cai et al. (2015) employed an ensemble method with mul-
tiple classifiers to differentiate lung cancer samples from controls, achieving enhanced
robustness in classification [20]. Similarly, Sarkar et al. (2021) leveraged machine learn-
ing integrated with survival analysis to identify breast cancer subtype-specific miRNA
biomarkers, demonstrating improved diagnostic and prognostic precision [15]. These
methods underscore the value of ensemble strategies in addressing the challenges of
high-dimensional biological data.
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Lopez-Rincon et al. (2020) [21] applied an ensemble recursive feature selection ap-
proach to identify circulating miRNAs as biomarkers for cancer classification across various
tumor types. This method improved the interpretability and reliability of cancer classifica-
tion by pinpointing a minimal subset of miRNAs relevant to different tumor types [21]. In
a related study, Lopez-Rincon et al. (2019) [12] developed an ensemble feature selection
framework to identify a 100-miRNA signature for cancer classification. Their automated
feature selection approach demonstrated the scalability of ensemble feature selection in
cancer classification. However, the large number of selected features (100 miRNAs) may not
be suitable for diseases associated with fewer miRNAs, such as rare genetic disorders [12].
Colombelli et al. (2022) [22] proposed a hybrid ensemble feature selection method for
identifying miRNA biomarkers from transcriptomic data. This hybrid design enabled a
more comprehensive selection of candidate biomarkers, enhancing model accuracy and
interpretability [22].

The current study overcomes the limitations of previous research by incorporating
an adaptive ensemble feature selection method combined with nested cross-validation for
miRNA-based classification, specifically targeting Usher syndrome. This novel approach
ensures robust feature selection and validation, addressing overfitting by employing nested
cross-validation throughout both the feature selection and classification processes. Fur-
thermore, our method dynamically updates the minimal feature set as new data becomes
available, making it particularly well-suited for rare genetic disorders like Usher syndrome,
which often suffer from small sample sizes. This integration of dynamic adaptability and
scalability represents a significant advancement in miRNA-based disease classification,
offering a more reliable and flexible framework than prior methods.

3. Materials and Methods

This section outlines the methodology employed in this study. As shown in Figure 1,
the process begins with preprocessing the miRNA samples, followed by feature selection
and model training using an ensemble feature selection approach combined with nested
cross-validation. This methodology helps identify the best-performing model and the
minimal subset of miRNA features. The selected model is then evaluated and validated
using these features to assess its performance. Additionally, the minimal set of miRNAs
is used for pathway analysis to extract relevant biological pathways. Furthermore, this
section provides an overview of the feature selection techniques and machine learning
classification algorithms used in this study.

3.1. miRNA Samples Extraction and Quantification

For each sample in the study, total miRNA was extracted using methods described pre-
viously [7]. Briefly, QIAzol reagent was used to isolate total RNA, and miRNA was samples
in this study were collected from patient derived B-lymphocyte cell lines. MiRNA was pu-
rified from cell lines using miRNeasy Tissue/Cells Advanced Micro Kit (QIAGEN Sciences
Inc., Germantown, MD, USA). MicroRNA expression was quantified for all samples using
NanoString nCounter Human v3 miRNA Expression assays (cat. # CSO-MIR3-12, Bruker
Corp., Billerica, MA, USA). Quality control and batch normalization of miRNA count data
was performed using NAnostring quality Control dasHbOard (NACHO) package in R [23].
This resulted in a miRNA count matrix for 798 miRNAs for 60 samples, which was utilized
for subsequent machine learning analysis. There were 31 Usher samples, and 29 control
samples int the cohort.
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Figure 1. Overview of the methodology.

3.2. Feature Selection

Feature selection, also known as feature reduction or variable subset selection, is
the process of identifying a minimal subset of the most relevant features from a larger
set of features in a dataset [12,24]. When working with high-dimensional data, such
as miRNA data, it becomes essential to select a small, optimal subset that captures the
critical information of the entire dataset without significant loss of detail. This process
is fundamental in building robust learning models. The importance of feature selection
has been widely studied in fields like bioinformatics and pattern recognition [25,26]. In
general, feature selection techniques are designed to minimize overfitting and enhance
model performance, leading to improved predictive accuracy in supervised classification
and better cluster detection in clustering tasks. Furthermore, they contribute to the creation
of faster and more cost-efficient models while also providing valuable insights into the
underlying processes that produced the data [16,27].

In the realm of classification, feature selection methods can be classified into three cat-
egories based on their selection strategy of the features: filter methods, wrapper methods,
and embedded methods. Filter methods select the relevance of features based on certain
properties such as statistical significance. Features are selected before choosing any machine
learning model. These techniques are computationally efficient and help eliminate irrele-
vant features, allowing for a simplified model without risking overfitting [28]. Wrapper
methods involve using a specific machine learning algorithm to evaluate the performance
of different feature subsets by training the model repeatedly. This approach often yields
better feature selection tailored to the model, but it can be computationally expensive [29].
Embedded methods integrate feature selection within the model training process, allowing
for simultaneous feature selection and model optimization. This approach typically results
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in models that are both efficient and accurate, as they consider feature interactions during
the selection process [30].

