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Sensing, and Understanding: Part II
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1. Introduction

Point cloud, which represents the three-dimensional (3D) digital world, is one of the
fundamental data carriers in many emerging applications [1], including the autonomous
driving, robotics, and geospatial fields. Advancements in sensor technologies have facili-
tated the acquisition of point clouds from diverse platforms [2], perspectives, and spectra.
This progress has underscored the necessity to address the generation [3], processing [4],
analysis [5], and quality evaluation [6] of point cloud data.

The demand for intelligent point cloud processing and analysis has surged across
various industries [7]. For examples, accurate 3D models enhance design, construction,
and maintenance in construction and architecture [8], improving project outcomes and
reducing costs. Integrating point cloud data into physical object systems ensures more
reliable digital representations of structures [9]. In autonomous driving, real-time point
cloud processing is critical for vehicle perception [10], where LiDAR sensors help vehicles
to detect and navigate their environment, ensuring safety and reliability. Additionally,
industries such as manufacturing, cultural heritage preservation, and urban planning
rely on point cloud data for quality control, digital restoration, and city modeling. The
incorporation of artificial intelligence (Al) has revolutionized point cloud applications [11],
where Al-driven technology helps to automate object recognition, segmentation, and
classification, significantly improving efficiency and accuracy [12].

This Special Issue serves as a comprehensive collection of recent advances in point
cloud processing across various sensors. A total of ten contributions from the Republic
of Korea, rhe UK, the PR China, Belgium, and the USA have been ultimately accepted
for publication. These contributions delve into diverse aspects of point clouds, including
dataset establishment, registration, detection, performance evaluation, receptive field
analysis, and plant feature extraction. We provide a brief introduction to each of the
collected contributions in the following section.

2. Overview of Contributions

Contribution 1 introduces an innovative framework to enhance LiDAR-based datasets
for advanced driver-assistance systems (ADASs), improving the representation of distant
objects by generating synthetic object points from real point clouds. The proposed frame-
work consists of three key modules: (1) position determination identifies optimal locations
and orientations for synthetic objects, employing ground filtering to separate ground and
non-ground points; selects candidate positions; resolves collisions; and determines object

Sensors 2025, 25, 1310 1 https://doi.org/10.3390/s25051310
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poses; (2) object generation converts LIDAR data from Cartesian to spherical coordinates to
generate synthetic points, where a spherical point-tracking technique and a “point wall”
method mitigate excessive data loss, preserving object shape fidelity; (3) synthetic anno-
tation automatically labels object points with attributes such as position, size, pose, and
occlusion, ensuring consistency with datasets such as KITTI-360. Experimental results show
that integrating these synthetic objects into training datasets enhances the performance of
3D detection models.

Contribution 2 advances 3D data processing by introducing a point cloud-specific
attention mechanism to enhance convolutional neural networks (CNNs). Traditional CNNs
struggle with point clouds due to its unstructured and unordered nature. To address
these issues, the authors propose a channel attention mechanism tailored for point clouds,
integrating it into the ConvPoint benchmark. The resulted module enhances feature
emphasis, improving the network’s focus on critical information. Experimental results
show that incorporating the attention mechanism increases the mean intersection over
union (mloU) score, outperforming the base ConvPoint framework. This enhancement
enables more effective processing of complex point clouds, with applications in autonomous
driving, robotics, and virtual reality.

Contribution 3 proposes a novel algorithm for efficiently extracting phenotypic traits
of rice plants using terrestrial laser scanning (TLS) data. It is noteworthy that traditional
manual measurements are labor-intensive and time-consuming, so this study proposes an
automated approach leveraging TLS data to extract key phenotypic features, including
crown diameter, stem perimeter, plant height, surface area, volume, and projected leaf area.
The extraction process employs several point cloud processing methods: (1) a neighborhood
search algorithm calculates crown diameter and stem perimeter by establishing geometric
relationships between point clouds; (2) an alpha-shape algorithm reconstructs the plant’s
3D surface to determine surface area and volume; (3) extended hierarchical density-based
spatial clustering is used to group plant stem point clouds and obtain the tiller number.
Based on these algorithms, the study enhances the efficiency and accuracy of phenotypic
data collection, offering a valuable resource for rice breeding and growth monitoring.

Contribution 4 introduces a flexible and adaptive framework that enhances feature
learning through the innovative use of receptive field space (RFS) and attention mechanisms.
Since traditional methods rely on manually defined local neighborhoods, they may be
inflexible and may fail to capture both local details and global dependencies. To address
these problems, the authors propose constructing an RFS mechanism that extracts effective
features across multiple receptive field ranges, allowing adaptive scale selection for each
point. Moreover, they develop an RFS attention method, which dynamically adjusts the
network’s focus across receptive field ranges, enhancing feature representation capability.
This mechanism is integrated into a network architecture for point cloud classification and
segmentation. Experimental results show that the proposed RFS effectively captures both
local and global features, leading to improved 3D point cloud analysis.

Contribution 5 presents a comprehensive evaluation of six point cloud registration
methods for aligning computer-aided design (CAD) models with real-world 3D scans.
Unlike prior studies relying on synthetic datasets, this study utilizes point clouds from
the Cranfield benchmark, incorporating CAD-sampled models and 3D scans of physical
objects. The authors introduce real-world complexities such as noise and outliers, providing
a more rigorous assessment. They evaluate three classical registration methods (i.e., GO-
ICP, RANSAC, FGR) and three learning-based approaches (i.e., PointNetLK, RPMNet,
ROPNet) using metrics such as recall, accuracy, computation time, and robustness to noise
and partial data. This study can provide valuable findings that highlight the strengths
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and limitations of classical and learning-based registration techniques for real-world data,
offering practical guidance for domain researchers in selecting methods based on accuracy,
efficiency, and noise resilience.

Contribution 6 introduces a refined point cloud registration method that leverages
geometric constraints and a dual-criteria evaluation process. It is noted that traditional
point-to-point methods often suffer from inaccuracies due to erroneous matches and
noise. The proposed approach enhances reliability by requiring only two correspondences
(i.e., instead of the conventional three) to generate a transformation matrix, reducing compu-
tational complexity. Specifically, keypoints are detected to establish initial correspondences,
with high-quality matches selected for improved alignment. Rotation and translation
matrices are then computed using centroids and local reference frames. The optimal trans-
formation matrix is determined based on the overlap ratio and inlier count. Experimental
results demonstrate that integrating geometric constraints with a comprehensive evaluation
strategy significantly enhances both accuracy and efficiency.

Contribution 7 presents an innovative LIDAR-based method for dynamic target detec-
tion, where motion states are evaluated by analyzing positional and geometric differences
in point cloud clusters across consecutive frames. To accurately pair clusters representing
the same target, a double registration algorithm is introduced, where a coarse registration
is performed via iterative closest point (ICP) for initial pose estimation, followed by fine
registration using random sample consensus and a four-parameter transformation for
precise inter-frame alignment. This dual-step process standardizes coordinate systems,
facilitating cluster association. Based on these paired clusters, the study constructs a classi-
fication feature system and employs the XGBoost decision tree for motion state evaluation.
To improve training efficiency, a Spearman rank correlation-based bidirectional search
reduces feature dimensionality, optimizing the classification subset. Meanwhile, a double
Boyer—Moore voting—sliding window algorithm refines detection accuracy.

Contribution 8 introduces a robust solution for 3D object detection by effectively
leveraging distance information and preserving critical point features, thereby enhancing
the accuracy and reliability of scene understanding in complex environments. Specifically,
the authors propose a set abstraction enhancement (SAE) network to address challeng-
ing issues raised by sparse and irregular point cloud data, which incorporates three key
modules: an initial feature fusion module, a keypoint feature enhancement module, and a
revised group aggregation module. By emphasizing distance information, the proposed
network enhances the representation of distant objects, mitigating the decline in reflectivity
that occurs with increased range. Moreover, it reinforces the intrinsic features of keypoints
before they are combined with aggregated features, ensuring that essential semantic infor-
mation is retained. Finally, the semantic coherence of the aggregated features improves
the network’s ability to differentiate between objects. Experimental results demonstrate
that the integration of distance features and the enhancement of keypoint characteristics
contribute to the more accurate detection of objects at varying distances, addressing the
challenges posed by point cloud sparsity and reflectivity attenuation.

Contribution 9 advances point cloud registration by addressing challenges in low-
overlap environments, where traditional methods struggle due to their reliance on abun-
dant, repeatable keypoints for accurate correspondence extraction. As a result, the authors
propose a graph convolutional attention-based robust point cloud registration network
(RRGA-Net) to optimize correspondences among sparse keypoints through a multi-layer
channel sampling mechanism and a template matching module. By forming patches
through feature weight filtering, the proposed network captures more comprehensive
contextual features, which is crucial for effective registration in low-overlap scenarios.
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Moreover, the integration of self-attention mechanisms allows the network model to dy-
namically adjust weights based on relationships between points, enhancing the capture of
both local and global features. Experimental results demonstrate that RRGA-Net exhibits
robust performance, particularly excelling in low-overlap scenarios.

Contribution 10 presents a novel framework for accurately measuring cuboid and
cylindrical objects using point cloud data from time-of-flight (ToF) sensors. ToF sen-
sors often produce low-resolution, noisy data with self-occlusions and multipath inter-
ference, distorting object shape and size. To address these issues, the authors propose
an enhanced superquadric fitting technique designed for noisy and incomplete point
clouds. The proposed framework first performs ground plane rectification using fiducial
markers to align the ground horizontally, followed by segmentation to isolate the related
objects. A superquadric shape is then fitted using non-linear least squares regression.
The proposed method is tested on objects of known dimensions placed on various sur-
faces, including aluminum foil, black/white posterboard, and black felt. Experimental
results demonstrate that the enhanced superquadric fitting, particularly the bounding
method, significantly improves accuracy, making this approach valuable for precise object
measurement applications.

3. Conclusions

The evolution of point cloud acquisition and analysis has been propelled by Al ad-
vancements. This Special Issue compiles a diverse portfolio of contributions that address
critical challenges in point cloud processing, sensing, and understanding. The selected
studies push the boundaries of current knowledge by offering innovative solutions to exist-
ing challenges and unlocking new 3D applications. We anticipate that these developments
can further expand the applications of point clouds across various industries, offering new
opportunities and valuable insights for both researchers and practitioners to drive research
and innovation in this field.
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Abstract: Several approaches have been developed to generate synthetic object points using real
LiDAR point cloud data for advanced driver-assistance system (ADAS) applications. The synthetic
object points generated from a scene (both the near and distant objects) are essential for several ADAS
tasks. However, generating points from distant objects using sparse LiDAR data with precision
is still a challenging task. Although there are a few state-of-the-art techniques to generate points
from synthetic objects using LiDAR point clouds, limitations such as the need for intense compute
power still persist in most cases. This paper suggests a new framework to address these limitations
in the existing literature. The proposed framework contains three major modules, namely position
determination, object generation, and synthetic annotation. The proposed framework uses a spherical
point-tracing method that augments 3D LiDAR distant objects using point cloud object projection
with point-wall generation. Also, the pose determination module facilitates scenarios such as
platooning carried out by the synthetic object points. Furthermore, the proposed framework improves
the ability to describe distant points from synthetic object points using multiple LIDAR systems.
The performance of the proposed framework is evaluated on various 3D detection models such as
PointPillars, PV-RCNN, and Voxel R-CNN for the KITTI dataset. The results indicate an increase in
mAP (mean average precision) by 1.97%, 1.3%, and 0.46% from the original dataset values of 82.23%,
86.72%, and 87.05%, respectively.

Keywords: LiDAR; point cloud; synthetic data; data augmentation; object detection

1. Introduction

The accurate perception of a vehicle’s surrounding environment is essential for advanc-
ing autonomous driving technologies, as it enables the vehicle to safely navigate complex
and dynamic road scenarios. Among various visual sensors, 3D LiDAR is particularly effec-
tive for capturing detailed spatial information, providing valuable insights into the position
and distance of surrounding objects. However, acquiring large-scale, high-quality LIDAR
data remains challenging due to the high cost of LIDAR sensors and the labor-intensive
nature of 3D data labeling.

To address the demand for robust training data, recent synthetic data generation
approaches have been explored, but they face key limitations: synthetic LIDAR point
cloud generation, in most cases, demands intense computing power, and rendering-based
methods struggle to represent sparse point clouds of distant objects accurately. Such limita-
tions reduce the utility of synthetic data in training deep learning models for autonomous
driving, particularly for scenarios involving complex interactions or specific orientations,
such as vehicle platooning.

This study proposes a novel approach to generate synthetic object points from real
point cloud data rather than synthetic data, improving the realism of distant object rep-
resentations. Specifically, a “point-wall” technique is introduced to compensate for the
excessive loss of details in distant objects, enhancing their shape fidelity. With the use
of spherical point projection, the generated distant points are intended to resemble real

Sensors 2024, 24, 8144. https:/ /doi.org/10.3390/s24248144 6 https://www.mdpi.com/journal/sensors
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LiDAR point clouds since the synthetic points are modified from real LIDAR point clouds
as opposed to other simulators. The notable difference between the real-world point clouds
and the generated ones can be attributed to several aspects, including the return losses,
which are not considered in the current study. Additionally, a pose determination module is
integrated to capture realistic object orientations, enabling the representation of platooning
vehicles on the road—an aspect previously unaddressed in virtual object generation.

The key contributions of this work are as follows:

*  Toenhance the representation of distant objects using the refinement of spherical point
projection without the need for complex extrapolation techniques.

¢ To prevent excessive loss in virtual objects’ details, ensuring the shapes of distant
objects resemble real sensor data more closely via the point-wall method.

e  To accurately depict the orientation of synthetic object points, supporting realistic
platooning scenarios on roadways using the pose determination module.

The remainder of this paper is organized as follows. Section 2 outlines the research
literature relevant to 3D object detection and data generation aspects. Section 3 describes
the proposed methodology and its attributes, such as position estimation, object gener-
ation, and synthetic annotation. Section 4 provides information about the experimental
environment, the dataset, synthetic LIDAR point cloud generation, deep learning model
training, and relevant quantitative and qualitative results. Section 5 states the shortcomings
of the proposed method and proposes potential future research based on the presented
methodology, and Section 6 concludes the research study.

2. Related Works

Several methods are being developed in the context of LiDAR-based vehicle per-
ception to improve detection performance, mainly by restoring lossy point cloud data to
synthetic points. The main aim of these methods is to create synthetic points to enhance
data, owning to a loss of 3D point cloud data and a lack of objects. However, because these
methods require considerable computation, they are difficult to operate in an embedded en-
vironment. Data generation using well-designed simulators is an another way to overcome
the shortage of point cloud data. A few methods, such as that proposed by Esmoris et al. [1],
tackle this by exploring virtual laser scanning (VLS), demonstrating that simulated data can
achieve comparable results to real-world data. VLS represents a scalable and cost-effective
alternative, although further integration with dynamic scenarios is needed for its real-world
application. VLS methods are often referred to as approaches to generating synthetic point
clouds, including the method used in this study. Also, Beltran et al. [2] obtained dense point
cloud data using LiDAR sensors and generated point cloud data for the desired rendering
environments, such as simulators. There is a large focus on developing a method for col-
lecting and using LiDAR data from 3D games [3] or a method for rendering and using data
from the LiDAR sensor of an autonomous driving simulator platform [4,5]. The simulator’s
LiDAR sensor data are ideal as they lack real noise, so the rendered results exhibit a large
difference compared with the real data. Also, synthetic LIDAR point cloud generation
techniques using the GAN [6] model can be used as augmentation techniques for datasets.
In addition, Yin et al. [7] enhanced the DART model with Monte Carlo-based methods,
enabling precise satellite LIDAR simulations and facilitating data fusion with other remote
sensing modalities. Furthermore, Yin at al. [8] extended LiDAR waveform simulation to
multi-pulse systems and introduced new methods for simulating photon-counting data
and solar noise in diverse configurations. Gastellu et al. [9] introduced a comprehensive 3D
radiative transfer model that simulates the interaction between Earth, the atmosphere, and
sensor specifications for remote sensing applications. Also, Gastellu et al. [10] expanded
on DART by integrating LIDAR waveform simulation, demonstrating its versatility across
various landscape and atmospheric configurations and its ability to model multi-scattering
effects. Similarly, Yang et al. [11] presented DART-Lux, a novel LIDAR modeling approach
that enhances simulation efficiency using a bidirectional path-tracing algorithm, while
comparing different tracing methods for improved accuracy. Further Yang et al. [12] vali-
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dated the DART-Lux model using real GEDI and ICESat2 data, quantifying inconsistencies
in height measurements and incorporating atmospheric effects for more accurate LIDAR
simulations in large-area landscapes.

LiDAR-Aug [13] was developed to generate synthetic object point clouds by generat-
ing point cloud data from synthetic objects. It expresses the point distribution of the real
object’s data but is vulnerable when generating distance points for the real object data in
their version of synthetic point clouds. To address this, Xiao et al. [14] proposed SynLiDAR,
a large-scale synthetic dataset with annotated point clouds, and the Point Cloud Translation
(PCT) method to bridge the gap between synthetic and real point clouds. While effective
in improving transfer learning strategies on 32 custom-built semantic classes, it still faces
challenges in generating data for rare object categories because of data imbalances (little to
no samples in the rare classes). Xiang et al. [15] built on this by introducing a data augmen-
tation method using generative models like L-GAN to enhance rare classes in LIDAR point
cloud datasets. This method effectively balances class distribution, improving recognition
performance across both minority and majority classes. However, while generative models
address data imbalance, they still rely on high-quality real data for model training.

In contrast, D-Aug [16] retrieved objects and integrated them into dynamic scenarios,
taking into account the continuity of these objects across successive frames. However,
D-Aug suffers from post-insertion occlusion due to complicated and cluttered situations
arising after the object’s integration into the LiDAR scenes. Zhang et al. [17] utilized a
conditional generative model that employs segmentation maps as a guiding tool to en-
sure the accurate generation of adverse effects, significantly improving the robustness of
perception and object detection systems in autonomous vehicles under diverse and chal-
lenging conditions. Although robust LiDAR segmentation [18] employs domain-specific
augmentation methods such selective jittering to address complicated spatial interactions
in varied weather situations, it faces issues in preserving dataset quality and computa-
tional needs. Text3DAug represents a scalable LIDAR data augmentation method [19].
The prompting system generates annotated 3D instances from written descriptions and
automates augmentation without intense labeling.

The most recent studies on LiDAR simulation techniques highlight a convergence of
methodologies aimed at improving efficiency, realism, and applicability across various
domains. Lopez et al. [20] focused on GPU-based LiDAR simulation to generate dense
semantic point clouds for deep learning (DL), offering remarkable speed improvements
and scalability in procedural environments. Building on such foundational simulations,
Winiwarter et al. [21] introduced HELIOS++, a modular framework capable of simulat-
ing diverse LiDAR scenarios, such as terrestrial and airborne scanning, emphasizing the
balance between computational efficiency and physical realism. While these studies em-
phasize physical modeling, Anand et al. [22] explored physics-informed deep learning by
incorporating incidence angles to improve LiDAR intensity predictions using the U-NET
and Pix2Pix architectures. Extending these advancements, Zyrianov et al. [23] presented
LidarDM, a novel latent diffusion model that generates 4D layout-aware LiDAR sequences,
revolutionizing virtual scene generation for autonomous driving. Complementing these
innovations, Eggert et al. [24] leveraged game engines to create synthetic point clouds for
industrial object detection, bridging the gap between real and simulated data. Together,
these studies contribute towards versatile, scalable, and high-fidelity LiDAR simulation
frameworks tailored to emerging applications in robotics, remote sensing, and AL

Table 1 summarizes the current state-of-the-art LIDAR synthetic point cloud-generating
methodology and its essential characteristics.
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Table 1. Insights into object generation and data augmentation for 3D object detection networks for

LiDAR data.

Research Study

Methodology

Key Aspects

Limitations

Esmoris et al. [1]

Trains models
with virtual
laser scanning data

Automated scene
and model training

Limited to specific
real data applications

Yin et al. [7]

Extended DART model
with Monte Carlo
methods for satellite
LiDAR simulation

Efficient scattering models;
supports data fusion
with other sensors

Focuses on vegetation
and urban scenes

Zhao et al. [16]

LiDARsim uses
real data, ray casting,
and neural networks

Realistic LiDAR for
autonomous testing

High fidelity
needed, weather
simulation issues

Zhang et al. [17]

Conditional generative
model with
segmentation maps

Large dataset,
domain adaptation
strategies.

Cannot generalize
to more severe settings

Park et al. [18]

Generative models for
long-tail
object recognition

Generative
augmentation
for minority classes.

Focuses only
on object recognition

Reichardt et al. [19]

Virtual laser
scanning for
semantic segmentation

Automated training,
real-world
data reliance.

Accuracy gaps,
dynamic
scene challenges

Lopez et al. [20]

GPU-based LiDAR

simulator generates dense

semantic point clouds
for DL training

High speed (99% faster);
large-scale labeling;
procedural scene generation

Limited to procedural
or static environments

Winiwarter et al. [21]

HELIOS++ simulates
terrestrial, airborne,
and mobile LiDAR with

modular scene modeling

Handles vegetation,
supports Python, has fast
runtime, and creates training
data

Slightly less
accurate than
ray-tracing models

Anand et al. [22]

Physics-informed DL
for LiDAR intensity
simulation using U-NET

and Pix2Pix architectures

Adds incidence angle
as input; improves
intensity prediction accuracy

Lacks material
property integration

Zyrianov et al. [23]

LidarDM generates
realistic, layout-aware,
temporally coherent 4D

LiDAR sequences

4D generation; drivin,
scenario guidance; hig
realism for simulations

Not real time; no
intensity modeling yet

Eggert et al. [24]

Synthetic point
cloud generation
using Unreal Engine
for object detection

High-quality clouds;
suitable for
industrial datasets

Sparse datasets;
lacks specific
real-world equivalency

Manivasagam et al. [25]

Simulates LIDAR
with real data,
simulations, and ML

Realistic LIDAR
simulations

Requires large datasets,
omain challenges

Fang et al. [13]

Rendering-based

Point distribution

Low performance for

LiDAR augmentation representation long-distance objects
SynLiDAR . Focused on
Xiao et al. [14] dataset creation, Lar%faizg?fg;riitaset’ segmentation,
translation via PCT & overfitting risk
Generative models Limited

Xiang et al. [15]

for LIDAR
object recognition

Synthetic point clouds,
minority class focus

generalization, needs
tailored models

Li et al. [26]

PointAugment auto-optimizes

point cloud samples
via adversarial learning

Sample-specific
augmentation; improves
shape classification

Limited to
certain transformations

Figure 1 presents an overview of the proposed framework. The framework proposed
in this study operates in three parts: position determination, spherical point projection,
and synthetic annotation modules. In the position determination module, the position and
pose of the synthetic object to be generated are determined. The spherical point projection
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module generates synthetic object points using the spherical point projection and point-wall
methods. In the synthetic annotation module, labels are attached to the projected points.
The input object contains the point model, which uses an open-source point cloud library
to convert each triangular polygon in the 3D shape of the freely distributed .obj file into a
surface composed of points.

Input Point cloud Input Object Output

| Point Wall Generation | | Label Generation |
| Collision Handling | — v — v
: Spherical Point Projection | | Occlusion Check |

Position Determination Object Generation Synthetic Annotation

Figure 1. Overview of proposed framework.

3. Proposed Method
3.1. Position Determination
3.1.1. Ground Filtering

The position determination module determines the position and orientation of the
synthetic object to be generated. Ground filtering is used to separate the input data into
ground and non-ground data, and random coordinates within the ground data are set as
candidate positions for generation. Subsequently, collision handling is performed between
these position candidates, and the orientation of the object at the final chosen position is
determined. Figure 2 shows the main algorithm of the position determination module.

Point Cloud

'

| GroundFiltering |

v v
Ground Nonground

| Collision Handling |<7
v

| Pose Determination |

|
v v

Position Rotation (Pose)

Figure 2. Main algorithm of position determination module.

This ground-filtering algorithm is used to determine an area in the input data where
the synthetic object could be generated. This study uses the PatchWork++ [27] algo-
rithm, which recognizes the ground by calculating the plane angle of a specific area.
Subsequently, the ground data are randomly selected from the desired number of points
and assigned as candidate positions for generation. Figure 3 shows the results of the
ground-filtering algorithm.

10
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Figure 3. Ground filtering: (a) input LiDAR data; (b) filtered ground data of input point cloud;
(c) filtered non-ground data.

3.1.2. Collision Handling

Collisions between synthetic objects (virtual objects) and real points (such as ground

or non-ground points) are detected through a two-step process:

Collision between virtual objects: After generating candidate coordinates for the
synthetic objects (from the region of interest, or Rol, which is the ground point cloud),
the algorithm first ensures that virtual objects do not overlap. It does so by selecting
one candidate coordinate at random and removing all other coordinates within a
certain distance, known as the “collision threshold”. This ensures that virtual objects
are spaced out properly to prevent overlaps as shown in Figure 4b.

Collision with non-ground points: Once the first collision detection (between virtual
objects) is completed, the remaining candidate coordinates are checked for collisions
with non-ground points (such as vegetation, sidewalks, etc.). This is carried out by
comparing the coordinates with the non-ground point cloud, which was previously
segmented using a ground segmentation algorithm. If any candidate coordinates are
too close to non-ground points (within a specified distance), they are discarded. For
the second step, the collision threshold used for virtual object-to-non-ground collision
detection is half the value used for virtual object-to-virtual object collisions. This
ensures a finer level of collision avoidance when checking proximity to non-ground
features like vegetation or sidewalks as shown in Figure 4c. This approach of using
distance-based thresholds for collision handling can be less precise when compared
to synthetic mesh-based pruning. Although a mesh-based approach would improve
placement precision, the computational trade-offs may not justify its use in large-scale
dataset generation, particularly when speed and scalability are prioritized. Therefore,
this limited approach comprising distance-based thresholds for collision handling is
utilized, which will be replaced by mesh-based approaches in the future.

3.1.3. Pose Determination

The pose determination algorithm determines the orientation of the synthetic object to

be generated. This study uses the yaw value to determine the orientation; this parameter
represents the rotation angle around the Z-axis in the 3D coordinate system and indicates
the direction that the object is facing and the direction in which the vehicle is driving. The

11
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pose of the object is determined based on its position in the input data, considering the
Korean road traffic infrastructure environment, and the following algorithm (Algorithm 1),
which describes vehicles going straight, reversing, turning left, and turning right, as shown
in Figure 4d. The pose determination module modifies the pose of the synthetic object
by dividing the input point cloud space area by Oy, which is the lateral distance of the
synthetic object O from the sensor (or the ego vehicle).

70% 4 or§
30% : Random

Figure 4. Collision handling and pose determination: (a) before collision handling; (b) after collision
handling between virtual objects; (c) after collision handling between virtual objects and a non-ground
point cloud; (d) vehicle pose distribution with respect to pose decision areas.

The yaw angle of synthetic objects (virtual objects) is determined through a multi-step
process, taking into account the object’s location, its class (vehicle or non-vehicle), and the
surrounding real-world vehicles. This function can be expressed by Equation (1):

0 or 7, if |Oy| <10
Oyaw = { 0 or 7 or Yaw,,,y, elseif 10 < |Oy| < 30, (1)
Yaw, ;.4 else

The yaw angle calculation is a two step process:

*  Pose decision area: The initial yaw value is set based on the object’s Y-coordinate (O,)
in the LiDAR sensor’s coordinate system, divided into three areas:

- Straight pose area (O, < 10): the yaw angle is set to 0 (same direction) or 7t
(opposite direction), chosen randomly.

- Intersection pose area (10 < O, < 30): the yaw angle is set to 0, 77, or a random
value (Yaw,,,; between 0 and 271).

- Random pose area (O, > 30): the yaw angle is set randomly between 0 and 27.

e  Update with nearby real vehicles: Once the yaw angle is assigned based on the pose
decision area, it can be updated based on the orientation of nearby real vehicles. The
input point clouds in this context are typically labeled with object categories such as
“car”, “truck”, “pedestrian”, etc. If a real vehicle is within a certain proximity to the
synthetic object, the yaw value of the virtual object is updated to match the yaw angle
of the nearest real vehicle. Thereby, the yaw value is determined with reference to

the position and orientation derived from the bounding box. This step reflects the

12
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real-world phenomenon where vehicles on the road often drive in the same direction
(or opposite directions) in clustered groups, such as on highways or in dense traffic.

3.2. Object Generation
3.2.1. Spherical Point Cloud Projection

The SPCP module is responsible for generating synthetic object points by projecting
real-world data (LiDAR point clouds) into synthetic models. This process involves several
key steps:
¢  Coordinate transformation: The module first converts the input LIDAR point cloud

data from Cartesian (orthogonal) coordinates to spherical coordinates. This step is

necessary for applying the spherical point-tracking technique.

®  Spherical point tracking: Once the data are in spherical coordinates, the module
uses spherical point tracking and point cloud wall creation techniques to generate a
synthetic model of the virtual object. This process defines the structure of the synthetic
object based on the real-world point cloud data.

*  Projection and final transformation: After applying the spherical point-tracking
method, the resulting synthetic model is converted back into Cartesian coordinates.
This step finalizes the projection of the virtual object into the synthetic point cloud
data, effectively augmenting the original data with the new object.

¢ Integration into synthetic annotation: The augmented point cloud data are then
passed into the synthetic annotation module, which processes the data further to fit
the required data format, reflecting object occlusion and other relevant information
like object type, position, and orientation.

Table 2 presents the data structures involved in generating synthetic object points
by projecting real-world data into synthetic models. The proposed method uses the real
acquired points to form synthetic object points. As a result, this work can more fully reflect
the noise and loss distribution of real LiDAR sensors, and this is prominent for distant
objects. Figure 5 shows the data before and after applying the proposed method.

Table 2. Data structures involved in projecting real-world data into synthetic models.

Values  Category Data Type

1 Class Describes the type of object string

3D object location in LiDAR coordinates (in meters)

3 Position Ex. [Posy, Posy, Pos.] float[]
. 3D object rotation in LiDAR coordinates

3 Rotation Ex. [0, 0, Yaw] float[]

3 Dimension 3D object dimensions in LiDAR coordinates (in meters) float(]

Ex. [Dimy, Dimy, Dim.]

Integer (0,1,2,3) indicating occlusion state:
0 = fully visible
1 Occluded 1 = partly occluded int
2 = largely occluded
3 = unknown

There are several types of losses in LIDAR point cloud data; however, the excessive
loss mentioned here refers to the loss caused by rays radiating from the sensor that do not
reflect off any object. In general, LiDAR sensors such as Velodyne HDL-32E manufactured
by Velodyne Lidar, Inc., San Jose, CA, USA , with a horizontal resolution of 0.08°~1.33° and
a vertical resolution of 1.33°, have a detection range of approximately 100 m, a horizontal
field of view of 360°, and a vertical field of view of 41.33°. If there are no objects within
100 m, the radiated rays do not return. This type of loss needs to be compensated for,
as it would not have occurred if the synthetic object had originally been in that position.
Figure 6 shows a case in which an excessive loss occurs in the shape of a synthetic object.

13
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Figure 5. Spherical point projection method: white silhouette represents synthetic object onto which
the real LIDAR points are projected (depicted as arrows).

Figure 6. Point loss due to detection range of LiDAR sensor: green silhouette represents detected
vehicle (car) when it is in the LIDAR'’s detection range and point loss (red box) when car is out of the
LiDAR'’s detection range.

Algorithm 1 Spherical Point Projection Algorithm

1 Input: Input Point Cloud P, Inserted Synthetic Object O, Generated Point Wall W
and Point Cloud with Synthetic Object P’
2 Output: Point cloud with synthetic object P’

3 Convert P, O and W from orthogonal coordinate system (x, y, z) to spherical
coordinate system (7, 6, ¢).

4 for each point in w in W do

5 for each point in 0 in O do

6 if there is a point p which has same 6 and ¢ with w then
7 L pr < 0y

8 else

9 L W, < 0y

10 Delete the rest of 0 and w return

3.2.2. Point Wall

A point wall was considered to compensate for this type of loss by generating a point
cloud wall with a resolution that matched the performance of the LiDAR sensor with the
input data to fill in the lost parts. This allows for excessive losses that would not have
occurred if the synthetic object had been in that position to be compensated for, and distant
objects can be represented more realistically. The point walls reflect the horizontal, res;,, and
vertical, res,, resolution of the input point clouds. The indices, i and j, of the point wall are
calculated within the Oy and O, ranges of the synthetic object data, as shown in Equation (2)

0<i< max(Og)—min(Oy)

max(Oq,;iS;lnin(Oq,) 2)
resy ’

0<j<

14
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and to consider the scanning pattern of a LIDAR sensor, the resolutions and ranges in
both the horizontal and vertical directions are parameterized along with the distance
between the sensor and the point wall. Relevant parameters, such as W, = 100 (maximum
distance range of a Velodyne HDL-32E LiDAR sensor) and horizontal and vertical spacings,
are specified with respect to the spherical coordinate system values (Wy and W) of the
point wall, as shown in Equation (3). The width of the curved point wall depends on
the horizontal field of view (FoV) of the LiDAR sensor, as specified in Table 3 and shown

in Figure 7b.
Wy = min(Og) + (res, x i) + €y,
Wy = min(Oy) + (resy X j) + € 3)
W; =100

are calculated using this index. Next, the horizontal noise and vertical noise, €;, and €,
are added, similarly to the noise of the real sensor. Figure 7 shows the recovery of the loss
of the synthetic object using a point wall. Inaccurate placement of the point wall can be
avoided by using the input parameters of the sensor. The noise level in the position of the
point cloud data is within 30% of the horizontal and vertical resolutions, which mitigates
the possibility of generating duplicate point clouds in the same location. However, this
study does not consider return losses according to the reflected intensity, which demands
further investigation regarding materials and reflectivity.

Table 3. Performance of Velodyne HDL-64E and HDL-32E LiDAR sensors manufactured by Velodyne
Lidar, Inc., San Jose, CA, USA.

Velodyne HDL-64E Velodyne HDL-32E
(KITTI 360 Dataset) (nuScenes Dataset)
Range ~120 m ~100 m
Resolution Horizontal 0.08° 0.08~1.33°
esotto Vertical 0.4° 1.33°
. . Horizontal 360° 360°
Field of View Vertical 26.8°(—24.8~+2) 41.33°(—30.67~+10.67)

3.3. Synthetic Annotation

The synthetic annotation module generates labeling information for the generated
synthetic object points. Labeling data for 3D objects typically include information such
as the object’s position, size, pose, and occlusion and are automatically generated using
information about the generated synthetic object, as shown in Figure 8.
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Figure 7. Point loss compensation by the point wall. (a) Appearance of the curved point wall
generated by the proposed technique; (b) process of searching for point coordinates of a synthetic

object point cloud model corresponding to a point in the input data and the arrows represent the
perspective of normal view, bird’s eye view; (c) point loss compensation for the synthetic object
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point generation.

Additional occlusion handling is performed because existing real objects can be af-
fected by synthetic object points. For example, if a synthetic car is generated in front of a
real car, it is occluded, which must be reflected in the labeling data. Through this process,
the labeled data for synthetic object points were recorded and saved as a text file.

Figure 8. Adapting object rotation and position based on proximity and default parameters: green
represents car objects, blue represents bus objects and red area indicates a horizontal range of £10 m
within which the synthetic cars (white cars) are generated.

The labeling data consist of the same format as the KITTI 360 dataset, which is the
most commonly used 3D object detection dataset. Since the KITTI 360 dataset includes
data in which 2D data and 3D data are fused, it is characterized by storing 3D location
information data as 2D data. It basically includes the location, size, and direction data
of a 3D cuboid and stores data on how much the object is hidden from other objects
and how much it is cut off by the sensor’s field of view. Table 4 shows the format of the

KITTI 360 dataset’s labeling data.
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The “truncated” and ‘occluded’ aspects of the synthetic object are calculated through
occlusion handling, and information about the synthetic object generated in the data is
obtained before the synthetic object is created, which is then modified when the real object
is affected by the synthetic object to reflect this. The completed labeling data are written
and stored as a .txt format file, just like the labeling file in the KITTI 360 dataset.

Table 4. Three-dimensional object detection labeling data format for Kitti 360 dataset.

Values Name Description

Describes the type of object: ‘Car’, “Van’, “Truck’,

1 Type ‘Pedestrian’, ‘Person_sitting’, ‘Cyclist’, “Tram’, ‘Misc” or ‘Dont Care’

Float from 0 (non-truncated) to 1 (truncated),

! Truncated where truncated refers to the object leaving the image boundaries

Integer (0,1,2,3) indicating occlusion state:
0 = fully visible
1 Occluded 1 = partly occluded
2 = largely occluded
3 = unknown

1 Alpha Observation angle of object, ranging [—pi, pi]

2D bounding box of object in the image (0-based index)

4 Bbox : contains left, top, right, and bottom pixels

3 Dimensions 3D object dimensions: height, width, and length (in meters)
3 Location 3D object location x, y, z in camera coordinates (in meters)

1 Rotation_y  Rotation, ry, around Y-axis in camera coordinates [—pi, pi]

4. Experimental Results
4.1. Experimental Environment
Dataset and Model

For the synthetic LIDAR point cloud generation experiment, the KITTI 360 [28] and
nuScenes [29] datasets were used. The KITTI 360 dataset is one of the most commonly used
autonomous driving datasets and includes 3D LiDAR data. The LiDAR sensor used for data
acquisition was the HDL-64E model developed by Velodyne, which is a 64-channel model.
The nuScenes dataset is an autonomous driving dataset that includes LiDAR data and uses
the HDL-32E model from Velodyne, a 32-channel LiDAR. These two datasets, shown in
Table 3, were chosen for the experiment because they were acquired using LiDAR sensors
with channels different from those of Velodyne. The datasets include object bounding
boxes and AP3D (%) evaluation metrics, assessing object detection performance across easy,
moderate, and hard scenarios, considering occlusion and object size.

For the deep learning model training experiment, PointPillars [30], PV-RCNN [31],
and Voxel R-CNN [32] models were used as 3D object detection models. The PointPillars
model is a network that shows outstanding computational speed owing to its pillar-shaped
feature extraction and is still widely used due to its real-time performance. Both the PV-
RCNN and Voxel R-CNN models achieved state-of-the-art (SOTA) results, demonstrating
superior performance compared to previous research.

4.2. Synthetic LIDAR Point Cloud Generation

The experiment was divided into a car class generation experiment, which accounted
for the majority of the experiment, and pedestrian and cyclist class generation experiments.
In addition, a generation experiment was conducted to verify the representation of platoon-
ing, as shown in Figure 9, using the synthetic object position determination module of the
proposed framework and the data distribution with object distance, as shown in Figure 10.
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Figure 9. Platooning situation that appears in the KITTI 360 dataset: green represents car objects, and
light green represents van objects.
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Figure 10. The proportion of data generated by each category—(a) car, (b) pedestrian, and (c) cyclist—at
different distances from the original data.

18



Sensors 2024, 24, 8144

4.2.1. Car Class

The car class represents the most frequently observed objects in autonomous driving
datasets. The experiment was divided into near distances of over 15 m and far distances of
over 50 m, generating synthetic object points on both the 64-channel LiDAR data from the
KITTI 360 dataset and the 32-channel LiDAR data from the nuScenes dataset. Figure 11
shows the resulting image of the synthetic LIDAR point cloud generation for the car class.

The results of creating synthetic car class objects using the proposed framework showed
that it is capable of generating synthetic object points with shapes similar to those of real
objects for both near and far distances. The shape of objects in LIDAR point cloud data varies
depending on the channel and the performance of the sensor. This experiment proved that
these variations could be significantly well represented by the shape of the objects. Figure 12
compares the shapes of the generated synthetic car objects with those of the real objects at
the same distance. Synthetic LIDAR point cloud generation occurred at distances greater
than 50 m and showed the appearance of real vehicles at similar distances as the synthetic
vehicles generated by LIDAR-Aug and the proposed method. The LiDAR-Aug method was
implemented based on the proposed method, and synthetic object points reflecting Gaussian
noise were generated. Figure 13 compares the shapes of the synthetic object points generated
by the existing LIDAR-Aug and proposed frameworks. The experimental results confirmed
that our method represents long-distance objects that are more similar to real ones.

KITTI 360 (64ch) KITTI 360 (64ch) nuScenes (32ch) nuScenes (32ch)
15 m distance 50 m distance 15 m distance 50 m distance

Figure 11. Results of synthetic LIDAR point cloud generation experiment for car class.
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Figure 12. Comparison of distant synthetic car objects generated using the proposed method with
real distant car objects.
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LiDAR-Aug Real Car Proposed Method

Figure 13. Comparison of realism factor between LiDAR-Aug and the proposed method.

4.2.2. Pedestrian and Cyclist Classes

This study also conducted generation experiments for the pedestrian and cyclist
classes, which are the most used classes after the car class in autonomous driving datasets.
Similarly to the car class, synthetic object points were generated at near distances of 15 m
and far distances of 50 m, and it was confirmed that the synthetic object points generated
at each distance showed shapes similar to those of real objects. Although the shapes of
the objects were not as distinct as those of the larger car class because of their smaller size,
this proved the method’s ability to represent the shape of the objects differently depending
on the distance. Figure 14 shows the resulting images of the synthetic LIDAR point cloud
generation for the pedestrian and cyclist classes.

15 m distance

50 m distance

Figure 14. Experimental results of synthetic LIDAR point cloud generation (pedestrian and cy-
clist classes).
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4.2.3. Platooning

Figure 9 shows the platooning situation that appears in the real KITTI 360 dataset,
and the other image shows a situation in which the synthetic object points generated
through the proposed framework depict platooning. In the figure, two synthetic object
points are generated, both of which follow the direction of nearby real objects by follow-
ing two steps: (1) calculating the pose decision area based yaw value determination and
(2) updating the pose of the synthetic object to point toward a nearby real vehicle’s
pose, as stated in Section 3.1.3. In summary, the yaw angle is assigned based on the
pose decision area, and then it can be updated based on the orientation of nearby real
vehicles. If a real vehicle is within a certain proximity to the synthetic object, the yaw
value of the virtual object is updated to match the yaw angle of the nearest real vehicle,
allowing for a platooning process, as shown in Figure 15f. However, the current study
should further explore complex platooning mechanisms besides the angle alone to
implement better pose estimation techniques. This aspect is considered as a potential
future scope in terms of platooning scenarios.

m: Real Car

: Synthetic Car

7 Intersection

Same Angle

Figure 15. Platooning represented by proposed method where green represents car objects, light
green represents van objects, blue represents cyclist objects, and red represents pedestrian objects.
(a,b) Frame presenting the platooning situation included in the KITTI 360 dataset; (c) original input
LiDAR scene; (d) output scene with 2 synthetic car objects; (e) pose decision areas for platooning
with respect to a real vehicle; (f) pose of a synthetic object determined by a nearby real vehicle
for platooning.

4.3. Deep Learning Model Training

The KITTI 360 dataset is a large-scale autonomous driving dataset consisting of approx-
imately 15,000 frames of data in the form of a fusion of 2D image data and 3D LiDAR sensor
data. Approximately 15,000 frames of data are provided in the form of Train, Val, and Test
sets in a ratio of 2:1:1. Most models in the 3D object detection field use the KITTI 360 dataset
to demonstrate object recognition performance, and a benchmark suite is provided for
this purpose so that developers of object recognition deep learning models can access
and utilize it. To confirm that the synthetic object points generated through the proposed
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framework can be effectively used for deep learning model training on RAM 8 GB Intel
i5/GTX 1080 8 GB, datasets augmented with synthetic object points were used to train
various deep learning models and evaluate their performance. The deep learning model
training experiments were conducted separately using the datasets augmented with the
car class and those augmented with the pedestrian and cyclist classes.

4.3.1. Car Class

A dataset augmentation experiment using synthetic object points from the car class
was conducted by training various 3D object detection models on the augmented dataset
and measuring the improvement in training performance. The KITTI 360 dataset was used,
and the PointPillars, PV-RCNN, and Voxel R-CNN models were used as the deep learning
models. The performance of the proposed framework was evaluated in comparison with
an existing research method, LiDAR-Aug. Table 5 lists the car class performances of the
proposed framework. Since Voxel-RCNN was published before LiDAR-Aug, this item
is vacant, and the training performance of the dataset augmented with the proposed
framework improved compared with the previous ones for all three selected models. The
extent of improvement in training performance showed a trend in which it was higher when
the original performance was lower and somewhat lower when the original performance
was higher. It was also observed that the performance of the proposed framework improved
compared to that of LIDAR-Aug for all the models. The performance of LIDAR-Aug for
the voxel R-CNN model was not included as it was not presented in this paper.

Table 5. Evaluation results of proposed framework for the car class on the KITTI validation dataset.

AP3D (%)
Methods mAP
Easy Moderate Hard

PointPillars with KITTI 85.41 73.59 68.76 75.92
PointPillars with LIDAR-Aug 87.75 77.83 74.90 80.16
PointPillars with proposed work (Ours) 88.75 80.43 77.52 82.23
PV-RCNN with KITTI 88.86 78.83 78.30 82.00
PV-RCNN with LiDAR-Aug 90.18 84.23 78.95 84.45
PV-RCNN with proposed work (Ours) 92.64 84.54 82.98 86.72
Voxel R-CNN with KITTI 92.24 85.01 82.51 86.59
Voxel R-CNN with LiDAR-Aug NB NB NB NB
Voxel R-CNN with Proposed (Ours) 92.67 85.34 83.13 87.05

4.3.2. Pedestrian and Cyclist Classes

The dataset augmentation experiment for the pedestrian and cyclist classes was con-
ducted in a similar manner using the augmented KITTI 360 dataset to train the PointPillar
and PV-RCNN models and to calculate the improvement in training performance. The
performance of the dataset augmentation carried out via the proposed framework was
also validated by comparing it with the performance of LiDAR-Aug. Tables 6 and 7
list the performance of the proposed framework for the pedestrian and cyclist classes.
The performance of the proposed framework for the pedestrian and cyclist classes was
slightly improved compared with the original dataset. However, when compared to the
LiDAR-Aug method, the proposed framework did not outperform LiDAR-Aug in every
case. The performance of the cyclist class was not included as it was not presented in the
LiDAR-Aug paper.

Interestingly, although the dataset was augmented for the pedestrian and cyclist
classes, the training performance for the car class improved. This is interpreted as dataset
augmentation mitigating the object imbalance between classes that existed because the
original dataset had fewer pedestrian and cyclist class objects than car class objects, thereby
enhancing the learning performance for the car class as well.
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Table 6. Evaluation results of proposed work for the pedestrian class on KITTI validation dataset
using pointpillars.

AP3D (%)
Methods Car Pedestrian Cyclist
Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard
PointPillars with KITTI 85.41 73.59 68.76 47.51 43.82 42.20 84.64 64.26 60.69
PointPillars with LIDAR-Aug 87.75 77.83 74.90 59.99 55.15 52.66 - - -

PointPillars with Proposed work 87.99 78.42 75.35 56.28 50.5 46.07 84.68 64.63 61.12

Table 7. Evaluation results of proposed framework for the pedestrian class on KITTI validation

dataset using PV-RCNN.
AP3D (%)
Methods Car Pedestrian Cyclist
Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard
PV-RCNN with KITTI 88.86 78.83 78.30 60.56 53.75 51.90 90.24 71.83 68.33
PV-RCNN with LiDAR-Aug 90.18 84.23 78.95 65.05 58.90 55.52 - - -

PV-RCNN with Proposed (Ours) 92.00 84.68 82.67 66.41 59.45 53.62 90.85 7242 69.04

5. Limitations and Future Work

The proposed framework consists of several limitations, such as the fact that the
performed experiments primarily focused on evaluating metrics such as accuracy (mAP) in
favor of the training process. Dataset diversification must be carried out by introducing
vast datasets for LIDAR and employing the proposed framework to improve training
performance. However, including a variety of metrics such as the real-to-synthetic noise
distribution and testing for realism would favor the overall integration of the framework
into the training process. Additionally, other evaluation models could be used aside from
those included in the current study, which were limited to PointPillar, PV R-CNN, and
Voxel R-CNN. Due to the lack of open-source SOTA resources for reproducibility, this study
employed the KITTI dataset to perform the evaluation, alongside LIDAR-Aug. Subsequent
research may extend this process to produce integrated 2D and 3D virtual entities with
calibrated LiDAR and picture data, thereby reducing the time and resources necessary
for synthetic LIDAR point cloud generation. Also, this study did not consider return
losses according to the reflected intensity, which requires further investigation regarding
materials and reflectivity. The idea of reflectance was not explored in this study, which is
a shortcoming, and it should be explored in future work. Additionally, various complex
platooning mechanisms must be explored with better pose estimation variables besides
the angle.

6. Conclusions

The proposed framework includes a module to determine the pose of synthetic object
points, along with an automated system capable of representing both near and distant
synthetic object points, as well as platooning scenarios for vehicles on the road. The
proposed framework was assessed by qualitative and quantitative performance analyses
on the synthesis of objects within an established dataset, namely KITTI. The integration
of the synthetic object through this framework in the augmented dataset demonstrated
that synthetic object points can be efficiently utilized in training deep learning models
for 3D object detection applications. This study showed that the proposed framework
can accurately represent distant objects and produce synthetic object points that closely
align with real-world distributions, in contrast to the existing LIDAR-Aug technique. The
performance of the proposed framework was evaluated on various 3D detection models,
such as PointPillars, PV-RCNN, and Voxel R-CNN, for the KITTI dataset. The results
indicated an increase in mAP (mean average precision) by 1.97%, 1.3%, and 0.46% from
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the original dataset values of 82.23%, 86.72%, and 87.05%, respectively. The proposed
method has to deal with return loss in new projected points, which is a shortcoming at
this stage. Future investigations may expand this methodology to generate integrated
2D and 3D virtual entities with calibrated LiDAR and image data, thereby minimizing
the time and resources required for Al dataset generation and enhancing autonomous
driving technology.
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Abstract: The rapid growth in technologies for 3D sensors has made point cloud data increasingly
available in different applications such as autonomous driving, robotics, and virtual and augmented
reality. This raises a growing need for deep learning methods to process the data. Point clouds are
difficult to be used directly as inputs in several deep learning techniques. The difficulty is raised
by the unstructured and unordered nature of the point cloud data. So, machine learning models
built for images or videos cannot be used directly on point cloud data. Although the research in the
field of point clouds has gained high attention and different methods have been developed over the
decade, very few research works directly with point cloud data, and most of them convert the point
cloud data into 2D images or voxels by performing some pre-processing that causes information loss.
Methods that directly work on point clouds are in the early stage and this affects the performance and
accuracy of the models. Advanced techniques in classical convolutional neural networks, such as the
attention mechanism, need to be transferred to the methods directly working with point clouds. In
this research, an attention mechanism is proposed to be added to deep convolutional neural networks
that process point clouds directly. The attention module was proposed based on specific pooling
operations which are designed to be applied directly to point clouds to extract vital information
from the point clouds. Segmentation of the ShapeNet dataset was performed to evaluate the method.
The mean intersection over union (mlIoU) score of the proposed framework was increased after
applying the attention method compared to a base state-of-the-art framework that does not have the
attention mechanism.

Keywords: deep learning; point cloud data; attention mechanism; 3D data

1. Introduction

Point cloud processing using deep learning methods has gained a lot of attention.
Point clouds are a set of data points in space to display 3D geometry. They have gained
popularity and wide usage in several domains. The rapid growth in 3D technologies and
3D sensors has made point cloud data increasingly available [1]. Additionally, the world
is in three dimensions, thus point clouds are a suitable format for representing the real
world in XYZ coordinates. The usage of point clouds extends to a variety of disciplines
and the 3D nature of point clouds makes them the appropriate format for autonomous
driving, robotics, virtual and augmented reality, heritage preservation, and many more
applications [2]. The availability of point cloud data has raised a need for advanced deep
learning methods to process 3D point clouds.

Deep learning techniques have been used to perform different kinds of processing on
image and video data [3-6]. Some deep learning techniques that have been applied to point
clouds include classification, detection and tracking, reconstruction, and segmentation [7].
For over 50 years, the segmentation of images has been the focus of several researchers.
The purpose of segmentation is to break an image into subregions with similar features,
and it has had a great impact on computer vision [7,8]. Point cloud segmentation has

Sensors 2024, 24, 6446. https:/ /doi.org/10.3390/524196446 26 https://www.mdpi.com/journal/sensors



Sensors 2024, 24, 6446

faced challenges due to the unstructured nature of the point cloud data and its highly
redundant and uneven nature [9]. Although various point cloud segmentation methods
exist, designing deep learning techniques for this purpose remains a challenging task.
Developing advanced methods in this field will improve the accuracy of computer vision
in 3D space for different applications.

Attention mechanisms have had a great impact on deep learning by improving the
accuracy of models and their performance [10]. Attention mechanisms help the models
concentrate on the most important features of input data [11]. There are several types of
attention mechanisms. One of the early applications of attention mechanisms in point cloud
data is the shuffle attention model [12]. A little research has been carried out on improving
the performance of point cloud convolutional neural networks (CNNs) with attention
mechanisms. Unlike pixel images, there have been few usages of attention mechanisms
directly applied to point cloud data [7]. The unstructured and unordered nature of point
cloud data causes each point to have specific importance, and using a processing approach
that evenly processes the points is not suitable.

Therefore, in this research, an attention mechanism is proposed for processing point
cloud data. The attention mechanism is directly applied to point cloud data without
mapping them to a continuous space. It learns the importance of points using training data
and places specific emphasis on each point. The proposed attention mechanism is added to
a network called ConvPoint [9]. The performance of the proposed method was compared
with the base method without the attention mechanism, i.e., ConvPoint [9]. Additionally,
the method was compared with other state-of-the-art methods.

The structure of this paper is as follows. Section 2 reviews the existing literature on
deep learning methods for point clouds and attention mechanisms. Section 3 explores the
proposed method and its components. Section 4 discusses experiments and results. Finally,
Section 5 concludes the paper.

