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Preface

With the passing of Pál Révész in 2022, the world of probability theory suffered a great loss.

His trailblazing contributions are reflected in his influential books on a range of important topics:

Laws of Large Numbers (1968), Strong Approximations in Probability and Statistics (1981, written together

with Miklós Csörgo), Random Walks of Infinitely Many Particles (1990), and Random Walk in Random

and Non-Random Environments (1994, 2005, 2013). He had many collaborators and devoted students

around the world, and he is deeply missed. We (the guest editors of this volume) had the privilege of

working with him and his closest collaborator, Miklós Csörgo, for many decades. We now present this

volume of scientific papers by his friends, collaborators, students, and fellow probabilists, who wish to

honor his memory. Each paper is closely related to Pál Révész’s work and groundbreaking ideas. We

hope these papers will inspire a new generation of probabilists, who, though they will not have the

opportunity to meet him, will surely build upon his remarkable legacy.

Antónia Földes and Endre Csáki

Guest Editors

vii
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Some Open Questions About the Anisotropic Random Walks
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Abstract: Between 2007 and 2018, we collaborated extensively with Pál Révész and Miklós Csörgő on
many of the problems discussed in this paper. Over the past six years, we have continued to explore
these issues, and here, we present some of the most intriguing open questions in these areas. This
paper compiles key results from a dozen of our previous works, providing the necessary background
to frame these compelling unresolved questions.
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1. Introduction

The investigation of the two-dimensional anisotropic random walk goes back almost
fifty years. The first papers were written by Silver, Shuler and Lindenberg [1]; Shuler [2];
Seshadri, Lindenberg and Shuler [3] and Westcott [4] followed by Heyde [5,6]; Roerdink and
Shuler [7]; and den Hollander [8]. Let us begin with the definition. We consider a symmetric
nearest-neighbor random walk on Z2, such that its transition probabilities only depend on the
vertical coordinate. To be precise, here is the formal definition: the anisotropic random walk
{C(N) = (C1(N), C2(N)), N = 0, 1, 2, . . .} on Z2 has the following transition probabilities:

P(C(N + 1) = (k + 1, j)|C(N) = (k, j)) =

P(C(N + 1) = (k− 1, j)|C(N) = (k, j)) =
1
2
− pj,

P(C(N + 1) = (k, j + 1)|C(N) = (k, j)) =

P(C(N + 1) = (k, j− 1)|C(N) = (k, j)) = pj, (1)

for (k, j) ∈ Z2, N = 0, 1, 2, . . . We will suppose that 0 < pj ≤ 1/2 and minj∈Z pj < 1/2 and
that C(0) = (0, 0).

Obviously, this model contains the simple symmetric walk, when pi = 1/4 for all
i = 0,±1,±2, . . . The simple symmetric walk has been discussed extensively, so we just
mention a few important works here: Erdős and Taylor [9], Dvoretzky and Erdős [10]
and Révész [11]. The condition minj∈Z pj < 1/2 excludes the case where the walk is one-
dimensional. However, the case when all pi = 1/2 except one is a particularly famous case.
More precisely, if p0 = 1/4 and all the other pi = 1/2, we have the two-dimensional comb

model, which has been investigated by Weiss and Havlin [12]; Bertacchi [13]; Bertacchi and
Zucca [14]; and us [15,16]. We will mention some other special cases later on.

2. Recurrence and Transience

One of the most important issues is whether a particular random walk is transient
or recurrent. We investigated this question for the anisotropic random walk in [17]. It
turned out that to obtain criteria for recurrence, only the simple application of the famous

Entropy 2024, 26, 1082. https://doi.org/10.3390/e26121082 https://www.mdpi.com/journal/entropy1
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Nash–Williams theorem is required [18]. For completeness, we recall this theorem here.
To do so, we need some notations and definitions. Let (X, Y, p) be a Markov chain with a
countable state space X and a process Y with transition probabilities p(u, v). The chain is
called reversible if there exist strictly positive weights πu for all u ∈ X such that

πu p(u, v) = πv p(v, u). (2)

For reversible chains, it is convenient to introduce the notation

a(u, v) := πu p(u, v).

Our anisotropic walk introduced above is a Markov chain on the state space X = Z2,
with the transition probabilities defined in (1), and it is reversible with the strictly posi-
tive weights

π(k, j) =
1
pj

,

with pj, j = 0,±1,±2, . . . defined in (1). Thus, we have, for neighboring sites,

a((k, j), (k, j + 1)) = a((k, j), (k, j− 1)) = 1

a((k, j), (k + 1, j)) = a((k, j), (k− 1, j)) =
1

2pj
− 1 (3)

(and for non-nearest-neighbor sites a(·, ·) = 0). Our Markov chain is also time-homogeneous
and irreducible (it is possible to get to any state from any state with positive probability).
The invariant measure is defined by

μ(u) = ∑
v

μ(v)p(v, u),

where the summation goes over the four nearest neighbors of u. For u = (k, j), we obtain

μ(u) = μ(k, j) = π(k, j) =
1
pj

, (k, j) ∈ Z
2. (4)

Now we recall the Nash–Williams theorem:

Theorem 1 ([18]). Suppose that (X, Y, p) is a reversible Markov chain and that X =
⋃∞

k=0 Λk

where Λk are disjoint. Suppose further that u ∈ Λk and a(u, v) > 0 together imply that v ∈
Λk−1 ⋃Λk ⋃Λk+1, and that for each k, the sum ∑

u∈Λk ,v∈X

a(u, v) < ∞. Let [Λk, Λk+1] denote the

set of pairs (u, v) such that u ∈ Λk and v ∈ Λk+1. The Markov chain is recurrent if

∞

∑
k=0

⎛⎝ ∑
(u,v)∈[Λk , Λk+1]

a(u, v)

⎞⎠−1

= ∞. (5)

To apply this theorem, let Λk be the set of the 8k lattice points on a square of width 2k,
centered at the origin. Furthermore, let [Λk, Λk+1] be the set of the 8k + 4 nearest-neighbor
pairs (edges) between Λk and Λk+1.

It is easy to see from (3) that the sum in (5) is equal to

∞

∑
k=0

(
2

(
k

∑
j=−k

(
1

2pj
− 1

)
+

k

∑
j=−k

1

))−1

=
∞

∑
k=0

(
k

∑
j=−k

1
pj

)−1

.

Consequently, we have

2
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Theorem 2. The anisotropic walk is recurrent if

∞

∑
k=0

(
k

∑
j=−k

1
pj

)−1

= ∞. (6)

This implies the following.

Corollary 1. If minj∈Z pj > 0, then the anisotropic walk is recurrent.

Of course, it is very tempting to believe that the converse of this statement is true as
well. Unfortunately, we cannot prove that if

∞

∑
k=0

(
k

∑
j=−k

1
pj

)−1

< ∞, (7)

then the anisotropic walk is transient, but we managed to show a somewhat weaker result:

Theorem 3 ([17]). Assume that

k

∑
j=−k

1
pj

= Ck1+A + O(k1+A−δ), k→ ∞ (8)

for some C > 0, A > 0 and 0 < δ ≤ 1. Then, the anisotropic random walk is transient.

So, our first open question is

Question 1. Find an if and only if criterion for the recurrence of the anisotropic walk .

3. Strong Approximation

Let us start with some history. After the early works given in [1,2], Heyde [5] proved
an almost sure approximation for C2(N), the second coordinate of the anisotropic walk,
under the following conditions:

n−1
n

∑
j=1

p−1
j = 2γ + o(n−η), n−1

n

∑
j=1

p−1
−j = 2γ + o(n−η) (9)

as n→ ∞ for some constants γ, 1 < γ < ∞ and 1/2 < η < ∞.
In our paper [19], we proved for {C(N), N = 0, 1, 2, . . .} the following joint strong

approximation theorem:

Theorem 4. Under condition (9), with 1/2 < η ≤ 1 on an appropriate probability space for the
random walk {C(N) = (C1(N), C2(N)), N = 0, 1, 2, . . .}, one can construct two independent
standard Wiener processes {W1(t); t ≥ 0}, {W2(t); t ≥ 0} so that, as N → ∞, we have, with any
ε > 0, ∣∣∣∣C1(N)−W1

(
γ− 1

γ
N
)∣∣∣∣+ ∣∣∣∣C2(N)−W2

(
1
γ

N
)∣∣∣∣ = O(N5/8−η/4+ε) a.s.

We also considered a special case of this result which dealt with the so-called periodic
case. The anisotropic walk is called periodic if pi = pi+L for each i ∈ Z with some
positive integer L ≥ 1. By indicating this periodicity with the superscript P, we obtained a
somewhat better approximation, as the next theorem shows.

3
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• Periodic walk

Theorem 5. On an appropriate probability space for the periodic anisotropic random walk,

{CP(N) = (CP
1 (N), CP

2 (N)); N = 0, 1, 2, . . .},

one can construct two independent standard Wiener processes, {W1(t); t ≥ 0} and {W2(t); t ≥ 0},
so that, as N → ∞, we have, with any ε > 0,∣∣∣∣CP

1 (N)−W1

(
γ− 1

γ
N
)∣∣∣∣+ ∣∣∣∣CP

2 (N)−W2

(
1
γ

N
)∣∣∣∣ = O(N1/4+ε) a.s., (10)

where

γ =
∑L

j=1 p−1
j

2L
. (11)

Remark 1. In what follows, we will talk about the different important classes of anisotropic random
walks, like the two-dimensional comb anisotropic random walk, the periodic anisotropic random
walk and many others. To simplify the language from now on, we will often call these the (two-
dimensional) comb walk and periodic walk, thus avoiding the use of anisotropic random expression.

It is a natural question to ask whether Theorem 4 can be generalized for the case
where, in the two conditions of (9), one permits different γ values. The first such result was
achieved by Heyde et al. [20]. ( see also Horvath [21]). To formulate their result, we need
some notations and definitions.

Let

n−1
n

∑
j=1

p−1
j = 2γ1 + εn, n−1

−1

∑
j=−n

p−1
j = 2γ2 + ε∗n, (12)

and define the function σ2(y) as

σ2(y) =

⎧⎪⎨⎪⎩
1

γ1
for y ≥ 0,

1
γ2

for y < 0.

Let {Y(t), t ≥ 0} be a diffusion process on the same probability space as {C2(N)} defined by

Y(t) = W(A−1(t)), t ≥ 0,

where {W(t), t ≥ 0} is a Wiener process,

A(t) =
∫ t

0
σ−2(W(s)) ds,

and A−1(·) is the inverse of A(·). If γ1 �= γ2, then Y(t) is a so-called oscillating Brownian
motion, namely, a diffusion with the speed measure m(dy) = 2σ−2(y)dy (see, e.g., Keilson
and Wellner [22]).
Now, we are ready to formulate Heyde et al.’s result:

Theorem 6 ([20]). Suppose that in (12), εk and ε∗k are o(1) as k→ ∞. Then, for C2(·), we obtain
the second coordinate of the anisotropic walk as N → ∞:

sup
0≤t≤N

|N−1/2C2([Nt])−Y(t)| → 0 a.s.

Our aim was to have a general enough strong approximation for both coordinates with
rates. This was partially achieved as follows.

4
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Theorem 7 ([23]). Suppose that

n−1
n

∑
j=1

p−1
j = 2γ1 + o(n−η), n−1

n

∑
j=1

p−1
−j = 2γ2 + o(n−η) (13)

as n → ∞ for some constants 1 < max(γ1, γ2) < ∞ and 1/2 < η ≤ 1. Under the conditions
given in (13), on an appropriate probability space for the anisotropic random walk {C(N) =
(C1(N), C2(N)); N = 0, 1, 2, . . .}, one can construct two independent standard Wiener processes,
{W1(t); t ≥ 0} and {W2(t); t ≥ 0}, so that, as N → ∞, we have, with any ε > 0,∣∣∣C1(N)−W1

(
N − A−1

2 (N)
)∣∣∣+ ∣∣∣C2(N)−W2

(
A−1

2 (N)
)∣∣∣ = O(N5/8−η/4+ε) a.s., (14)

where A2(t) = γ1
∫ t

0 I(W2(s) ≥ 0) ds + γ2
∫ t

0 I(W2(s) < 0) ds and A−1
2 (·) is its inverse.

Remark 2. We have to say that our goal was only partially achieved, as the γ1 = γ2 = 1 case is
not contained in the theorem.

Remark 3. Observe that in the case that γ1 = γ2 = γ > 1, A(t) = γt, A−1(t) = t/γ and
Y(t) = W(t/γ) is a time-changed Wiener process, and we recover Theorem 4.

To shed some light on the extent of this result, we mention some important classes of
anisotropic random walks.

• Comb-Type walk: We begin by defining an arbitrary subset B ∈ Z such that

pi = 1/4 if i ∈ B and pi = 1/2 if i ∈ Z� B. (15)

So, in a comb-type walk, we remove from the two-dimensional integer lattice all the
horizontal edges that do not belong to the i-levels in B, and in the remaining lattice, the
walker takes each possible edge with equal probability.

In investigating this comb-type walk, we get rid of a lot of technicalities and still obtain
interesting results.

• Infinitely many horizontal lines: Consider the case now where

|Bn| := |B ∩ {−n, n}| ∼ c nβ with 0 < β ≤ 1, c > 0. (16)

The β = 1 case turns out to be a special case of Theorem 7; that is to say that under the
conditions of Theorem 7, we obtain the same statement.

In order to be able to formulate our next result we need to say a few words about
the method which we used here and in many of the other strong approximation results.
Namely, we redefined the anisotropic walk in terms of two independent simple symmetric
random walks, S1(·) and S2(·), and a sequence of independent geometric random variables
{Gi, i = 1, 2 . . .} defined in the same probability space. Using these random variables, we
define the anisotropic walk as taking Gi horizontal steps and one vertical step for each i.
The whole construction is given, e.g., in [24]. Now, we define

VN = VN(B) = #{k : 1 < k ≤ N, C2(k) �= C2(k− 1)},

which is the number of vertical steps, and denote by HN = N−VN the number of horizontal
steps in the first N steps. Then, as a result of the above-mentioned construction, we have

{C(N); N = 0, 1, 2, . . .} = {(C1(N), C2(N)); N = 0, 1, 2, . . .} (17)
d
= {(S1(HN), S2(VN)); N = 0, 1, 2, . . .},

5
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where d
= stands for equality in the distribution. Now, we are ready to formulate our next

result. Let
∑
j∈B

ξ2(j, VN)

be the occupation time of B by S2(·) in the first N steps of C(·), where {ξ2(j, ·), j =
0,±1,±2 . . .} denotes the local time process of S2(·).

Theorem 8 ([24]). Under the conditions (15) and (16) with 0 < β < 1, on an appropriate
probability space for the comb-type walk {C(N) = (C1(N), C2(N)); N = 0, 1, 2, . . .}, one can
construct two independent standard Wiener processes, {W1(t); t ≥ 0} and {W2(t); t ≥ 0} so that,
as N → ∞, we have, with any ε > 0,∣∣∣∣∣C1(N)−W1

(
∑
j∈B

ξ2(j, VN)

)∣∣∣∣∣ = O(N1/8+β/8+ε) a.s.

|C2(N)−W2(N)| = O(N1/4+β/4+ε) a.s.

It is not hard to check that with the notation L2(VN) := ∑j∈B η2(j, VN), where η2(j, ·)
denotes the local time of W2(·), we also have

|C1(N)−W1(L2(VN))| = O(N1/8+β/4+ε) a.s.

Thus, we can replace the random walk local time with the corresponding Wiener local time.
Furthermore, we can replace VN with N while obtaining a somewhat weaker rate:

|C1(N)−W(L2(N))| = O(N1/8+3β/8+ε) a.s.

• Half-plane, half-comb walk (HPHC) is the case where we have B = {0, 1, 2, . . .};
thus, under the x-axis, all horizontal lines are deleted. This model was discussed by
us in [25,26]. In this case, Theorem 7 is true with γ1 = 2 and γ2 = 1 and the rate is
somewhat better, as follows:

Theorem 9. On an appropriate probability space for the HPHC walk, one can construct two
independent standard Wiener processes, {W1(t); t ≥ 0} and {W2(t); t ≥ 0}, such that, as
N → ∞, we have, with any ε > 0,

∣∣∣C1(N)−W1

(
N − A−1

2 (N)
)∣∣∣+ ∣∣∣C2(N)−W2

(
A−1

2 (N)
)∣∣∣ = O(N3/8+ε) a.s.,

with A2(t) = 2
∫ t

0 I(W2(s) ≥ 0) ds +
∫ t

0 I(W2(s) < 0) ds.

• Two-dimensional comb walk (walk on C2): This is one of the most important ex-
amples, where the set B only contains one element, B = {0}; thus, we keep only the
x-axis, and all the other horizontal lines are deleted. For this case, γ1 = γ2 = 1, so The-
orem 7 is not applicable. After Bertacchi’s remarkably weak convergence result [13],
we proved the following.

Theorem 10 ([15]). On an appropriate probability space for the comb walk
{C(N) = (C1(N), C2(N)); N = 0, 1, 2, . . .} on C2, one can construct two independent standard
Wiener processes, {W1(t); t ≥ 0} and {W2(t); t ≥ 0}, such that, as N → ∞, we have, with any
ε > 0,

N−1/4|C1(N)−W1(η2(0, N))|+ N−1/2|C2(N)−W2(N)| = O(N−1/8+ε) a.s.,

where η2(0, ·) is the local time process at the zero of W2(·).

6
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• K-comb walk (walk on C2
K): In this model, we relax the conditions of (15), replacing

them with
pi < 1/2 if i ∈ B and pi = 1/2 if i ∈ Z� B, (18)

but we require that |B| should be finite. In this case, by denoting |B| = K, the corresponding
lattice by C2

K and introducing the notation

AK = ∑
i∈B

(
1

2pi
− 1

)
(19)

we proved the following theorem:

Theorem 11 ([27]). On an appropriate probability space for the K-comb walk
{C(N) = (C1(N), C2(N)); N = 0, 1, 2, . . .} on C2

K, one can construct two independent standard
Wiener processes, {W1(t); t ≥ 0} and {W2(t); t ≥ 0}, such that, as N → ∞, we have, with any
ε > 0,

N−1/4|C1(N)−W1(AKη2(0, N))|+ N−1/2|C2(N)−W2(N)| = O(N−1/8+ε) a.s.,

where η2(0, ·) is the local time process at the zero of W2(·).

Remark 4. Clearly, Theorem 11 is a generalization of Theorem 10. One of the interesting features
of this result is that the positions of the K-horizontal lines are irrelevant.

For the comb and the K-comb γ1 = γ2 = 1, so they do not meet the conditions of
Theorem 7, they need separate proofs. Our second open question is

Question 2. Find a generalization of Theorem 7 without the condition 1 < max(γ1, γ2) < ∞. It
would be very nice to have only the condition of max(γ1, γ2) < ∞, and the most ambitious version
would be if we only needed to assume the recurrence of the anisotropic walk.

4. Local Time

We spent a lot of time investigating this topic, and we proved many results for the
different important special models, but there are many interesting questions which are
still unanswered.

• Periodic walk: We managed to give a complete answer using some results from [7],
which are known for this case only.

Theorem 12 ([19]). For the 2N-step return probability of the periodic walk for any L ≥ 1,

P(CP(2N) = (0, 0)) ∼ 1
4πNp0

√
γ− 1

, as N → ∞ (20)

with γ given in (11).

Observe that in the case where L = 1 and p0 = 1/4, γ = 2 and we recover the
well-known result for the simple symmetric two-dimensional walk. We remark that in the
periodic case, γ is always bigger than 1.

From (20), we immediately obtain the truncated Green function

g(N) =
N

∑
k=0

P(CP(k) = (0, 0)) ∼ log N
4p0π

√
γ− 1

, as N → ∞. (21)

7
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Now, define the local time as

ΞP((k, j), N) =:
N

∑
r=1

I{CP(r) = (k, j)},

where I{·} is the indicator function. Taking into account that our periodic walk is Harris-
recurrent with the invariant measure given in (4), we obtain, using, e.g., Chen’s work [28], that

lim
N→∞

ΞP((0, 0), N)

ΞP((k, j), N)
=

pj

p0
a.s.

for fixed (k, j). Using g(N), we deduced many other results for the local time of the periodic
walk, which we will mention later.

• Two-dimensional comb walk: In [16], we proved many results about local time on a
generalized comb. Instead of introducing this general version, we want to recall here
some of these results only in the context of the two-dimensional comb walk as it was
given in [29].

Theorem 13. On the probability space of our Theorem 10, as N → ∞, we have for the comb
walk that

sup
x∈Z
|Ξ((x, 0), N)− 2η1(x, η2(0, N))| = O(N1/8+δ) a.s.,

with any δ > 0, where ηi(x, .), i = 1, 2 are the local times of the corresponding independent Wiener
processes in Theorem 10. Furthermore, we have, for any 0 < ε < 1/4,

max
|x|≤N1/4−ε

|Ξ((x, 0), N)− Ξ((0, 0), N)| = O(N1/4−δ) a.s. (22)

and

max
0<|y|≤N1/4−ε

max
|x|≤N1/4−ε

|Ξ((x, y), N)− 1
2

Ξ((0, 0), N)| = O(N1/4−δ) a.s.,

for any 0 < δ < ε/2, where the maximum is taken at integers.

Here, the first statement of the theorem describes the behavior of the local time of
the sites on the x-axis. The second statement claims that on the x-axis, up to |x| ≤ N1/4−ε,
all sites have approximately the same local time, while the last statement explains that
away from the x-axis, the local time is approximately half of the local time at the origin.
Theorem 13 has many nice consequences, which are given in [16]. These results were
obtained using strong approximation methods. However, we did not calculate the 2N-step
return probability to the origin. This was achieved much earlier by Gerl [30]. He even
proved it for higher-dimensional combs. He obtained the following result:

Theorem 14 ([30]). For the two-dimensional comb walk, as N → ∞,

P(C(2N) = (0, 0)) ∼ 1√
2 Γ(1/4)N3/4

. (23)

His proof strongly relies on the fact that the comb lattice is a tree. So, here is our
next question:

Question 3. Find a probabilistic proof of (23) and generalize it for the K-comb.

8
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• Periodic-like walk:

In our paper, we proved the following:

Theorem 15 ([31]). Consider the anisotropic walk defined in (1). Suppose that

(i) Conditions (9) hold with some 1 < γ < ∞ and 1/2 < η < ∞.
(ii) There is an ω > 0 such that pj ≥ ω, j = 0,±1,±2, . . .
(iii) supn≥0

√
n supN≥n ∑N

m=n(P(C2(2m + 2) = 0)− P(C2(2m + 1) = 0)) < ∞.

Then,

P(C(2N) = (0, 0)) ∼ 1
4Np0π

√
γ− 1

, as N → ∞. (24)

It is very interesting that the limiting 2N-step return probability in this theorem is identical
to the result that we obtained in the case of the periodic walk. This is the only reason
that we call the anisotropic walks which satisfy the three conditions listed in Theorem 15
periodic-like.

As before, this theorem immediately implies that the truncated Green function is

g(N) =
N

∑
k=0

P(C(k) = (0, 0)) ∼ log N
4p0π

√
γ− 1

, as N → ∞,

from which, using Chen’s work [28] again, we can conclude that for any fixed (x, y),

lim
N→∞

Ξ((0, 0), N)

Ξ((x, y), N)
=

py

p0
a.s.

In the proof of the above theorem, we used a local limit theorem for a certain type of
Markov chain introduced by Stenlund [32]. The Markov chain he deals with goes from
state i to states i + 1 and i− 1 with the same probability pi and remains in state i with a
probability of 1− 2pi. This is exactly what the second coordinate, C2(·), of our anisotropic
walk does.

Remark 5. In Theorem 15, condition (iii) is difficult to check. This condition comes from Stenlund’s
paper, where he made the following comment on this: if the walk is lazy, i.e., all pj ≤ 1/4, then
(iii) is trivially satisfied. His simulation suggests that, generally, under the other conditions of
Theorem 15, condition (iii) holds if pk �= 1/2 for at least one k ∈ Z. So (iii) could well turn out to
be equivalent to the Markov chain being aperiodic.

Question 4. Find a class of anisotropic random walks for which condition (iii) above holds (besides
being lazy).

Question 5. Find some conditions which are equivalent to condition (iii) but simpler to check.

This theorem brings up the most puzzling questions. In Theorems 12 and 15, we
obtained identical results. The first one was for the periodic walk (see the definition of
periodic walk in Section 3, which is very different from periodic Markov chains), and
the second was for periodic-like walks, that is, under the three conditions listed above.
Clearly, the periodic walk satisfies (i) and (ii) above. So, either every periodic walk satisfies
condition (iii) in Theorem 15, which we cannot prove or disprove, or there is a common
generalization of Theorems 12 and 15.

Question 6. Find a common generalization of Theorems 12 and 15.

Clearly, (24) does not make sense when γ = 1. So, we would like to have a result
which contains the K-comb given in (24) and, if possible, all anisotropic walks with γ = 1.

9
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The only case where we managed to find local time results for the anisotropic walk,
when γ1 �= γ2, was the following:

• The half-plane, half-comb walk.

Theorem 16 ([26]). For the 2N-step return probability of the HPHC walk, starting at (0, 0),
we have

P(C(2N) = (0, 0)) ∼ 2
πN

, as N → ∞. (25)

Of course, this result allows us to calculate the truncated Green function and proceed
similarly to the way we described above in the case of the periodic walk. In this particular
case, γ1 = 2 and γ2 = 1.

Question 7. What is the reason that the asymptotic return probability of the HPHC walk is twice
as much as that of the simple symmetric walk on the plane? Even a heuristic explanation would
be nice.

Question 8. Find a general result for the asymptotic 2N-step return probability in the case of
γ1 = γ2, under weaker conditions than the periodicity.

Question 9. Find a general result for the asymptotic 2N-step return probability in the case of
γ1 �= γ2.

5. Range

The range is defined as the number of sites visited by the walk during the first N
steps. Formally, it is defined as

R(N) = ∑
u∈Z2

I{Ξ(u, N) > 0},

where I{·} is the indicator function. In the case of the simple symmetric walk in two
dimensions, we know from Dvoretzky and Erdős [10] that

E(R(N)) =
πN

log N
+ O

(
N log log N
(log N)2

)
and that the following law of large numbers holds:

lim
N→∞

R(N)

E(R(N))
= 1 a.s.

As for the anisotropic walk, we know very little.

• Periodic walk

Roerdink and Shuler [7] proved that

E(R(N)) ∼ 2π
√

γ− 1
γ

N
log N

, as N → ∞.

Furthermore, from Nándori’s work [33], one can conclude the following laws of large numbers:

lim
N→∞

R(N)

E(R(N))
= lim

N→∞

γ R(N) log N
2π
√

γ− 1 N
= 1 a.s.

Question 10. How to generalize these results for the anisotropic walk, without the restriction of
periodicity, requesting only that γ > 1.

10
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• Two-dimensional comb walk

Pach and Tardos [34] proved for the expected value of the range of the comb that

E(R(N)) =

(
1

2
√

2π
+ o(1)

)√
N log N, as N → ∞.

As to the almost sure behavior of the range of the comb walk, we just have some crude
estimates. We can create a lower bound by observing that the range of the vertical walk,
C2(·), is the lower bound of the range of the comb. We proved in [15] that

lim inf
n→∞

(
8 log log n

π2n

)1/2
max

1≤k≤n
|C2(k)| = 1 a.s.,

so

lim inf
n→∞

√
8 log log n

π
√

n
Rn ≥ 1 a.s.

In order to obtain an upper bound for the range of the comb, we prove that

lim sup
n→∞

Rn

n1/2 log n(log log n)5/2+ε
≤ c a.s., (26)

with some c > 0. To see this, first, we recall a few facts.
We proved in [15] that

lim sup
n→∞

C1(n)
n1/4(log log n)3/4 =

25/4

33/4 a.s., (27)

which means that if n is big enough, then in n steps, we do not have more than
const n1/4(log log n)3/4 sites occupied on the x-axis. From (34) (see later), we also know
that from none of these sites can we have more than const n1/4(log log n)3/4 excursions if n
is big enough.
If κ is an excursion away from the x-axis, then for its height H, we have that P(H ≥ k) =
1/k. So, we fix a site (x, 0) on the x-axis. If {κi i = 1, 2, . . .} is the i-th excursion away from
(x, 0) and its height is {Hi i = 1, 2, . . .}, then for the probability that if in the first n step mn
excursions start from (x, 0), at least one of them is higher than �n, we have

P

(
max
i≤mn

κi > �n

)
= 1−

(
1− 1

�n

)mn

≤ 1− e−
mn
�n ≤ mn

�n
.

Select mn = αn1/4(log log n)3/4 and �n = βn1/4 log n(log log n)7/4+ε with some α > 0
and β > 0. Let nk = ek. Then,

P

(
max

i≤mnk+1

κi > �nk

)
≤ mnk+1

�nk

=
α

β

(
nk+1

nk

)1/4( log log nk+1
log log nk

)3/4 1
k(log k)1+ε

≤ const
(

log(k + 1)
log k

)3/4 1
k(log k)1+ε

. (28)

So,
∑
k

P( max
i≤mnk+1

κi > �nk )

is finite. Hence, for a big enough k,

max
i≤mnk+1

κi ≤ �nk .

11
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So, for nk ≤ n ≤ nk+1, we have

max
i≤mn

κi ≤ max
i≤mnk+1

κi ≤ �nk ≤ �n a.s.

if k is big enough. Thus, in n steps in each tooth, we have, at most, βn1/4 log n(log log n)7/4+ε

points visited. Now, using the fact that according to (27) at most const n1/4(log log n)3/4

sites are visited on the x-axis, we obtain

Rn ≤ const n1/4(log log n)3/4)βn1/4 log n(log log n)7/4+ε = const n1/2 log n(log log n)5/2+ε,

proving (26).

Question 11. Find some exact result about the range of the comb walk.

Question 12. What is the range of the K-comb walk and the HPHC walk.

6. Strassen Theorems and Strong Laws for the Coordinates of the Anisotropic Walks

In this section, we want to mention some of the consequences of the strong approxi-
mation results discussed in Section 3. In order to mention our Strassen theorems, we need
some definitions.

Let S be the Strassen class of functions, i.e., S ⊂ C([0, 1],R) is the class of absolutely
continuous functions (with respect to the Lebesgue measure) on [0, 1] for which

f (0) = 0 and
∫ 1

0
ḟ 2(x)dx ≤ 1. (29)

Remark 6. In this topic, instead of the usual f ′(·) for the derivative, we use the traditional ḟ (·)
notation; see, e.g., [35].

Define the Strassen class S2 as the set of R2-valued, absolutely continuous functions

{( f (x), g(x)); 0 ≤ x ≤ 1} (30)

for which f (0) = g(0) = 0 and

∫ 1

0
( ḟ 2(x) + ġ2(x))dx ≤ 1. (31)

At first, we mention the general case

Theorem 17 ([19]). Under the conditions of Theorem 4 for the anisotropic walk C(·), we have that
the sequence of random vector-valued functions(√

γ

γ− 1
C1(xN)

(2N log log N)1/2 ,
√

γ
C2(xN)

(2N log log N)1/2 , 0 ≤ x ≤ 1

)
N≥3

is almost surely relatively compact in the space C([0, 1],R2) and its limit points are the set of
functions S2. In particular, the vector sequence(

C1(N)

(2N log log N)1/2 ,
C2(N)

(2N log log N)1/2

)
N≥3

is almost surely relatively compact in the rectangle[
−
√

γ− 1√
γ

,
√

γ− 1√
γ

]
×
[
− 1√

γ
,

1√
γ

]
,

12
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and the set of its limit points is the ellipse{
(x, y) :

γ

γ− 1
x2 + γy2 ≤ 1

}
. (32)

We do not have any Strassen-type results if γ1 �= γ2, so we ask the following:

Question 13. How can we generalize Theorem 17 for the case where γ1 �= γ2.

The only other case where we managed to prove a Strassen theorem was the two-
dimensional comb walk.

Theorem 18 ([15]). For the random walk {C(n) = (C1(n), C2(n)); n = 1, 2, . . .} on the two-
dimensional comb lattice C2, we have that the sequence of random vector-valued functions(

C1(xn)
23/4n1/4(log log n)3/4 ,

C2(xn)
(2n log log n)1/2 , 0 ≤ x ≤ 1

)
n≥3

is almost surely compact in the space C([0, 1],R2), and its limit points are the set of functions

S (2) : =
{
(k(x), g(x)) : k(0) = g(0) = 0, k, g ∈ Ċ([0, 1],R)

}
(33)∫ 1

0
(|33/42−1/2k̇(x)|4/3 + ġ2(x)) dx ≤ 1, k̇(x)g(x) = 0 a.e.,

where Ċ([0, 1],R) stands for the space of absolutely continuous functions in C([0, 1],R).
The sequence (

C1(n)
n1/4(log log n)3/4 ,

C2(n)
(2n log log n)1/2

)
n≥3

is almost surely compact in the rectangle

R =

[
−25/4

33/4 ,
25/4

33/4

]
× [−1, 1],

and the set of its limit points is the domain

D = {(u, v) : k(1) = u, g(1) = v, (k(·), g(·)) ∈ S (2)}.

In fact, in [15], we established some other important consequences of this theorem
as well.

Question 14. How to generalize Theorem 18 for the K-comb walk.

In what follows, we present some LIL-type theorems.

Theorem 19 ([23]). Under the conditions of Theorem 7, we have the following LIL-type results for
the anisotropic walk:

13
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• lim sup
t→∞

W1(t− A−1
2 (t))√

t log log t
= lim sup

N→∞

C1(N)√
N log log N

=

√
2
(

1− 1
γ1

)
a.s.;

• lim inf
t→∞

W1(t− A−1
2 (t))√

t log log t
= lim inf

N→∞

C1(N)√
N log log N

= −
√

2
(

1− 1
γ1

)
a.s.;

• lim sup
t→∞

W2(A−1
2 (t))√

t log log t
= lim sup

N→∞

C2(N)√
N log log N

=

√
2

γ1
a.s.;

• lim inf
t→∞

W2(A−1
2 (t))√

t log log t
= lim inf

N→∞

C2(N)√
N log log N

= −
√

2
γ2

a.s.

where A2(t) = γ1
∫ t

0 I(W2(s) ≥ 0) ds + γ2
∫ t

0 I(W2(s) < 0) ds, and A−1
2 (·) is its inverse.

This theorem contains almost all the special cases which we discussed earlier. For
instance, in the HPHC walk case, where we have γ1 = 2 and γ2 = 1, we obtain

• lim sup
N→∞

C1(N)√
N log log N

= 1 a.s.;

• lim inf
N→∞

C1(N)√
N log log N

= −1 a.s.;

• lim sup
N→∞

C2(N)√
N log log N

= 1 a.s.;

• lim inf
N→∞

C2(N)√
N log log N

= −
√

2 a.s.

However, again, the γ1 = γ2 = 1 case in general is unknown, but we have some LIL for
the K-comb walk.

Theorem 20 ([27]). For the K-comb walk, we have

• lim sup
N→∞

C1(N)√
AK N1/4(log log N)3/4

=
25/4

33/4 a.s.,

• lim sup
N→∞

C2(N)

(2N log log N)1/2 = 1 a.s.,

where AK was defined in (19).
Furthermore, let ρ(n), n = 1, 2 . . . , be a non-increasing sequence of positive numbers such that
n1/4ρ(n) is non-decreasing. Then, we have almost surely that

• lim inf
N→∞

max0≤k≤NC1(k)
N1/4ρ(N)

= 0 or ∞

• lim inf
N→∞

max0≤k≤NC2(k)
N1/2ρ(N)

= 0 or ∞

according to whether the series ∑∞
i=1 ρ(n)/n diverges or converges.

Furthermore, for |C2(·)| and |C1(·)|, we have

• lim inf
N→∞

(
8 log log N

π2N

)1/2
max

0≤k≤N
|C2(k)| = 1 a.s.

• lim inf
N→∞

max0≤k≤N |C1(k)|
N1/4ρ(N)

= 0 or ∞, a.s.

14
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as to whether the series ∑∞
n=1 ρ2(n)/n diverges or converges.

7. Some Limit Distributions and Strong Laws for the Local Time of the Anisotropic
Walk

• Periodic and periodic-like walk

From (11), using the work of Darling and Kac [36], we concluded in [19] that for the
periodic walk,

• lim
N→∞

P

(
4p0π

√
γ− 1 Ξ((0, 0), n)

log n
≥ x

)
= e−x, x ≥ 0.

As for the lim sup result, we have, using Chen’s work [28], that

• lim sup
n→∞

Ξ((0, 0), n)
log n log log log n

=
1

4p0π
√

γ− 1
a.s.

Naturally, the above two statements are also valid for the periodic-like walk as well. A
functional limit theorem was also proved in [37].

• Two-dimensional comb walk

Based on an old Strassen theorem [38], which we proved for the iterated Wiener local
time process {η1(0, η2(0, xt)), 0 ≤ x ≤ 1}, where η1(·) and η2(·) are the local times of two
independent standard Wiener processes, we concluded in [16] that for the local time of the
comb, we have

• lim sup
n→∞

Ξ((x, 0), n)
n1/4(log log n)3/4 =

29/4

33/4 a.s., (34)

• lim sup
n→∞

Ξ((x, y), n)
n1/4(log log n)3/4 =

25/4

33/4 y �= 0 a.s.

Furthermore, we would like to mention a couple of integral tests for supx∈Z Ξ((x, 0), n) [17].

Theorem 21 ([17]). Let a(n) be a non-decreasing sequence. Then, as n→ ∞,

P(sup
x∈Z

Ξ((x, 0), n) > n1/4a(n) i.o.) = 0 or 1

according to
∞

∑
n=1

a2(n)
n

exp

(
−3a4/3(n)

25/3

)
< ∞ or = ∞.

Theorem 22 ([17]). Let b(n) be a non-increasing sequence. Then, as n→ ∞,

P(sup
x∈Z

Ξ((x, 0), n) < n1/4b(n) i.o.) = 0 or 1

according to
∞

∑
n=1

b2(n)
n

< ∞ or = ∞.

• HPHC walk

As a consequence of Theorem 16, we have for the HPHC walk that g(N) ∼ 2
π log N.

In [26], we obtained again from Darling and Kac [36] and Chen [28] that

• lim
N→∞

P

(
π Ξ((0, 0), N)

2 log N
≥ x

)
= e−x.
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and

• lim sup
N→∞

Ξ((0, 0), N)

log N log log log N
=

2
π

a.s.
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1. Introduction

It is known that sufficiently thin subsequences of any (dependent) sequence of random
variables behave like independent random variables. Révész [1] proved that if (Xn)n≥1 is a
sequence of random variables satisfying supn E(X2

n) < ∞, then there exists a subsequence
(Xnk )k≥1 and a random variable X ∈ L2 such that the series ∑∞

k=1 ak(Xnk − X) converges
a.s. for any coefficient sequence (ak)k≥1 with ∑∞

k=1 a2
k < ∞. Komlós [2] proved that from

any sequence (Xn)n≥1 of random variables satisfying supn E|Xn| < ∞, one can select a
subsequence (Xnk )k≥1 such that

lim
N→∞

1
N ∑

k≤N
Xnk = X a.s. (1)

for some X ∈ L1. Gaposhkin [3] and Chatterji [4,5] proved that if (Xn)n≥1 is a sequence of
random variables satisfying supn EX2

n < ∞, then there exist a subsequence (Xnk )k≥1 and
random variables X ∈ L2, Y ∈ L1, Y ≥ 0 such that

1√
N

∑
k≤N

(Xnk − X)
d−→ N(0, Y) (2)

and
lim sup

N→∞

1√
2N log log N ∑

k≤N
(Xnk − X) = Y1/2 a.s., (3)

where N(0, Y) denotes the distribution of
√

Yg; here g is an N(0, 1) variable independent
of Y. Chatterji [6] formulated the following heuristic principle:

Subsequence Principle. Let T be a probability limit theorem valid for all sequences of i.i.d. random
variables belonging to an integrability class L defined by the finiteness of a norm ‖ · ‖L. Then, if
(Xn)n≥1 is an arbitrary (dependent) sequence of random variables satisfying supn ‖Xn‖L < ∞,
then there exists a subsequence (Xnk )k≥1 satisfying T in a mixed form.
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In a profound study, Aldous [7] proved the validity of the subsequence principle for
all distributional and almost sure limit theorems subject to minor technical conditions.
Dacunha-Castelle [8] showed that every tight sequence (Xn)n≥1 has a subsequence (Xnk )k≥1

whose finite dimensional distributions are close to those of an exchangeable sequence
(Yk)k≥1, defined on a possibly different probability space. However, the closeness of the
finite dimensional distributions of (Xnk )k≥1 and (Yk)k≥1 is not enough to transfer limit
theorems from (Xnk )k≥1 to (Yk)k≥1 and Aldous [7] used a delicate subsequence extraction
technique tailored to the individual limit theorem we want to establish for (Xnk ).

An alternative way to prove Aldous’ theorem would be to use strong approximation
and to show that every tight sequence (Xn)n≥1 has a subsequence (Xnk )k≥1 which is close to
an exchangeable sequence (Yk)k≥1 defined on the same probability space in the sense that

∞

∑
k=1
|Xnk −Yk| < ∞ a.s. (4)

Clearly, by passing to a further subsequence, one can make the speed of a.s. convergence
of Xnk − Yk to 0 as rapid as one wishes; then, transferring limit theorems from (Yk)k≥1

to (Xnk )k≥1 becomes easy. Unfortunately, however, the approximation (4) is not valid in
general, as is shown by the examples in [7,9]. For a necessary and sufficient condition
on (Xn) to have a subsequence (Xnk )k≥1 satisfying (4) with an exchangeable (Yk)k≥1,
see [9]. However, in [10] we showed that a slightly weaker version of (4) is nevertheless
true, namely we have

Theorem 1. Let (Xn)n≥1 be an arbitrary (not necessarily tight) sequence of random variables
with tail σ-field T . Then, after suitably enlarging the probability space, there exists a subsequence
(Xnk )k≥1 and a sequence (Yk)k≥1 of random variables such that Yk are conditionally independent
with respect to T and (4) holds.

Theorem 1 is an almost sure invariance principle in the sense of Strassen [11], but it
yields a.s. approximation of the individual r.v’s Xnk , instead of their partial sums.

By De Finetti’s theorem, the exchangeability of a sequence (Yk)k≥1 can be “split” into
two properties, namely, to the conditional independence of (Yk)k≥1 relative to its tail σ-
field T and the conditional identical distribution of (Yk)k≥1 relative to T . As Theorem 1
shows, the conditional independence of (Yk)k≥1 can always be guaranteed in (4) and the
difficulties are caused by the second, seemingly much simpler property, the conditional
identical distribution of the Yk’s. In [10] we gave an example showing that even in the
case when the sequence (Xn)n≥1 is uniformly bounded, the behavior of the conditional
distribution functions Fk(t) = P(Yk < t|T ) of Yk can be extremely irregular, with no
subsequence Fmk converging in any useful sense. However, even without the conditional
identical distribution of the Yk’s, the approximation (4) has many useful consequences. As
the examples in the next section will show, Theorem 1 provides important information for
nonstationary lacunary series, e.g., for the a.s. convergence and asymptotic properties of
series ∑ akXnk . For example, while the Aldous–Chatterji subsequence theory yields the
Hartman–Wintner-type LIL (3) for sufficiently thin subsequences (Xnk )k≥1 of L2-bounded
sequences (Xn)n≥1, Theorem 1 yields the Kolmogorov-type LIL

lim sup
N→∞

∑N
k=1 ak(Xnk − X)√
2A2

N log log AN

= Y1/2 a.s. (5)
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for suitable subsequences (Xnk )k≥1 of uniformly bounded sequences (Xn)n≥1, where
(an)n≥1 is a weight sequence satisfying

AN =

(
N

∑
k=1

a2
k

)1/2

−→ ∞, max
k≤N
|ak| = o

(
AN√

log log An

)
. (6)

In conclusion we note that in [12] it is proved that for any tight sequence (Xn)n≥1,
there is a subsequence (Xnk )k≥1 and a sequence (Yk)k≥1 of random variables which is
‘strongly exchangeable at infinity’ in a certain technical sense and (4) holds. Thus, we have
an a.s. approximation theorem even in the context of the Chatterji–Aldous subsequence
theory, but it applies only for limit theorems for i.i.d. or near-i.i.d. sequences.

2. Applications

By the result of Révész [1] cited in the Introduction, if (Xn)n≥1 is a sequence of
r.v.’s with supn E(X2

n) < ∞, then there exist a subsequence (Xnk )k≥1 and a random vari-
able X ∈ L2 such that (Xnk − X)k≥1 is a convergence system, i.e., for any numerical se-
quence (ck)k≥1 with ∑∞

k=1 c2
k < ∞, the series ∑∞

k=1 ck(Xnk − X) converges almost surely.
Komlós [13] proved that with a suitable choice of (nk) and X, (Xnk − X)k≥1 will actually
be an unconditional convergence system (i.e., it will be a convergence system after any
permutation of its terms), settling a long-standing open problem in the theory of orthogo-
nal series, see [14], p. 54. Another, equally elaborate proof of Komlós’ theorem was given
by Aldous [7]. Since conditional independence is a permutation-invariant property, the
two-series version of the Kolmogorov three-series criterion and Beppo Levi’s theorem
imply that a conditionally independent sequence with conditional mean 0 and bounded
second moments is an unconditional convergence system. Thus, observing that (4) and
∑∞

k=1 c2
k < ∞ imply

∞

∑
k=1
|ck||Xnk −Yk| ≤

(
∞

∑
k=1

c2
k

)1/2( ∞

∑
k=1
|Xnk −Yk|2

)1/2

< ∞ a.s.,

the following version of Komlós’ theorem follows immediately from Theorem 1:

Theorem 2. Let (Xn)n≥1 be a sequence of r.v.’s with tail σ-algebra T such that supn E(X2
n) < ∞.