When working with miRNA expression profile datasets, selecting the most relevant
features (miRNAs) is essential for constructing accurate and interpretable models [12]. Due
to the high dimensionality of miRNA datasets and the typically small sample sizes, effective
feature selection methods can greatly enhance model performance and mitigate the risk of
overfitting [24]. Research has shown that ensemble feature selection methods combined
with cross-validation techniques can effectively identify an optimal minimal subset of
features. This approach enhances model performance and ensures robust validation on
unseen data while reducing the risk of overfitting, outperforming single-feature selection
techniques [15]. In this study, we propose an ensemble feature selection approach combined
with nested cross-validation to identify the minimal miRNA feature set for classification.

3.3. Ensemble Feature Selection Algorithms

Ensemble feature selection identifies an optimal feature set by combining results
from multiple individual feature selection algorithms [31]. This approach differs from
single-feature selection strategies, which identify key features using a singular method.
For example, single methods might filter out low-variance features or recursively elimi-
nate those that do not contribute to model performance. In contrast, ensemble selection
integrates optimal feature sets from various techniques to find the best overall feature
set. Previous studies shows that ensemble learning results in more robust classification
outcomes and produces a superior optimal feature set compared to single-feature selec-
tion approaches [12,15–17,20–22]. In this study, we selected four distinct feature selection
methods, each representing a different category of techniques, to ensure a comprehensive
approach to feature selection. Recursive Feature Elimination (RFE), taken from wrapper
methods, Random Forest feature importance (RF), an embedded method, the k-best method
(k-best), a filter technique, and Least Absolute Shrinkage and Selection Operator (LASSO)
to introduce regularization by penalizing certain coefficients.

3.3.1. Recursive Feature Elimination

Recursive Feature Elimination (RFE) is a wrapper-based feature selection method that
iteratively selects the most important features by recursively removing the least important
ones [32]. The principle of RFE involves training a model using all available features,
evaluating their importance scores, and then recursively eliminating the least important
features until the desired number of features is reached [33]. The goal of RFE is to identify
an optimal subset of features from the complete list of features in the dataset. Initially,
a supervised learning model is trained using the full feature set to predict the target
values. Afterward, the importance of each feature is evaluated based on the model’s
learned parameters, with less important features identified by their scores. The feature with
the lowest importance score is then eliminated from the dataset. This process continues
iteratively, with the model being retrained after each removal, until the desired number of
features is selected.

3.3.2. Random Forest Feature Importance

Random Forest (RF) feature importance belong to embedded feature selection family
that evaluates the significance of each feature based on its contribution to the prediction
in a Random Forest model [34]. The primary goal of RF feature importance is to identify
and rank features based on their predictive power, allowing for the selection of the most
influential features. A Random Forest model is trained by constructing multiple decision
trees using bootstrap samples from the dataset. During the training process, the importance
of each feature is evaluated based on its contribution to the model’s predictive accuracy,
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typically using metrics such as Mean Decrease Gini (MDG) or Mean Decrease Accuracy
(MDA) [35,36]. This method effectively selects important features while retaining the
benefits of the Random Forest’s robustness against overfitting.

3.3.3. Least Absolute Shrinkage and Selection Operator (LASSO)

LASSO is a regression analysis technique that combines both variable selection and
regularization to improve the prediction accuracy and interpretability of a statistical model.
It works by minimizing a specific objective function, which includes a regularization term.
In LASSO regression, L1 regularization is applied, which adds a penalty to the model
based on the absolute values of the coefficients. This regularization encourages sparsity
in the model by pushing the coefficients of less important features towards zero. As the
regularization parameter increases, more coefficients are driven towards zero, effectively
removing less relevant predictors from the model. The result is a simpler and more
interpretable model that tends to generalize better when applied to unseen data. This
makes LASSO a powerful tool for feature selection and model simplification [37].

3.3.4. K-Best Feature Selection

K-Best is a filter-based feature selection method that assesses the relevance of each
feature with respect to the target variable. The process starts by evaluating all features in
the dataset using statistical tests like the Chi-squared test, ANOVA F-value, or mutual infor-
mation. The goal is to identify the top k features that provide the most useful information
for predicting the target variable. The selection process can be outlined as follows:

1. For each feature, compute a score using a chosen statistical measure.
2. Sort the features based on their scores in descending order.
3. Select the top k features with the highest scores.

K-Best feature selection helps reduce the dimensionality of the dataset by removing
less informative features. This results in improved model performance while retaining the
most relevant features for predictive modeling [28].

3.4. Overview of Machine Learning Techniques

This section presents the list of ML techniques we have utilized in this study including
Logistic Regression (LR), Random Forest (RF), Support Vector Machine (SVM), Extreme
Gradient Boosting (XGB), and Ada Boost (ADB).