2. Literature Review

For different applications, such as perception and localisation, which are key for
navigation in autonomous vehicles, visual data processing plays an important role [13].
Image data extracted from a camera are usually represented in 2D; however, the 2D
data lack the required geometric and volumetric information [13]. A point cloud is a
representation tool for 3D data. In this section, initially, deep learning methods for point
clouds are reviewed. Then, attention mechanisms in deep learning for images and point
clouds are discussed.

2.1. Deep Learning Methods for Point Clouds

A key challenge in point cloud processing is the inefficiency of traditional CNNs
in processing the original form of point cloud data [14]. The sparse, unstructured, and
unordered nature of point clouds makes the standard CNN architecture less effective. To
address these issues, refs. [15,16] proposed the pre-processing of point cloud data into
voxel representations or 2D images. Three-dimensional point clouds can be converted into
2D images using multi-view-based methods or into a 3D volumetric representation to be
processed by well-known 2D or 3D convolutional networks [7]. Although these methods
might ease the implementation, the loss of certain geometric information of the point cloud
data is the cost of this implementation. This significant gap represents a critical challenge in
the field and identifies a huge demand for approaches that can directly process point cloud
data without compromising its intrinsic characteristics. Our proposed method, which is a
point-based approach, addresses this limitation by leveraging the power of deep learning
to develop an architecture that preserves the original structure of the point cloud data, thus
maintaining important geometric and spatial information. The pointwise method does not
use any voxelization or other projection methods.

There are different types of pointwise methods. Pointwise MLP methods process
each point independently using shared multilayer perceptrons (MLPs). Then, the output
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features are aggregated (global aggregation) using an aggregation function. PointNet [17] is
a pioneering pointwise MLP method that uses max pooling for global feature aggregation.
It was improved by introducing a structure to extract global and local features to create
PointNet++ [14]. PointNet++ uses a max pooling method for local feature aggregation. The
dynamic graph CNN (DGCNN) [15] was proposed to aggregate local region information
using the feature of a centre point and the differences between the feature of the centre point
and the features of its k nearest neighbour points. DGCNN only considers the pair relation
for the centre point. PointWeb [16], a pointwise MLP method, was proposed to consider all
pairs of points in a local region using a module called adaptive feature adjustment (AFA).
One of the challenges of the pointwise MLP methods is their high computational cost.

Convolution-based methods for 3D point clouds are another group of deep neural net-
works that use specific convolution kernels to process 3D point clouds. Three-dimensional
discrete convolution methods are an important group of convolution-based methods, and
they use convolutional kernels on regular grids and the offset of each point to a centre point
to define weights for neighbouring points. For instance, Hua et al. [18] used uniform grids
to define convolutional kernels. They transformed 3D point clouds into uniform grids and
assigned the same weight to the points falling in the same cell or subdomain. The mean
value of the features of the points in a cell is multiplied by its corresponding kernel weight
and summed with the other weighted mean values on all other cells in the kernel domain
to calculate the output. In the spherical convolutional kernel proposed by Lei et al. [19],
multiple volumetric bins were created by partitioning a 3D spherical neighbouring region.
A learnable weighting matrix was assigned for each bin.

Three-dimensional continuous convolution methods are another group of convolution-
based methods for processing 3D point clouds. Despite the 3D discrete convolution
methods that consider discrete regions or domains, they used convolutional kernels on
a continuous space. The weights in the convolutional kernel for neighbouring points are
related to the continuous spatial distance from a centre point. For instance, RS-Conv [20]
uses an MLP to implement a convolution. The MLP is trained to map low-level relations
between input points such as Euclidean distance and the relative position to high-level
relations between points in the local subset. Then, the output of the MLP is used to calculate
the weighted sum over the given subset. ConvPoint [9] is another method that performs
convolution in two parts, namely the spatial and feature parts. The locations of the kernel
points are selected randomly from a unit sphere. The kernel points and the position of
input points are applied to an MLP to create kernel weights. The convolutional layer can be
used as a building block of complex networks. Different structures in the classical neural
networks can be used to design new network structures for point cloud processing. In
this project, an attention mechanism is used with a 3D continuous convolution method to
design a new network structure.

Wang et al. [8] addressed one of the critical limitations, the inability of discrete CNNs
to handle the unstructured nature of point cloud data, thus proposing a framework that
generalises discrete CNN’s to deal with point clouds. While [8] made progress in adapting
CNN s to process point cloud data, the framework faces challenges in handling large-
scale, real-time point cloud data, which is critical for many practical applications. The
performance of this framework in scenarios with varying point densities or occlusions
remains unclear. Our work is expected to build upon this framework to reduce some
of the limitations and to improve point cloud processing in real-world applications and
dynamic environments.

2.2. Attention Mechanisms in Deep Learning Methods for Images

Attention mechanisms have improved image segmentation significantly; however,
their applications in point cloud data have been limited. There have been promising
applications of attention mechanisms in 2D image processing. Approaches applied to 2D
images include spatial channel attention [10], shuffle attention [11], and the convolution
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block attention module [21]. These approaches have improved model performance by
effectively capturing channel dependencies and pixel-level relationships.

Using image-based attention mechanisms directly on 3D point cloud data has been
faced with challenges. Often, preprocessing or data conversion is required, leading to
potential data loss. Additionally, the unique spatial structure of the 3D point cloud data
may not be fully leveraged.

Our work aims to bridge this gap by developing attention mechanisms designed
to work on 3D point cloud data. This framework will address the challenges caused
by the unstructured nature of point cloud data while maintaining the advantages of
attention mechanisms.

2.3. Attention Mechanisms in Deep Learning for Point Clouds

Yang et al. [22] proposed the attention-based point network (AttPNet), a network that
utilises attention mechanisms to perform channel weighting and global feature masking
on feature areas. AttPNet has two branches, where one branch deduces global features
from point sets using convolutional layers to create a channel attention block focusing on
the key channels of the data. The other branch performs the calculation of an attention
mask for every point. Subsequently, the authors designed a point cloud dataset of electron
cryo-tomography (ECT) and used these data to show the AttPnet’s capacity of handling
fine-grained structures. The authors aimed to design a model that handles fine-grained
structures. The attention mechanisms use the MLP. Additionally, they only use the features,
and the exact position of the points was not applied to the MLP. In our research, a point
cloud convolutional layer that accepts the position of the input points in addition to the
input features is used to design an attention mechanism.

Hu et al. [23] introduced an attention-based module for extracting local features in
their semantic framework for point cloud data labelling. Although this design achieved a
modest output, it had limitations in fully utilising geometric calculations of neighbouring
points. Deng and Dong [24] designed a global attention network for point cloud seg-
mentation to address the problem of learning long-range dependencies from 3D point
clouds, which has been a challenging problem in the processing of 3D point clouds. The
global attention network, or GA-Net, comprises a global attention module that is point-
independent and another global attention module that is point-dependent for gathering
background information on 3D points. Both [25,26] made significant progress in utilising
geometric calculations of neighbouring points and learning long-range dependencies but
face limitations in balancing computational complexity with performance.

Several researchers focus on spatial encodings whilst ignoring the channel relation-
ships, making feature learning insufficient. Hence, the lightweight attention module (LAM)
was developed in [27] to improve the performance while adopting a new convolutional
function and introducing a channel-based attention mechanism. However, its integration
with existing networks may not fully exploit the unique properties of point cloud data.

One of the issues with working with point clouds is the inability to fully utilise
the geometric information of neighbouring points. This prompted Feng et al. [28] to
propose and design the local attention-edge convolution (LEA-Conv) layer. This layer is
an extension of the works proposed in [14,15,29]. The LAE-Conv model builds a graph of
neighbourhood points along several routes. Consequently, a search strategy was proposed
in [28] to use a multidirectional search to find all points in the neighbourhood across
16 directions systematically within a ball query to generalise the local geometric shape
over the space. Additionally, a pointwise spatial attention block was proposed to capture
information in the spatial dimension. The output features of the LEA-Conv layer were
applied to the spatial attention block to create outputs that capture the spatial dependency
of the points. The spatial attention block does not consider the correlation in the different
channels. In this research, a channel attention mechanism is proposed.

This review highlighted the importance of attention mechanisms on model perfor-
mance. A critical gap exists in designing attention mechanisms that work directly on the
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geometric information contained in 3D point cloud data. These attention mechanisms will
significantly improve the accuracy of existing 3D point CNNs.

3. Methodology and Framework

This section covers a brief description of ConvPoint [9], which is used as the base
of the proposed method after a discussion of the problem statement. The point cloud
convolutional layer in [9] is used as a base method in this research because it is a convolution
method that directly processes point clouds. It does not have an attention mechanism.
Moreover, its output is also point clouds. Therefore, its output has an acceptable format
that can be applied to the proposed attention mechanism in this paper, which is designed to
directly work on point cloud data. The proposed attention mechanism will be introduced
in Section 3.3. Lastly, the final network structure will be discussed.

3.1. Problem Statement

In this research, a method is proposed to enhance the performance of ConvPoint [9]
with a spatial attention module that is inspired by the convolutional block attention module
(CBAM) [21]. ConvPoint is an oversimplification of a discrete convolutional neural net-
work [9]. The CBAM is an attention module for the usual convolutional neural networks
used for normal data such as images [21]. The structure of point cloud data is different
from the usual data produced by a classical convolutional layer and consequently, it needs
a new attention mechanism. In this research, we design a channel attention mechanism to
boost the performance of ConvPoint [9].

Suppose a convolutional layer works directly on point clouds. The layer has a kernel
function and an input in the form of point clouds. In the convolutional layer for point clouds,
the following kernel K and input P that have compatible dimensionality are used: K =
{(c;wi),c € R w; e R%i € [1,[K[]} and P = {(p,%)} = { (p;,x;),p; € R x; e R%i € [1,|P|]},
where |K| is the number of elements in the kernel and |P| shows the size of the input set,
i.e., the number of points that are in the input set P. The convolutional layer for point
clouds accepts point cloud data composed of several input points and corresponding
features, i.e., P = {(p,x) }, where x is an n-dimensional feature from the input feature space
corresponding to an input point, i.e., p in the 3D space. The convolutional layer uses the
kernel K to create an output composed of the place of the output points, i.e., ¢, and their

features (y),ie, Q = {(q.v)} = { (9,,v,).9; € R3,y, e R",i e [1,|Q|]}.

3.2. Continuous Convolutions for Point Cloud Processing (ConvPoint)

A continuous convolutional layer was proposed in [9] by adjusting the discrete convo-
lutional layer used for the common 2D image datasets to process point cloud data. The
following two operations are performed in ConvPoint [9] to map the input P to the output
Q: 1—point selection, and 2—convolution on point sets.

(a) Point selection.

Each point q in the output set, Q = {(g,y)}, is selected randomly from input points
that are in P = {(p, x) } using the random method in [9]. A score is allocated to each input
point and whenever a point is selected randomly, its score is increased by 100. Additionally,
the scores of its neighbour points are increased by 1. Increasing the scores of a selected
point and its neighbour points reduces their chance of being selected in the next selection
procedure. This method is used to give a chance to all points to be selected and to reduce
the probability of selecting repeated points. The selection procedure is continued until the
required output points are selected.

(b) Convolution on point sets.
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After selecting the output points, for each output point g, the k-d tree method [9] is
used to find local neighbour points in P = {(p, x) } to create a subset of points for each g.
Then, point convolution is applied to the subset of points using (1).

L 1Pl IK
]/:,3+WZ Zwixjf(l’j—c> 1)

j=1i=1

where f is a bias parameter, Ilﬂ is used to reflect the input set size to have robustness

against input size variation, and f(.) is a geometrical weighting function to distribute the
input P = {(p,x)} onto the kernel K = {(¢,w)}. It accepts the relative distance between
each input point p and all the kernel elements {c}, i.e., p; — ¢, to create a weight in R
corresponding to an input point as shown in (2).

fiR3x (R’J‘)‘KI R )

A simple neural network, i.e., the multilayer perceptron (MLP), is trained to act as
f(.). The MLP is used to build the general function f(.), as this approach is easier than
building the general function from scratch. For each kernel in the convolution operation,
spatial and feature parts were processed independently. The parameters were optimised
using gradient descent during training.

The locations of the kernel elements {c} are initialised by randomly selecting them
from the unit sphere. Training parameters of the convolutional layer, i.e., {c} and {w}, and
the training parameters of the MLP are optimised using the gradient descent method.

3.3. The Proposed Attention Mechanism for Point Cloud Continuous Convolutional Layer

In this research, the attention module proposed in [21] for the common convolutional
layer inspired us to design an attention mechanism for the point cloud convolutional
neural network described in Section 3.2. A channel attention mechanism for the continuous
convolutional layer for point clouds (ConvPoint) is proposed in this research. The proposed
attention mechanism is designed to perform different operations such as average pooling
and max pooling operations on point cloud data extracted from a ConvPoint layer.

In the proposed attention mechanism, an input feature map is converted into a channel
attention map using the proposed method. The process of channel attention is given by (3).

F =M(P) Q)P ®)
where P = {(p, x)} is the input to the attention block, which is produced from its previous
ConvPoint layer, ® denotes multiplication of the elements, and M,(.) is a channel attention
mechanism. As the input of ConvPoint is composed of two parts, i.e., p and x, in this paper,
a mechanism was proposed to deal with the two parts of the attention mechanism.

First, pooling operations, i.e., max pooling and average pooling, were applied to the
features X = [xlxz .. .x|p|} ,wherex; € R" fori € [1,|P|], Xinax € R", and Xyean € R" are
created after the max pooling and average pooling on the features related to the |P| input
points. Then, the results are concatenated as shown in Figure 1 using (4).

XC - C(Xmax' Xmean) (4)

where C(.) is the concatenation function combining the two inputs with a size of (1,1) to
create a concatenated output with a size of (2, n).
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Figure 1. The structure of the proposed channel attention mechanism for the point cloud convo-

lutional layer. The numbers in the parentheses show the size of each tensor before and after each
operation. In this sample network, | P| =8 and n = 96. The grey, red, blue, and green boxes represent
max pooling, average pooling, the ConvPoint layer, and sigmoid operations, respectively. The C
stands for concatenation.

In the next step, we propose to perform pooling on the points in the input points, i.e.,
Pts = {plpz . ‘p\PJ' where p; € R3 fori € [1,|P|] to create two points in the 3D space

corresponding to the two features extracted from max and average pooling. The results
for the two operations on Pts are Pts;.x € R3 and PtSyean € R3. The two vectors are
concatenated using (5).

Pts®= C(Pts ., PtSmean) (5)

Pts® has an appropriate size of (2,3) to be combined with X¢ to create an input P° to
be applied to a ConvPoint layer, as shown in Figure 1. After passing the pairs of Pts® and
X to the Conv layer, the output will be passed to a ¢ function using (6).

M.(P) = o(ConvPoint(Pts‘, X)) (6)

The output of the attention block, i.e., M¢(P), is obtained by multiplying by the original
input P using the element-wise multiplication in (3) and the results F' will be added to the
original input.

3.4. The Network Structure

The network used in this project has a structure similar to U-Net, used in [9] for seg-
mentation. The original network without the attention mechanism is given in Figure 2. The
network is composed of two main parts, an encoder and a decoder. There are six ConvPoint
layers in the encoder. Each ConvPoint layer is a part of six blocks, demonstrated in Figure 2,
given by a number from (1) to (6). The output of each ConvPoint layer comprises point
cloud data and it has two parts, i.e., the position of the points Pts; and the corresponding
features, i.e., X;. The proposed attention module is applied to the network in different parts
to find the best locations for the attention mechanism. For instance, it is applied after the
final layer in the encoder just before entering the decoder, i.e., Ptsg and Xg. The results
were demonstrated in Section 4. The point cloud convolutional neural network with the
proposed attention is called PointCloud-At.

Since input point clouds are given in different sizes, 2500 points are selected randomly,
and the label of every point in the input is determined as output for segmentation. Cross-
entropy loss is calculated for each point and the scores at the shape level are calculated
accordingly. The scores for the network are the instance average intersection over union
(mlIoU) [9].

32



Sensors 2024, 24, 6446

o/
y | b=

=l % = A E 2
¥} 7 7 o
e =L
H 7 T Al
= Y4 A g3
2 (6] |
= Y4 (5) ' | 7/

7N ol - /

rd M ) Part segmentation network A /

12)
\(}] Semantic segmentation network A
Conv, + Point-wise Feature Point
- BN + RelU - fully connected concatenation /Iq;c::ion transfer

Figure 2. Semantic segmentation network graphical display, as fetched from [9].

4. Experiments and Results

Different experiments were carried out on the ShapeNet dataset [30] to thoroughly
evaluate the proposed channel attention mechanism on point cloud data. These and the
results are discussed in this section. The dataset is also described in Section 4.1.

4.1. Dataset

The proposed attention mechanism is evaluated on the ShapeNet dataset [30], which
contains point clouds. Different experiments were run to evaluate the attention mechanisms
from different perspectives of the ShapeNet dataset [30]. The ShapeNet dataset is a rich
annotated 3D representation of shapes. It provides semantic annotations. The ShapeNet
dataset contains 16,680 models that belong to 16 shape categories. These categories are split
into training and testing sets, with each category annotated with two- to six-part labels.
Thus, it has around fifty (50) classes [9].

4.2. Experiments

To evaluate the proposed attention module, we modified the attention module by
positioning it in several areas in the network, including the skip connections. The results
were compared with the results of the base method described in Section 4.3.

In the first experiment for the proposed method, the proposed attention mechanism is
applied between the encoder and decoder of the network, which is a U-net. The proposed
attention module shown in Figure 1 is applied on the final layer of the encoder, i.e., Ptsg
and Xg. The matrix shape of the output of each operation is shown in Figure 1. After
completing these operations, the training was run for 10 epochs. There is an improvement
in the mean intersection over union (mloU) score compared to the score of the original
network without the proposed attention module.

In the next step, we applied the attention module on (Pts¢, X¢) and (Ptss, Xs), i.e., the
outputs of blocks 6 and 5 in Figure 2. The improvement in this was higher compared to
the previous experiment, hence making it a better technique. Results are shown in the
following sections. The best model was found, and it was trained for 200 epochs to be
compared with the base method that was trained for the same number of epochs.

4.3. The Results of the Base Method

Initially, the base network in [9] was evaluated before applying the proposed atten-
tion module. The base method, i.e., ConvPoint, has shown a competitive performance
compared to state-of-the-art methods [9] when it trains for 200 epochs. The framework is
ranked amongst the best five frameworks (ranked number four) for both mean class inter-
section over union and mean intersection over union (mcloU and mloU) on the ShapeNet

33



Sensors 2024, 24, 6446

dataset [9]. We initially trained the base method for ten epochs using the initial set, and the
final mean intersection over union (mloU) for all shapes was 80.3% (Table 1).

Table 1. The performance of the proposed method when the attention mechanism is added in
different positions of the base network, which is compared with the base method, i.e., ConvPoint [9].
The training was performed for 10 epochs for all the methods.

Network/Attention Number of Epochs mloU Score
Base method 10 80.3%
(Pi’S6 ’ X6) 10 80.5%
(Ptss, Xs) 10 80.4%
(Ptsy, Xy) 10 80.39%
(Ptsg, Xg) and (Ptss, X5) 10 81.45%
(PtS€5 ’ X€5) 10 80.30%

4.4. The Results of the Proposed Method

The proposed point cloud convolutional neural network with attention, called the
PointCloud-At method, was trained for ten epochs like the base method for a fair compari-
son. A low number of training epochs was used to reduce computation time while testing
different situations to find appropriate hyperparameters/structures.

In the first experiment, we applied attention to (Ptss, X¢) and a score of 80.5% for
the mloU on all shapes was achieved. Secondly, we applied the attention mechanism to
(Ptss, Xs5), which gave a mloU of 80.4%. In the next experiment, the proposed attention
module was applied to (Pts4, X4), and a mloU score of 80.39% was achieved. Although
different experiments showed improvement in the results compared to the base model,
different combinations are tested to obtain a better score. Hence, the attention module is
applied to the following outputs of the ConvPoint layers: (Ptsq, X4) and (Ptss, X5). The
mean intersection over union (mloU) score of 81.45% was achieved, which is a better
improvement compared to the previous cases. The results are given in Table 1.

In the next experiment, the attention mechanism was applied to the escape connection
that connects the output of the fifth ConvPoint layer in the encoder to the corresponding
layer in the decoder (Figure 2), i.e., (Ptse5, Xes). A mean intersection over union score
of 80.30% was obtained, which is close to the score of the base method, as shown in
the last row of Table 1. The simulation results in Table 1 show that attention modules
applied to (Ptsg, X4) and(Ptss, Xs5) simultaneously could reach the best results. In the next
experiments, the proposed method with the best results was trained for 200 epochs and
compared to the base method trained for the same number of epochs (Table 2). Additionally,
we explored using median pooling instead of max pooling, and the results are reported in
the last row of Table 2.

Table 2. Comparison of the proposed method with the base method when they are trained for
200 epochs. The attention mechanism was applied to (Ptsg, X¢) and (Ptss, Xs).

Network/Attention Number of Epochs mloU Score
Base method 200 83%
Proposed method 200 84.2%
Proposed method using median pooling 200 84.2%

In our research, we initially used max pooling in our attention mechanism; this is
a common practise in many deep learning and attention mechanism architectures. We
thought that different pooling operations might capture different aspects of the point cloud;
hence, we explored median pooling. Unlike max pooling, which selects the maximum
value, median pooling measures and selects the middle value. Using both max and median
pooling resulted in the same score, showing that they both can perform on the same level in
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this case, providing flexibility on which operation to use. Obtaining the same score further
indicates the robustness of our attention mechanism and its stability.

4.5. Comparison with State-of-the-Art Frameworks

Having carefully studied the quantitative results of various frameworks, as reported
in [31], ConvPoint [9] has shown a comparative performance compared to the state-of-
the-art methods. In this paper, an attention mechanism was proposed to improve the
performance of ConvPoint [9]. The comparison of the proposed method with the other
state-of-the-art methods is shown in Table 3. The results in Table 3 show that the proposed
method in this research equates to several frameworks in some cases or outperforms them
in other cases.

In this research, an attention mechanism was proposed to be added to existing CNNs
for point clouds. The proposed attention mechanism was integrated into a recent method
called ConvPoint [9], enhancing the method’s ability to focus on points containing im-
portant information. Consequently, the proposed method increased the mloU score of
ConvPoint [9] from 83.2 to 84.2.

Seventeen SotA methods are compared with the proposed method in Table 3. The
proposed method has an accuracy higher than 15 SotA methods. While the base method,
i.e., ConvPoint [9], has a mIoU score lower than SubSparseCN [32] and SPLATNet [33],
applying the proposed attention method increased the accuracy of the proposed method to
a value higher than the accuracies of SubSparseCN [32] and SPLATNet [33] that shows the
effectiveness of the proposed method. The result in Table 3 shows the importance of the
attention mechanism in deep neural networks and that applying the attention mechanism
method to the other SotA methods can improve their accuracy.

Table 3. Comparison of the proposed method, i.e., PointCloud-At, with state-of-the-art methods.

Network mloU Score
PointCloud-At 84.2
SyncSpecCNN [34] 82.0
Pd-Network [35] 82.7
3DmFV-Net [36] 81.0
PointNet [17] 80.4
PointNet++ [14] 81.9
SubSparseCN [32] 83.3
SPLATNet [33] 83.7
SpiderCNN [37] 81.7
SO-Net [25] 81.0
PCNN [38] 81.8
KCNet [26] 82.2
RSNet [39] 814
DGCNN [15] 82.3
SGPN [40] 82.8
PointCNN [41] 84.6
KPConv [42] 85.1
ConvPoint [9] 83.2

Although KPConv [42] achieves the highest accuracy, it has a higher computational
cost compared to the proposed method. The model size of KPConv was reported in [42].
The report shows that KPConv has 14.2 M parameters. However, the number of parameters
in the proposed model is 1.3 M, which is much lower than the number of parameters
in KPConv. The result shows that the number of parameters in the proposed model is
about 11 times less than that of KPConv. The lower number of parameters in the proposed
method makes it suitable for edge devices with limited computational resources and
memory. Additionally, the low number of parameters reduces energy consumption. The
results are shown in Table 4.
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Table 4. Comparison of the number of parameters of the proposed method with KPConv [42], the
method that achieves the highest accuracy.

Network Number of Parameters
PointCloud-At 1.3M
KPConv [42] 142 M

The proposed method uses a simple and efficient convolutional layer tailored for point
clouds, and it is lightweight. It uses one kernel weight for each kernel point. However,
KPConv [42] has a complex kernel filter, and each kernel point has a set of weights. Conse-
quently, KPConv has a higher number of parameters compared to the proposed method.

5. A Discussion of the Applications of Point Cloud Processing

There is a growing demand for point cloud data processing in various applications
that depend on 3D sensor data. Point cloud processing is a powerful tool with a wide
range of applications across different scenarios in autonomous driving, robotics, virtual
and augmented reality, medical imaging, digital surface modelling, automated building
extraction, urban planning and visualisation, geographic information systems (GISs), and
3D modelling. The classification of dense point cloud data has been critical in creating
detailed 3D models that have improved urban planning and development, medical imaging,
autonomous driving, and many other fields.

Kurdi et al. [43] have used light detection and ranging (LiDAR) sensors for remote
sensing applications. They demonstrated the potential of point cloud processing in urban
planning. The authors proposed a method for automatic building point cloud filtering. The
method divides building point clouds into different zones and extracts high tree crowns
obstructing building structures. This application highlights the importance of processing
point clouds extracted from 3D sensors for solving complex issues faced in urban planning,
environmental management, and disaster management.

Maltezos et al. [44] explored point cloud processing in identifying several urban
features. This work focused on improving the performance of building classification and
extraction from densely populated areas, highlighting the technology’s ability to handle
complex urban environments. Furthermore, ref. [45] discussed how the automation of
extracting buildings from LiDAR data streamlines the creation of digital surface models
(DSMs). Their work emphasises that such automation is vital for a range of applications,
from smart city development to cartographic analysis, and it shows the wide impact of
point cloud processing in urban planning and geospatial intelligence.

These applications collectively highlight the importance of point cloud processing in
modern life. For instance, by providing detailed and accurate 3D representations of complex
environments, this technology supports more informed decision-making in infrastructure
management and urban planning, paving the way for smarter and more efficient cities in
the future.

6. Conclusions, Limitations, and Future Work

This research proposed a deep point convolutional neural network for point cloud data
using an attention mechanism. The study used an attention mechanism designed for point
clouds to improve the performance of the network. The attention mechanism works using
a channel attention module. The channel attention module was proposed specifically for
point cloud data with inspiration from the CBAM [21] which is for ordinary convolutional
layers acting on regular matrices (2D images). The proposed method overcomes the
difficulties in processing scattered point cloud data compared to usual image or voxel data,
which have regular shapes. In the proposed attention method, average pooling and max
pooling are performed on the points in 3D space to focus on the informative parts of the
data. Through several experiments and evaluations, we have shown that our proposed
method enhances the performance of the base framework.
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In this research, we designed a channel attention mechanism to boost the performance
of ConvPoint [9]. The proposed method uses a max pooling operation on both the features
and the positions of its input points in the 3D space. Additionally, it uses average pooling
on the features and the position of its input points. The two operations create two points
in the 3D space with their corresponding features. Then, the two points are applied to a
ConvPoint [9] layer to create the outputs of the attention block. The ConvPoint [9] layer is
a convolutional layer that is designed to operate on point clouds. Therefore, the proposed
attention mechanism not only has a specific pooling operation on the input points (features
and location of the inputs) but also contains a ConvPoint [9] layer that extracts appropriate
outputs for the attention mechanism to be multiplied by the original input. Note that the
proposed attention mechanism has learning parameters in the ConvPoint [9] layer, and
they are adjusted during training to create a reliable attention mechanism using the training
data. The proposed attention module is applied to the U-Net in different parts. These
unique properties make this method different from other attention mechanisms, such as
the method proposed in [28].

In [28], a convolutional layer called LAE-Conv layer was proposed to apply to point
clouds. Whereas the ConvPoint [9] layer was used in our approach as a base method, in [28],
a pointwise spatial attention module was proposed to capture the global dependencies.
They used MLP layers in the attention block. Only features of the points are applied to
the MLP and the positions of the points were not used. However, in our method, a new
channel attention mechanism was proposed to put appropriate weights on the channel
of the input point clouds. Additionally, it uses a ConvPoint [9] layer (instead of an MLP)
inside the attention block that considers the position of the input points in addition to their
features. The proposed attention block is designed in such a way that can be used with
different convolutional layers to determine an output that corresponds to the importance
of each channel.

In this project, ConvPoint [9] was used as the base method. ConvPoint [9] is an
end-to-end deep neural network for classification and segmentation. To the best of our
knowledge, there was not a report of sensible failure in the base network. Our proposed
attention mechanism was added to this base model, and we did not see any sensible failure
case. Understanding the failure case is important, especially in generative models, such
as generative adversarial networks (GANSs), where two networks compete [46]. If the
proposed method is used as a generator of a GAN in future work, then the failure cases
need to be analysed.

Adding the proposed attention method to a base method improved its performance
compared to the base method. The proposed method was compared with other state-of-
the-art (SotA) methods. While the proposed framework does not significantly outperform
all existing SotA methodologies, it does achieve a competitive result, matching and sur-
passing many established frameworks; this shows that the proposed method is valid and
contributes meaningfully to the field. It shows clear improvement over the base method, in-
dicating that the attention mechanism does enhance performance. It is designed to be easily
integrated into existing point cloud CNNS, allows easy adoption in various architectures,
and works directly on the point cloud.

The proposed attention mechanism uses max and average pooling operations, and the
pooling operations enhance feature aggregation. The max pooling captures the most promi-
nent features, which helps the network focus on the critical areas of the data. The average
pooling reduces noise and improves generalisation, making the proposed approach better
than existing ones. With the proposed method, the key aspects of the data are captured.

Whilst the proposed attention model used average pooling and max pooling along
the channel axis to extract what the informative and vital inputs are, it did not explore the
spatial axis to extract where the key elements are. Hence, it guides the framework to which
channel to look in; however, it does not direct the network to where the vital elements are in
space. Adopting a spatial attention module to enhance the framework is worth considering
in future work. This will help the framework to focus on where in the space is important in
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the input point cloud features. Additionally, as the proposed attention method is designed
to directly work with point cloud data, it can be applied to other different deep neural
networks that are working directly with point cloud data.
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Abstract: To quickly obtain rice plant phenotypic traits, this study put forward the computational
process of six rice phenotype features (e.g., crown diameter, perimeter of stem, plant height, surface
area, volume, and projected leaf area) using terrestrial laser scanning (TLS) data, and proposed the
extraction method for the tiller number of rice plants. Specifically, for the first time, we designed and
developed an automated phenotype extraction tool for rice plants with a three-layer architecture
based on the PyQt5 framework and Open3D library. The results show that the linear coefficients of
determination (R2) between the measured values and the extracted values marked a better reliability
amonyg the selected four verification features. The root mean square error (RMSE) of crown diameter,
perimeter of stem, and plant height is stable at the centimeter level, and that of the tiller number is
as low as 1.63. The relative root mean squared error (RRMSE) of crown diameter, plant height, and
tiller number stays within 10%, and that of perimeter of stem is 18.29%. In addition, the user-friendly
automatic extraction tool can efficiently extract the phenotypic features of rice plant, and provide a
convenient tool for quickly gaining phenotypic trait features of rice plant point clouds. However, the
comparison and verification of phenotype feature extraction results supported by more rice plant
sample data, as well as the improvement of accuracy algorithms, remain as the focus of our future
research. The study can offer a reference for crop phenotype extraction using 3D point clouds.

Keywords: phenotypic parameters; rice plant; automatic extraction; 3D point cloud; terrestrial laser
scanning (TLS)

1. Introduction

Plant phenotypes, with genetic and environmental factors, are commonly used by
plant breeders to meet specific breeding goals [1]. Quantitative evaluation of crop phe-
notype characteristics is an important aspect of crop breeding research, and is crucial
for revealing the mechanism of biological traits [2,3]. The bottleneck of plant phenotype
research lies in determining how to quickly obtain enough plant phenotype features [4].
Traditional methods for extracting crop plant phenotypic features often need manual mea-
surement, which are time-consuming and labor intensive [5]. In recent years, traditional
radiation transmittance measurements have been widely applied in related research, but
the sensors could only obtain two-dimensional (2D) images of the target crop, thus gaining
limited phenotypic information [6].

The emergence of light detection and ranging (LiDAR) technology, which can generate
the accurate three-dimensional (3D) information of the target, has provided technical
support for obtaining the structural information of scanning targets at a higher level of
detail [7]. Currently, its scope has spread across a wide range of research areas, especially
in agriculture [8]. As one of the agricultural application fields of LIDAR, crop phenotype
feature extraction had also become a research focus of many scholars. Among the research
on crop population phenotypes, many studies concentrated on crop canopy height [9-11],
canopy biomass [12-14], and leaf area index (LAI) [15,16] using unmanned aerial vehicle
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(UAV) systems. Luo et al. estimated maize LAI, canopy height, and aboveground biomass
using the combined hyperspectral imagery and LiDAR pseudo-waveforms, showing the
strong liner correlation between LiDAR variables and LAI height, and biomass [17]. Zhou
et al. obtained the height of the maize canopy using a canopy height model based on
the UAV-LiDAR data at different phases with higher estimation accuracy [18]. Compared
with airborne LiDAR, terrestrial laser scanning (TLS) could provide precise, high-density,
and repeatable data acquisition for monitoring specific crops with a cost-effective and
easy to perform approach [19], which has been widely used in the precise extraction of
individual crop phenotypic features. Shi et al. automatically measured the corn plant
location and spacing by TLS, with a total plant counting error of 5.5% and a RMSE in
spacing measurement of 1.9 cm [20]. Guo et al. estimated the wheat height using TLS,
pointing out the 95th height percentile, Hos, can effectively monitor the height during the
entire growth stages, and at which the wheat height can be accurately detected for heights
as low as 0.18 m [21]. Jin et al. proposed a median normalized-vector growth (MNVG)
algorithm, which can segment the stem and leaf of the maize samples with different heights,
degrees of compactness, leaf numbers, and densities from three growing stages using
terrestrial LIDAR data [22]. Su et al. calculated plant height, plant area index (PAI), and
projected leaf area (PLA) from the point clouds of different maize varieties under drought
stress collected by TLS at the individual plant level [23]. There are many related studies
of this kind, which have shown great potentiality in high-precision acquisition of crop
features. However, relevant research has mostly focused on the population characteristics
at the canopy level of crops, as well as the extraction of individual phenotypic features
of plants such as maize, rapeseed [24], wheat [25], cabbage [26], and soybean [27]. As
one of the important food crops, rice plays an important role in preserving food security
and social stability. The rice plant has flat leaves, numerous tiller branches, and complex
canopy structures, which pose significant difficulties in extracting its phenotypic features.
Therefore, accurate extraction of rice plant phenotypes is of great significance in monitoring
rice growth and crop breeding.

In this study, we put forward the automatic computational process of seven rice
phenotype features by introducing multi-step point cloud processing algorithms, developed
a plant phenotype feature extraction tool based on high-precision TLS data, and achieved
the automatic extraction of rice plant parameters. This study can provide a reference for
the analysis of rice crop characteristics. The main contributions of this study are as follows:

(1) Giving an automatic calculation acquisition approach to obtain the phenotype features
of rice plants from a rice plant point cloud, including crown diameter, perimeter of
stem, plant height, surface area, plant volume and PLA, and tiller number. We also
proposed a point cloud extraction method for the tiller number for rice plants.

(2) Combined with PyQt5 and the Open3D library for processing 3D point cloud data,
and integrating the related point cloud data algorithms, we purposefully designed
the first tool for automatically obtaining phenotype parameters of rice plants, which
is conducive to promoting the application of 3D point cloud technology in rice
plant breeding.

2. Indicator Determination

Plant height, PLA, and plant volume are important metrics to estimate crop yield [26].
With the growth of the plant stem and increase in the tiller number, the plant canopy
and leaf area accumulate a large amount of organic matter for the later nutritional and
reproductive growth of rice. The plant surface area reflects the photosynthetic capacity
of crop plants. Meanwhile, the crown diameter and the perimeter of the stem are closely
related to plant biomass and plant growth status to some extent [28]. The tiller number
of rice is an important factor reflecting the yield potential [29]. Therefore, combining the
characteristics of the rice plant, this study selected seven phenotype features closely related
to the rice plant biomass, photosynthesis, and yield as the phenotype target features of the
rice plant to carry out the tool design.
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The feature indicators of the rice plant are shown in Figure 1. The crown diameter
is the maximum radius of the plant canopy from the horizontal centroid, and PLA is the
percentage of the horizontal projected area in the minimum bounding rectangle of the
canopy (Figure 1a). In Figure 1b, the perimeter of stem and tiller number are obtained by
calculating the perimeter and number of branches at the section of the plant stem. The
plant height is the vertical distance from the highest point of the plant to the reference
point (Figure 1c). The surface area and volume are the surface area of the 3D model of the
plant body (Figure 1d) and the volume enclosed by the minimum convex hull (Figure 1e),
respectively. Table 1 presents the specific indicator algorithm outline used in this study.

(a) Horizontal projection of single plant canopy

: 0
for crown diameter and PLA estimation & N

>
&7,
% 08 ¢

(d) Alpha-shape boundary of single
plant for surface area estimation

12
(b) Horizontal projection of plant stem e 08
cross-section for perimeter of stem N A
and tiller number estimation .
0 4
J»/Q‘; % &
| | st T
(c) Plant height estimation (€) 3D convex hull of single plant

for volume estimation

Figure 1. Schematic diagram of rice plant phenotypic feature.

Table 1. Algorithm approach of phenotypic indicators for rice plants.

Indicators Algorithm Outline

Search for the horizontal distance from horizontal centroid of the stem cross-section to the

Crown diameter farthest point of the projection of the canopy.

Horizontally cut the plant stem, select the target stem section and project it onto the horizontal
Perimeter of stem plane. Then use “neighborhood search algorithm” to search for the horizontal distance from
its centroid to the farthest point, and regard it as the radius to calculate the circumference.

Plant height Obtain the vertical distance from the highest point of the plant to the reference point.

Convert the point cloud of plant to a surface model, and then calculate its surface area by the

Surface area Alpha-shape boundary algorithm.

Volume Calculate the volume of the minimum convex hull that surrounds crop plant.

Calculate the projection area of plant using the grid method, and the minimum bounding

PLA rectangle area by oriented bounding box (OBB) of the canopy horizontal projection.

Cut the stem horizontally into slices to get point cloud data of the target stem section, carry

Tiller number statistical filtering and hierarchical density clustering segmentation and count.
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3. Methodology
3.1. Overview

The flow chart of this study is presented in Figure 2. After the point cloud data
collection and preprocessing, key algorithms of point cloud neighborhood search, Alpha-
shape, and Hierarchical Density-Based Spatial Clustering of Applications with Noise
(HDBSCAN) were utilized to extract the relevant phenotype parameters. Meanwhile, the
reliability validation was conveniently conducted on the extraction results of the four
indicators for field measurement. Finally, a visual tool for automatic extraction of rice
phenotypic parameters was designed based on the Open3D library and PyQt framework.

Step 1: Preprocessing

Field survey for data
collection

Point cloud registration
and stitching

Point cloud filtering

Removal of root point
cloud

Step 2: Calculation of phenotypic parameters and
verification

Crown diameter

Surface area i

]

Key algorithms Perimeter of stem | |

PLA €— Neichborhood | | T R —> i
iNe‘ghb°’£°°d3 | Alpha-shape | | HDBSCAN !
1 searc P L Plant height

i Tiller number

Measured
»  Accuracy assessment
value

il

) 4

! Step 3: Design of automatic extraction tool

Visualization tools

Open3D Library : ; PyQt framework

Figure 2. Flow chart of the study.

3.2. Data Acquisition and Processing

The point cloud data of rice plants were obtained indoors by the TLS equipment called
FARO Focus 570, with an angle resolution of 0.009° and measurement error between 0.1
and 1.3 mm (Figure 3). To obtain the relatively complete plant point cloud data, the scanner
was set up on both sides 1.5 m from the crop plants, with fixed scanning resolution of
1/4, quality level of 3x and scanning size of 10240 x 4267 Pt. Three target balls with a
diameter of 15 cm were used for point cloud data registration. The registration process
was completed in Faro Scene software 2020 with the fitting standard deviation of the balls
within 1.5 mm. Then, objects unrelated to the plant were manually removed, and statistical
outlier removal (SOR) filtering was used to clean the noise of the point cloud. Lastly, after

44



Sensors 2024, 24, 4322

removing the root point cloud, the “PCD cloud” format was exported for reading using
Open3D library.

Figure 3. TLS sensor for data collection.

In addition, the crown diameter, perimeter of stem, and plant height of rice plants
were obtained using a measuring tape, and the tiller number was obtained through manual
counting. Assuming a measurement error of 1 cm, the average of three measured values
was selected as the final value. The crown diameter was gained by measuring the diameter
in both the maximum and minimum crown directions, calculating the average value, and
converting it into a radius. The circumference of the stem was measured 3 cm above the
root to obtain the perimeter of stem. Plant height was measured as the vertical distance
from the root stem junction to the top of the plant.

3.3. Key Algorithms
3.3.1. Neighborhood Search

Kd-tree [30] is a binary search tree which is commonly used to establish high-dimensional
spatial indexes in k-dimensional data space, to achieve the construction of geometric
topology information between discrete point clouds and thereby find the nearest neighbors
of query points. In this study, the neighborhood search algorithm was used to search for
the distance to calculate the perimeter of the stem and crown diameter of rice plants. On
the basis of constructing a point cloud Kd-tree, the geometric topological relationships
between discrete points were established to conduct a point cloud neighborhood search.
This study made use of the radius neighborhood search algorithm to traverse the centroid
and all horizontal projection points with a step having a radius of 2 cm, and returned the
search radius corresponding to its farthest point. The main flow of the radius neighborhood
search module is shown in Algorithm 1.

Algorithm 1. Radius neighborhood search algorithm.

Input: The point cloud of stem cross-section or rice plant

1: Project the point data onto the X-Y plane

2: Calculate the centroid position of the horizontal projection point: Z(x; y;)

3: Count the horizontal projection point cloud: n

4: Build Kd-tree structure for point clouds

5: Set initial search radius and step size

6: for R in the radius range

7: Neighborhood search with Z(x; y;) as the center and R as the radius, and record the
number of points searched: k

8: ifk=mn:
9: return R
10: end

Output: Calculate the perimeter of stem or crown diameter of rice plant
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3.3.2. Three-Dimensional Surface Reconstruction

Alpha-shape [31] is a boundary point extraction algorithm proposed to construct
a ball with the radius « based on three points in space. The ball is used to determine
the boundary of the point cloud model. The basic Alpha-shape algorithm relies on the
Delaunay triangulation, in which each triangle edge is characterized with a radius « of
the smallest empty circle containing the edge or triangle [32]. Assuming that S is a finite
point set in 3D space, and « is a real number (x€[0, c0)). Alpha-shape is the convex hull
of S point set when « = co. Along with « value reduction, the ball gradually generates
pits or holes, and the shape of the target tends to become more refined. This study mainly
utilized the Alpha-shape algorithm to complete the 3D surface reconstruction process of
rice plants and further extract the plant surface area. By comparison, the range of x was
set from O to 2, with an initial value of 0.0040 and increasing step size of 0.0005. The 3D
surface reconstruction effect of the rice plant corresponding to the value of 0.05, 0.01, and
0.005 is shown in Figure 4.

Figure 4. Three-dimensional reconstruction model of rice plants under different « values.

3.3.3. Point Cloud Density Clustering

The HDBSCAN algorithm is a data clustering method proposed by Campello [33],
which combines both hierarchical clustering and density segmentation. It extends the
Density-Based Spatial Clustering of Application with Noise (DBSCAN) algorithm by
converting it into a hierarchical clustering algorithm to extract a flat clustering based on
the stability of clusters, which is more robust to parameter selection. The basic principle
is to construct a reachable graph by calculating the reachable distance between adjacent
points and the core point, and finally introduce hierarchical clustering and cluster tree
compression to obtain the final cluster. The reachable distance between two points is shown
in Formula (1).

di(p,q) = max{cx(p),cx(q),4(p,q)} 1

where d(p, q) is the original metric distance between p and ¢, and the core distance
ck(p)=d ( p, NK (p)) represents the distance between the core point p and the k-th neigh-
boring point.

Because of the tiller branches in the stem of the rice plant and the high-density point
clouds, this study introduced the HDBSCAN algorithm to cluster the point clouds of
the plant stem to obtain the tiller number. The algorithm was mainly implemented by
calling the Python library “hdbscan” for point cloud data clustering programming. The
implementation process can be decomposed into five steps [34]: (1) transform the space
according to the density, (2) build the minimum spanning tree of the distance weighted
graph, (3) construct a cluster hierarchy of connected components, (4) condense the cluster
hierarchy based on the minimum cluster size, and (5) extract the stable clusters.
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3.4. Accuracy Evaluation

In this study, a linear function was adopted to fit the relationships between the ex-
tracted values and manually measured values, and the statistical indicators R?, RMSE,
and RRMSE were utilized to assess the relationships. The model performance was more
accurate with R? near to 1, and RMSE and RRMSE near to 0. RRMSE represents the degree
of difference between the extracted and the measured values (RRMSE < 10% indicates
no difference, 10% < RRMSE < 20% denotes a small difference, 20% < RRMSE < 30% is
moderate, and RRMSE > 30% represents a large difference [35]. The calculation formulas
of R%, RMSE, and RRMSE are shown in Formulas (2)—(4):

n o —\2
2 (% —X)
R?=1-== o 2)
iz1(xi — %)
3)
RRMSE = 2MSE 1009 (4)

where x; and ¥ represent the measured value and the average of the measured values,
respectively, £; represents the extracted value, and n represents the number of samples.

3.5. Visualization Tools
3.5.1. Open3D Library

Open3D is a high-performance open-source library for fast processing of 3D point
clouds developed by Intel Labs [36], supporting Python and C++ development environ-
ments. The main core functions of Open3D library include 3D data structures, 3D data
processing algorithms, 3D scene reconstruction, 3D visualization, and 3D machine learning.
The extraction of rice plant phenotype parameters in this visualization tool mainly involved
its input/output module, geometric processing module, and visualization module.

3.5.2. PyQt Framework

Qt is a cross-platform C++ Graphical User Interface (GUI) application development
framework, which integrates numerous form controls. PyQt is the Python interface of
the graphical programming framework, which can call the Application Programming
Interface (API) function for the GUI system design and development through Python. With
the connection mechanism between signals and slots, PyQt5 integrates multiple classes,
which are distributed across multiple functional modules. In this study, the design of GUI
was completed by the Qt Designer tool, which mainly involved the object classes such as
“QMainWindow” class, “QAlication class”, “QDialog” class, and “QWidget” class. The
modules mainly included “QtCore”, “QtGui”, “QtWidgets”, “QFileDialog”, and “QIn-
putDialog”. The form controls mainly included the “QMenuBar” control for displaying
functional menus, the “QLabel” control for indicator labels, and the “QTextBrowser” control
for extraction results.

4. Results
4.1. Extraction Result Validation

Due to the need for professional instruments to measure the indicators such as plant
surface area, PLA, and plant volume, this study conveniently selected the four indicators for
field measurement to verify the extraction accuracy. The measured values were employed
as standard values to compare with the extracted results of the rice plant phenotype
parameters. As shown in Figure 5, the R? values of the linear correlation between the
measured value and the extracted values of crown diameter and tiller number are all above
0.80, and that of plant height is 0.97, which indicates the stronger correlation. The R?
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of perimeter of stem is 0.66, slightly lower than other indicators, which may be caused
by the difference between selecting stem slices and manually measuring stem position.
Table 2 gives the RMSE and RRMSE of the four indicators. The RMSE of crown diameter,
perimeter of stem, and plant height are maintained at the level of centimeter, and the
tiller number is only 1.63. The RRMSE of crown diameter, plant height, and tiller number
stay within 10%, indicating no obvious difference. However, the value of perimeter of
stem is 18.29%, a small difference from the actual observations, owing to the possible
differences in measurement positions. On the whole, the extraction algorithm embedded in
the tool exhibits better robustness and can accurately extract the corresponding phenotypic
characteristic parameters of rice plants.
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Figure 5. Scatter plots of the extracted and manually measured values of the rice plant. (a) Crown
diameter; (b) perimeter of stem; (c) plant height and (d) tiller number.

Table 2. RMSE and RRMSE of various indicators in the study.

Indicators RMSE RRMSE
Crown diameter 0.03 m 5.03%
Perimeter of stem 0.06 m 18.29%
Plant height 6.35 cm 5.16%
Tiller number 1.63 8.82%

4.2. Implementation of Automatic Extraction Tool
4.2.1. Overall Structural Design

For automatic extraction of rice plant features and display, this study employed
the technologies of fast processing of 3D point cloud data and computer visualization
programming to build the plant parameter extraction tool. Following the principles of a
simple interface and convenient operation, the architecture of the rice plant phenotype
feature automatic extraction tool was divided into three parts: data interaction layer, basic

processing layer, and functional module layer. The overall architecture is shown in Figure 6.
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Layer 1 Data interaction | slice, statistical filtering, o value of Alpha-shape model and
projection grid

Figure 6. Architecture of rice plant phenotypic parameter extraction system.

e  The data interaction layer mainly enables necessary data entry. The input data are
mainly the plant point cloud datasets and some function parameters, such as the slice
height of the point cloud, « value of the Alpha-shape algorithm, and the grid size of
point cloud projection.

e  The basic processing layer mainly involves the processing of input point cloud data,
including reading and writing, organization, plane projection transformation, and
centroid acquisition of point cloud data. These processes mainly provide basic data
for implementing the subsequent main functional modules.

e  The functional module layer is the key of the automatic extraction of rice plant pheno-
type parameters. The functions include data visualization browsing, free cropping
and horizontal slice cropping, statistical filtering, surface model reconstruction, and
automatic calculation and display of plant phenotype parameters.

4.2.2. Division of Functional Module

Based on the architecture, the rice plant phenotype parameter extraction system can be
divided into five menu functional modules: point cloud data browsing, data cropping, point
cloud filtering, plant 3D reconstruction, and phenotype parameter calculation. The detailed
description of each module is shown in Figure 7. After executing the corresponding module
according to the requirements, automatic extraction and display of rice plant phenotype
parameters can be achieved by inputting a small number of parameters.

4.2.3. Implementation of Automatic Extraction Function

The processing and visualization of point cloud data mainly relies on the Open3D
library, machine learning scikit-learn library, and visualization graphics framework PyQt5.
The development environment was the integrated development environment PyCharm
2023.2.1 under Win 10, paired with the open-source Python package manager “Anconda3”.

e  The parameter calculation module was mainly used for the calculation and display of
phenotypic parameter results. The slot function included the parameter calculation
process, and the corresponding label objects and display text box objects were designed
to label and display the calculation results. During the execution process of indicator
calculation, the corresponding phenotype parameters were automatically calculated
and displayed in view of the input of plant point cloud data, stem trimming point
cloud data, « value, and point cloud projection grid spacing (Figure 8).
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Figure 8. GUI of the extraction tool.

5. Discussion

For a long time, due to the complexity of crop plant morphology and structure, it
has been generally difficult to obtain its surface area and volume. Meanwhile, field mea-
surement of PLA also requires professional instruments and equipment. The technology
of LiDAR can effectively reflect the vertical structural characteristics of crops, which is
conducive to the construction of the plant morphology and the extraction of structure
parameters [26]. In this study, we developed a rice plant phenotype parameter extraction
tool, and achieved the fast and efficient acquisition of rice plant phenotype parameters,
even some that are difficult to obtain using traditional methods. Moreover, we selected
the parameters of crown diameter, perimeter of stem, plant height, and tiller number
as validation indicators to verify the accuracy, with the result of good correlation and
high reliability.

Nonetheless, the feature extraction results may be influenced by the following factors.
Firstly, we designed the horizontal projection centroid of the stem section as the horizontal
centroid of the crown for the point cloud neighborhood search to calculate the crown
diameter. Therefore, it is necessary to ensure consistency between the two centers. It is thus
important to ensure the plants are placed as vertically as possible when collecting the crop
plant point cloud data. Secondly, the RRMSE between the extracted and measured values
of stem circumference in this study is slightly larger than other indicators, because it is
difficult to ensure the selected stem slices are consistent with the actual observed stem parts.
Finally, generally speaking, a rice plant may have 15~20 tiller branches. Because of the
high number of tillers in rice plants, the rice branches and trunks are severely obstructed,
and the point clouds are incomplete. Considering the aggregation and the continuity in
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the horizontal and vertical direction, respectively, in the stem slice point clouds, this study
used the HDBSCAN algorithm to perform density segmentation and counting after the
process of statistical filtering (Figure 9). This study achieved the efficient extraction of tiller
numbers from the rice plant, providing assistance for rice biological breeding.
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T Horizontal slice cropping i‘: _‘{__‘ﬁ:.. Filtering 5% HDBSCAN
—_— R u.\/ U wE u - { .'"/‘v‘ 'A -
-: ¢ \.}' y \".?5

Figure 9. Extraction process of tiller number in rice plants. Different colors represent point cloud
clusters on different tiller branches.

In addition, this study only used the feature extraction results of six rice plant sample
point clouds for accuracy verification, with a relatively small sample size, which is also a
limitation of this study. Next, we will systematically collect more plant data to carry out
feature extraction and comparison verification of corresponding phenotype parameters,
and further improve the accuracy of rice plant phenotype parameter extraction by designing
corresponding algorithms.