Then (Xn −E(Xn|T ))n≥1 contains an unconditional convergence system.

By passing to a further subsequence and using a weak compactness theorem, the
centering sequence E(Xn|T ) can be replaced by a single random variable X ∈ L2.

Proving the unconditionality of a convergence system is a difficult problem of analysis,
with a number of famous results and open problems. By Carleson’s theorem, (cos nx)n≥1

is a convergence system, but, as Kolmogorov pointed out in [15], this property breaks
down after a suitable permutation of the sequence. In the opposite direction, Garsia [16]
showed that if ( fn)n≥1 is an orthonormal system and ∑∞

n=1 c2
n < ∞, then the sum ∑∞

n=1 cn fn

is a.e. convergent after a suitable permutation of its terms. But whether there is a universal
permutation σ : N → N of the positive integers such that ∑∞

n=1 cn fσ(n) is a.e. convergent
for any coefficient sequence (cn)n≥1 with ∑∞

n=1 c2
n < ∞ (i.e., ( fσ(n))n≥1 is a convergence

system) is still an open question.
As mentioned above, the subsequence (nk)k≥1 constructed in the proof of Aldous’

theorem depends on the limit theorem we want to verify and different limit theorems
require different subsequences. For example, Aldous’ theorem implies that if (Xn) is a
sequence of r.v.’s with supn E(X2

n) < ∞, then for any fixed numerical sequence (ck)k≥1 with
∑∞

k=1 c2
k < ∞, there exist a subsequence (Xnk )k≥1 and X ∈ L2 such that ∑∞

k=1 ck(Xnk − X)
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converges a.e., but the theorem does not yield a universal subsequence (Xnk )k≥1 working
for all square summable sequences (ck)k≥1 simultaneously, and thus Révész’ theorem
mentioned in the Introduction does not follow from Aldous’ theorem. The same applies
for the weighted CLT and LIL for lacunary sequences proved by Gaposhkin (see [17],
Theorem 1.5.1 and Theorem 1.6.1). However, both results are immediate consequences of
Theorem 1 and since conditional independence is a permutation-invariant property, we
automatically get their permutation-invariance as well:

Theorem 3. Let (Xn)n≥1 be a uniformly bounded sequence of random variables with ‖Xn‖2 = 1
(n = 1, 2, . . .). Then, there exists a subsequence (Xnk )k≥1 and bounded random variables X and
Y ≥ 0 such that

lim
N→∞

A−1
N

N

∑
k=1

ak(Xnk − X)
d−→ N(0, Y) (7)

for any positive numerical sequence (an)n≥1 satisfying

AN =

(
N

∑
k=1

a2
k

)1/2

−→ ∞, max
k≤N
|ak| = o(AN).

Moreover, relation (7) remains valid after any permutation of the sequence (Xnk )k≥1.

Theorem 4. Let (Xn)n≥1 be a uniformly bounded sequence of random variables with ‖Xn‖2 = 1
(n = 1, 2, . . .). Then, there exist a subsequence (Xnk )k≥1 and bounded random variables X and
Y ≥ 0 such that (5) holds for any positive numerical sequence (an)n≥1 satisfying (6). Moreover,
relation (5) remains valid after any permutation of the sequence (Xnk )k≥1.

The unpermuted forms of Theorems 3 and 4 are due to Gaposhkin [17]. To deduce
the permutation-invariant forms from Theorem 1, it suffices to use the version of the CLT
and LIL for independent random variables due to Kolmogorov [18] and Lévy ([19], p. 105),
the permutation-invariance of conditional independence and the observation that by (4)
we have

N

∑
k=1
|ak||Xnk −Yk| ≤ (max

k≤N
|ak|)

N

∑
k=1
|Xnk −Yk| = o(AN).

Next, we formulate a version of the Kolmogorov–Erdős–Feller–Petrowski upper–lower
class test for lacunary series.

Theorem 5. Let (Xn)n≥1 be a uniformly bounded sequence of random variables with ‖Xn‖2 = 1
(n = 1, 2, . . .). Then there exists a subsequence (Xnk )k≥1 and bounded random variables X and
Y ≥ 0 such that for any numerical sequence (an)n≥1 satisfying

AN =

(
N

∑
k=1

a2
k

)1/2

−→ ∞, max
k≤N
|ak| = o

(
AN

(log log An)3/2

)
(8)

we have

P

(
n

∑
k=1

akXnk > Y1/2 An ϕ(An) i.o.

)
= 1 or 0 (9)

according as
∞

∑
n=1

ϕ(n)
n

e−ϕ(n)2/2 = ∞ or < ∞. (10)

Moreover, the result remains valid after any permutation of the sequence (Xnk )k≥1.
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Again, the result follows from the corresponding result for independent random
variables in [20], Theorem 1, and the observation that

N

∑
k=1
|ak||Xnk −Yk| ≤ (max

k≤N
|ak|)

N

∑
k=1
|Xnk −Yk| = o(AN/(log log AN)

3/2).

Replacing the exponent 3/2 in (8) by 1/2 < ρ < 3/2, the upper–lower class test (9)–(10)
will continue to hold with new terms appearing gradually in the exponent of e−ϕ(n)2/2 as ρ

approaches 1/2, according to the hierarchy of results described in [20].
In conclusion, we formulate a weighted strong law for lacunary sequences.

Theorem 6. Let (Xn)n≥1 be a sequence of random variables, let p, q > 1 satisfying 1/p+ 1/q = 1,
and assume that there exists a random variable X ∈ Lp such that

P(|Xn| > t) ≤ CP(|X| > t) for some constant C > 0 and n = 1, 2, . . . . (11)

Then there exist a subsequence (Xnk )k≥1 and a random variable X ∈ Lp such that for any array
(aN,i)N≥1,1≤i≤N satisfying

sup
N

(
1
N

N

∑
i=1
|aN,i|q

)1/q

< ∞ (12)

we have

lim
N→∞

1
N

N

∑
i=1

aN,i(Xni − X) = 0 a.s.

Moreover, the result remains valid after any permutation of the sequence (Xnk )k≥1.

This follows immediately from Theorem 1 and the conditional version of Theorem 1.1
of [21] upon observing that (4) and (12) imply

1
N

N

∑
i=1

aN,i|Xni −Yi| ≤
(

1
N

N

∑
i=1
|aN,i|q

)1/q( N

∑
i=1
|Xni −Yi|p

)1/p

N−(q−1)/q

and noting that the identical distribution of r.v.’s in Theorem 1.1 of [21] can be replaced by
the stochastic domination condition (11). Finally, the permutation-invariance statement
follows from the permutation-invariance of conditional independence.

Note that the the assumption (11) and X ∈ Lp made on Xn in Theorem 6 are stronger
than the moment boundedness condition supn E|Xn|p < ∞, typically assumed in the
theory of lacunary series. Whether Theorem 6 remains valid under supn E|Xn|p < ∞
remains open.

In conclusion we mention an interesting recent paper of Karatzas and Schachermayer [22]
on the weak law of large numbers for lacunary series. The main result of [22] can also be
deduced by using Theorem 1 and the classical criteria for the weak law of large numbers for
independent random variables, but since such a proof would not be simpler than the original
proof in [22], we do not discuss this problem here.
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Abstract: Let Z = Z1, . . . , Zn be an i.i.d. sample from the absolutely continuous distribution
function F(z) := P(Z ≤ z), with density f (z) := d

dz F(z). Let Z1,n < . . . < Zn,n be
the order statistics generated by Z1, . . . , Zn. Let Z0,n = a := inf{z : F(z) > 0} and
Zn+1,n = b := sup{z : F(z) < 1} denote the end-points of the common distribution of
these observations, and assume that the density f is Riemann integrable and bounded away
from 0 over each interval [a′, b′] ⊂ (a, b). For a specified k ≥ 1, we establish the asymptotic
normality of the sum of logarithms of the k-spacings Zi+k,n − Zi−1,n for i = 1, . . . , n− k + 2.
Our results complete previous investigations in the literature conducted by Blumenthal,
Cressie, Shao and Hahn, and the references therein.

Keywords: order statistics; parametric hypothesis testing; hypergeometric functions

1. Introduction and Results

Let X1, X2, . . . be a sequence of independent replicæ of a non-degenerate random
variable X, with distribution function F(x) := P(X ≤ x), defined for x ∈ R := R ∪
{−∞} ∪ {−∞}. We denote by a := inf{x : F(x) > 0}, and b := sup{x : F(x) < 1}, the
distribution end-points, and we assume that a version of the the density f (x) = d

dx F(x) of
X exists for x ∈ R and is Riemann integrable and bounded away from 0 over each interval
[a′, b′] ⊂ (a, b). For each n ≥ 0, we set X0,n := a and Xn+1,n := b, and for each n ≥ 1, we
denote the order statistics of X1, . . . , Xn by X1,n, . . . , Xn,n, which fulfill almost surely the
strict inequalities

−∞ ≤ a = X0,n < X1,n < . . . < Xn,n < b = Xn+1,n ≤ ∞. (1)

Given a specified integer k ≥ 1, we are concerned with the limiting behavior as n → ∞
of the sums of the logarithms of the k-spacings {D(k)

i,n : 1 ≤ i ≤ n− k + 2}, defined for
n ≥ k− 1 by

D(k)
i,n := Xi+k−1,n − Xi−1,n for i = 1, . . . , n− k + 2. (2)

Since the first and last among the k-spacings in (2), namely, D(k)
1,n and D(k)

n−k+2,n, are possibly
infinite, we set

p0 :=

⎧⎨⎩1 when a > −∞,

2 when a = −∞,
(3)

q0 :=

⎧⎨⎩1 when b < ∞,

2 when b = ∞,
(4)

and consider only the finite k-spacings {D(k)
i,n : p0 ≤ i ≤ n− k + 3− q0}.

Entropy 2025, 27, 411 https://doi.org/10.3390/e27040411
24



Entropy 2025, 27, 411

Our goal is to investigate the limiting behavior, as n→ ∞, of the statistic

Tn(k; p, q) :=
n−k+3−q

∑
i=p

{
− log

(n
k

D(k)
i,n

)}
, (5)

defined for each set of integers k ≥ 1, p ≥ p0, q ≥ q0, and n ≥ k + p + q− 3. In the present
paper, we establish the asymptotic normality of Tn(k; p, q) when k, p, and q are fixed, and
n→ ∞. The motivation of these statistics is to provide tests of the goodness of fit of the null
hypothesis (H.0) that X is uniformly distributed on (0, 1) with f (x) = 1I(0,1)(x), against the
alternative. Darling [1] introduced the statistic Tn := Tn(1; 2, 2), and, later, Blumenthal [2]
showed that, under the assumption that f is continuous on (a, b) ⊂ (−∞, ∞) and bounded
away from 0 on this interval, we have, as n→ ∞

n1/2{Tn − nγ− nE
(

log f (X)
)} d→ N

(
0, ζ(2) + 1 + Var

(
log f (X)

))
. (6)

Here, and in the sequel, we write “ d→” to denote weak convergence and “ d
=” to denote

equality in distribution. We let N(μ, σ2) stand for the Gaussian distribution with mean μ

and variance σ2. Throughout, we use the convention that ∑∅(·) := 0 and ∏∅(·) := 1. We
denote by γ = 0.577215 . . . Euler’s constant (see, e.g., (14) below) and set ζ(2) = π2

6 for the
value taken by the Riemann zeta function ζ(z) for z = 2 (we refer to Remark 2 in the sequel
for some basic facts concerning these mathematical objects).

Under the null hypothesis (H.0) that X is uniformly distributed on (0, 1), which
implies that f (X) = 1 a.s., (6) reduces to

n1/2{Tn − nγ
} d→ N

(
0, ζ(2) + 1

)
. (7)

For 0 < α < 1, denote by να the upper α quantile of the N(0, 1) distribution. It follows from
(6) that the test rejecting (H.0) when n1/2{Tn − nγ

}
≥ να

√
ζ(2) + 1 is asymptotically con-

sistent with size α when n→ ∞. This result may be refined by using the exact distribution
of n1/2{Tn − nγ

}
, which was obtained in tractable form by Deheuvels and Derzko [3]. The

corresponding results allow for the practical use of the so-called Darling–Blumenthal test
of uniformity.

Some practical problems arise for the use of the above-described test in the presence
of ties (see, e.g., pp. 118–124 in Hájek and Šidák [4]) when some of the observed spacings
in the sequence {D(1)

i;n : 2 ≤ i ≤ n} are null, in which case Tn is not properly defined. In

practice, the use of the k-spacings {D(k)
i;n : 2 ≤ i ≤ n− k + 1} for the choice of k ≥ 1 that

is sufficiently large allows us to overcome this difficulty. This motivates the study of the
limiting behavior Tn(k; p, q) for a specified choice of the integer k ≥ 1.

We work under the assumptions listed in (F.1–3) below:

(F.1)Var
(

log f (X)
)
< ∞;

(F.2)Either a > −∞ and f is Riemann integrable and bounded away from 0 in a right
neighborhood of a, or
a ≥ −∞ and f is monotone in a right neighborhood of a;

(F.3)Either b < ∞ and f is Riemann integrable and bounded away from 0 in a left
neighborhood of b, or
b ≤ ∞ and f is monotone in a left neighborhood of b.

Our main result is stated in Theorem 1 below. We set ψ(z) := ψ(1)(z) = d
dz log Γ(z)

for the digamma function (see Remark 2 in the sequel for details on Euler’s constant γ,
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Riemann’s ζ(·) function, the Gamma function Γ(·), and the polygamma functions ψ(m)(·) for
m = 0, 1, . . .).

Theorem 1. Under (F.1–2–3), for each specified set of integers k ≥ 1, p ≥ p0, and q ≥ p0, we
have, as n→ ∞,

n−1/2
[

Tn(k; p, q)− n
{
− ψ(k) + log k +E

(
log f (X)

)}]
d→ N

(
0, ψ′(k) + 1 + Var

(
log f (X)

))
. (8)

Remark 1. Under the assumptions above, for any specified set of integers k ≥ 1, p′, p′′ ≥ p0, and
q′, q′′ ≥ p0, we have

|Tn(k; p′, q′)− Tn(k; p′′, q′′)| = OP(1) as n→ ∞. (9)

Therefore, when the conclusion of Theorem 1 holds for some specified pairs of integers (p, q) with
p ≥ p0 and q ≥ q0, it holds for all other pairs of integers p, q, fulfilling this condition. Because of
this, we set Tn(k) := Tn(k; p0, q0) and give a proof of the theorem for p = p0 and q = q0.

The proof of Theorem 1 is given in the next section, together with additional results of
interest. We mention at this point some historical details about the sums of the logarithms of
spacings and related topics. The study of spacings has received considerable attention in the
literature, ever since the pioneering work of Darling [1] (see, e.g., Pyke [5,6], Deheuvels [7],
and the references therein). To the best of our knowledge, the best result coming close to
Theorem 1 was obtained by Cressie [8,9] for p = q = 2 and k ≥ 1. Cressie established a
variant of (8) under the assumption that the density f of X is a bounded step function (see
Theorem 5.1, p. 352 in [8]). For p = q = 2 and k = 1, a version of Theorem 1 was given
by Blumenthal [2] under rather strenuous conditions on f , assumed to be, at least, twice
differentiable. Shao and Hahn [10] largely improved Blumenthal’s theorem by showing
that (8) holds for p = q = 1, k = 1, and when −∞ < a < b < ∞ under the assumption
that f is Riemann integrable and bounded away from 0 on (a, b). Recently, Deheuvels
and Derzko [11] (see also [3]) relaxed the assumptions of Blumenthal and Shao and Hahn
by giving a version of Theorem 1 for k = 1, allowing a and b to be possibly infinite. The
present paper improves these results by covering the case of an arbitrary k ≥ 1 under
less strenuous conditions on f . We refer to Shao and Hahn [10], del Pino [12,13], Czekała
[14], and the references therein for discussions and further references on the statistical
applications of this theorem.

Remark 2. (1◦) The following relations and definitions hold, relating Euler’s constant γ =

0.577215 . . . to the Riemann zeta function ζ(·) in (6) (see, e.g., Spanier and Oldham [15] and
Gradshteyn and Ryzhik [16], p. xxix). We have, for each r > 1 and m = 1, 2, . . .,

ζ(r) :=
1

Γ(r)

∫ ∞

0

tr−1dt
et − 1

=
∞

∑
j=1

1
jr

for r > 1, (10)

ζ(2m) :=
22mπ2mB2m

(2m)!
, (11)

where Bn is the n-th Bernoulli number. In particular, for r = 2 and m = 1,

ζ(2) =
π2

6
=

1
Γ(2)

∫ ∞

0

tdt
et − 1

=
∞

∑
j=1

1
j2

. (12)

The Bernoulli numbers {Bn : n ≥ 0} are defined as the constants in the expansion
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t
et − 1

=
∞

∑
n=0

Bn
tn

n!
which converges for |t| < 2π. (13)

The Euler constant γ may be defined by either one of the relations

γ :=
∫ ∞

0
(− log t)e−tdt = lim

r↓1

{
ζ(r)− 1

r− 1

}
= lim

n→∞

{ n−1

∑
j=1

1
j
− log n

}
. (14)

(2◦) The Euler Gamma function Γ(·), digamma function ψ(·), and polygamma function ψ(m)(·)
are respectively defined via the relations (see, e.g., §§6.3–6.4 in Abramowitz and Stegun [17]) for
z > 0 and m ≥ 1,

Γ(z) :=
∫ ∞

0
tz−1e−tdt, (15)

ψ(z) :=
d
dz

log Γ(z) = −γ +
∫ ∞

0

e−t − e−zt

1− e−t dt, (16)

which fulfills

lim
z→∞

{
ψ(z)− log z

}
= 0,

ψ(m)(z) :=
dm+1

dzm+1 log Γ(z) = (−1)m+1
∫ ∞

0

tme−zt

1− e−t dt. (17)

In particular, when z = n ≥ 1 is an integer, we obtain (see, e.g., Formulas 6.3.2 and 6.4.2 in [17])

Γ(n) = (n− 1)! =
n−1

∏
j=1

j,

ψ(n) := −γ +
n−1

∑
j=1

1
j

, ψ(1) = −γ, (18)

which fulfills

lim
n→∞

{
ψ(n)− log n

}
= 0,

ψ(m)(n) := (−1)m+1m!
{

ζ(m + 1)−
n−1

∑
j=1

1
jm+1

}
, (19)

ψ′(n) := ζ(2)−
n−1

∑
j=1

1
j2

=
∞

∑
j=n

1
j2

=
∫ ∞

0

te−nt

1− e−t dt =
∫ 1

0

un−1{− log u}
1− u

du. (20)

(3◦) Routine computations show that, as n→ ∞,

{
ψ(n + 1)− log(n + 1)

}
−
{

ψ(n)− log n
}
=

1 + o(1)
2n2 ,

whence, as n→ ∞,

n
{

ψ(n)− log n
}
→ −1

2
. (21)
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(4◦) In view of (12) and (20), we readily obtain that, for k = 1, 2, . . .,

ψ′(k) = ζ(2)−
k−1

∑
j=1

1
j2

=
∞

∑
j=k

1
j2

=
∞

∑
j=k

1
j(j + 1)

+
∞

∑
j=k

{ 1
j2
− 1

j(j + 1)

}
=

1
k
+

∞

∑
j=k

{ 1
j2
− 1

j(j + 1)

}
=

1
k
+

∞

∑
j=k

{ 1
j2(j + 1)

}

=
1
k
+

∞

∑
j=k

{ 1
j2(j + 1)

}
+

1
2k2 −

1
2

∞

∑
j=k

{ 1
j2
− 1

(j + 1)2

}
=

1
k
+

1
2k2 +

∞

∑
j=k

{ 1
j2(j + 1)

− j + 1
2

j2(j + 1)2

}
=

1
k
+

1
2k2 +

1
2

∞

∑
j=k

{ 1
j2(j + 1)2

}
=

1
k
+

1
2k2 +

1
6k3 −

1
6

∞

∑
j=k

{{ 1
j3
− 1

(j + 1)3

}
−
{ 3j2 + 3j

j3(j + 1)3

}}

=
1
k
+

1
2k2 +

1
6k3 −

1
6

∞

∑
j=k

1
j3(j + 1)3 .

This, in turn, implies that, as k→ ∞,

(2k2 − 2k + 1)ψ′(n)− 2k + 1 =
(
2k2 − 2k + 1

){
ζ(2)−

k−1

∑
j=1

1
j2
}
− 2k + 1

=
1
3k

+
1

6k2 +
1 + o(1)

6k3 → 0. (22)

so that the limiting variance of n−1/2Tn(k; p, q) in (8) equals

Var
(

log f (X)
)
+

1 + o(1)
3k

→ Var
(

log f (X)
)
,

as k→ ∞.

(5◦) Likewise, we infer from (14) that, as k→ ∞,

ψ(k) = γ−
k−1

∑
j=1

1
j
+ log k =

∞

∑
j=k

{
log

(
1 +

1
j

)
− 1

j

}
= −1 + o(1)

k
,

so that the limiting centering factor of n−1Tn(k; p, q) in (8) equals

E
(

log f (X)
)
− 1 + o(1)

k
→ E

(
log f (X)

)
,

as k → ∞. By all this, for large specified values of k, n−1Tn(k; p, q) follows approximatively, as
n→ ∞, a normal distribution, with expectation E

(
log f (X)

)
and variance n−1/2Var

(
log f (X)

)
.

This gives a heuristical motivation for the use of the statistic n−1Tn(k; p, q) (taken with specified
large values of k) to estimate the factor E

(
log f (X)

)
.
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2. Proofs

2.1. Properties of the Gauss Hypergeometric Function

In our proofs, we make use of a series of identities related to hypergeometric functions,
which are of independent interest. For any x ∈ R and n ∈ IN, define the Pochhammer
function by

(x)n := x(x + 1) . . . (x + n− 1) for n = 1, 2, . . . , and (x)0 := 1. (23)

We note that, whenever x > 0 and n ∈ IN := {0, 1, . . .},

(x)n =
Γ(x + n)

Γ(x)
. (24)

In particular, we have (1)n = n! for each n ∈ IN. We refer to 18:3:1; 18:3:2, and 18:10:1 in
Spanier and Oldham [15] for additional properties of the Pochhammer function. Recalling
(16), (23) and (24), we obtain readily that, for −x �∈ {0, 1, . . . , n− 1}, (x)n �= 0 and

d
dx

(x)n = (x)n

n−1

∑
j=0

1
x + j

= (x)n
{

ψ(x + n)− ψ(x)
}

, (25)

d2

dx2 (x)n = (x)n

{
ψ′(x + n)− ψ′(x) +

{
ψ(x + n)− ψ(x)

}2
}

. (26)

The usual Gauss hypergeometric function is defined for c �∈ −IN and z ∈ C with |z| < 1 by

F(a, b; c; z) := 2F1(a, b; c; z) :=
∞

∑
m=0

(a)m(b)m

(c)m

zm

m!
. (27)

The function F(a, b; c; z) is defined for |z| = 1 when Re(c− a− b) > 0 (see, e.g., Ch.4 in
Rainville). In particular (see, e.g., 60:7:2 in [15]), when this condition holds,

F(a, b; c; 1) =
Γ(c)Γ(c− b− a)
Γ(c− a)Γ(c− b)

. (28)

In particular, we have

F(1, b; c; 1) =
∞

∑
m=1

(b)m

m(c)m
=

Γ(c)Γ(c− b− 1)
Γ(c− 1)Γ(c− b)

=
c− 1

c− b− 1
. (29)

The general hypergeometric function of order (p, q) is defined for integer p ≤ q + 1 by

pFq(a1, . . . , ap; b1, . . . , bq; z) :=
∞

∑
m=0

(a1)m . . . (ap)m

(b1)m . . . (bq)m

zm

m!
. (30)

The following identity relates higher-order hypergeometric functions to lower-order ones.
We have

p+1Fq+1(a1, . . . , ap, r; b1, . . . , bq, s; z)

=
Γ(r)

Γ(s)Γ(s− r)

∫ 1

0
tr−1(1− t)s−r−1

pFq(a1, . . . , ap; b1, . . . , bq; tz)dt.
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In particular,

3F2(1, b, r; c, s; 1) =
∞

∑
m=1

(b)m(r)m

m(c)m(s)m

=
Γ(s)

Γ(r)Γ(r− s)

∫ 1

0
tr−1(1− t)s−r−1F(1, b; c, t)dt

=
Γ(s)

Γ(r)Γ(s− r)

∫ 1

0
tr−1(1− t)s−r−1

∞

∑
m=1

(b)m

m(c)m
tm.

For a > 1, b > 1, c > 1, and 0 ≤ x < 1, we have (see, e.g., 60:10:3 in [15])

∫ x

0
F(a, b; c; t)dt =

c− 1
(a− 1)(b− 1)

{
F(a− 1, b− 1; c− 1; x)− 1

}
. (31)

Proposition 1. We have, for c > b + 1, c �∈ −IN,

∞

∑
m=0

(b)m

(c)m
=

c− 1
c− b− 1

, (32)

∞

∑
m=0

(b)m

(c)m

{
ψ(c + m)− ψ(c)

}
=

b
(c− b− 1)2 , (33)

and
∞

∑
m=0

(b)m

(c)m

{
ψ(b + m)− ψ(b)

}
=

c− 1
(c− b− 1)2 . (34)

Proof. By combining (27) with (28), taken with a = 1, so that (1)m = m! and z = 1, we
obtain

∞

∑
m=0

(b)m

(c)m
= F(1, b; c; 1) =

Γ(c)Γ(c− b− 1)
Γ(c− 1)Γ(c− b)

=
c− 1

c− b− 1
,

which is (32). By combining (25) with (32), we obtain, in turn, that

∂

∂c

{ ∞

∑
m=0

(b)m

(c)m

}
=

∞

∑
m=0

∂

∂c

{ (b)m

(c)m

}
= −

∞

∑
m=0

(b)m

(c)m

{
ψ(c + m)− ψ(c)

}
=

∂

∂c

{ c− 1
c− b− 1

}
=

−b
(c− b− 1)2 ,

which is (33). The proof of (34) follows along the same lines with the formal replacement of
∂
∂c by ∂

∂b . Namely, we obtain

∂

∂b

{ ∞

∑
m=0

(b)m

(c)m

}
=

∞

∑
m=0

∂

∂b

{ (b)m

(c)m

}
=

∞

∑
m=0

(b)m

(c)m

{
ψ(b + m)− ψ(b)

}
=

∂

∂b

{ c− 1
c− b− 1

}
=

c− 1
(c− b− 1)2 ,

which is (34).

Proposition 2. We have, for c > b > 0,

∞

∑
m=1

(b)m

m(c)m
= ψ(c)− ψ(c− b), (35)

∞

∑
m=1

(b)m

m(c)m

{
ψ(c + m)− ψ(c)

}
= ψ′(c)− ψ′(c− b), (36)

and
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∞

∑
m=1

(b)m

m(c)m

{
ψ(b + m)− ψ(b)

}
= ψ′(c− b). (37)

Proof. By (27) and (28), we have, for 0 ≤ x < 1,

c
hb

{
F(h, b; c; x)− 1

}
=

c
hb

∞

∑
m=1

(h)m(b)m

(c)m

xm

m!

=
∞

∑
m=0

(1 + h)m(1 + b)m

(1 + c)m

xm+1

(m + 1)!
.

whence by letting x ↑ 1 and making use of (28),

c
hb

{
F(h, b; c; 1)− 1

}
=

c
hb

{Γ(c)Γ(c− h− b)
Γ(c− h)Γ(c− b)

− 1
}

=
∞

∑
m=0

(1 + h)m(b + 1)m

(c + 1)m

1
(m + 1)!

.

When h ↓ 0, we have, for each m ≥ 1,

(1 + h)m

(m + 1)!
↓ 1

m + 1
,

so that

lim
h↓0

∞

∑
m=0

(1 + h)m(b + 1)m

(m + 1)!(c + 1)m
=

∞

∑
m=0

(b + 1)m

(c + 1)m

1
m + 1

=
c
b

lim
h↓0

1
h

{Γ(c)Γ(c− h− b)
Γ(c− h)Γ(c− b)

− 1
}

.

Next, we make use of (16), which yields the expansions

Γ(c− h)
Γ(c)

= 1− h(1 + o(1))ψ(c) as h ↓ 0,

and
Γ(c− h− b)

Γ(c− b)
= 1− h(1 + o(1))ψ(c− b) as h ↓ 0.

It follows readily that

lim
h↓0

1
h

{Γ(c)Γ(c− h− b)
Γ(c− h)Γ(c− b)

− 1
}
= ψ(c)− ψ(c− b).

By all this, we obtain

∞

∑
m=0

(b)m

m(c)m
=

b
c

∞

∑
m=0

(b + 1)m

(c + 1)m

1
m + 1

= ψ(c)− ψ(c− b),
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which is (35). Given (35), we infer from (25) and (35) that

ψ′(c)− ψ′(c− b) =
∂

∂c

{
ψ(c)− ψ(c− b)

}
= lim

h↓0
1
h

∞

∑
m=1

{ (b)m

m(c + h)m
− (b)m

m(c)m

}
= −

∞

∑
m=1

(b)m

m

{
lim
h↓0

1
h

[ 1
(c + h)m

− 1
(c)m

]}
=

∞

∑
m=1

(b)m

m(c)2
m

d
dc

(c)m =
∞

∑
m=1

(b)m

m(c)m

{
ψ(c + m)− ψ(c)

}
,

which is (36). Likewise, we infer from (25) and (35) that

ψ′(c− b) =
∂

∂b

{
ψ(c)− ψ(c− b)

}
= lim

h↓0
1
h

∞

∑
m=1

{ (b + h)m

m(c)m
− (b)m

m(c)m

}
=

∞

∑
m=1

1
m(c)m

{
lim
h↓0

1
h

[
(b + h)m − (b)m

]}
=

∞

∑
m=1

1
m(c)m

d
db

(b)m

=
∞

∑
m=1

(b)m

m(c)m

{
ψ(b + m)− ψ(b)

}
,

which yields (37).

2.2. Preliminary Results and Moment Calculations

The special case where X follows a uniform distribution on (0, 1) will play an in-
strumental role in our proofs. For a general F, keeping in mind that the existence of
f (x) = d

dx F(x) implies that F is continuous, we set U1 = F(X1), U2 = F(X2), . . ., and we
observe that these random variables are independent, each with a uniform distribution on
(0, 1). For each n ≥ 1, we denote by

U0,n := 0 < U1,n = F(X1,n) < . . . < Un,n = F(Xn,n) < Un+1,n := 1, (38)

the order statistics of 0, 1, U1, . . . , Un, with the convention that U0,n = F(X0,n) = F(a) = 0
and Un+1,n = F(Xn+1,n) = F(b) = 1 for n ≥ 0. We note that the inequalities in (38) hold
a.s. We therefore assume that, without the loss of generality, they are fulfilled on the
probability space on which {Xn : n ≥ 1} is defined. The uniform k-spacings are then given
for 1 ≤ k ≤ n + 1 by

Δ(k)
i,n = Ui+k−1,n −Ui−1,n for i = 1, . . . , n− k + 2. (39)

For r ≥ 0, denote by Sr
d
= Γ (r) a random variable following a Gamma distribution with

mean r. Namely, S0 := 0, and, for r > 0, Sr has density on R, given by

hr(s) :=

⎧⎨⎩
sr−1

Γ(r) e−s for s > 0,

0 for s ≤ 0.
(40)

where Γ(r) :=
∫ ∞

0 sr−1e−sds for r > 0. When r = 1, S1
d
= Γ (1) is exponentially distributed

with a unit mean. In this special case, we use the alternative notation S1
d
= E(1). In

general, for λ > 0, we denote by Z d
= E(λ) an exponentially distributed r.v. Z with mean

1/λ, fulfilling λZ d
= E(1). For p > 0 and q > 0, we denote by Rp,q

d
= β(p, q) a random
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variable following a Beta distribution with parameters p and q, meaning that Rp,q has density
given by

gp,q(s) :=

⎧⎨⎩
sp−1(1−s)q−1

β(p,q) for 0 < s < 1,

0 for s �∈ (0, 1).
(41)

The functions β(·, ·) and Γ(·) are related by Euler’s formula. For any p > 0 and q > 0,
we have

β(p, q) :=
∫ 1

0
up−1(1− u)q−1du =

Γ(p)Γ(q)
Γ(p + q)

. (42)

We extend this definition when either p = 0 or q = 0 by setting

R0,q = 0
d
=: β(0, q) (q > 0) and Rp,0 = 1

d
=: β(p, 0) (p > 0). (43)

We refer to Ch. 17, 19, and 25 in Johnson, Kotz, and Balakrishnan [18,19] for useful
details concerning the Gamma, exponential, and Beta distributions. In particular, we
have the following useful distributional identity (see, e.g., p.12 in David [20]). For any
0 ≤ j ≤ j + i ≤ n + 1,

Ui+j,n −Uj,n
d
= β(i, n− i + 1). (44)

In particular, we have the distributional identity, for any 0 ≤ i ≤ n + 1,

Ui,n
d
= 1−Un−i+1,n

d
= β(i, n− i + 1). (45)

The following lemma plays an instrumental role in our proofs.

Lemma 1. For p > 0, q > 0, and r > 0, let Sp
d
= Γ(p), S′q

d
= Γ(q), and S′′r

d
= Γ(r) be three

independent
Gamma-distributed r.v.’s. Then, the r.v.’s

Rp,q :=
Sp

Sp + S′q
d
= β(p, q) and Tp,q := Sp + S′q

d
= Γ(p + q), (46)

are independent and follow β(p, q) and Γ(p + q) distributions, respectively. Set further

R′p,q,r :=
Sp + S′q

Sp + S′q + S′′r
d
= β(p + q, r), (47)

R′′p,q,r :=
Sp + S′′r

Sp + S′q + S′′r
d
= β(p + r, q), (48)

and
T′p,q,r := Sp + S′q + S′′r

d
= Γ(p + q + r). (49)

Then, the r.v. T′p,q,r is independent of the random pair (R′p,q,r, R′′p,q,r).

Proof. Several variants of the above results have been given in the literature (see, e.g., §25.2,
p. 212 in Johnson, Kotz and Balakrishnan [19]). As the proofs are simple, we give details,
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limiting ourselves to (46). By the change of the variables u = s/(s + t) and v = s + t⇔
s = uv and t = (1− u)v, the joint density of (Rp,q, Tp,q) is given by

g(u, v) = hp(uv)hq((1− u)v)
∣∣∣det

[
∂s
∂u

∂s
∂v

∂t
∂u

∂t
∂v

]∣∣∣
=
{vp+q−1e−v

Γ(p + q)

}{up−1(1− u)q−1

β(p, q)

}{ β(p, q)
Γ(p)Γ(q)

}1
v

∣∣∣det

[
v u
−v 1− u

]∣∣∣
= hp+q(u)gp,q(v),

which is sufficient for our needs.

In view of (38), set Y1 = − log U1, Y2 = − log U2, . . ., and observe that Y1, Y2, . . .
constitutes a sequence of independent E(1), unit mean exponential random variables. For
each n ≥ 1, the order statistics of Y1, . . . , Yn fulfill the relations

0 < Y1,n = − log Un,n < . . . < Yi,n = − log Un−i+1,n < . . .

< Yn,n = − log U1,n < ∞. (50)

Set, for convenience, Y0,n = − log Un+1,n = 0 for n ≥ 1. We will need the following useful
fact, closely related to Lemma 1 (refer to Sukhatme [21] and Malmquist [22], and see, e.g.,
pp. 20–21 in David [20]):

Fact 1. For each n ≥ 1, the random variables

ωi,n := (n− i + 1)
{

Yi,n −Yi−1,n
} d
= E(1), i = 1, . . . , n, (51)

are independent, each following an exponential E(1) distribution.

It will be convenient, later on, to make use of the relation following from (51),

Yi,n = − log Un−i+1,n =
i

∑
j=1

ωj,n

n− j + 1
, i = 1, . . . , n. (52)

In Lemma 2 below, we evaluate the moments of the logarithms of Gamma-distributed
random variables, which will play an instrumental role later on. As usual, we make use of
the convention that ∑∅(·) = 0.

Lemma 2. Let k ≥ 1 be an integer, and let Sk
d
= Γ(k) be a Gamma-distributed random variable

with mean k. Then, for each k ≥ 1,

γk := E
(
− log Sk

)
= −ψ(k) = γ−

k−1

∑
j=1

1
j
, (53)

rk := E
(
− Sk log Sk

)
= −kψ(k)− 1

= kγk − 1 = kγ− k
k−1

∑
j=1

1
j
− 1, (54)

and
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sk := E
(
{− log Sk}2) = ψ(k)2 + ψ′(k)

= ζ(2)−
k−1

∑
j=1

1
j2

+ γ2
k =

∞

∑
j=k

1
j2

+
{

γ−
k−1

∑
j=1

1
j

}2
(55)

=
π2

6
−

k−1

∑
j=1

1
j2

+
{

γ−
k−1

∑
j=1

1
j

}2
.

Proof. Recalling the definition (40) of hr(s) for r > 0 and the definition (53) of γk, we obtain
that, by integrating by parts, for k ≥ 2,

γk =
∫ ∞

0
{− log s}hk(s)ds =

∫ ∞

0
{− log s} sk−1

(k− 1)!
d{−e−s}

= −
[
{− log s} sk−1

(k− 1)!
e−s

]s=∞

s=0

+
∫ ∞

0
{− log s} sk−2

(k− 2)!
d{−e−s}

−
∫ ∞

0

sk−2

(k− 1)!
e−sds = γk−1 −

1
k− 1

. (56)

For k = 1, these relations reduce to (see, e.g., Formula 4.331, p. 573, in Gradshteyn and
Ryzhik [16])

γ1 =
∫ ∞

0
{− log s}h1(s)ds =

∫ ∞

0
{− log s} e−sds = γ. (57)

Recalling the definition (18) of ψ(m) for m = 1, 2, . . ., and the definition (53) of γk, by a
straightforward induction on k, we infer from the above relations that, for an arbitrary
(integer) k ≥ 1,

γk = γk−1 −
1

k− 1
= . . . = γ1 −

k−1

∑
j=1

1
j

= −ψ(k), (58)

which is (53). Likewise, in view of (54) and (56), by integrating by parts, we see that, for
k ≥ 2,

rk =
∫ ∞

0
s{− log s}hk(s)ds =

∫ ∞

0
{− log s} sk

(k− 1)!
d{−e−s}

= −
[
{− log s} sk

(k− 1)!
e−s

]s=∞

s=0

+
∫ ∞

0
{− log s} ksk−1

(k− 1)!
d{−e−s}

−
∫ ∞

0

sk−1

(k− 1)!
e−sds = kγk − 1 = kγ− k

k−1

∑
j=1

1
j
− 1,

which is (54). In the same spirit, to establish (56), we integrate by parts to obtain the
recursion formula, for k ≥ 2,
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sk =
∫ ∞

0
{− log s}2hk(s)ds =

∫ ∞

0
{− log s}2 sk−1

(k− 1)!
d{−e−s}

= −
[
{− log s}2 sk−1

(k− 1)!
e−s

]s=∞

s=0

+
∫ ∞

0
{− log s}2 sk−2

(k− 2)!
d{−e−s} (59)

− 2
k− 1

∫ ∞

0
{− log s} sk−2

(k− 2)!
d{−e−s}

= sk−1 −
2γk−1
k− 1

.

By combining (58) with (60), we readily obtain that

sk − γ2
k = sk −

{
γk−1 −

1
k− 1

}2

= sk−1 −
2γk−1
k− 1

−
{

γk−1 −
1

k− 1

}2

= sk−1 − γ2
k−1 −

{ 1
k− 1

}2
(60)

= sk−2 − γ2
k−2 −

{ 1
k− 2

}2
−
{ 1

k− 1

}2

= . . . = s1 − γ2
1 −

k−1

∑
j=1

1
j2

.

For k = 1, we combine (57) with the fact that (see, e.g., Formula 4.335, p. 574, in Gradshteyn
and Ryzhik [16])

s1 − γ2
1 =

∫ ∞

0
{− log s}2e−sds− γ2 =

π2

6
= ζ(2) =

∞

∑
j=1

1
j2

. (61)

In view of (53), (60) and (61), the relation (56) is straightforward.

Lemma 3. Let Sk
d
= Γ(k) denote a Gamma-distributed random variable with expectation k. Then,

for each integer k ≥ 1, we have

σ2
k := Var

(
− log Sk

)
= sk − γ2

k = ψ′(k) (62)

= ζ(2)−
k−1

∑
i=1

1
i2

=
π2

6
−

k−1

∑
i=1

1
i2

=
∞

∑
i=k

1
i2

.

Proof. Even though the relation (62) is a direct consequence of (53) and (56), below, we give
an alternate proof of this statement based upon Lemma 1. The corresponding arguments
will be instrumental for the proof of the forthcoming Proposition 3. We may write, making
use of (46) in Lemma 3, for each integer m ≥ 1 and � ≥ 1,

− log Sm = − log
( Sm

Sm + S′�

)
+ log

(
Sm + S′�

)
=: V1 −V2,

where
V1 := − log

( Sm

Sm + S′�

)
d
= − log Z, (63)
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with Z d
= β(m, �), and

V2 := − log
(
Sm + S′�

) d
= − log Y, (64)

with Y d
= Γ(m + �), are independent r.v.’s. Following the arguments of Lemma 1, we

note that, in the above relations, Sm
d
= Γ(m) and S′�

d
= Γ(�) are two independent Gamma-

distributed random variables, with expectations equal to m and �, respectively. In view of
(50), by combining (44) with (45) and (46), we readily obtain that

V1 = − log
( Sm

Sm + S′�

)
d
= − log Um,m+�−1 = Y�,m+�−1 =

�

∑
j=1

ωj,m+�−1

m + �− j

d
= − log

(
1−U�,m+�−1

)
= − log

(
1− exp(−Ym,m+�−1)

)
(65)

= − log
(

1− exp
{
−

m

∑
j=1

ωj,m+�−1

m + �− j

})
.

Set for convenience ρp := σ2
p = Var

(
− log Sp

)
, with Sp

d
= Γ(p) for p ≥ 1; we infer from

(63) and (64) that

ρm = Var
(
V2
)
+ Var

(
V1
)
= ρm+� + Var

(
V1
)

= ρm+� +
�

∑
j=1

1
(m + �− j)2 = ρm+� +

m+�−1

∑
i=m

1
i2

. (66)

By combining (57) and (61) with (62), we see that ρ1 = ζ(2). Therefore, (62) follows readily
from (66), taken with m = 1 and m + � = k.

Lemma 4. Let Z d
= β(m, �), where m ≥ 1 and � ≥ 1 are integers. Then,

E(− log Z) =
m+�−1

∑
i=m

1
i
= ψ(m + �)− ψ(m), (67)

and

Var(− log Z) =
m+�−1

∑
i=m

1
i2

= ψ′(m)− ψ′(m + �). (68)

Proof. We may write, by (19) and (20),

E(− log Z) = E(V1) = E

( �

∑
j=1

ωj,m+�−1

m + �− j

)
=

�

∑
j=1

1
m + �− j

= ψ(m + �)− ψ(m),

and

Var(− log Z) = Var(V1) = Var
( �

∑
j=1

ωj,m+�−1

m + �− j

)
=

�

∑
j=1

1
(m + �− j)2

= ψ′(m)− ψ′(m + �),

as sought.
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Lemma 5. Let {ωm : m ≥ 1} denote an i.i.d. sequence of exponentially distributed E(1) random

variables. For any m ≥ 1, set Sm = ω1 + . . . ωm
d
= Γ(m) and U∗m,n := Sm/Sn+1

d
= β(m, n−

m + 1). Then, for any 1 ≤ k ≤ n + 1, we have

E

({
− log Sk

}{
− log Sn+1

})
= ψ(k)ψ(n + 1) + ψ′(n + 1), (69)

and
Cov

({
− log Sk

}
,
{
− log Sn+1

})
= ψ′(n + 1). (70)

Proof. We have

E

({
− log Sk

}{
− log Sn+1

})
= E

({
− log

( Sk
Sn+1

)
+
{
− log Sn+1

}}{
− log Sn+1

})
= E

({{
− log U∗k,n

}
+
{
− log Sn+1

}}{
− log Sn+1

})})
.

Since U∗k,n and Sn+1 are independent, it follows that

E

({
− log Sk

}{
− log Sn+1

})
= E

{
− log U∗k,n

}
E

{
− log Sn+1

}
+E

({
− log Sn+1

}2)
.

Making use of (67) and (57), we see that E
{
− log U∗k,n

}
= ψ(n + 1)− ψ(k), E

{
− log Sk

}
=

−ψ(k), E
{
− log Sn+1

}
= −ψ(n + 1), and E

({
− log Sn+1

}2)
= ψ(n + 1)2 + ψ′(n + 1). By

all this, we obtain

E

({
− log Sk

}{
− log Sn+1

})
= −ψ(n + 1)2 + ψ(k)ψ(n + 1) + ψ(n + 1)2 + ψ′(n + 1),

which is (69). Given (69), the proof of (70) follows from the relations E
{
− log Sk

}
= −ψ(k)

and E
{
− log Sn+1

}
= −ψ(n + 1). We note that, when k = n + 1, (69) yields

E
({
− log Sn+1

}2)
= ψ(n + 1)2 + ψ′(n + 1),

which is in agreement with (56).