3.4.1. Logistic Regression

Logistic regression is a statistical method used for binary classification, where it
models the relationship between a dependent binary variable and one or more independent
variables. The method estimates probabilities using the logistic function [38]. In this model,
the probability that the target variable is equal to 1, given the features, is calculated. The
coefficients for each feature are estimated by maximizing the likelihood function, which
measures how well the model fits the observed outcomes [39]. Logistic Regression can be
used to classify miRNA expression data by estimating the probability that a given miRNA
profile corresponds to a specific disease class. Its simplicity and ability to handle binary
outcomes make it a valuable tool for predicting the presence of disease based on miRNA
expression levels.

3.4.2. Random Forest

Random Forest is an ensemble learning method used for classification. It builds
multiple decision trees from bootstrapped samples of the dataset and averages their predic-
tions [40]. For a given dataset, a Random Forest creates multiple decision trees, each using
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a random subset of features. During training, the algorithm minimizes the Gini impurity
or entropy at each node to effectively split the data [35,36]. Random Forest is particu-
larly effective for miRNA data classification due to its ability to handle high-dimensional
datasets and its robustness against overfitting. It identifies important miRNAs by averaging
predictions from multiple decision trees, making it a useful tool for classifying diseases
based on miRNA profiles.

3.4.3. Support Vector Machine (SVM)

A Support Vector Machine (SVM) is a supervised learning algorithm that constructs
a hyperplane in a high-dimensional space to separate different classes [41]. It aims to
find the optimal hyperplane that maximizes the margin between the classes. The SVM
is particularly effective for classification problems with complex and high-dimensional
data, such as miRNA expression profiles. The SVM is ideal for distinguishing between
disease and healthy profiles due to its ability to handle non-linear relationships. The
kernel trick allows SVMs to capture these non-linearities by transforming the input space
into a higher-dimensional feature space, making it a powerful method for miRNA data
classification [42].

3.4.4. Extreme Gradient Boosting (XGBoost)

XGBoost is an optimized gradient boosting algorithm that builds models in a sequen-
tial manner, where each new model corrects the errors made by the previous ones. It
aims to improve the performance of weak learners by iteratively adjusting the model to
enhance prediction accuracy [43]. The algorithm’s objective function combines the loss
function and a regularization term, ensuring that the model is both accurate and simple,
avoiding overfitting. XGBoost is highly effective for miRNA classification tasks, as it
boosts the performance of weak learners by iteratively improving prediction accuracy.
Additionally, its ability to handle missing values and irregular data makes it a strong
choice for miRNA-based disease classification, allowing it to effectively work with complex
datasets [44].

3.4.5. Adaptive Boosting (AdaBoost)

AdaBoost is an ensemble learning method that combines multiple weak classifiers to
form a strong classifier [45]. It works by training classifiers sequentially, with each new
classifier focusing on the errors made by the previous ones. The algorithm assigns weights
to each instance, increasing the weights of misclassified instances at each iteration, helping
the model improve over time. The final model is a weighted sum of the predictions from
each weak classifier, where each classifier’s weight is determined by its accuracy. AdaBoost
is particularly useful in miRNA classification because it enhances the model’s ability to
predict disease. It improves the accuracy of classifiers, even when miRNA data are complex
or imbalanced, making it a strong choice for disease classification tasks where data may be
noisy or challenging [46].

3.5. Ensemble Feature Selection with Nested Cross-Validation

In this section, we introduce the ensemble feature selection approach combined with
nested cross-validation, a robust methodology designed to identify the most relevant
features while minimizing overfitting. Cross-validation is a technique that involves par-
titioning data into multiple subsets. Some of these subsets are utilized for training the
model, while the others are reserved for testing or validation. This process continues until
every subset has served as both a training and validation set [41]. A commonly used
method is k-fold cross-validation, where the dataset is divided into k-equally sized subsets
(folds). In this method, the model is trained on k-1 folds and tested on the remaining fold.
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This procedure is repeated k times, ensuring that each fold is tested at least once [47]. By
employing different data subsets for training and testing, cross-validation offers a more
accurate estimate of a model’s performance on unseen data [48]. Nested cross-validation
involves multiple levels of cross-validation, often structured as an outer loop and an inner
loop [49]. This technique helps reduce overfitting and enhances overall model performance.

Following algorithm describes our proposed ensemble feature selection with nested
cross-validation as shown in Algorithm 1.