6. Conclusions

In this study, we identified seven phenotypic parameters of rice plants on the basis of
their characteristics, and specially proposed the methods for obtaining the tiller number.
Then, a rather complete rice plant phenotype parameter extraction tool with a three-layer
framework for TLS point cloud data was built based on the PyQt5 visualization framework
and the Open3D library. The visual tool can achieve the automatic extraction of rice plant
parameters such as crown diameter, perimeter of stem, plant height, surface area, volume,
PLA, and tiller number. The results show the R? of crown diameter, tiller number, and plant
height reached 0.80, 0.87, and 0.97, respectively, with that of perimeter of stem reaching
0.66. The RMSE of crown diameter, perimeter of stem and plant height was stable at the
centimeter scale, and that of the tiller number was as low as 1.63. The RRMSE of crown
diameter, plant height, and tiller number stayed within 10%, and the value of perimeter
of stem was 18.29%, which indicated a high level of reliability. The tool developed in this
study can achieve the goal of obtaining rice plant phenotype parameters quickly, accurately,
and efficiently, which helps to improve the efficiency of rice breeding work. Although
this tool is designed for rice plants, its application is not limited to rice. The extraction
function of most indicators has a wide range of applicability. Additionally, the comparison
and verification of phenotype feature extraction results supported by more rice plant
sample data, as well as the improvement of accuracy algorithms, will be the focus of our
next research.
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Abstract: Similar to convolutional neural networks for image processing, existing analysis methods
for 3D point clouds often require the designation of a local neighborhood to describe the local features
of the point cloud. This local neighborhood is typically manually specified, which makes it impossible
for the network to dynamically adjust the receptive field’s range. If the range is too large, it tends
to overlook local details, and if it is too small, it cannot establish global dependencies. To address
this issue, we introduce in this paper a new concept: receptive field space (RFS). With a minor
computational cost, we extract features from multiple consecutive receptive field ranges to form
this new receptive field space. On this basis, we further propose a receptive field space attention
mechanism, enabling the network to adaptively select the most effective receptive field range from
RFS, thus equipping the network with the ability to adjust granularity adaptively. Our approach
achieved state-of-the-art performance in both point cloud classification, with an overall accuracy
(OA) of 94.2%, and part segmentation, achieving an mIoU of 86.0%, demonstrating the effectiveness
of our method.

Keywords: point cloud; receptive field; attention

1. Introduction

A point cloud is a simplified representation of an object in three-dimensional space. In
recent years, with the development of technologies such as autonomous driving [1,2], 3D
modeling [3], and remote sensing detection [4], point cloud analysis has become a hot topic
in the field of 3D vision. It has garnered widespread attention from both the scientific and
industrial communities [5-8].

The point cloud is composed of an unordered and irregular set of points € RN*3,
exhibiting rotation and permutation invariance, collectively referred to as irregularity.
Unlike 2D image data arranged on a pixel grid, 3D point cloud information is a continuous
collection embedded in space. This makes it nearly infeasible to directly apply well-
established classification and segmentation models from the image processing domain.

In this paper, we primarily focus on two typical tasks in point cloud processing: point
cloud classification and segmentation. Traditional methods for solving these problems
have relied on manually crafted features to capture the geometric attributes of point
clouds [9,10]. Since 2017, the success of deep neural networks in image processing has
sparked interest in feature learning methods for point cloud data based on various neural
network architectures. Deep point cloud processing and analysis methods are rapidly
advancing, surpassing traditional approaches in various tasks [11].

Due to the irregularity of point cloud data, adapting deep learning frameworks for
point cloud processing is challenging. Before the emergence of PointNet [12], there were
two mainstream approaches. One method involves projecting point cloud data onto
different planes, and then, applying deep learning methods designed for 2D images [13-16].
The drawback of this approach is that projection can lead to occlusion and information
folding, resulting in the loss of local features within the point cloud. The other method is
voxel-based [17-19], which converts the original point cloud into 3D grid data, where each
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point corresponds to a voxel (a small cube) in the grid. Subsequent processing involves
using 3D convolutions. This method’s effectiveness is highly dependent on the choice
of voxel size and incurs significant computational and memory overheads, making it
challenging to capture detailed features.

The success of deep neural networks in image processing has spurred the develop-
ment of various neural network-based methods for learning features from point cloud data.
Methods for deep point cloud processing and analysis are rapidly evolving, surpassing
traditional approaches in various tasks. Currently, the most mainstream deep neural net-
works suitable for point clouds almost all originate from PointNet [12]. PointNet designed
a unique feature extractor that processes individual points at a local scale, maintaining
the inherent irregularity of point clouds and directly operating on the raw point cloud
data. Subsequent models such as PointNet++ [20], DGCNN [21], PointConv [22], and
RSCNN [23] have largely continued PointNet’s design approach. They extract point cloud
information through feature extractors, and then, process the aggregated feature informa-
tion using different network architectures. However, when dealing with unstructured data
like point clouds, traditional convolutional neural networks often face challenges due to the
irregularity and invariance in point cloud data representation. Point cloud data comprise
an unordered set of points, lacking a well-defined structure like images, making traditional
convolution operations difficult to apply directly. Furthermore, transformations such as
rotation, translation, and scaling of point cloud data should not alter their meaning, posing
additional challenges for traditional convolution operations in meeting the invariance
requirements of such data.

To address these issues, researchers have begun exploring deep-learning-based meth-
ods for point cloud analysis. These methods attempt to mimic convolution operations in
traditional image analysis to achieve similar feature extraction and pattern learning on
point cloud data. Representative methods include set abstraction in PointNet++ [20], edge
convolution in DGCNN [21], X-Conv in PointCNN [24], etc.

These methods typically simulate the size of convolution kernels by defining local
neighborhoods, similar to convolution operations in CNNSs. These local neighborhoods
determine the range observed by the convolution operation, i.e., the receptive field. In
point cloud data, the size of the receptive field directly affects the model’s understanding
and description of point cloud structures. Larger neighborhood ranges allow the model to
capture broader contextual information, thereby achieving a more comprehensive grasp of
global morphology and relationships. On the other hand, smaller neighborhood ranges
are more conducive to detailed local feature extraction, enabling the model to identify and
describe fine structures and patterns in point clouds more precisely. However, current
methods often manually set the neighborhood size to define the receptive field range, such
as setting the radius of set abstraction in PointNet++ [12] or the value of k in DGCNN [21].

To enable the network to autonomously learn and determine the range of the receptive
field, we introduce a new concept called receptive field space. Receptive field space no
longer views the receptive field as a single size and shape but considers it as a continuous
range covering multiple scales and levels of local and global information. In receptive
field space, receptive fields of different sizes and shapes are regarded as dimensions in
feature space. By establishing the range of receptive fields in this dimension, the network
can simultaneously consider and utilize feature information at different scales and levels.
Thus, the neural network can comprehensively understand and represent the structure and
relationships of the input data.

In the construction of receptive field space, we employ a simple yet efficient computa-
tional method to ensure that computational complexity does not exponentially increase
with an increase in receptive field sampling density. This computational method fully
utilizes the locality and sparsity of the data, effectively capturing feature information at
different scales and levels while maintaining computational efficiency.

After constructing the receptive field space, we further propose a new receptive field
attention mechanism called spatial-receptive field co-attention (SRCA), aiming to enable
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the network to adaptively focus on important receptive field ranges. The core idea of
this mechanism is to dynamically adjust the receptive field range in feature space by
introducing attention mechanisms, thereby achieving a more effective representation and
processing of input data. The operation of the receptive field attention mechanism is
similar to attention mechanisms: it allows the network to automatically adjust and allocate
receptive field ranges of different sizes based on the features of the input data to focus on
important areas. Specifically, by introducing attention mechanisms at different levels of
the network, the importance weights of each position or feature channel can be calculated
based on the current task and features of the input data. These weights can then be used to
aggregate feature representations within the receptive field and generate the final output.
This mechanism endows the network with the ability to autonomously adjust granularity,
thereby better adapting to the feature extraction and pattern learning requirements at
different scales.

This research method has been evaluated on two tasks: point cloud classification
and part segmentation. The experimental results demonstrate that the method achieves
state-of-the-art performance on both tasks and exhibits higher accuracy and faster inference
speed compared to other methods with similar performance. Additionally, the method has
relatively fewer parameters, making it more feasible and efficient for practical applications.

Our main contributions are:

¢ We introduce the concept of receptive field space and propose a simple and efficient
method for constructing receptive field space. The introduction of receptive field
space enables neural networks to learn and adjust receptive field ranges more flexibly,
allowing them to adapt to features at different scales and levels.

*  We propose a receptive field attention mechanism, which endows neural networks
with the ability to autonomously learn and determine the receptive field range. This
mechanism enables the network to dynamically adjust and focus on important recep-
tive field ranges based on the features of the input data and task requirements, thereby
improving the performance and generalization ability of the network.

*  We extensively analyze and test this method, achieving state-of-the-art performance
in point cloud classification and part segmentation tasks.

2. Related Works

Hand-crafted features for point clouds: Point clouds possess two main character-
istics, rotation invariance and permutation invariance, collectively referred to as the un-
ordered nature of point clouds. There is no inherent order between the arrangement of
points, and swapping the order of points has no effect. Various tasks in point cloud process-
ing and analysis, including segmentation, classification, matching, completion, and more,
require constructing local features to describe the features of the point cloud. Numerous
papers in computer vision and graphics have proposed local feature descriptors suitable
for different problems and data structures in point clouds.

Broadly speaking, point cloud processing can be divided into intrinsic and extrin-
sic descriptors.

Intrinsic descriptors refer to the local characteristics of point cloud data, typically
represented through relationships or statistical properties between points. For instance,
the 3D shape context [25] is used to describe the local shape features of each point in a
point cloud. It computes a shape context histogram for each point based on the distances
and orientation relationships between point pairs in local point cloud information. Spin
images [26] are used to describe the local surface shape of each point in a point cloud. They
project point cloud data onto a fixed orientation grid and compute surface statistics for
each direction.

Extrinsic descriptors pertain to the overall geometric and spatial properties of the
point cloud data in three-dimensional space. For example, in 3D object recognition [27],
they describe boundaries or boundary points in the overall point cloud to differentiate
between different objects or shapes. Point feature histograms [10] describe the geometric
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relationships between point pairs in the overall point cloud by computing histograms of
geometric features for each point pair, including normals, curvature, and relative positions
between points.

These traditional methods have largely inspired numerous deep learning approaches
tailored for point clouds.

Deep learning on point clouds: Methods for processing 3D point clouds using
learning-based approaches can be categorized into the following types: projection-based,
voxel-based, and point-based networks.

For handling irregular inputs like point clouds, an intuitive approach is to transform
the irregular representation into a regular one. Given the widespread use of CNNs in 2D
image processing, some methods [28-32] employ multi-view projection. In these methods,
3D point clouds are projected onto various image planes, and then, 2D CNNs extract feature
representations from these image planes. Finally, multi-view feature fusion is performed to
form the final output representation. However, in these methods, the geometric information
within the point cloud is collapsed during the projection phase, and the sparsity of the
point cloud is not well utilized. Moreover, the choice of projection planes can significantly
affect recognition performance, and occlusions in three dimensions may hinder accuracy.

Another approach to processing point cloud data is 3D voxelization followed by
3D convolution using transformer-based methods [17,18,33]. However, as the number of
voxels increases, the corresponding resolution grows exponentially, leading to significant
computational and memory overheads. Moreover, since the point cloud is quantized into a
voxel grid through certain methods, the inherent geometric details of the point cloud can
be lost, resulting in a loss of accuracy. The effectiveness of voxel-based methods highly
depends on the choice of voxel size. Improper voxel size selection can lead to information
loss or over-sampling.

Unlike projecting or quantizing irregular point clouds onto 2D or 3D regular grids,
researchers have designed deep network architectures that directly take point clouds as sets
embedded in continuous space. PointNet [12] uses permutation-invariant operators like
point-wise MLPs and pooling layers to aggregate features within the set. PointNet++ [20]
applies these ideas within a hierarchical spatial structure to enhance sensitivity to local
geometric layouts. DGCNN [21] connects the point set into a graph and performs message
passing on this graph. It executes graph convolution on a KNN [34] graph, using EdgeConv
to construct a local graph that generates edge features describing the relationships between
points and their neighbors. Point Transformer [35] introduces the vision transformer
structure suitable for 2D images, utilizing self-attention mechanisms to learn complex
relationships and dependencies between points in point cloud data. This effectively inte-
grates global and local information within point cloud data, improving feature extraction
and representation learning performance. PointMIp [36] constructs an efficient pure MLP
deep connectivity structure, performing feature extraction, mapping, and transformation
through multiple fully connected layers.

Therefore, we believe that due to the unique complexity of point clouds, carefully
designing feature extractors for local geometric structures can significantly improve the
accuracy of tasks such as classification and segmentation of point clouds.

Spatial attention and channel attention: Spatial attention primarily focuses on dif-
ferent spatial locations within feature maps, adaptively emphasizing and adjusting the
importance of this positional information. The core idea of this attention mechanism is to
capture key information and important structures in images by learning the weights of
each spatial location, thereby optimizing the generalization ability of the model.

On the other hand, channel attention concentrates on different channels within the
feature map. It learns the weights of each channel to adjust the importance between
different channels. Like spatial attention, it can also adjust the weights of individual
channels through convolutional neural networks to extract key features from point clouds,
improving the performance of the model in tasks related to detecting and segmenting
spatially related positions.
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Combining them results in the convolutional block attention module [37]. This model
first applies spatial attention to adjust the importance of different spatial locations in the
feature maps. Then, it applies channel attention to adjust the importance of different
channels within the feature map. Finally, the feature maps adjusted by both attention
modules are combined to obtain the final feature representation.

3. Method

The overall structure of the proposed method for classification and shape part seg-
mentation is shown in Figure 1. The network is composed of several repeated units, each
unit including an RFS convolutional module and an RFS attention module.

Classification

softmax
»>(C)» —> Airplane

Part Segmentation

categorical

s vector
nx3 ; /\ \2
v

©

Spatial Transform  RFS Conv RFSA MLP Concatenation

Figure 1. Overall diagram of our proposed method for two tasks: classification and shape part
segmentation. RFS Conv stands for receptive field space convolution, RFSA stands for receptive field
space attention, MLP stands for multi-layer perceptron.

3.1. Receptive Field Space Convolution

The receptive field (RF) refers to the specific region to which a neuron in a neural
network is sensitive. In the context of convolutional neural networks (CNNSs), the receptive
field of a neuron denotes the area of the input image that influences the activation of that
neuron. As data propagate through various layers of CNNSs, the receptive field of neurons
gradually increases, enabling them to capture more contextual information from the input.

In point cloud analysis, due to the non-structural and sparse nature of point cloud
data, traditional convolution operations are no longer applicable. Therefore, most deep-
learning-based point cloud analysis methods attempt to construct convolution operations
similar to CNNs on 3D point clouds to effectively process and extract features from the data.
In this process, the size and position of the receptive field define which part of the input the
neuron “observes” or “perceives” to make decisions, which is crucial for understanding
and pattern recognition in point cloud data.

To further enhance the processing capability of point cloud data, we introduce the con-
cept of receptive field space. Receptive field space is formed by stacking feature maps gen-
erated by performing convolution operations on a series of different receptive field ranges.

Our definition of the stack of this series of feature maps is as follows:

F' = (@1, (F), @1y (F), ..., ¢r(F)] 1)
where ¢ is some kind of basic convolution operator, and 11,7, .. ., s is a set of increasing
receptive field ranges. |...] is the feature stacking operation. F is the input points’ embed-
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dings of shape N x D, N is the number of points, and D is the dimension of the embedding.
The outputis N x D x S, with a new feature dimension: the receptive field dimension.

This construction method of receptive field space allows the network to simultaneously
consider and utilize multi-scale feature information, thereby improving the ability to extract
features and learn patterns from point cloud data.

EdgeConv [21] is a convolutional operation designed specifically for the characteristics
of point cloud data, generating local features by utilizing the relationships between points.
In this process, the concept of the receptive field plays a crucial role, determining the range
that neurons can perceive when processing point cloud data. EdgeConv leverages the
concept of the receptive field to enable neural networks to better understand the local
structures and global relationships in point cloud data. Therefore, we adopt it as the basic
convolution operator ¢ in our RFS convolution, which can be written as

¢r(F) = jg}v%([ﬁ —F;, F]) 2)

Here, as shown in Figure 2, N, (i) represents the K-nearest neighbors of point i. For
different choices of K, we can obtain different sizes of receptive field ranges. Therefore,
we select an increasing sequence of K values ki, ky, . . ., ks, constructing S RFS convolution
operations with different receptive field sizes, each applied to F, resulting in F’.

Pk

Pk

Fl=NxD . Nt Phks

/ L . ° F'=NxDxS§
oy =

Pk, e /
Figure 2. Aschematic diagram of RFS convolution.

3.2. Optimized Computation

RFS convolution is a novel convolution operation which involves performing the basic
convolution operation ¢ on the input S times, which is quite time consuming. Thus, it
may lead to a significant increase in computational complexity, affecting the computational
efficiency of the network. Fortunately, we have discovered that there is a considerable
amount of redundant computation involved in this process.

Firstly, for the K-nearest neighbors (KNN) operation, the following inclusion relation-
ship exists:

Nkl (l) - Nkz(i) c...C Nks (Z) 3)

In other words, we only need to compute the maximum N, (i) and retain the result,
then the results of other neighborhoods can be obtained in O(1) time.

Next, we optimize the computation of the max operation within the neighborhood.
If no optimization is performed, the time complexity of the max operation during the
construction of the receptive field space is O(ky + ko +, ..., +ks).
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We denote
max (|F;, —F;, F;|), max (|F;—F;, Fl),..., max (|F;—F;, F 4
feNklm([’ ! ’Djer(i)([l i Fil) jeNkso')([l i Fil) @
as

Ml/ MZ/- . '/MS (5)

We partition the neighborhood into the following disjoint subsets:

Nis () = Ni, (i) N Ni, (1) — Ni, () 0o 0V Ng () — N, (0) (6)

Within each subset, perform the max operation to obtain a series of maximum val-
ues my,my, ..., ms; the time complexity here is O(ks). Then, the calculations M; = my,
M, = max(Mj, my), ..., Mg = max(Ms_1,mg) can be carried out successively. The time
complexity here is O(S), and the overall time complexity is reduced to O(ks + S).

By optimizing the computation process of constructing the receptive field space,
specifically the RFS convolution process, we can improve the network’s computational
efficiency without compromising the accuracy of the receptive field calculation.

3.3. Attention for Receptive Field Space

In the preceding sections, we introduced the RFS convolution operation and the
optimized receptive field calculation method for point cloud data processing. Next, we will
delve into the design and application of the receptive field attention mechanism.

By computing, we have constructed the receptive field space. We then design a
receptive-wise attention mechanism to operate on this new feature dimension, allowing
the network to adaptively focus on important receptive field ranges, thereby achieving
self-adjustment of feature extraction granularity.

Here, we construct two types of attention: (1) channel-wise attention (CA) and
(2) spatial-receptive field co-attention (SRCA). The schematic diagram of the two attentions
is shown in Figure 3.
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[ I| Aljhared mlp channel attention
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max poolmg
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1max pooling f 1 f

Figure 3. A schematic diagram of channel-wise attention and spatial-receptive field co-attention.

First, let us examine channel-wise attention (CA). Channel-wise attention primarily
focuses on the relationships between different channels in the feature map. In our de-
sign, we first utilize average pooling and max pooling operations to compress the spatial
and receptive field joint dimensions of the feature map, reducing redundant information
and computational load. Then, we use a multi-layer perceptron (MLP) to integrate the
compressed features and generate the channel attention weights.

Spatial-receptive field co-attention (SRCA) goes a step further by considering both
spatial information and the receptive field range. In this design, we address not only the
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relationships between the channels in the feature map but also their relationships in the
spatial and receptive field dimensions. Therefore, we combine spatial and receptive field
information to design a co-attention mechanism. Specifically, we also use average pooling
and max pooling to compress the channel dimension of the feature map, and then, utilize
an MLP to generate the co-attention weights.

In constructing the overall attention mechanism, we drew inspiration from the CBAM
(convolutional block attention module). The traditional spatial attention module CBAM
was initially applied in image processing, and thus, includes two spatial dimensions.
Following the CBAM approach, we implemented this traditional spatial attention module
in point cloud processing, using CA+SA (channel attention and spatial attention) to achieve
point cloud spatial attention. The feature maps used by these methods are derived from
point cloud data processed through KNN (k-nearest neighbors). While effective, the
performance was average.

Therefore, we changed our approach. We first extracted spatial features in layers
within the receptive field space (RFS), and then, used CA and SRCA (spatial-receptive field
co-attention) to process the data. This method allowed us to consider both spatial and
receptive field dimensions simultaneously, thereby improving point cloud processing effec-
tiveness.

RFS extracts spatial features in layers, enabling the model to better capture local
and global features in the point cloud. After extracting features using RFS, we further
applied CA and SRCA to enhance the feature representation. CA captures the importance
of different channels in the point cloud, while SRCA provides a more precise attention
mechanism by combining spatial dimensions and receptive field features.

Since images have two spatial dimensions, while our feature maps have one spatial
dimension and one receptive field dimension, in form, our CA and SRCA are consistent
with the channel-wise attention and spatial attention in CBAM. The specific expression is
as follows:

CA = pca(Avps (F')) + pca(Maps (F')) )

SRCA = srca(Avpe,(F')) + Ysrca(Mape, (F')) ®)

where Avp,, and Map,, represent average and max pooling along the feature channel
dimension, respectively. Psrca denotes the MLP for SRCA attention. Avp,, and Maps, are
average and max pooling performed jointly along the spatial and receptive field dimensions,
respectively. {c 4 represents the MLP for CA.

Although formally these two attentions resemble CBAM, their content is indeed
different. In CBAM, images have two spatial dimensions, while point clouds only have
one spatial dimension, and we constructed a new receptive field dimension in point clouds.
This enables our attention mechanism not only to focus the network on important feature
channels and spatial positions but also to pay attention to significant receptive field ranges,
thereby achieving adaptive adjustment of feature extraction granularity.

4. Experiments
4.1. Classification

We evaluate our classification model on the ModelNet40 [18] dataset, which comprises
12,311 CAD models meshed from 40 categories, including 9843 training samples and
2468 test samples. Each point cloud instance is uniformly sampled with 1024 points,
utilizing only the spatial coordinates (x, y, z) for classification. Prior to training, we
augment the point cloud data through random rotation and scaling.

The network structure used for the classification task is depicted in the upper part
of Figure 1. In classification tasks, SRCA aggregates local features into global features
through pooling operations for the classification of the entire point cloud. In segmentation
tasks, SRCA not only utilizes local features but also propagates global features back to each
point, allowing each point to have both local information and global context for refined
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segmentation. We employ a combination of four RFS convolution along with receptive-wise
attention to adaptively extract and enhance the required spatial feature information across
scale space. These four layers share a common fully connected layer and independently
compute spatial feature information. For all RFS convolutions involved in the classification
task, the value of k in the KNN is set to 5, 10, 15, and 20. After concatenating the four sets
of high-dimensional spatial feature information, they are fed into a shared fully connected
layer with 1024 dimensions. Subsequently, maxpool and avgpool are used to obtain all
global features of the current point cloud information. Multiple MLPs are then used to
transform these global features, followed by sigmoid normalization. We retrain the model
on the entire training dataset and evaluate it on the test dataset.

We use SGD with a learning rate of 0.1 and employ cosine annealing [38] to reduce the
learning rate to 0.001. The batch size is set to 16 with a momentum of 0.9.

Following the mainstream evaluation criteria for this dataset, we primarily focus on
overall accuracy (OA) to compare our results with those of other models. We also compared
the model’s inference speed and parameter volume. The OA (overall accuracy) metric is
commonly used to evaluate the overall performance of a model. Parameter count reflects the
complexity of the model, where more parameters indicate higher computational resource
consumption and increased risk of overfitting. Speed typically reflects the efficiency
of the model during the inference phase, with faster inference speed being crucial for
real-time applications or tasks requiring large-scale data processing. The models we
compare against include PointNet [12], PointNet++ [20], PointCNN [24], DGCNN [21],
Point Transformer [35], CurveNet [39], PointNeXt [40], and PointMLP [36], We conducted
tests using these open-source models.

The comparison results are shown in Table 1. Our model achieved excellent results
on the classification task of this dataset, with an overall accuracy (OA) reaching 94.2%,
comparable to the state of the art. Our model also performs well in terms of parameters
and speed. Compared to PointMLP, our model outperforms it in both parameters and
speed.

Table 1. Classification on the ModelNet40 dataset.

Method OA (%) Speed (ins./s) Params (M)

PointNet [12] 89.2 2283 3.48
PointNet++ [20] 90.7 1268 1.48
PointCNN [24] 92.5 152 8.20
DGCNN [21] 92.9 535 1.80
PointTrans. [35] 93.7 90 2.94
CurveNet [39] 93.8 145 2.03
PointNeXt [40] 93.2 760 1.51
PointMLP [36] 94.2 120 12.36
Our method 94.2 476 1.82

4.2. More Experiments on ModelNet40
4.2.1. Ablation Experiments

This experiment aims to evaluate the impact of our method on the classification
performance of the model. By gradually adding, removing, or altering certain layers in the
network, we explore their influence on the overall performance of the model and verify their
effectiveness in improving the key indicator OA (overall accuracy) in the classification task.

We conducted the experiment from two perspectives. In the first perspective, we
modified the receptive-wise attention mechanism (receptive-wise attention) in Figure 2,
replacing CA and SRCA with pure MLP structures, self-attention structures, and the CBAM
we designed for point clouds. The first two structures are commonly used in mainstream
point cloud segmentation methods, such as Point Transformer, CurveNet, and PointMLP,
to enhance the extracted point cloud feature information. The latter method, CBAM, is
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widely used in image processing, and we designed a point cloud version to validate the
effectiveness of SRCA.

In the second aspect of the experiment, we intended to test the impact of different
depths of receptive-wise attention on the overall results, so we did not use all of receptive-
wise attention to enhance feature information. We experimented by retaining n receptive-
wise attention layers in order from deep to shallow. For example, using three receptive-wise
attention layers means retaining the last three receptive-wise attention layers in the network
and discarding the shallowest one. For experimental rigor, the RFS convolution preceding
receptive-wise attention remains unchanged in both experiments. In all experiments,
the information outputted by RFS convolution is set to the same adaptive multi-scale
spatial features.

The experimental results are shown in Table 2. From the perspective of enhancing
feature information, our receptive-wise attention mechanism, which uses CA+SRCA, sig-
nificantly outperforms other point cloud classification methods such as multi-layer MLP
and direct self-attention, as well as the CBAM we designed for point clouds. In terms of
the effectiveness of dynamic adjustment at different levels, our receptive-wise attention
mechanism is evidently suitable for all levels in the network; otherwise, the classification
performance would decline.

Table 2. Ablation experiments: the “CBAM” was implemented by us in point cloud processing tasks
based on our understanding of the CBAM method from image processing.

Number of Receptive-Wise Attention MLP CA+SRCA Self-Attention CBAM OA (%)

4 v 93.5

v 93.9
v 93.7
94.2
93.7
93.3
929
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4.2.2. Feature Points

Feature points are those particularly highlighted by receptive fields of varying sizes
within the receptive field space. In point cloud classification tasks, these feature points
play a crucial role, representing the local features of the point cloud data, which include
geometric information and the local structure of the object surface. RFS convolution extracts
feature points based on different k values. By accurately extracting and describing these
feature points, we can transform point cloud data into distinctive feature representations,
providing essential input for classification models. The selection and description of feature
points directly affect the model’s performance and accuracy, helping the model accurately
recognize and classify different objects or scenes, thereby achieving more precise point
cloud classification tasks.

The introduction of receptive field space brings a new perspective to point cloud
classification tasks. By constructing a series of receptive fields of different sizes to form a
new feature dimension, the receptive field space allows the model to observe point cloud
data comprehensively, thereby better understanding the data’s structure and features, as
shown in Figure 4. This image illustrates the results of spatial feature point extraction by the
receptive field space (RFS) and attention for receptive field space. The leftmost part shows
the input point cloud data, followed by the spatial feature points extracted by the model
under different receptive field sizes. These pieces of information are merged, and then,
the attention for receptive field space adaptively adjusts the weights of the receptive field
features, resulting in the output of adjusted spatial feature points. Clearly, our receptive
field space can cover nearly the entire model and extract spatial feature information, which
is further refined by channel-wise attention and spatial-receptive field co-attention for
adaptive adjustment.
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Figure 4. Visualization of feature point extraction and processing.

Simultaneously, the receptive field attention mechanism further optimizes the feature
point extraction process. By allowing the model to adaptively focus on receptive field
ranges with significant information, the receptive field attention mechanism enhances the
model’s ability to capture and identify key points. This mechanism enables the model to
focus more on crucial local feature points in classification tasks, thereby further improving
the performance and accuracy of the classification model.

4.2.3. Model’s Versatility

For point cloud classification tasks, the versatility of a model implies its ability to
adapt to point cloud data with different quantities and densities, yielding satisfactory
classification results across various scenarios.

Based on this concept, we conducted a series of experiments to validate the versatility
of our point cloud classification model. This experimental design fully considered the
diversity of point cloud data in real-world scenarios and evaluated the model’s performance
from different perspectives. As shown in Figure 5, we trained the model using different
numbers of input points (1024, 512, 256, and 128 points) and observed its performance
in point cloud classification tasks under these varying input conditions. Regardless of
whether the point cloud density was high or low, our model consistently achieved good
classification results, confirming its excellent versatility.
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Figure 5. Comparison on sparser training and testing input point cloud.

4.2.4. Receptive Field Space Visualization

Our model uses channel-wise attention and spatial-receptive field co-attention to
process the features extracted by RFS convolution. This results in varying receptive field
intensity representations for each point, highlighting the importance of different receptive
field ranges and enabling the model to adaptively focus on key features at different scales.

As shown in Figure 6, our model achieves adaptive receptive field adjustment by
representing the intensity of receptive field information for each point in high-dimensional
space. In smoother regions, the receptive field is relatively larger because these areas require
more contextual information to accurately describe their overall shape. In contrast, in
regions rich in details, the receptive field is relatively smaller to capture local structures and
fine variations more precisely. Consequently, our model can comprehensively understand
the local structures and features at different scales within point cloud data, providing more
accurate and comprehensive feature representations for subsequent tasks.

Figure 6. Each point in the point cloud is represented with different receptive field information.

4.3. Part Segmentation

We evaluate our segmentation model on the ShapeNetPart dataset, which contains
16,881 shapes from 16 categories, annotated with a total of 50 parts. Most object categories
are labeled with two to five parts. We use the average intersection over union (IoU) across
all instances as the evaluation metric. For each point cloud instance, it is uniformly sampled
with 2048 points.

The network architecture is shown in the lower part of Figure 1. After passing through
the spatial transformation network, we utilize a combination of three RFS convolutions and
receptive-wise attention to extract spatial feature information. A shared fully connected
layer (1024) aggregates information from the preceding layers. Next, we append label
information that has been embedded. Finally, three shared fully connected layers (256, 256,
128) are used to transform point features.

We also use SGD with a learning rate of 0.1 and employ cosine annealing to reduce
the learning rate to 0.001. The batch size is set to 32 with a momentum of 0.9.
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The final segmentation results are shown in Table 3, where we compare our results
with PointNet [12], PointNet++ [20], DGCNN [21], SPLATNet [41], SpiderCNN [42], Point-
NeXt [40], and PointMLP [36]. While our segmentation results are not the best, they surpass
the 86.0% threshold and rank among the top performers.

Table 3. Part segmentation results on the ShapeNetPart dataset.

Method Inst.mIoU (%)

PointNet [12] 83.7
PointNet++ [20] 85.1
DGCNN [21] 85.2
SPLATNet [41] 85.4
SpiderCNN [42] 85.3
PointMLP [36] 86.1
PointNeXt [40] 86.3
Our method 86.0

The results in Table 4 show the segmentation outcomes of our model on all instances in
the ShapeNetPart dataset. Our model achieves excellent segmentation results for categories
that emphasize spatial features, such as chair, airplane, skateboard, and table.

Table 4. The segmentation results for all instances in the ShapeNetPart dataset. Red, blue, and green,
respectively, represent the first, second, and third rankings of the data.

Inst. ear skate

Method mloU plane bag cap car chair phone guitar knife lamp laptop motor mug  pistol rocket board table
PointNet [12] 83.7 83.4 787 825 749 89.6 73.0 85.9 80.8 95.3 65.2 93.0 812 579 72.8 80.6
PointNet++ [20] 85.1 82.4 79.0 87.7 773 90.8 71.8 91.0 85.9 83.7 95.3 71.6 94.1 813 58.7 774 82.6
DGCNN [21] 85.2 84.0 834 86.7 77.8 747 91.2 875 82.8 95.7 66.3 94.9 81.1 63.5 745 82.6
SPLATNet [41] 85.4 83.2 84.3 89.1 90.7 75.5 92.1 87.1 82.6 96.1 75.6 64.0 75.5 81.8
SpiderCNN [42] 85.3 83.5 81.0 87.2 77.5 90.7 91.1 87.3 95.8 70.2 93.5 82.7 59.7 75.8 82.8
PointMLP [36] 86.1 83.5 83.4 80.5 90.3 78.2 922 83.9 96.2 95.8 85.4 64.6 83.3

PointNeXt [40] 86.3 86.2 81.1 90.5 773 88.4 823 775 95.6 84.4 66.1 83.5 84.4
Our Method 84.8 84.2 87.3 79.1 747 90.9 88.2 83.0 95.8 674 93.5 82.3 84.6

4.4. Optimized Computation Experiment

We conducted an optimized computation experiment using an NVIDIA RTX 3090
GPU, primarily aimed at testing the speed performance of the model during training
and inference. To evaluate the effectiveness of the optimized computation method, we
kept the experimental setup consistent with the previous classification and segmentation
experiments, and set the parameter S in the receptive field space (RFS) to 4, using four
spatial features for stacking in the experiment.

For the evaluation of the classification task, we continued to use the ModelNet40 [18]
dataset, a widely used benchmark dataset for 3D object classification. For the evaluation of
the segmentation task, we still used the ShapeNetPart [43] dataset, commonly used for 3D
object part segmentation. We tested the results of both tasks before and after applying the
optimized computation method.

As shown in Table 5, our optimized computation method with S = 4 demonstrated a
significant improvement compared to the non-optimized version. The optimized method
not only showed a noticeable increase in training speed but also exhibited a substantial
advantage in inference speed. Specifically, in the classification task, the optimized model
showed significant improvements in computational efficiency. In the segmentation task,
the optimized model also demonstrated considerable improvements in processing time.
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Table 5. Optimized computation experiment results.

Optimized Computation Non-Optimized
Speed (ins./s) Computation Speed (ins./s)
Classification Training 185 67
Classification Inference 476 243
Segmentation Training 78 39
Segmentation Inference 245 134

4.5. Visualization of Segmentation Results

In this section, we will detail the model’s segmentation process and visualize its
segmentation results.

Figure 7 illustrates the visualization of the model’s segmentation process. Feature
points from different parts are aggregated through multiple network layers to gather high-
dimensional spatial feature information, ultimately focusing on specific parts. This process
demonstrates the model’s refinement and optimization in the segmentation task.

Figure 7. Visualization of segmentation process.

Figure 8 shows the final segmentation results. On the left are the segmentation results
of DGCNN, a model that also utilizes spatial information. In the middle are the ground
truth labels from the dataset, and on the right are the segmentation results obtained using
our method. A clear comparison shows that our method outperforms others in terms of
segmentation quality, exhibiting higher accuracy and reliability.
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Figure 8. Visualization of segmentation results.

5. Discussion

In this work, we explored the receptive field space and proposed the receptive field
attention mechanism based on it. We designed experiments to demonstrate the performance
of this method in mainstream point cloud classification and segmentation tasks. Our
experiments validated the feasibility of allowing the network to autonomously learn and
determine the receptive field range. Our approach is not limited to traditional point cloud
feature extraction methods but achieves more accurate and comprehensive capture of
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spatial local feature points by introducing receptive field space and the receptive field
attention mechanism. This method enables the model to better understand the structure
and features of point cloud data, thereby improving the effectiveness of classification and
segmentation tasks.

By employing carefully designed feature extractors to extract and enhance features,
we can more effectively accomplish classification and segmentation tasks. Through the
introduction of receptive field space and the receptive field attention mechanism, we further
optimize the feature extraction process, allowing the model to better focus on important
receptive field ranges, thereby enhancing its ability to capture and identify key points.

However, we also recognize the challenges facing current point cloud classification
and segmentation tasks. Firstly, the inherent noise and uncertainty in datasets make it
difficult for models to learn and generalize accurately. Future improvements may require
more complex representational capabilities to capture this diversity. Secondly, mainstream
models have already identified optimal model structures and parameter settings for these
datasets, and further improvements may require more domain-specific knowledge or
innovative technologies. Finally, although our method can adaptively adjust the receptive
field range to achieve autonomous granularity adjustment, the feature extraction method
we use still belongs to traditional methods. We hope to innovate the extraction method in
our future research.
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Abstract: This paper presents a comparative analysis of six prominent registration techniques for
solving CAD model alignment problems. Unlike the typical approach of assessing registration
algorithms with synthetic datasets, our study utilizes point clouds generated from the Cranfield
benchmark. Point clouds are sampled from existing CAD models and 3D scans of physical objects,
introducing real-world complexities such as noise and outliers. The acquired point cloud scans,
including ground-truth transformations, are made publicly available. This dataset includes several
cleaned-up scans of nine 3D-printed objects. Our main contribution lies in assessing the performance
of three classical (GO-ICP, RANSAC, FGR) and three learning-based (PointNetLK, RPMNet, ROPNet)
methods on real-world scans, using a wide range of metrics. These include recall, accuracy and
computation time. Our comparison shows a high accuracy for GO-ICP, as well as PointNetLK,
RANSAC and RPMNet combined with ICP refinement. However, apart from GO-ICP, all methods
show a significant number of failure cases when applied to scans containing more noise or requiring
larger transformations. FGR and RANSAC are among the quickest methods, while GO-ICP takes
several seconds to solve. Finally, while learning-based methods demonstrate good performance and
low computation times, they have difficulties in training and generalizing. Our results can aid novice
researchers in the field in selecting a suitable registration method for their application, based on
quantitative metrics. Furthermore, our code can be used by others to evaluate novel methods.

Keywords: point cloud registration; digital twins; CAD model alignment; point cloud datasets

1. Introduction

Point cloud registration (PCR) is used in applications like building information
modelling [1], augmented reality authoring [2] and robotics [3]. The problem of PCR
consists in finding the (rigid) transformation between two point clouds, the source and the
template, minimizing a cost function. These point clouds can be sampled from available
CAD models or generated using stereovision [4] and laser-scanning techniques, including
LiDAR [5]. In practical applications such as manufacturing, a combination of CAD models
and (partial) scanning data is often used.

A closed-form solution exists when correspondences between the two point clouds are
exactly known [6]. This is the case, for example, when using synthetic data, generated on a
computer. However, these correspondences are unknown and not exact when working with
real-world scans or point clouds captured by different sensors. Synthetic datasets approximate
this by adding Gaussian noise [7] or removing a part of the object (partiality) [8,9]. Still, these
approximations fail to capture real-world 3D-scans, as they lack details like the rounding of
sharp corners, deformations, density variations or slight scaling. We believe the community
could benefit from a comparison with point clouds sampled from CAD models and generated
using laser-scanning. However, such comparisons are lacking in the existing literature.
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Review papers on PCR techniques, metrics and datasets are presented in the
literature [10-15]. These typically use synthetic datasets [12], such as the Stanford
Bunny [16]. Comparisons on real-world scans exist for LIDAR data [5], but existing
datasets are mostly limited to indoor and outdoor environments [17,18], instead of specific
objects [19-21]. Aside from the MVTEC ITODD dataset [22], which focuses on industrial
object scans, other datasets mainly include everyday objects or environments. To address
this gap, we collect new real-world data, based on the Cranfield benchmark [23], contain-
ing basic geometries. These basic objects facilitate the creation of clear 3D scans while
introducing challenges such as symmetric solutions, noise and partiality.

Aligning the captured point clouds with their CAD models is often done using the
standard ICP method in the literature. [4,24-26]. However, this typically involves using a
(fully) scanned template model [24,26,27], instead of sampling from a CAD model. While
popular, ICP’s performance is sensitive to the initial pose of both objects and can easily
fall into local minima solutions [10]. Thus, there is a need to look for other, more robust
registration methods.

Classifications of PCR methods have been proposed in the literature [28]. Ref. [29]
compares different feature descriptors for ICP-based methods and RANSAC-based meth-
ods (SAC-IA). They find the Fast Point Feature Histogram (FPFH) to be accurate and
fast. For this reason, it is also used in this paper. However, we extend the comparison to
include other methods, like FGR and deep learning methods. Comparing several tech-
niques is crucial to expand beyond the basic ICP method in practical applications. As
indicated by [28,30], there is still a large reliance on classical methods like ICP and NDT,
while benchmarks for learning-based methods and pretrained models for real-life scenar-
ios are lacking. The comparison by [31] focuses on RANSAC-based methods and inlier
IG-methods. Ref. [32] includes recent deep learning methods such as SpinNet [33] and a
graph-based method, TEASER [6]. However, the comparison is again performed on range
scans, instead of solving the CAD alignment problem. Finally, ref. [34] compares deep-
learning-based registration methods based on previously published metrics. We compare
six different registration methods, including RANSAC, FGR, PointNetLK and RPMNet,
which are important, well-known global and learning-based registration techniques [35].
Alternative methods exist in the literature, like probabilistic methods (Deep-GMR [36],
NDT [37], CPD [38]), graph-based methods (TEASER [6]) and other learning-based meth-
ods (DeepPro [39], SpinNet [33], REGTR [40]). These are considered to be out of scope for
this paper. We focus instead on classical and learning-based techniques. However, the
created code allows others to evaluate their performance using the same methodology on a
given dataset.

In this paper, CAD model alignment is used to compare six popular registration
methods, including GO-ICP [8], RANSAC [41], FGR [42], PointNetLK [43], RPMNet [9]
and ROPNet [44]. The point clouds are generated from an available CAD model and a
3D-scan, created using the Intel RealSense D435i camera. New scans are created based
on the Cranfield benchmark dataset. The scans contain noise and outliers, which are
typical challenges in PCR, to verify performance in real-world applications. The following
assumptions are made:

1.  Each point cloud consists of a single object that is already segmented from the envi-
ronment. However, we adapt the quality of the cutout as a parameter.

2. We already assign each point cloud a label corresponding to the represented object.

3. We do not consider large deformations and shearing [45,46].
The main contributions of this paper are:

1. A comparison of the performance of six registration methods, applied on real-world
scans of 3D-printed objects, with relatively basic geometries, and their CAD models.

2. A dataset consisting of a series of real-world scans, based on the Cranfield benchmark
dataset [23] with available ground-truth estimation. The Python code, used to run
the experiments, and the point cloud scans with their ground truth, are available
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at https:/ / github.com/Menthy-Denayer/PCR_CAD_Model_Alignment_Comparison.
git (accessed on 14 February 2024).

The remainder of this paper is organized as follows. Section 2, Methodology, de-
tails the methodology, including the chosen registration methods, metrics, datasets and
ground-truth estimation used to assess the performance. The results of the experiments are
presented in Section 3, Results, and discussed in Section 4, Discussion. Finally, Section 5,
Conclusion, contains conclusions and future work opportunities.

2. Methodology
2.1. Registration Methods

We selected registration methods based on the following criteria:

*  Robustness to noise. Three-dimensional cameras were used to create point clouds.
Working in nonoptimal lighting conditions or cluttered environments results in mea-
surement errors and noise. This leads to deformations of the scan compared to the real
object, making it more difficult to find correspondences for the registration methods.

*  Robustness to partiality. Since we used a single camera in this paper, the object
was only visible from one perspective. As a result, the captured point cloud was
incomplete, missing the parts of the object, which the camera could not see.

e  Limited computation time. For real-time applications, the computation time for the
registration process has to be limited. Timing can also be an important aspect to
consider when training the learning-based methods.

e Ability to generalize to different objects. The different methods have to work on a
wide variety of objects to be widely applicable. Learning-based methods are trained
on available CAD models and risk overfitting. Non-learning-based methods can
generalize better, which may come at the cost of a lower performance.

These criteria are typically used in the literature to describe the advantages and disad-
vantages of the different algorithms. We favoured open-source codes to adapt the methods
into the comparison framework. Open3D [47] provides an open-source library including the
RANSAC, FGR and ICP registration methods. These are standard and popular methods,
often used in real-world applications [3,26,48]. Furthermore, we selected learning-based
methods for their improved robustness and accuracy when dealing with extensive real-world
scans [10,39,49]. Additionally, there is a need to benchmark these methods in the literature [30].
The selected techniques are shortly discussed in Sections 2.1.1 and 2.1.2.

2.1.1. Non-Learning-Based Methods

Non-learning-based methods do not have to be trained and are therefore quick to set
up and use. We implemented GO-ICP from the author’s code [8], and we used the Open3D
implementation for RANSAC and FGR [47].

¢ GO-ICP [8] improves upon the standard ICP method by finding the global optimum
solution. ICP-based methods solve the registration problem by minimizing a cost
function. These algorithms typically establish correspondences based on distance.
GO-ICP is robust to noise. However, the method tends to be slow.

*  RANSAC [41] is a global registration method, often used in scene reconstruction [48].
It uses the RANSAC algorithm to find the best fit between the template and source
point clouds. Features are extracted using Fast Point Feature Histogram (FPFH) [50],
which is a point-based method [32]. RANSAC is robust to outliers and noise and does
not require any training process. However, it requires a preliminary step for feature
extraction and there are multiple parameters to tune.

* FGR [42] is a fast registration method, requiring no training. It also uses FPFH to
extract features but does not recompute the correspondences during the execution. It
can perform partial registration but is more sensitive to noise.
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We selected GO-ICP as it provides robust, high-accuracy results. Thus, it is interesting
to compare its outcomes to methods like FGR and RANSAC, which are much faster, but
less reliable.

2.1.2. Learning-Based Methods

Learning-based methods are trained using a dataset to extract features and compute
the transformation matrix. The training process consists of creating many iterations of
a template and a transformed source. Each time the registration problem is solved and
compared to the ground-truth solution. An error is then computed to adjust the weights of
the network. We implemented PointNetLK and RPMNet from available codes [51], while
we took ROPNet from the author’s code [44].

*  PointNetLK [43] is a learning-based method. It uses PointNet to generate descrip-
tors for each point. This information is then used to compute the transformation
matrix through training. The method is robust to noise and partial data. How-
ever, the performance drops when the method is applied to unseen data and for
large transformations.

e RPMNet [9] is another learning-based method. It combines the RPM method with
deep learning. RPM itself builds upon ICP, using a permutation matrix to assign
correspondences. The transformation matrix is computed using singular value de-
composition (SVD). RPMNet is robust to initialization and noise, and also works for
larger transformations. RPMNet is, however, reported by [9] to be slower than other
methods like ICP or DCP.

e ROPNet [44] is a learning-based method, created to solve the partial registration
problem. First, a set of overlapping points is established. Afterwards, wrong cor-
respondences are removed, turning the partial-to-partial into a partial-to-complete
problem. Finally, SVD is used to compute the transformation matrix. It is robust to
noise and can generalize well.

PointNetLK forms an important milestone for deep-learning-based PCR methods,
while RPMNet and ROPNet are promising novel approaches. We selected these methods
as each one approaches the problem of PCR differently, resulting in different training
capabilities and accuracies.

2.2. Metrics

We used four groups of metrics to compare the registration methods. The first group
of metrics expressed the errors in degrees and a unit of length. They were the easiest to
interpret and yielded a direct evaluation of the rigid transformation. These metrics included
the mean absolute error (MAE) [9], mean relative error (MRE) [13] and root-mean-square
error (RMSE) [36]. All metrics could express both translational and rotational errors, in a
unit of length and degrees, respectively.

A second group of metrics evaluated the accuracy of the alignment. This included the
recall [36] metric and the coefficient of determination R? [52]. The metrics were expressed
as a number between zero and one or as a percentage. The better the alignment, the higher
their value.

In some cases, the registration may lead to unsatisfactory results. In these cases,
the absolute values of the errors are not as relevant. However, it is interesting to save
the number of failure cases [6,21], which made up the third group of metrics, and the
scans for which they occurred. Thus, whenever a result met the condition of R? < 0 or
MRAE > 120°, it was considered to be a failure. An example of a negative R? result is
shown in Figure 1. The condition aims at removing only the extreme cases of misalignment,
where the found transformation is small. Thus, in these cases, ICP refinement cannot
correct the results.

Finally, we also recorded the registration time as a metric. It was counted whenever
the method is called upon, with the source and the template already loaded, until the
transformation matrix was returned.
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We implemented the evaluation of the results in Python. The code can be found
at https://github.com/Menthy-Denayer/PCR_CAD_Model_Alignment_Comparison.git
(accessed on 14 February 2024).

@ Template
@ Source

Figure 1. An example of a solution with a negative R? value. The estimated transformation (red)
does not overlap the template (blue). The result shown is for the base-top plate object, after applying
PointNetLK.

2.3. Materials

We used an Intel (USA) RealSense D435i camera to capture the point cloud scans.
It can capture depth at 30 cm, yielding high-accuracy scans for the considered objects.
The datasheet indicates an absolute error (z-accuracy) of 2% for objects captured within
2 m from the camera. The spatial noise (RMSE) is less than 2%. The D435i camera has a
1280 x 720 depth resolution. We processed the captured point clouds manually using the
RealSense viewer application, separated them from the environment and labelled them.
We sampled the template point clouds from the corresponding CAD files with twice the
number of points from the source (captured point cloud). We did this to obtain a similar
point cloud density, considering partiality. The template was scaled to match the size of the
captured point cloud.

For the experiments, we used two datasets (Figure 2): the Cranfield benchmark [23]
and the ModelNet40 [53] dataset. The Cranfield benchmark is used to assess, for example,
robotic peg-in-hole (PIH) manufacturing operations. It contains six unique objects with
basic geometries. The objects all have at least one symmetry axis, as shown in Figure 3. This
means multiple ground-truth solutions exist, which were considered in the comparison.
We 3D-printed the objects to reduce reflections, as these were not considered in this paper.
The largest and smallest objects had a characteristic length of 22 cm and 6 cm, respectively.

ModelNet40 dataset )
CAD files 3D printed

|
Cranfield benchmark dataset
CAD files 3D pfinted

20 |}
-* YT 8

Figure 2. Objects from the ModelNet40 dataset and Cranfield benchmark used during the experiments.

ce>n
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Symmetry axis

Symmetry plane

Figure 3. Objects from the Cranfield benchmark dataset contain a symmetry axis or symmetry plane,
resulting in an infinite number of ground-truth solutions.

The ModelNet40 dataset is typically used to evaluate point cloud registration methods
on synthetic data. The dataset consists of multiple models in 40 categories of objects. We
selected and 3D-printed three objects with simple geometries. Training data were also
available for the learning-based methods [51].

We placed the objects flat on a light table, as shown in Figure 4, in different orientations.
The camera was fixed above the table. Depending on the object, we brought the camera
closer or farther to obtain a clear point cloud scan. The objects were angled at 45° or 90°.
We only added scans when the general shape of the object was sufficiently recognizable.

Figure 4. The experimental setup used for capturing the point clouds. The 3D camera is fixed. The
paper is used as a reference for orienting the 3D-printed objects.

We also used the datasets for training the learning-based methods, selected in
Section 2.1.2. The training data were generated synthetically, as creating a sufficiently
large dataset with real scans is very time-intensive. We sampled point clouds from the CAD
models and randomly transformed them according to literature guidelines [7,9,43,44,52,54].
Additional variations were introduced in the data by adding noise, partiality, a floor or a
combination. Due to convergence issues, not all methods could be trained on all datasets.
All methods were trained on the normal and noisy (¢ = 0.01) datasets. RPMNet and
ROPNet were trained on partial data, where 50% and 70% of the points were retained,
respectively. The same methods were trained on the floor, noisy and partial dataset, with a
noise level of 0.01 and 70% of points retained.
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2.4. Ground-Truth Estimation

To compute the metrics from Section 2.2, we needed to estimate the ground truth. The
process was based on using known information, like the object’s orientation on the table,
estimated values such as the normal vector on the table and finally, a visual correction for
the translation [6]. We placed the 3D camera parallel to the table, which meant the x-axis of
the template was too. Figure 5 shows the steps, which are detailed below.

1.  We centred both point clouds on the origin by subtracting their mean.

2. Using an estimation of the normal vector on the table, we performed a rotation around
the template x-axis, aligning the y-axes of both objects.

3. Given the known rotation of the object on the table, we performed a final rotation
around the new y-axis.

4. We performed visual corrections for the rotation and mainly translation, similar to [6].

Template Yr

Ys

Mean translation
Z; Xs

|Gr0und truth allignment|

Y
Ze l ’
Xc 4 ®

Y-axis rotation

Figure 5. Steps performed to estimate the ground-truth estimation. The red and yellow point clouds
represent the template and source, respectively. X7YrZr is the template’s and XsYsZg the source’s
coordinate system.

Appendix A (Table A1) details the validation of the ground truth, showing an accuracy
of around 2 mm and 3°. The processed point clouds and their ground-truth transformations
are available at https://github.com/Menthy-Denayer/PCR_CAD_Model_Alignment_
Comparison.git (accessed on 14 February 2024).

2.5. Registration Parameters

Each registration method has a range of parameters that can be tweaked. The consid-
ered parameters are given in Table 1 for each method.

The zero-mean parameter refers to the centring of the point clouds, which reduces the
transformation size. This parameter was considered as it is a simple pre-processing step,
removing the offset from the camera.

For GO-ICP, the MSE threshold and trim fraction need to be defined. The MSE
threshold determines the convergence criteria. The trim fraction determines the fraction of
outliers to be removed.

The voxel size is a simple filtering technique, used to downsample the point clouds.
It takes the average of all points inside a small voxel, with the voxel size indicating its
scale. As this parameter reduces the number of points in the point cloud, it is interesting to
consider its effect on the computation time.
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Table 1. Parameters checked for each method. A check mark (v') or range indicates the parameter is
verified, a dash (/) means the parameter is not applicable and a lightning symbol (£) indicates the
parameter is checked, but no convergence was reached. Training models are reported in Section 2.3.