Proposition 3. Let 0 ≤ � ≤ k be an integer, and let Sk−�
d
= Γ(k− �), S′�

d
= Γ(�), and S′′�

d
= Γ(�)

be independent Gamma-distributed random variables. Then, we have

sk,� := E

({
− log{Sk−� + S′�}

}{
− log{Sk−� + S′′� }

})
= ψ(k)2 − ψ′(k + �)−

{
ψ(k + �)− ψ(k)

}2

+
∞

∑
m=1

(�)m

m(k + �)m

{
ψ(k + �+ m)− ψ(k + m)

}
. (71)

Proof. Set for convenience j = k− �. When � = 0, we have S′� = S′′� = 0, and, therefore,
by (7), sk,0 = ψ(k)2ψ′(k), which is in agreement with (71). Likewise, when � = k, Sk−� = 0,
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and, hence, sk,k = γ2
k = ψ(k)2, which is also in agreement with (71). In fact, when k = �,

(71) may be rewritten into

sk,k = ψ(k)2 − ψ′(2k)−
{

ψ(2k)− ψ(k)
}2

+
∞

∑
m=1

(k)m

m(2k)m

{
ψ(2k + m)− ψ(k + m)

}
,

= ψ(k)2 − ψ′(2k)−
{

ψ(2k)− ψ(k)
}2

+
∞

∑
m=1

(k)m

m(2k)m

{
ψ(2k + m)− ψ(2k)

}
(72)

+
{

ψ(2k)− ψ(k)
} ∞

∑
m=1

(k)m

m(2k)m

−
∞

∑
m=1

(k)m

m(2k)m

{
ψ(k + m)− ψ(2k)

}
= ψ(k)2 − ψ′(2k)−

{
ψ(2k)− ψ(k)

}2

+ψ′(2k)− ψ′(k) +
{

ψ(2k)− ψ(k)
}2

+ ψ′(k) = ψ(k)2,

where we have made use of (35), (36) and (37), taken with b = k and c = 2k. Given that the
values of sk,0 = 0 and sk,k = ψ(k)2 are in agreement with (71), we may limit ourselves to
establish this relation when � and j fulfill 1 ≤ �, j ≤ k. In the remainder of our proof, we
therefore assume that this condition is fulfilled.

We make use of the notation and conclusions of Lemma 1 to write that

Σ := E

({
− log{Sj + S′�}

}{
− log{Sj + S′′� }

})
= E

({
− log{R′j,�,�T′j,�,�}

}{
− log{R′′j,�,�T′j,�,�}

})
= E

({
− log T′j,�,�

}2)
+E

(
− log T′j,�,�

){
E

(
− log R′j,�,�

)
(73)

+ E

(
− log R′′j,�,�

)}
+E

({
− log R′j,�,�

}{
− log R′′j,�,�

})
,

where the random pair

R′j,�,� :=
Sj + S′�

Sj + S′� + S′′�

d
= β(j + �, �), (74)

R′′j,�,� :=
Sj + S′′�

Sj + S′� + S′′�

d
= β(j + �, �), (75)

is independent of

T′j,�,� := Sj + S′� + S′′�
d
= Γ(j + 2�). (76)

Now, since T′j,�,�
d
= Sj+2�

d
= Γ(j + 2�) d

= Γ(k + �), we infer from (53) and (56) that

E(− log T′j,�,�) = ψ(k + �), (77)

and
E({− log T′j,�,�}2) = ψ(k + �)2 − ψ′(k + �). (78)
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Next, set

W1 := − log R′j,�,� = − log
( Sj + S′�

Sj + S′� + S′′�

)
,

and

W2 := − log R′′j,�,� = − log
( Sj + S′′�

Sj + S′� + S′′�

)
.

We infer from (74) and (75), in combination with (67) and (68), taken with the formal change
of (m, �) into (j + �, �), that

E(W1) = E(W2) = E(− log R′j,�,�) = E(− log R′′j,�,�)

= ψ(j + 2�)− ψ(j + �) = ψ(k + �)− ψ(k). (79)

By all this, we infer from (74), (77) and (78) that

Σ = ψ(k + �)2 − ψ′(k + �)− 2ψ(k + �)
{

ψ(k + �)− ψ(k)
}

+E(W1W2)

= ψ(k)2 − {ψ(k + �)− ψ(k)}2 − ψ′(k + �) +E(W1W2). (80)

Next, we observe that the joint distribution of (W1, W2) coincides with that of (W(∗)
1 , W(∗)

2 ),
where

W∗1 = − log
(
Uj+�,j+2�−1

)
,

W∗2 = − log
(
1−U�,j+2�−1

)
.

We then observe that

U :=
U�,j+2�−1

Uj+�,j+2�−1

d
= U�,j+�−1

d
= β(�, j),

is independent of V := Uj+�,j+2�−1
d
= β(j + �, �). Given this fact, we make use of the Taylor

expansion of

− log(1− uv) =
∞

∑
m=1

umvm

m
for |uv| < 1,

to obtain that

E(W1W2) = E(W∗1 W∗2 ) = E

({
− log V

}{
− log(1−UV)

})
=

∫ 1

0

{ ∫ 1

0

{
− log v

}{
− log(1− uv)

}u�−1(1− u)j−1

β(�, j)
du
}

×vj+�−1(1− v)�−1

β(j + �, �)
dv

=
∞

∑
m=1

1
m

{ ∫ 1

0

u�+m−1(1− u)j−1

β(�, j)
du
}

×
∫ 1

0

{
− log v

}{vj+�+m−1(1− v)�−1

β(j + �, �)

}
dv. (81)

Recall Euler’s formula β(r, s) = Γ(r)Γ(s)/Γ(r + s) and the definition of the Pochhammer
symbol (a)m = Γ(a + m)/Γ(a) when a �= 0 and a �= −m, and, in general,

(a)m = a(a + 1) . . . (a + m− 1) for m = 1, 2 . . . , (a)0 = 1.
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Recalling that j + � = k, we infer from (81) that

E(W1W2) =
∞

∑
m=1

β(�+ m, j)β(j + �+ m, �)
mβ(�, j)β(j + �, �)

{
ψ(k + �+ m)− ψ(k + m)

}
=

∞

∑
m=1

Γ(�+ m)Γ(k + �)

mΓ(�)Γ(k + �+ m)

{
ψ(k + �+ m)− ψ(k + m)

}
(82)

=
∞

∑
m=1

(�)m

m(k + �)m

{
ψ(k + �+ m)− ψ(k + m)

}
,

which, when combined with (80), readily yields (71).

Let k ≥ 1 be fixed, and assume that X is uniformly distributed on (0, 1). Set Tn :=
Tn(k, 1, 1) to be as in (5).

Proposition 4. Under the assumptions above, we have

n1/2
{

Tn(k)− log k + ψ(k)
}

d→ N
(

0, ψ′(k) + 1
)

. (83)

Proof. Denote by {ωn : n ≥ 1} an i.i.d. sequence of exponentially distributed E(1) r.v.’s,
with mean 1. For each n ≥ 0, set

Sn :=
n

∑
i=1

ωi
d
= Γ(n),

and set, in view of Lemma 1, for each 1 ≤ i ≤ k ≤ n + 2,

Δ(k)∗
i,n :=

Si+k−1 − Si−1

Sn+1

d
= Uk,n

d
= β(k, n− k + 1).

We keep in mind that {Δ(k)∗
i,n : 0 ≤ i ≤ n− k + 2} d

= {Δ(k)
i,n : 0 ≤ i ≤ n− k + 2} and that

{Δ(k)∗
i,n : 0 ≤ i ≤ n− k + 2} is independent of Sn+1

d
= Γ(n + 1). Set further

T ∗n (k) :=
n−k+1

∑
i=1

{
− log

(1
k

Sn+1Δ(k)∗
i,n

)}
=

n−k+1

∑
i=1

{
− log

(1
k
(Si+k−1 − Si−1)

)}
(84)

=
n−k+1

∑
i=1

{
− log

(
Si+k−1 − Si−1

)
+ log k

}
,

and

T ∗∗n (k) := (n− k)
{
− log n−

(
− log Sn+1

)}
. (85)

Set, likewise,

T∗n (k) :=
n−k+1

∑
i=1

{
− log

(n
k

Δ(k)∗
i,n

)}
=

n−k+1

∑
i=1

{
− log

(
Si+k−1 − Si−1

)
+ log k− log n−

(
− log Sn+1

)}
(86)

= T ∗n (k) + T ∗∗n (k).
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Observe that T∗n (k)
d
= Tn(k). Moreover, the r.v.’s T∗n (k) and T ∗∗n (k) are independent. Note

further that, for each 0 ≤ i ≤ n− k + 2, Si+k−1 − Si−1
d
= Γ(k) and Sn+1

d
= Γ(n + 1). By (53),

it follows that, for each 0 ≤ i ≤ n− k + 2,

E
(
− log

(
Si+k−1 − Si−1

))
= −ψ(k) and E

(
− log Sn+1

)
= −ψ(n + 1),

whence

E

(
T ∗n (k)

)
= (n− k)

{
− ψ(k) + log k

}
and

E

(
T ∗∗n (k)

)
= (n− k)

{
− log n + ψ(n + 1)

}
.

We have, therefore,

E

(
T∗n (k)

)
= E

(
T ∗n (k)

)
+E

(
T ∗∗n (k)

)
= (n− k)

{
− ψ(k) + log k + ψ(n + 1)− log n

}
.

Next, we note that the R2-valued r.v.’s
{(
− log

(
Si+k−1 − Si−1

)
, Si − Si−1 : i ≥ 1} form a

stationary k-dependent sequence. Since, by (53) and (56), for all i ≥ 1,

Var
(
− log

(
Si+k−1 − Si−1

))
= ψ′(k) and Var

(
Si − Si−1

)
= 1,

the partial sums of this sequence are asymptotically normal in R2. It follows readily that,
as n→ ∞,

n−1/2
(
T ∗n (k)−E

{
T ∗n (k)

}
, T ∗∗n (k)−E

{
T ∗∗n (k)

})
= n−1/2

n−k+1

∑
i=1

{
− log

(
Si+k−1 − Si−1

)
+ ψ(k)− log k

− log n + ψ(n + 1)−
(
− log Sn+1

)}
(87)

d→ N

([
0
0

]
,

[
ψ′(k) 0

0 1

])
.

Here, we have made use of the fact that, as n→ ∞,

ψ(n + 1)− log n =
1 + o(1)

2n
,

so that, in (88),
n−1/2ψ(n + 1)→ 0.

Likewise, making use of (70), we see that

Cov
(
T ∗n (k), T ∗∗n (k)

)
=

n−k+1

∑
i=1

Cov
(
− log

(
Si+k−1 − Si−1

)
,− log Sn+1

)
= (n− k)Cov

(
− log Sk,− log Sn+1

)
= (n− k)ψ′(n + 1)→ 1 as n→ ∞,
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Making use of (69), an easy argument shows that, in turn,

n−1/2
n−k+1

∑
i=1

{
− log

(
Si+k−1 − Si−1

)
+ ψ(k)− log k

− log n−
(
− log Sn+1

)}
d→ N

(
0, 1 + ψ′(k)

)
. (88)

In view of (87), we readily obtain (83) from this last relation.

Remark 3. Let G(u) := inf{x : F(x) ≥ u} for 0 < u < 1 denote the quantile function of X.
Assume that both F(·) and G(·) are continuous. In this case, we may define the quantile density
function of X by g(u) = 1/ f (G(u)), which is continuous for 0 < u < 1. We may then set, for
1 ≤ i ≤ n,

Xi+k−1,n − Xi−1,n = G(Ui+k−1,n)− G(Ui−1,n)

=
1 + oP(1)
f (G(i/n))

{Ui+k−1,n −Ui−1,n}.

Having proved Theorem 1 for f (x) = 1, the conclusion for a general f follows by routine arguments
based on this observation, relating uniform spacings to general spacings. We omit the details.
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Abstract: In this paper, we study the usual coin tossing experiment. We call a run at most
T-contaminated, if it contains at most T tails. We approximate the distribution of the length
of the longest at most T-contaminated runs. We offer a more precise approximation than
the previous one.

Keywords: coin tossing; longest head run; asymptotic distribution; rate of convergence

MSC: 60F05

1. Introduction

Consider the usual coin tossing experiment. Let p be the probability of heads and
q = 1− p be the probability of tails. Here, p is a fixed number with 0 < p < 1. We toss a
coin N times independently. We write 1 for heads and 0 for tails. Therefore, we consider
independent identically distributed random variables X1, X2, . . . , XN with distribution
P(Xi = 1) = p and P(Xi = 0) = q = 1− p, i = 1, 2, . . . , N.

Let T be a fixed non-negative integer. We shall study the length of at most T-
contaminated (in other words, at most T-interrupted) runs of heads. It means that there are
at most T zeros in an m-length sequence of ones and zeros.

There are several well-known results on the length of the pure head runs. Fair coins
were studied in the paper of Erdős and Rényi [1]. Almost sure limit results for the length
of the longest runs containing at most T tails were obtained in [2]. Földes [3] presented
asymptotic results for the distribution of the number of T-contaminated head runs, the
first hitting time of a T-contaminated head run having a fixed length, and the length of the
longest T-contaminated head run. Móri [4] proved an almost sure limit theorem for the
longest T-contaminated head run.

Gordon, Schilling, and Waterman [5] applied extreme value theory to obtain the
asymptotic behaviour of the expectation and the variance of the length of the longest
T-contaminated head run. Then, accompanying distributions were obtained for the length
of the longest T-contaminated head run. Ref. [6] proved results on the accuracy of the
approximation to the distribution of the length of the longest head run in a Markov chain.

In this paper, we follow the lines of Arratia, Gordon, and Waterman [7], where Poisson
approximation was used to find the asymptotic behaviour of the length of the longest
at most T-contaminated head run. We shall use the basic results presented in [7], and
give a new approximation for the distribution of the length of the longest at most T-
contaminated head run. We show that for T > 0 the rate of the approximation in our new

Entropy 2025, 27, 33 https://doi.org/10.3390/e27010033
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result is O
(
1/(log(n))2), where log denotes the logarithm to base 1/p. Here and in what

follows, f (n) = O(h(n)) means that f (n)/h(n) is bounded as n→ ∞. We shall see that for
T > 0 the rate of the approximation offered by [7] is O(log(log(n))/ log(n)), so our result
considerably improves the former result. In our opinion the much better rate O(log(n)/n)
presented without detailed proof in [7] is just a misprint, that is true only for T = 0. The
main result is Theorem 1. For completeness, we give a proof of the former result, see
Proposition 1. In Section 4, we present some simulation results supporting our theorem.

For T = 1 and T = 2, our result is the same as our former result in [8], where a
powerful lemma by Csáki, Földes and Komlós [9] was used in the proof.

2. The Approximation of Arratia, Gordon, and Waterman

Using the notation of [7], let Si = X1 + · · ·+ Xi, and let Sn,t be the largest increment
in the sequence Si in t steps; more precisely, Sn,t is the maximal number of heads in a
window of length t starting in the first n tosses. Let Rn(T) be the length of the longest at
most T-interrupted runs of heads starting in the first n tosses. (One can see that Rn(T)
is the length of the longest precisely T-interrupted runs of heads starting in the first n
tosses.) Then,

{Rn(T) < t} = {Sn,t < t− T}.

According to Theorem 1 of [7], for the distribution of Sn,t, we have the following
approximation. For positive integers n, s, and t with s ≤ t and s/t > p,

|P(Sn,t < s)− e−EW | ≤ 7tP(X1 + · · ·+ Xt = s) + P(X1 + · · ·+ Xt > s), (1)

e−n( s
t−p)P(X1+···+Xt=s) · e−2n(1− s

t )P(X1+···+Xt=s)P(X1+···+Xt>s)

≤ e−EW ≤ e−n( s
t−p)P(X1+···+Xt=s). (2)

In the above inequalities EW is the expectation of the random variable W defined in [7].
We shall use inequalities (1) and (2) with s = t− T. Using notation α = n

( s
t − p

)
P(X1 +

· · · + Xt = s) and β = 2n
(
1− s

t
)

P(X1 + · · · + Xt = s)P(X1 + · · · + Xt > s), the above
inequality is of the form

e−αe−β ≤ e−EW ≤ e−α. (3)

In this paper, the approximation of e−α will serve as the main term.
Now, we shall analyse that approximation of Rn(T) which was proposed in [7]. The

centering constant in [7] is

cn(T) = log n + T log log n− log(T!) + log(qT+1 p−T). (4)

Let x be a fixed number so that cn(T) + x = t is an integer. We want to estimate
P(Rn(T)− cn(T) < x) = P(Sn,t < t− T). In the following we shall use both exp(x) and ex

for the usual exponential function.

Proposition 1. Let [cn(T)] be the integer part of cn(T) and {cn(T)} = cn(T)− [cn(T)] be its
fractional part.

If T = 0, then for any integer l,

P(Rn(T)− [cn(0)] < l) = exp
(
−pl−{cn(0)}

)(
1 + O

(
log n

n

))
. (5)
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If T > 0, then for any integer l,

P(Rn(T)− [cn(T)] < l) = exp
(
−pl−{cn(T)}

)(
1 + O

(
log log n

log n

))
. (6)

Remark 1. In Corollary 3 of [7], the same remainder term O
(

log n
n

)
is given for the case T > 0,

too. However, in our opinion, it contains only a part of the remainder terms.

Proof of Proposition 1. As our remainder term and the remainder term offered by [7] are
different, we give the details of the more or less simple calculation. First, we calculate the
right hand side of inequality (1) for s = t− T and t = cn(T) + x, where x is chosen so that
t is an integer.

P(X1 + · · ·+ Xt = t− T) =
(

t
T

)
pt(q/p)T ≤ κ

(log n)T

(1/p)log n+T log log n = O
(

1
n

)
.

Here and in what follows, κ is an appropriate finite positive constant. Therefore,

7tP(X1 + · · ·+ Xt = t− T) = O
(

log n
n

)
.

For T > 0, we have

P(X1 + · · ·+ Xt > t− T) ≤ T
(

t
t− T + 1

)
pt−T+1 ≤ κtT−1 pt

≤ κ
(log n)T−1

n(log n)T = O
(

1
n log n

)
.

So we obtain

|P(Sn,t < t− T)− e−EW | = O
(

log n
n

)
. (7)

This last formula is valid for T = 0, too.
Now, we turn to the other parts of the approximation. First, consider T = 0. Then, the

main term of the approximation, i.e., e−α in Formula (3) is

e−α = e−n( t
t−p)P(X1+···+Xt=t) = e−p− log(nq)+t

.

We have to approximate P(Rn(0)− [cn(0)] < l), where l is an integer, cn(0) = log n +

log q, and [.] denotes the integer part. So, we should apply the previous equality with
t = [cn(0)] + l, so we obtain

e−α = e−pl−{cn(0)} ,

where {.} denotes the fractional part. We see that, if T = 0, then β = 0, so in inequality (3),
we have equality. So, for T = 0, this part of the approximation is precise, i.e., the main term
does not contain a remainder part.

Now, we consider the approximation of the main term for T > 0.

e−α = e−n( t−T
t −p)P(X1+···+Xt=t−T) = e−n(q− T

t )(
t
T)q

T pt−T
.

Now, denote by L the base 1/p logarithm of the negative of the exponent, that is,
L = log α. So,

L = log n + log(q− T/t) + log(t(t− 1) · · · ((t− T + 1))− log T! + T log q + T − t.
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We shall use t = cn(T) + x. Applying Taylor’s expansion of the logarithm function,

log(x0 + y) = log x0 +
y

cx0
− y2

2cx̃2
0
, where x̃0 is between x0 and x0 + y, and where c =

ln(1/p), we obtain

L = log n + log q− T
cqt
−O

(
1
t2

)
+ log tT − tT−1(T

2)

ctT + O
(

1
t2

)
− log T! + T log q + T − t

= log n + T log t− 1
ct

(
T
q
+

(
T
2

))
+ O

(
1
t2

)
− log T! + (T + 1) log q + T − t.

We insert t = cn(T) + x = log n + T log log n + E, where E is defined by the equation
at hand so it does not depend on n. Using again Taylor’s expansions of the logarithm

function as log(x0 + y) = log x0 +
y

cx0
− y2

2cx2
0
+ y3

3cx̃3
0
, where x̃0 is between x0 and x0 + y, and

for the 1/t function, as 1
x0+y = 1

x0
− y

x2
0
+ y2

x̃3
0
, where x̃0 is between x0 and x0 + y, we obtain

L

= log n + T
(

log log n +
T log log n + E

c log n
− (T log log n + E)2

2c(log n)2 + O
(
(log log n)3

(log n)3

))
− 1

c

(
T
q
+

(
T
2

))(
1

log n
− T log log n + E

(log n)2 O
(
(log log n)2

(log n)3

))
+

+ O
(

1
t2

)
− log T! + (T + 1) log q + T − t.

Now, using t = cn(T) + x and inserting the value of cn(T), we obtain

L = −x +
T2 log log n

c log n
+ O

(
1

log n

)
,

which implies that

L = −x + O
(

log log n
log n

)
,

and this rate is not improvable. We remark that this relation is valid for T = 1, too.

Therefore, by applying the Taylor series expansion ey = 1 + y + eỹ y2

2 twice, where ỹ is
between 0 and y, we obtain

e−α = e−(1/p)L
= e−px

(
1− ln

(
1
p

)
T2 log log n

c log n
+ O

(
1

log n

))
(8)

= e−pl−{cn(T)}
(

1 + O
(

log log n
log n

))
, (9)

and this rate is not improvable.
Now, we consider the e−β part. Here,

β = 2
T
t

t

∑
i=t−T+1

(
t
i

)
piqt−in

(
t
T

)
pt−TqT

with t = cn(T) + x = log n + T log log n + E. The largest term in the above sum is the first
one, and it is (

t
T − 1

)
pt
(

q
p

)T−1
= O

(
1

n log n

)
.

Then, (
t
T

)
pt−TqT = O

(
1
n

)
.
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Using Taylor’s expansion,
T
t
= O

(
1

log n

)
.

So, β = O(1/n(log n)2), and

e−β = 1−O
(

1
n(log n)2

)
.

Therefore,

e−αe−β = e−pl−{cn(T)}
(

1 + O
(

log log n
log n

))(
1−O

(
1

n(log n)2

))
= e−pl−{cn(T)}

(
1 + O

(
log log n

log n

))
. (10)

3. A New Approximation

Theorem 1. Let T ≥ 1 be an integer. Let

c̃n(T) = log(qn) + T log(log(qn)) (11)

+ T2 log(log(qn))
c log(qn)

− T
cq0 log(qn)

− T3

2c

(
log(log(qn))

log(qn)

)2

+ T2 log(log(qn))
cq0(log(qn))2 + T3 log(log(qn))

(c log(qn))2

+

(
T log

(
q
p

)
− log(T!)

)(
1 +

T
c log(qn)

− T2 log(log(qn))
c(log(qn))2

)
,

where log denotes the logarithm to base 1/p, c = ln(1/p), ln denotes the natural logarithm to
base e, and q0 = 2q

2+Tq−q . Let [c̃n(T)] denote the integer part of c̃n(T), while {c̃n(T)} denotes the
fractional part of c̃n(T), i.e. {c̃n(T)} = c̃n(T)− [c̃n(T)].

Then,

P(Rn(T)− [c̃n(T)] < l) (12)

= exp

⎛⎝−p
(l−{c̃n(T)})

(
1− T

c log(qn) +T2 log(log(qn))
c(log(qn))2

)⎞⎠(1 + O
(

1
(log n)2

))

for any integer l, where f (n) = O(h(n)) means that f (n)/h(n) is bounded as n→ ∞.

Proof. We use the same approach as in the previous section. First, we calculate the right
hand side of inequality (1) for s = t− T and t = c̃n(T) + x, where x is chosen so that t is an
integer. As

c̃n(T) = log(n) + T log(log(n)) + O(1),

we obtain

P(X1 + · · ·+ Xt = t− T) =
(

t
T

)
pt(q/p)T ≤ κ

(log n)T

(1/p)log n+T log log n = O
(

1
n

)
.

Therefore,

7tP(X1 + · · ·+ Xt = t− T) = O
(

log n
n

)
.
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Similarly,

P(X1 + · · ·+ Xt > t− T) ≤ κtT−1 pt = O
(

1
n log n

)
.

So,

|P(Sn,t < t− T)− e−EW | = O
(

log n
n

)
. (13)

Now, we turn to the approximation of the main term e−α. Denote by L again the base
1/p logarithm of the negative of the exponent, so

L = log α

= log n + log(q− T/t) + log(t(t− 1) . . . ((t− T + 1))− log T! + T log q + T − t.

We shall apply it for t = c̃n(T) + x. Therefore,

L

= log
(

q− T
t

)
+ log n + log

(
tT − T(T − 1)

2
tT−1 + O(tT−2)

)
− t

+ log((q/p)T)− log(T!)

= log
(

q− T
t

)
+ log n + log(tT)−

T(T−1)
2 tT−1

ctT + O
(

1
t2

)
− t

+ log((q/p)T)− log(T!)

= log q− T
cqt

+ log n + T log t−
T(T−1)

2
ct

− t

+ log((q/p)T)− log(T!) + O
(

1
(log n)2

)
= log(qn)− T

cq0t
+ T log t− t + log((q/p)T)− log(T!) + O

(
1

(log n)2

)
,

where we applied Taylor’s expansion of the log function up to the second order and used
the notation q0 = 2q

2+Tq−q .
Introduce notation

D = −T3

2c

(
log(log(qn))

log(qn)

)2

+ T2 log(log(qn))
cq0(log(qn))2 + T3 log(log(qn))

(c log(qn))2

+

(
T log

(
q
p

)
− log(T!)

)(
T

c log(qn)
− T2 log(log(qn))

c(log(qn))2

)
, (14)

B = T2 log(log(qn))
c log(qn)

− T
cq0 log(qn)

+ D (15)

and
A = T log(log(qn)) + B.

Then, t = c̃n(T) + x = c̃n(T) + l − {c̃n(T)}, where l is an integer, so

t = T log
(

q
p

)
− log(T!) + log(qn) + A + l − {c̃n(T)}.

Inserting this value of t into the term −t of L, we obtain

L = − T
cq0t

+ T log t− A− l + {c̃n(T)}+ O
(

1
(log n)2

)
.
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Then, use Taylor’s expansion for the function 1/t to obtain

L = − T
cq0 log(qn)

+ T2 log(log(qn))
cq0(log(qn))2

+ T log
(

log(qn) + T log(log(qn)) + B + log((q/p)T)− log(T!) + l − {c̃n(T)}
)

− A− l + {c̃n(T)}+ O
(

1
(log n)2

)
.

Now, by Taylor’s expansion for the log(x) function, we obtain

L = − T
cq0 log(qn)

+ T2 log(log(qn))
cq0(log(qn))2 + T log(log(qn))

+
T
(
T log(log(qn)) + B + log((q/p)T)− log(T!) + l − {c̃n(T)}

)
c log(qn)

− 1
2

T
(
T log(log(qn)) + B + log((q/p)T)− log(T!) + l − {c̃n(T)}

)2

c(log(qn))2

− A− l + {c̃n(T)}+ O
(

1
(log n)2

)
.

Now, we can omit B from the quadratic term. Then, we apply A = T log(log(qn)) + B,
so we obtain

L = − T
cq0 log(qn)

+
T2 log(log(qn))
cq0(log(qn))2 +

T2 log(log(qn))
c log(qn)

+
T(log((q/p)T)− log(T!))

c log(qn)
+

T3 log(log(qn))
(c log(qn))2 − T2

q0(c log(qn))2 +
TD

c log(qn)

+
T(l − {c̃n(T))})

c log(qn)
− 1

2
T3(log(log(qn)))2

c(log(qn))2

− 1
2

T
(
log((q/p)T)− log(T!) + l − {c̃n(T)}

)2

c(log(qn))2

− 2T
2

T log(log(qn))
(
log((q/p)T)− log(T!) + l − {c̃n(T)}

)
c(log(qn))2

− B− l + {c̃n(T)}+ O
(

1
(log n)2

)
= (l − {c̃n(T)})

(
T

c log(qn)
− T2 log(log(qn))

c(log(qn))2 − 1
)
+ O

(
1

(log n)2

)
.

So,

e−α = e−p
(l−{c̃n(T)})

(
1− T

c log(qn) +
T2 log(log(qn))

c(log(qn))2

)
+O

(
1

(log n)2

)
.

Using Taylor’s expansion again,

e−α = e−p
(l−{c̃n(T)})

(
1− T

c log(qn) +
T2 log(log(qn))

c(log(qn))2

)(
1 + O

(
1

(log n)2

))
.

Now, turn to the e−β part, where

β = 2
T
t

t

∑
i=t−T+1

(
t
i

)
piqt−in

(
t
T

)
pt−TqT

and t = c̃n(T) + x. Simple calculations shows that β ≤ κ(1/n(log n)2), and so
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e−β = 1 + O
(

1
n(log n)2

)
.

Therefore,

e−αe−β = e−p
(l−{c̃n(T)})

(
1− T

c log(qn) +
T2 log(log(qn))

c(log(qn))2

)(
1 + O

(
1

(log n)2

))
.

4. Simulation Results

We performed several computer simulation studies for certain fixed values of p and T.
Here, we present the results of three simulations. The length of each simulated sequence
was N = 106, and s = 2000 was the number of repetitions of the N-length sequences in
each case. In each case, the number of contaminations was T = 3.

Figures 1–3 present the results of the simulations. The left hand side of each figure
shows the empirical distribution function of the longest at most T-contaminated run and
its approximation suggested by our Theorem 1. The asterisk (i.e., ∗) denotes the result of
the simulation, i.e., the empirical distribution of the longest at most T-contaminated run,
and the circle (◦) denotes the approximation offered by Theorem 1. The right hand side of
each figure shows the approximation by the former result. The asterisk denotes the result
of the simulation again, and the circle (◦) denotes the approximation offered by Proposition
1. The simulation results support that our new theorem offers a better approximation than
the previous one.
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Figure 1. Longest at most T = 3 contaminated run when p = 0.4.
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Figure 2. Longest at most T = 3 contaminated run when p = 0.5.
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Figure 3. Longest at most T = 3 contaminated run when p = 0.6.

5. Discussion

We were able to obtain a practically applicable approximation for the distribution of
the longest at most T-contaminated head-run. We presented both detailed mathematical
proof and simulation evidence.
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Abstract: In this paper, we study self-normalized moderate deviations for degenerate
U-statistics of order 2. Let {Xi, i ≥ 1} be i.i.d. random variables and consider symmetric
and degenerate kernel functions in the form h(x, y) = ∑∞

l=1 λl gl(x)gl(y), where λl > 0,
Egl(X1) = 0, and gl(X1) is in the domain of attraction of a normal law for all l ≥ 1.
Under the condition ∑∞

l=1 λl < ∞ and some truncated conditions for {gl(X1) : l ≥ 1},
we show that logP(∑1≤i �=j≤n h(Xi ,Xj)

max1≤l<∞ λlV2
n,l
≥ x2

n) ∼ − x2
n

2 for xn → ∞ and xn = o(
√

n), where

V2
n,l = ∑n

i=1 g2
l (Xi). As application, a law of the iterated logarithm is also obtained.

Keywords: moderate deviation; degenerate U-statistics; law of the iterated logarithm;
self-normalization

MSC: 60F15; 60F10; 62E20

1. Introduction and Main Results

The recent three decades have witnessed significant developments on self-normalized
limit theory, especially on large deviations, Cramér-type moderate deviations, and the law
of the iterated logarithm. Compared with the classical limit theorems, these self-normalized
limit theorems usually require much less moment assumptions.

Let X, X1, X2, . . . be independent identically distributed (i.i.d.) random variables. Set

Sn =
n

∑
i=1

Xi and V2
n =

n

∑
i=1

X2
i .

Griffin and Kuelbs [1] obtained a law of the iterated logarithm (LIL) for the self-
normalized sum of i.i.d. random variables with distributions in the domain of attraction of
a normal or stable law. They proved that

1. If EX = 0 and X is in the domain of attraction of a normal law, then

lim sup
n→∞

Sn

Vn(2 log log n)1/2 = 1 a.s. (1)

Entropy 2025, 27, 41 https://doi.org/10.3390/e27010041
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2. If X is symmetric and is in the domain of attraction of a stable law, then there exists a
positive constant C such that

lim sup
n→∞

Sn

Vn(2 log log n)1/2 = C a.s. (2)

Shao [2] obtained the following self-normalized moderate deviations and specified
the constant C in (2). Let {xn, n ≥ 1} be a sequence of positive numbers such that xn → ∞
and xn = o(

√
n) as n→ ∞.

1. If EX = 0 and X is in the domain of attraction of a normal law, then

lim
n→∞

x−2
n log P

(
Sn

Vn
≥ xn

)
= −1

2
. (3)

2. If X is in the domain of attraction of a stable law such that EX = 0 with index
1 < α < 2, or X1 is symmetric with index α = 1, then

lim
n→∞

x−2
n log P

(
Sn

Vn
≥ xn

)
= −β(α, c1, c2),

where β(α, c1, c2) is a constant depending on the tail distribution; see [2] for an explicit
definition.

Shao [3] refined (3) and obtained the following Cramér-type moderate deviation
theorem under a finite third moment: if EX = 0 and E|X|3 < ∞, then

P(Sn/Vn ≥ xn)

P(Z ≥ xn)
→ 1 (4)

for any xn ∈ [0, o(n1/6)), where Z is the standard normal random variable.
Jing, Shao and Wang [4] further extended (4) to general independent random variables

under a Lindeberg-type condition, while Shao and Zhou [5] established the result for self-
normalized non-linear statistics, which include U-statistics as a special case.

The U-statistics were introduced by Halmos [6] and Hoeffding [7]. The LIL for nonde-
generate U-statistics was obtained by Serfling [8]. The LIL for degenerate U-statistics was
studied by Dehling, Denker and Philipp ([9,10]), Dehling [11], Arcones and Giné [12], Te-
icher [13], Giné and Zhang [14], and others. Giné, Kwapień, Latała and Zinn [15] provided
necessary and sufficient conditions for the LIL of degenerate U-statistics of order 2, which
was extended to any order by Adamczak and Latała [16].

The main purpose of this paper is to study the self-normalized moderate deviations
and the LIL for degenerate U-statistics of order 2. Let

Un =
1

n(n− 1) ∑
1≤i �=j≤n

h(Xi, Xj),

where

h(x, y) =
∞

∑
l=1

λl gl(x)gl(y). (5)

A motivation example for the LIL is the one with the kernel h(x, y) = xy. Obviously,
V2

n /(2V2
n log log n)→ 0. Then, via (1) and (2), we have
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1. If EX = 0 and X is in the domain of attraction of a normal law, then

lim sup
n→∞

1
2V2

n log log n

∣∣∣∣ ∑
1≤i �=j≤n

XiXj

∣∣∣∣
= lim sup

n→∞

[
Sn

Vn(2 log log n)1/2

]2
= 1 a.s. (6)

2. If X is symmetric and is in the domain of attraction of a stable law, then there exists a
positive constant C such that

lim sup
n→∞

1
2V2

n log log n

∣∣∣∣∣ ∑
1≤i �=j≤n

XiXj

∣∣∣∣∣
= lim sup

n→∞

[
Sn

Vn(2 log log n)1/2

]2
= C2 a.s.

For the general degenerate kernel h defined in (5), we have

n(n− 1)Un =
∞

∑
l=1

λl ∑
1≤i �=j≤n

gl(Xi)gl(Xj)

=
∞

∑
l=1

λl

(( n

∑
i=1

gl(Xi)
)2
−

n

∑
i=1

g2
l (Xi)

)
.

Suppose that gl(X) is in the domain of attraction of a normal law for every l ≥ 1. Then,
Ll(x) := Eg2

l (X1)I(|gl(X1)| ≤ x) is a slowly varying function for all l ≥ 1 as x → ∞. Let
{xn, n ≥ 1} be a sequence of positive numbers such that xn → ∞ and xn = o(

√
n) as

n→ ∞. For each l ≥ 1, set

bl = inf
{

x ≥ 1 : Ll(x) > 0
}

,

zn,l = inf
{

s : s ≥ bl + 1,
Ll(s)

s2 ≤ x2
n

n

}
. (7)

Write

Wn =
n(n− 1)Un

max1≤l<∞ λl ∑n
i=1 g2

l (Xi)
.

We have the following self-normalized moderate deviation:

Theorem 1. Let Egl(X) = 0 and λl ≥ 0 for every l ≥ 1.

sup
x∈R

∑∞
l=m+1 λl g2

l (x)

∑1≤l<∞ λl g2
l (x)

→ 0 as m→ ∞ (8)

and

lim
n→∞

Egl(X)I(|gl(X)| ≤ zn,l)gk(X)I(|gk(X)| ≤ zn,k)√
Ll(zn,l)Lk(zn,k)

→ 0 (9)

for any l �= k. Then, for xn → ∞ and xn = o(
√

n),

lim
n→∞

x−2
n log P

(
Wn ≥ x2

n

)
= −1

2
.
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As an application, we have the following self-normalized LIL:

Theorem 2. Under the assumptions in Theorem 1, and instead of (8), we assume that for each
l ∈ [1, ∞), there is a constant cl > 0 such that

sup
x∈R

λl g2
l (x)

∑∞
l=1 λl g2

l (x)
≤ cl and

∞

∑
l=1

cl < ∞. (10)

Then,

lim sup
n→∞

Wn

log log n
= 2 a.s. (11)

Remark 1. We use an example to show that (9) cannot be removed. Let g1(x) = x, g2(x) = x3

and λ1 = λ2 = 1, λl = 0 for l ≥ 3. Let X be a Rademacher random variable. Then, n(n− 1)Un =

∑1≤i �=j≤n(XiXj + X3
i X3

j ) = 2 ∑1≤i �=j≤n XiXj and Wn = 2 ∑1≤i �=j≤n XiXj/ ∑n
i=1 X2

i . By (6),
lim supn→∞ Wn/ log log n = 4 a.s. which contradicts (11).

2. Proofs

In the proofs of theorems, we will use the following properties for the slowly varying
functions gl (e.g., Bingham et al. [17]). As x → ∞,

P(|gl(X)| ≥ x) = o(Ll(x)/x2), (12)

E|gl(X)|I(|gl(X)| ≥ x) = o(Ll(x)/x), (13)

E|gl(X)|p I(|gl(X)| ≤ x) = o(xp−2Ll(x)), p > 2. (14)

Since Ll(s)/s2 → 0 as s→ ∞ and Ll(x) is right continuous, in (7), zn,l → ∞ and for all
sufficiently large n values, we have

nLl(zn,l) = x2
nz2

n,l . (15)

2.1. The Upper Bound of Theorem 1

For each l ≥ 1 and i ≥ 1, denote the truncated function

ḡl(Xi) = gl(Xi)I(|gl(Xi)| ≤ zn,l).

Since Egl(Xi) = 0, we have

Eḡl(Xi) = o(Ll(zn,l)/zn,l) = o(xn

√
Ll(zn,l)/

√
n) (16)

by (13) and (15). For each l ≥ 1, write

Yn,l =
n

∑
i=1

gl(Xi), Ȳn,l =
n

∑
i=1

ḡl(Xi) and V2
n,l =

n

∑
i=1

g2
l (Xi).

By Condition (8), for each 0 < ε < 1, there exists 1 ≤ m < ∞ such that

m max
1≤l<∞

λlV2
n,l ≥

m

∑
l=1

λlV2
n,l ≥ (1− ε)

∞

∑
l=1

λlV2
n,l . (17)
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Hence, for xn → ∞,

P
(

Wn ≥ (1 + ε)x2
n

)
≤ P

(
∑∞

l=1 λlY2
n,l

max1≤l<∞ λlV2
n,l
≥ x2

n

)
. (18)

Observe that for any random variables {Ul}∞
l=1 and {Zl}∞

l=1 and any constants x > 0 and
0 < a < 1/3, we have the following via the Cauchy inequality:

P

(
∑

l
(Ul + Zl)

2 ≥ x

)

≤ P

(
∑

l
U2

l ≥ (1− a)2x

)
+ P

(
∑

l
Z2

l ≥ a2x

)

≤ P

(
∑

l
U2

l ≥ (1− 2a)x

)
+ P

(
∑

l
Z2

l ≥ a2x

)
. (19)

For any 0 < ε < 1/3, by (18) and (19), we have

P
(

Wn ≥ (1 + ε)x2
n

)
≤ P

(
∑∞

l=1 λl(∑
n
i=1 gl(Xi)I(|gl(Xi)| > zn,l))

2

max1≤l<∞ λlV2
n,l

≥ ε2x2
n

)

+P
(

∑∞
l=1 λlȲ2

n,l

max1≤l<∞ λlV2
n,l
≥ (1− 2ε)x2

n

)
. (20)

For any integer m ≥ 1 and any constant C1 > 0 with C1ε < 1, we have

P
(

∑∞
l=1 λlȲ2

n,l

max1≤l<∞ λlV2
n,l
≥ (1− 2ε)x2

n

)
≤ P

(
max

1≤l<∞
λlV2

n,l ≤
n
ε

∞

∑
l=m+1

λl Ll(zn,l)

)
+P

(
max

1≤l<∞
λlV2

n,l ≤ (1− ε)n max
1≤l≤m

λl Ll(zn,l)

)
+P

(
∑∞

l=m+1 λlȲ2
n,l

(n/ε)∑∞
l=m+1 λl Ll(zn,l)

≥ C1ε(1− 2ε)x2
n

)

+P
(

∑m
l=1 λlȲ2

n,l

(1− ε)n max1≤l≤m λl Ll(zn,l)
≥ (1− C1ε)(1− 2ε)x2

n

)
. (21)
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Applying (21) to (20), we have

P
(

Wn ≥ (1 + ε)x2
n

)
≤ P

(
max

1≤l<∞
λlV2

n,l ≤
n
ε

∞

∑
l=m+1

λl Ll(zn,l)

)
+P

(
max

1≤l<∞
λlV2

n,l ≤ (1− ε)n max
1≤l≤m

λl Ll(zn,l)

)
+P

(
∑∞

l=1 λl(∑
n
i=1 gl(Xi)I(|gl(Xi)| > zn,l))

2

max1≤l<∞ λlV2
n,l

≥ ε2x2
n

)

+P
(

∑∞
l=m+1 λlȲ2

n,l

n ∑∞
l=m+1 λl Ll(zn,l)

≥ C1(1− 2ε)x2
n

)

+P
(

∑m
l=1 λlȲ2

n,l

n max1≤l≤m λl Ll(zn,l)
≥ (1− C1ε)(1− 2ε)2x2

n

)
:= I1,1 + I1,2 + I2 + I3 + I4. (22)

2.2. Estimation of I1,1 and I1,2

Proposition 1. For m ≥ 1 that is sufficiently large,

I1,1 = P

(
max

1≤l<∞
λlV2

n,l ≤
n
ε

∞

∑
l=m+1

λl Ll(zn,l)

)
≤ exp(−2x2

n) (23)

and for any constants δ > 0 and 0 < η < 1,

P

(
2m max

1≤l<∞
λlV2

n,l ≤ (1− η)n ∑
1≤l<∞

λl Ll(zn,l)

)
≤ exp(−2x2

n), (24)

P

(
max

1≤l<∞
λl

n

∑
i=1

g2
l (Xi)I(|gl(Xi)| ≤ δzn,l) ≤ (1− η)n max

1≤l<∞
λl Ll(zn,l)

)
≤ exp(−2x2

n). (25)

In particular,

I1,2 ≤ P
(

max
1≤l<∞

λlV2
n,l ≤ (1− ε)n max

1≤l<∞
λl Ll(zn,l)

)
≤ exp(−2x2

n).

Proof. We shall apply the following exponential inequality (see, e.g., Theorem 2.19 of de
la Peña, Lai and Shao [18]). If Y1, . . . , Yn are independent random variables with Yi ≥ 0,
μn = ∑n

i=1 EYi and B2
n = ∑n

i=1 EY2
i < ∞, then for 0 < x < μn,

P
( n

∑
i=1

Yi ≤ x
)
≤ exp

(
− (μn − x)2

2B2
n

)
.

By (8), ∑∞
l=m+1 λlV2

n,l/ ∑∞
l=1 λlV2

n,l → 0 as m→ ∞. Then, by (17),

∑∞
l=m+1 λlV2

n,l

max1≤l<∞ λlV2
n,l
→ 0 as m→ ∞. (26)

59



Entropy 2025, 27, 41

Hence,

ε max
1≤l<∞

λlV2
n,l ≥ 2

∞

∑
l=m+1

λlV2
n,l ≥ 2

∞

∑
l=m+1

λl

n

∑
i=1

ḡ2
l (Xi).

Then,

I1,1 ≤ P

(
∞

∑
l=m+1

λl

n

∑
i=1

ḡ2
l (Xi) ≤

n
2

∞

∑
l=m+1

λl Ll(zn,l)

)

≤ exp

(
− (n ∑∞

l=m+1 λl Ll(zn,l)/2)2

2nE(∑∞
l=m+1 λl ḡ2

l (X1))2

)
. (27)

By Minkowski’s integral inequality, (14) and (15),

E

(
∞

∑
l=m+1

λl ḡ2
l (X1)

)2

≤
{

∞

∑
l=m+1

λl(Eḡ4
l (X1))

1/2

}2

= o

(√
n

xn

∞

∑
l=m+1

λl Ll(zn,l)

)2

. (28)

Therefore, (23) follows from (27) and (28). To show (24), notice that by (17),

m max
1≤l<∞

λlV2
n,l ≥ (1− η)

∞

∑
l=1

λlV2
n,l ≥ (1− η)

∞

∑
l=1

λl

n

∑
i=1

ḡ2
l (Xi).

Then,

P

(
2m max

1≤l<∞
λlV2

n,l ≤ (1− η)n ∑
1≤l<∞

λl Ll(zn,l)

)

≤ P

(
∞

∑
l=1

λl

n

∑
i=1

ḡ2
l (Xi) ≤

n
2

∞

∑
l=1

λl Ll(zn,l)

)

≤ exp

(
− (( n

2 ∑∞
l=1 λl Ll(zn,l))

2

2nE(∑∞
l=1 λl ḡ2

l (X1))2

)
.

