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Editorial

Preface to Special Issue “Mathematical Modeling and Data
Science for Biology and Medicine”

Takashi Suzuki

Center for Mathematical Modeling and Data Science, Osaka University, Osaka 560-8531, Japan;
suzuki@sigmath.es.osaka-u.ac.jp

This Special Issue, titled “Mathematical Modeling and Data Science for Biology and
Medicine”, aims to highlight the development and growing application of mathematical
models and data science in medicine, as well as their role in enhancing the understanding
and clinical management of various diseases. The ten articles included in this Issue explore
a diverse array of topics, such as cell differentiation, blood flow, tumor growth under
virotherapy, chemotherapy treatment sequences for triple-negative locally advanced breast
cancer, incidence-dependent management strategies against an SEIRS epidemic, important
measures for the prevention and control of the COVID-19 epidemic, invadopodia formation
in cancer cells, fitting parameters for multi-exponential diffusion-weighted MRI, and
oncolytic virotherapy. These studies employ a variety of mathematical tools, including
graph theory, transport equation, systems of ordinary differential equations, systems
of nonlinear diffusion equations, free boundary problems, center manifold theory, and
optimization techniques, to model a wide range of biological processes. In addition,
medical applications are presented based on their mathematical analyses and numerical
simulations. Through these articles, readers will gain valuable insight into the latest trends
and applications of mathematical modeling in medicine.

The first contribution introduces a similarity network-based approach to investigate
the role of interacting single-cell histone modifications. High-resolution peak counting is
shown to be an effective method for constructing per-gene profiles of histone modification
marks. The second contribution focuses on the theoretical analysis of the effects of boundary
conditions on the solutions of a one-dimensional hemodynamic system. The author extends
the applicability of analytical methods in the simulation of blood flow, highlighting the
influence of boundary conditions. The third contribution presents a mathematical model,
based on ordinary differential equations, to examine the spatially homogenous state of
tumor growth under virotherapy. Derived from a partial differential equation (PDE)
system, the model is used to analyze the time evolution of the tumor radius and its
implications for tumor progression. The fourth contribution studies triple-negative locally
advanced breast cancer and underscores the regions exhibiting the most sustained variation
in the tumor’s cellular population. The fifth contribution showcases a model for the
prevention and control of COVID-19, integrating healthcare and medical detection with
big data information technology to monitor epidemic trends throughout the entire course
of the outbreak. The sixth contribution introduces a mathematical model of an individual
cell to simulate invadopodia formation in a three-dimensional domain. The model is
formulated using the Stefan problem approach, where the free boundary of the membrane
is determined. The subsequent contribution develops a mathematical model to study the
impact of epidemic dynamics on non-pharmaceutical interventions. Specifically, an SEIRS
epidemic model with reinfection is used to illustrate the results, with an application to

Mathematics 2025, 13, 1560 https://doi.org/10.3390/math13101560
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the COVID-19 pandemic. The eighth contribution examines the airborne and physical
transmission of COVID-19 within a simple heuristic framework designed to inform public
policy decisions. The ninth contribution utilizes diffusion-weighted MRI and compares
different methods for multi-exponential analysis of the diffusion signal in the kidneys. The
final contribution explores the impact of Allee effects on tumor cell growth through the
mathematical modeling of oncological virotherapy. The authors employ an epidemiological
model integrating linear and logistic growth, applying different Allee effects to observe
their influence on the dynamics of virus–tumor interaction.

The Guest Editor extends his sincere appreciation to all the authors for their valu-
able contributions to this Special Issue. He is also deeply grateful to the reviewers for
their insightful and professional evaluation reports, which have significantly enhanced
the quality of the submitted manuscripts. Furthermore, he acknowledges the excellent
collaboration with the publisher, the outstanding assistance of the MDPI associate editors,
and the significant support of the Managing Editor of this Special Issue, Ms. Helene Hu.

Conflicts of Interest: The author declares no conflicts of interest.
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Graph-Based Integration of Histone Modification Profiles

Federica Baccini 1,2,*, Monica Bianchini 3 and Filippo Geraci 2,*

1 Department of Computer Science, University of Pisa, 56127 Pisa, Italy
2 Institute for Informatics and Telematics, CNR, 56124 Pisa, Italy
3 Department of Information Engineering and Mathematics, University of Siena, 53100 Siena, Italy;

monica@diism.unisi.it
* Correspondence: federica.baccini@phd.unipi.it (F.B.); filippo.geraci@iit.cnr.it (F.G.)

Abstract: In this work, we introduce a similarity-network-based approach to explore the role of
interacting single-cell histone modification signals in haematopoiesis—the process of differentiation
of blood cells. Histones are proteins that provide structural support to chromosomes. They are subject
to chemical modifications—acetylation or methylation—that affect the degree of accessibility of genes
and, in turn, the formation of different phenotypes. The concentration of histone modifications can
be modelled as a continuous signal, which can be used to build single-cell profiles. In the present
work, the profiles of cell types involved in haematopoiesis are built based on all the major histone
modifications (i.e., H3K27ac, H3K27me3, H3K36me3, H3K4me1, H3K4me3, H3K9me3) by counting
the number of peaks in the modification signals; then, the profiles are used to compute modification-
specific similarity networks among the considered phenotypes. As histone modifications come as
interacting signals, we applied a similarity network fusion technique to integrate these networks
in a unique graph, with the aim of studying the simultaneous effect of all the modifications for the
determination of different phenotypes. The networks permit defining of a graph-cut-based separation
score for evaluating the homogeneity of subgroups of cell types corresponding to the myeloid and
lymphoid phenotypes in the classical representation of the haematopoietic tree. Resulting scores show
that separation into myeloid and lymphoid phenotypes reflects the actual process of haematopoiesis.

Keywords: histone modifications; omics integration; graph cut; haematopoiesis

MSC: 92-08

1. Introduction

Histones are basic proteins which bind tightly to DNA in the nuclei of eukaryotic
cells. According to the ‘beads-on-a-string’ model [1], they combine into octamers to form
nucleosomes, the basic units around which DNA wraps to form chromatin. The nucleo-
somes, in turn, bind together to form a chain structure that constitutes the backbone of the
three-dimensional arrangement of chromosomes.

Some residues of histone proteins, namely lysines and arginines, represent possible
targets for post-translational modifications, such as methylation and acetylation [2]. More-
over, particular patterns of histone modifications are interpreted as a code specifying for
genetic functions [3,4]. Although parts of the working principles of this code are being
investigated, most of it still represents a puzzle for biologists, as well as a computational
challenge for bioinformaticians. However, the existence of an intrinsic relationship between
the three-dimensional structure of chromosomes, gene accessibility and gene expression
has been highlighted [5]. Consequently, histone modifications emerge as fundamental
epigenetic agents for the development of different cell phenotypes. The advent of the
cost-effective ChIP-seq technology [6] that combines chromatin immunoprecipitation and
massively parallel sequencing, and the consequent large availability of data, have made it
possible to read the traces of all the histone modifications of the genome [7]. Accordingly,

Mathematics 2022, 10, 1842. https://doi.org/10.3390/math10111842 https://www.mdpi.com/journal/mathematics3
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several institutions—which came together to form the International Human Epigenome
Consortium (IHEC) (https://ihec-epigenomes.org/) [8]—have teamed up to generate huge
databases of such epigenetic markers.

In this paper, we show how histone modification traces can be turned into whole-
genome profiles. This is achieved by identifying and counting high-resolution peaks (steep
local maxima with sizes as small as a hundred bps) in the histone modification signal.
The obtained profiles show behaviour that resembles that of gene expression, with only a
small fraction of genes exhibiting relevant activity (relatively high peak counts), and the
vast majority being silent. Indeed, the existence of a tight relationship between histone
modifications and transcription has been deeply investigated, and quantitative models to
predict the expression level of genes from histone modification levels have been derived.
It is well-known, in fact, that histone modification levels and gene expression are highly
correlated, while only a small number of histone modifications are necessary to accurately
predict gene expression [5,9,10]. Consequently, it is possible to borrow methods from
differential expression analysis to extract knowledge from histone modification profiles (see,
for example, [11]). In particular, the proposed model integrates the information contained
in all the histone modification signals involved in haematopoiesis (see https://epigenom
esportal.ca/ihec/grid.html?build=2020-10&assembly=4&cellTypeCategories=1, accessed
on 23 March 2022). This choice is based on the observation that a single modification
may not be able to capture the complexity of epigenetics, since a phenotype is the result
of the combination of contrasting contributions—promotion or repression—of several
modifications [12].

Initially, the information contained in each histone modification is treated separately,
constructing a dissimilarity network of cell types; then, all the networks are integrated using
a similarity network fusion technique [13,14]. This integration model is suitable for several
applications, including that of clustering a population of cell types into homogeneous
groups. Nevertheless, if the sought sub-populations are unknown, it could be useful to
compare alternative partitions of the population into subgroups rather than performing
clustering. Following this idea, we define a score to quantitatively evaluate the plausibility
of a graph bipartition into two subgroups of vertices. The combination of the integration
model with the evaluation score for graph bipartitions is then tested by considering a
hypothesis on the biological process of haematopoiesis, i.e., the process of the formation of
all blood cells from a common progenitor. Specifically, we tested the classical hypothesis
on the existence of two main subpopulations of cell types in haematopoiesis, namely the
lymphoid and myeloid cells [15]. Figure 1 depicts an outline of the proposed methodology.

The paper is organised as follows. In Section 2, the adopted method is described.
In Section 3, the experimental analysis and the obtained results are presented. A discussion
of the methodology and the results is offered in Section 4. Finally, some conclusions are
given in Section 5.
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Figure 1. Scheme of the proposed methodology. In Phase 1, histone modification profiles of cell
types are built by counting peaks in the modification signal. In Phase 2, a similarity network of cell
types is computed for each histone modification; the networks are then fused by using a similarity
network [14]. In Phase 3, a graph-cut-based approach is introduced to evaluate the bipartition of the
networks into myeloid and lymphoid cell types.

2. Materials and Methods

A histone modification track has the form of a continuous signal. The signal is obtained
after a first phase of ChIP-sequencing by associating each nucleotide of the DNA sequence
with the number of reads of the modifier covering it [7]. In this section, we first show
how to detect and count peaks in these signals in order to build the histone modification
profiles of a cell. Moreover, we describe how cell-type profiles from different histone
modifications can be organised into a network-based setup and then integrated into a
unique, comprehensive graph. Finally, we propose a graph-cut-based hypothesis testing
scheme for evaluating graph bipartitions.

2.1. Peak Calling

Let X = {x1, . . . , xn} be the histone modification track of a sample cell X, where
the value xi corresponds to the number of supporting reads covering genomic position
i. Intuitively, a peak is a contiguous region around a local maximum in track X. More
specifically, the peak region consists of two monotone curves leading to a point whose
value is the highest within a neighbourhood of points. From this informal definition,
two free parameters can be derived to define a peak: (i) its height and (ii) its width.
Despite being simple in principle, these two parameters make finding peaks complicated.
Indeed, different settings, as well as appropriate algorithms, may be required for specific
applications. For instance, setting large surrounding areas is equivalent to seeking large
peaks (low-resolution peaks), which are suitable for the identification of genomic sites
involved in histone modification. This is the case, for example, of Sole-Search [16], the peak
detection algorithm used at IHEC [8]. On the other hand, searching for small peaks (high-
resolution peaks) is more appropriate for quantification. Since the first step of this analysis
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aims at quantifying the number of peaks in a histone modification track, we design an
algorithm to identify high resolution peaks (with resolution on the order of a few bps).

Let Xh = {x̂1, . . . , x̂n/h} be a transformation of profile X at resolution h, where
x̂i = mean([xhi, . . . , x(h+1)i−1]). Let R(Xh) = {r1, . . . , rm} (m ≤ n/h) be a compact rep-
resentation of Xh, where consecutive pairs x̂i and x̂i+1 are merged if x̂i = x̂i+1. An element
ri is eligible as a peak if it satisfies, at least, the conditions ri > ri−1 and ri > ri+1. The rep-
resentation of a histone modification track Xh with R(Xh) allows us to consider all the
maxima as candidate peaks independent of their width. Thence, in order for a point ri to
be a real peak, two additional features are required. First, the signal increase has to be steep
enough. Second, the candidate ri has to be compared with its background. To this end, as a
background we use the interval I(ri) = [α, β], where α and β are integer numbers such that
α < i < β and rα−1 = 0, rβ+1 = 0, and rj �= 0 ∀j ∈ [α < i < β], while the peak intensity is
computed as the Z-score of ri, where:

z(ri) =
ri − μ(I(ri))

σ(I(ri))
, (1)

μ() denotes the mean, and σ() is the standard deviation of the signal distribution over the
interval I(). The Z-score defined in Equation (1) does not depend on the scale of the histone
modification signal and has the advantage of being interpretable as a sort of fold change.
Consequently, a peak can be defined as a genomic locus where the score z() is higher than
a user-defined threshold (set to 2 in our experiments).

2.2. Normalisation

After the peak-calling step, we proceed by counting the number of peaks for each
gene. Peak counting, as many other quantification tasks from NGS data, is influenced by
sequencing depth. Indeed, in order for a peak to be individuated, it has to be endowed with
a consistent number of supporting reads. This generally happens easily with strong signals,
while it requires high coverage for weaker signals. Counts per million (CPM) and reads per
kilobase per million [17] (RPKM) are two widespread normalisation methods used in the
field of RNA-seq to mitigate the effect of sequencing productivity. Both methods leverage
on the acceptable assumption that the overall amount of signals (in this case, peaks) per
sample is roughly constant. The main difference between CPM and RPKM is that the latter
is based on the additional assumption that the molar concentration of RNA is constant.
Consequently, the number of reads per gene is proportional to gene length. In the context
of this work, CPM and RPKM assume slightly different semantics. CPM is based on the
hypothesis that a cell phenotype is determined only by the presence of a high concentration
of a histone modification signals. It is therefore an absolute measure of concentration of
histone modification peaks inside a gene. In contrast, RPKM is a relative measure, as it
relies on the idea that the determination of a cell phenotype depends on the distribution
of the number of peaks along the gene. Hence, in the latter case, it is assumed that a high
concentration of histone modifications is not sufficient in itself to produce a phenotype,
but rather must be spread along the gene.

Due to the lack of evidence to support a model based on the absolute concentration
of histone modifications or relative concentration, both CPM and RPKM are tested in
our experiments.

2.3. Cell-Type Expression Profiles

The IHEC data portal [8] makes a variable number of different samples available for
a given cell type. Such redundant information can be exploited to build a unique profile
for each phenotype, which, in turn, has the effect of mitigating possible bias due to the
intrinsic variability of samples. In this work, this is achieved by taking the average of the
per-gene contributions of profiles of the same cell type.

6



Mathematics 2022, 10, 1842

Similarly to gene expression, it is reasonable to assume that most genes do not con-
tribute to a phenotype of interest because they are expressed constantly or not at all. In
a framework where the computation of similarity/distance between phenotypes is re-
quired, the effect of these genes would be that of pushing the ratio between the two nearest
and the two furthest elements towards 1. Consequently, it would be complicated to look
for differentiated subgroups of phenotypes. Since we are interested in computing simi-
larities/distances between different cell types, a strategy for filtering out those genes is
required. Nevertheless, it is difficult to establish a priori a cutoff threshold to filter out infre-
quently expressed genes, as genes with similar profiles could be excluded only on the basis
of a negligible distance from the threshold. In order to solve this issue, we choose to cluster
genes, and to interpret each cluster centroid as representing all the group members. In this
way, a whole cluster is either retained or filtered out based on the profile of its centroid.
In this work, the clustering of genes is performed using the k-means algorithm, and the
centroids are initialised using the Lloyd procedure [18] (the implementation is available
via the R [19] function kmeans). The number of clusters k is set to 50 (thanks to a raw
grid search based on the elbow method [20]) to ensure high within-cluster homogeneity,
which is required for removing or retaining genes with similar profiles. Finally, we set a
conservative threshold for filtering out clusters of genes with constant or no expression [21].
More precisely, a cluster is retained only if the maximum value of its centroid is higher than
the lowest 10% of the expression interval.

2.4. Profile Integration

Histone modifications exert their effects directly by influencing the overall structure of
chromatin, promoting or inhibiting gene accessibility. As a result, a phenotype can be seen
as a combination of all the contributions of the single modifications. Based on this observa-
tion, we present a strategy that integrates the information of similarities/dissimilarities
between profiles of cell types coming from several modifications into a unique similar-
ity/dissimilarity network. In order to perform profile integration, the Similarity Network
Fusion (SNF) [14] algorithm (the software can be downloaded in R or MATLAB versions at
http://compbio.cs.toronto.edu/SNF/SNF/Software.html, accessed on 23 March 2022) is
exploited. The input to SNF consists of a set of similarity networks, one for each histone
modification, characterised by the same set of vertices (cell types). Then, by applying a
cross-diffusion process (CrDP) [13], SNF outputs a unique weighted similarity graph with
the same set of nodes as the original networks. In brief, the algorithm iteratively updates
the single similarity networks by promoting (i) strong links, which are not necessarily
present in all the networks, and (ii) weak links that are shared by all the networks. Then,
at the final iteration step, the contributions of the single networks are averaged to define
a unique similarity graph. The resulting network can therefore give information on how
multiple variables determine similarities among cell types.

2.5. Hypothesis Testing

The model described in Section 2.4 is applied to graphs where nodes are cell types,
and edges are weighted with a similarity value between pairs of cell types. With the aim
of studying how to divide the nodes of these graphs into two homogeneous groups, we
define a notion of separation by using graph cuts. A sensible bipartition of a similarity
network should have low-weighted edges between the two distinct sets and relatively
higher-weighted edges within the groups. Thus, the cost of a cut constitutes quantitative in-
formation on the level of separation of the graph components. In line with this observation,
it is possible to define a score that is proportional to the degree of separation between two
groups, a task easier to carry out with dissimilarity graphs. Dissimilarities can be easily
computed starting from similarities. For example, a dissimilarity weight can be obtained by
first converting similarities into Z-scores and then inverting them with respect to the mean.

7
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Applying a cut to a dissimilarity network is not in itself sufficient to determine the
goodness of a network bipartition. In fact, a lower and an upper bound on the cost of
a cut induced by a partition must be introduced. In principle, setting the lower and the
upper bound as the costs, respectively, of the minimum and the maximum cut might be a
reasonable choice. However, the two scores are highly dependent on the weight values and
the graph topology. Therefore, they do not represent a good solution when scores obtained
for different graphs have to be compared. In order to get rid of these scaling problems,
the separation measure can be converted into a scale-free score as follows:

S(h) =
λ(h)− minc∈C(G) λ(c)

maxc∈C(G) λ(c)− minc∈C(G) λ(c)
, (2)

where C(G) denotes the set of all possible graph cuts of graph G, λ() denotes the cost
function of a cut, and h is the cut induced by the bipartition to be evaluated (referred to
as the hypothesis cut). The score S(h) takes on values in the range [0, 1] and reaches its
maximum when the cost of the hypothesis cut reaches that of the maximum cut on G
(the similarities between vertices of the same group are high and those among vertices
of different groups are low). Computation of the maximum cut represents a major issue
for computing S(h). Indeed, while exact algorithms for computing the minimum cut
exist [22,23], computation of the maximum cut is known to be an NP-complete [24] problem.
However, heuristic solutions can be adopted to find the solution.

In this work, the maximum cut approach is implemented in the R environment
following the Greedy Cut Algorithm proposed in [25]. As for the min-cut, we use the R
function min_cut from the igraph package, which is an implementation of the algorithm
proposed in [26].

In our experiments, the score is tested on dissimilarity networks of cell types with the
aim of studying if two subpopulations appear to have substantially different phenotypes.

3. Results

3.1. Dataset

The experimental analysis is conducted by using whole-genome histone modifica-
tion profiles from a collection of cell samples involved in haematopoiesis (the complex
differentiation process that starts from stem cells and gives origin to all types of blood cells).

The data come from the 2020-10 release by the Blueprint project (https://www.bl
ueprint-epigenome.eu/), and are available at the International Human Epigenome Con-
sortium (IHEC) [8] data portal (https://epigenomesportal.ca/ihec/). The dataset con-
sists of 1254 samples of 35 distinct cell types, each registering six modification marks
on histone H3. The marks are identified by the Roadmap Epigenome Mapping Centers
(http://www.roadmapepigenomics.org/). More specifically, the histone modifications
include mono and tri-methylation of lysine 4 (H3K4me1 and H3K4me3), tri-methylation of
lysine 9, 27 and 36 (H3K9me3, H3K27me3 and H3K36me3), and acetylation of lysine 27
(H3K27ac). The pre-processed data and the code to perform the analysis are available at
https://gitlab.com/gbi1/gbi-of-histone-modifications/, accessed on 23 March 2022.

Since the similarity network fusion method requires all the single modification net-
works to have the same nodes, we limit our tests to the subset of cell types for which all
the histone modification marks are available. Moreover, profiles associated with unhealthy
samples are removed, because a pathological state could alter a cell phenotype and would
introduce some bias into our analysis. With this filtering, the dataset considered consists of
810 samples partitioned in 24 distinct cell types involved in haematopoiesis (see Table 1,
which collects the number of samples of each cell type showing a particular histone modifi-
cation, for details). As we are interested in studying the plausibility of the distinction into
myeloid and lymphoid lineages in haematopoiesis (see Figure 2), where all the cell types
are labelled according to their corresponding lineage. As shown in Table 1, 13 cell types
belong to the myeloid lineage, and the remaining 11 belong to the lymphoid one.
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Figure 2. A simplified representation of the classical model of the haematopoietic tree, where the
lymphoid and myeloid lineages are highlighted in blue and orange, respectively.

3.2. Histone Signal Distribution

The first step of the experiments is dedicated to the analysis of histone modification
signals along the genome. As stated in Section 2.3, whole-genome profiles of cell types are
built by quantifying the number of peaks for each gene in the histone modification signal.
In this phase, we investigate the possibility that a (relatively) high signal intensity of a
histone modification is registered only in a fraction of genes. This hypothesis arises from
the observation that in gene expression profiles, most genes are either constantly expressed
or not expressed at all [27,28]. Consequently, if whole-genome histone modification pro-
files follow this behaviour, classical differential expression analysis techniques could be
borrowed for processing histone signals.

We experimentally verify this hypothesis by comparing the distribution of the number
of peaks per gene (see Figure 3 for a graphical representation) of the profiles of different
cell types for each histone modification with the expected distributions of gene expression
counts derived from the literature [27,28]. Figure 3 highlights that, as happens in RNA-seq
experiments, very low or no signal is registered for the large majority of genes. Indeed,
the vast majority of genes have counts equal to 0 or lower than 5. Interestingly, this
behaviour appears to be independent of the type of modification.

Therefore, observation of the signal distribution opens up the use of standard differ-
ential gene expression normalisation methods for processing histone modification marks.
These methods, in turn, can be exploited to perform feature selection in the experiments.
Following this idea, each cell type profile is normalised using CPM and RPKM normal-
isation. Experiments are conducted in the R environment [19] by using the R functions
cpm and rpkm from the edgeR package. Subsequently, a feature selection procedure is
performed following the strategy described in Section 2.3. Feature selection is applied
to both normalisations of the data, with the effect of retaining (i) genes with a consistent
number of peaks and (ii) genes with well-differentiated values across samples. In Table 2,
the number of features (genes) retained after feature selection is reported. Table 2 shows
that out of 21,987 quantified genes, only a fraction are active. In particular, by using RPKM,
thus requiring the signal intensity to be proportional to the gene length, the number of
active genes is rather small (independent of the histone modification mark). Moreover,
RPKM filters many more genes than CPM. This result suggests that there are a number of
long genes with enough histone modification marks to be retained after CPM, but with a
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sufficient concentration of marks to also be retained after RPKM. Finally, by inspecting the
number of genes retained after the application of both normalisation methods (see the last
column of Table 2), we observe that few genes are retained after RPKM and filtered out
by CPM. This suggests that such genes have small peaks, which emerge because of their
short length.

(a) H3K27ac (b) H3K27me3

(c) H3K4me1 (d) H3K4me3

(e) H3K36me3 (f) H3K9me3
Figure 3. Distribution of the signal intensity of the histone modification profiles. The histograms
show that most of the genes have no or poorly detectable signal intensity (i.e., lower than 10) while
the signal is remarkably high only in a fraction of genes along each sample.

Table 2. The number of genes retained after feature selection using CPM and RPKM normalisation,
respectively. In the last column, the number of genes retained by both normalisation methods are
reported, showing that almost all the genes retained by RPKM are also maintained by CPM.

Modification CPM RPKM INTERSECTION

H3K27ac 5655 481 340
H3K27me3 5294 235 184
H3K36me3 6062 369 264
H3K4me1 7309 248 206
H3K4me3 5627 235 189
H3K9me3 5295 383 280

11
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3.3. Phenotype Separation Evaluation

In view of evaluating the network integration and the hypothesis testing scheme
presented in Sections 2.4 and 2.5, the profiles from the six histone modifications are used
to define similarity networks among cell types. The similarity measure is defined as
in [14]. Then, the six resulting similarity networks are integrated into a unique graph using
Similarity Network Fusion [14] (SNF). The application of SNF requires three parameters: K,
T and μ. K denotes the number of neighbours to consider in the K-Nearest Neighbours
algorithm exploited by SNF, T is the number of iteration of the Cross Diffusion Process,
and μ is a scaling parameter used in the iterative computation of the similarity matrices.
In our experiments, we set their values to 5, 10 and 0.3, respectively.

Subsequently, the six similarity networks (corresponding to the six histone modifi-
cations analysed) and the results from SNF are turned into dissimilarity networks to test
the hypothesis evaluation model described in Section 2.5. For the single-modification
networks, edges between cell types are weighted with the normalised squared Euclidean
distance between pairs of cell types (in the range [0, 1]). For the network resulting from
fusion, dissimilarities are computed as follows: First, the Z-score of each similarity weight
is computed. Then, the Z-scores are inverted with respect to the mean to obtain a dissimi-
larity weight.

We choose to test the model for evaluating the separation of each graph into two
subgroups of cell types belonging to two distinct lineages in the classic haematopoietic
tree [15]. Figure 2 shows a simplified representation of a classical scheme of haematopoiesis,
which imposes a strict binary distinction between the myeloid and lymphoid lineages at the
first differentiation step. However, recent studies [29,30] have highlighted that this model
is a simplification of the real haematopoietic process. Indeed, they admit the existence of
some mechanisms allowing myeloid progenitor cells to differentiate into cells belonging
to the lymphoid component and vice versa. Consequently, it is interesting to exploit our
hypothesis testing model for quantitatively evaluating the separation of the networks of
cell types into the components induced by the two lineages.

If the graphical model fits the hypothesis, a cut separating myeloid and lymphoid
cell types in each dissimilarity graph would tend to mostly remove edges with a high
dissimilarity score. If we allow the possibility that some lower-weighted edges can also be
removed, the separation score is expected to be close to (but less than) 1.

Indeed, the results depicted in Figure 4 report a score near 1 for all the networks. In
addition, Figure 4 shows that scores obtained using CPM-based normalisation are higher
than those obtained using RPKM, even if the gap is not remarkable. This suggests that
in order to trigger a certain phenotype, histone modification signals do not have to be
spread uniformly along a gene, but it is enough to have them in sufficient concentration.
However, although the scores are high, there is still margin to believe that the model shown
in Figure 2 may not be the only mechanism describing haematopoiesis.

Finally, from the results of the single-histone modification networks (Figure 4), it
emerges that the six histone modifications almost equally contribute to the haematopoi-
etic branch at the first level. This result is enforced by the high score obtained in the
SNF network.
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Figure 4. Barplot of the results of hypothesis testing for each modification network and for the
network resulting from the fusion process (denoted SNF). The x-axis is labelled according to the
different similarity networks. “SNF” refers to the network obtained after the fusion process. The
y-axis contains the value of the separation score obtained after applying the graph cuts to the
networks. For each network, the separation score is described by two coloured bars, distinguishing
results obtained after CPM- or RPKM-based normalisation.

4. Discussion

Histone modifications are complex signals that are not yet fully understood. It is
known that an increase/decrease in the concentration of such signals has an impact on
gene expression. Furthermore, we know that the presence of large peaks in the signal
wave is associated with loci involved in a histone modification [16]. In our experiments,
the possibility of using high-resolution peaks to quantify per-gene histone modifications
was investigated. In this framework, we studied the distribution of high-resolution peaks
across the genome, showing that they behave similarly to gene expression profiles. More
specifically, it can be observed, analogous to what happens for gene expression, that only
a small fraction of genes have a significant signal intensity. Following this idea, we nor-
malised the histone modification profiles of cells by using CPM and RPKM normalisations.
Both methods were tested on our data since the use of a specific normalisation requires
different interpretation of signal behaviour. Indeed, CPM measures signal concentration.
Accordingly, differences in phenotypes are activated with a sufficient change in the amount
of signal in a gene, regardless of the signal distribution. This is consistent with the idea
that histone modifications merely have the role of starting/stopping transcription. On the
contrary, RPKM is a measure of signal distribution. It is based on the assumption that a sig-
nificant change in the phenotype is triggered only when a high quantification of the signal is
uniformly spread along the genome. In this case, histone modifications would have the role
of making the entire gene sequence accessible/hidden to facilitate/prevent transcription.

The results reported in Figure 3 and Table 2 show that, similar to gene expression,
in most cases the signal (the number of peaks) is almost absent. This is especially evident
using RPKM normalisation. Indeed, after feature selection only a few genes are retained.
This indicates the presence of long genes having a high enough number of peaks to pass
the filtering threshold for CPM but not RPKM. However, as the intersections of the genes
retained with CPM and RPKM show, the opposite phenomenon is also present. In fact,
there are short genes whose peak concentration is not sufficient to pass CPM filtering but
that have signal distribution exceeding that of RPKM. A further inspection of Table 2 also
reveals that the number of active genes is quite constant for all the histone modification
types. Although further investigation is required for a correct biological interpretation of
this result, no histone modification signal appears to play a dominant role in the regulation
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of gene expression. Accordingly, the displayed phenotype comes from the combination
of the single modifications. As an example, in the imprinted genes, both the H3K4me3
open chromatin mark and the H3K9me3 compact chromatin mark are present at the
promoter site [31].

Based on this observation, we used the SNF method [14] to integrate all the histone
modification signals into a unified similarity network among phenotypes. The resulting
network, shown in Figure 5, is a graph in which the nodes correspond to cell types and
edges are weighted with a similarity score between pairs of cell types. Edge thickness is
proportional to the similarity score between connected cell types, so that thicker edges
connect cells with similar profiles. The similarity networks of the single histone modi-
fications can be found in the Supplementary Material (Figures S1–S6). Supplementary
Material are numbered according to the order in which the modifications are reported in
Table 2. All the networks are plotted with the Gephi software [32] using the ForceAtlas2
visualisation algorithm [32]. From observation of the single-modification networks and
the fused network, it emerges that strong and common links are promoted by similarity
network fusion, as expected. As an example, in Figure 5 cells of the innate immune system
(neutrophils, monocytes, macrophages, eosinophils) are tightly linked. This is coherent with
the presence of strong links (high similarity scores) among those cells in most of the single
modification networks. Another observation regards the strong link in Figure 5 between
the “endothelial cell of umbilical vein (proliferating)” and “effector memory CD8-positive,
alpha-beta T cell”. The similarity score between these two cell types is not very high in the
single-modification networks (it is slightly higher in Supplementary Figure S4, representing
H3K4me1), but it has a similar value in all the networks. This common link is therefore
enhanced by the fusion procedure. Overall, the fused network is a good representation of
the combination of the single networks, thus giving an overview of the simultaneous effect
of histone modifications in haematopoietic cell differentiation.

Figure 5. Similarity network of cell types obtained after applying the SNF method. Nodes are
coloured according to the classical hypothesis on haematopoiesis: pink nodes correspond to cells
labelled as “myeloid”; blue nodes correspond to cells labelled as “lymphoid”. Edge thickness is
proportional to the similarity score between connected cell types.
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The SNF network and the similarity networks of the single histone modifications are
exploited for the application of the proposed hypothesis testing model. In order to apply
this model, the similarity scores were turned into dissimilarities. The hypothesis testing
scheme was then applied to the resulting networks for testing a hypothesis on the biological
process of haematopoiesis. More specifically, we evaluated the separation induced on the
graphs by differentiation into myeloid and lymphoid lineages, i.e., the first split in the
classical haematopoietic tree (see Figure 2). In the ideal case, the cost of the graph cut that
partitions the SNF network into the two groups corresponding to the two lineages should
be maximum. Indeed, the weights of edges between cell types of the same lineage should
be stronger (equivalently, the dissimilarity score should be lower) than those between
cell types of different lineages. The results reported in Figure 4 show that the partition
separating myeloid and lymphoid cell types is nearly best-case. This indicates that the
classic myeloid/lymphoid differentiation branching is a reasonable approximation of the
haematopoietic process. However, the same results leave room for concluding that this
model in not accurate enough to capture the complexity of haematopoiesis. Interestingly,
by applying the hypothesis testing model to the single histone modification graphs, we
found that all the signals approximate the classical model with comparable scores. This,
once again, can be considered confirmation of the hypothesis that all histone modification
marks cooperate for the development of the displayed phenotype.

Overall, the experiments have proven that histone modification marks can be quanti-
fied using high resolution peaks. This quantification behaves similarly to gene expression,
with only a few genes containing a noticeable number of peaks. Moreover, the analysis
of dissimilarity networks between 24 cell types belonging to the haematopoietic tree has
shown a close relationship between a given phenotype and a profile of the modification
marks. This opens for exploitation differential analysis tools to identify genes involved in a
phenotype of interest.

5. Conclusions

Histone modifications are complex signals which regulate gene expression by modi-
fying the three-dimensional structure of chromatin. By consequence, genes become more
or less accessible for transcription. The complexity of these signals makes their mining
very difficult.

In this paper, we have shown that high-resolution peak counting (down to a few bps) is
a reasonable approach to build per-gene profiles of histone modification marks. Experimen-
tal analysis of the signals of six histone modifications belonging to 24 cell types highlights
that these profiles follow a similar distribution to that of gene expression. The relevance
of the peak-based analysis of histone profiles was validated by computationally assess-
ing the classic lymphoid/myeloid differentiation at the first level of the haematopoietic
tree. Indeed, our experiments confirm that the classic haematopoietic model fairly ap-
proximates the biological process, although suggesting that it does not completely capture
its complexity.

In addition to the contribution on the specific topic of haematopoiesis, our work
constitutes an advance in epigenetics by providing a framework for analysing histone
modification data. Indeed, the signal distribution of histone modification profiles allows
the use of standard differential expression techniques to identify genes whose modifications
are involved in a given phenotype.

Finally, the proposed graph-based methodology can be easily applied to other applica-
tion domains where hypotheses on the separation of a population into subgroups must
be evaluated.
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modifications.
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1. Introduction

Nowadays, the mathematical models of blood flow are widely used in applied medical
investigations as a powerful tool for the prediction of the results of surgeries and different
vascular defects (such as stenoses and aneurysms) [1,2]. For the simulation of processes
in large vascular systems, 1D models are widely used in practice [3,4]. These models are
obtained by the averaging of the Navier—Stokes equations on the vessel cross-section [5–7].
As a result, the model based on the hyperbolic nonlinear system of 1D equations on the
cross-sectional area and flow rate (or mean velocity) is constructed. These models can be
coupled with 0D and 3D models [8], and the obtained results are close to the averaged
solutions of 3D models [9].

From the physical viewpoint, blood is considered as an incompressible viscous
fluid [10]. In most works, the viscosity of blood is described by the Newtonian model with
the proper representation of the velocity profile [5,7,8,11]. However, in many works [12–19]
the viscosity is ignored, and blood is considered as an inviscid fluid. This approximation
can be used for the case of large arteries and veins, where the viscosity is not as important
as it is in small vessels.

In recent decades, 1D models have been used for the simulation of many processes
in physiology and medicine. For example, they have been applied to the simulation of
system partial hepatectomy [3]; brain hemodynamics predictions [6,20]; the simulation
of flow in large arteries [9] and near bifurcations [8]; the modelling of flows in systems
with stenosed vessels [21]; the analysis of blood-flow effects on cerebrospinal fluid dy-
namics [22]; the analysis of flows in tapered vessels [23]; and the simulation of flows in
arterial systems [24–26]. It must be noted that the results of the simulations are close to
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the results of the experiments (e.g., see [24,25]). Unfortunately, according to the nonlinear
nature of the main equations, the different problems for such models in the general case
can be solved only numerically. However, analytical methods are also actual in qualita-
tive investigations of 1D hemodynamics because they can be used for the analysis of the
qualitative properties of the solution (such as stability, dispersion, dissipation, etc.); for the
comparison of different rheological models of blood; and for providing an effective tool for
testing programs, which implement the algorithms of numerical methods [27].

The presented paper is devoted to the analytical investigation of possible qualitative
properties of the solutions of 1D models of blood flow. It must be noted that investigations
of this kind are presented in a relatively small number of works. For example, in the papers
of Ashmetkov et al. [28,29], the linearized system for pressure and velocity is considered,
and the method for the obtaining of analytical solutions, based on the reflection of waves, is
proposed. Paquerot and Remoissenet [30] present a nonlinear model for the description of
pressure-wave propagation in arteries. The model leads to the solution of the Boussinesq-
type scalar equation. The one-soliton and two-soliton solutions, obtained by the Hirota
method, are analyzed. Ilyin in [31] construct the model, based on the inviscid Burgers
equation, and apply the method of characteristics for the solution of an initial-boundary-
value problem on the semi-infinite interval in order to obtain the nonlinear pressure–
velocity relations. Canic et al. [7] present the proof of the theorem, which provides the
condition of the existence of a smooth global solution of a nonlinear conservative law
system, and provide the conditions for the shock formation. The recent work [32] is
devoted to the analysis of the well-posedness of the system of 1D equations in a network
in the case of the vessels with viscoelastic properties. The conditions of the existence and
uniqueness of the maximal strong solution are obtained, such as the stability estimations.

In the presented paper, we try to expand the field of application of analytical methods
in the analysis of 1D blood-flow models and to demonstrate that the problems for linearized
1D system of inviscid hemodynamics can have physically irrelevant (unbounded) solutions
for the physically relevant (bounded) boundary conditions. It is demonstrated that for the
periodic conditions, this problem is not observed. For this case of boundary conditions,
the simple and effective Fourier method is proposed.

The paper has the following structure. In Section 2, the mathematical model and
problem statement are presented. In Section 3, the integral estimations of the solution in
cases of different boundary conditions are obtained. Some concluding remarks are made in
Section 4.

2. Model

The 1D model of the inviscid blood flow in a distensible vessel with impermeable
walls is based on the averaged incompressibility condition and momentum equation [6,31]:

∂A
∂t

+
∂Q
∂z

= 0,
∂Q
∂t

+
∂

∂z

(
Q2

A

)
+

A
ρ

∂P
∂z

= 0, (1)

where t is a time, z is a cylindrical coordinate, A(t, z) is the cross-sectional area, Q(t, z) is
the flow rate (Q = AU, where U is the mean axial velocity), P(t, z) is the pressure, and ρ is
a constant density.

System (1) is closed by the equation-of-state P = P(A). In the case of the arteries,
the following equation is used [6,9]:

P − Pext = Pd +
β

Ad
(
√

A −√
Ad), (2)

where Pext is the external pressure; Pd and Ad are the diastolic pressure and cross-sectional
area; β = 4

3
√

πEh, where E is the Young’s modulus; and h is the vessel wall thickness.
In the paper, the case of constant values of Pd, Ad, E, and h is considered.
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After the substitution of (2) into (1), the following system is obtained:

∂A
∂t

+
∂Q
∂z

= 0,
∂Q
∂t

+
∂

∂z

(
Q2

A

)
+ γ

√
A

∂A
∂z

= 0, (3)

where γ = β
2ρAd

.
Let the following dimensionless variables be introduced:

z̃ =
z
Lc

, t̃ =
t

Tc
, Ã =

A
Ac

, P̃ =
P

ρU2
c

, Q̃ =
Q

AcUc
, (4)

where Lc, Tc, Ac, Uc are the characteristic length, time, cross-sectional area, and velocity.
The value of Lc is considered as a vessel length, Uc can be estimated by the maximal wave
speed, Tc is computed from Lc and Uc, and Ac can be estimated, for example, from the
diastolic cross-sectional radius. The tilde sign in (4) will be ignored in the text below.

After the substitution of (4) into (3), the following equations are obtained:

∂A
∂t

+
∂Q
∂z

= 0,
∂Q
∂t

+
∂

∂z

(
Q2

A

)
+ ξ

√
A

∂A
∂z

= 0, (5)

where ξ = γ
√

Ac
U2

c
.

The interesting results on the solutions of the initial-boundary-value problems for (5)
can be demonstrated for the linearized version of this system. For the linearization, we
represent the solution of (5) as A = A + a(t, z), Q = Q + q(t, z), where (A, Q) is the
constant steady-state solution of (5), and a(t, z), q(t, z) are the small perturbations, as their
first derivatives.

The linearized version of (5) is written as

∂a
∂t

+
∂q
∂z

= 0,
∂q
∂t

+ d1
∂a
∂z

+ d2
∂q
∂z

= 0, (6)

where

d1 = ξ
√

A − Q2

A2 , d2 =
2Q
A

.

It must be noted that the speed of sound is presented as [9]: c =
√

β
2ρAd

A
1
4 . So,

c2 = γ
√

A, and in the dimensionless variables it is written as c2 = ξ
√

A. At the same time,
U = Q/A. The blood flow in physiological conditions is realized when |U| < c [33], so the
coefficient d1 in (6) is strictly positive.

Let the single blood vessel, corresponding to the spatial interval z ∈ [0, l] be considered,
and the following initial and boundary conditions are stated for (6):

a(0, z) = ϕ(z), q(0, z) = ψ(z), (7)

δ1a(t, 0) + δ2q(t, 0) = χ1(t), β1a(t, l) + β2q(t, l) = χ2(t), (8)

where δ1, δ2, β1, β2 are the known coefficients, and δ2
1 + δ2

2 �= 0, β2
1 + β2

2 �= 0, and ϕ(z), ψ(z),
χ1(t), χ2(t) are the known functions, which are smooth enough. To ensure the smoothness
of solution in C1([0,+∞)× [0, l]), the following compatibility conditions are imposed:

δ1 ϕ(0) + δ2ψ(0) = χ1(0), β1 ϕ(l) + β2ψ(l) = χ2(0),

δ2d1 ϕ′(0) + (δ1 + δ2d2)ψ
′(0) = −χ̇1(0), β2d1 ϕ′(l) + (β1 + β2d2)ψ

′(l) = −χ̇2(0).
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The physiologically adequate solutions of (6)–(8) are expected to be bounded at {(t, z):
t ∈ [0,+∞), z ∈ [0, l]}:

max
z∈[0,l]

(|a(t, z)|, |q(t, z)|) ≤ C = const, t → +∞. (9)

As it will be demonstrated in Section 3, for the bounded and physically relevant
functions χ1(t) and χ2(t), the situation, when the realistic condition (9) is not realized, can
be observed.

3. Results

In this section, the integral inequalities, which provide the energy estimates of the so-
lutions of (6)–(8), are obtained in order to demonstrate that the condition (9) can be broken.

Let we rewrite the system (6) in the matrix-vector form:

∂u

∂t
+ A

∂u

∂z
= 0,

where u = (a, q)T . Matrix A has two real eigenvalues:

λ1,2 =
d2 ±

√
d2

2 + 4d1

2
.

As can be seen, λ1 > 0 and λ2 < 0. Without the loss of generality, let the case of U > 0
be considered, so d2 > 0, and we obtain that λ1 > |λ2|.

The matrix A can be presented as A = RΛL, where Λ is the diagonal matrix of
eigenvalues and L, R are the matrices of left and right eigenvectors of A, respectively.

Theorem 1. Let the linear function p(z) be presented as

p(z) = p(0)
l − z

l
+ p(l)

z
l

, (10)

where p(0) > 0, p(l) > 0 and the following inequalities are realized:

|p(0)e1| ≤ 1
2

,
∣∣∣∣ e2

p(l)

∣∣∣∣ ≤ 1
2

, (11)

where
e1 =

δ1R12 + δ2R22

δ1R11 + δ2R21
, e2 =

β1R11 + β2R21

β1R12 + β2R22
,

where Rij are the components of matrix R.
Then, the following inequality takes place:

l∫
0

(
p2(z)

(
L11a(t, z) + L12q(t, z)

)2
+

(
L21a(t, z) + L22q(t, z)

)2)
dz ≤

exp(Λt)
l∫

0

(
p2(z)

(
L11 ϕ(z) + L12ψ(z)

)2
+

(
L21 ϕ(z) + L22ψ(z)

)2)
dz+

2λ1 exp(Λt)
t∫

0

(
p2(0)

χ2
1(τ)

(δ1R11 + δ2R21)2 +
χ2

2(τ)

(β1R12 + β2R22)2

)
dτ, (12)

where

Λ =
2λ1|p(l)− p(0)|
l min(p(0), p(l))

,
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and Lij are the components of matrix L.

Proof. We introduce the new variables w1, w2 as: u = Rw, and according to the fact that
L = R−1, system (6) is rewritten as:

∂w1

∂t
+ λ1

∂w1

∂z
= 0,

∂w2

∂t
+ λ2

∂w2

∂z
= 0, (13)

where w1 = L11a + L12q, w2 = L21a + L22q.
The initial and boundary conditions are rewritten as

w1(0, z) = ϕ̃(z) = L11 ϕ(z) + L12ψ(z), w2(0, z) = ψ̃(z) = L21 ϕ(z) + L22ψ(z),

w1(t, 0) + e1w2(t, 0) = χ̃1(t), w2(t, l) + e2w1(t, l) = χ̃2(t),

where

χ̃1(t) =
χ1(t)

δ1R11 + δ2R21
, χ̃2(t) =

χ2(t)
β1R12 + β2R22

.

The following new variables are introduced:

w1(t, z) = p(z)w1(t, z), w2(t, z) = w2(t, z).

It must be noted that function p(z) with properties (11) can be selected for any finite
values of e1 and e2.

So, the Equation (13) are rewritten as

∂w1

∂t
+ λ1

∂w1

∂z
− g(z)w1 = 0,

∂w2

∂t
+ λ2

∂w2

∂z
= 0, (14)

where g(z) = λ1 p′(z)
p(z) . The initial and boundary conditions are rewritten as

w1(0, z) = ϕ(z) = p(z)ϕ̃(z), w2(0, z) = ψ̃(z), (15)

w1(t, 0) + e1w2(0, z) = χ1(t), w2(t, l) + e2w1(t, l) = χ2(t), (16)

where
e1 = e1 p(0), e2 =

e2

p(l)
, χ1(t) = p(0)χ̃1(t), χ2(t) = χ̃2(t).

We consider some functions f (z), k(z), h(t) and let the following relation take place
for z = a: f (a) = −sk(a) + h(t), where s ∈ R. It is easy to demonstrate that f 2(a) ≤
2h2(t) + 2s2k2(a), so f 2(a)− k2(a) ≤ 2h2(t)− (1− 2s2)k2(a). With the use of this inequality
we obtain that

w2
1(t, 0)− w2

2(t, 0) ≤ 2χ2
1(t)− (1 − 2e2

1)w
2
2(t, 0),

and according to the condition |e1| ≤ 1
2 (see (11)), the following inequality can be written:

w2
1(t, 0)− w2

2(t, 0) ≤ 2χ2
1(t), (17)

and by the same way, we obtain that

w2
2(t, l)− w2

1(t, l) ≤ 2χ2
2(t). (18)

It is easy to demonstrate that

∂

∂t

l∫
0

w2
1dz = −λ1w2

1
∣∣l
0 + 2

l∫
0

gw2
1dz,

∂

∂t

l∫
0

w2
2dz = −λ1w2

2
∣∣l
0.
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So, the following inequality is written:

∂

∂t

l∫
0

(w2
1 + w2

2)dz = −λ1w2
1
∣∣l
0 − λ2w2

2
∣∣l
0 + 2

l∫
0

gw2
1dz = −λ1w2

1
∣∣l
0+

|λ2|w2
2
∣∣l
0 + 2

l∫
0

gw2
1dz ≤ λ1(w2

2 − w2
1)
∣∣l
0 + 2

l∫
0

gw2
1dz.

From (17), (18) we obtain that

∂

∂t

l∫
0

(w2
1 + w2

2)dz ≤ 2λ1(χ
2
1(t) + χ2

2(t)) + 2
l∫

0

gw2
1dz.

With the use of the expression for p(z) and the integral mean value theorem, the
following inequality can be obtained:

2
l∫

0

gw2
1dz ≤ Λ

l∫
0

w2
1dz.

So, the following estimation takes place:

∂

∂t

l∫
0

(w2
1 + w2

2)dz ≤ 2λ1(χ
2
1(t) + χ2

2(t)) + Λ
l∫

0

(w2
1 + w2

2)dz. (19)

After the integration of (19) in time, we obtain the following inequality:

∂

∂t

l∫
0

(w2
1 + w2

2)dz ≤ exp(Λt)
l∫

0

(ϕ2(z) + ψ
2
(z))dz+

2λ1 exp(Λt)
t∫

0

(χ2
1(τ) + χ2

2(τ))dτ,

and from this inequality, after returning to the variables a and q, we can obtain (12).

So, as we can see, according to (12), the problem (6)–(8) can have solutions, which are
unbounded at t → +∞, even though the bounded functions χ1(t) and χ2(t) are considered,
and the physically relevant condition (9) may not be realized.

3.1. Case of Boundary Conditions for q

It must be noted that for the special classes of boundary conditions, the integral
extimations, which are different from (12), can be obtained. LWe consider system (6) with
initial conditions (7) and the following boundary conditions:

q(t, 0) = q1(t), q(t, l) = q2(t). (20)

Theorem 2. Let q1(t), q2(t) ∈ C1[0,+∞). Then, the following integral inequality takes place:

l∫
0

(
a2(t, z) +

1
d1

(
q(t, z)− 1

l
(q2(t)z − q1(t)(z − l))

)2)
dz ≤

23
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2
l∫

0

(
ϕ2(z) +

1
d1

(
ψ(z)− 1

l
(q2(0)z − q1(0)(z − l))

)2)
dz +

2t
l

t∫
0

(q2(τ)− q1(τ))
2dτ+

2t
d1l2

t∫
0

l∫
0

(d2(q2(τ)− q1(τ)) + q̇2(τ)z − q̇1(τ)(z − l))2dzdτ. (21)

Proof. The new function, which satisfies the boundary condition (20), is introduced:

Q(t, z) = q(t, z)− 1
l
(q2(t)z − q1(t)(z − l)).

So, the system (6) is rewritten as

∂a
∂t

+
∂Q
∂z

= F(t),
∂Q
∂t

+ d1
∂a
∂z

+ d2
∂Q
∂z

= G(t, z), (22)

where

F(t) =
q1(t)− q2(t)

l
, G(t, z) =

d2(q1(t)− q2(t))− (q̇2(t)z − q̇1(t)(z − l))
l

.

System (22) is considered with the following initial and boundary conditions:

a(0, z) = ϕ(z), Q(0, z) = ζ(z), Q(t, 0) = Q(t, l) = 0,

where ζ(z) = ψ(z) − q2(0)z−q1(0)(z−l)
l . So, the inhomogeneous system (22) with the ho-

mogeneous boundary conditions for Q(t, z) is considered. According to the Duhamel’s
principle [34], the solution of this problem can be presented as

a(t, z) = ã(t, z) +
t∫

0

aτ(t, z; τ)dτ, Q(t, z) = Q̃(t, z) +
t∫

0

Qτ(t, z; τ)dτ, (23)

where (ã, Q̃) is the solution of the following problem:

∂ã
∂t

+
∂Q̃
∂z

= 0,
∂Q̃
∂t

+ d1
∂ã
∂z

+ d2
∂Q̃
∂z

= 0, t ∈ (0,+∞), z ∈ (0, l), (24)

ã(0, z) = ϕ(z), Q̃(t, z) = ζ(z),

Q̃(t, 0) = Q̃(t, l) = 0, (25)

and (aτ ,Qτ) is the solution of the following problem:

∂aτ

∂t
+

∂Qτ

∂z
= 0,

∂Qτ

∂t
+ d1

∂aτ

∂z
+ d2

∂Qτ

∂z
= 0, t ∈ (τ,+∞), z ∈ (0, l),

aτ(τ, z; τ) = F(τ), Qτ(τ, z; τ) = G(τ, z), Qτ(t, 0; τ) = Qτ(t, l; τ) = 0.

We obtain the expression for the time derivative of
l∫

0

(
ã2(t, z) + Q̃2(t, z)

)
dz:

∂

∂t

l∫
0

ã2(t, z)dz = −2
l∫

0

ã(t, z)
∂Q̃
∂z

(t, z)dz = −2

(
ã(t, z)Q̃(t, z)

∣∣l
0−

−
l∫

0

Q̃(t, z)
∂ã
∂z

(t, z)dz

)
= − 2

d1

l∫
0

Q(t, z)
∂Q
∂t

(t, z)dz − 2d2

d1

l∫
0

Q̃(t, z)
∂Q̃
∂z

(t, z)dz =

24



Mathematics 2022, 10, 4058

= − 1
d1

∂

∂t

l∫
0

Q̃2(t, z)dz,

where the boundary conditions (25) are taken into account.
So, we can obtain the following:

l∫
0

(
ã2(t, z) + Q̃2(t, z)

)
dz =

(
1 − 1

d1

)
∂

∂t

l∫
0

Q̃2(t, z)dz.

After the integration, the following equality is obtained:

l∫
0

(
ã2(t, z) +

1
d1

Q̃2(t, z)
)

dz =

l∫
0

(
ϕ2(z) +

1
d1

ζ2(z)
)

dz. (26)

By the same operations we obtain

l∫
0

(
a2

τ(t, z; τ) +
1
d1

Q2
τ(t, z; τ)

)
dz = F2(τ)l +

1
d1

l∫
0

G2(τ, z)dz. (27)

According to Equation (23):

l∫
0

a2(t, z)dz =

l∫
0

⎛⎜⎝ã2(t, z) + 2ã(t, z)
t∫

0

aτ(t, z; τ)dτ +

⎛⎝ t∫
0

aτ(t, z; τ)dτ

⎞⎠2
⎞⎟⎠dz.

From
l∫

0

(
ã(t, z)−

t∫
0

aτ(t, z; τ)dτ

)2

dz ≥ 0 we can obtain

2
l∫

0

ã(t, z)
t∫

0

aτ(t, z; τ)dτdz ≤
l∫

0

⎛⎜⎝ã2(t, z) +

⎛⎝ t∫
0

aτ(t, z; τ)dτ

⎞⎠2
⎞⎟⎠dz,

and the following inequality can be written:

l∫
0

a2(t, z)dz ≤ 2
l∫

0

⎛⎜⎝ã2(t, z) +

⎛⎝ t∫
0

aτ(t, z; τ)dτ

⎞⎠2
⎞⎟⎠dz. (28)

The same inequality takes place for Q(t, z).
So, the following estimation is obtained:

l∫
0

(
a2(t, z) +

1
d1

Q2(t, z)
)

dz ≤ 2
l∫

0

(
ã2(t, z) +

1
d1

Q̃2(t, z)
)

dz+

+2
l∫

0

⎛⎜⎝
⎛⎝ t∫

0

aτ(t, z; τ)dτ

⎞⎠2

+
1
d1

⎛⎝ t∫
0

Q̃τ(t, z; τ)dτ

⎞⎠2
⎞⎟⎠dz. (29)
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According to the Cauchy–Schwarz inequality, we obtain⎛⎝ t∫
0

aτ(t, z; τ)dτ

⎞⎠2

≤ t
t∫

0

a2
τ(t, z; τ)dτ,

⎛⎝ t∫
0

Q̃τ(t, z; τ)dτ

⎞⎠2

≤ t
t∫

0

Q̃2
τ(t, z; τ)dτ.

So, the following integral inequality can be obtained from (26)–(29):

l∫
0

(
a2(t, z) +

1
d1

Q2(t, z)
)

dz ≤ 2
l∫

0

(
ϕ2(z) +

1
d1

ζ2(z)
)
+ 2tl

t∫
0

F2(τ)dτ+

+
2t
d1

l∫
0

t∫
0

G2(τ, z)dτdz,

and after the return to the function q(t, z) we can see, that inequality (21) is correct.

As we can see, the last terms in (21) provide the possibility of the time-growing
solutions for the bounded physically relevant functions q1(t) and q2(t). We construct the
simple example, which illustrates this behavior. Let q1 and q2 be the constants q1 = C1,
q2 = C2, C1 > C2. Let ψ(z) = Dz + C1, where D = C2−C1

l < 0. Let ϕ(z) = − d2
d1

Dz. This
problem has the following solution:

q(t, z) = Dz + C1, a(t, z) = −Dt + ϕ(z).

So we can see that constant boundary conditions and bounded initial conditions lead
to the unbounded unphysical (a(t, z) → +∞) solution.