Method GO-ICP RANSAC FGR PointNetLK RPMNet ROPNet

Zero mean v v v v v v
Refinement v v v v v v
Bounding box 1 1—1.8 ‘ /

Voxel size [m] 1073,1072 104 —>101 | 0,1073 - 1072 \
MSE Threshold [m] 107> — 10" / / / / /
Trim fraction [/] 1074 — 101 / / / / /
Training model / / / v v v

We adapted the bounding box to simulate the effect of different cutouts around the
object, as in Figure 6. The larger the bounding box, the more environmental information
is included in the point cloud. However, methods that can work for larger bounding
boxes require less pre-processing. This is especially interesting in real-time applications.
Furthermore, the maximal bounding box places additional requirements on preliminary
object detection and filtering steps.

BB=1.0 BB=1.2 BB=1.4 BB=1.6 BB=1.8

Figure 6. Effect of adapting the bounding box to increase the information around the object in the
point cloud.

Finally, training models were varied for the learning-based methods. We used the
Cranfield benchmark first to train the methods, as mentioned in Section 2.3. Pre-trained Mod-
elNet40 training models were compared to the results achieved using the Cranfield benchmark.

Finally, we used ICP refinement to refine the results, similar to [6]. ICP [43] is often
used in applications for its low computation time and simplicity. The main disadvantages
of ICP include its lower performance for larger transformations and susceptibility to
local minima.

2.6. Data Processing

We applied the registration methods, selected in Section 2.1, on the created point cloud
scans, to align them with their templates. For each object, we created multiple scans. The
alignment was repeated several times to verify whether the same results were obtained.
Furthermore, we varied several parameters for each registration method, as mentioned
in Section 2.5. From these experiments, we selected the parameters leading to the best
result, over the performed experiments, per object. This means the lowest values for the
MAE, MRE, RMSE and number of failure cases and the highest values for the recall and R?
metric. We then averaged the metrics for a final comparison of the methods. Figure 7 gives
a schematic overview.

The standard deviation ¢ is the square root of the sum of experimental variances,
weighted by the number of samples, not considering the failure cases. For the number of
failure cases and time, we used the standard formula for the variance, with the sum taken
over the different objects instead.

We ran our experiments on an HP Omen (USA) Windows laptop with an NVIDIA
GeForce RTX 3070 GPU and AMD Ryzen 7 processor.
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Object 1 Object 2 Object 9
Y Scans Y Scans oo Y Scans
L Best Case Best Case Best Case J
M

Y Comparison

Figure 7. For each object, the results of the different scans were averaged (X). The best cases for each
object, in terms of the parameters, were selected and averaged, to compare the different methods.

3. Results
3.1. Training Validation Results

We validated the learning process on a test dataset for the Cranfield models. Table 2
gives an overview. Since all points of the point clouds were rescaled to fit into a unit sphere,
to comply with training standards [7,9,43,44,52,54], the synthetic objects were on the order
of metres, compared to centimetres for the real, 3D-printed objects. Table 2 shows a largest
error of 25.76 mm, which corresponds to 1.2% of the largest object’s characteristic length.
Training validation indicated a good training convergence for all datasets. However, the
recall values were lower, specifically for RPMNet and ROPNet, compared to PointNetLK.
R? values were 1.00, indicating a perfect overlap. However, when working with large
numbers, this metric is more prone to numerical rounding errors.

Table 2. Validation results of training PointNetLK, RPMNet and ROPNet on (1): normal data,
(2): noisy data, (3): partial data, (4): floor, noisy and partial data. Training—test iterations were 820 and
205, respectively. The data used for training are also mentioned (A: all, L: limited). The recall limit
was 0.01 m. The arrows indicate whether the metric should be as small () or high (1) as possible for
a good registration result.

Dataset Data MRAE MRTE RMSE RMSE MAE MAE Recall R?
[A/L] [°14 [mm] | [°14 [mm]| [°14 [mm] | [%] 1 n+
PointNetLK

1 A 2.13 0.78 0.07 0.05 0.37 0.00 91.71 1.00

2 L 0.31 2.94 0.00 2.88 0.13 0.01 97.82 1.00
RPMNet

1 A 2.60 3.00 0.04 2.23 0.82 0.00 70.76 1.00

2 A 2.90 3.16 0.05 2.14 0.67 0.00 72.82 1.00

3 A 2.71 16.42 0.04 10.52 0.85 0.11 49.78 1.00

4 A 2.40 25.76 0.02 17.94 0.98 0.32 30.40 1.00
ROPNet

1 A 0.02 0.00 0.00 0.00 0.00 0.00 100.00 1.00

2 A 0.24 1.76 0.00 1.22 0.11 0.00 99.91 1.00

3 A 0.99 8.83 0.02 11.95 0.49 0.14 79.67 1.00

4 A 1.12 11.51 0.01 7.33 0.48 0.05 69.58 1.00
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3.2. PCR Methods Comparison

We compared the methods by selecting a representative metric for key criteria, such
as precision, variance, speed, generalizability and required pre-processing, as shown in
Table 3. An overview of all metrics for each method can be found in Appendix B (Table A2).

The zero-mean method had little effect on the results. The best case was used for each
method. GO-ICP, RPMNet and ROPNet were not centred (nonzero mean), while RANSAC
and FGR were centred (zero mean). PointNetLK centred the point clouds automatically.

The lower the MSE threshold, the more accurate the results. As the value increased, the
number of failure cases rapidly rose until all scans led to unsatisfactory results. However,
the registration time increased on average by 10 s when lowering the threshold from 10~! m
to 107> m, with the largest object taking 67 s to solve. The trim fraction had little effect on
the results, as the point clouds were already cleaned in pre-processing.

The R? value and recall indicate the precision, as shown in Table 3 and Figure 8§,
respectively. GO-ICP achieved the highest accuracies, where a successful alignment usually
coincided with recall values of 100% and R? = 0.98. RANSAC, PointNetLK and RPMNet,
combined with ICP refinement, also resulted in precise alignments, though with increased
variance, as seen in Figure 8. FGR was less precise, but one of the faster methods, as shown
in Table 3. ROPNet scored well in terms of the recall and R? metrics, but led to a high
number of failure cases, as shown in Figure 9, even after applying refinement. Figure 8
shows the effect of applying ICP refinement. For all methods, the recall metric improved
significantly, while variances dropped. GO-ICP was the only exception, where ICP did not
significantly improve the results.
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Figure 8. Average recall metric, with average maximal and minimal values indicated over the different
objects, as well as the region of variation y & ¢. (a) Non-learning-based methods. (b) Learning-
based methods.

Computation times were highest for GO-ICP, as shown in Figure 10. The other
registration methods took on average less than 1 s to solve. FGR was among the fastest
methods on average but showed a larger spread. The learning-based methods were quick
to solve the registration problem.

Figure 9 presents the number of failure cases. A large variation is visible for all
methods over the different objects and scans. On average, GO-ICP led to the lowest number
of failure cases, as also indicated in Table 3. In contrast, ROPNet showed the highest
number of failure cases on average. Refinement had a small effect on that metric.

Finally, Table 3 highlights the pre-processing criterion. This refers to the required
cleaning of the initial point cloud for the method to work successfully. The recall metric for
a bounding box 80% larger than the cleaned-up point cloud was used as a representative
metric. GO-ICP failed to converge when too much background clutter was included. Point-
NetLK and FGR yielded a result, though the registration quality was strongly reduced as
the bounding box was increased, with recall values of only 0% and 12.65%, respectively.
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RANSAC and RPMNet both led to recall values above 20%. However, the methods per-
formed the best when the point cloud was filtered from outliers and environmental clutter.
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Figure 9. Average number of failure cases, with average maximal and minimal values indicated

over the different objects, with the region of variation y & ¢. (a) Non-learning-based methods.

(b) Learning-based methods.
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Figure 10. Average computation time for all methods, with average maximal and minimal values

indicated over the different objects, with the region of variation y £ 0. GO-ICP leads to much higher

registration times, hence the jump in values.

Table 3. For each criterion, a representative metric was chosen. ICP refinement was not applied

during the experiments for pre-processing and speed. However, ICP refinement was included for all

other values. Dash (/) indicates missing data. Lightning (#) indicates no convergence.

Method |  Precision Variance Speed Generalizability Pre-processing
: 2 2 . . o Recall [%]
Metric — R* 1 c(R”) | Timels]| Failure [%] | for BB — 18
GO-ICP 0.98 0.04 | 1550 28.64 T
RANSAC 0.93 0.16 0.27 43.58 21.70
FGR | 081~ 020 0.10 47.26 12.65
PointNetLK 0.97 0.15 0.12 58.65 0
RPMNet 089 02200 o012 45.52 48.87
ROPNet 0.95 0.12 006 | 7060 /
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4. Discussion
4.1. Registration Parameters

The voxel size parameter significantly affected the registration results for RANSAC,
FGR, ROPNet and RPMNet. For these methods, the recall metric dropped from >80% to
<20%, for a change in the voxel size of only 2 mm. The parameter also did not show a
clear trend. The optimal voxel size changes depended on the object, method and metric.
PointNetLK was more indifferent to the voxel size, as the results remained consistent for
almost all objects. The best results were found for a voxel size of around 1 cm. Finally, we
combined GO-ICP with the voxel size. However, it is important to adapt the MSE threshold
parameter accordingly, otherwise, the method no longer converges. Adapting the voxel
size can improve the results for a higher MSE threshold. Most objects, leading originally to
a zero recall, resulted in a recall of >60% after adapting the voxel size.

We found that the registration accuracy typically decreased with an increasing bound-
ing box. Some methods, such as FGR and PointNetLK, were more sensitive, with the recall
metric decreasing from 50% to 10% and 90% to 0% as the bounding box was increased by
80%. Meanwhile, RPMNet and RANSAC converged more slowly to a lower recall value.
GO-ICP, on the other hand, no longer converged when the bounding box was increased.
As a general guideline, the best results were obtained when the object’s information was
maximized and the environmental clutter was minimized. Thus, pre-processing is impor-
tant to a successful alignment. Furthermore, this limits the maximal size of the bounding
box extracted from preliminary object detection steps.

For the training validation, the lower recall values can be explained by the scaling. The
limit for recall was chosen at 1 cm, while the average translational error was larger in these
cases. Additionally, the R? metric is more sensitive to numerical rounding errors, especially
when working with larger values. Still, all other metrics showed the good performance of
these methods on the synthetic datasets. On the point cloud scans, the normal datasets led
to the best results in terms of accuracy. The Cranfield benchmark could generalize well,
even to the considered ModelNet40 objects. Thus, adding Gaussian noise or partiality did
not directly lead to improved results. This indicates the need for a better model of the
captured point cloud scans to improve the training dataset.

For all methods, ICP refinement led to significant improvements over all objects, with
rotational and translational errors decreasing more than 10° and 5 mm, respectively. The
only exception to this trend was GO-ICP, where the relative gain of applying refinement
diminished from 90% and 80% to almost 0% for the MRAE and MRTE, respectively, when
decreasing the MSE threshold. The highest recorded registration time for ICP was 0.32 s,
for the largest object, but it typically ranged on the order of 10~2 s for most other cases.

4.2. PCR Methods Comparison

Of all methods, GO-ICP achieved the best performance in terms of precision. The
major downside of GO-ICP lay in the higher registration time of multiple seconds up to a
minute, making it insufficient for real-time applications. This agreed with the literature [8],
where errors of around 5° were obtained on the Stanford dataset. RMSEs were reported of
at most 0.05 when applied on synthetic data, while we found errors of 0.04° and 1.58 mm.
ICP refinement only took 0.01 s on average, as there was only a small gain.

RANSAC, refined with ICP, reached similar performance to GO-ICP, while showing
higher variances. This can be explained by the fact that RANSAC uses a random initializa-
tion which can cause different results for the same scan. However, RANSAC was much
faster than GO-ICP, with average registration times below 1 s. Furthermore, parameters
needed to be correctly set to achieve a high performance as indicated in the literature [41].

FGR was one of the quickest methods and had a similar performance to RANSAC’s,
although it was less accurate and with more failure cases. The method is also more prone
to noise, as indicated by [42]. RMSEs of only 0.008 were achieved on synthetic data, even
when adding noise with ¢ = 0.005. On a scene benchmark, a recall of only 51.1% was
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obtained, which was lower than 61.18% found in this paper. We found speeds for FGR
around 0.1 s, which was close to the reported 0.2 s in the literature [42].

PointNetLK achieved the best performances overall for the learning-based methods.
Like RANSAC and FGR, the results were the best when PointNetLK was refined using
ICP. However, the number of failure cases and variability between the results were both
higher. PointNetLK yielded the same result for a single scan, leading to slightly lower
deviations than RANSAC and FGR. Registration times were limited to 0.12 s and GPU
requirements were the lowest among the tested learning-based methods. Still, PointNetLK
required an extensive training process with limited ability to generalize to unseen data.
Furthermore, the performance dropped when transformations were larger, as also indicated
in the literature [43].

For RPMNet, the number of failure cases was lower than for PointNetLK and FGR,
showing the higher robustness to initialization, as mentioned in the literature [9]. RPMNet
converged more easily on complex datasets compared to PointNetLK. However, GPU
requirements were also higher. RPMNet achieved errors smaller than a unit degree or
millimetre when applied to clean data. Errors increased slightly when Gaussian noise was
added, but were still much below 25.78° and 10.21 mm found on 3D scans.

ROPNet was outperformed by the other methods, with an MRAE of 7.90° and MRTE
of 4.89 mm and around 70% failure cases, after refinement. The performance was lower
than reported in the literature [44]. On synthetic data, ROPNet could achieve errors of
around 1°, even on unseen ModelNet40 data with added noise. This can be related to the
datasets not representing the real-world scans sufficiently well. As a result, ROPNet had
difficulty generalizing to the scanned data.

Our results show that learning-based methods (PointNetLK, RPMNet) can match
the performance of classical methods like RANSAC and FGR. However, the studied tech-
niques also highlight the need to consider trade-offs in accuracy, speed and pre-processing.
Practical considerations are further discussed in Section 4.3.

As a final observation, failures typically occurred due to a low point cloud quality, a
too large initial transformation or due to the choice of parameters. As a result, we observed
high variances over different objects. ICP could refine the successful registration results,
but could not find large transformations that would turn a failure into a success. The
lower the number of failure cases, the better the method can generalize to different objects
and scans.

4.3. PCR Methods Guidelines

An overview of the compared methods is shown in Figure 11, which can serve as a
simple guide to aid in selecting the correct registration method for the reader’s application.

RANSAC, PointNetLK and RPMNet combined with ICP refinement yield accurate
results and fast registration times. However, errors are larger when applying the methods
on real-world scans compared to applying them on synthetic data. These methods can be
used in applications requiring a real-time estimation of the transformation matrix, while
still achieving precise results on most scans. RANSAC and FGR, in particular, require
no training and have low computation times and requirements. These methods are most
interesting in real-time registration and could benefit from the knowledge of previously
found transformations as an initial guess. RANSAC generalizes well to different objects
and scans while being less sensitive to environmental clutter.

ROPNet and PointNetLK achieve high speeds after training. Furthermore, RPMNet
can generalize to different objects and yields the best results among the tested methods
when clutter is included in the point cloud scan. Learning-based methods need training,
which requires more time and higher GPU requirements. Moreover, convergence during
training is not guaranteed. Further investigation into their training process and ability to
generalize are required to achieve high-fidelity results.

GO-ICP achieved the highest accuracies among the evaluated methods, even reaching
similar performance to that found in the literature. However, the method was also the
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slowest, with registration times of multiple seconds. Furthermore, it required a cleaned-up
point cloud with limited outliers and environmental clutter. GO-ICP should be considered
for applications requiring high-accuracy results, where computation times do not play a
significant role, like 3D modelling.

High Precision High Speed Generalizability Little pre-processing
- T N [ T N [ T N [ I
GO-ICP FGR GO-ICP RANSAC
RANSAC +ICP RANSAC
RPMNet + ICP ROPNet RPMNet RPMNet
PointNetLK + ICP PointNetLK

- DZANE AN AN _/

Learning-based Non-learning-based

Figure 11. Overview of the compared methods, grouped according to their main strengths.

4.4. Limitations

The present study included only a limited number of registration methods. Future
work could focus on extending the comparison, to include state-of-the-art methods such as
DeepPro [39], REGTR [40] or TEASER++ [6]. Additionally, classical probabilistic methods,
like NDT or CPD, can also be evaluated.

The ground-truth estimation only allowed us to estimate the registration accuracy
up to a couple of millimetres and degrees, which might be insufficient for more sensitive
applications. Furthermore, differences between methods of less than 2 mm or 3° cannot be
considered significant.

The quality of the captured point cloud can be improved by using multiple cameras
or a moving one, reducing the partiality in the data. Additionally, filtering [55-58] or point
cloud completion [59] techniques can also be added.

Finally, the learning-based methods were trained on a series of basic datasets. Further
investigation into training hyperparameters and more complex training datasets is required
to achieve higher performance from the learning-based methods. Thus, these methods
might achieve higher accuracies, after a more involved training process.

5. Conclusions

Practical applications of point cloud registration still largely rely on classical methods,
like ICP. To accelerate the deployment of advanced methods, quantitative validations
are essential. This study performed an in-depth comparison of six registration methods,
focusing on classical techniques and deep-learning-based solutions.

Furthermore, literature reviews on point cloud registration algorithms are typically
performed on synthetic datasets, instead of 3D scans. This paper compared six registration
methods, including GO-ICP, RANSAC, FGR, PoinNetLK, RPMNet and ROPNet. Regis-
tration was performed on two point clouds, one sampled from a 3D CAD model and the
other captured using the Intel RealSense D435i camera.

GO-ICP, as well as RANSAC, RPMNet and PointNetLK combined with ICP, achieved
high-precision alignments, with small rotational and translational errors. Refinement had
little effect on GO-ICP, hence it was not required. FGR, ROPNet and PointNetLK ranked
among the fastest methods tested, each leading to registration times far below 1 s. GO-ICP,
RANSAC and RPMNet led to the fewest failure cases, indicating their ability to work
robustly for a wide array of scans and objects. Finally, RANSAC and RPMNet showed the
most robustness to environmental clutter, thus requiring less pre-processing for the input
point clouds.

Our results can be used by novice researchers in the field to select a PCR method for
their application, based on quantitative metrics. Furthermore, the dataset and code used
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during the experiments have been made available to encourage new validation studies
and comparisons.

Future work could focus on improving the capture of the point clouds. Here, a single
camera was used at a fixed perspective. Instead, multiple cameras or a moving one can
capture a more complete point cloud. Advanced filtering techniques can be considered
to improve the point cloud quality. Finally, other methods such as DeepPro and Teaser++
show promising results and can be further tested using real-world data.
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Appendix A. Ground-Truth Validation

We verified the ground truth by applying ICP refinement to the found transformation,
similarly to [20]. Table Al gives an overview of the results, where a voxel size of 1 cm
was used to run the ICP algorithm. The metrics showed a small correction made by ICP,
indicating a good ground-truth definition. Hence, we used the results without refinement
for the experiments.

Table Al. Mean errors (€) and standard deviations (¢), when applying ICP to refine the found
ground-truth estimation, for different bounding boxes (BB). A voxel size of 1 cm was used for ICP.

Data MRAE MRTE RMSE RMSE MAE MAE Recall R?
le/c] [°W  [mm]{ [°]J [mm]] [°]) [mm]l{ [%IT U171

1.85 1.89 0.02 1.09 2.69 0.00 100 1.00
1.22 1.11 0.01 0.64 7.93 0.00 0.00 0.01

Type

Cleaned point clouds

BB — 1.0 € 1.50 2.53 0.01 1.46 0.70 0.00 100 1.00
o 0.88 1.66 0.01 0.96 0.83 0.01 0.00  0.00
BB — 12 € 1.24 2.93 0.01 1.69 0.64 0.00 100 1.00
o 0.66 1.48 0.01 0.85 0.86 0.00 0.00 0.01
BB — 14 € 1.50 297 0.01 1.71 0.71 0.00 100 1.00
o 0.87 1.62 0.01 0.94 1.07 0.00 0.00  0.00
BB — 16 € 1.58 3.57 0.01 2.06 0.73 0.01 100 1.00
o 0.96 2.34 0.01 1.35 1.07 0.01 0.00  0.00
BB — 18 € 1.58 3.36 0.01 1.94 0.75 0.01 100 1.00
o 0.93 217 0.01 1.25 1.08 0.01 0.00  0.00
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Appendix B. List of Averaged Metrics

Table A2. Metrics (€) and standard deviations () for the studied registration methods. Recall was
taken with a 0.01 m threshold. The best metrics are shown in bold. The time mentioned for the
refinement cases only includes ICP.

Data MRAE MRTE RMSE RMSE MAE MAE Recall R?> Failure Time

Method

le/c]l  [°I  [mm]l] [°1l [mml) [FI{ [mm]ll [%I1T 11 [%]l I[sl)

Non-learning-based methods
GO-ICP € 4.85 2.73 0.04 1.58 4.00 0.00 100 098 28.64 1550
3.08 1.61 0.02 0.93 4.13 0.01 0.00 0.04 30.08 23.14
GO-ICP + ICP € 4.85 2.73 0.04 1.58 3.99 0.00 100 098 28.64  0.01
o 3.10 1.58 0.03 0.91 4.14 0.01 0.00 0.04 30.08  0.00
RANSAC 18.62 6.23 0.16 3.60 16.43 0.02 8594 088 5082 027

[ 12.64 4.20 0.09 242 31.31 0.03 21.71 013  26.24 0.22

€ 5.85 2.83 0.05 1.63 9.70 0.01 9734 093 4358 0.04

RANSAC +ICP
[ 7.20 2.51 0.06 1.45 29.05 0.02 952 016 24.63 0.02

€ 27.41 11.67 0.29 6.74 19.08 0.06 61.18 058  75.57 0.10

FGR
38.52 4.56 0.13 2.63 14.14 0.06 2750 0.20 17.52 0.17
FCR + ICP € 12.59 4.95 0.10 2.86 7.81 0.01 91.26 0.81 47.26 0.04
o 12.26 3.40 0.10 1.96 7.00 0.02 13.62 0.20 11.46 0.03
Learning-based registration
. € 14.04 6.36 0.11 3.67 12.55 0.02 95.18 0.86 57.92 0.12
PointNetLK
o 13.86 1.09 0.11 0.63 34.82 0.01 1244 0.16 34.05 0.06
PointNetLK + ICP 412 2.36 0.03 1.36 7.80 0.00 99.57 097 5865  0.05
8.55 1.31 0.07 0.76 36.18 0.00 2.95 0.15 28.24 0.03
RPMNet € 25.78 10.21 0.21 5.90 11.08 0.04 7148 0.62 59.31 0.12
o 7.77 1.09 0.06 0.63 2.75 0.01 14.83 0.14 25.20 0.09
RPMNet + ICP € 7.59 3.65 0.06 211 4.52 0.01 95.94 0.89 45.52 0.04
o 8.05 2.80 0.06 1.62 6.61 0.01 9.31 0.22 30.34 0.03
ROPNet € 25.88 10.99 0.21 6.35 30.84 0.05 67.38 0.72 74.70 0.06
o 10.22 2.19 0.08 1.27 9.32 0.02 6.50 0.08 16.90 0.02
ROPNet + ICP € 7.90 4.89 0.06 2.82 31.91 0.01 9433 095 70.60 0.04
o 12.31 3.30 0.09 191 8.76 0.02 6.29 0.12 17.01 0.05
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Abstract: Existing point-to-point registration methods often suffer from inaccuracies caused by erro-
neous matches and noisy correspondences, leading to significant decreases in registration accuracy
and efficiency. To address these challenges, this paper presents a new coarse registration method
based on a geometric constraint and a matrix evaluation. Compared to traditional registration meth-
ods that require a minimum of three correspondences to complete the registration, the proposed
method only requires two correspondences to generate a transformation matrix. Additionally, by
using geometric constraints to select out high-quality correspondences and evaluating the matrix,
we greatly increase the likelihood of finding the optimal result. In the proposed method, we first
employ a combination of descriptors and keypoint detection techniques to generate initial corre-
spondences. Next, we utilize the nearest neighbor similarity ratio (NNSR) to select high-quality
correspondences. Subsequently, we evaluate the quality of these correspondences using rigidity
constraints and salient points’ distance constraints, favoring higher-scoring correspondences. For
each selected correspondence pair, we compute the rotation and translation matrix based on their
centroids and local reference frames. With the transformation matrices of the source and target
point clouds known, we deduce the transformation matrix of the source point cloud in reverse. To
identify the best-transformed point cloud, we propose an evaluation method based on the overlap
ratio and inliers points. Through parameter experiments, we investigate the performance of the
proposed method under various parameter settings. By conducting comparative experiments, we
verified that the proposed method’s geometric constraints, evaluation methods, and transformation
matrix computation consistently outperformed other methods in terms of root mean square error
(RMSE) values. Additionally, we validated that our chosen combination for generating initial cor-
respondences outperforms other descriptor and keypoint detection combinations in terms of the
registration result accuracy. Furthermore, we compared our method with several feature-matching
registration methods, and the results demonstrate the superior accuracy of our approach. Ultimately,
by testing the proposed method on various types of point cloud datasets, we convincingly established
its effectiveness. Based on the evaluation and selection of correspondences and the registration
result’s quality, our proposed method offers a solution with fewer iterations and higher accuracy.

Keywords: geometric constraint; point cloud registration; transformation estimation; evaluation
of registration

1. Introduction

Laser sensors utilize the principle of laser ranging to record the three-dimensional
coordinates, reflectivity, and texture information from the object being scanned. In practical
applications, data are typically acquired from different angles due to limitations imposed
by lines of sight, measurement methods, and the geometry of the objects that are being
scanned. Each point cloud has its own local reference frames, and the goal of point cloud
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registration is to unify the multiple angle point cloud data into a common coordinate
system [1].

Point cloud registration can be divided into two methods: coarse registration and
fine registration [2]. In the context of fine registration methods, the iterative closest point
(ICP) algorithm [3] is most commonly used. This algorithm utilizes the least squares
method to compute the matching point sets and achieves convergence through iterative
optimization, resulting in satisfactory matching results. There were also variants of ICP.
The point-to-plane ICP registration algorithm proposed by Low, Kok-Lim et al. [4] demon-
strated that using the point-to-plane approach to calculate the transformation matrix is
faster and achieves higher registration accuracy compared to the point-to-point approach.
S. Rusinkiewicz [5] proposed a symmetric version of the iterative point-to-plane ICP algo-
rithm, which also introduces an alternative method called rotation linearization to simplify
the optimization process into a linear least squares problem. ICP is characterized by its
straightforward approach and showed its effectiveness, particularly when registering data
with a solid initial alignment [6]. Therefore, the challenge of obtaining accurate initial
correspondences still persists.

A coarse registration method based on the selection of matching point pairs can be
implemented through five steps: keypoint detection, local feature description of keypoints,
correspondences selecting, and computation of the optimal transformation matrix [7].
Keypoint detection aims to identify a small set of distinct points from a point cloud to
expedite registration, as raw point clouds often contain a large number of points. Local
feature description involves using rotation-invariant feature vectors to capture geometric
and spatial information within a local surface. By comparing these local geometric features
using distance metrics, point-to-point correspondences can be established. However,
there are still significant outliers in the initial correspondences. This is due to issues such
as keypoint localization, the challenge of distinguishing repeatable patterns using local
geometric features, and limited overlap between the point cloud views being aligned. Some
of these methods are proposed in order to select out high-quality correspondences [8]. For
example, Mian et al. proposed a similarity score based on point cloud descriptors [9]. This
method determines correspondences based on the differences between feature elements
in point cloud descriptors. However, issues such as data noise, occluded regions, and
repeated features, can lead to misjudgment, so this method can only serve as a baseline
for evaluation. Another approach is to select high-quality correspondences based on
geometric constraints between correspondences. For instance, a base line algorithm is
Lowe’s ratio rule [10], which determines whether to accept a pair of matching points
based on the ratio of the nearest distance to the second-nearest distance. A significant
distance difference indicates that the point has better discriminability in the feature space.
H. Chen et al. [11] proposed geometric consistency, which imposes constraints based on the
geometric distance differences between the source and target points of the two matching
points. This approach aims to select correspondences that meet a threshold. Abdullah
Lakhan et al. [12] proposed a DAPWTS algorithm framework, which utilizes a secure
minimum cut algorithm to partition applications between local nodes and edge nodes.
After the application partitioning, an optimal search is performed using a node search
algorithm, which also optimizes the structure of point cloud data. However, these methods
mostly only utilize a single constraint, leaving room for improvement in the quality of
matching point pairs. Moreover, there is the potential of finding the optimal result based
on these constraints.

In the field of 3D point cloud registration, there are various algorithms available to
solve the outliers’ issue. At present, many coarse registration methods were proposed.
For example, the compatibility-guided sampling consensus (GC-SAC) registration method
proposed by S. Quan and J. Yang [13] utilizes rigidity constraints and salient points” dis-
tance constraints for correspondences selection, and determines the optimal transformation
matrix based on the maximum number of inliers. Guo et al. [14] proposed a method
for point cloud registration using rotation projection statistics (RoPS) features for corre-
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spondences feature matching, followed by transformation estimation methods and the
ICP algorithm. However, this method relies solely on the initial correspondences gen-
erated from descriptors and does not eliminate low-quality correspondences. Another
method, proposed by Yang et al. [15], is the consistency voting method, which ranks the
correspondences based on constraints such as rigidity and local reference frames. This
approach provides a means to prioritize and assess correspondences for improved accuracy
and efficiency. Buch et al. [8] proposed a method for confirming inlier points by using
Lowe’s ratio and the minimum ratio of geometric distances between target points and
source points. Sun et al. [16] presented a solution called inlier searching using compatible
structures (ICOS), which constructs a compatible structure to facilitate subsequent outlier
removal and inlier searching. They designed three efficient frameworks for estimating rota-
tion matrices, known-scale registration, and unknown-scale registration. Rodola et al. [17]
proposed a sparse point matching approach based on game theory; Tombari et al. [18]
introduced a method called 3D Hough voting (3DHV), which involves voting based on the
positional information of correspondences in the Hough space; Sahloul et al. [19] presented
a two-stage voting scheme that uses dense evaluation and ranking of local and global
geometric consistency to distinguish inliers. Quan, S. et al. [20] proposed a robust method,
progressive consistency voting (PCV), for feature matching in 3D point clouds. It assigns
confidence scores to correspondences based on geometric consistency and utilizes a voting-
based scheme. Xu, G. et al. [21] proposed a method that combines RANSAC, intrinsic shape
signatures (ISS), and 3D shape context descriptor (3DSC) to improve the ICP registration of
large point clouds. It uses voxel grid filter for down-sampling, extracts keypoints with ISS,
describes them with 3DSC, performs coarse registration with RANSAC using ISS-3DSC
features, and achieves accurate registration with ICP. In the subsequent experiments, we
will refer to this method as IRIS (improved registration using ISS, RANSAC, and ICP with
3DSC). Yan, L. et al. [22] proposes a graph reliability outlier removal (GROR) method,
which is a strategy based on the reliability of the correspondence graph to address the issue
of outliers in point cloud registration.

Some methods utilize other characteristics of point clouds for registration,
Liang, L. et al. [23] introduce an innovative affine iterative closest point algorithm incor-
porating color information and correntropy. By integrating color features into traditional
affine algorithms, the method established more accurate and reliable correspondences.
Liu, J et al. [24] proposed point cloud registration with multilayer perceptrons (PCRMLP),
a novel model for urban scene point cloud registration that achieves comparable registra-
tion performance to prior learning-based methods. PCRMLP estimates transformations
implicitly from concrete instances using semantic segmentation and density-based spatial
clustering of applications with noise (DBSCAN) to generate instance descriptors, enabling
robust feature extraction, dynamic object filtering, and logical transformation estimation.

In the context of computing the optimal transformation matrix, a commonly used method
is the random sample consensus (RANSAC) algorithm proposed by Fischler et al. [25]. This
algorithm randomly selects three correspondences from the point sets, generates a rotation
and translation matrix, and then counts the inlier points that are within a distance threshold
under this transformation matrix. This step is repeated multiple times, and the transforma-
tion matrix with the maximum number of inlier points is selected as the final result, while
outlier points are discarded. However, the RANSAC method still necessitates a minimum
of three correspondences for generating a transformation matrix, and the randomness in
selecting these correspondences introduces inaccuracy to its registration result. In contrast,
our proposed registration algorithm based on two-point correspondences enhances the
precision of the final registration result since these correspondences are filtered through
geometric constraints. This approach also saves time compared to the RANSAC, which
involves traversing to generate various transformation matrices. Additionally, the sam-
pling process only selects transformation matrix results based on a single criterion, such
as a distance threshold, which can potentially miss the optimal transformation matrix.
Quan et al. [26] extended the RANSAC algorithm by establishing local reference frames
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on key points, enabling the inference of transformation matrices with only one correspon-
dence. They also proposed a “maximum overlapping point set” criterion to evaluate the
registration results. Another improved variant of the RANSAC algorithm is the optimized
sample consensus (OASC) algorithm proposed by Yang et al. [27], which introduces a
new error metric. However, these methods only employ a single evaluation criterion
for assessing the registration results. One of the research directions of this paper is to
explore whether combining multiple evaluation factors would yield improved registration
results. By considering various evaluation factors simultaneously, such as alignment ac-
curacy, robustness to outliers, and computational efficiency; it is possible to gain a more
comprehensive understanding of the registration performance.

To address the aforementioned issues, this paper proposes a method based on the
rigidity and salient points” distance constraints to select out two-by-two correspondences
that fit the standard. Then, based on the centroid of two points, we can calculate their
translation matrix. Based on the vector of the two points and their salient points, we can
construct their two-point rotation pose (reference frame). By combining the two matrices
mentioned earlier, we obtain a transformation matrix. With the transformation matrix of the
source and target point clouds known, we obtain the transformation matrix of the source
point cloud by reverse deduction. Finally, we proposed a transformation evaluation method
combined with overlap ratio and inlier points to select the best transformation matrix. The
overall experimental architecture of the paper is shown in Figure 1. In summary, the main
contributions of this paper are:

- — — — — — = - ‘ - ---"-""-"" - " — V0 — = = — — — ‘
‘ H3D+FPFH H3D+TOLDI H3D+SI H3D+3DSC ‘ ‘ ‘
| ‘ Proposed GC-SAC RANSAC
‘ ISS+FPFH ISS+TODLI ‘ ISS+SI ‘ ISS+3DSC ‘ ‘ | | ‘
| SHOT+H3D SHOT+ISS ‘ | Overlap
‘ Inliers X : Overlap ratio ‘
‘ \ ratio+Inliers ‘
‘ Compare different descriptors and keypoint detection ‘
- iecﬁmqiuesi 7777777 [ | Compare registration result under different transformation ‘
¥ matrix estimator and different matrix evaluation methods |
Using NNSR to filter initial| | — — — — — — — | — T T T T T
correspondences. Ranking correspondences
based on score N
¥ Compare with
Pairing each correspondence Super4PCS,ISRS and
with others and computing GROR
compatibility scores.
F—_—————— — — Y | Proving the registration
combination sequence proposed
‘ ‘ in the coarse registration process
| Rigidity Rigidity+DSP Rigidity+Normal / is superior to others
[ Computing scores under different geometric constraint ‘
L combinations. ‘

Figure 1. The architecture of the experiment in our article.

(1) We propose an evaluation system based on rigidity constraints and distance of salient
point constraints to filter out outliers in the initial correspondences. The rigidity con-
straint focuses on the geometric relationship between points, while the DSP constraint
leverages the context information within the local surface. By combining them, we
can better select the top N candidates from the correspondences.

(2) We propose a method to compute the transformation matrix of the source point
cloud in reverse by computing the rotation and translation matrices between the
source and target points based on the correspondences. Considering two high-quality
correspondences from the samples for calculating the transformation matrix allows
us to generate matrix with few iterations and also increases the probability of finding
the optimal matrix.
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(3) To further refine the registration process, we propose an evaluation method based on
the overlap ratio and inlier points. This evaluation method allows us to search for the
best registration result among the top N candidates in a more comprehensive manner.

2. The Principle of Proposed Registration

First, this paper adopts a keypoint detection method and feature descriptor to generate
initial correspondences. Then, we apply the nearest neighbor similarity ratio to filter these
initial correspondences and select higher quality ones. Next, within each correspondence,
we compute salient points for the source and target points, and combine them pairwise.
Based on rigidity and salient points” distance constraint, we select higher quality ones.
Next, within each point pair, we compute salient points for the source and target points,
and combine them pairwise. Based on rigidity and salient points” distance constraint, we
select out correspondences with higher scores. Finally, using the local reference frames
between the two points and their centroid positions, we compute the transformation matrix.
The best matrix is selected based on the overlap ratio and the number of inlier points. The
technical flow of the entire method is shown in Figure 2.
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inishing Coarse Registratiol

Figure 2. The workflow of the coarse point cloud registration method based on geometric constraints
and the two-factors evaluation. The red object represents the target point cloud and the blue one
represents the source point cloud. The green points represents keypoins that are detected from the
object. In Grouping correspondences, the yellow dotted line represents the correspondences, and the
purple line represents the combination of two correspondences.
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2.1. Generate Correspondences

First, keypoints are extracted from the source and target point clouds, using key-
points extraction methods such as Harris 3D (H3D) [28] and intrinsic shape signatures
(ISS) [29]. Then we combine them with descriptors such as fast point feature histogram
(FPFH) [30], 3D shape context descriptor (3DSC) [31], signature of histograms of orienta-
tions (SHOT) [32], and spin image (SI) [33] for comparative experiments. These descrip-
tors are used to generate initial correspondences using the similarity score algorithm [6].
Based on the comparative results mentioned in the subsequent experiments, we choose
to use the combination of Harris 3D keypoint detection and the local image descriptors
obtained from the triplet orthogonal views based on the newly proposed local reference
frame (LRF), known as triple orthogonal local depth images (TODLI) [34], for generating
initial correspondences.

After obtaining the keypoints using Harris 3D, we generate histograms based on the
TOLDI descriptors for both the keypoints in the source point cloud, denoted as p®, and
the keypoints in the target point cloud, denoted as p'. We calculate the correspondences’
differences between the feature values of the histograms and select the keypoint pairs with
the smallest differences as the initial correspondences, as defined in (1).

¢ = argmin||f® — ft||Lz 1)

In this step, we calculate the feature distance between feature f° in the source point
cloud and feature f' in the target point cloud. We select the correspondence ¢ with the
smallest feature distance as the initial correspondences. Next, we use the NNSR [10] to
improve the quality of the correspondences. The NNSR is defined as the ratio of the feature
distances between the source point cloud and the target point cloud in each correspondence,
as shown in (2). All correspondences are sorted based on this ratio. The ratio can be used to
measure the uniqueness and accuracy of the correspondences. Generally, correspondences
with a larger feature distance ratio (greater difference between the closest and second closest
distances) tend to have higher uniqueness and are assigned higher scores. By applying the
NNSR filter, we can further reduce the influence of incorrect matches and noise point pairs,
and select higher quality correspondences as the final set of initial correspondences.

o, d(Fh)
SRatio (€) =1 — W ()

The features f; and f, represent the closest and second closest features, respectively,
to the feature f° in the source point cloud p®. In practical applications, the choice of the
appropriate number of correspondences can be based on specific requirements and tasks.
Selecting an appropriate number of point pairs helps balance the registration accuracy, com-
putational complexity, and robustness. We will conduct this experiment in the following
part to find the appropriate parameter.

2.2. Selecting Correspondences Based on Geometric Constraint

By incorporating various geometric constraints, additional information and constraints
can be provided in the point cloud registration process, assisting in the selection of matching
point pairs and further enhancing their quality. In this section, we introduce three constraint
methods that primarily rely on these two correspondences, ¢; and cp.

The rigidity constraint [8] is based on the invariance property and determines whether
the two points from the source point cloud and the two points from the target point cloud
should be considered as the same correspondence based on the difference in their distances.
This constraint is represented by (3) and illustrated in Figure 3.
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Figure 3. Illustration of a rigidity constraint, consisting of any two correspondences. The red bunny
represents the target point cloud and the blue one represents the source point cloud.

The distributions of d (p$, p$) and d (p!, p}) represent the Euclidean distances between
the points p$ and p$ within the source correspondences, as well as between the points p§
and p5 within the target correspondences. In the process of point cloud registration, the
rigidity constraint serves as a fundamental constraint that provides an initial estimation for
subsequent optimization and refinement steps. However, the estimation based on the rigid-
ity constraint is typically coarse and can lead to multiple rigid transformations that satisfy
the constraint. Therefore, it is necessary to combine other constraints to reduce ambiguity.

The normal constraint [35] is another type of constraint used in point cloud registration.
It utilizes the normal vectors associated with the points in the point clouds. After obtaining
the normal, the normal constraint compares the angles between the normal vectors of two
corresponding points in the source and target point clouds. This is achieved by calculating
the cosine values of the angles (using the dot product of the unit normal vectors). The
degree of the normal constraint is quantified by computing the absolute difference between
the angles, as shown in (4).

Snormal = |acos(n§ : 1‘13) — acos (1’15 ’ ntZ) ’ (4)

where n is the normal vector of point p. Both n; and n; are treated as unit normal vectors.
So when the dot product is performed on these vectors, the resulting value is the cosine of
the angle between the two vectors. The normal vectors are important features that describe
the geometric properties of surfaces. The different normal angles between the source and
target point clouds reflect the degree of disparity in surface curvature. Compared to the
rigidity constraint, the normal constraint exhibits better robustness when dealing with
noise and local variations. Even in the presence of noise or local non-rigid deformations,
the normal constraint can still provide useful constraint information. However, the normal
constraint only considers the normal angles between local correspondences, and it may
not accurately capture the geometric information for cases involving large-scale shape
variations or complex geometric structures. Moreover, the uncertainty in normal directions
should also be taken into account. Selecting inconsistent normal directions as references can
lead to erroneous angle calculations, resulting in misleading constraint results, as shown
in Figure 4.
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Figure 4. We use the two green points from the blue bunny object as a demonstration of the
uncertainty of the normal direction. The uncertainty in normal directions arises when, for example,
the direction ni*' is the correct normal direction, but n;” is mistakenly chosen as the normal direction.
In this case, the normal angle increases from « to (3, resulting in an incorrect estimation of the

normal angle.

The distance of the salient point (DSP) constraint [13] is derived based on the difference
in distance between the center point p and its corresponding salient point q*. The salient
point is selected from the boundary region of the local surface, satisfying two conditions:
firstly, within this boundary region, the vector pq* has the longest length; secondly, the
vector pq* has the most similar direction to the normal direction of centroid p. These
conditions make the point q* exhibit saliency characteristics. An illustration of salient

points is shown in Figure 5.

Figure 5. In the computation of salient points, for example, if the absolute value of vector pq, is
greater than that of pq,, and the direction of vector pq; is more similar to the normal vector n
compared to pq, (cos « > cos 3), we consider q; as the salient point. The black dots represent the
points on the boundary region, and the blue dot represent the point that qualify as salient point on

the boundary region.

97



Sensors 2024, 24, 1853

As shown in (5), q* represents a point on the boundary region that satisfies two
conditions: the vector pq has the maximum length among all points in the boundary region,
and its direction is consistent with the normal vector n of point p within a local surface
with a radius of R. These imply that pq aligns to some extent with the tangent plane of
the local surface. In this case, pq can be considered as a point on the surface with the
maximum saliency.

q* = argmax|qp - n| ©)
q

The radius R of the local surface is determined by considering a neighborhood of
points around p as shown in (6). Specifically, we select the L’%] points p,..,. in the neighbor
of p, denoted as k points. By using the point cloud resolution as a measure of the number
of neighboring points, we ensure that the support radius is consistent with the sampling
density of the point cloud. This choice of support radius allows for a better representation
of the local surface’s geometric characteristics.

) (6)

After computing the salient points for each point, we apply a similar approach to the
rigidity constraint by comparing the distance difference between q; and q3, as shown in (7).

SR
i=1

Sasp = |I1(q® = p3p3}) — &5°l — || (a1* — p5pi) — a5']| @)

However, in addition to this, we also translate the salient points by a vector p,p;. By
aligning the salient points with the center of p,, we eliminate the effect of spatial distance
variation between p; and p,. This allows for a more accurate comparison of local structural
differences in the two correspondences, taking into account not only the overall rigid
transformation, but also the local variations, as illustrated in Figure 6a.

q1
q1
P1
[
a centerpoint
%, P2P1
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9}& Local reference frames
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Figure 6. The red and blue points in the figure represent two source points from a grouping correspon-
dences. The pink and dark blue points correspond to their salient points. Illustration of Salient points’
distance constraint (a); generating the transformation matrix with two correspondences (b) based on
the centroid p an d the salient point q to establish a local reference frame (also demonstrated as the

rotation pose in the transformation matrix).

98



Sensors 2024, 24, 1853

Afterwards, we combine the rigidity constraint and the distance of salient points
constraint. These two constraints are eventually combined as Sy, to compute the score of
the correspondences ¢; and ¢, given by (8).

Srigidity . Sdsp ) ®)
(@-pr)>  (b-pr)’

To weight the scores of each constraint, we use an exponential function. This allows
the rigidity constraint (Syigjqity) and the DSP constraint (Sqsp) to have a more significant
impact on decreasing the overall score if their values are higher, thus favoring the exclusion
of correspondences that do not satisfy the constraints. In this formulation, a * pr and b * pr
serve as distance thresholds for Sgiqity and Sgsp, respectively. When the constraints of
correspondences are below these thresholds, it indicates that the geometric differences
between the two correspondences are within an acceptable range, and the score will be
maintained at a relatively high level. By setting appropriate values for a and b, we can
achieve a desirable distance threshold. Here, pr represents the point cloud resolution, and
it is defined by the Formula (9).

) ©)

We calculate the average distance of the 10 nearest neighbor points p, . around each
point p in the point cloud P. Then we compute the average distance of alllpoints in the
cloud. After that, we select the top-ranked correspondence combinations and calculate the
local reference frame for the two correspondences ¢; and c;, as shown in (10).

Sboth (€1,C2) = exp (

pr=rp L l(in—p
Plpep 10\ ST T

Dy — | PP2 X (P1Gi +Pad3)  PiPr PP X (P1di +Pa3) X PiP2 (10)
IP1p2 > (Prai +P2dz) | P12l [[Pip2 x (Prdi +P2g3) X Pip. |

Here, we establish the first axis of the local reference frame based on the plane formed
by p;q] +P,q; and p;p,. P1q] + p,q; to integrate the information of the two salient points.
Additionally, p;p, serves as the second axis. We then construct the third axis, which is per-
pendicular to the plane formed by the first two axes, using the p;p, X (p1q; + P,q3) X p1P»
vector. These three vectors form an orthogonal reference coordinate system, as shown
in Figure 6b.

Finally, we can calculate the rotation and translation matrix based on the formula (11)
proposed by Quan, S., and J. Yang [13].

-1

P} +p5
H = lDﬁz B 11)

0 1

Pi+p3
D, =57
0 1

S Pitp;

In the formula, H; = 012 % 1 represent the matrices

formed by the center positions and rotation poses of two points in the source and target
point clouds, respectively. However, in the formula H; x H = Hg, the transformation
matrix is applied to the target point cloud, returning it to the original coordinate system.
We need to modify the formula to H x Hs = H; so that the transformation matrix acts
on the source point cloud. The modified transformation matrix formula should be as
follows (12):

tot
Dt P1t+P>
12

H: 2
0 1

DS Pitp3 -
1 2 . (12)

0 1
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2.3. Matrix Evaluation

After generating the transformation matrix for the highly ranked correspondences,
we need to evaluate the coarse registration results. We use two metrics to evaluate the
results: overlap ratio and the number of inlier points. The overlap ratio can be calculated
using two methods: KD-tree and octree. The KD-tree employs a nearest neighbor search
algorithm to find the closest points to the query point within a given radius. On the other
hand, the octree uses a voxelization approach to check for the existence of point samples
within each voxel. Based on a comparative experiment between these two methods (as
shown in Figure 7), we adopt the octree method to calculate the overlap ratio.

Figure 7. The green bunny model and the red bunny model represent unregistered point clouds. The
blue areas represent their overlapping areas. In the left figure, the overlap ratio calculated using the
kd-tree method is 60%, while in the right figure, the overlap ratio calculated using the octree method
is 44%.

From the images, it can be observed that the octree method is able to more accurately
identify the overlapping regions. Additionally, the octree method also demonstrates better
search efficiency compared to the kd-tree method, which is beneficial for evaluating a large
number of matrices and complex scenes. As for the specific steps of evaluating, firstly, we
select the top-ranked registration results based on the overlap ratio threshold. Then, using
the number of inlier points within the distance threshold to choose the best transformation
matrix within these top-ranked results. We employ two metrics for evaluation for multiple
reasons. Firstly, the overlap ratio considers the overall registration accuracy and reflects the
alignment of the two point clouds on a global scale. Secondly, the number of inlier points
takes into account the local quality of the registration results. Correct correspondences
demonstrate consistency in geometric shape and topological structure within the local
region. A higher number of inlier points signifies more precise and stable registration results
within the overlapping region. Therefore, by considering both the overlap ratio and the
number of inlier points, we can comprehensively evaluate the accuracy and completeness
of the registration results.

Finally, we convert these main steps into Algorithm 1.
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Algorithm 1 Proposed registration method

Require: Point clouds p® and p®, and correspondence set C;
Ensure: Generate the best transformation matrix;
1: Using TOLDISs descriptors and H3D keypoint detection to generate feature Histogram and
using Equation (1) to generate initial correspondences;
2: Using Equation (2) to select the number of C
C = 200;
3: Evaluate each correspondence based on the Equation (8)
in C using Equation (8);
4: Ranking samples based on the compatibility score. Then we select out top N correspondences
as candidates
N = 300;
5: whilei < N do
6: Compute transformation H based on (¢, ¢3); using Equation (11);
7: Calculate inlier number I; and overlap ratio O; for each H;;
8:i=i+1;
9: end while
10: Setting threshold for overlap ratio
Or = 0.5; Then we use Hr to store the H; that fit Ot
11: whilei < N do
12: If O; > O then

13: Hr + Hi

14: else Re-enter the ovelap ratio until there is a point cloud exist
15: end if

16: i=i+1;

17: end while
18: Select the H from Ht with highest I; as the optimal matrix.

3. Experiments and Discussion

This section focuses on verifying the accuracy of the point cloud coarse registration
method proposed by this article. The entire experiment was conducted using the Point
Cloud Library (PCL 1.12.1) with C++ programming language on a PC with an i7-9700
processor and 16 GB of RAM.

3.1. Experimental Setup

The experiment utilized various datasets, including Bunny, Dragon, and Armadillo
from the Stanford dataset; kitchen and indoor scenes scanned by Princeton University;
“Iqmulus & TerraMobilita Contest” [36] dataset is an urban environment in Paris, acquired
by the French National Mapping Agency through mobile laser scanning (MLS); and the
Taoist Zhenwu Temple in Rong County, Guangxi, collected by our team, as registration
data (Table 1). These datasets exhibit different point cloud densities, overlap ratios, and
application scenarios. By incorporating the diversity of these datasets, we can evaluate the
practical applicability of the proposed method.

Table 1. Experimental data.

No. Data Source Points Target Points Overlap Ratio Resolution Scenario
1 Bunny 30,379 40,251 0.60304 0.001 Object
2 Dragon 41,841 22,092 0.36715 0.00099 Object
3 Armadillo 26,941 25,570 0.81912 0.001 Object
4 redKitchen 258,342 268,977 0.47331 0.0081 Indoor
5 Home 425,577 373,295 0.74085 0.008 Indoor
6 Paris 372,620 204,128 0.85941 0.73 Outdoor
7 Zhenwu Temple 2,273,238 2146,665 0.84996 0.018 Indoor
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In terms of the evaluation criteria, the root mean square error (RMSE) [37] method
is commonly used as a standard in various fields. We first calculated the distance error
between corresponding points using the Formula (13).

ep(p*/P') = [|Rp" +t = p'| (13)

where R represents the rotation matrix and t represents the translation matrix. Additionally,
p® and p', respectively, represent the source point and the target point from the true
correspondence. RMSE is defined as follows (14):

s At
RMSE— Y ePYP)

(14)
(pS,p')€Cqt ‘ Cgt ’

Cgt refers to the ground truth correspondences within the distance threshold. These
correspondences are determined by comparing the distances between correspondences in
correctly registered point cloud data. Specifically, the correspondences whose distances
meet the distance threshold are considered as the ground truth correspondences. However,
relying solely on the RMSE value does not effectively reflect the quality of point cloud
registration. Some locally optimal matches can result in low RMSE values. The RMSE
value becomes meaningful only when both point clouds are accurately aligned as a whole.
Precision [38] was added to make the evaluation more comprehensive.

’ corret
inlier (1 5)

Precision =
| Cinlier |

Cintier refers to the correspondences that satisfy the distance threshold after the registra-
tion process. Through multiple experiments, the distance threshold is typically set around
20*pr. Correspondences that meet this threshold ensure that the source and target point
clouds are geometrically close. C77“ specifically refers to the correct correspondences that
are in C;j;,r and also meet the C¢t standard. These correspondences are originally correct
and remain accurate after registration process.

3.2. Analysis of Proposed Method

First, we investigate the influence of two key parameters on the registration accuracy
of the method: the number of selected correspondences after NNSR selecting and the
number of optimal transformation matrix. The experiment is conducted on the BUNNY090
and BUNNY180 datasets for registration. We use the TOLDI descriptor and Harris3D
keypoint detection as the method for generating correspondences.

According to the results shown in Figure 8, the precision and RMSE tend to stabilize
when the NNSR method selects approximately 300 correspondences. After consider-
ing the trade-off between computational efficiency and registration accuracy, we choose
300 correspondences as the experimental parameter. The 300 correspondences perform
well in terms of RMSE and precision, and provide a sufficient sample size for accuracy
calculation, allowing for a more comprehensive evaluation of the practical effect of point
cloud registration.

