
mdpi.com/journal/algorithms

Special Issue Reprint

Graph Algorithms

Edited by
Jesper Jansson

Graph Algorithms

Graph Algorithms

Guest Editor

Jesper Jansson

Basel • Beijing • Wuhan • Barcelona • Belgrade • Novi Sad • Cluj • Manchester

Guest Editor

Jesper Jansson

Department of

Communications and

Computer Engineering,

Graduate School of

Informatics

Kyoto University

Kyoto

Japan

Editorial Office

MDPI AG

Grosspeteranlage 5

4052 Basel, Switzerland

This is a reprint of the Special Issue, published open access by the journal Algorithms (ISSN 1999-4893),

freely accessible at: https://www.mdpi.com/si/algorithms/graph algorithms.

For citation purposes, cite each article independently as indicated on the article page online and as

indicated below:

Lastname, A.A.; Lastname, B.B. Article Title. Journal Name Year, Volume Number, Page Range.

ISBN 978-3-7258-4509-5 (Hbk)

ISBN 978-3-7258-4510-1 (PDF)

https://doi.org/10.3390/books978-3-7258-4510-1

© 2025 by the authors. Articles in this book are Open Access and distributed under the Creative

Commons Attribution (CC BY) license. The book as a whole is distributed by MDPI under the terms

and conditions of the Creative Commons Attribution-NonCommercial-NoDerivs (CC BY-NC-ND)

license (https://creativecommons.org/licenses/by-nc-nd/4.0/).

Contents

Jesper Jansson

Editorial: Special Issue on Graph Algorithms
Reprinted from: Algorithms 2013, 6, 457–458, https://doi.org/10.3390/a6030457 1

Patrick Prosser

Exact Algorithms for Maximum Clique: A Computational Study
Reprinted from: Algorithms 2012, 5, 545–587, https://doi.org/10.3390/a5040545 3

Takahisa Toda

Extracting Co-Occurrence Relations from ZDDs
Reprinted from: Algorithms 2012, 5, 654–667, https://doi.org/10.3390/a5040654 46

Paola Bonizzoni, Riccardo Dondi and Yuri Pirola

Maximum Disjoint Paths on Edge-Colored Graphs: Approximability and Tractability
Reprinted from: Algorithms 2013, 6, 1–11, https://doi.org/10.3390/a6010001 60

Marjan Marzban and Qian-Ping Gu

Computational Study on a PTAS for Planar Dominating Set Problem
Reprinted from: Algorithms 2013, 6, 43–59, https://doi.org/10.3390/a6010043 71

Ryuhei Uehara

Tractabilities and Intractabilities on Geometric Intersection Graphs
Reprinted from: Algorithms 2013, 6, 60–83, https://doi.org/10.3390/a6010060 88

Jason T. Isaacs and João P. Hespanha

Dubins Traveling Salesman Problem with Neighborhoods: A Graph-Based Approach
Reprinted from: Algorithms 2013, 6, 84–99, https://doi.org/10.3390/a6010084 112

Frank W. Takes and Walter A. Kosters

Computing the Eccentricity Distribution of Large Graphs
Reprinted from: Algorithms 2013, 6, 100–118, https://doi.org/10.3390/a6010100 128

Tatsuya Akutsu and Takeyuki Tamura

A Polynomial-Time Algorithm for Computing the Maximum Common Connected Edge
Subgraph of Outerplanar Graphs of Bounded Degree
Reprinted from: Algorithms 2013, 6, 119–135, https://doi.org/10.3390/a6010119 147

Soheil Jahangiri Tazehkand, Seyed Naser Hashemi and Hadi Poormohammadi

New Heuristics for Rooted Triplet Consistency
Reprinted from: Algorithms 2013, 6, 396–406, https://doi.org/10.3390/a6030396 164

v

Algorithms 2013, 6, 457-458; doi:10.3390/a6030457
OPEN ACCESS

algorithms
ISSN 1999-4893

www.mdpi.com/journal/algorithms

Editorial

Editorial: Special Issue on Graph Algorithms
Jesper Jansson

Laboratory of Mathematical Bioinformatics, Bioinformatics Center, Institute for Chemical Research,

Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan; E-Mail: jj@kuicr.kyoto-u.ac.jp

Received: 9 August 2013; in revised form: 9 August 2013 / Accepted: 9 August 2013 /
Published: 12 August 2013

Abstract: This special issue of Algorithms is devoted to the design and analysis of

algorithms for solving combinatorial problems of a theoretical or practical nature involving

graphs, with a focus on computational complexity

Keywords: graph algorithms; computational complexity; fixed-parameter tractability; exact

algorithms; approximation algorithms; heuristics; computational studies

1. Introduction

Because of their simplicity and generality, graphs have been used for a long time in many different

areas of science and engineering, e.g., to describe how objects such as the atoms of a molecule are

connected, or to express various types of constraints such as precedence constraints in a complex

manufacturing process. More recently, graphs have found new applications in emerging research fields

like social network analysis, the design of robust computer network topologies, frequency allocation

in wireless networks, and bioinformatics (i.e., to represent metabolic pathways, protein–protein

interactions, evolutionary relationships, or other kinds of structured biological information). The amount

of data in such applications can be enormous, and therefore, the resulting graphs may be huge, which

motivates further development of fast and space-efficient algorithms in the near future for solving various

(old and new) graph problems exactly or approximately.

2. Special Issue

A special issue of Algorithms was proposed in order to stimulate new and original research on graph

algorithms. In response to the call for papers, researchers from all over the world submitted a total of

fifteen articles, covering a wide range of related topics. All submissions were evaluated by experts;

1

Algorithms 2013, 6 458

based on their anonymous reviews, nine of the articles were then selected for inclusion in the special

issue. After several rounds of revision, the final versions were published in [1–9].

Acknowledgements

As Guest Editor of this Special Issue, I would like to thank all of the contributing authors for

submitting their work to Algorithms; the reviewers for their valuable and detailed comments that helped

us select the best articles; and the publishers, Editor-in-Chief Professor Kazuo Iwama, and Assistant

Editors Ms. Chelly Cheng, Ms. Wanda Gruetter, Ms. Maple Lv, and Ms. Phoenix Zhao for their support

and assistance.

References and Notes

1. Prosser, P. Exact Algorithms for Maximum Clique: A Computational Study. Algorithms 2012, 5,

545–587.

2. Toda, T. Extracting Co-Occurrence Relations from ZDDs. Algorithms 2012, 5, 654–667.

3. Bonizzoni, P.; Dondi, R.; Pirola, Y. Maximum Disjoint Paths on Edge-Colored Graphs:

Approximability and Tractability. Algorithms 2013, 6, 1–11.

4. Marzban, M.; Gu, Q.-P. Computational Study on a PTAS for Planar Dominating Set Problem.

Algorithms 2013, 6, 43–59.

5. Uehara, R. Tractabilities and Intractabilities on Geometric Intersection Graphs. Algorithms 2013,

6, 60–83.

6. Isaacs, J.T.; Hespanha, J.P. Dubins Traveling Salesman Problem with Neighborhoods: A Graph-

Based Approach. Algorithms 2013, 6, 84–99.

7. Takes, F.W.; Kosters, W.A. Computing the Eccentricity Distribution of Large Graphs. Algorithms
2013, 6, 100–118.

8. Akutsu, T.; Tamura, T. A Polynomial-Time Algorithm for Computing the Maximum Common

Connected Edge Subgraph of Outerplanar Graphs of Bounded Degree. Algorithms 2013, 6, 119–

135.

9. Tazehkand, J.S.; Hashemi, S.N.; Poormohammadi, H. New Heuristics for Rooted Triplet

Consistency. Algorithms 2013, 6, 396–406.

© 2013 by the author; licensee MDPI, Basel, Switzerland. This article is an open access article

distributed under the terms and conditions of the Creative Commons Attribution license

(http://creativecommons.org/licenses/by/3.0/).

2

Algorithms 2012, 5, 545-587; doi:10.3390/a5040545
OPEN ACCESS

algorithms
ISSN 1999-4893

www.mdpi.com/journal/algorithms

Article

Exact Algorithms for Maximum Clique: A Computational Study
Patrick Prosser

Computing Science, University of Glasgow, Glasgow G12 8QQ, UK;

E-Mail: Patrick.Prosser@glasgow.ac.uk; Tel.: +44-141-330 4934; Fax: +44-141-330-4934

Received: 11 September 2012; in revised form: 29 October 2012 / Accepted: 29 October 2012 /
Published: 19 November 2012

Abstract: We investigate a number of recently reported exact algorithms for the maximum

clique problem. The program code is presented and analyzed to show how small changes

in implementation can have a drastic effect on performance. The computational study

demonstrates how problem features and hardware platforms influence algorithm behaviour.

The effect of vertex ordering is investigated. One of the algorithms (MCS) is broken into its

constituent parts and we discover that one of these parts frequently degrades performance. It

is shown that the standard procedure used for rescaling published results (i.e., adjusting run

times based on the calibration of a standard program over a set of benchmarks) is unsafe and

can lead to incorrect conclusions being drawn from empirical data.

Keywords: maximum clique; exact algorithms; empirical study

1. Introduction

The purpose of this paper is to investigate a number of recently reported exact algorithms for the

maximum clique problem. The actual program code used is presented and critiqued. The computational

study aims to show how implementation details, problem features and hardware platforms influence

algorithmic behaviour.

1.1. The Maximum Clique Problem (MCP)

A simple undirected graph G is a pair (V,E) where V is a set of vertices and E a set of edges, where

vertex u is adjacent to vertex v if and only if {u, v} is in E. A clique is a set of vertices C ⊆ V such that

every pair of vertices in C is adjacent in G. Clique is one of the six basic NP-complete problems given

in [1]. It is posed as a decision problem [GT19]: Given a simple undirected graph G = (V,E) and a

3

Algorithms 2012, 5 546

positive integer k ≤ |V | does G contain a clique of size k or more? The optimization problems is then

to find the maximum clique, where ω(G) is the size of a maximum clique.

A colouring of the graph is an upper bound on the size of the maximum clique. When colouring a

graph any pair of adjacent vertices are given different colours. We do not use colours but use integers to

label the vertices. The minimum number of different colours required is then the chromatic number of

the graph χ(G), and ω(G) ≤ χ(G). Finding the chromatic number is NP-complete.

1.2. Exact Algorithms for MCP

We can address the decision and optimization problems with an exact algorithm, such as a

backtracking search [2–14]. Backtracking search incrementally constructs the set C (initially empty)

by choosing a candidate vertex from the candidate set P (initially all of the vertices in V) and then

adding it to C. Having chosen a vertex the candidate set is then updated, removing vertices that cannot

participate in the evolving clique. If the candidate set is empty then C is maximal (if it is a maximum we

save it) and we then backtrack. Otherwise P is not empty and we continue our search, selecting from P

and adding to C.

There are other scenarios where we can cut off search, i.e., if what is in P is insufficient to unseat

the champion (the largest clique found so far) search can be abandoned. That is, an upper bound can be

computed. Graph colouring can be used to compute an upper bound during search, i.e., if the candidate

set can be coloured with k colours then it can contain a clique no larger than k [4,5,11–14]. There are

also heuristics that can be used when selecting the candidate vertex, different styles of search, different

algorithms to colour the graph and different orders in which to do this.

1.3. Structure of the Paper

In the next section, we present in Java the following algorithms: Fahle’s Algorithm 1 [4], Tomita’s

MCQ [12], MCR [15] and MCS [13] and San Segundo’s BBMC [11]. By using Java and its inheritance

mechanism, algorithms are presented as modifications of previous algorithms. Three vertex orderings are

then presented. Starting with the basic algorithm MC we show how minor coding details can significantly

impact on performance. Section 3 presents a chronological review of exact algorithms, starting at 1990.

Section 4 is the computational study. The study investigates MCS, determines where its speed advantage

comes from, and measures the benefits resulting from the bit encoding of BBMC and the effectiveness of

three vertex orderings. New benchmark problems are then investigated. Finally, an established technique

for calibrating and scaling results is put to the test and is shown to be unsafe. We then conclude.

2. The Algorithms: MC, MCQ, MCR, MCS and BBMC

We start by presenting the simplest algorithm [4] which I will call MC. This sets the scene. It is

presented as a Java class, as are all the algorithms, with instance variables and methods. Each algorithm

is first described textually and then the actual implementation is given in Java. Sometimes a program

trace is given to better expose the workings of the algorithm. It is possible to read this section skipping

4

Algorithms 2012, 5 547

the Java descriptions, however the Java code makes it explicit how one algorithm differs from another

and shows the details that can severely affect the performance of the algorithm.

MC is essentially a straw man: It is elegant but too simple to be of any practical worth. Nevertheless, it

has some interesting features. MCQ [12] is then presented as an extension to MC, our first algorithm that

uses a tight integration of search algorithm, search order and upper bound cut off. Our implementation of

MCQ allows three different vertex orderings to be used, and one of these corresponds to MCR [15]. The

presentation of MCQ is somewhat laborious but this pays off when we present two variants of MCS [13]

(MCSa and MCSb) as minor changes to MCQ. BBMC [11] is presented as an extension of MCQ, but is

essentially MCSa with sets implemented using bit strings. Figure 1 shows the hierarchical structure for

the algorithms presented. In the code presented, we endeavour to use the same procedure names as in

the original publications.

Figure 1. The hierarchy of algorithms.

MC

MC0 MCQ

MCSa BBMC

MCSb

MC0 MCQ

MCSa BBM

MCSb

2.1. MC

MC is similar to Algorithm 1 in [4]. Fahle’s Algorithm 1 uses two sets: C the growing clique (initially

empty) and P the candidate set (initially all vertices in the graph). C is maximal when P is empty and

if |C| is a maximum it is saved, i.e., C becomes the champion. If |C| + |P | is too small to unseat the

champion search can be terminated. Otherwise the search iterates over the vertices in P in turn selecting

a vertex v, creating a new growing clique C ′ where C ′ = C ∪ {v} and a new candidate set P ′ as the

set of vertices in P that are adjacent to v (i.e., P ′ = P ∩ neighbours(v)), and recursing. We will call

this MC.