In order to demonstrate the similar behavior in the fully nonlinear model (1), which is
widely used in practice, the physiological example on the simulation of blood flow in the
part of the human aorta can be considered. For the simulation, the segment Ao. V from
aortic model, presented in [9], is chosen. For this case, the variable mechanical properties
take place: Ad = Ad(z), β = β(z). For this vessel, l = 15.2 cm, the radius of the inlet
cross-section Rin is equal to 1.25 cm, and the radius of the outlet cross-section Rout is equal
to 0.99 cm. The Ad(z) is chosen as

Ad(z) = π

(
Rin +

Rout − Rin
l

z
)2

.

The values of β for inlet and outlet cross-sections are computed from the values of the
speed of sound, presented in Table IV from [9], and β(z) is considered as a linear function:
β(z) = βin +

βout−βin
l z.

The following boundary conditions are stated: Q(t, 0) = q1 = 500 cm3/s, Q(t, l) =
q2 = 300 cm3/s, which are close to the typical values of Q from [9]. The initial conditions
are stated as

A(0, z) = Ad(z), Q(0, z) =
q2 − q1

l
z + q1.

The numerical simulations are realized on the time interval from 0 to 1 s. The second-
order Lax–Wendroff scheme is used for the computations on the spatial grid with 100 nodes
and the time grid with 10,000 nodes. The values of A in the boundary points are computed
from the compatibility conditions (for details, see [26]).

In Figure 1, the results of the numerical simulations are presented. As can be seen from
the plots of A in the left, middle, and right vessel points, for this type of bounded boundary
and the initial conditions, the obtained solutions do not have any physical or physiological
meaning because they lead to the unbounded values of A. So, for this practical example
we have the same behavior as for the linear theory.
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Figure 1. The values of the vascular cross-section in the chosen points: 1—A(t, 0); 2—A(t, l/2); and
3—A(t, l).

3.2. Case of Periodic Boundary Conditions

We consider the following periodic boundary conditions for the system (6):

a(t, l) = a(t, 0), q(t, l) = q(t, 0), (30)

with the same initial conditions, but it is proposed that ϕ(l) = ϕ(0) and ψ(l) = ψ(0).

3.2.1. Integral Estimation

Theorem 3. The following equation takes place for the solution of problem (6), (7), (30):

l∫
0

(
a2(t, z) +

1
d1

q2(t, z)
)

dz =

l∫
0

(
ϕ2(z) +

1
d1

ψ2(z)
)

dz, (31)

Proof. We obtain the expressions for ∂
∂t

l∫
0

(
a2(t, z) + q2(t, z)

)
dz:

∂

∂t

l∫
0

a2(t, z)dz = −2
l∫

0

ã(t, z)
∂q̃
∂z

(t, z)dz = −2

(
a(t, z)q(t, z)

∣∣l
0−

−
l∫

0

q(t, z)
∂a
∂z

(t, z)dz

)
= 2

l∫
0

q(t, z)
∂a
∂z

(t, z)dz.

∂

∂t

l∫
0

q2(t, z)dz = 2
l∫

0

q(t, z)
∂q
∂z

(t, z)dz = −2
l∫

0

q(t, z)
(

d1
∂a
∂z

(t, z) + d2
∂q
∂z

(t, z)
)

dz.

l∫
0

q(t, z)
∂q
∂z

(t, z)dz = q2(t, z)
∣∣l
0 −

l∫
0

q(t, z)
∂q
∂z

(t, z)dz,
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so
l∫

0
q(t, z) ∂q

∂z (t, z)dz = 0,

d1

l∫
0

q(t, z)
∂a
∂z

(t, z)dz = −1
2

∂

∂t

l∫
0

q2(t, z)dz.

So, we obtain that

∂

∂t

l∫
0

(
a2(t, z) + q2(t, z)

)
dz = 2

l∫
0

q(t, z)
∂a
∂z

(t, z)dz − 2d1

l∫
0

q(t, z)
∂a
∂z

(t, z)dz =

= − 1
d1

∂

∂t

l∫
0

q2(t, z)dz +
∂

∂t

l∫
0

q2(t, z)dz.

So, the following equation is obtained:

∂

∂t

l∫
0

(
a2(t, z) +

1
d1

q2(t, z)
)

dz = 0,

and after its integration on t we obtain (31).

So, for the periodic conditions (30), the condition (9) is realized for any appropriate
functions ϕ(z) and ψ(z).

3.2.2. Fourier Method

As is mentioned in the Introduction, the approach to obtain the solution of the initial-
boundary-value problem for system (6) in the general form is proposed in [28,29], and it is
based on the reflection of waves. In the case of periodic conditions (30), the Fourier method
can be easily and effectively used.

Let the solution of system (6) be presented as

a(t, z) = α(t)Z(z), q(t, z) = κ(t)Z(z). (32)

After the substitution of (32) in the first equation of (6), the following relation is obtained:

α̇(t)
κ(t)

= −Z′(z)
Z(z)

= −λ = const.

So, we obtain the following eigenvalue problem:

Z′(z)− λZ(z) = 0, Z(0) = Z(l). (33)

Problem (33) has the following eigenfunctions and corresponding eigenvalues:

Zm(z) = e
2πmi

l z, λm =
2πmi

l
, m ∈ Z.

The solution to the problem with periodic conditions (30) is presented as Fourier
expansions on these eigenfunctions:

a(t, z) =
+∞

∑
m=−∞

αm(t)e
2πmi

l z, q(t, z) =
+∞

∑
m=−∞

κm(t)e
2πmi

l z. (34)
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After the substitution of (34) into (6), the following equations are obtained for αm(t)
and κm(t):

α̈m + d2λmα̇ − d1λ2
mαm = 0, κm = − α̇m

λm
, (35)

for m �= 0.
The solutions of (35) are presented as

αm(t) = C1mei πmr1
l t + C2mei πmr2

l t,

where r1,2 = 2λ1,2, and C1m and C2m are the constants. For m = 0 we obtain that α0(t) = σ0,
κ0(t) = σ1, where σ0 and σ1 are the constants.

The constants in the expressions for αm(t) and κm(t) are defined after the substitution
of (34) into initial conditions (7), expanded in the Fourier series on eigenfunctions of (33):

ϕ(z) =
+∞

∑
m=−∞

ϕme
2πmi

l z, ψ(z) =
+∞

∑
m=−∞

ψme
2πmi

l z,

where

ϕm =
1
l

l∫
0

ϕ(z)e−
2πmi

l zdz, ψm =
1
l

l∫
0

ψ(z)e−
2πmi

l zdz.

After this operation, the following expressions for constants are obtained:

C1m = −2ψm + ϕmr2

r1 − r2
, C2m =

r1 ϕm + 2ψm

r1 − r2
, σ0 = ϕ0, σ1 = ψ0.

We consider the following example: let l = 1, and the initial functions are presented
as ϕ(z) = A0 +

sin(2πz)
2 , ψ(z) = 0, where A0 ≥ 1. So, we obtain the following values

of constants:
σ0 = A0, σ1 = 0, C1m = C2m = 0, m �= ±1,

C11 =
ir2

2(r1 − r2)
, C21 = − ir1

2(r1 − r2)
, C1−1 = −C11, C2−1 = −C21.

For this example, a(t, z) and q(t, z) are the real functions, written as

a(t, z) = A0 +
1

2(r2 − r1)
(r2 sin(π(2z + r1t))− r1 sin(π(2z + r2t))),

q(t, z) =
r1r2

2(r2 − r1)
(sin(π(2z + r1t))− sin(π(2z + r2t))).

4. Discussion and Conclusions

In the presented paper, the author tries to expand the field of application of analytical
methods in the simulation of blood flow and to analyze the effects of boundary conditions
on the solutions of the linearized system of equations of 1D hemodynamics. The main
results can be formulated as follows:

1. The integral estimation (12) for the solution in the case of the general form of the
boundary conditions is obtained. As can be seen, the unphysical unbounded solutions
can take place for the case of bounded functions χ1(t), χ2(t).

2. For the case of the boundary conditions on the flow rate, the estimation (21) is obtained,
which is more accurate than (12), and it illustrates the similar possible behavior of
the solutions.

3. The general theory of the integral inequalities for hyperbolic equations is presented
in [35,36]. However, in the presented paper, the more exact estimations are presented
for the specific example of the hyperbolic system, where the specific constants in
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exponentials are obtained. Moreover, for the boundary conditions only for q, the esti-
mation (21), which is more accurate than the exponential function (the linear function
of t), is obtained.
As it is mentioned in [36], the energetic norm is presented by the square of the L2-
norm of the solution. In the left parts of (12), (21), and (32), the integrals, which can
be considered as squares of norms of functions, linearly related to the solutions, are
presented. So, our estimations can be considered as some kind of energy inequalities
for this specific type of hyperbolic system with the appropriate boundary conditions.

4. For the periodic boundary conditions, the exact integral estimation (31) is obtained,
which illustrates the correct behavior of the solution—it is bounded at t → +∞.
For this case of boundary conditions, the Fourier method for the analytical solution
can be applied. Such analytical solutions can be used for the comparison of different
1D blood-flow models [27].

5. The results obtained in the paper can be useful for the specialists on blood-flow
modeling because they allow for an alternative view of the stated boundary conditions
and can explain some of the problems that can arise in numerical simulations.

6. In the numerical experiment, where the fully nonlinear model, used in many works, is
considered, it is demonstrated that the situation described by the author’s theoretical
results can be observed in practice, when the bounded initial and boundary conditions
lead to the incorrect results from the physical point of view. So, it is important to
correctly impose the boundary conditions for the practical predictive simulations.
From the medical point of view, this means that the users of the software must
choose such conditions carefully because in the opposite case, it can lead to the
incorrect results.
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Abstract: We present a mathematical model based on ordinary differential equations to investigate
the spatially homogeneous state of tumor growth under virotherapy. The model emphasizes the
interaction among the tumor cells, the oncolytic viruses, and the host immune system that generates
both innate and adaptive immune responses. We conduct a rigorous equilibrium analysis and derive
threshold conditions that determine the growth or decay of the tumor under various scenarios.
Numerical simulation results verify our analytical predictions and provide additional insight into the
tumor growth dynamics.
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1. Introduction

Tumor virotherapy is a relatively new, yet propitious, strategy in treating cancer [1]. It
has shown promising results in preclinical tests and clinical trials for a number of tumor
types [2–5]. This therapy makes use of genetically engineered oncolytic viruses that are
specific to tumors. Once injected into a tumor, the viruses infect cancer cells, while leaving
healthy cells and tissues unharmed. Through the lysis of the infected cells, the viruses
replicate and spread within the tumor and continue infecting other cancer cells. There
are several distinct advantages of using virotherapy. First, the replication of oncolytic
viruses is highly tumor-selective, and, thus, is generally non-pathogenic to normal tissues.
Second, the success rate of viral infection is typically high, as viruses can utilize multiple
genetic means to attack tumor cells and cause cell lysis. Moreover, viruses can be genetically
manipulated to include additional features so as to achieve improved safety and efficacy [6].

A complication involved in the tumor oncolysis process is the response from the
host immune system. Once the viruses start attacking tumor cells, the innate immune
response is stimulated by the viruses and the infected tumor cells, which tends to limit
virus replication and spread, as well as eliminate infected cells. This anti-virus effect of
innate immunity has been well observed and documented [7–9]. Recent clinical studies,
however, revealed that through the lysis of infected cells, an inflammatory response is
induced with the presentation of tumor antigens, which leads to T-cell mediated adaptive
immunity against the tumor [6,10]. Thus, the interaction of oncolytic viruses and the
immune system contributes to the therapeutic efficacy in two opposite ways: a negative
contribution through the anti-virus innate immune response, and a positive contribution
through the anti-tumor adaptive immune response.

Ideally, the virotherapy aims to completely remove the tumor cells and the viruses;
in the end, though, it is unclear whether such a perfect outcome is realistic. Meanwhile,
challenges remain on how to effectively combine the oncolysis and the virus-mediated
immunity to ensure the success of the treatment, and how to strategically manipulate
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the balance between anti-virus and anti-tumor immune responses to achieve the best
outcome [1,6,10]. Theoretical investigations and quantitative analysis, particularly using
mathematical modeling, can improve our understanding of tumor virotherapy and provide
useful guidelines for clinical studies toward overcoming these challenges.

A number of mathematical models have been published on the study of virother-
apy and its impact on tumor growth. Wodarz [11] proposed a model based on ordinary
differential equations (ODEs), with two compartments representing the infected and unin-
fected tumor cell populations where each cell population is assumed to grow in a logistic
fashion. The model does not explicitly consider viral dynamics, and a main focus of the
work is to explore conditions required for maximum reduction of the tumor load. This
model was later extended to a more general formulation [12], and two distinct types of
dynamics (representing the success and failure of the treatment, respectively) were found,
depending on the spread rate of the viruses. Karev et al. [13] employed a similar model-
ing framework, but with an emphasis on tumor cell heterogeneity. Novozilov et al. [14]
incorporated a ratio-dependent functional response into the model of Wodarz [11], and
discussed several possible outcomes of oncolytic virus infection, including no effect on the
tumor, stabilization or reduction of the tumor load, and complete elimination of the tumor.
Tian [15] analyzed the interaction among the infected tumor cells, uninfected tumor cells,
and viruses, also using an ODE model, with a focus on the bifurcation study of the virus
replicability measured by the burst size. Wang et al. [16] added a nutrient compartment
to a model that includes normal cells, tumor cells, and viruses, and explicitly determined
the minimum viral dosage in order for the treatment to be effective. None of these ODE
models, however, considered the effects of immune responses and their contribution to the
efficacy of the therapy.

Meanwhile, virotherapy models based on partial differential equations (PDEs) have
also been used. For example, Wu et al. [17] employed a PDE model to compare the
evolution of a tumor under different initial conditions that resulted from three virus-
injection strategies. This model was later extended in [18] to incorporate a cytokine-based
immune response against the virus-infected tumor cells. In addition, Friedma et al. [19]
proposed a reaction-convection-diffusion system to investigate tumor virotherapy in the
presence of host innate immune response. Although the PDE models in [18,19] both added
a separate equation to represent the effects of the host immune response, they only included
the innate immunity and did not consider the adaptive immunity, leading to an incomplete
picture for the host immune system dynamics in the course of tumor virotherapy. In a
more recent study, Timalsina et al. [20] proposed a PDE modeling framework for tumor
virotherapy that incorporates both the innate and adaptive immune responses in the
description of the interaction among tumor cells, oncolytic viruses, and host immune
systems. Due to the complexity of their PDE system, however, the study in [20] was
primarily focused on numerical simulation under a variety of parameter settings, and no
mathematical analysis was conducted.

The present paper aims to improve our knowledge of the tumor growth dynamics
under virotherapy and the tumor–virus–immunity interaction involved in this process,
through a rigorous analysis of an ODE model closely related to the PDE model proposed
in [20]. Specifically, we are interested in better understanding the spatially homogeneous
state of tumor growth, where theory of differential equations and dynamical systems [21,22]
can be applied and a detailed equilibrium analysis can be conducted. The simplified ODE
model retains all the variables and the essential temporal dynamical features from the
original PDE system. Particularly, it remains as a moving boundary problem where the
tumor size changes with time, and the innate and adaptive immune responses are both
included. Using this ODE model, we will carefully investigate the complex interaction
among tumor cells, oncolytic viruses, and innate and adaptive host immune systems,
and derive threshold conditions to quantify the success and failure of the virotherapy.

The remainder of this paper proceeds as follows. In Section 2, we describe our
ODE model that depicts the spatially homogeneous state in the course of tumor growth
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under virotherapy. In Section 3, we analyze the equilibria of the model and their stability
properties, as well as their impact on the growth of the tumor. We present some numerical
simulation results in Section 4, and conclude the paper with some discussion in Section 5.

2. Model Formulation

As a starting point, we first present the PDE model proposed in [20] that describes
the interaction between the tumor cells, oncolytic viruses, and innate and adaptive host
immune responses. This model, formulated as a moving boundary problem, considers a
spherical tumor with radial symmetry and consists of the following equations

∂X
∂t

+
1
ρ2

∂

∂ρ
(ρ2UX) = λX − βXV − k2XZ2,

∂Y
∂t

+
1
ρ2

∂

∂ρ
(ρ2UY) = βXV − k1YZ1 − δY,

∂Z1

∂t
+

1
ρ2

∂

∂ρ
(ρ2UZ1) = s1YZ1 − c1Z1,

∂Z2

∂t
+

1
ρ2

∂

∂ρ
(ρ2UZ2) = s2YZ2 − c2Z2,

∂N
∂t

+
1
ρ2

∂

∂ρ
(ρ2UN) = k1YZ1 + k2XZ2 + δY − μN,

∂V
∂t

− D
ρ2

∂

∂ρ

(
ρ2 ∂V

∂ρ

)
= bδY − k0Z1V − γV,

1
ρ2

∂

∂ρ
(ρ2U) = λX + s1YZ1 + s2YZ2 − c1Z1 − c2Z2 − μN,

dR
dt

= U(R, t),

(1)

for t > 0 and 0 ≤ ρ ≤ R(t), where t denotes the time and ρ denotes the spatial distance
measured from the center of the tumor. The variables X(ρ, t), Y(ρ, t) and N(ρ, t) are the
numbers of normal (i.e., not yet infected), infected, and dead tumor cells, respectively;
Z1(ρ, t) and Z2(ρ, t) are the numbers of the innate and adaptive immune cells, respectively;
V(ρ, t) is the number of viruses, and R(t) denotes the moving boundary of the tumor. The
motion of all the cells is modeled as a convection process along the radial direction with
a velocity U(ρ, t), whereas the motion of the viruses (which are much smaller than cells)
is modeled as a diffusion process. Since the total cell density is approximately a constant
(≈106 cells/mm3) [19], with a normalization procedure, it can be assumed that

X + Y + Z1 + Z2 + N = 1; (2)

i.e., each of these variables represents a portion of the total density. In addition, all the
parameters involved in this model are described in Table 1.

We will focus on the spatially homogeneous state of tumor growth. To that end,
we assume

X = X(t) = density of uninfected tumor cells at time t,

Y = Y(t) = density of infected tumor cells at time t,

Z1 = Z1(t) = density of innate immune cells at time t,

Z2 = Z2(t) = density of adaptive immune cells at time t,

N = N(t) = density of dead tumor cells at time t,

V = V(t) = density of viruses at time t.

(3)
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That is, all the cells and viruses are uniformly distributed over the spatial domain
0 ≤ ρ ≤ R(t) so that each of these density variables only depends on time. Meanwhile, we
retain the spatiotemporal dependence of the convective velocity field:

U = U(ρ, t) = velocity of cells at distance ρ and time t. (4)

However, we remark that if we assume a spatially uniform velocity field U = U(t),
it would lead to a stationary tumor with a fixed boundary (i.e., dR

dt = 0), which is much
easier to analyze but is unrealistic in some sense. A detailed discussion of that scenario is
provided in the Appendix A. The spatiotemporal variation of U defined in Equation (4)
allows us to study a more realistic and complex tumor with a moving boundary.

With these assumptions, we can manipulate the convection terms in system (1). For ex-
ample, from the first equation of system (1) we have

1
ρ2

∂

∂ρ
(ρ2UX) = X

1
ρ2

∂

∂ρ
(ρ2U) = X f (X, Y, Z1, Z2), (5)

where

f (X, Y, Z1, Z2) = (λ + μ)X + (μ + s1Z1 + s2Z2)Y + (μ − c1)Z1 + (μ − c2)Z2 − μ. (6)

Equation (6) is obtained by adding up the first five equations in system (1) and using
the condition (2). Meanwhile, since V = V(t), we have

D
ρ2

∂

∂ρ

(
ρ2 ∂V

∂ρ

)
= 0;

i.e., the diffusion term in the virus equation vanishes. In addition, Equation (5) yields

∂

∂ρ
(ρ2U) = ρ2 f (X, Y, Z1, Z2).

Integrating both sides for ρ yields

U(ρ, t) =
ρ

3
f
(
X(t), Y(t), Z1(t), Z2(t)

)
, 0 ≤ ρ ≤ R. (7)

Table 1. Model parameters.

Symbol Description Unit

λ Proliferation rate of tumor cells h−1

β Infection rate of viruses mm3 h−1 virus−1

k1 Killing rate of innate immune response mm3 h−1 cell−1

k2 Killing rate of adaptive immune response mm3 h−1 cell−1

s1 Stimulation rate of innate immunity mm3 h−1 cell−1

s2 Stimulation rate of adaptive immunity mm3 h−1 cell−1

c1 Clearance rate of innate immune cells h−1

c2 Clearance rate of adaptive immune cells h−1

D Diffusion coefficient of viruses mm2 h−1

b Burst size of viruses virus cell−1

δ Lysis rate of infected tumor cell h−1

k0 Take-up rate of viruses by innate immunity mm3 h−1 cell−1

γ Clearance rate of viruses h−1

μ Removal rate of dead tumor cells h−1
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Thus, we obtain the following ODE system

dX
dt

= λX − βXV − k2XZ2 − X f (X, Y, Z1, Z2),

dY
dt

= βXV − k1YZ1 − δY − Y f (X, Y, Z1, Z2),

dZ1

dt
= s1YZ1 − c1Z1 − Z1 f (X, Y, Z1, Z2),

dZ2

dt
= s2YZ2 − c2Z2 − Z2 f (X, Y, Z1, Z2),

dV
dt

= bδY − k0Z1V − γV,

dR
dt

=
R
3

f (X, Y, Z1, Z2).

(8)

Note that we have dropped the equation for N in the system above. Substituting the
expression of f from Equation (6), we may rewrite the first five equations in system (8)
as follows:

dX
dt

= (λ + μ)X − (μ − c1)XZ1 − (μ + k2 − c2)XZ2

− (λ + μ)X2 − μXY − βXV − s1XYZ1 − s2XYZ2,
dY
dt

= βXV − (μ + k1 − c1)YZ1 − (μ − c2)YZ2

− (δ − μ)Y − (λ + μ)XY − μY2 − s1Y2Z1 − s2Y2Z2,
dZ1

dt
= (μ − c1)Z1 + (s1 − μ)YZ1 − (μ − c1)Z2

1 − (μ − c2)Z1Z2

− (λ + μ)XZ1 − s1YZ2
1 − s2YZ1Z2,

dZ2

dt
= (μ − c2)Z2 + (s2 − μ)YZ2 − (μ − c1)Z1Z2 − (μ − c2)Z2

2

− (λ + μ)XZ2 − s2YZ2
2 − s1YZ1Z2,

dV
dt

= bδY − k0Z1V − γV.

(9)

Meanwhile, the last equation in system (8) yields

R(t) = R(0) e
1
3
∫ t

0 f (X(τ),Y(τ),Z1(τ),Z2(τ))dt . (10)

In what follows, we will focus our attention on the analysis of the equlibria of sys-
tem (9); each equilibrium represents a steady state in the tumor virotherapy, where the
tumor would grow or decay at a constant rate. Ideally, we would hope that the virother-
apy can eliminate all the uninfected tumor cells (i.e., X) to ensure a successful outcome.
Practically, however, the uninfected tumor cells may or may not be eradicated, yet the
tumor could still be effectively controlled in the presence of some level of uninfected tumor
cells [19,20]. Thus, in this study we measure the success of the tumor virotherapy by the
(exponential) decay of the tumor radius, whose motion is described by Equation (10), at a
stable equilibrium. On the other hand, when an equilibrium is unstable, that implies such
a steady state cannot be sustained, or may not be reached at all.

3. Equilibrium Analysis

Let the unknowns of system (9) be ordered as (X, Y, Z1, Z2, V). Each density variable
is non-negative to be biologically meaningful. To facilitate our analysis, we introduce
the notations

λμ = λ + μ, λδ = λ + δ, λi = λ + ci, μi = μ − ci, δi = δ − ci, i = 1, 2. (11)
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We also assume that μ1 > 0, μ2 > 0 and λ2 > k2. These assumptions are consistent
with the published parameter values in the literature (see, e.g., [18,19]).

3.1. Trivial Equilibria

It is straightforward to observe that there are four simple boundary equilibria (or,
trivial equilibria):

M0 = (0, 0, 0, 0, 0), M1 = (1, 0, 0, 0, 0), M2 = (0, 0, 0, 1, 0), M3 = (0, 0, 1, 0, 0).

By computing the Jacobian matrices associated with these points, we obtain their
characteristic polynomials

P0(u) = (u − λμ)(u + δ − μ)(u − μ1)(u − μ2)(u + γ),

P1(u) = (u + λ1)(u + λ2)(u + λμ)(u2 + (λμ + λδ)u + γλδ − bβδ),

P2(u) = (u + k2 − λ2)(u + δ2)(u + c1 − c2)(u + μ2)(u + γ),

P3(u) = (u − λ1)(u + μ1)(u + k1 + δ1)(u + c2 − c1)(u + k0 + γ),

respectively. Let us define the threshold value of system (9) by

R0 =
bδβ

γλδ
. (12)

The threshold value R0, which is analogous to the basic reproductive number in an
infectious disease model, quantifies the capability that the oncolytic viruses can effectively
invade the tumor. Specifically, Equation (12) expresses the threshold value as a ratio of
two factors which have opposite effects on the outcome of the virotherapy: the ‘positive-
effect’ factor represented by the product of the viral reproduction rate and infection rate,
and the ‘negative-effect’ factor represented by the virus removal rate and tumor cell
reproduction rate.

We then obtain that the equilibrium M1 is locally asymptotically stable if R0 < 1
and unstable if R0 > 1. Biologically, the point M1 represents a steady state indicating a
complete ‘failure’ of the tumor virotherapy; i.e., uninfected tumor cells occupy 100% of
the domain while all other cells and viruses are gone. Our observation here is that when
the viral infection/invasion capability is low (such that R0 < 1), the virotherapy would
most likely fail. In that scenario, we have f (X, Y, Z1, Z2) = λ at the stable equilibrium
M1, so that the tumor radius would exponentially grow at a constant rate λ/3 based on
Equation (10). On the other hand, as long as the threshold value is higher than unity, M1
becomes unstable which implies that such a state (of complete treatment failure) would
not be attained. Meanwhile, the other three equilibria M0, M2 and M3 are always unstable
as their characteristic polynomials each has at least one positive root. Each of these three
points represents an ‘ideal’ steady state of the tumor treatment which is free of tumor cells
and viruses. Our results show that the tumor growth cannot stabilize at these equilibria
regardless of the value of the threshold value, implying that, practically, such a perfect
treatment outcome may not be achieved.

3.2. Immunity-Free Equilibria

In addition to these four simple equilibria, system (9) possesses a number of equilib-
rium points which are more complex in nature. We proceed to first analyze those equilibria
that are free of immune cells, i.e., Z1 = Z2 = 0. We will distinguish two cases, depending
on the values of the lysis rate of the infected tumor cells (δ) and the removal rate of the
dead tumor cells (μ).

Case 1: δ > μ.
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It is easy to find that there exists a biologically feasible, immunity-free, equilibrium

I0 = (x0, y0, 0, 0, v0) =

(
(δ − μ)R0 + μ

R0(λδR0 − λ)
,

λμ(R0 − 1)
R0(λδR0 − λ)

, 0, 0,
λδλμ(R0 − 1)
β(λδR0 − λ)

)
,

if and only if R0 > 1. The Jacobian matrix at I0 is

JI0 =

⎡⎢⎢⎢⎢⎢⎣
−λμx0 −μx0 −(μ1 + s1y0)x0 −(μ2 + k2 + s2y0)x0 −β x0

( bβδ
γ − λμ)y0 −μy0 − bβδx0

γ −(μ1 + k1 + s1y0)y0 −(μ2 + s2y0)y0 β x0

0 0 ξ1 0 0
0 0 0 ξ2 0
0 bδ −k0v0 0 −γ

⎤⎥⎥⎥⎥⎥⎦,

where ξi = μi − λμx0 + (si − μ)y0, i = 1, 2. Hence, the characteristic polynomial of JI0 is

PI0(u) = (u − ξ1)(u − ξ2)(u3 + Au2 + Bu + C),

with

A = γ + λδR0x0 + λx0 +
μ

R0
> 0,

B = (γ + λδR0x0)

(
λx0 +

μ

R0

)
> 0,

C = γλμλδx0(R0 − 1) > 0.

Let w =
λμ

λδR0−λ , then w ∈ (0, λμ/δ) and R0 =
λw+λμ

λδw , x0 = w(λw+δ−μ)
λw+λμ

. Hence,

A = γ + δ − μ + 2δw,

B = δw(γ + δ − μ + δw),

C = γλμ

(
δ − μ − δ2w

λ
+

μλ2
δw

λ(λw + λμ)

)
.

Consider the following function

D(w) = A(w)B(w)− C(w), w ∈ (0, λμ/δ).

One can easily verify that (A(w)B(w))′′ > 0 and C′′(w) < 0, hence D′′(w) > 0.
In addition, since

D(0+) = γλμ(μ − δ) < 0 < A(λμ/δ−)B(λμ/δ−) = D(λμ/δ−),

there exists a w∗ ∈ (0, λμ/δ) such that D(w) < 0 for w ∈ (0, w∗) and D(w) > 0 for

w ∈ (w∗, λμ/δ). Hence, if we let r =
λw∗+λμ

λδw∗ > 1, then AB < C for R0 ∈ (r, ∞) and
AB > C for R0 ∈ (1, r). Thus, by Routh–Hurwitz stability criterion, each root of PI0(s)
has a negative real part if and only if R0 ∈ (1, r) and ξi < 0, i = 1, 2. Moreover, ξi < 0 is
equivalent to

μiλδR2
0 + ((si − δ)λμ − λμi)R0 − siλμ < 0.

Hence, it is easy to obtain that 1 < R0 < Ri, where

Ri =

√
((si − δ)λμ − λμi)2 + 4siμiλδλμ − ((si − δ)λμ − λμi)

2μiλδ
, i = 1, 2.
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Therefore, we conclude that I0 is locally asymptotically stable if 1 < R0 < min{r, R1, R2}
and unstable if R0 > min{r, R1, R2}. At the point I0, direct calculation yields

f (X, Y, Z1, Z2) = λμx0 + μy0 − μ =
λμδ

λδR0 − λ
− μ.

Hence, the tumor radius will be exponentially increasing if R0 < 1+ λδ
μλδ

, and decreas-

ing if R0 > 1 + λδ
μλδ

.
The immunity-free equilibrium I0 represents a steady state where uninfected tumor

cells, infected tumor cells, and viruses co-exist, but both innate and adaptive immune cells
vanish. In particular, the density of the infected tumor cells is positive at I0, indicating
some degree of success for the viral invasion into the tumor. Effective control of the tumor,
however, depends on the stability of I0 and the value of f (X, Y, Z1, Z2) at that steady
state. Consequently, the threshold value has to be in a certain range, i.e., 1 + λδ

μλδ
< R0 <

min{r, R1, R2}, to ensure a successful outcome of the tumor virotherapy.

Case 2: δ < μ.

One can verify that the immunity-free equilibrium I0 exists if and only if 1 < R0 < μ
μ−δ .

Furthermore, C
(

w
(

μ
μ−δ

))
= 0 and thus D

(
w
(

μ
μ−δ

))
> 0, which implies μ

μ−δ < r. Hence,

I0 is locally asymptotically stable if 1 < R0 < min{ μ
μ−δ , R1, R2} and thereby the tumor

radius would decrease if 1 + λδ
μλδ

< R0 < min{ μ
μ−δ , R1, R2}.

When μ > δ, there is an additional immunity-free equilibrium in the form of

E0 =

(
0,

μ − δ

μ
, 0, 0,

bδ(μ − δ)

γμ

)
,

and −γ, δ − μ, δ1 +
(μ−δ)s1

μ , δ2 +
(μ−δ)s2

μ , and λδ

(
1 − μ−δ

μ R0

)
are all eigenvalues of the

Jacobian at E0. Note that

δi +
(μ − δ)si

μ
< 0 ⇐⇒ Ri >

μ

μ − δ
.

Hence, E0 is locally asymptotically stable if min{R0, R1, R2} > μ
μ−δ . This additional

equilibrium represents a success of the tumor virotherapy, where only the infected tumor
cells and viruses co-exist while the uninfected tumor cells and immune cells all vanish.
At E0, it is straightforward to obtain f (X, Y, Z1, Z2) = −δ < 0, i.e., the tumor radius would
exponentially decrease to 0.

3.3. Single-Immunity Equilibria

Next, we explore the equilibria of system (9) where one of the immune components (Z1
and Z2) may be nonzero. If Z1 = 0 and XYZ2V �= 0, we can solve the following equations

λ = βV + k2Z2 + f (X, Y, 0, Z2), (13)

βXV = δY + Y f (X, Y, 0, Z2), (14)

s2Y = c2 + f (X, Y, 0, Z2), (15)

bδY = γV. (16)
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Substitute V = bδ
γ Y from Equation (16) to obtain

X =
1

λδR0
(s2Y + δ2), (17)

Z2 =
λ2

k2
− λδR0 + s2

k2
Y, (18)

λμX + (s2Z2 − s2 + μ)Y + μ2(Z2 − 1) = 0. (19)

Substituting Equations (17) and (18) into Equation (19), we obtain a quadratic equation

g(Y) := A2Y2 + B2Y + C2 = 0,

where

A2 =− s2

k2
(λδR0 + s2) < 0,

B2 =μ +
(λ2 − k2)s2

k2
+

s2λμ

λδR0
− μ2

k2
(λδR0 + s2),

C2 =
δ2λμ

λδR0
+

(λ2 − k2)μ2

k2
> 0.

Since A2C2 < 0, then g(Y) = 0 has a unique positive solution

y2 =
B2 +

√
B2

2 − 4A2C2

−2A2
.

In addition, x2 = X(y2) > 0, v2 = V(y2) > 0 since y2 > 0, and

z2 = Z2(y2) > 0 ⇐⇒y2 <
λ2

λδR0 + s2

⇐⇒B2 +
√

B2
1 − 4A2C2 <

2s2λ2

k2

⇐⇒− A2C2 <
λ2s2

k2

(
λ2s2

k2
− B2

)
⇐⇒μ2λδR2

0 + ((s2 − δ)λμ − λμ2)R0 − s2λμ > 0

⇐⇒R0 > R2 .

Hence, there exists a unique innate-immunity-free equilibrium

I2 = (x2, y2, 0, z2, v2)

if and only if R0 > R2.
Similarly, if Z2 = 0 and XYZ1V �= 0, then

λ = βV + f (X, Y, Z1, 0), (20)

βXV = Y(k1Z1 + δ + f (X, Y, Z1, 0)), (21)

s1Y = c1 + f (X, Y, Z1, 0), (22)

bδY = V(k0Z1 + γ). (23)
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Solve X and Y as functions of Z1,

Y(Z1) =
λ1(k0Z1 + γ)

s1(k0Z1 + γ) + γλδR0
, (24)

X(Z1) =
(s1Y(Z1) + k1Z1 + δ1)(k0Z1 + γ)

γλδR0
, (25)

λμX + (Z1 − 1)(s1 + μ1) + μY = 0. (26)

Let

h(Z1) = λμX(Z1) + (Z1 − 1)(s1Y(Z1) + μ1) + μY(Z1), Z1 ∈ [0, 1].

One can verify that Y′(Z1) > 0, Y′′(Z1) =
−2k0s1Y′(Z1)

s1(k0Z1+γ)+γλδR0
, and thereby

h′′(Z1) = λμX′′(Z1) + s1(2Y′(Z1) + (Z1 − 1)Y′′(Z1)) + μY′′(Z1)

>
2k0s1λμY′(Z1)

s1(k0Z1 + γ) + γλδR0
+

2s1Y′(Z1)(s1γ + γλδR0 + k0(s1 − μ))

s1(k0Z1 + γ) + γλδR0

=
2s1Y′(Z1)(s1γ + γλδR0 + k0(s1 + λ))

s1(k0Z1 + γ) + γλδR0

> 0.

Since h(1) = λμX(1) + μY(1) > 0, then h(Z1) = 0 has a unique soultion z1 ∈ (0, 1) if
h(0) < 0; i.e.,

λμX(0)− (s1Y(0) + μ1) + μY(0) < 0

⇐⇒ λμ

λδR0
(s1Y(0) + δ1)− (s1 − μ)Y(0)− μ1 < 0

⇐⇒
(

s1λμ

λδR0
− s1 + μ

)
λ1

s1 + λδR0
+

δ1λμ

λδR0
− μ1 < 0

⇐⇒− μ1λδR2
0 − ((s1 − δ)λμ − λμ1)R0 + s1λμ < 0

⇐⇒R0 > R1.

Thus, if R0 > R1, system (8) has a unique adaptive-immunity-free equilibrium

I1 = (x1, y1, z1, 0, v1).

Each of the two equilibrium points I1 and I2 represents a tumor steady state where
uninfected tumor cells, infected tumor cells, viruses, and one type (either innate or adaptive)
of immune cells co-exist. Through direct calculation, we find f (X, Y, Z1, Z2) = siyi − ci at
Ii, for i = 1, 2. Hence, the tumor would grow if siyi − ci > 0 and decay if siyi − ci < 0 at
the state Ii (i = 1, 2).

3.4. Dual-Immunity Equilibria

Lastly, if both immune components are nonzero at an equilibrium, Z1Z2 �= 0, then
Y = c1−c2

s1−s2
:= y∗. Hence, there exists an equilibrium such that Z1Z2 �= 0 only if c1−c2

s1−s2
∈ (0, 1);

i.e.,
(c1 − c2)(s1 − s2) > 0 and |c1 − c2| < |s1 − s2|.

Let
f0 = s1y∗ − c1 = s2y∗ − c2 =

s2c1 − s1c2

s1 − s2
. (27)

Then we can show that only two equilibrium points can possibly exist under this
setting: one which is free of uninfected tumor cells when f0 + δ < 0, and the other whose
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components are all positive (an interior equilibrium) when f0 + δ ≥ 0. We discuss these
two cases separately as follows.

Case (i): f0 + δ < 0.

Through some algebraic manipulation, one can obtain that the first such equilibrium
must take the form

EX =

(
0, y∗,

− f0 − δ

k1
, 1 +

f0 + δ

k1
− μy∗

f0 + μ
,

k1bδy∗

k1γ − k0( f0 + δ)

)
.

The equilibrium EX exists if and only if

( f0 + μ)( f0 + δ + k1) > k1μy∗.

This equilibrium represents another steady state of successful tumor virotherapy,
where all normal (i.e., uninfected) tumor cells are eliminated. In fact, at EX we can easily
calculate f (X, Y, Z1, Z2) = f0 < −δ < 0, which indicates that the tumor radius would
exponentially decrease toward 0.

Case (ii): f0 + δ ≥ 0.

On the other hand, to find the interior equilibrium, we solve the following equations

λ = βV + k2Z2 + f (X, Y, Z1, Z2), (28)

βXV = Y(k1Z1 + δ + f (X, Y, Z1, Z2)), (29)

s1Y = c1 + f (X, Y, Z1, Z2), (30)

s2Y = c2 + f (X, Y, Z1, Z2), (31)

bδY = V(k0Z1 + γ), (32)

and obtain

Y = y∗, (33)

V(Z1) =
bδy∗

k0Z1 + γ
, (34)

X(Z1) =
(k0Z1 + γ)(k1Z1 + f0 + δ)

γλδR0
, (35)

Z2 =
1
k2

(
λ − f0 − γλδR0y∗

k0Z1 + γ

)
:= ψ1(Z1), (36)

Z2 = 1 − Z1 −
λμX(Z1) + μy∗

f0 + μ
:= ψ2(Z1). (37)

Let ψ(Z1) = ψ1(Z1)− ψ2(Z1), then the interior equilibrium is determined by the root
of ψ(Z1) = 0, Z1 ∈ (0, 1). Note that ψ(Z1) is an increasing function, hence, there is a
unique root z∗1 ∈ (0, 1) if and only if ψ(0) < 0 < ψ(1); i.e.,

y∗λδR2
0 +

(
f0 − λ + k2 − k2μy∗

f0 + μ

)
R0 −

k2λμ( f0 + δ)

λδ( f0 + μ)
> 0

and
γλδy∗R2

0
k0 + γ

+

(
f0 − λ − k2μy∗

f0 + μ

)
R0 −

k2λμ(k0 + γ)(k1 + f0 + δ)

γλδ( f0 + μ)
< 0,

These yield
R3 < R0 < R4,
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where

R3 =

√(
f0 − λ + k2 − k2μy∗

f0+μ

)2
+

4y∗k2λμ( f0+δ)
f0+μ −

(
f0 − λ + k2 − k2μy∗

f0+μ

)
2y∗λδ

,

R4 =

√(
f0 − λ − k2μy∗

f0+μ

)2
+

4y∗k2λμ(k1+ f0+δ)
f0+μ −

(
f0 − λ − k2μy∗

f0+μ

)
2γλδy∗
k0+γ

.

For the existence of an interior equilibrium in the form of

E∗ = (x∗, y∗, z∗1, z∗2, v∗)

with all positive components, it clearly only requires z∗2 > 0; i.e., R0 <
(λ− f0)(k0z∗1+γ)

γλδy∗ based
on Equation (36). Since z∗1 > 0, the following condition

R3 < R0 < min
{

λ − f0

λδy∗ , R4

}
is sufficient to ensure the existence of E∗ where all the tumor cells (uninfected and infected),
immune cells, and viruses co-exist and balance each other. If E∗ is stable, the success of the
tumor treatment at this steady state also depends on the value of f0 defined in Equation (27):
the tumor grows if f0 > 0 and decays if f0 < 0.

4. Numerical Results

We now conduct numerical simulation to verify our analytical results presented in
Section 3. Meanwhile, since the stabilities of several equilibria (such as I1, I2, EX and E∗) are
challenging to analyze mathematically, our numerical findings will provide useful insight
into the system dynamics near these equilibrium points.

The definition and units of all the model parameters are listed in Table 1. We first
conduct a numerical simulation using a set of baseline values for these parameters from
the literature [19,20], where such parameters have been fitted to experimental data. The
simulation results are presented in Figure 1, with the left panel showing the evolution
of the density variables (X, Y, Z1, Z2, V) and the right panels showing the evolution of
the tumor radius R. The parameter values are given in the caption. We observe that
shortly after the start of the therapy (i.e., t = 0), the tumor radius stops growing and
even decreases slightly, indicating that the virotherapy is taking effect. This period lasts
about 1.5–2 days, after which the oncolytic virus loses its effectiveness and the tumor starts
to grow exponentially. Correspondingly, the density of the uninfected tumor cells first
decreases, and then increases to and stabilizes at a level close to 100%, while the density of
the viruses decreases to a level near 0 after about 1.5 days. This pattern of tumor evolution
is qualitatively consistent with the experimental observations [8,20].

Next, we vary some of these parameters within their biologically feasible ranges to
explore the rich dynamics of tumor growth under different settings that represent a range
of possible treatment scenarios. For each figure set presented below, the left panel shows
the time evolution of the density variables and the right panel depicts the change of the
tumor radius with respect to time. The parameter values are specified for each set of results
(see the caption of each figure).

Regarding the trivial equilibria studied in Section 3.1, Figure 2 demonstrates that M1
is locally asymptotically stable when R0 < 1. In particular, note that the percentage of the
uninfected tumor cells (X) is 100% at this steady state. Correspondingly, the tumor radius
R(t) is exponentially increasing (in a hypothetic way) with a constant rate once the tumor
growth stabilizes at the equilibrium M1.

43



Mathematics 2023, 11, 360

For the immunity-free equilibria, Figures 3–6 provide numerical verification of the ana-
lytical predictions in Section 3.2. Figures 3 and 4 show that I0 is locally asymptotically stable
when δ > μ and 1 < R0 < min{r, R1, R2}. At this stable equilibrium, the tumor would
grow if R0 < 1 + λδ

μλδ
; this is illustrated in Figure 3 where R0 = 1.11 < 1 + λδ

μλδ
= 1.67.

On the other hand, the tumor would decay if R0 > 1 + λδ
μλδ

, as illustrated in Figure 4

where R0 = 3.18 > 1 + λδ
μλδ

= 2.52. Figures 5 and 6 illustrate the dynamics associated
with I0 and E0 when μ > δ. Figure 5 shows that I0 is locally asymptotically stable and the
tumor radius decreases to 0 when 1 + λδ

μλδ
= 1.25 < R0 = 1.50 < μ

μ−δ = 1.75. Note also
that the percentage of the uninfected tumor cells is pretty low (10%) at this steady state.
Figure 6 shows that E0 is locally asymptotically stable when R0 > μ

μ−δ , and in this case,
f (X, Y, Z1, Z2) = −δ, thereby the tumor radius is exponentially decreasing to 0.

Concerning the single-immunity equilibria analyzed in Section 3.3, Figures 7 and 8
depict the local stabilities of I1 and I2, respectively. At the equilibrium point Ii, the tumor
growth rate is determined by f (X, Y, Z1, Z2) = siyi − ci for i = 1, 2. With the parameter
setting in Figure 7, s1y1 − c1 = 2 > 0, and with that in Figure 8, s2y2 − c2 = 1 > 0.
Thus, the tumor radius is exponentially increasing in each case. We note that the levels
of the uninfected tumor cells remain very high (more than 70%) for both steady states.
In contrast, Figure 9 shows that at the equilibrium I2 the tumor radius is decreasing to 0,
where s2y2 − c2 = −0.3 < 0 and where the uninfected tumor cells are only about 35%.

Regarding the dual-immunity equilibria investigated in Section 3.4, Figure 10 illus-
trates that when the equilibrium EX exists and is stable, the tumor radius R(t) at that state
will decay and approach 0, where f (X, Y, Z1, Z2) = f0 < −δ < 0. In addition, if there is a
stable interior equilibrium E∗, then the tumor radius at E∗ would also be decreasing to 0 if
f0 < 0. This is verified in Figure 11, where −δ ≤ f0 = −0.18 < 0.
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Figure 1. Simulation results for the base scenario. The values of the the parameters are: λ = 2,
β = 3.5, k1 = 2, k2 = 2, s1 = 56, s2 = 56, c1 = 2, c2 = 2, δ = 5.6, k0 = 1, γ = 2.5, μ = 2.1, b = 1.
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Figure 2. The equilibrium M1 = (1, 0, 0, 0, 0) is asymptotically stable and the tumor radius is
exponentially increasing when R0 = 0.93 < 1. The values of the the parameters are: λ = 2,
β = 3.5, k1 = 1, k2 = 2, s1 = 60, s2 = 20, c1 = 2, c2 = 1, δ = 10, k0 = 1.5, γ = 2.5, μ = 2.5, b = 0.8.

44



Mathematics 2023, 11, 360

0 5 10 15 20 25 30 35 40 45 50

days

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Uninfected tumor cells
Infected tumor cells
Innate immune cells
Adaptive immune cells
Viruses

0 5 10 15 20 25 30 35 40 45 50

days

0

1

2

3

4

5

6

7

tu
m

or
 ra

di
us

×1011

Figure 3. The equilibrium I0 = (0.86, 0.04, 0, 0, 0.15) is asymptotically stable and the tumor radius
is exponentially increasing when δ > μ and R0 = 1.11 < min{r = 6.05, R1 = 1.17, R2 = 1.36}.
The values of the parameters are: λ = 2, β = 3.5, k1 = 1, k2 = 2, s1 = 60, s2 = 20, c1 = 2, c2 = 1,
δ = 10, k0 = 1.5, γ = 2.5, μ = 2.5, b = 0.95.

0 10 20 30 40 50 60 70 80 90 100

days

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Uninfected tumor cells
Infected tumor cells
Innate immune cells
Adaptive immune cells
Viruses

0 10 20 30 40 50 60 70 80 90 100

days

0

0.2

0.4

0.6

0.8

1

1.2
tu

m
or

 ra
di

us

Figure 4. The equilibrium I0 = (0.28, 0.03, 0, 0, 0.65) is asymptotically stable and the tumor radius
is exponentially decreasing when δ > μ and R0 = 3.18 < min{r = 6.05, R1 = 4.42, R2 = 3.60}.
The values of the parameters are: λ = 2, β = 3.5, k1 = 1, k2 = 2, s1 = 22, s2 = 21, c1 = 1.1, c2 = 1,
δ = 20, k0 = 1.5, γ = 2.5, μ = 1.2, b = 2.5.
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Figure 5. The equilibrium I0 = (0.10, 0.56, 0, 0, 0.84) is asymptotically stable and the tumor radius is
exponentially decreasing when δ < μ and 1 < R0 = 1.50 < min{ μ

μ−δ = 1.75, R1 = 2.06, R2 = 1.85}.
The values of the parameters are: λ = 2, β = 3.5, k1 = 1, k2 = 2, s1 = 2, s2 = 1.5, c1 = 3, c2 = 2.5,
δ = 1.5, k0 = 1.5, γ = 2.5, μ = 3.5, b = 2.5.
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Figure 6. The equilibrium E0 = (0, 0.57, 0, 0, 1.20) is asymptotically stable and the tumor radius is
exponentially decreasing when δ < μ and min{R0 = 2.10, R1 = 2.06, R2 = 1.85} >

μ
μ−δ = 1.75. The

values of the parameters are: λ = 2, β = 3.5, k1 = 1, k2 = 2, s1 = 2, s2 = 1.5, c1 = 3, c2 = 2.5,
δ = 1.5, k0 = 1.5, γ = 2.5, μ = 3.5, b = 3.5.
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Figure 7. The equilibrium I1 = (0.75, 0.05, 0.05, 0, 0.23) is asymptotically stable and the tumor
radius is exponentially increasing when R0 = 1.28 > R1 = 1.12. The values of the parameters are:
λ = 2, β = 3.5, k1 = 1, k2 = 2, s1 = 80, s2 = 20, c1 = 2, c2 = 1, δ = 10, k0 = 1.5, γ = 2.5,
μ = 2.5, b = 1.1.
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Figure 8. The equilibrium I2 = (0.73, 0.04, 0, 0.08, 0.19) is asymptotically stable and the tumor
radius is exponentially increasing when R0 = 1.28 > R2 = 1.14. The values of the parameters are:
λ = 2, β = 3.5, k1 = 1, k2 = 2, s1 = 60, s2 = 50, c1 = 2, c2 = 1, δ = 10, k0 = 1.5, γ = 2.5,
μ = 2.5, b = 1.1.
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Figure 9. The equilibrium I2 = (0.35, 0.08, 0, 0.21, 0.55) is asymptotically stable and the tumor radius
is exponentially decreasing when R0 = 2.33 > R2 = 1.67. The values of the parameters are:
λ = 2, β = 3.5, k1 = 1, k2 = 2, s1 = 20, s2 = 10, c1 = 2, c2 = 1, δ = 10, k0 = 1.5, γ = 2.5,
μ = 2.5, b = 2.
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Figure 10. The equilibrium EX = (0, 0.03, 0.5, 0.42, 0.03) is asymptotically stable and the tu-
mor radius is exponentially decreasing when R0 = 1.2. The values of the parameters are:
λ = 2, β = 3.5, k1 = 1, k2 = 9.3, s1 = 30, s2 = 15, c1 = 3, c2 = 2.5, δ = 1.5, k0 = 1.5, γ = 2.5,
μ = 2.5, b = 2.
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Figure 11. The equilibrium E∗ = (0.38, 0.09, 0.1, 0.082, 0.57) is asymptotically stable and the tumor
radius is exponentially decreasing when R3 = 2.05 < R0 = 2.24 < min{ λ− f0

λδy∗ = 2.4, R4 = 5.84}. The
values of the parameters are: λ = 2, β = 3.5, k1 = 1, k2 = 9.3, s1 = 9, s2 = 20, c1 = 1, c2 = 2,
δ = 8, k0 = 1.5, γ = 2.5, μ = 2.5, b = 2.

5. Discussion

We have presented an ODE model to describe the spatially homogeneous state of
tumor growth under virotherapy. This model, derived and simplified from the PDE
system (1), enables us to conduct a detailed analysis on the time evolution of the tumor
radius and the various equilibrium points, their stability properties, and their impact on
tumor growth.
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Our model describes the process of tumor growth as a moving boundary problem. The
threshold value R0 introduced in our analysis represents the capability that the oncolytic
viruses can effectively invade the tumor. When R0 < 1, for example, the stability of the
equilibrium M1 and the exponential increase of the tumor radius at M1 indicate a failure of
the tumor treatment due to the insufficient invasion capability of the viruses. Consequently,
R0 > 1 provides a necessary condition for effective viral invasion, though the eventual
outcome of the tumor therapy would be determined by the specific dynamical properties
at an equilibrium and the associated tumor growth rate. When R0 is above unity, both the
number of the equilibrium points and the complexity of the dynamics increase. In general,
each equilibrium represents a steady state, and the tumor growth dynamics near such a
steady state are shaped by the interaction among the uninfected and infected tumor cells,
the innate and adaptive immune cells, and the viruses. Although the dynamical behaviors
for some of the equilibria (I1, I2, EX and E∗) have not been fully resolved analytically, our
numerical simulation results provide helpful insight into their stability and connection to
the growth rate of the tumor.

Our results show that the threshold value R0 can be used to as an indicator regarding
the chance of success for tumor virotherapy. The value of R0 can be modified by genetically
manipulating the viruses; for example, increasing the burst size b (which leads to a larger
R0) is an effective strategy to improve the efficacy of the virotherapy [19]. From the
modeling perspective, the higher R0 is, the better outcome the therapy might achieve.
From the practical point of view, however, it is not possible to increase R0 in an arbitrary
manner. Meanwhile, high value of R0 might come at the price of some side effects of
the tumor treatment, such as harming normal body tissues surrounding the tumor [19].
Our analysis and simulation results show that the virotherapy can achieve a success for
relatively low R0 (for example, between 1 and 2), as long as we can push the solution orbit
into the basin of attraction for one of those stable equilibrium points where the associated
tumor growth rate is negative. These findings could provide useful guidelines for the
design of practical virotherapy protocols to improve the rate of success for tumor treatment.

It is known that some tumors (such as melanoma, kidney cancer, and lung cancer) are
likely to trigger a strong adaptive immune response and are commonly referred to as “hot
tumors”, while some other tumors (such as glioblastoma, prostate cancer, and breast cancer)
are able to suppress the adaptive immune response and are commonly referred to as “cold
tumors”. Our model could offer useful insight into the treatment of these two types of
tumors. In particular, the parameter k2 in our model measures the rate of fighting cancerous
cells due to the adaptive immune response. Our results suggests that an increased value
of k2 could improve the performance of the tumor therapy, as shown in Figures 10 and 11
where the tumor radius quickly decays and approaches 0. This parameter represents the
T-cell infiltration rate in practical tumor treatment. In fact, many therapeutic strategies have
been proposed to increase the T-cell infiltration rate so as to possibly turn a cold tumor into
a hot tumor [23].

Our model can be naturally extended to include other approaches for tumor treatment,
such as chemotherapy and radiation therapy. The combination of these different treatment
options could potentially achieve a better performance than using a single therapy, and the
mathematical model could help to quantify and predict the treatment outcome. In addition,
the current model does not take into account potential mutations of the oncolytic viruses.
This could be an interesting direction for our future modeling effort.

Tumor growth is a highly complex process that involves rich temporal and spatial
dynamics. This paper is focused on the temporal growth dynamics of the tumor and related
equilibrium analysis, without considering the spatial heterogeneity. It may be important to
mathematically investigate the spatial heterogeneity of tumor growth in some situations,
and a few quantitative studies have been performed in this direction (see, e.g., [24,25]).
These models are generally simpler than the PDE model (1), though their analytical tools
might be generalized to handle more complex tumor models such as (1).

48



Mathematics 2023, 11, 360

Author Contributions: Conceptualization, J.W.; Methodology, C.Y. and J.W.; Formal analysis, C.Y.;
Investigation, C.Y. and J.W.; Writing—original draft, C.Y. and J.W.; Writing—review & editing, J.W.
All authors have read and agreed to the published version of the manuscript.

Funding: This research was partially funded by the National Science Foundation grant numbers
1951345 and 1913180.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Homogeneous State with a Fixed Boundary

With the assumption in (3), if we additionally assume that the velocity field is spatially
uniform; i.e., U = U(t), then we have

U(t)
∂

∂ρ
(ρ2) = ρ2 f

(
X(t), Y(t), Z1(t), Z2(t)

)
.

This yields U(t) ≡ 0 and f (X, Y, Z1, Z2) ≡ 0. Consequently, we obtain dR
dt = 0, and the

tumor would be stationary with a fixed boundary under this setting.
As a result, we obtain the following ODE system

dX
dt

= λX − βXV − k2XZ2,

dY
dt

= βXV − k1YZ1 − δY,

dZ1

dt
= s1YZ1 − c1Z1,

dZ2

dt
= s2YZ2 − c2Z2,

dV
dt

= bδY − k0Z1V − γV.