Based on the results shown in Figure 9, different transformation matrices yield consis-
tent registration results ranging from 100 to 600, except for 400 and 250 correspondences.
Considering the number of provided transformation matrices for evaluation and compu-
tational efficiency, we choose 300 hypothesized transformation matrices as the optimal
parameter. Having too many transformation matrices can increase the computation time for
metrics such as overlap ratio and inlier count, while having too few may result in missing
some high-quality transformation matrices.
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Figure 8. The impact of different numbers of correspondences selected by the NNSR method on
registration accuracy.
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Figure 9. Registration results of different hypothetical transformation matrices corresponding to
different correspondences.

Figure 10 illustrates the influence of different transformation matrices on RMSE and
precision in the case of 300 correspondences. From the graph, it can be observed that the
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accuracy results remain consistent across 100 to 800 transformation matrices. This indicates
the uniqueness of the optimal matrix within this number of correspondences.
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Figure 10. Influence of different hypothetical transformation matrices on registration accuracy under
300 correspondences.

In determining the settings for the distance threshold of the inliers and overlap ratio
parameters, based on multiple experiments, we determined to set the distance threshold
in the range of 15*pr to 20*pr. This range allows us to assess the proximity between point
pairs. The overlap ratio is also a parameter used to evaluate registration accuracy. We
utilize the pre-registration overlap ratio as a threshold, as shown in Table 1. This approach
helps eliminate misalignments introduced during the registration process and visually
showcases the improvements achieved in numbers after registration.

Subsequently, to validate the superiority of combining rigidity constraints with dis-
tance of salient point constraints, we conducted tests on three different approaches: rigidity
constraint with distance of salient point constraint, rigidity constraint only, and rigidity
constraint with normal constraint. We conducted tests on the RMSE values of different
object under various geometric constraints (as shown in Figure 11). The registration re-
sults of the three different objects clearly indicate that the registration accuracy of the two
geometric constraints is superior to using only a single rigidity constraint. By adding the
normal constraint, we ensure the similarity in the normal direction of correspondences.
Additionally, the salient point constraint utilizes local surface information and provides
effective assistance in situations where the rigidity constraint may be ambiguous.

The RMSR value of the Rigidity + DSP constraint can be observed to be superior to the
Rigidity + Normal constraint at 50 to 200 correspondences. Both constraint exhibit similar
RMSE when the number of correspondences reaches 300. However, there is still an average
difference of 0.0005 between them in the RMSE value, proving that the Rigidity + DSP
constraint is still superior. As shown in, overall, the combination of the rigidity constraint
with the distance of salient point constraint yields better registration results.

In the case of the Bunny, the RMSR value of the Rigidity + DSP constraint can be
observed to be superior to the Rigidity + Normal constraint at 50 to 200 correspondences as
shown in Figure 12. Both constraints exhibit similar RMSE when the number of correspon-
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dences reaches 300. However, there is still an average difference of 0.0005 between them
in the RMSE value, proving that the Rigidity + DSP constraint is still superior. The trends
of RMSE value in the Dragon are similar to those of the Bunny, as shown in Figure 11b,
while in the Armadillo(Figure 11c), both methods exhibit a nearly constant trend. Overall,
the registration performance of Rigidity + DSP is superior to Rigidity + Normal when the
number of correspondences is small.
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Figure 11. (a—c) respectively represents the registration accuracy of Armadillo, Dragon, and Bunny
models respectively under different geometric constraints.

Then, we compared the registration results using different evaluation methods. We
conducted tests on the Bunny model and compared the performance of these methods, as
shown in Figure 13 and Table 2. These evaluation methods include using the maximum
number of inliers and the highest overlap ratio for assessment. We can observe that the
method combining inliers and overlap ratio consistently produces the best registration
matrix overall. The method based on overlap ratio reaches a similar performance to the
inliers and overlap ratio method after generating approximately 200 correspondences.
On the other hand, the method based on the maximum number of inliers shows more
fluctuations in its registration results and only catches up with the inliers + overlap ratio
method when the number of correspondences exceeds 300. In conclusion, among these
three evaluation methods, combining the two criteria leads to better registration results.
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The registration results of Bunny using different evaluation methods are shown in Figure 14.
We selected a range of 50 to 250 correspondences for comparison. It can be observed that,
overall, the method combining inliers and overlap consistently achieves good registration
results at any number of point pairs.

rigidity

rigidity+normal

rigidity+DS

Correspondences = 50 100 150 200

Figure 12. The red bunny represents the target point cloud. The black bunny represents registration
under Rigidity constraints. Green one represents registration under the Rigidity + Normal constraint.
The blue one represents registration under the constraints of Rigidity + DSP. Figure shows registration
result under different geometric constraints.
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Figure 13. Registration accuracy under different evaluation standards.
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Table 2. RMSE result of three evaluation methods.

Selected Correspondences Inliers Overlap Ratio Inliers + Overlap
50 0.05663 0.02998 0.01096
100 0.0157 0.03027 0.01152
150 0.01622 0.03254 0.01406
200 0.02018 0.01433 0.01433
250 0.01474 0.01607 0.01607
300 0.0667 0.01474 0.01474
350 0.01507 0.01507 0.01507
400 0.0156 0.0172 0.0156

inliers |

overlap

inliers+overlap "%

Correspondences = 50 100 150 200 250

Figure 14. The black bunny represents registration under inliers evaluation criteria. Green one
represents registration under the overlap evaluation criteria. The blue one represents registration
under the inliers + overlap evaluation criteria. Figure shows registration result under different
evaluation criteria.

Finally, we conducted tests on different transformation matrix calculation methods,
and the results are shown in Figure 15 and Table 3. Firstly, we compared the proposed
method with the GC-SAC method, which is using a different matrix calculation formula.
Additionally, it can be seen that the proposed method outperforms the GC-SAC method
in terms of registration accuracy. Then, we adopted the RANSAC method to remove the
outlier proposed by X. L. [39], and combined it with singular value decomposition (SVD)
to calculate the optimal transformation matrix. The results show that in the registration
results with 50 to 250 selected correspondences, the proposed method is superior to the
RANSAC method overall. In the range of 300 to 400 selected correspondences, the proposed
method has a slightly higher average RMSE value compared to the RANSAC method, with
a difference of 0.00018. However, the proposed registration method still achieves good
results overall, as shown in Figure 16.
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Figure 15. Registration accuracy under different transformation matrix estimators.

Table 3. RMSE result of three transformation matrix estimators.

Selected Correspondences Proposed GC-SAC RANSAC
50 0.01096 0.07739 0.05538
100 0.01152 0.03398 0.0372
150 0.01406 0.06191 0.04648
200 0.01433 0.06711 0.01347
250 0.01607 0.03172 0.02102
300 0.01474 0.06604 0.0144
350 0.01507 0.03694 0.0149
400 0.0156 0.03648 0.01559

GC-SAC (=

RANSAC

Proposed Method
o

Correspondences = 50 100 150 200 250

Figure 16. The black bunny represents registration under GC-SAC estimator. Green one represents
registration under the RANSAC estimator. The blue one represents registration under our estimator.
Figure shows registration result under different transformation matrix estimators.
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After confirming the entire registration process, we compared the entire registration
process of the proposed method, along with some of the feature-matching registration
methods such as IRIS [21], GROR [22], and Super 4PCS [40]. The results are present in
Figures 17 and 18. We can observe that in the comparison of three different point cloud
objects, the proposed method outperforms the other three methods in terms of RMSE value
and actual registration performance. Additionally, the proposed method is similar to Super
4PCS, which also utilizes geometric constraints such as limiting distance range and angle
to find the optimal identical four-point matches. However, the proposed method has a
lower computational time compared to Super4PCS.

Proposed
Super4pcs
0-097 - IRIS
6 5 GROR
0.07
0. 06
£20.05 1
=
e
0. 04
0. 03
0.02 A
0.01 _‘
0.00 T T

Bunny Dragon Armadillo
Data

Figure 17. Registration accuracy under different registration methods.

o i
B uy

Proposed Method Super 4PCS GROR IRIS

Figure 18. Blue, green, yellow and purple respectively represents our proposed method, Super4PCS,
GROR and IRIS. Figure shows Registration results under different registration methods.
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3.3. Proposed Method in Practice

Based on the BUNNY090 and BUNNY180 datasets, we evaluated the registration
performance of the method using different descriptors and keypoint detection methods.
The keypoint detection methods included Harris 3D (H3D) and intrinsic shape signatures
(ISS). The descriptors included fast point feature histograms (FPFH), 3D shape context
descriptor (3DSC), signature of histograms of orientations (SHOT), spin image (SI), and
TOLDIs. We assessed the accuracy of the registered point clouds using different descriptors
and keypoint detection methods (Figure 19), as well as the visual quality of the registration
results (Figure 20). Detailed results after registration are shown in Table 4.

|—=— RMSE| [ Precision

- 0.04

0.8

S w
o 0.6 [22)
© =
o o
o
0.4 4
0.02
0.2 4
0.0+ 0.01

H3D+TOLDI ISS+TOLDI H3D+FPFH ISS+FPFH H3D+3DSC ISS+3DSC  H3D+SI ISS+SI H3D+SHOT ISS+SHOT

different detectors and descriptors

Figure 19. Different combinations of descriptors and keypoint detection methods on registration accuracy.

hHh s

H3D+3DSC ISS+3DSC H3D+FPFH ISS+FPFH

W ! L

H3D+SHOT ISS+SHOT H3D+Spin Image ISS+ Spin Image

)

H3D+TOLDI ISS+TOLDI

Figure 20. The different colors represent the registration results under different descriptors. Black,
dark green, purple, green and blue respectively represents 3DSC, FPFH, SHOT, Spin Image and
TOLDI descriptor. Figure shows different combinations of descriptors and keypoint detection
methods on registration results.
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Table 4. Different descriptors and keypoint detections combined with the proposed method.

Method RMSE Precision
TOLDI + H3D 0.014741 0.96
TOLDI + iss 0.01594 0.94
Fpfh + H3D 0.01590 0.84
Fpfh + iss 0.03420 0.23
SI + H3D 0.0197 0.92
SI + iss 0.01586 0.88
3DSC + H3D 0.01914 0.17
3DSC + iss 0.02222 0.43
SHOT + H3D 0.02405 0.8
SHOT + ISS 0.02113 0.82

Observing Figures 19 and 20, it can be noted that under the constraints of rigidity
and salient points’ distance, most of the methods achieve good actual registration results.
The RMSE values are maintained around 0.01 to 0.02, and the precision also exceeds 80%.
However, the 3DSC descriptor, in combination with both keypoint detection methods, and
the FPFH descriptor with the ISS keypoint detection method, did not meet the expected
standards in terms of actual registration results.

In the comparison between the combinations of H3D and ISS methods with different
descriptors, it can be observed that the registration results with H3D keypoint detection
are slightly better than those with ISS keypoint detection. This is because our experimental
dataset, Bunny, is more sensitive to corner point features such as the ears and nose of the
rabbit, and the Harris 3D method is more suitable for capturing these corner point features.
On the other hand, the ISS algorithm focuses on capturing more comprehensive keypoint
information of the model, including curvature and normal changes. From the experimental
results, it can be concluded that the corner point features of the rabbit have more distinctive
characteristics compared to its ISS keypoints.

In terms of descriptors, TOLDI utilizes projections in three orthogonal directions,
allowing it to capture local shape features of the point cloud data in different directions.
This enables TOLDI to capture more detailed and local structural information in multiple
dimensions. This is the reason why TOLDI performs well among all the descriptor methods.
The spin image descriptor achieves the second best performance. Since the BUNNY(090
and BUNNY180 datasets are obtained from different viewpoints, the spin image descriptor,
which calculates rotational projection histograms on the point cloud, can describe local
geometric features and counteract noise and inconsistencies between local point clouds
through rotational invariance. As a result, it demonstrates good matching performance on
point cloud data acquired by rotating at different angles.

The SHOT descriptor has relatively high dimensions, typically around 352 dimensions,
while the FPFH descriptor has relatively low dimensions, typically around 33 dimensions.
Therefore, the registration results achieved by the SHOT descriptor are superior to the
FPFH descriptor. The 3DSC descriptor encodes the geometric relationships between points
on a spherical surface and their neighboring points, providing a more comprehensive
representation of the overall shape of the point cloud. On the other hand, the FPFH
descriptor focuses on the relative angular changes between the neighboring points’ normal
changes and is suitable for surfaces with significant normal variations or objects with edge
features. For the Bunny model, which emphasizes local features, the FPFH descriptor
slightly outperforms the 3DSC descriptor.

To test the robustness of proposed registration method on different data types, we
conducted experiments on seven datasets: Bunny, Dragon, Armadillo, RedKitchen, Home,
Paris, and the Taoist Zhenwu Temple. The Taoist Zhenwu Temple dataset was acquired
using the Riegl VZ-1000 3D laser scanner in Rong County, Yulin City, Guangxi, China. It
can be observed from Table 5 that the precision of the registrations using the geometric
constraints and comprehensive evaluation method remain above 80%. The RMSE values
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are also below 15pr. Even for complex indoor scenes such as the Taoist Zhenwu Temple, the
RMSE is around 5pr. The actual registration results for each dataset are shown in Figure 21.

Armdilio

Home

Paris

Taoist Zhenwu Temple

Figure 21. The coarse registration results of each data based on geometric constraints and compre-
hensive evaluation, the left is before registration and the right is after registration. Blue represents
source point cloud and red represent target point cloud.
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Table 5. Registration results for different types of data.

Data RMSE Precision
Bunny 0.01474 0.90385
Dragon 0.01742 0.8932
Armadillo 0.00894 1
redKitchen 0.02249 0.84906
Home 0.04516 0.827
Paris 0.52034 0.948
Taoist Zhenwu Temple 0.135652251 0.850746269

Figure 22 displays the local details of the registration for the Taoist Zhenwu Temple.
Even for complex historical architectural structures and with voxel filtering applied to the
raw data, the proposed method can achieve structural registration. This verifies that the
registration method is capable of providing high-quality registration results for complex
structures and multi-scale data.

Figure 22. The upper right image shows the nameplate(southern wonder) of the building. The
upper left image depicts decorative beams. The lower right image displays beams and pillars within
the building. The lower left image shows the junction at the staircase. In this figure, red and blue
represent the Zhenwu Temple scanned from different angles.

4. Discussion

Our experimental observations distinctly illustrate the superiority of point-to-point
correspondence-based registration methods compared with others. The approach that
employs a combination of rigidity constraints and distance of salient point constraints yields
a more accurate set of correspondences when contrasted to other geometric constraints. The
key advantage of integrating rigidity and DSP constraints is that DSP takes into account
local geometric details, effectively resolving ambiguities introduced by normal constraints
and rigidity constraints.

When it comes to generating transformation matrices and selecting the best trans-
formation, through experiments, it was shown that the proposed method for creating
transformation matrices, based on pairs of points from both the source and target point
clouds, outperforms conventional techniques such as RANSAC and GC-SAC. Because of
the high-quality correspondences, the proposed method achieves improved efficiency and
accuracy in registration results compared to other estimator methods. Additionally, the
proposed evaluation method, which combines inlier points and overlap ratio, provides
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a comprehensive assessment of both local and global qualities of the registration results.
This innovative evaluation approach outshines other methods and contributes to a more
comprehensive understanding of registration outcomes. Once the registration process was
set, we compared our proposed method with three existing feature-based registration meth-
ods. The results indicate that our method also outperformed similar registration methods
in terms of accuracy. The experiment also proves the robustness of the proposed coarse
registration method in real-world applications, as it performs well in terms of precision
and practical effectiveness when tested with different types, overlap ratios, and point cloud
densities of data.

However, it is important to acknowledge the limitations inherent in our experimental
approach. It should be noted that the results, those concerning different estimators, and
evaluation techniques, were derived from the Bunny model. To ascertain the method’s effi-
cacy across varied datasets, future research should encompass more extensive experiments.
Furthermore, in the comparative experiments involving recent methods, we encountered
several challenges due to time constraints. Specifically, we encountered the following is-
sues:

(1) Due to our incomplete understanding of the underlying principles of the other three
methods, achieving optimal registration results was challenging.

(2) The selection of comparable methods for our study was constrained by a limited pool
of options. Additionally, some of the chosen methods may not accurately represent
the latest advancements in registration techniques. This aspect limited the breadth
and accuracy of our comparative analysis.

(3) By not integrating other established point cloud registration evaluation metrics, the
comprehensiveness of our results was compromised, and as a result, the overall
persuasiveness of our findings was diminished.

5. Conclusions

In this paper, we propose a coarse registration method based on local geometric fea-
ture constraints, combined with a comprehensive evaluation of inliers and overlap ratio.
The main steps of this method include correspondences filtering, transformation matrix
computation, and evaluation of matrix. First, we combine the constraints of the salient
points” distance and rigidity to select high-quality correspondences. Then, based on the
centroids of the correspondences and their reference frames, we compute the transforma-
tion matrix for each correspondence. Finally, using the evaluation metrics of inliers and
overlap ratio, we select the best registration matrix. We compare different descriptors and
feature point detection methods to choose the one with the highest registration accuracy as
our experimental approach. Additionally, we compare the effects of different geometric
constraints on the experimental results and demonstrate that the constraints of salient
points” distance and rigidity yield better results. By comparing single evaluation criteria,
we show that the overall registration results are improved when both evaluation metrics
are considered. Finally, we test our registration method on different types of datasets to
demonstrate its robustness and accuracy. In future work, the repetitive evaluation process
still significantly consumes time. There is still room for us to optimize the code in order
to improve computational efficiency. Additionally, the current method only considers the
geometric aspects (XYZ) of the point cloud data. We aim to incorporate additional param-
eters, such as RGB and intensity, in the subsequent registration experiments to enhance
the coarse registration process. These parameters can provide valuable information and
improve the accuracy of the coarse registration by considering not only geometric features,
but also color and intensity characteristics.
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Abbreviations

The following abbreviations are used in this manuscript:

RMSE Root Mean Square Error

ICP Iterative Closest Point

GC-SAC  compatibility-guided sampling consensu
RoPS Rotation Projection Statistics

3DHV 3D Hough Voting

PCV Progressive Consistency Voting

ISS intrinsic shape signatures ISS

3DSC 3D shape context descriptor

GROR graph reliability outlier removal
RANSAC Random Sample Consensus
OASC Optimized Sample Consensus

H3D Harris 3D

SI Spin Image

LRF Local Reference Frame

FPFH Point Feature Histogram

SHOT Signature of Histograms of Orientations

NNSR Nearest Neighbor Similarity Ratio

PCRMLP  point cloud registration with multilayer perceptrons
DBSCAN density-based spatial clustering of applications with noise
TODLI triple orthogonal localdepth images

DSP distance of salient point
PCL Point Cloud Library
MLS Mobile Laser Scanning
SVD Singular Value Decomposition
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Abstract: To address the limitations of LiDAR dynamic target detection methods, which often
require heuristic thresholding, indirect computational assistance, supplementary sensor data, or
postdetection, we propose an innovative method based on multidimensional features. Using the
differences between the positions and geometric structures of point cloud clusters scanned by
the same target in adjacent frame point clouds, the motion states of the point cloud clusters are
comprehensively evaluated. To enable the automatic precision pairing of point cloud clusters from
adjacent frames of the same target, a double registration algorithm is proposed for point cloud
cluster centroids. The iterative closest point (ICP) algorithm is employed for approximate interframe
pose estimation during coarse registration. The random sample consensus (RANSAC) and four-
parameter transformation algorithms are employed to obtain precise interframe pose relations during
fine registration. These processes standardize the coordinate systems of adjacent point clouds and
facilitate the association of point cloud clusters from the same target. Based on the paired point cloud
cluster, a classification feature system is used to construct the XGBoost decision tree. To enhance
the XGBoost training efficiency, a Spearman’s rank correlation coefficient-bidirectional search for a
dimensionality reduction algorithm is proposed to expedite the optimal classification feature subset
construction. After preliminary outcomes are generated by XGBoost, a double Boyer-Moore voting-
sliding window algorithm is proposed to refine the final LIDAR dynamic target detection accuracy. To
validate the efficacy and efficiency of our method in LiDAR dynamic target detection, an experimental
platform is established. Real-world data are collected and pertinent experiments are designed. The
experimental results illustrate the soundness of our method. The LiDAR dynamic target correct
detection rate is 92.41%, the static target error detection rate is 1.43%, and the detection efficiency is
0.0299 s. Our method exhibits notable advantages over open-source comparative methods, achieving
highly efficient and precise LIDAR dynamic target detection.

Keywords: LiDAR dynamic target detection; ICP; RANSAC; XGBoost; Spearman’s rank correlation
coefficient; feature screening; sliding window; Boyer—-Moore voting

1. Introduction

As society enters the era of the mobile Internet, the demand for location services is no
longer limited to regional positioning; instead, an all-round positioning service that is not
subject to environmental constraints is needed. In outdoor open areas, global navigation
satellite systems (GNSSs) can provide mature location services, but these systems have
many limitations and deficiencies in complex outdoor environments and indoor envi-
ronments. Considering these problems, simultaneous localization and mapping (SLAM)
has been proposed to promote the gradual maturity of indoor and outdoor integrated
high-precision positioning and high-quality spatial data acquisition [1]. Among them,
simultaneous localization and mapping based on light detection and ranging (LiDAR
SLAM) has the advantages of intuitive mapping, high precision, and the ability to work
in all weather conditions [2]. It is widely used in resource exploration, urban planning,
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agricultural and forestry development, mining inspections, atmospheric detection, and
other fields [3-6]. However, practical application scenes often contain dynamic targets.
As one of the key steps of LIDAR SLAM, point cloud interframe registration requires the
scanning environment to be completely static. Therefore, the point clouds scanned by
dynamic targets have different degrees of influence on LIDAR SLAM. If the dynamic target
accounts for a large proportion, the SLAM positioning result will have a large error; if
the proportion of dynamic targets is relatively small, the dynamic target will interfere less
with the accuracy of the point cloud registration, but the point cloud scanned during its
movement will leave traces in the final point cloud map, decreasing the mapping quality.
Dynamic point clouds not only affect the effectiveness of the above positioning and naviga-
tion methods, but also cannot be ignored in the geographic information system (GIS) and
remote sensing (RS) fields. If the LIDAR point cloud used to construct a geospatial database
or generate a digital elevation model (DEM) contains many dynamic point clouds, the point
cloud splicing accuracy and the subsequent application of the database and model will be
impacted. When LiDAR point clouds are used for agricultural and forestry census and
geological monitoring, there will be a certain degree of error in the corresponding results,
because dynamic targets rarely have periodic reproducibility. When LiDAR point clouds
are used for building modelling, urban planning, and other tasks, the use of point clouds
scanned by dynamic targets does not have research significance; therefore, removing these
clouds in advance can effectively improve the efficiency of data processing. In summary,
efficiently and accurately detecting and eliminating LiDAR dynamic point clouds are issues
of widespread concern in various fields; these tasks are the focus of this paper.

To address the problem of LiDAR dynamic target detection, commonly used methods
can be divided into three main categories: segmentation-based methods, visibility-based
methods, and voxel-based methods. Segmentation-based methods can be further divided
into methods based on traditional clustering segmentation and methods based on learning
segmentation. Methods based on traditional clustering segmentation generally use region
growing [7], fast point feature histograms (FPFHs) [8], and other algorithms for point cloud
clustering segmentation, and then, through point cloud direct registration [9], with the
help of other sensors [10], multisource information [11,12], and other methods to unify the
adjacent frame point cloud coordinate system, compare the indicators used to judge the
motion state of the point cloud cluster and the corresponding threshold to detect dynamic
targets. These methods ensure a low data processing complexity, but typically use a single
index as the benchmark to judge the motion state of the target, and different thresholds
must be set for the corresponding indices in different scenes to obtain effective detection
results. Methods based on learning segmentation generally use 3D—MiniNet, RangeNet++,
and other networks to directly semantically segment LiDAR point clouds [13,14] or project
point clouds into two-dimensional images for indirect semantic segmentation [15-17] and
use the obtained semantic labels to detect dynamic targets. These methods are convenient
to use and have a wide range of applications. However, constructing a suitable training
set, reducing the workload of the training set construction, and improving the training
efficiency and accuracy are still key challenges when using these methods. Visibility-based
methods are generally based on the physical premise that ‘light propagates along a straight
line’. The 3D LiDAR point cloud is projected into a 2D distance image [18] or depth
image [19]. The single-frame point cloud image is aligned to the corresponding position
in the overall point cloud image through perspective coordinate transformation, and
the residual image is generated by the pixel difference for dynamic target detection [20].
This kind of method does not require pretraining and is not restricted by the category
or number of dynamic targets. However, processing each frame point cloud requires a
perspective coordinate transformation, so this kind of method relies on high-precision pose
transformation parameters. This method is applicable only to sparse LIDAR point clouds;
otherwise, the data processing efficiency is extremely low. In addition, at present, this kind
of method still faces two key problems: laser beam physical characteristic interference
and static point invisibility. The former is caused by the interference of the point cloud
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projection effect caused by special LiDAR laser beam structures, such as parallelism and
occlusion. The latter problem is caused by the presence of dynamic targets that maintain the
same frequency movement as LiDAR during data acquisition. The same frequency target
continuously blocks the point cloud behind it; as a result, detecting it effectively through the
residual image is impossible. Voxel-based methods can be further divided into probability
statistics methods and descriptor comparison methods. Probability statistics methods [21]
are also based on the physical premise that ‘light propagates along a straight line’. The
3D environment is projected onto the 2D plane and divided into several small grids. As
the LiDAR point cloud to be detected accumulates frame by frame, the ray casting-based
(RC) algorithm is used to identify the situation where each grid is hit and crossed, and
the probability that the grid contains dynamic targets is calculated to screen the dynamic
grid. This kind of method achieves the batch detection of the point cloud motion state
with the grid as the smallest unit. However, when given a large incident angle of a laser
beam or occlusion, the detection results easily become abnormal. Furthermore, detecting
each frame point cloud requires traversing all the grids passed by each laser beam, which
consumes a large amount of computing resources. The descriptor comparison method
requires constructing a global point cloud map or a local point cloud map in advance
during the data acquisition process to form a prior reference basis [22,23]. The prior point
cloud map and the point cloud to be detected are rasterized. Whether the descriptors of
the paired grids differ is determined, and the nonground points in significantly different
grids are regarded as dynamic point clouds. This kind of method can effectively detect
dynamic targets in various states, but requires a prior map as a reference benchmark; as
a result, it is generally used for postdetection, which limits its application. In addition,
the grid size directly impacts the detection effect of voxel-based methods. If the grid is
too large, part of the static point cloud will be removed, and if the grid is too small, the
data processing efficiency will be significantly reduced. In summary, each method has
advantages and limitations. It is necessary to study in depth a LiDAR dynamic target
detection method with universal applicability that accounts for both detection accuracy
and data processing efficiency.

To reduce the influence of heuristic thresholds and auxiliary processes such as point
cloud projection and grid segmentation on the final LIDAR dynamic target detection results,
based on the point cloud clustering results and the unified adjacent frame point cloud
coordinate system, the multidimensional position and geometric structure differences
between the paired point cloud clusters are comprehensively considered in this paper.
By extracting the characteristics of the point cloud cluster and using a machine learning
method to detect the motion state of each point cloud cluster in each frame point cloud,
high-precision and high-efficiency LiDAR dynamic target detection is achieved. Among
many machine learning algorithms, XGBoost [24] has the advantages of flexibility, accuracy,
and efficiency and has been optimized by relevant experts and scholars from the perspectives
of data processing, multilabel classification, and hyperparameter tuning [25-28]. Therefore,
this algorithm is widely used to address various classification and regression problems [29-31].
However, it is rarely used to detect LIDAR dynamic targets. Therefore, it is taken as the
core algorithm of LiDAR target motion state detection in this paper. Compared with other
learning-based LiDAR dynamic target detection methods, our method does not require
a complex training network structure, training the XGBoost decision tree by reasonably
constructing an optimal classification feature subset to detect LIDAR dynamic targets. The
proposed method has universal applicability to different environments. When the optimal
classification feature subset is constructed, effective feature screening and dimensionality
reduction are conducted, which ensures the classification accuracy, compresses the optimal
feature subset dimension, and considers the model training efficiency. In addition, the
classification label acquisition and classification feature quantification of the training dataset
adopt a fully automatic mode, which avoids introducing human error.

The main contributions of this paper are as follows.
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e  Based on the clustering results of LIDAR point cloud clusters, the geometric center
point set of the point cloud clusters of each frame point cloud is taken as the research
object, and a double registration algorithm suitable for sparse point clouds is proposed.
In the coarse registration stage, the iterative closest point (ICP) algorithm is used to
obtain the rough pose relationship between the geometric center point sets of adjacent
frame point cloud clusters. In the fine registration stage, the random sample consensus
(RANSAC) algorithm and the four-parameter coordinate transformation algorithm
are used to calculate a more accurate pose relationship.

o The above pose relationship is used to unify the coordinate datum between the
geometric center point sets of adjacent frame point cloud clusters; then, the matching
results of the point cloud clusters scanned by the same target are obtained, and
the multidimensional position and geometric structure differences are calculated to
construct the point cloud cluster classification feature system. Since point cloud
cluster features are generally quantitative features, the number of feature splittings
(weight) is taken as an indicator of the importance of the features. Moreover, based
on Spearman’s rank correlation coefficient (SCC), the optimal classification feature
subset is constructed by bidirectional feature screening and dimensionality reduction
to facilitate both accurate detection and training efficiency for XGBoost.

o Considering that machine learning algorithms have certain mechanical properties
and cannot detect dynamic targets with special states, a double Boyer-Moore voting-
sliding window scheme based on the sliding window (SW) strategy and the Boyer—
Moore voting (BMV) strategy is designed to achieve the secondary correction of the
preliminary detection results of XGBoost, thereby improving the accuracy of the final
LiDAR dynamic target detection.

e  In the corresponding experiments, the effectiveness of the proposed main algorithms is
reasonably verified, and it is successfully verified that our method can effectively detect
the motion state based on the multidimensional features of adjacent frame paired point
cloud clusters, so as to achieve accurate and efficient LIDAR dynamic target detection.

The remainder of this paper is organized as follows. In Section 2.1, the framework of
the entire method is outlined. In Section 2.2, a double registration algorithm is proposed
to ensure that the point cloud clusters scanned by the same target in two adjacent frames
are accurately matched. The extraction and quantification processes of the corresponding
classification feature system and the training set classification label when using XGBoost
for LiDAR dynamic target detection are described in Section 2.3. In Section 2.4, XGBoost is
improved from the perspectives of both model detection accuracy and training efficiency,
and a double Boyer-Moore voting-sliding window is designed to correct the preliminary
detection results. The detailed experimental setup and discussion are reported and ana-
lyzed in Section 3. Finally, in Section 4, the work of this paper is summarized, and the
advantages and disadvantages of our method are discussed and delineated.

2. Methodology

In this paper, we use the superscript T to denote the transpose of a vector or matrix,
with lowercase bold symbols (e.g., #) denoting vectors and uppercase bold symbols (e.g.,
T) denoting matrices and collections. For any vector #, ||| denotes its Euclidean norm.

2.1. Method Overview

The proposed LiDAR dynamic target detection method based on multidimensional
features is shown in Figure 1. The main framework consists of three parts: LIDAR point
cloud processing, the construction of a classification feature system and quantification of
classification labels, and LiDAR dynamic target detection based on improved XGBoost.

The LiDAR point cloud processing procedure is shown in the first part of Figure 1.
Point cloud preprocessing and point cloud cluster segmentation are conducted, and a
double registration algorithm suitable for sparse point clouds is proposed to obtain accurate
adjacent frame point cloud cluster matching results.
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The construction of the classification feature system and the quantification of the clas-
sification labels are shown in the second part of Figure 1. The extraction and quantification
of differences between the multidimensional positions and geometric structures of the
paired point cloud clusters are determined, and a quantification method for classification

labels is used to construct the model training dataset.

The LiDAR dynamic target detection process based on improved XGBoost is shown in
the third part of Figure 1. In this process, based on traditional XGBoost, weight is used as
an indicator of the importance of the features, and a strategy for efficiently constructing
an optimal classification feature subset is proposed that considers the training efficiency
and detection accuracy of the model. In addition, a secondary correction strategy for the
preliminary detection results of XGBoost is proposed to improve the final LIDAR dynamic

target detection accuracy.
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Figure 1. Flowchart of the LiDAR dynamic target detection method based on multidimensional features.
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2.2. LiDAR Point Cloud Processing
2.2.1. Construction of the Point Cloud Cluster Center Point Set

LiDAR point clouds exhibit wide coverage, a high measurement accuracy, and dense
data, but they also exhibit problems such as equipment system errors [32], point cloud
motion distortions [33], and including noise points and discrete points [34]. Therefore,
data preprocessing must be performed before LIDAR point clouds can be used for related
work. In this paper, an unsupervised LiDAR point cloud optimization algorithm is used to
estimate and compensate for system errors in the equipment, and the velocity updating-
iterative closest point (V—ICP) method is used to remove point cloud motion distortion [35].
These processing steps greatly improve the quality of the LiDAR point clouds. However,
since the purpose of this study is to efficiently detect LIDAR dynamic targets, the high den-
sity of the point clouds leads to heavy data processing tasks, so point cloud downsampling
is needed. Generally, a point cloud is downsampled by point cloud filtering, removing the
noise points and discrete points [36]. Commonly used downsampling methods include
Gaussian filtering, direct filtering, voxel filtering, statistical filtering, and bilateral filtering.
The effect of direct filtering depends on the heuristic threshold [37]. Gaussian filtering is
applicable only to point clouds that follow a normal distribution [38], bilateral filtering is
applicable only to ordered point clouds [39], and statistical filtering requires a large amount
of calculation [40]. As a result, the voxel filtering method is used in this paper. Constructing
a voxel group composed of several three-dimensional hexahedrons ensures that all the
LiDAR point clouds of the corresponding frame are completely covered. The number of
laser points in each small voxel is counted. The voxels with numbers less than the set
threshold are regarded as sparse voxels, and their laser points are regarded as discrete
points or noise points and eliminated. For the remaining voxels, the mean value of the
point cloud coordinates is calculated separately and used as the voxel center of gravity to
replace all the laser points in the current voxel, achieving point cloud downsampling.

Based on the preprocessed LiDAR point cloud, ground segmentation, point cloud
cluster clustering, and point cloud cluster geometric center coordinate calculations are
conducted using the method provided in Reference [41] to construct the point cloud cluster
center point set corresponding to each frame of the LiDAR point cloud. The point cloud
cluster center point set corresponding to the frame point cloud is recorded as E;.

2.2.2. Coarse Registration of the Center Point Set of the Adjacent Frame Point Cloud Cluster

The purpose of this study is to judge the motion state of a point cloud cluster based on
the multidimensional position and geometric structure difference between the point cloud
clusters generated by the same target scanned in the adjacent frame LiDAR point cloud.
Therefore, the point cloud cluster matching results generated by the same target scanned
from the adjacent frame point cloud cluster set must be accurately obtained. In this paper,
this task is equivalent to registering the center point set of the adjacent frame point cloud
cluster with high precision, and the point cloud cluster pairing result is obtained based on
the registration result of the center point set.

There are often differences between the degrees of position and pose differences of
different frame point cloud cluster center point sets that do not pass through the unified
coordinate system. As shown in Figure 2, three color point cloud cluster center point sets
correspond to three different LIDAR point clouds. Frame A and frame B are adjacent
frames, and five frame intervals exist between frame C and frame A. As shown, the more
the frames are separated, the more the overall pose differs between the point cloud cluster
center point sets. Taking frame A and frame B as examples, if no registration processing
is performed and the matching objects of each point in Ep are searched directly in E 4, the
probability of incorrect matching results is great. In addition, due to the lack of a unified
coordinate system, the difference in the position of the point cloud cluster calculated at this
time does not have any research significance and cannot be used to judge the motion state
of the point cloud cluster. Therefore, a double registration method for the center point set
of the point cloud clusters is proposed to accurately solve the pose relationship between E 4
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and Eg. The double registration method for the point cloud consists of two parts: coarse
registration and fine registration. In this section, the coarse registration process is proposed.
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Figure 2. Distribution of point cloud cluster centroid sets for different frames.

Because there is no dramatic change in the pose between frame A and frame B and
because the number of points in the center point set of the point cloud cluster is much
smaller than the number of points in the entire point cloud, the initial pose matrix of the
ICP algorithm [42] is set to a unit matrix, and E4 and Ep are coarsely registered quickly.
Based on the rough pose relationship between frames obtained by coarse registration, Ep is
converted to the E4 coordinate system. By setting the appropriate search radius, each point
in Ep is taken as the research object, and a nearest neighbor search is performed in E 4. The
point cloud cluster corresponding to the point without search results is recorded as the
‘missing’ point cloud cluster. Similarly, using the same search radius, each point in E 4 is
taken as the research object, and the ‘missing’ point cloud cluster is reverse-searched in Ep.
In addition, after coarse registration and application of the unified coordinate system, the
nearest neighbor matching object of each point in the current Eg can be obtained as shown
in E 4. To facilitate an intuitive display, in Figure 3, the matching results of some points are
shown, and the object shown in the red box is the center point of the known dynamic point
cloud cluster.
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Figure 3. Distribution of the cluster centroids of two adjacent frames in a unified coordinate system
after coarse registration.

Because ICP iteratively registers the nearest point and calculates the overall registration
error to obtain the optimal solution, it cannot intelligently distinguish the dynamic point
cloud cluster center point and the static point cloud cluster center point in the set E; as a
result, the registration error of the dynamic point cloud cluster center point impacts the
overall registration result. As shown in Figure 3, these problems lead to different degrees
of positional differences between the center points of the paired static point cloud clusters
after coarse registration. Therefore, the position difference calculated based on the center
point of the nearest paired point cloud cluster after coarse registration cannot be used
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to judge the motion state of the point cloud cluster, and the calculation accuracy of the
interframe pose relationship must be further improved.

2.2.3. Fine Registration of the Center Point Set of the Adjacent Frame Point Cloud Cluster

Because the LiDAR laser beam propagates along a straight line, the geometric structure
difference largely differs between the point cloud clusters generated by the same target in
frame A and frame B due to occlusion or scanning angle changes, which leads to a large
degree of positional difference between the center points of the corresponding paired point
cloud clusters of some static targets after rough registration. This kind of point cloud cluster
is recorded as a pseudodynamic point cloud cluster. To prevent these pseudodynamic point
cloud clusters from affecting the fine registration process, the coarse registration results
of E4 and Ep are preprocessed, and the center point of the pseudodynamic point cloud
cluster is filtered in advance to prevent it from being used as the input for fine registration.

Based on the geometric structure characteristics of each point cloud cluster, the de-
scription vector # is constructed as follows:

n=1[eo1 @2 93 (P4]T 1)

where ¢1 represents the X-axis span of the point cloud cluster, ¢, represents the Y-axis
span of the point cloud cluster, @3 represents the Z-axis span of the point cloud cluster, and
@4 represents the number of laser points in the point cloud cluster.

The nearest neighbor pairing results of the point cloud clusters after coarse registration
are transformed into descriptive vectors in pairs, and the cosine similarity S [43] between
vectors is calculated as follows:

= () (mata]) = (L (o)) / (| S0\ S)) @

j=1 j=1

where 7% represents the description vector of the k-th point cloud cluster in Ep, 114 repre-
sents the description vector of the paired point cloud cluster in E4, and j represents the
number of elements in the description vector. If S is less than the set threshold, the point
cloud cluster being processed in Ep is recorded as pseudodynamic. The above steps are
repeated to effectively screen all pseudodynamic point cloud clusters in Ep. If there is no
geometric structure change between the matching results of the adjacent frame dynamic
point cloud clusters, the similarity between the corresponding description vectors must
be greater than the set threshold; therefore, the above process cannot effectively filter the
dynamic point cloud clusters.

After eliminating the ‘missing’ point cloud clusters and the pseudodynamic point
cloud clusters, the center point set of the point cloud cluster is effectively streamlined.
Since the pose difference between the point cloud cluster center point sets of frame A
and frame B is small after coarse registration and a unified coordinate system is applied,
and since several homonymous point pairs are formed by the nearest neighbor pairing
of the point cloud cluster center point, four-parameter or seven-parameter coordinate
transformation methods can be used for fine registration [44]. In the real scene, there
are few targets moving only along the Z-axis direction. The seven-parameter coordinate
transformation method requires more calculation than the four-parameter coordinate
transformation method. Therefore, in this paper, both E4 and Ep are projected onto the
X=Y plane and the four-parameter coordinate transformation method is used to identify
the pose relationship. If all the above homonymous point pairs are used to construct the
least squares equation to solve the transformation relationship, the influence of dynamic
point cloud clusters on the calculation accuracy is also ignored. Therefore, based on the
idea of RANSAC [45], two homonymous point pairs are randomly selected to construct
the equation and calculate the transformation relationship T. The selected point cloud
cluster center points are called the initial interior points. T is used to perform coordinate
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transformation on the remaining points, and the coordinate offset between each point in Ep
after transformation and its matching points is calculated. Points below the set threshold
are recorded as interior points, and the number of interior points is counted. When the
initial interior points are the center points of the point cloud cluster corresponding to the
dynamic target, the conversion relationship is calculated, and coordinate transformation is
performed. As shown in the red box in Figure 4a, no offset exists between the initial interior
points and their matching points; however, a large offset exists between the remaining
points and their matching points, and the number of interior points in this case is very
small. As shown in Figure 4b, when the initial interior points are the center points of the
point cloud cluster corresponding to the static target, the number of interior points is large.
A significant offset exists between the center points of the dynamic point cloud cluster and
the matching points shown in the red box in the figure, which is normal; a small offset
exists between some static point cloud cluster center points and the matching points shown
in the green box, which is caused by the occlusion and parallax described above. The
process of selecting the initial interior points and counting the number of interior points
is iterated until all the combinations of homonymous point pairs are processed, and the
process is then stopped. The corresponding T when the number of interior points is the
largest is taken as the fine registration result.
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Figure 4. Distribution of the cluster centroids of two adjacent frames in a uniform coordinate system
after fine registration: (a) dynamic centroids constituting initial interior points; and (b) static centroids
constituting initial interior points.

2.3. Construction of the Classification Feature System and Quantification of Classification Labels
2.3.1. Paired Point Cloud Cluster Feature Extraction and Quantification

Based on the clustering results of the adjacent frame LiDAR point clouds and the
matching results of the adjacent frame point cloud clusters after the double registration
of the unified coordinate system, 12 kinds of point cloud cluster features that can com-
prehensively describe the multidimensional position and geometric structure differences
between the paired point cloud clusters are extracted and quantified. These features are
used to construct the classification feature system. Following the different geometric di-
mensions of feature extraction, these features are categorized into one-dimensional features,
two-dimensional features, and three-dimensional features.

1. A one-dimensional feature refers to a feature extracted based on the difference
in position or geometric structure between the paired point cloud clusters in a single
dimension of X, Y, and Z. In this paper, six one-dimensional features are extracted, namely,
the X-axis displacement Dy, Y-axis displacement Dy, Z-axis displacement Dy, X-axis span
change degree Ly, Y-axis span change degree Ly, and Z-axis span change degree Lz. The
methods used to quantify the above six features are as follows.

Taking the point clouds of frame A and frame B after registration as examples, the

center point of the k-th point cloud cluster in E4 is denoted as (Xk Yk, Zlfq) and the
center point of the t-th point cloud cluster paired with the above point cloud cluster in

126



Sensors 2024, 24, 1369

Ep is denoted as (X%, Y}, Z). Using the above variables, Dx, Dy, and Dy are calculated
as follows:
DX:‘X’;‘—X%‘ Dy:‘Yf‘—Y]E’ DZ:‘Z’;‘—ZE‘ 3)

The maximum and minimum values of the X, Y, and Z three-axis coordinates of each
laser point in each point cloud cluster are recorded as Xyax, Xmin, Ymax, Yimin, Zmax, and
Zin, and the three-axis spans Hy, Hy, and Hy of the point cloud cluster are calculated

as follows:
HX = Xmax — Xmin HY = Ymax - Ymin HZ = Zmax — Zmin (4)
Based on the three-axis span of the point cloud cluster, Ly, Ly, and Ly are calculated
as follows:
Lx = (’ijaf - HXéD/HXﬁ Ly = (‘HY/{C - H)/Bt’)/Hw{C Lz = (‘Hz}xc - HZBtD/HZ/IxC ®)

2. Two-dimensional features are features extracted based on the geometric structure
differences between paired point cloud clusters in any two dimensions of X, Y, and Z. In
this paper, three two-dimensional features are extracted, namely, the X—Y projection area
change degree Sxy, the X—Z projection area change degree Sxz, and the Y—Z projection
area change degree Syz. The methods used to quantify the above three features are
as follows.

Based on the quantitative results of Hy, Hy, and Hy, the projection areas Cxy, Cxz,
and Cyz of the point cloud clusters in the X—Y plane, X—Z plane, and Y—Z plane are
calculated as follows:

Cxy = HxHy Cxz=HxHz Cyz=HyHz (6)

Based on the plane projection area of the point cloud cluster, Sxy, Sxz, and Sy are
calculated as follows:

Sxy = CXYAk - CXYBt / CXYAk
Sxz = CXZAk - CXZBt / sz,f @)

Svz = (’CYZAk - CYZBtD /CyzA

3. A three-dimensional feature is a feature extracted based on the geometric structure
differences between the paired point cloud clusters in the X, Y, and Z dimensions. In this
paper, three three-dimensional features are extracted, namely, the degree of change in the
volume of the point cloud cluster G, the degree of change in the number of laser points M,
and the degree of change in the density of the laser points P. The methods used to quantify
the above three features are as follows.

Based on the quantitative results of Hx, Hy, and Hyz, the volume V of the smallest
outsourced parallel regular hexahedron of the point cloud cluster is calculated as follows:

V = HxHyHz 8)

Based on the point cloud cluster outsourcing hexahedral volume, G is calculated

as follows: C— (’VIIX v D /V,Ici )

In the above data processing process, the number of laser points N in each point cloud
cluster is directly counted, and M is calculated as follows:

M= (|N5 - Nj|) /K (10)
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Based on the quantitative results of V and the statistical results of N, the laser point
density p of the point cloud cluster is calculated as follows:

p=N/V (11)

Based on the quantitative results of p, P is calculated as follows:

P = (|o — ) /o (12)

By analyzing the data and calculation methods required to quantify these 12 features,
the corresponding point cloud cluster classification feature system can be constructed
hierarchically for each frame of the LiDAR point cloud by traversing the point cloud
cluster set once and using multithreading processing, which ensures the timeliness of
data processing.

2.3.2. Classification Label Quantification

To ensure the universal applicability of the proposed LiDAR dynamic target detection
model, LiDAR point clouds are collected in real indoor and outdoor scenes. By constructing
an a priori point cloud map and using the descriptor comparison method based on the
voxel-based method, the motion state classification label is automatically assigned to each
point cloud cluster in a single-frame point cloud. The specific process is as follows.

Two rounds of data acquisition are conducted in each real scene. The first round is
conducted in the period with no dynamic targets or very few dynamic targets in each scene
and is used to construct an a priori point cloud map as a reference base. The second round
is conducted during the period with more dynamic targets in each scene and is used to
quantify the classification feature system and classification labels.

For each data acquisition scene, based on the first data collected, the LIDAR Odometry
and Mapping (LOAM) algorithm [46] is used to construct an a priori point cloud map.
Because the secondary collected LiDAR point cloud encompasses many dynamic targets,
errors will arise when directly detecting dynamic targets directly using the scan-to-map
approach [47] to register a single-frame point cloud and a point cloud map. To obtain a
more accurate training set classification label, the descriptor comparison method is used to
detect the motion state of each point cloud cluster in each frame of the LiDAR point cloud
by dividing the grid and comparing the descriptors based on the registered single-frame
point cloud and the prior map. The dynamic point cloud cluster and the ‘missing’ point
cloud cluster are given a dynamic label of ‘1’, and the remaining point cloud clusters are
given a static label of ‘0"

2.4. LiDAR Dynamic Target Detection Based on the Improved XGBoost
2.4.1. Construction of Classification Feature Subsets

The model training dataset in this paper comprises the above point cloud cluster
classification feature system and classification labels. By constructing the objective function
and second-order Taylor expansion, the second-order derivative information is used to
train the XGBoost classification decision tree, and the model complexity is optimized as a
regularization term to ensure a higher model generalizability [48].

The above process outputs three independent feature importance metrics: weight, gain,
and cover. Each index can be used as a benchmark for constructing classification feature
subsets during model training, which is used to screen important features to improve the
classification effect of XGBoost [49]. Because including enumeration features in the point
cloud cluster classification feature system constructed in this paper is difficult, weight is
selected as the only feature importance measure index, and the features are arranged from
large to small according to the weight index, denoted as sequence Fys; the arrangement
from small to large is denoted as sequence Fj,.
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Because the classification feature system contains more features and the number of
samples in the training set based on the independent point cloud cluster is large, under
the premise of ensuring the detection accuracy of the model, an optimal feature subset
construction strategy based on Spearman’s rank correlation coefficient-bidirectional search
for dimensionality reduction (SCC—BSDR) is proposed in this paper [50]. This approach is
used to improve the training efficiency of the model. There are three traditional feature
search strategies [51], namely, forward search, backward search, and bidirectional search.
Forward and backward searches easily fall into local optimal solutions. Although the
bidirectional search is more reliable, its computational complexity is significantly greater
than that of the other search strategies.

In this paper, the optimal feature subset construction is based on the bidirectional
feature search strategy. On this basis, Spearman’s rank correlation coefficient is used to
improve the construction efficiency and a dimensionality reduction strategy is used to
simplify the composition of the feature subset. First, the most important feature is obtained
from Fps and added to the feature subset to construct a classification decision tree. The
current classification accuracy is calculated and used as the initial classification accuracy
benchmark. The Spearman’s rank correlation coefficient between the other features in
Fps and the above feature is calculated. The features with correlation coefficients greater
than 0.8 are removed and added to the subset in turn, instead of the above feature, and
the classification accuracy is then calculated. The corresponding feature with the highest
accuracy is retained in the feature subset and the corresponding classification accuracy is
used to update the accuracy benchmark and complete the initialization. Subsequently, the
most important feature in the current sequence is obtained from Fs, and the features with a
correlation greater than 0.8 are screened. The above features are added to the feature subset
in turn, and the classification accuracy is calculated. The feature subset with the highest
classification accuracy and greater than the current accuracy benchmark is retained. If the
classification accuracy is below the current accuracy benchmark, no feature is added and
no subsequent feature deletion step is performed. The least important feature is obtained
from Fj, in turn, and the corresponding feature is deleted from the current feature subset.
If the classification accuracy decreases, the above operation is withdrawn. Otherwise, the
above operation is retained, and the accuracy benchmark is updated. The above process is
iterated until the features in F;, are traversed. The above process of adding and deleting
features to and from the feature subset is repeated until Fys is empty. Finally, the optimal
classification feature subset and the corresponding XGBoost detection model are obtained
for preliminary detection.

2.4.2. Correction of Preliminary Detection Results

Because the XGBoost detection model screens dynamic targets based on the differences
between the multidimensional positions and geometric structures of the paired point
cloud clusters in adjacent frame LiDAR point clouds, completely and effectively detecting
dynamic targets with intermittent static states and first static and then moving states is
impossible. Most LIDAR dynamic target online detection methods exhibit these problems.
In addition, the optimal classification feature subset constructed in this paper underwent
a feature screening step and dimensionality reduction step. Each feature is irreplaceable
in the classification process. When the quantitative result of a feature is inaccurate, the
XGBoost detection model may yield erroneous detection results. Aiming to address these
two problems, a double Boyer-Moore voting-sliding window (DBMV —SW) based on the
SW strategy [52] and the BMV strategy is designed to achieve the secondary correction of
the preliminary XGBoost test results.

This paper holds that, in an actual situation, a change in motion state in all targets
must be a gradual process. A target will not suddenly appear dynamic at a certain moment
when its motion state is static, nor will a target suddenly appear static at a certain moment
when its motion state is dynamic. In addition, the interframe position change of a point
cloud cluster scanned by a dynamic target with an intermittent static state is also a gradual
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change process during the change in motion state. Therefore, aiming to identify and correct
the anomaly detection from the preliminary detection results of XGBoost, the SW strategy
is adopted, the point cloud of the i-th frame is taken as the research object, and the five
consecutive historical point clouds of frame i —2,i — 3,i —4,i — 5,i — 6 are taken as the
sliding window range in this paper. The double registration method of the point cloud is
used to process the geometric center point set of the point cloud clusters of the i-th frame
and each frame point cloud in the window, and the motion state of the five nearest paired
point cloud clusters of each point cloud cluster in the window of the i-th frame is obtained.
The BMV strategy is used for the first vote for the above motion state corresponding to
each point cloud cluster. If the preliminary detection result of adjacent frames is static but
the voting result is dynamic, the preliminary detection result of adjacent frames is changed
to dynamic. If both the initial detection result of the adjacent frame and the voting result
are static, but the motion state of the nearest point cloud cluster with any two consecutive
frames or more than two frames in the window is dynamic, the initial detection result of
the adjacent frame is changed to dynamic. If the initial detection result of the adjacent
frame is dynamic but the voting result is static, this frame must be judged in depth. The
first two cases effectively detect dynamic targets with intermittent static states, and the
third case effectively detects dynamic targets with static states and then moving states. The
preliminary detection results of adjacent frames do not need to be modified in any case
besides the above three cases.