5

Algorithms 2012, 5 548

Listing 1. The basic clique solver.�
1 import j a v a . u t i l . * ;

2

3 p u b l i c c l a s s MC {
4 i n t [] d e g r e e ; / / d e g r e e o f v e r t i c e s
5 i n t [] [] A; / / 0 / 1 a d j a c e n c y m a t r i x
6 i n t n ; / / n v e r t i c e s
7 long nodes ; / / number o f d e c i s i o n s
8 long t i m e L i m i t ; / / m i l l i s e c o n d s
9 long cpuTime ; / / m i l l i s e c o n d s

10 i n t maxSize ; / / s i z e o f max c l i q u e
11 i n t s t y l e ; / / used t o f l a v o r a l g o r i t h m
12 i n t [] s o l u t i o n ; / / as i t s a y s
13

14 MC (i n t n , i n t [] [] A, i n t [] d e g r e e) {
15 t h i s . n = n ;

16 t h i s .A = A;

17 t h i s . d e g r e e = d e g r e e ;

18 nodes = maxSize = 0 ;

19 cpuTime = t i m e L i m i t = −1;

20 s t y l e = 1 ;

21 s o l u t i o n = new i n t [n] ;

22 }
23

24 void s e a r c h () {
25 cpuTime = System . c u r r e n t T i m e M i l l i s () ;

26 nodes = 0 ;

27 A r r a y L i s t<I n t e g e r > C = new A r r a y L i s t<I n t e g e r >() ;

28 A r r a y L i s t<I n t e g e r > P = new A r r a y L i s t<I n t e g e r >(n) ;

29 f o r (i n t i =0 ; i<n ; i ++) P . add (i) ;

30 expand (C , P) ;

31 }
32

33 void expand (A r r a y L i s t<I n t e g e r > C , A r r a y L i s t<I n t e g e r > P) {
34 i f (t i m e L i m i t > 0 && System . c u r r e n t T i m e M i l l i s () − cpuTime >= t i m e L i m i t) re turn ;

35 nodes ++;

36 f o r (i n t i =P . s i z e () −1; i >=0; i − −){
37 i f (C . s i z e () + P . s i z e () <= maxSize) re turn ;

38 i n t v = P . g e t (i) ;

39 C . add (v) ;

40 A r r a y L i s t<I n t e g e r > newP = new A r r a y L i s t<I n t e g e r >() ;

41 f o r (i n t w : P) i f (A[v] [w] == 1) newP . add (w) ;

42 i f (newP . isEmpty () && C . s i z e () > maxSize) s a v e S o l u t i o n (C) ;

43 i f (! newP . isEmpty ()) expand (C , newP) ;

44 C . remove ((I n t e g e r) v) ;

45 P . remove ((I n t e g e r) v) ;

46 }
47 }
48

49 void s a v e S o l u t i o n (A r r a y L i s t<I n t e g e r > C) {
50 Ar ra ys . f i l l (s o l u t i o n , 0) ;

51 f o r (i n t i : C) s o l u t i o n [i] = 1 ;

52 maxSize = C . s i z e () ;

53 }
54 }

�� �

6

Algorithms 2012, 5 549

2.1.1. MC in Java

Listing 1 can be compared with Algorithm 1 in [4]. The constructor, lines 14 to 22, takes three

arguments: n the number of vertices in the graph, A the adjacency matrix where A[i][j] equals 1 if and

only if vertex i is adjacent to vertex j, and degree where degree[i] is the number of vertices adjacent

to vertex i (and is the sum of A[i]). The variables nodes and cpuT ime are used as measures of search

performance, timeLimit is a bound on the run-time, maxSize is the size of the largest clique found so

far, style is used as a flag to customise the algorithm with respect to ordering of vertices (and is not used

till we get to MCQ), and the array solution is the largest clique found such that solution[i] is equal to 1

if and only if vertex i is in the largest clique found.

The method search() finds a largest clique or terminates when having exceeded the allocated

timeLimit. Two sets are produced: The candidate set P and the current clique C. Vertices from P may

be selected and added to the growing clique C. Initially all vertices are added to P and C is empty (lines

27 to 29). The sets P and C are represented using Java’s ArrayList, a resizable-array implementation

of the List interface. Adding an item is an O(1) operation but removing an arbitrary item is of O(n)

cost. This might appear to be a damning indictment of this simple data structure, but as we will see, it is

the cost we pay if we want to maintain order in P , and in many cases we can work around this to enjoy

O(1) performance.

The search is performed in method expand. In line 34, a test is performed to determine if the CPU

time limit has been exceeded, and if so search terminates. Otherwise we increment the number of nodes,

i.e., a count of the size of the backtrack search tree explored. The method then iterates over the vertices

in P (line 36), starting with the last vertex in P down to the first vertex in P . This form of iteration over

the ArrayList, getting entries with a specific index, is necessary when entries are deleted (line 45) as part

of that iteration. A vertex v is selected from P (line 38), added to C (line 39), and a new candidate set

newP is then created (line 40) where newP is the set of vertices in P that are adjacent to vertex v (line

41). Consequently all vertices in newP are adjacent to all vertices in C and all pairs of vertices in C

are adjacent (i.e., C is a clique). If newP is empty C is maximal and if it is the largest clique found it

is saved (line 42). If newP is not empty then C is not maximal and search can proceed via a recursive

call to expand (line 43). On returning from the recursive call v is removed from P and from C (lines 44

and 45).

There is one “trick” in expand and that is at line 37: If the combined size of the current clique and

the candidate set cannot unseat the champion, this branch of the backtrack tree can be abandoned. This

is the simplest upper bound cut-off and corresponds to line 3 from Algorithm 1 in [4]. The method

saveSolution saves off the current maximal clique and records its size.

2.1.2. Observations on MC

There are several points of interest. First, there is the search process itself. If we commented out lines

37 and changed line 41 to add to newP all vertices in P other than v, method expand would produce

the power set of P and at each depth k in the backtrack tree we would have
(
n
k

)
calls to expand. That

is, expand produces a binomial backtrack search tree of size O(2n) (see pages 6 and 7 of [17]). This

can be compared to a bifurcating search process where on one side we take an element and make a

7

Algorithms 2012, 5 550

recursive call, and on the other side reject it and make a recursive call, terminating when P is empty

(i.e., generating a binary backtrack tree such as in [6,8,18]). This generates the power set on the leaf

nodes of the backtrack tree and explores 2n+1− 1 nodes. This is also O(2n) but in practice is often twice

as slow as the binomial search. In Figure 2 we see a binomial search produced by a simplification of

MC, generating the power set of {0, 1, 2, 3}. Each node in the tree contains two sets: The set that will

be added to the power set and the set that can be selected from at the next level. We see 16 nodes and at

each depth k we have
(
n
k

)
nodes. The corresponding tree for the bifurcating search (not shown) has 31

nodes with the power set appearing on the 16 leaf nodes at depth 4.

Figure 2. A binomial search tree producing the power set of {0, 1, 2, 3}.

[] [0,1,2,3]

[0] [1,2,3]

[0,1] [2,3] [0,2] [3] [0,3] []

[1] [2,3]

[1,2] [3] [1,3] []

[2] [3] [3] []

[2,3] []

[0,1,2] [3] [0,1,3] [] [0,2,3] [] [1,2,3] []

[0,1,2,3] []

The second point of interest is the actual Java implementation. Java gives us an elegant construct for

iterating over collections, the for-each loop, used in line 41 of Listing 1. This is rewritten in class MC0

(extending MC, overwriting the expand method) Listing 2 lines 15 to 18: One line of code is replaced

with 4 lines. MC0 gets the jth element of P , calls it w (line 16 of Listing 2) and if it is adjacent to v it

is added to newP (line 17 of Listing 2). In MC (line 41 of Listing 1) the for-each statement implicitly

creates an iterator object and uses that for selecting elements. This typically results in a 10% reduction

in runtime for MC0.

Our third point is how we create our sets. In MC0 line 14 the new candidate set is created with

a capacity of i. Why do that when we can just create newP with no size and let Java work it out

dynamically? And why size i?

8

Algorithms 2012, 5 551

Listing 2. Inelegant but 50% faster, MC0 extends MC.�
1 import j a v a . u t i l . * ;

2

3 p u b l i c c l a s s MC0 ex tends MC {
4

5 MC0 (i n t n , i n t [] [] A, i n t [] d e g r e e) { super (n , A, d e g r e e) ;}
6

7 void expand (A r r a y L i s t<I n t e g e r > C , A r r a y L i s t<I n t e g e r > P) {
8 i f (t i m e L i m i t > 0 && System . c u r r e n t T i m e M i l l i s () − cpuTime >= t i m e L i m i t) re turn ;

9 nodes ++;

10 f o r (i n t i =P . s i z e () −1; i >=0; i − −){
11 i f (C . s i z e () + P . s i z e () <= maxSize) re turn ;

12 i n t v = P . g e t (i) ;

13 C . add (v) ;

14 A r r a y L i s t<I n t e g e r > newP = new A r r a y L i s t<I n t e g e r >(i) ;

15 f o r (i n t j =0 ; j<=i ; j ++){
16 i n t w = P . g e t (j) ;

17 i f (A[v] [w] == 1) newP . add (w) ;

18 }
19 i f (newP . isEmpty () && C . s i z e () > maxSize) s a v e S o l u t i o n (C) ;

20 i f (! newP . isEmpty ()) expand (C , newP) ;

21 C . remove (C . s i z e () −1) ;

22 P . remove (i) ;

23 }
24 }
25 }

�� �

In the loop of line 10 i counts down from the size of the candidate set, less one, to zero. Therefore at

line 14 P is of size i + 1 and we can set the maximum size of newP accordingly. If we do not set the

size Java will give newP an initial size of 10 and when additions exceed this newP will be re-sized. By

grabbing this space we avoid that. This results in yet another measurable reduction in run-time.

Our fourth point is how we remove elements from our sets. In MC we remove the current vertex v

from C and P (lines 44 and 45) whereas in MC0 we remove the last element in C and P (lines 21 and

22). Clearly v will always be the last element in C and P . The code in MC results in a sequential scan

to find and then delete the last element, i.e., O(n), whereas in MC0 it is a simple O(1) task. This raises

another question: P and C are really stacks so why not use a Java Stack? The Stack class is represented

using an ArrayList and cannot be initialised with a size, but has a default initial size of 10. When the

stack grows and exceeds its current capacity, the capacity is doubled and the contents are copied across.

Experiments showed that using a Stack increased run time by a few percentage points.

Typically MC0 is 50% faster than MC. In many cases a 50% improvement in run time would be

considered a significant gain, usually brought about by changes in the algorithm. Here, such a gain

can be achieved by moderately careful coding. And this is our first lesson: When comparing published

results, we need to be cautious as we may be comparing programmer ability as much as differences

in algorithms.

The fifth point is that MC makes more recursive calls than it needs to. At line 37 |C|+ |P | is sufficient

to proceed but at line 43 it is possible that |C|+ |newP | is actually too small and will generate a failure

at line 37 in the next recursive call. We should have a richer condition at line 43 but as we will soon see,

the algorithms that follow do not need this.

9

Algorithms 2012, 5 552

The sixth point is a question of space: Why is the adjacency matrix an array of integers when we could

have used booleans, surely that would have been more space efficient? In Java a boolean is represented

as an integer with 1 being true, everything else false. Therefore there is no saving in space and only a

minuscule saving in time (more code is generated to test if A[i][j] equals 1 than to test if a boolean is

true). Furthermore, by representing the adjacency matrix as integers, we can sum a row to get the degree

of a vertex.

Finally, Listing 1 shows exactly what is measured. Our run time starts at line 25, at the start of search.

This will include the times to set up the data structures peculiar to an algorithm, and any reordering of

vertices. It does not include the time to read in the problem or the time to write out a solution. There is

also no doubt about what we mean by a node: A call to expand counts as one more node.

2.1.3. A Trace of MC

We now present two views of the MC search process over a simple problem. The problem is referred

to as g10–50, and is a randomly generated graph with 10 vertices with edge probability 0.5. This is

shown in Figure 3 and has at top a cartoon of the search process, to be read from left to right and top to

bottom. Green coloured vertices are in P , blue vertices are those in C and red vertices are those removed

from P and C in lines 44 and 45 of Listing 1. Also shown is the backtrack tree. The boxes correspond

to calls to expand and contain C and P . On arcs we have numbers with a down arrow ↓ if that vertex

is added to C and an up arrow ↑ if that vertex is removed from C and P , therefore C represent the path

from the root to the current node. A clear white box is a call to expand that is an interior node of the

backtrack tree leading to further recursive calls or the creation of a new champion. The green “shriek!”

is a champion clique and a red “shriek!” is a failure because |C| + |P | was too small to unseat the

champion. The blue boxes correspond to calls to expand that fail first time on entering the loop at line

36 of Listing 1. By looking at the backtrack tree we get a feel for the nature of binomial search.

2.2. MCQ and MCR

We now present Tomita’s algorithm MCQ [12] as Listings 3–7. MCQ is at heart an extension of MC,

performing a binomial search, with two significant advances. First, the graph induced by the candidate

set is coloured using a greedy sequential colouring algorithm. This gives an upper bound on the size of

the clique in P that can be added to C. Vertices in P are then selected in decreasing colour order, that

is, P is ordered in non-decreasing colour order (highest colour last). And this is the second advance.

Assume we select the ith entry in P and call it v. We then know that we can colour all the vertices in P

corresponding to the 0th entry up to and including the ith entry using no more than the colour number of

v. Consequently that sub-graph can contain a clique no bigger than the colour number of v, and if this is

too small to unseat the largest clique, the search can be abandoned.

10

Algorithms 2012, 5 553

Figure 3. Cartoon, trace and backtrack-tree for MC on graph g10–50.