(A1)

To simplify the notation, let us define

R0 =
γλ

bβδ
. (A2)

Clearly, the system (A1) has a trivial equilibrium Q0 = (0, 0, 0, 0, 0) and an immunity-
free equilibrium Q1 = ( γ

bβ , R0, 0, 0, λ
β ). Based on their Jacobian matrices

J0 =

⎡⎢⎢⎢⎢⎣
λ 0 0 0 0
0 −δ 0 0 0
0 0 −c1 0 0
0 0 0 −c2 0
0 bδ 0 0 −γ

⎤⎥⎥⎥⎥⎦ and J1 =

⎡⎢⎢⎢⎢⎢⎣
0 0 0 − k2γ

bβ − γ
b

λ −δ −k1R0 0 γ
b

0 0 s1R0 − c1 0 0
0 0 0 s2R0 − c2 0
0 bδ −k0λ

β 0 −γ

⎤⎥⎥⎥⎥⎥⎦,

their characteristic polynomials are

p0(u) = (u − λ)(u + δ)(u + c1)(u + c2)(u + γ),

p1(u) = (u − s1R0 + c1)(u − s2R0 + c2)(u3 + (δ + γ)u2 + γλδ),
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respectively. Hence, Q0 and Q1 are both unstable since λ is a positive eigenvalue for J0,
and the polynomial u3 + (δ + γ)u2 + γλδ has at least one root with positive real part based
on the Routh–Hurwitz criterion. In addition, R0 < c1

s1
leads to the equilibrium

Q2 =

(
c1

s1λ
(k1Z1 + δ),

c1

s1
,

γ(c1 − s1R0)

k0s1R0
, 0,

λ

β

)
and R0 > c2

s2
leads to the equilibrium

Q3 =

(
γ

bβ
,

c2

s2
, 0,

λ(s2R0 − c2)

k2s2R0
,

c2bδ

s2γ

)
.

Their associated characteristic polynomials can be written as follows

p2(u) =
(

u − c1s2

s1
+ c2

)
(u4 + a3u3 + a2u2 + a1u + a0),

p3(u) =
(

u − c2s1

s2
+ c1

)
(u4 + b3u3 + b2u2 + b1u + b0),

where ai, bi (i = 0, 1, 2, 3) are constants determined by the parameters in model (A1).
One can verify that a0 < 0 and b2 = 0. Hence, Q2 and Q3 are both unstable by the
Routh–Hurwitz criterion.

Our analysis of this scenario, which represents a spatially homogeneous tumor state
with a fixed boundary, shows that all the equilibrium points are unstable. This result
implies that a tumor cannot stabilize under such a setting; instead, the tumor size has to
change with time in the presence of tumor–virus–immune interaction, leading to the more
realistic (and more complex) scenario with a moving tumor boundary.
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Abstract: Background: Triple-negative locally advanced breast cancer is an aggressive tumor type.
Currently, the standard sequence treatment is applied, administering anthracyclines first and then a
taxane plus platinum. Clinical studies for all possible treatment combinations are not practical or
affordable, but mathematical modeling of the active mitotic cell population is possible. Our study
aims to show the regions with the tumor’s most substantial cellular population variation by utilizing
all possible values of the parameters

(
αi

s

)
that define the annihilatory drug capacity according to

the proposed treatment. Method: A piecewise linear mathematical model was used to analyze the
cell population growth by applying four treatments: standard sequences of 21 days (SS21) and 14
days (SS14), administering anthracyclines first, followed by a taxane plus platinum, and inverted
sequences of 21 days (IS21) and 14 days (IS14), administering a taxane plus platinum first then
anthracyclines. Results: The simulation showed a higher effect of IS14 over SS14 when the rate of
drug resistance was larger in the cell population during DNA synthesis (G1 and S) compared to
cells in mitosis (G2 and M). However, if the proportion of resistant cells in both populations was
equivalent, then treatments did not differ. Conclusions: When resistance is considerable, IS14 is more
efficient than SS14, reducing the tumor population to a minimum.

Keywords: mathematical model and simulations; neoadjuvant chemotherapy; triple-negative; locally
advanced breast cancer

MSC: 37N25; 92-10; 34C60

1. Introduction

During the last 50 years, different mathematical models have been developed to illus-
trate how a cancerous tumor’s growth begins, its dynamics, and treatments. Some models
include the organism’s resistance to the different drugs that are usually administered as
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the first step to reduce the size of the tumor (neoadjuvant therapy) before the primary
treatment, usually consisting of surgery for all types of cancer [1–4] but especially for breast
cancer [5–11].

Because breast cancer is one of the most studied pathologies in the world, many efforts
have been devoted to understanding the relationships between immune cells, tumor cells,
and certain adjuvant treatments [6,12–14]. To cite an example, Jarett et al. [12] discussed the
effects of trastuzumab on the overexpression of the HER2 gene, which is characteristic of
breast cancer, using a mathematical model and integrating the experimental results [12–14].
Other examples include those where neoadjuvant treatment affects the immune system
and its interaction with cancer cells [12,14,15].

When cancer is in its early stages, surgery is performed first and then radiotherapy.
Therefore, implementing the reverse sequence (radiotherapy first and later surgery) has
been widely ruled out for many cancers. For instance, Lopez-Alonso and Poleszczuk J.
et al. [16,17] reversed the traditional treatment (radiotherapy first to induce antitumor
immunity and then surgery) for different cancers and evaluated the overall survival (OS)
and the disease-free survival (DFS), obtaining better results. We were interested in inquiring
if a reverse or different sequence would produce better results compared with a traditional
one as a research question.

Triple-negative breast cancer (no expression of estrogen receptor, progesterone recep-
tor, and growth factor 2 receptor (Her2)) represents 20% of breast cancer cases in young
women, with early recurrence and dissemination to the viscera and central nervous system.
In patients with triple-negative, locally advanced breast cancer (TN-LABC; T3-T4, N1-N3),
unlike other molecular subtypes, the complete pathological response (pCR) is a surrogate
for more remarkable overall survival and DFS compared with that of patients with residual
disease [18,19].

The order of chemotherapy administration before or after surgery may change the
outcome. For example, the National Surgical Adjuvant Breast and Bowel Project (NS-
ABP) Study B-18 demonstrated a 13% pCR rate when doxorubicin (DX) (60 mg/m2) plus
cyclophosphamide (CPh) (600 mg/m2) was administered every 21 days for four cycles
during the pre-surgery period. This chemotherapy slightly improved the survival and
disease-free time compared with the same chemotherapy administered in the post-surgery
period. However, the NSABP Study B-27 later showed that adding docetaxel every 21 days
for four cycles after the standard neoadjuvant sequence with DX and CPh increased the
pCR to 26% (p < 0.001) [20].

Adding carboplatin (CP) to the sequential neoadjuvant chemotherapy scheme in-
creases the probability of the pCR in patients with TN-LABC by 13% [21]. However, other
long-term results of randomized phase II studies, CALGB 40603 (Alliance) [22] and Gepar-
Sixto [23], showed that CP increases the pCR but does not improve the event-free interval.
The low number of patients may explain these controversial findings.

The morphological phenotypes in TN-LABC might determine a low response to sys-
temic therapy in TN-LABC; other poor-prognosis factors are inflammatory carcinoma in
individuals older than 40 years and a high proliferation index [24]. Different susceptibili-
ties to treatment depend on their genotype (tumor markers), e.g., basal-like (BL) tumors
carrying pathogenic mutations in the BRCA1 gene (57%) or BRCA2 gene (23%) respond
to treatment with platinum agents [25]. In a study with 290 patients with TN-LABC, 47%
of BL-1 tumors responded to chemotherapy compared with 28% of BL-2 tumors [26]. Ad-
ditionally, patients with tumors expressing p53 and Ki-67 protein markers treated with
taxanes might respond better to neoadjuvant chemotherapy [27,28].

When the tumor’s interstitial fluid pressure (IFP) increases, the bioavailability of
antineoplastic drugs decreases. Therefore, the drugs do not reach the tumor cells at a
sufficient concentration. When paclitaxel (PX) is administered after anthracyclines, the
IFP increases. However, PX is administered before anthracyclines. In that case, the IFP
decreases [29,30], and the order of the treatment sequence in TN-LABC patients may
increase reduction rates and favor increases in complete pathological responses.
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Mathematical models help to explain the response probability to treatments and
their combinations. The logarithmic death or log-kill is a cancer model with a constant
exponential growth fraction per time step. However, the presence of effective cancer drugs
also decreases the tumor size by a constant fraction. For example, if a drug eliminates 90%
of a tumor cell population and a second drug destroys 90%, in the end, they may eliminate
99% of the tumor cells [31]. A modification to the log-kill is the Norton–Simon hypothesis,
which relates the treatment effects to the growth rate and the tumor size [32]. For example,
a small tumor with a high growth rate can be eliminated using a particular medication at a
specific dose; however, the same drug has a weaker effect on treating tumors of a larger
size with a low growth rate.

A piecewise linear mathematical model (PLMM) based on Roe-Dale R. et al. [13] was
proposed to analyze four treatment schedules (standard sequence, 21 and 14 days, and
inverted sequence, 21 and 14 days) [22]. The novelty of our PLMM is a wide spectrum
of growth rates of the active mitotic cell population (AMCP) for treatment sequences and
chemotherapy cell resistance.

2. Materials and Methods

Four chemotherapy sequences were described using standard doses of DX, CPh, CP,
and PX (defined in Section 2.1); then, the evolution of the AMCP was described using linear
ordinary differential equations (ODEs). Finally, we determined which treatment sequence
had a higher probability of success for neoadjuvant chemotherapy patients with TN-LABC
to reach a maximum tumor reduction that could direct a better pCR and more conservative
breast surgeries.

2.1. Standard Doses

The standard dose scheme we used for our model is detailed below:

(a) The DX dose was 60 mg/m2 body surface area every 21 or 14 days for 4 cycles.
(b) The CPh dose was 600 mg/m2 body surface area every 21 or 14 days for 4 cycles. The

treatment administered every 14 days is proposed by the NCCN guidelines in the
United States of America; however, some countries continue administering treatment
every 21 days as described in previous studies [20]. The treatment administration
every 14 days is associated with unacceptable hematological toxicity. That must be
balanced by administering granulocyte colony-stimulating factor (GCSF) [33].

(c) The PX dose was 80 mg/m2 of body surface area intravenously every week for
12 weeks.

(d) The CP dose was obtained through the Calvert formula, Dose = (IFG + 25)× AUC,
where IFG is the glomerular function index or creatinine clearance; this is the volume
of fluid filtered per time unit from renal glomerular capillaries into Bowman’s capsule,
usually measured in milliliters per minute. The IFG varies for each patient. For the
CP every three weeks, which was our schedule, the AUC = 6 (6 units equals 6 mg.
min/mL), where the AUC is the area under the curve of free plasma carboplatin
concentration versus time. This is a method used to reduce toxicity based on renal
clearance values calculated using the age and health condition of the patient.

2.2. Standard Sequence of 21-Day Cycle (SS21)

DX plus CPh was administered every 21 days for four cycles during the first phase.
In the second phase, PX was issued weekly on days 1, 8, and 15. Moreover, CP was
administered on day 1 of each of the four cycles, as shown in Figure 1a.
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Figure 1. The standard sequence of neoadjuvant chemotherapy treatment for triple-negative locally
advanced breast cancer. It starts with phase 1 and finishes with phase 2: (a) standard sequence of
21 day cycles (SS21) and (b) standard sequence of 14 day cycles (SS14).

2.3. Standard Sequence of 14-Day Cycle (SS14)

The chemotherapy sequence was the same as the standard dose but with a DX and
CPh administration every 14 days for four cycles, as shown in Figure 1b.

Neoadjuvant therapy with SS21 (Figure 1a) is considered a safe and efficient option
for treating TN-LABC. However, because this therapy can induce drug resistance [34],
treatment with SS14 (Figure 1b) prevents the repopulation of tumor cells but at the cost of
higher toxicity. Therefore, GCSF was administered in patients with breast cancer receiving
neoadjuvant chemotherapy per cycle of chemotherapy.

2.4. Inverted Sequence of 21-Day Cycle (IS21)

In the inverted sequence, phase 2 was used as the first treatment; that is, PX was
administered on days 1, 8, and 15, and CP on day 1 of each cycle for four cycles. Next, DX
and CPh were sequentially administered using standard doses every 21 days, as shown in
Figure 2a.

Figure 2. The inverted sequence of neoadjuvant chemotherapy treatment for triple-negative locally
advanced breast cancer. It starts with phase 2 and finishes with phase 1: (a) inverted sequence of
21 day cycles (IS21) and (b) inverted sequence of 14 day cycles (IS14).

55



Mathematics 2023, 11, 2410

2.5. Inverted Sequence of 14-Day Cycle (IS14)

This chemotherapy was identical in dosage to that described above, but DX and CPh
were administered every 14 days for four cycles, as shown in Figure 2b.

Treatment was inverted beginning with phase 2, starting with PX treatment, then CP
was added on day 1 of each cycle, followed by phase 1, DX plus CPh. This was used to
prevent cross-resistance (when acquired resistance induced by a drug treatment results
in resistance to other drugs). This significantly increases the possibility of pCR and more
conservative breast surgery in TN-LABC patients [21].

2.6. Glossary of Parameters Used in Models

Ni: N1 and N2 are the numbers of cells in compartments 1 and 2, respectively.
G0, G1, S, G2, and M are cellular phases: G1 and S are in compartment N1, and G2 and

M are in compartment N2.

λi: is the exchange between compartments N1 and N2.
αi

s: is the tumor cell survival proportion after applying drugs s (DX plus CPh).
γ: is the effect of PX on mitosis.
κi: represents the portion of susceptible cells resistant because of drug s.
βi

s: parameter that indicates the decrease in the resistant population.

2.7. Quantitative Model

For the quantitative comparison of the chemotherapy sequencing strategies, we used
a dynamic system describing the evolution of the different cell populations that contain the
tumor. Based on the PLMM [13], we described the development of cell populations using a
linear ODE, including the cancer treatment cycle. Although our model included the primary
tumor and possible positive axillary nodes in TN-LABC, both were considered a single
tumor volume, and cell proliferation was not limited to a specific geometry. Therefore, the
model will not work with metastatic disease because cells spreading to other tissues have
higher proliferation rates, and the response to the SS21 treatment was low.

Five phases of the cell cycle were described: quiescent cells (G0), cells that start
synthesizing RNA and proteins (G1), DNA synthesis replication (S), proteins and RNA
continue to be synthesized (G2), and mitosis (M). The G0 state is not properly part of the
division process; thus, this phase was not considered in the PLMM. Instead, phases G1 and
S were grouped into the N1 compartment and phases G2 and M into N2 (in this study, we
defined Ni, i = 1, 2 as the AMCP). The cell cycle followed an exponential growth pattern
in each compartment, represented by a first-order ODE system:

dN1

dt
= −λ1N1 + 2λ2N2;

dN2

dt
= −λ1N1 − λ2N2 (1)

where λ1 and λ2 are the rate of exchange between compartments N1 and N2, and 2λ2 rep-
resents the M phase of the cell cycle. Under the Norton–Simon hypothesis [32], our model
corresponded to the exponential growth phase (that is, we were far from the saturation
point where medications have low effectiveness because of the tumor size). Therefore, the
matrix representation of Equation (1) is defined as:

N =

(
N1
N2

)
∈ R

2 (2)

dN
dt

=
d
dt

(
N1
N2

)
=

(−λ1 2λ2
λ1 −λ2

)
N = GN; G =

(−λ1 2λ2
λ1 −λ2

)
(3)

The solution for the whole linear system of the autonomous ODE is given by exp(Gτ).
The product of this matrix by the initial condition N(0) provides the value of the population
in period τ:

N(τ) = exp(Gτ)N(0) (4)
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where exp(Gτ) = ∑∞
i=0

1
i! (Gτ)i. The growth in the N1 and N2 populations depends on

parameters λ1 and λ2. Determining which value of these parameters corresponds to each
subject is challenging. These can change because of numerous circumstances owing to
individual differences in the cell proliferation speed (usually measured by the proliferation
index Ki-67) [27,28]. Nevertheless, the growth of these cell populations can be estimated by
sweeping a values interval of these parameters using clinical knowledge from published
studies and comparing the development of the tumor cell population.

2.8. Doxorubicin and Cyclophosphamide Effect

A drug’s effect on treatment is described as an instant change in the AMCP when
the dose is administered. The application of matrix Ds to population N represents this
behavior. The subscript s represents DX and CPh drugs: the type of chemotherapy that
inhibits the replication of tumor cells. Following the PLMM, the matrix instantly acts on the
N population; the matrix is diagonal because drugs independently modify each population.

Ds =

(
α1

s 0
0 α2

s

)
(5)

Here, αi
s, i = 1, 2, is the tumor cell survival proportion after applying drug s to AMCPs

N1 and N2. The cell population affected by drug s in each treatment within period τ is
expressed as follows:

N(τ) = Dsexp(Gτ)N(0) (6)

The effect of matrix Ds depends on the time it is applied. Figure 3 shows that when
Ds is used at different times (τ1, τ2, and τ3), the population change ΔNi, i = 1, 2 after
chemotherapy can be negative, zero, or positive.

Figure 3. Graphic representation of the AMCP changes ΔNi, i = 1, 2 in different periods owing to the
application of the Ds matrix.

The time interval was limited in size because of the toxicity effect of Ds. Therefore, τ
was considered, given this restriction. According to our chemotherapy sequencing model
with s drugs, the minimum time interval to prevent toxicity was 14 days, reinforced with
the GCSF.
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Note that when m doses of drug s are administered, the resulting number of AMCPs
is as follows:

N(mτ) = (Dsexp (Gτ))(Dsexp (Gτ)) . . . (Dsexp (Gτ))N(0)

N(mτ) = (Dsexp(Gτ))mN(0) (7)

where N(mτ) denotes the administration of different chemotherapy sequences by the
corresponding matrix multiplication for τ1 = 21−day and τ2 = 14− day cycles (as defined
in the chemotherapy sequences in Figures 1 and 2).

2.9. Qualitative Behavior of Paclitaxel

One of the mechanisms of the action of PX is the inhibition of mitotic spindle formation
during cell division, blocking the mitosis process. The addition of PX as matrix P, a
modification of matrix G, was represented. PX influences the cell cycle growth matrix;
therefore, this drug has continuous effects over time during its application.

Therefore, the AMCP N now takes the following form:

dN
dt

= PN (8)

We represented matrix P as follows:

P =

(−λ1 γλ2
λ1 −λ2

)
(9)

where coefficient γ is the effect of PX on mitosis; γ ∈ [0, 2] is considered. For γ = 2, we
have cell mitosis; for γ = 1, a bifurcation point exists; and for γ < 1, the eigenvalue is
negative (see Appendix A) as the tumor size decreases to zero. Therefore, in this case, the
effectiveness of PX was sufficient for the tumor to disappear. Additionally, the addition
of CP on day 1 of each cycle is shown in Figures 1 and 2, and the action mechanism
through which PX destroyed the tumor cells was enhanced, for which the γ value was
even more reduced. Therefore, we implemented the CP effect in the mathematical model
to increase parameter γ, which was a robust approximation of the effect of CP and PX in
each simulation cycle.

We contrasted cell growth for SS21, SS14, IS21, and IS14 of the s drugs, including PX.
The results of the combination of chemotherapy with PX are represented in Figure 4. The
objective was to minimize the active mitotic cell fraction Ni(τ), i = 1, 2.

Figure 4a shows that in period τ, exponential growth was such that after applying
Ds, it could not return to the initial population state, in which ΔNi was positive, referring
to tumor growth at a slower rate. However, PX could reduce the maximum growth
of the exp(Gτ), resulting in a new matrix exp(Pτ), where the effect of chemotherapy
reached the objective of reducing the initial population, for which ΔNi was negative, as
shown in Figure 4b. The above demonstrated that the tumor would have been almost or
entirely reduced.

When ΔNi is negative, repeating this chemotherapy process allowed the tumor to be
effectively reduced, as shown in Figure 4c, where the reduction is shown after mDs.
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Figure 4. (a) The exp(Gτ) represents the growth earnings of the AMCP Ni, i = 1, 2; (b) exp(Pτ)

describes the growing loss of the Ni cell population owing to chemotherapy with PX, and (c) illustrates
the sequential chemotherapy treatment after ten applications at time intervals τ.

2.10. Resistance Model

When the drug resistance effect was incorporated into the model, the cell population
was divided into chemotherapy-resistant and susceptible. Furthermore, a pharmacological
effect was defined as when a cell group transitions from susceptible to resistant, and such
conversion occurred instantly in our simulations. Following the same PLMM scheme, we
have N(t), the AMCP with a vector of four components, that is, in R4.

dN
dt

=

(
G 0
0 G

)
N(t) = G̃N(t) (10)

Here, G is as defined in Equation (3), 0 is the null matrix, and N(t) is defined as

N(t) =

⎛⎜⎜⎝
Nse

1
Nse

2
Nre

1
Nre

2

⎞⎟⎟⎠ (11)

where Nse
1 and Nse

2 are the susceptible AMCPs and Nre
1 and Nre

2 are the resistant AMCPs.

The fundamental matrix of this system is exp
(

G̃τ
)

, and the AMCP with the effect of drugs

D̃s after period τ is as follows:

N(τ) = D̃sexp
(

G̃τ
)

N(0) (12)
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In this case, matrix D̃s represents the population’s instantaneous change through the
susceptible cell’s annihilation by drugs and the cell transformation from susceptible to
resistant. Therefore, matrix D̃s takes the following form:

D̃s =

⎛⎜⎜⎝
(1 − k1)α

1
s 0 0 0

0 (1 − k2)α
2
s 0 0

k1α1
s 0 β1

s 0
0 k2α2

s 0 β2
s

⎞⎟⎟⎠ (13)

where the αi
s parameters are the same as those described in Section 2.8; parameters βi

s,
where i =1, 2, indicate a decrease in the resistant population (they represent the survival
rate after applying drugs s to the N1 and N2 AMCPs); and the parameter ki, where i = 1, 2,
represents the rate of cell exchange speed for the susceptible to the resistant population. For
example, the resistance model we described in Equation (12) depends on the ki parameters,
where k1 is the parameter of the N1 population, and k2 is the parameter of the N2 population
because of s drugs. As two inputs, D̃s(3, 3) = D̃s(4, 4), represent the effect of drugs on the
resistant cells, and because such cells do not change owing to this effect, their numerical
value is equal to 1. Therefore, the matrix of Equation (13) is as follows:

D̃S =

⎛⎜⎜⎝
(1 − k1)α

1
S 0 0 0

0 (1 − k2)α
2
S 0 0

k1α1
S 0 1 0

0 k2α2
S 0 1

⎞⎟⎟⎠ (14)

In the results, Section 3.4 shows the simulations of numerical experiments with resis-
tant and susceptible AMCPs under different parameters.

3. Results

3.1. Growth Rate Simulations of Tumor Cell Population

Figure 5 illustrates the rationale behind the lambda values that we used in our simu-
lations and shows three graphs of the growth rate of the total tumor cell population for
parameters λi ∈ [0, 0.12], i = 1, 2. The unit of λi is 1/day. We considered the interval
reasonable compared with the possible growth. Using the linear ODE model, we presented
the growth rate of the total AMCP (Nf /Ni, where Nf = N1(τ) + N2(τ) was the final cell
population, and Ni = N1(0) + N2(0) was the initial AMCP) for end time of τ = 25 days .
The purpose of timing was to observe any significant difference in AMCP growth within a
time interval.

As shown in the graphs, the population growth rate (N1(τ) + N2(τ))/(N1(0) + N2(0))
was relatively homogeneous regarding parameters λi. λ2 was more susceptible to pop-
ulation growth than λ1 because λ2 was the parameter that described final active mitosis.
The yellow curve represents the λi for which Nf /Ni = 2 for τ = 25 days. Total tumor
doubling time ranged from 60 to 175 days [35–37]; however, our model represented the
growth rate of the tumor’s AMCP (10% to 20%) [38–41]. Appendix B shows that if the
tumor doubling time was 100 days, then the AMCP rate of the tumor should double every
28.9 days. Because only the AMCP was considered in this study, we used a doubling time of
25 days. In these simulations, we used the same initial conditions: N1 = 500 and N2 = 300.
Appendix C shows that the results obtained were independent of the initial conditions.

Figure 5 demonstrates the results from homogeneity; parameters λ1 = 0.1 and
λ2 = 0.05 were considered throughout the study to ensure that the active cell fraction
duplicated after 25 days. Appendix C shows that the qualitative behavior of the AMCP
growth evolution was similar for several parameters because of the linearity of Equation (4).
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Figure 5. Growth rate simulations of the tumor AMCP for end time τ = 25 days. The color bar
represents the rate Nf /Ni = (N1(τ) + N2(τ))/(N1(0) + N2(0)). The yellow curve represents the
parameters λi, i = 1, 2 for which Nf /Ni = 2 is the tumor duplication.

3.2. Simulations of Effects of Doxorubicin and Cyclophosphamide

To perform a comparative analysis of cell growth, we defined the values of αi
s for the s

drugs. However, because we did not have a specific value for these parameters, we swept
the possible oncological values of these parameters, so αi

s ∈ [0, 1], i = 1, 2.
αi

s = 1 indicates that the drug does not affect the cells; αi
s = 0 indicates that the drug

annihilates the whole AMCP, as shown in Figure 6. The λi of the G matrix parameters and
the initial conditions were the same as those chosen in the previous section.

When performing the numeric simulations with the cell cycles, we first let the tu-
mor cell growth evolve with no drug for five days (corresponding to the zero time).
We exposed the AMCP to m = 4 cycles with s drugs (as shown in Figures 1 and 2).
The result of the growth rate with the effect of the s drugs, standard doses (defined in
Section 2.1), and τ2 = 14 days is shown in Figure 6a, where the color bar represents the
rate NSS14

(
t f

)
/NSS14(0) =

(
N(1)SS14

(
t f

)
+ N(2)SS14

(
t f

))
/
(

N(1)SS14(0) + N(2)SS14(0)
)

for t f = mτ2 + 5.
When the sensitivity to medications was high, administering the same dose in a

shorter time τ2 had a benefit up to an intermediate point of αi
s ≈ 0.5 values because tumor

growth was prevented. Drugs were highly effective in killing tumor cells at low values of
αi

s. AMCP growth was small compared with that shown by the color bar (dark colors) in
Figure 6a. Mathematically, reducing each drug period was convenient, not reaching an
excessive increase in the dose to avoid intolerable toxicity.

The darkest part (black color) in Figure 6b is diagonal, indicating a more significant
reduction in AMCP growth. As expected, SS14 treatment reduced the AMCP more than
SS21 treatment, but the values of the medication parameters modulated this reduction αi

S,
whereas those of SS14 produced a better response.
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The two simulations showed the importance of drug administration in an optimal
period to prevent tumor growth. In addition, the best SS14 treatment used GCSF to prevent
high toxicity.

Figure 6. Growth rate simulations of the tumor AMCP with the s (DX + CPh) drug

effect: (a) NSS14

(
t f

)
/NSS14(0) =

(
N(1)SS14

(
t f

)
+ N(2)SS14

(
t f

))
/
(

N(1)SS14(0) + N(2)SS14(0)
)

and (b) NSS14

(
t f

)
/NSS21

(
t f

)
=

(
N(1)SS14

(
t f

)
+ N(2)SS14

(
t f

))
/
(

N(1)SS21

(
t f

)
+ N(2)SS21

(
t f

))
,

where τ1 = 21 days and τ2 = 14 days, and t f = mτi + 5. The color bar represents the tumor
AMCP rate.

3.3. Simulations of the Paclitaxel Effect

Figure 7 illustrates the active mitotic cell population (the y-axis represents logarithmic
values) for specific αi

s values as a function of time. The active mitotic cell population
(N1 + N2) evolved as a function of λi to double this population in 25 days. The growth rate
without drugs (red line) was exponential from an initial population of 800 million cells to
reach an order of 129,825 million cells after 184 days, which was a doubling approximately
every 25 days. Concerning the final cell population after the treatment with SS14, the
population was 158 million cells (yellow line followed by dark blue line); after SI14, it
was 125 million cells (green line followed by light blue line) after 184 days. SI14 killed the
AMCP 21% more effectively than SS14.

Figure 8 shows a comparison of the final AMCP after treatments of SS14 and IS14,
doing a complete sweep of the αi

s interval, using λi values to double the AMCP in 25 days.
The simulation results shown in Figure 8a show the difference in the population

growth rate between the SS14 and IS14 treatments. In both cases, τ2 = 14 − day cycles were
considered for s drugs. We chose γ = 1.5 because it is a common value and is far from the
bifurcation point for the cases in which the PX cycle is applied. The final total population
result with the SS14 treatment was compared with that of IS14

[
NSS14

(
t f

)
/NIS14

(
t f

)]
.

The final versus initial AMCP growth rate of SS14
[

NSS14

(
t f

)
/NSS14(0)

]
is shown in

Figure 8b and of IS14
[

NIS14

(
t f

)
/NIS14(0)

]
in Figure 7c to compare the growth order. As
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in previous simulations, the AMCP evolved without drugs for 5 days and m = 4 cycles so
that t f = mτ2 + 5. Including PX therapy, in four cycles of 15 days (as shown in the second
phase in Figure 1 and the first phase in Figure 2), t f remained equal to t f = 4τ2 + 4× 15+ 5.

Figure 7. Temporal evolution of the AMCP rate of the tumor during the complete treatment of SS14
and IS14, considering the doubling of this population without treatment at 25 days to the parameter’s
values: α1

S = 0.9, α2
S = 0.2, λ1 = 0.1, λ2 = 0.05 and γ = 1.5. The SS14 is represented by a yellow line

(DX + CPh) followed by dark blue (CP + PX, PX), and the IS14 by a green line (PX + CP, PX) followed
by the light blue line (DX + CPh).

Figure 8. Growth rate simulations of the tumor AMCP with the effect of s (DX + CPh) and PX drugs:

(a) comparing
[

NSS14

(
t f

)
/NIS14

(
t f

)]
; (b)

[
NSS14

(
t f

)
/NSS14(0)

]
, and (c)

[
NIS14

(
t f

)
/NIS14(0)

]
,

where t f = mτ2 + 5 for m = 4 cycles and τ2 = 14 days. The color bar represents the tumor AMCP
rate.
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We can see in Figure 8a that by doing the complete sweep over the parameters α1
S

and α2
S, the resulting population in SS14 was more significant than that obtained in IS14.

Furthermore, the area covered by values αi
s, corresponded to the greater efficiency of the

IS14, whereas the SS14 occupied approximately 90%, which meant that IS14 was more
efficient in containing tumor growth. We had a similar behavior if the value of τ1 = 21 days.

Figure 8b,c shows the tumor growth for SS14 and IS14, respectively. The color level
represents how much the tumor grew compared with the initial population. The IS14
treatment, including the PX and CP, was found to be one of the best chemotherapies for
patients with TN-LABC. Its population growth was minimal compared with that under
the SS14 treatment [22,23,29]. Notably, the toxicity of the therapy had to remain within a
specific limit.

3.4. Simulations of Resistance Model

The first simulation group came from an initial AMCP, with λ1 = 0.1 and λ2 = 0.05,
used in Figure 5. As in the previous simulations, the matrix (14) αi

S ∈ [0, 1], i = 1, 2
parameters represented the drug effects, and the unit intervals were partitioned into
100 equidistant portions. Figure 8 shows the results of five simulations of the tumor popula-
tion rate with the effect of resistance to s drugs. The color bar corresponds to the final popu-
lation rate versus the initial population

(
Nse

SS14

(
t f

)
+ Nre

SS14

(
t f

))
/
(

Nse
SS14(0) + Nre

SS14(0)
)
;

the simulation time was t f = mτ + 5 = 4 × 14 + 5.
When the plots of Figure 9 were analyzed, we observed homogeneity in the growing

proportion of the resistant and susceptible populations as the ki value increased. The yellow
line in the five charts shows that the final population was equal to the initial population,
for which it took a value of one; this line separates the areas of the α1

S and α2
S parameters,

where the population increased or decreased. The yellow line in Figure 9d,e represents
no growth or a decrease in the active AMCP, closer to the axis origin, indicating that a
more aggressive therapy should be chosen to prevent the tumor from becoming resistant to
the drug.

In the following numerical experiment, we performed some simulations to compare
the efficiency of the standard sequence versus the inverse sequence, considering the effect
of s drug resistance. Figure 9 shows the results of the simulations of the growth rate of the
final AMCP, SS14 versus IS14

[(
Nse

SS14

(
t f

)
+ Nre

SS14

(
t f

))
/
(

Nse
IS14

(
t f

)
+ Nre

IS14

(
t f

))]
, for

the same simulation time t f before and ki values as in Figure 9b–d. The extreme values of ki
in Figure 9a,e were not considered because the smallest value produced almost no change
from susceptible to resistant cells. The highest value corresponded to a quick change from
susceptible to resistant cells. The values of the parameters (λ1 = 0.1 and λ2 = 0.05) were
the same as the previous simulations, and γ = 1.5 was the same as that used in Figure 7 in
Section 3.3, which was dedicated to PX.

When Figure 10a–c was analyzed for k1 = k2, we observed that the growth rate of
the tumor AMCP for SS14 versus IS14 was similar, with a slight variation, as shown in
Figure 10c by the color bar. However, when comparing the k1 �= k2 values, a significant
difference was observed in the efficiency of the two treatments. The conversion rate from
susceptible to resistant cells differed between the N1 and N2 populations. Figure 10d–f
shows that the performance of the IS14 treatment was more efficient than that of SS14,
provided that k1 > k2. Note that the variation in the population proportion in the color bar
is higher than in Figure 10a–c, where rates above one predominated. At the right end of
graph (f), we can observe a population below the yellow line.
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Figure 9. Comparison of tumor AMCP growth rate simulations, with the effect of s drug resistance
for k1 = k2 values: (a) 0.0001, (b) 0.001, (c) 0.01, (d) 0.1, and (e) 0.3. The color bar represents the

proportion of tumor cell populations
[(

Nse
SS14

(
t f

)
+ Nre

SS14

(
t f

))
/
(

Nse
SS14(0) + Nre

SS14(0)
)]

, and the
yellow line represents the value 1 of the population rate.

Figure 10. Comparison of the final growth rate simulations of the tumor AMCP, with the effect of the
s drug resistance, for k1 = k2 values: (a) 0.001, (b) 0.01, and (c) 0.1; for k1 > k2 values: (d) k1 = 0.1,
k2 = 0.01, (e) k1 = 0.05 k2 = 0.01, and (f) k1 = 0.02, k2 = 0.01. The color bar represents the final

AMCP rate of SS14 versus IS14
[(

Nse
SS14

(
t f

)
+ Nre

SS14

(
t f

))
/
(

Nse
IS14

(
t f

)
+ Nre

IS14

(
t f

))]
, and the

yellow line represents the value 1 of the population rate.
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A more detailed analysis of Figure 10 is shown in Figure 11; this figure compares the
population growth rate simulations of the tumor cells, SS14 versus IS14, for three cases:
k1 > k2, k1 < k2, and k1 = k2 where the exchanges of k1 and k2 values were analyzed when
they were close.

Figure 11. Comparison of the final growth rate simulations of the tumor AMCP with the effect of
s drug resistance for values: (a) k1 > k2, k1 = 0.02, and k2 = 0.01; (b) k1 < k2, k1 = 0.01, and
k2 = 0.02; and (c) k1 = k2 = 0.01. Color bars represent the final AMCP rate of SS14 versus IS14[(

Nse
SS14

(
t f

)
+ Nre

SS14

(
t f

))
/
(

Nse
IS14

(
t f

)
+ Nre

IS14

(
t f

))]
, and the yellow line represents the value 1

of the population rate.

The yellow line represents a value of 1; because the final populations of the SS14 and
IS14 treatments were equal, the line shifts to the left when k1 < k2 and k1 = k2, respectively.
When k1 > k2, IS14 was more efficient than SS14. On the contrary, the yellow line divides
the graph when k1 < k2, and SS14 was more efficient than IS14. In Figure 11a, the area
covered by the highest efficiency of the IS14 treatment is noticeably larger. In Figure 11b,
the highest efficiency of SS14 barely exceeded that of IS14, and when k1 = k2, we could
not differentiate which of the two sequences was more efficient. Notably, the results were
qualitatively similar for the 21-day cycles.

4. Discussion

In this study, we used a PLMM to describe the parameters that defined the order
of four proposed oncological treatments. In addition, a uniform numerical sweep was
performed for the parameters λi ∈ [0, 0.12] and αi

s ∈ [0, 1] to obtain a realistic tumor
growth function. This approach produced an extensive qualitative and quantitative vision
of the problem to explain the effects of the drugs on the AMCP.
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Cancerous tumors actively divide cells during the G2 and M phases (active reproduc-
tion phase). In TN-LABC, the AMCP is between 20% and 60% of the tumor mass (43,44),
which is used when calculating the doubling time of the tumor. In this study, the simula-
tions of the tumor duplication were obtained for reasonable clinical times, τ = 25 days
using the initial conditions of N1 = 500 and N2 = 300, as shown in Figure 5. Appendix C
shows that the results obtained were independent of the initial conditions.

The matrix Ds, from Equation (5), represents the annihilating effect of s drugs on the
AMCP. The drug effect was considered instantaneous concerning the timescales involved
in the AMCP growth evolution. These timescales involved in sudden cell death were
compared with the timeframe of AMCP growth without drugs. Proposing the killing effect
of the medications as instantaneous was a suitable approximation, as illustrated in Figure 4.

We used a simplified mathematical model based on Roe et al.’s model (16), as men-
tioned throughout the text. One strength of this analysis were the exhaustive scenarios
considered regarding ratios between cell populations and cellular dynamics by rates after
treatments. However, one of this model’s limitations was using two populations instead
of more populations that corresponded to the cell cycle, as Roe et al. did in their model.
The AMCPs grouped the G1 (protein and RNA synthesis) and S (replication synthesis)
cycles in population N1 and the G2 (protein and RNA synthesis continues) and M (mitosis)
cycles in population N2; in this process, the state G0 (quiescent cells) was not considered.
The reason for grouping the populations this way was that the drugs acted approximately
homogeneously on the G1 and S cycles and the G2 and M cycles, which allowed us to
handle a limited number of parameters. Although this was a limitation of the model, it was
an advantage because we could study the global behavior of the model for a wide range of
these parameters. Therefore, we obtained a broad qualitative and quantitative overview of
the model.

Regarding the complexity of the tumor, owing to the model representing generic
populations at any point in the tumor, by varying the model’s parameters, we could
explore a wide range of cell types that considered this complexity. In the next phase of the
study, we will add the effects of the immune system to the mathematical model.

A randomized phase II trial demonstrated that adding CP to weekly PX followed
by DX and CPh significantly increased the pCR rate in stages II-III of TN-LABC [22].
Strategies to reduce the toxicity of sequential neoadjuvant chemotherapy in TN-LABC
include adjusting the weekly CP dose, compensated with GCEF [29], adjusting by the age
and comorbidity of patients to define the best treatment, determine adequate premedication,
and prevent severe adverse reactions to PX.

The findings of Shepherd et al. [22] supported our mathematical model because the
authors obtained higher PCR rates (administering first CP plus PX and then DX plus CPh)
and provided helpful information for training our mathematical model with the specific
parameters λ and α. As a result, our mathematical model was flexible enough to increase
prediction accuracy with future adjustments using the poor clinical prognosis features of
TN-LABC. These characteristics may include age less than 40 years, tumor size greater
than 5 cm, presence of palpable axillary lymph nodes, inflammatory changes in the breast,
histological characteristics (high histological grade tumors), and the immunohistochemical
characteristics (triple-negative) of elevated Ki67, p53-positivity, and tumor-infiltrating
lymphocytes ≥30. Comparing the findings of this study with our mathematical model, and
we verified the consistency in the results obtained in the clinic, as observed in Figures 7–11,
which showed that the IS14 treatment was more efficient than the SS14 treatment.

This type of PLMM swept all values of the computed parameters, helping to examine
a wide range of drugs that can be used in clinical trials.

5. Conclusions

The sweep of all parameters λi and αi
s allowed us to visualize the variability in cell

growth concerning variations in the amount of drug applied. Here, the inverted treatment
sequence outperformed the standard treatment, allowing maximum AMCP and tumor
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size reductions. In addition, IS14 was more effective than IS21 but with a higher degree
of toxicity; however, this can be compensated for with GCSF because some TN-LABC
patients (with the basal-like subtype, BRCA1 gene mutations, p53 and ki-67, inflammatory
carcinoma in individuals under 40 years of age, and other tumors with a high proliferation
index) will need it, especially those who do not respond to IS21 treatment. The numerical
results obtained in this study are consistent with the clinical results referenced in the
manuscript. This study provides a complementary approach to that used in the clinic for
optimal control.
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Appendix A

This section develops a mathematical model to explain the PX action on TN-LABC
with the BL subtype (12).

We calculated the eigenvalue of the matrix P =

(−λ1 γλ2
λ1 −λ2

)
and values of γ ε [0, 2],

where γ measures PX effectiveness, as defined in Section 2.6. In solving it, we obtained the
following spectrum:

ρ± =
−(λ1 + λ2)±

√
(λ1 + λ2)

2 + 4(γ − 1)λ1λ2

2
(A1)

For γ = 1, the following is obtained:

ρ± =

{
0

−(λ1 + λ2)
(A2)

For γ = 1 there is a bifurcation point in the cell population; this means that when
ρ± = 0, the solution is a constant behavior (with no changes), while for ρ± = −(λ1 + λ2),
the behavior is of exponential decay.

For γ > 1, we have D =
√
(λ1 + λ2)

2 + 4(γ − 1)λ1λ2 > (λ1 + λ2); therefore, an
eigenvalue shall be positive, and the other negative; the tumor will grow for almost any
initial condition.

For γ < 1, we have D =
√
(λ1 + λ2)

2 + 4(γ − 1)λ1λ2 < (λ1 + λ2). In this case, both
eigenvalues are negative, for which the tumor size will decrease to zero. In this case, the
PX effectiveness is enough to reduce the tumor.
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Appendix B

In TN-LABC, only a fraction of the tumor Pa (AMCP) is in active mitosis, usually
between 10% and 20% [38–41], as shown in Figure A1.

 

Figure A1. Schematic of a TN-LABC tumor, the active mitotic cell population is Pa, and Pe is the
non-mitotic cell population.

However, if we call the tumor Pe, then the active part grows as follows:

Pa(T) = Pa(0)eλT (A3)

At time T, the complete tumor grows in the form:

Pa(T) + Pe = Pa(0)eλT + Pe (A4)

Therefore, the time T at which the tumor doubles its total size is:

Pa(T) + Pe = 2(Pa(0) + Pe) (A5)

Substituting Equation (A4) in (A5), we have:

Pa(0)eλT + Pe = 2(Pa(0) + Pe) (A6)

Solving T from Equation (A6) gives us the following:

eλT =
2Pa(0) + Pe

Pa(0)

T =
1
λ

ln
(

2Pa(0) + Pe

Pa(0)

)
(A7)

During this time, the active part of the tumor Pa(T) has grown. Solving Equation (A3)
and replacing T, we have:

Pa(T)
Pa (0)

= eλT

Pa(T) = Pa(0)e
λ( 1

λ ln( 2Pa(0)+Pe
Pa(0)

))

Pa(T)
Pa (0)

=
2Pa(0) + Pe

Pa(0)
(A8)

Therefore, the relationship between the doubling times of the active part and the
complete tumor is as follows:

ln(2)

ln
(

2Pa(0)+Pe
Pa(0)

) (A9)
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For example, if the active part of the tumor is 10%, then Pa (0) = 1 and Pe (0) = 9; in
this case, the relationship between the doubling time of the active part and the complete
tumor is:

ln(2)
ln(11)

= 0.289 (A10)

If the complete tumor doubles every 100 days, the active part doubles every 28.9 days.
As in this paper, the model only considered the AMCP; for this reason, we used a

doubling time of 25 days.

Appendix C

Many simulations presented in this study had arbitrary initial conditions. However, in
this appendix, we show that the results obtained in simulations, in general, are independent
of the initial conditions taken, mainly because the results only depend on the initial and
final AMCP rates.

Because the model is a system of piecewise linear differential equations, then the
stability of the system depends solely on the principal eigenvalue p of the fundamental
matrix (15), which competes with the damping parameters αi

s owing to the drug represented
in the matrix Ds (Equation (5)). Therefore, p × αi

s > 1 represents system instability and
p × αi

s < 1 represents system stability.
We considered tumor cell growth without any drug action. The following Equation

represents AMCP growth.
N(τ) = exp

(
G̃τ

)
N(0) (A11)

where N might be in R2 or R4. The AMCP N(τ) may be approximately expressed as:

‖N(τ)‖ ∼ p‖p0‖
〈

N(0), p0
〉

(A12)

where p is the most significant eigenvalue of the matrix exp
(

G̃τ
)

and p0 the corresponding
eigenvector, so that:

exp
(

G̃τ
)

p0 ∼ pp0 (A13)

We may say that for almost all initial populations, they shall be practically aligned
with the final population to p0; therefore, the rate between ‖N(0)‖ and ‖N(τ)‖ in general,
is independent of the initial population N(0).

We observed that the reason why the PLMM dynamics are determined by p was from
the eigenvalues of the matrix of Equation (3), considering that the matrix parameters are
λ1 = λ and λ2 = αλ, where α is a coefficient, so that α ε [0, ∞). Therefore, the matrix
spectrum is as follows:

ρ± = − (1 + α)λ

2

(
1 ±

√
1 + 4α/(1 + α)2

)
(A14)

where ρ+ > 0 and ρ− < 0 for ∀α ε [0, ∞). That is, the origin has hyperbolic point stability,
and the rate of the eigenvalues is as follows:

ρr =
|ρ−|
|ρ+| =

1 +
√

1 + 4α/(1 + α)2

1 −
√

1 + 4α/(1 + α)2
(A15)

Its variation of ρr ε [5.7, ∞), that is, the |ρ−| ∼ 6|ρ+|. This means that the dynamic
may be understood as a sudden contraction to the eigenvector corresponding to the positive
eigenvalue, and then the entire dynamic develops in this direction. Finally, we indicated
that (N1, N2) in the R2 first only contains the eigenvector of the positive eigenvalue.
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Now, for the standard sequence, when we consider that the tumor is treated with an
n-k dose of the s drug (DX and CF) and for a k dose of PX, where n > k and integer numbers,
the population dynamic evolves as follows:

Na(nτ) = (Ds exp
(
Gτ

)
)

n−k
(

exp
(

P̃τ
))k

N(0) (A16)

We can approximate the final population magnitude as follows:

‖Na(nτ)‖ ∼ pn−kqk〈N(0), q0
〉〈

p0, q0
〉

(A17)

where q is the most significant eigenvalue of the matrix exp
(

P̃τ
)

, and q0 is its corresponding

eigenvector; p is the most significant eigenvalue of the matrix Ds exp
(
Gτ

)
, and p0 is its

corresponding eigenvector.
For the inverted sequence, we have the following:

Nb(nτ) = (exp
(

P̃τ
)
)

n−k(
Ds exp

(
G̃τ

))k
N(0) (A18)

for which the final population size approximates as follows:

‖Nb(nτ)‖ ∼ ‖qn−k pk〈N(0), p0
〉〈

p0, q0
〉‖ (A19)

If we consider that
〈

N(0), p0
〉 ∼ 〈

N(0), q0
〉
, then the rate between these final popu-

lations is approximately:
‖Na‖
‖Nb‖

∼ pn−kqk

pkqn−k
∼=

(
p
q

)n−2k
(A20)

regardless of what the initial population is.
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Abstract: We developed a mathematical model to study the effects of non-pharmaceutical interven-
tions (NPIs) on the dynamics of an epidemic. The level of intervention was assessed as a fraction
of the population being isolated and depended on the level of incidence of the epidemic in the
population. We performed a mathematical analysis of the model and showed that, depending on the
choice of the prevalence-dependent isolation function, it is possible to create new endemic equilibria
and to change the stability of the disease-free equilibrium for which the epidemic vanishes. The
model was then applied to the case of the COVID-19 pandemic. Several NPI management strategies
were considered. In the case of an NPI intensity increasing with the level of infection, it is possible to
avoid the initial epidemic peak of great amplitude that would have occurred without intervention
and to stabilize the epidemic at a chosen and sufficiently low endemic level. In the case of an NPI
intensity decreasing with the level of infection, the epidemic can be driven to extinction by generating
an “Allee” effect: when the incidence is below a given level, the epidemic goes extinct whereas,
above it, the epidemic will still be able take hold at a lower endemic level. Simulations illustrate that
appropriate NPIs could make the COVID-19 vanish relatively fast. We show that, in the context of
the COVID-19 pandemic, most countries have not chosen to use the most efficient strategies.

Keywords: SEIRS model; non-pharmaceutical interventions; target endemic level; Allee effect;
COVID-19

MSC: 92D30

1. Introduction

We present here a theoretical approach aiming at evaluating the effects of some non-
pharmaceutical interventions (NPIs) such as lockdown, social distancing or teleworking
in order to limit the number of cases. We discuss their ability to fulfill some requirements
such as keeping the number of cases at a level low enough to be managed by hospitals
or maintaining a lockdown at a level low enough to avoid consequences that are too
damaging to the economy. We are also looking for NPI measures in order to bring about
the eradication of the epidemic. In SIRS and SEIRS classical epidemic models, there exist a
disease-free equilibrium (DFE) and a single endemic equilibrium (EE) that can be positive
depending on the values of the parameters. A basic reproduction number of the epidemic
R0 is defined and represents the number of people infected by a single infectious person
during their illness. According to the value of this parameter, there are two cases: either
R0 is smaller than 1 and the epidemic goes extinct, i.e., the DFE is globally stable while the
EE does not exist, or the epidemic takes hold, i.e., R0 is greater than 1, the DFE is unstable
and the EE is globally stable.

The aim of this work was to propose NPI protection measures depending on the
number of infected people to control and eradicate an epidemic. Therefore, a proportion of
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protected people is defined by function v(I). Such infected-dependent protection measures
significantly allow for modifying the global phase portrait by creating several endemic
equilibria depending on the particular choice of the function v(I). We particularly con-
sidered choices of the protection function that allow for bringing about the extinction of
the epidemic. In particular, we focused on a class of protection functions that generate
an “Allee” effect. The Allee effect is well known in population dynamics and ecology [1].
A commonly accepted definition of the Allee effect is a positive density dependence of
the growth rate per capita. More precisely, the demographic Allee effect is the positive
relationship between the overall individual fitness and population density. The weak Allee
effect keeps the population growth rate quite low but positive at a low density whereas the
strong Allee effect induces a negative growth rate below a certain threshold [2,3]. It can
generally be observed and has high significance at a low population level, and it is often
used to explain tipping points, as a low or negative growth rate may result in the extinction
of endangered species. The Allee effect aims at taking into account the difficulties in mating
or the absence of cooperative behavior (defense, feeding) between individuals at a low den-
sity causing the eradication of the species: panda populations hardly grow, partly because
of a very low birthrate; fish stocks may be unable to recover from overfishing. In order
to grow, the initial population must be at a sufficiently high density above this threshold.
In the case of a harvested population, a high price of the resource due in particular to its
scarcity can also induce an Allee effect [4].

Equivalently, such an effect could happen in an epidemiology context, when the
number of infected people is too small to start a wave of infection. While an Allee effect
is generally not desirable in ecology, creating the conditions of such an effect would be a
great asset in order to mitigate an epidemic. A judicious choice of functions v(I) allows
for generating two endemic equilibria, one at a low level, denoted EE1, and the other at a
higher endemic level, denoted EE2. By analogy, the case where EE1 is unstable while EE2
is stable corresponds to an “Allee” effect. According to the basins of attraction of equilibria,
we can create a situation where any initial condition chosen below the level of infection of
EE1 can lead to the eradication of the epidemic whereas, for any initial condition above, the
epidemic settles and stabilizes in the long term at the level of EE2. In this work, we focused
on a class of functions v(I) allowing us to generate such an Allee effect as well as any other
class of functions allowing us to cause the extinction of the epidemic.

The article is made up of seven sections. After an introductory part, Section 2 presents
a general SEIRS epidemic model with infected-dependent control and a mathematical
analysis of the epidemic model, such as the existence of endemic equilibria and stability
properties. In Section 3, we discuss the application of the model to the SARS-CoV-2
epidemic. In Section 4, we compare several infection-dependent NPI strategies. Among
these, we present a constant level strategy, a strategy used to avoid a large-scale epidemic
peak and to stabilize the epidemic at an endemic level low enough to avoid congestion in
hospitals and strategies that allow for generating an Allee effect that permits the provoking
of the extinction of the epidemic below some endemic threshold. Section 5 is devoted
to identifying which strategies have been used against COVID-19. Section 6 presents
a discussion of the results with a comparison of the different strategies showing the
advantages, limitations and costs of each one. We conclude in Section 7.

2. An SEIRS Model with NPI Depending on the Number of Infected People

In the following model, the population is distributed among four compartments that
are almost equivalent to those of a classical SEIRS model: a compartment S with susceptible
individuals, a compartment E with exposed individuals, a compartment I with both
asymptomatic (infectious without symptoms onset) and pre-symptomatic (infectious before
symptoms onset or test) individuals and a compartment R, which contains individuals
that have been removed from the infection dynamics, i.e., asymptomatic individuals after
recovery, and symptomatic individuals who are assumed to be quarantined as soon as they
get aware of their condition (symptoms onset or positive test). We assumed a constant total
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population N = S + E + I + R since the time scale of the epidemic is small compared to
the one of population growth.

We considered an epidemic focus, such as a country where the epidemic has just started.
It is normally necessary to take into account the urban mobility of individuals in the dynamics
of the epidemic. We cite the work [5], in which aged structured individuals are supposed
to move between their place of residence, workplaces, universities, schools, public places,
shopping centers and more places [6,7]. In a previous model [8], we also took into account
the daily movements of people between their home and the various places where they are
required to move and where they are more or less protected from contact with infectious
persons as well as lockdown and protection by masks following the work by [9].

We assumed that individuals can switch between a normal state and a state in which
they are removed from the dynamics because of NPI, such as isolation, lockdown or social
distancing. Thus, NPIs result in a proportion v of the population being in a state of isolation.
For example, an NPI that imposes two days of teleworking per labor week (five days)
would result in a proportion v = 40% of isolated people working from home every day.
However, people may be in a different state every day. In the following sections, v will
refer to a more general definition of NPI intensity that will not only apply to lockdown or
teleworking but also to social distancing or mask wearing by assuming that any measure is
equivalent to a percentage of time spent in isolation. It should be noticed that measures
such as lockdown, stay-at-home or curfew apply to the whole population independent of
their infection status.

Infected individuals follow the natural process of the disease corresponding to a
classical SEIRS model, i.e., exposed individuals can become infected after an incubation
time 1

k . Infected individuals are removed after an average time 1
α , either because they

recovered or because they have been tested or are symptomatic and thus quarantined.
They lose their immunity after a time 1

γ . The number of newly infected individuals per
unit of time for the population in a classical SEIRS model is given by the expression
β SI

N , where β is the transmission rate of the disease for one infectious individual in a
population with only susceptible individuals. Since the same NPI rules apply to susceptible
and asymptomatic/presymptomatic individuals, only a proportion 1 − v of both S and
I is involved in the disease transmission. Thus, this expression must be replaced by
β
(1−v)S(1−v)I

N . A detailed justification of this formula is presented in Appendix B. Figure 1
illustrates the reduction in the number of infections: without NPI, four infections occur.
With NPI, a proportion v = 0.5 of the population is isolated (shaded area) and cannot be
infected or infect others. Compared to the case without NPI, infections can only occur
between two persons outside of the shaded area; thus, the ones with a red cross cannot
occur any more. The number of infections is reduced to (1 − v)2 = 0.25 of the original
infections.

(a) Without NPI (b) With NPI

Figure 1. Reduction in the number of infections due to NPI. Infected individuals are represented in
blue, and symptomatic/presymptomatic in orange. Infections are represented by a gray arrow. Red
crosses signal the infections that do not occur anymore due to NPI. (a) Without NPI, four infections
occur. (b) With NPI, a proportion v = 0.5 of individuals are isolated (shaded area). The number of
infections is reduced to (1 − v)2 = 0.25 of the number of original number of infections.
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The modified SEIRS model reads⎧⎪⎪⎪⎨⎪⎪⎪⎩
dS
dt = −β(1 − v)2 SI

N + γR,
dE
dt = β(1 − v)2 SI

N − kE,
dI
dt = kE − αI,

dR
dt = αI − γR.

(1)

Individuals who present onsets or who have been tested are supposed to be definitively
isolated and removed from the dynamics, thus belonging to the removed class R. To
summarize, v represents the proportion of isolated individuals for whom the status is
unknown, whereas the isolation of individuals who have been recognized as infectious is
part of the removal process corresponding to the term αI (see Section 3.2 for more details
on α). The parameters are summarized in Table 1.

Table 1. Parameters used in model (1).

Parameter Interpretation

β infection rate
k transfer rate from exposed to infected. 1/k is the average incubation duration.
α 1/α is the average time spent in the infectious state.
γ transfer rate from recovered to susceptible. 1/γ is the average time before

losing immunity.
v intensity of NPI, measured as the equivalent proportion of the population

in isolation.

Now, let us consider the effect of NPI, which depends on the number of infected
individuals, i.e., we impose that the proportion of individuals v(I) in state 1 depends on
the intensity of the epidemic, i.e., the number of infected individuals I.

Since the dynamics of R can be deduced from the ones of S, E and I, the dynamics are
governed by the system⎧⎨⎩

dS
dt = −β(1 − v(I))2 SI

N + γ(N − S − E − I),
dE
dt = β(1 − v(I))2 SI

N − kE,
dI
dt = kE − αI.