Considering the third situation, which needs to be evaluated in depth, the X-axis
displacement Dy, Y-axis displacement Dy, and Z-axis displacement D7 are taken as de-
pendent variables, and the arrangement number of each frame point cloud in the window
is taken as an independent variable to fit the corresponding change trend. Because of the
small amount of data and to ensure the efficiency of the data processing, the first-order
linear function is used to fit the change trend of the above characteristics. Whether the
current adjacent frames Dy, Dy, and Dz conform to the corresponding change trend is

verified as follows:
ACk=f(p)-Cry=6 (13)

In the formula, ACK and CF represent the fitting error and quantization result of the
k-th feature, respectively, and f (i) represents the corresponding fitting function. Because
the capacity of the window is 5, when judging whether the features of the current adjacent
frame conform to the corresponding feature change trend, the independent variable ¢ of the
fitting function is 6. When AC* > ¢*, the detection result is not consistent with the change
trend, and the ‘0’ fitting label is given; otherwise, the ‘1’ fitting label is given. ¢ represents
the standard deviation of the corresponding feature in the window. In addition, the
corresponding slope label is also given using the slope of the fitting function corresponding
to each feature. If the absolute value of the slope is greater than 1, it is labelled ‘1’, and if
the absolute value is less than 1 and greater than 0, it is labelled ‘0"

The second vote is based on the fitting label and slope label corresponding to the
three features. When a fitting label of ‘1’ corresponds to any feature, if the slope label ‘1
corresponding to the above features is the majority label, the preliminary detection result
of the adjacent frame does not need to be changed. In addition, any label combination
must change the preliminary detection result of the adjacent frame to be static. The center
point global coordinates of all the point cloud clusters that do not require changing the
initial detection results of the adjacent frames during the detection process are recorded to
form a set W. All the adjacent retrieval point cloud clusters belonging to W in the global
coordinate system are regarded as dynamic point cloud clusters.

3. Experiments and Analysis
3.1. Source of Experimental Data
To verify whether the SCC—BSDR effectively considers the classification accuracy and

model training efficiency of XGBoost, six datasets containing only quantitative features are
randomly selected from the UCI machine learning database [53] (http://archive.ics.uci.
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edu/ accessed on 9 August 2023) as test data, including the wine, wireless indoor locating,
iris, banknote authentication, abalone, and EEG eye state datasets.

To prevent overfitting by the training results of the LIDAR dynamic target detection
model, the number of dynamic target samples and the number of static target samples
contained in the training set should not differ by more than 200%. In this paper, an
experimental platform is built based on LiDAR and Inertial Measurement Unit (IMU).
LiDAR is used to collect the data for constructing the training set of the model in this paper,
and IMU is used to collect the data needed for the comparison method. Using the above
experimental platform, experimental data are collected from five real indoor and outdoor
scenes, including an indoor warehouse scene with a lower people flow, an indoor teaching
building scene with a higher people flow, an outdoor playground scene with a higher
people flow, an outdoor campus trunk road scene with a higher traffic flow, and an indoor
underground garage scene with a lower traffic flow. In addition, five common real indoor
and outdoor scenes are selected as test scenes to verify the effectiveness of DBMV—SW and
the detection effect of our method on LiDAR dynamic targets.

3.2. Experimental Platform and Experimental Scenes Overview

The experimental platform is shown in Figure 5a. LIDAR uses Velodyne’s VLP—16,
which has a horizontal scanning field of view of 360°, a vertical scanning field of view of 30°,
and collects data at a frequency of 10 Hz. The IMU uses Ellipse—N from the SBG. The bias
stability and repeatability of the gyroscope are 0.1 deg/s, the bias stability and repeatability
of the accelerometer are 5 mg and 0.6 mg, respectively, and the data are collected at a
frequency of 100 Hz. Test scene 1 is an indoor shopping mall, as shown in Figure 5b, which
is distributed with static features such as models, stairs, and billboards. Test scene 2 is an
outdoor bustling road section, as shown in Figure 5c. The road surface is flat, and there
are shops on both sides. Between the shops and the motor vehicle lanes, there are steps,
auxiliary roads, and green belts, and static features such as trash cans, isolation piers, street
lamps, and substation boxes are distributed throughout the scene. Test scene 3 is an outdoor
square, as shown in Figure 5d. This scene is distributed with static features such as trash
cans, benches, and fitness equipment. Test scene 4 is an outdoor playground, as shown
in Figure 5e. There are static features such as ball racks, models, a flag raising platform,
and trash cans inside the site. Test scene 5 is an underground parking lot, as shown in
Figure 5f. Static features such as load-bearing columns, fire hydrants, and debris piles are
distributed inside the site. In scene 1, the dynamic targets are mainly pedestrians, and
the people flow is high. Due to the indoor scene, the static objects are seriously occluded
by dense dynamic targets to verify whether the target motion state detection effect of our
method in the indoor environment is robust. The dynamic targets in scene 2 are mainly
pedestrians and cars, which also have a high flow. Due to the outdoor environment and
the existence of large dynamic targets, the occlusion problems of dynamic targets to static
objects and between dynamic targets are more serious in this scene to verify whether the
dynamic target detection effect of our method in complex outdoor environments is robust.
The dynamic targets in scene 3 are mainly pedestrians. Although the flow of people is
high, no large dynamic target exists, and this scene is outdoor and open. Therefore, the
occlusion problem between targets can be ignored to verify whether the dynamic target
detection effect of our method in an open outdoor environment is robust. The dynamic
targets in scene 4 are mainly pedestrians. Similarly, the people flow is high and belongs to
the outdoor open scene, but it belongs to the rainy weather. It is used to verify whether the
target motion state detection effect of our method in a non-ideal outdoor environment is
robust. In scene 5, the dynamic targets are mainly pedestrians and cars with less traffic,
which belongs to the weak illumination scene. It is used to verify whether the target motion
state detection effect of our method in a non-ideal indoor environment is robust. The plane
structure of the above test experimental scene and the data acquisition route of the test set
are shown in Figure 6a—e. The ground object categories represented by each symbol in the
figure are shown in the legend.
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Figure 5. Experimental platform and scenes: (a) experimental platform; (b) experimental scene 1;
(c) experimental scene 2; (d) experimental scene 3; (e) experimental scene 4; and (f) experimental
scene 5.

3.3. Validation Experiment of the SCC—BSDR and Analysis

To verify whether the SCC—BSDR leads traditional XGBoost to account for both
training efficiency and classification accuracy, for each dataset obtained from the UCI
machine learning database, 70% of the data are used as the model training set, and the
precision, recall, F1-measure, accuracy, and training time (Time) of the improved XGBoost
algorithm on each test set are calculated. Based on the concept of ablation experiments,
four algorithms are designed and compared with the algorithm in this paper (number 5):

Algorithm 1: Forward search XGBoost algorithm based on weight

Algorithm 2: Backward search XGBoost algorithm based on weight

Algorithm 3: Bidirectional search XGBoost algorithm based on weight

Algorithm 4: Bidirectional search XGBoost algorithm based on weight (including
SCC-BS)

e  Algorithm 5: Bidirectional search XGBoost algorithm based on weight (including
SCC—BSDR) (our algorithm)

Algorithm 3 is compared with algorithm 1-2 to verify the effectiveness of the BS
strategy; our algorithm is compared with algorithm 3 to verify the effectiveness of the
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SCC—BSDR strategy; and our algorithm is compared with algorithm 4 to verify the effec-
tiveness of the DR strategy. The F1-measure and Time corresponding to each algorithm are
shown in Table 1. In addition, taking the EEG Eye State and Wine datasets as examples, the
effectiveness of our algorithm is intuitively illustrated through radar charts, as shown in
Figure 7. The training efficiency index Ef ficency in the figure is calculated as follows:

Efficency = (Timemax — Time)/ Timemayx (14)

where Time. represents the maximum value of the Time index of each algorithm corre-
sponding to the current dataset.
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Figure 6. Experimental scene floor plans and platform motion trajectories: (a) experimental scene 1;
(b) experimental scene 2; (c) experimental scene 3; (d) experimental scene 4; and (e) experimental
scene 5.

133



Sensors 2024, 24, 1369

Table 1. Comparison of the classification accuracy and training efficiency of each algorithm.

Contrast Algorithm Algorithm Algorithm Algorithm Our
Dataset Ratio 1 2 3 4 Algorithm
Fl-measure 0.9036 0.9036 0.9668 0.9467 0.9467
Wine (se];lonrllfls) 2.6583 2.7273 14.7758 10.1208 7.2954
Wireless Fl-measure 0.8785 0.8785 0.9667 0.9869 0.9376
Llé‘c‘i‘t’i"rfg (seTclonrlfis) 32112 2.9591 18.5169 13.5056 9.0544
F 1—measure 0.9474 0.8998 0.9474 0.9237 0.9259
Iris (se];lé?f:ls) 22724 1.8457 7.8570 5.9028 2.6787
Fl-measure 0.9265 0.9176 0.9609 0.9627 0.9454
Abalone (seTCgﬁ‘fjs) 3.2858 3.2993 15.7363 11.8754 7.8578
Fl-measure 0.9269 0.9269 0.9562 0.9562 0.9506
Bankr}otg Time
Authentication  (seconds) 3.6781 3.3008 15.8974 12.6205 8.0695
Fl-measure 0.7455 0.7559 0.9063 0.9377 0.8908
EEG Eye State (setﬁils) 5.9584 5.9702 32.6547 23.9361 17.3668
Fl-measure 0.8881 0.8804 0.9507 0.9523 0.9328
Mean Value (seT:I()IIrllfis) 3.5107 3.3504 17.5730 12.9935 8.7204
i 0 ~ics

0. >
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Figure 7. Comprehensive evaluation radar charts of each algorithm: (a) EEG eye state dataset; and
(b) wine dataset.

Intuitively comparing the areas surrounded by the corresponding closed curves of
each algorithm in Figure 7 shows that, on the two datasets, the area corresponding to our
algorithm is always the largest, indicating that our algorithm can consider both model clas-
sification accuracy and training efficiency for quantitative datasets. The above viewpoint
can be further confirmed by the indices shown in Table 1. The F1-measures of Algorithm 1
on the wine, iris, abalone, and banknote authentication datasets are greater than 0.9; the
Fl-measures of Algorithm 2 are greater than 0.9 only on the wine, abalone, and banknote
authentication datasets; and the F1-measures of Algorithm 3, Algorithm 4, and our algo-
rithm are greater than 0.89 and generally greater than 0.9 on each dataset. The training
time required by the above three algorithms is greater than that required by algorithm 1
or algorithm 2, but the average training efficiency of our algorithm is 50.38% and 32.89%
greater than that of algorithm 3 and algorithm 4, respectively. In addition, algorithm 3 and
algorithm 4 achieve similar detection accuracies. The average classification accuracy of our
algorithm is 1.88% and 2.05% lower than that of algorithm 3 and algorithm 4, respectively,
but the efficiency improvement and accuracy reduction ratios are 26.7979 and 16.0439,
respectively. Comprehensive analysis reveals that, although the model with the one-way
search strategy achieves a high training efficiency, this model easily falls into the local
optimal solution. The detection accuracies of algorithm 3, algorithm 4, and our algorithm
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are significantly higher than those of the other algorithms because of the bidirectional
feature search strategy. Algorithm 4 uses the SCC—BS strategy to accelerate the construc-
tion of feature subsets, so it achieves a higher training efficiency than algorithm 3. Our
algorithm uses the SCC—BSDR strategy to accelerate the construction of feature subsets
and reduce their dimensionality. The optimal classification feature subset required for our
algorithm to construct the classification decision tree is simpler than that for algorithm 4.
Although the classification accuracy of a small part of the model is sacrificed, the model
training efficiency is significantly improved. In summary, the effectiveness of SCC—BSDR
is successfully verified by considering both classification accuracy and training efficiency.

3.4. Validation Experiment of the DBMV —SW and Analysis

In this paper, the DBMV —SW algorithm is proposed to correct the preliminary detec-
tion results of LIDAR dynamic targets based on the improved XGBoost algorithm. This
compensates for the mechanicality of the machine learning algorithm and effectively de-
tects dynamic targets with intermittent static states and first static and then moving states,
improving the final detection accuracy. Since scene 2 contains many dynamic targets
with the above special states, the data collected in this scene are used as test data and a
DBMYV —SW validity verification experiment is designed.

The LiDAR dynamic target detection method based on multidimensional features
and the detection method excluding DBMV —SW are used to detect the dynamic target
of each frame of the LiDAR point cloud in the dataset, and the static point cloud map
is used as a reference. The number of static target benchmarks NUM;, the number of
dynamic target benchmarks NUM}, the number of static target false detections nums, and
the number of dynamic target missed detections num, of all frame point clouds and each
frame point cloud in the dataset are counted. The overall dynamic target correct detection
rate #; and the static target error detection rate 75 of all frame point clouds are calculated
by Formula (15), as shown in Table 2. According to the total number of point cloud frames
contained in the dataset and the total processing time, the time required to process a frame
of point cloud is calculated, which is recorded as the average detection efficiency time, and
the real-time measurement index #; is calculated by Formula (15), as shown in Table 2.

s = nums/NUM;s 1y = numy/NUMy; n; =1— (time/0.1) (15)

In the formula, 0.1 represents the corresponding inter-frame time interval when the
point cloud is collected at the frequency of 10 Hz.

Table 2. The influence of DBMV —SW on detection accuracy and efficiency.

Our Method (without

Index Types DBMV_SW) Our Method
The total m.lmber of dynamlc target 20,852 12,450
missed detections
The total number of' static target 4420 3786
false detections
The dynamlc. target correct 83.67% 90.25%
detection rate
The static target error detection rate 2.37% 2.03%
Detection efficiency (seconds) 0.0258 0.0316
Real-time measurement index 74.21% 68.42%

To visually compare the detection effects of the two methods, the dynamic target
correct detection rate and the static target error detection rate corresponding to each frame
point cloud are calculated by Formula (15), and time-varying sequence diagrams of the
detection effects of the two methods are drawn, as shown in Figure 8.
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Figure 8. Time-varying sequence diagram of the detection effect: (a) dynamic target correct detection
rate; and (b) static target error detection rate.

As shown in Figure 8, after the secondary correction of the preliminary detection
results by DBMV —SW, the dynamic target correct detection rate is generally above 0.85.
Although the detection accuracy of individual frames is low, it is higher than the average
detection accuracy without correction. In addition, the static target error detection rate is
lower than 0.025, which is better than that in the case without correction. Combining this
figure with Table 2 for a comprehensive analysis reveals that, after using the DBMV —-SW
strategy, the number of dynamic target missed detections is 40.29% lower and the number
of static target false detections is 14.34% lower. Since DBMV —SW contains steps such as
first voting, building tags, and second voting, and each step must be executed in a fixed
order, it consumes part of the operation time on the basis of the preliminary detection based
on the improved XGBoost, resulting in the average detection efficiency reduction of 22.48%
and a real-time measurement index reduction of 7.80%. However, the ratio of the overall
detection accuracy improvement to the efficiency reduction is 1.59, indicating that a small
part of efficiency can be sacrificed to improve accuracy. The effectiveness of DBMV —SW is
thus successfully verified.

3.5. Experiment of LIDAR Dynamic Target Detection Based on Multidimensional Features

Because the LiDAR point cloud in the dataset of this paper is dense, the visibility-based
method is not suitable for dynamic target detection. In addition, voxel-based methods are
all postprocessing methods. The process of constructing the reference benchmark for the
training set employs this kind of method; as a result, it cannot be used as a comparison
method. Therefore, two open-source segmentation-based methods, including a traditional
clustering segmentation method and a learning segmentation method, are selected as
comparison methods. Specifically, the LIDAR dynamic point cloud detection method
based on calculating the similarity scores of the corresponding clusters in adjacent frames
described in Reference [41] is selected as comparison method 1, and the deep-learning-
based LiDAR dynamic point cloud detection method described in Reference [14] is selected
as comparison method 2. Based on the data collected in three test scenes, the LIDAR
dynamic target detection method based on multidimensional features proposed in this
paper is comprehensively evaluated by comparing the detection accuracy and detection
efficiency of these methods.

Using the reference benchmark of each scene, the number of static target benchmarks
and the number of dynamic target benchmarks of each frame point cloud and all frame
point clouds in the corresponding dataset are counted, respectively, as are the number
of static target false detections and the number of dynamic target missed detections for
each method. Following the calculation method of the dynamic target correct detection
rate and the static target error detection rate of each frame point cloud described in Sec-
tion 3.4, time—varying sequence diagrams of the corresponding detection effects of the
three methods in each scene are drawn, as shown in Figures 9-13. The overall dynamic
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target correct detection rate, static target error detection rate, detection efficiency, real-time
measurement index, and mean values of the above indicators of each method on each
dataset are calculated, as shown in Table 3. In addition, the dynamic target is regarded as
the positive sample, and the static target is regarded as the negative sample. The overall
target motion state detection Accuracy, Precision, Recall, F1-Measure, and mean values of
the above indicators of each method on each dataset are calculated, as shown in Table 3.
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Figure 9. Time-varying sequence diagram of the detection effect of the three methods in scene 1: (a) dynamic
target correct detection rate; and (b) static target error detection rate.
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Figure 10. Time-varying sequence diagram of the detection effect of the three methods in scene 2: (a) dynamic
target correct detection rate; and (b) static target error detection rate.
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Figure 11. Time-varying sequence diagram of the detection effect of the three methods in scene 3: (a) dynamic
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target correct detection rate; and (b) static target error detection rate.
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Figure 12. Time-varying sequence diagram of the detection effect of the three methods in scene 4: (a) dynamic
target correct detection rate; and (b) static target error detection rate.
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Figure 13. Time-varying sequence diagram of the detection effect of the three methods in scene 5: (a) dynamic
target correct detection rate; and (b) static target error detection rate.
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Table 3. Comparison of the detection effect and efficiency of the comparison method and our method.

Experimental Comparison Comparison

Index Types Scene Method 1 Method 2 Our Method

Scene 1 12,286 6972 3230

The total number Scene 2 29,904 19,600 12,450
of dynamic Scene 3 27,150 17,527 8205
target missed Scene 4 19,320 13,340 6271
detections Scene 5 4427 1756 1922
Mean value 18,617 11,839 6416
Scene 1 2114 1346 934
Scene 2 8056 4587 3786
The total number Scene 3 4000 2640 1475
of static target Scene 4 4335 4459 1347
false detections Scene 5 504 176 175
Mean value 3802 2642 1543

Scene 1 81.25% 89.36% 95.07%

, Scene 2 76.58% 84.65% 90.25%

The dynamic Scene 3 78.36% 86.03% 93.46%

target correct Scene 4 78.03% 84.83% 92.87%

detection rate Scene 5 77.91% 91.24% 90.41%

Mean value 78.43% 87.22% 92.41%
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Table 3. Cont.

Experimental Comparison Comparison

Index Types pScene Meglod 1 Megmd 2 Our Method
Scene 1 3.08% 1.96% 1.36%
) Scene 2 4.32% 2.46% 2.03%
The static target Scene 3 3.47% 2.29% 1.28%
error detection Scene 4 4.57% 4.70% 1.42%
rate Scene 5 3.09% 1.08% 1.07%
Mean value 3.71% 2.50% 1.43%
Scene 1 89.27% 93.80% 96.90%
The target Scene 2 87.92% 92.30% 94.83%
motion state Scene 3 87.06% 91.62% 95.98%
detection Scene 4 87.06% 90.26% 95.83%
accuracy Scene 5 86.44% 94.69% 94.23%
Mean value 87.55% 92.53% 95.55%
Scene 1 96.18% 97.75% 98.52%
The target Scene 2 92.39% 95.93% 96.82%
motion state Scene 3 96.09% 97.61% 98.76%
detection Scene 4 94.06% 94.36% 98.38%
precision Scene 5 96.87% 99.05% 99.04%
Mean value 95.12% 96.94% 98.30%
Scene 1 81.25% 89.36% 95.07%
Scene 2 76.58% 84.65% 90.25%
The target Scene 3 78.36% 86.03% 93.46%
motion state Scene 4 78.03% 84.83% 92.87%
detection recall Scene 5 77.91% 91.24% 90.41%
Mean value 78.43% 87.22% 92.41%
Scene 1 88.09% 93.37% 96.77%
The target Scene 2 83.75% 89.94% 93.42%
motion state Scene 3 86.32% 91.46% 96.04%
detection Scene 4 85.30% 89.34% 95.54%
Fl-measure Scene 5 86.36% 94.98% 94.53%
Mean value 85.96% 91.82% 95.26%
Scene 1 0.0386 0.0315 0.0289
Detection Scene 2 0.0462 0.0357 0.0316
efficiency Scene 3 0.0415 0.0348 0.0302
(seconds) Scene 4 0.0427 0.0345 0.0307
Scene 5 0.0375 0.0309 0.0282
Mean value 0.0413 0.0335 0.0299
Scene 1 61.39% 68.48% 71.09%
, Scene 2 53.77% 64.26% 68.39%
Real-time Scene 3 58.48% 65.19% 69.83%
measurement Scene 4 57.29% 65.51% 69.32%
index Scene 5 62.52% 69.13% 71.79%
Mean value 58.69% 66.51% 70.08%

Comparison method 1 judges the motion state of the target based on the change in the
velocity and position of the adjacent frame paired point cloud cluster. For dynamic targets
in intermittent static states and those first in static and then dynamic states, this method
cannot effectively detect the above targets in static stages through only the adjacent frame
detection mode. Therefore, as shown in Figures 9a, 10a, 11a, 12a and 13a the dynamic target
correct detection rates in each scene are not high, and the detection effects in scene 2 and
scene 5 are the worst, mainly because the above scenes contain a large number of special
dynamic targets. The detection effect in scene 4 is slightly lower. Due to the rainy weather,
there is an additional systematic error in the LiDAR point cloud measurements, and the
inter-frame distribution of the error is irregular. Therefore, it directly affects the calculation
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accuracy of the velocity and position variation between the paired point cloud clusters and
indirectly affects the detection effect. In addition, because comparison method 1 requires
setting the heuristic threshold as the benchmark to judge the target motion state, the default
threshold has limited applicability to different environments and scenes, resulting in a low
detection robustness. Therefore, the trend of the detection results, as shown by the red
line in all subgraphs over time, generally fluctuates greatly, and the lines corresponding to
different scenes greatly differ.

Comparison method 2 trains the dynamic target detection network in an unsupervised
mode. Although this approach can successfully detect some dynamic targets with the
above special motion states, it is limited by the network structure and cannot effectively
judge the motion state of the occluded target, and the detection effect decreases as the laser
ranging length increases. Therefore, as shown in Figures 9a, 10a, 11a, 12a and 13a, the
dynamic target correct detection rates in each scene are also not high, but the detection
results are generally better than those of comparison method 1, because there is no need to
set the heuristic threshold. Among them, due to the serious occlusion problem between the
dynamic targets in scene 2, the corresponding detection effect of this scene is the worst. For
scene 4, since the detection network trained by this method directly detects the dynamic
target in the single frame point cloud, the above absolute detection mode is sensitive to
the quality of point cloud data. Therefore, when environmental factors lead to a decrease
in point cloud quality, there are more error detection phenomena. This method has the
best detection effect in scene 5. Since there are fewer people in this scene, the occlusion
between the targets is less, and the LIDAR measurement performance is not affected by
the illumination conditions, the trained detection network can effectively identify most
stationary cars and judge them as dynamic targets. As shown in Figures 9b, 10b, 11b, 12b
and 13b, the static target detection effect of comparison method 2 is relatively stable, but
except for scene 5, many point clouds are generated by dynamic target scanning in the
retained static point cloud in other scenes, which does not effectively improve the quality
of the LiDAR point cloud data.

As shown in Figures 9a, 10a, 11a, 12a and 13a, for five different indoor and outdoor
scenes, the dynamic target detection accuracy of our method is greater than 85%, and
the trend of the line is relatively stable, indicating that our method has a high detection
accuracy and robustness for dynamic targets. Among them, the missed detection frequency
of dynamic targets is higher in scene 2 and scene 5 than in the other scenes, primarily
because our method cannot effectively detect dynamic targets that are always in static
states during the data acquisition phase. Compared with the reference benchmark of the
above scenes, static vehicles or temporary stalls existing in the data acquisition process are
regarded as dynamic targets, but these dynamic targets are not detected by our method.
Although the above situation also occurs in the other scenes, the number of these targets is
limited in those scenes, so the detection accuracy is not significantly impacted. In addition,
because our method comprehensively judges the motion state of point cloud clusters by
calculating the multi-dimensional position and geometric structure differences of adjacent
frame paired point cloud clusters, the above relative detection mode is less affected by
environmental factors and the multi-dimensional features ensure the robustness of the
detection process. Therefore, in scene 4, our method still obtains effective detection results. As
shown in Figures 9b, 10b, 11b, 12b and 13b, since our method comprehensively considers the
multi-dimensional information to detect the target motion state and performs a secondary
correction, it can be effectively applied to a situation where dynamic targets block each other
and dynamic targets block static targets in the environment. Therefore, the static target error
detection rate of our method in each scene is relatively stable and generally below 2%. As
shown in Figure 13b, the static target error detection rate of our method is generally below
1.1% in scene 5, and the overall trend is stable, indicating that our method can still maintain a
robust detection ability under weak illumination conditions. Because the static target base in
the actual environment is large, when the static target error detection rate is low, its impact on
the subsequent corresponding point cloud processing work can be ignored.
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The reasons for the ups and downs of the change trend of each broken line in Figures 9-13
are analyzed as follows. Due to the large flow of people or vehicles in scene 1, scene 2,
and scene 4, other targets will appear near the experimental platform at any time. The
above targets will block part of the laser beam, resulting in the loss of more occluded other
targets in the point clouds at this stage. The corresponding numbers of dynamic targets
and static targets are greatly different from those at other times, which leads to the fact
that the dynamic target correct detection rate and the static target error detection rate in
Figures 9, 10 and 12 generally fluctuate greatly with time. Compared with the above three
scenes, due to the small flow of people and vehicles in scene 5, the corresponding detection
rate in Figure 13 is relatively stable with time, and the detection rate will change abruptly
only in individual positions due to the change in the scanning field of view. As shown in
Figure 6c, the environment in the first half of the data acquisition in scene 3 is relatively
empty and secluded. When the experimental platform moves to the leisure area and the
stadium in the second half, the corresponding detection rate in the second half of Figure 11
begins to fluctuate greatly with time due to the occlusion of other targets. In addition,
due to the need to recover data acquisition equipment, the environment at the end of each
data acquisition stage is relatively quiet and the dynamic target detection accuracy of the
corresponding stage in each scene is generally relatively high.

After the above analysis of the limitations of the three methods and their detection
performances in five experimental scenes, the detection effects of the three methods are
quantitatively compared in Table 3. Compared with the two comparison methods, the
average dynamic target correct detection rate of our method is 17.83% and 5.95% greater,
the average static target error detection rate is 61.46% and 42.80% lower, the average
detection efficiency is 27.60% and 10.75% higher, and the average real-time measurement
index is 19.41% and 5.37% higher. The dynamic target correct detection rate is 92.41%,
the static target error detection rate is 1.43%, and the detection efficiency is 0.0299 s. In
addition, compared with the comparison methods, the average target motion state detection
Accuracy, Precision, Recall, and F1-Measure of our method are also significantly improved.
The Accuracy reaches 95.55%, indicating that the target motion state detection accuracy of
our method is high. Precision and Recall reach 98.30% and 92.41%, respectively, indicating
that our method has a strong dynamic target detection ability and also can effectively identify
static targets. F1-Measure reaches 95.26%, indicating that the comprehensive detection ability
of our method for dynamic targets and static targets is relatively balanced and has a strong
robustness. In summary, our method has universal applicability to different experimental
scenes. It can efficiently and accurately detect LIDAR dynamic targets and effectively improve
the quality of LiDAR point clouds by screening dynamic point clouds.

In addition, considering that experimental scene 2 has a large range and contains rich
targets, the point cloud collected in this scene is used as the test dataset to deeply test the
influences of the volume factor, rate factor, and distribution position factor of the targets
on the detection effect of our method. Based on the cloud cluster feature quantification
methods in Section 2.3.1, the volume of the point cloud clusters, the distance between
the center point of the point cloud clusters and the origin points, and the motion rate
of the center point between the adjacent frame paired point cloud clusters are further
calculated. Based on the above indicators, each point cloud cluster in the test dataset is
divided into nine categories according to the rules shown in Table 4. The dynamic target in
each category is regarded as a positive sample and the static target is regarded as negative
sample. The target motion state detection Accuracy, Precision, Recall, and F1-Measure of
different categories are calculated, as shown in Table 5.

Table 4. Point cloud clusters classification rules.

Classification Indications Category 1 Category 2 Category 3
Volume factor (m?) [0, 2] (2,15) [15, +00]
Rate factor (m/s) [0, 5] (5, 10) [10, +o0]
Distribution position factor (m) [0, 15] (15, 30) [30, +o0]
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Table 5. The detection effect of different categories in scene 2.

Classification Indications Accuracy Precision Recall F1-Measure
Category 1 94.46% 97.10% 89.04% 92.90%
Volume factor Category 2 94.96% 97.33% 90.06% 93.55%
Category 3 95.09% 97.01% 90.73% 93.76%
Category 1 93.90% 96.81% 87.88% 92.13%
Rate factor Category 2 95.25% 97.05% 91.09% 93.97%
Category 3 95.21% 97.11% 90.93% 93.92%
Distributi ... Category 1 95.34% 97.04% 91.32% 94.09%
istrl ‘}tlon POsttion  cateonry 2 94.80% 96.85% 90.14% 93.37%
actor Category 3 92.82% 94.87% 87.03% 90.78%

As shown in the quantitative results of the detection effect in Table 5, the difference
between the detection effects of the above nine categories is generally small and the
detection effects of the three categories corresponding to different volume factors are
similar. In the categories of rate factor, only the detection effect of the first category is
slightly worse, and in the categories of distribution position factor, only the detection
effect of the third category is worse. The reasons for the analysis are as follows. Our
method extracts twelve features to construct the point cloud cluster classification feature
system, which covers one-dimensional to three-dimensional, length to volume, and other
features. When judging the motion state of the point cloud clusters, the above features
play comprehensive roles. Therefore, even if there are abnormalities in the quantitative
results of individual features, our method can still obtain robust detection results, so the
corresponding detection effects of each category are generally less different. Except for the
three-axis displacement feature, the remaining features in the feature system of our method
are quantified by calculating the relative change degree. Therefore, the factors related to
the geometric structure of the point cloud cluster will not affect the detection effect of our
method. As a result, the detection effect between the categories corresponding to different
volume factors is similar. Since our method cannot effectively detect the dynamic targets
that always remain stationary during whole data acquisition, and these targets belong to
the first category of the rate factor, the corresponding detection effect is slightly worse. The
point cloud clusters contained in the third category of the distribution location factors are
distributed in a range greater than 30 m from the origin. This category of target is usually
generated by the residual laser beam after occlusion by many close-range targets. Because
the distance between the laser scanning beam continues to expand with the scanning
distance, the probability of an abnormal occurrence of the corresponding twelve features
of these targets after quantification is generally large, resulting in poor detection results.
However, due to the small number of these targets and their minimal role in point cloud
inter-frame registration, point cloud model construction, and other related work, not too
much energy needs to be spent to improve the detection effect of such targets. In summary,
the detection effect of our method for LiDAR target motion state is less affected by factors
such as volume and rate, and has a strong robustness.

4. Conclusions and Discussion
4.1. Conclusions

Aiming at the problem of current LIDAR dynamic target detection methods requiring
heuristic thresholding, indirect computational assistance, supplementary sensor data, or
postdetection, this paper proposes a LIDAR dynamic target detection method based on
multidimensional features to detect the motion states of LIDAR point clouds with high
efficiency and high precision. The method is analyzed and summarized using relevant
experimental results.

e Inthis paper, 12 kinds of point cloud cluster features are extracted and quantified from
the perspective of differences between the multidimensional positions and geometric
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structures of adjacent frame paired point cloud clusters. These features include uniax-
ial displacement, uniaxial span change degree, biaxial projection area change degree,
point cloud number change degree, and other information, and are selected to ensure
that the constructed point cloud cluster classification feature system is comprehensive.
By constructing an a priori point cloud map and using the descriptor comparison
method based on the voxel-based method, the motion state classification label is auto-
matically assigned to the point cloud cluster in batches, avoiding human error. Based
on the above point cloud cluster classification feature system and classification label
quantization method, an experimental platform is built to collect data from real indoor
and outdoor scenes to construct the model training dataset. To ensure the universal
applicability of the LIDAR dynamic target detection model, the training set acquisition
scene in this paper contains five representative indoor and outdoor environments.
The training dataset of the proposed model contains many samples and the point cloud
cluster classification feature system contains many classification features. Therefore,
to account for the accuracy and efficiency of the LIDAR dynamic target detection
model, the SCC—BSDR strategy is applied to the XGBoost training process. The
test dataset is obtained from the UCI machine learning database and an ablation
experiment is designed to verify the effectiveness of the above strategy. The results
show that our algorithm is superior to the comparison algorithms when considering
both classification accuracy and training efficiency. SCC—BSDR ensures that our
method has a wider applicability and improves the average model training efficiency
by 50.38%.

Through model training, the optimal classification feature subset and corresponding
XGBoost detection model are obtained. Considering the mechanical nature of machine
learning and the influence of special dynamic targets on detection, a DBMV—-SW
strategy is proposed to correct the preliminary detection results of XGBoost twice. An
ablation experiment is also designed to verify the effectiveness of this strategy. The
results show that, after DBMV —SW correction, the number of dynamic target missed
detections is reduced by 40.29%, the number of static target false detections is reduced
by 14.34%, and the detection efficiency is reduced by 22.48%. The ratio of the accuracy
improvement rate to the efficiency reduction rate is 1.59, indicating that this strategy
sacrifices a small part of the operation efficiency but obtains a large improvement
in accuracy.

To comprehensively evaluate the detection effect of our method on LiDAR dynamic
targets, two open-source LiDAR dynamic target detection methods based on the
segmentation-based method are selected for comparison. The results show that the
dynamic target correct detection rate of our method is 92.41%, the static target error
detection rate is 1.43%, and the detection efficiency is 0.0299 s. Compared with those
of the other two methods, the dynamic target correct detection rate of our method is
17.83% and 5.95% higher, the static target error detection rate is 61.46% and 42.80%
lower, the detection efficiency is 27.60% and 10.75% higher, the real-time measurement
index is 19.41% and 5.37% higher, and other comprehensive evaluation indexes are
also significantly improved. Since our method comprehensively considers the multidi-
mensional features between paired point cloud clusters to detect the motion states of
point cloud clusters and constructs an optimal point cloud cluster classification feature
subset and detection model, the detection accuracy and efficiency have significant
advantages, and it has universal applicability for different scenes or conditions.
Usually, LIDAR can meet most of the work requirements by collecting point clouds at
the frequency of 10 Hz, and the corresponding point cloud inter-frame time interval is
0.1's. At present, the average detection efficiency of our method for a frame of point
cloud is 0.0302 s. Therefore, our method can be used as a point cloud preprocessing
module for various practical works based on point cloud data. It is used to filter out
dynamic point clouds to improve data quality, so as to ensure that the subsequent
corresponding work results are more reliable.
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The point cloud double registration method proposed in this paper can register the
center point sets of the adjacent frame point cloud clusters and obtain an effective pose
relationship. It can be used alone to provide the initial value of the pose relationship
for the SLAM registration algorithm based on the whole point cloud, thereby acceler-
ating the convergence speed and improving accuracy. In addition, the SCC—-BSDR
proposed in this paper can also be transplanted to other multi-dimensional feature-
based machine learning methods to screen optimal feature subsets, thereby improving
data processing efficiency and ensuring excellent results.

4.2. Discussion

In this section, according to the experimental results and the corresponding conclu-

sions, the advantages, shortcomings, and factors affecting the detection effect of our method
and future research directions are discussed.

Compared with other existing LIDAR dynamic target detection methods, our method
does not require setting heuristic thresholds or using auxiliary processes such as
plane projection and grid division. Furthermore, our method can directly detect
the motion state of each point cloud cluster in the LiDAR point cloud. Since our
method comprehensively detects the motion state of the target based on the multi-
dimensional position and geometric structure difference between the adjacent frame
paired point cloud clusters, and the preliminary detection results are corrected for
the second time, the detection effect of our method is less affected by factors such
as the volume, rate, and distribution position of the targets, and it has a universal
applicability to different environments. Even under non-ideal conditions such as
severe target occlusion, a complex scene structure, or rainy weather, our method can
still maintain a strong robustness.

In addition to the composition of the classification feature system, the secondary
correction effect of the DBMV —SW strategy is a key factor that determines the final
detection accuracy and efficiency. By analyzing the factors that can affect the above
correction effect, three main factors are identified in this paper: the number of special
dynamic targets, the frequency of motion state changes, the occlusion between targets,
and the fitting function error. Specifically, the greater the number of dynamic targets
with an intermittent static state or a first static and then moving state, or the greater
the frequency of motion state changes, the more frequently the corresponding fitting
labels and slope labels of these kinds of point cloud clusters will change. This will
result in a greater probability of errors in the voting link in the secondary correction;
this probability can be weakened by optimizing the voting strategy. The more serious
the occlusion between the targets or the more common the occlusion phenomenon
is, the more point cloud clusters that must be corrected or judged in depth after the
voting process, increasing calculation costs. The error of the fitting function has little
effect and can be weakened by optimizing the form of the fitting function; however,
the first-order linear function can meet the current accuracy requirements and ensure
a high data processing efficiency.

Although our method achieves a high detection accuracy and efficiency, it is unable to
effectively detect dynamic targets that remain stationary during whole data acquisi-
tion. To address the above problem, in the future research work, semantic information
can be added to the point cloud cluster during the training process and dynamic
targets can be eliminated by semantic label assistance, but the data processing work-
load of the scheme is significantly increased. In addition, a suitable scheme can be
designed to correct the detection results of our method afterwards, but it can only
meet post-application requirements. How to ensure its real-time performance needs
to be further studied.

With an increase in point cloud acquisition frequency, the detection efficiency of our
method limits its application ability. When the point cloud is collected at the frequency
of 20 Hz, the corresponding point cloud inter-frame time interval is 0.05 s. Although
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it is greater than the time required for the detection of our method, if it is used as a
preprocessing module for other work, the overall work may find it difficult to meet the
real-time performance. To address the above problem, more efficient machine learning
methods or an improved fitting function form and voting process in DBMV—SW are
considered in future research work, so as to improve the computational efficiency of
our method.

e At present, our method can be applied to non-ideal conditions such as weak illu-
mination or rainy weather. However, for extreme weather conditions such as haze
days, heavy rain days, and heavy snow days, due to the high density of water or
impurities in the atmosphere, the measurement performance of LiDAR is greatly
affected, which, in turn, greatly affects the quality of the original point cloud, which
eventually leads to a decrease in the detection accuracy of our method or even making
it unusable. In future research work, for the case of less influence, it is considered
to add an atmospheric correction module to compensate for the measurement error,
thereby improving the quality of the point cloud. For the case of large influence, we
consider using Radio Detection and Ranging (Radar) with a stronger penetration to
collect data, and use our method to fuse and solve, so as to obtain effective dynamic
target detection results.
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Abstract: With the increasing demand from unmanned driving and robotics, more attention has been
paid to point-cloud-based 3D object accurate detection technology. However, due to the sparseness
and irregularity of the point cloud, the most critical problem is how to utilize the relevant features
more efficiently. In this paper, we proposed a point-based object detection enhancement network
to improve the detection accuracy in the 3D scenes understanding based on the distance features.
Firstly, the distance features are extracted from the raw point sets and fused with the raw features
regarding reflectivity of the point cloud to maximize the use of information in the point cloud.
Secondly, we enhanced the distance features and raw features, which we collectively refer to as
self-features of the key points, in set abstraction (SA) layers with the self-attention mechanism, so that
the foreground points can be better distinguished from the background points. Finally, we revised
the group aggregation module in SA layers to enhance the feature aggregation effect of key points.
We conducted experiments on the KITTI dataset and nuScenes dataset and the results show that the
enhancement method proposed in this paper has excellent performance.

Keywords: 3D object detection; distance features; SA layer enhancement

1. Introduction

With the development of unmanned driving and other technologies, understanding
3D scenes based on the point cloud has become a popular research topic. Compared to
traditional images, point cloud data have unique advantages. The strong penetration of
LiDAR makes the point cloud less susceptible to external factors such as weather and
light. However, point clouds are also characterized by sparseness and disorder, and the
reflectivity of LIDAR decreases as the measurement distance increases. This leads to poor
characterization of objects at a distance, causing a drop in detection accuracy. How to deal
with these characteristics of point clouds has become the key to improving accuracy in 3D
detection tasks.

In recent years, to efficiently utilize the information provided by the point cloud,
researchers have proposed a number of schemes, as shown in Figure 1. These are mainly
divided into two types based on different processing methods:

(a) Grid-based methods, which partition the sparse points into regular voxel or pillar
grids, and process them through 3D or 2D convolutional networks.

(b) Point-based methods, which directly perform feature learning on point sets with SA
which are most often utilized to sample the key points and aggregate features.

Compared to the point-based methods, the grid-based methods increase the computa-
tional speed of network inference, but also cause information loss during the voxelization.
Therefore, to ensure the full utilization of information in point sets, a point-based methods
enhancement network is proposed in this paper.
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Figure 1. Overview of related work.

The core of the point-based 3D object detection methods is the SA layer, which was
first proposed by Qi et al. [1]. In prior research, the SA layer has been revised using many
methodologies, and how to fully utilize the information of each point and reduce inference
time has become a priority in point-based methods. In 3DSSD [2], to speed up the inference,
researchers first adopted a 3D single stage object detector and proposed a feature-based
farthest point sample module (F-FPS). This module utilizes the feature information of the
point sets to sample key points in order to maintain adequate interior points of different
foreground instances. SASA [3] uses a semantic-segmentation-based farthest point sample
module (S-FPS), which utilizes point cloud features distinguish the foreground points from
the background points through a small semantic segmentation module to better access
key points. However, the point cloud features used by these algorithms only utilize the
raw features of the point cloud, i.e., the reflectivity and 3D coordinates that reveal spatial
information of each point in the point cloud, and distance characteristics are not taken into
consideration. In the actual measurement, due to the attenuation characteristics of LIDAR
and the limitation of the observation angle, the reflectivity of the measured point decreases
as the object moves further away, and the projection of the object in the point cloud also
decreases.

Therefore, based on the distance characteristics related to the point cloud, we propose
three feature enhancement modules to more efficiently utilize the semantic information
contained within the point cloud. Firstly, we propose the initial feature fusion module, in
which the distance feature is extracted from the point cloud and incorporated with the raw
features of each point. Secondly, we introduce a key point feature enhancement module.
During the group aggregation in SA, the self-characterization of the key points will be
weakened, but it is crucial for distinguishing whether the key point is a foreground or
background point. Therefore, after each sampling aggregation, the multi-attention mecha-
nism is used to strengthen the features of key points and fuse them with the aggregated
features. Finally, to enhance the effect of group aggregation in SA, we revised the original
grouping module. In the original module, multiple points nearest to the key points are
taken to participate in feature aggregation after sampling over the key points. However,
only the spatial location is considered, which may result in features belonging to different
categories being mixed together during the aggregation process. This leads to a decrease
in the performance of the semantic segmentation module before S-FPS, which in turn
degrades the sampling effect of S-FPS. Therefore, we optimize the grouping module by
selecting the points with the closest features as the aggregation points from among multiple
points closest to the key points.

In summary, the main contributions of this article are summarized as follows:
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e  We propose a key points self-features enhancement module to enhance the self-features
of the key points. In this module, we introduce the multi-attention mechanisms to
enhance the raw features and distance features to retain the semantic information of
the key points as much as possible during each SA layer.

e  We propose an initial feature fusion module to extract the distance features of the
point cloud and fuse the distance features into the raw features of the point sets. This
module makes the features of the distant points more significant and thus improves
the detection accuracy of the distant instances.

o  We revise the group aggregation module in the set abstraction. We make a second
selection after the first selection of points within a fixed distance around the key point.
In second selection, we take the features into account to enhance the sampling effect
of S-FPS.

2. Related Work

Since the growing data on point clouds bring huge challenges to existing point cloud
processing networks, it is important to compress the point cloud before processing it.
Different compression algorithms used may affect the subsequent detection effect. For
example, Sun X et al. [4] optimized the processing of large-scale point cloud data and their
algorithm [5] further streamlines the network for point cloud processing. The algorithm [6]
makes the spatial distribution of the compressed point cloud more similar to the original
point cloud, which is very useful for subsequent point cloud processing.

The point cloud compression algorithms mentioned above play a significant role in
the point cloud detection algorithms we will discuss next.

2.1. Grid-Based Methods

Grid-based methods are mainly divided into two categories: voxel-based methods and
pillar-based methods. In voxel-based methods, an irregular point cloud is first con-verted
into regular voxels, which are then fed into the network. Voxel-Net [7] is a pioneering
network that converts point cloud into voxels, and then utilizes 3D convolutional networks
to predict 3D bounding boxes. Yan et al. [8] proposed 3D sparse convolution, which reduces
the computation of traditional 3D convolution and greatly improves the detection efficiency
of voxel-based detection networks. Voxel-Transformer [9] and Voxel Set Transformer [10]
introduce modules such as Transformer [11] and Set Transformer [12], respectively, on the
basis of voxels to improve the detection accuracy. SFSS-Net [13] is a unique algorithm to
filter background points before the voxelization to reduce computational complexity. Pillar-
based methods such as Point Pillars [14] divide the space into regular pillars, which are
compressed and then fed into a 2D convolutional network, greatly increasing the network
inference speed. Pillar Net [15] uses a sparse convolutional-based encoder network for
spatial feature learning, and the Neck module for high-level and low-level feature fusion
to improve the accuracy of pillar-based detection methods. Pillar Next [16] first compares
different local point aggregators (pillar, voxel and multi-view fusion) from the perspective
of computational budget allocation. Research shows that pillars can achieve better perfor-
mance compared to voxels. Grid-based methods lose more semantic information in the
process of converting an irregular point cloud into regular voxels or pillars. This may lead
to poor performance in the final detection accuracy.

2.2. Point-Based Methods

Point-based methods generally perform feature extraction directly on the point sets.
This approach obtains key points and aggregates points around them by means of sampling
and group aggregation for feature extraction. Point-based methods were first proposed by
Qi et al. [17] and later improved and refined by Qi et al. [1]. Shi et al. [18] first proposed
to extract the foreground points by segmentation and utilize the features of these points
for the bounding box regression to improve the detection accuracy. Yang et al. [2] utilized
one-stage detection to improve the inference speed and proposed the F-FPS, to make the
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sampled key points closer to the foreground instances. SASA [3] is used to predict scores
of each point by a small semantic segmentation module to make abstracted point sets focus
on object areas. Chen et al. [19] introduced density information from point clouds using
the Multilayer Perceptron (MLP) and integrated it with features extracted by grouping
operations in the point-based method.

Since point-based 3D object detection is directly processing the point sets, point-based
methods result in high computational consumption and long network inference time.
However, relative to the voxel-based methods, point-based methods can maximize the
retention of the semantic information of the point cloud and achieve higher detection
accuracy. Therefore, this paper adopts the point-based object detection network and aims
to utilize the original information of the point cloud more efficiently.

3. Proposed Methods

In this section, we will introduce in detail the network architecture of the SAE3D
proposed in this paper. This enhancement network consists of three main parts: an initial
feature fusion module, a key points self-features enhancement (KSFE) module and a revised
group aggregation (RGA) module.

As shown in Figure 2, the overall architecture is a one-stage point-based 3D object
detection network. Firstly, we define the raw points fed into the network as P; the initial
feature fusion module extracts the distance features and integrates initial features of each
point in P. After integration, we feed P into the backbone, which contains three SA layers,
and we refer to the input of each SA layer as P;. In SA layers, we first sample the key
points K from P;, and then we feed K into the key points feature enhancement module to
enhance the self-features of K. After enhancement, we obtain K;. Finally, the revised group
aggregation module is used to aggregate the points around Kj to obtain the aggregated key
points Kj. Kj is the final output of each SA layer.

One Stage Points-Based 3D Detection Pipeline
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Figure 2. Overall flowchart. The raw point cloud P goes through the initial feature fusion module to
get Py, P1 is input to the backbone, backbone consists of three SA (set abstraction) layers. P; is first
put through the down sampling and then through the KSFE (key points self-feature enhancement
module) to get K1, and finally through the RGA (revised group aggregation module) to get K».

After the backbone is complete, to improve the prediction accuracy, this paper adopts
the bounding box prediction mechanism in Vote-Net [20] to predict the bounding box
similarly to SASA [3].

We will explain each module in detail below.

151



Sensors 2024, 24, 26

3.1. Initial Features Fusion Module

Before the SA layers, we utilize the initial features fusion module to extract the distance
features and integrate these with features of the raw point sets. The relevant features of the
raw point cloud are very sensitive to the measurement distance. In the actual measurement,
as the distance increases, the reflectivity of LIDAR decreases, which leads to the problem
that the features of the long-distance points are not obvious and thus reduce the detection
accuracy. Therefore, we believe that distance features are very important for improving
target detection accuracy.

3.1.1. Distance Features

Traditional algorithms often involve calculations such as squares and roots when
calculating distance. This costs a lot of computational resources if we directly let distance
represent the distance feature of each point in the point clouds. Therefore, our distance
feature is defined as follows:

_ el + lypl + 12

DFy Scale

pePp (1)

where P is the raw point set, DF, and (xp, yp, Zp) represent the distance feature and the
coordinates of the p, respectively. Scale is the scaling factor. We utilize the sum of absolute
values of the three-axis coordinates of p to represent the distance of a point. The Scale will
be set in the experiment.

3.1.2. Feature Fusion

We process the initial feature fusion as shown in Figure 3. Since the reflectivity of each
point decreases with the increase of the measurement distance, we adopt the approach
of adding distance features with the initial features of the point cloud to strengthen the
representation of long-distance points. Finally, we perform fusion operations on the
coordinates and related features of the point cloud through the splicing operation. However,
these features have not been processed enough, so we use the Multilayer Perceptron (MLP)
to further extract the depth features.

N,1)
' X (NF)
v o || @@= ||| = [ =
Points features U

(N,3)
Output features

N,3) Abs & averagepool L)
Raw Points ) >

Distance features

Points coordinates

Figure 3. Initial features fusion module (where N stands for the number of input point clouds and
F stands for the number of feature layers for each point in the output. “C” represents the stitching
operation and “+” represents the numerical summing operation.).

3.2. Key Points Features Enhancement Module

In SA layers, the key points obtained from the sampling will undergo feature aggrega-
tion with the surrounding points, and the self-features of the key points will be diminished
after aggregation with max or average pooling. However, each key point has its own
unique features in the point cloud data, and these features contain important information
included where the key point is located in the point cloud and what kind of object the key
point represents. However, the feature aggregation will cause the loss of such information.
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Therefore, we propose a key points self-feature enhancement module as shown in Figure 4,
which enhances the distance features and raw features of the key points, integrating them
into the aggregated features.

Keypoints Distance features = Keypoints features

(N, Ci)

Previous layer features Output features

Figure 4. Key points self-features enhancement module (where N is the number of key points
after sampling, and C; is the number of feature channels in each stage. “C” stands for the stitching
operation and “+” stands for the numerical summing operation.).

Feature Enhancement Module

In order to make the self-features of the key points distinctive, we adopt the multi-
attention mechanism to enhance the distance features and raw features of the key points.
The features are strengthened through the multi-head self-attention mechanism; the self-
attention algorithm essentially uses matrix multiplication to calculate the relationship
between each patch and the other patches in the query. The specific formulas are as follows:

QK”

Attention(Q, K, V) = Softmax(
Vi

4 @)

Q=FxW, (3)
K =F x Wi (4)
V=FxW, ®)

where F is the self-features of the key points, W;, Wy and W, are the learnable weight
matrices. Equations (3)—(5) represent that F obtains Q, K, and V through three separate
MLPs. After obtaining Q, K, and V, we use Equation (2) to finally obtain the attention
features. After that we employ the splicing method to combine them together. Finally, we
carry out the integration of the aggregated features of the key points with their self-features
using the MLP to accomplish the enhancement of self-features of key points.
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3.3. Revised Group Aggregation Module

In the process of sampling key points, we follow the S-FPS and D-FPS combined
sampling strategy, which is similar to that of SASA [3]. A small semantic segmentation
module is adopted in the network structure to compute the classification score for each
point to distinguish between foreground and background points in the point cloud. The
input features to the segmentation network are those obtained from grouping of the point
sets. In the general grouping operation, the selection of points used for aggregation around
the key points only considers the spatial location from the key points, not taking into
account the feature distance from the key points. In this paper, it is argued that this
aggregation operation diminishes the borderlines of the different instances and reduces
the effectiveness of the segmentation module in predicting the classification scores of each
point in the network, thus affecting the sampling performance of S-FPS. To avoid these
problems, we perform a second selection after selecting points within a certain distance
from each key point. In the second selection, we introduce the feature distance to ensure
that the features of the selected points are similar to those of the key point. By doing so, we
can enhance the performance of the segmentation in this network.

Group Aggregation Method

The particular operation is shown in Figure 5. First, we select N points as a point set
Py within the sphere with radius R around the key point, and calculate the feature distance
Dy between the points and the key points, which we define as follows:

Df = fkeypoints — fn neN (6)

where fieypoints and f, separately represent the features of the key points and the features
of the points around the key points. Before calculation, these features will go through a
simple MLP to ensure that the features channel is one-dimensional. After obtaining D,
we select the Ny points with the smallest D (k=1, 2, ..., Ni) in Py as a point set Pn. The
Ppi will be used for subsequent features aggregation. In this way, we further strengthen
the semantic information of the key points. This can help S-FPS to better distinguish the
foreground points from the background points before sampling.

Input Points - Poutput

Figure 5. Revised group aggregation module (points with similar colors in the figure represent
similar features, Py is the point obtained by the first selection around the key point, Py is the point
obtained by the second selection, and Poypy is the final point output after group aggregation).

3.4. Prediction Head

The overall architecture in this paper consists of three SA layers with a bounding box
prediction network. Similarly, our bounding box prediction network adopts the bounding
box prediction mechanism from Vote-Net [20]. The voting point indicating the center of
mass of the corresponding object is first computed from the candidate point features, and
then the points in the vicinity of each voting point are aggregated to estimate the bounding
box of the detected target.
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3.5. Loss

The loss function in SAE3D is inherited from SASA [3]. The overall loss function is
expressed as follows:
L:Lv+Lc+Lr+Lseg (7)

where L, and L, are the losses for the classification and regression, L, is the loss generated
when calculating the vote in the point voting head proposed in Vote-Net [20]. Ls, is the
total segmentation loss proposed in SASA [3].