1

0

2 3

4

5

6
7

8

9

1

0

2 3

4

5

6
7

8

9

1

0

2 3

4

5

6
7

8

9

1

0

2 3

4

5

6
7

8

9

1

0

2 3

4

5

6
7

8

9

1

0

2 3

4

5

6
7

8

9

1

0

2 3

4

5

6
7

8

9

1

0

2 3

4

5

6
7

8

9

1

0

2 3

4

5

6
7

8

9

[] [0,1,2,3,4,5,6,7,8,9]

[9] [0,6,8]

[9,8] [6]

[8] [3,6]

[3] [1,2]

[9,8,6] []

[9] [0,6]

[6] [4,5]

[5] [0,3]

[4] [1,2]

[7] [3,4]

[] [0,1,2]

8↑
7↓

9↑
8↓

7↑
6↓

6↑
5↓

5↑
4↓

4↑
3↓

3↑

9↓

8↓

6↓

8↑

2.2.1. MCQ in Java

MCQ extends MC, Listing 3 line 3, and has an additional instance variable colourClass (line 5) such

that colourClass[i] is an ArrayList of integers (line 15) and will contain all the vertices of colour i + 1

and is used when sorting vertices by their colour (lines 45 to 64, Listing 4). At the top of search (method

search, lines 12 to 21, Listing 3) vertices are sorted (call to orderV ertices(P) at line 19) into some

order, and this is described later.

Method expand (line 23 to 43 Listing 3) corresponds to the method of the same name in Figure 2

of [12]. The array colour is local to the method and holds the colour of the ith vertex in P . The candidate

set P is then sorted in non-decreasing colour order by the call to numberSort in line 28, and colour[i]

11

Algorithms 2012, 5 554

is then the colour of integer vertex P.get(i). The search then begins in the loop at line 29. We first test

to see if the combined size of the candidate set plus the colour of vertex v is sufficient to unseat the

champion (line 30). If it is insufficient, the search terminates. Note that the loop starts at m − 1 (line

29), the position of the last element in P , and counts down to zero. The ith element of P is selected and

assigned to v. As in MC we create a new candidate set newP , the set of vertices (integers) in P that are

adjacent to v (lines 33 to 37). We then test to see if C is maximal (line 38) and if it unseats the champion.

If the new candidate set is not empty, we recurse (line 39). Regardless, v is removed from P and from C

(lines 40 and 41).

Listing 3. MCQ (part 1), Tomita 2003.�
1 import j a v a . u t i l . * ;

2

3 c l a s s MCQ ex tends MC {
4

5 A r r a y L i s t [] c o l o u r C l a s s ;

6

7 MCQ (i n t n , i n t [] [] A, i n t [] degree , i n t s t y l e) {
8 super (n , A, d e g r e e) ;

9 t h i s . s t y l e = s t y l e ;

10 }
11

12 void s e a r c h () {
13 cpuTime = System . c u r r e n t T i m e M i l l i s () ;

14 nodes = 0 ;

15 c o l o u r C l a s s = new A r r a y L i s t [n] ;

16 A r r a y L i s t<I n t e g e r > C = new A r r a y L i s t<I n t e g e r >(n) ;

17 A r r a y L i s t<I n t e g e r > P = new A r r a y L i s t<I n t e g e r >(n) ;

18 f o r (i n t i =0 ; i<n ; i ++) c o l o u r C l a s s [i] = new A r r a y L i s t<I n t e g e r >(n) ;

19 o r d e r V e r t i c e s (P) ;

20 expand (C , P) ;

21 }
22

23 void expand (A r r a y L i s t<I n t e g e r > C , A r r a y L i s t<I n t e g e r > P) {
24 i f (t i m e L i m i t > 0 && System . c u r r e n t T i m e M i l l i s () − cpuTime >= t i m e L i m i t) re turn ;

25 nodes ++;

26 i n t m = P . s i z e () ;

27 i n t [] c o l o u r = new i n t [m] ;

28 numberSor t (C , P , P , c o l o u r) ;

29 f o r (i n t i =m−1; i >=0; i − −){
30 i f (C . s i z e () + c o l o u r [i] <= maxSize) re turn ;

31 i n t v = P . g e t (i) ;

32 C . add (v) ;

33 A r r a y L i s t<I n t e g e r > newP = new A r r a y L i s t<I n t e g e r >(i) ;

34 f o r (i n t j =0 ; j<=i ; j ++){
35 i n t u = P . g e t (j) ;

36 i f (A[u] [v] == 1) newP . add (u) ;

37 }
38 i f (newP . isEmpty () && C . s i z e () > maxSize) s a v e S o l u t i o n (C) ;

39 i f (! newP . isEmpty ()) expand (C , newP) ;

40 C . remove (C . s i z e () −1) ;

41 P . remove (i) ;

42 }
43 }

�� �

12

Algorithms 2012, 5 555

Listing 4. MCQ (part 1 continued), Tomita 2003.�
44

45 void numberSor t (A r r a y L i s t<I n t e g e r > C , A r r a y L i s t<I n t e g e r > ColOrd , A r r a y L i s t<I n t e g e r > P , i n t [] c o l o u r) {
46 i n t c o l o u r s = 0 ;

47 i n t m = ColOrd . s i z e () ;

48 f o r (i n t i =0 ; i<m; i ++) c o l o u r C l a s s [i] . c l e a r () ;

49 f o r (i n t i =0 ; i<m; i ++){
50 i n t v = ColOrd . g e t (i) ;

51 i n t k = 0 ;

52 whi le (c o n f l i c t s (v , c o l o u r C l a s s [k])) k ++;

53 c o l o u r C l a s s [k] . add (v) ;

54 c o l o u r s = Math . max (c o l o u r s , k +1) ;

55 }
56 P . c l e a r () ;

57 i n t i = 0 ;

58 f o r (i n t k =0; k<c o l o u r s ; k ++)

59 f o r (i n t j =0 ; j<c o l o u r C l a s s [k] . s i z e () ; j ++){
60 i n t v = (I n t e g e r) (c o l o u r C l a s s [k] . g e t (j)) ;

61 P . add (v) ;

62 c o l o u r [i ++] = k +1;

63 }
64 }
65

66 boolean c o n f l i c t s (i n t v , A r r a y L i s t<I n t e g e r > c o l o u r C l a s s) {
67 f o r (i n t i =0 ; i<c o l o u r C l a s s . s i z e () ; i ++){
68 i n t w = c o l o u r C l a s s . g e t (i) ;

69 i f (A[v] [w] == 1) re turn t ru e ;

70 }
71 re turn f a l s e ;

72 }
�� �

Listing 5. Vertex.�
1 import j a v a . u t i l . * ;

2

3 p u b l i c c l a s s V e r t e x implements Comparable<Vertex> {
4

5 i n t index , degree , nebDeg ;

6

7 p u b l i c V e r t e x (i n t index , i n t d e g r e e) {
8 t h i s . i n d e x = i n d e x ;

9 t h i s . d e g r e e = d e g r e e ;

10 nebDeg = 0 ;

11 }
12

13 p u b l i c i n t compareTo (V er t e x v) {
14 i f (d e g r e e < v . d e g r e e | | d e g r e e == v . d e g r e e && i n d e x > v . i n d e x) re turn 1 ;

15 re turn −1;

16 }
17 }

�� �

13

Algorithms 2012, 5 556

Listing 6. MCRComparator.�
1 import j a v a . u t i l . * ;

2

3 p u b l i c c l a s s MCRComparator implements Compara tor {
4

5 p u b l i c i n t compare (O b j e c t o1 , O b j e c t o2) {
6 Ve r t e x u = (V e r t e x) o1 ;

7 Ve r t e x v = (V e r t e x) o2 ;

8 i f (u . d e g r e e < v . d e g r e e | |
9 u . d e g r e e == v . d e g r e e && u . nebDeg < v . nebDeg | |

10 u . d e g r e e == v . d e g r e e && u . nebDeg == v . nebDeg && u . i n d e x > v . i n d e x) re turn 1 ;

11 re turn −1;

12 }
13 }

�� �

Listing 7. MCQ (part 2), Tomita 2003.�
73

74 void o r d e r V e r t i c e s (A r r a y L i s t<I n t e g e r > ColOrd) {
75 V e r t e x [] V = new V e r t e x [n] ;

76 f o r (i n t i =0 ; i<n ; i ++) V[i] = new V e r t e x (i , d e g r e e [i]) ;

77 f o r (i n t i =0 ; i<n ; i ++)

78 f o r (i n t j =0 ; j<n ; j ++)

79 i f (A[i] [j] == 1) V[i] . nebDeg = V[i] . nebDeg + d e g r e e [j] ;

80 i f (s t y l e == 1) A r r ay s . s o r t (V) ;

81 i f (s t y l e == 2) minWidthOrder (V) ;

82 i f (s t y l e == 3) A r r ay s . s o r t (V, new MCRComparator ()) ;

83 f o r (V e r t e x v : V) ColOrd . add (v . i n d e x) ;

84 }
85

86 void minWidthOrder (V e r t e x [] V) {
87 A r r a y L i s t<Vertex> L = new A r r a y L i s t<Vertex >(n) ;

88 Stack<Vertex> S = new Stack<Vertex >() ;

89 f o r (V e r t e x v : V) L . add (v) ;

90 whi le (! L . i sEmpty ()) {
91 V e r t e x v = L . g e t (0) ;

92 f o r (V e r t e x u : L) i f (u . d e g r e e < v . d e g r e e) v = u ;

93 S . push (v) ; L . remove (v) ;

94 f o r (V e r t e x u : L) i f (A[u . i n d e x] [v . i n d e x] == 1) u . degree − −;

95 }
96 i n t k = 0 ;

97 whi le (! S . i sEmpty ()) V[k ++] = S . pop () ;

98 }
99 }

�� �

Method numberSort (Listing 4) can be compared to the method of the same name in Figure 3

of [12]. numberSort takes as arguments the current clique C, an ordered ArrayList of integers ColOrd

corresponding to vertices to be coloured in that order, an ArrayList of integers P that will correspond

to the coloured vertices in non-decreasing colour order, and an array of integers colour such that if

v = P.get(i) (v is the ith vertex in P) then the colour of v is colour[i]. Lines 45 to 64 (Listing 4)

differs from Tomita’s NUMBER-SORT method because we use the additional arguments ColOrd and

the growing clique C as this allows us to easily implement our next algorithm MCS (clique C is not used

in numberSort until we get to MCSb, therefore we carry it for convenience only.)

14

Algorithms 2012, 5 557

Rather than assigning colours to vertices explicitly, numberSort places vertices into colour classes,

i.e., if a vertex is not adjacent to any of the vertices in colourClass[i] then that vertex can be placed into

that class and given colour number i+ 1 (i+ 1 so that colours range from 1 upwards). The vertices can

then be sorted into colour order via a pigeonhole sort, where colour classes are the pigeonholes.

numberSort starts by clearing out the colour classes that might be used (line 48). In lines 49 to 55

vertices are selected from ColOrd and placed into the first colour class in which there are no conflicts,

i.e., a class in which the vertex is not adjacent to any other vertex in that class (lines 51 to 53, and method

conflicts). The variable colours records the number of colours used. Lines 56 to 63 is a pigeonhole sort,

starting by clearing P and then iterating over the colour classes (loop start at line 58) and in each colour

class adding those vertices into P (lines 59 to 63). The boolean method conflicts, lines 66 to 72, takes

a vertex v and an ArrayList of vertices colourClass where vertices in colourClass are not pair-wise

adjacent and have the same colour, i.e., the vertices are an independent set. If vertex v is adjacent to

any vertex in colourClass, the method returns true (lines 67 to 70), otherwise false. Note that if vertex

v needs to be added into a new colour class in numberSort, the size of that colourClass will be zero,

and the for loop of lines 67 to 70 will not be performed and conflicts returns true. The complexity of

numberSort is quadratic in the size of P .

Vertices need to be sorted at the top of search, line 19. To do this we use the class Vertex in Listing 5

and the comparator MCRComparator in Listing 6. If i is a vertex in P then the corresponding Vertex

v has an integer index equal to i. The Vertex also has attributes degree and nebDeg. degree is the

degree of the vertex index and nebDeg is the sum of the degrees of the vertices in the neighbourhood

of vertex index. Given an array V of class Vertex, this can be sorted using Java’s Arrays.sort(V)

method in O(n. log(n)) time, and is ordered by default using the compareTo method in class Vertex.

Our method forces a strict ordering of V by non-increasing degree, tie-breaking on index. This ensures

reproducibility of results. If we allowed the compareToMethod to deliver 0 when two vertices have

the same degree, then Arrays.sort would break ties. If the sort method was unstable, i.e., it did not

maintain the relative order of objects with equal keys [19], results may be unpredictable.

The class MCRComparator (Listing 6) allows us to sort vertices by non-increasing degree, tie

breaking on the sum of the neighbourhood degree nebDeg and then on index, giving again a strict

order. This is the MCR order given in [15], where MCQ uses the simple degree ordering and MCR is

MCQ with tie-breaking on neighbourhood degree.

Vertices can also be sorted into a minimum-width order. Given an ordered set of vertices, the width of

a vertex is the number of edges that lead from that vertex to previous vertices in the order, and the width

of the ordering is the maximum width of its vertices. The minimum width order (mwo) was proposed

by Freuder [20] and also by Matula and Beck [21] where it was called “smallest last”, and more recently

in [16] as a degeneracy ordering. The method minWidthOrder, lines 86 to 98 of Listing 7, sorts the

array V of Vertex into an “mwo”. The vertices of V are copied into an ArrayList L (lines 87 and 89).

The while loop starting at line 90 selects the vertex in L with smallest degree (lines 91 and 92) and calls

it v. Vertex v is pushed onto the stack S and removed from L (line 93) and all vertices in L that are

adjacent to v have their degree reduced (line 94). On termination of the while loop, vertices are popped

off the stack and placed back into V , giving a minimum width (smallest last) ordering.

15

Algorithms 2012, 5 558

Method orderV ertices (Listing 7 lines 74 to 84) is then called once, at the top of search. The array of

Vertex V is created for sorting in lines 75 and 76, and the sum of the neighbourhood degrees is computed

in lines 77 to 79. ColOrd is then sorted in one of three orders: style == 1 in non-increasing degree

order, style == 2 in minimum width order, style == 3 in non-increasing degree tie-breaking on sum of

neighbourhood degree. MCQ then uses the ordered candidate set P for colouring, initially in one of the

initial orders, thereafter in the order resulting from numberSort and that is non-decreasing colour order.

In [12] it is claimed that this is an improving order (however, no evidence was presented for this claim).

In [15] Tomita proposes a new algorithm, MCR, where MCR is MCQ with a different initial ordering of

vertices, i.e., MCQ with style == 3.