(2)

The resulting model is an SEIRS model with a modified transmission rate that reflects
the NPI intensity, which changes with the number of infected individuals. One way to
derive the previous SEIRS model would also be to consider the version of the baseline
confinement model in [8] and to assume that the proportion v(I) of isolated people depends
on the number of infected people I. However, the classical SEIRS models can only have one
endemic equilibrium, whereas the model with NPI can have several endemic equilibria
and different dynamics. The model obtained with constant v is similar to the one in [8]. For
the sake of simplicity, we assume that v is a continuous map.

We provide a brief demonstration the properties (existence, uniqueness, positivity and
boundedness) of the solutions in Appendix A.

2.1. Disease-Free Equilibria

In mathematical epidemiology, disease-free equilibria (DFE) are defined as equilibria
for which no individual is infected by the disease, i.e., I = E = 0 in our model. Instability
of the DFE usually corresponds to a value of the basic reproduction number R0 greater
than 1 and is associated with the occurrence of an epidemic wave [10]. Equilibria of
system (1) verify αI − γR = 0, which implies that R = 0 at a DFE since I = 0. Finally,
S = N − E − I − R = N, which makes (N, 0, 0) the unique disease-free equilibrium of
model (2).
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2.2. Endemic Equilibria

Interior endemic equilibria (S∗, E∗, I∗) verify:⎧⎨⎩
β(1 − v(I∗))2 S∗ I∗

N = γ(N − S∗ − E∗ − I∗),
β(1 − v(I∗))2 S∗ I∗

N = kE∗,
kE∗ = αI∗.

(3)

The equilibrium of the susceptible population can be expressed in terms of the in-
fected one:

S∗ = N −
(

1 +
α

k
+

α

γ

)
I∗. (4)

The infected population I∗ verifies the following expression:

β

N
(1 − v(I∗))2

(
N −

(
1 +

α

k
+

α

γ

)
I∗
)
= α. (5)

Let us define the function v̂ such that, for I ≥ 0,

v̂(I) = 1 − 1√
R0 − β

N

(
1
α + 1

k +
1
γ

)
I

. (6)

where R0 = β
α is the basic reproduction rate of the SEIRS epidemic. We deduce from

Equation (5) that, at endemic equilibria, the equality

v(I∗) = v̂(I∗) (7)

holds. For a given control function v associated with a given set of mitigation measures,
the set of endemic equilibria can be determined by finding the solution of Equation (7). In
other words, each time that the graph of the chosen function v intersects the function v̂, it
corresponds to an endemic equilibrium, as will be illustrated in the next section.

The continuous map v̂ defined on [0, Im], where Im = R0
β
N

(
1
α +

1
k +

1
γ

) , is monotonously de-

creasing and intersects the horizontal axis at the classical endemic equilibrium
IEE = R0−1

β
N

(
1
α +

1
k +

1
γ

) , (IEE < Im), reached in the absence of mitigation measures (v = 0).

We also note that v̂(0) = 1 − 1√R0
. As shown in the following subsection, the disease-free

equilibrium (DFE) is stable if and only if v(0) > 1 − 1√R0
.

2.3. Stability Analysis

We now study the dynamics of the SEIRS model by finding the stability of the equilibria
(DFE and endemic equilibria). For the sake of simplicity, we assume that v is C1 around the
equilibria. The Jacobian matrix for the SEIRS model (2) reads:

J =

⎛⎜⎝− β
N (1 − v(I))2 I − γ −γ − β

N (1 − v(I))2S − γ + 2 β
N v′(I)(1 − v(I))IS

β
N (1 − v(I))2 I −k β

N (1 − v(I))2S − 2 β
N v′(I)(1 − v(I))IS

0 k −α

⎞⎟⎠. (8)

2.3.1. Local Stability of the DFE

For the DFE, (N, 0, 0), the Jacobian reads

JDFE =

⎛⎝−γ −γ −γ − β(1 − v(0))2

0 −k β(1 − v(0))2

0 k −α

⎞⎠. (9)
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We are ensured to find one negative eigenvalue, λ1 = −γ < 0. We consider the
remaining minor matrix JMIN :

JMIN =

(−k β(1 − v(0))2

k −α

)
. (10)

We find that its trace, Tr(JMIN) = −k − α, is negative and that the determinant,
det(JMIN) = k(α − β(1 − v(0))2), can be positive or negative. It is positive when
v(0) > 1 − 1√R0

. Under these conditions, the DFE is locally asymptotically stable and
it is possible to generate an Allee effect.

2.3.2. Local Stability for an Endemic Equilibrium

For any interior equilibrium (S∗, E∗, I∗), the Jacobian matrix simplifies by incorporat-
ing equilibrium expressions (3):

J∗ =

⎛⎜⎜⎝
−γ − kE∗

S∗ −γ −γ − α + 2 kv′(I∗)E∗
(1−v(I∗))

kE∗
S∗ −k α − 2 kv′(I∗)E∗

(1−v(I∗))
0 k −α

⎞⎟⎟⎠. (11)

The characteristic equation reads as follows:

λ3 + a1λ2 + a2λ + a3 = 0, (12)

with:

a1 =

(
α + k + γ +

kE∗

S∗

)
> 0, (13)

a2 = (α + k + γ)
kE∗

S∗ + γ(k + α) + 2
k2v′(I∗)E∗

(1 − v(I∗)) , (14)

a3 = 2
γk2v′(I∗)E∗

(1 − v(I∗)) + (αγ + γk + αk)
kE∗

S∗ > 0. (15)

The Routh–Hurwitz conditions a1 > 0 and a3 > 0 are always verified for a positive
interior endemic equilibrium. If v′(I∗) > 0, it is easy to check that the last Routh–Hurwitz
condition is also verified. Indeed, after simplification, a1a2 > a3 reads:

(α2 + k2 + γ2 + αk + αγ + kγ)
kE∗

S∗ + (α + k + γ)

(
kE∗

S∗

)2

+ γ(k + α)

(
α + k + γ +

kE∗

S∗

)
+ 2k2

(
α + k +

kE∗

S∗

)
v′(I∗)E∗

1 − v(I∗) > 0. (16)

It is always verified for a positive endemic equilibrium when v′(I∗) > 0. In other
words, if the level of protection increases with the number of infected individuals, the
endemic equilibrium is stable. It is still true when v′(I∗) < 0 and |v′(I∗)| is small. In other
cases (v′(I∗) < 0 and |v′(I∗)| is larger than a given threshold), the equilibrium is unstable.

As a consequence, the stability of endemic equilibria is independent of the stability of
the DFE.

2.4. Numerical Simulations

In the following sections, analytical results are supported by simulations. Simulations
were performed in Maple using a Fehlberg fourth–fifth-order Runge–Kutta numerical
scheme (RKF45) [11]. For ODE systems in epidemiology, it is important to ensure that
the numerical results are accurate and carry the qualitative properties of the solutions.
Some studies focused on numerical methods dedicated to epidemiology, such as [12]
or [13]. However, like other papers relying mostly on the analytical study of the systems
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(equilibria, stability, asymptotic dynamics) such as [14], we do not provide a complete proof
of the convergence analysis (consistency, stability), as simulations were used mainly to
illustrate the dynamics. All simulations outputs appear to be qualitatively consistent with
the analytical results, as well as the numerical values (equilibria). The parameters used
in the simulations presented in this article were estimated for the case of the COVID-19
pandemic based on medical and statistical studies and are discussed in Section 3.2, apart for
the country population, infection rate β and NPI intensity v, which are country-dependent.

2.5. Sensitivity Analysis

We performed a sensitivity analysis of the model and R0 with respect to the parameters
γ, α, k, ν and β, assuming that ν is a constant parameter. We used the FME package in R for
the local sensitivity analysis of variables S, E, I, R and a partial rank correlation coefficient
(PRCC) for R0. Results are shown in Figure 2.
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Figure 2. Sensitivity analysis for (a) S, (b) E, (c) I, (d) R and (e) R0, taking into account parameters γ

(purple), α (blue), k (green), ν (yellow) and β (red). Parameters values are β = 1.2, k = 0.2, α = 0.5,
v = 0.4 and γ = 1/200, N = 100.

The model is quite sensitive to parameters β, ν, γ and α and, to a lesser extent, to
parameter k. This can be explained by the fact that compartment E is only a transition
compartment. Indeed, modifying the value of k changes the duration spent in the exposed
state and delays the infection dynamics, but does not really change the magnitude of the
infection among the population. All other parameters greatly influence the dynamics;
hence, a good estimation would be required in order to accurately assess the magnitude
of the epidemic. This sensitivity analysis confirms that NPI intensity is a key factor for
mitigating the epidemics. On the other hand, its negative influence on R means that NPIs
with a higher intensity result in a lower immunity to the disease in the population.

3. Application to the COVID-19 Epidemic

Several approaches have been used to model the COVID-19 pandemic. We propose
here to illustrate the model presented in the previous section with the case of COVID-19.
The global response to COVID-19 is highly related to behavioral epidemiology since the
only measures that were available before the appearance of the vaccine were NPIs, which
consist of modifying the habits of the population. Behavioral epidemiology studies how
the behavior of individuals and their lifestyle affect their health conditions and influence
the dynamics of epidemics. We refer to [15] and more generally [16] as early contributions.
It is obvious that the global evolution of the epidemic depends on all the decisions taken
by each individual according to the context in which they finds themself and their personal
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situation: the age of individuals, their social status, the frequency of their daily trips to sites
where the risk of infection is more or less significant, their protective behavior by using
masks or even by teleworking and many other multiple aspects regarding their life style.
We refer to [5] as an example for the COVID-19 epidemic taking into account different
places and ages in China. We also cite a more recent contribution [17], which is a study
on the influence of social cohesion and socioeconomic status on health conditions again
in China.

This kind of aggregated model remains very simplistic but has the advantages of being
able to be handled analytically and, more importantly, to easily exhibit major tendencies.
The model that we used here is extremely simple and cannot accurately describe all the
aspects of the COVID-19 pandemic. However, it is sufficient for describing the different
NPI strategies and estimating at least qualitatively their effect on such a pandemic. Our
choice here was to consider the individual behaviors as a single aggregated term of NPI
intensity rather than considering the extreme diversity of individual behaviors, as well
as a limited number of compartments. Indeed, other compartments such as quarantined,
asymptomatic carriers, etc., could also be introduced and would provide a greater accuracy;
however, they would only marginally modify the dynamics and would not provide much
more useful information regarding the goal of this model, i.e., estimating the qualitative
evolution over time of the pandemic in regard to different NPI intensity strategies.

3.1. Background of the COVID-19 Pandemic

The onset of the COVID-19 epidemic was brutal, with very high peaks of contamina-
tion leading to the saturation of intensive care units. In the United States, the occupancy
rate of intensive care beds reached over 60% in the most populous states and large cities [18].
In France, the number of beds able to accommodate severely ill patients requiring intensive
care in hospitals was limited to around 5000 beds and the number of respirators available
seemed also insufficient in view of the foreseeable arrival of seriously ill patients. In the
absence of any measures, a very significant proportion of the population would have been
infected after the epidemic wave. As a result, several governments in the world decided to
put in place NPIs such as lockdown, social distancing or teleworking in order to limit the
number of cases and keep hospital admissions of seriously ill patients below the hospital
capacity threshold. This policy was adopted by many countries and worked with some
success and limitations. Regardless, hospitals were under very strong pressure, sometimes
leading to the saturation of intensive care units [19] despite such measures. The evaluation
of the effects of NPIs is a central question that has been studied in previous works, such
as [20] in Italy or in [14], where the authors evaluated how successful the governmental
measures were in Rohingya refugee camps.

However, lockdown has had disastrous consequences for the economy, generating
waves of unemployment and causing considerable budget deficits for the states, with
very serious difficulties for those in need. Some countries have chosen to set up a partial
lockdown while maintaining activity or have opted to end the lockdown early enough
to limit the disastrous consequences for their economy, especially in Northern Europe.
Many countries remain extremely cautious in this area, fearing the occurrence of successive
epidemic waves after lockdown. The question of the end of lockdown is therefore crucial
and it is important to develop scientific methods allowing us to control this phase by
limiting the damage.

NPIs were set up in order to rapidly address problems such as intensive care units
overload and hospital pressure. However, they were not specifically thought of as a long-
term answer to a long-lasting epidemic (several years) that may be caused by reinfection.
It is commonly admitted that immunity usually lasts at least six months, but there is still
uncertainty about a possible loss of immunity that would happen later on. As of today, a
few cases of reinfection have been reported [21]. In [22], the author spotted that reinfection
is possible but the bigger question is “if reinfections are going to happen, how frequently
are they happening?”. In a preprint, Ward et al. [23] observed a decline in antibodies in UK
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patients, which led to the fear of a possible loss of immunity. Furthermore, the appearance
of new variants also increases the possibility of reinfection [24,25].

3.2. Dynamics without Protection Measures: Parameters Estimation Based on COVID-19

Much work has been devoted to modeling the COVID-19 epidemic: Refs. [26–28] in
China, Refs. [29–31] in Japan and, in Algeria, [32,33]. We also cite [34] in which the authors
studied the effects of different quarantine and protection measures on the dynamics of the
epidemic with a mathematical model, and [35] for Canada. Only a few works have been
devoted to modeling the epidemic in the hypothesis of reinfection, such as [36] or [37].

The question of reinfection quickly rose with the onset of the pandemic, as it was
unclear if immunity could be lost [38]. The loss of immunity or the risk of reinfection is an
important question in epidemiology, such as for HIV [39]. In the context of COVID-19, few
cases of re-infections have been observed [21], but most studies prior to fall 2021 suggested
a long-lasting protection (≥90 days [40], ≥6 months [41]) but could not totally exclude
the possibility of reinfections after a longer time or because of mutations. However, the
appearance of new variants shed a light on massive reinfection occurrences. Evidence that
variants could elude immune responses was found [24,25]. Several new variants (English,
South African, Brazilian, Delta, Omicron) have been able to develop and even replace the
original virus. These variants can be more virulent, more contagious and, for some of
them, even more resistant to vaccines (see [42] for the Brazilian variant and [43] for UK and
South Africa). It has recently been found that the Omicron variant might evade antibodies
induced by infection or vaccination [44]. In [45], it was suggested that the relative risk
of reinfection has risen to 81%. Long-term reinfections due to new variants or a loss of
immunity have become a realistic hypothesis. In this general context, we considered an
SEIRS model with the possibility of re-infection in the long term, with a reinfection rate
γ. For the COVID-19 epidemic, we used the same general SEIRS model presented in the
previous theoretical section. Since it is a highly simplified model that relies on strong
assumptions, it may not be suitable for a realistic description or prediction of the current
pandemic. However, it can provide useful qualitative information about the evolution of
the disease in the context of possible re-infections and about the benefits and disadvantages
of different NPI strategies.

Parameters of the model can be estimated from various medical and statistical reports
about COVID-19.

As of 2022, though the proportion of asymptomatic carriers is pretty much well known
(50% in [46], 40% in the meta-analysis performed in [47]), there is no clear consensus
about the role of asymptomatic carriers on the dynamics of the population. Some studies
state that more than half of infections are due to asymptomatic carriers [48], whereas
other suggest that asymptomatic transmission is marginal or due to a misclassification of
presymptomatic cases as asymptomatic [49,50]. Because of those uncertainties, we did not
take into account separate compartments for asymptomatic and symptomatic people in
this work for the sake of simplicity. Instead, we considered a class I that includes both
symptomatic and presymptomatic carriers. Symptomatic carriers were included in the R
class since they are supposed to be isolated as soon as they are aware of their condition.
For that reason, we did not use a quarantined/isolated class as is often carried out in
other approaches, such as in [51], since symptomatic/isolated and healed individuals
do not play any role in the transmission of the disease. As a consequence, the average
time spent in the infectious class 1/α lies somewhere between the average infectious
time for presymptomatic carriers 1/αp and the one for asymptomatic carriers 1/αa, i.e.,
1/α ∈ [1/αp, 1/αa]. It was found in [52] that infectiousness can occur from 2.3 days (95%
CI, 0.8–3.0 days) before symptom onset, with a peak at 0.7 days (95% CI, 0.2–2.0 days)
before onset. We estimated a rough lower boundary for 1/αp ≥ 1. The same study found
a significant decline in infectiousness 10 days after onset. Other studies suggest that an
infection more than 5 days after symptoms onset is very unlikely [53]. We thus set an upper
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boundary for 1/αa ≤ 7.3. As a consequence, we estimated that the parameter α lies in the
interval [0.13, 1].

As a consequence, we chose to set α = 0.67 in this model. The model that we obtained
does not differ qualitatively from a model with an explicit asymptomatic compartment and
provides a similar dynamic, with a marginal quantitative difference. On the contrary, such
an approach allows for avoiding the use of too many parameters on which there is much
uncertainty, thus following the principle of parsimony. Additional information obtained by
using an asymptomatic compartment would not have been useful considering the scope of
our study, and it would have come with a much higher prior uncertainty.

Following the estimation of α, we set parameter k to 0.27 day−1 since the average
duration between infection and symptoms onset is 5.2 days [54].

R0 = β
α has been estimated as between 2 and 6 for most countries, with most probable

values in the range 2–3 [55]. Some other studies suggest even higher values (between
3.5 and 6 [56]). In the following simulation, we decided to set β = 1.2 in order to obtain
R0 = 2.4. In Section 5, we will estimate β for each case study based on incidence time
series obtained from data sources.

It is important to note that estimates of the previous parameters (α, β, k) may be
very inaccurate. In the case of COVID-19, one may find inconsistencies about indicators
estimations between different studies: they depend on many factors (country, population
density, local habits, culture, genetics), may vary in time (seasonal effects, new variants) or
may be based on different protocols. Nevertheless, we sought to make a reasonable choice
of parameters among those found in the literature. If there may be much uncertainty about
the numerical values that we obtained from simulations, the qualitative results are robust
despite the inaccuracy of the parameters estimations.

Finally, there is a major uncertainty about parameter γ at the present time. The average
duration after which immunity is lost is 1/γ. Values between 60 and 365 were used in [36].
As of today, immunity is assumed to last at the very least 200 days, so we considered
several possible values of 1/γ larger than 200.

Figure 3 compares several dynamics in the total absence of protective measures for a
country population of 50,000,000 individuals for different values of γ. In the absence of
NPI (v = 0), the dynamics follow those of a classical SEIRS model, tending toward the
endemic equilibrium with decreasing oscillations. Note that they differ from those of a
classical SEIR model without reinfection (γ = 0, red dashed line curve). In the latter, the
epidemic eventually vanishes after one wave of infection. In addition, note that there is
very little difference between the first peaks for the different values of γ.

(a) Active cases (b) Cumulative cases (including
reinfections)

Figure 3. Evolution of the epidemic in the absence of NPI v = 0 for 1/γ = 200 (blue), 400 (green)
and compared to a model without reinfection (γ = 0, red dashed curve). (a) Active cases per 100,000
(b) and cumulative cases per 100,000. The initial conditions are (S(0) = N − 1, E(0) = 0, I(0) = 1).
Parameters values are β = 1.2, k = 0.27, α = 0.67 and N = 50,000,000.
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It is known that, in the absence of any protective measure against the epidemic, a large
proportion of the population is infected after the first peak in a proportion ranging from 0.8
to almost the entire population depending on the value of R0 [28,32,57]. The aim of this
work was precisely to show that, by using adequate protective measures, it is possible to
greatly limit the level of infection and even to cause the disappearance of the epidemic in a
relatively short time.

Figure 3 shows that considering different values for γ leads to the same qualitative
dynamics. Despite the large range for γ, the amplitude of the first peak is similar, whereas
the second one is shifted in time but has a similar amplitude (Figure 3a). Reinfection
naturally causes an infinite growth of the cumulative cases (Figure 3b) that occurs in stages.

The number of active cases I per 100,000 at the equilibrium decreases with 1/γ.
However, Figure 3a illustrates that, if no control measures are taken, it remains high for a
large range of values. Whatever the value of parameter γ, the first epidemic peak is very
high and it is essential to take protective measures to limit the number of cases and even to
stop the epidemic quickly.

4. Possible Strategies against an Epidemic with Reinfection

We now present several possible strategies to fight the epidemic when it starts. Based
on the mathematical analysis of the general SEIRS model, we considered three main classes
of epidemic NPI strategies: a first one consisting of a constant control, a second one
stabilizing the epidemic at a sufficiently low target endemic level and a third one aiming at
the eradication of the epidemic. In order to compare the various strategies, all simulations in
this section used the same set of epidemiological parameters: β = 1.2, k = 0.2, α = 0.5 and
γ = 1/200 for a fictional disease and a fictional country with N = 50,000,000 inhabitants.
All indicators (I, cumulative cases) are presented for 100,000 individuals to be consistent
with indicators found in the literature.

4.1. Strategy 1: Constant Control

We compared some constant control strategies with different intensities v0, shown in
Figure 4. The v̂(I) function is represented in red as in all the following figures.

(a) Functions v and v̂ (b) Number of active cases (I) (c) Cumulative cases

Figure 4. Comparison of constant control strategies: v = 0.8 (blue), v = 0.5 (orange), v = 0.3 (purple),
v = 0.2 (green). Parameters values are β = 1.2, k = 0.2, α = 0.5 and γ = 1/200, N = 50,000,000. The
initial condition is I(0) = 300 per 100,000. (a) Comparison of functions v and v̂ (red curve) with stable
(solid circles) and unstable (empty circles) equilibria. (b) Evolution of the number of active cases I.
An insert shows the details of the region 0 < t < 50. (c) Evolution of the number of cumulative cases.

Each intersection with a constant v function defines an endemic equilibrium, which is
the case of the purple and green function. Two outcomes are possible. If v0 is high enough,
the epidemic goes extinct (Figure 4b) since the DFE is stable and there is no endemic
equilibrium (v = 0.8: blue and v = 0.5: orange, Figure 4a). The number of active cases per
100,000 falls below 1 in around 80 days for v = 0.5 and around 20 days for v = 0.8. If v0
is low, the system tends toward a stable endemic equilibrium since the DFE is unstable
(v = 0.3: purple and v = 0.2: green). In the latter case, the number of active cases I shows
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oscillations and stabilizes around the endemic equilibrium. Peaks appear corresponding to
different waves of infection. As v0 increases, the value I∗ at the equilibrium gets lower and
peaks get lower and more distant in time. The number of cumulative cases keeps increasing
as people get reinfected, and its value eventually become larger than the total population.

4.2. Strategy 2: NPI Intensity Increasing with the Number of Cases

This is the most natural strategy since the intensity of measures usually increases with
the level of epidemics. Many governments choose to have a light level of social distancing
at a low level of incidence and more effective measures at higher levels.

The dynamics present an unstable DFE and a unique endemic equilibrium. To illustrate
this, we chose a family of increasing monotonic maps v(I) v : I �→ v0 I/(I + 100) for
different values of v0 = 0.8, 0.5 and 0.3 (see Figure 5). The intersection with the curve v̂
defines a unique endemic equilibrium I∗ that is locally asymptotically stable. The value
of I∗ decreases with v0: I∗ is around 220, 128 and 67 for v0 = 0.3, 0.5 and 0.8, respectively.
High values of v0 lead to a rapid decrease in the epidemic, whereas a low value (purple
curve) still allows for large amplitude peaks that may not be manageable by hospitals.

(a) Functions v and v̂ (b) Number of active cases (I)

Figure 5. Comparison of strategies lowering the endemic equilibrium. Chosen functions are v : I �→
v0 I/(I + 100), with v0 = 0.8 (blue), v0 = 0.5 (orange) and v0 = 0.3 (purple). Parameters values are
β = 1.2, k = 0.2, α = 0.5 and γ = 1/200. The initial condition is I(0) = 300 per 100,000 individuals.
(a) Comparison of functions v and v̂ (red curve) with stable endemic equilibria (solid circles) and an
unstable DFE (empty circle). (b) Evolution of the number of active cases I per 100,000 individuals.

Since the number of cases decreases with the target endemic level, this strategy may
become useful for keeping the epidemic low enough to prevent hospital congestion with a
lower level of active cases. Unfortunately, it is not possible to reach the extinction of the
epidemic.

4.3. Strategy 3: Seek to Extinguish the Epidemic

A necessary condition to end the epidemic is to have a stable DFE, which requires
that v(0) > v̂(0). This requires a high NPI intensity at a low level of cases I, contrary
to strategy 2. This can be achieved by using any function v > v̂, such as a sufficiently
high constant control, as shown previously. A key element in our work is that, since v̂ is
decreasing, it is much more important to keep v at high levels when I is low than when I is
high. Indeed, the extinction of the epidemic can be achieved with a decreasing function,
with a low-intensity NPI when I is high and a high-intensity NPI when I is low.

Figure 6 depicts the case of a decreasing control function v (purple curve). Two other
control functions (orange and blue) are represented in order to see what would happen
if the parameters were misevaluated. More specifically, we chose the following family of
piecewise linear maps:
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v : I �→
{

v0

(
1 − I

Imax

)
if 0 ≤ I < Imax,

0 if Imax ≤ I.
(17)

with v0 = 0.8 and Imax = 200 (blue), 50 (orange) and 500 (purple) (see Figure 6a).

(a) Functions v and v̂ (b) Number of active cases (I) (c) Phase portrait

Figure 6. Comparison of control strategies that create an Allee effect. Chosen functions are piecewise
linear maps, decreasing from 0.8 to 0 from I = 0 to I = Imax and equal to 0 elsewhere, with Imax = 300
(blue), Imax = 50 (orange) and Imax = 500 (purple). Parameters values are β = 1.2, k = 0.2, α = 0.5
and γ = 1/200 for a population of 50,000,000 individuals. The initial conditions are S0 = 60,000,
E0 = 800, I0 = 100 for 100,000 individuals. (a) Comparison of functions v and v̂ (red curve) with a
stable (solid circle) DFE and unstable (empty circles) endemic equilibria. (b) Evolution of the number
of active cases I. The early dynamics are depicted in insert. (c) Phase portrait. Stable equilibria are
represented by a solid sphere, and unstable equilibria by a diamond, in colors corresponding to their
respective maps v. Surfaces indicate the basin of attractions of the stable endemic equilibrium, the
colors corresponding to their respective maps. The gray plane delimits the volume of possible initial
conditions (S + E + I + R ≤ N).

The purple map drives the epidemic to extinction (Figure 6b). Blue and orange maps
create a lower unstable endemic equilibrium and a stable endemic equilibrium, generating
an “Allee” effect: the lower the incidence, the more difficult it is for the disease can spread.
Depending on the initial conditions, the epidemic may disappear or tend toward the high
endemic equilibrium. The basins of attraction of the endemic equilibria for the different
measures are represented in their respective colors in Figure 6c. Stronger measures lead to
a smaller basin of attraction for the endemic equilibrium.

Such a strategy may be less natural since it means higher-intensity measures when
I is low than when I is high. However, the intensity is still lower than in strategy 1, and
it can provoke the extinction of the epidemic, which cannot be achieved with strategy 2.
Furthermore, the extinction of the epidemic occurs in a relatively short time compared to
the measures taken by most governments that vary in intensity and have been spread over
more than a year.

5. Case of the COVID-19 Pandemic: Estimation of NPI Intensities and Identification of
the Strategies Chosen by Several Countries

We estimated the time evolution of NPI intensities ν(t) for several countries in order to
find a match with one of the previous strategies discussed in the previous section. For that
purpose, we used incidence (and equivalently the total number of new cases) and hospital
admission (if available) data collected from John Hopkins University’s Github reposi-
tory (https://github.com/CSSEGISandData/COVID-19/blob/master/csse_COVID_19
_data/csse_COVID_19_time_series/, accessed on 1 March 2023) and Our World in Data
(https://ourworldindata.org/COVID-vaccinations, accessed on 1 March 2023).

We simulated the evolution of the incidence using the SEIRS model defined in Section 2
with a time-varying NPI intensity ν(t). We assumed that, for each country, all parameters
except ν(t) remain constant for the total duration of the simulation. For that reason, we
used data time series from February 2020 to no later than October 2021 in order to avoid
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the effects of new variants such as delta and omicron that would make the assumption of a
constant β highly irrelevant.

Accordingly to Section 3.2, parameters α = 0.67, k = 0.26, γ = 1/200 were fixed and
estimated based on medical and statistical studies. The country population was extracted
from the previous sources, and parameters β and ν(t) were fitted. Assuming that no NPI
has been set up during the initial exponential phase ν(t) = 0, we extracted incidence data
between the date with the first reported case and the end of this exponential phase (we
assumed that it ends at the first inflection point, which occurs slightly before the peak
maximum). We then estimated the last remaining parameter β by fitting the incidence curve
obtained from simulations with initial condition S(0) = N, E(0) = 0, I(0) = 1, R(0) = 0,
with the daily incidence rate provided by data from the previous sources. Using the least
square method, we fitted two parameters β and the fictional start date t0 (theoretical date
at which I(t0) = 1).

We then assumed that, after this initial exponential phase, the infection rate β remains
constant, but, since NPIs have been set up, ν(t) now evolves with time. For the sake of
simplicity, we considered that the NPI intensity ν(t) is the same for all the days of a same
week. We fitted ν(t) with the least square method since the number of values of ν(t) is
still large (1 per week), and we used a hill climbing algorithm in order to find the best fit.
Finally, we smoothed the results by taking the mean over 7 days.

We then intended to identify the strategies used by comparing the values of ν with
the incidence and tried to exhibit a tendency. Since the incidence may be underestimated
during the first wave of the epidemic, we also compared ν to the number of admissions in
hospitals (when data are available), which is supposed to be a scaled and slightly shifted
version of the real incidence curve. It then may provide a more reliable estimation of
the real incidence rate up to a multiplicative constant. Moreover, NPIs were often set
in order to avoid hospitals and ICUs saturation, which also makes this indicator more
relevant than the observed incidence. Figure 7 shows the results obtained for the United
Kingdom, France, Germany and New York City. This figure shows the time evolution of
new cases, hospitalizations and ν(t), as well as the phase portraits ν vs. new cases and ν
vs. hospitalizations. Results for a few other countries are shown in Appendix C, Figure A2.
Note that we replaced the incidence rate by the number of new cases, which is just a scaled
version that is of the same order as the hospitalization number, which makes the figure
easier to read.

It appears that the NPI intensity is not highly linearly correlated to new cases or
hospitalization, apart from France (R2 = 0.40), which could be associated to strategy 2.
For other countries, the value of ν appears to be relatively constant or slightly increasing
with the new cases or hospitalizations; hence, they can be associated to strategy 1 or 2. An
increase in the NPI intensity around the incidence peaks on the time series confirms that
the chosen strategy is more likely to be strategy 2. Other countries shown in the appendix
exhibit a constant or slightly increasing tendency, except for Russia, which exhibits a slightly
decreasing tendency, which can be considered as constant. For the United Kingdom, ν
seems to slightly decrease with the number of cases, but is constant with hospitalizations,
which certainly illustrates that hospitalization works better than the measured incidence
rate. All those examples illustrate that strategies 1 and 2 appear to be more natural than
strategy 3, and thus are chosen by most countries.

We compared those strategies with the ones chosen by two countries that allegedly
maintained a very low incidence: New Zealand and Vietnam. New Zealand adopted
an elimination strategy in response to COVID-19 (“keep it out, prepare for it, stamp it
out”) after an initial lockdown from 25 March 2020,which was progressively lifted after
28 April 2020. It included a strong border control of the island, contact tracing and strong
public measures. As a continental country, Vietnam imposed a strict border control with
a long quarantine for travelers, as well as very localized and strong lockdowns. Both
countries experienced a very low incidence level and maintained relatively normal activity
at the moment when other countries were struck by incidence peaks (winter 2020–2021).
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Incidence and NPI intensity are shown for both countries in Figure 8 (no hospitalization
data were available from the previous sources).

United Kingdom

France

Germany

New York City

Figure 7. Epidemiological dynamics and NPI strategies for UK, France, Germany and New York
City. Left: time evolution of the number of new cases, admission to hospitals and NPI intensity ν.
Middle: phase portrait of NPI intensity ν vs. new cases. Right: phase portrait of NPI intensity ν vs.
hospitalizations. For each point cloud, linear regression was performed in order to see if a linear
relationship could be exhibited.

The NPI intensity seems to be constant or decreasing with the incidence rate, with
the highest values reached at very low incidence rates. Incidence peaks do not seem to be
associated with stronger measures but are more constant in intensity. For those reasons,
our estimation of NPI intensity for those countries seem to be consistent with strategy 3.
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New Zealand

Vietnam

Figure 8. Epidemiological dynamics and NPI strategies for New Zealand and Vietnam. Left: time
evolution of the number of new cases (blue) and NPI intensity (grey) ν. Right: phase portrait of NPI
intensity ν vs. new cases and linear regression.

6. Comparison and Discussion of the Effects of Various NPI Strategies on the
Dynamics of the Epidemic

We have shown that we can control an epidemic when it starts by imposing a level of
NPI that depends on the number of infected persons each day. In the absence of protective
measures, a peak of infected cases reaches over 6000 cases per 100,000 and lasts for around
150 days. We now compare the different strategies used to control the epidemic: strategies
1 (blue), 2 (green) and 3 (purple and orange); see Figure 9a. All strategies have the same
maximum intensity v0 = 0.6. Blue and purple always cause the epidemic to end since the
only equilibrium is the DFE. The green strategy leads to a low endemic equilibrium. The
orange strategy leads either to an endemic equilibrium or to the extinction of the epidemic
depending on the initial condition (Figure 9b).

(a) Functions v and v̂ (b) Number of active cases (I) (c) NPI intensity v
Figure 9. Comparison of the different NPI strategies: constant control (blue), decreasing function
(purple and orange) and lower endemic equilibrium (green). Parameters values are β = 1.2, k = 0.2,
α = 0.5 and γ = 1/200 for a population of 50,000,000 individuals. The initial conditions are
I(0) = 100 per 100,000. (a) Comparison of functions v and v̂ (red curve) with stable (solid circles) and
unstable (empty circles) equilibria. (b) Evolution of the number of active cases I. Insert: an additional
dynamic for the initial condition S(0) = 45,000, E(0) = 200, I(0) = 800 for the orange strategy. (c)
NPI intensity v(t).
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The benefit of the orange strategy over the purple one is its lower intensity. This comes
along with the risk of the dynamics ending trapped at the endemic equilibrium if the initial
condition is unfavorable, i.e., when NPIs are set up too late (insert of Figure 9b).

We set a threshold (here, less than 1 case per 100,000) under which we consider that the
epidemic has gone extinct. When the number of cases falls under this threshold, we assume
that it is not necessary to maintain any NPI. The duration and the time evolution of NPI
intensity is represented in Figure 9c. The green strategy keeps the epidemic at a low level; it
requires a moderately intense but never-ending NPI. Strategy 1 (blue, constant v = 0.6) is
the most effective and has the shortest total NPI duration but may be difficult to implement
from the start. It drives the epidemic to extinction in 39 days. It should be noticed that
0.6 already represents a high-intensity NPI, such as a lockdown, that may be difficult to
set up in practice or that at least requires some time to be achieved. For the same initial
condition, NPIs for purple and orange strategies last 43 and 49 days, respectively. They
have the advantage of proposing NPIs with a gradually increasing intensity that reaches the
maximum value at the end of the epidemic, which gives health authorities more time to set
it up. Overall, their duration seems reasonable compared to the one of the blue strategy.

The analysis of the dynamics of the epidemic for those different strategies allows us to
rank their effectiveness, intensity and duration, as shown in Table 2.

Table 2. Comparison of the effectiveness, intensity and duration for the different strategies, for the
same maximum intensity.

Strategy 1 Strategy 2 Strategy 3

Effectiveness high low high
Intensity highest medium high
Duration short very long short

The effectiveness is clearly higher in strategies 1 and 3 than in 2 since the latter is
unable to prevent the endemic equilibrium and put an end to the epidemic by itself. Type 2
strategies do not seem desirable to us because they lead to a permanent endemic state with
lasting NPI measures, even if they may allow for limiting the magnitude of an epidemic
peak in order to prevent ICU saturation. Strategy 3 combines the advantages of efficiency,
a shorter duration and a lower intensity than strategy 1. Based on those findings, it seems
more profitable to seek to get rid of the epidemic using a purple or orange strategy (strategy
3). However, it may seem counter-intuitive in the sense that it is necessary to strengthen
the NPI intensity as the number of infected persons decreases in order to achieve the
eradication of the epidemic in some time frame.

Those strategies have different outcomes in terms of social and economic costs. Strate-
gies 1 and 3 have a short duration but a high intensity, contrary to strategy 2, which has
a very long duration and a moderate intensity. NPIs are known to induce much stress
and anxiety and, more generally, a decline in mental health [58,59]. We do not discuss
this matter here, but there is a need to carefully consider a possible trade-off between the
duration and intensity of NPIs.

As shown in the previous section, most countries have adopted strategy 1 (blue) or
2 (green) instead, except for New Zealand and Vietnam. When the health situation worsens,
the level of measures is reinforced for some weeks in order to return to a lower level of virus
circulation, resulting in successive epidemic waves. In France, three lockdowns have been
established. For each lockdown, its intensity has been reduced when the epidemic peak has
diminished sufficiently so as not to saturate the hospitals but without maintaining it long
enough at a high level to bring about the eradication of the epidemic. These successive
confinements have generated astronomical infections and economic costs. Epidemic waves
seem to endlessly follow each other unless a vaccination policy can achieve collective
immunity. On the contrary, New Zealand and Vietnam maintained a low incidence level
and seem to have suffered a lower social and economic cost, except for tourism.
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To summarize, our results indicate that lockdowns should be strengthened and abso-
lutely not released when the incidence drops until the epidemic actually ends. Carrying out
the contrary leads to a new increase in the number of cases toward an endemic equilibrium.

In our opinion, these epidemic control methods could be used locally for medium-
sized cities that can be isolated for a period of at least one to two months by prohibiting
or very strictly controlling the entry and exit of people from this city. The application of
these classes of strategies would require the use of a significant number of tests allowing
for a good estimation of the numbers of infected people at the time when the control must
be implemented. It requires properly positioning the various endemic equilibria created
by the epidemic control function. In the context of COVID-19, our work suggests that
strong, short and early measures are more effective than mild but long-lasting ones. We
think that these results may be of interest since some countries such as Israel expect to live
permanently with the disease.

7. Conclusions

In this work, we studied an SEIRS epidemic model with reinfection and illustrated
the results with an application to the COVID-19 pandemic. We analyzed the effects of
several kinds of infection-dependent NPIs on the dynamics of the epidemic and on the
characteristics (existence and stability) of disease-free and endemic equilibria. We showed
that NPI strategies could be divided into three main classes and highlighted their benefits
and drawbacks, such as their ability to put an end to the epidemic, the amplitude and
duration of the peaks and the feasibility of the considered measures. We found that constant
NPI strategies are effective for extinguishing the epidemic but may be too intense to be
practically usable. Strategies with NPI intensity decreasing with the number of cases I
may also put an end to the epidemic by creating an Allee effect while being easier to set
up. However, they can lead to a large epidemic peak or a (lower) endemic equilibrium
instead of extinction if they are not set up carefully. Finally, the most intuitive strategy (NPI
intensity increasing with the number of cases) proved to be the least efficient while being
unable to put an end to the epidemic.

The key element of our study is that, in the context of the spread of a disease with a loss
of immunity, Allee effects do not exist naturally, contrary to what is observed in population
ecology. However, while this phenomenon is not desirable in the latter, it appears to be
mandatory to end an epidemic, and has to be artificially created using NPIs. In terms of
public health, creating an Allee effect would imply setting up early measures with more
intensity. Strategies such as type 3 can bring about the extinction of the epidemic and could
have important implications for public health policy. They are already in use for animal
epidemics: in the case of diseases spreading in farms animals, the decision is often to kill
all the animals in a same location. Such policies prevent the disease from spreading at a
larger scale but are highly controversial. The situation seems more delicate in the case of
human epidemics because even softer policies such as travel restrictions and confinement
measures are difficult to impose. However, a more systematic and efficient screening, better
information and very localized and short lockdowns may prevent major outbreaks. Many
countries decided to use strategies 1 or 2 against COVID-19, as we showed in Section 5,
and failed to create an Allee effect. They have been reluctant to set high-intensity NPIs at
low virus circulation levels or during the early stages of the pandemic because carrying
this out may have been greatly unpopular and a major restriction of liberties, but possibly
also because of the financial cost. However, our work suggests that spending money for
early prevention, information and screening may reduce the final cost. Even if our results
may be considered with care due to the many assumptions that we made in our model,
we think that we have provided a good illustration that (1) delaying the response to a
problem eventually results in a highest social and economical cost, and (2) people are
nevertheless inclined to use that kind of sub-efficient strategy. We believe that such a
conclusion holds for other major problems that we are facing nowadays, particularly for
the ones related to climate change. We illustrated our model with the case of COVID-19.
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However, further investigations on other epidemics would be necessary to identify what
strategies are commonly used and to confirm if strategy 3 is the most efficient.

As a perspective, we could study a network of several cities connected by the move-
ment of individuals from one city to another by rail or by plane. It would be interesting to
study the coupling of epidemic management methods depending on the number of infected
people in the different cities. We refer to [60,61] for disease spread in meta-populations.

In the future, we plan to reconsider our model by considering two compartments for
asymptomatic (A) and infectious (I) carriers in a future SEAIRS version. We also plan to
improve the realism of the model by explicitly including other factors, such as vaccination,
health infrastructures and a more detailed description of social behaviors. We also plan to
provide a more detailed study on the economic and social costs of NPIs. However, we hope
and are inclined to think that our conclusions obtained through a theoretical approach
on the effectiveness of the various strategies can be useful for practical case studies, as
density-dependent protection strategies could be used to target a sufficiently low level of
endemicity or find a strategy to put an end to the epidemic while considering constraints
such as social cost or hospitals capacity.
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Abbreviation

The following abbreviation is used in this manuscript:

NPIs Non-Pharmaceutical Interventions

Appendix A. Mathematical Properties of the Model

The demonstrations for the mathematical properties (positivity, boundedness, exis-
tence and uniqueness of the solutions) of model (1) are classical. We present here brief
demonstrations.

Proposition A1. The non-negative region R4
+ is positively invariant for model (1).

Proof. We consider a solution with an initial condition in R4
+. Let us assume that

tm = sup{t > 0 : S(t) > 0, E(t) > 0, I(t) > 0, R(t) > 0} exists. Thus, tm > 0, and
the inequality dS/dt ≥ −βSI/N holds on [0, tm]. After using the separation of variables
methods and integration, we obtain S(tm) ≥ S(0)exp

(
−β

∫ tm
0 I(u)du

)
>0. Similarly, we

can show that E(tm) > 0, I(tm) > 0 and R(tm) > 0, which completes the proof.

Proposition A2. Solutions of model (1) are bounded.

Proof. By summing the equations in system (1), we find that dN/dt = 0. The total
population N = S + E + I + R is constant, which implies that 0 ≤ S ≤ N, 0 ≤ E ≤ N,
0 ≤ I ≤ N and 0 ≤ R ≤ N. This completes the proof.

Proposition A3. The initial value problem for model (1) with an initial condition in R4
+ has a

unique maximal solution.

92



Mathematics 2023, 11, 2822

Proof. The proofs consists of showing that system (1) fulfills the conditions of the Picard–
Lindelöf theorem, i.e., that if we rewrite the system as dX/dt = f (X), with X = (S, E, I, R),
then f is Lipschitz continuous. This is straightforward, except for the term
g(X) = β(1 − v(I))2SI/N. Let us consider the continuous non-negative bounded map
h(I) = β(1 − v(I))2/N. For two states X1 = (S1, E1, I1, R1) and X2 = (S2, E2, I2, R2),
we have:

|g(X2)− g(X1)| = |h(I2)S2 I2 − h(I1)S1 I1|
≤ |h(I2)S2 I2 − h(I1)S2 I1|+ |h(I1)S2 I1 − h(I1)S1 I1|
≤ S2|h(I2)I2 − h(I1)I1|+ I1h(I1)|S2 − S1|,
≤ N|h(I2)I2 − h(I1)I1|+ Nh(I1)|S2 − S1|
≤ N sup(h)|I2 − I1|+ Nh(I1)|S2 − S1|,

(A1)

|g(X2)− g(X1)| = |h(I2)S2 I2 − h(I1)S1 I1|
≤ |h(I2)S2 I2 − h(I2)S2 I1|+ |h(I2)S2 I1 − h(I1)S2 I1|

+|h(I1)S2 I1 − h(I1)S1 I1|
≤ h(I2)S2|I2 − I1|+ S2 I1|h(I2)− h(I1)|+ I1h(I1)|S2 − S1|
≤ N sup(h)|I2 − I1|+ N2|h(I2)− h(I1)|+ N sup(h)|S2 − S1|.

(A2)

Map g is then Lipschitz continuous, which completes the proof.

Appendix B. More Details on the Infection Rate Formula

Deriving an infection model from classic ones such as SIR models may be more
complicated than it seems, and the choice of the terms in the equations may be difficult to
understand. For that reason, we intend to justify in this appendix the infection rate that we
used in our model when isolating a proportion v of the population:

β(1 − v)2 SI
N

. (A3)

Indeed, the term (1 − v)2 may be difficult to understand, and we think it deserves
a more detailed explanation. We also provide a numerical illustration of our results by
simulating contacts in a population with and without NPIs.

Appendix B.1. Detailed Calculation of the Infection Rate Formula

In the original infection model without NPI, the number of secondary infections per
unit of time due to one infected individual is β S

N or, more precisely,

pc
S
N

, (A4)

where c is the average number of contacts that individuals have per unit of time, p is
the probability of infection for each contact and S/N is the proportion of susceptible
individuals in the population. Note that, in the classical SIR model, neither the number
of the removed individuals R nor their status (isolated or simply immune to the disease)
appear in the transmission formula. We remind the main idea behind this formula: an
infected individual encounters c others per unit of time. Since only a proportion S/N are
susceptible, this makes cS/N potential new cases, and, for each case, infection may occur
with a probability p. On average, an infected individual infects pcS/N per unit of time.
When summing over all infected individuals, there are, on average, β SI

N new cases per unit
of time in the population.

Now, let us assume that a proportion v of individuals are isolated regardless of their
status (for example, some NPIs may order that non-essential workers stay at home). The pro-
portion of susceptible individuals in the non-isolated population remains unchanged since

(1 − v)S
(1 − v)N

=
S
N

, (A5)
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as well as the probability of infection p. However, the number of contacts is reduced due to
isolation since only a proportion 1 − v is not isolated. Indeed, since isolated individuals
are assumed to be randomly chosen, an average proportion v of one’s contact would be
isolated. The average number of contacts then drops to (1 − v)c. The number of secondary
cases due to one infected individual is then

p(1 − v)c
S
N

= (1 − v)β
S
N

, (A6)

Finally, the total number of new cases per unit of time is obtained by summing the
new cases for each of the (1 − v)I non-isolated infected individuals, and reads

(1 − v)2β
SI
N

. (A7)

Note again that even if another isolation status were to be considered, (quarantined,
etc.), the formula would be the same according to the reasoning related to Formula (A5).

Appendix B.2. Simulation of Infectious Contacts

In order to provide some numerical support, we designed the following simulations:
we considered N individuals with different infectious statuses and set a random graph of
contacts between people, such as the average number of contacts per individuals being c.
We then computed the number of infectious contacts (contacts between one non-isolated
infected and one non-isolated susceptible individual) for different sets of possible statuses
(susceptible, infectious, removed or even quarantined) with or without isolating a random
fraction v of the individuals. We then compared the results with the estimates provided by
the respective expressions (A3) and (A4). We reproduced the simulations with different
sets of possible statuses: susceptible and infectious statuses were always considered, but
we also introduced a removed class even if the formula does not explicitly refer to it,
and a possible quarantined class, which consists of infectious individuals that have been
isolated after having received knowledge of their disease. As removed individuals, they
do not participate in the disease transmission process. However, removed individuals are
considered as cured and immune but may be in contact with other individuals, whereas
the quarantined ones are physically isolated from the population.

As illustrated in Figure A1, after isolation, the number of infectious contacts is reduced
on average to a quantity (1 − v)2 of the infectious contacts before isolation. As expected,
explicitly representing the removed and quarantined does not affect the validity of the formula.

Figure A1. Reduction in the number of infectious contacts due to isolation (left). We performed 500
simulations with a total population of N = 500 individuals, which were randomly assigned a
susceptible, infectious status (all simulations). For each simulation, we isolated a random proportion v
of the population and reported the ratio between the infection rate with isolation and the infection rate
without isolation. The point cloud that we obtained approximately fits the curve (1 − v)2 (grey curve).
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The Matlab code for this program is available on the GitHub repository https://github.
com/tnguyenh/M2AS---COVID-19/ (accessed on 1 June 2023).
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Abstract: Based on China’s summary of three years of experience and measures in the prevention
and control of the COVID-19 epidemic, we have built a COVID-19 prevention and control model
integrating health and medical detection, big data information technology to track the trend of the
epidemic throughout the whole process, isolation of key epidemic areas, and dynamic prevention
and control management throughout the whole process. This model provides a simple, feasible,
and theoretically reliable prevention and control model for future large-scale infectious disease
prevention and control. The Lyapnov functional method is replaced by the global exponential
attractor theory, which provides a new mathematical method for studying the global stability of
the multi parameter, multi variable infectious disease prevention and control system. We extracted
mathematical methods and models suitable for non-mathematical infectious disease researchers
from profound and difficult to understand mathematical theories. Using the results of the global
exponential Attractor theory obtained in this paper, we studied the global dynamics of the COVID-
19 model with an epidemiological investigation. The results demonstrated that the non-constant
disease-free equilibrium is globally asymptotically stable when λ∗ < 0, and the COVID-19 epidemic
is persisting uniformly when λ∗ > 0. In order to understand the impact of the epidemiological
investigation under different prevention and control stages in China, we compare the control effects of
COVID-19 under different levels of epidemiological investigation policies. We visually demonstrate
the global stability and global exponential attractiveness of the COVID-19 model with transferors
between regions and epidemiological investigation in a temporal-spatial heterogeneous environment
with the help of numerical simulations. We find that the epidemiological investigation really has a
significant effect on the prevention and control of the epidemic situation, and we can also intuitively
observe the relationship between the flow of people (including tourism, shopping, work and so on)
and epidemiological investigation policies. Our model is adapted to different stages of prevention
and control; the emergency “circuit breaker” mechanism of the model is also consistent with actual
prevention and control.

Keywords: global exponentially attracting set; temporal-spatial heterogeneous COVID-19 model;
epidemiological investigation

MSC: 35B41; 35K57; 35B35; 37N25; 92D25; 92D30

1. Introduction

The epidemic of novel coronavirus pneumonia has spread around the world for
three years [1–5]. As a self-limiting epidemic in a temporal-spatial heterogeneous envi-
ronment [6], different countries have formulated different prevention and control policies
according to their national conditions. For the prevention and control of the COVID-19
epidemic, governments and medical staff have made great efforts in the past three years.
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Researchers have also expressed their opinions and proposed many different control meth-
ods and prevention strategies. The prevention and control of COVID-19 is different for
different countries and regions [7–12]. Akter and Jin [13] propose a Caputo-based fractional
compartmental model for the dynamics of the novel COVID-19. Martinez-Fernandez
et al. [14] compared Verhulst’s, Gompertz’s, and SIR models from the point of view of
their efficiency to describe the behavior of COVID-19 in Spain. These mathematical models
are used to predict the future of the pandemic by first solving the corresponding inverse
problems to identify the model parameters in each wave separately, using the observed
data in daily cases in the past [15]. In the beginning of the COVID-19 pandemic, universities
have experienced unique challenges due to their dual nature as a place of education and
residence. Up to now, China has been a country with a very low fatality ratio of COVID-19.
The lowest fatality ratio of COVID-19 in the world is due to the strict epidemiological
investigation policy of the Chinese government. These epidemiological investigation poli-
cies include big data screening, travel reports and national nucleic acid testing. At the
beginning of December 2022, the Chinese government made timely adjustments to relax the
prevention and control strategy in response to the domestic epidemic spread trend, and can-
celed the nationwide nucleic acid, travel reports and other epidemiological investigations.
The current epidemiological investigation strategy has changed into finding out the base
number and situation of key populations, and strengthening health monitoring and early
intervention. After the relaxation of epidemiological investigations, there has been a rapid
and significant increase in the number of infected people in China. China’s epidemiological
investigation policy has its own characteristics in global epidemic prevention and control
policies. According to data released by the WHO under this type of prevention and control,
only 33,144 people in China have died from COVID-19. We believe that the prevention and
control strategy of this epidemiological investigation can serve as an experience to learn
from, and we can also try this strategy in future outbreaks similar to COVID-19.

The purpose of this article is to study the positive impact of epidemiological investiga-
tions on epidemic prevention and control through mathematical modeling methods.

In order to use mathematical theory to analyze the rationality and effectiveness of
epidemiological investigation under different prevention and control stages in China,
we construct a COVID-19 model with transferors between regions, an epidemiological
investigation and a relapse in a temporal-spatial heterogeneous environment. Our model
is divided into six compartments, namely susceptible individuals (S), latent patients (L),
transferors between regions (T), infected individuals (I), persons under epidemiological
investigation (E), temporary restorers (R) and healthy individuals (H). The parameters
description and transfer diagram as shown in Table 1 and Figure 1.

Table 1. State variables and parameters of COVID-19 (SLTEIRH) model.

Parameter Description

Λ(x, t) Total recruitment scale into this homogeneous social mixing community
at location x and time t.

βi(x, t), i = 1, 2 Contact rate at location x and time t.
α(x, t), σ(x, t), ν2(x, t) Infection rate at location x and time t.
δ(x, t) Contact rate when moving between regions at location x and time t.
γ(x, t) Rate of epidemiological investigation at location x and time t.
θ1(x, t) Release rate of epidemiological investigation at location x and time t.
θ2(x, t) Complete cure rate at location x and time t.
ρ(x, t) Relapse rate at location x and time t.
φ(x, t) Per-capita recovery (treatment) rate at location x and time t.

ω(x, t) Interregional transfer rate of patients with incubation period and asymp-
tomatic infection at location x and time t.

ν1(x, t) Asymptomatic infection rate at location x and time t.
μ(x, t) Natural mortality rate at location x and time t.
ηi(x, t), i = 1, 2, 3 Fatality ratio at location x and time t.

k Epidemiological investigation proportions at different stages of prevention
and control.

100



Mathematics 2023, 11, 3027

Figure 1. Transfer diagram for the COVID-19 (SLTEIRH) model with transferors between regions,
epidemiological investigation and relapse in a temporal-spatial heterogeneous environment.

From Figure 1, the following system with the initial-boundary-value conditions is
constructed by:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂S
∂t = ∇ · (dS(x)∇S) + Λ(x, t)− β1(x, t) SL

S+L − β2(x, t) SI
S+I

− δ(x, t) ST
S+T − kσ(x, t) ST

S+T − μ(x, t)S,
∂L
∂t = ∇ · (dL(x)∇L) + β1(x, t) SL

S+L + β2(x, t) SI
S+I + ν1(x, t)E

− [μ(x, t) + ω(x, t) + α(x, t)]L,
∂T
∂t = ∇ · (dT(x)∇T) + δ(x, t) ST

S+T + ω(x, t)L
− [μ(x, t) + γ(x, t) + σ(x, t)]T,

∂E
∂t = γ(x, t)T + kσ(x, t) ST

S+T
− [μ(x, t) + η1(x, t) + ν1(x, t) + ν2(x, t) + θ1(x, t)]E,

∂I
∂t = ∇ · (dI(x)∇I) + α(x, t)L + σ(x, t)T + ν2(x, t)E + ρ(x, t)R

− [μ(x, t) + η2(x, t) + φ(x, t)]I,
∂R
∂t = ∇ · (dR(x)∇R) + φ(x, t)I − [μ(x, t) + η3(x, t) + ρ(x, t) + θ2(x, t)]R,
∂H
∂t = ∇ · (dH(x)∇H) + θ1(x, t)E + θ2(x, t)R − μ(x, t)H,

x ∈ Ω, t > 0,
∂S
∂n = ∂L

∂n = ∂T
∂n = ∂E

∂n = ∂I
∂n = ∂R

∂n = ∂H
∂n = 0, x ∈ ∂Ω, t > 0,

S(x, 0) = S0(x) ≥ 0, L(x, 0) = L0(x) ≥ 0, T(x, 0) = T0(x) ≥ 0,
E(x, 0) = E0(x) ≥ 0, I(x, 0) = I0(x) ≥ 0, R(x, 0) = R0(x) ≥ 0,
H(x, 0) = H0(x) ≥ 0, x ∈ Ω.