Similar to the proof of I1,1 as in (27) and (28), we have (24).
To show (25), let

ln = min
{

l : λl Ll(zn,l) = max
1≤l<∞

λl Ll(zn,l)

}
.

Then,

P

(
max

1≤l<∞
λl

n

∑
i=1

g2
l (Xi)I(|gl(Xi)| ≤ δzn,l) ≤ (1− η)n max

1≤l<∞
λl Ll(zn,l)

)

≤ P

(
n

∑
i=1

λln g2
ln(Xi)I(|gln(Xi)| ≤ δzn,ln) ≤ (1− η)nλln Lln(zn,ln)

)

≤ exp

(
− (1− (1− η))2(nλln Lln(zn,ln))

2

2nλ2
ln

Eg4
ln
(X1)I(|gln(X1)| ≤ δzn,ln)

)

= exp

(
− η2(nλln Lln(zn,ln))

2

2nλ2
ln

o(nL2
ln
(δzn,ln)/x2

n)

)
.
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Since Ll(δzn,l)/Ll(zn,l)→ 1, (25) follows.

2.3. Estimation of I2

Proposition 2.

I2 = P
(

∑∞
l=1 λl

{
∑n

i=1 gl(Xi)I(|gl(Xi)| > zn,l)
}2

max1≤l<∞ λlV2
n,l

≥ ε2x2
n

)
≤ exp(−2x2

n).

Proof. Via the Cauchy–Schwarz inequality,

∑∞
l=1 λl

{
∑n

i=1 |gl(Xi)|I(|gl(Xi)| > zn,l)
}2

max1≤l<∞ λlV2
n,l

≤ ∑∞
l=1 λl ∑n

i=1 g2
l (Xi)∑n

i=1 I(|gl(Xi)| > zn,l)

max1≤l<∞ λlV2
n,l

.

By (17), the sum of the diagonal terms is as follows:

∑∞
l=1 λl ∑n

i=1 g2
l (Xi)I(|gl(Xi)| > zn,l)

max1≤l<∞ λlV2
n,l

≤ ε2x2
n

2
.

I2 ≤ P

(
∑1≤i �=j≤n ∑∞

l=1 λl g2
l (Xi)I(|gl(Xj)| > zn,l)

max1≤l<∞ λl ∑n
i=1 g2

l (Xi)
≥ ε2x2

n
2

)

≤ P

(
∑1≤i<j≤n ∑∞

l=1 λl g2
l (Xi)I(|gl(Xj)| > zn,l)

max1≤l<∞ λl ∑n
i=1 g2

l (Xi)
≥ ε2x2

n
4

)

+ P

(
∑1≤j<i≤n ∑∞

l=1 λl g2
l (Xi)I(|gl(Xj)| > zn,l)

max1≤l<∞ λl ∑n
i=1 g2

l (Xi)
≥ ε2x2

n
4

)

≤ P

(
∑

2≤j≤n

∑1≤i<j ∑∞
l=1 λl g2

l (Xi)I(|gl(Xj)| > zn,l)

max1≤l<∞ λl ∑1≤i<j g2
l (Xi)

≥ ε2x2
n

4

)

+ P

(
∑

1≤j<n

∑j<i≤n ∑∞
l=1 λl g2

l (Xi)I(|gl(Xj)| > zn,l)

max1≤l<∞ λl ∑j<i≤n g2
l (Xi)

≥ ε2x2
n

4

)
= I2,1 + I2,2. (29)

Let

φj =
∑1≤i<j ∑∞

l=1 λl g2
l (Xi)I(|gl(Xj)| > zn,l)

max1≤l<∞ λl ∑1≤i<j g2
l (Xi)

.

Then, for any constant t > 0,

I2,1 ≤ Eet ∑n
j=2 φj e−tε2x2

n/4. (30)

Let Ej be the expectation of Xj for 2 ≤ j ≤ n. Then,

Eet ∑n
j=2 φj = E(et ∑n−1

j=2 φj Enetφn). (31)
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Since |es − 1| ≤ e0∨s|s| for any s ∈ R and 0 ≤ φn ≤ m for some sufficiently large m value,
then ∣∣Enetφn − 1

∣∣ ≤ emttEnφn

=
emtt ∑1≤i<n ∑∞

l=1 λl g2
l (Xi)P(|gl(Xn)| > zn,l)

max1≤l<∞ λl ∑1≤i<n g2
l (Xi)

.

By (12) and (15), we have P(|gl(Xn)| > zn,l) = o(x2
n/n). Then, together with (17),

Enetφn = 1 + o(x2
n/n) = eo(x2

n/n). (32)

Applying (32) to (31), we have

Eet ∑n
j=2 φj = eo(x2

n/n)Eet ∑n−1
j=2 φj .

Similarly,

Eet ∑n−1
j=2 φj = E(et ∑n−2

j=2 φj En−1etφn−1)

= eo(x2
n/n)Eet ∑n−2

j=2 φj .

Continue this process from Xn to X1. We conclude that

Eet ∑n
j=2 φj = en×o(x2

n/n) = eo(x2
n). (33)

Applying (33) to (30) and letting t = 16/ε2, we have

I2,1 ≤ exp(−3x2
n). (34)

By the same argument,

I2,2 ≤ exp(−3x2
n). (35)

Combining (29), (34) and (35), we obtain the proposition.

2.4. Estimation of I3

Let Y1, . . . , Yn be an independent copy of X1, . . . , Xn. We will use the following lemma
which is a Bernstein-type exponential inequality for degenerate U-statistics.

Lemma 1 ((3.5) of Giné, Latała and Zinn [19]). For bounded degenerate kernel hi,j(Xi, Yj), let

A = max
i,j

∥∥hi,j(Xi, Yj)
∥∥

∞, C2 = ∑
i,j

Eh2
i,j(Xi, Yj),

B2 = max
i,j

{∥∥∥∑
i

Eh2
i,j(Xi, y)

∥∥∥
∞

,
∥∥∥∑

j
Eh2

i,j(x, Yj)
∥∥∥

∞

}
.

Then, there is a universal constant K such that

Pr
{∣∣∣∑

i,j
hi,j(Xi, Yj)

∣∣∣ > x
}
≤ K exp

{
− 1

K
min

[
x
C

,
( x

B

)2/3
,
( x

A

)1/2
]}

.
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Recall (16). Hence, by (19) and the definition of I3 in (22),

I3 ≤ P
(

∑∞
l=m+1 λl(Ȳn,l − EȲn,l)

2

∑∞
l=m+1 λl Ll(zn,l)

≥ C1n(1− 2ε)2x2
n

)
. (36)

Let

hm(Xi, Yj) =
∞

∑
l=m+1

λl(ḡl(Xi)− Eḡl(Xi))(ḡl(Yj)− Eḡl(Yj)). (37)

In addition to the estimate of I3, we include (40) in the following proposition which will be
used in the proof of Theorem 2, where

h(β)(Xi, Yj)

=
∞

∑
l=1

λl
{(

gl(Xi)I(|gl(Xi)| ≤ βzn,l)− Egl(Xi)I(|gl(Xi)| ≤ βzn,l)
}

×
{
(gl(Yj)I(|gl(Yj)| ≤ βzn,l)− Egl(Yj)

)
I(|gl(Yj)| ≤ βzn,l)

}
. (38)

Proposition 3. For a sufficiently large constant C2 > 0,

P
(

∑1≤i,j≤n hm(Xi, Yj)

n ∑∞
l=m+1 λl Ll(zn,l)

≥ C2x2
n

)
≤ exp(−3x2

n), (39)

Then, by (36) and the decoupling inequalities of de la Peña and Montgomery-Smith [20], for a
sufficiently large C1 > 0,

I3 ≤ P
(

∑1≤i,j≤n hm(Xi, Xj)

n ∑∞
l=m+1 λl Ll(zn,l)

≥ C1(1− 2ε)2x2
n

)
≤ exp(−2x2

n).

Suppose that λl > 0 for all 1 ≤ l < ∞ and d > 0 is a constant. For constants 0 < α, β ≤ 1 that
are sufficiently small,

P
(

∑1≤i,j≤[αn] h(β)(Xi, Yj)

n ∑∞
l=1 λl Ll(zn,l)

≥ dx2
n

)
≤ exp(−2x2

n). (40)

Proof. We will prove (39) and (40) simultaneously. By (15) and (37),

An :=
∥∥hm(Xi, Yj)

∥∥
∞ ≤ 4

∞

∑
l=m+1

λlz2
n,l = 4

∞

∑
l=m+1

λl
nLl(zn,l)

x2
n

. (41)

By (15) and (38),

An,(β) :=
∥∥∥h(β)(Xi, Yj)

∥∥∥
∞
≤ 4

∞

∑
l=1

λl β
2z2

n,l =
4β2n ∑∞

l=1 λl Ll(zn,l)

x2
n

. (42)

Let

B2
n := max

{∥∥∥ ∑
1≤i≤n

Eh2
m(Xi, y)

∥∥∥
∞

,
∥∥∥ ∑

1≤j≤n
Eh2

m(x, Yj)
∥∥∥

∞

}
.
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Since |ḡl(Yj)| ≤ zn,l , then by Cauchy–Schwarz inequality, (15) and (37),

∥∥∥ ∑
1≤i≤n

Eh2
m(Xi, y)

∥∥∥
∞
≤ nE

(
2

∞

∑
l=m+1

λl |ḡl(X1)− Eḡl(X1)|zn,l

)2

≤ 4nE
∞

∑
l=m+1

λl
(

ḡl(X1)− Eḡl(X1)
)2

∞

∑
l=m+1

λlz2
n,l

≤ 4n
∞

∑
l=m+1

λl Ll(zn,l)
∞

∑
l=m+1

λl
nLl(zn,l)

x2
n

.

The same result can be obtained for ‖∑1≤j≤n Eh2
m(x, Yj)‖∞. Therefore,

B2
n ≤

4n2(∑∞
l=m+1 λl Ll(zn,l))

2

x2
n

. (43)

Similarly,

B2
n,α,(β) := max

{∥∥∥ ∑
1≤i≤[αn]

Eh2
(β)(Xi, y)

∥∥∥
∞

,
∥∥∥ ∑

1≤j≤[αn]
Eh2

(β)(x, Yj)
∥∥∥

∞

}

≤ 4αn
∞

∑
l=1

λl Ll(βzn,l)
∞

∑
l=1

λl β
2 nLl(zn,l)

x2
n

.

Since 0 < β ≤ 1, then Ll(βzn,l)/Ll(zn,l) ≤ 1. Hence,

B2
n,α,(β) ≤

4αβ2n2(∑∞
l=1 λl Ll(zn,l))

2

x2
n

.

By (37) and the Cauchy–Schwarz inequality,

C2
n := ∑

1≤i,j≤n
Eh2

m(Xi, Yj)

≤ ∑
1≤i,j≤n

∞

∑
l=m+1

λlE
(

ḡl(Xi)− Eḡl(Xi)
)2

∞

∑
l=m+1

λlE
(

ḡl(Yj)− Eḡl(Yj)
)2

≤ n2
( ∞

∑
l=m+1

λl Ll(zn,l)
)2

. (44)

Similarly,

C2
n,α,(β) := ∑

1≤i �=j≤[αn]
Eh2

(β)(Xi, Yj)

≤ α2n2
( ∞

∑
l=1

λl Ll(βzn,l)

)2

≤ α2n2
( ∞

∑
l=1

λl Ll(zn,l)

)2

. (45)

Now let

x = C2nx2
n

∞

∑
l=m+1

λl Ll(zn,l). (46)

64



Entropy 2025, 27, 41

By (41) and (46),

(
x

An

)1/2
≥
(

C2nx2
n ∑∞

l=m+1 λl Ll(zn,l)

4n ∑∞
l=m+1 λl Ll(zn,l)/x2

n

)1/2

= (C2/4)1/2x2
n.

By (43) and (46),

(
x

Bn

)2/3
≥
(

C2nx2
n ∑∞

l=m+1 λl Ll(zn,l)

2n ∑∞
l=m+1 λl Ll(zn,l)/xn

)2/3

= (C2/2)2/3x2
n.

By (44) and (46),

x
Cn
≥ C2nx2

n ∑∞
l=m+1 λl Ll(zn,l)

n ∑∞
l=m+1 λl Ll(zn,l)

= C2x2
n.

Then, (39) follows from Lemma 1 for a sufficiently large C2 value. Similarly, let

xd = dnx2
n

∞

∑
l=1

λl Ll(zn,l). (47)

By (42) and (47),

(
xd

An,(β)

)1/2

≥
(

dnx2
n ∑∞

l=1 λl Ll(zn,l)

4β2n ∑∞
l=1 λl Ll(zn,l)/x2

n

)1/2

=

√
d

2β
x2

n.

By (44) and (47),

(
xd

Bn,α,(β)

)2/3

≥
(

dnx2
n ∑∞

l=1 λl Ll(zn,l)

2
√

αβn ∑∞
l=1 λl Ll(zn,l)/xn

)2/3

=

(
d

2
√

αβ

)2/3
x2

n.

By (45) and (47),

xd
Cn,α,(β)

≥ dnx2
n ∑∞

l=1 λl Ll(zn,l)

αn ∑∞
l=1 λl Ll(zn,l)

=
d
α

x2
n.

Therefore, (40) follows from Lemma 1 for α and β values that are sufficiently small.

2.5. Estimation of I4

Lemma 2 below follows Corollary 1(b) of Einmahl [21] and Lemma 4.2 of Lin and
Liu [22]. However, we add the condition ∑kn

i=1 E‖ξn,i‖2 ≤ b2
n, and our result is in a form

of an exponential inequality for independent random vectors. We use the same positive
constants c17, c20 and c22 (depending only on the vector dimension d) in Einmahl [21].

Lemma 2. Let ξn,1, . . . , ξn,kn be independent random vectors with a mean of zero and values in
Rd such that ‖ξn,i‖ ≤ An and ∑kn

i=1 E‖ξn,i‖2 ≤ b2
n, where ‖ · ‖ denotes the Euclidean norm. Let

Sn = ∑kn
i=1 ξn,i. Suppose that

Cov(Sn) = Bn Id (48)
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where Bn > 0, Id is a d× d identity matrix, and αn is a positive sequence such that αnB1/2
n → ∞

and

αn

kn

∑
i=1

E
{
‖ξn,i‖3 exp(αn‖ξn,i‖)

}
≤ Bn. (49)

Let

βn = B−3/2
n

kn

∑
i=1

E
{
‖ξn,i‖3 exp(αn‖ξn,i‖)

}
. (50)

Then, for any 0 < γ < 1, there exists nγ such that for all n ≥ nγ,

P(‖Sn‖ ≥ x) ≤ exp
{

c20βn

(
c3

17α3
nB3/2

n + 1
)}

×
{

exp
(
− (1− γ)6x2

2Bn

)
+ exp

(
− γ3(1− γ)3x2

2c22Bnβ2
n log(1/βn)

)}
+2d exp

(
− (1− γ)2c2

17α2
nB2

n
2(d2b2

n + dc17 AnαnBn)

)

uniformly for x ∈ [enB1/2
n , c17αnBn], where {en}n≥1 can be any sequence with en → ∞ and

en ≤ c17αnB1/2
n .

Proof. Let ηn,i, 1 ≤ i ≤ kn, be independent N(0, σ2Cov(ξn,i)) random vectors, which are
independent of the ξn,is, where

σ2 = c22β2
n log(1/βn). (51)

By (49) and (50), we have βn ≤ α−1
n B−1/2

n → 0 as n → ∞. Hence, σ → 0 as n → ∞. Let
pn(y) be the probability density of B−1/2

n ∑kn
i=1(ξn,i + ηn,i) and φ(1+σ2)Id

be the density of
N(0, (1 + σ2)Id). By Corollary 1(b) in Einmahl [21] (together with the Remark on page 32),
for ‖y‖ ≤ c17αnB1/2

n ,

pn(y) = φ(1+σ2)Id
(y) exp(Tn(y)) with |Tn(y)| ≤ c20βn(‖y‖3 + 1). (52)
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For any 0 < γ < 1 and x ∈ [enB1/2
n , c17αnBn],

P(‖Sn‖ ≥ x)

≤ P
(∥∥∥∥Sn +

kn

∑
i=1

ηn,i

∥∥∥∥ ≥ (1− γ)x
)
+ P

(∥∥∥∥ kn

∑
i=1

ηn,i

∥∥∥∥ ≥ γx
)

= P
(
(1− γ)x ≤

∥∥∥∥Sn +
kn

∑
i=1

ηn,i

∥∥∥∥ < c17αnBn

)

+P
(∥∥∥∥Sn +

kn

∑
i=1

ηn,i

∥∥∥∥ ≥ c17αnBn

)
+ P

(∥∥∥∥ kn

∑
i=1

ηn,i

∥∥∥∥ ≥ γx
)

≤ P
(
(1− γ)x ≤

∥∥∥∥Sn +
kn

∑
i=1

ηn,i

∥∥∥∥ < c17αnBn

)
+P(‖Sn‖ ≥ (1− γ)c17αnBn)

+P
(∥∥∥∥ kn

∑
i=1

ηn,i

∥∥∥∥ ≥ γc17αnBn

)
+ P

(∥∥∥∥ kn

∑
i=1

ηn,i

∥∥∥∥ ≥ γx
)

≤ P
(
(1− γ)x ≤

∥∥∥∥Sn +
kn

∑
i=1

ηn,i

∥∥∥∥ < c17αnBn

)
+ 2P

(∥∥∥∥ kn

∑
i=1

ηn,i

∥∥∥∥ ≥ γx
)

+P(‖Sn‖ ≥ (1− γ)c17αnBn)

:= J1 + J2 + J3. (53)

Let N denote a centered normal random vector with covariance matrix Id. Then, by (52),

J1 =
∫
(1−γ)x/B1/2

n <‖y‖≤c17αnB1/2
n

φ(1+σ2)Id
(y) exp(Tn(y))dy

≤ exp
{

c20βn

(
c3

17α3
nB3/2

n + 1
)} ∫

‖y‖≥(1−γ)x/B1/2
n

φ(1+σ2)Id
(y)dy

≤ exp
{

c20βn

(
c3

17α3
nB3/2

n + 1
)}
×{

P
(
‖N‖ ≥ (1− γ)2x/B1/2

n

)
+ P

(
σ‖N‖ ≥ γ(1− γ)x/B1/2

n

)}
. (54)

Observe that ‖N‖2 has a χ2
d distribution. It is well known that for a χ2

d random variable Y,
P(Y > y) ≤ (ye1−y/d/d)d/2 for y > d. Hence,

P
(
‖N‖ ≥ (1− γ)2x/B1/2

n

)
≤
(
(1− γ)4x2

dBn
exp

(
1− (1− γ)4x2

dBn

))d/2

=
(1− γ)2dxd

dd/2Bd/2
n

exp
(

d/2− (1− γ)4x2

2Bn

)
≤ exp

(
− (1− γ)6x2

2Bn

)
(55)

by x2/Bn → ∞. Similarly,

P
(

σ‖N‖ ≥ γ(1− γ)x/B1/2
n

)
≤ exp

(
−γ3(1− γ)3x2

2Bnσ2

)
= exp

(
− γ3(1− γ)3x2

2c22Bnβ2
n log(1/βn)

)
(56)
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by (51). Then, by (54)–(56), we have

J1 ≤ exp
{

c20βn

(
c3

17α3
nB3/2

n + 1
)}

×
{

exp
(
− (1− γ)6x2

2Bn

)
+ exp

(
− γ3(1− γ)3x2

2c22Bnβ2
n log(1/βn)

)}
. (57)

Since the distribution of ηn,i is N(0, σ2Cov(ξn,i)), the distribution of ∑kn
i=1 ηn,i is

N(0, σ2 ∑kn
i=1 Cov(ξn,i)). Since the ξn,is are independent, ∑kn

i=1 Cov(ξn,i) = Cov(∑kn
i=1 ξn,i) =

Bn Id by (48). Hence, the distribution of ∑kn
i=1 ηn,i is N(0, σ2Bn Id). Then, similar to (56),

J2 = 2P
(∥∥∥∥ kn

∑
i=1

ηn,i

∥∥∥∥ ≥ γx
)
= 2P

(
σ‖N‖ ≥ γx/B1/2

n

)
≤ 2 exp

(
− γ3x2

2Bnc22β2
n log(1/βn)

)
. (58)

By (57) and (58), we have

J1 + J2 ≤ exp
{

c20βn

(
c3

17α3
nB3/2

n + 1
)}

×
{

exp
(
− (1− γ)6x2

2Bn

)
+ 3 exp

(
− γ3(1− γ)3x2

2c22Bnβ2
n log(1/βn)

)}
. (59)

Next, we estimate J3. For each 1 ≤ i ≤ n, let ξn,i = (ξ
(1)
n,i , . . . , ξ

(d)
n,i )

T , where aT denote the
transpose of a vector a. Then

‖Sn‖ =
∥∥∥∥ kn

∑
i=1

ξn,i

∥∥∥∥ =

( d

∑
l=1

( kn

∑
i=1

ξ
(l)
n,i

)2
)1/2

≤
d

∑
l=1

∣∣∣∣ kn

∑
i=1

ξ
(l)
n,i

∣∣∣∣.
Hence,

J3 = P(‖Sn‖ ≥ (1− γ)c17αnBn)

≤ P
( d

∑
l=1

∣∣∣∣ kn

∑
i=1

ξ
(l)
n,i

∣∣∣∣ ≥ (1− γ)c17αnBn

)

≤
d

∑
l=1

P
(∣∣∣∣ kn

∑
i=1

ξ
(l)
n,i

∣∣∣∣ ≥ (1− γ)c17αnBn

d

)
.

Since ‖ξn,i‖ ≤ An and ∑kn
i=1 E‖ξn,i‖2 ≤ b2

n, then |ξ(l)n,i | ≤ ‖ξn,i‖ ≤ An and ∑kn
i=1 E(ξ(l)n,i )

2 ≤
∑kn

i=1 E‖ξn,i‖2 ≤ b2
n for each 1 ≤ l ≤ d. By Bernstein’s inequality (e.g., (2.17) of de la Peña,

Lai and Shao [18]),

J3 ≤ 2d exp

(
− (1− γ)2c2

17α2
nB2

n
2d2(b2

n + c17 AnαnBn/d)

)
. (60)

Then, the lemma follows by applying (59) and (60) to (53).

Now, we estimate I4 in the following proposition, which uses some ideas in Liu and
Shao [23]:
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Proposition 4.

I4 ≤ P
( m

∑
l=1

λl(Ȳn,l − EȲn,l)
2 ≥ (1− C1ε)(1− 2ε)3nx2

n max
1≤l≤m

λl Ll(zn,l)

)
≤ exp

(
− (1− C1ε)(1− 2ε)4x2

n
2(1 + ε)

)
.

Proof. For each 1 ≤ i ≤ n, let

Gn,i =
(√

λ1(ḡ1(Xi)− Eḡ1(Xi)), . . . ,
√

λm(ḡm(Xi)− Eḡm(Xi))
)T

.

Let Bn = n and Σ be the covariance matrix of Gn,1. For 1 ≤ i ≤ n, let

ξn,i = Σ−1/2Gn,i. (61)

Then,

Cov(ξn,1 + · · ·+ ξn,n)

= E
{(

Σ−1/2(Gn,1 + · · ·+ Gn,n)
)(

Σ−1/2(Gn,1 + · · ·+ Gn,n)
)T
}

= Σ−1/2E
{
(Gn,1 + · · ·+ Gn,n)(Gn,1 + · · ·+ Gn,n)

T
}

Σ−1/2

= Σ−1/2 ∑
1≤i,j≤n

E
{

Gn,iGT
n,j

}
Σ−1/2.

Since the Xis are independent, then

Cov(ξn,1 + · · ·+ ξn,n) = Σ−1/2
n

∑
i=1

E
{

Gn,iGT
n,i

}
Σ−1/2

= nIm = Bn Im.

Hence, Condition (48) in Lemma 2 is satisfied. Let

αn =
Cmxn

n1/2

where Cm > 0 is a finite constant depending only on m. We shall verify Condition (49).
By (61),

‖ξn,i‖2 =
(

Σ−1/2Gn,i

)T(
Σ−1/2Gn,i

)
= GT

n,iΣ
−1Gn,i. (62)

Observe that Σ is positive definite by Assumption (9). Then, by the identity

xT A−1x = max
‖ϑ‖=1

(xTϑ)2

ϑT Aϑ
(63)

for any m×m positive definite matrix A, we have

‖ξn,i‖2 = GT
n,iΣ

−1Gn,i = max
‖ϑ‖=1

(GT
n,iϑ)

2

ϑTΣϑ
. (64)
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Let ϑ∗ = (ϑ∗1 , . . . , ϑ∗m) such that ‖ϑ∗‖ = 1 and (GT
n,iϑ
∗)2 = max‖ϑ‖=1(G

T
n,iϑ)

2. Then, for any
ϑ = (ϑ1, . . . , ϑm) ∈ l2, by the Cauchy–Schwarz inequality,

(GT
n,iϑ)

2 =

( m

∑
l=1

√
λl(ḡl(Xi)− Eḡl(Xi))ϑl

)2

=

( m

∑
l=1

ḡl(Xi)− Eḡl(Xi)√
Ll(zn,l)

ϑl

√
λl Ll(zn,l)

)2

≤
m

∑
l=1

(ḡl(Xi)− Eḡl(Xi))
2

Ll(zn,l)

m

∑
l=1

ϑ2
l λl Ll(zn,l). (65)

Since Egl(X1) = 0 for all l ≥ 1, then Eḡl(X1) = o(xn
√

Ll(zn,l)/
√

n) by (13) and (15).
By Assumption (9),

ϑTΣϑ = ∑
1≤l,l′≤m

ϑlϑl′
√

λlλl′E(ḡl(X1)− Eḡl(X1))(ḡl′(X1)− Eḡl′(X1))

=
m

∑
l=1

ϑ2
l λlEḡ2

l (X1)−
m

∑
l=1

ϑ2
l λl(Eḡl(X1))

2

+ ∑
1≤l �=l′≤m

ϑlϑl′
√

λlλl′Eḡl(X1)ḡl′(X1)

− ∑
1≤l �=l′≤m

ϑlϑl′
√

λlλl′Eḡl(X1)Eḡl′(X1)

=
m

∑
l=1

ϑ2
l λl Ll(zn,l)−

m

∑
l=1

ϑ2
l λl × o

(
x2

nLl(zn,l)

n

)

+o(1) ∑
1≤l �=l′≤m

ϑlϑl′
√

λlλl′Ll(zn,l)Ll′(zn,l′)

− ∑
1≤l �=l′≤m

ϑlϑl′
√

λlλl′ × o
(

xn
√

Ll(zn,l)√
n

)
o
( xn

√
Ll′(zn,l′)√

n

)
.

By the Cauchy–Schwarz inequality,

∑
1≤l �=l′≤m

ϑlϑl′
√

λlλl′Ll(zn,l)Ll′(zn,l′) ≤ m
m

∑
l=1

ϑ2
l λl Ll(zn,l).

Hence,

ϑTΣϑ = (1 + o(1))
m

∑
l=1

ϑ2
l λl Ll(zn,l). (66)

Applying (65) and (66) to (64), we have

‖ξn,i‖2 ≤ 2
m

∑
l=1

(ḡl(Xi)− Eḡl(Xi))
2

Ll(zn,l)
. (67)

Since |ḡl(Xi)| ≤ zn,l =
√

nLl(zn,l)/xn by (15), and (16), we have

‖ξn,i‖2 ≤ 4mn
x2

n
. (68)
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By (67),

E‖ξn,i‖2 ≤ 2
m

∑
l=1

E(ḡl(Xi)− Eḡl(Xi))
2

Ll(zn,l)
≤ 2m (69)

and

E‖ξn,i‖3 ≤ 23/2E

(
m

∑
l=1

(ḡl(Xi)− Eḡl(Xi))
2

Ll(zn,l)

)3/2

. (70)

By Hölder’s inequality,

( m

∑
l=1

(ḡl(Xi)− Eḡl(Xi))
2

Ll(zn,l)

)3/2

≤ m1/2
m

∑
l=1

|ḡl(Xi)− Eḡl(Xi)|3
L3/2

l (zn,l)
. (71)

Combining (70) and (71), we have

E‖ξn,i‖3 ≤ 23/2m1/2
m

∑
l=1

8E|ḡl(Xi)|3
L3/2

l (zn,l)

=
m

∑
l=1

o(zn,l Ll(zn,l))

L3/2
l (zn,l)

= o

(
n1/2

xn

)
(72)

by (14) and (15). Since Bn = n and αn = Cmxn/n1/2, then by (68) and (72), we have

αn

n

∑
i=1

E
{
‖ξn,i‖3 exp(αn‖ξn,i‖)

}
≤ Cmxn

n1/2 n× o

(
n1/2

xn

)
exp

(
Cmxn

n1/2

(
4mn
x2

n

)1/2)
= o(n) = o(Bn).

Hence, Condition (49) in Lemma 2 is satisfied. Similarly,

βn := B−3/2
n

n

∑
i=1

E
{
‖ξn,i‖3 exp(αn‖ξn,i‖)

}
= n−3/2n× o

(
n1/2

xn

)
exp

(
Cmxn

n1/2

(
4mn
x2

n

)1/2)
= o(1/xn). (73)

Then, β2
n log(1/βn) = o(1/xn). By (68), we have ‖ξn,i‖ ≤ (4mn/x2

n)
1/2 := An. By (69),

we have ∑n
i=1 E‖ξn,i‖2 ≤ 2mn := b2

n. Then, by Lemma 2 and (73) with Bn = n and
αn = Cmxn/n1/2 for a sufficiently large Cm value, we have

P
(
‖Sn‖ ≥ n1/2xn

)
≤ exp

{
o(x2

n)
}{

exp
(
− (1− γ)6nx2

n
2n

)
+ exp

(
− γ3(1− γ)3nx2

n
n× o(1/xn)

)}
+2m exp

(
− (1− γ)2c2

17C2
mx2

nn
2(2m3n + m(4mn/x2

n)
1/2c17Cmxnn1/2)

)

≤ exp
{

o(x2
n)
}{

exp
(
− (1− γ)6x2

n
2

)
+ exp

(
−4x2

n

)}
+ exp

(
−4x2

n

)
≤ exp

(
− (1− γ)7x2

n
2

)
.
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Letting γ = 1− (1− ε)1/7, we have

P
(
‖Sn‖ ≥ n1/2xn

)
≤ exp

(
− (1− ε)x2

n
2

)
. (74)

Similar to (62),

‖Sn‖2 =
∥∥∥ n

∑
i=1

ξn,i

∥∥∥2
=

(
Σ−1/2

n

∑
i=1

Gn,i

)T(
Σ−1/2

n

∑
i=1

Gn,i

)
=

( n

∑
i=1

Gn,i

)T
Σ−1

( n

∑
i=1

Gn,i

)
. (75)

We will use Identity (63) to estimate (75). Let ϑ∗ = (ϑ∗1 , . . . , ϑ∗m) be such that ‖ϑ∗‖ = 1 and

( n

∑
i=1

Gn,i

)T
ϑ∗ = max

‖ϑ‖=1

( n

∑
i=1

Gn,i

)T
ϑ. (76)

Observe that

max
‖ϑ‖=1

( n

∑
i=1

Gn,i

)T
ϑ =

( m

∑
l=1

( n

∑
i=1

√
λl(ḡl(Xi)− Eḡl(Xi))

)2
)1/2

. (77)

By (66),

(ϑ∗)TΣϑ∗ = (1 + o(1))
m

∑
l=1

(ϑ∗l )
2λl Ll(zn,l)

≤ (1 + o(1)) max
1≤l≤m

λl Ll(zn,l) (78)

because ‖ϑ∗‖ = 1. By Identity (63) and by (76)–(78),

( n

∑
i=1

Gn,i

)T
Σ−1

( n

∑
i=1

Gn,i

)
≥ ∑m

l=1
(
∑n

i=1
√

λl(ḡl(Xi)− Eḡl(Xi))
)2

(1 + ε)max1≤l≤m λl Ll(zn,l)
.

(79)

By (74), (75) and (79), with the application of (16) and (19),

I4 ≤ P
(

∑m
l=1 λl(∑

n
i=1(ḡl(Xi)− Eḡl(Xi)))

2

max1≤l≤m λl Ll(zn,l)
≥ (1− C1ε)(1− 2ε)3nx2

n

)
≤ P

(( n

∑
i=1

Gn,i

)T
Σ−1

( n

∑
i=1

Gn,i

)
≥ (1− C1ε)(1− 2ε)3nx2

n
1 + ε

)
= P

(
‖Sn‖2 ≥ (1− C1ε)(1− 2ε)3nx2

n
1 + ε

)
≤ exp

(
− (1− C1ε)(1− 2ε)4x2

n
2(1 + ε)

)
.

Since ε is arbitrary, then the upper bound of Theorem 1 follows from (22) and the
estimates of I1, I2, I3 and I4.
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3. The Lower Bound of Theorem 1

Let 0 < ε < 1 be sufficiently small. For 1 ≤ m < ∞ that is sufficiently large, by (26),
max1≤l<∞ λlV2

n,l = max1≤l≤m λlV2
n,l . Together with (17), we have

P(Wn ≥ (1− ε)x2
n)

= P

⎛⎝∑∞
l=1 λl

(
{∑n

i=1 gl(Xi)}2 −∑n
i=1 g2

l (Xi)
)

max1≤l<∞ λlV2
n,l

≥ (1− ε)x2
n

⎞⎠
≥ P

(
∑m

l=1 λl{∑n
i=1 gl(Xi)}2

max1≤l≤m λlV2
n,l

≥ x2
n

)
. (80)

Let g̃l(Xi) be the random variable with distribution which is of the distribution of
gl(Xi) conditioned on |gl(Xi)| ≤ zn,l . Define Ỹn,l = ∑n

i=1 g̃l(Xi) and Ṽ2
n,l = ∑n

i=1 g̃2
l (Xi).

By the definition of Ll(x) and (12),

Eg̃2
l (Xi) = Eḡ2

l (Xi)/P(|gl(Xi)| ≤ zn,l)

= Ll(zn,l)/P(|gl(Xi)| ≤ zn,l) = Ll(zn,l)(1 + o(1)).

Notice that (13) implies Eg̃l(X1) = o(Ll(zn,l)/zn,l). Then, we have

σ2
l := E(Ỹn,l − EỸn,l)

2 = nE(g̃l(X1)− Eg̃l(X1))
2

= nEg̃2
l (X1)(1 + o(1)) = nLl(zn,l)(1 + o(1)) (81)

and

EṼ2
n,l = nLl(zn,l)(1 + o(1)).

Then, for 0 < δ < 1,

P

(
∑m

l=1 λl{∑n
i=1 gl(Xi)}2

max1≤l≤m λlV2
n,l

≥ x2
n

)

≥ P

(
∑m

l=1 λl{∑n
i=1 gl(Xi)}2

max1≤l≤m λlV2
n,l

≥ x2
n, max

1≤i≤n
|gl(Xi)| ≤ zn,l , , 1 ≤ l ≤ m

)

= P

(
∑m

l=1 λl{∑n
i=1 g̃l(Xi)}2

max1≤l≤m λlṼ2
n,l

≥ x2
n

)
P
(

max
1≤i≤n

|gl(Xi)| ≤ zn,l , , 1 ≤ l ≤ m
)

≥ P

(
∑m

l=1 λl{∑n
i=1 g̃l(Xi)}2

max1≤l≤m λlṼ2
n,l

≥ x2
n, Ṽ2

n,l ≤ (1 + 2δ)σ2
l , 1 ≤ l ≤ m

)

×P
(

max
1≤i≤n

|gl(Xi)| ≤ zn,l , , 1 ≤ l ≤ m
)

≥ P

(
∑m

l=1 λl{∑n
i=1 g̃l(Xi)}2

max1≤l≤m λlσ
2
l

≥ (1 + 2δ)x2
n

)

×P
(

max
1≤i≤n

|gl(Xi)| ≤ zn,l , , 1 ≤ l ≤ m
)
−

m

∑
l=1

P(Ṽ2
n,l ≥ (1 + 2δ)σ2

l ). (82)
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Without the loss of generality, assume that max1≤l≤m λlσ
2
l = λ1σ2

1 . Then,

P

(
∑m

l=1 λl{∑n
i=1 g̃l(Xi)}2

max1≤l≤m λlσ
2
l

≥ (1 + 2δ)x2
n

)

≥ P

(
λ1{∑n

i=1 g̃1(Xi)}2

λ1σ2
1

≥ (1 + 2δ)x2
n

)

≥ P

(
n

∑
i=1

g̃1(Xi) ≥ (1 + 2δ)1/2σ1xn

)
.

Recall (15) and (81). Take c = 1/xn; thus, we have |g̃1(X1)| ≤ zn,l = cσl . Therefore,
by Theorem 5.2.2 in Stout [24], for any γ > 0, we have

P

(
n

∑
i=1

g̃1(Xi) ≥ (1 + 2δ)1/2σ1xn

)
≥ exp(−(x2

n/2)(1 + 2δ)(1 + γ)). (83)

On the other hand,

P
(

max
1≤i≤n

|gl(Xi)| ≤ zn,l , 1 ≤ l ≤ m
)
= [P(|gl(X1)| ≤ zn,l , 1 ≤ l ≤ m)]n

= [1− P(|gl(X1)| ≥ zn,l , ∃1 ≤ l ≤ m)]n ≥ [1−
m

∑
l=1

P(|gl(X1)| ≥ zn,l)]
n

≥ exp(−2n
m

∑
l=1

P(|gl(X1)| ≥ zn,l)) = exp(−o(x2
n)). (84)

We apply the following exponential inequality (see Lemma 2.1, Csörgő, Lin and
Shao [25]; see also Pruitt [26] and Griffin and Kuelbs [1]) for the rest of the proof.

Lemma 3. Let ξ, ξ1, · · · , ξn be i.i.d. random variables. Then, for any b, v, s > 0,

P

(∣∣∣∣∣ n

∑
i=1

(ξi I(|ξi| ≤ b)− Eξi I(|ξi| ≤ b))

∣∣∣∣∣ ≥ vevnEξ2
i I(|ξi| ≤ b)
2b

+
sb
v

)
≤ 2e−s.

By (14),

Eg̃4
1(Xi) = o(z2

n,1L1(zn,1)). (85)

In Lemma 3, we take ξi = g̃2
1(Xi), s = x2

n, b = z2
n,1 and v = 1/δ. Notice that sb/v = δσ2

1 and
vevnEξ2

i I(|ξi |≤b)
2b = o(σ2

1 ) by (81) and (85). Then,

P(Ṽ2
n,1 ≥ (1 + 2δ)σ2

1 ) = P(Ṽ2
n,1 − EṼ2

n,1 ≥ (1 + 2δ)σ2
1 − EṼ2

n,1)

≤ P

(
n

∑
i=1

(g̃2
1(Xi)− Eg̃2

1(Xi)) ≥ δ(1 + δ)σ2
1

)
≤ 2 exp(−x2

n). (86)

Combining (80), (82), (83), (84) and (86) and letting λ, δ→ 0, we have

P(Wn ≥ (1− ε)x2
n) ≥ exp(−x2

n/2).
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4. The Upper Bound of Theorem 2

Lemma 4 (Lemma 2.3 of Giné, Kwapień, Latała, and Zinn [15]). There exists a universal
constant C3 < ∞ such that for any kernel h and any two sequences of i.i.d. random variables,
we have

P
(

max
k≤m,l≤n

∣∣∣∣ ∑
i≤k,j≤l

h(Xi, Yj)

∣∣∣∣ ≥ t
)
≤ C3P

(∣∣∣∣ ∑
i≤m,j≤n

h(Xi, Yj)

∣∣∣∣ ≥ t/C3

)

for all m, n ∈ N and all t > 0.

Proposition 5. Under the assumptions of Theorem 1,

lim sup
n→∞

∑∞
l=1 λl(∑

n
i=1 gl(Xi))

2

max1≤l<∞ λlV2
n,l log log n

≤ 2 a.s.

Consequently,

lim sup
n→∞

Wn

log log n
≤ 2 a.s.

Proof. Let xn → ∞ as n→ ∞. Let θ > 1 with θ − 1 be sufficiently small. For any positive
integer k ∈ (n, θn], via a similar idea as in (19) with 0 < η < 1,

P

(
max

n<k≤θn

∑∞
l=1 λl

(
∑k

i=1 gl(Xi)
)2

max1≤l<∞ λlV2
k,l

≥ 2(1 + η)3x2
n

)

≤ P

(
∑∞

l=1 λl
(

∑n
i=1 gl(Xi)

)2

max1≤l<∞ λlV2
n,l

≥ 2(1− η)(1 + η)3x2
n

)

+P

(
max

n<k≤θn

∑∞
l=1 λl

(
∑k

i=n+1 gl(Xi)
)2

max1≤l<∞ λlV2
k,l

≥ η2(1 + η)3x2
n

2

)
:= H1 + H2. (87)

Notice that (10) implies (8). By (17) and the upper bound of Theorem 1,

H1 ≤ exp
(
−(1− η)3/2(1 + η)3x2

n

)
. (88)

Let 0 < δ < 1 be a sufficiently small constant. By (19),

H2 ≤ P

(
2m max

1≤l<∞
λlV2

n,l ≤ (1− η)n ∑
1≤l<∞

λl Ll(zn,l)

)

+P

(
max

n<k≤θn

∑∞
l=1 λl

(
∑k

i=n+1 gl(Xi)I(|gl(Xi)| > δηzn,l)
)2

max1≤l<∞ λlV2
k,l

≥ η4(1 + η)3x2
n

2

)

+P

(
maxn<k≤θn ∑∞

l=1 λl

(
∑k

i=n+1 gl(Xi)I(|gl(Xi)| ≤ δηzn,l)
)2

n ∑1≤l<∞ λl Ll(zn,l)

≥ (1− η)(1− 2η)η2(1 + η)3x2
n

4m

)
:= H2,1 + H2,2 + H2,3. (89)
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By (24) in Proposition 1,

H2,1 ≤ exp
(
− 2x2

n
)
. (90)

By the Cauchy–Schwarz inequality, for each k,

∑∞
l=1 λl

{
∑k

i=n+1 |gl(Xi)|I(|gl(Xi)| > δηzn,l)
}2

max1≤l<∞ λlV2
k,l

≤ ∑∞
l=1 λl ∑k

i=n+1 g2
l (Xi)∑k

i=n+1 I(|gl(Xi)| > δηzn,l)

max1≤l<∞ λlV2
k,l

. (91)

By (17), for some m value that is sufficiently large, the sum of the diagonal terms is as
follows:

∑∞
l=1 λl ∑k

i=n+1 g2
l (Xi)I(|gl(Xi)| > δηzn,l)

max1≤l<∞ λlV2
k,l

≤ m. (92)

By (91) and (92),

H2,2 ≤ P

(
max

n<k≤θn

∑n+1≤i �=j≤k ∑∞
l=1 λl g2

l (Xi)I(|gl(Xj)| > δηzn,l)

max1≤l<∞ λl ∑k
i=n+1 g2

l (Xi)
≥ η5(1 + η)3x2

n
2

)

≤ P

(
max

n<k≤θn

∑n+1≤i<j≤k ∑∞
l=1 λl g2

l (Xi)I(|gl(Xj)| > δηzn,l)

max1≤l<∞ λl ∑k
i=n+1 g2

l (Xi)
≥ η5(1 + η)3x2

n
4

)

+ P

(
max

n<k≤θn

∑n+1≤j<i≤k ∑∞
l=1 λl g2

l (Xi)I(|gl(Xj)| > δηzn,l)

max1≤l<∞ λl ∑k
i=n+1 g2

l (Xi)
≥ η5(1 + η)3x2

n
4

)

≤ P

(
max

n<k≤θn
∑

n+2≤j≤k

∑n+1≤i<j ∑∞
l=1 λl g2

l (Xi)I(|gl(Xj)| > δηzn,l)

max1≤l<∞ λl ∑n+1≤i<j g2
l (Xi)

≥ η5(1 + η)3x2
n

4

)

+ P

(
max

n<k≤θn
∑

n+1≤j<k

∑j<i≤k ∑∞
l=1 λl g2

l (Xi)I(|gl(Xj)| > δηzn,l)

max1≤l<∞ λl ∑j<i≤k g2
l (Xi)

≥ η5(1 + η)3x2
n

4

)
= H2,2,1 + H2,2,2. (93)

Let

φj =
∑n+1≤i<j ∑∞

l=1 λl g2
l (Xi)I(|gl(Xj)| > δηzn,l)

max1≤l<∞ λl ∑n+1≤i<j g2
l (Xi)

.

Then, for any constant t > 0,

H2,2,1 ≤
(

∑
n+2≤j≤[θn]

∑n+1≤i<j ∑∞
l=1 λl g2

l (Xi)I(|gl(Xj)| > δηzn,l)

max1≤l<∞ λl ∑n+1≤i<j g2
l (Xi)

≥ η5(1 + η)3x2
n

4

)

≤ Eet ∑
[θn]
j=n+2 φj e−tη5(1+η)3x2

n/4. (94)

Let Ej be the expectation of Xj for n + 2 ≤ j ≤ [θn]. Then,

Eet ∑
[θn]
j=n+2 φj = E(et ∑

[θn]−1
j=n+2 φj E[θn]e

tφ[θn] ). (95)
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Since |es − 1| ≤ e0∨s|s| for any s ∈ R and 0 ≤ φ[θn] ≤ m for some m value that is sufficiently
large, then∣∣∣E[θn]e

tφ[θn] − 1
∣∣∣ ≤ emttE[θn]φ[θn]

=
emtt ∑n+1≤i<[θn] ∑∞

l=1 λl g2
l (Xi)P(|gl(X[θn])| > δηzn,l)

max1≤l<∞ λl ∑n+1≤i<[θn] g2
l (Xi)

.