2.2.2. A Trace of MCQ

Figure 4 shows a cartoon and trace of MCQ over graph g10-50. Print statements were placed

immediately after the call to expand (Listing 3 line 24), after the selection of a vertex v (line 31) and

just before v is rejected from P and C (line 40). Each picture in the cartoon gives the corresponding line

numbers in the trace immediately below. Line 0 of the trace is a print-out of the ordered array V just after

line 83 in method orderV ertices in Listing 7. This shows for each vertex the pair < index, degree >:

the first call to expand has P = {3, 0, 4, 6, 1, 2, 5, 8, 9, 7}, i.e., non-decreasing degree order. MCQ makes

3 calls to expand whereas MC makes 9 calls, and the MCQ colour bound cut-off in line 30 of Listing 3

is satisfied twice (Figure 4 lines 9 and 11).

Figure 4. Trace of MCQ1 on graph g10–50.

1

0

2 3
4

5

6
7

8

9

Line 1 & 2 Line 3 & 4 Line 5 & 6Top of search

1

0

2 3
4

5

6
7

8

9

1

0

2 3
4

5

6
7

8

9

1

0

2 3
4

5

6
7

8

9

0 <3,5> <0,4> <4,4> <6,4> <1,3> <2,3> <5,3> <8,3> <9,3> <7,2>

1 > expand(C:[],P:[3, 0, 4, 6, 1, 2, 5, 8, 9, 7]

2 > select 9 C:[] P:[3, 0, 4, 6, 1, 2, 7, 5, 8, 9] -> C:[9] & newP:[0, 6, 8]

3 > > expand(C:[9],P:[0, 6, 8]

4 > > select 8 C:[9] P:[0, 6, 8] -> C:[9, 8] & newP:[6]

5 > > > expand(C:[9, 8],P:[6]

6 > > > select 6 C:[9, 8] P:[6] -> SAVE: [9, 8, 6]

7 > > > reject 6 C:[9, 8, 6] P:[6]

8 > > reject 8 C:[9, 8] P:[0, 6, 8]

9 > > select 6 C:[9] P:[0, 6] -> FAIL: vertex 6 colour too small (colour = 1)

10 > reject 9 C:[9] P:[3, 0, 4, 6, 1, 2, 7, 5, 8, 9]

11 > select 8 C:[] P:[3, 0, 4, 6, 1, 2, 7, 5, 8] -> FAIL: vertex 8 colour too small (colour = 3)

16

Algorithms 2012, 5 559

2.2.3. Observations on MCQ

We noted above that MC can make recursive calls that immediately fail. Can this happen in MCQ?

Looking at lines 39 of Listing 3, |C| + |newP | must be greater than maxSize. Since the colour of the

vertex selected colour[i] was sufficient to satisfy the condition of line 30, it must be that integer vertex

v (line 31) is adjacent to at least colour[i] vertices in P and thus in newP , therefore the next recursive

call will not immediately fail. Consequently each call to expand corresponds to an internal node in the

backtrack tree.

We also see again exactly what is measured as CPU time: It includes the creation of our data

structures, the reordering of vertices at the top of search and all recursive calls to expand (lines 12

to 20).

Why is colourClass an ArrayList[] rather than an ArrayList<ArrayList<Integer>>? That would

have done away with the explicit cast in line 60. When using an ArrayList<ArrayList<Integer>> Java

generates an implicit cast, so nothing is gained—it is merely syntactic sugar.

Tomita’s presentation of MCQ [12] differs from Listing 3 in that it initially colours the sorted vertices

prior to calling expand and thereafter colour-sorts the new candidate set immediately before making a

recursive call to expand. Appendix 1 explains this in detail and investigates the effect on performance.

2.3. MCS

In [13] MCS is presented as two modifications to MCQ. The first modification is to use “... an adjunct

ordered set of vertices for approximate coloring”. This is an ordered list of vertices to be used in the

sequential colouring, and was called Va. This order is static, set at the top of search. Therefore, rather

than using the order in the candidate set P for colouring the vertices in P , the vertices in P are coloured

in the order of vertices in Va.

The second modification is to use a repair mechanism when colouring vertices (this is called a

Re-NUMBER in Figure 1 of [13]). When colouring vertices, an attempt is made to reduce the colours

used by performing exchanges between vertices in different colour classes. In [13] a recolouring of a

vertex v occurs when a new colour class is about to be opened for v and that colour class exceeds the

search bound, i.e., if the number of colours can be reduced, this could result in search being cut off. In

the context of colouring, I will say that vertex u and v conflict if they are adjacent, and that v conflicts
with a colour class C if there exists a vertex u ∈ C that is in conflict with v. Assume vertex v is in

colour class Ck. If there exists a lower colour class Ci (i < k − 1) and v conflicts with only a single

vertex w ∈ Ci and there also exists a colour class Cj , where i < j < k, and w does not conflict with any

vertex in Cj , then we can place v in Ci and w in Cj , freeing up colour class Ck. This is given in Figure 1

of [13] and the procedure is named Re-NUMBER.

Figure 5 illustrates this procedure. The boxes correspond to colour classes i, j and k where i < j < k.

The circles correspond to vertices in that colour class and the red arrowed lines as conflicts between pairs

of vertices. Vertex v has just been added to colour class k, v conflicts only with w in colour class i, and w

has no conflicts in colour class j. We can then move w up to colour class j and v down to colour class i.

17

Algorithms 2012, 5 560

Figure 5. A repair scenario with colour classes i, j and k.

vw … …i j kj vkw vjj

Experiments were then presented in [13] comparing MCR against MCS in which MCS is always the

champion. But it is not clear where the advantage of MCS comes from: Does it come from the static

colour order (the “adjunct ordered set”) or does it come from the colour repair mechanism?

I now present two versions of MCS. The first, which I call MCSa, uses the static colouring order. The

second, MCSb, uses the static colouring ordering and the colour repair mechanism (so MCSb is Tomita’s

MCS). Consequently, we will be able to determine where the improvement in MCS comes from: Static

colour ordering or colour repair.

2.3.1. MCSa in Java

In Listing 8 we present MCSa as an extension to MCQ. Method search creates an explicit colour

ordering ColOrd and the expand method is called with this in line 18 (compare this to line 20 of MCQ).

Method expand now takes three arguments: The growing clique C, the candidate set P and the colouring

order ColOrd. In line 26 numberSort is called using ColOrd (compare with line 28 in MCQ) and lines

27 to 45 are essentially the same as lines 29 to 42 in MCQ with the exception that ColOrd must also

be copied and updated (lines 32, 36 and 37) prior to the recursive call to expand (line 40) and then

down-dated after the recursive call (line 43). Therefore, MCSa is a simple extension of MCQ and, like

MCQ, has three styles of ordering.

2.3.2. MCSb in Java

In Listing 9 we present MCSb as an extension to MCSa: The difference between MCSb and MCSa

is in numberSort, with the addition of lines 10 and 20. At line 10 we compute delta as the minimum

number of colour classes required to match the search bound. At line 20, if we have exceeded the

number of colour classes required to exceed the search bound and a new colour class k has been opened

for vertex v and we can repair the colouring such that one less colour class is used, we can decrement

the number of colours used. This repair is done in the boolean method repair of lines 43 to 57. The

repair method returns true if vertex v in colour class k can be recoloured into a lower colour class,

false otherwise, and can be compared to Tomita’s Re-NUMBER procedure. We search for a colour

class i, where i < k − 1, in which there exists only one vertex in conflict with v and we call this w

(line 45). The method getSingleConflictV ariable, lines 32 to 41, searches for such a vertex. It takes as

arguments a vertex v and a colour class colourClass. If v is adjacent to only one vertex in colourClass

the index of that vertex is returned (line 40), where 0 ≤ conflicV ar < n, otherwise a negative number

is returned (line 39). The repair method then proceeds at line 46 if a single conflicting vertex w was

18

Algorithms 2012, 5 561

found, searching for a colour class j above i (for loop of line 47) in which there are no conflicts with w.

If that was found (line 48), vertex v is removed from colour class k, w is removed from colour class i,

v is added to colour class i and w to colour class j (lines 49 to 52), and repair delivers true (line 53).

Otherwise, no repair occurred (line 56).

Listing 8. MCSa, Tomita 2010.�
1 import j a v a . u t i l . * ;

2

3 c l a s s MCSa ex tends MCQ {
4

5 MCSa (i n t n , i n t [] [] A, i n t [] degree , i n t s t y l e) {
6 super (n , A, degree , s t y l e) ;

7 }
8

9 void s e a r c h () {
10 cpuTime = System . c u r r e n t T i m e M i l l i s () ;

11 nodes = 0 ;

12 c o l o u r C l a s s = new A r r a y L i s t [n] ;

13 A r r a y L i s t<I n t e g e r > C = new A r r a y L i s t<I n t e g e r >(n) ;

14 A r r a y L i s t<I n t e g e r > P = new A r r a y L i s t<I n t e g e r >(n) ;

15 A r r a y L i s t<I n t e g e r > ColOrd = new A r r a y L i s t<I n t e g e r >(n) ;

16 f o r (i n t i =0 ; i<n ; i ++) c o l o u r C l a s s [i] = new A r r a y L i s t<I n t e g e r >(n) ;

17 o r d e r V e r t i c e s (ColOrd) ;

18 expand (C , P , ColOrd) ;

19 }
20

21 void expand (A r r a y L i s t<I n t e g e r > C , A r r a y L i s t<I n t e g e r > P , A r r a y L i s t<I n t e g e r > ColOrd) {
22 i f (t i m e L i m i t > 0 && System . c u r r e n t T i m e M i l l i s () − cpuTime >= t i m e L i m i t) re turn ;

23 nodes ++;

24 i n t m = ColOrd . s i z e () ;

25 i n t [] c o l o u r = new i n t [m] ;

26 numberSor t (C , ColOrd , P , c o l o u r) ;

27 f o r (i n t i =m−1; i >=0; i − −){
28 i n t v = P . g e t (i) ;

29 i f (C . s i z e () + c o l o u r [i] <= maxSize) re turn ;

30 C . add (v) ;

31 A r r a y L i s t<I n t e g e r > newP = new A r r a y L i s t<I n t e g e r >(i) ;

32 A r r a y L i s t<I n t e g e r > newColOrd = new A r r a y L i s t<I n t e g e r >(i) ;

33 f o r (i n t j =0 ; j<=i ; j ++){
34 i n t u = P . g e t (j) ;

35 i f (A[u] [v] == 1) newP . add (u) ;

36 i n t w = ColOrd . g e t (j) ;

37 i f (A[v] [w] == 1) newColOrd . add (w) ;

38 }
39 i f (newP . isEmpty () && C . s i z e () > maxSize) s a v e S o l u t i o n (C) ;

40 i f (! newP . isEmpty ()) expand (C , newP , newColOrd) ;

41 C . remove (C . s i z e () −1) ;

42 P . remove (i) ;

43 ColOrd . remove ((I n t e g e r) v) ;

44 }
45 }
46 }

�� �

19

Algorithms 2012, 5 562

Listing 9. MCSb, Tomita 2010.�
1 import j a v a . u t i l . * ;

2

3 c l a s s MCSb ex tends MCSa {
4

5 MCSb (i n t n , i n t [] [] A, i n t [] degree , i n t s t y l e) {
6 super (n , A, degree , s t y l e) ;

7 }
8

9 void numberSor t (A r r a y L i s t<I n t e g e r > C , A r r a y L i s t<I n t e g e r > ColOrd , A r r a y L i s t<I n t e g e r > P , i n t [] c o l o u r) {
10 i n t d e l t a = maxSize − C . s i z e () ;

11 i n t c o l o u r s = 0 ;

12 i n t m = ColOrd . s i z e () ;

13 f o r (i n t i =0 ; i<m; i ++) c o l o u r C l a s s [i] . c l e a r () ;

14 f o r (i n t i =0 ; i<m; i ++){
15 i n t v = ColOrd . g e t (i) ;

16 i n t k = 0 ;

17 whi le (c o n f l i c t s (v , c o l o u r C l a s s [k])) k ++;

18 c o l o u r C l a s s [k] . add (v) ;

19 c o l o u r s = Math . max (c o l o u r s , k +1) ;

20 i f (k+1 > d e l t a && c o l o u r C l a s s [k] . s i z e () == 1 && r e p a i r (v , k)) c o l o u r s − −;

21 }
22 P . c l e a r () ;

23 i n t i = 0 ;

24 f o r (i n t k =0; k<c o l o u r s ; k ++)

25 f o r (i n t j =0 ; j<c o l o u r C l a s s [k] . s i z e () ; j ++){
26 i n t v = (I n t e g e r) (c o l o u r C l a s s [k] . g e t (j)) ;

27 P . add (v) ;

28 c o l o u r [i ++] = k +1;

29 }
30 }
31

32 i n t g e t S i n g l e C o n f l i c t V a r i a b l e (i n t v , A r r a y L i s t<I n t e g e r > c o l o u r C l a s s) {
33 i n t c o n f l i c t V a r = −1;

34 i n t c o u n t = 0 ;

35 f o r (i n t i =0 ; i<c o l o u r C l a s s . s i z e () && count <2; i ++){
36 i n t w = c o l o u r C l a s s . g e t (i) ;

37 i f (A[v] [w] == 1){ c o n f l i c t V a r = w; c o u n t ++;}
38 }
39 i f (c o u n t > 1) re turn − c o u n t ;

40 re turn c o n f l i c t V a r ;

41 }
42

43 boolean r e p a i r (i n t v , i n t k) {
44 f o r (i n t i =0 ; i<k −1; i ++){
45 i n t w = g e t S i n g l e C o n f l i c t V a r i a b l e (v , c o l o u r C l a s s [i]) ;

46 i f (w >= 0)

47 f o r (i n t j = i +1 ; j<k ; j ++)

48 i f (! c o n f l i c t s (w, c o l o u r C l a s s [j])) {
49 c o l o u r C l a s s [k] . remove ((I n t e g e r) v) ;

50 c o l o u r C l a s s [i] . remove ((I n t e g e r)w) ;

51 c o l o u r C l a s s [i] . add (v) ;

52 c o l o u r C l a s s [j] . add (w) ;

53 re turn t ru e ;

54 }
55 }
56 re turn f a l s e ;

57 }
58 }

�� �

20

Algorithms 2012, 5 563

2.3.3. Observations on MCS

Tomita did not investigate where MCS’s improvement comes from and neither did [2], coding up

MCS in Python in one piece. However San Segundo did [10], incrementally adding colour repair to

BBMC. We can also tune MCS. In MCSb we repair colourings when we open a new colour class that

exceeds the search bound. We could instead repair unconditionally every time we open a new colour

class, attempting to maintain a compact colouring. We do not investigate this here.