(1)

Here, Ω is a bounded domain in Rm(m ≥ 1) with smooth boundary ∂Ω (when m > 1),
dS(x), dL(x), dT(x), dI(x), dR(x), dH(x) ∈ C1(Ω) are positive, continuous and uniformly
bounded diffusion coefficients depending on space.Since most of the people who partici-
pated in the epidemiological investigation were quarantined at home or in the hospital, we
do not consider the diffusion of them in this article. Λ(x, t), β1(x, t), β2(x, t), ρ(x, t), ν1(x, t),
ν2(x, t), α(x, t), ω(x, t), δ(x, t), σ(x, t), θ1(x, t), θ2(x, t), γ(x, t), φ(x, t), μ(x, t), η1(x, t), η2(x, t)
and η3(x, t) are bounded and positive Hölder continuous functions on accounting; k repre-
sents the proportion of epidemiological investigation of susceptible persons. Neumann
boundary conditions ∂S

∂n = ∂L
∂n = ∂T

∂n = ∂E
∂n = ∂I

∂n = ∂R
∂n = ∂H

∂n = 0 denotes that the change
rate on the boundary of the region Ω is equal to 0. It is straightforward to verify that

SI
S+I

(
SL

S+L , ST
S+T

)
is a Lipschitz continuous function of S and I(L, T) in the open first quad-

rant. Therefore, we can extend it to the entire first quadrant by defining it to be zero
whenever S = 0 or I = 0 (L = 0, T = 0). Throughout the paper, we assume that the initial
value S0, L0, T0, E0, I0 and R0 are nonnegative continuous functions on Ω, and the number
of infected individuals is positive, i.e.,

∫
Ω I0(x)dx > 0. Specific parameters described in

Table 1.
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The highlight of this model is to examine the impact of epidemiological investigation
on epidemic prevention and control. Epidemiological investigation policies at different
stages can be adjusted through the parameter k in the model to achieve the best prevention
and control effect. The epidemiological investigation in the model can be understood
as a comprehensive compartment including the nucleic acid test, big data monitoring,
and even vaccination. Of course, we can also refine compartment E in the process of
modeling. However, in addition to increasing the difficulty of mathematical reasoning,
this refinement will not have a significant impact on the long-term dynamic behavior of
the model. Therefore, it is appropriate for us to select a comprehensive compartment for
this epidemic investigation. Taking the spread of the COVID-19 epidemic as the research
object, combined with the current development of the COVID-19 epidemic, Yang et al. [16]
sorts out the relevant mathematical models for the study of the spread of COVID-19,
among which the models based on the SIR model and SEIR model and the mathematical
models combined with these two models are mainly selected. Finally, the importance of
the reasonable and effective control of parameters and multi-model combined modeling is
pointed out forthe future.

The organization of this paper is as follows. In Section 2, we first provide a sufficient
condition for the existence of the global exponentially attracting set, which can be more
easily applied to specific models. Second, we prove the existence of the system (1), and
then we obtain the global stability and persistence of the COVID-19 epidemic with an
epidemiological investigation. In Section 3, we simulate the impact of the epidemiological
investigation and travel on the prevention and control of COVID-19 in China. By adjusting
the proportion of the epidemiological investigation, we simulate the spread of the COVID-
19 epidemic under different epidemiological investigations. In Section 4, we provide our
conclusions and some discussions.

2. The Effectiveness Analysis of Epidemiological Investigation

Because the structure of the epidemiological investigation model (1) is complex, it
contains multiple coupled state variables, and the coefficients are all temporal-spatial
heterogeneous except for the spatially heterogeneous diffusion coefficient. It is tedious
and difficult to discuss the global stability of system (1) by adopting the usual method of
constructing Lyapunov functionals. For these reasons, we need to seek new breakthroughs
in methods and find some new methods and means to solve the stability analysis problems
of systems with a large number of equations. It is well known that the global attractor
theory can discuss the dynamics of dissipative evolutionary systems. However, the existing
global attractor and even global exponential attractor theories are all abstract conditions
that are esoteric and difficult to understand in mathematical theory. They are difficult to
apply directly to actual mathematical models. This seriously hinders the general infectious
disease researchers from applying these mathematical theories to understand and discover
the laws of disease transmission. Through our previous studies [6,17], we have tried many
times to discuss the transmission of some specific diseases with the help of the global
attractor theory in infinite-dimensional dynamical systems and have achieved good results.
Therefore, we hope to continue these efforts and obtain some more convenient conditions
that can be applied directly.

Let H be Hilbert space; H1 ⊂ H is a dense and compact inclusion. A : H1 → H is a
symmetrical sectorial operator and all eigenvalues of A are

0 > λ1 ≥ λ2 ≥ · · · ≥ λk > . . . , λk → −∞ (k → ∞), (2)

Consider the system of reaction diffusion equations{
du
dt = Au + G(t, u),
u(0) = u0.

(3)
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In the following lemma, we provide a sufficient condition to prove the global exponen-
tially attracting set of system (3). This condition is more convenient in terms of computation
and workload compared with our previous research results in the verification process of
the actual model.

Theorem 1. Assume that condition (2) holds, and there exists a constant C > 0 such that for
any bounded set B, there exists a constant tB > 0, such that for ∀u0 ∈ B ⊂ H1, the solution
u = u(t, u0) of system (3) satisfies condition

〈G(t, u), u〉H ≤ C, ∀t ≥ tB, (4)

then, in the system (3) exists a global exponentially attracting set Ã∗; it exponentially attracts any
bounded set under the H-norm.

Proof. Assume that u = u(t, u0) is a solution of the system (3), where u0 ∈ B. Then, by
the definition of the fractional power subspace generated by sectorial operator A, we can
obtain that

〈Au + G(t, u), u〉H = 〈Au, u〉H + 〈G(t, u), u〉H (5)

= −‖u‖2
H 1

2

+ 〈G(t, u), u〉H

≤ −‖u‖2
H 1

2

+ C, ∀t ≥ tB.

Since A: H1 → H is a symmetrical sectorial operator, the eigenvectors
{

ej
}

j∈N corre-

sponding to the eigenvalues
{

λj
}

j∈N are a complete orthonormal base of H. For any u ∈ H,
assume that u can be presented as

u =
∞

∑
i=1

xiei, ‖u‖2
H =

∞

∑
i=1

x2
i .

In addition, it follows from lim
j→∞

λj = −∞ that for any N > 0, there is an integral

number J ≥ 1, such that −N ≥ λj, ∀j ≥ J + 1.
Let

H
J
1 = span

{
e1, e2, . . . , eJ

}
and H

J
2 =

(
H

J
1

)⊥
.

Then, each u ∈ H can be decomposed as

u = Pu + (I − P)u := u1 + u2,

u1 =
J

∑
i=1

xiei ∈ H
J
1, u2 =

∞

∑
i=J+1

xiei ∈ H
J
2,

where P: H → H
J
1 is the projector.

By using the condition (5), there exists positive constants C > 0, such that for any
bounded set B ⊂ H1, there exists a tB > 0, which satisfies that

1
2

d
dt
〈u, u〉H =

〈 ·
u, u

〉
H
= 〈Au + G(t, u), u〉H ≤ −‖u‖2

H 1
2

+ C.

Since H 1
2
↪→ H, there exists C1 > 0, such that

‖u‖H 1
2

≥ C1‖u‖H, ∀u ∈ H 1
2
.
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Hence,
1
2

d
dt
‖u‖2

H ≤ −C2
1‖u‖2

H + C,

By Gronwall’s inequality in differential form Lemma 2.3 of [18], we obtain that

‖u‖2
H ≤ e−αt‖u0‖2

H +
2C
α

(
1 − e−αt), (6)

where α = 2C2
1. Assume that r > 0, such that 2C

α < r2. Since B is bounded, there exists
a constant KB > 0, such that for any u0 ∈ B, ‖u0‖H

≤ KB. It follows from (6) that if we

take tB big enough, such that ‖u(t, u0)‖2
H = ‖Q(t)u0‖2

H ≤ r2, ∀t ≥ tB. Hence, Br ⊂ H is an
absorbing set. Moreover, this implies that

‖PQ(t)u0‖H ≤ r, ∀t ≥ tB.

It means that {‖PQ(t)B‖H}t≥tB
is bounded.

It follows that from the inner product of Equation (3) in H with u2, we have

1
2

d
dt
〈u, u2〉H =

1
2

d
dt
〈u2, u2〉H =

1
2

d
dt
〈u, u − u1〉H (7)

=
1
2

d
dt
〈u, u〉H − 1

2
d
dt
〈u1, u1〉H

=
〈 ·

u, u
〉

H
−

〈 ·
u1, u1

〉
H

= 〈Au + G(t, u), u〉H −
〈 ·

u1, u1

〉
H

≤ −‖u‖2
H 1

2

+ C −
〈 ·

u1, u1

〉
H

, ∀t ≥ tB,

and

〈Au2, u2〉H =− ‖u2‖2
H 1

2

(8)

=
∞

∑
i=J+1

λix2
i

≤− N
∞

∑
i=J+1

x2
i = −N‖u2‖2

H.

Note that

〈Au, u〉H = 〈A(u1 + u2), u1 + u2〉H

= 〈Au1, u1〉H + 〈Au2, u2〉H

= −‖u1‖2
H 1

2

− ‖u2‖2
H 1

2

,

it follows from (7) and (8) that

1
2

d
dt
〈u2, u2〉H ≤ −‖u‖2

H 1
2

+ C − 1
2

d
dt
〈u1, u1〉H

≤ −N‖u2‖2
H + C − 1

2
d
dt
〈u1, u1〉H, ∀t ≥ tB.

By integrating both ends of this inequality, we can obtain that

‖u2‖2
H ≤ −2N

∫ t

tB
‖u2‖2

Hds + 2C(t − tB) + ‖u(tB)‖2
H
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≤ −2N
∫ t

tB
‖u2‖2

Hds + 2C(t − tB) + r2.

By Gronwall’s inequality, we have that

‖u2‖2
H ≤ e−2N(t−tB)r2 +

C
N

(
1 − e−2N(t−tB)

)
, ∀t ≥ tB

and N > 0 is arbitrary. Therefore, N is large enough, such that C
N < ε; then, we deduce that

the Condition (C*) of [19] holds. Hence, it follows from Theorems 3.3 and 4.1 in [19] that
in the system (3) exists a global exponentially attracting set Ã∗; it exponentially attracts
any bounded set under the H-norm.

From now on, we denote that H = L2(Ω), H1= H1
0(Ω)∩C2,1(Ω), H7 = H × H × H×

H × H × H × H and H7
1 = H1×H1×H1×H1×H1×H1×H1. Note that H7 and H7

1 are
Banach spaces equipped with norm∥∥∥(S, L, T, E, I, R)T

∥∥∥
H7

:= max{‖S‖H, ‖L‖H, ‖T‖H, ‖E‖H, ‖I‖H, ‖R‖H, ‖H‖H} (9)

and∥∥∥(S, L, T, E, I, R)T
∥∥∥

H7
1

:= max
{
‖S‖H1

, ‖L‖H1
, ‖T‖H1

, ‖E‖H1
, ‖I‖H1

, ‖R‖H1
, ‖H‖H1

}
.

For any given continuous function f on Ω × (0,+∞), we denote

f ∗(t) = sup
x∈Ω

f (x, t) and f∗(t) = inf
x∈Ω

f (x, t),

f ∗ = sup
x∈Ω,t>0

f (x, t) and f∗ = inf
x∈Ω,t>0

f (x, t).

By the similar method used in [17], we can prove the following existence, positivity
and boundedness of the global solution of the system (1).

Theorem 2. For each (S0(x), L0(x), T0(x), E0(x), I0(x), R0(x), H(x)) ∈ C(Ω × [−τ, 0]), sys-
tem (1) exists a positive and uniformly bounded global solution (S(x, t), L(x, t), T(x, t), E(x, t),
I(x, t), R(x, t), H(x, t)) ∈ C2,1(Ω × (−τ, ∞)).

Proof. Since

A = (∇ · (dS(x)∇),∇ · (dL(x)∇),∇ · (dT(x)∇), 0,

∇ · (dI(x)∇),∇ · (dR(x)∇),∇ · (dH(x)∇))

is a symmetrical sectorial operator and all eigenvalues of L are

0 > λ1 ≥ λ2 ≥ · · · ≥ λK > . . . , λK → −∞ (K → ∞),

Let

G(S, L, T, E, I, R, H) := (g1(S, L, T, E, I, R, H), g2(S, L, T, E, I, R, H),
g3(S, L, T, E, I, R, H), g4(S, L, T, E, I, R, H), g5(S, L, T, E, I, R, H)

g6(S, L, T, E, I, R, H), g7(S, L, T, E, I, R, H))T ,

where

g1(S, L, T, E, I, R, H) = Λ(x, t)− β1(x, t)
SL

S + L
− β2(x, t)

SI
S + I

−δ(x, t)
ST

S + T
− kσ(x, t)

ST
S + T

− μ(x, t)S,
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g2(S, L, T, E, I, R, H) = β1(x, t)
SL

S + L
+ β2(x, t)

SI
S + I

+ ν1(x, t)E

−[μ(x, t) + ω(x, t) + α(x, t)]L,

g3(S, L, T, E, I, R, H) = δ(x, t)
ST

S + T
+ ω(x, t)L − [μ(x, t) + γ(x, t) + σ(x, t)]T,

g4(S, L, T, E, I, R, H) = γ(x, t)T + kσ(x, t)
ST

S + T
−[μ(x, t) + η1(x, t) + ν1(x, t) + ν2(x, t) + θ1(x, t)]E,

g5(S, L, T, E, I, R, H) = α(x, t)L + σ(x, t)T + ν2(x, t)E + ρ(x, t)R

−[μ(x, t) + η2(x, t) + φ(x, t)]I,

g6(S, L, T, E, I, R, H) = φ(x, t)I − [μ(x, t) + η3(x, t) + ρ(x, t) + θ2(x, t)]R,

g7(S, L, T, E, I, R, H) = θ1(x, t)E + θ2(x, t)R − μ(x, t)H

In addition, by means of the differential mean value theorem of multivariate functions
and (9),

‖g1(S1, L1, T1, E1, I1, R1, H1)− g1(S2, L2, T2, E2, I2, R2, H2)‖H

=
∥∥∥−β1(x, t)

(
S1L1

S1+L1
− S2L2

S2+L2

)
− β2(x, t)

(
S1 I1

S1+I1
− S2 I2

S2+I2

)
−[δ(x, t) + kσ(x, t)]

(
S1T1

S1+T1
− S2T2

S2+T2

)
− μ(x, t)(S1 − S2)

∥∥∥
H≤ β∗

1(t)‖u − v‖H + β∗
2(t)‖u − v‖H + (δ∗(t) + kσ∗(t))‖u − v‖H

+μ∗(t)‖u − v‖H

=
(

β∗
1(t) + β∗

2(t) + δ∗(t) + kσ∗(t) + μ∗(t)
)‖u − v‖H,

where u = (S1, L1, T1, E1, I1, R1, H1), v = (S2, L2, T2, E2, I2, R2, H2). Similarly,

‖g2(S1, L1, T1, E1, I1, R1, H1)− g2(S2, L2, T2, E2, I2, R2, H2)‖H

≤ (
β∗

1(t) + β∗
2(t) + ν∗1 (t) + μ∗(t) + α∗(t) + ω∗(t)

)‖u − v‖H,

‖g3(S1, L1, T1, E1, I1, R1, H1)− g3(S2, L2, T2, E2, I2, R2, H2)‖H

≤ (δ∗(t) + ω∗(t) + γ∗(t) + σ∗(t) + μ∗(t))‖u − v‖H,

‖g4(S1, L1, T1, E1, I1, R1, H1)− g4(S2, L2, T2, E2, I2, R2, H2)‖H

≤ (
γ∗(t) + kσ∗(t)μ∗(t) + η∗

1 (t) + ν∗1 (t) + ν∗2 (t) + θ∗1 (t)
)‖u − v‖H,

‖g5(S1, L1, T1, E1, I1, R1, H1)− g5(S2, L2, T2, E2, I2, R2, H2)‖H

≤ (α∗(t) + σ∗(t) + ν∗2 (t) + ρ∗(t) + μ∗(t) + η∗
2 (t) + φ∗(t))‖u − v‖H,

‖g6(S1, L1, T1, E1, I1, R1, H1)− g6(S2, L2, T2, E2, I2, R2, H2)‖H

≤ (φ∗(t) + μ∗(t) + η∗
3 (t) + ρ∗(t) + θ∗2 (t))‖u − v‖H,

‖g7(S1, L1, T1, E1, I1, R1, H1)− g7(S2, L2, T2, E2, I2, R2, H2)‖H

≤ (
θ∗1 (t) + θ∗2 (t) + μ∗(t)

)‖u − v‖H.

If we choose

h(t) = max{β∗
1(t) + β∗

2(t) + δ∗(t) + kσ∗(t) + μ∗(t),
β∗

1(t) + β∗
2(t) + ν∗1 (t) + μ∗(t) + α∗(t) + ω∗(t),

δ∗(t) + ω∗(t) + γ∗(t) + σ∗(t) + μ∗(t),
γ∗(t) + kσ∗(t)μ∗(t) + η∗

1 (t) + ν∗1 (t) + ν∗2 (t) + θ∗1 (t),
α∗(t) + σ∗(t) + ν∗2 (t) + ρ∗(t) + μ∗(t) + η∗

2 (t) + φ∗(t),
φ∗(t) + μ∗(t) + η∗

3 (t) + ρ∗(t) + θ∗2 (t), θ∗1 (t) + θ∗2 (t) + μ∗(t)},
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then

‖G(t, u)− G(t, v)‖H7

= ‖(g1(t, u)− g1(t, v)), (g2(t, u)− g2(t, v)), (g3(t, u)− g3(t, v)),
(g4(t, u)− g4(t, v)), (g5(t, u)− g5(t, v)),
(g6(t, u)− g6(t, v)), (g7(t, u)− g7(t, v))‖H7

= max{‖g1(t, u)− g1(t, v)‖H, ‖g2(t, u)− g2(t, v)‖H,
‖g3(t, u)− g3(t, v)‖H, ‖g4(t, u)− g4(t, v)‖H, ‖g5(t, u)− g5(t, v)‖H,
‖g6(t, u)− g6(t, v)‖H, ‖g7(t, u)− g7(t, v)‖H}

≤ h(t) · ‖u − v‖H7 .

Hence, the Lipschitz condition is well verified. Therefore, by Theorem 11.3.5 of [20]
and Theorem 2.3 of [21], we can guarantee that in system (2) exists a global solution

(S(x, t), L(x, t), T(x, t), E(x, t), I(x, t), R(x, t), H(x, t)) ∈ C2,1(Ω × (−τ, ∞)).

According to the method in Lemma 2.1 and Theorem 2.2 of the recent paper [18], we
can easily obtain the positivity of the global solution of the system (1). Moreover, by a
similar proof of our recent Theorem 3.1 of [17], we can prove that the the global solution of
the system (1) is bounded.

Next, we prove the existence of the global exponentially attracting set of system (1)
by verifying the condition (4). Then, we obtain the existence of the global exponentially
attracting set of the system (1).

Theorem 3. In system (1) exists a global exponentially attracting set A∗; it exponentially attracts
any bounded set in H7.

Proof. We first verify condition (4).〈
Λ(x, t)− β1(x, t) SL

S+L − β2(x, t) SI
S+I

−δ(x, t) ST
S+T − kσ(x, t) ST

S+T − μ(x, t)S
, S

〉
H

=
∫

Ω
Λ(x, t)Sdx −

∫
Ω

β1(x, t)
S2L

S + L
dx −

∫
Ω

β2(x, t)
S2 I

S + I
dx

−
∫

Ω
[δ(x, t) + kσ(x, t)]

S2T
S + T

dx −
∫

Ω
μ(x, t)S2dx

≤Λ∗
∫

Ω
Sdx

〈
β1(x, t) SL

S+L + β2(x, t) SI
S+I + ν1(x, t)E

−[μ(x, t) + ω(x, t) + α(x, t)]L
, L

〉
H

=
∫

Ω
β1(x, t)

SL2

S + L
dx +

∫
Ω

β2(x, t)
SLI

S + I
dx

+
∫

Ω
ν1(x, t)ELdx −

∫
Ω
[μ(x, t) + α(x, t) + δ(x, t)]L2dx

≤β∗
1

∫
Ω

L2dx + β∗
2

∫
Ω

LIdx + ν∗1
∫

Ω
ELdx,

〈
δ(x, t)

ST
S + T

+ ω(x, t)L − [μ(x, t) + γ(x, t) + σ(x, t)]T, T
〉

H

=
∫

Ω
δ(x, t)

ST2

S + T
dx +

∫
Ω

ω(x, t)LTdx

−
∫

Ω
[μ(x, t) + γ(x, t) + σ(x, t)]T2dx
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≤δ∗
∫

Ω
T2dx + ω∗

∫
Ω

LTdx,

〈
γ(x, t)T + kσ(x, t) ST

S+T
−[μ(x, t) + η1(x, t) + ν1(x, t) + ν2(x, t) + θ1(x, t)]E

, E
〉

H

=
∫

Ω
γ(x, t)ETdx +

∫
Ω

kσ(x, t)
SET

S + T
dx

−
∫

Ω
[μ(x, t) + η1(x, t) + ν1(x, t) + ν2(x, t) + θ1(x, t)]E2dx

≤γ∗
∫

Ω
ETdx + kσ∗

∫
Ω

ETdx,

〈
α(x, t)L + σ(x, t)T + ν2(x, t)E + ρ(x, t)R
−[μ(x, t) + η2(x, t) + φ(x, t)]I

, I
〉

H

=
∫

Ω
α(x, t)LIdx +

∫
Ω

σ(x, t)ITdx +
∫

Ω
ν2(x, t)EIdx

+
∫

Ω
ρ(x, t)IRdx −

∫
Ω
[μ(x, t) + η2(x, t) + φ(x, t)]I2dx

≤ α∗
∫

Ω
LIdx + σ∗

∫
Ω

ITdx + ν∗2
∫

Ω
EIdx + ρ∗

∫
Ω

IRdx,

〈φ(x, t)I − [μ(x, t) + η3(x, t) + ρ(x, t) + θ2(x, t)]R, R〉H

=
∫

Ω
φ(x, t)IRdx −

∫
Ω
[μ(x, t) + η3(x, t) + ρ(x, t) + θ2(x, t)]R2dx

≤φ∗
∫

Ω
IRdx,

〈θ1(x, t)E + θ2(x, t)R − μ(x, t)H, H〉H

=
∫

Ω
θ1(x, t)EHdx +

∫
Ω

θ2(x, t)RHdx −
∫

Ω
μ(x, t)H2dx

≤θ∗1
∫

Ω
EHdx + θ∗2

∫
Ω

RHdx.

From Theorem 2, we know the solution of system (1)

u = (S(x, t), L(x, t), T(x, t), E(x, t), I(x, t), R(x, t), H(x, t))

is uniformly bounded, hence, from above the inner product estimation, we can obtain that
there exists a constant C > 0, such that

〈G(t, u), u〉H7 ≤ C,

then condition (4) holds. On the other hand, as we know that

A = (∇ · (dS(x)∇),∇ · (dL(x)∇),∇ · (dT(x)∇), 0,∇ · (dI(x)∇),

∇ · (dR(x)∇),∇ · (dH(x)∇))

is a symmetrical sectorial operator and all eigenvalues of L are

0 > λ1 ≥ λ2 ≥ · · · ≥ λK > . . . , λK → −∞ (K → ∞),

therefore, by Theorem 1, we can obtain that system (1) has a global exponentially attracting
set A∗ .

After verifying the global exponentially attracting set, we can use our methods in [6,17]
similarly to discuss the stability and uniform persistance of the COVID-19 epidemic,
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which was intervened upon by an epidemiological investigation. It is clearly observed
that system (1) demonstrates a disease-free equilibrium E0(x) = (S0(x), 0, 0, 0, 0, 0, 0).
Linearize the last six equations of the system (1) at the disease-free equilibrium and let
L = eλtχ(x), T = eλt ϕ(x), E = eλtψ(x), I = eλtξ(x), R = eλtζ(x), H = eλt�(x); we can
obtain the following characteristic equation system (10) corresponding to the last six
equations of system (1){

λΦ(x) = ∇ · (D(x)∇Φ(x)) + M(x, t)Φ(x), x ∈ Ω,
∂Φ
∂n = 0, x ∈ ∂Ω,

(10)

where Φ(x) = (χ(x), ϕ(x), ψ(x), ξ(x), ζ(x), �(x))T ,

D(x) =

⎡⎢⎢⎢⎢⎢⎢⎣

dL(x) 0 0 0 0 0
0 dT(x) 0 0 0 0
0 0 0 0 0 0
0 0 0 dI(x) 0 0
0 0 0 0 dR(x) 0
0 0 0 0 0 dH(x)

⎤⎥⎥⎥⎥⎥⎥⎦
and

M(x, t)
=

(
mij(x, t)

)

=

⎡⎢⎢⎢⎢⎢⎢⎣

m11(x, t) 0 ν1(x, t) β2(x, t) 0 0
ω(x, t) m22(x, t) 0 0 0 0
0 γ(x, t) + kσ(x, t) m33(x, t) 0 0 0
α(x, t) σ(x, t) ν2(x, t) m44(x, t) ρ(x, t) 0
0 0 0 φ(x, t) m55(x, t) 0
0 0 θ1(x, t) 0 θ2(x, t) −μ(x, t)

⎤⎥⎥⎥⎥⎥⎥⎦,

where
m11(x, t) = β1(x, t)− [μ(x, t) + ω(x, t) + α(x, t)],
m22(x, t) = δ(x, t)− [μ(x, t) + γ(x, t) + σ(x, t)],
m33(x, t) = −[μ(x, t) + η1(x, t) + ν1(x, t) + ν2(x, t) + θ1(x, t)],
m44(x, t) = −[μ(x, t) + η2(x, t) + φ(x, t)],
m55(x, t) = −[μ(x, t) + η3(x, t) + ρ(x, t) + θ2(x, t)]

and mij(x) ≥ 0, i �= j, x ∈ Ω. By the Krein–Rutman theorem, we can obtain that there exists
a real principal eigenvalue λ∗ of Equation (1) and a corresponding eigenvector Φ∗(x) >> 0
for all x ∈ Ω in the case of Neumann boundary conditions. Next, we use this principal
eigenvalue as a threshold to characterize the spread trend of COVID-19.

Theorem 4. The following statements are valid.

(1) If λ∗ < 0, then

lim
t→∞

S(x, t) = S0(x), lim
t→∞

L(x, t) = 0, lim
t→∞

T(x, t) = 0,

lim
t→∞

E(x, t) = 0, lim
t→∞

I(x, t) = 0, lim
t→∞

R(x, t) = 0, lim
t→∞

H(x, t) = 0

in H, and hence, the disease-free equilibrium is globally asymptotically stable. In a biological
sense, the COVID-19 epidemic can be effectively controlled and will eventually die out.

(2) If λ∗ > 0, then there exists a endemic equilibrium (S∗(x), L∗(x), T∗(x), E∗(x), I∗(x), R∗(x),
H∗(x)), such that any solution (S, L, T, E, I, R, H) satisfies

lim
t→∞

S(x, t) = S∗(x), lim
t→∞

L(x, t) = L∗(x), lim
t→∞

T(x, t) = T∗(x),
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lim
t→∞

E(x, t) = E∗(x), lim
t→∞

I(x, t) = I∗(x), lim
t→∞

R(x, t) = R∗(x),

lim
t→∞

H(x, t) = H∗(x)

for x ∈ Ω, and hence, the endemic equilibrium is globally asymptotically stable. In a biological
sense, the COVID-19 epidemic continues to coexist with human beings.

Proof.

(1) The proof can be obtained by a similar method in the literature [6,17,22].
(2) Similar to the proof in [6,17], we can obtain that there exists a function m(x) > 0

independent of the initial data, such that any solution (S, L, T, E, I, R) satisfies

lim inf
t→∞

S(x, t) ≥ m(x), lim inf
t→∞

L(x, t) ≥ m(x), (11)

lim inf
t→∞

T(x, t) ≥ m(x), lim inf
t→∞

E(x, t) ≥ m(x),

lim inf
t→∞

I(x, t) ≥ m(x), lim inf
t→∞

R(x, t) ≥ m(x),

lim inf
t→∞

H(x, t) ≥ m(x)

for x ∈ Ω, and hence, the disease persists uniformly. According to the proof of the
global exponentially attracting set in [19], it can be observed that global exponentially
attracting set A∗ contains the global attractor A. By Theorem A.2.2 of [23], we can ob-
tain that there exists an equilibrium (S∗(x), L∗(x), T∗(x), E∗(x), I∗(x), R∗(x), H∗(x)),
such that any solution (S, L, T, E, I, R, H) satisfies

lim
t→∞

S(x, t) = S∗(x), lim
t→∞

L(x, t) = L∗(x), (12)

lim
t→∞

T(x, t) = T∗(x), lim
t→∞

E(x, t) = E∗(x),

lim
t→∞

I(x, t) = I∗(x), lim
t→∞

R(x, t) = R∗(x),

lim
t→∞

H(x, t) = H∗(x).

It follows from (11) that the equilibrium is not the disease-free equilibrium and the
each limit of (12) is not equal to 0; thus, this equilibrium is the endemic equilibrium. Hence,
the endemic equilibrium is globally asymptotically stable.

3. Effect Simulation of Epidemiological Investigation

Previously, we provided a strict mathematical proof for the long-term dynamic be-
havior of the model. Although the global attractor theory is a commonly used method in
infinite dimensional dynamic systems, the validation conditions we provided in this article
are different from the validation methods in other existing conclusions. The validation
conditions we provide are more convenient and can be easily used by researchers even for
those who are not majoring in mathematics, which is also an innovation of this article. In
order to understanding our theoretical results more intuitively, we will simulate the impact
of different epidemic investigation strategies on the epidemic. These epidemic investigation
strategies really exist during different periods of China’s fight against COVID-19. Since
we want to simulate the long-term dynamic behavior of COVID-19, we innovatively used
0 as the initial value of the compartments in the program for drawing three-dimensional
images and select the month as the unit for the time axis.

3.1. Stability and Persistence of COVID-19 in China under the Dynamic Clearing Policy

Before December 2022, the Chinese government has been strictly implementing the
prevention and control policy of dynamic clearing and has achieved remarkable results.
With the help of official authoritative data and reasonable estimates, we focus on mod-
eling the impact of the interregional movement and epidemiological investigations on
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the prevention and control of COVID-19. According to the policy of the epidemiologi-
cal investigation, people who live with or have contact with confirmed or asymptomatic
infected persons are the objects of the key investigation. Therefore, the proportional co-
efficient of the epidemiological investigation of returnees from travel should be greater
than 1. In addition, compartment H has little effect on the entire disease spreading process;
we focus on simulating the changes of the first six compartments. The specific data are
shown in Table 2. Part of the data in Table 2 comes from authoritative official data and
part comes from reasonable estimates, which are not arbitrary. Our estimate is based on
rigorous mathematical calculations [8,24] using actual official published data within a
reasonable range.

Table 2. The parameters’ description of the COVID-19 epidemic in China.

Parameter Data Estimated Data Sources

Λ 8 Calculate
β1 0.6 Reference [6]
β2 0.3 Reference [6]
α 0.6 Reference [25]
ω 0.1 Reference [25]
γ 0.7 Reference [25]
ν1 0.0003 Calculate
ν2 0.0002 Calculate
θ1 0.7 Calculate
θ2 0.8 Calculate
ρ 0.002 Reference [6]
φ 0.8 Reference [25]
μ 0.1595 Reference [26]
η1 0.021 Reference [25]
η2 0.047 Reference [25]
η3 0.021 Reference [25]
δ 0.2 Calculate
σ 0.2 Calculate
k 1.7 Calculate
dS 3 Calculate
dL 2.5 Calculate
dT 5 Calculate
dI 0.3 Reference [22]
dR 2 Reference [22]

Refering to the data in Table 2 and our system (1), we first simulate the spread trend
of the novel coronavirus pneumonia epidemic in China (Figure 2).

The image is a more realistic projection of the current spread of the COVID-19 epidemic
in China. From the graph, we can observe that COVID-19 is persistent.

If we choose β1 = 0.006, β2 = 0.003 in Table 2, then we can obtain the image in
Figure 3. At this time, the disease-free equilibrium is globally asymptotically stable.

3.2. Comparison of Prevention and Control under Different Proportions of Epidemiological
Investigation

Our model focuses on an epidemiological investigation and the impact of interregional
movement on the prevention and control of COVID-19. Through research, we found that
the degree of control of an epidemiological investigation has an impact on people’s desire
to travel. Close range activities related to life will continue but also decrease accordingly.
When the epidemic investigation policy is tightened, people will go out as little as possible.
In order to clearly observe the impact of the epidemiological investigation, we design three
epidemiological investigation strategies with different levels. By comparison, we can find
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that different epidemiological investigations have different effects on COVID-19 prevention
and control. First, we focus on the epidemiological investigation of close and sub-close
contacts of infected populations. The parameter k in the model represents the proportion
of an epidemiological investigation of contact between the susceptible person and the
infected person after interregional movement, which essentially describes the scope of the
susceptible person, close contact and sub-close contact participating in the epidemiological
investigation. We choose k = 1.7 and k = 3, respectively, to simulate the changes of T, E
and I (Figure 4).

Figure 2. The spread trend of COVID-19 in China.

If the contact rate is very low (for example β1 = β2 = 10−5), the probability of
susceptible individuals being infected is very low, and the epidemic will disappear.
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Figure 3. The global stability of disease-free equilibrium of constant coefficient COVID-19 model.

From the Figure 4, we can clearly observe when the scope of the epidemiological
investigation expands (k = 3), the number of people participating in the epidemiological in-
vestigation increases, and strict policies lead to a significant decrease in people transferring
between regions. Due to the increase in the proportion of the epidemiological investigation
of co-living people, everyone clearly understands that the risk factor of the current epidemic
is at a high level; thus, people’s desire to go out has decreased significantly. At this stage,
everyone can avoid travel unless necessary. On the other hand, expanding testing will also
find more infected people.

Next, we examine the epidemiological investigation rate of the population that has
moved between regions. We choose γ = 0.3 and γ = 0.7, respectively, to simulate the
changes of T, E and I (Figure 5).
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Figure 4. Comparison of compartment T, E and I under k = 1.7 and k = 3.

From Figure 5, we can find that implementing a strict epidemiological investigation
policy can effectively reduce the number of movement between regions, the number of
epidemiological investigations and the number of infected people. Strengthening the
epidemiological investigation can effectively control the diffusion of COVID-19.

Figure 5. Comparison of compartment T, E and I under γ = 0.3 and γ = 0.7.

In Figure 6, while expanding the scope of the epidemiological investigation, we also
increased the proportion of the epidemiological investigation. We find that the final effect
of this prevention and control policy is similar to Figure 4, because the proportion of the
epidemiological investigation of transferors is increased, and the time to find infected
people is earlier than that of only expanding the detection scope of the co-living. The
strict epidemiological investigation policy shown in Figure 5 has bought more time for the
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prevention and control of the epidemic, so that infected persons and close contacts can be
detected as early as possible, and the further spread of the epidemic can be controlled. The
strict epidemiological investigation in Figure 6 is an important part of the current Chinese
government’s dynamic clearing policy.

Figure 6. Comparison of compartment T, E and I under different rates of epidemiological investigation.

3.3. Effect of Prevention and Control under Circuit-Breaker Mechanism

In China, the dynamic clearing policy requires that once a confirmed case is found in
a certain area, the government will quickly carry out a strict epidemiological investigation,
including closure and control management, nucleic acid for all employees, and quarantine
and treatment in designated hospitals. The Civil Aviation of China has also introduced
stricter prevention and control measures for inbound flights. Once the number of positive
passengers exceeds 5, the flight will be grounded. This extremely tight control is also
known as a circuit-breaker mechanism. The circuit breaker mechanism is also reflected
in our model. Lockdown management and travel restrictions will reduce the travel rate
to zero, that is, the parameter δ = ω = 0 in our model. The centralized quarantine can
effectively reduce the contact rate, especially the contact rate with confirmed patients, that
is, β2 = 0. After considering a strong circuit-breaker mechanism, our model (1) can be
evolved, as in Figure 7:

Figure 7. Dynamic clearing COVID-19 model with circuit-breaker mechanism.
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The equations corresponding to the evolution model is shown in system (13),⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂S
∂t = ∇ · (dS(x)∇S) + Λ(x, t)− β1(x, t) SL

S+L − kσ(x, t) ST
S+T − μ(x, t)S,

∂L
∂t = ∇ · (dL(x)∇L) + β1(x, t) SL

S+L + ν1(x, t)E − [μ(x, t) + α(x, t)]L,
∂T
∂t = ∇ · (dT(x)∇T)− [μ(x, t) + γ(x, t) + σ(x, t)]T,
∂E
∂t = γ(x, t)T + kσ(x, t) ST

S+T
− [μ(x, t) + η1(x, t) + ν1(x, t) + ν2(x, t) + θ1(x, t)]E,

∂I
∂t = ∇ · (dI(x)∇I) + α(x, t)L + σ(x, t)T + ν2(x, t)E + ρ(x, t)R

− [μ(x, t) + η2(x, t) + φ(x, t)]I,
∂R
∂t = ∇ · (dR(x)∇R) + φ(x, t)I − [μ(x, t) + η3(x, t) + ρ(x, t) + θ2(x, t)]R,
∂H
∂t = ∇ · (dH(x)∇H) + θ1(x, t)E + θ2(x, t)R − μ(x, t)H,

x ∈ Ω, t > 0,
∂S
∂n = ∂L

∂n = ∂T
∂n = ∂E

∂n = ∂I
∂n = ∂R

∂n = ∂H
∂n = 0, x ∈ ∂Ω, t > 0,

S(x, s) = S0(x, s) ≥ 0, L(x, s) = L0(x, s) ≥ 0, T(x, s) = T0(x, s) ≥ 0,
E(x, s) = E0(x, s) ≥ 0, I(x, s) = I0(x, s) ≥ 0, R(x, s) = R0(x, s) ≥ 0,
H(x, s) = H0(x, s) ≥ 0, x ∈ Ω,−τ ≤ s ≤ 0.

(13)

The global dynamic behavior of the model (13) can also be obtained by the method in
the previous section.

Combined with the actual COVID-19 epidemic prevention and control, we can find
that under the powerful circuit-breaker mechanism, asymptomatic infections and con-
firmed patients will be quarantined in a centralized manner, and they have no possibility
of diffusion at all. Other groups of people in the area will also be in a state of restricted
movement due to the sealing policy. They can only move within the community, and the
living materials are uniformly distributed by the government. Therefore, the diffusion
coefficients in model (13) are all equal to 0 or tend to 0 under the circuit-breaker mechanism.
Next, we simulate the model with the circuit-breaker mechanism. Select δ = ω = β2 = 0,
and other data will still use the data in Table 2; then, we obtain Figure 8.

From Figure 8, we can clearly observe that after cutting off contact and travel for
the first time, with high-density nucleic acid detection, the effect of epidemic control has
been greatly improved. At this time, the model tends to have a disease-free equilibrium
and is globally asymptotically stable. Comparing Figure 2, we can find that the other
simulated data are identical except for δ = ω = β2 = 0. However, Figure 2 tends towards
the endemic equilibrium. This demonstrates that the circuit-breaker mechanism can control
the diffusion of COVID-19 faster and make the disease disappear.

3.4. Epidemic Situation in China after the Opening of Epidemiological Investigation Policy

On 7 December 2022, the Chinese government released the policy of epidemic preven-
tion and control. Epidemiological investigations such as trip codes and all staff nucleic acids
were cancelled. In the following month, as many as 70% of Chinese people were infected
with COVID-19, and the convalescents began to travel in large numbers. According to the
data officially released by China, from 8 December 2022 to 12 December 2023, there were
59,938 deaths related to COVID-19 in hospitals in medical institutions across the country,
including 54,435 deaths from underlying diseases combined with COVID-19 infection. The
average age of death cases is 80.3 years, and more than 90% of them are accompanied by
basic diseases.

If we choose k = γ = ν1 = ν2 = θ1 = η1 = 0 in system (1), we can simulate the current
COVID-19 diffusion trend in China and the state of the people.

By comparing Figure 2 and Figure 9, we can find that the number of people moving
between regions has increased significantly since the epidemiological survey was released.
Due to the lack of mandatory nucleic acid testing, the number of asymptomatic patients
and infected persons has also increased significantly. Because multiple strains of viruses
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coexist in China, the number of secondary infections and relapses has also increased
dramatically, and the number of completely cured patients has decreased. This comparison
just demonstrates that the epidemiological investigation has a very good control over the
spread of global infectious diseases. Although COVID-19 is now classified as a Class B
infectious disease, an epidemiological investigation is still an effective means to control the
epidemic situation when the number of infected people increases sharply due to the virus
mutation. Epidemiological investigation can also be used for reference when dealing with
other global epidemics in the future.

Figure 8. The dynamics of temporal-spatial heterogeneity in COVID-19 epidemic with circuit-breaker
mechanism when δ = ω = β2 = 0.

Based on the previous introduction, we know that in December 2022, the Chinese
government cancelled the strategy of conducting epidemic investigations and instead
monitored key populations. There has been a surge in social infections. We have compiled
the cumulative confirmed cases announced on the official website of the Chinese Health
Commission in December (starting on 24 December 2022, the Chinese government no
longer released data on a daily basis).

We have listed the data for December 2022 in Table 3.
Comparing the above data with the number of infected individuals simulated by our

model, we can draw the following simulation diagram, in which we select the initial value
of 30,000 people in the infected person’s compartment.
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Figure 9. The spread trend of the COVID-19 in China without epidemiological investigation.

Table 3. Total confirmed cases in China from December 1st to December 23rd.

Date Total Date Total
Confirmed Cases Confirmed Cases

1 Dec. 2022 327,964 2 Dec. 2022 331,952
3 Dec. 2022 336,165 4 Dec. 2022 340,483
5 Dec. 2022 345,529 6 Dec. 2022 349,938
7 Dec. 2022 354,017 8 Dec. 2022 357,652
9 Dec. 2022 360,734 10 Dec. 2022 363,072
11 Dec. 2022 365,312 12 Dec. 2022 367,627
13 Dec. 2022 369,918 14 Dec. 2022 371,918
15 Dec. 2022 374,075 16 Dec. 2022 376,361
17 Dec. 2022 378,458 18 Dec. 2022 380,453
19 Dec. 2022 383,175 20 Dec. 2022 386,276
21 Dec. 2022 389,306 22 Dec. 2022 393,067
23 Dec. 2022 397,195 24 Dec. 2022 None

From Figure 10, we can observe that the simulation effect of our model is in good
agreement with the actual data.
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Figure 10. Comparison between official data and compartment simulation.

In the numerical simulation above, we simulated the prevention and control effects of
various epidemiological investigations. We summarize the four most important categories
as follows:

1. If the data in Table 2 is selected, the endemic equilibrium is globally asymptotically
stable.

2. If the contact rate is very low, the disease-free equilibrium is globally asymptotic and
stable.

3. If it is a circuit-breaker mechanism, the disease-free equilibrium is globally asymptotic
and stable.

4. When opening the epidemiological investigation policy; the endemic equilibrium is
globally asymptotically stable.

4. Conclusions

By 2023, the global COVID-19 epidemic has been effectively controlled, but there
are still sporadic outbreaks in some countries. In April 2023, India experienced another
wave of COVID-19 outbreaks. Experts also predict that China will have a second wave of
COVID-19 from May to June 2023. Therefore, daily monitoring and prevention cannot be
relaxed. In this paper, we focused on the impact of epidemiological investigation policies
on the COVID-19 outbreak. In order to more intuitively demonstrate the practicality of our
results, we discuss the impact of the epidemiological investigation on epidemic prevention
and control in light of the current spread of the COVID-19 epidemic. Using Theorem 1, we
can obtain that system (1) has a global exponentially attracting set A∗ , then we prove that
the COVID-19 model with travel and an epidemiological investigation persists uniformly
and that the model has a global exponentially attracting set. Compared with the results
in [17], the condition (4) in this article is easier to verify, and the amount of calculation
is much less. Our model covers epidemiological investigations at different stages of the
COVID-19 epidemic in China. By selecting appropriate parameters to simulate, we provide
intuitive results of various epidemiological investigation policies. Although the current
COVID-19 epidemic has achieved good control results, other diseases such as the influenza
A virus still pose a threat to human health, and the coronavirus may undergo further
mutations in the future. The epidemiological investigation experience accumulated during
the COVID-19 epidemic can be applied to the prevention and control of other diseases.

The COVID-19 epidemic in China has been effectively controlled, with occasional
recurrences and new cases emerging. Based on the current situation of epidemic prevention
and control, it is recommended that the Chinese government strengthen the popularization
of public health knowledge. Conduct necessary epidemiological investigations on key
populations, such as those entering the epidemic area, newly diagnosed and relapsed indi-
viduals and their close contacts, and effectively monitor the variation of domestic strains.

Through research, we find that the global exponential attractor theory is more conve-
nient than the Lyapunov method in discussing the long-term dynamic behavior of multi
equation coupled systems, and the verification conditions provided in this paper are conve-

119



Mathematics 2023, 11, 3027

nient for researchers of different research directions. Although the COVID-19 pandemic has
become a thing of the past in most countries, epidemiological investigations as a prevention
and control strategy can be borrowed from the prevention and control of other diseases.
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Abstract: We present a mathematical model of an individual cell to expand the simulation of
invadopodia formation to a three-dimensional (3D) domain for a more realistic complexity. Simulating
invadopodia replication in order for it to be biologically relevant is important since it helps us to
understand cancer invasion and metastasis better as well as giving some insight into investigating
ways to stop the spread of this fatal disease. Invadopodia formation is formulated using the Stefan
problem approach, where the free boundary is characterised by the Stefan free boundary condition,
in which the boundary membrane is not known in advance. Level set method is proposed to indicate
the behaviour of the cell interface and the motion of the plasma membrane. An enthalpy method
(phase-transition problem) is used to describe the cell membrane diffusion. In addition to this, we
were able to improve the simulation outcome, giving it a more realistic complexity by using a different
simulation technique and domain as well as a different data set. Singularities and instabilities were
eliminated. The results that were achieved have the potential to be helpful for novel approaches or to
be extended to other methods in the development of a more accurate numerical simulation.

Keywords: invadopodia; individual cell model; free boundary problem; finite element method;
Stefan problem; level set method; phase transition; enthalpy

MSC: 92-08; 92-10

1. Introduction

The term cancer encompasses a variety of diseases that are broadly categorised by
abnormal cell behaviour which act differently from normal cells due to the gene mutations
that alter the normal cellular instructions [1]. Tissue invasion and metastasis are one of
the “hallmarks of cancer” [2,3] and the leading cause of death among cancer patients [4].
Invasion of cancer cells is the capacity of the cells to disrupt the basement membrane (BM)
and secondary tumours arise when it penetrates the surrounding tissue or extracellular
matrix (ECM), also referred to as metastasis.

The key factor in tumour invasion and metastasis is proteolytic deterioration of the
ECM [5,6] which are propelled by actin-rich protrusions of the plasma membrane, also
called invadopodia [7]. Invadopodia is also called ’invasive feet’ as it is most commonly
detected on the basal surfaces of invasive cancer cells; invadopodia have the ability to
invade through the ECM [8]. The morphology of invadopodia is a small punctuated finger-
like protrusion or elongated shapes [9]. According to Saitou et al. [10], cancer cells can
form one to ten invadopodia with a lifespan of several tens of minutes to 60 min and a size
ranging from 0.05 to 2 μm [11]. Numerous cell biological processes must be coordinated for
the formation of invadopodia and the degradation of ECM. The formation of invadopodia
and the degradation of ECM require the coordination of numerous cell biological processes.
The molecular dynamics and biological phenomena related to invadopodia formation and

Mathematics 2023, 11, 3044. https://doi.org/10.3390/math11143044 https://www.mdpi.com/journal/mathematics122
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ECM degradation are further detailed in [12]. Figure 1 depicts the scheme of invadopodia
in invasive cancer cell while Figure 2 shows the role of invadopodia in cancer invasion and
metastasis.

Figure 1. A scheme of invadopodia.

Figure 2. Invadopodia’s role in cancer invasion and metastasis.

Over the past decade, numerous studies have been carried out to comprehend the
mechanism of tumour growth and cancer invasion from a mathematical point of view
using continuous and discrete models, particularly in partial differential equations (PDEs)
and ordinary differential equations (ODEs) [13–16]. Some studies have been successful in
capturing the structure of cancer at the tissue level [17,18]. At present, the model of cancer
cell invasion at the subcellular level (single cell) is of particular interest [9,10,12,19–21],
while numerical analysis on the cancer cell invasion model with the free boundary problem
was conducted in [22].

Saitou et al. [10] investigated the formation of invadopodia by introducing mathemati-
cal models of several fundamental processes. In [10], they analysed the spatio-temporal
dynamics of the model in two spatial dimensions by using the numerical computational
approach. In their results, the dynamics of the model is explored, particularly in space
and time for two spatial dimensions by using the Monte-Carlo approach. This study is
extremely significant because it offers new insight on how invadopodia exist in cancer cells.
Numerous subsequent studies built on this one by using or modifying the model presented
here such as [9,12,19–21].

For instance, ref. [20] investigates a free boundary problem for cell protrusion for-
mation where the aim of the paper is to model the chemical interactions between the cell
and its environment during the process of invadopodia formation. They prove the free
boundary problem is well-posed. They eventually exhibit the main biological feature that
can be accounted for via the model which is the formation of invadopodia. Ref. [9] present
a superconvergent second order Cartesian method to solve a free boundary problem with
two harmonic phases coupled through the moving interface. The model was proposed to
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describe the formation of cell protrusions. The finite difference method (FDM) proposed in
this paper consists of second-order discretisation and a new stabilised ghost fluid method.

This paper aims to improve the simulation of invadopodia formation with respect to
the previous research of [12] in which the results were simulated in a two-dimensional (2D)
domain and an in silico model of an individual cell was presented. Therefore, we simulated
our results in a 3D domain for accurate results and conditions where the complexities of
simulations are more realistic. Simulating invadopodia formation accurately in order for it
to be biologically relevant is important since it helps us to understand cancer invasion and
metastasis better, as well as giving some insight into investigating ways to stop the spread
of this fatal disease. We note that in the previous work of [12], the simulations demonstrate
the existence of singularities and instabilities. For that reason, eliminating the existence of
singularities and instabilities is crucial in simulating the results for the solution to be more
accurate.

2. Materials and Methods

There are two parts to this section, individual cell model and numerical scheme, in
accordance with [12].

2.1. Individual Cell Model
2.1.1. Classical Solution Scheme

This subsection describes the mathematical cell-deformation model that explains the
invadopodia-formation process, as depicted in Figure 3. According to [12,20], ECM is in the
outer domain of the cell. We define the flux of type 1 matrix metalloproteinase (MT1-MMP)
enzymes, denoted by g(x, t). MT1-MMP generates ligands c∗ which is a flux-degraded
matrix at the cell boundary which then diffuses into the ECM. Ligands will then activate
signals that diffuse within the cell when bound to the cell membrane.

Figure 3. An individual cell model.

The model of a single cell is described by using the Eulerian approach. Let ψ(x, t) be
defined across the entire domain Ω to detect the cell membrane. The plasma membrane is
define as:

Γt = {x ∈ Ω|ψ(x, t) = 0}, (1)
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where Ω is the Lipschitz domain indicating the cancer cell with smooth boundary, ∂Ω, and
a particle on the moving interface Γt is defined by x.

While the zero level set function, ψ detects the location of the plasma membrane
which satisfies:

ψt(x, t) + υ · ∇ψ(x, t) = 0 (2)

which is a smooth level set function, whereas at the interface, υ is defined as the velocity of
the plasma membrane:

υ = γn(∇σ −∇c∗) on Γt (3)

where γn is a positive constant and σ is the signal gradient inside the cell. Keep in mind
that it would be impossible for the domain to grow the shape’s volume, which can lead to
discontinuity, because velocity υ is only defined on the boundary. Since the zero level set
function takes the plasma membrane into account, velocity extension is defined throughout
the entire domain to prevent discontinuity as:

(∇ψ · ∇)w = 0, ∀x ∈ Ω, w ∈ (x, y)

w = υ Γ
(4)

where:
υ|ψ(x,t)=0 = ∇σ|ψ(x,t)=0 −∇c∗|ψ(x,t)=0.

Hence, substituting (3) into (2), we obtain:

ψt + υ · ∇ψ = 0 on Γt. (5)

The cell’s plasma membrane may shrink or expand. On the plasma membrane, Γt and
MMPs, f degraded ECM and c and produced an ECM fragment that is ligands. Henceforth,
the chemical reactions that occur between ECM and MMPs are derived by:

ct +∇ · υc = −κc f c, c∗t +∇ · υc∗ = κc f c on
⋃

0<t<T
Γt × {t} (6)

where κc is the reaction rate of the diffusion coefficient. Then, f and σ are defined inside
the cell as:

σt = dσΔσ in
⋃

0<t<T
ωt

n × {t}, σ|Γt = c∗ on
⋃

0<t<T
ωt

n × {t}

ft = d f Δ f + k f σ − λ f f in
⋃

0<t<T
ωt

n × {t}.
(7)

Since the density of MMPs does not change during ECM fibre proteinase cutting, it
can be concluded that:

c∗t = dc∗Δc∗ in
⋃

0<t<T
ωt

c × {t},
∂c∗
∂ν

= g on
⋃

0<t<T
ωt

c × {t}. (8)

We define ωt
n = {x ∈ Ω|ψ(x, t) < 0} ⊂⊂ Ω as a one-domain inside cell. Hence:

Qn =
⋃

0<t<T
ωt

n × {t} (9)

and ωt
c = {x ∈ Ω|ψ(x, t) > 0} as an outside cell. Thus:

Qc =
⋃

0<t<T
ωt

c × {t}. (10)

If the solution of y = y(t) to:

dy
dt

= υ(y, t), y|t=s = x

is denoted by y = U(t, s)x, then:
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Dψ

Dt
= ψt + υ · ∇ = −(∇ · υ)ψ.

Substituting (9) and (10) into (7), we obtain:

σt = dσΔσ in Qn, σ|Γt = c∗ on Γ

ft = d f Δ f + k f σ − λ f f in Qn.
(11)

The total mass of conservation of f guarantees, by Liouville’s Theorem, that the
following derivations on the boundary will be produced:

d f
∂ f
∂ν

+ (ν · υ) f = 0 on Γ =
⋃

0<t<T
Γt × {t}. (12)

As the MMPS density at the boundary will not change during cutting through the
fiber-proteinases of ECM, it holds that:

c∗t = dc∗Δc∗ in Qc, c∗|∂Ω = 0,
∂c∗
∂ν

= g on Γ. (13)

Figure 4 shows a simplified version of the signalling pathways depicted in Figure 3.
From Figure 4, the MMP generates ligands on the cell membrane which then diffuses into
the ECM as described in (13). Ligands will then activate signals that diffuse within the
cell when bound to the cell membrane as in (11). The membrane is then pushed by the
interface’s normal velocity (3).

Figure 4. A schematic representation of the molecular interactions.

2.1.2. Free Boundary Problem

In order to simulate the formation of invadopodia, we proposed velocity extension
to the entire domain of the cell. The cell model from Figure 3 was simplified, as shown
in Figure 5. According to [12,20], when the velocity of protrusion is not imposed, the free
boundary problem enables accurate membrane localisation even when it is unknown with
respect to the PDE systems. As a result, we used the cell membrane as a free boundary to
distinguish between any activity occurring within and outside of cells.
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Figure 5. A simple cell model.

Given MT1-MMP at any time on the cell membrane and signal generation for actin
polymerisation is represented by:

d−1
σ σt = Δσ in Qn, σ|∂ωt

c
= c∗ (14)

while degradation of ECM is:

d−1
c∗ c∗t = Δc∗ in Qc,

∂c∗
∂ν

= 0 (15)

where d > 0 is a diffusion coefficient. Let σ = c∗ = g(x, t), considering the cell’s primary
problem. Define:

θ =

{
σ in Qn = {ψ < 0}
c∗ in Qc = {ψ > 0} . (16)

Next, define the Stefan condition. Suppose that g is continuous and diffuse where
±ψ > 0 if and only if ±g > 0; it holds that:

θ = g, ν = −[∇θ]+−. (17)

Therefore:

γ−1
n ψt = −γ−1

n (υ · ν)
∂ψ

∂ν

=

(
∂c∗
∂ν

− ∂σ

∂ν

)
∂ψ

∂ν

=

[
∂θ

∂ν

]+
−

∂ψ

∂ν

(18)

where θ = g = c∗ on Γ.

2.2. Numerical Scheme
2.2.1. Weak Form Derivation

In this subsection, we will solve the modelling of invadopodia formation and migra-
tion of a single cell. Based on the phase-transition formulation, a mathematical model was
developed to address these problems. According to [12,23,24], the problems are charac-
terised as time-dependent differential equations with boundary conditions at an unknown
interface concerning which it has to be part of the solution. Let Ω ⊂ RN , N = 1, 2,. . . be a
smooth bounded domain and:

H(u)t = Δu in Q = Ω × (0, T)

u |∂Ω = 0, u |t=0 = u0(x)
(19)

where u = u(x, t) represents the temperature distribution and H represents the en-
thalpy function.
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Let ϕ ∈ H1(Ω) be trial function:

−
∫

Ω

(
∂

∂x
∂u
∂x

+
∂

∂y
∂u
∂y

)
ϕ −

∫
Ω

H(u)t ϕ = 0.