L. and L, are the traditional losses for object detection. They can help the network
better predict the bounding box and classification of the object to be detected. L, mainly
serves to predict the center point of the object to improve the accuracy of bounding box
prediction. Lsee mainly serves to perform semantic segmentation before the S-FPS to better
differentiate between foreground and background points. This can improve the sampling
capability of the S-FPS. Therefore, we adopt these loss functions to better train our model.

4. Experiment
4.1. Datasets

The network we proposed is validated on the KITTI dataset and nuScenes dataset.

4.1.1. KITTI Dataset [21]

The KITTI dataset is a widely used public dataset in the field of computer vision,
which is primarily utilized to study and evaluate tasks such as autonomous driving, scene
understanding, and target detection. The dataset is based on the streets of Karlsruhe,
Germany, and comprises a wide range of urban driving scenarios. The KITTI dataset
has become the mainstream standard for 3D object detection in traffic scenes due to its
provision of data from real-world scenarios with a high level of realism and representative
value.

In the original KITTI dataset, each sample comprises multiple consecutive frames of
point cloud data. In our experiment, a total of 7481 point clouds are included along with
3D bounding boxes for training purposes, and 7581 samples are allocated for testing. We
adopt a general setup where the training samples are further subdivided into 3712 training
samples and 3769 testing samples. Our experimental network is trained on the training
samples and validated on the testing samples.

4.1.2. NuScenes Dataset [22]

The nuScenes dataset is one of the more challenging datasets for autopilot research.
It comprises 380,000 LiDAR scans from 1000 scenes and is labeled with up to 10 object
categories, including 3D bounding boxes, object velocities, and attributes. The detection
range is 360 degrees. The nuScenes dataset is evaluated using metrics such as the commonly
used mean Average Precision (mAP) and the novel nuScenes Detection Score (NDS), which
reflects the overall quality of measurements across multiple domains.

When transferring the nuScenes dataset, we combine LiDAR points from the current
key frame and previous frames within 0.5 s, which involves up to 400 k LiDAR points in a
single training sample. We then reduce the number of input LiDAR points. Specifically, we
voxelize the point cloud from the key frame as well as the stacked previous frames with
pixel sizes of (0.1 m, 0.1 m, 0.1 m), then randomly select 16,384 and 49,152 voxels from the
key frame and the previous frames, respectively. For each selected voxel, we randomly
select one internal LiDAR point. A total of 65,536 points were fed into the network with 3D
coordinates, reflectivity, and timestamps.

4.1.3. Evaluation Indicators

In the experiment on the KITTI dataset, two precision metrics are used. One is the
11-point interpolated average precision (AP) proposed by Gerard et al. [23], and the other is
the average precision AP | g9 for 40 recalled positions proposed by Simonelli et al. [24]. The
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Intersection over Union (IoU) threshold for all precision calculations is 0.70. The specific
formulas of AP | g are as follows:

AP|R = - Y pinterp(r) ®)
|R| reR
pinterp(r) = max p(r') ©)

where p(r) gives the precision at recall . AP applies exactly 11 equally spaced recall levels:
Ry1=1{0,0.1, 0.2, ...,1} and AP | r4g applies recall levels: Rqo = {1/40, 2/40, 3/40,..., 1}.
We mainly use AP as an accuracy indicator and AP | r4g will be applied in the ablation
experiment in Section 4.5.

In the nuScenes dataset, as mentioned above, we apply the NDS and mAP as the
evaluation indicator. The specific formulas for NDS are expressed as follows:

NDS = = |5maP + Y. (1 —min(1,mTP)) (10)
10 mTPeTP

where mTP is the mean True Positive metrics and consists of 5 metrics: average translation
error, average scale error, average orientation error, average velocity error, and average
attribute error.

4.2. Experimental Setting

SAE3D is implemented based on the Appended [25] and is trained on a single GPU.
All experiments were performed on Ubuntu 16.04 and NVIDIA RTX-2080Ti.

4.2.1. Setting in KITTI Dataset

During the training process, the batch size takes the value of 2, and 16,384 points are
randomly selected from the remaining points in each batch to input into the detector. In
terms of network parameters, the number of key points in the three SA layers is set to 4096,
1024, and 512, respectively, and the scaling factor Scale for the distance feature takes the
value of 120.

Adam optimizer [26] and a periodically varying learning rate were adopted in the
training for a total 80 epochs, with the initial value of the learning rate set to 0.001. Ad-
ditionally, we used three commonly used data augmentation methods during training:
randomly flipping the X-axis with respect to the Y-axis, random scaling, and randomly
rotating the Z-axis.

4.2.2. Setting in nuScenes Dataset

During the training process, the batch size takes the value of 1. Adam optimizer and
a periodically varying learning rate were adopted in the training for a total of 10 epochs,
with the initial value of the learning rate set to 0.001.

To handle the huge number of points in the nuScenes dataset, four SA layers are
adopted. The number of key points in these four SA layers is set to 16,384, 4096, 3072, and
2048, respectively.

4.3. Results

The detection performance of the SAE3D model is evaluated on the KITTI dataset and
nuScenes dataset against some existing methods proposed in the literature.

In the KITTI dataset, the test set is categorized into three levels of difficulty, i.e., “Easy”,
“Moderate”, and “Hard”, based on the difficulty of detection. We take the 3D bounding box
average precision (3D AP) of the “Car” category as the main evaluation, as this is usually
adopted as the main indicator in KITTI datasets. As shown in Table 1, compared with the
baseline network SASA, 3D AP is improved by 0.544% and 0.648% in the difficulty levels of
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“Moderate” and “Hard”, respectively. The detailed precision improvements will be shown

in Section 4.5.

In the nuScenes dataset, as shown in Table 2, compared with the baseline network,
SAE3D achieved 3.3% and 1.7% improvement in the indicators of NDS and mAP, respec-

tively.

Table 1. The detection results of 3D AP for “Car” in KITTL

Method Car 3D AP (%)
ethods Easy Moderate Hard
SECOND [8] 84.656 75.966 68.712
Voxel Net [7] 77.478 65.119 57.736
Point Pillars [14] 82.588 74.317 68.995
Point-RCNN [18] 89.023 78.246 77.554
Vox Set Tran [10] 88.869 78.766 77.576
SASA [3] 89.108 78.847 77.588
SAE3D 89.059 79.391 78.236

Table 2. Results from the nuScenes validation set. Evaluation metrics include NDS, mAP, and 10

classes. Abbreviations: pedestrian (PED.), traffic cone (T.C.), construction vehicle (C.V.).

Methods NDS mAP Car Truck Bus Trailer C.V. Ped. Motor Bicycle T.C. Barrier
Point Pillars [14] 45.2 25.8 70.3 329 449 18.5 42 46.8 14.8 0.6 7.5 21.3
3DSSD [2] 51.7 34.5 75.9 34.7 60.7 214 10.6 59.2 25.5 7.4 14.8 255
SASA [3] 55.3 36.1 71.7 422 63.5 29.6 12.5 62.6 27.5 9.1 12.2 30.4
SAE3D 58.6 37.8 724 441 62.7 31.2 15.9 60.4 30.1 12.8 10.1 31.6

4.4. Enhancement Validation

To verify the enhancement effect of the proposed network in this paper, we utilize
SASA [3] and Point-RCNN [18] as two baseline networks for testing in the KITTI dataset.
Both baseline networks are point-based 3D object detection networks, where SASA [3] is a
one-stage object detection network and Point-RCNN [18] is a two-stage object detection
network. The experiments introduce the enhanced network proposed in this paper into
both of these networks, effectively improving the detection performance of the original

benchmark network.

Table 3 shows the improvement in the accuracy of the 3D detection frames of the “Car”
category in the enhanced networks of SASA [3] and Point-RCNN [18], respectively.

Table 3. Enhancement effectiveness. Abbreviations: Distance features-based enhancement network

proposed in this paper (SAE3D).

Method Car 3D AP (%)
ethods Easy Moderate Hard
SASA [3] 89.108 78.847 77.588
SASA [3] + SAE3D 89.059 79.391 78.236
Improvement —0.049 +0.544 +0.648
Point-RCNN [18] 89.023 78.246 77.554
Point-RCNN [18] + SAE3D 89.160 78.839 78.439
Improvement +0.137 +0.593 +0.885

After the introduction of the enhanced network in SASA [3], the 3D AP of the “Car”
decreases slightly in the “Easy” difficulty, but increases by 0.544% and 0.648% in the
“Moderate” and “Hard” difficulties, respectively.
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After introducing the enhanced network in Point-RCNN [18], the accuracy of the
3D AP is improved by 0.137%, 0.593%, and 0.885% in “Easy”, “Moderate”, and “Hard”
difficulties, respectively.

4.5. Ablation Experiment

In this paper, ablation experiments are designed to verify the actual effect of each
module. All modules are trained on the training set of the KITTI dataset and evaluated on
the validation set for the “Car” category of the KITTI dataset.

In this section we added BBox AP, BEV AP, and AOS AP alongside 3D AP as the
evaluation indicator. BBox AP represents the average precision of the 2D bounding box,
while BEV AP denotes the average precision of the detection boxes in bird’s-eye view.
These two indicators provide detection box accuracy from different perspectives, aiding
in a better understanding of the spatial precision of the detection boxes predicted by our
model. AOS AP stands for the average precision of the detected target’s rotation angle,
indicating the accuracy of the object orientation predicted by our model.

4.5.1. Initial Feature Fusion Module

As shown in Table 4, the initial feature fusion module proposed in this paper is
of great help to improve the precision of 3D bounding box. The improvement of this
module is most evident in the difficulty levels of “Moderate” and “Hard”. Compared to
the baseline network used in this paper, in the “Moderate” and “Hard” difficulty levels, the
3D bounding box accuracy improvement of this module is 0.551% and 0.811%, respectively.
Additionally, the improvement in 2D bounding box accuracy is 0.186% and 0.811%, while
the bounding box accuracy improvement in BEV view is 0.257% and 1.048%, respectively.

Table 4. Comparison table of the general accuracy enhancement effect of different modules. Abbrevi-
ations: initial feature fusion module (I), KSFE module (K), and RGA module (F).

I K r Car 3D AP (%) Car BBOX AP (%) Car BEV AP (%) Car AOS AP (%)
* * * Easy Mod Hard Easy Mod Hard Easy Mod Hard Easy Mod Hard
89.108 78.847 77.588 96.742 89.855 89.036 90.199 87.855 85.993 96.71 89.75  88.88
Vv 88.971 79.246 78334 96.473 89.847 89.163 90.317 88.420 87.342 9644 89.81 89.07
Vv 89.213 79.324 78.114 96.813 90.171 89.412 89.876 89.397 86976 96.54 90.08 89.11
Vv 89.167 79.398 78.399 96.668 90.041 89.287 90.149 88.112 87.041 96.64 8998 89.12
v Vv Vv 89.059 79.391 781236 96.758 90.169 89.382 89.978 88382 86.824 96.71 90.10  89.22
As shown in Table 5, when using the AP | g49, the improvement in the accuracy of
the 3D bounding box is 2.549% and 2.582% for the difficulties of “Moderate” and “Hard”,
respectively. The improvement in the accuracy of 2D bounding box is 1.976% and 0.533%,
respectively, and the improvement in the accuracy of bounding box in BEV view is 0.295%
and 2.257%, respectively.
Table 5. Comparison table of the AP | g49 enhancement effect of different modules. Abbreviations:
initial feature fusion module (I), KSFE module (K), and RGA module (F).
I K E Car 3D AP R40 (%) Car BBOX AP R40(%) Car BEV AP R40(%) Car AOS AP R40(%)
+ * * Easy Mod Hard Easy Mod Hard Easy Mod Hard Easy Mod Hard
91.592 80.705 77.902 98.289 92972 92.104 93.277 89.128 86.465 98.26 92.85 91.92
Vv 91457 83.067 80.369 98.111 94.583 92469 95.055 91.034 88.832 98.09 9452 92.35
Vv 91432 82913 78956 98.023 95.023 92.659 93.124 89.223 88.624 9821 94.89  92.39
Vv 91.555 83.254 80.484 98.097 94948 92.637 93.197 89.423 88722 98.08 9485 92.44
V4 Vv Vv 91.426 83.236 80.191 98.266 95.036 92.616 93.014 90.902 88525 98.23 9493 9242
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4.5.2. Key Points Self-Features Enhancement Module

As shown in Table 4, this module improves the detection accuracy of the 3D bounding
box and the accuracy of bounding box detection in BEV view. The detection accuracy of
the 3D bounding box is improved by 0.339% and 0.746% under the difficulty levels of
“Moderate” and “Hard”, respectively, and the detection accuracy of the bounding box in
BEV view is improved by 0.118%, 0.565%, and 1.349% in “Easy”, “Moderate”, and “Hard”
levels of difficulty, respectively.

As shown in Table 5, the accuracy of the 3D bounding box is improved by 2.362%
and 2.467% for the “Moderate” and “Hard” levels of difficulty, respectively, when using
AP | r49. The accuracy of the bounding box in BEV view is improved by 1.778%, 1.906%
and 2.367% for “Easy”, “Moderate”, and “Hard” levels of difficulty, respectively.

4.5.3. Revised Group Aggregation Module

As shown in Table 4, the detection accuracy of this module on BBOX is improved
by 0.316% and 0.376% under the difficulty levels of “Moderate” and “Hard”, respectively.
Additionally, compared with the baseline network, the module improves other metrics
such as 3D bounding box and steering angle accuracies.

As shown in Table 5, when AP | gy is used, the detection accuracy improvement on
BBOX is 2.051% and 0.555% at “Moderate” and “Hard” levels, respectively.

4.6. Detection Effect

Figure 6 shows the actual detection effect. Although there is still a small part of the
missed detection problem, most of the vehicles are detected and the accuracy of the 3D
bounding box is high.

Figure 6. Actual detection effect diagram in KITTI dataset (left are the pictures of the real scenes,
right are the detection 3D bounding boxes predicted in the point cloud).

5. Discussion

In this paper, we continue to explore the possibilities of the point-based 3D object
detection. Point cloud data are vast and contains a wealth of information, both useful and
redundant. We believe that there is still underutilized information within the point cloud.
Therefore, we proposed the SAE3D. The results demonstrate that extracting more useful
information and enhancing the relevant information in the point cloud can improve the
final detection accuracy.
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6. Conclusions

In this paper, we proposed SAE3D with three enhancement modules: an initial feature
fusion module, a key points self-feature enhancement module, and a revised group aggrega-
tion module. We provide a detailed description of the design ideas and implementation of
these modules in this paper. We conducted testing using the KITTI and nuScenes datasets
and designed ablation experiments on the KITTI dataset to analyze the enhancement of
each module in detail. The results demonstrate that all three enhancement modules we
propose contribute to enhancing detection accuracy. Our SAE3D suggests that there are
still useful characteristics in point clouds that are not fully utilized, and some of them can
assist in extracting information from the point clouds more effectively. We believe that
exploring additional potential characteristics of point clouds can further enhance 3D scene
understanding.
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Abstract: The problem of registering point clouds in scenarios with low overlap is explored in this
study. Previous methodologies depended on having a sufficient number of repeatable keypoints
to extract correspondences, making them less effective in partially overlapping environments. In
this paper, a novel learning network is proposed to optimize correspondences in sparse keypoints.
Firstly, a multi-layer channel sampling mechanism is suggested to enhance the information in point
clouds, and keypoints were filtered and fused at multi-layer resolutions to form patches through
feature weight filtering. Moreover, a template matching module is devised, comprising a self-
attention mapping convolutional neural network and a cross-attention network. This module aims to
match contextual features and refine the correspondence in overlapping areas of patches, ultimately
enhancing correspondence accuracy. Experimental results demonstrate the robustness of our model
across various datasets, including ModelNet40, 3DMatch, 3DLoMatch, and KITTI. Notably, our

method excels in low-overlap scenarios, showcasing superior performance.

Keywords: point cloud registration; deep learning; attention mechanism

1. Introduction

Point cloud registration is a crucial task within computer vision and robotics, fre-
quently applied in significant domains like autonomous driving [1], 3D reconstruction [2],
and simultaneous localization and mapping (SLAM) [3]. In recent years, with the devel-
opment of point cloud processing technology and deep learning technology, point cloud
coding algorithms such as [4,5] have further optimized the processing of large-scale point
cloud data and improved the accuracy of point cloud registration in large-scale scenes.
However, registration in low-overlap environments remains a challenging task.

A classical point cloud registration method is Iterative Nearest Point (ICP) [6]. It
starts with an initial transform guess, and then iteratively updates the transform matrix
to minimize the distance between corresponding points until convergence or a certain
number of iterations is reached. The disadvantage is that it is sensitive to initial transfor-
mations and local minima. The Fast Global Registration (FGR) [7] algorithm addresses the
drawbacks of the ICP algorithm through global alignment, but is still prone to failure in
noisy environments.

Deep learning-based methods can be divided into three categories: the first category [8,9]
is based on the global features of the point cloud, which is treated as a whole to regress
the transformation parameters. Although this type of method has good robustness to
noise, it is not effective for the registration task of partially overlapping point cloud. The
second class of methods [10,11] based on correspondence learning form correspondences
by means of high-dimensional features of the points and iteratively minimize the feature
distances to optimize the pose. This type of approach extracts the correspondences of
the points, so it is more robust in partially overlapping point cloud registration, but it
is still susceptible to noise interference. The last class [12-14] uses a two-stage approach
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to the point cloud correspondences, where they first learn the local descriptors of the
downsampled keypoints for matching, and then use a pose estimator to recover the relative
transformations. Their strategy allows them to achieve state-of-the-art performance in
the dataset, but the downsampling method they use inherently introduces sparsity point
cloud features, which reduces the reproducibility of the correspondences and thus loses its
advantage in low overlap regions.

A recently discovered approach [15] bypasses direct keypoint detection. It mitigates
the limitations of keypoint detection by employing a coarse-to-fine strategy similar to the
two-dimensional correspondence approach [16,17] to address the problem of keypoint
sparsity. It achieves correspondence extraction by employing a superpoint patch-to-point
path. Essentially, the method extracts superpoint features from the original point cloud,
merges them into superpoint patches for matching, and then extends the matched corre-
spondences to include dense points. The advantage of the method is that it transforms
the strict point matching requirement into a more relaxed patch overlapping environment.
This shift effectively reduces the requirement for a large number of repeatable keypoints.
However, it also emphasizes the importance of keypoint reliability. Furthermore, while this
approach reduces the need for a large number of keypoints, its sparsity remains unchanged.
Therefore, in this paper, more emphasis is placed on compensating for this inherent sparsity
by capturing contextual features.

Taking inspiration from references [15,18], our initial focus lies in optimizing the
enhancement of the patch context function. With the objective in mind, a matching mod-
ule based on a graph convolutional neural network was designed, the core of which is
constituted by two modules: the self-attention graph convolutional neural network and
the cross-attention module. Graph convolutional networks focus on different points when
processing point cloud data and dynamically adjust weights based on the relationship be-
tween them. This adaptability enables the model to better capture local and global features
in point cloud, thereby improving the modeling ability of template points. Secondly, the
cross-attention module enables the model to effectively capture the information interaction
in point cloud between different channels by introducing cross-channel correlation. This
helps integrate multi-channel information to more fully understand feature relationships
in point cloud. Through this cross-channel interaction, the model is better able to adapt to
complex structures in point cloud data. In addition, previous methods use grid-sampled
superpoints as nodes and divide patches through a point-to-node grouping strategy. Since
the grid-sampled superpoints are sparse and loose, the local neighborhoods between point
cloud pairs are inconsistent, which adversely affects subsequent point matching. To this
end, it is recommended to extract points characterized by a more uniform visual field
distribution and high repeatability as nodes. The utilization of the feature pyramid effect is
suggested for scoring nodes across various receptive fields. Additionally, incorporating
multi-level point cloud sampling is advised during the process of patch fusion. During
the sampling of point cloud at different levels, the density of sampled points is regulated
through non-maximum suppression. Utilizing multi-channel sampling and point matching
comparison allows for the acquisition of more comprehensive point cloud information,
resulting in improved correspondence with template points.

2. Related Work
2.1. Traditional Point Cloud Registration Methods

The Iterative Closest Point (ICP) [6] algorithm has retained its practical importance
since it became established. Its straightforward logic and ease of implementation have
solidified its position as a staple method for aligning rigid-body transformations. It shows
strong convergence when the initial deviation is relatively small. However, its accuracy
decreases when the initial bias is large, resulting in local optima and sensitivity to noise.
Consequently, an array of ICP-based variants [19-21] have emerged.These ICP-based
variations expand upon the original concept to address its limitations. They offer enhanced
flexibility by accommodating multiple constraints such as distance, geometry, and normals,
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leading to improved robustness against initial deviations. However, this enhancement
often comes at the cost of increased computational complexity.

Among alternative strategies, feature-based registration methods like Fast Point Fea-
ture Histograms (FPFH) [22] and Signature of Histograms of Orientations (SHOT) [23]
have been developed to adapt to complex environments and noise by extracting local
features. The Random Sample Consensus (RANSAC) [24] divides the point cloud into
random subsets for local registration, effectively eliminating outliers, albeit at the expense
of computational time. Conversely, the Fast Global Registration (FGR) [7] transforms the
non-convex problem into a convex one through a smoothing mechanism, enabling rapid
global registration. However, this method exhibits heightened sensitivity to errors.

2.2. Deep Learning-Based Methods

PointNet [25] is the first deep learning model that can directly process raw point cloud
data without converting the point cloud into voxels or meshes. Thus, PointNetLK [8]
uses PointNet'’s ability to extract global features from point cloud to achieve alignment via
the LK optical flow method in classical image alignment. PCRNet [9], on the other hand,
uses a multilayer perceptron (MLP) to solve the transformation parameters by treating
the registration task as a regression problem after extracting features using PointNet. But
PointNet, although it is easy to extract global features of the point cloud, loses the value of
local features, so it is not robust to noisy and partially overlapping environments.

In contrast to approaches relying on PointNet, DCP [10] uses a Dynamic Graph
Convolutional Neural Network (DGCNN) [26] to extract local features from the original
point cloud. The rotation matrix and translation parameters are then computed by Singular
Value Decomposition (SVD). RPMNet [27] introduces an auxiliary network to predict the
optimal asymptotic annealing parameters to derive soft matches for point correspondences
in integrating spatial coordinates and local geometric features. These approaches based
on local correspondence learning solve part of the point cloud matching problem to some
extent, but the network fails to converge when the rotation angle is too large. In the
method of correlated feature point detection, D3Feat [14] utilizes a fully convolutional
network architecture for joint dense detection and description. Predator [12] predicts dense
overlap scores on top of jointly estimating significant scores and learning local descriptors,
and analyses the confidence level of whether a point is located on an overlapping region.
However, they show low robustness in low overlap scenarios. This is due to the fact that
they still inherently rely on repeatable keypoints.

A facet-to-point correspondence strategy is employed, and the establishment of point
cloud correspondence is carried out in a coarse-to-fine manner. The dependence on repeat-
able key points is reduced by composing patches. Meanwhile, the multi-channel sampling
strategy has a denser set of correspondence points, while the attention mechanism-based
graph convolutional neural network enriches the correspondence of template points by in-
teracting with contextual features. The performance of various algorithms will be compared
in Section 4.

3. Methods

Point cloud registration involves aligning point cloud data of an object from distinct
viewpoints or sensors onto the same coordinate system. The objective is to fit multi-frame
images, enhance visual perception to facilitate understanding of the environment, and
provide assistance in subsequent tasks.

The central challenge of point cloud registration revolves around aligning two distinct
point clouds, P = {p; € R® |i=1,..,N}and Q = {q; € R® | i = 1,..., M}, while opti-
mizing their alignment within the shared coordinate system. This task can be represented
through the subsequent model: how can we determine a transformation matrix, denoted
as T = {R, t}, which effectively reposition point cloud Q to attain optimal conformity with
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the spatial orientation of point cloud P? This issue can be effectively characterized as an
optimization problem:

N M
argmin ) ) |[Rp; +t — qi[3 ey
Rt i=1i=1
where R denotes the rotation matrix and t denotes the translation parameter. We estimate
the alignment transformation by finding point correspondences.

The point cloud registration model is illustrated in Figure 1. KPConv and FPN are
utilized simultaneously to downsample the input point cloud and extract features (refer
to Section 3.1). The downsampled points of the three different levels of the three layers
are also selected as the reference and feature points of the correspondences to be matched,
respectively. The graph convolutional neural matching module is used to extract the
correspondences of the feature points (Section 3.2). Subsequently, the point matching
module employs these correspondences to extend the alignment from feature points to
encompass the entire dense point cloud (Section 3.3). At last, the local-to-global alignment
method estimates the transformation matrix.

Coords:[B,3,N]
Q ‘ 1:11
v ) s o I (B 0)
¥ Feetsip.oN] Do emm :
- ! (Em)
Feets:[B,C,N :
P : Self—gnn CA Gaussian .
Correlation [ ]
(< e
Patch Correspondences
/ Coords:[B,3,N]
Weight
Detection [ ]
g i
[ ] Patch Fusion Sinkhorn Mutual : LGR
= — (0N
1| IS i
\ Similarity Matrix Confidence Matrix [ il ]

Point Correspondences

Figure 1. Given two partially overlapping point clouds P and Q, we first adopt KPConv-FPN to
learn point cloud features at different levels. F” or F< are connected to the centroid features through
the K-NN algorithm and then imported into the graph convolutional neural network matching
module. Their contextual features are further aggregated and enhanced through the self-attention
graph convolution network (Self-gnn) and cross-attention (CA) block. Subsequently, the patch
correspondences is mapped to the real point set through the point matching module. Finally, a
local-to-global registration method is used to calculate the transformation matrix.

3.1. Feature Extraction

The KPConv-FPN [28] technique is utilized to downsample the initial point cloud
and obtain features at the individual point level. Multiple resolution levels are sampled
from the original point cloud P. These layers of sampled point cloud exhibit progressively
diminished resolution connections, necessitating a coarse-to-fine methodology to master
correspondences. The points corresponding to the most rudimentary resolution, desig-
nated as P, are regarded as the reference points to be aligned. Both multi-level transition
points, denoted as P, and dense points, denoted as P, are independently extracted, and
their respective acquired features are labeled as FP € RIPIXd and FP € RIPIX4. g is the
corresponding sampling scale, determined by the resolution factor. For each modal point, a
point-to-node grouping strategy is employed, thereby constructing localized point patches
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around it. The features in F and F are assigned to the nearest modal point, and the ensuing
equation validates the assigned weights:

w=[[p—pl2/llp — Bl @

Based on the weights, for different levels, the nearest points will be attributed to the
modal points closest to them and the resulting patch is shown below:

®)

GP = i= argmin]-(||p —pjll2), pj € 7? w>1,
l 1= argminj(Hf) —pill),pjeP w<1l,

3.2. Graph Convolutional Neural Network Matching Module

Obtaining a global field of view is critical in a variety of computer vision tasks.
Therefore, we employ an attention mechanism that utilizes broader contextual information
to augment global properties. This yields enhanced geometric differentiation within the
acquired features, consequently mitigating pronounced matching ambiguities and a surplus
of aberrant matches, particularly in scenarios characterized by limited overlap. Through
the utilization of the cross-focusing mechanism, feature details from the point cloud can
be adeptly interchanged and amalgamated, leading to the identification of pivotal points
connected with regions of overlap. This innovative approach effectively solves the problem
of redundant point accumulation while simplifying the process of selecting point sets
during the alignment process. In the cross-focus module, the initial embedding contains
features from both the source and target point cloud.

Before connecting the feature codes of the two inputs, a graph neural network (GNN)
is first used to further aggregate and strengthen their contextual relationships, respectively.
The point sets P or Q are connected into a graph within the Euclidean space through the
employment of the K-Nearest Neighbors (K-NN) algorithm. Subsequently, utilizing K-NN
searches based on coordinates, the features are linked to centroid features.

fi = cat(x, 5t — ) @

In the aforementioned equation, x” signifies the feature encoding corresponding to

the point set P, while “cat” denotes concatenation.

h; = LeakyRLU(norm(conv(f;))) (5)
X = max I (f) ®)
(ij)ee

where h; denotes the linear layer, norm denotes the activation function, max denotes
the elemental channel maximum pooling layer, and (i,j) € € denotes the two edges of
the graph.
If-GNN 1.2
KON =y (cat(x0, x}, 1)) 7)

Cross-attention stands as a prototypical module within point cloud registration tasks,
fostering the exchange of features between two input point clouds. We apply self-attention
processing to the three-channel point cloud data, combining the resultant data with con-
volved point cloud information, and subsequently activate the aggregated point cloud
using a Multi-Layer Perceptron (MLP). The computation of the Cross-Attention (CA)
module is detailed as follows:

m; = att(xi,xj, x]) (8)

If—-GNN If—-GNN
self x =Y .

Here, att denotes Multi Head Attention. x; = x; X ]

XCA = U =CNN | ML (cat(x NN ) ©)

1
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In the sampling of correspondences, considering patch correspondences at different
levels helps to obtain more robust point correspondences in the point matching stage. How-
ever, due to the sparse and loose nature of block matching, many correct correspondences are
often overlooked in the screening process. Our proposed multi-channel convolutional network
can complement more effective point correspondences for accurate point cloud registration.

3.3. Point Matching Module

After obtaining the template point correspondence, the dense point correspondence
will be derived based on the patch correspondence. Subsequently, the local-to-global regis-
tration (LGR) mechanism derives candidate matrices from the point correspondences en-
gendered by each pairing of matching patches. From these candidates, the globally optimal
transformation matrix is selected. Pertaining to the point-level, our approach exclusively
employs localized point features gleaned from the backbone network. The underlying
principle is that, upon resolving global ambiguity through template point matching, point-
level matching is predominantly influenced by the proximity of the matched points. This
strategic design enhances the overall robustness of the process.

For each template point correspondence, the optimal transport layer is employed to
derive localized dense point correspondences between the point clouds. The process begins
by calculating the cost matrix:

C; =FL(F))7/ V4, (10)

Following this, the cost matrix undergoes expansion through the addition of new rows
and columns, infused with learnable bin parameters. Subsequently, the Sinkhorn algorithm
is employed to compute the soft assignment matrix. This matrix is then reinstated to its
original form by discarding the last row and column. This resultant matrix serves as a
confidence measure for prospective matches. Point correspondences are subsequently
culled through mutual top-k selection, whereby a point match is affirmed if it falls within
the k largest entries within its respective row and column. The point correspondences
computed from each template point match are then collected together to form the final

global dense point correspondence: C = UZN:H Ci.

3.4. Loss Functions

The loss functions of the Graph Convolutional Neural Matching Module and the Point
Matching Module are divided into the following two points.

A metric learning approach is chosen to cultivate a feature space that facilitates the as-
sessment of the similarity of samples. This approach is tailored to more effectively evaluate
the matching interrelation between patches, facilitating the convergence of matches and
divergence of mismatches. We meticulously select patches within P, ensuring each belongs
to a group of anchor point patches denoted as AV, where a positive patch in Q is present.
Pairs of patches are categorized as positive if they display a minimum of 10% overlap, and
conversely as negative if they lack overlap. All other pairs are omitted from consideration.
For each anchor patch G; € NV, a corresponding loss takes on the following format:

Lo= 30 [IFGD — SGDIB~ £ ~ FPIIB +a] an

GPeN

where x{ symbolizes the feature representation of the anchor, while xf signifies the feature
representation of the positive example that aligns with the anchor patch. Correspondingly,
x' stands for the feature representation of the negative example, which does not align
with the anchor patch. The parameter a functions as a constant threshold, integral to
guaranteeing that the disparity in distance between the positive and negative examples
remains surpassing a predefined threshold. The function [z]; = max(z,0) corresponds
to the Rectified Linear Unit (ReLU) function. By cultivating a suitable feature space and
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employing these strategies, we optimize the discernment of matching relationships among
patches, thereby enhancing the precision of point cloud registration.

The correspondence relationship of the real point set is sparser than that of the down-
sampled template points. The correspondence matrix Z in point matching is classified
using a negative log-likelihood loss.

During training, true point correspondences Ci are randomly sampled. For each Ci,
a set of true point correspondences M is extracted using the matching radius r. The set
of unmatched points in the two patches is denoted as Z; and J;. The individual point
matching loss of C; is computed as:

Ly=— Y, logz,— Y 10gZ .1 — ) logZ, .1, (12)
(x,y)eM xeZ yeJ

The final loss function X consists of three loss functions together: £ = L. + Ly, + Lp,
where L, is different from £,. The intermediate layer P is used as the real point set.
This approach establishes a link between multiple levels of point correspondences, and
by exploiting these multiple levels of point correspondences, our method can compute
point cloud feature parameters from a comprehensive perspective. This strategy not only
improves the accuracy of point cloud alignment, but also enriches the representation
learning process by exploiting the hierarchical structure inherent in the data.

4. Results

This section is dedicated to the experimental validation and performance comparison
of our proposed method. The efficacy of the model is meticulously assessed through
comprehensive experimentation. To establish a robust basis for evaluation, comparisons
are conducted against several established methods, namely ICP, FGR, PointNetLK, DCP,
and RPMNet. For the evaluation process, the ModelNet40 dataset [29] is employed as a
benchmark. Through testing and analysis, distinctive advantages offered by our model
in contrast to these existing methodologies are elucidated. Furthermore, to ascertain
the generalizability of our approach in real-world scenarios, the evaluation is extended
to encompass actual data. Engagement with the 3DMatch [30], 3DLoMatch [31], and
KITTI [32] datasets is carried out to test the adaptability and reliability of our model within
practical contexts.

4.1. ModelNet40

Our algorithm undergoes a thorough evaluation process on the ModelNet40 dataset,
which encompasses computer-aided design (CAD) models representing 40 diverse classes
of human-made objects. The evaluation strategy involves training on a set of 9756 models
and testing on a separate collection of 2555 models. In alignment with the experimental
framework established by RPMNet, adherence to specific guidelines is maintained. For
each given shape, 1024 points are selected to constitute a point cloud. Additionally, an
element of randomness is introduced into the evaluation process. Specifically, three Euler
angles per point cloud are generated, each within the range of [0, 90°]. Furthermore,
translations are introduced within the range of [-0.5, 0.5]. The original and target point
clouds are distinguished in red and green.

A consistent metric framework is adopted, aligning with the assessment criteria
employed by RPMNet [11] to evaluate the performance of our algorithm. This approach
ensures comparability with previous research and underscores the reliability of our results.
In this metric framework, the evaluation of alignment is performed by calculating the
average isotropic rotation and translation errors, along with the average absolute errors of
the Euler angles and translation vectors. If the overlapping regions of the two point clouds
are identical, then all error parameters should be close to zero.

The performance of the algorithm is thoroughly evaluated across various point cloud
scenarios, including clean point cloud, environments with noise, and instances of partially
visible point cloud. The experimental outcomes are graphically presented in Figure 2 and
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Tables 1-3. Since some algorithms do not have reliable open source implementations, some
data come from their papers.

Tnitial # ‘ S

Y .

ICP

PointNetLK }é‘
VA

)

GeoTransformer A
B
\

(a) (b)

Figure 2. Examples of qualitative registration: (a,b) clean data, (c) noisy data, (d,e) partially visible
noisy data.

Table 1. Performance on clean data.

Isotropic Isotropic Anisotropic  Anisotropic .
Model RE) tm) RE) tm) Time (s)
ICP 5.478 0.0765 11.443 0.1625 0.013
FGR 0.010 0.0001 0.022 0.0002 0.086
PointNetLK 0.418 0.0241 0.847 0.0054 0.157
DCP 2.074 0.0143 3.992 0.0292 0.009
PCR 2.691 0.0346 5.682 0.0735 0.059
GeoTransformer 0.072 0.0025 0.091 0.0023 0.023
Ours 0.034 0.0003 0.074 0.0005 0.052
Table 2. Performance on data with Gaussian noise.
Isotropic Isotropic Anisotropic  Anisotropic .
Model RE) tm) RE) tm) Time (s)
1Ccp 5.863 0.0823 12.145 0.1726 0.024
FGR 2.483 0.0325 4.274 0.0631 0.118
PointNetLK 1.528 0.0128 2.926 0.0262 0.214
DCP 4.528 0.0345 8.922 0.0707 0.020
PCR 2.943 0.0417 6.255 0.0804 0.122
GeoTransformer 1.156 0.0097 1.437 0.0213 0.045
Ours 0.525 0.0072 1.325 0.0127 0.083
Table 3. Performance on partially visible data with noise.
Isotropic Isotropic Anisotropic  Anisotropic .
Model RE) tm) RE) tm) Time (s)
ICP 13.719 0.132 27.250 0.280 0.017
FGR 19.266 0.090 30.834 0.192 0.124
PointNetLK 15.931 0.142 29.725 0.297 0.176
DCP 6.380 0.083 12.607 0.169 0.014
PCR 4.437 0.065 9.218 0.135 0.146
GeoTransformer 1.332 0.015 2.213 0.052 0.067
Ours 0.917 0.012 1.577 0.018 0.101
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From Figure 2, it can be concluded that traditional methods such as ICP are susceptible
to initialization, which is particularly obvious when the rotation angle is large. On the other
hand, the efficacy of FGR is weakened in noisy environments because FPFH is sensitive to
the noise problem under different point cloud conditions. In contrast, PointNetLK performs
well in noisy environments, but still faces challenges in partially visible data. The reason for
this phenomenon is that global feature methods emphasize the overall features of the point
cloud rather than the specific local features of individual points. GeoTransformer works
well in clean and noisy point clouds. Even in cases involving partially visible noise, superior
registration results are observed for point clouds with simple structures (d). However, in
the case of point cloud (e), our algorithm outperforms GeoTransformer. This is because
injecting geometric information can improve performance, but the estimation method
based on the geometric transformer does not rely on a stable estimator like RANSAC,
which increases the difficulty in the estimation of actual super points, and GNN contains
the transformation of the kNN graph, invariance, and better performance in transformation
estimation. Therefore, our method improves the registration effect more significantly.

The tabular data in Tables 1-3 is further analyzed. Table 1 shows that FGR performs
better than us in clean data, and then its performance in noisy data reflects the previous
inference. The following focuses on comparing some visible noise point cloud data in
Table 3. The PointNetLK algorithm, which performs well in Table 2, meets its Waterloo,
and the DCP also suffers more in the absence of point clouds. Our algorithm still maintains
a relatively excellent score, while still improving compared to the data of GeoTransformer.
In terms of registration efficiency, ICP boasts the simplest algorithm structure. Given
the small point cloud base in this experiment, it highlights the superiority of geometric
algorithms. Neither FGR nor ICP utilizes the GPU, resulting in FGR’s efficiency not being
significantly enhanced after adding normal vector calculations. DCP adopts an end-to-end
design model, eliminating the disadvantages of multi-stage calculation iterations seen in
other algorithms, and it performs exceptionally well in computational efficiency due to
GPU utilization. However, as the size of the point cloud increases, the performance of
the end-to-end algorithm will experience nonlinear decline. GeoTransformer, utilizing
geometric information to improve registration speed, achieves faster transformation estima-
tion by omitting RANSAC. In contrast, our method utilizes multi-level feature extraction
which, although it reduces part of the registration speed, increases the accuracy of feature
extraction. Furthermore, the introduction of template points through hybrid sampling
enhances the effectiveness of plane segmentation and feature matching.

4.2. Indoor Benchmarks: 3DMatch and 3DLoMatch

The point cloud data of the real environment is more complex than ModelNet40. The
larger number of point cloud and lower overlap area will make many algorithms effective
on ModelNet lose their advantages. The robustness of our algorithm is assessed in real
environments with low overlap, specifically on the 3DMatch and 3DLoMatch datasets.

The 3DMatch dataset comprises a total of 62 scenes, distributed for training (46 scenes),
validation (8 scenes), and testing (8 scenes) purposes. The 3DLoMatch dataset is a more
challenging dataset derived from 3DMatch. In the original 3DMatch dataset, only point
cloud pairs with an overlapping rate greater than 30% are employed for testing. In contrast,
the testing set of 3DLomatch includes point cloud pairs with an overlapping rate ranging
between 10% and 30%. Preprocessed training data are utilized, and its performance is
evaluated using the established 3DMatch protocol.

In line with previous assessments, the performance of our algorithm is measured
using three distinct metrics:

* Interior Point Ratio (IR): this metric quantifies the proportion of hypothetical corre-
spondences with residuals falling below a predetermined threshold (e.g., 0.1 m) under
the ground truth transformation;

e  Feature Matching Recall (FMR): FMR denotes the fraction of point cloud pairs wherein
the interior point ratio surpasses a specified threshold (e.g., 5%);
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*  Matching Recall (RR): RR involves evaluating the fraction of point cloud pairs ex-
hibiting transformation errors below a given threshold (e.g., Root Mean Square

Error < 0.2 m).

Experiments were performed identically on data from FCGF [33], D3feat, Predator,
Cofinet and GeoTransformer (data obtained from the paper). As can be seen from Table 4,
our model achieves the best performance in all three indicators. In 3DLoMatch (Table 5),
compared to GeoTransformer, the FMR indicator is slightly insufficient. This is because
when the point cloud overlap rate is too low, although multi-level sampling increases
the number of point cloud pairs, the number of tasks with high confidence in the total
registration tasks will decrease. Figure 3a,b represents the registration results of 3DMatch,
and Figure 3c—e represents the registration results of 3DLoMatch. The algorithm achieves

good registration results in both data sets.

Table 4. Registration results on 3DMarch.

Model IR (%) FMR (%) RR (%)
FCGEF [33] 48.7 97.0 83.3
D3feat [14] 404 94.5 834
Predator [12] 57.1 96.5 90.6
CoFiNet [15] 51.9 98.1 88.4
GeoTransformer [18] 70.3 97.7 91.5
ours 72.5 98.5 93.0
Table 5. Registration results on 3DLoMarch.
Model IR (%) FMR (%) RR (%)
FCGF [33] 17.2 74.2 38.2
D3feat [14] 14.0 67.0 46.9
Predator [12] 28.3 76.3 61.2
CoFiNet [15] 26.7 83.3 64.2
GeoTransformer [18] 433 88.1 74.0
ours 45.6 87.2 75.3

(@ (®) (©)

Figure 3. Results of 3DMatch and 3DLoMatch experiments. (a,b) are from 3DMatch, while (c-e) are

from 3DLoMatch.

4.3. Outdoor Benchmark: KITTI Odometry

The KITTI odometry dataset encompasses 11 sequences capturing diverse outdoor
driving scenarios, all of which are captured using LiDAR technology. Our utilization of
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this dataset is distributed as follows: sequences 0 to 5 are designated for training purposes,
sequences 6 and 7 serve as validation sets, and sequences 8 to 10 constitute the testing
data. In alignment with established practices in prior research, we adhere to the stipulation
that only point cloud pairs separated by a minimum distance of 10 m are considered
for evaluation.

Consistent with established practices in earlier studies, our performance evaluation
hinges on three critical metrics:

*  Relative Rotation Error (RRE): this metric quantifies the geodesic distance between
the rotated matrix derived from our method and the corresponding ground truth
rotated matrix;

*  Relative Translation Error (RTE): RTE computes the Euclidean distance between the
rotated matrices and the ground truth translation vectors;

* Recall to Alignment (RR): RR is a comprehensive metric reflecting the fraction of
point-cloud pairs wherein both the RRE and RTE fall below specified thresholds
(e.g., RRE < 5° and RTE < 2 m).

As shown in Table 6, our model is compared with [12,14,15,18,33]. In comparison to
the real environment on the ground, we ensured similar displacement errors and rotation
errors. Compared to other models, our metrics do not open a large gap, but still demonstrate
the good generalizability of our model in outdoor environments. The registration effect is
shown in the Figure 4.

Table 6. Registration results on KITTI odometry.

Model RRE (°) RTE (m) RR (%)
FCGF [33] 0.30 9.5 96.6
D3Feat [14] 0.30 7.2 99.8
Predator [12] 0.27 6.8 99.8
CoFiNet [15] 041 8.2 99.8
GeoTransformer [18] 0.24 6.8 99.8
ours 0.218 5.4 99.8

(@) (b) (©)

Figure 4. Results of KITTI experiments. (a,b) Point clouds collected using different radar positions
and (c) is the result after registration.
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4.4. Ablation Experiment

To illustrate the influence of each component on network performance, an ablation
study is conducted in this section. Various modules within the network are systematically
added and removed, allowing for an evaluation of their respective contributions to the final
matching performance. Experiments are conducted on partially visible point cloud with
noise. For easier comparison of results, we selected relative rotation error (RRE), relative
translation error (RTE), and root mean square error (RMSE) as measurement standards.
Experimental results (Table 7) show that a single graph convolution module can improve
some accuracy, but there is still a gap with Transformer. After adding the cross-attention
mechanism, our module indicators are already better than Transformer. The addition of
Multi-channel further increased the rotation error and translation error by 7.3% and 5.8%.
In addition, experimental results prove that our improved method achieves performance
improvement compared to the baseline model and has good versatility.

Table 7. Ablation experiments.

Baseline Trans-Former Self-gnn CA Blocks Multi-Channel RRE (°) RTE (m) RMSE

v 2.154 0.033 0.026
v v 1.577 0.018 0.017
v v 1.723 0.029 0.021
v v v 1.554 0.017 0.016
v v v v 1.44 0.016 0.015

5. Conclusions

This paper proposes a novel network to solve the problem of point cloud registration
in low-overlap environments. Compared with previous work, our model uses multi-
layer patches to enrich correspondences and can still extract reliable correspondences
from disordered point clouds in the environment of sparse keypoints. In addition, the
template point matching module enhances the contextual features of patches through
graph convolutional neural networks and multiple sub-attention mechanisms, guiding the
model to match nodes with nearby regions and narrowing the search space for subsequent
refinement. Experiments on multiple datasets show that our proposed method is very
robust and still has high general-purpose capabilities on outdoor datasets.
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Abstract: One of the challenges of using Time-of-Flight (ToF) sensors for dimensioning objects is
that the depth information suffers from issues such as low resolution, self-occlusions, noise, and
multipath interference, which distort the shape and size of objects. In this work, we successfully apply
a superquadric fitting framework for dimensioning cuboid and cylindrical objects from point cloud
data generated using a ToF sensor. Our work demonstrates that an average error of less than 1 cm is
possible for a box with the largest dimension of about 30 cm and a cylinder with the largest dimension
of about 20 cm that are each placed 1.5 m from a ToF sensor. We also quantify the performance of
dimensioning objects using various object orientations, ground plane surfaces, and model fitting
methods. For cuboid objects, our results show that the proposed superquadric fitting framework
is able to achieve absolute dimensioning errors between 4% and 9% using the bounding technique
and between 8% and 15% using the mirroring technique across all tested surfaces. For cylindrical
objects, our results show that the proposed superquadric fitting framework is able to achieve absolute
dimensioning errors between 2.97% and 6.61% when the object is in a horizontal orientation and
between 8.01% and 13.13% when the object is in a vertical orientation using the bounding technique
across all tested surfaces.

Keywords: 3D scanning; 3D metrology; point cloud processing; Time-of-Flight sensors

1. Introduction

This work presents a method for dimensioning cuboid and cylindrical objects from
noisy and partially occluded point cloud data that are acquired using a Time-of-Flight
(ToF) sensor. Over the last decade, there has been an increase in the types of applica-
tions where ToF sensors are used, such as 3D scanning [1-5], drone positioning [6-8],
robotics [9-11], and logistics [12-14]. In applications such as metrology and logistics, the
ability to accurately determine the dimensions of an object is critical, for example, for
part picking, packaging, and estimating shipping costs and storage needs. The quality
of the depth information that is provided using modern three-dimensional (3D) sensors
depends on the underlying technology. Existing works on dimensioning objects use low-
noise, high-resolution 3D sensors such as structured light, stereo vision, and LiDAR to
generate depth information [15-17]. These 3D sensors each have different tradeoffs and
limitations that may not make them suitable for certain applications. For example, stereo
vision systems typically have high software complexity, low depth accuracy, weak low-light
performance, and limited range [18,19]. As another example, structured lights typically
have high material costs, slow response times, and weak bright-light performance [18,19].
Compared to other 3D sensor technologies, ToF sensors provide a low-cost, compact design
with low software complexity, fast response time, and good low-light and bright-light
performance that can be used in real-time for generating depth information [18,19]. Despite
these advantages, ToF sensing suffers from noise artifacts and issues such as multipath
interference, which can distort the shape and size of objects in point clouds captured with a
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ToF sensor. Figure 1 illustrates an example of a point cloud of the side profile of a regular
box without and with multipath interference. As shown in Figure 1, multipath interference
distorts the profile of the object such that the planar surfaces appear curved. The profile of
a cylindrical object also experiences the same type of distortion. The distorted appearance
of the object poses a challenge when trying to determine the dimensions of the object. In
addition, ToF sensors also suffer from other issues such as low resolution, flying pixels, and
self-occlusions, which further makes metrology challenging [20].
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Figure 1. Point cloud of the side profile of a cuboid object without multipath interference (left) and
with multipath interference (right).

A common approach to reducing the effect of multipath interference is to place the
ToF sensor directly above an object that is placed flat on a ground surface in a top-view
fronto-parallel configuration [21,22]. In this configuration, only the top surface of an object
is visible to the ToF sensor. An example of a cuboid object in such a top-view fronto-parallel
configuration is shown in Figure 2. In this configuration, the x- and y-dimensions of the
object can be readily determined with respect to the x—t ground plane. The z-dimension
can also be readily determined by taking the difference in depth measurements between
the top surface of the object and the ground plane surface. In this configuration, since the
interface between the object and the ground surface is not visible, the effect of multipath
interference between the object and the ground surface is greatly reduced. However, this
configuration is only feasible for a limited number of environments and applications.

Y

Ground Surface

Z

Figure 2. Top-view fronto-parallel configuration of a cuboid object on a ground plane surface.
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Using a perspective view of an object proves the most flexibility for applications, but
processing point cloud data captured using a perspective view poses challenges due to the
presence of self-occlusions, noise, and multipath interference [20]. The amount of noise
and multipath interference is scene-specific and depends on the ground surface material
an object is resting on and the pose of the object. One approach for dimensioning cuboid
objects involves using a plane fitting to identify the various surfaces of a box [23]. This
approach typically requires that at least three surfaces of the box are visible to the ToF
sensor and uses a RANSAC algorithm [24] on the point cloud of a box for detecting planes
that correspond with surfaces of the box. Notably, this approach is limited to cuboid objects
and cannot be applied to non-cuboid objects. Our results demonstrate that the number of
points that are present on the surface of an object depends on the pose of the object with
respect to the ToF sensor. This plane-fitting approach begins to breakdown as the number
of points decreases on the surfaces of the object.

In this work, we developed a superquadric fitting framework for dimensioning cuboid
and cylindrical objects using point cloud data that are generated with a ToF sensor that has a
perspective view of an object. Our approach allows for the dimensioning of objects without
requiring a top view of an object and without requiring that three sides of the object be
visible to the ToF sensor. Previous works in robotic grasping applications have implemented
a type of superquadric fitting to point cloud data for determining the general orientation
and size of an object that is to be picked up with a robotic hand [25-28]. However, these
works focused on obtaining rough dimensions for an object for grasping and did not
attempt to quantify how accurately the dimensions of the object can be determined in
various environments and orientations. Other existing works have employed superquadric
fitting to point cloud data for identifying and classifying objects [29-31]. The focus of these
works is to generally classify objects. These works also do not attempt to quantify how
accurately the dimensions of an object can be determined. Further, these works typically
rely on point cloud data that are obtained using other types of 3D sensor technologies,
which do not suffer from the same types of noise artifacts and issues as a ToF sensor.
These works do not suggest or provide any evidence that their approaches can be similarly
applied to the same type of noisy point cloud data that are obtained from a ToF sensor. As
discussed above, there is a tradeoff between the quality of the point cloud data that can be
obtained and the low-cost, compact design of a ToF sensor that can be used in real-time for
generating depth information.

Our proposed framework uses a non-linear least squares regression to determine
a superquadric shape that best fits the point cloud data for an object while limiting the
overgrowth of the superquadric shape. Our experiments show that during the fitting
process, the dimensions of the superquadric shape tend to overgrow in the direction where
data points are missing for the surfaces of an object due to self-occlusion. This overgrowth
leads to significant errors in the dimensions of the object. A previous study by Quispe et al.
also noted that superquadric models tend to overgrow during the superquadric fitting
process [32]. When a superquadric model overgrows during fitting, the dimensions of the
superquadric shape extend beyond the point cloud of the object. This type of overgrowth
leads to inaccurate dimension estimates. Quispe et al. used an approach that was inspired
by Bohg et al. that involves identifying a symmetry plane within the point cloud of an
object and then using projection to artificially generate surfaces that are missing within
the point cloud [16,32]. In their approach, the point cloud data that are used are generated
using stereovision and RGBD cameras, which do not suffer from the same type of noise
issues (e.g., multipath interference) as point cloud data from a ToF sensor. This approach
is not suitable for the types of noisy point clouds that are generated using a ToF sensor
because multipath interference distorts the point cloud of objects and makes identifying
the surfaces of the object more difficult.