2.4. BBMC

San Segundo’s BB-MaxClique algorithm [11] (BBMC) is similar to the earlier algorithms in that

vertices are selected from the candidate set to add to the current clique in non-increasing colour order,

with a colour cut-off within a binomial search. BBMC is at heart a bit-set encoding of MCSa with the

following features.

1. The “BB” in “BB-MaxClique” is for “Bit Board”. Sets are represented using bit strings.

2. BBMC colours the candidate set using a static sequential ordering, the ordering set at the top of

search, the same as MCSa.

3. BBMC represents the neighbourhood of a vertex and its inverse neighbourhood as bit strings,

rather than using a row of an adjacency matrix and its complement.

4. When colouring takes place, a colour class perspective is taken, determining what vertices can

be placed in a colour class together, before moving on to the next colour class. Other algorithms

(e.g., [12,13]) takes a vertex perspective, deciding on the colour of a vertex.

2.4.1. BBMC in Java

We implement sets using Java’s BitSet class (a vector of bits with associated methods) and from now

on we refer to P as the candidate BitSet and an ordered array of integers U as the ordered candidate
set. In Listing 10, lines 5 to 7, we have an array of BitSet N for representing neighbourhoods, invN

as the inverse neighbourhoods (the complement of N) and V an array of Vertex. N [i] is then a BitSet

representing the neigbourhood of the ith vertex in the array V , and invN [i] as its complement. The array

V is used at the top of search for renaming vertices (and we discuss this later).

The search method (lines 16 to 30) creates the candidate BitSet P , current clique (as a BitSet) C,

and Vertex array V . The orderV ertices method renames the vertices and will be discussed later. The

method BBMaxClique corresponds to the procedure in Figure 3 of [11] and can be compared to the

expand method in Listing 8. In a BitSet we use cardinality rather than size (line 35, 40 and 44). The

integer array U (same name as in [11]) is essentially the colour ordered candidate set such that if v = U [i]

then colour[i] corresponds to the colour given to v and colour[i] ≤ colour[i + 1]. The method call of

line 38 colours the vertices and delivers those colours in the array colour and the sorted candidate set in

U . The for loop, lines 39 to 47 (again, counting down from m− 1 to zero), first tests to see if the colour

cut-off occurs (line 40) and if it does the method returns.

21

Algorithms 2012, 5 564

Listing 10. San Segundo’s BB-MaxClique in Java (part 1).�
1 import j a v a . u t i l . * ;

2

3 p u b l i c c l a s s BBMC ex tends MCQ {
4

5 B i t S e t [] N; / / ne ighbourhood
6 B i t S e t [] invN ; / / i n v e r s e ne ighbourhood
7 Ve r t e x [] V; / / mapping b i t s t o v e r t i c e s
8

9 BBMC (i n t n , i n t [] [] A, i n t [] degree , i n t s t y l e) {
10 super (n , A, degree , s t y l e) ;

11 N = new B i t S e t [n] ;

12 invN = new B i t S e t [n] ;

13 V = new V e r t e x [n] ;

14 }
15

16 void s e a r c h () {
17 cpuTime = System . c u r r e n t T i m e M i l l i s () ;

18 nodes = 0 ;

19 B i t S e t C = new B i t S e t (n) ;

20 B i t S e t P = new B i t S e t (n) ;

21 f o r (i n t i =0 ; i<n ; i ++){
22 N[i] = new B i t S e t (n) ;

23 invN [i] = new B i t S e t (n) ;

24 V[i] = new V e r t e x (i , d e g r e e [i]) ;

25 }
26 o r d e r V e r t i c e s () ;

27 C . s e t (0 , n , f a l s e) ;

28 P . s e t (0 , n , t rue) ;

29 BBMaxClique (C , P) ;

30 }
31

32 void BBMaxClique (B i t S e t C , B i t S e t P) {
33 i f (t i m e L i m i t > 0 && System . c u r r e n t T i m e M i l l i s () − cpuTime >= t i m e L i m i t) re turn ;

34 nodes ++;

35 i n t m = P . c a r d i n a l i t y () ;

36 i n t [] U = new i n t [m] ;

37 i n t [] c o l o u r = new i n t [m] ;

38 BBColour (P , U, c o l o u r) ;

39 f o r (i n t i =m−1; i >=0; i − −){
40 i f (c o l o u r [i] + C . c a r d i n a l i t y () <= maxSize) re turn ;

41 B i t S e t newP = (B i t S e t) P . c l o n e () ;

42 i n t v = U[i] ;

43 C . s e t (v , t rue) ; newP . and (N[v]) ;

44 i f (newP . isEmpty () && C . c a r d i n a l i t y () > maxSize) s a v e S o l u t i o n (C) ;

45 i f (! newP . isEmpty ()) BBMaxClique (C , newP) ;

46 P . s e t (v , f a l s e) ; C . s e t (v , f a l s e) ;

47 }
48 }

�� �

Otherwise a new candidate BitSet is created, newP on line 41, as a clone of P . The current vertex

v is then selected (line 42) and in line 43 v is added to the growing clique C and newP becomes the

BitSet corresponding to the vertices in the candidate BitSet that are in the neighbourhood of v. The

operation newP.and(N [v]) (line 43) is equivalent to the for loop in lines 34 to 37 of Listing 3 of MCQ.

If the current clique is both maximal and a maximum, it is saved via BBMC’s specialised save method

(described later), otherwise if C is not maximal (i.e., newP is not empty) a recursive call is made to

22

Algorithms 2012, 5 565

BBMaxClique. Regardless, v is removed from the current candidate BitSet and the current clique

(line 46) and the for loop continues.

Method BBColour (Listing 11) corresponds to the procedure of the same name in Figure 2 of [11] but

differs in that it does not explicitly represent colour classes and therefore does not require a pigeonhole

sort as in San Segundo’s description. Our method takes the candidate BitSet P (see line 38), ordered

candidate set U and array of colour as parameters. Due to the nature of Java’s BitSet the and operation

is not functional but actually modifies bits, consequently cloning is required (line 51 Listing 11) and we

take a copy of P . In line 52 colourClass records the current colour class, initially zero, and i is used

as a counter for adding coloured vertices into the array U . The while loop, lines 54 to 64, builds up

colour classes whilst consuming vertices in copyP . The BitSet Q (line 56) is the candidate BitSet as we

are about to start a new colour class. The while loop of lines 57 to 64 builds a colour class: The first

vertex in Q is selected (line 58) and is removed from the candidate BitSet copyP (line 59) and BitSet

Q (line 60), Q then becomes the set of vertices that are in the current candidate BitSet (Q) and in the

inverse neighborhood of v (line 61), i.e., Q becomes the BitSet of vertices that can join the same colour

class with v. We then add v to the ordered candidate set U (line 62), record its colour and increment our

counter (line 63). When Q is exhausted (line 57) the outer while loop (line 54) starts a new colour class

(lines 55 to 64).

Listing 11. San Segundo’s BB-MaxClique in Java (part 1 continued).�
49

50 void BBColour (B i t S e t P , i n t [] U, i n t [] c o l o u r) {
51 B i t S e t copyP = (B i t S e t) P . c l o n e () ;

52 i n t c o l o u r C l a s s = 0 ;

53 i n t i = 0 ;

54 whi le (copyP . c a r d i n a l i t y () != 0){
55 c o l o u r C l a s s ++;

56 B i t S e t Q = (B i t S e t) copyP . c l o n e () ;

57 whi le (Q. c a r d i n a l i t y () != 0){
58 i n t v = Q. n e x t S e t B i t (0) ;

59 copyP . s e t (v , f a l s e) ;

60 Q. s e t (v , f a l s e) ;

61 Q. and (invN [v]) ;

62 U[i] = v ;

63 c o l o u r [i ++] = c o l o u r C l a s s ;

64 }
65 }
66 }

�� �

Listing 12 shows how the candidate BitSet is renamed/reordered. In fact it is not the candidate

BitSet that is reordered, rather it is the description of the neighbourhood N and its inverse invN that

is reordered. Again, as in MCQ and MCSa, a Veretx array is created (lines 69 to 73) and is sorted into

one of three possible orders (lines 74 to 76). Once sorted, a bit in position i of the candidate BitSet P

corresponds to the integer vertex v = V [i].index. The neighbourhood and its inverse are then reordered

in the loop of lines 77 to 83. For all pairs (i, j), we select the corresponding vertices u and v from V

(lines 79 and 80) and if they are adjacent then the jth bit of N [i] is set true, otherwise false (line 81).

Similarly, the inverse neighbourhood is updated in line 82. The loop could be made twice as fast by

23

Algorithms 2012, 5 566

exploiting symmetries in the adjacency matrix A. In any event, this method is called once at the top of

search and is generally an insignificant contribution to run time.

Listing 12. San Segundo’s BB-MaxClique in Java (part 2).�
67

68 void o r d e r V e r t i c e s () {
69 f o r (i n t i =0 ; i<n ; i ++){
70 V[i] = new V e r t e x (i , d e g r e e [i]) ;

71 f o r (i n t j =0 ; j<n ; j ++)

72 i f (A[i] [j] == 1) V[i] . nebDeg = V[i] . nebDeg + d e g r e e [j] ;

73 }
74 i f (s t y l e == 1) A r r ay s . s o r t (V) ;

75 i f (s t y l e == 2) minWidthOrder (V) ;

76 i f (s t y l e == 3) A r r ay s . s o r t (V, new MCRComparator ()) ;

77 f o r (i n t i =0 ; i<n ; i ++)

78 f o r (i n t j =0 ; j<n ; j ++){
79 i n t u = V[i] . i n d e x ;

80 i n t v = V[j] . i n d e x ;

81 N[i] . s e t (j ,A[u] [v] == 1) ;

82 invN [i] . s e t (j ,A[u] [v] == 0) ;

83 }
84 }
85

86 void s a v e S o l u t i o n (B i t S e t C) {
87 Ar ra ys . f i l l (s o l u t i o n , 0) ;

88 f o r (i n t i =0 ; i<C . s i z e () ; i ++) i f (C . g e t (i)) s o l u t i o n [V[i] . i n d e x] = 1 ;

89 maxSize = C . c a r d i n a l i t y () ;

90 }
91 }

�� �

BBMC requires its own saveSolution method (lines 86 to 90 of Listing 12) due to C being a BitSet.

Again the solution is saved into the integer array solution and again we need to use the Vertex array V

to map bits to vertices. This is done in line 88: If the ith bit of C is true then integer vertex V [i].index is

in the solution. This explains why V is global to the BBMC class.

2.4.2. Observations on BBMC

In our Java implementation, we might expect a speedup if we did away with the in-built BitSet and

did our own bit-string manipulations explicitly. It is also worth noting that in [10] comparisons are made

with Tomita’s results in [13] by rescaling tabulated results, i.e., Tomita’s code was not actually run, but

this is not unusual.

2.5. Summary of MCQ, MCR, MCS and BBMC

Putting aside the chronology [11–13,15], MCSa is the most general algorithm presented here. BBMC

is in essence MCSa with a BitSet encoding of sets. MCQ is MCSa except that we do away with the static

colour ordering and allow MCQ to colour and sort the candidate set using the candidate set, somewhat

in the manner of Uroborus the serpent that eats itself. And MCSb is MCSa with an additional colour

repair step.

24

Algorithms 2012, 5 567

3. Exact Algorithms for Maximum Clique: A Brief History

We now present a brief history of complete algorithms for the maximum clique problems, starting

from 1990. The algorithms are presented in chronological order.

1990: In 1990 [3] Carraghan and Pardalos present a branch and bound algorithm. Vertices are ordered

in non-decreasing degree order at each depth in the binomial search with a cut-off based on the size of

the largest clique found so far. Their algorithm is presented in Fortran 77 along with code to generate

random graphs; consequently, their empirical results are entirely reproducible. Their algorithm is similar

to MC (Listing 1) but sorts the candidate set P using current degree in each call to expand.

1992: In [8] Pardalos and Rodgers present a zero-one encoding of the problem where a vertex v is

represented by a variable xv that takes the value 1 if search decides that v is in the clique and 0 if it is

rejected. Pruning takes place via the constraint ¬adjacent(u, v) → xu + xv ≤ 1 (Rule 4). In addition,

a candidate vertex adjacent to all vertices in the current clique is forced into the clique (Rule 5) and

a vertices of degree too low to contribute to the growing clique is rejected (Rule 7). The branch and

bound search selects variables dynamically based on current degree in the candidate set: A non-greedy
selection chooses a vertex of lowest degree and greedy selects highest degree. The computational results

showed that greedy was good for (easy) sparse graphs and non-greedy was good for (hard) dense graphs.

1994: In [22] Pardalos and Xue reviewed algorithms for the enumeration problem (counting maximal

cliques) and exact algorithms for the maximum clique problem. Although dated, it continues to be an

excellent review.

1997: In [14] graph colouring and fractional colouring is used to bound search. Comparing again to MC

(Listing 1) the candidate set is coloured greedily, and if the size of the current clique plus the number

of colours used is less than or equal to the size of the largest clique found so far, that branch of search

is cut off. In [14] vertices are selected in non-increasing degree order, the opposite of that proposed

by [8]. We can get a similar effect to [14] in MC if we allow free selection of vertices, colour newP

between lines 42 and 43 and make the recursive call to expand in line 43 conditional on the colour bound.