By (12) and (15), we have P(|gl(X[θn])| > δηzn,l) = o(x2
n/n). Then, together with (17),

E[θn]e
tφ[θn] = 1 + o(x2

n/n) = eo(x2
n/n). (96)

Applying (96) to (95), we have

Eet ∑
[θn]
j=2 φj = eo(x2

n/n)Eet ∑
[θn]−1
j=n+2 φj .

Similarly,

Eet ∑
[θn]−1
j=n+2 φj = E(et ∑

[θn]−2
j=n+2 φj En−1etφ[θn]−1)

= eo(x2
n/n)Eet ∑

[θn]−2
j=n+2 φj .

Continue this process from X[θn] to Xn+1. Thus, we conclude that

Eet ∑
[θn]
j=n+2 φj = e[(θ−1)n]×o(x2

n/n) = eo(x2
n). (97)

Applying (97) to (94) and letting t = 8/(η5(1 + η)3), we have

H2,2,1 ≤ exp(−2x2
n). (98)

To estimate H2,2,2, let

ψj,k =
∑j<i≤k ∑∞

l=1 λl g2
l (Xi)I(|gl(Xj)| > δηzn,l)

max1≤l<∞ λl ∑j<i≤k g2
l (Xi)

.

Then, for any constant t > 0,

H2,2,2 ≤ P

(
∑

n+1≤j<[θn]
max

j<k≤θn
ψj,k ≥

η5(1 + η)3x2
n

4

)

≤ Eet ∑
[θn]−1
j=n+1 maxj<k≤θn ψj,k e−tη5(1+η)3x2

n/4. (99)

Let Ej be the expectation of Xj for n + 1 ≤ j ≤ [θn]. Note k > j. Then,

Eet ∑
[θn]−1
j=n+1 maxj<k≤θn ψj,k

= E(et ∑
[θn]−1
j=n+2 maxj<k≤θn ψj,k En+1et maxn+1<k≤θn ψn+1,k ). (100)

Observe that

ψj,k =
∑∞

l=1 λl

(
∑j<i≤k g2

l (Xi)
)

I(|gl(Xj)| > δηzn,l)

max1≤l<∞ λl ∑j<i≤k g2
l (Xi)

. (101)
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Then, by (17), 0 ≤ ψn+1,k ≤ m for some m value that is sufficiently large. Since |es − 1| ≤
e0∨s|s| for any s ∈ R,∣∣En+1et maxn+1<k≤θn ψn+1,k − 1

∣∣ ≤ emttEn+1 max
n+1<k≤θn

ψn+1,k. (102)

Under Assumption (10), for each l ∈ [1, ∞),

λlV2
n,l =

n

∑
i=1

λl g2
l (Xi) ≤ cl

∞

∑
ν=1

n

∑
i=1

λνg2
ν(Xi) = cl

∞

∑
ν=1

λνV2
n,ν.

Recall that (17); then, for each l ∈ [1, ∞),

λlV2
n,l

max1≤l<∞ λlV2
n,l
≤ mcl

1− ε
.

Hence, by (101),

ψj,k ≤
m

1− ε

∞

∑
l=1

cl I(|gl(Xj)| > δηzn,l).

Then,

En+1 max
n+1<k≤θn

ψn+1,k ≤
m

1− ε

∞

∑
l=1

cl P(|gl(Xn+1)| > δηzn,l).

By (12) and (15), we have P(|gl(Xn+1)| > δηzn,l) = o(x2
n/n). Then, together with (10),

En+1 max
n+1<k≤θn

ψn+1,k = o(x2
n/n). (103)

Then, by (102) and (103),

En+1et maxn+1<k≤θn ψn+1,k = 1 + o(x2
n/n) = eo(x2

n/n).

Continue this process from j = n + 2 to j = [θn]− 1 and by (100),

Eet ∑
[θn]−1
j=n+1 maxj<k≤θn ψj,k = eo(x2

n). (104)

Applying (104) to (99) and letting t = 8/(η5(1 + η)3), we have

H2,2,2 ≤ exp(−2x2
n). (105)

By (93), (98) and (105),

H2,2 ≤ 2 exp(−2x2
n). (106)

By the definition of H2,3 in (89), and by Lemma 4, there is a constant 0 < C′ < ∞ such that

H2,3 ≤ C′P

(
∑∞

l=1 λl
(

∑
[θn]
i=n+1 gl(Xi)I(|gl(Xi)| ≤ δηzn,l)

)2

n ∑∞
l=1 λl Ll(zn,l)

≥ (1− 3η)η2x2
n

4mC′

)
.
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Similar to (36),

H2,3 ≤ C′P

(
∑∞

l=1 λl

(
∑
[θn]
i=n+1

{
gl(Xi)I(|gl(Xi)| ≤ δηzn,l)− Egl(Xi)I(|gl(Xi)| ≤ δηzn,l)

})2

n ∑∞
l=1 λl Ll(zn,l)

≥ (1− 3η)2η2x2
n

4mC′

)
.

By the decoupling version of (40) in Proposition 3,

H2,3 ≤ C′ exp
(
−2x2

n

)
. (107)

Combining (89), (90), (106) and (107), we have

H2 ≤ (3 + C′) exp
(
−2x2

n

)
. (108)

By (87), (88) and (108),

P

(
max

n<k≤θn

∑∞
l=1 λl

(
∑k

i=1 gl(Xi)
)2

max1≤l<∞ λlV2
k,l

≥ 2(1 + η)3x2
n

)
≤ exp

(
−(1− η)7/4(1 + η)3x2

n

)
.

Let n = [θ j] for some j ∈ N. We have

P

(
max

θ j<k≤θ j+1

∑∞
l=1 λl

(
∑k

i=1 gl(Xi)
)2

max1≤l<∞ λlV2
k,l

≥ 2(1 + η)3x2
[θ j ]

)
≤ exp

(
−(1− η)7/4(1 + η)3x2

[θ j ]

)
.

Let x2
n = log log n. Then,

∞

∑
j=1

P

(
max

θ j<k≤θ j+1

∑∞
l=1 λl

(
∑k

i=1 gl(Xi)
)2

max1≤l<∞ λlV2
k,l log log k

≥ 2(1 + η)3

)

≤
∞

∑
j=1

P

(
max

θ j<k≤θ j+1

∑∞
l=1 λl

(
∑k

i=1 gl(Xi)
)2

max1≤l<∞ λlV2
k,l

≥ 2(1 + η)3x2
[θ j ]

)

≤
∞

∑
j=1

exp
(
−(1− η)7/4(1 + η)3 log log[θ j]

)
≤ K

∞

∑
j=1

exp
(
−(1− η)2(1 + η)3 log j

)
< ∞.

By the Borel–Cantelli lemma,

lim sup
n→∞

∑∞
l=1 λl

(
∑n

i=1 gl(Xi)
)2

max1≤l<∞ λlV2
n,l log log n

≤ 2 a.s.
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5. The Lower Bound of Theorem 2

Proof. By the definition of Wn,

Wn

log log n
=

∑∞
l=1 λl

((
∑n

i=1 gl(Xi)
)2
−∑n

i=1 g2
l (Xi)

)
max1≤l<∞ λlV2

n,l log log n

=
∑∞

l=1 λl

(
∑n

i=1 gl(Xi)
)2

max1≤l<∞ λlV2
n,l log log n

− ∑∞
l=1 λlV2

n,l

max1≤l<∞ λlV2
n,l log log n

.

By (17), ∑∞
l=1 λlV2

n,l/(max1≤l<∞ λlV2
n,l log log n) ≤ m/((1− ε) log log n) → 0 as n → ∞,

we have

Wn

log log n
≥

∑∞
l=1 λl

(
∑n

i=1 gl(Xi)
)2

max1≤l<∞ λlV2
n,l log log n

.

Then,

Wn

log log n
≥

∞

∑
k=1

(
∑n

i=1 gk(Xi)
)2

V2
n,k log log n

Ik=min{j:max1≤l<∞ λlV2
n,l=λjV2

n,j}
.

Hence, by (6),

lim sup
n→∞

Wn

log log n
≥ 2 a.s.
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An Erdős-Révész Type Law for the Length of the Longest Match
of Two Coin-Tossing Sequences
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Institute of Statistics and Mathematical Methods in Economy, TU Wien, Wiedner Hauptstraße 8-10, 1040 Vienna,
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Abstract: Consider a coin-tossing sequence, i.e., a sequence of independent variables,
taking values 0 and 1 with probability 1/2. The famous Erdős-Rényi law of large numbers
implies that the longest run of ones in the first n observations has a length Rn that behaves
like log(n), as n tends to infinity (throughout this article, log denotes logarithm with base
2). Erdős and Révész refined this result by providing a description of the Lévy upper and
lower classes of the process Rn. In another direction, Arratia and Waterman extended the
Erdős-Rényi result to the longest matching subsequence (with shifts) of two coin-tossing
sequences, finding that it behaves asymptotically like 2 log(n). The present paper provides
some Erdős-Révész type results in this situation, obtaining a complete description of the
upper classes and a partial result on the lower ones.

Keywords: coin tossing; runs; matching subsequences; strong asymptotics

1. Introduction

Consider a coin-tossing sequence (Xn), i.e., a sequence of independent random vari-
ables satisfying P(Xn = 0) = P(Xn = 1) = 1/2. Let Rn be the length of the longest
head-run, i.e., the largest integer r for which there is an i, 0 ≤ i ≤ n− r, for which Xi+j = 1
for j = 1, . . . r. A result of Erdős and Rényi [1] implies that

lim
n→∞

Rn

log(n)
= 1 (1)

(throughout this paper, log will denote base 2 logarithms. The notation logk will be used
for its iterates: log2(x) = log(log(x)), logk+1(x) = log(logk(x)). Also, C and c, with or
without an index, are used to denote generic constants that may have different values at
each occurrence). The simple result (1) has seen a number of improvements. Erdős and
Révész [2] provided a detailed description of the asymptotic behavior of Rn. In order to
formulate their result, let us recall

Definition 1 (Lévy classes). Let (Yn) be a sequence of random variables. We say that a sequence
(an) of real numbers belongs to

• The upper-upper class of (Yn) (UUC(Yn)), if, with probability 1 as n → ∞, Yn ≤ an

eventually.
• The upper-lower class of (Yn) (ULC(Yn)), if, with probability 1 as n → ∞, Yn > an for

infinitely many n.
• The lower-upper class of (Yn) (LUC(Yn)), if, with probability 1 as n → ∞, Yn < an for

infinitely many n.
• The lower-lower class of (Yn) (LLC(Yn)), if, with probability 1 as n→ ∞, Yn ≥ an eventually.

Entropy 2025, 27, 34 https://doi.org/10.3390/e27010034
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Of course, these definitions work best if the sequence (Yn) obeys some zero-one law.

Their result is as follows:
Let (an) be a nondecreasing integer sequence. Then

• (an) ∈ UUC(Rn) if ∑n 2−an < ∞,
• (an) ∈ ULC(Rn) if ∑n 2−an = ∞,
• for any ε > 0, an = �log(n)− log3(n) + log2(e)− 1 + ε� ∈ LUC(Rn),
• for any ε > 0, an = �log(n)− log3(n) + log2(e)− 2− ε� ∈ LLC(Rn).

Arratia and Waterman [3] extend Erdős and Rényi’s result in another direction: they
consider two independent coin-tossing sequences, (Xn) and (Yn), and look for the longest
matching subsequences when shifting is allowed. Formally, let Mn be the the largest integer
m for which there are i, j with 0 ≤ i, j ≤ n−m and Xi+k = Yj+k for all k = 1, . . . , m. They
prove that, with probability 1

lim
n→∞

Mn

log(n)
= 2. (2)

In the present paper, we will make this more precise by providing a description for
the upper classes of (Mn) and also some results on its lower classes:

Theorem 1. Let (an) be a nondecreasing integer sequence. We have

• (an) ∈ UUC(Mn) if ∑n n2−an < ∞.
• (an) ∈ ULC(Mn) if ∑n n2−an = ∞.
• for some c, an = �2 log(n)− log3(n) + c� ∈ LUC(Mn).
• for some c, an = �2 log(n)− 2 log2(n)− log3(n) + c� ∈ LLC(Mn).

2. Discussion

We leave the proof of Theorem 1 for later and rather discuss some of the concepts that
are connected to this problem. One of them is the so-called independence principle: in
many, although not all, situations, one may pretend that the waiting times until a given
pattern of length l is observed have an exponential distribution with parameter 2−l , and
that the waiting times for different patterns are independent. Móri [4] and Móri and
Székely [5] provide an account of this principle and its limitations. In our case, all results
but the lower-lower class one are more or less in tune with this principle.

Another question that is closely related is that of the number N(n, l) of different length
l subsequences of (X1, . . . , Xn). This question does not seem to have been considered by
literature very much; there is one remarkable result by Móri [6]: in the remark following
the statement of Theorem 3 in that paper, he mentions that with probability one for large
n, the largest l for which all 2l possible patterns occur as subsequences of (X1, . . . , Xn) is
either �log(n)− log2(n)− ε� or �log(n)− log2(n) + ε� for any ε > 0. The independence
principle would suggest that N(n, log(n))/n is bounded away from 0 with probability
one, and this or even the less stringent N(n, log(n)) ≥ n(log2(n))

−c for large n would
be an important step towards removing the double log term from the LLC result, as we
conjecture that, for some c > 0, log(n)− c log3(n) ∈ LLC(Mn). Unfortunately, we are only
able to obtain N(n, log(n)) ≥ cn/ log(n), which is also implied by Móri’s result.

3. Proofs

Proof of the upper-upper class result. Both upper class statements are fairly easy to prove.
First, observe that under our assumptions, the convergence of

∞

∑
n=1

n2−an (3)
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is equivalent to that of
∞

∑
k=1

n2
k2−ank (4)

with nk = 2k.
Now, define events

Ak = [Mnk ≥ ank−1 ]. (5)

Ak occurs if in one of the (nk + 1− ank−1)
2 pairs of sequences

((Xi+1, . . . , Xi+ak−1
), ((Yj+1, . . . , Yj+ak−1

)) (6)

both sequences agree. That provides the trivial upper bound

P(Ak) ≤ n2
k2−ank−1 , (7)

so, by our assumptions, ∑n P(Ak) < ∞, and the Borel-Cantelli Lemma implies that, with
probability 1, only finitely many events Ak occur. Thus, for sufficiently large k, Mnk ≤ ank−1 ,
and for nk−1 ≤ n ≤ nk, we have

Mn ≤ Mnk ≤ ank−1 ≤ an. (8)

This shows that (an) ∈ UUC(Mn), as claimed.

Proof of the upper-lower class result. We may assume without loss of generality that
n22−an ≤ 1/4.

Again, let nk = 2k. We want to use the second Borel-Cantelli Lemma, so we are
defining independent events

Ak = [∃i, j : nk−1 < i, j ≤ nk : Xi+s = Yj+s, s = 0, . . . , ank − 1] (9)

This is the union of the events

Bij=[Xi+s = Yj+s, s = 0, . . . , ank − 1] (10)

with nk−1 < i, j ≤ nk. We endow the set of pairs (i, j) with the lexicographic order. For a
subset I of the integers, Bonferroni’s inequality provides

P(
⋃

(i,j)∈I×I

Bij) ≥ ∑
(i,j)∈I×I

P(Bij)− ∑
(i,j),(i′ ,j′)∈I×I,(i,j)<(i′ ,j′)

P(Bij ∩ Bi′ j′). (11)

Let d((i, j), (i′, j′)) = max(|i− i′|, |j− j′|). If d((i, j), (i′, j′)) ≥ ank , then P(Bij ∩ Bi′ j′) =

2−2ank , otherwise P(Bij ∩ Bi′ j′) = 2−(ank+d((i,j),(i′ ,j′)).
Let I = {i : nk−1 < i ≤ nk : 4|i}. Using this in (11) yields the value |I|22−ank for

the first sum. In the second sum, for given (i, j) and d < ank /4, there are no more than
2(2d + 1) pairs (i′, j′) with d((i, j), (i′, j′)) = 4d. The number of pairs of pairs ((i, j), (i′, j′)
with d((i, j), (i′, j′)) ≥ ank is trivially bounded by |I|4/2. Putting these together, we arrive
at the upper estimate

|I|22−ank (
∞

∑
d=1

(2d + 1)21−4d + |I|22−1−ank ) <
1
2
|I|22−ank . (12)

In total,

P(Ak) ≥
1
2
|I|2e−ank =

1
128

n2
k2−ank , (13)
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keeping in mind that |I| = nk/8.
and ∑k P(Ak) = ∞. Borel-Cantelli implies that, with probability 1, infinitely many

events Ak occur. Thus, for infinitely many k, Mnk ≥ ank , so (an) ∈ ULC(Mn).

For the lower class results, we first prove some lemmas:

Lemma 1. With probability 1 for n sufficiently large

n
4 log(n)

≤ N(n, �log(n)�) ≤ n (14)

Proof of Lemma 1. The lower part is a direct consequence of Móri’s result: as for suffi-
ciently large n N(n, �log(n)− log2(n)− 1�) = 2�log(n)−log2(n)−1� ≥ n

4 log(n) and, obviously
N(n, �log(n)�) ≥ N(n, �log(n)− log2(n)− 1�)− log2(n)− 2, as extending two different
sequences from length �log(n)− log2(n)� to �log(n)� keeps them different; it can only hap-
pen that some of them are extended beyond index n, but this can affect at most log2(n) + 2
of them.

Lemma 2. Let S be a set of m < 2l sequences of length l < n, and let A be the event that none of
the sequences in S occurs as a subsequence of (X1, . . . , Xn). For l ≤ n′ < n, let B be the event that
some sequence from S is a subsequence of X1, . . . , Xn′ . Then

((1− P(B))2 − �n/n′�m2−l)(1− P(B))�n/n′� ≤ P(A) ≤ (1− P(B))�n/n′�. (15)

Proof of Lemma 2, upper part. Consider the �n/n′� sequences Xkn′+1, . . . , X(k+1)n′ for
k = 0, . . . �n/n′� − 1. Each of these has probability 1− P(B) that it does not contain a
subsequence that lies in S, and by independence

P(A) ≤ (1− P(B))�n/n′�. (16)

Proof of Lemma 2, lower part. Assume for simplicity that n is a multiple of n′, say
n = Nn′. Again, we split (X1, . . . , Xn) into N blocks of length n′, and the probability
that none of those contains a sequence from S is

(1− P(B))N . (17)

It can still happen that there is a sequence from S that crosses one of the boundaries
between the blocks. There are N − 1 boundaries, and for each of those, there are l − 1
possible subsequences of length l crossing it. The probability that this one is from S but
none of the N blocks contains one can be estimated above by the probability that it is from
S and none of the N − 2 blocks not adjacent to it contains one from S. This provides the
upper bound

(N − 1)(l − 1)m2−l(1− P(B))N−2 (18)

for the probability that there is a subsequence from S in (X1, . . . , Xn) but none in any
of the N blocks. Subtracting this from (17), we obtain the lower bound

((1− P(B))2 − (N − 1)(l − 1)m2−l)(1− P(B))N−2, (19)

and the general case is obtained by observing that the probability P(A) for a given n is
bounded below by the one that we get for n′�n/n′�.
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In this lemma, the lower and upper bounds are rather close. Its applicability, how-
ever, depends on the availability of good estimates for the probability P(B). There is the
trivial upper bound n′m2−l and an almost as simple lower bound const.n′ml−12−l (given
n′ml−12−l < 1). Bridging the gap between these requires deeper insight into the structure
of S.

Proof of the lower-lower class result. In both the lower-lower and lower-upper parts, we
consider the asymptotics of the longest match found between (X1, . . . , Xn) and (Y1, . . . , Yn)

under the condition that the sequence (Yn, n ∈ N) is given. Doing so, we may assume that
Y = (Yn, n ∈ N) is a “typical” coin-tossing sequence, in the sense that it possesses some
property that holds with probability 1. In the sequel, all probabilities are understood as
conditional with respect to such a typical sequence Y. For the lower-lower class result, we
let n = nl = �C2l/2l

√
log(l)�, n′ = n′l = l, and m = ml = � n

4 log(n) � in Lemma 2. Clearly, as

(X1, . . . , Xl) only has one length l subsequence, P(B) equals m̃2−l , where m̃ is the number
of different sequences of length l in Y1, . . . , Ynl . For sufficiently large l, m̃ ≥ ml by Lemma 1,
and we obtain an upper estimate

pl = exp(−m�n/l�2−l) = exp
(
−1

2
C2 log(l)(1 + o(1))

)
(20)

for the probability (conditional on Y) that there is no match of length l between (Y1, . . . , Ynl )

and (X1, . . . , Xnl ). For C >
√

2/ log(e), the series ∑l pl converges, so with probability 1, we
have M(nl) ≥ l for all but finitely many l. Thus, for nl−1 ≤ n < nl , Mn ≥ Mnl−1 ≥ l − 1.
Inverting the relationship between nl and l yields l = 2 log(nl)− 2 log2(nl)− log3(nl) +

O(1), so, for some constant c and l large enough, we obtain Mn ≥ l − 1 ≥ 2 log(n) −
2 log2(n)− log3(n)− c, which proves the lower-lower class result.

Proof of the lower-upper class result. This time, we need to make our choice of the pa-
rameters in Lemma 2 with a little more sophistication. We start with l = lk = k2 for k ∈ N.
Then, n = nk = �C2lk/2

√
log(lk)�‘. As the set S, we choose the set Skof all sequences of

length lk contained in (Y1, . . . , Ynk ). n′ = n′k is chosen in such a way that mkn′k2−lk → 0 and
mknklk2−lk /n′k → 0, n′k = �2lk/4� is a possible choice.

We define the events

Ak = {There is no sequence from Sk in (X1, . . . Xnk )}, (21)

Ãk = {There is no sequence from Sk in (Xnk−1+1, . . . Xnk )} (22)

Bk = {There is a sequence from Sk in (X1, . . . Xn′k
)} (23)

(this last is just the event B from Lemma 2).
Lemma 2 gives us

P(Ak) = (1− P(Bk))
�nk/n′k�(1 + o(1)) (24)

and
P(Ãk) = (1− P(Bk))

�(nk−nk−1)/n′k�(1 + o(1)). (25)

The trivial estimate P(Bk) ≤ mkn′k2−lk ≤ n2
k2−lk yields

P(Ak) ≥ e−2C2 log(k)(1+o(1)), (26)

which diverges if we choose C < 1/
√

2 log(e).
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We are going to use the Borel-Cantelli Lemma in the usual form for dependent events:

Lemma 3 (Borel-Cantelli II). If the sequence (An) satisfies

∑
n∈N

P(An) = ∞ (27)

and

lim
n→∞

∑n
i=1 ∑n

j=1 P(Ai ∩ Aj)

(∑n
i=1 P(Ai))2 = 1, (28)

then
P(lim sup

n
An) = 1, (29)

To this end, we need an upper bound for P(Ai ∩ Aj) for i < j. We have

P(Ai ∩ Aj) ≤ P(Ai ∩ Ãj) = P(Ai)P(Ãj). (30)

By our Equations (24) and (25) from above

P(Ãj) = P(Aj)(1− P(Bj))
−nj−1/n′j(1 + o(1)) = P(Aj)e

mjnj−12
−lj (1+o(1)) =

P(Aj)(1 + o(1)), (31)

as nj−1 ≤ nje1−2j and mjnj2
−lj ≤ n2

j 2−lj = O(log j).
This means that for any ε > 0, there is a number j0 such that, for j > j0 and i < j,

the inequality
P(Ai ∩ Aj) ≤ (1 + ε)P(Ai)P(Aj) (32)

holds. Plugging this into

n

∑
j=1

n

∑
i=1

P(Ai ∩ Aj) =
n

∑
i=1

P(Ai) + 2
n

∑
j=2

j−1

∑
i=1

P(Ai ∩ Aj) (33)

yields the estimate

n

∑
j=1

n

∑
i=1

P(Ai ∩ Aj) ≤
n

∑
i=1

P(Ai) + j20 + (1 + ε)(
n

∑
i=1

P(Ai))
2. (34)

As ∑∞
i=1 P(Ai) = ∞, we get

lim sup
n→∞

∑n
i=1 ∑n

j=1 P(Ai ∩ Aj)

(∑n
i=1 P(Ai))2 ≤ 1 + ε. (35)

As ε > 0 is arbitrary, the sequence (Ak) satisfies the assumptions of Lemma 3, so,
with probability 1, infinitely many of the events (Ak) occur. Thus, with probability 1 for
infinitely many k, Mnk < lk. Observing that lk = 2 log(nk)− log3(nk) + O(1), we obtain
our lower-upper class result.
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3. Arratia, R.; Waterman, S. An Erdős-Rényi law with shifts. Adv. Math. 1985, 55, 13–23. [CrossRef]
4. Móri, T. Large deviation results for waiting times in repeated experiments. Acta Math. Hung. 1985, 45, 213–221. [CrossRef]
5. Móri, T.; Székely, G. Asymptotic independence of pure head stopping times. Stat. Probab. Lett. 1984, 2, 5–8. [CrossRef]
6. Móri, T. On the waiting time till each of some given patterns occurs as a run. Probab. Theory Relat. Fields 1991, 87, 313–323.

[CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

88



entropy

Article

Two Monotonicity Results for Beta Distribution Functions

Kurt Hornik

Institute for Statistics and Mathematics, WU Wirtschaftsuniversität Wien, Welthandelsplatz 1,
A-1020 Wien, Austria; kurt.hornik@wu.ac.at

Abstract: Write pbeta(·, α, β) for the distribution function of the Beta distribution with parameters α

and β. We show that α �→ pbeta(α/(α + β), α, β) is decreasing and α �→ pbeta(α/(α + β), α + 1, β)

is increasing over the positive reals, with the common limit for α → ∞ expressible in terms of the
Gamma distribution functions, and discuss implications for the distribution functions of the Gamma,
Poisson and Binomial distributions.

Keywords: Beta distribution; Gamma distribution; monotonicity

1. Introduction

Write Gamma(α) and Beta(α, β) for, respectively, the Gamma distribution with shape
parameter α and rate/scale parameter 1 and the Beta distribution with parameters α and
β, and write pgamma(·, α) and pbeta(·, α, β) for the corresponding cumulative distribu-
tion functions.

If Xα ∼ Gamma(α), E(Xα/α) = 1. Using the addition theorem for the Gamma distri-
bution, as α → ∞, we have Xα/α → 1 by the law of large numbers and P(Xα/α ≤ 1) =
pgamma(α, α)→ 1/2 by the central limit theorem. On the other hand, using integration
by parts, for ε > 0 we have

P(Xα/α > ε) =
1

Γ(α)

∫ ∞

εα
tα−1e−t dt =

1
Γ(α + 1)

∫ ∞

εα
tαe−t dt− (εα)αe−εα

Γ(α + 1)

so that as α→ 0+

P(Xα/α > ε)→ 1
Γ(1)

∫ ∞

0
e−x dx− 1 = 0

and hence, in particular, P(Xα/α ≤ 1) = pgamma(α, α)→ 1.
Write

πα = P(Xα/α ≤ 1), Xα ∼ Gamma(α).

Ref. [1] shows that α �→ πα = pgamma(α, α) decreases monotonically from 1 to 1/2 as α
varies from 0 to ∞. In this paper, we show that, quite remarkably, monotonicity continues
to hold if 1 is replaced by the normalized Gamma distributed random variable Xβ/β
independent of Xα/α. We also establish a second, related monotonicity result. These results
are formulated and discussed in Section 2. Section 3 gives the proofs.

2. Results

Theorem 1. For α, β > 0, let Xα ∼ Gamma(α) be independent from Xβ ∼ Gamma(β) and let
Yα,β ∼ Beta(α, β) so that E(Yα,β) = α/(α + β). Write

pα,β = P(Xα/α ≤ Xβ/β).

Then

pα,β = P(Yα,β ≤ E(Yα,β)) = pbeta
(

α

α + β
, α, β

)
,
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the function α �→ pα,β is decreasing for α > 0, with limits 1 for α→ 0+ and 1−pgamma(β, β) <
1/2 for α→ ∞, and the function β �→ pα,β is increasing for β > 0, with limits 0 for β→ 0+ and
pgamma(α, α) > 1/2 as β→ ∞.

The above can also be formulated in terms of the Beta prime and F distributions,
noting that trivially

pα,β = P

(
Xα

Xβ
≤ α

β

)
= P

(
Xα/α

Xβ/β
≤ 1

)
where Xα/Xβ has a Beta prime distribution with parameters α and β, and (Xα/α)/(Xβ/β)
has an F distribution with parameters α/2 and β/2. Note also that for β→ ∞, Xβ/β→ 1
in probability and, thus, pα,β → P(Xα ≤ α) = pgamma(α, α), so Theorem 1 implies the
result of [1].

Refs. [2,3] show that pbeta(α/(α + β), α + 1, β) < 1/2 for, respectively, all positive
integers or all positive reals α, β. The following substantially improves these results:

Theorem 2. Let β > 0. The function

α �→ p̃α,β = pbeta
(

α

α + β
, α + 1, β

)
is increasing for α > 0, with limits 0 for α→ 0+ and 1− pgamma(β, β) for α→ ∞.

If we write pbinom(·, n, p) for the cumulative distribution function of the Binomial
distribution with parameters n and p, then for integer 0 ≤ k ≤ n we have

pbinom(k, n, p) = pbeta(1− p, n− k, k + 1).

Using Theorem 1 with α = n− k, β = k + 1 and 1− p = α/(α + β) = (n− k)/(n + 1), we
obtain for integer 0 ≤ k < n

pbinom
(

k, n,
k + 1
n + 1

)
≥ 1− pgamma(k, k).

Similarly, using Theorem 2 with α + 1 = n − k, β = k + 1 and 1 − p = α/(α + β) =
(n− k− 1)/n, we obtain for integer 0 ≤ k < n− 1

pbinom
(

k, n,
k + 1

n

)
≤ 1− pgamma(k, k).

If Xα+1 ∼ Gamma(α + 1) is independent from Xβ ∼ Gamma(β), Xα+1/(Xα+1 +
Xβ) ∼ Beta(α + 1, β), so that

pbeta
(

α

α + β
, α + 1, β

)
= P

(
Xα+1

Xα+1 + Xβ
≤ α

α + β

)
= P

(
Xα+1 ≤ α

Xβ

β

)
.

For β→ ∞, Xβ/β→ 1 in probability, so Theorem 2 yields the following:

Corollary 1. The function α �→ pgamma(α, α + 1) is increasing for α > 0, with limits of 0 for
α→ 0+ and 1/2 for α→ ∞.

In combination with [1] (or using Theorem 1 with β → ∞), we, thus, find that the
median mα of Gamma(α) satisfies α− 1 < mα < α, where the lower bound is worse than
the sharp lower bound mα > α− 1/3 of [4].
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If we write ppois(·, λ) for the cumulative distribution function of the Poisson distribu-
tion with parameter λ, then for the integer n ≥ 0 we have

ppois(n, λ) = 1− pgamma(λ, n + 1).

From Corollary 1, we, thus, find that n �→ ppois(n, n) = 1− pgamma(n, n + 1) is decreas-
ing from 1 to 1/2 as n varies over the non-negative integers, nicely extending the bounds
of [5] in the integer case. We note that λ �→ ppois(λ, λ) is not monotone: it jumps at the
positive integers, and for n ≤ λ < n + 1

ppois(λ, λ) = ppois(n, λ) = 1− pgamma(λ, n + 1)

which decreases from ppois(n, n) to ppois(n + 1, n) = 1− pgamma(n + 1, n + 1), where
we just obtained that the former upper envelope sequence is decreasing in n, and based on
the result of [1], the latter lower envelope sequence is increasing in n (with common limit
1/2 as n→ ∞).

Clearly, Theorem 2 is equivalent to

α �→ pbeta
(

α− 1
α + β− 1

, α, β

)
increasing for α > 1 (it is zero for 0 < α ≤ 1), where, in fact, (α− 1)/(α + β− 1) is the
harmonic mean of the Beta distribution with parameters α and β. Thus, if for α > max(u, 0)
and β > 0, we write

pα,β,u = pbeta
(

α− u
α + β− u

, α, β

)
,

and our results say that α �→ pα,β,0 is decreasing, and α �→ pα,β,1 is increasing, and we can
ask about the monotonicity for other values of u. Numerical experiments suggest that
for β > 1, α �→ pα,β,u is decreasing iff u ≤ 1/3 and increasing iff u ≥ 0.5, but we have
thus far been unable to obtain rigorous monotonicity results for u �∈ {0, 1}. We also note
also that for u = 1, we find that for α > 1, the median mα,β of the Beta distribution with
parameters α and β satisfies mα,β > (α− 1)/(α + β− 1), which for α < β is worse than
the lower bound mα,β > (α− 1)/(α + β− 2) of [6]. This suggests the importance of more
generally investigating the monotonicity of α �→ pα,β,u,v = pbeta((α− u)/(α + β− v), α, β).
For v = 2u, this includes the bounds in [6] and the approximations suggested in [7], and
it conveniently allows using pα,β,u,2u = 1− pβ,α,u,2u to obtain monotonicity in β from the
monotonicity in α.

3. Proofs

We first establish several lemmas. We write that

gα,β =
xα(1− x)β

αB(α, β)

∣∣∣∣
x= α

α+β

=
αα−1ββ

B(α, β)(α + β)α+β

Lemma 1. Let α, β > 0. Then,

pbeta
(

α

α + β
, α, β

)
= pbeta

(
α

α + β
, α + 1, β

)
+ gα,β.

Proof. Immediate from Equation 8.17.20 (http://dlmf.nist.gov/8.17.E20, accessed on 28
October 2024) in [8].

Lemma 2. Let β > 0. Then, α �→ gα,β is decreasing and positive for α > 0.
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Proof. Positivity is trivial. As

gα,β =
ββ

Γ(β)

Γ(α + β)

Γ(α)
αα−1

(α + β)α+β
,

we have
∂ log(gα,β)

∂α
= ψ(α + β)− ψ(α) + log(α)− 1

α
− log(α + β),

where ψ(z) = (log(Γ(z)))′ = Γ′(z)/Γ(z) is the psi (or digamma) function (e.g., Equation 5.2.2
(https://dlmf.nist.gov/5.2.E2, accessed on 28 October 2024) in [8]). Using Equation 5.9.13
(http://dlmf.nist.gov/5.9.E13, accessed on 28 October 2024) in [8], for �(z) > 0, we find
that

ψ(z)− log(z) =
∫ ∞

0

(
1
t
− 1

1− e−t

)
e−zt dt,

so that

∂ log(gα,β)

∂α
=

∫ ∞

0

(
1
t
− 1

1− e−t

)
(e−(α+β)t − e−αt) dt− 1

α

=
∫ ∞

0

(
1
t
− 1

1− e−t

)
(e−βt − 1)e−αt dt−

∫ ∞

0
e−αt dt

=
∫ ∞

0

((
1
t
− 1

1− e−t

)
(e−βt − 1)− 1

)
e−αt dt

=
∫ ∞

0
(k(t)(1− e−βt)− 1)e−αt dt,

where
k(t) =

1
1− e−t −

1
t

has the derivative

k′(t) = − e−t

(1− e−t)2 +
1
t2 =

−t2e−t + (1− e−t)2

t2(1− e−t)2

with

−t2e−t + (1− e−t)2 = 1− 2e−t + e−2t − t2e−t = e−t(et − (2 + t2) + e−t) > 0

for t > 0. Hence, for all t > 0, k is increasing, from which first k(t) < k(∞) = 1 and then
k(t)(1− e−βt)− 1 < 1− 1 = 0 are derived. This in turn shows that log(gα,β) and, hence,
gα,β are decreasing for α > 0.

Lemma 3. Let α, β > 0. Then,

pbeta
(

α + 1
α + β + 1

, α + 1, β

)
− pbeta

(
α

α + β
, α + 1, β

)
=

1
B(α + 1, β)

∫ 1

0

(α + v)αββ

(α + β + v)α+β+1 dv

= gα+1,β

∫ 1

0

(
α + v
α + 1

)α(α + β + 1
α + β + v

)α+β+1
dv

= gα,β

∫ 1

0

(
α + v

α

)α( α + β

α + β + v

)α+β+1
dv.
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Proof. We have

pbeta
(

α + 1
α + β + 1

, α + 1, β

)
− pbeta

(
α

α + β
, α + 1, β

)
=

1
B(α + 1, β)

∫ α+1
α+1+β

α
α+β

tα(1− t)β−1 dt.

Substituting t = u/(1 + u) so that 1− t = 1/(1 + u) and dt = du/(1 + u)2 and then
u = (α + v)/β,

∫ α+1
α+1+β

α
α+β

tα(1− t)β−1 dt =
∫ α+1

β

α
β

uα

(1 + u)α+β+1 du

=
1
β

∫ 1

0

(
α + v

β

)α( β

β + α + v

)α+β+1

=
∫ 1

0

(α + v)αββ

(α + β + v)α+β+1 dv

from which the first equality follows. The second is immediate, and the third obtained
from

gα,β =
ααββ

(α + β)α+β

1
αB(α, β)

=
ααββ

(α + β)α+β+1
1

B(α + 1, β)
.

Write

hα,β = 1−
∫ 1

0

(
α + v

α

)α( α + β

α + β + v

)α+β+1
dv.

Lemma 4. Let β > 0. Then, α �→ hα,β is decreasing and positive for α > 0.

Proof. We write

hα,β = 1−
∫ 1

0
kα,β(v) dv, kα,β(v) =

(
α + v

α

)α( α + β

α + β + v

)α+β+1
.

Then,

log(kα,β(v)) = α log
α + v

α
+ (α + β + 1) log

α + β

α + β + v

and, hence,

∂ log(kα,β(v))
∂α

= log
α + v

α
+ α

(
1

α + v
− 1

α

)
+ log

α + β

α + β + v
+ (α + β + 1)

(
1

α + β
− 1

α + β + v

)
.

As a function of v, this has the derivative

∂

∂v
∂ log(kα,β(v))

∂α
=

1
α + v

− α

(α + v)2 −
1

α + β + v
+

α + β + 1
(α + β + v)2

=
v

(α + v)2 +
1− v

(α + β + v)2

which is positive for 0 < v < 1. Hence, for α, β > 0 and 0 < v < 1, so

∂ log(kα,β(v))
∂α

>
∂ log(kα,β(v))

∂α

∣∣∣∣
v=0

= 0
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from which we infer that for β > 0 and 0 < v < 1, α �→ kα,β(v) is increasing for α > 0,
which in turn yields that α �→ hα,β is decreasing for α > 0.

For α→ ∞,

kα,β(v) =
(1 + v/α)α

(1 + v/(α + β))α+β+1 →
ev

ev = 1

and, hence, hα,β → h∞,β = 1−
∫ 1

0 1 dv = 0. Thus, for all α > 0, hα,β > h∞,β = 0, thus
completing the proof.

Lemma 5. Let α, β > 0. Then,

pα,β = pα+1,β + gα,βhα,β

and

pα,β = p∞,β +
∞

∑
n=0

gα+n,βhα+n,β.

Proof. Using Lemmas 1 and 3,

pα,β = pbeta
(

α

α + β
, α, β

)
= pbeta

(
α

α + β
, α + 1, β

)
+ gα,β

= pbeta
(

α + 1
α + β + 1

, α + 1, β

)
+ gα,β

−
(

pbeta
(

α + 1
α + β + 1

, α + 1, β

)
− pbeta

(
α

α + β
, α + 1, β

))
= pα+1,β + gα,β

(
1−

∫ 1

0

(
α + v

α

)α( α + β

α + β + v

)α+β+1
dv

)
= pα+1,β + gα,βhα,β,

from which

pα,β = p∞,β +
∞

∑
n=0

(pα+n,β − pα+n+1,β) = p∞,β +
∞

∑
n=0

gα+n,βhα+n,β

as asserted.

Proof of Theorem 1. As x �→ t(x) = x/(1 + x) increases monotonically from 0 to 1 as x
varies from 0 to ∞, and t(u/v) = u/(u + v),

pα,β = P(t(Xα/Xβ) ≤ t(α/β)) = P

(
Xα

Xα + Xβ
≤ α

α + β

)

where Yα,β = Xα/(Xα + Xβ) ∼ Beta(α, β) has the mean E(Yα,β) = α/(α + β), so that
pα,β = pbeta(α/(α + β), α, β).

Combining Lemmas 2, 4 and 5, we see that α �→ pα,β is decreasing for α > 0. To deter-
mine the limits, remember that if Xα ∼ Gamma(α), then Xα/α goes to 0 in probability as
α→ 0+ and to 1 as α→ ∞. Hence,

pα,β = P

(
Xα

α
≤

Xβ

β

)
goes to P(0 ≤ Xβ/β) = 1 as α→ 0+ and to P(1 ≤ Xβ/β) = 1− pgamma(β, β) as α→ ∞.

Finally, pβ,α = 1− pα,β, thus completing the proof.
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We write

h̃α,β =
∫ 1

0

(
α + v
α + 1

)α(α + β + 1
α + β + v

)α+β+1
dv− 1.

Lemma 6. Let β > 0. Then, α �→ h̃α,β is decreasing and positive for α > 0.

Proof. This parallels the proof of Lemma 4. We write

h̃α,β =
∫ 1

0
k̃α,β(v) dv− 1, k̃α,β(v) =

(
α + v
α + 1

)α(α + β + 1
α + β + v

)α+β+1
.

Then,

log(k̃α,β(v)) = α log
α + v
α + 1

+ (α + β + 1) log
α + β + 1
α + β + v

and, hence,

∂ log(k̃α,β(v))
∂α

= log
α + v
α + 1

+ α

(
1

α + v
− 1

α + 1

)
+ log

α + β + 1
α + β + v

+ (α + β + 1)
(

1
α + β + 1

− 1
α + β + v

)
.

As a function of v, this (again) has the derivative

∂

∂v
∂ log(k̃α,β(v))

∂α
=

1
α + v

− α

(α + v)2 −
1

α + β + v
+

α + β + 1
(α + β + v)2

=
v

(α + v)2 +
1− v

(α + β + v)2

which is positive for 0 < v < 1. Hence, for α, β > 0 and 0 < v < 1,

∂ log(k̃α,β(v))
∂α

<
∂ log(k̃α,β(v))

∂α

∣∣∣∣∣
v=1

= 0

from which we infer that for β > 0 and 0 < v < 1, α �→ k̃α,β(v) is decreasing for α > 0,
which in turn implies that α �→ h̃α,β is decreasing for α > 0. Finally, for α→ ∞,

k̃α,β(v) =
(

1 + v/α

1 + 1/α

)α(1 + 1/(α + β)

1 + v/(α + β)

)α+β+1

→ ev

e
e
ev = 1

and, hence, h̃α,β → h̃∞,β =
∫ 1

0 1 dv − 1 = 0. Thus, for all α > 0, h̃α,β > h̃∞,β = 0, thus
completing the proof.

Lemma 7. Let α, β > 0. Then,

p̃α,β = p̃α+1,β − gα+1,β h̃α,β

and

p̃α,β = p̃∞,β −
∞

∑
n=0

gα+n+1,β h̃α+n,β.
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Proof. Using Lemma 1 (with α + 1 instead of α) and Lemma 3, we have

p̃α,β = pbeta
(

α

α + β
, α + 1, β

)
= pbeta

(
α + 1

α + 1 + β
, α + 1, β

)
−
(

pbeta
(

α + 1
α + β + 1

, α + 1, β

)
− pbeta

(
α

α + β
, α + 1, β

))
= pbeta

(
α + 1

α + 1 + β
, α + 2, β

)
+ gα+1,β

− gα+1,β

∫ 1

0

(
α + v
α + 1

)α(α + β + 1
α + β + v

)α+β+1
dv

= p̃α+1,β − gα+1,β h̃α,β.

The second assertion again follows by taking telescope sums.

Proof of Theorem 2. Combining Lemmas 2, 6 and 7, we see that α �→ p̃α,β is increasing for
α > 0. The limits are immediate from (the proof of) Theorem 1.
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Abstract: We study the joint moments of occupation times on the legs of a diffusion spider.
Specifically, we give a recursive formula for the Laplace transform of the joint moments,
which extends earlier results for a one-dimensional diffusion. For a Bessel spider, of which
the Brownian spider is a special case, our approach yields an explicit formula for the joint
moments of the occupation times.
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1. Introduction

When trying to understand and quantify the behavior of a stochastic process, we are
often faced with analyzing various functionals of the process. Such functionals include first
passage times to subsets of the state space, maximum (minimum) value up to random/fixed
times, and occupation times in subsets. The first question is, of course, whether it is possible
to find the distribution of the functional. Unfortunately, this is often not possible, or the
expression is too complicated to have any practical value. In some cases, the Laplace
transform of the distribution is more tractable for further studies than the distribution itself.
In addition, the moments of the distribution often determine the distribution uniquely via
a series expansion. Hence, being able to calculate the moments is a good contribution in
many respects. In this paper, we study the moments of occupation time functionals for a
family of stochastic processes that we call diffusion spiders. We proceed now to explain
intuitively what lies behind this notion, to give references to earlier works, and to indicate
some applications.

The process known as Walsh Brownian motion was introduced by J.B. Walsh in 1978
as an extension of the skew Brownian motion. The Walsh Brownian motion lives in R2, best
expressed using polar coordinates. When away from the origin, the angular coordinate
stays constant (so the process moves along a line), while the radial distance follows a
positive excursion from 0 of a standard Brownian motion. Intuitively and roughly speaking,
every time the process reaches the origin, a new angle is randomly selected according
to some distribution on [0, 2π). This process was brilliantly described by Walsh in the
following way [1]:

It is a diffusion which, when away from the origin, is a Brownian motion along a
ray, but which has what might be called a roundhouse singularity at the origin:
when the process enters it, it, like Stephen Leacock’s hero, immediately rides off
in all directions at once.