Using integration by parts:

−
∫

Ω

∂

∂x

(
ϕ

∂u
∂x

)
+

∂

∂y

(
ϕ

∂u
∂y

)
−

(
∂u
∂x

∂ϕ

∂x
+

∂u
∂y

∂ϕ

∂y

)
− H(u)t ϕ dΩ = 0

Hence: ∫
Ω
(∇u · ∇ϕ)− H(u)t ϕ dΩ −

∫
∂Ω

(∇u) · ϕν dΩ. (20)

2.2.2. Stefan Problems—Phase-Transition Formulation

Generally, Stefan problems is the emergence of smooth boundaries or interfaces be-
tween different phases of a substance that result from a phase transformation [12,25].
Therefore, for this research, Stefan problems are involved in the deformation of the cancer
cell membrane or interfaces between inner and outer cell domains that arise from the molec-
ular interactions to produce protrusions called invadopodia. Defining the temperature
field is represented by Q and its evolution is given by:

H(u)t = Δu in Q \ Γ

[u]+− = 0, [H(u)]+− = � on Γ
(21)

where Γ = {Φ = 0}. On jump condition Γ, it is taken between the inner and outer cell or
otherwise the following holds:

�υ = −
[

k+
∂u+

∂ν
− k−

∂u−
∂ν

]
(22)

where � is the heat transfer of the cell, k± are the constant for thermal diffusivities on Ω
and ν is the outward normal vector. Setting � �= 1, the problem is then simplified into
finding u(x, t) as well as Γt, such that:

υ = −1
�

[
∂u
∂ν

]+
−

, x ∈ Γ. (23)

The outward normal vector, ν, is defined by:

ν = ∇Φ/|∇Φ| (24)

and the curvature term, κ, by:

κ = ∇ν = ∇ ·
( ∇Φ
|∇Φ|

)
. (25)

From (24) and (25), expression υ is rewritten as:

υ = −[∇u] · ν = −[∇u] ·
( ∇Φ
|∇Φ|

)
(26)

where |∇u| is the jump taken between two regions—inner and outer cell or otherwise. As
a result from (5), we obtained:

Φt + υ · ∇Φ = 0, υ = (υ · ν)ν (27)

where υ · ν is the Stefan condition.
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During the process of physical or chemical transformations, Liouville’s Theorem of
the first volume of enthalpy H between two regions where it must be equal guarantees the
total mass of conservation, which is in line with [26].

Based on Theorem 1 (Liouville’s Theorem) from [12], the volume of ligands that diffuse
outside the cell which then bind to the cell membrane are equal to the volume of signals
generated inside the cell to produce invadopodia during the molecular interactions of cell
membrane deformation.

2.2.3. Cell Deformation: Free Boundary Conversion

Based on degenerate parabolic equations, we describe the boundary of the cell as free
boundary. See details on this in [12]. A cell’s phase interfaces may experience sudden shifts
during the phase-transition process that happen between the outer and inner cell, which
can result in singularities and instabilities. During this process, invadopodia will pierce
and move through the complex-appearing collagen walls.

The simulation procedure is carried out in discrete time steps as the phase-transition
formulation is built on a time-dependent scheme. Phase transition begins when invadopo-
dia start to break through a cell, a process known as invasion that is easily observed in 2D
rather than 3D. Let:

Hg(θ)t = Δθ in Q = Ω × (0, T)
∂θ

∂ν

∣∣∣∣
∂Ω

= 0,

θ|t=0 = θ0(x) ≥ 0

(28)

where

Hg(θ) =

{
α+θ + � in {θ > g}
α−θ − � in {θ < g} .

We discretise the problem based on Euler time discretisation such that:

θn+1

δt
−∇ · (κ∇θn+1) = f n+1 +

θn

δt
, in Q = Ω × (0, T)

∂θn+1

∂ν
= 0, on ∂Ωt

θn+1|t=0 = θ0(x) ≥ 0.

(29)

2.2.4. Phase-Transition Formulation

For this subsection, the density of signals, ligands and plasma membrane are time-
dependent. However, only the plasma membrane is treated as free boundary. From (28),
we define enthalpy, υ = Hg(θ) by:

f (ν) =

⎧⎨⎩
α−1− (υ + �), υ < �

0, − � ≤ υ ≤ �

α−1
+ (υ − �), � < υ

(30)

if and only if θ = fg(ν) + Δg. Based on Theorem 2 in [12]:

υt = Δ f (υ) + Δg in Q
∂

∂ν
f (υ)

∣∣∣∣
∂Ω

= 0
∂g
∂ν

∣∣∣∣
∂Ω

= 0

υ|t=0 = υ0(x) ≥ 0.

(31)

Likewise as in Subsection 2.2.3, problem (31) is discretised into:
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υn+1

δt
−∇ · (κ∇ f n+1)−∇ · (κ∇gn+1) = hn+1 +

υn

δt
, in Q = Ω × (0, T)

∂ f n+1

∂ν
= 0,

∂gn+1

∂ν
= 0 on ∂Ωt

υn+1
∣∣∣
t=0

= υ0(x) ≥ 0.

(32)

3. Results

To verify the methods, we begin our numerical simulations. We divide our results
into two parts: level set method and enthalpy method (phase-transition formulation),
where the results obtained will be discussed in Section 4. The PDEs are solved numerically
using FreeFem++ (v 4.10) [27] using a P1 finite element method (FEM) and meshes were
generated using Gmsh (v 4.9.3) [28].

3.1. Level Set Method

When dealing with moving boundaries, numerical simulations for the free boundary
problem of this model encountered significant challenges. Therefore, the level set method
is carried out for a single cell model, while the level set approach is used to represent the
plasma membrane, in order to overcome the difficulty in dealing with moving boundaries.
Let ψ(·, t) = ψ be a smooth level set function, as you may recall from Section 2.

Consider that at the start of the computation there is no signal density. ECM will de-
grade, create diffused ligands outside of the cell, bind to receptors and generate an internal
signal as a result. Inside the cell, signal densities spread and activate actin polymerisation.
We defined the boundary data as follows based on (14) and (15):

1. Test 1: σ = c∗ = g = 0.01(2 + sin(2π(x + y)2) cos(π(x + 0.5))) and level set solution
as ψ = 0.05 × sinh((((x − y)1/2)− R)/(εh)2) where ε = 5 and h = 0.2.

2. Test 2: Modifications of equations from Test I. σ = c∗ = g = 0.01(2 + sin(4π(x +

y)2) cos(π((2x) + 0.5))) and level set solution as ψ = 0.05 × tanh((((x − y)1/2) −
R)/εh)2 where ε = 5 and h = 0.2.

Figures 6 and 7 illustrate the formation of invadopodia and protrusion at the cell’s
boundary. Protrusion developed as a result of membrane displacement brought on by the
presence of a signal gradient that was sparked by interactions between the membrane and
the surrounding ECM.

(a) (b)
Figure 6. Cont.
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(c)
Figure 6. Simulation of invadopodia formation with outer domain (box). (a) Initial cell shape.
(b) Invadopodia formed based on Test 1. (c) Invadopodia formed based on Test 2.

(a) (b) (c)

Figure 7. Simulation of invadopodia formation without outer domain (box). (a) Initial cell shape.
(b) Invadopodia formed based on Test 1. (c) Invadopodia formed based on Test 2.

3.2. Enthalpy Method

Phase transition begins when invadopodia start to break through a cell, a process
known as invasion. As described previously, the plasma membrane is regarded as a free
boundary and is time-dependent in this problem, although the density of signals and
ligands does not change over time. Figures 8 and 9 show the invasion of invadopodia and
cell migration from Tests 1 and 2 based on (28).

(a) (b)

Figure 8. Cont.
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(c) (d)

(e) (f)

Figure 8. Invasion of invadopodia and cell migration from Test 1 based on (28).

(a) (b)

(c) (d)

(e) (f)

Figure 9. Invasion of invadopodia and cell migration from Test 2 based on (28).

On the other hand, Figures 10 and 11 show the invasion of invadopodia and cell
migration from Tests 1 and 2 based on (31).
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(a) (b)

(c) (d)

(e) (f)

Figure 10. Invasion of invadopodia and cell migration from Test 1 based on (31).

(a) (b)

(c) (d)

Figure 11. Cont.
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(e) (f)

Figure 11. Invasion of invadopodia and cell migration from Test 2 based on (31).

4. Discussion

Level set serves the purpose of dealing with cell membranes in order to denote the
membrane interfaces when the problem is investigated as a free boundary because they
are simple to execute and computationally inexpensive. The discountinuity in the level set
function derivatives between two outer and inner cell interfaces that are near to one another
can affect the estimation of velocity and curvature. As a result, the level set approach makes
it straightforward to determine an interface’s curvature and velocity in order to locate
the plasma membrane interface. Therefore, we define the velocity extension to the entire
domain in order to prevent singularities and instabilities as described in Section 3.

In order to enhance the simulation of invadopodia formation and also to surmount
singularities and instabilities that occurred in [12] as discussed in Section 1, 3D simula-
tions were used, resulting in Figures 6 and 7. The initial shape of a cell is depicted in
Figures 6a and 7a. Figures 6a and 7b illustrate the formation of invadopodia and protru-
sions at the cell’s boundary using Test 1 while Figures 6c and 7c used Test 2. Protrusion is
caused by the membrane’s displacement due to the presence of a signal gradient induced
by contact of the membrane with the surrounding ECM.

As previously discussed, the authors of [12] demonstrate the existence of singularities
and instabilities. On the basis of the results shown in Figures 6 and 7, both instabilities and
singularities have been prevented from occurring in the simulation. This could be due to
the fact that Tests 1 and 2 used a different simulation technique and set of data. The graphs
for level set function, ψ for Tests 1 and 2 in Figure 12 demonstrate that the values of the
level set during the deformation of the cell in both tests fluctuated.

(a)

Figure 12. Cont.
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(b)
Figure 12. Graphs for level set function, ψ. (a) Test 1. (b) Test 2.

ECM is broken down by MT1-MMP, which also generates ligands that diffuse and
attach to membrane receptors. The signal is then generated inside the cell which will spread
and cause the actin molecule to polymerise. The morphology of the plasma membrane
was harmed by this process. During this process, the plasma membrane begins to undergo
phase transition, which can result in singularities and instabilities. Invadopodia begin to
invade through the intricately patterned collagen walls in the cell’s interfaces between
outer and inner cells and migration occurs.

The phase field variable in the enthalpy method (phase-transition formulation) smoothly
varies between two phases over a small yet numerically resolvable thickness on the diffused
interface area. As a result, it offers a hazy depiction of the thinned-out membrane interface
between the outer and inner cell.

Figures 8–11 depict the process of cell deformation that occurs when a normal cell
undergoes mutation before it develops into a cancer cell. Invasion begins in a cancer cell
after invadopodia protrude and begin to separate from the primary cell. The invasion
process can be seen starting with Figure 8a and the movement of the invasive cancer cell
is depicted in Figure 8b–e. These can also be seen in Figures 9a–e, Figure 10a–e, and
Figure 11a–e. The interactions between the cell membrane and the surrounding ECM
causing the cell to change and move, which in turn promotes the existence of ligands
and activates the signal gradient. As time passes, the cell disperses to nearby regions as
illustrated in Figures 8f–11f which then grows in various parts of the body.

The results of Figures 8 and 9 indicate that the phase transition of the cell mem-
brane based on (31) is significantly faster than (28). Moreover, (31) describes why the
phase-transition problem depicted in Figures 10 and 11 occurred more rapidly than in
Figures 8 and 9. In (31), it is presumed that the concentration of MT1-MMP, f , embedded
in the cell membrane degrades the ECM by contact and that the signal density equals the
function g(x, t), which also represents MT1-MMP at any time, t, at the interface based
on (16), while (28) only evaluates the signal or ligand density.

When compared to [12], our findings demonstrate that phase transition occurred
more slowly. The simulation results of Figures 8–11 show that as protrusion took place,
the cell began to migrate through the ruptured membrane and as protrusion velocity
decreased, it showed that the formation of invadopodia had stabilised. As the amount
of time increases and the distance from the primary cell increases, the position of the
phase-transition interface diminishes, as well as the density of the signal. Figure 13 depicts
the graphs for density of signals and ligands, θ, during the cancer cell’s phase transition
for Tests 1 and 2, where the values fluctuated in both tests. Figure 14 displays the graphs
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also for density of signals and ligands during phase transition of cancer cell, θ, but with
MT1-MMP enzyme flux, g, also for Tests 1 and 2 which likewise fluctuate.

(a)

(b)
Figure 13. Graphs for density of signals and ligands, θ. (a) Test 1. (b) Test 2.

(a)
Figure 14. Cont.
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(b)
Figure 14. Graphs for density of signals and ligands with MT1-MMP enzyme flux, θ + g. (a) Test 1.
(b) Test 2.

5. Conclusions

We created a numerical method, based on the level set technique and the phase-
transition formulation (enthalpy method), to address the Stefan problem of invadopodia
formation. FreeFem++ and Gmsh were used to carry out all described methods. Phase-
transition problems in cancer cells were created using phase-transition formulation and
level set was used to determine the location of the membrane using the zero level function
of ψ. The enthalpy technique was shown to be effective and precise in solving this kind
of issue. Both approaches were used to mathematically resolve the deformation and
invasion of cancer cells, where protrusions were caused by the presence of invadopodia
and invasion was caused when the cancer cell began to disseminate to another area of the
body. In addition to this, we were able to enhance the simulation outcome from [12] to a
more realistic complexity for the solution to be accurate by using a different simulation
technique and domain as well as a different data set for Tests 1 and 2. Singularities and
instabilities were eliminated. The results that were achieved in this paper have the potential
to be helpful for novel approaches or extended to other methods in the development of a
more accurate numerical simulation.
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Abbreviations

The following abbreviations are used in this manuscript:

BM basement membrane
ECM extracellular matrix
PDE partial differential equation
ODE ordinary differential equation
2D two-dimensional
3D three-dimensional
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TLA Three letter acronym
LD Linear dichroism
FDM finite difference method
FEM finite element method
MMP matrix metalloproteinases
MT1-MMP type 1-matrix metalloproteinases
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Abstract: As the main methods of the coronavirus disease (COVID-19) transmission are air and
physical contact, actions to mitigate and suppress its spread must be developed in order to change
population dynamics and provide efficient control strategies. Here, these actions are described as a
simple heuristic framework to establish public policies. Two control systems were studied: the first
organized in the form of an algorithm stratified into three levels and the second as a minimization
problem similar to optimal control strategies, applied to both social distancing and vaccination. The
possible effects of these actions are modeled and applied to an extension of the Susceptible - Infected
- Removed (SIR) compartmental model. The control system is developed, which is organized in the
form of an algorithm stratified into three levels. These levels intend to represent social distancing
strategies implemented by sanitary authorities around the globe, representing stronger or weaker
grades of isolation intensity according to the ability of the healthcare system to cope with symptomatic
individuals. The algorithm control is applied in a simulation, and the results give evidence of the
effectiveness of the procedures adopted against the coronavirus. The model dynamics are analyzed
and validated with simulations considering parameters obtained from epidemiological data from
Brazil and Uruguay and in a more detailed way for three Brazilian states: São Paulo, Minas Gerais
and Rio de Janeiro. The model was validated using cumulative data on cases and deaths. For cases of
death, the results were satisfactory, while for case data, the response was reasonable, considering
the possibility of adding delays or variations in parameters in the model. In addition, the effective
reproduction number was proposed for the cities studied in Brazil, the result being relevant because
it has a qualitative behavior similar to that published by official centers. This paper also discusses the
implementation and optimization of social distancing and vaccination control strategies, considering
different parameters and their effects on reducing the number of cases and deaths. Model simulations
present promising results for developing strategies to attack COVID-19 dissemination.

Keywords: COVID-19; equilibrium; SIRD; social distancing; stability

MSC: 93C10; 37N35

1. Introduction

At the beginning of 2020, the epidemic of a new disease changed the history of
humanity; it was responsible for a global health and economic crisis. COVID-19 is a
new coronavirus progeny, SARS-CoV-2, first reported in Wuhan, China, on 31 December
2019 [1,2]. A few months later, a report published by the World Health Organization
qualified the disease as a pandemic due to its prevalence worldwide [3].

Transmission of SARS-CoV-2 occurs predominantly through the physical transporta-
tion of contaminated droplets of secretions from an infected individual to an uninfected
person, although the role of aerosol transmission and contaminated surface contact is
currently unknown [4]. It is a disease with lower lethality when compared with its high
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transmission capacity, with the spreading aggravated by the average incubation time and
due to both symptomatic and asymptomatic people being able to transmit the disease [5].

The disease has several forms of manifestation, and most patients have rapid resolu-
tion, many of whom are asymptomatic. The initial symptoms are fever, cough and breathing
difficulties. However, some patients with comorbidities may develop complications [6],
requiring hospitalization, intensive treatment and mechanical respiratory ventilators, pro-
voking a severe crisis in the healthcare system caused by excessive hospitalizations.

Different interventions aimed to slow the rapid evolution of the pandemic were
adopted by many countries to avoid overcrowded hospitals. Strategies such as isolation of
infected patients, mask-wearing, regular hand hygiene, social distancing, quarantine and
total blocking of areas [7–10] were adopted worldwide.

Another public strategy may be associated with the impact of advertisements on
social networks in combating the pandemic, in which it can be assumed that awareness
among susceptible individuals alters collective behaviors, resulting in a reduction in the
transmission of this infectious agent [11] or community awareness and global information
campaigns [12].

Mathematical models are used to simulate the transmission of coronavirus and are
helpful to understanding the dynamical behavior of an infection, providing tools to
estimate the duration and peaks of infection outbreaks and designing efficient control
strategies [13–15]. Epidemic mathematical models are present in public health literature [16,17]
related to several diseases [18–26].

Macroscopic compartmental models for disease spreading that have been a field of
research since the Kermack and McKendrick proposition [27–29], with a dynamic model
that classifies population individuals into groups such as Susceptible - Infected - Removed
(SIR) or Susceptible - Exposed - Infected - Removed (SEIR) models, could be refined by con-
tact tracing and hospitalization strategies to explain the COVID-19 outbreak [30]. Several
modifications of the SIR model [31–33] have been proposed for epidemic modeling [34–37],
which have been useful to public health policy makers [38].

More complex mathematical models using the stochastic approach and estimating data
based on outbreak probability have been studied for cases in Wuhan and other [39] locations.
Another compartmental model proposed for case studies in India studied the dynamics of
disease propagation and predicts [40] outbreaks, yet for that country, the control theory
provides ideal strategies to maintain the disease outbreak [41]. Compartmental models that
address mitigation strategies for the transmission of COVID-19 beyond social distancing,
including blocking and closing educational institutions, are also studied in countries such as
Italy [42]. There are still models that consider the influence of environmental contamination
to investigate the dynamics of viral propagation [43].

Due to the urgency of COVID-19, researchers worldwide accepted the challenge
of outlining mathematical models for this new epidemic. Several mathematical mod-
els have already been formulated for the population dynamics of COVID-19 in several
countries [10,44–51], and pioneer methods are structured upon machine learning and sta-
tistical models, such as decision trees and linear regression [52] or even more powerful ones
like artificial neural networks [53,54], showing promising results. Machine learning has
also been used to assist in early detection [55] and prediction of severity [56] of COVID-19.

However, this paper considers a more classical and established approach, using the
adjustment of social contact rate characterized by the control of the parameter β to mitigate
COVID-19 spread. For this, a three-level controller is implemented and its relationship
to social distance validated. An extension of the compartmental SIR model is considered,
the Susceptible–Infected–Removed–Dead (SIRD) model, and the method is inspired by
how control theory can help us reduce COVID-19 propagation [57].

This article’s main motivation is the study of strategies to control the spread of the
SARS-CoV-2 virus and, for that, it considers public policies based on social distancing and
vaccination. This work is validated with cumulative data on cases and deaths from some
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regions. In addition, the basal reproduction number and the effective reproduction number
are calculated and compared with data from the COVID-19 observatory.

Finally, the implementation and optimization of these strategies is discussed, consid-
ering different parameters and their effects in reducing the number of cases and deaths
to indicate public policies concerning the health system.

The remainder of this paper is ordered as follows: In Section 2, the equations and
hypothesis of the model are presented. In Section 3, the analysis of model dynamics is
exhibited, the equilibrium points are determined, and the basic reproduction rate R0 for the
SIRD model is defined and analyzed with two simulations. Then, in Section 4, the model is
studied for the sake of establishing a baseline for the controller, with parameters derived
from Brazil and Uruguay. Section 5 presents the validation for the proposed model with
more detailed data for three Brazilian states. Finally, Section 6 outlines the controller, and
its effectiveness is investigated for a hypothetical scenario, followed by the control strategy
results in Section 7 and the more detailed control analysis for the states of São Paulo, Minas
Gerais and Riode Janeiro in Section 8. The conclusions are shown at the end, in Section 9.
All simulations are performed with MATLAB Simulink [58].

2. Model Formulation

The proposed model is a modification of the original SIR compartmental model [59],
including a dead population compartment, here called the Susceptible - Infected - Removed
- Dead (SIRD) model, shown in Figure 1. The model does not account for natural births and
deaths, as the Dead are only due to complications caused by coronavirus infection.

S I R

D

β γ

Ω

Figure 1. SIRD model.

Model parameters are described in Table 1. β is the average number of contacts that
result in contamination, per unit of time; γ is the recovery rate, i.e., the rate at which
individuals leave the infected compartment after recovering. Consequently, γ−1 represents
the recovery time [60]. Additionally, Ω is the fraction of the infected population that dies
per unit of time (mortality rate).

Table 1. Model parameters.

Parameter Parameter Description

β Average contact rate.
γ−1 Mean infectious period.
Ω Mortality rate.

As can be observed, the model presents some simplifications:

• A recovered individual should acquire immunity and does not return to the susceptible
compartment. Hence, they become “Removed” (“R” from SIRD);

• Parameters β, γ and Ω are considered to be constants, despite depending on individual
behavior, healthcare availability and age.
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Under the described conditions, the model dynamics can be written as⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Ṡ = − βSI
N

,

İ =
βSI
N

− (γ + Ω)I,

Ṙ = γI,
Ḋ = ΩI.

(1)

with N = S(t) + I(t) + R(t) + D(t) and Ṡ(t) + İ(t) + Ṙ(t) + Ḋ(t) = 0.
As natural births and deaths are not taken into account, the total number of individuals

in the population is considered to be constant, and the dynamics of the dead compartment
can be written as a function of the other compartments:{

D = N − S − I − R,
Ḋ = −(Ṡ + İ + Ṙ).

(2)

Furthermore, the recovered compartment is dependent on the susceptible and infected
populations:

Ṙ = − γ

γ + Ω
(Ṡ + İ). (3)

Therefore, the system dynamics can be rewritten without the removed and dead
variables, without any loss of generality:⎧⎪⎪⎨⎪⎪⎩

Ṡ = − βSI
N

,

İ =
βSI
N

− (γ + Ω)I.
(4)

3. System Dynamics Analysis

3.1. Equilibrium Conditions

For the proposed SIRD model, equilibrium points can be obtained by applying the
conditions Ṡ = 0 and İ = 0. By doing so, it can be concluded that every point of the form
(S∗, 0) is an equilibrium point.

Equilibria at I = 0 are called disease-free, as opposed to equilibria at I �= 0, which are
called endemic [61].

3.2. Equilibrium Points Classification

In order to analyze the local stability of these points, the Hartman–Grobman theorem
is applied [62], and the general Jacobian (J) is constructed.

For (S, I) = (S∗, 0), the Jacobian is reduced to

J(S∗, 0) =

⎡⎢⎣0 − βS∗

N

0
βS∗

N
− (γ + Ω)

⎤⎥⎦. (5)

Hence, the eigenvalue set for the equilibrium points can be found by

λ(λ − βS∗

N
+ γ + Ω) = 0, (6)

Which gives

(0,
βS∗

N
− (γ + Ω)); (7)
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as the eigenvalue set. Considering that one of the eigenvalues is equal to zero, it is worth
noticing that the eigenvalue set obtained from the equilibrium points allows a local stability
analysis with three possibilities:

• If
βS∗

N
− (γ + Ω) > 0 ⇒ these fixed points are unstable [62]; so, there will be a growth

in cases for a small perturbation.

• If
βS∗

N
− (γ + Ω) < 0 ⇒ the center manifold theorem must be applied in order to

classify the stability condition.

Consequently, to proceed with the equilibrium stability analysis, all points satisfying
βS∗

N
− (γ + Ω) < 0 and S∗ � 0 are studied by applying the center manifold theorem.
Considering S∗ > 0, a new parameter τ > 0 is introduced in order to translate the

system so that the point (S* = τ,0) is the origin (0,0) of the new system. This is performed
because the center manifold theorem only refers to neighborhoods of the origin of the
corresponding analyzed system. Consequently, the rewritten system, with Z = S − S∗, can
be written as follows: ⎧⎪⎪⎨⎪⎪⎩

Ż = − β(Z + τ)I
N

,

İ =
β(Z + τ)I

N
− (γ + Ω)I.

(8)

That is, studying the system (4) around (τ,0) is the same as studying the new system (8)
around (0,0). Nevertheless, the rewritten system does not possess the same physical
interpretation as the SIRD model. In addition, substitute parameters are introduced,⎧⎨⎩φ =

β

N
,

α = γ + Ω,
(9)

in order to remove nonessential parameters regarding the interpretation of the stability
condition. Then, ⎧⎨⎩Ż = −φ(Z + τ)I,

İ = φ(Z + τ)I − αI.
(10)

Additionally, it is necessary to transform (10) into the form (A1), as shown in Appendix A,
by changing the basis into a basis of eigenvectors. Consequently,⎧⎪⎪⎨⎪⎪⎩

u̇ = −(
φ3τ2

(α − φτ)2 − φ2τ

α − φτ
)v2 − (φ +

φ2τ

α − φτ
)uv,

v̇ = (φτ − α)v + φuv +
φ2τ

α − φτ
v2.

(11)

Therefore,⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

A = [0],
B = [φτ − α],

f (u, v) = −(
φ3τ2

(α − φτ)2 − φ2τ

α − φτ
)v2 − (φ +

φ2τ

α − φτ
)uv,

g(u, v) = φuv +
φ2τ

α − φτ
v2.

(12)
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To find h(u), as Appendix A shows, it is necessary to consider that the coordinates of
any point in the center manifold must satisfy the conditions⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

y = h(x),
|x| < δ,
h(0) = 0,
Dh(0) = ḣ(0) = 0,

(13)

from (A2), which substituting on (A1), gives{
ḣ(u)[Au + f (u, h(u))] = Bh(u) + g(u, h(u)) ⇐⇒
ḣ(u)[Au + f (u, h(u))]− Bh(u)− g(u, h(u)) = 0.

(14)

Now, after substituting (12) (with v = h(u)) into (14), it can be seen that h(u) = 0 is
a solution to the partial differential Equation (14). Then, the vector field restricted to the
center manifold is given by

u̇ = 0. (15)

Therefore, u = 0 is stable in (15). Thus, Theorem A2 from Appendix A guarantees that

(Z, I) = (0, 0) is stable for any parameter 0 ≤ τ <
N(γ + Ω)

β
) and, consequently, (S∗, 0) is

stable for the same set.

To complete the stability analysis, the case with S∗ = N(γ + Ω)

β
is considered, i.e., the

center manifold theorem [62] is applied for:

•
βS∗

N
− (γ + Ω) = 0.

The point (S∗ = N(γ + Ω)

β
,0) is the origin of the system (10) with parameter τ =

α

φ
.

In order to assess stability, a simulation is presented in Figure 2.

-6 -5 -4 -3 -2 -1 0 1 2 3

Susceptible
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Figure 2. Simulation around the origin for τ =
α

φ
.
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As can be seen, neighborhoods close to the origin with initial values I∗ < 0 are
unstable, as the trajectories point towards negative infinite. However, the system is only
defined for I∗ > 0, considering that there can be no negative infected, although Z can be
negative (as we translated the original system), and even a small disturbance would never
take it to a point with I∗ < 0. Consequently, it is a degenerated equilibrium [63].

3.3. Basic Reproduction Rate

The basic reproduction rate or R0 is defined as the average number of secondary
infections produced when one infected individual is introduced into a host population,
where almost everyone is susceptible (S ≈ N) [15,64]. For example, if the R0 for COVID-19
in a population is 5, then each new case is expected to produce 5 secondary infections,
assuming everyone around is susceptible.

Mathematically, R0 is a threshold for stability of a disease-free equilibrium and is
related to epidemic’s peak and final size [61].

Looking at the equation İ from (4) it can observed that, when S ≈ N, the signal of İ is
defined by β − (γ + Ω).

Therefore, for the SIRD model, R0 can be defined as

R0 =
β

γ + Ω
, (16)

such that, when R0 > 1, the equilibrium is locally unstable ( İ > 0) but stable if R0 < 1,
implying İ < 0.

3.4. Phase Portrait for Different Values of R0

Figures 3 and 4 show the phase portrait of the system for different values of R0,
specifically chosen to portray the only two possible outcomes.

Figure 3. Phase portrait for R0 = 3 (> 1).

In Figure 3, it is shown that, for R0 > 1, the number of infected initially grows, but,

as Ṡ < 0 in that situation, at some point
S∗

N
eventually becomes <

1
R0

, which implies İ < 0,

and the trajectory always ends up on the horizontal axis (I = 0). This result is known as the
herd immunity value.
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The interception point depends on the initial conditions. Therefore, there can be more
or fewer individuals that will never become infected in the course of the epidemic (final
number of susceptible at disease-free equilibrium).

Figure 4. Phase portrait for R0 = 0.5 < 1.

In Figure 4, with R0 < 1, the system points toward the horizontal axis much faster,
with the number of infected decreasing steeply at all times. This result is expected, as İ < 0
for R0 < 1.

4. Case Studies and Numerical Simulations

This section presents two case studies, first with parameters derived from Brazil,
followed by Uruguay. These two countries were chosen because of their different basic
reproduction number, as a result of particular population dynamics concerning the con-
tact rate β. For Brazil, R0 is estimated to be close to 2.82 [60], and for Uruguay, R0 is
close to 1.13 [65]. These values were obtained using early infections data, as shown in
Figures 5 and 6, and they are believed to present a scenario where there is no response to
the pandemic, both individually or systemically.

Figures 5 and 6 show how the SIRD model compares with real data from Brazil and
Uruguay in the early days of disease spread, with [66] as the data source.

The choice for the short time interval and period adopted is due to the emergence
of the public strategy of social distancing, which was implemented at the beginning
of the pandemic. In Figure 5, a smaller interval was also considered, since the data
collected for Brazil are data for the country as a whole. As regions have socioeconomic
and educational distinctions, they have different propagation dynamics and responses to
mitigation strategies.

Both graphs display a good fitting for initial data, with subsequent detachment be-
tween model and data, which suggests there is a change in behavior due to the implemen-
tation and effectiveness of isolation policies or individual confinement. In Section 4.1, we
use this set of parameters to simulate longer-term scenarios with no isolation that serve as
a reference for evaluating the control algorithm.
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Figure 5. SIRD model validation with real data from Brazil. R0 = 2.82, γ = 0.1508, Ω = 0.0045.

Figure 6. SIRD model validation with real data from Uruguay. R0 = 1.13, γ = 0.1508, Ω = 0.0045. The
date 2020-04-12 presents an anomaly in the dataset, with negative new cases.

4.1. Simulation for Brazil

First, the model was simulated considering the parameters for Brazil, i.e., N = 209.5 million
inhabitants, and I0 = 10 individuals are considered, with the results shown in Figure 7.

The chosen parameters conduct a simulation for a full-blown pandemic outbreak.
The last case ended about 120 days after the disease had begun being disseminated, as we
can see in Figure 7B,D, which shows a high number of dead at the end, about 2.71% of the
total population before the pandemic.

Figure 8 clearly shows the large proportion of the population that became infected at
some point. At the end, less than 10% never became infected.
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Figure 7. Brazilian case study with R0 = 2.82, γ = 0.1508, Ω = 0.0045. Considering: (A) Susceptible
population; (B) Infected population; (C) Recovered population and (D) Deceased population.
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Figure 8. Phase portrait for Brazil, R0 = 2.82—axis in million.

4.2. Simulation for Uruguay

The model was also simulated with parameters from Uruguay, i.e., N = 3.45 million
inhabitants, considering I0 = 10 individuals, and the results are shown in Figure 9.

As the R0 for Uruguay is lower than Brazil’s, there is a significant difference concerning
the dissemination of the virus. Figure 9 shows that the pandemic lasted much longer in
Uruguay than in Brazil. However, Uruguay had much fewer dead individuals in the end,
only about 0.64% of the total population before the pandemic.

The low amount of individuals that ever became infected in Uruguay is highlighted in
Figure 10, which is about 24% of the total population before the pandemic. Additionally,
the lower number of infected individuals suggests that having a lower R0 due to lower β
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(contact rate) is a good indicator of what proportion the virus spread will achieve. This fact
inspires the control algorithm used as reference for public employment polices, and it is
studied in the next section.

0 250 500 750 1000 1250 1500

days since the beginning
(A)

2.6

2.8

3

3.2

3.4

3.6

S
us

ce
pt

ib
le

 (
x1

06
)

0 250 500 750 1000 1250 1500

days since the beginning
(B)

0

0.005

0.01

0.015

0.02

0.025

In
fe

ct
ed

 (
x1

0
6
)

0 250 500 750 1000 1250 1500

days since the beginning
(C)

0

0.2

0.4

0.6

0.8

R
ec

ov
er

ed
 (

x1
0

6
)

0 250 500 750 1000 1250 1500

days since the beginning
(D)

0

0.005

0.01

0.015

0.02

0.025
D

ec
ea

se
d 

(x
10

6
)

Figure 9. Uruguay case study with R0 = 1.13, γ = 0.1508, Ω = 0.0045. Considering: (A) Susceptible
population; (B) Infected population; (C) Recovered population and (D) Deceased population.
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Figure 10. Phase portrait—Uruguay. I0 = 10 individuals.

5. Validation for the SIRD Model

In this study, we used one year of epidemiological data from the states of São Paulo,
Minas Gerais and Rio de Janeiro, starting on each state’s first day of infection, to validate
the SIRD model.
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First, the fitting process using the parameters that generate the curve that best fits the
data from the model was made using daily data. However, for this large volume of data,
the minimization algorithm produced a lot of noise, or overfitting, in addition to having
weekly seasonality due to irregular notification dynamics. Thus, the use of weekly data
was considered more suitable.

The procedure was performed to try to minimize the functional given by Equation (17).
The adopted SIRD model assumes that the parameters γ and Ω are invariant in time, while
the parameter β is variable in time. So, for 52 weeks, there are 54 parameters to be
estimated. The process was carried out in successive steps and, instead of performing only
one minimization for the 52 weeks, minimization was performed every 15 weeks, with each
step accumulating the values obtained for the previous set of weeks and calculating the
values of β only for the following weeks while adjusting the values of γ and Ω. Furthermore,
a regularization term was inserted in the Tiknovov regularization structure, penalizing
sudden variations to produce a smoother curve.

min θ = τ1 ‖ (Icum
t − Dt)− ( Ît − R̂t) ‖2 +τ2 ‖ Dt − D̂t ‖2 +τ3 ‖ ΓB ‖2 . (17)

The first term of the functional θ represents the total number of infected people since
the beginning of the count, while the second term represents the total number of deaths
that occurred due to the disease. Finally, the last term represents a regularization which
penalizes the differences between the successive terms of β, represented by the matrix B
(19), whose differences are calculated by the matrix Γ (18):

Γ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 0 · · · 0

0 1 −1 · · · 0

...
. . .

...

0 · · · 1 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(18)

B = [ βt=0 βt=1 · · · βt=T ] T . (19)

In this way, better results could be obtained, as can be seen in the validations made
for the states of São Paulo, Rio de Janeiro and Minas Gerais. In them, the value of Re was
calculated as described by Equation (20):

Re(t) =
β(t)

γ + Ω
S(t)
N(t)

. (20)

The effective reproduction number is the average number of infected individuals per
infected person under existing conditions at a given time. The effective number, Re, is
the basal reproduction number, R0 exposed to the real conditions of disease evolution.
Consequently, it constantly changes, reflecting interaction between the population and the
infectious agent [67,68].

The effective reproduction number Re was estimated by finding the values that mini-
mize the function described by Equation (18). For Equation (21), β(t) is considered variable
over time, because, due to restriction measures imposed by public policies, the transmission
or contagion rate is altered, and, consequently, the key number S(t) also varies according to
this rate. Although N(t) represents the total population and it is variable over time, for the
considered interval, this constant value can be adopted.

5.1. Validation for São Paulo

For the state of São Paulo, the time-invariant parameters obtained and used can be
seen in Table 2.
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Table 2. Model parameters for São Paulo.

Parameter Parameter Description Value

γ recovery rate 1.071
Ω lethality of virus (mortality rate) 0.0285
N population size 46,289,333

Where a value of 1.0701 for γ means that the average recovery period is 1.0701 weeks,
and a value of 2.85% for Ω means 2.85% of infected people are killed by the virus per week.

As can be seen in Figures 11 and 12, the fit for the values of the new weekly deaths
and new accumulated deaths performed well, as these were privileged through the ma-
nipulation of parameters τ1, τ2 and τ3. We see that the fit for the value of new cases
in Figures 13 and 14 was not as accurate as the previous fit, practically maintaining qualita-
tive behavior.
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Figure 11. New weekly deaths for São Paulo.
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Figure 12. Accumulated deaths for São Paulo.
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Figure 13. New cases for São Paulo.
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Figure 14. Accumulated cases for São Paulo.

For the graph of the effective reproduction number Re Figure 15, it can be noted
that the values were close to those obtained by the COVID-19 observatory [69], which
is an independent initiative resulting from the collaboration between researchers who
performed this measurement using their own methodology. There is a large divergence
around 35 weeks. For the model developed in this report, the value obtained from Re makes
sense, since there was a very sharp decrease in new cases and deaths in this period.
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Figure 15. Comparison of effective reproduction number value for São Paulo.

5.2. Validation for Minas Gerais

The time-invariant parameters for the state of Minas Gerais can be seen in the Table 3:

Table 3. Model parameters for Minas Gerais.

Parameter Parameter Description Value

γ recovery rate 0.9973
Ω lethality of virus (mortality rate) 0.0258
N population size 21,292,666

Here, it can be noted that the values of γ and Ω were quite close to the values obtained
for São Paulo. Observing the graphs of new weekly deaths in Figure 16 and accumulated
deaths in Figure 17, it can be seen that the model fit for these data had good performance,
as well as for São Paulo.
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Figure 16. New weekly deaths for Minas Gerais.
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Figure 17. Accumulated deaths for Minas Gerais.

For the data of new cases in Figure 18 and accumulated cases in Figure 19, the model
performed very well until around the 35th week, when it started to present a slight differ-
ence, maintaining qualitative behavior.
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Figure 18. New cases for Minas Gerais.

For the data of Re, it is possible to notice that there is possibly a delayed relationship
between the values obtained by the model and the values obtained by the COVID-19
observatory [69], as can be seen in Figure 20.
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Figure 19. Accumulated cases for Minas Gerais.
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Figure 20. Comparison of effective reproduction number value for Minas Gerais.

5.3. Validation for Rio de Janeiro

For the state of Rio de Janeiro, the time-invariant parameters can be seen in Table 4.

Table 4. Model parameters for Rio de Janeiro.

Parameter Parameter Description Value

γ recovery rate 0.9431
Ω lethality of virus (mortality rate) 0.0500
N population size 17,366,189
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For the state of Rio de Janeiro, the value of Ω appears to be higher than for the other
two states, while γ was close to the values found for São Paulo and Minas Gerais.

The analysis of Figures 21 and 22 shows that the fit of the model for the data of new
weekly deaths and deaths accumulated in weekly reports performed well.
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Figure 21. New weekly deaths for Rio de Janeiro.
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Figure 22. Accumulated deaths for Rio de Janeiro.

For the state of Rio de Janeiro, the fit for the data of new weekly cases and accumu-
lated deaths is similar to the São Paulo fit, indicating a possible under-reporting of cases
throughout the period, as shown in Figures 23 and 24.
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Figure 23. New cases for Rio de Janeiro.
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Figure 24. Accumulated cases for Rio de Janeiro.

As for both other states, the effective reproduction number appears to have some
delay with respect to the number obtained by the COVID-19 observatory [69], as shown in
Figure 25.

157



Mathematics 2023, 11, 3766

0 10 20 30 40 50 60

weeks since first infection

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6
R(t)

R(t) from OBSCOVID19
estimated R(t)

Figure 25. Comparison of effective reproduction number value for Rio de Janeiro.

6. Spread Control

Applications of control theory for epidemic diseases, including COVID-19, range
from optimal control, which can be used for social distancing [70], vaccine deployment
policy [71] or even a mix of isolation and a vaccination program [72], to model predictive
control (MPC), which is also used for the development of social distancing [73,74] and
vaccination policies [75]. However, the approach to be followed here is simpler and aims to
build an algorithm explicitly programmed through feedback of state variables, similar to
other heuristics [76,77] already studied.

Practical usage of the control algorithm proposed should consider the availability and
uncertainty of current infection data, which are usually embedded with under-reporting
and significant delays when compared with reality, especially in countries which do not
have a thorough testing program organized. It should review the simplifications assumed
in the model formulation in Section 2 as well, addressing the peculiarities of the disease
being analyzed.

Looking forward to the future, the algorithm should address any disease that follows
the same pattern of transmission of the coronavirus, that is, infections resulting from
the transportation of contaminated droplets of secretions from infected individuals to
susceptible ones and that suggests isolation is effective. The main difference will be
the difficulty imposed by a new virus concerning the imposition of lower values of Re,
a parameter which is described in the next section. Viruses that are transmitted more
easily impose a bigger challenge, as fewer contacts are needed to effectively pass the
disease ahead.

Algorithm Implementation

Here, the implementation of a three-level stratified controller is studied, mitigating
disease spread, aiming to maintain the demand of intensive care units (ICUs) lower than
those available at all times until a vaccine is available.
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As was shown, R0 measures how the disease propagates when there are almost no
infected individuals present (S ≈ N). While R0 provides valuable information on the
viral dissemination dynamics when there is no developed immunity and information on
the epidemic available, other factors begin to influence its dynamics during the course of
spreading.

Therefore, the effective reproduction number Re, which describes the average value
of secondary infections as a time-dependent function, is a more appropriate parameter to
be analyzed amidst an epidemic outbreak [78]. In a homogeneous population, it is simple
to obtain Re by multiplying R0 and the susceptible proportion of the population at some
instant t [79].

The idea to be developed here is to regulate Re in order to maintain the healthcare
resources at an acceptable level. The underlying mechanism is the manipulation of the
contact rate of individuals β by cycling the imposition and relaxation of social distancing
measures [57] as well as awareness campaigns to stimulate the adoption of individual
protection procedures.

Therefore, β is no longer considered fixed but time-dependent β(t). Contrarily, γ and
Ω are still considered invariable, as treatments such as the use of remdesivir or monoclonal
antibodies, both approved by the American Federal Drug Administration (FDA), are
prescribed only to severe cases whereupon the patient is already hospitalized and therefore
isolated [80,81] in the first case, while, in the latter, it took almost a year to be approved for
emergency use [82].

Levels of the controller are decided based on the current number of patients needing an
ICU. This number is defined as 5% of the current number of infected individuals, assumed
as the probability of someone who becomes infected needing intensive care [83].

Each level is composed of an interval from which Re can randomly assume any value.
The interval is constructed with limits equal to ±10% of the measured mean value. This
is performed to mimic the difficulty of imposing and tracking a precise value for Re for
diseases with only a few epidemic studies.

The stratified controller model was chosen due to being easier to implement than other
forms of modeling social distancing, generally based on continuous values for Re, which
are very hard to track and impose precisely. The algorithm is also adaptable structurally
speaking, as the Re should necessarily guarantee the desired behavior according to the
model. The most significant difficulties rest in creating the appropriate public policies to
reach the desired Re level.

Estimations of the economic impact of the COVID-19 pandemic are situated close to
the trillion dollars figure globally [84–86], with devastating shocks on various industries,
and the imposition of social distancing policies should have been, theoretically, a big part of
this loss. However, there is significant evidence that quarantine is effective against not im-
plementing containment mechanisms [87], more effective when applied early [88] and that
deterioration of economic conditions preceded the introduction of isolation policies [89]
or that the culprit of the COVID-19 recession is COVID-19 itself [90]. Therefore, practical
usage of the three-level controller should lead to economic benefits, not to mention that
saving lives should be worth the cost nevertheless.

The three-level controller is described in Table 5, with the calibration level (mitigation
or suppression) related to the value of the reproduction number associated. Mitigation and
suppression measures differ in whether they aim to reduce the reproduction number, Re,
to less than 1 (suppression) or to merely slow spread by reducing Re but not to less than 1
(mitigation) [91]. Therefore, Level A can be described as mitigation strategy and Level C as
a suppression one, generally called a lockdown, while Level B is situated between both.

All the actions taken at a certain point will last for a regularly chosen duration dur-
ing the course of the pandemic. This is performed to reduce social and economic uncertainty
as the population has time to comply.
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Table 5. Description of the three-level controller.

Level E[Re] Measures Taken Value Source When

A 2

Self-imposed measures are
stimulated in order to accelerate
awareness spread. Prevention
measures such as mask wearing,
hand washing and self-imposed
social distancing can be described
as reductions in infectious output,
susceptibility and contact rate,
respectively [92].

As such measures stack up
additively [92], a 10% efficacy for
each one reduces the effective
contact rate by 30%.

Intensive care unit demand is lower
than 10% of the total amount
available.
5I

100
< 5

B 1.1

Government implements social
distancing measures such as
reduced business hours and
occupation or public spaces
restrictions.

A similar Re is obtained for the
state of Sao Paulo in March 2021,
when such measures where
adopted [93].

Intensive care unit demand is
between 10–80% of the total
amount available.
5 <

5I
100

< 40

C 0.5 Mandatory home confinement
except for vital sectors workers.

Very close to the Re obtained by
Spain during adoption of lock
down [94].

Intensive care unit demand is
higher than 80% of the total
amount available.
5I

100
> 40

7. Control Strategy Results

In this section, the three-level control strategy described in the former section is
simulated assuming a hypothetical scenario for an isolated city in Brazil with 10 infected
initial cases, a population of 100,000 inhabitants and an R0 the same as the country’s,
i.e., 2.82. This number is maintained for the first 15 days to replicate initial unawareness.
Brazil was chosen due to its high baseline contact rate, represented by the high value of R0,
as opposed to Uruguay. Therefore, as the number of cases and individuals in need of ICUs
grow faster than the system can adapt, it represents a need for establishing isolation policies.

The number of ICUs available is considered to be 50, very close to the proportion of
beds/individuals obtained for the state of São Paulo before the pandemic in 2018 [95].

The total period analyzed is one year, because this is the period assumed for the devel-
opment of a vaccine, with reference to the Pfizer vaccine, which started being developed in
January 2020 with the release of the SARS-CoV-2 genome [96] and initially applied in the
UK at the beginning of December 2020 [97].

Three different strategies were considered: no attempt to control the disease spread;
updating Re every 30 days; and updating Re every 21 days.

7.1. No Attempt to Control the Spread of the Disease

As expected, Figure 26 shows the potential of COVID-19 to quickly overwhelm the
healthcare system, with ICU demand surpassing the availability of beds less than two
months after the beginning of the pandemic. The randomness added did not result in
significant differences with respect to the baseline established in Section 4.

The dynamics of free dissemination can be seen for all the compartments in the SIRD
model used in Figure 27.
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Figure 26. No control applied: (A) ICU demand and (B) R(t).
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Figure 27. State variables evolution when no control is applied, considering: (A) Susceptible popula-
tion; (B) Infected population; (C) Recovered population and (D) Deceased population.

7.2. Updating Re Every 30 Days

Figure 28 displays the algorithm’s performance for a 30-day interval between updates
regarding the demand for ICU and shows the controlled reproductive number Re for each
cycle. It can be seen that after periods of Level C (lock-down), ICU demand went below
10% of the total number of intensive care beds available, which made the algorithm choose
Level A for the following cycle.

Every time this happened, the control failed to prevent healthcare collapse, as 30 days
proved to be enough time for Level A to allow a large increase in demand for ICU due to
the exponential growth nature of the spread.
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The improvement over the baseline was very small, as can be seen in Figure 27D,
with the number of deceased at the end of the period being very close to the number of
deceased at the end of the baseline.
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Figure 28. Re control as measure of reducing COVID-19 spread for every 30 days, considering time
evolution (A) ICU demand and (B) R(t).

Figure 29 supports the effectiveness of the algorithm wiyh a 30-day cycle. There-
fore, in order to prevent the ICU demand from surpassing the supply of intensive care
beds, the period between updates of the algorithm is reduced, and results are shown in
Section 7.3.
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Figure 29. System state variables for algorithm with a 30-days cycle for (A) Susceptible population;
(B) Infected population; (C) Recovered population and (D) Deceased population.
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7.3. Updating Re Every 21 Days

For a 21-day interval between updates, the main goal of guaranteeing appropriate care
for COVID-19 patients is attained. During the 360 days of simulation, there was no instant
at which the demand for intensive care units was greater than the supply, as shown in
Figure 30, and there were only three periods of Level C (lock-down), allowing individuals
to have greater freedom without sacrificing effectiveness.
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Figure 30. Re control as measure of reducing COVID-19 spread for every 21 days considering: (A) ICU
demand and (B) R(t).

Figure 31 supports the effectiveness of the algorithm with a 21-day cycle, showing
much fewer deaths at the end of the simulation than in simulations I (baseline) and II
(30-day cycle).
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Figure 31. System state variables for algorithm with a 21-days cycle: (A) Susceptible population;
(B) Infected population; (C) Recovered population and (D) Deceased population.
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8. Epidemic Control

In this section, two ways of controlling the spread of the coronavirus pandemic are
studied. First, a social distancing policy is applied, followed by a vaccination campaign.

8.1. Control by Social Distancing

The simulation of control by social distancing was carried out in the context described
in Table 6.

Table 6. Simulation parameters for the study of epidemic control by social distancing.

Parameter Parameter Description Value

γ recovery rate 1
Ω lethality of virus (mortality rate) 0.03
N population size 10,000,000
L number of hospital beds available 5000
T simulation period 52 weeks
I0 initial number of infected 5000

Rmin minimum value for effective reproduction number 0.5

The values of γ and Ω adopted were based on the values obtained in the validation for
São Paulo and Minas Gerais. We simulated 52 weeks, which is the amount of time it takes
to develop a vaccine for the virus, with reference to the Pfizer vaccine, whose development
started in January 2020 and was released in December 2020.

The initial number of infected is reasonably high to simulate a situation in which there
is little information about the spread of the virus in the population studied. Additionally,
a minimum value for the effective reproduction number is implemented, reflecting the
highest capacity possible for public authorities to implement isolation measures in the
population. This value is 0.5 and is close to the value obtained for Spain in its lockdown in
2020 [94].

The application of social distancing control was carried out by manipulating the
parameter β(t) so that the value of the effective reproduction number Re was sufficiently
low to bring about a reduction in the number of new cases and weekly deaths.

The applied control was found from the formulation of a minimization problem to
find a sequence of controls represented by (22):

u[k] = [u(0) u(1) u(2) . . . u(K − 1)], (21)

with the objective of minimizing the functional J (22):

J = τ1D(t = Tf ) − τ2 ‖ u[k] ‖2 + τ3 ‖ u[k]− u[k − 1] ‖2 . (22)

The first term of Equation (22) represents the number of accumulated deaths at the
end of the period (in t = Tf ); the second term, u[k] = β[k], represents the control applied
at instant k; and the last term represents the control differential between instant k and
k − 1. The intention behind the first term is self-explanatory: the aim is to minimize the
total number of deaths at the end of the period. In contrast, a very low level of isolation
has severe social and economic consequences, which is why the second term is used,
which penalizes a very intense control. Finally, it is desirable that the control signal, social
distancing, does not vary much from week to week to reduce future uncertainties for
the population.

In addition, the restriction was imposed that at no time did the number of people in
need of medical treatment exceed the number of available hospital beds, as proposed in
Equation (23):

0.2 ∗ I(t) ≤ L , ∀t (23)
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The definition of 20% as the percentage of infected people who need hospital treatment
was obtained by observing the figure and information available at the São Paulo State
Health Department (https://www.saopaulo.sp.gov.br/planosp/simi/leitos/) (acessed on
20 June 2020).

Results for Social Distancing Control

As this is an optimization problem, an important factor is the choice of parameters τ1,
τ2 and τ3 that will drive the functional J. Variations in these parameters are related to the
prioritization or penalty that gives the terms referring to the number of deaths, minimiza-
tion of social distance and distance differential. Therefore, five different combinations were
studied for the set (τ1, τ2, τ3), with the results summarized in Table 7 and in Figure 32.

Table 7. Results obtained for the control by social distancing.

Simulation τ1 τ2 τ3 D(t = Tf ) ‖ β[k] ‖2 ‖ u[k]− u[k − 1] ‖2

(I) 1 1 1 291.3530 6.2783 0.5796
(II) 1 10 1 298.4825 7.1895 2.0587
(III) 1 10 10 292.4858 6.6241 1.0437
(IV) 1 50 10 300.9959 7.0514 1.1845
(V) 1 50 50 300.4231 6.4384 0.5781
(VI) 1 100 50 319.1812 6.6833 0.9307
(VII) 1 100 100 309.0499 6.6805 0.9949
(VIII) 1 250 100 390.8686 6.9906 0.8825
(IX) 1 250 150 336.0118 6.6467 0.6248
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Figure 32. Comparison of the number of accumulated controller deaths due to social distancing.
The first few weeks are omitted for better viewing.

It can be noted that an increase in τ2, which is a greater prioritization of maximizing
the norm of β, resulted in an increase in the number of deaths at the end of the period.
Meanwhile, increases in τ3 generally had the effect of reducing the norm of the applied
controls differential, as was desired, and a reduction in the variability of Re can be seen
in the graphs below. At the same time, it produced a reduction in the number of deaths,
which was unexpected.
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By analyzing the graph, it is possible to notice the increase in the number of deaths
accumulated in time when the value of τ2 is increased. The effective reproduction number
graphs were divided into two parts, because those in Figure 32 were very noisy, making
visualization difficult. This more intense noise occurred precisely in the graphs that were
associated with an increase in τ2 without an increase in τ3 associated.

The qualitative analysis of Figures 33 and 34 shows that there is a very intense control
in the first weeks, in order to quickly reduce the number of cases to zero, as shown in
Figure 35. After this period, there is a gradual release of distancing, implying a gradual
increase in Re, followed by a new constraint near the end of the period.

0 5 10 15 20 25 30 35 40 45 50

weeks since control start

0.4

0.6

0.8

1

1.2

1.4

1.6 (III)

(V)

(VII)

(IX)

(VIII)

Figure 33. Comparison of the effective reproduction number of the social distancing controller for
the less noisy signals.
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Figure 34. Comparison of the effective reproduction number of the social distancing controller for
the noisier signals.
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Figure 35. Number of new weekly cases for social distancing control.

A more detailed study considering social distancing as a strategy to control the spread
of COVID-19 was performed in [50]. The proposed model, which consists of an alteration
of the SIR model, considers the infected in two compartments: the infected being reported
and the infected not reported or asymptomatic. The validation of the model is carried out
for different cities in the state of São Paulo and allows the evaluation of the dynamics of
disease reinfection and the relevance of social distancing as cities adhere to social isolation
at different times.

8.2. Vaccination Control

To implement the vaccination control, a new term v(t) was introduced in the equations
that describe the system, now formulated by the set of Equation (24).⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

dS(t)
dt

= − βS(t)I(t)
N

− v(t)

dI(t)
dt

=
βS(t)I(t)

N
− (γ + Ω)I(t)

dR(t)
dt

= γI(t) + v(t)

(24)

The term v(t) represents the number of individuals vaccinated at time t, and all
parameters, β, γ and Ω, are considered constant, representing a situation in which there is
no change in the behavior of the population regarding the contact rate between individuals,
that is, there is no social distancing. Again, the solution to this problem is given by
minimizing a functional, described by Equation (25), where we want to minimize the
number of deaths while also minimizing the cost of vaccination.

Jvac = τ1D(t = Tf ) + τ2 ‖ v[k] ‖2 + τ3 ‖ v[k]− v[k − 1] ‖2 (25)

In addition, it is desirable to minimize the vaccine immunization differential, repre-
sented by the last term of the functional, so that there is not a very sudden variation in the
number of vaccines given from one week to the next.
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8.2.1. Results for Vaccination Control

The simulation parameters for vaccination control can be seen in Table 8:

Table 8. Parameters for vaccination control.

Parameter Parameter Description Value

β average number of contacts 2.06
γ recovery rate 1
Ω lethality of virus (mortality rate) 0.03
N population size 10,000,000
L number of hospital beds available 5000
T simulation period 52 weeks
I0 initial number of infected 1

vmax Maximum vaccination value per instant of time variable

Regarding the simulation for vaccination control, the number of initial infected people
was reduced to simulate a condition that is still at the beginning of the spread of the disease.
Also, there is no longer a minimum value for the effective reproduction number, since the
value of the contact rate between individuals β is considered fixed. The value of β is fixed
at 2(γ + Ω), representing a base reproduction number value R0 equal to 2.