2002: Patric R. J. Östergård proposed an algorithm that has a dynamic programming flavour [7]. The

search process starts by finding the largest clique containing vertices drawn from the set Sn = {vn} and

records it size in c[n]. Search then proceeds to find the largest clique in the set Si = {vi, vi+1, ..., vn}
using the value in c[i + 1] as a bound. The vertices are ordered at the top of search in colour order,

i.e., the vertices are coloured greedily and then ordered in non-decreasing colour order, similar to that

in numberSort Listing 4. Östergård’s algorithm is available as Cliquer [7]. In the same year, Torsten

Fahle [4] presented a simple algorithm (Algorithm 1) that is essentially MC but with a free selection

of vertices rather than the fixed iteration in line 36 of Listing 1 and dynamic maintenance of vertex

degree in the candidate set. This is then enhanced (Algorithm 2) with forced accept and forced reject

steps similar to Rules 4, 5 and 7 of [8] and the algorithm is named DF (Domain Filtering). DF is then

25

Algorithms 2012, 5 568

enhanced to incorporate a colouring bound, similar to that in Wood [14].

2003: Jean-Charles Régin proposed a constraint programming model for the maximum clique

problem [9]. His model uses a matching in a duplicated graph to deliver a bound within search, a Not Set
as used in the Bron Kerbosch enumeration Algorithm 457 [23] and vertex selection using the pivoting

strategy similar to that in [16,23–25]. That same year Tomita reported MCQ [12].

2004: Faisal N. Abu-Khzam et al. [26] presented a number of kernelization steps to reduce a graph

before and during search in the vertex cover problem, where a minimum vertex cover of the complement

graph is a maximal clique in the original graph. Some of the kernelization steps are similar to the

pruning rules in [4,8] although Crown Reduction appears to be novel and effective.

2007: Tomita proposed MCR [15] and in the same year Janez Konc and Dus̆anka Janez̆ic̆ proposed

the MaxCliqueDyn algorithm [5]. The algorithm is essentially MCQ [12] with dynamic reordering of

vertices in the candidate set, using current degree, prior to colouring. This reordering is expensive and

takes place high up in the backtrack tree and is controlled by a parameter Tlimit. Varying this parameter

influences the cost of the search process and Tlimit must be tuned on an instance-by-instance basis.

2010: Pablo San Segundo and Cristóbal Tapia presented an early version of BBMC (BB-MCP) [27]

and Tomita presented MCS [13]. In the same year Li and Quan proposed new max-SAT encodings for

maximum clique [6,18].

2011: Pablo San Segundo proposed BBMC [11] and BBMCR [10], where BBMCR includes

a colour repair step. In [10] it is noted that in [13] “... the concrete contribution of

recolouring is unfortunately not made explicit.” San Segundo’s colour repair, BB ReCol

differs from that in Listing 9 in that a single swap can occur after a double swap

(as in lines 49 to 52 of Listing 9). This cannot occur in Listing 9 because repair (line 43) is

called only when a new colour class k is opened for vertex v (line 20); consequently v must have been

adjacent to at least one vertex in each colour class less than k and therefore count (line 34) cannot be

equal to zero at line 40.

2012: Renato Carmo and Alexandre P. Züge [2] reported an empirical study of 8 algorithms including

those from [3] and [4] along with MCQ, MCR, MCS and MaxCliqueDyn. The claim is made that the

Bron Kerbosch algorithm provides a unified framework for all the algorithms studied, although a Not

Set is not used. Neither do they use pivoting as described in [16,23–25]. All algorithms are coded

in Python, therefore the study is objective (the authors include none of their own algorithms) and fair
(all algorithms are coded by the authors and run in the same environment). BBMC is not include in

the study, MCS is not broken into its constituent parts (MCSa and MCSb), and the study uses only the

DIMACS benchmarks.

26

Algorithms 2012, 5 569

4. The Computational Study

The computational study attempts to answer the following questions.

1. Where does the improvement in MCS come from? By comparing MCQ with MCSa we can

measure the contribution due to static colouring, and by comparing MCSa with MCSb we can

measure the contribution due to colour repair.

2. How much benefit can be obtained from the BitSet encoding? We compare MCSa with BBMC

over a variety of problems.

3. We have three possible initial orderings (styles). Is any one of them better than the others and is

this algorithm independent?

4. Most papers use only random problems and the DIMACS benchmarks. What other problems might

we use in our investigation?

5. Is it safe to recalibrate published results?

Throughout our study we use a reference machine (named Cyprus), a machine with two Intel

E5620 2.4 GHz quad-core processors with 48 GB memory, running Linux CentOS 5.3 and Java

version 1.6.0 07.

4.1. MCQ vs. MCS: Static Ordering and Colour Repair

Is MCS faster than MCQ, and if so, why? MCSa is MCQ with a static colour ordering set at the top

of search, and MCSb is MCSa with the colour repair mechanism. By comparing these algorithms, we

can determine if indeed MCSb is faster than MCQ and where that gain comes from—the static colouring

order or the colour repair. We start our investigation with Erdós–Rënyi random graphs G(n, p) where

n is the number of vertices and each edge is included in the graph with probability p independent from

every other edge.

The first experiments are on random G(n, p), first with n = 100, 0.40 ≤ p ≤ 0.99, p varying in steps

of 0.01, sample size of 100, then with n = 150, 0.50 ≤ p ≤ 0.95, p varying in steps of 0.05, sample size

of 100, and n = 200, 0.55 ≤ p ≤ 0.95, p varying in steps of 0.05, sample size of 100. Unless otherwise

stated, all experiments are carried out on our reference machine. The algorithms MCQ, MCSa and

MCSb all use style = 1 (i.e., MCQ1, MCSa1, MCSb1). Figure 6 shows on the left the average number

of nodes against the edge probability and on the right the average run time in milliseconds against the

edge probability, for MCQ1, MCSa1 and MCSb1. The top row has n = 100, middle row n = 150 and

bottom row n = 200. For MCQ1 the sample size at G(200, 0.95) was reduced to 28, i.e., the MCQ1-200

job was terminated after 60 hours. As we apply the modifications to MCQ, we see a reduction in nodes

with MCSb1 exploring less states than MCSa1 and MCSa1 less than MCQ1. However, on the right we

see that reduction in search space does not always result in reduction in run time. MCSb1 is always

slower than MCSa1, i.e., the colour repair is too expensive and when n = 100 MCSb1 is often more

expensive to run than MCQ! Therefore, it appears that MCS gets its advantage just from the static colour

ordering and that the colour repair slows it down.

27

Algorithms 2012, 5 570

Figure 6. G(n, p), sample size 100. MCQ vs. MCS, where is the win? (left) Search effort in

nodes visited (i.e., decisions made by the search process); (right) run time in milliseconds.

28

Algorithms 2012, 5 571

Table 1. DIMACS instances: MCQ vs. MCS, nodes, run time in seconds and (clique size).

instance MCQ1 MCSa1 MCSb1
brock200-1 868,213 7 (21) 524,723 4 (21) 245,146 3 (21)

brock400-1 342,473,950 4,471 (27) 198,359,829 2,888 (27) 142,253,319 2,551 (27)

brock400-2 224,839,070 2,923 (29) 145,597,994 2,089 (29) 61,327,056 1,199 (29)

brock400-3 194,403,055 2,322 (31) 120,230,513 1,616 (31) 70,263,846 1,234 (31)

brock400-4 82,056,086 1,117 (33) 54,440,888 802 (33) 68,252,352 1,209 (33)

brock800-1 1,247,519,247 — (23) 1,055,945,239 — (23) 911,465,283 — (21)

brock800-2 1,387,973,191 — (21) 1,171,057,646 — (24) 914,638,570 — (21)

brock800-3 1,332,309,827 — (21) 1,159,165,900 — (21) 914,235,793 — (21)

brock800-4 804,901,115 — (26) 640,444,536 12,568 (26) 659,145,642 13,924 (26)

hamming10-4 636,203,658 — (40) 950,939,457 — (37) 858,347,653 — (37)

johnson32-2-4 10,447,210,976 — (16) 8,269,639,389 — (16) 7,345,343,221 — (16)

keller5 603,233,453 — (27) 596,150,386 — (27) 523,346,613 — (27)

keller6 285,704,599 — (48) 226,330,037 — (52) 240,958,450 — (54)
MANN-a27 38,019 9 (126) 38,019 6 (126) 38,597 8 (126)

MANN-a45 2,851,572 4,989 (345) 2,851,572 3,766 (345) 2,545,131 4,118 (345)

MANN-a81 550,869 — (1100) 631,141 — (1100) 551,612 — (1100)

p-hat1000-1 237,437 2 (10) 176,576 2 (10) 151,033 2 (10)

p-hat1000-2 466,616,845 — (45) 34,473,978 1,401 (46) 166,655,543 7,565 (46)

p-hat1000-3 440,569,803 — (52) 345,925,712 — (55) 298,537,771 — (56)
p-hat1500-1 1,642,981 16 (12) 1,184,526 14 (12) 990,246 14 (12)

p-hat1500-2 414,514,960 — (52) 231,498,292 — (60) 259,771,137 — (57)

p-hat1500-3 570,637,417 — (56) 220,823,126 — (69) 176,987,047 — (69)

p-hat300-3 3,829,005 74 (36) 624,947 13 (36) 713,107 21 (36)

p-hat500-2 1,022,190 23 (36) 114,009 3 (36) 137,568 5 (36)

p-hat500-3 515,071,375 — (47) 39,260,458 1,381 (50) 104,684,054 4,945 (50)

p-hat700-2 18,968,155 508 (44) 750,903 27 (44) 149,0522 74 (44)

p-hat700-3 570,423,439 — (48) 255,745,746 — (62) 243,836,191 — (62)

san1000 302,895 20 (15) 150,725 10 (15) 53,215 3 (15)

san200-0.9-2 1,149,564 20 (60) 229,567 5 (60) 62,776 1 (60)

san200-0.9-3 8,260,345 154 (44) 6,815,145 111 (44) 1,218,317 32 (44)

san400-0.7-1 55,010 1 (40) 119,356 2 (40) 134,772 3 (40)

san400-0.7-2 606,159 14 (30) 889,125 19 (30) 754,146 16 (30)

san400-0.7-3 582,646 11 (22) 521,410 10 (22) 215,785 5 (22)

san400-0.9-1 523,531,417 — (56) 4,536,723 422 (100) 582,445 54 (100)

sanr200-0.7 206,262 1 (18) 152,882 1 (18) 100,977 1 (18)

sanr200-0.9 44,472,276 892 (42) 14,921,850 283 (42) 9,730,778 245 (42)

sanr400-0.5 380,151 2 (13) 320,110 2 (13) 190,706 2 (13)

sanr400-0.7 101,213,527 979 (21) 64,412,015 711 (21) 46,125,168 650 (21)

We also see a region where problems are hard for all our algorithms, at n = 100 and n = 150, both

in terms of nodes and run time, and in [10] it is suggested that this behaviour is a “... phase transition to

triviality ...”. However at n = 200 there is a different picture. We see a hard region in terms of nodes but

an ever-increasing run time. That is, even though nodes are falling, CPU time is climbing. This agrees

with the tabulated results in [11] (Tables 4 and 5 on page 580) for BB-MaxClique. It is a conjecture that

run time increases because the cost of each node (call to expand) incurs more cost in the colouring of

29

Algorithms 2012, 5 572

the relatively larger candidate set. In going from G(200, 0.90) to G(200, 0.95), the maximum clique size

increased on average from 41 to 62, a 50% increase, and for MCSa1 the average number of nodes fell by

20% (30% for MCSb1). The search space has fallen and the clique size has increased, which increases

the cost of colouring and results in an overall increase in run time. Therefore it does not appear to be a

phase transition in the sense of [28–30], i.e., a feature of the problem that is algorithm independent.

We now report on the 66 DIMACS instances [31] in Table 1. For each algorithm, we have 3 entries:

The number of nodes, CPU time in seconds, and in brackets the size of the largest clique found. Each

algorithm was allowed 14,400 CPU seconds and if that was exceeded we have a table entry of “—”. The

best CPU time in a row is in bold font, and when CPU time limit is exceeded, the largest maximum

clique size is emboldened. Easy instances are not tabulated, i.e., those that took less than a second.

Overall, we see that MCQ1 is rarely the best choice with MCSa1 or MCSb1 performing better. There

are 11 problems where MCSb1 beats MCSa1 and 9 problems where MCSa1 beats MCSb1. Therefore,

the DIMACS benchmarks do not significantly separate the behaviour of these two algorithms.

These results conflict somewhat with those in [10]. There it is claimed that colour repair, when added

to BBMC, results in a performance gain in dense graphs (p ≥ 0.8). Results are presented for a subset of

the DIMACS instances with some of the difficult instances absent (brock800-*, hamming10-4, keller5,

keller6, johnson32-2-4, MANN-a81, p-hat1000-3, p-hat1500-2, p-hat1500-3) and for random graphs

with a sample size of 10.

4.2. BBMC vs. MCSa: A Change of Representation

What advantage is to be obtained from the change of representation between MCSa and BBMC, i.e.,
representing sets as ArrayList in MCSa and as a BitSet in BBMC? MCSa and BBMC are at heart the

same algorithm. They both produce the same colourings, order the candidate set in the same way and

explore the same backtrack tree.

Figure 7. Run time of MCSa1 against BBMC1, on the left (G100, p) and on the right

G(200, p).

Figure 7 shows on the left the run time of MCSa1 (x-axis) against the run time of BBMC1 (y-axis)

in milliseconds on each of the G(100, p) random instances and on the right for G(200, p). The dotted

30

Algorithms 2012, 5 573

line is the reference x = y. If points are below the line then BBMC1 is faster than MCSa1. BBMC1 is

typically twice as fast as MCSa1.

In Table 2 we tabulate Goldilocks instances from the DIMACS benchmark suite: We remove the

instances that are too easy (take less than a second) and those that are too hard (take more than 4 h),

leaving those that are “just right” for both algorithms. Under each algorithm, we have: Nodes visited

(and this is the same for both algorithms), run time (in seconds), and in brackets the size of the maximum

clique. The column on the far right is the ratio of MCSa1’s run time over BBMC1’s run time, and a value

greater than 1 shows that BBMC1 was faster by that amount. Again, we see similar behaviour to that

observed over the random problems: BBMC1 is typically twice as fast as MCSa1.