Entropy 2025, 27, 179 https://doi.org/10.3390/e27020179
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The construction of the Walsh Brownian motion was described in more detail by
Barlow, Pitman, and Yor [2]. We also refer to Salisbury [3] and Yano [4].

If the angle is selected according to a discrete distribution, then there are at most
countably many rays on which the diffusion lives. The state space of the process then
corresponds to a star graph with edges of infinite length, and we call such a graph a spider.
Thus, the Walsh Brownian motion can in this case be seen as an early example of a diffusion
on a graph, and this process is called a Brownian spider. An example of a spider with five
legs is given in Figure 1.

L1

L2

L3

L4

L5

Figure 1. The graph of a diffusion spider with five legs.

To make the diffusion more general, we can relax the requirement that the radial
distance follows a Brownian motion and replace it with excursions from 0 of any regular
reflected non-negative recurrent one-dimensional diffusion. In this paper, such a process is
simply called a diffusion spider, which can also be seen as an abbreviation for “diffusion
process on a spider”. The focus of this paper is on the occupation times on the legs of a
diffusion spider, that is, the amount of time that the process is located on the different
legs up to a given (fixed or random) time. If the underlying diffusion is not recurrent, we
could in principle still study occupation times on the legs of the spider, but the problem
loses much of its interest if the process at some point is located on a single leg without ever
returning to the origin. For this reason, we only consider recurrent diffusions here.

Diffusions on graphs have been subjected to intensive research at least since the pi-
oneering work by Freidlin and Wentzell [5]. We refer to Weber [6] for earlier references,
but also for a study in the direction of our paper. In addition to [1,2,7] concerning diffu-
sions on spiders, we recall, in particular, the papers by Papanicolaou, Papageorgiou, and
Lepipas [8], Vakeroudis and Yor [9], Fitzsimmons and Kuter [10], Yano [4], Csáki, Csörgő,
Földes and Révész [11,12], Ernst [13], Karatzas and Yan [14], Bayraktar and Zhang [15],
Lempa, Mordecki and Salminen [16], and Bednarz, Ernst and Osękowski [17].

For results on occupation times and other earlier references, see [4] where the joint law
of the occupation times on legs of a diffusion spider (there called a “multiray diffusion”)
is analyzed via a double Laplace transform formula generalizing the results in [7] for a
spider with excursions following a Bessel process. We also refer to [4] for a formula for
the density of the joint law. Refs. [8,9] consider the occupation times for a Brownian
spider, and [12] focus on limit theorems for local and occupation times for the Brownian
spider. One could consider other stochastic processes on a spider as well, such as random
walks [11,12] or continuous-time random walks. We leave the treatment of these interesting
topics for eventual future work; however, in this paper, we focus on diffusion spiders, since
the methods we apply for finding moment formulas do not lend themselves to a similar
treatment of discrete or jump processes. A brief overview of the work by Révész et al. on
random walks of spiders and Brownian spiders is given in [18].

As mentioned above, a skew diffusion can be seen as a special case of a diffusion spider.
Namely, a one-dimensional diffusion which is skew at 0 corresponds to a spider with two
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legs (the positive and negative half-lines), which moves like its ordinary counterpart away
from zero, but whenever it hits 0, it has a certain (skewed) probability of continuing to the
positive side next. Due to this close relation, some applications of diffusion spiders can be
anticipated by looking at applications of skew diffusions. The skew Brownian motion, in
particular, has been used in models for a large number of phenomena, such as population
dynamics over a boundary, ecosystems in rivers, pollutants diffusing in rock layers, shock
acceleration of charged particles, and brain imaging; references are given by Lejay [19] and
Ramirez et al. [20]. See Appuhamillage et al. [21] for results on the joint distribution of
occupation and local times and applications in the dispersion of a solute concentration
across an interface. Exact simulations of skew Brownian motion are discussed by Lejay
and Pichot [22], statistical aspects by Lejay, Mordecki, and Torres [23], and applications in
financial mathematics by Alvarez and Salminen [24], Rosello [25], and Hussain et al. [26].
Furthermore, we refer to Dassios and Zhang [27] for results on hitting times of Brownian
spiders and, in particular, applications in the banking business. Finally, for an application
of the Brownian spider in queueing theory, see Atar and Cohen [28].

This paper is structured as follows: In the next section, some key results from the
theory of linear diffusions are presented, which are crucial in order to introduce and
understand the notion of a diffusion spider briefly given in this section. We recall the
explicit form of the Green function (resolvent density) derived in [16]. From this expression,
we can immediately deduce some regularity properties of the Green function that are
important in the subsequent analysis. The basic mathematical tool of the paper is an
extension of Kac’s moment formula discussed in Section 3. The first main result, i.e., a
recursive formula for the joint moments of the occupation times on the legs of a diffusion
spider, is given in Theorem 3, Section 4. This can be seen as an extension of our previous
results for one-dimensional diffusions in [29]. In Section 4, we also present a new formula
for the joint Laplace transform of the occupation times, see Theorem 4, and connect this to
earlier results by Barlow et al. [7] and Yano [4]. In Section 5, some examples are discussed,
and we solve (see Theorem 5) the recursive equation for the joint moments for a Bessel
spider—of which the Brownian spider is a special case. This is our third main result. At the
end of Section 5, we also briefly return to the original Walsh Brownian motion. The proofs
of the main results are given in the Appendices A–E at the end of the paper.

2. Preliminaries

2.1. Linear Diffusions

To make the paper more self-contained, we first recall the basic facts from the theory of
linear diffusions needed to introduce the concept of a diffusion spider. Let X = (Xt)t≥0 be
a linear diffusion living on R+ = [0,+∞). Let Px denote the probability measure associated
with X when initiated at x ≥ 0. For y ≥ 0 introduce the first the hitting time via

Hy := inf{t ≥ 0 : Xt = y}.

It is assumed that X is regular and recurrent. Hence, for all x ≥ 0 and y ≥ 0 it holds that

Px
(

Hy < ∞
)
= 1.
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Moreover, we suppose that 0 is a reflecting boundary and +∞ is a natural boundary (for
the boundary classification for linear diffusions, see [30,31]). The Px-distribution of Hy is
characterized for λ > 0 via the Laplace transform

Ex

(
e−λHy

)
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ϕλ(x)
ϕλ(y)

, x ≥ y,

ψλ(x)
ψλ(y)

, x ≤ y,
(1)

where Ex refers to the expectation operator associated with X and ϕλ (ψλ) is a positive,
continuous and decreasing (increasing) solution of the generalized differential equation

Gu :=
d

dm
d

dS
u = λu, λ > 0. (2)

Here, S and m denote the scale function (strictly increasing and continuous) and the
speed measure, respectively, associated with X. Under our assumptions, m is a positive
measure. To fix ideas, we also assume that m does not have atoms and that ϕλ and ψλ

are differentiable with respect to S. Recall that ϕλ and ψλ are unique solutions—up to
multiplicative constants—of Equation (2) with the stated properties and satisfying the
associated boundary conditions. Notice also that G, when operating in an appropriate
function space, constitutes the infinitesimal generator of X. We also introduce the diffusion
X∂ with the same speed and scale as X but for which 0 is a killing boundary. For X∂ there
exist functions ϕ∂

λ and ψ∂
λ describing the distribution of Hy for X∂ similarly as is conducted

in (1) for X.
Recall that

ψ∂(0) = 0,
dψ

dS
(0+) = 0, ϕ∂ ≡ ϕ, (3)

where the notation is shortened by omitting the subindex λ. Moreover, we normalize, as
in [16],

S(0) = 0, ψ(0) = ϕ(0) = ϕ∂(0) = 1, and
dψ∂

dS
(0+) = 1. (4)

As is well known, X has a transition density p with respect to m, i.e., for a Borel subset A
of R+,

Px(Xt ∈ A) =
∫

A
p(t; x, y)m(dy),

and the Green function (resolvent density) is given by

gλ(x, y) :=
∫ ∞

0
e−λt p(t; x, y) dt

=

⎧⎨⎩w−1
λ ψ(y)ϕ(x), 0 ≤ y ≤ x,

w−1
λ ψ(x)ϕ(y), 0 ≤ x ≤ y,

(5)

with the Wronskian

wλ =
dψ

dS
(x)ϕ(x)− dϕ

dS
(x)ψ(x) = −dϕ

dS
(0+).

For later use, recall that a diffusion X with starting point X0 = 0 is called self-similar
if for any a > 0 there exists b > 0 such that

(Xat)t≥0
(d)
= (bXt)t≥0.
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Perhaps the most well-known example of a self-similar diffusion is a standard Brownian
motion starting in 0, for which the above identity holds with b =

√
a.

2.2. Diffusion Spider

Let Γ ⊂ R2 be a star graph with one vertex at the origin of R2 and R edges of infinite
length meeting in the vertex (see Figure 1 for an example). Here, such a graph is called a
spider. The edges L1, . . . , LR of the graph are known as the “rays” or—as hereafter called—
the “legs” of the spider. The ordered pair (x, i) describes the point on Γ located on leg Li

(i = 1, . . . , R) at the distance x ≥ 0 to the origin. We take the origin to be common to all
legs, i.e.,

(0, 1) = (0, 2) = · · · = (0, R),

so for simplicity we just write 0 for the origin.
Let X be the linear diffusion introduced above. On the graph Γ we consider a stochastic

process X := (Xt)t≥0 using the notation

Xt := (Xt, ρt),

where ρt ∈ {1, 2, . . . , R} indicates the leg on which Xt is located at time t and Xt is the
distance of Xt to the origin at time t measured along the leg Lρt . On each leg Li, the process X

behaves like the diffusion X until it hits 0. The process X is called a (homogeneous) diffusion
spider. We could allow different diffusions on the different legs (the inhomogeneous case),
but do not perform so in this paper. As part of the definition of the process, there are
positive real numbers βi, i = 1, . . . , R, such that ∑R

i=1 βi = 1. When X hits 0, it continues,
roughly speaking, with probability βi onto leg Li. We do not here discuss the rigorous
construction of the process, which can be performed, e.g., applying excursion theory; for
this and other approaches, see the references given in the introduction. Notations P(x,i)
and E(x,i) are used for the probability measure and expectation, respectively, when the
diffusion spider starts at point (x, i), that is, on leg number i and at a distance x from the
origin. As mentioned above, we write P0 and E0 without specifying a leg when the starting
point is the origin.

For the diffusion spider X, we introduce its Green kernel (also called the resolvent
kernel) via

Gλu(x, i) :=
∫ ∞

0
e−λtE(x,i)(u(Xt)) dt,

where (x, i) ∈ Γ, λ > 0 and u : Γ→ R is a bounded measurable function. Moreover, define

m(dx, i) := βim(dx), i = 1, . . . , R, m({0}) := 0, (6)

S(dx, i) :=
1
βi

S(x).

We call m and S the speed measure and the scale function, respectively, of X. Clearly, on
every leg Li of the diffusion spider,

d
dm

d
dS

=
d

dm
d

dS
.

Let H0 = inf{t ≥ 0 : Xt = 0} be the first hitting time of 0 for the diffusion spider X. Since
on every leg of the diffusion spider we have, loosely speaking, the same one-dimensional
diffusion, for every i = 1, 2, . . . , R and x > 0,

E(x,i)(e
−λH0) = Ex(e−λH0) = ϕλ(x). (7)
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The following theorem, proved in [16], states an explicit expression for the resolvent
density of X.

Theorem 1. The Green kernel of the diffusion spider X has a density gλ with respect to the speed
measure m, which is given for x ≥ 0 and y ≥ 0 by

gλ((x, i), (y, j)) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ϕ(y)ψ̃(x, i), x ≤ y, i = j,

ϕ(x)ψ̃(y, i), y ≤ x, i = j,

c−1
λ ϕ(y)ϕ(x), i �= j,

(8)

where
ψ̃(x, i) :=

1
βi

ψ∂(x) +
1
cλ

ϕ(x) (9)

and
cλ := − d

dS
ϕ(0+) > 0. (10)

From the properties of the functions ψ∂ and ϕ, we immediately have the following result.

Corollary 1. The resolvent density (the Green function) gλ given in (8) is continuous on Γ, and
for every i and j,

lim
(x,i)→0

gλ((x, i), (y, j)) = gλ(0, (y, j)) =
1
cλ

ϕ(y) = gλ(0, y). (11)

3. Kac’s Moment Formula

The tool that we will use to obtain the recursive expression for the joint moments is an
extended variant of the Kac moment formula. Let Y be a regular diffusion taking values on
an interval E. In spite of some conflict with our earlier notation, here we also let m, p, and
Ex (x ∈ E) denote the speed measure, the transition density and the expectation operator,
respectively, associated with Y. Moreover, let V : E �→ R be a measurable and bounded
function and define for t > 0 the additive functional

At(V) :=
∫ t

0
V(Ys)ds.

The moment formula by M. Kac for integral functionals, see [32], i.e.,

Ex
(
(At(V))n) = n

∫
E

m(dy)
∫ t

0
p(s; x, y)V(y)Ey

(
(At−s(V))n−1)ds,

is here extended into the following formula for the expected value of a product of powers
of different functionals.

Proposition 1. Let V1, . . . , VN be measurable and bounded functions on E. For t > 0, x ∈ E and
n1, . . . , nN ∈ {1, 2, . . . },

Ex

(
N

∏
k=1

(At(Vk))
nk

)
=

N

∑
k=1

nk

∫
E

m(dy)
∫ t

0
p(s; x, y)Vk(y)Ey

(
∏N

i=1(At−s(Vi))
ni

At−s(Vk)

)
ds. (12)

Proof. See Appendix A.

The Formula in (12) is instrumental in the derivation of the results in Theorems 3 and 4
presented in Section 4.2.
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4. Main Results

Let (Xt)t≥0 be a diffusion spider with R ≥ 2 legs meeting in the point 0, and let

A(i)
t :=

∫ t

0
Li (Xs)ds

be the occupation time on leg number i up to time t. Note that if the underlying diffusion
X is self-similar, it follows for any i and any fixed t ≥ 0 that

A(i)
t

(d)
= tA(i)

1 ,

meaning that for any such diffusion spider, we can equally well consider the occupation
time up to time 1 instead of a general (fixed) time t.

Figure 2 shows the radial distance from 0 as a function of time in a sample path of a
Brownian spider with five legs. The excursions from 0 are colored to specify which leg the
process is located on.

Figure 2. Sample path of the radial distance in a Brownian spider with five legs up to time 1. The five
different colors indicate on which leg of the spider the process is located at any given time.

In this section we present formulas for recursively finding the moments of occupation
times on the legs of a diffusion spider. In the first and shorter subsection we recapitulate
the result for moments of a single occupation time, which is presented in our earlier
paper [29]. In the second subsection this result is extended to joint moments of multiple
occupation times.

4.1. Moments of the Occupation Time on a Single Leg

As pointed out in Section 6.4 of [29], the occupation time on a single leg Li of a
(homogeneous) diffusion spider has the same law as the occupation time on the positive
half-line of a one-dimensional skew diffusion process with the state space R and with the
skewness parameter given by βi. Namely, the spider is mapped onto R so that the leg Li

corresponds to the positive half-line [0, ∞), while all other legs are grouped together into a
single second leg with parameter ∑k �=i βk = 1− βi, which then is taken to be the negative
half-line (−∞, 0]. When considering the occupation time on the leg Li; therefore, we can
equally well consider the occupation time on [0, ∞) of a one-dimensional diffusion.

The following results are shown in the previous paper [29], although here it is slightly
modified to comply with the notation for diffusion spiders introduced in Section 2. In
particular, note the differences mentioned in Remark 1.
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Theorem 2. The Laplace transform of the first moment of A(i)
t is given by

Lt

{
E0

(
A(i)

t

)}
(λ) =

1
λ

∫ ∞

0
gλ(0, (y, i))βi m(dy) (13)

and for the higher moments, n ≥ 2, recursively by

Lt

{
E0

(
(A(i)

t )n
)}

(λ) =
n

∑
k=1

n!D(i)
k (λ)

(n− k)!λkLt

{
E0

(
(A(i)

t )n−k
)}

(λ)

+
n!

λn−1Lt

{
E0(A(i)

t )

}
(λ)− n!

λn+1

n

∑
k=1

D(j)
k (λ), (14)

where Lt denotes the Laplace transform with respect to t of the function in curly brackets, λ is the
Laplace parameter, and

D(i)
k (λ) :=

λk

(k− 1)!

∫ ∞

0
gλ(0, (y, i))E(y,i)(Hk−1

0 e−λH0)βi m(dy). (15)

Furthermore, if X is self-similar, then for any λ > 0,

E0

(
(A(i)

1 )n
)
= E0

(
A(i)

1

)
−

n

∑
k=1

D(i)
k (λ)

(
1− E0

(
(A(i)

1 )n−k
))

, (16)

and, in particular, D(i)
k (λ) does not depend on λ for any i = 1, . . . , R and k = 1, 2, . . . .

The proof is given in [29] (Theorem 2) with some minor notational differences.

Remark 1. Note the following:

1. The one-dimensional diffusion X on R with speed measure m, in the setting of the other
paper [29], here really corresponds to a two-legged diffusion spider X with speed measure m,
which is why m(dx) has been replaced by βim(dx) in (13) and (15), in accordance with (6).

2. There is a sign change in the factor D(i)
k (λ) as defined in (15) compared to the corresponding

expression in [29].
3. The variable λ is not at all present on the left hand side of (16), and (using induction) we

conclude that the factors D(i)
k (λ) cannot depend on λ either. Thus, the value λ > 0 can

be chosen arbitrarily. As a side note, this is the reason why a factor λk is included in the
expression for D(i)

k (λ) in (15).

4.2. Joint Moments

The result in the previous section (from [29]) is here extended to a recursive formula
for the Laplace transforms of the joint moments of the occupation times on multiple legs of
a diffusion spider. For self-similar spiders we have a recursive formula directly for the joint
moments, as in the case of the occupation time on one leg, cf. (16) in Theorem 2.

Theorem 3. For r ∈ {2, . . . , R} and n1, . . . , nr ≥ 1,

Lt

{
E0

(
r

∏
i=1

(A(i)
t )ni

)}
(λ) =

r

∑
i=1

ni

∑
k=1

ni!D
(i)
k (λ)

(ni − k)!λkLt

{
E0

⎛⎝∏r
j=1(A(j)

t )nj

(A(i)
t )k

⎞⎠}(λ), (17)
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where D(i)
k is defined in (15). If X is self-similar, then for any λ > 0,

E0

(
r

∏
i=1

(A(i)
1 )ni

)
=

r

∑
i=1

ni

∑
k=1

(ni
k )

(n1+...+nr
k )

D(i)
k (λ)E0

⎛⎝∏r
j=1(A(j)

1 )nj

(A(i)
1 )k

⎞⎠. (18)

Proof. See Appendix B.

Remark 2. Despite the similarity, Theorem 2 does not follow by letting r = 1 in Theorem 3. On
the right-hand sides of equations (14) and (16) are not only the respective parts corresponding to
(17) and (18) with r = 1, but also some additional terms. This difference seems to originate from
the fact that up to the first hitting time of 0, the occupation time on the starting leg is equal to the
elapsed time (and, hence, positive), while the occupation time on any other leg is zero. Therefore, any
product of occupation times on more than one leg is also zero up to time H0, as can be seen in (A2),
and even though we let the starting point tend to 0 when deriving the aforementioned theorems,
there remains still a component which is nonzero in the case of a single leg but zero for the joint
moments. With this in mind, Theorem 3 should not be seen as a replacement of Theorem 2 but as a
complement to it.

The result in Theorem 3 tells us that if we know the Green kernel of the diffusion
spider X, we can recursively compute any joint moments of the occupation times on a
number of legs. Recall also from (7) that for y > 0

E(y,i)
(

Hk
0e−λH0

)
= Ey

(
Hk

0e−λH0
)
= (−1)k dk

dλk ϕλ(y),

i.e., we have all the ingredients needed to calculate the factors D(i)
k using the integral

expression in (15).
The generalized version of Kac’s moment formula in Proposition 1 is now used to

derive a moment generating function of the occupation times on the legs of a diffusion
spider up to an exponential time T.

Theorem 4. Let T be exponentially distributed with mean 1/λ, λ > 0, and independent of X.
Then, for any z1, . . . , zR ≥ 0,

E0

(
exp

(
−

R

∑
i=1

zi A
(i)
T

))
=

1−
R

∑
j=1

λzj

λ + zj

∫ ∞

0
gλ(0, (y, j))

(
1− E(y,j)(e

−(λ+zj)H0)
)

β j m(dy)

1 +
R

∑
j=1

zj

∫ ∞

0
gλ(0, (y, j))E(y,j)(e

−(λ+zj)H0)β j m(dy)

. (19)

Proof. See Appendix C.

Formula (21) in the next corollary is due to Yano [4] (Theorem 3.5); see also Theorem 4
in Barlow, Pitman, and Yor [7], where the formula is presented for Bessel spiders (more on
them in Section 5.1). We prove here that (20) is equivalent to our formula (19). For a Bessel
spider, cλ is as given in (22), and notice that this formula shows that the inverse of the local
time at 0 of the underlying reflecting Bessel process is a stable subordinator.
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Corollary 2. For r ∈ {1, 2, . . . , R} and zi > 0, i = 1, 2, . . . , r,

E0

(
exp

(
−

r

∑
i=1

zi A
(i)
T

))
=

1−
r

∑
j=1

β j +
r

∑
j=1

λ β j

λ + zj

cλ+zj

cλ

1−
r

∑
j=1

β j +
r

∑
j=1

β j
cλ+zj

cλ

, (20)

where (cf. (10))

cλ := − d
dS

ϕλ(0+) > 0.

In particular, for zi > 0, i = 1, 2, . . . , R,

E0

(
exp

(
−

R

∑
i=1

zi A
(i)
T

))
=

1
R

∑
j=1

β j cλ+zj

R

∑
j=1

λ β j cλ+zj

λ + zj
. (21)

Proof. See Appendix D.

5. Examples

In this section we highlight our results by analyzing a few different diffusion spiders,
first and foremost Bessel spiders. For the Brownian spider, which is an important special
case of Bessel spiders, it is possible to pursue the formulas further, and this evaluation
is presented in a subsection of its own. Finally, we make some comments concerning
occupation times for Walsh Brownian motion.

5.1. Bessel Spider

A Bessel process of dimension n and parameter ν := n/2− 1, where n is a positive
integer, corresponds to the Euclidean norm of an n-dimensional Brownian motion. The
n-dimensional Bessel process has the generator

G f =
1
2

d2 f
dx2 +

n− 1
2x

d f
dx

, x > 0,

which makes sense not only for integers n but any real values and, hence, any real parameter
ν. We define the Bessel spider as a diffusion spider that behaves like a Bessel process with
parameter ν ∈ (−1, 0) (i.e., dimension 2 + 2ν) on each leg and has the corresponding
excursion probabilities βi > 0, i = 1, 2, . . . R, such that β1 + · · ·+ βR = 1. The restriction
on ν to (−1, 0) is so that the process is recurrent and hits 0; see [31] (p. 77). We now let X be
a Bessel spider with R ≥ 2 legs and apply the result in Theorem 3.

The Bessel spider has the self-similar property, which means that the recurrence
equation in (18) applies. Recall that this recurrence hinges on the factors D(i)

k given in (15).
For the purpose of finding gλ(0, (y, i)), that is, where the point y is on a particular leg Li,
we follow the procedure leading to Theorem 1. For the reflected Bessel diffusion on [0,+∞),
we have from [31] (p. 137) that

m(dx) = 2x2v+1dx, S(x) = − 1
2ν

x−2ν, ϕλ(x) = x−νKν(x
√

2λ),

where Kν is a modified Bessel function of the second kind. Then

cλ := − d
dS

ϕ(0+) =

(
2√
2λ

)ν

Γ(ν + 1) = 2ν/2Γ(ν + 1) λ−ν/2 (22)
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and, hence,

gλ(0, (y, i)) =
1

Γ(ν + 1)

(√
2λ

2

)ν

y−νKν(y
√

2λ).

Note that gλ(0, (y, i)) is the same for all i. Similarly, the hitting time H0 when starting
in y ∈ Li corresponds precisely to the hitting time of zero in the reflected Bessel process.
The values of D(i)

k are calculated as in [29] (Proof of Theorem 3), but note that a different
normalization is used for m and S in that paper. This way, we get for any λ > 0 that

D(i)
k (λ) = −βi

(
ν + k− 1

k

)
= − βi

k!

k

∑
j=1

[
k
j

]
νj, (23)

where [nk] are unsigned Stirling numbers of the first kind. In the rest of this section, we will

drop λ and only write D(i)
k , as its value does not depend on λ.

As explained in Section 4.1, when only considering the occupation time on a single
leg Li, we can directly use the earlier obtained results for skew two-sided Bessel processes.
Hence, by [29] (Theorem 4), the nth moment of the occupation time on Li up to time 1 is
given by

E0

(
(A(i)

1 )n
)
=

n

∑
l=1

l

∑
k=1

(−1)k−1 Γ(k)
Γ(n)

[
n
l

]{
l
k

}
νl−1βk

i , (24)

where {n
k} are Stirling numbers of the second kind.

Using the recurrence equation in Theorem 3, the result in (24) is here extended to an
explicit formula for the joint moments of the occupation times on multiple legs in a Bessel
spider with R ≥ 2 legs. With the numbering of legs being arbitrary, it should be clear that
the formula—although written for the first r legs of the spider—holds when considering
the occupation times on any number r of the R legs. Contrary to the recursive formula in
Theorem 3 (see Remark 2), this formula also holds when r = 1.

Theorem 5. For any r ∈ {1, . . . , R} and n1, . . . , nr ≥ 1,

E0

(
r

∏
i=1

(A(i)
1 )ni

)
= ∑

1≤k1≤l1≤n1

· · · ∑
1≤kr≤lr≤nr

(−1)K−1 Γ(K)
Γ(N)

νL−1
r

∏
j=1

[
nj

lj

]{
lj

kj

}
β

kj
j , (25)

where N = n1 + · · ·+ nr, K = k1 + · · ·+ kr and L = l1 + · · ·+ lr.

A proof of the theorem is given in Appendix E. For a particularly simple instance of
the theorem above, consider the joint first moment of the occupation times on r legs in the
Bessel spider.

Corollary 3. For any r ∈ {1, . . . , R},

E0

(
A(1)

1 A(2)
1 · · · A

(r)
1

)
= (−ν)r−1β1β2 · · · βr. (26)

Proof. Immediate from (25) with n1 = · · · = nr = 1.

The first few moments of the occupation times up to time t on one or two legs of a
Bessel spider are given in Table 1. Recall that since the Bessel spider is self-similar, the
(joint) moments of the occupation times on the legs up to a fixed time t satisfy

E0

((
A(i)

t
)n1
(

A(j)
t
)n2
)
= tn1+n2 E0

((
A(i)

1
)n1
(

A(j)
1
)n2
)

.
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Using this, the moments are found directly from Theorem 5. The variance, covariance, and
correlation coefficients are also included in the table. Note, as expected, that the correlation
coefficient is always negative and does not depend on the time t or the Bessel parameter ν.
If the spider has only two legs, so that β1 = 1− β2, the process is always located on either
of the legs and the correlation coefficient of the occupation times on the legs is then equal
to −1.

Table 1. Some moments and descriptive statistics for the occupation times on the legs of a
Bessel spider.

Moment/Statistic Value

E0

(
A(i)

t

)
tβi

E0

((
A(i)

t
)2
)

t2βi(1 + ν− νβi)

E0

(
A(i)

t A(j)
t

)
−t2νβiβ j

Var
(

A(i)
t

)
t2(1 + ν)βi(1− βi)

Cov
(

A(i)
t , A(j)

t

)
, i �= j −t2(1 + ν)βiβ j

Corr
(

A(i)
t , A(j)

t

)
, i �= j −

√
βi β j

(1−βi)(1−β j)

5.2. Brownian Spider

The special case of a Bessel spider with the parameter ν = − 1
2 is the Brownian spider

mentioned in the introduction, also known as Walsh Brownian motion on a finite number of
legs. In this case, the result in Theorem 5 has the following, somewhat simpler expression.

Theorem 6. Let X be a Brownian spider and let A(i)
1 be the occupation time on leg Li up to time 1.

For any r ∈ {1, . . . , R} and n1, . . . , nr ≥ 1,

E0

(
r

∏
i=1

(A(i)
1 )ni

)
=

n1

∑
k1=1
· · ·

nr

∑
kr=1

2−(2N−K−1) Γ(K)
Γ(N)

r

∏
j=1

Γ(2nj − kj) β
kj
j

Γ(kj)Γ(nj − kj + 1)
, (27)

where N = n1 + · · ·+ nr and K = k1 + · · ·+ kr.

Proof. The result follows from (25) and the identity

n

∑
i=k

[
n
i

]{
i
k

}
(−2)n−i = (−1)n−k (2n− k− 1)!

2n−k(k− 1)!(n− k)!
=: b(n, k),

where b(n, k) is a (signed) Bessel number of the first kind. For proofs of this identity and
some related ones, see [33,34].

5.3. Walsh Brownian Motion

Finally, we briefly return to the Walsh Brownian motion in its original form. As the
state space can be the entire R2 and is not restricted to a spider graph with a fixed number of
legs, in this section we follow Walsh’s terminology and talk about “rays” rather than “legs”,
although it should be clear that the meaning is the same. Here, the diffusion behaves like a
Brownian motion on each ray, and when it reaches the origin, the direction θ of the next ray
is selected according to some given distribution on [0, 2π). As we have already studied the
case when this distribution is discrete, i.e., the number of rays is at most countable, we now
consider a continuous distribution.
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The diffusion will, almost surely, choose a new direction every time it reaches 0, so
that it visits no ray more than once. Furthermore, the probability of visiting a particular
ray (i.e., a ray whose angle is a fixed value) is zero. For this reason, it is not meaningful
to consider the occupation times on specific rays in this case. Rather, we can consider the
occupation times within sectors of the R2 plane. Let 0 = θ0 < θ1 < θ2 < · · · < θR = 2π be
fixed angles and let Si consist of all points with angle in [θi−1, θi), so that R2 is partitioned
into R non-overlapping sectors S1, S2, . . . , SR. If Θ(Xt) denotes the angle of the ray on
which the diffusion X is located at time t, then

A(Si)
t =

∫ t

0
[θi−1,θi)

(Θ(Xs))ds

is the occupation time of the diffusion within sector Si up to time t. This is illustrated
in Figure 3, which contains a plot of a simulated Walsh Brownian motion. Each line
corresponds to an excursion along a ray from the origin, and the length of each line is
proportional to the maximal height of that excursion. The R2 plane has been divided
into five separate sectors of equal size, each with its own color, and we may consider the
occupation time of the process in these sectors.

Figure 3. Plot of excursions from the origin of a simulated Walsh Brownian motion.

With respect to the occupation time on a sector, the outcome is the same as if all rays
within the sector were combined and mapped onto a single ray. Therefore, the occupation
times of a Walsh Brownian motion in the sectors S1, . . . , SR correspond precisely to the
occupation times on the R legs of a Brownian spider. Thus, the result in Theorem 6 applies
for the occupation times on sectors of a Walsh Brownian motion, with βi being equal to
the probability of selecting an angle within sector Si when at the origin. Naturally, if the
diffusion behaves like a Bessel process with parameter ν ∈ (−1, 0) on each ray (this could,
perhaps, be called a “Walsh Bessel process”), then Theorem 5 applies instead.
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Appendix A

Proof of Proposition 1. We prove the statement for N = 2, as the proof is analogous for
any N > 2. Restating the equation above with N = 2, what we want to prove is that

Ex(At(V1))
n1 At(V2))

n2) =n1

∫
E

m(dy)
∫ t

0
p(s; x, y)V1(y)Ey

(
At−s(V1))

n1−1 At−s(V2))
n2
)

ds

+ n2

∫
E

m(dy)
∫ t

0
p(u; x, y)V2(y)Ey

(
At−u(V1))

n1 At−u(V2))
n2−1

)
du.

Expanding the powers of At(V1) and At(V2) on the left hand side, we get

Ex(At(V1))
n1 At(V2))

n2)

= Ex

(∫ t

0
ds1 · · ·

∫ t

0
dsn1

∫ t

0
du1 · · ·

∫ t

0
dun2 V1(Ys1) · · ·V1(Ysn1

) ·V2(Yu1) · · ·V2(Yun2
)

)
= n1Ex

(∫ t

0
ds1V1(Ys1)

∫ t

s1

ds2 · · ·
∫ t

s1

dun2 V1(Ys2) · · ·V2(Yun2
)

)
+ n2Ex

(∫ t

0
dun2 V2(Yun2

)
∫ t

un2

ds1 · · ·
∫ t

un2

dun2−1 V1(Ys1) · · ·V2(Yun2−1)

)

= n1

∫ t

0
ds1Ex

(
V1(Ys1)

∫ t−s1

0
ds2 · · ·

∫ t−s1

0
dun2 V1(Ys1+s2) · · ·V2(Ys1+un2

)

)
+ n2

∫ t

0
dun2 Ex

(
V2(Yun2

)
∫ t−un2

0
ds1 · · ·

∫ t−un2

0
dun2−1 V1(Yun2+s1) · · ·V2(Yun2+un2−1)

)
= n1

∫ t

0
ds1

∫
E

m(dy)p(s1; x, y)V1(y)Ey

(
At−s1(V1))

n1−1 At−s1(V2))
n2
)

+ n2

∫ t

0
dun2

∫
E

m(dy)p(un2 ; x, y)V2(y)Ey

(
At−un2

(V1))
n1 At−un2

(V2))
n2−1

)
,

where we have used the symmetry of the integrand in the second step and the strong
Markov property in the final step. After a change of the order of the integration, justified
by Fubini’s theorem, the desired result follows.

Remark A1. In the proof above, it is assumed that all values n1, . . . , nN are strictly positive
integers. However, (12) may hold even if some (but not all) of these values are zero. Note that the
factor nk in the terms on the right hand side ensures that any term with nk = 0 will not contribute,
as long as the integral in that term is convergent. Suppose that for any starting point Y0 = y of
the underlying diffusion for which Vk(y) �= 0, it almost surely holds that At(Vk) > 0 when t > 0,
and |At(Vk)| ≥ |At(Vi)|, ∀i = 1, . . . , N when t→ 0. Then, the denominator At−s(Vk) inside the
expected value is nonzero except possibly when s → t, in which case all factors in the numerator
(and there is at least one) tend to zero as well, and at least as "fast". The first condition holds, for
instance, if Vk is non-negative everywhere and continuous in y, as the diffusion Y is assumed to be
regular. Observe that one choice of functions Vk that satisfies both these conditions is to take the
indicator functions on the legs of a spider, i.e., Vk = �Lk , which is the case of interest in this paper.
Technically, the point 0 should be excluded from the indicator functions for the conditions to hold
also when 0 is the starting point, but assuming that 0 is not a sticky point (as we perform in this
paper), that will not make a difference.
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Appendix B

Proof of Theorem 3. We first remark that the expression on the right hand side of (17) is
well defined since P0

(
A(i)

t > 0
)
= 1 for all t > 0 and i = 1, 2, . . . , R. The procedure below

closely follows the proof of Theorem 2 in [29], with the main difference being that instead of
the original Kac’s moment formula we use the generalized version given in Proposition 1.
Proving the result for r = 2 should be sufficient, since the method is the same for any
higher values of r (you only need to include more terms of similar form).

With r = 2, the claimed identity (17) can be written as

Lt

{
E0

(
(A(1)

t )n1(A(2)
t )n2

)}
(λ) =

n1

∑
k=1

n1!D(1)
k (λ)

(n1 − k)!λkLt

{
E0

(
(A(1)

t )n1−k(A(2)
t )n2

)}
(λ)

+
n2

∑
k=1

n2!D(2)
k (λ)

(n2 − k)!λkLt

{
E0

(
(A(1)

t )n1(A(2)
t )n2−k

)}
(λ). (A1)

Note that the numbering of the diffusion spider legs is arbitrary, so any two legs could be
considered, even though they are here numbered 1 and 2.

Assume first that the diffusion starts on one of the legs at a distance x from the origin.
Without the loss of generality, we will write that it starts on the first leg L1. Before the
diffusion hits 0 for the first time, the occupation time on the starting leg L1 equals the entire
elapsed time, while the occupation time on any other leg stays zero. Thus, applying the
strong Markov property at the first hitting time of 0, we have

A(1)
t =

⎧⎨⎩H0 + A(1)
t−H0

◦ θH0
, H0 < t,

t, H0 ≥ t,

while for any other leg,

A(k)
t =

⎧⎨⎩A(k)
t−H0

◦ θH0
, H0 < t,

0, H0 ≥ t,
(k > 1).

where θt is the usual shift operator and the use of the composition ◦ should here be
understood as

A(i)
t ◦ θu :=

∫ t

0
�Li

(
(Xs ◦ θu)(ω)

)
ds =

∫ t

0
�Li (Xu+s)ds.

From this we obtain, for any n1, n2 ≥ 1,

(A(1)
t )n1(A(2)

t )n2 =

⎧⎨⎩∑n1
k=0 (

n1
k )Hk

0(A(1)
t−H0

◦ θH0
)n1−k(A(2)

t−H0
◦ θH0

)n2 , H0 < t,

0, H0 ≥ t,
(A2)

and

E(x,1)

(
(A(1)

t )n1(A(2)
t )n2

)
=

n1

∑
k=0

(
n1

k

) ∫ t

0
E0

(
(A(1)

t−s)
n1−k(A(2)

t−s)
n2
)

sk f (x, 1; s)ds,

where f (x, 1; t) denotes the P(x,1)-density of H0. Taking the Laplace transform with respect
to t, we first recall that

Lt{ f (x, 1; t)}(λ) =
∫ ∞

0
e−λtPx(H0 ∈ dt) = E(x,1)

(
e−λH0

)
,
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and

Lt{tk f (x, 1; t)}(λ) = (−1)k dk

dλkLt{ f (x, 1; t)}(λ) = E(x,1)
(

Hk
0e−λH0

)
,

so that we obtain, using the formula for the Laplace transform of a convolution,

Lt

{
E(x,1)

(
(A(1)

t )n1(A(2)
t )n2

)}
(λ) =

n1

∑
k=0

(
n1

k

)
E(x,1)

(
Hk

0e−λH0
)
Lt

{
E0

(
(A(1)

t )n1−k(A(2)
t )n2

)}
(λ). (A3)

On the right hand side of the equation, the starting point (x, 1) is only part of the expression
involving the hitting time H0, while the Laplace transform of the joint moments instead
has the starting point 0. The equation above is now used together with Kac’s moment
formula to obtain a recursive formula for (the Laplace transform of) the joint moments of
the occupation times on the different legs. Proposition 1 yields

Lt

{
E(x,1)

(
(A(1)

t )n1(A(2)
t )n2

)}
(λ) = n1

∫ ∞

0
gλ((x, 1), (y, 1))Lt

{
E(y,1)

(
(A(1)

t )n1−1(A(2)
t )n2

)}
(λ) β1 m(dy)

+ n2

∫ ∞

0
gλ((x, 1), (y, 2))Lt

{
E(y,2)

(
(A(1)

t )n1(A(2)
t )n2−1

)}
(λ) β2 m(dy),

and inserting the expression in (A3) on both sides gives

n1

∑
k=0

(
n1

k

)
E(x,1)

(
Hk

0e−λH0
)
Lt

{
E0

(
(A(1)

t )n1−k(A(2)
t )n2

)}
(λ)

= n1

n1−1

∑
k=0

(
n1 − 1

k

)
Lt

{
E0

(
(A(1)

t )n1−k−1(A(2)
t )n2

)}
(λ)

∫ ∞

0
gλ((x, 1), (y, 1))E(y,1)

(
Hk

0e−λH0
)

β1 m(dy)

+ n2

n2−1

∑
k=0

(
n2 − 1

k

)
Lt

{
E0

(
(A(1)

t )n1(A(2)
t )n2−k−1

)}
(λ)

∫ ∞

0
gλ((x, 1), (y, 2))E(y,2)

(
Hk

0e−λH0
)

β2 m(dy).

Note that the second integral is taken over points (y, 2) that lie on the second leg L2,
which is why in that case the expression in (A3) is inserted with the roles of n1 and n2

interchanged. We now let x → 0 on both sides of the equation above. For this, recall
from [29] (Lemma 1) that

lim
x→0

E(x,1)
(

Hk
0e−λH0

)
=

⎧⎨⎩1, k = 0,

0, k ≥ 1,

and by Corollary 1 we may take the limit inside the integrals to obtain

Lt

{
E0

(
(A(1)

t )n1(A(2)
t )n2

)}
(λ)

=
n1

∑
k=1

n1!
(n1 − k)!

Lt

{
E0

(
(A(1)

t )n1−k(A(2)
t )n2

)}
(λ)

1
(k− 1)!

∫ ∞

0
gλ(0, (y, 1))E(y,1)

(
Hk−1

0 e−λH0
)

β1 m(dy)

+
n2

∑
k=1

n2!
(n2 − k)!

Lt

{
E0

(
(A(1)

t )n1(A(2)
t )n2−k

)}
(λ)

1
(k− 1)!

∫ ∞

0
gλ(0, (y, 2))E(y,2)

(
Hk−1

0 e−λH0
)

β2 m(dy),

where also the summation index is changed. This is equivalent to (A1) when introducing
D(i)

k (λ) as defined in (15), and this proves the first part of the theorem.
For a self-similar spider,

(A(1)
t )n1(A(2)

t )n2
(d)
= tn1+n2(A(1)

1 )n1(A(2)
1 )n2 ,
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and, in this case,

Lt

{
E0

(
(A(1)

t )n1(A(2)
t )n2

)}
(λ) =

(n1 + n2)!
λn1+n2+1 E0

(
(A(1)

1 )n1(A(2)
1 )n2

)
.

Hence, for self-similar spiders, the expression in (A1) simplifies to

E0

(
(A(1)

1 )n1(A(2)
1 )n2

)
=

n1

∑
k=1

(n1
k )

(n1+n2
k )

D(1)
k (λ)E0

(
(A(1)

1 )n1−k(A(2)
1 )n2

)
+

n2

∑
k=1

(n2
k )

(n1+n2
k )

D(2)
k (λ)E0

(
(A(1)

1 )n1(A(2)
1 )n2−k

)
. (A4)

This proves the second part of the theorem for r = 2, and the proof is easily extended for
higher r.

Appendix C

Proof of Theorem 4. If the diffusion spider starts in the point (x, j), that is, on a particular
leg Lj, then up to the time H0 the occupation time on the leg Lj is equal to the time elapsed,
while the occupation time on any other leg is zero. Hence, for any i ∈ {1, . . . , R},

A(i)
t =

⎧⎨⎩H0 �{i=j} + A(i)
t−H0

◦ θH0
, H0 < t,

t�{i=j}, H0 ≥ t.

To prove the theorem, we first consider the left hand side of (19) with a general starting
point (x, j) instead of 0 and split the analysis into the two events whether the diffusion
spider hits 0 before the exponential time T or not. This gives the two parts

E(x,j)

(
exp

(
−

R

∑
i=1

zi A
(i)
T

)
; H0 ≥ T

)
= E(x,j)

(
e−zjT ; H0 ≥ T

)
=

λ

λ + zj

(
1− E(x,j)

(
e−(λ+zj)H0

))
and

E(x,j)

(
exp

(
−

R

∑
i=1

zi A
(i)
T

)
; H0 < T

)
= E(x,j)

(
e−zj H0 ; H0 < T

)
E0

(
exp

(
−

R

∑
i=1

zi A
(i)
T

))

= E(x,j)

(
e−(λ+zj)H0

)
E0

(
exp

(
−

R

∑
i=1

zi A
(i)
T

))
,

where in the second part we have used the strong Markov property to restart the process
when it first hits 0, as well as the memoryless property of the exponential distribution.
Combining both parts gives

E(x,j)

(
exp

(
−

R

∑
i=1

zi A
(i)
T

))
=

λ

λ + zj
+

(
E0

(
exp

(
−

R

∑
i=1

zi A
(i)
T

))
− λ

λ + zj

)
E(x,j)

(
e−(λ+zj)H0

)
. (A5)

The significance of this expression is that on the right hand side the dependency on the
starting position (x, j) is contained only in a function of the first hitting time H0, while the
moment generating function of the occupation times has the starting point 0 instead.
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As the left hand side of (A5) can be written

E(x,j)

(
exp

(
−

R

∑
i=1

zi A
(i)
T

))
=
∫ ∞

0
E(x,j)

(
exp

(
−

R

∑
i=1

zi A
(i)
t

))
λe−λt dt, (A6)

we will, for the moment, consider the expression with a fixed time t rather than the
exponential time T. Expanding as a sum of joint moments, we obtain

E(x,j)

(
exp

(
−

R

∑
i=1

zi A
(i)
t

))
=

∞

∑
N=0

(−1)N

N!
E(x,j)

⎛⎝( R

∑
i=1

zi A
(i)
t

)N
⎞⎠

=
∞

∑
N=0

(−1)N

N!
E(x,j)

⎛⎜⎜⎝ ∑
n1,...,nR≥0

n1+···+nR=N

N!
n1!n2! · · · nR!

R

∏
i=1

(zi A
(i)
t )ni

⎞⎟⎟⎠
=

∞

∑
N=0

∑
n1,...,nR≥0

n1+···+nR=N

(
R

∏
l=1

(−zl)
nl

nl !