Algorithm 1: Ensemble feature selection with nested cross-validation

Input: miRNA expression dataset D ∈ R
N × F, where N is the number of samples and F

is the number of miRNA features.
Output:

• Minimal miRNA feature set Fminimal

• Best-performing model M*
• Mean performance metrics across all validation sets

Step 1. Initialization

Fminimal ← ∅
M* ← None
Let p = N

10 (i.e., Leave-6-Out Cross-Validation when N = 60)
Generate p = 10 non-overlapping folds:

{(Ti, Vi)}p
i=1, where Ti ∈ R

(N − p) × F, Vi ∈ R
p × F

Step 2. Outer Cross-Validation (Leave-p-Out)

for each i ∈ {1, 2, . . ., p} do

Let Ti be the outer training set and Vi be the outer validation set
Step 3. Inner Cross-Validation (Stratified k-Fold) and Feature Selection

Split Ti into k stratified folds :
{
(tj, vj)

}k
j=1

for each j ∈ {1, 2, . . ., k} do

Feature Selection on tj:
Apply RFE, Random Forest importance, LASSO, and SelectKBest

Model Training:

Train classifiers (LR, RF, SVM, XGBoost, AdaBoost) on tj

Model Evaluation:

Evaluate on vj using Accuracy, Sensitivity, Specificity, F1 Score, and
AUC

Model Selection:

Choose best-performing model Mj

Update Feature Set:

Add features to Fminimal if selected in ≥ 3 inner folds
Select most frequent model across inner folds as:

M* = argmaxMj (frequency of selection in inner folds)
Step 4. Model Validation on Outer Fold

Use M* and Fminimal to classify Vi

Evaluate performance using Accuracy, Sensitivity, Specificity, F1 Score,
and AUC
Return:

- Fminimal—final feature set
- M*—best-performing model
- Average performance metrics over all Vi, i = 1, 2, . . ., p
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The methodology begins with the input of a miRNA expression dataset, which con-
tains both the samples and the associated features necessary for classification. The first step
involves initializing key variables: N, the number of samples; F, the number of miRNA fea-
tures; and an empty set called Fminimal to store the minimal set of miRNA features identified
during the analysis. Additionally, a variable M* is initialized to hold the best-performing
model after evaluation. Two sets are initialized to facilitate the nested cross-validation
process: outer training sets, which consists of the outer training sets (T1, T2, . . ., Tp), and
validation sets, which includes the corresponding validation sets (V1, V2, . . ., Vp).

The second step involves executing Leave-P-Out Cross-Validation (LPOCV) as shown
in Figure 2, where the input data are divided into outer training and validation sets. This
method generates multiple splits, with each outer training set (Ti) containing 90% of the
total data, while the corresponding validation sets (Vi) consist of the remaining 10%. This
process ensures that each instance in the dataset is eventually used for validation, providing
a robust evaluation framework for model performance.

In the third step, the focus shifts to the inner cross-validation and feature selection
process. For each outer training set Ti, stratified k-fold cross-validation is employed to
further divide the data. As shown in Figure 2, each outer training set (Ti) is split into
multiple inner training sets (t1, t2, . . ., ti) and corresponding inner test sets (v1, v2, . . .,
vi). Feature selection is then performed on each inner training set using various methods,
such as Recursive Feature Elimination (RFE), Random Forest (RF) feature importance,
LASSO, and the k-best method using the ANOVA F-score as the statistical indicator to
rank features based on their discriminative power. Simultaneously, different classifiers,
including Logistic Regression (LR), Random Forest (RF), Support Vector Machines (SVM),
Extreme Gradient Boosting (XGB), and AdaBoost (ADB), are trained on these inner training
sets. The performance of each model is evaluated against its corresponding inner test set
using key metrics like accuracy, sensitivity, specificity, F1 score, and AUC. The model that
achieves the best mean performance across all metrics for the current outer training set
is designated as M*. In addition to that, miRNA features that consistently appear at least
3 times across all iterations are appended to the Fminimal.

The final step involves validating the selected model and feature set. For each valida-
tion set Vi, the M* identified from the inner cross-validation is used to perform classification,
utilizing the minimal miRNA feature set derived from the previous step. The performance
of this model is then evaluated on the validation sets using the same metrics: accuracy,
sensitivity, specificity, F1 score, and AUC.

Ultimately, the output of this comprehensive methodology includes the minimal
miRNA feature set consistently selected across all inner k-folds, the best-performing model
based on mean performance across all inner train and test sets, and the mean metrics of
this best model evaluated against the validation sets. This structured approach ensures a
thorough and reliable framework for identifying significant miRNA features and achieving
accurate classification outcomes.

3.6. Finding Enriched Pathways
3.6.1. miRNA Gene Target Prediction

TargetScanHuman version 8.0 was used to predict genes with binding sites matching
the 10 miRNAs from the model, resulting in 6115 genes with matching miRNA target
sites [50]. Of these, 572 gene targets had cumulative weighted context scores (CWCS) less
than −0.5, indicating strong gene suppression. All 6115 unique gene targets were included
in gene ontology enrichment analysis and metabolic pathway analysis [50].
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Figure 2. Overview of ensemble feature selection with nested cross-validation.