Table 2. DIMACS Goldilocks instances: MCSa1 vs. BBMC1, nodes, run time in seconds

and clique size.

instance MCSa1 BBMC1 MCSa1/BBMC1
brock200-1 524,723 4 (21) 524,723 2 (21) 2.03

brock400-1 198,359,829 2,888 (27) 198,359,829 1,421 (27) 2.03

brock400-2 145,597,994 2,089 (29) 145,597,994 1,031 (29) 2.03

brock400-3 120,230,513 1,616 (31) 120,230,513 808 (31) 2.00

brock400-4 54,440,888 802 (33) 54,440,888 394 (33) 2.03

brock800-4 640,444,536 12,568 (26) 640,444,536 6,908 (26) 1.82

MANN-a27 38,019 6 (126) 38,019 1 (126) 4.12

MANN-a45 2,851,572 3,766 (345) 2,851,572 542 (345) 6.94

p-hat1000-1 176,576 2 (10) 176,576 1 (10) 1.80

p-hat1000-2 34,473,978 1,401 (46) 34,473,978 720 (46) 1.95

p-hat1500-1 1,184,526 14 (12) 1,184,526 9 (12) 1.52

p-hat300-3 624,947 13 (36) 624,947 5 (36) 2.36

p-hat500-2 114,009 3 (36) 114,009 1 (36) 2.56

p-hat500-3 39,260,458 1,381 (50) 39,260,458 606 (50) 2.28

p-hat700-2 750,903 27 (44) 750,903 12 (44) 2.20

san1000 150,725 10 (15) 150,725 5 (15) 1.76

san200-0.9-2 229,567 5 (60) 229,567 2 (60) 2.36

san200-0.9-3 6,815,145 111 (44) 6,815,145 50 (44) 2.20

san400-0.7-1 119,356 2 (40) 119,356 1 (40) 2.04

san400-0.7-2 889,125 19 (30) 889,125 9 (30) 2.12

san400-0.7-3 521,410 10 (22) 521,410 5 (22) 2.10

san400-0.9-1 4,536,723 422 (100) 4,536,723 125 (100) 3.37

sanr200-0.9 14,921,850 283 (42) 14,921,850 123 (42) 2.30

sanr400-0.5 320,110 2 (13) 320,110 1 (13) 1.85

sanr400-0.7 64,412,015 711 (21) 64,412,015 365 (21) 1.95

31

Algorithms 2012, 5 574

Figure 8. The effect of style on MCQ, MCSa and MCSb. On the left G(100, p) and on the

right G(150, p). Plotted is search effort in nodes against edge probability. The top two plots

are for MCQ, middle plots MCSa and bottom MCSb.

4.3. MCQ and MCS: The Effect of Initial Ordering

What effect does the initial ordering of vertices have on performance? First, we investigate MCQ,

MCSa and MCSb with our three orderings: Style 1 being non-decreasing degree, style 2 a minimum

32

Algorithms 2012, 5 575

width ordering, style 3 non-decreasing degree tie-breaking on the accumulated degree of neighbours. At

this stage, we do not consider BBMC, as it is just a BitSet encoding of MCSa. We use random problems

G(n, p) with n equal to 100 and 150 with a sample size of 100. This is shown graphically in Figure 8: On

the left G(100, p) and on the right G(150, p) with average nodes visited plotted against edge probability.

Plots on the first row are for MCQ, middle row MCSa and bottom MCSb. For MCQ style 3 is the

winner and style 2 is worst, whereas in MCSa and MCSb style 2 is always best. Why is this? In MCQ,

the candidate set is ordered as the result of colouring and this order is then used in the next colouring.

Therefore, MCQ gradually disrupts the initial minimum width ordering, but MCSa and MCSb do not

(and neither does BBMC). The minimum width ordering (style 2) is best for MCSa, MCSb and BBMC.

Note that MCQ3 is Tomita’s MCR [15] and our experiments on G(n, p) show that MCR (MCQ3) beats

MCQ (MCQ1).

Table 3. DIMACS instances: The effect of style on run time in seconds.

MCQ MCSa MCSb BBMC
instance s1 s2 s3 s1 s2 s3 s1 s2 s3 s1 s2 s3

brock200-1 7 5 4 4 3 3 3 3 3 2 1 1

brock400-1 4,471 3,640 5,610 2,888 1,999 3,752 2,551 3,748 2,152 1,421 983 1,952

brock400-2 2,923 4,573 1,824 2,089 2,415 1,204 1,199 2,695 2,647 1,031 1,230 616
brock400-3 2,322 2,696 1,491 1,616 1,404 1,027 1,234 2,817 2,117 808 711 534
brock400-4 1,117 574 1,872 802 338 1,283 1,209 1,154 607 394 158 651

brock800-1 — — — — — — — — — — — —

brock800-2 — — — — — — — — — — — —

brock800-3 — — — — — — — — — — 9,479 12,815

brock800-4 — — — 12,568 13,502 — 13,924 — — 6,908 7,750 12,992

hamming10-4 — — — — — — — — — — — —

johnson32-2-4 — — — — — — — — — — — —

keller5 — — — — — — — — — — — —

keller6 — — — — — — — — — — — —

MANN-a27 9 9 9 6 7 6 8 7 8 1 1 1

MANN-a45 4,989 5,369 4,999 3,766 3,539 3,733 4,118 3,952 4,242 542 580 554

MANN-a81 — — — — — — — — — — — —

p-hat1000-1 2 2 1 2 2 2 2 2 2 1 1 1

p-hat1000-2 — — — 1,401 861 1,481 7,565 8,459 6,606 720 431 763

p-hat1000-3 — — — — — — — — — — — —

p-hat1500-1 16 16 15 14 15 15 14 14 16 9 9 10

p-hat1500-2 — — — — — — — — — — — —

p-hat300-3 74 127 69 13 10 12 21 24 18 5 4 5

p-hat500-3 — — — 1,381 660 1,122 4,945 6,982 5,167 606 282 500

p-hat700-2 508 551 353 27 25 24 74 93 108 12 11 11

p-hat700-3 — — — — 12,244 — — — — 6,754 5,693 7,000

san1000 20 19 18 10 10 10 3 3 3 5 5 5

san200-0.9-2 20 73 35 5 1 5 1 1 1 2 0 2

san200-0.9-3 154 4 59 111 0 65 32 3 8 50 0 27

san400-0.7-1 1 5 2 2 17 4 3 0 1 1 8 1

san400-0.7-2 14 47 16 19 26 23 16 9 4 9 11 10

san400-0.7-3 11 38 41 10 22 39 5 13 19 5 9 18

san400-0.9-1 — — — 422 — 8,854 54 0 — 125 — 3,799

sanr200-0.7 1 2 1 1 1 1 1 1 1 0 0 0

sanr200-0.9 892 1,782 1,083 283 229 364 245 227 444 123 104 164

sanr400-0.5 2 2 2 2 2 2 2 2 2 1 1 1

sanr400-0.7 979 1,075 975 711 608 719 650 660 674 365 326 369

We now report on the 66 DIMACS instances [31], Tables 3 and 4. Table 3 gives run times in

seconds. An entry of “—” corresponds to the CPU time limit of 14,400 s being exceeded and the

33

Algorithms 2012, 5 576

search terminating early. Problems that took less than a second have been excluded from the tables.

For each algorithm we have three columns, one for each style: First column s1 is style 1 with vertices

in non-increasing degree order, s2 is style 2 with vertices in minimum width order, s3 is style 3 with

vertices in non-increasing degree order tie-breaking on sum of neighbouring degrees.

Table 4. DIMACS instances: The effect of style on search nodes in 1,000,000’s.

MCQ MCSa MCSb BBMC
instance s1 s2 s3 s1 s2 s3 s1 s2 s3 s1 s2 s3

brock200-1 0.86 0.59 0.51 50.52 0.30 0.32 0.24 0.26 0.27 0.52 0.30 0.32

brock400-1 342.5 266.2 455.3 198.4 132.8 278.9 142.3 208.6 114.8 198.4 132.8 278.9

brock400-2 224.8 381.9 125.2 145.6 178.5 76.4 61.3 151.8 154.3 145.6 178.5 76.4

brock400-3 194.4 214.0 114.7 120.2 101.6 72.8 70.3 163.5 125.5 120.2 101.6 72.8

brock400-4 82.1 36.5 148.3 54.4 19.3 90.9 68.3 62.7 31.9 54.4 19.3 90.9

brock800-1 — — — — — — — — — — — —

brock800-2 — — — — — — — — — — — —

brock800-3 — — — — — — — — — — 949.4 1,369.1

brock800-4 — — — 640.4 773.3 — 659.1 — — 640.4 773.3 1,440.8

hamming10-4 — — — — — — — — — — — —

johnson32-2-4 — — — — — — — — — — — —

keller5 — — — — — — — — — — — —

keller6 — — — — — — — — — — — —

MANN-a27 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.034 0.038 0.038 0.038 0.038

MANN-a45 2.9 2.9 2.9 2.9 2.9 2.8 2.5 2.4 2.5 2.9 2.9 2.8

MANN-a81 — — — — — — — — — — — —

p-hat1000-1 2.4 2.5 2.4 1.8 1.7 1.8 1.5 1.48 1.48 1.8 1.7 1.8

p-hat1000-2 — — — 34.5 19.2 36.9 166.7 177.9 142.0 34.5 19.2 36.9

p-hat1000-3 — — — — — — — — — — — —

p-hat1500-1 1.6 1.8 1.9 1.2 1.2 1.4 1.0 0.9 1.2 1.2 1.2 1.4

p-hat1500-2 — — — — — — — — — — — —

p-hat300-3 3.8 7.1 4.0 0.62 0.49 0.64 0.71 0.82 0.64 0.62 0.49 0.64

p-hat500-3 — — — 39.3 16.9 30.9 104.7 152.8 111.6 39.3 16.9 30.9

p-hat700-2 18.9 19.0 12.8 0.75 0.63 0.59 1.5 1.9 2.2 0.75 0.63 0.59
p-hat700-3 — — — — 216.5 — — — — 282.4 216.5 297.1

san1000 0.30 0.31 0.29 0.15 0.15 0.15 0.05 0.05 0.05 0.15 0.15 0.15

san200-0.9-2 1.1 4.3 2.1 0.23 0.06 0.24 0.06 0.05 0.03 0.23 0.06 0.23

san200-0.9-3 8.3 0.23 3.2 6.8 0.01 3.6 1.2 0.12 0.24 6.8 0.01 3.6

san400-0.7-1 0.06 0.12 0.09 0.12 0.66 0.15 0.13 0.01 0.05 0.12 0.66 0.15

san400-0.7-2 0.61 1.7 0.67 0.89 0.88 0.93 0.75 0.31 0.16 0.89 0.88 0.93

san400-0.7-3 0.58 1.9 2.3 0.52 0.92 1.9 0.22 0.55 0.99 0.52 0.92 1.9

san400-0.9-1 — — — 4.5 — 220.2 0.58 0.02 — 4.5 — 220.2

sanr200-0.7 0.21 0.29 0.22 0.15 0.18 0.16 0.10 0,12 0.11 0.15 0.18 0.16

sanr200-0.9 44.5 101.0 62.2 14.9 12.5 20.6 9.7 8.1 19.0 14.9 12.5 20.6

sanr400-0.5 0.38 0.42 0.35 0.32 0.32 0.30 0.19 0.18 0.20 0.32 0.32 0.30

sanr400-0.7 101.2 106.7 101.5 64.4 54.4 64.1 46.1 44.9 48.7 64.4 54.4 64.1

Table 4 gives the number of nodes, in millions, for the experiments in Table 3. In Table 3 a bold entry

is the best run time for that algorithm against the problem instance, and this is done only when run times

34

Algorithms 2012, 5 577

differ significantly. For MCQ there is no particular style that is a consistent winner. This is a surprise

as MCQ3 is Tomita’s MCR and in [15] it is claimed that MCR was faster than MCQ. The evidence that

supports this claim is Table 2 of [15], 8 of the 66 DIMACS instances. For MCSa and BBMC style 2

is best more often than not, and in MCSb style 1 is best more often than not. Overall we see that the

BBMC2 is our best algorithm, i.e., BBMC with a minimum width ordering.

4.4. More Benchmarks (not DIMACS)

In [16] experiments are performed on counting maximal cliques in exceptionally large sparse graphs,

such as the Pajek data sets (graphs with hundreds of thousands of vertices) and SNAP data sets

(graphs with vertices in the millions) [35]. Those graphs are out of the reach of the exact algorithms

reported here. The initial reason for this is space consumption. To tackle such large sparse problems, we

require a change of representation, away from the adjacency matrix and towards the adjacency lists as

used in [16]. Therefore we explore large random instances as in [11,13] to further investigate ordering

and the effect of the BitSet representation, the hard solvable instances in BHOSLIB to see how far we can

go, and structured graphs produced via the SNAP (Stanford Network Analysis Project) graph generator.

We start with BHOSLIB.

In Table 5 we have the only instances from the BHOSLIB suite (Benchmarks with Hidden Optimum

Solutions [36]) that could be solved in 4 hours. Each instance has a maximum clique of size 30. A bold
entry is the best run time. For this suite, we see that with respect to style there is no clear winner.

Table 5. BHOSLIB using BBMC: 1,000’s of nodes and run time in seconds. Problems have

450 vertices and graph density 0.82.

instance n edges BBMC1 BBMC2 BBMC3
frb30-15-1 450 83,198 292,095 3,099 626,833 6,503 361,949 3,951

frb30-15-2 450 83,151 557,252 5,404 599,543 6,136 436,110 4,490
frb30-15-3 450 83,126 167,116 1,707 265,157 2,700 118,495 1,309
frb30-15-4 450 83,194 991,460 9,663 861,391 8,513 1,028,129 9,781

frb30-15-5 450 83,231 282,763 2,845 674,987 7,033 281,152 2,802

Table 6 shows results on large random problems. Similar experiments are reported in Tables 4 and 5

of [11] and Table 2 in [13]. The first three columns are the nodes visited, and this is the same for MCSa

and BBMC. Run times are then given in seconds for MCSa and BBMC using each of the three styles.

Highlighted in bold is the search of fewest nodes and this is style 2 (minimum width ordering) in all

but one case. Comparing the run times, we see that as problems get larger, involving more vertices, the

relative speed difference between BBMC and MCSa diminishes, and at n = 15, 000 the performances

of MCSa and BBMC are essentially the same. This was also observed in [10] and is expected: As

problems get larger the BitSet requires more words to represent the set, and with more words the number

of iterations within the BitSet increases.