This work contributes to the state of the art by (1) developing a framework for dimen-
sioning cuboid and cylindrical objects using enhanced superquadric fitting techniques and
noisy point cloud data that are generated with a single ToF sensor. Our results show that a
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traditional superquadric fitting technique alone are insufficient for accurately determining
the dimensions of an object using point cloud data that suffer from issues such as low
resolution, self-occlusions, noise, and multipath interference. Our enhanced superquadric
fitting techniques include bounding techniques for limiting superquadric overgrowth as
well as considerations for the orientation of an object; (2) quantifying the accuracy for
dimensioning cuboid and cylindrical objects on various types of ground surfaces using
the noisy and partially observed point cloud data from a ToF sensor. The ground surfaces
considered in this work include aluminum foil, black posterboard, white posterboard, and
black felt. Each of these ground surfaces has different levels of infrared reflectivity; (3)
quantifying the accuracy for dimensioning cuboid and cylindrical objects with different
rotation angles and orientations with respect to the ToF sensor; and (4) quantifying the
accuracy for dimensioning cuboid and cylindrical objects using various techniques for
limiting overgrowth when fitting superquadric models. In applications such as logistics,
the ability to accurately dimension objects is critical for operations like object grasping,
packaging, storing, and transportation [33-37]. The tolerances for dimensioning errors
vary from system to system. As these systems are further developed, their tolerances are
typically reduced to optimize efficiency, object handling, and packaging [33-37]. As such, it
becomes increasingly important to understand and quantify the performance and accuracy
of object dimensioning techniques and the various factors that affect their performance. As
discussed above, the presence of issues such as low resolution, self-occlusions, noise, and
multipath interference all negatively impact and limit the usage of traditional techniques
for dimensioning objects using point cloud data. This work contributes to the state of the
art by quantifying the performance and accuracy of our proposed framework compared
to traditional techniques for dimensioning objects using point cloud data. In addition,
this work further contributes by quantifying how various environmental factors, such as
ground surface material and object orientation, impact the performance and accuracy of
our proposed framework.

This work uses a Texas Instrument TI OPT8241 ToF sensor for its experiments due
to its widespread use in research and engineering applications. Since other ToF sensors
operate using the same principles, which involve emitting and capturing reflected IR light,
our framework for dimensioning cuboid and cylindrical objects using point cloud data
from a ToF sensor can therefore also be generally applied to other types of ToF sensors since
they all experience the same types of issues such as self-occlusions, noise, and multipath
interference [20].

This paper is organized as follows: Section 2 discusses our proposed superquadric fit-
ting framework for dimensioning cuboid and cylindrical objects. Section 3 discusses the ex-
perimental setup and the numerical results. Finally, Section 4 provides concluding remarks.

2. Methodology

As discussed above, point cloud data that are obtained from a single ToF sensor
typically suffers from issues such as low resolution, self-occlusions, noise, and multipath
interference. These issues tend to distort the shape and size of objects, which creates
challenges for dimensioning objects using a ToF sensor. In this work, we propose an
approach that overcomes these challenges by fitting a parametric model to the point cloud
data. Given a set of point cloud data points (xy, Yu, Zw) from a ToF sensor, our proposed
approach uses non-linear least squares fitting to determine the parametric model that best
fits the point cloud data. Our experiments show that directly applying a parametric fit
to the point cloud data without any preprocessing results in large estimation errors. To
address this issue, in our proposed framework, we preprocess the point cloud data using
the following steps: ground plane rectification, ground plane segmentation, and reorienting
the point cloud within a new local coordinate system before performing the initial pose
estimation. Using this approach, the subsequent parametric fitting shows significantly
lower dimensioning errors. Figure 3 provides an overview of our methodology.
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Figure 3. Process for performing parametric fitting for dimensioning of an object.

The key steps to the parametric fitting for dimensioning methodology are as follows:
A ToF sensor is configured to capture a point cloud from a perspective view of an object
within a scene. A ground plane rectification process is first performed to compensate for
the perspective view of the ToF sensor. Ground plane segmentation is then performed to
segment the object from the rest of the scene. An initial pose is then determined for the
object, and the point cloud for the object is reoriented such that the object is axis-aligned
and centered about a user-defined local origin. The reoriented point cloud is then fed into
a superquadric fitting algorithm. As part of the fitting process, we use either a bounding
technique or a mirroring technique to limit any overgrowth of the superquadric model.
The bounding technique limits superquadric shape overgrowth by applying adaptive
upper and lower bounds to the dimensions of the superquadric shape during the fitting
process. The mirroring technique limits superquadric shape overgrowth by synthetically
generating data points for the surfaces of the object that are missing due to self-occlusion.
The mirroring technique generates a more complete point cloud representation of an object
that reduces the number of missing surfaces, which would allow the superquadric shape
to overgrow during the fitting. The object dimensions can then be obtained based on the
determined parameters of the superquadric shape that is fitted to the point cloud.

2.1. Ground Plane Rectification

Figure 4 is an example of an intensity image of a scene with fiducial markers and a box
positioned on top of a black felt surface. The dimensions of the box are labeled as a4, a,
and a3. In this example, a1 = 149 mm, a; = 223 mm, and a3 = 286 mm. In our experiments,
ArUco fiducial markers are initially used to determine the orientation of the ground plane
with respect to the ToF sensor. An ArUco marker is a 2D binary-encoded fiduciary marker
that can be used for camera pose estimation [38]. ArUco markers were selected due to
their widespread use in various computer vision-based applications, such as robotics and
automation. This approach does not require a pre-calibrated camera mounting system with
respect to the object plane and is more robust and applicable to dynamic settings where
a camera is mounted to a movable arm or robot system. Although ArUco markers were
used in this work, a similar approach can be implemented using other suitable types of
fiducial markers.
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Figure 4. Intensity image of a scene with ArUco markers and a box positioned on a black felt surface.
The region of interest (ROI) for our object is represented by the red bounding box.

To determine the ground plane orientation, an ArUco marker is placed on the ground
plane within the field of view of the ToF sensor. We then capture and process an intensity
image of the scene using the OpenCV libraries [39] to detect the presence and orientation
of the ArUco marker. The orientation of the ArUco marker provides information about the
orientation of the ground plane with respect to the ToF sensor. Once the orientation of the
ground plane is determined, the point cloud for the entire scene is then rotated such that
the ground plane is aligned with a horizontal x—y plane in our coordinate system. Although
only one ArUco marker is required to determine the orientation of the ground plane, we
use four markers for redundancy. The ArUco markers are also used to identify and crop the
region of interest by positioning the object between the outermost ArUco markers. Figure 5
is an example of a point cloud after ground plane rotation correction. As shown in Figure 5,
the ground plane in our point cloud data are substantially parallel with the horizontal x—y
plane after ground plane rotation.

1 Ground Plane Rotation Corrected Point cloud
N ——
0.7 —
0.8
>
0.9 7

Points removed during ground plane segmentation
| | | | [ I | |
0.8 -0.6 0.4 X -0.2 0 0.2 0.4 0.6

Figure 5. Front view of a point cloud of a scene with a box on a ground plane surface after ground
plane correction in meter units. An offset threshold for the ground plane segmentation process is
represented by the solid black horizontal line. The color of a data point in the point cloud corresponds
with a distance between the ToF sensor and a surface in the scene. Darker colors (e.g., dark blue)
represent surfaces closer to the ToF sensor and lighter colors (e.g., yellow) represent surfaces further
away from the ToF sensor.

2.2. Ground Plane Segmentation

Following ground plane rectification, the position of the ground plane is known.
Thresholding is then performed using an offset threshold value to segment the object of
interest from the ground plane. As shown in Figure 5, the point cloud for the ground
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plane appears noisy primarily due to multipath interference near the interface between
the ground plane and the faces of the object. In this example, additional noise is also
caused by the fiducial markers. The noise from the fiducial markers and the multipath
interference between the ground plane and the object are removed during segmentation,
and the remaining point cloud corresponds to the object of interest. Any residual multipath
interference can be reduced by increasing the offset threshold value. The tradeoff for this
approach is that increasing the offset threshold value reduces the number of points on the
object that are available for the parametric fitting process. Since the offset threshold value
is known, this value is added back later as a correction term to one of the dimensions of the
object after performing the parametric fitting. Figure 6 shows an example of the remaining
point cloud data for a box after performing ground plane segmentation.

Figure 6. Example of the remaining point cloud data for a box after performing ground plane
segmentation in meter units.

2.3. Initial Pose Estimation

To determine the initial pose of the object, the remaining point cloud of the object is
reoriented such that the object is centered about a user-defined origin and axis aligned. In
this work, this reorientation is performed by flattening the point cloud into the direction
of the ground plane to form a top-view representation of the object. Figure 7 illustrates
an example of the result of the flattening process for the point cloud with respect to the
ground plane. By flattening the point cloud in this manner, dense clusters of point clouds
will appear, which correspond with the edges of the object. Once the point cloud has been
flattened, a RANSAC (“RANdom Sample Consensus”) algorithm [24] is used to identify
an edge of the object by fitting a line to one of the edges of the point cloud. The RANSAC
process first identifies the dense clusters of points that correspond with the edges of the
object and then fits a line to one of these clusters of data points. In the example shown
in Figure 7, the line that was determined from the RANSAC process is represented as a
solid blue line. Once the orientation of an edge of the object is known, the point cloud is
rotated such that the object edges are axis-aligned. First, an angle is determined between
the line that was determined from the RANSAC process and either the x- or y-axis of the
coordinate system. Then, the entire point cloud is rotated about the vertical z-axis with
the determined angle to axis align the point cloud with the x—y plane. The axis-aligned
point cloud is then shifted such that the center of the point cloud is at the local origin. An
example of the result of this process is also shown in Figure 7.
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Figure 7. Example of reorienting the point cloud data for a box before (left) and after axis alignment
(right) in meter units. In the left plot, the blue line corresponds with the orientation for an edge of
the box that was determined from the RANSAC process.

Once the point cloud is centered at the origin, the initial rotation parameters (¢, 6, )
and translation parameters (px, py, p:) are set to zero. Although the fitting process is
capable of solving for non-zero translation and rotation parameters, our experiments
showed improvements in terms of accuracy and speed by reorienting our point cloud and
initially setting these parameters to zero. The fitting process will later adjust the translation
and rotation parameters to best fit the point cloud data. The initial dimension parameters
(a1, a2, a3) of the object are determined based on the difference between the minimum and
maximum values of the point cloud along each axis.

2.4. Limiting Superquadric Growth

At this point, we can fit a superquadric model to the remaining point cloud data.
However, our experiments showed poor performance resulting from overgrowth in the
direction where data points are missing for the surfaces of an object due to self-occlusion.
In the first set of experiments, the fitting was performed on the axis-aligned point cloud.
In these experiments, adaptive upper and lower bounds were used to limit overgrowth
on the dimensions of the superquadric model that was generated. In our experiments,
tolerances of 5%, 2%, and 1% are applied to the dimensions estimated during the initial
pose estimation process to determine the bounds. The upper and lower limits were used
because the point cloud of the object is incomplete due to self-occlusions. For example,
with cuboid objects, the point cloud data only have points on the surfaces of the box that
are visible to the ToF sensor and do not include points that represent the bottom or the
backside of the box. In some instances, when a superquadric model is fit to the point cloud
with partial data, the superquadric grows beyond the points in the point cloud where the
surface of an object is not represented. This occurs because the minima in Equation (2) does
not guarantee returning the smallest superquadric model that fits the point cloud data. In
a second set of experiments, the fitting process is performed on a mirrored version of the
axis-aligned point cloud. The mirrored point cloud is generated by creating a duplicate
of the axis-aligned point cloud, flipping it 180° vertically about its centroid and the x-axis,
and then rotating it 90° about the vertical z-axis. The duplicate point cloud is then merged
with the original axis-aligned point cloud to form the mirrored version of the point cloud.
By using the mirrored point cloud, data points for any non-visible sides of the object are
synthetically created, and bounds are no longer necessary to limit any overgrowth in the
fitting process. An example of the mirroring technique is shown in Figure 8.
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Figure 8. Profile view of a point cloud of a cuboid before (left) and after applying the mirroring
technique for limiting superquadric overgrowth (right) in meter units. In the right plot, the red data
points correspond with the initial point cloud of the cuboid and the blue data points correspond with
the additional data points that were generated by applying the mirroring technique.

2.5. Non-Linear Least Squares Fitting

Our work involves performing a non-linear least squares fit of a superquadric shape
to the point cloud of an object to determine the dimensions of the object. A superquadric
is a parametric shape that has parameters that describe the size, shape, and pose of the
superquadric [40,41]. In this work, a superquadric shape was selected because it can
be morphed into a wide range of shapes [40]. By adjusting the shape parameters, the
superquadric shape can be morphed into a range of symmetric objects, which include
cuboids and cylinders. The implicit form of the superquadric equation that is used in this
work is given using the inside—outside function F, which is defined as the following:

2
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2 422
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where variables (xy, Yw, zw) are the data points from the captured point cloud, (a1, a2, a3)
are the scaling dimensions along the x-, y-, and z-axis of the superquadric, respectively,
(€1, €2) are shape parameters, and (1, Ny, Nz, 0x, 0y, 0z, Ax, Ay, Az, Px, Py, pz) are the twelve
parameters of a homogenous transformation matrix that is the result of a rotation and a
translation of the world coordinate plane [42,43]. The eleven parameters that define the
position and orientation of a superquadric are defined as A = {a1, a2, a3, €1, €2, ¢, 6, ¥, px,
Py, p2) 42,431,

Following our initial pose estimates, the initial rotation parameters (¢,6,¥) and
translation parameters ( Px: Py, pz) are set to zero, the initial object dimensions (a1, a2, a3) are
determined as the difference between the minimum and maximum values of the point cloud
along each axis, and the shape parameters (€1, €3) are initially set to an intermediate value
of one. The final values of A are determined using a least squares minimization process.
We perform a least squares minimization using the Levenberg-Marquardt algorithm [44]
to recover the parameter set A that best fits the kth point, (xy, yk, zx), in the point cloud. The
following expression describes the minimization process:

mki“Z (vaaas (F (v, i, zis A) — 1)) @
k=0
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where the coefficient /41443 is used to recover the smallest superquadric, and the exponent
€1 promotes faster convergence by making the error metric independent of the shape
parameters [43].

After determining the parameters (a1, a3, a3) corresponding with the dimensions of
the object, the offset threshold value that was used during the ground segmentation step
is then added to the vertical dimension of the object to compensate for the portion of the
point cloud that was removed during the ground plane segmentation process. Through
this process, the full dimensions of the object are recovered.

Figure 9 is an example of a superquadric shape that is generated based on the pa-
rameters determined with the non-linear least squares fitting, which is overlaid with a
corresponding object of interest (i.e., a box) within an intensity image.

Figure 9. Example of a determined superquadric shape (shown in green) overlaid with a box in an
intensity image. The superquadric shape is represented as a series of points corresponding with data
points on the surface of the superquadric shape.

3. Experiments
3.1. Hardware Configuration

In our experiments, we use a single ToF sensor, TI OPT8241 [45], to generate depth
information for a single object. This sensor is able to output both grayscale intensity images
and point clouds. This sensor offers a resolution of 320 x 240 with a horizontal field-of-view
of 74.4°. In each experiment, the object is located 1.5 m from the ToF sensor. The ToF sensor
is positioned on a tripod with a downward perspective view of between 35 and 45° of
the object. The physical dimensions of the boxes are between 122 mm and 365 mm in
length. The cylinder has a height of 204 mm and a diameter of 155 mm. In each experiment,
an object is placed on different ground plane surfaces that each have different levels of
infrared reflectivity and multipath interference. The ground plane surfaces used in our
experiment are aluminum foil, black poster board, white poster board, and black felt. For
each ground plane surface, the object is rotated between angles of 30 and 75° with respect
to the ToF sensor.

For capturing intensity images and point cloud data, we used a Voxel Viewer from
Texas Instruments [46]. During the data collection period, an average of 400 frames of
intensity images and point cloud data were collected for each experiment configuration.
For implementing our framework, we used Matlab R2020b and OpenCV libraries [39,47].
The OpenCV libraries were primarily used for identifying fiducial markers in our ground
plane rectification process.

3.2. Dimensioning Performance for Cuboid Objects Based on the Ground Plane Surface

Table 1 shows the average of absolute errors for each of the ground surfaces using
various dimensioning techniques. As the box is rotated with respect to the ToF sensor, an
error for each dimension of the box is computed. The absolute errors for each dimension
are then averaged to determine the average of the absolute errors at each rotation angle of
the box. The average of absolute errors is the average of the errors across all the rotation
angles for the box from 30° to 75°.
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Table 1. Dimension errors for a box using various surfaces and fitting techniques.

. . Black White Black

Method Aluminum Foil Posterboard Posterboard Felt
Ellipsoid fit 99% 115% 79% 102%
Superquadric fit—
no bounds or axis 37% 228% 40% 33%
alignment
Superquadric fit—
1% bounds with axis 13% 10% 11% 13%
alignment
Superquadric fit— 11% 15% 17% 13%
Mirroring

Table 1 shows that a traditional approach of fitting an ellipsoid to the point cloud
results in large errors compared to the superquadric fit. Errors can be further reduced
by using bounding or mirroring techniques to limit the overgrowth of the super-quadric
model during the fitting process. Both techniques rely on fitting the superquadric shape
after the point cloud is axis-aligned, which reduces the variation in the rotation parameters
in the superquadric shape and improves performance. Our results show that the impact of
multipath interference from the ground planes having different levels of infrared reflectivity
is negligible using either technique.

3.3. Dimensioning Performance for a Cuboid Object Based on Object Orientation

Figure 10 shows the average of absolute errors for each ground plane surface at
each rotation angle of the box using the bounding technique and the mirroring technique.
Figure 11 shows the average of absolute errors for all of the ground plane surfaces at each
rotation angle of the box with respect to the ToF sensor using the bounding technique and
the mirroring technique.

T T T T T T T T

24% 1 —o— Aluminum Foil

22% —+— Black Posterboard |
White Posterboard | ¥

20% —— Black Felt

3
18%

16%
14%
12% -
10%
8%
6%

4%

Average of absolute errors in each dimension

20, - Bounding Technique: Solid Line |
° Mirroring Technique: Dashed Line

0% 1 1 L 1 1 1 1 1
30 35 40 45 50 55 60 65 70 75

Rotation angles in degrees

Figure 10. Dimension errors at each rotation angle of the box. Each marker type (i.e., o, +, ¥, x) corre-
sponds with a ground surface material. Solid or dashed lines are used with the corresponding marker
type based on whether the bounding technique or the mirroring technique was applied, respectively.
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Figure 11. Average dimension errors of the box across all ground plane surfaces. The blue data points
correspond with error measurements obtained using the bounding technique. The red data points
correspond with error measurements obtained using the mirroring technique.

In Figures 10 and 11, the box is initially positioned at an angle of 45° with respect to
the ToF sensor such that two side surfaces and the top surface of the object are visible to the
ToF sensor. The box is then rotated about the vertical z-axis with respect to the ToF sensor
to determine the effect of the rotation angle of the box with respect to the ToF sensor. The
results from Figures 10 and 11 show that the smallest of the absolute errors for the various
ground plane surfaces generally occur when the box is rotated about 45° with respect to
the ToF sensor. In this orientation, both vertical faces are most visible to the ToF sensor,
which results in more data points on the box surfaces being available for processing. As
the box rotates away from 45°, one of the vertical sides of the box becomes less visible,
resulting in fewer data points on the surfaces of the box being available for processing. Our
results show that the average error increases as the number of data points decreases. In an
extreme case, when the box is rotated head-on with the ToF sensor at 0° or 90°, only one
vertical surface and the top surface are visible to the ToF sensor, which results in the fewest
number of data points on the surfaces of the box. Although the average error increases as
the number of data points on the surfaces of the box decreases, our experiments show that
superquadric shapes can be used even when only two surfaces of the object are visible to
the ToF sensor. While our framework can be applied when only one vertical surface and
the top surface are visible to the ToF sensor, our results show that the average error further
increases as the number of data points on the surfaces of the box decreases. In particular,
the mirroring technique experiences a higher average error compared to the bounding
technique since the mirroring technique relies on surface data points for synthetically
creating non-visible sides of an object.

3.4. Dimensioning Performance for a Cuboid Object Using Bounding Technique

Table 2 shows the average of absolute errors for each of the ground plane surfaces with
a box rotation of 45° with respect to the ToF sensor using the bounding technique and the
mirroring technique for fitting a superquadric shape to the point cloud data. Our results
show that the bounding technique can provide lower dimensioning errors compared to the
mirroring technique. In our experiments, we observed that the mirroring technique tends
to result in underfitting the superquadric shape to the point cloud data, which results in
larger dimensioning errors.
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Table 2. Dimension errors for various fitting techniques of a box rotation angle of 45°.

. . Black White Black
Method Aluminum Foil Posterboard Posterboard Felt
Superquadric fitting—
1% Bounds w/axis 9% 5% 4% 9%
alignment
Superquadric fitting— 8% 15% 16% 15%
Mirroring

3.5. Dimensioning Performance for a Cylindrical Object Using Bounding Technique

Based on the findings from the cuboid object experiments, we conducted similar
experiments on a cylindrical object using the bounding technique since it provided better
performance than the mirroring technique. Table 3 shows the average of absolute errors
for each of the ground surfaces for different orientations of a cylinder using the bounding
technique. As the cylinder is rotated with respect to the ToF sensor, an error for each
dimension of the cylinder is computed. The absolute errors for each dimension are then
averaged to determine the average of the absolute errors at each rotation angle of the
cylinder. Table 3 shows that dimensioning the cylindrical object in the vertical orientation
resulted in larger dimensioning errors compared to when the cylindrical object was in
the horizontal orientation. In both orientations, our experiments showed an increase in
the amount of missing data for cylindrical objects compared to cuboid objects due to the
curved surfaces of the cylindrical object. These curved surfaces deflected more infrared
light away from the ToF sensor, which resulted in less surface data being collected by
the ToF sensor. Our experiments also showed that when the cylindrical object is in the
horizontal orientation, the proximity of the ground plane to the curved surface of the
cylinder reduces the amount of surface data that is lost compared to when the cylindrical
object is in the vertical orientation. Figure 12 illustrates an example of the point cloud data
for a cylindrical object and the corresponding superquadric fit to the point cloud data.

Table 3. Dimension errors for a cylinder using the bounding technique.

Cvlinder Orientati Aluminum Black White Black
ylnder Lrientation Foil Posterboard Posterboard Felt

Horizontal 6.61% 6.35% 2.97% 6.29%

Vertical 8.01% 12.75% 12.87% 13.13%

0.08
006
0.04

0.02 1

-0.02 4
-0.04

-0.06

-0.08 - S
005 0 -005

Figure 12. Cont.
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X

Figure 12. Profile view (top left) and perspective view (top right) of a point cloud for a cylindrical
object and profile view of superquadric fit (bottom left) and perspective view of superquadric fit
(bottom right) to the point cloud for the cylindrical object in meter units. In the bottom plots, the red
data points correspond with the point cloud for the cylindrical object and the black and blue data
points corresponds with data points on the surface of the superquadric shape that was determined
from the superquadric fitting process.

4. Conclusions

In this work, we developed a framework that can be used for dimensioning cuboid and
cylindrical objects from point cloud data generated using a ToF sensor despite the presence
of noise artifacts and issues such as low resolution, self-occlusions, noise, and multipath
interference. This work also quantifies the impact on the accuracy of dimensioning objects
based on various model fitting techniques, the pose of an object, the shape of an object, and
the ground surface material under an object.

Our results show that the performance of dimensioning a cuboid object increases
when more surfaces and surface areas of the object are visible to the ToF sensor. Conversely,
the performance of dimensioning a cuboid object decreases when fewer surfaces and
surface areas are visible to the ToF sensor. In addition, the performance of dimensioning a
cylinder object increases when the object is in a horizontal configuration as opposed to a
vertical configuration. Our results also showed that dimensioning performance improves
when a bounding technique is employed in conjunction with the parametric fitting process
to reduce overgrowth of the superquadric shape. Notably, the bound-based approach
provides better performance compared to a mirroring-based approach that synthetically
creates missing point cloud information for an object.

This work can be extended to examine the use of multiple ToF sensors to further
improve dimensioning accuracy. Future works may also extend the ability of parametric
fitting to dimension more complex shapes with non-convex surfaces.
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Abstract: Due to the significant bandwidth and memory requirements for transmitting and
storing large-scale point clouds, considerable progress has been made in recent years in
the field of large-scale point cloud geometry compression. However, challenges remain, in-
cluding suboptimal compression performance and complex encoding—decoding processes.
To address these issues, we propose an efficient large-scale scene point cloud geometry
compression algorithm. By analyzing the sparsity of large-scale point clouds and the
impact of scale on feature extraction, we design a cross-attention module in the encoder to
enhance the extracted features by incorporating positional information. During decoding,
we introduce an efficient generation module that improves decoding quality without in-
creasing decoding time. Experiments on three public datasets demonstrate that, compared
to the state-of-the-art G-PCC v23, our method achieves an average bitrate reduction of
—46.64%, the fastest decoding time, and a minimal network model size of 2.8 M.

Keywords: point cloud geometry compression; cross-attention; efficient generation

1. Introduction

In the real world, most space is unoccupied by observed objects. Large-scale scene
point clouds effectively reduce data volume while preserving spatial structure information,
capturing the properties of large-scale scenes. This makes them well-suited for representing
the 3D structure of expansive environments, leading to widespread applications in fields
such as autonomous driving [1], robotics [2], and virtual reality [3]. However, in practical
applications, point cloud data can contain hundreds of millions of points or even reach
TB-level sizes. This not only requires substantial storage space but also presents significant
challenges in data processing, management, sharing, and application, thereby raising higher
demands for point cloud compression. The Moving Picture Experts Group (MPEG) [4]
has proposed two traditional point cloud compression standards: video-based V-PCC and
geometry-based G-PCC. V-PCC first converts point cloud sequences into video format and
applies traditional video compression techniques, while G-PCC uses an efficient octree
structure to eliminate redundant information and achieve compression. However, these
traditional methods rely on handcrafted features and are limited in their applicability.
With the growing use of deep learning in image and video compression, its application to
large-scale scene point cloud compression is also gaining increasing attention.

In recent years, deep learning has made significant progress in point cloud compres-
sion. Many studies have focused on dense objects or human point clouds. Refs. [5-8]
proposed a series of lossy geometric compression algorithms for point clouds, achieving
high reconstruction quality at low bitrates. Refs. [9-12] introduced a set of lossless geo-
metric compression algorithms, ensuring low bitrates while maintaining lossless quality.

Sensors 2025, 25, 1325 https://doi.org/10.3390/s25051325
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However, these algorithms are less effective for large-scale scene point clouds, where the
sparse distribution of points makes compression more challenging. This sparsity results in
numerous empty voxels during the voxelization of sparse point clouds, significantly hin-
dering subsequent processing. Currently, voxel-based methods for large-scale scene point
clouds [13-16] convert them into octree structures to reduce computational and parameter
requirements. However, these methods still demand substantial computation, limiting their
applicability. With the advent of efficient models like PointNet [17] and PointNet++ [18], it
has become feasible to process point cloud data directly and efficiently. Thus, our approach
to the geometric compression of large-scale scene point clouds leverages direct point-based
processing. However, due to the high complexity and large scale of such point clouds,
existing methods suffer from suboptimal compression performance and complex decoding
processes [19,20]. Recent studies [21] have attempted to address these issues by designing
an attention-based encoder to enhance compression performance for sparse point clouds
and by developing a folding-based point cloud generation module to reduce decoding
time. However, the attention module in these designs fails to fully leverage the positional
information introduced and does not effectively recover high-dimensional geometric fea-
tures, resulting in subpar decoding quality. To overcome this, we designed a cross-attention
module and an optimized generation module, achieving both lower decoding time and
improved decoding quality.
In summary, the main innovations of this work are as follows:

e  We propose an efficient large-scale scene point cloud geometry compression algorithm
with a network model size of only 2.8 M, making it suitable for mobile applications.

e  We design a cross-attention module that deeply integrates positional and feature infor-
mation, enhancing feature extraction quality and improving compression performance.

e  Wedevelop an optimized generation module that effectively recovers high-dimensional
geometric features, enhancing decoding quality without increasing decoding time.

e Extensive comparative and ablation experiments demonstrate that the proposed
method achieves state-of-the-art performance across three datasets and delivers supe-
rior results in terms of subjective quality as well.

2. Related Work

In recent years, substantial progress has been made in large-scale scene point cloud
compression, driving rapid advancements in the field. Broadly speaking, existing research
can be categorized into two main types: lossy and lossless compression for large-scale
scene point clouds. The following is a review of relevant work on geometric information
compression for large-scale scene point clouds.

2.1. Lossy Geometry Compression for Large-Scale Point Clouds

For lossy large-scale scene point cloud compression, Huang et al. [19] proposed a deep
learning-based point cloud compression network that effectively processes various types of
point clouds by learning common structural features, including simple and sparse shapes.
Wiesmann et al. [20] introduced an innovative convolutional autoencoder architecture
that operates directly on the points themselves, thus avoiding voxelization; however, the
reconstruction quality remains suboptimal. Liang et al. [22] employed a Transformer-
based encoder architecture for point cloud geometry compression, where the input point
cloud is treated as a continuous spatial set with learnable positional embeddings and
compressed using self-attention layers and point-wise operations. Pang et al. [23] used
multilayer perceptrons and convolutional neural networks as the backbone, giving their
approach an advantage in handling sparse point clouds and enabling post-processing
techniques for further refinement of the decompressed point clouds. Later, Pang et al. [24]
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proposed a geometry compression algorithm for point clouds that supports point, voxel,
and tree representations, featuring a context-aware up-sampling module for decoding
and an enhanced voxel Transformer module for feature aggregation. Cui et al. [14] used
non-overlapping context windows to construct sequences and shared the results of the
multi-head self-attention mechanism, reducing time overhead.

For large-scale point cloud scenes, Sun et al. [25] converted discrete voxels into fine-
grained 3D points, effectively addressing the coordinate loss that occurs during the octree
generation process. Fan et al. [26] explored the spatial correlation across different layers
through progressive down-sampling, modeling the corresponding residuals with a fully
decomposed entropy model, thereby achieving compression of latent variables. Inspired
by IPDAE [7], Huang et al. [27] proposed an ordered segmentation algorithm based on
patch-wise point cloud compression, tailored to the specific characteristics of point clouds.
Wang et al. [28] decoupled the original point cloud into multiple layers of point subsets,
compressing and transmitting each layer independently to ensure reconstruction quality
requirements across different scenarios. You et al. [21] proposed an attention-based encoder
that embeds features from local windows and introduces dilated windows as cross-scale
priors to infer the distribution of quantized features in parallel.

2.2. Lossless Geometry Compression for Large-Scale Point Clouds

For lossless large-scale scene point cloud compression, Huang et al. [13] utilized the
sparsity and structural redundancy between points to reduce bitrate. Biswas et al. [29]
modeled the probabilities of octree symbols and associated intensity values by exploiting
temporal and spatial correlations in the data. However, this work overlooked neighboring
nodes and local geometric features in the current point cloud frame. Que et al. [15]
proposed a two-stage deep learning framework that combines the strengths of octree-
based and voxel-based methods, using voxel context to compress octree-structured data.
Fu et al. [16] first employed an octree representation to reduce spatial redundancy, making
it robust to point clouds at different resolutions. They then used a conditional entropy
model with a large receptive field to model sibling and ancestor contexts, calculating
strong dependencies between neighboring nodes, and applied an attention mechanism to
emphasize relevant nodes in the context. This extensive context includes ancestor nodes,
thousands of neighboring nodes, and their ancestor nodes, covering nearly the entire
octree. However, such heavy global attention computations and autoregressive context are
inefficient for practical applications.

Building on OctAttention [16], Song et al. [30] introduced a hierarchical attention
structure with linear complexity for context scales, preserving a global receptive field.
Additionally, they designed a grouped context structure to address the serial decoding
issue caused by autoregression while maintaining compression performance. However,
since these studies primarily focus on optimizing network structure and context informa-
tion, they often overlook fundamental training strategies and efficient context utilization.
Song et al. [31] later developed a geometry-aware feature extraction module capable of
extracting effective features from large-scale contexts. Lodhi et al. [32] employed sparse
3D convolutions to extract features across various octree scales for lossless compression of
point cloud octree representations. Luo et al. [33] transformed sparse point clouds from
Cartesian to spherical coordinates, simplifying redundancy reduction for neural networks.
By applying the spherical coordinate system to Cartesian-based methods like EHEM [30]
and OctAttention [16], they demonstrated its effectiveness.

194



Sensors 2025, 25, 1325

3. Proposed Method

The network architecture of the efficient large-scale scene point cloud geometry com-
pression algorithm is shown in Figure 1. This network consists of an encoder, entropy
coding module, decoder, and a loss function. During encoding and decoding, the encoder
first extracts features from the input point cloud. The Octree-predlift method from G-PCC
is then used to encode and decode the down-sampled key points. The entropy coding
module estimates the distribution of the geometric features extracted by the encoder and
encodes them into a binary file. Finally, the decoder reconstructs the sparse point cloud
from the decoded geometric features and key points.

P f 8eo fgeo f’
Encoder "L Q b AE ;’IA AD L _,. Decoder | |
Module Module
U om Tt
l l
])bone h 4 . Phone i
PredTree PredTree Entroy
. —> | —» . »
Encoding I Decoding Module

Figure 1. Network architecture overview.

3.1. Encoder Module

The encoder is mainly composed of keypoint sampling, window querying, adaptive
alignment, and cross-attention modules, as shown in Figure 2. The sampling and querying
methods in the proposed algorithm use aggregation operations commonly applied in point
cloud analysis tasks, such as farthest point sampling [34], random point sampling [35], and
K-nearest neighbor [36]. The encoder module is described in detail below.

Bone Sampling —»

Figure 2. Encoder module.

Due to the high computational cost of farthest point sampling, the original point cloud
P € RN*3 is first randomly down-sampled to obtain a subset with no more than M x 16
points. Farthest point sampling is then applied to this subset to obtain PP € RM*3 with
M points, where P?" represents the key points. Next, adaptive alignment is performed
on overlapping local windows, moving each window to the coordinate origin, and finally,
rescaling is conducted based on the key points, as follows:

1

= szifpjepb“”‘“ min{||pi = pjl|2 : pi # pj}, @

pVY = {pdpi ‘pe T(pi,P,K)},Vpi € phore, )

1
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where P!V is the aligned local window, T(p;, P, K) denotes the K nearest neighbors of point
p; found within the input point cloud P, and d is the scaling factor calculated from P"°.

3.1.1. Cross-Attention Module

To effectively extract feature information from the local window P!V € RX*3, a cross-
attention module was designed, as shown in Figure 3. Positional information is intro-
duced to enhance the features, after which the extracted features are concatenated and
restored to (K, C) through a multi-layer perceptron. Finally, high-dimensional feature
vector Flgeo € R™C is extracted using max-pooling and then undergoes entropy encoding.

ST PR . ) x2 | (PElement-wise Addition

! . l I MLP'— : . .. .

\ : | i (X Element-wise Multiplication
.t eeee | >

& Pem (D Row-wise Maxpooling

-1-“_ Ke}_/__ Concat E—>E MLP E—» ; i ; —@—>

FD‘
<
S |
}

2
LR
&|/

Figure 3. Cross-attention module.

Specifically, an embedding operation based on graph convolution is first performed
on each point within the local window to generate the feature Fl.(o) € R®*C that captures
local details, as follows:

FO [j] = GraphConv(T(p! P-AW,K)),ij- € pAW. ©)]

i jr i

where T'( p;», PAW, K) represents the K nearest neighbors of point p; found within the aligned

window PAW, GraphConv is defined as GraphConv(-) = MaxPool(MLP(-)), and Fi(o) lj] €

R'*C denotes the j-th feature vector in the feature matrix Fi(o)

€ RK*C, corresponding to
point p} Next, a stacked cross-attention module is executed, with the process of the /-th

attention block described as follows:

Peml(l) = MLP(position), 4)

Key" = o(MLP(F") + Pem) x FV) + Pem("), 5)
Value!"! = o(MLP(F") 4 Pem") x Pem") + EV)), ©)
Fl-(lH) = MLP(Concat(Keyl([), Valuei(l))). (7)

where o represents the Softmax operation, Pemn denotes the positional encoding multiplier,
and Key and Value refer to the feature information extracted through an MLP. Finally, the
()

features F;’ € RKXC output from the last cross-attention module are aggregated into the

geometric feature Figeo € R'*C using max-pooling, as follows:

F* = MaxPool(Fi(L) ). 8)
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3.1.2. Dilation Window Down-Sampling Module

Since there is dependency between the target local window and the neighboring
area of the down-sampled key points, a dilated window is used as a cross-scale prior
before entropy encoding. This approach captures the neighboring relationships within
the point cloud in the local window, enabling the model to consider both local detail
features and the point cloud distribution information over a wider area. Additionally,
to achieve fast arithmetic encoding, the geometric features extracted by the encoder are
further compressed using graph convolution and fully connected layers. Specifically, as
the key points are encoded by G-PCC, the dilated neighborhood can serve as a cross-scale
prior. The dilated window PP" is defined as follows:
pDW _ T(pi/ pbone’ K)vai c I’jbone_ )

1

where P € RF3, T represents the K-nearest neighbors of the down-sampled point p; in
the down-sampled P?"¢, with K set to 8 in the experiment.

Due to the longer symbol sequences and higher-dimensional features to be encoded,
the complexity of arithmetic encoding increases. Therefore, a simple fully connected layer

is used to perform the compression operation, defined as follows:
f5° = Linear(F¥*). (10)

where Figeo € R™*Cand £ € R1*¢ are the geometric features, with C = 128 and ¢ = 16
set in the experiment. After arithmetic decoding, a linear layer is also needed to restore the

geometric features back to Flgeo.

3.2. Entropy Module

In the entropy encoding module, uniform quantization is employed, which is replaced
with added uniform noise during training, resulting in the quantized geometric features
denoted as f8° = Q(f8%), as follows:

Py(F5) =TT, (L(®) x U(~1/2,1/2))(F5). (11)

1

where P; represents the entropy model parameterized by 7, L(®;) refers to the Laplace dis-
tribution of the quantized features f8%, and the parameters ®; = (j;, ;) and U(—1/2,1/2)
denote a uniform distribution over the interval [-1/2,1/2]. The parameter ®; can be
estimated from the dilated window using a network that includes a GraphConv layer and
an MLP, as follows:

®; = (u;,0;) = MLP(GraphConv(PP™)). (12)

Finally, the bit rate of the geometric features is calculated as follows:
1 ~
R3% = N log, Pr(f%%). (13)

where N represents the number of points in the input point cloud.

3.3. Decoder Module

Due to the significant complexity that multi-scale methods may introduce to the
decoder, our approach employs a single-scale strategy to reduce computational demands
during decoding. Since the number of geometric features M at the key points is much
smaller than the original number of input points N, we first process the geometric features
using a feature refinement module. Then, we utilize the designed efficient generation
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module to generate the position information of the points. Finally, the reconstruction of the
point cloud is restored to its original position using a backward alignment operation, as
shown in Figure 4.

]_’:‘, geo Pbone

Folding-based i i Inverse
|_>

Point Generator | 1 + Aligning |

Figure 4. Decoder module.

The feature refinement module consists primarily of a dilated window convolution
(DW-Conv) and a linear layer, as shown in Figure 5a. The DW-Conv integrates information
from the dilated window, reducing redundant computations in the spatial graph and
enabling a graph structure for feature convolution. Specifically, using the provided dilated
indices, the features of the points within the corresponding dilated window are grouped
and collected. Graph convolution (Graph-Conv) is then applied to aggregate these collected
groups, resulting in refined features, as illustrated in Figure 5b.

______________________________________________

M, C M,3xC M,C
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Dilated Windows \ _ 2 S

Index M,k,3
R R ey
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(b)

Figure 5. Feature refinement module: (a) feature refinement; (b) dilated window convolution.

The geometric features processed by the feature refinement module are transformed
into point coordinate information using the designed efficient generation module, as
shown in Figure 6. Here, an MLP is used for up-sampling the input features, and a Reshape
operation adjusts the output dimensions. The efficient generation module employs a
dual-branch structure to extract features. The first branch converts the geometric features
from a 1 x C-dimensional vector into a Rmax X D grid matrix, which is then randomly
sampled to produce R x D. The second branch also converts the geometric features into
R x D using Reshape and MLP. Finally, the up-sampled geometric features from both
branches are concatenated and passed through an MLP and Reshape operation to generate
the point coordinates.

The reverse alignment operation is the inverse process of the adaptive alignment oper-

PAW

ation used in the encoder. Each reconstructed window is moved back to its original

position and restored to its original scale to assemble into the complete reconstruction
result P, as follows:

p= uﬁl_epbw{(ﬁ xd)+piipe ﬁ,AW}. (14)

where d is the scaling factor recalculated by Proe.
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Figure 6. Efficient generation module.

3.4. Loss Function

The chamfer distance [37] is chosen as the loss function to measure the average distance
from each point in one point set to its nearest neighbor in the other point set, as follows:

Dep(P,B) = @ (P, ) +d (P, P). (15)

where D¢p represents the chamfer distance loss function, P denotes the input point cloud,
P signifies the decompressed point cloud, and 4 is the average symmetric squared distance
from the input point cloud to the nearest neighbors in the decompressed point cloud.
The total loss function L,y is constructed by adding D¢p and the geometric feature
bit rate Rge,, as follows:
Liotar = Dcp + /\Rgeo- (16)

where the calculation of R, is shown in (13), where A is the loss weight used to balance
the impact of multi-scale loss, optimizing the parameters of the entire network within the
end-to-end training scheme.

4. Experimental Results

The large-scale point cloud geometry compression algorithm is trained on the Shap-
eNet dataset [38], which contains 35,708 point clouds, each generated by uniformly sam-
pling 8000 points from CAD models. The test dataset includes both indoor and outdoor
scenes: the indoor point clouds are sourced from S3DIS [39] and ScanNet [40], while the
outdoor point cloud map is derived from KITTI [41], processed according to ref. [20]. De-
tailed information about the test set is provided in Table 1. Our method is implemented
using Python 3.10 and PyTorch 2.0 for network model training. The experimental setup
includes the following parameters: the optimizer is Adam [42] with an initial learning
rate of 0.0005, a batch size of 1, and the model is trained for 140,000 iterations with a local
window size of 128. The bitrate—distortion balance is set to 10~#, and G-PCC [4] is used for
lossless compression of the down-sampled key points. All experiments were conducted on
an AMD Ryzen 7 5800X CPU (AMD, Sunnyvale, CA, USA) and an NVIDIA RTX 2080Ti
GPU (NVIDIA, Santa Clara, CA, USA).

Table 1. Test dataset details.

Data Test Model Number Point Number
KITTI Area 6 48 554 K~214 K
S3DIS Official test set 100 3.2M~0.3M

ScanNet Sequence 08 186 553 K~32 K

4.1. Evaluation Indicators

In the image domain, objective metrics such as symmetric nearest neighbort, root
mean square error, and peak signal-to-noise ratio (PSNR) are commonly used to assess the
quality of decoded images. However, point clouds not only involve errors in color attribute
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information but also errors in geometric data compression. Therefore, it is necessary
to evaluate attribute distortion and geometric distortion separately. To assess the data
fidelity of compression algorithms, the geometric distortion levels of decoded point clouds
at different bitrates are typically compared, a process referred to as bitrate-distortion
optimization. In this context, geometric distortion generally refers to the geometric error
between the decompressed point cloud and the original point cloud, while bitrate refers to
the number of bits required to encode each input point (bpp).

S
bpp = N 17)

where S represents the size of the encoded data file in bits, and N denotes the number of
points in the original point cloud.

Geometric distortion in point cloud data is typically measured by the distance between
the points in the original point cloud and the points in the decoded point cloud. To calculate
the distance between a point in the original point cloud and its corresponding point in the
decoded point cloud, the correspondence between the original and decoded point clouds
must first be established. Then, the distance deviation between corresponding points
is used to compute objective evaluation metrics such as geometric peak signal-to-noise
ratio. For both the original and decoded point clouds, distortion is calculated separately.
A matching relationship is established for the reference point cloud, and based on the
corresponding points, coordinate distortion or color distortion is computed. The larger
distortion value is taken as the symmetric distortion, commonly referred to as the D1 metric.
To calculate the distance from a point to a plane, surface reconstruction of the point cloud is
performed first, and then the point-to-surface distance is used in place of the point-to-point
distance for the calculation, which is typically called the D2 metric.

The D1 metric is defined by connecting a point 4; in the original point cloud A to a
point b; in the decoded point cloud B to determine the error vector E(i, j). The calculation
formula is as follows:

el (i) =| | EG. )| 3 (18)

where E(i, j) represents the point-to-point error. Based on the distance from all points
(i € B) in the decoded point cloud B to the corresponding points in the original point cloud,
the distance is denoted as eg L. N represents the total number of points in the decoded
point cloud B. The D1 metric can thus be expressed as follows:

D1 _ D1 (;
€pA = rb?gg{eB,A(z)}. (19)

The D2 metric is calculated by projecting the error vector E(i, j) along the normal
vector Nj to obtain a new error vector E(i, j). This projection accounts for the distance from
a point to the plane. The calculation formula for the point-to-plane error is as follows:

eB% (i) =||EG.)|B = (EG,j) - Ny (20)

To assess the distortion, the peak signal-to-noise ratio (PSNR) is used. The geometric
PSNR is calculated based on the geometric errors D1 and D2, and the formula for calculating
the geometric PSNR is as follows:

2
p
PSNR =101lo _ ]. 21

510 (max(e?’%,e%)) 1)

where p represents the geometric peak of the decoded point cloud.
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4.2. Performance Evaluation

The proposed method is compared with the state-of-the-art traditional method, G-
PCCv23, where G-PCCv23(O) serves as the default octree-based encoder—decoder. Addi-
tionally, a comparative analysis is performed with deep learning-based methods, including
OctAttention, IPDAE, and Pointsoup. To ensure a fair comparison, all deep learning-based
methods were retrained on the same dataset as our method, and all test samples were
normalized to the coordinate range [0, 1023].

To evaluate distortion in lossy compression, we perform an objective comparison
using rate—distortion optimization, deriving D1-PSNR from point-to-point error, with
bitrate measured in bits per point. Since the test datasets lack reference normals, which are
required for calculating D2 PSNR, comparisons for D2 PSNR are not included. Figure 7
shows the rate—distortion optimization curves of our method on the S3DIS, ScanNet,
and KITTI datasets, where the proposed method clearly outperforms others in D1-PSNR
across all three datasets. Table 2 presents the bitrate gains in D1-PSNR compared to G-
PCCv23(O), OctAttention, IPDAE, and Pointsoup, with negative values indicating bitrate
savings (i.e., better compression performance). As shown, OctAttention and IPDAE achieve
reduced average bitrates across all three datasets compared to G-PCCv23(O), reflecting
inferior compression performance. Pointsoup achieves a —44.66% bitrate gain on average in
terms of D1-PSNR compared to G-PCCv23(0O), while our method achieves a —46.62% bitrate
gain, delivering the best experimental results. Table 3 compares the encoding and decoding
times of different methods, showing that G-PCCv23(O) has the fastest encoding time,
while our method achieves the fastest decoding time. The real-time decoding algorithm
we propose is well-suited for tasks such as map construction and updating in dynamic
environments. The longer encoding time of our method is attributed to the use of a
more complex encoder; however, we plan to design a more efficient encoder module to
enable real-time encoding performance. Additionally, as shown in Table 4, our method
has the smallest model parameter size of 2.8 M, making it more lightweight compared to
G-PCCv2.3 and Pointsoup.

Table 2. Bit rate gain of different methods compared with G-PCCv23(O) on D1 PSNR.

Dataset OctAttention IPDAE Pointsoup Ours
S3DIS —13.90% +15.29% —51.07% —51.16%
ScanNet +28.34% +80.80% —33.35% —34.58%
KITTI +11.6% +108.23% —49.57% —54.12%
Avg. +8.68% +68.11% —44.66% —46.62%
Table 3. Comparison of encoding and decoding time of different methods.
G-PCCv23(0) OctAttention IPDAE Pointsoup Ours
Times/s Enc/Dec Enc/Dec Enc/Dec Enc/Dec Enc/Dec
S3DIS 0.33/0.13 0.55/386.60 20.85/1.22 6.96/0.06 7.16/0.06
ScanNet 0.06/0.03 0.15/59.50 4.64/0.24 1.77/0.02 1.74/0.02
KITTI 0.11/0.05 0.17/62.81 6.94/0.46 1.91/0.04 1.97/0.03
Avg. 0.17/0.07 0.29/169.64 10.81/0.64 3.55/0.04 3.62/0.04

Table 4. Comparison of model size of different methods.

G-PCCv23(0) OctAttention IPDAE  Pointsoup Ours
Model Size 5.3 MB 28.0 MB 18.8 MB 2.9 MB 2.8 MB
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Figure 7. Comparison of bitrate-distortion optimization curves of different methods. (a) is the D1
curve of the 40 m_ILEN_000028 point cloud in S3DIS. (b) is the D1 curve of the 40 m_ILEN_000128
point cloud in S3DIS. (c) is the D1 curve of the conferenceRoom_1 point cloud in ScanNet. (d) is
the D1 curve of the conferenceRoom_2 point cloud in ScanNet. (e) is the D1 curve of the
scene0011_00_vh_clean_2 point cloud in KITTL (f) is the D1 curve of the scene0015_00_vh_clean_2
point cloud in KITTL

Figures 8-10 provide a visual comparison of the point clouds decoded by all methods
for both indoor and outdoor scenes. To enhance the visual quality of large-scale point
clouds, color rendering is applied, and detailed zoom-in views are provided, indicated
by the red and blue boxes in the figures. In Figure 8, the blue zoom-in detail shows that

our reconstruction most closely matches the vehicle contours in the original point cloud.

The red zoom-in detail highlights that our reconstruction captures the vehicle and human
posture details most accurately and completely. In contrast, the Pointsoup method merges
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the human point cloud with the background, and other methods fail to fully reconstruct
the human posture. In Figure 9, the red zoom-in clearly reveals the contours of the chair’s
backrest, which are not as distinct in the reconstructions from IPDAE and Pointsoup. The
blue zoom-in detail further demonstrates that our method reconstructs the continuous
chair legs, whereas other methods exhibit gaps or missing parts. In Figure 10, both the
red and blue zoom-in details show that our method successfully reconstructs the chair’s
backrest, while the backrest in the IPDAE and Pointsoup reconstructions appears relatively
blurry. Additionally, Figures 8-10 include bitrate and D1 PSNR comparisons, clearly
demonstrating that our method achieves the best reconstruction quality and detail at the
lowest bitrate across all tested scene point clouds.

(a) Ground Truth

(c) IPDAE 0.641/56.937dB

(e) Pointsoup 0.467/59.304dB (f) Ours 0.45/60.016dB

Figure 8. Visual comparison of KITTI dataset. The red and blue boxes represent the magnified details
of the decompressed point cloud.
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(a) Ground Truth

e

W e

(e) Pointsoup 0.304/2.205dB - (f) Ours 0.275/62.215dB

Figure 9. Visual comparison of S3DIS datasets. The red and blue boxes represent the magnified
details of the decompressed point cloud.

4.3. Ablation Experiment

Comparative experiments on different datasets have demonstrated the effectiveness
of our algorithm. To further validate the contributions of each module in the proposed
network, we conducted ablation studies. First, we performed ablation on the cross-attention
module to demonstrate its feature extraction capability. Next, we ablated the efficient
generation module to verify its effectiveness in improving point cloud reconstruction
quality. During testing, the window size was set to 128, and we compared the bpp and D1
PSNR results of different ablation models, as shown in Table 5. From Table 5, it is evident
that both the proposed cross-attention and optimization generation modules are effective
for sparse point cloud geometry compression.

Table 5. Module ablation comparison.

Cross-Attention Module Efficient Generation Module bpp D1 PSNR
Vv X 0.48 59.98 dB
X Vv 0.45 59.77 dB
v v 0.45 60.02 dB
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TR
() Ours 0.41/60.478dB

Figure 10. Visual comparison of ScanNet datasets. The red and blue boxes represent the magnified
details of the decompressed point cloud.

For a more intuitive presentation of the ablation study results, we visualized them in
Figure 11. When only the proposed optimization generation module is used, it enhances re-
construction quality while reducing the bitrate, as indicated by the brown line in Figure 11.
When only the positional attention module is applied, it significantly improves recon-
struction quality with a slight increase in bitrate, as shown by the green line in Figure 11.
When both modules are incorporated, the network achieves substantial improvements
in reconstruction quality while also reducing bitrate, as represented by the red line in
Figure 11. In summary, these results strongly demonstrate the effectiveness of each module
in the proposed algorithm.

We also compared the encoding and decoding times for different ablation models, as
shown in Table 6. The results indicate no significant changes in encoding or decoding times
due to module modifications, suggesting that the improved compression performance of
the proposed method does not come at the cost of increased computation or parameter
size.
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Figure 11. Comparison of module ablation bitrate-distortion curves.

Table 6. Codec time comparison.

w/o Cross-Attention Module wlo Efficient Generation Ours
Module

Codec Time/s 1.46/0.04 1.48/0.04 1.49/0.04

5. Discussion

The proposed large-scale point cloud geometry compression algorithm addresses the
issue of long terminal decoding times by employing an efficient point cloud generation
module. However, the encoding time for the method remains relatively long, and future
research will focus on optimizing this aspect. Comparative analysis of point-based large-
scale point cloud geometry compression algorithms indicates that, while the proposed
algorithm outperforms the latest methods, the PSNR for bpp values within the 0-1 range
does not exceed 63 dB across the three datasets. This suggests that there is substantial
room for improvement in large-scale point cloud geometry compression. Future work
will explore more efficient network structures to achieve sparse point cloud geometry
compression with higher decoding accuracy while maintaining fast encoding and decoding
speeds, promoting broader applications of large-scale point clouds.

6. Conclusions

The proposed large-scale scene point cloud geometry compression algorithm achieves
state-of-the-art compression performance with the fastest decoding time. In the encoder
stage, geometric features are extracted from local windows using a cross-attention module,
and dilated windows are introduced as cross-scale priors to enable parallel inference
of the quantized feature distribution. These features are then binary-encoded using an
entropy coding module. During decoding, the geometric features are first refined, and
an efficient optimized generation module is employed to reconstruct the point cloud
coordinates. Finally, a reverse alignment operation restores the point cloud in each window
to its original scale. Extensive comparative and ablation experiments demonstrate that our
method outperforms benchmark algorithms across three open source datasets. Additionally,
the proposed algorithm’s neural model size is only 2.8 MB, providing valuable insights
for the deployment of large-scale point cloud encoding and decoding technology on
mobile devices.
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