3.6.2. Gene Ontology Enrichment and Pathway Analysis

The R package ‘clusterProfiler’ was used to identify gene ontologies (GOs) and path-
ways which might be influenced by miRNAs from the model [51]. For gene ontology
enrichment analysis, the ‘enrichGO()’ function was used with an adjusted p-value cutoff
of 0.05 and a minimum gene set size of 5. R’s ‘enrichR’ package was used to identify
pathways affected by miRNAs using the ‘enrichr()’ function against the Reactome path-
way database [52,53]. Putative affected pathways were determined to be significant at an
adjusted p-value threshold of 0.05.
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4. Results

This section presents the results in four key aspects that highlight the effectiveness of
our proposed approach. First, we present the minimal miRNA biomarker set identified
from the ensemble feature selection method. Second, we highlight the best model selected
during the training phase and its performance metrics. Third, evaluation of selected best
model and its performance on validation sets. Finally, we present the biological pathway
analysis based on the selected miRNA features.

4.1. Selected Minimal miRNA Feature Set

We identified a minimal set consisting of 10 miRNAs through the ensemble feature
selection method combined with nested cross-validation. These miRNAs significantly
contribute to the classification of Usher syndrome when compared to control samples. The
selected miRNAs are: hsa-miR-148a-3p, hsa-miR-183-5p, hsa-miR-146a-5p, hsa-miR-28-
5p, hsa-miR-30c-5p, hsa-miR-551b-3p, hsa-miR-642a-5p, hsa-miR-181a-5p, hsa-miR-28-3p,
hsa-miR-182-5p.

The SHAP summary plot shown in Figure 3, illustrates the contribution of specific
miRNAs to the model’s output for distinguishing between Usher syndrome and control
samples. Each dot represents a SHAP value for a given miRNA in a sample, with color
indicating the miRNA’s expression level (blue for low and red for high). The position on the
x-axis shows the impact of the feature on the model’s prediction: positive values push the
model towards predicting Usher syndrome, while negative values push towards control.
The feature importance plot (in Figure 4) reveals the contribution of individual miRNAs to
the classification decision between Usher syndrome patients and control samples.

Figure 3. SHAP summary plot with selected miRNA features.

Key observations for each miRNA:

hsa-miR-148a-3p: Highly ranked in SHAP feature importance, contributing significantly to-
ward USH prediction with high SHAP values. In other words, higher expression levels (red)
increase the SHAP value positively, strongly contributing to Usher syndrome prediction.
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hsa-miR-183-5p: Both high and low expression values are seen across the SHAP value
spectrum, indicating variable contributions. However, overall miRNA expression levels
are downregulated in usher compared to control.
hsa-miR-146a-5p: Contributes to usher prediction with positive SHAP values. Expression
levels are generally upregulated in usher and downregulated in control.
hsa-miR-28-5p, hsa-miR-28-3p, and hsa-miR-182-5p: These miRNAs exhibit similar expres-
sion pattern where positive SHAP pushes towards usher prediction and negative SHAP
values indicates significant contribution towards control prediction. Moreover, Lower
SHAP values indicate that expression levels are significantly downregulated in usher
compared to control.
hsa-miR-551b-3p and hsa-miR-642a-5p: Show a consistent pattern of positive SHAP values,
indicating their importance in usher prediction. These miRNAs are upregulated in usher
and downregulated in control.
hsa-miR-30c-5p and hsa-miR-181a-5p: Both miRNAs were expressed at higher levels in con-
trols and reduced in usher, contributing negatively to SHAP values for control classification.

Figure 4. SHAP feature importance plot that shows importance of each selected feature.

4.2. Model Training Results

For model training, five machine learning classifiers were employed for classifying
Usher syndrome using miRNA data: Logistic Regression (LR), Random Forest (RF), Sup-
port Vector Machine (SVM), XGBoost (XGB), and AdaBoost (ADB). We used the default
hyperparameters for all machine learning models as provided by their respective libraries,
including the default number of trees for Random Forest and the default kernel function
for SVM. No systematic hyperparameter tuning (e.g., grid search or random search) was
performed in the current implementation. To ensure robust model evaluation, LPOCV
approach with p = 6 (10% of total samples) was implemented, resulting in 10 iterations. At
each iteration, 54 samples were used for training, and 6 samples were held out for valida-
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tion. For the inner training, the 54 training samples were split into 80% for training and
20% for testing using stratified k-fold cross-validation. Important features were selected
during model training and testing, with final model performance evaluated using the
validation sets. Table 1 illustrates the performance metrics of the five classifiers on training
and testing sets, including accuracy, sensitivity, specificity, F1 score, and AUC, while Table 2
displays the evaluation metrics of the best-performing model on the validation sets. They
are computed using standard classification metrics [13] derived from the confusion matrix,
which are described below.

Predicted Positive Predicted Negative

Actual Positive TP FN

Actual Negative FP TN

Where:

• TP = True Positives (real positives predicted as positives);
• FN = False Negatives (real positives incorrectly predicted as negatives);
• FP = False Positives (real negatives incorrectly predicted as positives);
• TN = True Negatives (real negatives correctly predicted as negatives).

Performance Metric Formulas

1. Accuracy

Accuracy =
(TP + TN)

(TP + TN + FP + FN)

2. Sensitivity (Recall or True positive rate)

Sensitivity =
TP

(TP + FP)

3. Specificity

Speci f icity =
TN

(TN + FP)

4. F1 score

F1 score =
2 ∗ (Precision ∗ Recall)
(Precision + Recall)

where Precision = TP
(TP+FP) .