A maximum value of vaccinated per time instant is established to represent scenarios
in which there are limited availability of vaccines to be applied. The results obtained are
compiled in Table 9.

Table 9. Results obtained for vaccination control.

Simulation vmax τ1 τ2 τ3 D(t = Tf ) ‖ v[k] ‖2 ‖ v[k]− v[k − 1] ‖2

(I) 50,000 1 1 1 229,543 15,987 3943
(II) 50,000 10 1 1 198,924 210,293 14,770
(III) 50,000 50 1 1 199,421 209,570 18,477
(IV) 50,000 50 10 1 218,448 86,979 24,296
(V) 50,000 50 10 5 217,986 90,980 9120
(VI) 75,000 1 1 1 226,986 34,343 15,489
(VII) 75,000 10 1 1 189,715 259,974 24,880
(VIII) 75,000 50 1 1 183,758 294,083 40,017
(IX) 75,000 50 10 1 216,815 96,340 10,545
(X) 75,000 50 10 5 211,212 132,180 14,563
(XI) 100,000 1 1 1 228,907 21,677 7933
(XII) 100,000 10 1 1 170,477 368,702 45,626
(XIII) 100,000 50 1 1 168,307 386,925 86,353
(XIV) 100,000 50 10 1 218,549 86,186 12,683
(XV) 100,000 50 10 1 211,336 131,626 13,796

8.2.2. Effect of Increase in Weekly Vaccination

The first part of the simulations analyze the effect of increasing the limit of application
of vaccines weekly. As expected, Figure 36 shows that increases in the weekly vaccination
limit, when associated with an increase in the weight τ1, which refers to the number of
deaths at the end of the period, reflect a significant drop in this value.

The analysis of the weekly new cases graph reflects the same behavior. Figure 37
shows that an increase in vaccination reduces the number of new weekly cases when the
weight τ1 is increased, which prioritizes a reduction in the number of deaths in relation to
the cost of administering vaccines.
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Figure 36. Comparison of the number of accumulated deaths in the vaccination control.
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Figure 37. Comparison of the number of new cases per week in vaccination control.

Another interesting fact is that the weekly vaccination rate obtained for conditions
where τ1 is much greater than τ2 and τ3 is not the maximum vaccination vector at all times.
It can be noted in Figure 38 that in none of the cases, the maximum vaccination for the
period in 26%, 39% and 52% of the population, respectively, was reached. This is because
the model assumes obtaining immunity after recovering from the disease. Therefore,
individuals who were not vaccinated either died or recovered.
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Figure 38. Comparison for the cumulative of vaccinated in the vaccination control—percentage of
the initial population.

A severely negative point of the application of control only by vaccination is that the
limit of the number of available hospital beds was not respected, as can be seen in Figure 39.
In the tenth week, the health system collapses.
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Figure 39. Comparison of the number of individuals needing hospital beds in the vaccination control.

8.2.3. Effects of Changes in Vaccination Campaign Prioritization

To highlight the policy changes when we prioritize the number of deaths over the
cost of vaccination or vice versa, Figures 40–42 are presented, related to cases (VI) to (X)
of the prioritization parameters. First, Figure 40 shows that the increase in τ1 in the case
(VI) pro (VII) and (VII) pro (VIII) showed a decrease in the number of accumulated deaths,
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as expected; likewise, from case (VIII) to (IX), in which an increase in τ2 is considered,
the graph shows an increase in the number of accumulated deaths.
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Figure 40. Comparison of the number of accumulated deaths in the vaccination control.
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Figure 41. Comparison of the cumulative of vaccinated in the vaccination control with changes in
vaccination campaign prioritization—percentage of the initial population.
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Figure 42. Comparison of the number of new cases weekly in the vaccination control.

Analogously to the case of control by social distancing, where there is a drop in the
number of deaths, an increase in τ3, which penalizes the variation in the control vector v(t),
also showed a drop in the number of deaths.

A more detailed study considering validation with real data of the control strategy
based on vaccination was carried out in [51]. The model considers the possibility of rein-
fection and allows checking information on unreported infected people. The validation of
the model was carried out with data from the city of São Paulo, which, due to its sociode-
mographic and economic difference, presents complex scenarios and can be extended to
regions with the same qualitative characteristics.

9. Conclusions

Inspired by the different policies of social distances adopted by Brazil and Uruguay,
showing remarkable differences concerning the results of controlling the COVID-19 epi-
demic, a framework for modeling and applying public policies in the form of social
distancing was proposed aiming for a reduction in disease spread.

Validation of the SIRD model using cumulative case data and cumulative death data
for the states of São Paulo, Minas Gerais and Rio de Janeiro proved satisfactory. For the
accumulated death data, the performance was good, while for the accumulated case data,
the performance was average, with advances in relation to previous results. Possibly,
a better relationship between deaths and cases should be explored, such as inserting delay
terms into the equations, or else considering the γ and Ω parameter variables, as we
conducted with β.

Comparison of data on the effective reproduction number Re obtained by the model
with respect to the values obtained by a COVID-19 observatory showed a delay, possibly
due to the difference in the methodology used. The work proposes a minimization of
square errors for the developed model, while a COVID-19 observatory performed the
estimate using serial intervals, defined as the time interval between the onset of illness in a
primary case and the onset of illness in a secondary case [69].

Control by social distancing performed well, complying with the restrictions imposed.
At all times, there was no failure of the health system. However, during the 52 weeks,
the level of isolation remained intense without returning to the preisolation level. Also, con-
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tinuous levels of Re would likely be quite difficult to implement. For example, in practice,
it is difficult to implement public policies with an Re of 0.9 versus Re of 0.95.

Meanwhile, vaccination control reduced the number of accumulated deaths at the
end of the period, but it did not prevent the failure of the health system. In this way,
social distancing is necessary until herd immunity is reached, the value at which a primary
infection produces, on average, less than a secondary infection, which eventually leads to
the extinction of the disease.

The results are satisfactory, mainly due to the good performance shown for the accu-
mulated death data, which allowed the use of the model to apply social distancing control
and vaccination control.

A three-level controller was proposed, and simulations indicate that a 21-day up-
date strategy shows good results, preventing the healthcare system from collapsing and
presenting much fewer deaths at the end of the process.

Aspects to be explored to improve the model are to consider the algorithm behavior
varying Re for each level, to have a different number of levels and to include uncertainty
and delay in the observability of the number of infected cases.

Despite being an intuitively obvious conclusion, it was shown that failing to mitigate
the spread of the disease is not a wise option. The algorithm with 21 days between updates
presents, for example, almost 650 deaths at the end of the year, whereas doing nothing
resulted in approximately 2700.

Therefore, it is possible to say that the framework outlined is a good and simple
reference model to be followed when designing techniques to address COVID-19 disease
spread, as well as possibly other diseases that follow the same pattern of transmission as
the coronavirus.
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Appendix A

From Wiggins, 1990, p. 193 [98]. Consider vector fields of the form{
ẋ = Ax + f (x, y),
ẏ = By + g(x, y), (x, y) ∈ IRc × IRs,

(A1)

satisfying

f (0, 0) = 0, D f (0, 0) = 0,

g(0, 0) = 0, Dg(0, 0) = 0,

where A is a c × c matrix having eigenvalues with zero real parts, B is an s × s having
eigenvalues with negative real part and f and g are Cr functions (r ≥ 2). Then,

Remark A1. An invariant manifold will be called a center manifold for (A1) if it can locally be
represented as

Wc(0) = {(x, y) ∈ IRc × IRs|y = h(x), |x| < δ, h(0) = 0, Dh(0) = 0} (A2)

for δ sufficiently small.
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Theorem A1. There exists a Cr center manifold for (A1). The dynamics of (A1) restricted to the
center manifold is, for u sufficiently small, given by the following c-dimensional vector field

u̇ = Au + f (u, h(u)), u ∈ IRc. (A3)

Theorem A2. (i) Suppose the zero solution of (A3) is stable (asymptotically stable) (unstable);
then, the zero solution of (A1) is also stable (asymptotically stable) (unstable). (ii) Suppose the zero
solution of (A3) is stable. Then, if (x(t), y(t)) is a solution of (A1) with (x(0), y(0)) sufficiently
small, there is a solution u(t) of (A3) such that as t → ∞

x(t) = u(t) +O(e−γt),

y(t) = h(u(t)) +O(e−γt),

where γ > 0 is a constant.
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Abstract: In DWI, multi-exponential signal analysis can be used to determine signal underlying
diffusion components. However, the approach is very complex due to the inherent low SNR, the
limited number of signal decay data points, and the absence of appropriate acquisition parameters
and standardized analysis methods. Within the scope of this work, different methods for multi-
exponential analysis of the diffusion signal in the kidney were compared. To assess the impact of
fitting parameters, a simulation was conducted comparing the free non-negative (NNLS) and rigid
non-linear least square (NLLS) fitting methods. The simulation demonstrated improved accuracy for
NNLS in combination with area-under-curve estimation. Furthermore, the accuracy and stability of
the results were further enhanced utilizing optimized parameters, namely 350 logarithmically spaced
diffusion coefficients within [0.7, 300] × 10−3 mm2/s and a minimal SNR of 100. The NNLS approach
shows an improvement over the rigid NLLS method. This becomes apparent not only in terms of
accuracy and omitting prior knowledge, but also in better representation of renal tissue physiology.
By employing the determined fitting parameters, it is expected that more stable and reliable results
for diffusion imaging in the kidney can be achieved. This might enable more accurate DWI results
for clinical utilization.

Keywords: diffusion-weighted MRI; multi-exponential; microstructural image analysis; simulation;
fitting; modelling; kidney
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1. Introduction

Diffusion-weighted MRI (DWI) is a specialized imaging technique that offers insights
into the microstructure of tissue by assessing the movement of water molecules within the
tissue microstructure without the need for tracer injections [1,2]. It is widely used in clinical
settings to detect, characterize, and stage malignant lesions in various anatomical regions of
the human body. Furthermore, DWI distinctive ability to quantify diffusion processes can
be utilized to detect and characterize fibrosis and inflammation including but not limited
to the abdomen. In terms of kidney applications, it enables differentiation between healthy
tissue and tissue affected by renal failure, pyelonephritis, ureteral obstruction, and renal
cell carcinoma [1,3,4]. A precise description of the acquired MRI signal is crucial in order to
distinguish between physiological and pathological processes.

To evaluate an acquired DWI signal, multi-exponential signal analysis can be used. The
conventional Intra-Voxel Incoherent Motion (IVIM) model proposes a two-compartment
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model consisting of fractions related to capillary perfusion and tissue diffusion [5]. How-
ever, recent studies have indicated that bi-exponential modelling of the diffusion signal
is insufficient to describe the behavior of water molecules in complex environments such
as the human kidney. The kidney is composed of various structures of varying magni-
tudes, including dense tissue, small capillaries, and large blood vessels. This results in
different diffusion environments in the renal cortex, medulla, and hilum, thus rendering a
bi-exponential description insufficient [6–11]. Instead, a more appropriate approach in renal
tissue involves a tri-exponential model, which encompasses the three diffusion regimes
with contributions from blood flow, tubular flow, and pure tissue diffusion [7–10].

The standard method for fitting the IVIM model to the acquired renal DWI data is to
perform non-linear least squares fitting (NLLS) [12] of a predefined rigid tri-exponential
model. However, NLLS requires initial estimated starting values. Starting from this initial
guess, the values are varied until the tri-exponential model function best fits the measured
data using least squares. That way, NLLS provides a distinct unique solution for each
unknown, poorly representing physiological conditions with variable value spectrums.
Because NLLS requires prior knowledge regarding the number of components, its use has
been limited so far. Especially in pathophysiological conditions, initial fitting values are
difficult to determine and the number of diffusion compartments may vary [13]. Therefore,
the recently utilized non-negative least squares fitting (NNLS) [14] approach presents an
advantage, as it does not demand further specification of underlying diffusion components
or specific initial starting values a priori, making it potentially superior to the NLLS
algorithm. In contrast to NLLS, which requires a specific model function—in this case
a tri-exponential model—to be specified, NNLS automatically determines the number
and size of the exponential terms based on a specified (pseudo) continuous spectrum of
exponential functions. The only assumption made, which applies to diffusion, is that the
coefficients of interest should not be negative. NNLS results in a distribution of exponential
terms that directly reflects the diffusion compartments of the renal tissue being studied.
Therefore, NNLS has the potential to better reflect the complex characteristics of biological
tissue. Nevertheless, a systematic quantitative comparison of these different signal analysis
techniques and the establishment of standardized parameters for multi-exponential renal
DWI investigations is missing to date.

To identify optimized fitting parameters, this study aims to compare and evaluate
the NLLS and NNLS fitting approaches using an extensive multi-parametric simulation.
Firstly, a synthetic multi-exponential diffusion signal was simulated, based on physiological
conditions present in the human kidney. Extensive signal analysis was then performed
using the introduced fitting approaches with various parameter variations. Moreover,
both NLLS and NNLS were combined by using the NNLS results as initial values for
the rigid non-linear fitting method (named NLLS*). In addition, the NNLS algorithm
was enhanced by incorporating an area-under-curve (AUC) function to improve accuracy,
referred to as NNLSAUC. Afterwards, we conducted a comprehensive comparison of
the results obtained from all four multi-exponential fitting techniques and derived the
optimal fitting parameters. These parameters were subsequently applied to a thorough
final simulation.

This study aims to determine optimized acquisition and fitting parameters by con-
ducting a comprehensive evaluation of the NLLS and NNLS fitting approaches through
extensive multi-parametric simulations based on physiological conditions present in the
human kidney. Therefore, we determined a set of optimized parameters that can serve as
basis for accurate analysis of real renal DWI data using multi-exponential methods.

The paper is structured as follows. Section 2 describes the mathematical model and
the fitting algorithms and explains the generation of the synthetic multi-exponential signal.
Next, the simulation conditions are presented in the same section, showing the parameters
used and further details of the parameter variations performed. The section ends with a
comprehensive description of the statistics used to evaluate the results. The results are
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presented in Section 3, followed by a full discussion in Section 4. Finally, Section 5 presents
the conclusions of this work.

2. Methods

2.1. Multi-Compartment Model

The diffusion signal S(b) observed in the human body can generally be described as a
superposition of multiple individual diffusion processes, with various diffusion coefficients
resulting in a multi-exponential decay function [15]:

S(bi) =
M

∑
i=1

f je
−bi Dj , j = 1, 2, . . . , N (1)

where bi is the diffusion weighting b-value in mm2/s, M is the total number of measure-
ments i with different b-values, fj is the amplitude of the exponential component with the
diffusion coefficient Dj. In the following, fj is denoted as the volume fraction, although this
nomenclature is mathematically inaccurate due to the omission of correction for relaxation
times and the exclusion of the prevailing proton density. N is the number of diffusion
components. Typically, mono- or bi-exponential models are used to describe DWI data from
certain organs. However, recent studies have questioned the correctness of bi-exponential
fitting for the diffusion signal, particularly for renal tissue [8,9,11,16]. It appears as though
a three-compartment model, considering the tubular volume fraction, is physiologically
more appropriate in the context of the kidney. By applying the tri-exponential fitting model,
the measured diffusion signal S(bi) can be defined as:

S(bi) =
M

∑
i=1

f je
−bi Dj , j ∈ [1, 3] (tissue, tubule, blood) (2)

The diffusion coefficient Dj can be assigned to diffusion processes in tissue, tubules,
and blood. In detail, these three components relate to the restricted diffusion of water
molecules in renal tissue, the pseudo-diffusion occurring inside tubules, and the pseudo-
diffusion component present in blood vessels. They are often referred to as the slow,
intermediate, and fast diffusion components, respectively. The same classification accounts
for the three different volume fractions fj.

The sum of all volume fractions in multi-compartment models adds up to ∑N
j fj = 1.

Therefore, the diffusion signal S(bi) for a three-compartment model can be defined as:

S(bi) =
M

∑
i=1

fslowe−bi Dslow + fintere−bi Dinter + (1 − fslow − finter)e
−bi Df ast (3)

2.2. Non-Linear Least Square Fitting

The established tri-exponential model described in Equation (3) was incorporated into
a rigid NLLS algorithm constructed around the lsqnonlin function of MATLAB (The Math-
works Inc., Natick, MA, USA). To fit the synthetic signal (construction details provided
below), the standard trust-region algorithm [17] was employed. Initial parameter values for
D, f, and boundary conditions of the non-linear fit need to be declared a priori. Hence, stan-
dard starting values and parameter ranges were chosen in accordance with literature [13],
as summarized in Table 1. Following the fitting process, the NLLS algorithm produced
discrete optimal values for Dj and fj with respect to the corresponding signal input.
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Table 1. Ground truth values required for the generation of synthetic multi-exponential diffusion
decay data and standard simulation parameters.

Ground truth values

Diff. coefficient blood (d f ast) 165 × 10−3 mm2/s

Diff. coefficient tubule (dinter) 5.8 × 10−3 mm2/s

Diff. coefficient tissue (dslow) 1 × 10−3 mm2/s

Vol. fraction blood ( f f ast) 0.1

Vol. fraction tubule ( finter) 0.3

Vol. fraction tissue ( fslow) 0.6

Standard simulation parameters

b-value distribution [16] [0, 5, 10, 20, 30, 40, 50, 75, 100, 150, 200, 250, 300, 400, 525, 750]

SNR 140

Iterations 1000

Standard NNLS parameters

M 300

Dmin 0.7 × 10−3 mm2/s

Dmax 300 × 10−3 mm2/s

Standard starting values NLLS

Diff. coefficients [1.5, 30, 100] × 10−3 mm2/s

Volume fractions [0.50, 0.25, 0.20]

2.3. Non-Negative Least Square Algorithm

To analyze the diffusion signal with the NNLS approach, an implementation of the
algorithm of Lawson and Hanson [14] was employed. Fitting of the synthetic renal DWI
data was accomplished with an in-house software based on the lsqnonneg MATLAB R2022a
function. An advanced regularization method of NNLS using cross-validation to determine
the regularization factor μ was implemented based on the open-source multi-exponential
decay image analysis software AnalyzeNNLS (2017.05.09) from Bjarnason and Mitchell [18].

In the NNLS algorithm, the signal decay is expressed as a superposition of exponen-
tials, similar to Equation (1) [15]:

yi =
M

∑
j=1

Aijsj, i = 1, 2, . . . , N (4)

with the constraint matrix Aij representing the exponentials and sj representing the cor-
responding amplitudes for M logarithmically spaced diffusion coefficients at N diffusion
components. An inverse of Aij cannot be derived due to noise contained in the signal
yi, resulting in an ill-posed problem. The NNLS algorithm is then used to minimize the
minimal least squares χ2 misfit between the measured (or simulated) and modelled data:

χ2 = min

⎡⎣ N

∑
i=1

∣∣∣∣∣ M

∑
j=1

Aijsj − yi

∣∣∣∣∣
2
⎤⎦, (5)

while all amplitudes are implicitly defined as non-negative, stating sj ≥ 0 [15].
Unlike non-linear optimization methods, the NNLS algorithm does not require a priori

information or an initial guess of variables to solve Equation (4). As an output, NNLS yields
amplitudes for the M exponential functions for each diffusion coefficient Dj. To obtain a
more physiologically realistic representation, the least-square algorithm can be adapted to
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construct a continuous spectrum. By incorporating extra constraints into the matrix Aij,
one is able to alter the discrete character of the basic NNLS solution. By introducing the
regularization term μ, Equation (5) can be adjusted accordingly [18]:

χ2 = min

⎡⎣ N

∑
i=1

∣∣∣∣∣ M

∑
j=1

Aijsj − yi

∣∣∣∣∣
2

+ μ
M

∑
j=1

∣∣sj+2 − 2sj+1 + sj
∣∣2⎤⎦ (6)

The weighting factor μ serves as a smoothing constraint that affects the curvature
of the NNLS solution spectrum and ensures a robust fit, determined by cross-validation.
Larger μ values result in smoother distributions, satisfying the constraints at the expense
of increasing misfit. For μ = 0, this formula yields the least square solution χ2

min from
Equation (5) [18].

The outcome of the regularized NNLS fitting entails various exponential terms, which
correspond to the diffusion components identified in the signal decay curve. By plotting
the associated diffusion coefficients with respect to the amplitudes, distinct peaks become
evident. Individual peaks can be characterized by assessing their maximum and area under
curve. This allows for the derivation of the geometric mean D and volume fraction f of the
contributing exponential constituents.

2.4. Combined Non-Linear and Non-Negative LS Algorithms

A unique approach was employed by combining both NNLS and NLLS methods to
create a two-level analysis of the diffusion signal to overcome the starting value limitation
of NLLS and thereby increase the accuracy of the fitting results. For this purpose, the NLLS
algorithm utilizes the fitting results obtained by the NNLS algorithm as initial parameters,
resulting in an advanced approach referred to as NLLS*.

2.5. Advanced NNLS Algorithm with AUC Constraint

In addition to the standard NNLS algorithm, we implemented an advanced fitting
algorithm called NNLSAUC. It is based on the same fitting results as standard NNLS and
incorporates an AUC constraint following fitting. This modification aims to minimize the
influence of inaccurately identified peaks and noise interferences. To achieve that, the
NNLSAUC technique applies adaptable interval boundaries based on estimated physiologi-
cal compartment ranges for the three diffusion regimes. In cases where multiple peaks dij
are encompassed by these intervals i, a weighting factor based on their respective volume
fraction fij is applied to combine them into a single representative peak di according to
Equations (7) and (8).

fi =
n

∑
j=1

fij, ∀ intervals i (7)

di =
n

∑
j=1

dij fij

fi
, ∀ intervals i (8)

This categorization of the diffusion spectrum requires prior knowledge of basic diffu-
sion regime boundary parameters.

2.6. Simulation and Reconstruction

To simulate the underlying synthetic renal diffusion data, we followed the methodol-
ogy outlined in Equation (3) and used the ground truth (gT) values presented in Table 1.
The initial parameters used for the diffusion coefficients d and volume fractions f are based
on the physiological conditions in the human kidney, considering the presence of three
diffusion compartments [9,11,13]. Subsequently, the multi-exponential diffusion signals
were superimposed with Gaussian noise for each b-value on a random basis, ensuring
an authentic artificial signal decay with variable signal-to-noise ratio (SNR). The SNR
was defined by dividing the signal at the first b-value with b = 0 s/mm2 by the standard
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deviation of the added noise [13,19]. For better comparison, the same simulated data were
then analyzed using the different algorithms mentioned above, namely NNLS and NLLS
(Figure 1). In the context of the simulation, the diffusion coefficient parameter is denoted
as d in order to eliminate any potential confusion with the limits of the NNLS fitting range
Dmin or Dmax.

Figure 1. Simulation workflow including a list of initial parameters, the computation of synthetic
signal data, the utilization of multi-exponential fitting algorithms, and the subsequent visualization
and analysis of the simulation.

Values of previous works utilizing NLLS fitting were used as starting parame-
ters [9,11,13,20,21]. The NNLS diffusion fitting range was set accordingly to encompass
the entire physiologically relevant spectrum [11,13]. The total number of fitting iterations
for all simulations was n = 1000.

2.7. Parameter Variation

For parameter variations, main emphasis lay on altering values within a range relevant
for routine examinations of the kidneys and feasible for research imaging experiments.

The variation in SNR ranged from 50 to 600, with a primary focus on the interval
between 100 and 140, including the most commonly observed SNR values of routinely
acquired DWI [22,23].

In addition to the standard logarithmic distribution, other b-value compositions have
been evaluated to find a suitable distribution for NNLS fitting. This work evaluates two of
these other b-value compositions: an equidistant distribution and an interval distribution.
The latter applies a dense concentration of b-values inside the three diffusion regimes. All
b-value distributions span the same range, with bmax = 750.

To investigate the impact of the number of logarithmically spaced diffusion coefficients
M on the NNLS fitting process, M was varied in increments of 50, resulting in a range of
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100 to 600 possible exponential components for NNLS. Particular attention was devoted to
the interval around M = 300, covering commonly utilized values of prior studies [11,13].

The fitting results obtained from NNLS should be self-contained from any variations
made regarding the range of possible diffusion coefficients, as defined by the choice of Dmin
and Dmax. However, altering the discrete fitting range for non-negative approaches exerts a
significant influence, posing a common problem. Therefore, we compared our standard
range (Table 1) to a shortened and an extended version. The shortened fitting range spans
from Dmin = 0.9 × 10−3 mm2/s to Dmax = 200 × 10−3 mm2/s and the extended range en-
compasses values between Dmin = 0.5 × 10−3 mm2/s and Dmax = 500 × 10−3 mm2/s [11,13].
A comprehensive summary of the complete parameter variations can be found in Table 2.

Table 2. Values and sets of varied fitting parameters for NNLS.

Parameter Variation

SNR 50, 100, 110, 120, 130, 140, 600

Equidistant b-value distribution 0, 50, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750

Interval b-value distribution 0, 5, 10, 15, 20, 30, 50, 100, 150, 200, 250, 350, 450, 550, 650, 750

M 100, 200, 250, 300, 350, 400, 600

Shortened Dmin and Dmax [0.8–200] × 10−3 mm2/s

Extended Dmin and Dmax [0.5–500] × 10−3 mm2/s

2.8. Statistics

In order to compare the quality of the simulation results and depict the deviation from
the gT, the Median Absolute Percentage Deviation (MAPD) was computed. The MAPD is
determined by calculating the absolute difference between the parameter estimates d and f
and the gT values for all n = 1000 iterations, expressed as a percentage:

MAPD(xi) =
100
gTi

median(|xi − gTi|).

Here xi represents one diffusion parameter estimate and gTi the corresponding ground
truth value.

To ensure more robust results, the utilization of the median was preferred to traditional
mean values. This approach bypasses the strong influence of outliers, themselves heavily
biased by the choice of constraint boundaries, the latter only being applicable to NNLS
algorithms [21,24].

Moreover, statistical analysis was carried out using appropriate MATLAB implemen-
tations. Visualization of the data and additional statistical measures were executed using
in-house developed software in R (version 4.1.3, R Foundation for Statistical Computing,
Vienna, Austria).

3. Results

3.1. Evaluation of Simulated NNLS Fitting

An exemplary NNLS analysis of n = 100 signals is shown in Figure 2. This simulation
was performed using standard parameters (Table 1). Three distinct peaks of the slow,
intermediate, and fast component can be distinguished clearly, reflecting the three diffusion
compartments employed as gT for the synthetic signal decay. Additionally, minor peaks
caused by wrongly interpreted noisy signal data by the NNLS algorithm are also noticeable.
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Figure 2. NNLS spectrum, representing a simulation of 100 modelled signals with an SNR of 120.
Three distinctive peaks are clearly distinguishable, corresponding to the slow (left peak), intermediate
(middle peak), and fast (right peak) components. These peaks align with the three diffusion
compartments of the ground truth. Additionally, minor peaks caused by wrongly interpreted noisy
signal data by the NNLS algorithm are also noticeable.

3.2. Parameter Variation
3.2.1. Signal-to-Noise Ratio

In this simulation, the SNR was varied and ranged from 50 to 600, with a primary
focus on the interval between 100 and 140. The results of the simulations conducted are
depicted in Figure 3A,B (for diffusion coefficients d and volume fractions f, respectively),
with an optimal SNR of 600 serving as a reference. In addition to the variation in SNR, the
standard simulation parameters outlined in Table 1 were employed.

The accuracy of the fitting results strongly correlates with the signal quality and,
consequently, with SNR. Even in the instance of poor signal quality, with an SNR of 100 or
less, differentiation of the three diffusion components remains possible with NNLSAUC and
the standard NNLS algorithm. For the non-linear methods NLLS and NLLS*, a distinction
between the slow and intermediate diffusion components can only be achieved for SNRs
surpassing 130 (Figure 3). The NLLS* algorithm, up until an SNR of 600, is not capable of
distinguishing the three components at any routinely achieved SNR levels.

Looking at the volume fractions (Figure 3B), the results are similar. While techniques
involving non-rigid fitting possess the ability to differentiate all three compartments at
SNRs of 100 and over, the results of the approaches incorporating the non-linear fitting
overlap for intermediate and fast volume fractions.

In our study, NLLS methods demonstrated the highest standard derivation, partic-
ularly with respect to the slow and intermediate diffusion coefficients. Only the NNLS
methods managed to distinguish all three diffusion compartments consistently.

A simplified visualization of the MAPD development with regard to increasing SNR
values is illustrated in Figure A1. NLLS and NLLS* exhibit a mean MAPD of 16.46% and
18.83%, respectively. The NNLS approaches demonstrate a significantly lower average
MAPD value, with plain NNLS at 12.49% and NNLSAUC at 10.39%. The minimum overall
MAPD values concerning the routinely relevant SNR interval were observed for NNLSAUC,
reaching 9.2% at the highest SNR level of 140.
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Figure 3. Simulation results for the diffusion coefficients (A) and volume fractions (B) for all SNR
variations, grouped by methods. The boxplots display the median value (round dot), interquartile
range (thick line), and whiskers (thin line), the latter containing 95% of the data distribution. Ground
truth values are indicated by grey lines.
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3.2.2. Distribution of b-Values

The evaluation of b-value distributions covers three different compositions. Figure 4
presents the findings regarding the utilized standard, equidistant, and interval distribution
of b-values affecting the fitting accuracy and, consequently, the diffusion parameter esti-
mates.

Figure 4. Simulation results of diffusion coefficients and volume fractions under variation of the
b-value distribution (standard, interval, and equidistant), grouped by methods. The boxplots display
the median value (round dot), interquartile range (thick line), and whiskers (thin line), the latter
containing 95% of the data distribution.

A noticeable decline in accuracy can be observed when employing an equidistant dis-
tribution of b-values. Greater deviation from the gT values (12.37% mean MAPD for NNLS)
across all components becomes apparent when compared to the standard distribution.
However, the same is not necessarily true for the b-value composition that prioritizes the
diffusion intervals. In this case, the mean MAPD for NNLS is 8.80%, slightly underperform-
ing the standard distribution. The standard distribution, on the other hand, demonstrates
the most precise results, with an average MAPD of 8.56%. In particular, the non-linear
methods seem to be strongly affected by variation in the b-value distributions. In contrast,
the NNLS methods exhibit more consistent results across b-value compositions.

3.2.3. Number of Logarithmically Spaced Diffusion Coefficients

For this simulation, the number of logarithmically spaced diffusion coefficients M
was varied in increments of 50, resulting in a range of 100 to 600 possible exponential
components for the free NNLS fitting methods. When modifying the logarithmically
spaced diffusion coefficients, only NNLS and NNLSAUC are influenced by varying M
values. Results for the diffusion coefficients are illustrated in Figure 5.
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Figure 5. Simulation results for the diffusion coefficients (A) and volume fractions (B) for all variations
of M, grouped by methods. The design of the boxplots is analogous to the one in prior variation figures.

Both free fitting approaches are able to distinguish the three compartments at all levels
of M. While altering M only slightly affects the deviation of the results for the diffusion
coefficients, it comes along with an increase in the standard derivation of the estimates for
the fast component, especially in the case of NNLS. Considering f, the standard derivation
remains constant, but the estimates for the intermediate and fast component vary in their
derivation to the gT. The most accurate results are achieved when M is approximately 350
for NNLS and NNLSAUC. Data for different numbers of logarithmically spaced diffusion
coefficients are demonstrated in Figure A2.

The value of 350 logarithmically spaced diffusion coefficients seems most promising,
with minimal deviation for both NNLS and NNLSAUC. At M = 350, the total MAPD for the
standard NNLS algorithm is 10.41%, decreasing to 8.36% for NNLSAUC.
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3.2.4. Diffusion Fitting Range

To investigate the impact of altering the discrete fitting range for non-negative
approaches, different ranges were applied for the NNLS algorithm, namely a standard
([0.7–300] × 10−3 mm2/s), a shortened ([0.9–200] × 10−3 mm2/s), and an extended
([0.5–500] × 10−3 mm2/s) range, as shown in Figure 6.

Figure 6. Simulation results of diffusion coefficients and volume fractions under variations of the
diffusion fitting range, grouped by methods.

Previously used standard values for Dmin and Dmax produce the most accurate results,
while the estimates of the shortened and extended fitting ranges deviate from the gT values.
NNLSAUC surpasses the standard NNLS algorithm for all fitting ranges, with its total
MAPD for the standard range being 8.4%. The shortened and extended ranges result in
12.31% and 18.32% deviation, respectively. The MAPD stats for standard NNLS exhibit the
same tendencies but with lower accuracy.

3.3. Simulation with Optimal Simulation Parameters

For this simulation, a total of 1000 iterations were performed using the optimal param-
eters that have been previously evaluated. Consequently, an SNR of 140 was employed, the
number of logarithmically spaced diffusion coefficients M was set to 350, and the diffusion
fitting range was chosen based on the standard distribution (Table 2).

Alongside the plain NNLS algorithm, the results from NNLSAUC, NLLS*, and standard
NLLS algorithms are presented in Figure 7. The distributions of fitted values for d and f
are represented by half-violin plots, while the minimalistic boxplots underneath specify
the scattering by providing a visual depiction of the interquartile range (with whiskers
indicated as lines and a gap in the line representing the interquartile range) and median
values. The three peaks observed along the diffusion coefficient and volume fraction axis
correspond to the three diffusion decay components present in the synthetic DWI signal
for d and f, respectively.
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Figure 7. Simulation results of d and f grouped by methods and assigned to corresponding diffusion
compartments with n = 1000 iterations. Ground truth values are indicated by grey lines. In addition
to the half-violin plots representing the distribution of fitted d and f values, the minimalistic boxplots
underneath specify the scattering by visualizing the associated quartile ranges and indicating the
median values.

Table A1 shows the MAPD values for a simulation conducted using the previously
mentioned starting values. With an average MAPD of just 10.9% for the diffusion coeffi-
cients d and 6.4% for volume fractions f, NNLSAUC proved to be the most accurate method
with respect to gT values. Conversely, the fitting algorithms based on non-linear fitting
produced the highest deviation, with an average MAPD of 16.5% and 19.2% for d along
with 12.4% and 14.1% for f, in the case of NLLS and NLLS*, respectively. NNLS pre-fitting
did not yield any benefits when considering the MAPD. Consequently, the results from
NLLS* underperform when compared to those of the standard NLLS algorithm. As seen
before, the non-linear methods encounter difficulties in differentiating the intermediate and
slow components. This is evident in the significant overlaps between NLLS and NLLS*,
particularly when analyzing the distribution plots. Notably, both rigid non-linear methods
poorly fit the intermediate diffusion component, as indicated by the MAPD exceeding 20%
for both the diffusion component and the volume fraction. For NNLS-based evaluations,
on the other hand, the fast component poses the most challenges, with the highest MAPD
within each parameter group reaching 25 for standard NNLS. Remarkably, NNLSAUC was
the only method to achieve a total average deviation of less than 10%.

4. Discussion

4.1. Parameter Variations

In the present study, the NLLS and NNLS multi-exponential fitting methods were
evaluated in multi-parametric simulations utilizing synthetic renal diffusion signal data.
Advanced fitting algorithms based on NLLS and NNLS were implemented, and several
fitting parameters were varied in order to identify the optimal parameter sets to attain the
highest accuracy for the description of the renal DWI signal decay.

In existing studies, the extent of a sufficient SNR value has already been analyzed by
varying the SNR with different magnitudes [13,25]. It has been found that an SNR of at least
100 is required in order to obtain reliable diffusion parameter estimates [25]. Nevertheless, a
comprehensive exploration of the range of expected SNR values for in vivo DWI images is
still absent. This study specifically emphasized SNR values common for DWI. As expected,
a higher SNR generally results in higher output accuracy for all approaches. The NNLS

190



Mathematics 2024, 12, 609

algorithms, particularly the advanced NNLSAUC, provided more consistent results when
applied to low SNR signal data. The non-linear fitting techniques exhibited limitations at
SNR values below 130 and encountered difficulties with respect to the distinction of all
three compartments, a phenomenon which might be due to the lack of optimal starting
values for NLLS fitting. Optimization of the starting values for NLLS could improve the
fitting outcomes, but this would require extensive prior work to determine the optimal
parameters for individual patients, rendering it impractical for in vivo applications. NNLS
methods also demonstrated less derivation at all SNR levels and proved to be the superior
fitting algorithm for the SNR interval commonly encountered in routine practice.

Despite the effort to standardize DWI imaging in the kidney [26], an optimal distribu-
tion of b-values has not been established yet. Focusing on the commonly used and widely
accepted b-value range of 0 to 750 s/mm2, and considering the limitations of scan time
in clinical routine, a set of 16 b-values were employed based on the findings of previous
studies [10,11,13,26]. This study compared multiple b-value compositions and evaluated
the impact of different distributions on fitting accuracy. Considering that low b-values are
crucial for a correct and stable fit [27], and that an increased number of b-values below
100 s/mm2 has been proved to be beneficial for fitting [10], the spacing was adjusted ac-
cordingly. Variation in b-value distributions showed superior performance with respect to
the standard logarithmic composition across all different fitting approaches. The non-linear
methods were greatly affected by an altered arrangement of the b-values. The equidistant
distribution, in particular, compromised the fitting and parameter estimation significantly.
The NNLS algorithms consistently provided stable results throughout all b-value compo-
sitions. It should further be noted that the reliability of the interval distribution may be
questionable in real-world scenarios where various physiological conditions or pathologies
can cause the appearance, disappearance, or shifting of different diffusion regimes within
the diffusion spectrum. The study confirmed that it is crucial to cover the full b-value range,
with particular attention devoted to smaller values correlating with fast diffusion motions
in order to adequately represent the diffusion parameters and enable accurate fitting.

Varying the number of logarithmically spaced diffusion coefficients M for fitting in
NNLS has a profound impact on the estimation of fitting parameters. When M is set to low
values, similar to a very low sample rate, the ability to reliably determine the most accurate
estimates is compromised. However, a very high number for M also results in divergent
parameters. The choice of M is driven by a compromise between computation time and
accuracy. Excessively high sample rates not only result in very long computation times,
but also lead to an increased number of misinterpreted peaks in the signal data (Figure 2).
If many logarithmically spaced diffusion coefficients are applied, detected regularized
peaks might be split into multiple peaks. In this study, the optimal range was identified
to be between 300 and 400 coefficients, with 350 providing the most accurate results for
NNLS fitting techniques without a significant increase in computation time. Therefore, only
in vivo data with 16 b-values in the specified standard range were considered in this study.

Furthermore, the selection of the diffusion fitting range has a significant effect on
the results obtained by non-negative fitting approaches. This is a common challenge
encountered in the field of multi-exponential fitting. While seeking reproducible results, it
is important to avoid the expansion of the fitting range to prevent distortion of the fitting
estimates. This represents a challenging task when the correct diffusion parameters of the
kidney tissue are not apparent before fitting. In the current study, the NNLSAUC approach
achieved more accurate results compared to the standard NNLS method. Among the
tested diffusion ranges, neither the shortened nor the expanded intervals provided any
improvements over the standard range, which spans from Dmin = 0.7 × 10−3 mm2/s to
Dmax = 300 × 10−3 mm2/s.

The benefits of NNLS with varying numbers of diffusion components were not ex-
plored in this study, as Periquito et al. [13] conducted a complementary simulation approach.
The study extensively investigated the impact of a varying number of diffusion components
caused by pathologies such as hyperfiltration, fibrosis, and cysts. In these cases, the NNLS
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algorithm was found to be superior to NLLS, as it is able to detect a fourth pathological
compartment and reliably distinguish different levels of fibrosis.

4.2. Comparison of Fitting Methods

By applying optimized parameters (Table 3), the differences among the evaluated
fitting algorithms become more apparent. The NNLS approaches outperformed the non-
linear methods, especially owing to improved accuracy and smaller variability of the
results, even though NNLS was found to incorrectly identify peaks occasionally (see Fig-
ure 2), resulting in a false fourth component that introduces bias into the results. Misfitted
fourth compartments also contribute to the poor performance of NLLS*. Following the
NNLS pre-fit process, the NLLS fitting was unable to effectively handle four compart-
ments when based on a model incorporating only three diffusion coefficients, resulting in
significant inaccuracies in those instances. To minimize the occurrence of misidentified
compartments, further optimization is required, such as enhancement of the b-value dis-
tribution and range [13] or improvement of the quality of the acquired signal. The SNR
variation demonstrates that applying NNLS to high quality signals mitigates the issue of
scattering, with close to none misinterpreted signals. Thus, ensuring high signal quality for
in vivo imaging, either through optimized sequence parameters or an increased number
of averages, is particularly advantageous for non-negative fitting. The NNLSAUC method
partially compensates for this limitation of the standard NNLS algorithm, including its
poor performance at low SNR values, by re-evaluating the misfitted fourth compartment.
This weighting approach yielded optimal results in this study. The utilization of NNLS
fitting algorithms appears to be the most suitable approach for analyzing in vivo renal
DWI signals. Furthermore, simulation results from this study demonstrate a significant
improvement in accuracy with NNLSAUC as a novel fitting approach, especially when
dealing with noisy image data.

Table 3. Recommended parameters for non-negative fitting.

SNR M Dmin Dmax b-Value Distribution

140 350 0.7 × 10−3 mm2/s 300 × 10−3 mm2/s
[0, 5, 10, 20, 30, 40, 50, 75, 100, 150,

200, 250, 300, 400, 525, 750]

4.3. Limitations and Outlook

It is important to note that one disadvantage of NNLS is the increased computational
effort it requires. Depending on the choice of M, fitting with the NNLS algorithm takes up
to 2 s per iteration. In contrast, the rigid NLLS fit is approximately 100 times faster. This
discrepancy may originate from the MATLAB implementation and could potentially be
addressed by employing faster programming languages and advanced implementations of
the fitting algorithms. Further improvement of the code through the implementation of
parallelization techniques is highly desirable to improve the computation time problem.

Bi-level optimization, as used in NLLS*, offers encouraging opportunities, but it also
has limitations that need to be considered. Firstly, sensitivity to initial estimates and the risk
of overfitting. While using NNLS estimates as starting points can be advantageous, the final
outcome of NLLS* may still be sensitive to these initial values, making reasonably good
results of the NNLS fit essential. Furthermore, the second fitting step of NLLS might not be
able to improve the results significantly. Combining two fitting methods can also increase
the risk of overfitting, especially when the data do not necessarily require such a complex
model in the first place. This can lead to misinterpretation of the results. Additional
limitations encompass the consequences of the regularization applied within the NNLS
algorithm. Although regularization is necessary to enhance fitting results, it comes with
miscalculation and distortion of the fitting results [19]. Given the symmetric nature of
the fittings and the presence of multiple global minima, the fitting results for regularized
NNLS just as NLLS may be prone to spurious minima that may not always be apparent.

192



Mathematics 2024, 12, 609

Despite compensation by the high number of iterations or fitted pixels, these misfitted data
points can still distort the accuracy of the outcome.

DWI data are sensitive to arbitrary diffusion processes and flowing fluids, beyond the
mere presence of blood. This issue poses a challenge in the event of indiscriminate adoption
of simulation parameters and may impact the quality of the fit [27]. Consequently, minor
parameter adjustments may be necessary to translate the results into in vivo applications.
Finally, the segmentation of the diffusion intervals for AUC calculations could potentially be
adapted to accommodate other scenarios, as certain studies have assumed slightly different
diffusion distributions [11,25]. The mentioned limitations, particularly their application to
in vivo imaging and related adaptations, should be addressed in future studies.

The scope of this work is limited to basic least-squares approaches, not covering recent
advancements in the bi-exponential IVIM model analysis which may result in improve-
ments to multi-exponential fitting [28–30]. The application of Bayesian, neural network,
and deep learning methodologies could potentially increase accuracy by identifying the
distinct different diffusion components, particularly in the instance of low SNR [31]. How-
ever, these approaches have not yet been successfully tested in tri-exponential modelling.
Additionally, extensive data groups are required to train neural networks, presenting a
challenge to the implementation of this method due to the potential significant variances in
individual patients’ diffusion parameters.

5. Conclusions

To conclude, this simulation study demonstrates the advantages of free NNLS algo-
rithms for multi-exponential fitting of renal DWI data. Modelling without an inherent
number of diffusion components as in NLLS enables the reliable determination of the
actual underlying diffusion compartments in the investigated tissue. NNLS provides the
distribution of diffusion parameters and is less prone to inaccuracies than NLLS when
compared to ground truth values.

Parameter estimates obtained through the bi-level NNLSAUC approach, coupled with
additional area-under-curve weighting, yield further improved results and exhibit the
greatest agreement with the ground truth values of this study compared to other methods.
Therefore, a set of standard parameters for NNLS has been identified as a recommendation
to ensure a more stable fit and reliable results for microstructural analysis of renal DWI data
using multi-exponential signal analysis. The optimized fitting parameters were applied
in a final systematic simulation which demonstrated the advanced accuracy of NNLS.
Nevertheless, further studies are required to evaluate in vivo adaptation and assess the
performance of the presented method applied to the diverse diffusion properties of human
kidneys. This, especially, includes its ability to distinguish physiological and pathophysio-
logical renal tissue, as well as its accuracy in detecting additional diffusion compartments
resulting from pathologies which is of great relevance to clinical application.
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Abbreviations

AUC Area-Under-Curve
DWI Diffusion-weighted Imaging
gT Ground Truth
IVIM Intra-voxel Incoherent Motion
MAPD Median Absolute Percentage Deviation
NLLS Non-Linear Least-Squares
NLLS* Approach combining both NLLS and subsequent NNLS fitting
NNLS Non-Negative Least-Squares
NNLSAUC Approach adding AUC constraint after NNLS fitting
SNR Signal-to-Noise Ratio

Appendix A

Figure A1. MAPD trend for diffusion coefficients d and volume fractions f as a function of the SNR.

Figure A2. MAPD trend for diffusion coefficients d and volume fractions f as a function of M.
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Table A1. MAPD for a static simulation (n = 1000) with optimal simulation parameters [in %].

Method dslow dinter dfast Avg fslow finter ffast Avg Total

NNLSAUC 6.7 9.9 16.2 10.9 3.8 7.5 7.9 6.4 8.65
NNLS 6.4 10.3 25.0 13.9 3.9 7.6 9.9 7.1 10.50
NLLS* 15.7 22.4 19.5 19.2 12.3 22.1 8.0 14.1 16.65
NLLS 13.9 20.3 15.4 16.5 10.7 20.0 6.4 12.4 14.45
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Abstract: This article is concerned with the mathematical modeling of cancer virotherapy,
emphasizing the impact of Allee effects on tumor cell growth. We propose a modeling
framework that describes the complex interaction between tumor cells and oncolytic viruses.
The efficacy of this therapy against cancer is mathematically investigated. The analysis
involves linear and logistic growth scenarios coupled with different Allee effects, including
weak, strong, and hyper Allee forms. Critical points are identified, and their existence and
stability are analyzed using dynamical system theories and bifurcation techniques. Also,
bifurcation diagrams and numerical simulations are utilized to verify and extend analytical
results. It is observed that Allee effects significantly influence the stability of the system
and the conditions necessary for tumor control and eradication.
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1. Introduction

Virotherapy, an emerging strategy in cancer treatment, uses oncolytic viruses to infect
and destroy tumor cells while sparing healthy tissues. With the ability to cause tumor
destruction through cancer-selective viruses based on various genetic mechanisms and
delivery techniques, this therapeutic approach has gained attention as a promising com-
plement or alternative to conventional treatment strategies such as chemotherapy and
radiation therapy. However, there are several challenges currently associated with virother-
apy that may limit its application in cancer treatment [1–4]. In particular, the interaction
between oncolytic viruses and cancer cells within the tumor microenvironment is not well
understood at present.

Tumor cells exhibit complex growth patterns inside the human body that may involve
linear and nonlinear dynamics. Meanwhile, the Allee effect, a phenomenon observed
initially in ecology that describes how populations of macroorganisms [5–8] or microorgan-
isms [9,10] exhibit reduced growth rates at low densities, also potentially plays a crucial
role in cancer development [11–13]. Like populations in ecosystems, the Allee effect in
tumor cells suggests that cell cooperation is key to their growth and cancer proliferation at
low densities. Understanding this mechanism would help in proposing new approaches to
disrupt cell communication and cooperation by preventing the critical population from
growing efficiently. In this sense, tumor cells have limited growth due to a lack of sufficient
autocrine signals, as there is evidence of dependence on the concentration of autocrine
growth factors produced by themselves [14–17]. Growth factors may be platelet-derived
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growth factor PDGF. Normal cells need to receive signals from their environment to grow;
however, tumor cells may produce both ligands and receptors, thus creating an autocrine
loop [18].

Several studies have noted that the Allee effect may also influence cancer recurrence
after treatment, pointing out that they can proliferate even at this stage, reaching their
critical density more quickly. This may be due to the ability of tumor cells to manipulate
their environment through autocrine cycling or as in the process of secretion of tumor
TAF Angiogenesis Factor, which eventually activates endothelial cells to obtain nutrients
through mini-vascularizations; this angiogenesis phenomenon could increase the capacity
of tumor growth rates [19]. Given that normal cells have a different growth rate compared
to cancer cells [20,21], understanding the cooperative behavior of cancer cells, similar to
the Allee effect in tumor recurrence, could contribute to the design of therapies, in this
case by modulating endothelial cell migration, anti-angiogenesis treatment in tumors,
or anti-autocrine treatments [22–25].

Such complex tumor cell growth dynamics, coupled with the spread and replication
of oncolytic viruses and the host–virus interaction, will directly impact the outcome of vi-
rotherapy. Mathematical modeling offers a powerful theoretical tool to understand the rich
dynamics involved in tumor virotherapy, allowing a meaningful prediction of the efficacy
of treatment and the optimization of key parameters [2,4,26–32]. Cancer modeling and
simulation have advanced rapidly over the last few decades, showing a strong potential to
quantify tumor dynamics and guide therapeutic development in oncology, including in
diagnosis, treatment, and tumor management. In particular, the development of mathemat-
ical models allows the exploration of complex cellular–viral dynamics and the evaluation
of fundamental strategies to control tumor growth through viral infection [31,33–37]. This
research area may integrate mathematical biology with promising clinical applications, uti-
lizing concepts and modeling techniques from other fields such as epidemiology (for viral
infection) and ecology (for population growth and Allee effects) [7,38,39]. Recent modeling
studies, for example, have combined differential equations and stochastic rules to cap-
ture the interactions between tumor cells, oncolytic viruses, and immune responses [40,41].
Furthermore, incorporating Allee effects into oncology models could demonstrate how pop-
ulation thresholds affect tumor stability and dynamic transitions and allow the exploration
of different scenarios in virotherapy towards tumor eradication.

The present paper proposes a theoretical framework based on ordinary differential
equations that incorporates multiple types of Allee effects (weak, strong, and hyper) and
different patterns of tumor cell growth dynamics (linear and logistic). We plan to investi-
gate the various scenarios involved in tumor–virus interactions thoroughly. The models
representing these different scenarios are analyzed from the perspective of bifurcations,
allowing the identification of critical conditions for the stability of equilibrium points and
the occurrence of periodic oscillations. This study could provide quantitative tools to guide
therapeutic design in controlling tumor growth by viruses.

This paper is organized as follows. Section 2 presents the general modeling framework.
Sections 3 and 4 analyze linear and logistic growth patterns, respectively, each coupled with
multiple types of Allee effects. Section 5 is devoted to bifurcation diagrams and numerical
simulation results, followed by a discussion in Section 6. Finally, conclusions are drawn in
Section 7.

2. Base Model

We propose a modeling framework that describes the interaction between normal
tumor cells (denoted by T), infected tumor cells (denoted by I), and virions (denoted by V).
These variables capture the key dynamics of the system, which aims to model the use of
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oncolytic viruses as an antitumor therapy with the goal of promoting tumor eradication in
the patient.

In the following, we present a set of differential equations that describe these inter-
actions between tumor cells and viruses, while incorporating fundamental parameters
related to cancer dynamics and therapeutic effects of the viruses.

T′ = λg(T)A(T, α, ω)− βTV,
I′ = βTV − μI,
V′ = pI − δV,

(1)

where the parameter λ is the rate at which new tumor cells are generated, β is the cell-virus
contact rate, μ is the lysis rate of infected tumor cells, p is the viral replication rate, and
δ is the viral removal rate. The function g(T) represents the growth of the tumor cell
population, which will include linear and logistic growth patterns in our study. Meanwhile,
the function A(T, α, ω) represents the Allee effects, where we will discuss the weak, strong,
and hyper Allee effects separately. The initial conditions of the system (1) are T(0) ≥ 0,
I(0) ≥ 0, and V(0) ≥ 0.

In the analysis presented below, we will discuss different forms of the functions g(T)
and A(T, α, ω) that will represent the coupling of various growth dynamics and Allee
effects. Specifically, we will analyze the linear growth model in Section 3 and the logistic
growth model in Section 4. We will pay more attention to the logistic growth dynamics,
which may be more realistic than the linear growth in that a carrying capacity for the tumor
cells is incorporated. The analytic work will provide a foundation for the comparison in
Section 5 concerning bifurcation diagrams and numerical continuation results. Figure 1
summarizes the functional forms of the growth dynamics and Allee effects analyzed in this
work, as well as their connections to the bifurcation diagrams in Section 5. Furthermore,
we emphasize that the Allee effects discussed throughout this paper will take various types
and will be interpreted in a broad sense [11].

Linear growth model

g(T) = λT

Hyper Strong+weak Strong Weak No Allee

(α1T − 1)(α2T − 1) T−α
T+ω (T − α) T

T+ω .

Figure 1. Cont.
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Logistic growth model

g(T) = λT(1 − bT)

Hyper Strong+weak Strong Weak No Allee

(α1T − 1)(α2T − 1) T−α
T+ω (T − α) T

T+ω .

Figure 1. Functional forms of the Allee effect, with references to the corresponding bifurcation
diagrams.

3. Linear Growth Model

3.1. Linear Growth with Weak and Strong Allee Effects

We examine a scenario that includes both Allee effects, as the sole consideration of
the strong Allee effect produces dynamics similar to those observed when both effects are
included simultaneously. This similarity is clearly illustrated in the bifurcation diagrams
presented in Section 5.

So, we will consider the following system.

T′ = λTA(T, α, ω)− βTV,
I′ = βTV − μI,
V′ = pI − δV,

(2)

where the term A(T, α, ω) = (T − α)/(T + ω) represents the weak and strong Allee effects
simultaneously. Note that the case with weak Allee effect recovers when α = 0. If we
calculate the critical points, we obtain the trivial one (0, 0, 0), the free disease critical point
for the strong Allee effect α, Plα = (α, 0, 0), and the endemic point given by

Ple2 =

(
δμ

pβ
,

δ2λ(δμ − pαβ)

pβ(δμ + pβω)
,

λ(δμ − pαβ)

pβ(δμ + pβω)

)
.

To evaluate the ability of a disease to spread within a population, it is essential to
determine the basic reproductive number, Rα. This parameter represents the average
number of secondary cases an infection will generate during its infectious stage in a fully
susceptible population. In models that incorporate the Allee effect, especially when a
strong Allee effect is considered, the disease dynamics may present different behaviors
compared to traditional models without this effect and even with a weak Allee effect.

By calculating the critical points of the system with the weak and strong Allee effect
simultaneously, we have identified the critical point (α, 0, 0), where α denotes the level
of the strong Allee effect. This critical point is particularly interesting as it represents
an equilibrium in the system where population dynamics and disease spread interact
significantly [42]. This point suggests specific conditions under which the tumor cell
population infected by the virus can stabilize or extinguish.

Next, we will calculate the term Rα for this model, considering the level of the Allee
effect defined by α. This calculation will allow us to analyze the stability of the critical point
and better understand how the Allee effect influences the virus’s ability to be sustained in
the tumor cell population. Using the next-generation matrix method [43], we obtain
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F =

(
0 αβ

p 0

)
, V =

(
μ 0
0 δ

)
and the basic reproductive number of the virus for system (2) for the strong Allee effect is
given by

Rα = ρ(FV−1) =

√
pαβ

δμ
, (3)

or
R2

α =
pαβ

δμ
.

Note: In the base system (1), the basic reproductive number Rα corresponds to
RT∗ = βpT∗

μδ , depending on the first component of the critical point T∗. Suppose that
the basic virus reproduction number RT∗ is less than 1 at the beginning of the infection.
In that case, each virus-infected cancer cell produces, on average, fewer than one new in-
fected cancer cell. Therefore, viral infection cannot spread within the cancer cell population,
and the tumor returns to an uninfected state, leading to tumor persistence and eventual
proliferation. However, if the basic reproduction number RT∗ is greater than 1, at the begin-
ning of the infection, each cancer cell infected by the virus produces, on average, more than
one new infected cancer cell. The basic reproduction number is directly proportional to the
level of the Allee effect, indicating that a higher Allee effect leads to a higher reproduction
number, and consequently a more significant number of infected cancer cells, which would
reduce the overall cancer cell population.

If we use this number at the endemic critical point Ple2 we find that

Ple2 =

(
α

R2
α

,−
(

R2
α − 1

)
α2λ

R4
αμ(α + R2

αω)
,−

(
R2

α − 1
)
α3λ

R2
αβ(α + R2

αω)

)
, (4)

where the condition of existence is 0 < R2
α < 1.