)
E(x,j)

(
R

∏
i=1

(A(i)
t )ni

)
. (A7)

The generalized Kac’s moment Formula (12) with the functions Vk(x) = �Lk (x) (and
formulated for the spider) becomes

E(x,j)

(
R

∏
i=1

(A(i)
t )ni

)
=

R

∑
i=1

ni

∫ ∞

0
βim(dy)

∫ t

0
p(s; (x, j), (y, i))E(y,i)

(
∏R

k=1(A(k)
t−s)

nk

A(i)
t−s

)
ds, (A8)

where p(s; (x, j), (y, i)) denotes the transition density of the spider. Next, Equation (A8)
is inserted in (A7), bearing in mind that by Remark A1 this can be performed even when
some of the values n1, . . . , nR are zero. The exception is the term for N = 0, since at least
one of the ni has to be strictly positive, so this term (which evaluates to 1) is separated from
the rest of the sum. This yields

E(x,j)

(
exp

(
−

R

∑
i=1

zi A
(i)
t

))

= 1 +
∞

∑
N=1

∑
n1,...,nR≥0

n1+···+nR=N

(
R

∏
l=1

(−zl)
nl

nl !

)
R

∑
i=1

ni

∫ ∞

0
βi m(dy)

∫ t

0
p(s; (x, j), (y, i))E(y,i)

(
∏R

k=1(A(k)
t−s)

nk

A(i)
t−s

)
ds

= 1 +
R

∑
i=1

∫ ∞

0
βi m(dy)

∫ t

0
p(s; (x, j), (y, i))

∞

∑
N=0

∑
n1,...,nR≥0

n1+···+nR=N

(−zi)

(
R

∏
l=1

(−zl)
nl

nl !

)
E(y,i)

(
R

∏
k=1

(A(k)
t−s)

nk

)
ds

= 1−
R

∑
i=1

zi

∫ ∞

0
βi m(dy)

∫ t

0
p(s; (x, j), (y, i))E(y,i)

(
exp

(
−

R

∑
i=1

zi A
(i)
t−s

))
ds.

Note that the summation indices N and ni have both been shifted by one in the third step
and that in the last step (A7) has been applied again. From (A6) and the above, we obtain
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E(x,j)

(
exp

(
−

R

∑
i=1

zi A
(i)
T

))
= λLt

{
E(x,j)

(
exp

(
−

R

∑
i=1

zi A
(i)
t

))}
(λ)

=
λ

λ
− λ

R

∑
i=1

zi

∫ ∞

0
Lt

{∫ t

0
p(s; (x, j), (y, i))E(y,i)

(
exp

(
−

R

∑
i=1

zi A
(i)
t−s

))
ds

}
(λ) βi m(dy)

= 1− λ
R

∑
i=1

zi

∫ ∞

0
gλ((x, j), (y, i))Lt

{
E(y,i)

(
exp

(
−

R

∑
i=1

zi A
(i)
t

))}
(λ) βi m(dy)

= 1−
R

∑
i=1

zi

∫ ∞

0
gλ((x, j), (y, i))E(y,i)

(
exp

(
−

R

∑
i=1

zi A
(i)
T

))
βi m(dy). (A9)

We now insert (A5) into the right hand side of (A9) and let x → 0 on both sides. This gives

E0

(
exp

(
−

R

∑
i=1

zi A
(i)
T

))
= 1−

R

∑
i=1

zi

∫ ∞

0
gλ(0, (y, i))

λ

λ + zi

(
1− E(y,i)

(
e−(λ+zi)H0

))
βi m(dy)

− E0

(
exp

(
−

R

∑
i=1

zi A
(i)
T

)) R

∑
i=1

zi

∫ ∞

0
gλ(0, (y, i))E(y,i)

(
e−(λ+zi)H0

)
βi m(dy),

which, when solved for the left hand side expression, results in the claimed formula (19).

Appendix D

Proof of Corollary 2. Recall from (11) that

gλ(0, (y, j)) =
1
cλ

ϕλ(y)

and from (7)
E(y,j)(e

−(λ+zj)H0) = ϕλ+zj(y).

Hence, (19) can be rewritten

E0

(
exp

(
−

r

∑
i=1

zi A
(i)
T

))
=

1−
r

∑
j=1

λ β j zj

cλ (λ + zj)

(∫ ∞

0
ϕλ(y)m(dy)−

∫ ∞

0
ϕλ(y)ϕλ+zj(y)m(dy)

)

1 +
r

∑
j=1

β j zj

cλ

∫ ∞

0
ϕλ(y)ϕλ+zj(y)m(dy)

.

For the integrals, we have (cf. [29], proof of Corollary 1)

λ
∫ ∞

0
ϕλ(y)m(dy) = cλ,

zj

∫ ∞

0
ϕλ(y)ϕλ+zj(y)m(dy) = −cλ + cλ+zj

by which the previous equation becomes

E0

(
exp

(
−

r

∑
i=1

zi A
(i)
T

))
=

1−
r

∑
j=1

(
λ β j zj

λ + zj

)(
1
λ
+

1
zj

)
+

r

∑
j=1

λ β j

λ + zj

cλ+zj

cλ

1−
r

∑
j=1

β j +
r

∑
j=1

β j
cλ+zj

cλ

from which (20) easily follows, and (21) is immediate since ∑R
j=1 β j = 1.
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Appendix E

Proof of Theorem 5. The known Equation (24) coincides with (25) where r = 1, showing
that the theorem holds in that particular case. As in the proof of Theorem 3, we here prove
the statement for r = 2, say the two legs L1 and L2 in the Bessel spider. This will be enough
to demonstrate the procedure, which can then readily be repeated for a larger value of r
with more tedious but hardly more difficult work.

To begin with, we repeat the statement in (25) for r = 2:

E0

(
(A(1)

1 )n1(A(2)
1 )n2

)
=

n1

∑
l1=1

l1

∑
k1=1

n2

∑
l2=1

l2

∑
k2=1

(−1)k1+k2−1 Γ(k1 + k2)

Γ(n1 + n2)

[
n1

l1

]{
l1
k1

}[
n2

l2

]{
l2
k2

}
νl1+l2−1βk1

1 βk2
2 . (A10)

We prove this statement by induction using the recurrence in (18) and the known moment
formula (24) for the occupation time on a single leg. For the simplest case n1 = n2 = 1, we
see from (18) that

E0

(
A(1)

1 A(2)
1

)
=

1
2

D(1)
1 E0

(
A(2)

1

)
+

1
2

D(2)
1 E0

(
A(1)

1

)
= −β1β2ν,

since D(i)
1 = −βiν and E0(A(i)

1 ) = βi. Thus, (A10) holds in this case. Assume now
that (A10) holds whenever {1 ≤ n1 ≤ a− 1, 1 ≤ n2 ≤ b} or {1 ≤ n1 ≤ a, 1 ≤ n2 ≤ b− 1}
for some integers a, b ≥ 1. We proceed to show that then (A10) holds also for n1 = a, n2 = b.

First, we apply the recurrence Equation (18) to obtain

E0

(
(A(1)

1 )a(A(2)
1 )b

)
=

D(1)
a

(a+b
a )

E0

(
(A(2)

1 )b
)
+

a−1

∑
i=1

(a
i)

(a+b
i )

D(1)
i E0

(
(A(1)

1 )a−i(A(2)
1 )b

)

+
D(2)

b

(a+b
b )

E0

(
(A(1)

1 )a
)
+

b−1

∑
i=1

(b
i)

(a+b
i )

D(2)
i E0

(
(A(1)

1 )a(A(2)
1 )b−i

)
. (A11)

Here, we have separated the terms with moments of the occupation time on only one leg,
for which (24) applies, and the terms with joint moments of the occupation times on both
legs, for which we can apply the induction assumption. In the first case, we insert the
expressions in (23) and (24) to obtain

D(1)
a

(a+b
a )

E0

(
(A(2)

1 )b
)

=
1

(a+b
a )

(
− β1

a!

a

∑
l1=1

[
a
l1

]
νl1

)
b

∑
l2=1

l2

∑
k2=1

(−1)k2−1 Γ(k2)

Γ(b)

[
b
l2

]{
l2
k2

}
νl2−1βk2

2

= b
a

∑
l1=1

1

∑
k1=1

b

∑
l2=1

l2

∑
k2=1

(−1)k1+k2−1 Γ(k1 + k2 − 1)
Γ(a + b + 1)

[
a
l1

]{
l1
k1

}[
b
l2

]{
l2
k2

}
νl1+l2−1βk1

1 βk2
2 . (A12)

Note that the variable k1 only takes the value 1 here, but it is nevertheless added so that
the expression above resembles the form of (A10) more closely. Next, we turn to the
following term in (A11), assuming for the moment that a > 1 so that the sum is not empty.
Inserting (23) and the induction assumption, we obtain
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a−1

∑
i=1

(a
i)

(a+b
i )

D(1)
i E0

(
(A(1)

1 )a−i(A(2)
1 )b

)
=

a−1

∑
i=1

(a
i)

(a+b
b+i)

D(1)
a−iE0

(
(A(1)

1 )i(A(2)
1 )b

)
=

a−1

∑
i=1

(a
i)

(a+b
b+i)

(
− β1

(a− i)!

a−i

∑
j=1

[
a− i

j

]
νj

)
∑

1≤k1≤l1≤i,
1≤k2≤l2≤b

(−1)k1+k2−1 Γ(k1 + k2)

Γ(b + i)

[
i
l1

][
b
l2

]{
l1
k1

}{
l2
k2

}
νl1+l2−1βk1

1 βk2
2

= ∑
1≤k1≤l1≤i≤j≤a−1,

1≤k2≤l2≤b

(−1)k1+k2 νa+l1+l2−j−1βk1+1
1 βk2

2
(b + i)Γ(k1 + k2)

Γ(a + b + 1)

(
a
i

)[
i
l1

][
b
l2

]{
l1
k1

}{
l2
k2

}[
a− i
a− j

]

= ∑
1≤k1≤j≤a−1,

1≤k2≤l2≤b

(−1)k1+k2 νl2+jβk1+1
1 βk2

2
Γ(k1 + k2)

Γ(a + b + 1)

[
b
l2

]{
l2
k2

}( j

∑
l1=k1

{
l1
k1

} a+l1−j−1

∑
i=l1

(b + i)
(

a
i

)[
i
l1

][
a− i

j− l1 + 1

])
, (A13)

where, in the last step, we have changed the order of summation according to the pattern

n

∑
k=1

n

∑
l=k

n

∑
i=l

n

∑
j=i

f (i, j, k, l) =
n

∑
k=1

n

∑
l=k

n

∑
i=l

n+l−i

∑
j=l

f (i, n + l − j, k, l)

=
n

∑
k=1

n

∑
j=k

j

∑
l=k

n+l−j

∑
i=l

f (i, n + l − j, k, l).

To simplify the expression further, we use the two closely related identities

n−m

∑
i=k

[
i
k

][
n− i

m

](
n
i

)
=

(
k + m

k

)[
n

k + m

]

and
n−m

∑
i=k

[
i + 1
k + 1

][
n− i

m

](
n
i

)
=

(
k + m

k

)[
n + 1

k + m + 1

]
,

the first of which is well known [35] and is also utilized in the proof of the latter (see
Lemma 2 in [29]). Applying these identities, we know that the innermost sum in (A13) is
equal to

a+l1−j−1

∑
i=l1

(b + i)
(

a
i

)[
i
l1

][
a− i

j− l1 + 1

]

= b
a−(j−l1+1)

∑
i=l1

(
a
i

)[
i
l1

][
a− i

j− l1 + 1

]
+ a

a−(j−l1+1)

∑
i=l1

(
a− 1
i− 1

)[
i
l1

][
a− i

j− l1 + 1

]

= b
(

j + 1
l1

)[
a

j + 1

]
+ a

(
j

l1 − 1

)[
a

j + 1

]
=

[
a

j + 1

](
b
(

j
l1

)
+ (a + b)

(
j

l1 − 1

))
.
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The expression inside the parenthesis in (A13) becomes

j

∑
l1=k1

{
l1
k1

} a+l1−j−1

∑
i=l1

(b + i)
(

a
i

)[
i
l1

][
a− i

j− l1 + 1

]

=

[
a

j + 1

](
b

j

∑
l1=k1

{
l1
k1

}(
j
l1

)
+ (a + b)

j

∑
l1=k1

{
l1
k1

}(
j

l1 − 1

))

=

[
a

j + 1

]{
j + 1

k1 + 1

}(
b + (a + b)k1

)
,

where the second step follows by the identities

n

∑
i=k

{
i
k

}(
n
i

)
=

{
n + 1
k + 1

}
,

n

∑
i=k

{
i
k

}(
n

i− 1

)
= k

{
n + 1
k + 1

}
,

see Equation (6.15) in [35] and the proof of Theorem 4 in [29], respectively. Inserting this
into (A13) gives

a−1

∑
i=1

(a
i)

(a+b
i )

D(1)
i E0

(
(A(1)

1 )a−i(A(2)
1 )b

)
= ∑

1≤k1≤j≤a−1,
1≤k2≤l2≤b

(−1)k1+k2 νl2+jβk1+1
1 βk2

2
Γ(k1 + k2)

Γ(a + b + 1)

[
b
l2

]{
l2
k2

}[
a

j + 1

]{
j + 1

k1 + 1

}(
b + (a + b)k1

)

= ∑
2≤k1≤j≤a,
1≤k2≤l2≤b

(−1)k1+k2−1νl2+j−1βk1
1 βk2

2
Γ(k1 + k2 − 1)
Γ(a + b + 1)

[
a
j

]{
j

k1

}[
b
l2

]{
l2
k2

}(
b + (a + b)(k1 − 1)

)
.

When this is combined with (A12), replacing the summation index j with l1 in the process,
the result is

D(1)
a

(a+b
a )

E0

(
(A(2)

1 )b
)
+

a−1

∑
i=1

(a
i)

(a+b
i )

D(1)
i E0

(
(A(1)

1 )a−i(A(2)
1 )b

)
= ∑

1≤k1≤l1≤a,
1≤k2≤l2≤b

(−1)k1+k2−1 Γ(k1 + k2 − 1)
Γ(a + b + 1)

[
a
l1

]{
l1
k1

}[
b
l2

]{
l2
k2

}
νl1+l2−1βk1

1 βk2
2
(
b + (a + b)(k1 − 1)

)
.

Note that this coincides with (A12) when a = 1, so the temporary assumption a > 1 is
not necessary for this expression to hold. This is half the right hand side of (A11). We
obtain the other half simply by interchanging the roles of a and b in the expression above
(renaming the summation indices accordingly). Thus, adding all the terms together, we get

E0

(
(A(1)

1 )a(A(2)
1 )b

)
= ∑

1≤k1≤l1≤a,
1≤k2≤l2≤b

(−1)k1+k2−1 Γ(k1 + k2 − 1)
Γ(a + b + 1)

[
a
l1

]{
l1
k1

}[
b
l2

]{
l2
k2

}
νl1+l2−1βk1

1 βk2
2 ·(

b + (a + b)(k1 − 1) + a + (a + b)(k2 − 1)
)

= ∑
1≤k1≤l1≤a,
1≤k2≤l2≤b

(−1)k1+k2−1 Γ(k1 + k2)

Γ(a + b)

[
a
l1

]{
l1
k1

}[
b
l2

]{
l2
k2

}
νl1+l2−1βk1

1 βk2
2 ,

which proves that (A10) indeed holds for n1 = a, n2 = b. By induction, it holds for any
n1, n2 ≥ 1, and the theorem is thereby proved when r = 2. As mentioned in the beginning
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of the proof, the same method can be repeated for increasingly larger values of r as well.
However, due to the long expressions we include only the proof given above and trust that
the reader can recognize how it generalizes to (25) for higher r.
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The topic of this paper is a wide range, uniform, local approximation of symmetric
binomial distribution, an extension of the classical de Moivre–Laplace theorem in the
symmetric case [1] (Ch. VII) [2]. In other words, I would like to approximate individual
binomial probabilities not only in a classical neighborhood of the center, but at the tail
as well. The result clearly shows how one has to modify the normal approximation in
order to give a wide range estimate to minimize the relative error. The method will be
somewhat similar to the ones applied by [3–5] or in the proof of Tusnády’s lemma, see,
e.g., [6]; however, my task is much simpler than those. This simplification makes the proof
short, transparent and natural. Moreover, the result is non-asymptotic, that is, it gives
explicit, nearly optimal, upper and lower bounds for the relative error with a finite n. Thus,
I hope that it can be used in both applications and teaching.

Let (Xr)r≥1 be a sequence of independent, identically distributed random steps with
P(Xr = ±1) = 1

2 and S� = ∑�
r=1 Xr (� ≥ 1), S0 = 0, be the corresponding simple,

symmetric random walk. Then

P(S� = j) =
(

�
�+j

2

)
2−� (|j| ≤ �). (1)

Here, we use the convention that the above binomial coefficient is zero whenever �+ j is
not divisible by 2. Since P(S� = j) = P(S� = −j) for any j, it is enough to consider only the
case j ≥ 0 whenever it is convenient.

First we consider the case when � = 2n, even. Let us introduce the notation

ak,n := P(S2n = 2k) =
(

2n
n + k

)
2−2n (|k| ≤ n).

Also, introduce the notation

bk,n := n

{(
1 +

k + 1
2

n

)
log

(
1 +

k
n

)
+

(
1− k− 1

2
n

)
log

(
1− k

n

)}
(2)
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when n ≥ 1 and |k| < n, and

b±n,n :=
(

2n +
1
2

)
log 2− 1

2
log(2πn) (n ≥ 1). (3)

Theorem 1. (a) For any n ≥ 1 and |k| ≤ n, we have

ak,n ≤
1√
πn

e−bk,n . (4)

(b) For any n ≥ 1 and |k| ≤ rn, r ∈ (0, 1), we have

ak,n >
1√
πn

e−bk,n exp
(
− 1

7n
− r4

3(1− r2)2 n

)
. (5)

(c) In accordance with the classical de Moivre–Laplace normal approximation, for n ≥ 3 and
|k| ≤ n

2
3 one has

1− 2n−
1
3 <

ak,n

1√
πn e−

k2
n

< 1 + 2n−
1
3 . (6)

Proof. As usual, the first step is to estimate the central term

a0,n =

(
2n
n

)
2−2n =

(2n)!
(n!)2 2−2n.

By Stirling’s formula, see, e.g., [1] (p. 54), we have:

√
2πn

(n
e

)n
e

1
12n+1 < n! <

√
2πn

(n
e

)n
e

1
12n (n ≥ 1). (7)

Thus, after simplification we obtain

1√
πn

e−
1

7n < a0,n <
1√
πn

e−
1

9n (n ≥ 1). (8)

Second, also by the standard way, for 1 ≤ k ≤ n,

ak,n = a0,n
n(n− 1) · · · (n− k + 1)
(n + 1)(n + 2) · · · (n + k)

= a0,n

(
1− 1

n

)(
1− 2

n
)
· · ·

(
1− k−1

n

)
(

1 + 1
n

)(
1 + 2

n
)
· · ·

(
1 + k

n

) .

So it follows that

log ak,n = log a0,n − log
(

1 + k
n

)
− 2

k−1
∑

j=1

1
2 log 1+ j

n

1− j
n

= log a0,n − log
(

1 + k
n

)
− 2

k−1
∑

j=1
tanh−1

(
j
n

)
.

(9)

To approximate the sum here, let us introduce the integral

I(x) :=
∫ x

0
tanh−1(t)dt =

1
2
(1 + x) log(1 + x) +

1
2
(1− x) log(1− x) (10)

for |x| < 1, and its approximation by a trapezoidal sum

Tk,n :=
1
n

{
1
2

tanh−1(0) +
k−1

∑
j=1

tanh−1
(

j
n

)
+

1
2

tanh−1
(

k
n

)}
, (11)
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where 0 ≤ k < n. It is well-known that the error of the trapezoidal formula for a function
f ∈ C2([a, b]) is

Tn( f )−
∫ b

a
f (t)dt =

(b− a)3

12n2 f ′′(x), x ∈ [a, b].

Since (tanh−1)′′(x) = 2x(1− x2)−2, we obtain that

0 ≤ Tk,n − I
(

k
n

)
≤ r4

6(1− r2)2 n2 , when 0 ≤ k ≤ rn, r ∈ (0, 1). (12)

Let us combine Formulas (8)–(12):

log ak,n = log a0,n − 2nTk,n −
1
2

log
(

1 +
k
n

)
− 1

2
log

(
1− k

n

)
,

thus

log
1√
πn
− bk,n −

1
7n
− r4

3(1− r2)2 n
< log ak,n < log

1√
πn
− bk,n −

1
9n

, (13)

where 0 ≤ k ≤ rn and

bk,n = 2nI
(

k
n

)
+

1
2

log
(

1− k2

n2

)
. (14)

Clearly, (14) is the same as (2). Thus, (13) proves (a) and (b) of the theorem.
Let us see now, using Taylor expansions, a series expansion of bk,n when |k| < n. First,

for |x| < 1,

I(x) =
x2

1 · 2 +
x4

3 · 4 +
x6

5 · 6 +
x8

7 · 8 + · · · .

Second, also for |x| < 1,

log(1− x2) = −x2 − x4

2
− x6

3
− x8

4
− · · · .

So by (14), for |k| < n we have a convergent series for bk,n:

bk,n = k2

n

(
1− 1

2n

)
+ k4

2n3

(
1
3 − 1

2n

)
+ k6

3n5

(
1
5 − 1

2n

)
+ · · ·

=
∞
∑

j=1

(
k
n

)2j 1
j

(
n

2j−1 − 1
2

)
.

(15)

By (15), for n ≥ 3 and |k| ≤ n
2
3 we obtain that∣∣∣bk,n − k2

n

∣∣∣ ≤ n−
2
3

2 +
∞
∑

j=2
n−

2
3 j 1

j

(
n

2j−1 + 1
2

)
≤ n−

2
3

2 + n
2

(
1
3 + 1

6

) ∞
∑

j=2
n−

2
3 j ≤ n−

1
3 .

Thus, by (4), for n ≥ 3 and |k| ≤ n
2
3 ,

ak,n ≤
1√
πn

e−
k2
n en−1/3

<
1√
πn

e−
k2
n

(
1 + 2n−

1
3

)
. (16)
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Similarly, by (5), for n ≥ 3 and |k| ≤ n
2
3 ,

ak,n > 1√
πn e−

k2
n exp

(
− 1

7n − n−
7
3

3(1−n−
2
3 )2
− n−

1
3

)
≥ 1√

πn e−
k2
n e−1.21n−1/3

> 1√
πn e−

k2
n

(
1− 2n−1/3

)
.

(17)

(16) and (17) together prove (c) of the theorem.

The main moral of Theorem 1 is that the exponent k2/n in the exponent of the normal
approximation is only a first approximation of the series (15). In (c), the bound |k| ≤ n

2
3

was chosen somewhat arbitrarily. It is clear from the series (15) that the bound should be
o(n

3
4 ). The above given bound was picked because it seemed to be satisfactory for usual

applications with large deviation and gave a nice relative error bound 2n−
1
3 .

It is not difficult to extend the previous results to the odd-valued case of the symmetric
binomial probabilities

a∗k,n := P(S2n−1 = 2k− 1) =
(

2n− 1
n + k− 1

)
2−2n+1 (−n + 1 ≤ k ≤ n).

Define

b∗k,n := n

{(
1 +

k− 1
2

n

)
log

(
1 +

k
n

)
+

(
1− k− 1

2
n

)
log

(
1− k

n

)}
(18)

for n ≥ 1 and |k| < n, and

b∗n,n :=
(

2n− 1
2

)
log 2− 1

2
log(2πn) (n ≥ 1). (19)

Theorem 2. (a) For any n ≥ 1 and −n + 1 ≤ k ≤ n, we have

a∗k,n <
1√
πn

e−b∗k,n exp
(

2
3n

)
. (20)

(b) For any n ≥ 1 and |k| ≤ rn, r ∈ (0, 1), we have

a∗k,n >
1√
πn

e−b∗k,n exp
(
− 1

n
− r4

3(1− r2)2 n

)
. (21)

(c) In accordance with the classical de Moivre–Laplace normal approximation, for n ≥ 4 and
|k| ≤ n

2
3 one has

1− 3n−
1
3 <

a∗k,n

1√
πn e−

k2
n

< 1 + 6n−
1
3 . (22)

Proof. Since this proof is very similar to the previous one, several details are omitted. First,
by Stirling’s Formula (7), after simplifications we obtain that

1√
πn

e−
1
n < a∗0,n <

1√
πn

e
2

3n (n ≥ 1). (23)

Second, similarly to (13), for n ≥ 1 and |k| ≤ rn, r ∈ (0, 1), we obtain that

log
1√
πn
− b∗k,n −

1
n
− r4

3(1− r2)2 n
< log a∗k,n < log

1√
πn
− b∗k,n +

2
3n

, (24)
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where

b∗k,n := 2nI
(

k
n

)
− tanh−1

(
k
n

)
=

∞

∑
j=1

(
k
n

)2j−1 1
2j− 1

(
k
j
− 1

)
. (25)

(25) clearly agrees with (18). (24) proves (a) and (b).
By the series in (25), for n ≥ 4 and |k| ≤ n

2
3 we obtain that∣∣∣∣b∗k,n −

k2

n

∣∣∣∣ < 2n−
1
3 .

This and (24) imply (c).
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Abstract: Random walks and Lorentz processes serve as fundamental models for Brownian motion.
The study of random walks is a favorite object of probability theory, whereas that of Lorentz processes
belongs to the theory of hyperbolic dynamical systems. Here we first present an example where the
method based on the probabilistic approach led to new results for the Lorentz process: concretely,
the recurrence of the planar periodic Lorentz process with a finite horizon. Afterwards, an unsolved
problem—related to a 1981 question of Sinai on locally perturbed periodic Lorentz processes—is
formulated as an analogous problem in the language of random walks.

Keywords: random walk; Lorentz process; recurrence

1. Introduction

According to Pólya’s classical theorem [1], the simple symmetric random walk (SSRW)
on Zd is recurrent if d = 1, 2; otherwise, it is transient. Since the one- and two-dimensional
Lorentz processes with a periodic configuration of scatterers share a number of stochastic
properties with those of SSRWs, it had also been expected that the analogues of Pólya’s
theorem also hold for them. Indeed, in d = 2, the recurrence of the periodic finite-horizon
Lorentz process (FHLP) was settled by ergodic theoretic methods independently by K.
Schmidt [2] and J.-P. Conze [3]. For the same case, in 2004, with T. Varjú, we succeeded in
giving a probabilistic–dynamical proof in [4]. The recurrence of the infinite-horizon Lorentz
process (IHLP) in the plane was open until 2007, when the method of [4] could be extended
to the infinite-horizon case (see [5]). It is worth mentioning that in the infinite-horizon case,
the limit law of the Lorentz process belongs to the non-standard domain of attraction of the
normal law, in contrast with the finite-horizon case where convergence to the normal law
(and to the Wiener process) holds with the diffusive scaling.

Sinai asked in 1981 whether probabilistic properties of the Lorentz process remain
valid if one changes the scatterer configuration in a bounded domain. For convergence to
the Gaussian law (and to the Wiener process) and, moreover, for the local limit theorem
(LLT) and for recurrence, we gave an affirmative answer in [6]. It is worth mentioning
that—in our probabilistic approach and for our purposes solely—the recurrence property
can be positioned above the limit theorem (with diffusive or over-diffusive scaling) and
even over the LLT, see Section 5. Of course, other properties are also very important, such
as the speed of correlation decay, almost sure invariance principle, etc. (cf. [7]).

However, as to Sinai’s 1981 question, nothing is known in the infinite-horizon case.
Since the study of random walks might be much instructive for the behavior of Lorentz
processes—in Section 5—we formulate some problems for random walks with unbounded
jumps that are most interesting in themselves. Before the closing section, this paper contains
a survey of results known for recurrence properties of RWs and of Lorentz processes.
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2. Random Walks and Lorentz Processes

2.1. Random Walks

Definition 1 (random walk).

1. Let {Xn ∈ Zd|n ≥ 0} be independent random variables, and for n ≥ 0, denote

Sn =
n

∑
j=1

Xj.

Then the Markov chain S0, S1, S2, . . . , Sn, . . . is called a random walk.
2. The random walk is called symmetric if the Xns are symmetric random variables.
3. The random walk is simple if |Xn| = 1 holds ∀n ≥ 0.
4. The probabilities

P(Xn+1 = k|Sn)

are called the transition (or jump) probabilities of the random walk.
5. The random walk is called translation-invariant (or classical or homogeneous) if its transition

probabilities are translation-invariant.

As to basic notions and properties of random walks, we refer to the monographs [8–
10].

Definition 2 (locally perturbed random walk). Assume a > 0. If—possibly outside an origo-
centered cube Qa of size a—the translation probabilities of a random walk S0, S1, S2, . . . , Sn, . . .
are translation-invariant, then we say that the random walk is a locally perturbed random walk
(LPRW) (more precisely an a-locally perturbed random walk). For simplicity, we assume that all
transition probabilities are bounded away from 0.

2.2. Sinai Billiards and Lorentz Processes
2.2.1. Sinai Billiards

As far as notations go, we mainly follow [11] for planar billiards and [12] for multidi-
mensional ones.

Billiards are defined in Euclidean domains bounded by a finite number of smooth
boundary pieces. For our purpose, a billiard is a dynamical system describing the motion of
a point particle in a connected, compact domain Q ⊂ Td = Rd/Zd. In general, the bound-
ary ∂Q of the domain is assumed to be piecewise C3-smooth, i.e., there are no corner points;
if 0 < J < ∞ is the number of such pieces, we can write ∂Q = ∪1≤α≤J ∂Qα. Connected
components of Td \ Q are called scatterers and are assumed to be strictly convex. Motion is
uniform inside Q, and specular reflections take place at the boundary ∂Q; in other words,
a particle propagates freely until it collides with a scatterer, where it is reflected elastically,
i.e., following the classical rule that the angle of incidence be equal to the angle of reflection.

Definition 3 (Sinai billiard). A billiard with strictly convex scatterers is called a Sinai billiard.

Remark 1. The above notion of a Sinai billiard is more general than its original one where it was
supposed that d = 2, J = 1, and Q1 was a circle.

Since the absolute value of the velocity is a first integral of motion, the phase space
of our billiard is defined as the product of the set of spatial configurations by the (d− 1)-
sphere, M = Q × Sd−1, which is to say that every phase point x ∈ M is of the form
x = (q, v), with q ∈ Q and v ∈ Rd with norm |v| = 1. According to the reflection rule,
M is subject to identification of incoming and outgoing phase points at the boundary
∂M = ∂Q × Sd−1. The billiard dynamics on M is called the billiard flow and denoted
by St : t ∈ (−∞, ∞), where St : M → M. The set of points defined by the trajectory
going through x ∈ M is denoted as SRx. The smooth, invariant probability measure of
the billiard flow, μ onM, also called the Liouville measure, is essentially the product of
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Lebesgue measures on the respective spaces, i.e., dμ = const. dq dv, where the constant is
(volQ volSd−1)

−1.
The appearance of collision–free orbits is a distinctive feature of some billiards which

are said to have infinite horizons.

Definition 4 (infinite and finite horizons).

1. Denote byMfree ⊂M the subset of collision-free orbits, i.e.,

Mfree = {x ∈ M : SRx ∩ ∂M = ∅} .

2. The billiard has a finite horizon ifMfree = ∅. Otherwise it has an infinite horizon.

2.2.2. Lorentz Processes

The Lorentz process was introduced in 1905 by H. A. Lorentz [13] for the study of a
dilute electron gas in a metal. While Lorentz considered the motion of a collection of inde-
pendent pointlike particles moving uniformly among immovable metallic ions modeled by
elastic spheres, we consider here the uniform motion of a single pointlike particle in a fixed
array of strictly convex scatterers with which it interacts via elastic collisions.

Thus defined, the Lorentz process is the billiard dynamics of a point particle on a billiard
table Q = Rd \ ∪∞

α=1 Oα, where the scatterers Oα, 1 ≤ α ≤ ∞, are strictly convex with C3-
smooth boundaries. Generally speaking, it could happen that Q has several connected
components. For simplicity, however, we assume that the scatterers are disjoint and that Q
is unbounded and connected. The phase space of this process is then given according to
the above definition, namely,M = Q× Sd−1.

It should finally be noted that, under this assumption, the Liouville measure dμ =
dq dv, while invariant, is infinite. If, however, there exists a regular lattice of rank d for
which we have that for every point z of this lattice, Q + z = Q, then we say that the
corresponding Lorentz process is periodic. In this case, the Liouville measure is finite (more
exactly, its factor with respect to the lattice is finite). (For simplicity, the lattice of periodicity
will be taken as Zd.)

Definition 5 (periodic Lorentz process). The Lorentz process is called periodic if the configura-
tion {Oα|1 ≤ α < ∞} of its scatterers is Zd-periodic.

Figure 1 shows examples of trajectories (red lines) in periodic Lorentz processes (for
the finite- vs. the infinite-horizon cases, respectively, cf. Definition 4).

(a) Finite horizon. (b) Infinite horizon.

Figure 1. Periodic Lorentz process.
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Definition 6 (locally perturbed (periodic) Lorentz process). If one changes arbitrarily the
scatterer configuration of a periodic Lorentz process in a bounded domain, then we talk about a
locally perturbed Lorentz process (LPLP). This process has a finite or an infinite horizon if
the original periodic Lorentz process had a finite or an infinite horizon, respectively.

2.2.3. Recurrence of Stochastic Processes

Definition 7 (recurrence). A stochastic process in Zd or in Rd (d ≥ 1) is recurrent if for any
bounded subset of Zd (or of Rd) it is true that the process returns to the subset infinitely often with
probability 1.

3. Recurrence of Periodic Random Walks and Lorentz Processes in the Plane

In this section, we restrict ourselves to the case when—on the one hand—the transition
probabilities of the random walk are translation-invariant and—on the other hand—the
Lorentz process is periodic.

3.1. Random Walks

Start with the classical theorem of Pólya.

Theorem 1 ([1]). The SSRW is recurrent if d = 1, 2, and otherwise it is transient.

For more general random walks, we refer to results of Chung-Ornstein and Breiman.

Theorem 2 ([14,15]).

1. Assume (S0, S1, S2, . . . ) is a translation-invariant RW on Z. If EX1 = 0, then the RW is
recurrent.

2. Assume (S0, S1, S2, . . . ) is a translation-invariant RW on Z2. If EX1 = 0 and E|Xn|2 < ∞,
then the RW is recurrent.

3.2. Lorentz Processes

Based on the analogy with random walks, for periodic Lorentz processes, the exact
analogue of Pólya’s theorem known for random walks had been expected.

3.2.1. Finite Horizon

The first positive result was obtained in [16], where a slightly weaker form of recur-
rence was demonstrated: the process almost surely returns infinitely often to a moderately
(actually logarithmically) increasing sequence of domains. The authors used a probabilistic
method combined with the dynamical tools of Markov approximations. (The weaker form
of recurrence was the consequence of the weaker form of their local limit theorem based on
the weaker CLT of [17].)

An original approach appeared in 1998–99, when, independently, Schmidt [2] and
Conze [3] were, indeed, able to deduce recurrence from the global central limit theorem
(CLT) of [18] by adding (abstract) ergodic theoretic ideas.

Theorem 3 ([2,3]). The planar Lorentz process with a finite horizon is almost surely recurrent.

Their approach seems, however, to be essentially restricted to the planar finite-
horizon case.

3.2.2. Infinite Horizon

For attacking the infinite-horizon case, the authors of [4] returned to the probabilistic
approach via the local limit theorem and first gave a new proof of the theorems of Conze
and Schmidt. Finally, in [5], they could prove a local limit theorem for the Lorentz process
in the infinite-horizon case that already implied recurrence in this case, too.
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Theorem 4 ([5]). The planar Lorentz process with an infinite horizon is almost surely recurrent.

4. Recurrence Properties of Locally Perturbed Planar Lorentz Processes

4.1. Finite-Horizon Case

Answering Sinai’s 1981 question, we could prove the following:

Theorem 5 ([6]). The locally perturbed planar Lorentz process with a finite horizon is almost
surely recurrent.

We note that the proof of the above theorem uses delicate recurrence properties of
the periodic Lorentz process (cf. [7]), being interesting in themselves. Actually, they are
analogues of several properties of classical random walks.

4.2. Infinite-Horizon Case

Conjecture 1. The locally perturbed planar Lorentz process with an infinite horizon is almost
surely recurrent.

5. Recurrence Properties of Symmetric vs. Locally Perturbed Random Walks with
Unbounded Jumps

For understanding the difficulties in proving Conjecture 1, it should be instructive to
answer the analogous question for LPRWs with unbounded jumps.

For LPRWs with bounded jumps, the first result related to Sinai’s question was given
in the paper [19].

5.1. Reminder of Some Results of [19]

We recall a simple example of its main theorem.

Definition 8. Let {Sn|n ≥ 0} be a simple RW on Z2 such that for i = 1, 2

P(Xn+1 = ±ei|Sn) =

{
1
4 if Sn �= (0, 0)

arbitrary i f Sn = (0, 0)

where e1 = (1, 0) and e2 = (0, 1).

Let, moreover,
Un(t) := n−1/2S[nt] t ∈ [0, 1]

Theorem 6 ([19]). As n→ ∞
Un(t)⇒W(t)

weakly in C[0, 1], where W is the standard planar Wiener process.

Remark 2.

1. By applying the methods of [7,19], one can easily see the following:

(a) For Un(1), the global CLT holds;
(b) For Un(1), the local CLT also holds;
(c) As a consequence of the later one, the RW of Definition 8 is recurrent.

2. In fact, Theorem 6 is the special case of a more general theorem of [19], whose statement
roughly says that if one has a CLT for a translation-invariant RW, then changing the jump
probabilities in a bounded domain does not change the statement of the CLT. The methods
of [7] also imply the truth of the local limit theorem and recurrence in this generality.
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5.2. A Locally Perturbed RW with Unbounded Jumps

Following the bounded jumps case, for the unbounded jumps case we will also start
with a simple example:

Definition 9. Let {Sn|n ≥ 0} be an RW (with unbounded jumps) such that for i = 1, 2 one has{
P(Xn+1 = ±ei|Sn = (0, 0)) = 1/4
P(Xn+1 = ±nei|Sn �= (0, 0)) = const. 1

|n|3

Let us explain why we suggest first the study of exactly this example. The simplest
example of a periodic Lorentz process is the following: all scatterers are circles of radius R
with Rmin < R < 1

2 . This condition ensures that all elements ofMfree are parallel to one of
the axes. In this case, the long jumps of the Lorentz process are almost parallel to one of the
axes, and the distribution of their lengths is asymptotically const. 1

|n|3 and thus belongs to
the non-standard domain of attraction of the normal law (cf. [5,20–22]).

The unperturbed RW corresponding to the previous example belongs to the non-
standard domain of attraction of the normal law with

√
n log n scaling. Denote

Vn(t) := (n log n)−1/2S[nt] t ∈ [0, 1]

A special case of the main result of the work [23] is the following:

Theorem 7 ([23]). As n→ ∞
Vn(t)⇒ CW(t)

weakly in C[0, 1], where W is the standard planar Wiener process and C > 0.

Conjecture 2. In the setup of this theorem, the following hold:

1. The local version of the limit law for Vn(1) is also true;
2. The RW defined in Definition 9 is recurrent.

6. Strongly Perturbed RWs

For locally perturbed random walks, it was sort of expected that a local perturbation
should not change the limiting behavior of the RW whether the jumps are bounded or
unbounded, whatever difficulties the proofs of these statements would bring up. How-
ever, under what kind of extended perturbations the classical limiting behavior of the
random walk survives is intriguing. Before a precise formulation of this question, let us
introduce notations.

Definition 10 (strongly perturbed random walks). Assume {0 < an|n ≥ 1} are such that
limn→∞ an = ∞. The sequence San

0 , San
1 , San

2 , . . . , San
n , . . . of an-locally perturbed random walks is

called strongly an-perturbed.

Question 1. For a sequence {an| limn→∞ an = ∞}, denote

Zn(t) := n−1/2San
[nt] t ∈ [0, 1],

where the jump probabilities of the translation-invariant random walk are as in Definition 8.

1. Find a sequence {an| limn→∞ an = ∞} and a strongly an-locally perturbed sequence of
random walks (cf. Definition 2) with bounded jumps such that

Zn(t)⇒W(t) (1)

weakly in C[0, 1].
2. Can you prove Equation (1) for any sequences of an with an = o(n1/2)?
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Question 2. For a sequence {an| limn→∞ an = ∞}, denote

Yn(t) := (n log n)−1/2San
[nt] t ∈ [0, 1]

where the jump probabilities of the translation-invariant random walk are as in Definition 9.

1. Find a sequence {an| limn→∞ an = ∞} and a strongly an-locally perturbed sequence of
random walks with unbounded jumps such that

Yn(t)⇒W(t) (2)

weakly in C[0, 1].
2. Can you prove Equation (2) for any sequences of an with an = o((n log n)1/2)?
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1. Introduction and Result

Let {Xk}k∈N, N = {1, 2, 3, . . .}, be a sequence of random variables defined on a prob-
ability space (Ω,F , P) and ‖X‖p

p = E(|X|p). It was proved by Komlós and Révész in [1]
that for centered, independent random variables Xk,

∑n
k=1 ‖Xk‖−2

2 Xk

∑n
k=1 ‖Xk‖−2

2
→n 0, a.s. (1)

provided that ∑∞
k=1 ‖Xk‖−2

2 diverges (see also [2], p. 75 and Ex. 13 on p. 137 in [3]). If
E(Xk) = m, k ≥ 1, then we have strong consistency:

∑n
k=1 ‖Xk −m‖−2

2 Xk

∑n
k=1 ‖Xk −m‖−2

2
→n m, a.s.

and it was proved that this estimator has minimal variance. Nevertheless, as observed in the
preface of [4], “For many phenomena in the real world, the observations are not independent. . . ”,
so the question on (1) is intriguing when there is a lack of independence. In [5], the Komlós–
Révész theorem is investigated for pairwise independence by the method of subsequences.
For martingale difference sequences in Lp, p ∈ (1, 2], by the Doob theorem (see Th. 2 on
p. 246 in [3]), it is obtained in [6]. In [7], the case p ∈ (0, 1) and p > 2 is also discussed for
negatively dependent and mixing sequences. In the latter, some rate on mixing is assumed,
so this paper aims to remove this restriction.

Let σ-fieldsA,B satisfyA,B ⊂ F . Recall the following strong measure of dependence:

ψ(A,B) = sup | P(B ∩ A)

P(B) · P(A)
− 1|; P(B) · P(A) > 0, A ∈ A, B ∈ B.

It is well known that (see p. 124 in Vol. I, [4])

ψm = sup
J≥1

ψ(F J
1 ,F∞

J+m) = sup
J≥1

sup
‖ E(g|F J

1 )− E(g) ‖∞

‖ g ‖1
,

where F m
k denotes σ–field generated by Xk, Xk+1, . . . , Xm, m ∈ Z and the inner sup is taken

over g ∈ L1
real(F∞

J+m). We say that {Xk} is ψ-mixing if lim
m→∞

ψm = 0. It is worth noticing that
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Kesten and O’Brien and Bradley gave examples of ψ–mixing sequences with an arbitrary
rate of mixing (see Ch. 3 and Ch. 26 in [4]).

The following is the main result in this paper.

Theorem 1. Suppose {Xk} is ψ–mixing. Let {ak} be a sequence satisfying 0 < ap−1
k E|Xk|p ≤

C < ∞ for k ∈ N.
(i) If 0 < p < 1 and ∑∞

k=1 ak converges, then

∑n
k=1 akXk

∑∞
k=n ak

→n 0, a.s. (2)

(ii) If 1 < p ≤ 2 and E(Xk) = 0, supn(∑
n
k=1 ak)

−1 ∑n
k=1 akE|Xk| < ∞ and ∑∞

k=1 ak di-
verges, then

∑n
k=1 akXk

∑n
k=1 ak

→n 0, a.s. (3)

(iii) If p > 2 and E(Xk) = 0, supn(∑
n
k=1 ak)

−1 ∑n
k=1 akE|Xk| < ∞ and ∑∞

k=1 ak diverges and
0 < akE|Xk|2 ≤ C < ∞ for k ∈ N, then (3) holds.

Remark 1. (a) It follows from the proof that in case (i), ψ–mixing is not required.
(b) In fact, supn(∑

n
k=1 ak)

−1 ∑n
k=1 akE|Xk| < ∞ if supk E|Xk| < ∞. The latter is also used in the

case of pairwise independent random variables (see Theorem 2 in [5]) and can be omitted if ψm = 0
for some m ≥ 1.
(c) For p = 1, Theorem 1 does not hold. Suppose that {Xk} is a stochastic sequence P(Xk =

1) = 1− P(Xk = 0) = 1/2 constructed in the proof of Theorem 1 in [8]. Thus, if {gn} is a
non-increasing sequence, gn → 0, then ψn � gn. Now, let {ξk} be a sequence of independent
random variables with P(ξk = k) = 1

2k , P(ξk = −k) = 1
2k , P(ξk = 0) = 1− 1

k and independent
of Xk. Set Zk = ξk cos (Xkπ), k ≥ 1 so that E(eitZk ) = E(eitξk ). Thus, EZk = 0, E|Zk| = 1.
By Proposition 3.16 on p. 82 in Vol. I, [4] and by Theorem 6.2 on p. 193 in Vol. I, [4] we have
that {Zk} is ψ-mixing (non-stationary) with rate � gn. Let ak ≡ 1. Now, (3) fails by the second
Borel–Cantelli lemma (see [9] and p. 210 in [10]) since ∑k≥1 P(|Zk| ≥ k) = ∑k≥1

1
k = ∞.

The following variant of the converse statement does not require strong mixing.

Proposition 1. Let {ak} be a sequence of positive reals. Suppose {Xk} is an arbitrary dependent
random sequence such that supk E|Xk| = C < ∞ and lim infn E|∑n

k=1 akXk| = c > 0. If (3)
holds, then ∑k≥1 ak diverges.