5. Area Under the Curve (AUC)

Calculated from the ROC curve plotting True Positive Rate (Sensitivity) against False
Positive Rate (FPR), where

FPR =
FP

(FP + TN)

Accuracy

As shown in Table 1, Logistic Regression achieved the highest mean accuracy
(0.98 ± 0.05, CI: 0.95–1.00), and consistently performed well across all iterations, main-
taining values between 0.95 and 1.00. SVM also achieved a mean accuracy of 0.98 ± 0.05
(CI: 0.95–1.00), while Random Forest followed closely with 0.97 ± 0.07 (CI: 0.92–1.00). XG-
Boost (0.93 ± 0.15) and AdaBoost (0.95 ± 0.15) showed greater variability, with AdaBoost
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displaying the most instability, sometimes dropping to accuracies as low as 0.84. Despite
this, AdaBoost occasionally achieved accuracy as high as 1.0.

Sensitivity

As shown in Table 1, Logistic Regression and Random Forest maintained perfect
sensitivity (1.00 ± 0.00) across all iterations, clearly outperforming the other models. SVM
showed strong but slightly lower sensitivity (0.95 ± 0.00). XGBoost and AdaBoost were
the least stable, with sensitivity ranging from 0.67 to 1.0, and a large standard deviation of
±0.30, indicating inconsistency across iterations.

Specificity

Regarding specificity, presented in Table 1, AdaBoost achieved perfect specificity
(1.00 ± 0.00), followed by XGBoost (0.97 ± 0.10), Logistic Regression and SVM (0.97 ± 0.10),
and Random Forest (0.93 ± 0.13). However, AdaBoost displayed the highest variance,
with performance fluctuating significantly. Logistic Regression, in contrast, maintained a
consistent specificity with lower variance, reinforcing its reliability.

F1 Score

As shown in Table 1, Logistic Regression exhibited the most consistent performance
with F1 scores of 0.99 ± 0.04 (CI: 0.95–1.00), reflecting robust model behavior. SVM and Ran-
dom Forest also performed well (both at 0.97–0.99) with minor fluctuations. XGBoost had a
lower mean F1 score (0.89 ± 0.30), and AdaBoost showed the most variability (0.90 ± 0.30),
occasionally dipping below 0.90. Among the classifiers, Logistic Regression was the most
stable, making it a potentially more reliable choice for miRNA-based classification tasks.

AUC

As shown in Table 1, AUC values for Logistic Regression remained nearly perfect
(0.99 ± 0.10, CI: 0.99–1.00) across iterations, indicating high and consistent discriminatory
power. SVM and Random Forest also showed strong AUC values (0.99 ± 0.03). XGBoost
and AdaBoost exhibited more variability, though both reached a maximum AUC of 1.00 in
certain iterations.

Overall, Logistic Regression demonstrated the most consistent and robust performance
across accuracy, sensitivity, specificity, F1 score, and AUC. In contrast, AdaBoost exhibited
the most unstable results, often lagging behind other models in terms of accuracy, sensitivity,
and specificity. These results suggest that Logistic Regression may be the most suitable
model for miRNA-based Usher syndrome classification, offering reliable performance with
minimal fluctuations across different iterations of the LPOCV process.

Table 1. Model training results including mean ± std with 95% confidence interval).

Model Accuracy Sensitivity Specificity F1 Score AUC

Logistic
Regression

0.98 ± 0.05
(0.95, 1.00)

1.00 ± 0.00
(1.00, 1.00)

0.97 ± 0.10
(0.89, 1.00)

0.99 ± 0.04
(0.95, 1.00)

0.99 ± 0.10
(0.99, 1.00)

Random
Forest

0.97 ± 0.07
(0.92, 1.00)

1.00 ± 0.00
(1.00, 1.00)

0.93 ± 0.13
(0.83, 1.00)

0.97 ± 0.06
(0.93, 1.00)

0.95 ± 0.03
(0.90, 1.00)

SVM 0.98 ± 0.05
(0.94, 1.00)

0.95 ± 0.00
(0.90, 1.00)

0.97 ± 0.10
(0.89, 1.00)

0.99 ± 0.04
(0.95, 1.00)

0.99 ± 0.03
(0.93, 1.00)

XGBoost 0.93 ± 0.15
(0.82, 1.00)

0.90 ± 0.30
(0.67, 1.00)

0.97 ± 0.10
(0.96, 1.00)

0.89 ± 0.30
(0.66, 1.00)

0.99 ± 0.03
(0.96, 1.00)

AdaBoost 0.95 ± 0.15
(0.84, 1.00)

0.90 ± 0.30
(0.67, 1.00)

0.91 ± 0.00
(0.80, 1.00)

0.90 ± 0.30
(0.91, 0.96)

0.94 ± 0.13
(0.90, 1.00))
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Table 2. Model validation results including mean ± std with 95% confidence interval).