Once we have incorporated the strong and weak Allee effects in the system and
determined the basic reproduction number Rα based on the disease-free critical point
using the parameter α associated with the strong Allee effect, we proceed to analyze
the behavior at the endemic point. In particular, we will explore a stability change by
analyzing the Hopf bifurcation. The strong Allee effect α implies the existence of a minimum
population threshold necessary to avoid extinction, while the weak Allee effect ω suggests
that individual growth rate increases with population density without necessarily requiring
a critical threshold.

In this analysis, we illustrate the conditions under which a Hopf bifurcation occurs
in such a base system, with different Allee effects and, in this case, the linear population
growth term. Subsequently, we will consider the logistic growth case. Also, this analysis
will allow a better understanding of the transitions between steady state and oscillatory
dynamics, providing a more complete picture of how Allee’s effects affect the stability
and variability of the cancer cell populations in the system. By identifying these critical
points, we seek to establish the key parameters that facilitate the emergence of sustained
population cycles. This is fundamental for designing therapeutic strategies for considering
virus-mediated tumor cell infection as an alternative to conventional treatments, which are
also affected by Allee effects.

Theorem 1. Consider the system given by (2). The following set

H =
{
(λ, ςlWS1

, ςlWS2
, R2

α) | ςlWS1
λ − ς2

lWS2
= 0

}
, (5)
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contains the symmetric-saddles and Hopf bifurcations in the point Ple2 (4), where

ςlWS1
= α(δ + μ)(α2 + R6

αω − (α + 2)R4
αω + αR2

α(−α + ω − 1))2

ςlWS2
= R2

α(α + R2
αω)2(−α2(δ2 + δμ + μ2) + R6

αω(−(δ + μ)2)

+ R4
αω((α + 2)δ2 + (α + 4)δμ + (α + 2)μ2) + αR2

α(δ
2(α − ω + 1)

+ δμ(α − ω + 2) + μ2(α − ω + 1)))

(6)

Proof. Taking the endemic point Ple2 (4) and evaluating the Jacobian matrix A, in terms
of parameters, we can then calculate its characteristic polynomial similar to Equation (7).
Associated with A, this is

p(ψ) = a0ψ3 + a1ψ2 + a2ψ + a3, (7)

in terms of the trace, the sum of all second-order diagonal minors of A are denoted by
SimA, and the determinant of the matrix A, where a0 = 1, a1 = −TrA, a2 = SimA, and
a3 = −DetA. Then, we calculate the parameters a1, a2, and a3. We look for conditions
where the (a1a2 − a3) = 0 and we obtain the following set of parameters (5).

Next, we calculate the stability region for the endemic point Ple2 (4) in the model (2).

Proposition 1. Let 0 < R2
α < 1 and ςlWS1

λ < ς2
lWS2

, and then the endemic critical point Ple2 (4)
of a system (2) is locally asymptotically stable.

Proof. According to the Hurwitz stability [44], Ple2 (4) should be local asymptotically stable
if a1, a2, a3 > 0 and a1a2 − a3 > 0. First, we calculate the Jacobian matrix of the system
evaluated at Ple2 (4). From this matrix, we derive the characteristic polynomial and obtain
the coefficients of the Hurwitz matrix, denoted as a1, a2, and a3. In this analysis, we consider
the symmetric-saddle and Hopf bifurcations, incorporating a parameter ε, such that

λ := ε
ς2

lWS2

ςlWS1

, (8)

if we evaluate in (a1a2 − a3), then we find

(a1a2 − a3) = ε(ε − 1)
ς2

lWS2

ςlWS1

. (9)

If ε = 1, the we have the Hopf bifurcation, but if ε > 1 then (a1a2 − a3) > 0 for
a1, a2, a3 > 0. For all, Ple2 (4) is locally asymptotically stable under 0 < R2

α < 1 and
ςlWS1

λ < ες2
lWS2

, with ε > 1.

Theorem 1 and Proposition 1 show that for the values of the basic reproduction
number Rα < 1, the existence of the endemic critical point, the system presents stability
and instability; in instability, the population collapses to the trivial critical point, which is
stable. On the other hand, stability may be associated with some level of cancer cells or with
a cycle of co-existence through the Hopf bifurcation. Figures 2 and 3, shows this behavior,
where the blue curve represents the projection of the hypersurface of Hopf bifurcations (5),
by fixing the parameter values and varying the basic number reproductive term Rα.
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Figure 2. The bifurcation diagram corresponds to the model with linear growth and a strong Allee
effect. The blue curve represents a projection of the Hopf hyperparametric set as a function of Rα.

Figure 3. The bifurcation diagram corresponds to the model with linear growth and both weak and
strong Allee effects (2). The blue curve represents a projection of the Hopf hyperparametric set (5) as
a function of Rα.

3.2. Linear Growth with Hyper Allee Effect

In the last part of this section, we address the case of the hyper Allee effect model in a
linear growth context see Figure 4. The Allee effect, which describes a positive relationship
between population density and growth rate, is fundamental to understanding complex
dynamics such as virus-infected tumor cells. By integrating a hyper Allee effect into a
linear growth model, we analyze the conditions that lead to endemic point stability. Let

T′ = λTA(T, α1, α2)− βTV,
I′ = βTV − μI,
V′ = pI − δV,

(10)

where the term A(T, α1, α2) = (α1T − 1)(α2T − 1) represents the hyper Allee effect,
with α1 < α2. If we calculate the critical points, then we have the trivial (0, 0, 0), two
critical points for free disease (1/α1, 0, 0), (1/α2, 0, 0), and one endemic critical point

PleH =

(
δμ

pβ
,

δ2λμ(pβ − α1δμ)(pβ − α2δμ)

p4β4 ,
δλμ(pβ − α1δμ)(pβ − α2δμ)

p3β4

)
.
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Analogously to the calculation of Rα (3) thought RT∗, we perform the calculation for
infection-free points (1/α1, 0, 0) and (1/α2, 0, 0), and we obtain

R2
lα1

=
pβ

α1δμ

R2
lα2

=
pβ

α2δμ

(11)

These points are now inversely related to the Allee hyper effect values α1 and α2.
Here, we use the general structure of the basic reproduction number RT∗ as the infec-
tious threshold Rl0. If we take the following combination of parameters R2

l0 = pβ
δμ , then

Rlα1 > Rlα2 , with R2
lα1

= R2
l0(1/α1) and R2

lα2
= R2

l0(1/α2). Then we have the critical point
PleH as

PleH =

(
1

R2
l0

,

(
R2

l0 − α1
)(

R2
l0 − α2

)
λ

R6
l0μ

,

(
R2

l0 − α1
)(

R2
l0 − α2

)
λ

R4
l0β

)
, (12)

the existence conditions are 0 < Rl0 <
√

α1 or Rl0 >
√

α2. We will now study the Hopf
bifurcation in this case.

Figure 4. The bifurcation diagram corresponds to the model with linear growth and a hyper Allee
effect (10). The blue curve represents a projection of the Hopf hyperparametric set (13) as a function
of Rα.

Theorem 2. Consider the system (10). The following set

HH =
{
(λ, ςlH1

, ςlH2
, R2

l0) | ςlH1
λ − ς2

lH2
= 0

}
, (13)

contains the symmetric-saddles and Hopf bifurcations in the point PleH (12), where

ςlH1
= (δ + μ)

(
R2

l0(α1 + α2)− 2α1α2
)2

ςlH2
= R8

l0δμ + R4
l0α1α2(2δ + μ)(δ + 2μ)

− R6
l0(α1 + α2)(δ

2 + 3δμ + μ2)

R2
l0 �= 2α1α2

(α1+α2)

(14)

Proof. Taking the endemic point PleH (12) and evaluating the Jacobian matrix A, in terms of
parameters, then we calculate its characteristic polynomial similar to Equation (7), and we
calculate the parameters a1, a2, and a3 as in the Hurwitz matrix H. We obtain the set of
parameters (13), when looking for conditions where (a1a2 − a3) = 0.
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Proposition 2. Let 0 < R2
l0 < α1 or R2

l0 > α2 and ςlH1
λ < ς2

lH2
, and then the endemic critical

point PleH (12) of a system (10), is locally asymptotically stable.

Proof. Following the proof of the weak and strong Allee case, using the Hopf bifurcation
set and a parameter ε, we obtain the coefficients of the Hurwitz matrix, denoted as a1, a2,
and a3. Also, we considers the symmetric-saddle and Hopf bifurcations from (13), such
that

λ := ε
ς2

lH2

ςlH1

, (15)

if we evaluate in (a1a2 − a3), then we obtain

(a1a2 − a3) = ε(ε − 1)
ς2

lH2

ςlH1

. (16)

The critical point Ple2 (12) is locally asymptotically stable under 0 < R2
l0 < α1 or

R2
l0 > α2 and ςlH1

λ < ες2
lH2

, with ε > 1.

Theorem 2 and Proposition 2 analyze the case in which the endemic critical point
is stable, and its existence is divided into two regions depending on Rl0. If Rl0 <

√
α1,

the endemic critical point can be stable or unstable. Stability occurs at a certain level of
infected cancer cells or through limit cycles caused by the presence of a Hopf bifurcation.
In the case where Rl0 >

√
α2, the region of stability and instability is determined by the

Hopf bifurcation, where, in a neighborhood, infected tumor cells coexist in a limit cycle.
The bifurcation diagram shows larger instability regions for Rl0 >

√
α2. This suggests a

higher number of infected cancer cells and, eventually, tumor shrinkage in the presence of
a high hyper Allee value α2.

This section examined the linear population growth model incorporating weak, strong,
and weak with their combinations and hyper Allee effects. This analysis shows how these
effects significantly influence population dynamics and stability of virus-infected tumor
cells. The bifurcation diagrams presented in Section 5 illustrate the different cases and
critical points that emerge under different configurations of the Allee effect parameters.
The following section will review the logistic growth case and explore how the Allee effects
affect this model, which will allow us to compare the dynamics obtained under different
population growth assumptions, enriching our understanding of the conditions that favor
stability and, if so, its eventual application in the effective control of tumor populations.

4. Logistic Growth Model

This section will consider the base model (1) with logistic growth. Following the
approach of the previous Section 3, we analyze only representative cases of the model
dynamics. For example, in that section, we examined the model with linear growth under
the weak Allee effect since its dynamics do not show significant differences compared
to the case without such an effect. Similarly, the case of the model that simultaneously
includes weak and strong Allee effects is similar to the case where only a strong Allee effect
is considered. To verify these observations, one can perform the corresponding calculations
or consult the associated typical diagrams, as shown in Section 5 on bifurcation diagrams.

4.1. Logistic Growth Without Allee Effect

In order to enrich our analysis and explore the dynamics of the base system (1) more
fully, we added the logistic growth model. This model incorporates the carrying capacity
and is a way to model the systems more realistically compared to linear growth, where an
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unbounded population is considered, which allows us to study the population dynamics
of tumor cells under a limited number that depends on each patient, in this case not
including the Allee effect in conjunction with this carrying capacity because we want to
see the dynamic without the Allee effect. In the following, we present the system and the
parameters for its analysis.

T′ = λT(1 − bT)− βTV,
I′ = βTV − μI,
V′ = pI − δV

(17)

where b represents the carrying capacity of the system, that is, the maximum limit of the
tumor population. If we calculate the critical points here, we obtain the trivial one (0, 0, 0),
the disease-free equilibrium point P0 = (T0, I0, V0) = ( 1

b , 0, 0), and the endemic point

Pge =

(
δμ

pβ
,

δλ(pβ − bδμ)

(pβ)2 ,
λ(pβ − bδμ)

pβ2

)
. (18)

As in system (1), system (17) is equivalent to those of an SEIR epidemiological model
with the assumption of a constant population size. This equivalence implies that the
dynamics of these systems are also similar, and results known for the SEIR model can be
straightforwardly extended to the branch of the system of (1) like the basic reproductive
number, similar to that founded in Rα in the previous section. The basic reproductive
number R0 is the expected number of secondary cases produced in a susceptible population
by a typical ineffective individual when the tumor cell is infectious. In this model (17), R0

denotes the average number of new tumor cells infected by a virion during its lifetime
when placed in a population of fully susceptible tumor cells.

As for RT∗ |T∗= 1
b

or Rα (3), using the next-generation matrix method by [43], we obtain

R2
0 =

pβ

bδμ
, (19)

If the virus’s basic reproductive number is smaller than 1, then at the beginning of the
infection, each virus-infected tumor cell produces, on average, less than one newly infected
tumor cell. Therefore, the infection cannot spread and the system returns to an uninfected
state. If R0 > 1, then initially each virus-infected tumor cell produces, on average, more
than one newly infected cell.

Taking into account the endemic equilibrium point Pge and the basic reproductive
number (19), we represent the state in which the virus is present as

Tge =
1

bR2
0

,

Ige = (R2
0 − 1)

λ

bμR4
0

,

Vge = (R2
0 − 1)

λ

βR2
0

.

The conditions of existence of this point are given by 1 < R2
0. On the other hand,

the stability of the critical point free of infection P0 = ( 1
b , 0, 0) is as follows.

Proposition 3. For the critical point P0,

1. If R0 < 1, then the three eigenvalues are real and negative.
2. If R0 = 1, then two eigenvalues are real and negative, and one equals zero.
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3. if R0 > 1, then two eigenvalues are real and negative and one is real and positive.

Proof. First, we take the linearization of the system at P0 as

A0 =

⎛⎜⎝ −λ 0 − β
b

0 −μ
β
b

0 p −δ

⎞⎟⎠
The characteristic polynomial is

0 =

∣∣∣∣∣∣∣
(−λ − χ) 0 − β

b
0 −(μ + χ) β

b
0 p −(δ + χ)

∣∣∣∣∣∣∣
= −(λ + χ)

(
(μ + χ)(δ + χ)− pβ

b

)
= −(λ + χ)

(
χ2 + (δ + μ)χ + δμ − pβ

b

)
(20)

The second factor can be expressed as

Q = χ2 + (δ + μ)χ + δμ − pβ

b

= χ2 + (δ + μ)χ + δμ

(
1 − pβ

δμb

)
= χ2 + (δ + μ)χ + δμ

(
1 − R2

0

)
Then, the roots are

χ =
1
2

(
−(δ + μ)±

√
(δ + μ)2 − 4(1 − R2

0)δμ

)
(21)

The equivalent expressions for the discriminant are

Δ = (δ + μ)2 − 4(1 − R2
0)δμ

= δ2 + 2δμ + μ2 − 4δμ
(

1 − R2
0

)
= (δ − μ)2 + 4R2

0δμ

Since the discriminant Δ > 0, for any R0 > 0 and positive parameters δ, μ > 0, all
roots are real. For R0 < 1, the discrimimant Δ < (δ + μ)2; therefore, both roots are negative
for and bα < 1. If R0 > 1, then Δ > (κ + δ)2 and one of the roots in (21) is positive.

In the following result, we will analyze the Hopf bifurcations set as a function of
admissible parameters of the system (17) at the critical point Pge (18).

Theorem 3. Consider the system of autonomous equations that model the dynamics of the tumor
cell population, given by (17). The following set

H =
{
(λ, Φ01, Φ02, R2

0) | Φ01λ − Φ2
02 = 0

}
, (22)
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contains the symmetric-saddles and Hopf bifurcations in the point Pge, where

Φ01 = (δ + μ)

Φ02 =
((

δ2 + μ2)− (
R2

0 − 3
)
δμ

)
R2

0.
(23)

Proof. Taking the endemic point Pge and evaluating in the Jacobian matrix A, we calculate
its characteristic polynomial, to calculate the coefficients of Hurwitz matrix as follows:

a1 = (δ + μ) +
λ

R2
0

a2 = (δ + μ)
λ

R2
0

a3 = (R2
0 − 1)

δλμ

R2
0

All coefficients are positive for R2
0 > 1. By finding the condition for (a1a2 − a3) = 0,

we obtain the set of parameters (22).

The Hopf bifurcation represents a transition to stability in the system. This bifurcation
occurs when we move one key parameter and obtain a pair of complex conjugate eigen-
values, which can be the basic reproductive number R2

0. If we take (7), with conditions
a0 = 1 and a1 · a2 = a3, then we obtain one real eigenvalue given by ψ = −a1 and two
conjugate complexes of eigenvalues ψ = ±i

√
a2, with a2 > 0. When a2 is the change in

sing, then complex conjugate eigenvalues cross the imaginary axis and appear in the Hopf
bifurcation; in this case, the change in sing is given by (22), and if a2 < 0, then we have
the symmetric-saddles.

These eigenvalues show a transition in the system’s dynamics, in which the solu-
tions change from unstable to oscillatory behavior; under small perturbations, the system
could deviate from the cycle and move towards a different solution or a higher instability.
In Section 5, we present the bifurcation diagram corresponding to the Theorem 3, which
graphically illustrates some equilibrium phases in the system (17).

Analyzing the endemic equilibrium point is essential to identify regions in terms of
parameters where dynamic behaviors such as stability, periodic oscillations, or critical
transitions of sign change points are present. In the following, we present an analysis that
characterizes this point.

Proposition 4. Let 1 < R2
0 and Φ01λ < Φ2

02, and then the endemic critical point Pge of the
system (17) is locally asymptotically stable.

Proof. As in the proof of Theorem 3, we calculate the coefficients of characteristic polyno-
mial a1, a2, a3 which are all positive for the existence condition of endemic critical point Pge.
Following the stability proof in the previous section, we define the parameter λ in terms of
ε, but with Φ01 and Φ02. If we evaluate in (a1a2 − a3), we have

(a1a2 − a3) = (ε − 1)ε

(
δ2 + μ2 − (

R2
0 − 3

)
δμ

)2

δ + μ
.

Then, for ε > 1, we obtain (a1a2 − a3) > 0 and the critical point Pge is locally asymp-
totically stable.

The summary of the dynamics of the logistic growth case without the Allee effect is
presented in the bifurcation diagram in Figure 5. We observed the condition of existence
R0 > 1 of the endemic critical point Pge (18) and the Hopf curve, which is a threshold that,
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in addition to determining the stability of the critical point, can exhibit limit cycles in a
neighborhood of parameters. In instability, a trajectory away from the unstable endemic
equilibrium may tend to the trivial stable critical point, indicating the collapse of the system,
or to the stable variety of the infection-free saddle point P0 = (1/b, 0, 0), indicating the
propagation of cancer cells.

Figure 5. The bifurcation diagram corresponds to the model with logistic growth and no Allee effect
(17). The blue curve represents a projection of the Hopf hyperparametric set (22) as a function of R0.

4.2. Logistic Growth with Strong Allee Effect

This model incorporates the strong Allee effect parameter α. We present the system
for its analysis in the following.

T′ = λT(1 − bT)(T − α)− βTV,
I′ = βTV − μI,
V′ = pI − δV

(24)

where b represents the carrying capacity of the system, and α represents the strong Allee
effect, which describes the decrease in population growth rate when tumor cell density is
below a critical threshold, where we want to explore its influence on the dynamics of the
system. If we calculate the critical points here, we obtain the trivial one (0, 0, 0), the disease-
free equilibrium point P0s = ( 1

b , 0, 0) in terms of the braking capacity, the disease-free
equilibrium point Pα = (α, 0, 0) in terms of the strong Allee effect, and the endemic point

Pgse =

(
δμ

pβ
,− δλ(pαβ − δμ)(pβ − bδμ)

(pβ)3 ,− δλ(pαβ − δμ)(pβ − bδμ)

p2β3

)
.

If we substitute the basic reproductive number R2
0, from (19), because it is the same in

the system (24), we obtain

Pgse =

(
1

bR2
0

,−(R2
0 − 1)(αbR2

0 − 1)
λ

b2μR6
0

,−(R2
0 − 1)(αbR2

0 − 1)
λ

bβR4
0

)
,

in terms of R0. Considering the critical point Pα = (α, 0, 0), we also introduce the term
Rα from (3) to represent the critical point Pgse as a function of the two basic reproduction
numbers, R0 and Rα, as follows.

Pgse =

(
1

bR2
0

,−(R2
0 − 1)(R2

α − 1)
λ

b2μR6
0

,−(R2
0 − 1)(R2

α − 1)
λ

bβR4
0

)
. (25)
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The conditions of existence of this point are given by R2
α < 1 < R2

0. We observe that
the basic reproductive numbers have the following relation

R2
α = R2

0bα. (26)

Note that the stability analysis of the disease-free point P0s is analogous to that per-
formed in the previous system. However, the associated characteristic polynomial presents
a modified expression, which is detailed below.

A0 =

⎛⎜⎜⎝
(

α − 1
b

)
λ 0 − β

b

0 −μ
β
b

0 p −δ

⎞⎟⎟⎠
The characteristic polynomial is

0 =

∣∣∣∣∣∣∣∣
((

α − 1
b

)
λ − χ

)
0 − β

b

0 −(μ + χ) β
b

0 pγ −(δ + χ)

∣∣∣∣∣∣∣∣
=

((
α − 1

b

)
λ − χ

)(
(μ + χ)(δ + χ)− pβ

b

)
=

((
α − 1

b

)
λ − χ

)(
χ2 + (δ + μ)χ + δμ

(
1 − R2

0

))
(27)

So, we have a Corollary from Proposition 3.

Corollary 1. For the critical point P0,

1. If R0 < 1, then the three eigenvalues are real and negative.
2. If R0 = 1, then two eigenvalues are real and negative, and one equals zero.
3. if R0 > 1, then two eigenvalues are real and negative and one is real and positive.

In the following result, we will analyze the Hopf bifurcations set as a function of
admissible parameters of the system (24) at the critical point Pgse (25).

Theorem 4. Consider the system given by (24). The following set

H =
{
(λ, Φs1, Φs2, R2

0) | Φs1λ − Φ2
s2 = 0

}
, (28)

contains the symmetric-saddles and Hopf bifurcations in the point Pgse, where

Φs1 = Δ2
R0,α

(δ + μ)

Φs2 = δμ
(

R2
0
(
αb

(
R2

0 − 3
)− 3

)
+ 5

)− ΔR0,α

(
δ2 + μ2)

ΔR0,α := R2
0(1 + αb)− 2.

(29)

Proof. Take the endemic point Pgse and evaluate the Jacobian matrix A to look for condi-
tions where the (TrA SimA) minus the determinant DetA are zero. Using the resulting
polynomials Pol0 as in [45,46], we obtain the set of parameters (28).

The predicted result confirms the existence of a Hopf bifurcation in the system (24).
This result indicates the emergence of periodic orbits near the analyzed equilibrium point,
which introduces oscillatory dynamics into the model. Next, we explore the stability
of the equilibrium point, which will allow us to identify the conditions under which
stability exists.
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Proposition 5. Let 1 < R2
0 < 2/(1 + bα) and Φs1λ < Φ2

s2, and then the endemic critical point
Pgse of a system (24) is locally asymptotically stable.

Proof. The linearization of the system (24) at Pgse is given by

A1 =

⎛⎜⎜⎜⎝
λ((R2

0−1)+(R2
α−1))

bR4
0

0 − β

bR2
0

− λ(R2
0−1)(R2

α−1)
bR4

0
−μ

β

bR2
0

0 p −δ

⎞⎟⎟⎟⎠
The characteristic polynomial associated with A1 is

p(ψ) = a0ψ3 + a1ψ2 + a2ψ + a3, (30)

in terms of the trace, the sum of all second-order diagonal minors of A1 denoted by
SimA1, and the determinant of the matrix A1, where a0 = 1, a1 = −TrA1, a2 = SimA1,
and a3 = −DetA1. Specifically

a0 = 1,

a1 = (δ + μ)− λ

(
R2

0 − 1
)
+

(
R2

α − 1
)

bR4
0

,

a2 = −λ(δ + μ)

(
R2

0 − 1
)
+

(
R2

α − 1
)

bR4
0

,

a3 = (λδμ)

(
R2

0 − 1
)(

1 − R2
α

)
bR4

0
.

The Hurwitz matrix associated with p(ψ) is given by

H(p) =

⎛⎜⎝ a1 a3 0
a0 a2 0
0 a1 a3

⎞⎟⎠
according to the Hurwitz stability [44], Pgse is locally asymptotically stable if a1, a2, a3 > 0
and a1a2 − a3 > 0. Under the conditions of the existence of the endemic point Pgse,
R2

α < 1 < R2
0 or equivalently 1 < R2

0 < 1/(bα). It follows that

ΔR0,α := (R2
0 − 1) + (R2

α − 1)

= R2
0(1 + bα)− 2 < 0,

or 1 < R2
0 <

2
1 + bα

.

So a1 > 0 with 1 < R2
0 < 2/(1 + bα) or when R2

0 ≥ 2/(1 + bα) with (δ + μ) > λΔR0,α .
Also, the coefficient a2 is positive with 1 < R2

0 < 2/(1 + bα). It holds that a3 > 0 for
R2

α < 1 < R2
0 or equivalently 1 < R2

0 < 1/(bα). As we can see,

−(δ + μ)ΔR0,α

(
(δ + μ)− λΔR0,α

bR2
0

)
> 0,

in 1 < R2
0 < 2/(1 + bα) and (

R2
0 − 1

)(
1 − R2

α

)
> 0,
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in 1 < R2
0 < 1/(bα), then[

−(δ + μ)ΔR0,α

(
(δ + μ)− λΔR0,α

bR2
0

)
+

(
R2

0 − 1
)(

1 − R2
α

)
δμ

]
> 0,

for 1 < R2
0 < 2/(1 + bα). Which implies that a1a2 − a3 > 0. On the other hand, taking (28)

we have

λ = ε
Φ2

s2
Φs1

,

with ε > 0 and Φs1 > 0. When we evaluate the last expression in (a1a2 − a3) we obtain

(a1a2 − a3) = (ε − 1)ε
Φ2

s2
Φs1

.

In this case, if ε = 1, then we have a1a2 − a3 = 0, which is equivalent to the Hopf
condition, but if ε > 1, also, a1a2 − a3 > 0. For all, Pgse is stable when 1 < R2

0 < 2/(1 + bα)

and λΦs1 < Φ2
s2.

The bifurcation diagram in Figure 6 shows the dynamics when there is logistic growth
and a strong Allee effect. The interval of existence of the critical point Pgse is determined
by the red dotted vertical lines determined by 1 < R2

0 < 2/(1 + bα), and in this case the
point can be stable or unstable bounded by the Hopf bifurcation (blue curve). There may
be endemic equilibrium or latent cancer, and there may also be escape from cancer; in this
case, the infection-free point is P0s.

Figure 6. The bifurcation diagram corresponds to the model with logistic growth and strong Allee
effect (24). The blue curve represents a projection of the Hopf hyperparametric set (28) as a function
of R0.

4.3. Logistic Growth with Hyper Allee Effect

In this model, the population experiences two thresholds: one below, which tends to
extinction, and another above, which again tends to extinction. The growth rate becomes
negative at very low population sizes and high population sizes, with a positive growth
rate only within a specific intermediate range. We present a mathematical representation
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with the hyper Allee effect by modifying the logistic growth model with additional terms
that create a region of bi-stability.

T′ = λT(1 − bT)(α1T − 1)(α2T − 1)− βTV,
I′ = βTV − μI,
V′ = pI − δV,

(31)

where b is the carrying capacity α1 and α2 are the two critical threshold with (b < α1 < α2).
The other parameters remain the same as in the base system (1).

As in the previous case with the strong Allee effect, we take the basic reproductive
number from (19) for the critical point ( 1

b , 0, 0). For the critical point Pα1 = ( 1
α1

, 0, 0),

we obtain Rα1 =
√

pβ
α1δμ . In addition to the critical point Pα2 = ( 1

α2
, 0, 0), we obtain

Rα2 =
√

pβ
α2δμ , which are expressions similar to (11). Then,

R2
α1

= R2
0

b
α1

,
R2

α2
= R2

0
b

α2
.

(32)

Note that for b < α1 < α2, then R2
α2

< R2
α1

< R2
0.

In this analysis, we first focus on the stability of the disease-free critical points:
Pb = (1/b, 0, 0), (1/α1, 0, 0), and (1/α2, 0, 0). These points represent states in which infected
tumor cells and virions are absent while infection-free tumor cells remain in equilibrium.
While b denotes the system’s carrying capacity, the α1 and α2 correspond to hyper Allee
effects on tumor cell dynamics.

Stability analysis of these points is essential to understand how system parameters,
particularly the carrying capacity and Allee effects, influence the eradication or persistence
of viral infection. We then performed a linear stability study, evaluating the zero solutions
of the characteristic polynomial associated with these points.

Proposition 6. For the following critical points Pb, Pα1 , and Pα2 , we have the following.

1. If R0 < 1 or Rα2 < 1, then the three eigenvalues are real negative. If Rα1 < 1, then two
eigenvalues are negative real, and one is positive real.

2. If R0 = 1 or Rα2 = 1, then two eigenvalues are negative real, and one equals zero. If Rα1 = 1,
then one eigenvalue is positive, one negative, and one zero.

3. If R0 > 1 or Rα2 > 1, then two eigenvalues are negative real, and one is positive real.
If Rα1 > 1, then two eigenvalues are real positive and one is real and negative.

Proof. The discriminant for each point P0, Pα1 , Pα2 , with its corresponding third eigenvalue,
is as follows.

Δb = (δ − μ)2 + 4R2
0δμ, − (b − α1)(b − α2)

b
< 0,

Δα1 = (δ − μ)2 + 4R2
α1

δμ,
(b − α1)(α1 − α2)

α2
1

> 0,

Δα2 = (δ − μ)2 + 4R2
α2

δμ,
(b − α2)(α2 − α1)

α2
1

< 0,

with 0 < b < α1 < α2. The analysis is analogous to the proof of Proposition 3.

After analyzing the stability of disease-free points, we focus on the endemic point,
where infected tumor cells and virions coexist in equilibrium with infection-free tumor
cells. This critical point is particularly interesting, as its analysis may reveal other dynamic
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behaviors such as periodic oscillations through a Hopf bifurcation. The endemic point in
the system (31) is PeH = (TeH , IeH , VeH), and in particular

TeH =
(

1
b

)
1

R2
0
,

IeH =
(

λ
bμ

) (R2
0−1)

(
R2

α1
−1

)(
R2

α2
−1

)
R2

0R2
α1 R2

α2
,

VeH =
(

λ
β

) (R2
0−1)

(
R2

α1
−1

)(
R2

α2
−1

)
R2

0R2
α1 R2

α2
.

(33)

The existence conditions for the point are two main cases 1 < R2
0 < α1/b or R2

0 > α2/b.
Following the model approach with a strong Allee effect, we will examine the Hopf

bifurcations considering their dependence on the reproductive number (19) and the param-
eters (32) at the critical point PeH (33).

Theorem 5. Consider the system (31) and the critical point PeH (33). The following set

HHyper =
{(

b, α1, α2, δ, , λ, μ, R2
0, Φ1, Φ2

) | λΦ1 − Φ2 = 0
}

, (34)

contains the symmetric-saddles and Hopf bifurcations, with

Φ1 = (δ + μ)(b2R4
0 + b(R2

0 − 2)R2
0(α1 + α2) + α1α2(3 − 2R2

0))
2

Φ2 = b2R4
0(−δ2 − μ2 + δμ(R2

0 − 3))− bR2
0(α1 + α2)(δ

2(R2
0 − 2)

+ δμ(3R2
0 − 5) + μ2(R2

0 − 2)) + α1α2(δ
2(2R2

0 − 3) + δμ(5R2
0 − 7)

+ μ2(2R2
0 − 3))b2R6

0.

(35)

Proof. Taking the endemic point PeH (33), sufficient conditions are sought for the Hopf bifur-
cation, and the analysis is analogous to the proof of Theorem 4 to obtain the expression (34).

Once the existence of a Hopf bifurcation is confirmed, we will analyze the stability of
the endemic point and determine the conditions under which it is stable or unstable.

Proposition 7. Let 1 < R2
0 < α1/b or R2

0 > α2/b be the condition of existence of the endemic
critical point PeH (33), and then it is stable, where λΦ1 < Φ2

2 as in (34).

Proof. By linearizing the system (31) and obtaining the Jacobian matrix A, its characteristic
polynomial P(ψ)H , and the coefficients a1H , a2H , and a3H at the point PeH (33) we obtain
the following.

a1H =
(

3R2
0 − 4

)
R2

α1
R2

α2
α1α2λ

+
(

3 − 2R2
0

)
bR2

0R2
α1

R2
α2
(α1 + α2)λ

−
((

R2
α1

(
1 + R2

α2

))
+

(
R2

α2
− 1

))
b2R4

0λ

−
(

R2
α1

(
R2

α2
(δ + μ)− λ

)
−

(
R2

α2
− 1

)
λ
)

R6
0b2.

a2H =
((

R2
0 − 1

)(
1 − R2

α1

)
+

(
(1 − R2

0) + Rα2
1

)
Rα2

2

)
(δ + μ)λ

+
(

4 − 3R2
0

)
R2

α1
Rα2 α1α2(δ + μ)λ

+
(

2R2
0 − 3

)
R2

0R2
α1

Rα2 b(α1 + α2)(δ + μ)λ

a3H =
(

R2
0 − 1

)(
R2

α1
− 1

)(
R2

α2
− 1

)
R6

0b3δμ.
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To prove the stability of PeH (33), we need to check that
(
a1H a2H − a3H

)
) > 0. If we

use (34), let ε such that

λ = ε
Φ2

2
Φ1

, (36)

and we obtain (
a1H a2H − a3H

)
= ε(ε − 1)

Φ2
2

Φ1
.

If ε = 0, then λ = 0 is not a positive range value. If ε = 1, then we recover the set (34)
and we have

(
a1H a2H − a3H

)
= 0. In the case of ε > 1 we have

(
a1H a2H − a3H

)
> 0, so PeH

(33) is stable when
λΦ1 = Φ2

2 < εΦ2
2,

for 1 < R2
0 < α1/b or R2

0 > α2/b, and a1H , a2H , a3H > 0.

For the Allee hyper effect, we have two threshold values, which satisfy b < α1 < α2;
there are levels Rα2 < Rα1 < R0 that largely determine the dynamics of the system with
logistic growth. Theorem 5 and Proposition 7 determine the stability of the system, as seen
in the bifurcation diagram in Figure 7, for the conditions of existence of the endemic critical
point 1 < R0 < α1/b or R2

0 > α2/b, indicated by the vertical red dashed lines. In both
intervals, one can distinguish between stability and instability through the Hopf bifurcation
curve in blue. There are cycles in a neighborhood where the Hopf curve is zero, which
determines latency in cancer. In addition, the population can be highly endemic with a
high level of R0, as seen in Region 5 of the bifurcation diagram.

Figure 7. The bifurcation diagram corresponds to the model with logistic growth and the hyper Allee
effect (31). The blue curve represents a projection of the Hopf hyperparametric set (34) as a function
of R0.

5. Bifurcation Diagrams and Numerical Results

Using bifurcation diagrams and numerical continuation techniques complements
the qualitative analysis of system dynamics. These methods allow us to visualize how
the variation of critical parameters, in this case, the basic reproductive numbers, affects
the existence and stability of equilibrium points and periodic solutions of the model.
The bifurcation diagrams offer a graphical representation of dynamics in the system, such
as Hopf bifurcations, which enable us to find some changes in the stability of critical
points, providing a global perspective on the behavior of the system. In turn, numerical
continuation allows us to trace these solutions over multiple parametric values, facilitating
the identification of regions of stability, instability, or complex oscillations.
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5.1. Bifurcation Diagrams

In the following, we present the diagrams obtained from the analytical results of the
previous two sections.

Figure 2 shows the bifurcation diagram corresponding to the system, which incor-
porates linear growth with a strong Allee effect. The bifurcation parameter considered
is Rα from (3). In the upper part of the diagram, the existence interval of the critical en-
demic point, defined by 0 < Rα < 1, is shown, delimited by two dashed red vertical lines.
The curve in blue corresponds to the Hopf bifurcation, marking a transition of stability.

The regions identified in the diagram are as follows; Region 1 corresponds to the
interval where the endemic point exists but is unstable, and Region 2 represents the interval
where the endemic point exists and is stable. Region 3 is associated with the region where
the Hopf curve takes negative values; however, the values associated with the endemic
critical point are not biologically admissible, while in the last region in the Figure 2, the Hopf
curve takes positive values and has no biological interpretation in the model’s context.

Figure 3 shows the bifurcation diagram for the case where the model simultaneously
considers linear growth with the strong and weak Allee effects. These regions of stability
are separated by the blue dashed vertical line, which marks the transition of the Hopf curve
from positive to negative values.

Figure 4 shows the bifurcation diagram for the system with linear growth and hyper-
bolic Allee effects. A prominent feature of this model is the presence of two regions of
existence for the endemic point, which are delimited by red-dashed vertical lines. The blue-
dashed vertical lines represent the transition of the Hopf curve from positive to negative
values. When the Hopf curve is below the horizontal axis, there may be stability at the en-
demic point. The regions identified in the diagram are as follows: In Region 1, the existence
of the endemic point is seen as the Hopf curve is negative, and the endemic point is stable.
In Region 2, the Hopf is positive, and then the endemic point is unstable. The endemic
point does not exist in Regions 3 and 4. Regions 5 and 6 are stable and unstable.

Figure 5 shows the bifurcation diagram for the logistic growth system without the
Allee effect. Region 1 corresponds to the case where the endemic point is absent. Region 2
is the stable region where the endemic point exists, and the values of the Hopf curve are
negative. Finally, Region 3 shows the values for R0 where the endemic point is unstable.

Figure 8, similar to the previous case, shows the bifurcation diagram for the system
with logistic growth and a weak Allee effect. Region 1 corresponds to the case in which the
endemic point is not present. Region 2 is the stable region, where the endemic point exists
and the values of the Hopf curve are negative. Finally, Region 3 shows the values for R0,
where the endemic point is unstable. The Allee effect benefits the stable equilibrium point.

Figure 8. The bifurcation diagram corresponds to the model with logistic growth and weak Allee
effect. The blue curve represents a projection of the Hopf hyperparametric set as a function of R0.
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Figure 9 shows the bifurcation diagram for the system with logistic growth and
simultaneous weak and strong Allee effects. Region 1 corresponds to the case of the
nonexistence of the endemic point. Region 2 is the region where the endemic point is
unstable. Region 3 shows the values for R0, where the endemic point is stable. Region 4 is
the region where the endemic point does not exist, although the Hopf curve has negative
values. In Region 5, there is also no biological interpretation.

Figure 9. The bifurcation diagram corresponds to the model with logistic growth and both weak
and strong Allee effects. The blue curve represents a projection of the Hopf hyperparametric set as a
function of R0.

Figure 6, similar to the previous case, shows the bifurcation diagram for the system
with logistic growth, but only with the strong Allee effect. Region 1 corresponds to the case
of the nonexistence of the endemic point. Region 2 is the region where the endemic point
exists and is unstable, and Region 3 shows the values for R0, where the endemic point exists
and is stable. Region 4 is the region where the endemic point does not exist, although the
Hopf curve has negative values, and in Region 5, there is no biological interpretation.
Figure 7 shows the bifurcation diagram for the model with logistic growth and the Allee
hyper effect. There is no endemic point in Region 1 and in the region between 3 and 4.
In Regions 2 and 4, the endemic point is unstable, while in Regions 3 and 5, it is stable.

5.2. Numerical Continuation

Figure 10 shows the numerical continuation, performed in MATLAB (24.1.0.2653294)-
MATCONT (7.1) [47], of the critical points in terms of the parameters β and μ. The initial
values used for numerical continuation are λ = 1, b = 1/4, α1 = 1/2, α2 = 3/4, p = 1,
δ = 1, β = 0.3, μ = 1. On the other hand, Figure 11 presents the projection of the Hopf
curve, defined in (34), in terms of the exact parameters β and μ. The latter plot is equivalent
to the bifurcation diagram presented in Figure 7, with clear correspondences between
the highlighted elements; Branch 1, marked in orange in Figure 11, corresponds to the
first dashed vertical line in Figure 7 and is in condition R2

0 = 1. Branch 2, represented by
the green straight line in Figure 11, is associated with the second dashed vertical line in
Figure 7 (from left to right), corresponding to condition R0 < α1/b. The red line in Figure 11
represents the third red dashed vertical line in Figure 7, defined by condition R2

0 > α2/b.
The Hopf projection in blue in Figure 11 is given by Equation (34) and describes the stability
transitions through the parameters β and μ. In this context, Figure 10 provides a numerical
representation equivalent to Figure 11, which consistently supports the analytical results
obtained previously.
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Figure 10. Numerical continuation in MATLAB (24.1.0.2653294)-MATCONT (7.1) of the bifurcation
diagram for the model with logistic growth and hyper Allee effect. The blue horizontal line is a
continuation through critical endemic points. The BPs (Branch Points) mark changes in the solution
structure, determining the existence by sign changes in some components of the endemic equilibrium
(33). The H points represent Hopf bifurcations (34), indicated by the diagonal lines as a function of
the parameters (β, μ). Finally, BT corresponds to a Bogdanov–Takens bifurcation, with no oncological
interpretation due to its negative μ component.

Figure 11. The projection of the analytical sets in the bifurcation diagram corresponds to the model
with logistic growth and the hyper Allee effect.

Figures 12–15 present the numerical solution of a stable endemic point for different
values of weak and strong Allee effects in the logistic growth model. These points were
selected using the parameters corresponding to stability in the bifurcation diagram shown
in Figures 5–7. The numerical continuation confirms the stability of the endemic point
under the specific conditions of this region, supporting the analytical results and the bifur-
cation diagrams previously discussed. This representation highlights how the parametric
configurations within this region allow steady-state to be achieved in the dynamical sys-
tem. On the other hand, Figure 16 shows a case of stability under the Allee hyper effect.
Each of these levels of the cancer cell population persists without being completely extin-
guished. The figure shows that the initial conditions determine the long-term population
level. In this case, to reach the high population level, the initial conditions must be in a
small neighborhood of the highest stable population level, while for the low population
level, the initial conditions can take a larger set of values. The figure shows that an initial
condition close to the carrying capacity is governed by the lowest stable level, not the
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highest level, as expected. Under these parameter values, the basic reproductive number is
R0 = 1.10547, corresponding to Region 3 in the bifurcation diagram 7.

Figure 12. The numerical solution of a stable endemic point corresponds to the model with logistic
growth and no Allee effect, where the different curves represent different initial conditions. Parameter
values: λ = 1, b = 1/10, α = 0, ω = 0, β = 0.2657, μ = 0.5, p = 1, and δ = 1.

Figure 13. Numerical solution of a stable endemic point corresponds to the model with logistic
growth and with weak Allee effect, with different curves corresponding to different initial conditions.
Parameter values: λ = 1, b = 1/10, α = 0, ω = 5, β = 0.0897, μ = 0.5, p = 1, and δ = 1.

Figure 14. The numerical solution of a stable endemic point corresponds to model (24) with logistic
growth and a strong Allee effect, where different curves correspond to different initial conditions.
Parameter values: λ = 1, b = 1/10, α = 0.5, ω = 0, β = 0.117, μ = 0.5, p = 1, and δ = 1.
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Figure 15. The numerical solution of a stable endemic point corresponds to the model with logistic
growth, with both weak and strong Allee effects, where different curves correspond to different initial
conditions. Parameter values λ = 1, b = 1/10, α = 0.5, ω = 5, β = 0.0652, μ = 0.5, p = 1, and δ = 1.

Figure 16. The numerical solution of endemic stability corresponds to the model (31) with logistic
growth and the hyper Allee effect, where different curves correspond to different initial conditions.
Parameter values: λ = 1, b = 1/4, α1 = 1/2, α2 = 3/4, β = 0.30551595923505, μ = 1, p = 1,
and δ = 1.

6. Discussion

In the base model (1) with linear growth, we note that the system cannot adequately
capture the stability of the critical points by not considering more complex or realistic situa-
tions, such as Allee effects. In particular, without integrating the Allee effects or considering
only a weak Allee effect, the critical point of the endemic becomes unstable. However,
with a strong Allee effect, the dynamic changes. This term generates a change in the stability
of the endemic critical point, accompanied by a Hopf bifurcation. This bifurcation gives
rise to limit cycles, adding complexity to the system dynamics. This pattern of stability
change and bifurcation is preserved even when considering strong and weak Allee effects
simultaneously (2), which underlines the robustness of these dynamics in the context of the
model. When we incorporate the hyperbolic Allee effect, new characteristics are introduced
to the system. This type of effect defines two critical levels, α1 and α2, which determine
the existence of the endemic critical point and amplify the range of stability when α1 < α2.
In this particular case (10), in the limit of α2 −→ α1, the model once again reduces to the
strong Allee effect, confirming the consistency of the mathematical framework.
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The logistic growth model provides a more realistic situation of tumor dynamics
by incorporating the carrying capacity of the system, a factor important in biological
contexts where resources are limited. From the outset, this model presents richer dynamics
compared to the linear case, since even without Allee effects, a change in stability is
observed through a Hopf bifurcation (Figure 5). When a weak Allee effect is incorporated,
the Hopf bifurcation that gives rise to the stability change of the endemic critical point is
preserved. On the other hand, the stability region for this point becomes larger, as can
be seen in Figure 8. Then, the weak Allee effect provides stability with many conditions
without significantly altering the transitions of dynamics in the system. In the presence of
a strong Allee effect, or when strong and weak Allee effects are considered simultaneously,
the existence of the endemic critical point is reduced. This may be attributed to the
imposition of a survival threshold for tumor cells, which limits their viability at low
densities. Despite this reduction in the existence of the endemic point, the stability change
is maintained by a Hopf bifurcation (Figures 6 and 9). The case with the hyperbolic Allee
effect (Figure 6) introduces a markedly different dynamic. Here, a wider range is observed
for both the existence of the endemic critical point and its stability.

The analysis results highlight the key role of the carrying capacity and the Allee
effect in the dynamics of the system, particularly in stabilizing the critical endemic point.
The carrying capacity defines a range of stability in the system for values of the basic
reproduction number 1 < R2

0 < χ, where χ is determined by the threshold associated with
the Hopf bifurcation. This range indicates that, under controlled conditions, the system can
maintain a stable equilibrium without complete tumor eradication. The Allee effect, on the
other hand, reduces the existence of a critical endemic point for 1 < R2

0 < 1/(bα) levels,
promoting the propagation of the virus and consequently reducing the population of cancer
cells. This phenomenon suggests that the Allee effect may act as a regulatory mechanism
that favors tumor control through viral propagation. In the case of the hyper Allee effect,
the endemic point persists in an extended range for 1 < R2

0 < α1/b, further facilitating
the virus’s spread. When R2

0 > α2/b, as observed in Region 5 (Figure 7), the dynamics
indicate a possible drastic reduction in the tumor population. This region could represent a
favorable scenario for antitumor therapies, as it combines effective virus propagation with
a significant impact on cancer cell reduction.

The weak Allee effect explored in this study is observed to facilitate the stability of
the endemic critical point, expanding the stability region without significantly altering the
dynamic transitions of the system, meaning that a low density of virus-infected tumor
cells could still allow cancer proliferation, but with lower efficiency. However, the strong
Allee effect with logistic growth indicates that if the number of infected tumor cells is
insufficient, the viral infection does not spread effectively, leading to tumor eradication.
However, if the cell density exceeds the threshold, the tumor may persist or grow, as shown
in Figure 6. When the weak and strong Allee effects are combined, the existence of the
endemic critical point can be limited. In fact, in these observed cases, the limitation is very
marked depending on the basic reproductive number (see Figures 3 and 9).

In Allee, the hyper effect is a more extreme case, where there are two critical thresholds,
α1 and α2, a lower one, below which the tumor population collapses, and an upper one,
which defines a steady state in which the tumor can persist. This effect suggests that the
virus could be more effective in eliminating cancer if the cell population is kept within
certain limits, R2

0 > α2/b. In this region, where the number of infected cells is high,
there is a reduction in the tumor population, which could represent an advantage for
oncolytic therapies.

This study is theoretical and hypothetical, as its primary objective was to ex-
plore the dynamics through bifurcations rather than fitting specific experimental data
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at this stage. However, experimental studies in cancer have empirically verified its
behavior [14,16,48–53], supporting the relevance of incorporating different types of Allee ef-
fects into mathematical models, such as the one presented here, in the context of population
dynamics under oncolytic virotherapy. Other papers support the idea, with experimental
data showing that cancer can be modeled, including Allee effects. For example, in [48],
in his discussion section paragraph 6, they include the case of the hyper Allee effect. At the
same time, the works [12,13,15,54] show that populations at low densities cannot proliferate
as easily, according to an Allee effect in cancer. Other references supporting the use of Allee
effects in the epidemiology model are listed in Table 1. This study can be extended in future
research by calibrating the model with experimental data.

Table 1. Results for different models, growth types, Allee effects, ranges of R0, and relevant references
for Allee effects.

Model+Growth Allee Effect Range R0 Hopf References

Model 1 Linear None N/A No [15,55]
Model 2 Linear Weak N/A No [15,55]
Model 3 Linear Strong 0 < R2

α < 1 Yes [13,15,55]
Model 4 Linear (2) Weak + Strong 0 < R2

α < 1 Yes (5) [13,15,55]

Model 5 Linear (10) Hyper 0 < R2
0 < 1/α2 Yes (13) [12,13,15,48,54]

or R2
0 > 1/α1

Model 6 Logistic (17) None R2
0 > 1 Yes (22) [15]

Model 7 Logistic Weak R2
0 > 1 Yes [12,14,15,50,56]

Model 8 Logistic (24) Strong R2
α < 1 < R2

0 Yes (28) [12,14,15,50,56]
Model 9 Logistic Weak+Strong 1 < R2

0 < 1/(bα) Yes [12,14,15,50,56]

Model 10 Logistic (31) Hyper 1 < R2
0 < α1/b Yes (34) [12,13,15,48,54]

or R2
0 > α2/b

The weak Allee effect typically describes the situation in which the population is small
and still able to grow. In the base model (1) we addressed, this effect allows the virus to
infect and control tumor growth without necessarily eradicating it completely. The strong
Allee effect needs to overcome a population level to avoid extinction, which in this context
means that the tumor cell population is sufficiently high to avoid extinction. The combined
effects mean that the tumor can reach a dormant state with viruses or be eliminated if
the population is small enough, so the relatively high stable critical point in Figure 15 is
observed. The most complex case of the Allee effect is hyper since two parameters are
needed to determine the complex dynamics of the system. In the case of instability, if the
population is below the first parameter 1/α2, then the tumor would be eradicated; if the
population is above the second threshold 1/α1, it can proliferate and the tumor grows
uncontrollably, but in the case of stability, for the basic reproductive number R0 with values
that are associated with negative Hopf curves such as Regions 3 or 5 in Figure 7, the Allee
hyper-threshold values would cause endemic bistability as in Figure 16.

7. Conclusions

Our exploration of modeling in oncological virotherapy includes an epidemiology
model with linear and logistic growth, with different Allee effects to observe their behavior
in the dynamics of interaction with viruses. There are different modeling approaches,
such as models with fractional operators, as is the case of [26], which, without considering
the Allee effect, obtains complex dynamics but presents problems in analyzing stability.
On the other hand, [4] discusses different modeling approaches in virology, including
spatio-temporal models with PDE, epidemiology models, and variants of these. However,
they do not include any Allee effect. In works such as [29–31], the authors thoroughly
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study partial derivative modeling for oncological virotherapy modeling, where they couple
tumor growth with cell–virus–immunity interaction; they also do not include the Allee
effect. In [32], they consider an epidemiological model with the Allee effect, but have not
yet done this in cancer. On the other hand, works such as [28,57–59], are conceptually
closer to our approach to analyzing dynamics and stability, but also do not include the
Allee effect.

Through theoretical analysis and bifurcation diagrams, critical conditions that deter-
mine the existence and stability of equilibrium points and periodic oscillations through
Hopf bifurcations have been identified. The results highlight that first, the inclusion of
the Allee effect, whether weak, strong, or hyper, significantly alters the dynamics of the
system. In particular, strong and hyper effects introduce critical population thresholds
that influence tumor eradication or persistence. The bifurcation diagrams we provide in
this work are tools for identifying regions of stability and instability and help us under-
stand dynamic transitions between disease-free and endemic states. In addition, when we
incorporate logistic growth, we obtain differences in dynamics versus the linear growth
model. In addition, we can observe that the different Allee effects affect the stability of the
base model, too. All these combinations of factors should allow us to design viral cancer
therapies with strategies based on critical parameters such as reproduction rates, Allee
effects, and carrying capacity.

Our main contribution lies in the inclusion of different Allee effects using an epi-
demiological modeling approach for tumor–virus–immunity interactions, where we have
analyzed their impact on the conditions of the existence of endemic critical points as well
as their stability and bifurcation properties. Future research could extend this analysis
to more complex models, including spatial heterogeneity, variability in the immune re-
sponse, or treatment combination, and allow us to validate results with real data and fit the
parameters of the system.

Author Contributions: Conceptualization, J.W.; Formal analysis, E.H.-L.; Investigation, E.H.-L. and
J.W.; Methodology, E.H.-L. and J.W.; Project administration, J.W.; Software, E.H.-L.; Supervision,
J.W.; Validation, E.H.-L. and J.W.; Visualization, E.H.-L.; Writing—original draft, E.H.-L. and J.W.;
Writing—review and editing, E.H.-L. and J.W. All authors have read and agreed to the published
version of the manuscript

Funding: J.W. was partially supported by the National Institutes of Health under grant num-
ber 1R15GM152943.

Data Availability Statement: The original contributions presented in this study are included in the
article. Further inquiries can be directed to the corresponding author(s).

Acknowledgments: E.H.-L. acknowledges administrative and technical support from UTC and
TecNM. The authors thank the three anonymous reviewers for their comments, which have improved
the quality of the original manuscript.

Conflicts of Interest: The authors declare no conflicts of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results

References

1. Chen, L.; Zuo, M.; Zhou, Q.; Wang, Y. Oncolytic virotherapy in cancer treatment: Challenges and optimization prospects. Front.
Immunol. 2023, 14, 1308890. [CrossRef] [PubMed]

2. Davis, J.J.; Fang, B. Oncolytic virotherapy for cancer treatment: Challenges and solutions. J. Gene Med. 2005, 7, 1380–1389.
[CrossRef]

223



Mathematics 2025, 13, 744

3. Goradel, N.H.; Baker, A.T.; Arashkia, A.; Ebrahimi, N.; Ghorghanlu, S.; Negahdari, B. Oncolytic virotherapy: Challenges and
solutions. Curr. Probl. Cancer 2021, 45, 100639. [CrossRef] [PubMed]

4. Heidbuechel, J.P.; Abate-Daga, D.; Engeland, C.E.; Enderling, H. Mathematical modeling of oncolytic virotherapy. Oncolytic
Viruses 2020, 2058, 307–320.

5. Elliott, K.; Elliott, K.; Betini, G.; Norris, D. Fear creates an Allee effect: Experimental evidence from seasonal populations. Proc. R.
Soc. Biol. Sci. 2017, 284, 20170878. [CrossRef] [PubMed]

6. Kramer, A.; Drake, J. Experimental demonstration of population extinction due to a predator-driven Allee effect. J. Anim. Ecol.
2010, 79, 633–639. [CrossRef] [PubMed]

7. Luque, G.; Giraud, T.; Franck, C. Allee effects in ants. J. Anim. Ecol. 2013, 82, 956–965. [CrossRef] [PubMed]
8. Mironova, E.; Gopko, M.; Pasternak, A.; Mikheev, V.; Taskinen, J. Allee effect in a manipulative parasite within poikilothermic

host under temperature change. Parasitology 2021, 149, 35–43. [CrossRef]
9. Kaul, R.; Kramer, A.; Dobbs, F.; Drake, J. Experimental demonstration of an Allee effect in mi-crobial populations. Biol. Lett. 2016,

12, 20160070. [CrossRef]
10. Ohkawa, H.; Takatsuka, C.; Kawano, T. Hidden Allee effect in photosynthetic organisms. Commun. Integr. Biol. 2020, 13, 119–127.

[CrossRef]
11. Courchamp, F.; Berec, L.; Gascoigne, J. Allee Effects in Ecology and Conservation; Oxford Academic: Oxford, UK, 2008.
12. Fadai, N.T.; Simpson, M.J. Population dynamics with threshold effects give rise to a diverse family of Allee effects. Bull. Math.

Biol. 2020, 82, 74. [CrossRef] [PubMed]
13. Fadai, N.T.; Johnston, S.T.; Simpson, M.J. Unpacking the Allee effect: Determining individual-level mechanisms that drive global

population dynamics. Proc. R. Soc. A 2020, 476, 20200350. [CrossRef]
14. Gerlee, P.; Altrock, P.M.; Malik, A.; Krona, C.; Nelander, S. Autocrine signaling can explain the emergence of Allee effects in

cancer cell populations. PLoS Comput. Biol. 2022, 18, e1009844. [CrossRef] [PubMed]
15. Johnson, K.E.; Howard, G.; Mo, W.; Strasser, M.K.; Lima, E.A.; Huang, S.; Brock, A. Cancer cell population growth kinetics at low

densities deviate from the exponential growth model and suggest an Allee effect. PLoS Biol. 2019, 17, e3000399. [CrossRef]
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