Set q = | p
p−1 |. Theorem 1 applied with a−1

k = (E|Xk|p)
1

p−1 and, in case (iii) with

a−1
k = E|Xk|2 ∨ (E|Xk|p)

1
p−1 , yields

Corollary 1. Suppose {Xk} is ψ-mixing.
(i) If 0 < p < 1 and ∑∞

k=1 ‖Xk‖−q
p converges, then

∑n
k=1 ‖Xk‖−q

p Xk

∑∞
n=k ‖Xk‖−q

p
→n 0, a.s. (4)

(ii) If 1 < p ≤ 2, supn(∑
n
k=1 ‖Xk‖−q

p )−1 ∑n
k=1 ‖Xk‖−q

p E|Xk| < ∞, E(Xk) = 0 and

∑∞
k=1 ‖Xk‖−q

p diverges, then

∑n
k=1 ‖Xk‖−q

p Xk

∑n
k=1 ‖Xk‖−q

p
→n 0, a.s. (5)
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(iii) If p ≥ 2,

sup
n
(

n

∑
k=1
‖Xk‖2

2 ∨ ‖Xk‖q
p)
−1

n

∑
k=1

(‖Xk‖2
2 ∨ ‖Xk‖q

p)
−1E|Xk| < ∞,

E(Xk) = 0 and ∑∞
k=1(‖Xk‖2

2 ∨ ‖Xk‖q
p)
−1 diverges, then

∑n
k=1(‖Xk‖2

2 ∨ ‖Xk‖q
p)
−1Xk

∑n
k=1(‖Xk‖2

2 ∨ ‖Xk‖q
p)−1

→n 0, a.s. (6)

We apply our result to the ψ-mixing Cramér model. Namely, we have sequence {ηk}
with P(ηk = 1) = 1− P(ηk = 0) = 1/ ln k, k ≥ 3, which is ψ-mixing. Let ζk = ηk ln k. It is
easy to see that σ2

k = Var(ζk) ∼ ln k, mk = E(ζk) = 1 and ∑n
k=3

1
σ2

k
∼ n

ln n . Thus, for {ζk} in

the case p = 2, we obtain by (5) that SLLN for Cramér model independence can be replaced
by ψ-mixing (see e.g., Lemma A.1 in [11]).

Lemma 1.

lim
n

ln n
n

n

∑
k=3

ηk = 1, a.s.

The paper is organized as follows. In the next section, there are some auxiliary results.
These results are required in the proof of Theorem 1 in the last section.

2. Auxiliary Results

The following result for p > 1 is in [12] and for p = 1 see [9] (see also Theorem 2.20 on
p. 40 in [13]).

Theorem 2. Suppose {Xk} is ψ-mixing and E(Xk) = 0, k ∈ Z. Let {bn}, b0 > 0 be an increasing
to infinity sequence of real numbers such that for some p ≥ 1,
(i) ∑∞

k=1 b−2p
k E(|Xk|2p) < ∞;

(ii) ∑∞
k=1 b−2

k (b2
k − b2

k−1)
1−p(E(X2

k ))
p < ∞;

(iii) supn b−1
n ∑n

k=1 E|Xk| < ∞.
Then, b−1

n Sn → 0, n→ ∞, almost surely (a.s.).

The next result improves Lemma 2.1 slightly in [14].

Proposition 2. Suppose {Xk} is ψ-mixing and E(Xk) = 0, k ∈ Z. Let bn ∈ R, b0 > 0, bn ↑ ∞,

and supn b−1
n

n
∑

k=1
E|Xk| < ∞, p ∈ (1, 2], ∑∞

k=1
E|Xk |p

bp
k

< ∞, then b−1
n Sn → 0, n→ ∞, a.s.

Proof of Proposition 2. Set X̄k = Xk I(|Xk| ≤ bk)− E(Xk I(|Xk| ≤ bk)). In view of Theo-
rem 2, we can assume 1 < p < 2.

∑
k≥1

P(Xk �= Xk I(|Xk| ≤ bk)) ≤ C ∑
k≥1

E|Xk|p
bp

k
< ∞.

Further,

b−1
n |

n

∑
k=1

E(Xk I(|Xk| ≤ bk))| ≤ b−1
n

n

∑
k=1

E(|Xk|I(|Xk| > bk))

≤ b−1
n

n

∑
k=1

b−p+1
k E(|Xk|p I(|Xk| > bk)) ≤ b−1

n

n

∑
k=1

b−p+1
k E|Xk|p → 0.
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So that

∑
k≥1

EX̄2
k

b2
k
≤ ∑

k≥1

E(X2
k I(|Xk| ≤ bk))

b2
k

≤ ∑
k≥1

E|Xk|p
bp

k
< ∞.

Now, apply Theorem 2 to {X̄k} with p = 1.

By Lemma 3.6′′ on p. 284 in [15] and Kronecker’s lemma (see e.g., [16], p. 236) we have
the following SLLN for arbitrary dependent random variables (see also [17]).

Lemma 2. Suppose {Xk} is a sequence of random variables, p ∈ (0, 1], bn ↑ ∞ and ∑∞
k=1

E|Xk |p
bp

k
<

∞. Then, b−1
n Sn → 0, n→ ∞, a.s.

3. Proofs

Proof of Theorem 1. The key role in the proof of Theorem 1 is played by the Dini theorem
(see e.g., [18], Theorem 4 on p. 127) and the Abel–Dini theorem (see e.g., [18], Theorem 1
on p. 125) (for a generalization, see Lemma 11 in [7]).

For p ∈ (0, 1) by the Dini theorem,

∞

∑
n=1

ap
nE|Xn|p

(∑∞
k=n ak)

p ≤ C
∞

∑
n=1

an

(∑∞
k=n ak)

p < ∞

since ∑∞
k=1 ak < ∞. Thus, (2) holds by Lemma 2.

Now, assume p ∈ (1, 2]. By the Abel–Dini theorem,

∞

∑
n=1

ap
nE|Xn|p

(∑n
k=1 ak)

p ≤ C
∞

∑
n=1

an

(∑n
k=1 ak)

p < ∞

since ∑∞
k=1 ak = ∞. Set bn = ∑n

k=1 ak. Since supn b−1
n ∑n

k=1 akE|Xk| < ∞,

∑n
k=1 akXk

∑n
k=1 ak

→n 0, a.s.

holds by Proposition 2.
In the case that p > 2, set b0 = 0.5b1. By Theorem 2 and the previous point, it is

enough to prove that

S =
∞

∑
n=1

(b2
n − b2

n−1)
1− p

2

b2
n

ap
n(E(X2

n))
p
2

bp
n

< ∞.

Let δ = 2ε
p , where ε ∈ (0, 1) is fixed. In view of bn → ∞, we have that there exist C > 0

such that anE(X2
n) ≤ Cb3−δ

n , for each n. Therefore,

ap−1
n E(X2

n)
p
2 ≤ Cb

3p
2 −ε

n a
p
2−1
n .

But (b2
n − b2

n−1)
1− p

2 = (anbn(2− an
bn
))1− p

2 so that by the Abel–Dini theorem,

S ≤ C
∞

∑
n=1

an(anbn)
1− p

2

bp+2
n

b
3p
2 −ε

n a
p
2−1
n = C

∞

∑
n=1

an

b1+ε
n

< ∞.

Since supn b−1
n ∑n

k=1 akE|Xk| < ∞, Theorem 1 is proved.
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Proof of Proposition 1. Suppose ∑k≥1 ak < ∞ and (3) holds. Choose N1 such that
∑k≥n ak < c

3C for n ≥ N1. Next, choose N2 ≥ N1 such that E|∑n
k=1 akXk| > c/2 for

n ≥ N2. Now, for a fixed N ≥ N2, we have

n

∑
k=N+1

akXk →n −
N

∑
k=1

akXk, a.s.

On the other hand, by Fatou’s lemma (cf. Theorem 5.1 on p. 218, [19]),

c/2 < E|
N

∑
k=1

akXk| ≤ lim inf
n

E|
n

∑
k=N+1

akXk| < c/3.

Thus, c < 0. Contradiction.
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Keywords: Lorentz gas; invariance principle; scaling limit; coupling; almost sure
convergence

MSC: 60F17; 60K35; 60K37; 60K40; 82C22; 82C31; 82C40; 82C41

Révész Pali emlékére.
Dedicated to the memory of Pál Révész.

1. Introduction

Since the late 1970s, random walks in random environment (RWRE) have been a
central subject of major interest and difficulty within the probability community; see Pál
Révész’s classic monograph [1]. One should keep within sight, however, the original
motivation of RWRE: the urge for understanding diffusion in true physical systems. An
archetypal example is the random Lorentz gas, where in the three-dimensional Euclidean
space R3, a point-like particle of mass 1 moves among infinite-mass, hard-core, spherical
scatterers of radius r, placed according to a Poisson point process of density �. Randomness
comes with the placement of the scatterers (PPP in R3) and the initial direction of the
velocity of the moving particle (uniform in an angular domain). Otherwise, the dynamics is
fully deterministic. The question is whether in the long run the displacement of the moving
particle is random-walk-like or not. In [2], we proved an invariance principle for the Lorentz
trajectory, under the Boltzmann–Grad (i.e., low density) limit and simultaneous diffusive
scaling, valid in the annealed sense. (For precise formulation, see Theorem 1 below.) The
objective of this note is upgrading that result to a semi-quenched setting that is valid for
almost all realizations of the environment, along sufficiently fast extractor sequences.

Let (Ω,F , P) be a sufficiently large probability space which supports (inter alia) a
Poisson Point Process (PPP) of intensity 1 on Rd, denoted �. Other, independent random
elements jointly defined on (Ω,F , P) will also be considered later. Therefore, it is best to
think about (Ω,F , P) as a product space which in one of its factors supports the PPP �

and on the other factor (or factors) many other random elements, independent of �, to
be introduced later. To keep the notation simple, we do not denote explicitly this product

Entropy 2025, 27, 397 https://doi.org/10.3390/e27040397
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structure of (Ω,F , P). However, as this note is about quenched laws, that is, about laws and
limits conditioned on typical �, we denote

P�

(
·
)

:= P
(
·
∣∣ FPPP

)
, E�

(
·
)

:= E
(
·
∣∣ FPPP

)
,

where FPPP ⊂ F is the sigma algebra generated by the PPP �.
Given

ε > 0, r = rε := εd/(d−1)

and

v ∈ Sd−1 := {u ∈ R
d, |u| = 1}

let

t �→ Xε(t) ∈ R
d

be the Lorentz trajectory among fixed spherical scatterers of radius r centered at the points
of the rescaled PPP

�ε := {εq : q ∈ �, |q| > ε−1r = ε1/(d−1)}, (1)

with initial conditions

Xε(0) = 0, Ẋε(0) = v.

In plain words: t �→ Xε(t) is the trajectory of a point particle starting from the origin
with velocity v, performing free flight in the complement of the scatterers and scattering
elastically on them.
Notes: (1) In order to define the Lorentz trajectory, we have to disregard those points of the
rescaled PPP �ε within distance r from the origin. However, this will not affect whatsoever
our arguments and conclusions since, with probability 1, for ε that is sufficiently small,
there are no points like this.
(2) Given ε and the initial velocity v, the trajectory t �→ Xε(t) is almost surely well defined
for t ∈ [0, ∞). That is, almost surely all scatterings will happen on a unique scatterer, the
singular sets at the intersection of more than one scatterers will be almost surely avoided.

In order to properly (and, comparably) formulate our invariance principles, first we
recall the relevant function spaces. Let

C := C([0, ∞),Rd) := {z : [0, ∞)→ R
d : z continuous, z(0) = 0},

endowed with the topology of uniform convergence on compact subintervals of [0, ∞),
which is metrizable and makes C complete and separable. For details, see [3]. Further
on, let

C(C) := C(C([0, 1],Rd),R) := {F : C → R : F continuous, ‖F‖∞ := sup
z∈C
|F(z)| < ∞},

C0(C) := C0(C([0, 1],Rd),R) := {F ∈ C(C) : ∀δ > 0, ∃K � C : sup
z∈C\K

|F(z)| < δ}.

(C0(C), ‖·‖∞) is a separable Banach space. We will also denote by t �→ W(t) a standard
Brownian motion in Rd, and recall from [3–5] criteria for the weak convergence of
probability measures on C.
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In [2], the following annealed invariance principle is proved.

Theorem 1 ([2] Theorem 1). Let d = 3, ε→ 0, rε = εd/(d−1) and Tε → ∞ be such that

lim
ε→0

rεTε = 0. (2)

Let t �→ Xε(t) be the sequence of Lorentz trajectories among the spherical scatterers of radius rε

centered at the points �ε cf. (1), and with deterministic initial velocities vε ∈ Sd−1. For any
F ∈ C0(C),

lim
ε→0

∣∣∣E(F(T−1/2
ε Xε(Tε·))

)
− E

(
F(W(·))

)∣∣∣ = 0. (3)

Remark 1. (On dimension.) Although some crucial elements of the proofs in [2], on which the
present note is based, are worked out in full detail in dimension d = 3 only, we prefer to use the
generic notation d for dimension with the explicit warning that in the actual results and proofs,
d = 3 is meant. See Remark (R7) below and the paragraph “remarks on dimension” in Section 1
of [2] for comments on possible extensions to the dimensions other than d = 3.

Remark 2. Theorem 1 is an annealed invariance principle in the sense that on the left-hand side
of (3), the probability distribution of the rescaled Lorentz trajectory is provided by the random
environment �. The proofs in [2] rely on a genuinely annealed argument: a simultaneous realization
of the PPP � and the trajectory t �→ Xε(t).

Remark 3. The main result in [2] (Theorem 2 of that paper) is actually stronger, assuming

lim
ε→0

(rε|log ε|)2Tε = 0

rather than (2). However, the semi-quenched invariance principle of this note, Theorem 2 below, is
directly comparable to this weaker version.

The main new result presented in this note is the following.

Theorem 2. Let d=3, ε→ 0, rε = εd/(d−1), Tε → ∞ and βε ∈ (0, 1] be such that

lim
ε→0

rε(Tε + β−1
ε ) = 0, (4)

and define the solid angle domains

Bε := {u ∈ Sd−1 : 2 arcsin
√
(1− u · e)/2 ≤ βε}, e ∈ Sd−1 deterministic.

Let t �→ Xε(t) be the sequence of Lorentz trajectories among the spherical scatterers of radius rε

centered at the points �ε cf. (1), and with initial velocities vε ∼ UNI(Bε) sampled independently of
the PPP �. For any F ∈ C0(C),

lim
ε→0

E
(∣∣∣E�

(
F(T−1/2

ε Xε(Tε·))
)
− E

(
F(W(·))

)∣∣∣) = 0.

Remark 4. Theorem 2 is an invariance principle valid in probability with respect to the random
environment �. An equivalent formulation is that under the stated conditions, for any δ > 0

lim
ε→0

P
(
{� : DLP

(
law-of(T−1/2

ε Xε(Tε·) | FPPP), law-of(W(·))
)
> δ}

)
= 0,

where DLP(·, ·) denotes the Lévy–Prohorov distance between probability measures on C.
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We actually prove a stronger statement from which Theorem 2 follows as a corollary.
In the setting of Theorem 2, for almost all realizations of the PPP �, along (precisely
quantified) sufficiently fast converging subsequences εn → 0, the invariance principle
holds.

Theorem 3. Let d = 3, εn → 0, rn := ε
d/(d−1)
n , Tn → ∞ and βn ∈ (0, 1] be such that

∑
n

(
log n rnTn + (log n)2

(
rnβ−1

n

)(d−1)/d)
< ∞, (5)

and define the solid angle domains

Bn := {u ∈ Sd−1 : 2 arcsin
√
(1− u · e)/2 ≤ βn}, e ∈ Sd−1 deterministic. (6)

Let t �→ Xn(t) be the sequence of Lorentz trajectories among the spherical scatterers of radius
rn centered at the points �n := �εn cf. (1), and with initial velocities vn ∼ UNI(Bn) sampled
independently of the PPP �. For almost all realizations of the PPP �, for any F ∈ C0(C),

lim
n→∞

∣∣∣E�

(
F(T−1/2

n Xn(Tn·))
)
− E

(
F(W(·))

)∣∣∣ = 0.

Remark 5. Theorem 2 is a corollary of Theorem 3, as under condition (4) from any sequence εn → 0
a subsequence εn′ can be extracted that satisfies condition (5). On the other hand, Theorem 3 is
genuinely stronger than Theorem 2, as the former provides an explicit quantitative characterization
of the sequences εn → 0 along which the quenched (i.e., almost sure) invariance principle holds.

Remark 6. For a comprehensive historical survey of the invariance principle for the random
Lorentz gas, we refer to the monograph [6] and to Section 1 on [2]. We just mention here that
the main milestones preceding [2] are [7–10]. The new result of this note (i.e., Theorems 2 and 3)
is to be compared with that in [10], where a fully quenched invariance principle is proved for the
two-dimensional random Lorentz gas in the Boltzmann–Grad limit, on kinetic time scales. The
weakness of our result (compared with [10]) is that the limit theorem is semi-quenched, in the sense
that almost surely the invariance principle is proved along sufficiently fast converging sequences
εn only. On the other hand, the strengths are twofold. (�) The proof works in dimension d = 3 and
it is “hands-on”, not relying on the heavy computational details of [10] (performable only in d = 2).
See Remark (R7) below for possible extensions to dimensions other than d = 3. (��) The time-scale
of validity is much longer, Tε = o(ε−d/(d−1)) rather than Tε = O(1), as in [10].

Remark 7. The results of [2] are stated, and the proofs are fully spelled out for dimension d = 3.
Therefore, the new results of this note (which rely on those of [2]) are also valid in d = 3 only.
However, as noted in the paragraph “remarks on dimension” in [2], extension to other dimensions is
possible, at the expense of more involved details due partly to recurrence (in d = 2) and partly to the
non-uniform scattering cross section (in all dimensions other than d = 3). For arguments in d = 2,
see [11,12].

The strategy of the proof in [2] (also extended to [11,12]) is based on a coupling of the
mechanical/Hamiltonian Lorentz trajectory within the environment consisting of randomly
placed scatterers and the Markovian random flight trajectory. The coupling is realized as
an exploration of the random environment along the trajectory of the tagged particle. This
construction is par excellence annealed, as the environment and the trajectory of the moving
particle are constructed synchronously (rather than first sampling the environment and
consequently letting the particle move in the fully sampled environment). However, this
exploration process can be realized synchronously with multiple (actually, many) moving
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particles, which, as long as they explore disjoint areas of the environment, are independent
in the annealed sense (due to the Poisson character of the environment). Applying a Strong
Law of Large Numbers to tests of these trajectories will provide the quenched invariance
principle, valid for typical realizations of the environment. A somewhat similar exploration
strategy is used in the very different context of random walks on sparse random graphs,
ref. [13].

2. Construction and Quenched Coupling

2.1. Prologue to the Coupling

The proof of Theorem 3 is based on a coupling (that is, joint realization on the same
enlarged probability space (Ω,F , P)) of(

(�, (Xj(t) : 1 ≤ j ≤ N, 0 ≤ t ≤ T)),
(
(Yj(t) : 1 ≤ j ≤ N, 0 ≤ t ≤ T)

)
, (7)

where we have the following:

◦ � is the PPP of intensity � in {x ∈ Rd : |x| > r} serving as the centers of fixed
(immovable) spherical scatterers of radii r, and (Xj(t) : 1 ≤ j ≤ N, 0 ≤ t ≤ T)
are Newtonian Lorentz trajectories starting from Xj(0) = 0 with prescribed initial
velocities Ẋj(0) = vj, and moving among the same randomly placed scatterers. Note,
that the trajectories (Xj(t) : 1 ≤ j ≤ N, 0 ≤ t ≤ T) are fully determined by the PPP �

and their initial velocities.
◦ (Yj(t) : 1 ≤ j ≤ N, 0 ≤ t ≤ T) are i.i.d. Markovian random flight processes (see

Section 2.3) with the same initial data, Yj(0) = 0, Ẏj(0) = vj.

The coupling is realized so that, with high probability, the two collections of processes stay
identical for a sufficiently long time T. Thus, from limit theorems valid for the Markovian
processes (which follow from well-established probabilistic arguments), we can conclude
the limit theorems for the mechanical/Newtonian trajectories.

The coupling can be constructed in two different but mathematically equivalent ways:

(a) Start with the i.i.d. Markovian trajectories (Yj(t) : 1 ≤ j ≤ N, 0 ≤ t ≤ T)
and (conditionally on) given these construct jointly the environment � and the
Newtonian trajectories (Xj(t) : 1 ≤ j ≤ N, 0 ≤ t ≤ T) exploring it en route. The
details of this narrative are explicitly spelled out for N = 1 in [2]. Extension of the
construction for N > 1 is essentially straightforward.

(b) Start with the PPP � and the Lorentz processes (Xj(t) : 1 ≤ j ≤ N, 0 ≤ t ≤ T)
moving in this joint random environment �. Then, (conditionally) given these,
construct the i.i.d. Markovian flight processes (Yj(t) : 1 ≤ j ≤ N, 0 ≤ t ≤ T) by
disregarding recollisions (with already seen scatterers) and compensating for the
(Markovian) scattering events shadowed by the r-tubes in Rd swept by the past
trajectories. For full details of this narrative, see Section 2.3 below.

Construction (a) is somewhat easier to narrate and perceive ([2]). Its drawback is that this
construction is par-excellence annealed. The environment � is explored and constructed
on the way, jointly with the trajectories (Xj(t) : 1 ≤ j ≤ N, 0 ≤ t ≤ T), and therefore
conditioning on the environment as requested in a quenched approach is not possible (or,
at least not transparent). Construction (b) of the present note starts with the environment
� given and therefore is suitable for the quenched arguments. Its drawback may be that
the i.i.d. Markovian flight processes (Yj(t) : 1 ≤ j ≤ N, 0 ≤ t ≤ T) are constructed in a
less intuitive way (see Section 2.3 below). We emphasize, however, that both constructions
provide the same joint distributions of the processes in (7).
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Since in all considered cases rT → 0 in the limit, see (2), (4), and (5), without any loss
of generality, throughout this paper we will assume

rT ≤ 1. (8)

2.2. Synchronous Lorentz Trajectories

Beside ε and r = εd/(d−1) let N ∈ N, and

vj ∈ Sd−1, 1 ≤ j ≤ N.

Given these, we define jointly N synchronous Lorentz trajectories

t �→ Xj(t) ∈ R
d, 1 ≤ j ≤ N,

among fixed spherical scatterers of radius r centered at the points of the rescaled PPP �ε

cf. (1), with initial conditions

Xj(0) = 0, Ẋj(0) = vj, 1 ≤ j ≤ N.

(Given the parameters and the initial velocities, the trajectories t �→ Xj(t), 1 ≤ j ≤ N, are
almost surely well defined for t ∈ [0, ∞)).

We will consider the càdlàg version of the velocity processes

Vj(t) := Ẋj(t). 1 ≤ j ≤ N,

and use the notation X := {Xj : 1 ≤ j ≤ N}.
In order to construct the quenched coupling with Markovian flight processes (in the next

subsection), we have to define some further variables in terms of the Lorentz processes
t �→ X(t).

First the collision times τj,k, 1 ≤ j ≤ N, k ≥ 0:

τj,0 := 0, τj,k+1 := inf{t > τj,k : Vj(t) �= Vj(τj,k)).

In plain words, τj,k is the time of the k-th scattering of the Lorentz trajectory Xj(·). We will
use the notation

Xj,k := Xj(τj,k), Vj,k+1 := Vj(τj,k). X′j,k := Xj,k + r
Vj,k −Vj,k+1∣∣∣Vj,k −Vj,k+1

∣∣∣
That is, Xj,k is the position of the Lorentz trajectory at the instant of its k-th collision, Vj,k+1

is its velocity right after this collision, and X′j,k is the position of the center of the fixed
scatterer which caused this collision. Altogether, the continuous-time trajectory is written

Xj(t) = Xj,k + (t− τj,k)Vj,k+1, for t ∈ [τj,k, τj,k+1).

Next, the indicators of freshness

aj,0 := 1, aj,k :=

⎧⎪⎪⎨⎪⎪⎩
1 if ∀δ > 0 : min

1≤i≤N
0≤s≤τj,k−δ

∣∣∣Xi(s)− X′j,k
∣∣∣ > r

0 otherwise

(k ≥ 1).
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In plain words, aj,k indicates whether the j-th trajectory at its k-th collision encounters a
fresh scatterer, never seen in the past by any one of the N Lorentz trajectories.
Finally, the shadow indicators bj(t, v), t ∈ [0, ∞), v ∈ Sd−1:

bj(t, v) :=

⎧⎪⎪⎨⎪⎪⎩
0 if ∀δ > 0 : min

1≤i≤N
0≤s≤t−δ

∣∣∣∣∣Xi(s)− Xj(t) + r
v−Vj(t)∣∣v−Vj(t)

∣∣
∣∣∣∣∣ > r,

1 otherwise

In plain words, bj(t, v) indicates whether at time t a virtual scatterer (virtually) causing
new velocity v would be mechanically inconsistent with the past of the paths.

2.3. Quenched Coupling with Independent Markovian Flight Processes

On the same probability space (Ω,F , P) and jointly with the Lorentz trajectories X,
we construct N independent Markovian flight processes

t �→ Yj(t) ∈ R
d, 1 ≤ j ≤ N,

with initial conditions identical to those of the Lorentz trajectories

Yj(0) = 0, Ẏj(0) = vj, 1 ≤ j ≤ N.

The processes {Yj(·): 1 ≤ j ≤ N} are independent, and consist of i.i.d. EXP(1)-distributed
free flights with independent UNI(Sd−1)-distributed velocities. See [2] for a detailed
exposition of the Markovian flight processes. We will again consider the càdlàg version of
their velocity processes

Uj(t) := Ẏj(t), 1 ≤ j ≤ N.

and use the notation Y := {Yj : 1 ≤ j ≤ N}.
The construction of the coupling goes as follows. Assume that the probability

space (Ω,F , P), besides and independently of the PPP �, supports the fully independent
random variables

ξ̃ j,k ∼ EXP(1), Ũj,k+1 ∼ UNI(Sd−1), j = 1, . . . , N, k ≥ 1,

and let

θ̃j,k :=
k

∑
l=1

ξ̃ j,l , bj,k := bj(θ̃j,k, Ũj,k+1).

We construct the piecewise constant càdlàg velocity processes Uj(·) successively on the
time intervals [τj,k, τj,k+1), k = 0, 1, . . . :

• At τj,k:

◦ If aj,k = 0, then let Uj(τj,k) = Uj(τ
−
j,k).

◦ If aj,k = 1, then let Uj(τj,k) = Vj,k+1.

• At any θ̃j,l ∈ (τj,k, τj,k+1)

◦ If bj,l = 0, then let Uj(θj,l) = Uj(θ
−
j,l).

◦ If bj,l = 1, then let Uj(θj,l) = Ũj,l+1.

• In the open subintervals of (τj,k, τj,k+1) determined by the times {θ̃j,l : l ≥ 1} ∩
(τj,k, τj,k+1) keep the value of Uj(t) constant.
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It is true, and not difficult to see, that the velocity processes {Uj(t) : 1 ≤ j ≤ N}
constructed in this way are independent between them, and distributed as required. That
is, they consist of i.i.d. EXP(1)-distributed intervals where their values are i.i.d. UNI(Sd−1).
This is due to the fact that each Lorentzian scatterer is taken into account exactly once,
when first explored by a Lorentz particle, and missing scatterings (due to areas shadowed
by the ε-neighborhood of past trajectories) are compensated for by the auxiliary events at
times θ̃j,l .

Consistently with the notation introduced for the Lorentz trajectories, we write

θj,0 := 0, θj,k+1 := inf{t > θj,k : Uj(t) �= Uj(θj,k)),

and

Yj,k := Yj(θj,k), Uj,k+1 := Uj(θj,k), Y′j,k := Yj,k + r
Uj,k −Uj,k+1∣∣∣Uj,k −Uj,k+1

∣∣∣ .
That is, Yj,k is the position of the Markovian flight trajectory at the instant of its k-th
scattering, Uj,k+1 is its velocity right after this scattering, and Y′j,k would be the position
of the center of a spherical scatterer of radius r, which could have caused this scattering.
Altogether, the continuous-time Markovian flight trajectory is written as

Yj(t) = Yj,k + (t− θj,k)Uj,k+1 for t ∈ [θj,k, θj,k+1).

Note that

{θj,k : k ≥ 0} ⊆ {τj,k : k ≥ 0} ∪ {θ̃j,k : k ≥ 0}.

This coupling between Lorentz trajectories and Markovian flight processes has the same joint
distribution as the one presented in [2]. However, it is realized in a different way. While in [2]
first we constructed the Markovian flight process Y and conditionally on this we constructed
the coupled Lorentz exploration process X, here we perform this in reverse order: first, we
realize the N Lorentz exploration processes X = {X1, . . . , XN} and given these, we realize
the N independent Markovian flight processes Y = {Y1, . . . , YN} coupled to them.

2.4. Control of Tightness of the Coupling

We quantify the tightness of the coupling.
The relevant filtrations are

FX
t := σ({Xj(s) : 1 ≤ j ≤ N, 0 ≤ s ≤ t}),
FY

t := σ({Yj(s) : 1 ≤ j ≤ N, 0 ≤ s ≤ t}),
FX,Y

t := FX
t ∨ FY

t .

Next, we define some relevant stopping times, indicating explicitly the filtration with
respect to which they are adapted

σ1 := min{τj,k : aj,k = 0} stopping time with respect to FX
t ,

σ2 := min{θj,l : bj,l = 1} stopping time with respect to FX,Y
t ,

σ3 := inf{t > 0 : min{
∣∣∣Yj(t)−Y′i,k

∣∣∣ : θi,k < t} < r} stopping time with respect to FY
t ,

σ4 := min{θi,k : inf{
∣∣∣Yj(s)−Y′i,k

∣∣∣ : 0 ≤ s ≤ θi,k} < r} stopping time with respect to FY
t ,

σ := inf{t : X(t) �= Y(t)} = min{σ1, σ2} stopping time with respect to FX,Y
t .
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In plain words:

- σ1 is the first time an already explored scatterer is re-encountered by one of the N
Lorentz particles. We call it the time of the first recollision. This is a stopping time with
respect to the filtration FX

t .
- σ2 is the first time when in the construction of the Markovian flight processes a

compensating scattering occurs. We call it the time of the first shadowed scattering.
This is a stopping time with respect to the largest filtration FX,Y

t .
- σ3 is the first time when a Markovian flight trajectory encounters a virtual scatterer

which would have caused an earlier scattering event of one of the Markovian flight
processes. This is a stopping time with respect to the filtration FY

t .
- σ4 is the first time a scattering of one of the Markovian flight processes happens within

the r-neighborhood of the union of the past trajectories of all flight processes. (This
kind of event is mechanically inconsistent.) This is a stopping time with respect to the
filtration FY

t .
- σ is the time of the first mismatch between the Lorentz trajectories X(t) and the coupled

Markovian flight trajectories Y(t). This is (a priori) a stopping time with respect to the
largest filtration FX,Y

t .

Although these are stopping times with respect to different filtrations, it clearly follows
from the construction of the coupling that

σ1�{σ1 < σ2} = σ3�{σ3 < σ4} and σ2�{σ2 < σ1} = σ4�{σ4 < σ3}.

Hence, min{σ1, σ2} = min{σ3, σ4} and thus, in fact

σ = min{σ3, σ4}. (9)

Although by definition σ is a priori adapted to the joint filtration FX,Y
t , due to the

particularities of the coupling construction, according to (9), it is actually a stopping
time with respect to the filtration of the Markovian flight trajectories FY

t , which makes it
suitable to purely probabilistic control. In what follows, we use the expression (9) as the
definition of the first mismatch time σ.

Proposition 1. There exists an absolute constant C < ∞ such that for any r > 0, N, T < ∞
obeying (8), the following bound holds

P
(
σ < T

)
≤ Cr(NT + N2w−1), (10)

where

w := 2 min
1≤i<j≤N

arcsin
√
(1− vi · vj)/2 (11)

is the minimum angle between any two of the starting velocities.

Proof. Let for 1 ≤ i ≤ N, respectively, for 1 ≤ i �= j ≤ N

Ai :=
{

min{
∣∣Yi(t)−Yi,k

∣∣ : 0 < θi,k < T, t ∈ (0, θi,k−1) ∪ (θi,k+1, T)} < 2r
}

(12)

Bi,j :=
{

min{
∣∣∣Yi(t)−Yj,k

∣∣∣ : 0 < θj,k < T, 0 < t < T} < 2r
}

(13)
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Obviously, {
min{σ3, σ4} < T

}
⊆
( ⋃

1≤i≤N
Ai
)⋃ ( ⋃

1≤i �=j≤N

Bi,j
)
. (14)

By careful application of the Green function estimates of Section 3 in [2], we obtain the
bounds

P
(

Ai
)
≤ CrT, (15)

P
(

Bi,j
)
≤ Crw−1, (16)

with some universal constant C < ∞.
The bound (15) is explicitly stated in Corollary 1 of Lemma 4 (on page 608) of [2]. We

do not repeat that proof here. When proving the bound (16), one has to take into account
that the directions of the first flights of Yi and Yj are deterministic, vi, respectively, vj, and
the angle between these two directions determines the probability of interference between
the two trajectories during the first free flights. Otherwise, the details of the proof of (16)
are very similar to those in [2] but not quite directly quotable from there. We provide these
details in the Appendix A.

Finally, (10) follows from (14)–(16) by a straightforward union bound.

3. Proof of Theorem 3

The clue to the proof is replacing averaging with respect to the random initial
velocity in the quenched (typical, almost surely) environment by a strong law of large
numbers applied to sufficiently many annealed sampled trajectories, which by the coupling
construction are (with sufficiently high probability) identical with i.i.d. Markovian flight
trajectories. The subtleties of this “replacement procedure” are detailed in the present
section. The main technical ingredients are the Green function estimates (15) and (16) of
Proposition A1.

Triangular Array of Processes

Let now εn → 0, rn = ε
d/(d−1)
n , Tn → ∞, βn ∈ (0, 1] be as in (5), and choose an

increasing sequence Nn such that

(log n)−1Nn → ∞ (17)

and the stronger summability

∑
n

(
NnrnTn + N2

n

(
rnβ−1

n

)(d−1)/d)
< ∞ (18)

still holds. (Given (5), this can be performed.)
Assume that the probability space (Ω,F , P) supports a triangular array of processes{

{ (Xn,j(·), Yn,j(·)) : 1 ≤ j ≤ Nn } : n ≥ 1
}

row-wise constructed as in Section 2, with parameters εn, rn, βn, and with i.i.d. initial
velocities

vn,j ∼ UNI(Bn), 1 ≤ j ≤ Nn, (19)

which are also independent of all other randomness in the row.
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Note the following:

- The row-wise construction, and thus the joint distribution of { (Xn,j(·), Yn,j(·)) : 1 ≤
j ≤ Nn } is prescribed.

- The PPP �n := �εn are obtained by rescaling the same realization of the PPP �. This
makes the sequence of couplings quenched.

- The joint distribution of the probabilistic ingredients—a part of �—in different rows is
irrelevant.

Lemma 1. Let the sequence Nn ∈ N be as in (17) and { {Υn,j : 1 ≤ j ≤ Nn } : n ≥ 1 }, a jointly
defined triangular array of real valued, uniformly bounded, row-wise i.i.d. zero-mean random
variables:

P
(∣∣Υn,j

∣∣ ≤ M
)
= 1, E

(
Υn,j

)
= 0.

Then,

P
(

lim
n→∞

N−1
n

Nn

∑
j=1

Υn,j → 0
)
= 1.

Proof. This is a triangular array version of Borel’s SLLN, and a direct (and straightforward)
consequence of Hoeffding’s inequality and the Borel–Cantelli lemma. By Hoeffding’s
inequality, for any δ > 0

P
(
± N−1

n

Nn

∑
j=1

Υn,j > δ
)
≤ e−δ2 Nn/(2M2).

Hence, due to (17) and Borel–Cantelli, for any δ > 0

P
(

lim
n→∞

±N−1
n

Nn

∑
j=1

Υn,j > δ
)
= 0.

Proposition 2. Almost surely, for any F ∈ C0(C),

lim
n→∞

(
N−1

n

n

∑
j=1

F(T−1/2
n Yn,j(Tn·))− E

(
F(T−1/2

n Yn,1(Tn·))
))

= 0 (20)

lim
n→∞

(
N−1

n

n

∑
j=1

F(T−1/2
n Xn,j(Tn·))− E�

(
F(T−1/2

n Xn,1(Tn·))
))

= 0 (21)

Proof. The same statement with “for any F ∈ C0(C), almost surely” follows from Lemma 1,
noting that the triangular array of annealed random variables

Υn,j := F(T−1/2
n Yn,j(Tn·))− E

(
F(T−1/2

n Yn,j(Tn·))
)
, 1 ≤ j ≤ Nn, n ≥ 1

respectively, for almost all realizations of �, the triangular array of quenched random
variables

Υ̃n,j,� := F(T−1/2
n Xn,j(Tn·))− E�

(
F(T−1/2

n Xn,j(Tn·))
)
, 1 ≤ j ≤ Nn, n ≥ 1

meet the conditions of the lemma.
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Going from “for any F ∈ C0(C), almost surely” to “almost surely, for any F ∈ C0(C)”
we rely on separability of the Banach space (C0(C), ‖·‖∞).

Proposition 3. For any F ∈ C0(C),

lim
n→∞

E
(

F(T−1/2
n Yn,1(Tn·))

)
= E

(
W(·))

)
. (22)

Proof. This is Donsker’s theorem.

Proposition 4.

P
(

max{n : σn < Tn} < ∞
)
= 1. (23)

That is, almost surely, for all but finitely many n

Xn,j(t) = Yn,j(t), 1 ≤ j ≤ Nn, 0 ≤ t ≤ Tn. (24)

Proof. Let

αn := r1/d
n β

(d−1)/d
n .

With this choice

rnα−1
n = (αnβ−1

n )d−1 = (rnβ−1
n )(d−1)/d

As in (11), denote

wn := 2 min
1≤i<j≤Nn

arcsin
√
(1− vn,i · vn,j)/2

the minimum angle between any two of the starting velocities. Then, obviously

P
(
σn < Tn

)
≤ P

(
wn < αn

)
+ P

(
{σn < Tn} ∩ {wn ≥ αn}

)
.

Recall (6) and (19). For 1 ≤ i < j ≤ Nn, we have from elementary geometry

P
(

arcsin
√
(1− vn,i · vn,j)/2 < αn

)
< C(αnβ−1

n )d−1,

and hence by a union bound

P
(
wn < αn

)
≤ CN2

n(αnβ−1
n )d−1.

On the other hand, by the stopping time bound (10) of Proposition 1,

P
(
{σn < Tn} ∩ {wn ≥ αn}

)
≤ C(NnrnTn + N2

nrnα−1
n ).

Putting these together,

P
(
σn < Tn

)
≤ C(NnrnTn + N2

n(rnβ−1
n )(d−1)/d).

The claim of Proposition 4 follows from Borel–Cantelli, using (18).

150



Entropy 2025, 27, 397

Finally, putting together (21), (20) of Proposition 2, (22) of Proposition 3 and (23)/(24)
of Proposition 4, we obtain that assuming (5), for almost all realizations of the PPP �, for
any F ∈ C0(C),

lim
n→∞

E�

(
F(T−1/2

n Xn,1(Tn·))
)
= E

(
F(W(·))

)
,

which concludes the proof of Theorem 3.
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Appendix A. Proof of (16)
Recall that Yi and Yj are two independent Markovian flight processes with deterministic

initial velocities vi, vj ∈ Sd−1 closing an angle 2 arcsin
√

1− vi · vj > w. Since w is the
minimum of angles between any pair of N  1 different directions in Rd, we can assume
that 0 < w < π/6 and thus sin w > w/2.

We break up the right-hand side of (13) as

Bi,j = BI ∪ BII ∪ BIII ∪ BIV ,

where

BI := { min
0<t<θi,1∧T

∣∣Yi(t)−Yj,1
∣∣ < 2r, θj,1 < T} ⊆ { min

0<t<θi,1

∣∣Yi(t)−Yj,1
∣∣ < 2r} =: B̃I

BII := { min
0<t<θi,1∧T
θj,1<θj,k<T

∣∣∣Yi(t)−Yj,k

∣∣∣ < 2r} ⊆ { min
0<t<θi,1
2≤k<∞

∣∣∣Yi(t)−Yj,k

∣∣∣ < 2r} =: B̃I I

BII I := { min
θi,1<t<T

∣∣Yi(t)−Yj,1
∣∣ < 2r, θj,1 < T} ⊆ { min

θi,1≤t<∞

∣∣Yi(t)−Yj,1
∣∣ < 2r} =: B̃I I I

BIV := { min
θi,1<t<T

θj,1<θj,k<T

∣∣∣Yi(t)−Yj,k

∣∣∣ < 2r}

and bound in turn the probabilities of these events.

I: Obviously

B̃I ⊆ {θj,1 < 4rw−1},

and hence, since θj,1 ∼ EXP(1),

P
(

BI
)
≤ P

(
B̃I
)
≤ Crw−1. (A1)

To estimate the probabilities of the events B̃I I , B̃I I I , B̃IV , first note that the processes

t �→ Ỹi(t) := Yi(θi,1 + t)−Yi,1, t �→ Ỹj(t) := Yj(θj,1 + t)−Yj,1, t ≥ 0,
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are distributed as a Markovian process flight t �→ Y(t), t ≥ 0, with UNI(Sd−1)-distributed
initial velocity. They are independent between them and also independent of the random
variables θi,1, θj,1, Yi,1, Yj,1.

We rely on the following Green function estimates explicitly stated in [2].

Proposition A1. Let t �→ Ỹ(t), t > 0 be a Markovian flight process with initial position Ỹ(0) = 0
and UNI(Sd−1)-distributed initial velocity. Denote by Ỹk, k ≥ 1, its position at the successive
scattering events. Let A ⊂ Rd be open bounded. Then, the following bounds hold:

P
(
{k > 0 : Ỹk ∈ A} �= ∅

)
≤ E

(∣∣∣{k > 0 : Ỹk ∈ A}
∣∣∣) ≤ ∫

A
γ(x) dx, (A2)

P
(
{t > 0 : Ỹ(t) ∈ A} �= ∅

)
≤ r−1E

(∣∣∣{t > 0 : Ỹ(t) ∈ Ar}
∣∣∣) ≤ r−1

∫
Ar

γ(x) dx, (A3)

where γ : Rd → R+,

γ(x) := C(|x|−d+1 + |x|−d+2)

with a suitable C < ∞, and Ar := {x ∈ Rd : dist(x, A) < r}.

II: Conditioning on θi,1 and using (A2) we obviously obtain

P
(

B̃I I
)
≤ E

(
sup
x∈Rd

v∈Sd−1

P
(

min
0<t<θi,1
1≤k<∞

∣∣∣x + tv− Ỹk

∣∣∣ < 2r
∣∣ θi,1

))
≤ E

(
sup
x∈Rd

v∈Sd−1

∫
Rd

γ(y)�{ min
0<t<θi,1

|x + vt− y| < 2r} dy
)

=
∫ ∞

0
e−s

∫
Rd

γ(y)�{ min
−s/2<t<s/2

|vt− y| < 2r} dy ds (v ∈ Sd−1).

In the last step, we use the fact that the function y �→ γ(y) is rotation invariant, radially
decreasing, and θi,1 ∼ EXP(1). Finally, by straightforward computations

P
(

BII
)
≤ P

(
B̃I I

)
≤ Cr. (A4)

III: Now we condition on Z := Yi,1 −Yj1 and use (A3) to obtain

P
(

B̃I I I
)
= E

(
P
(

min
0<t<∞

∣∣∣Z− Ỹ(t))
∣∣∣ < 2r

∣∣ Z
))

≤ r−1E
( ∫

Rd
γ(y)�{|Z− y| < 3r} dy

)
≤ r−1

∫ ∞

0
e−s

∫
Rd

γ(y)�{|sv− y| < 3r} dy ds (v ∈ Sd−1).

In the last step, we use again the fact that the function y �→ γ(y) is rotation invariant,
radially decreasing, and also

|Z| =
∣∣viθi,1 − vjθj,1

∣∣ ≥ ∣∣θi,1 − θj,1
∣∣ ∼ EXP(1).

Finally, by straightforward computations

P
(

BIII
)
≤ P

(
B̃I I I

)
≤ Cr. (A5)
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IV: We proceed similarly. This time, we have to use both bounds (A2) and (A3) of
Proposition A1. However, noting that in dimensions d < 5, when estimating P

(
BIV

)
,

we cannot extend the integrals to the whole Rd. In dimensions d = 3 and d = 4, we will see
dependence on T in the upper bound:

P
(

BIV
)
≤ r−1 sup

u∈Rd

∫
Rd

∫
Rd

γ(x)�{|x| < T}γ(y)�{|y| < T}�{|(x− u)−(y + u)| < 3r}dxdy

≤ Cr−1−d sup
u∈Rd

∫
Rd

∫
Rd

γ(x)�{|x| < T}γ(y)�{|y| < T}×

( ∫
Rd
�{|x− (z + u)| < 3r}�{|y− (z− u)| < 3r} dz

)
dxdy

= Cr−1−d sup
u∈Rd

∫
Rd

( ∫
Rd

γ(x)�{|x| < T}�{|x− (z + u)| < 3r} dx
)
×

( ∫
Rd

γ(y)�{|y| < T}�{|y− (z− u)| < 3r} dy
)

dz

≤ Cr−1−d
∫
Rd

( ∫
Rd

γ(x)�{|x| < T}�{|x− z| < 3r} dx
)2 dz

≤ Cr + Crd−1(�{d = 3}T + �{d = 4} log T + �{d ≥ 5}).

The last step follows from straightforward computations. Finally, using (8), we obtain

P
(

BIV
)
≤ Cr. (A6)

Putting together (A1) and (A4)–(A6), we obtain (16).
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