Model Accuracy Sensitivity Specificity F1 Score AUC

Logistic
Regression

0.97 ± 0.08
(0.93, 1.00)

0.98 ± 0.07
(0.91, 1.00)

0.93 ± 0.16
(0.91, 1.00)

0.95 ± 0.10
(0.91, 1.00)

0.97 ± 0.08
(0.92, 1.00)

Random
Forest

0.60 ± 0.30
(0.38, 0.81)

0.30 ± 0.42
(0.00, 0.60)

1.00 ± 0.00
(1.00, 1.00)

0.93 ± 0.12
(0.84, 1.00)

0.60 ± 0.30
(0.38, 0.81)

SVM 0.90 ± 0.21
(0.82, 1.00)

0.93 ± 0.12
(0.86, 1.00)

0.97 ± 0.07
(0.91, 1.00)

0.98 ± 0.06
(0.93, 1.00)

0.90 ± 0.21
(0.86, 1.00)

XGBoost 0.50 ± 0.19
(0.36, 0.63)

0.12 ± 0.31
(0.10, 0.35)

0.90 ± 0.31
(0.67, 1.00)

0.71 ± 0.28
(0.50, 0.91)

0.50 ± 0.19
(0.36, 0.63)

AdaBoost 0.48 ± 0.14
(0.37, 0.58)

0.34 ± 0.20
(0.00, 0.36)

1.00 ± 0.00
(1.00, 1.00)

0.52 ± 0.07
(0.46, 0.58)

0.48 ± 0.14
(0.37, 0.58)

4.3. Model Evaluation

The performance of five models in classifying Usher syndrome samples using miRNA
data was evaluated across 10 validation sets over 10 iterations, as shown in Table 2. Logistic
regression model demonstrated consistent accuracy with minimal fluctuations, highlight-
ing its ability to generalize effectively in classifying Usher syndrome samples compared
to control samples. Specificity remained close to 1.0 across most iterations, indicating
the model’s reliability in identifying true positives. Sensitivity, although exhibiting slight
variability, was stable enough to confirm the model’s effectiveness in correctly classifying
control samples. The F1 Score, a balance between precision and recall, consistently hovered
around 1.00 with minimal variation, reflecting the robust behavior of the model in main-
taining a strong balance between true positive rate and precision. Additionally, the Area
Under the Curve (AUC) remained nearly perfect, consistently achieving values between
0.97 and 1.0. The overall performance metrics are as follows: mean Accuracy of 97%, mean
Sensitivity of 98.0%, mean Specificity of 93%, mean F1 Score of 95%, and mean AUC of 97%.
Furthermore, Logistic Regression demonstrated stable and reliable performance across all
evaluation metrics, making it a suitable and robust choice for miRNA-based classification
of Usher syndrome.

4.4. Pathway Analysis

There were 6115 unique genes predicted to be targeted by the 10 miRNAs derived from
the ML model. In total, 572 of these genes were predicted to be strongly suppressed by the
miRNAs of interest. There were six GOs flagged to be affected (Figure 5). Of the six GOs,
four were associated with neuronal or axon development. The remaining two GOs were
signal transduction related, with RAS protein signal transduction, and GTPase mediated
signal transduction both predicted to be suppressed by miRNAs of interest. Included are
the top 10 pathways associated with the genes targeted by miRNAs from the ML model
(Figure 6). The top two pathways in terms of combined scores are both related to neuronal
development, corroborating observations from GO enrichment findings (Table 3).
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Figure 5. Panel A depicts gene ontologies (GOs) which contain genes targeted by miRNAs from the
model. GOs were considered significant at a BH adjusted p-value ≤ 0.05. The size of the dot in the
dot plot corresponds with the number of genes in the GO targeted by miRNAs from the model, while
the color corresponds to adjusted p-values.

Figure 6. EnrichR analysis of pathways with gene targets corresponding to the miRNAs from the
model, using Reactome pathways database. Y-axis is the number of miRNA associated genes, and the
x-axis is the total number of genes in the pathway. Dots in the plot represent the different Reactome
pathways, which may be influenced by miRNAs from the model. Pathways are colored according to
Reactome ID, and the size of the dot reflects the −log10 (p-value).
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Table 3. Top 10 pathways predicted to be influenced by miRNAs of interest. Gene-count is the
number of genes in the pathway targeted by miRNAs from ML model. Genes in pathway are the
total number of genes in the term pathway followed by the percent of affected genes in the pathway.
P-values and adjusted p-values are provided from enrichR results, as well as the odds ratios and
combined score outputs from enrichR. Significance was determined at an adjusted p-value < 0.05,
and a combined score > 15.

Term Gene-Count
Genes in
Pathway

Percent of
Path

p-Value Adj. p-Value Odds-Ratio
Combined-

Score

Transcriptional Regulation
By MECP2 R-HSA-8986944 35 60 58.33 7.56 × 10−6 0.0015 3.19 37.64

Neuronal System
R-HSA-112316 164 386 42.49 3.91 × 10−7 0.0002 1.70 25.03

Generic Transcription
Pathway R-HSA-212436 449 1190 37.73 3.28 × 10−8 0.0001 1.41 24.23

Membrane Trafficking
R-HSA-199991 239 599 39.90 5.34 × 10−7 0.0002 1.53 22.07

RHO GTPase Cycle
R-HSA-9012999 180 441 40.82 2.55 × 10−6 0.0007 1.58 20.39

Intracellular Signaling By
Second Messengers

R-HSA-9006925
130 306 42.48 6.03 × 10−6 0.0013 1.69 20.34

RNA Polymerase II
Transcription R-HSA-73857 483 1312 36.81 3.31 × 10−7 0.0002 1.35 20.16

Signal Transduction
R-HSA-162582 865 2465 35.09 1.47 × 10−7 0.0001 1.27 19.91

Gene Expression
(Transcription)
R-HSA-74160

524 1449 36.16 1.27 × 10−6 0.0004 1.31 17.83

Vesicle-mediated Transport
R-HSA-5653656 245 637 38.46 9.82 × 10−6 0.0018 1.44 16.57

5. Discussion

The proposed methodology for biomarker discovery in Usher syndrome integrates
ensemble feature selection with nested cross-validation to identify a minimal set of miRNA
biomarkers. This minimal biomarker set represents the smallest subset of miRNAs that
can reliably distinguish Usher syndrome from control samples. However, due to the
rarity of Usher syndrome, obtaining large sample sizes remains a challenge, which may
impact the generalizability of the selected biomarkers. As more data become available, this
approach is designed to refine and update the biomarker set, improving its robustness and
biological relevance over time. Future validation on larger datasets will enhance its clinical
applicability and reliability.

By employing nested cross-validation, this methodology ensures that dataset parti-
tioning into training and validation sets is performed iteratively. The training sets undergo
additional stratified cross-validation, where multiple validation sets are tested to generate
stable performance metrics. Compared to single-set validation, this process provides more
reliable feature selection and performance evaluation. The combination of ensemble feature
selection and rigorous cross-validation enhances the stability of identified biomarkers,
ensuring their reproducibility, even with limited data.

Future studies incorporating larger sample sizes will be essential to further validate
and refine the identified miRNA biomarkers, advancing their potential use in early diag-
nosis and therapeutic targeting of Usher syndrome. The methodology leverages LPOCV
for the outer loop and stratified k-fold cross-validation for the inner loop, ensuring robust
biomarker selection.
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6. Limitations and Future Directions

While our study demonstrates promising results for the automated detection of Usher
syndrome using miRNA expression profiles, there are several limitations. First, the dataset
used is small, reflecting the challenges inherent to studying rare genetic disorders like
Usher syndrome. A small sample size may limit the robustness and generalizability of the
identified minimal feature set, which may not fully capture the variability across a more
diverse population. Additionally, the heterogeneity of miRNA expression influenced by
various factors (e.g., age, genetic background, and environmental factors) could impact the
model’s performance when applied to different cohorts. Another limitation lies in miRNA
data itself; variations in miRNA extraction and quantification techniques may influence the
reproducibility of results across different labs or clinical settings.

Future research should focus on expanding the dataset by including samples from
diverse populations and incorporating longitudinal data where possible. This would allow
the feature selection method to capture a broader range of genetic variability, enhancing
the generalizability of the model. In addition, further studies should explore integrating
multi-omics data (e.g., mRNA, protein, and epigenetic data) to improve predictive accuracy
and capture complex biological interactions related to Usher syndrome. Another potential
avenue is the incorporation of transfer learning or domain adaptation techniques to enable
the model trained on miRNA data to be effectively applied to new data sources or patient
groups. Validation in a clinical setting is also necessary to assess the practicality and
reliability of the proposed framework in real-world diagnostic workflows. Finally, as more
samples become available, it would be valuable to explore deep learning-based models that
could potentially improve classification performance by capturing non-linear relationships
in the data.

7. Conclusions

This study presents a machine learning-based approach incorporating ensemble fea-
ture selection and nested cross-validation for the discovery of miRNA biomarkers associ-
ated with Usher syndrome. Given the rarity of Usher syndrome, obtaining large datasets is
challenging. Our method aims to maximize the reliability of biomarker identification by
selecting a minimal set of miRNAs that remain robust against variations in sample size.
The ensemble feature selection component integrates results from multiple models, while
nested cross-validation ensures rigorous evaluation. This provides more reliable biomarker
selection compared to conventional validation methods. The identified minimal biomarker
set represents a promising step toward developing miRNA-based biomarkers for Usher
syndrome, although its generalizability to larger, more diverse datasets remains a future
goal. Our results demonstrate that as more data become available, the biomarker set can
be refined and updated, enhancing its clinical applicability. Overall, this study provides
a robust framework for feature selection and validation in small, complex datasets, with
potential applications beyond Usher syndrome to other rare genetic disorders where data
availability is limited.
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