35

Algorithms 2012, 5 578

Table 6. Large random graphs, sample size 10.

instance nodes MCSa BBMC
n p s1 s2 s3 s1 s2 s3 s1 s2 s3

1,000 0.1 4,536 4,472 4,563 0 0 0 0 0 0

0.2 39,478 38,250 38,838 0 0 0 0 0 0

0.3 400,018 371,360 404,948 4 4 4 2 2 2

0.4 3,936,761 3,780,737 4,052,677 40 39 38 26 25 26

0.5 79,603,712 75,555,478 80,018,645 860 910 859 570 574 604

3,000 0.1 144,375 142,719 145,487 3 3 3 2 2 2

0.2 2,802,011 2,723,443 2,804,830 38 38 38 32 32 32

0.3 73,086,978 71,653,889 73,354,584 964 960 978 926 930 931

10,000 0.1 5,351,591 5,303,615 5,432,812 236 252 245 212 216 214

15,000 0.1 22,077,212 21,751,100 21,694,036 1,179 1,117 1,081 1,249 1,235 1,208

The graphgen program was downloaded from the SNAP web site and modified to use a random

seed so that generated graphs with the same parameters were actually different. This allows us to

generate a variety of graphs, such as complete graphs, star graphs, 2D grid graphs, Erdós–Rënyi random

graphs with an exact number of edges, k-regular graphs (each vertex with degree k), Albert–Barbasi

graphs, power law graphs, Klienberg copying model graphs and small-world graphs. Finding maximum

cliques in a complete graph, star graph and 2D grid graph is trivial. Similarly, and surprisingly, small

scale experiments suggested that Albert–Barbasi and Klienberg’s graphs are also easy with respect to

maximum clique. However k-regular and small world are a challenge.

Figure 9. k-Regular SNAP instances KR(200, k), 130 ≤ k ≤ 160, sample size 20.

36

Algorithms 2012, 5 579

The SNAP graphgen program was used to generated k-regular graphs KR(n, k), i.e., random graphs

with n vertices each with degree k. Graphs were generated with n = 200 and 50 ≤ k ≤ 160, with

k varying in steps of 5, 20 instances at each point. BBMC1 and BBMC2 were then applied to each

instance. Obviously, with style equal to 1 or 3, there is no heuristic information to be exploited at the top

of search. But would a minimum width ordering, style 2, have an advantage? Figure 9 shows average

search effort in nodes plotted against uniform degree k. We see that minimum width ordering does

indeed have an advantage. What is also of interest is that KR(n, k) instances tend to be harder than their

G(n, p) equivalents. For example, we can compare KR(200, 160) with G(200, 0.8) in Figure 6: MCSa1

took on average 1.9 million nodes for G(200, 0.8) and BBMC1 took on average 4.7 million nodes on the

twenty KR(200, 160) instances.

Figure 10. Small world graphs SW (200, k, p): (upper) search effort, (lower) maximum

clique size.

Small-World graphs SW (n, k, p) were then generated using graphgen. This takes three parameters:

n the number of vertices, k where each vertex is connected to k nearest neighbours to the right in a ring

topology (i.e., vertices start with uniform degree 2k), and p a rewiring probability. This corresponds to

the graphs in Figure 1 of [32]. Small-World graphs were generated with n = 1, 000, 50 ≤ k ≤ 100

in steps of 5, 0.0 ≤ p ≤ 0.25 in steps of 0.01, 10 graphs at each point. BBMC1 was then applied

37

Algorithms 2012, 5 580

to each instance to investigate how difficulty of finding a maximum clique varies with respect to k

and p and also how size of maximum clique varies, i.e., this is an investigation of the problem. The

results are shown as three dimensional plots in Figure 10: The graph above is average search effort

and below average maximum clique size. Looking at the graph above: When p = 0.0 problems are

easy; as p increases and randomness is introduced, the problems quickly get hard, but as p continues to

increase the graphs tend to become predominantly random and behave more like large sparse random

graphs and get easier. We also see that as neighbourhood size k increases, the problems get harder.

We can compare the SW (1000, 100, p) to the graphs G(1000, 0.2) in Table 6: G(1000, 0.2) took on

average 39,478 nodes whereas SW (1000, 100, 0.01) took 709,347 nodes, SW (1000, 100, 0.08) took

2,702,199 nodes and SW (1000, 100, 0.25) 354,430 nodes. Clearly small-world instances are relatively

hard. Looking at the graph below (average maximum clique size), we see that as rewiring probability p

increases maximum cliques size decreases, and as k increases so too does maximum clique size.

4.5. Calibration of Results

To compare computational results across publications a standard C program, dfmax, is compiled and

run against a set of benchmarks. These run times are then used as a conversion factor, and the results are

then taken from one publication, scaled accordingly, and then included in another publication. Recent

examples of this are [7] including rescaled results from [33]; [9] including rescaled results from [7], [14]

and [4]; [15] including rescaled results from [7] and [33]; [11] including rescaled results from [5]; [10]

including rescaled results from [11]; [6] including rescaled results from [9,15]. Is this procedure safe?

To test this we take two additional machines, Fais and Daleview, and calibrate them with respect to our

reference machine Cyprus. We then run experiments on each machine using the Java implementations

of the algorithms implemented here against some of the DIMACS benchmarks. These results are then

rescaled. If the rescaling gives substantially different results from those on the reference machine, this

would suggest that this technique is not safe.

Table 7. Conversion factors using dfmax on three machines: Cyprus, Fais and Daleview.

machine r100.5 r200.5 r300.5 r400.5 r500.5 Intel(R) GHz cache Java scaling factor
Cyprus 0.0 0.02 0.24 1.49 5.58 Xeon(R) E5620 2.40 12,288KB 1.6.0 07 1

Fais 0.0 0.08 0.58 3.56 13.56 XEON(TM) CPU 2.40 512KB 1.5.0 06 0.41

Daleview 0.0 0.09 0.53 3.00 10.95 Atom(TM) N280 1.66 512KB 1.6.0 18 0.50

Table 7 gives a “Rosetta Stone” for the three machines used in this study. The standard program

dfmax [37] was compiled using gcc and the -O2 compiler option on each machine and then run on

the benchmarks r* on each machine. Run times in seconds are tabulated for the five benchmark

instances, each machine’s /proc/cpuinfo is given and a conversion factor relative to the reference

machine Cyprus is then computed in the same manner as that reported in [11] (“... the first two

graphs from the benchmark were removed (user time was considered too small) and the rest of the

times averaged ...”). Therefore when rescaling the run times from Fais, we multiply the actual run time

by 0.41 and for Daleview by 0.50.

Table 8 shows the results of the calibration experiments. Tabulated are a subset of DIMACS instances

that took more than 1 s and less than 2 h to solve using MCSa1 on our second slowest machine (Fais).

38

Algorithms 2012, 5 581

Run times are tabulated in milliseconds (in brackets) and the actual ratio of Cyprus-time over Fais-time

(expected to be 0.41) is given as well as Cyprus-time over Daleview-time (expected to be 0.50) for each

data point. Two algorithms are used, MCSa1 and BBMC1. The last row of Table 8 gives the relative

performance ratios computed using the sum of the run times in the table. Referring back to Table 7 we

expect a Cyprus/Fais ratio of 0.41 but empirically get 0.12 when using MCSa1 and 0.14 when using

BBMC1. We expect a Cyprus/Daleview ratio of 0.50 but empirically get an average 0.26 with MCSa1

and 0.10 with BBMC1. The conversion factors in Table 7 consistently overestimate the speed of Fais

and Daleview. For example, we would expect MCSa1 applied to brock200-1 on Fais to have a run time

of 19, 343 × 0.41 = 7, 930 milliseconds on Cyprus. In fact it takes 4,777 milliseconds. If we use the

derived ratio in the last row of Table 8 we get 19, 343×0.12 = 2, 321 milliseconds. As another example,

consider san1000 using BBMC1 on Daleview. We would expect this to take 54, 816 × 0.50 = 27, 408

milliseconds on Cyprus. In fact it takes 5,927 milliseconds! If we use the conversion ratio from the last

row of Table 8, we get a more accurate estimate 54, 816× 0.10 = 5, 481 milliseconds.

Table 8. Calibration experiments using 3 machines, 2 algorithms and a subset of DIMACS.

MCSa1 BBMC1
instance Fais Daleview Cyprus Fais Daleview Cyprus

brock200-1 0.25 (19,343) 0.27 (17,486) 1.00 (4,777) 0.15 (15,365) 0.09 (25,048) 1.00 (2,358)

brock200-4 0.40 (1,870) 0.43 (1,765) 1.00 (755) 0.20 (1,592) 0.13 (2,464) 1.00 (321)

hamming10-2 0.18 (1,885) 0.14 (2,299) 1.00 (333) 0.25 (608) 0.21 (710) 1.00 (151)

hamming8-4 0.24 (1,885) 0.28 (1,647) 1.00 (455) 0.23 (1,625) 0.19 (1,925) 1.00 (367)

johnson16-2-4 0.35 (2,327) 0.38 (2,173) 1.00 (823) 0.26 (1,896) 0.14 (3,560) 1.00 (495)

MANN-a27 0.21 (32,281) 0.22 (31,874) 1.00 (6,912) 0.14 (12,335) 0.10 (16,491) 1.00 (1,676)

p-hat1000-1 0.25 (8,431) 0.28 (7,413) 1.00 (2,108) 0.14 (8,359) 0.12 (9,389) 1.00 (1,169)

p-hat1500-1 0.19 (77,759) 0.22 (66,113) 1.00 (14,421) 0.11 (90,417) 0.10 (92,210) 1.00 (9,516)

p-hat300-3 0.25 (53,408) 0.26 (51,019) 1.00 (13,486) 0.14 (41,669) 0.09 (60,118) 1.00 (5,711)

p-hat500-2 0.27 (13,400) 0.30 (12,091) 1.00 (3,659) 0.14 (10,177) 0.11 (13,410) 1.00 (1,428)

p-hat700-1 0.40 (1,615) 0.51 (1,251) 1.00 (641) 0.29 (1,169) 0.24 (1,422) 1.00 (344)

san1000 0.11 (94,107) 0.12 (89,330) 1.00 (10,460) 0.10 (57,868) 0.11 (54,816) 1.00 (5,927)

san200-0.9-1 0.29 (4,918) 0.31 (4,705) 1.00 (1,444) 0.18 (4,201) 0.11 (6,588) 1.00 (748)

san200-0.9-2 0.22 (23,510) 0.25 (20,867) 1.00 (5,240) 0.15 (14,572) 0.09 (23,592) 1.00 (2,218)

san400-0.7-1 0.25 (10,230) 0.27 (9,607) 1.00 (2,573) 0.15 (8,314) 0.12 (10,206) 1.00 (1,260)

san400-0.7-2 0.23 (84,247) 0.27 (72,926) 1.00 (19,565) 0.13 (71,360) 0.11 (87,325) 1.00 (9,219)

san400-0.7-3 0.24 (45,552) 0.27 (40,792) 1.00 (10,839) 0.13 (39,840) 0.11 (46,818) 1.00 (5,162)

sanr200-0.7 0.31 (5,043) 0.33 (4,676) 1.00 (1,548) 0.19 (4,079) 0.12 (6,652) 1.00 (795)

sanr200-0.9 0.23 (1,249,144) 0.23 (1,211,762) 1.00 (283,681) 0.15 (844,487) 0.09 (1,409,428) 1.00 (123,461)

sanr400-0.5 0.28 (9,898) 0.31 (8,754) 1.00 (2,745) 0.16 (9,177) 0.12 (12,658) 1.00 (1,484)

sanr400-0.7 0.10 (7,292,771) 0.28 (2,544,196) 1.00 (711,861) 0.14 (2,698,444) 0.10 (3,737,833) 1.00 (365,629)

ratio (total) 0.12 (9,033,624) 0.26 (4,202,746) 1.00 (1,098,326) 0.14 (3,937,554) 0.10 (5,622,663) 1.00 (539,439)

But maybe this is because we have used a C program (dfmax) to calibrate a Java program. Would we

get a reliable calibration if a C program was used? Östergård’s Cliquer program was downloaded and

compiled on our three machines and run against DIMACS benchmarks, i.e., the experiments in Table 8

were repeated using Cliquer and dfmax with a different, and easier, set of problems. The results are

shown in Table 9 were an entry “—” was a run of dfmax that was terminated after 2 minutes. What

we see is an actual scaling factor of 0.62 for Cliquer on Fais when dfmax predicts 0.41 and for Cliquer

on Daleview 0.26 when we expect 0.50; again we see that the rescaling procedure fails. The last three

columns show a dfmax calibration using problems other than the r* benchmarks and here we see an

error of about 5% on Fais (expected 0.41, actual 0.39) and about 16% on Daleview (expected 0.50,

39

Algorithms 2012, 5 582

actual 0.43). Therefore, it appears that rescaling results using dfmax and the five r* benchmarks is not

a safe procedure and can result in wrong conclusions being drawn regarding the relative performance

of algorithms.

4.6. Relative Algorithmic Performance on Different Machines

But is it even safe to draw conclusions on our algorithms when we base those conclusions on

experiments performed on a single machine? Previously, in Table 2 we compared MCSa against BBMC

on our reference machine Cyprus and concluded that BBMC was typically twice as fast as MCSa. Will

that hold on Fais and on Daleview? Table 10 takes the data from Table 8 and divides the run time of

MCSa by BBMC for each instance on our three machines. On Fais BBMC is rarely more than 50%

faster than MCSa and on Daleview BBMC is slower than MCSa more often than not! If experiments

were performed only on Daleview using only the DIMACS instances, we might draw entirely different

conclusions and claim that BBMC is slower than MCSa. This change in relative algorithmic ordering

has been observed on five different machines (four using the Java 1.6.0) using all of the algorithms. The

-server and -client options were also tried. The -server option sometimes gave speedups of a factor of 2,

sometimes a factor of 0.5, and this can also affect relative algorithmic performance.

Table 9. Calibration experiments for Cliquer and dfmax using 3 machines.

Cliquer dfmax
instance Fais Daleview Cyprus Fais Daleview Cyprus

brock200-1 0.66 (9,760) 0.43 (18,710) 1.00 (6,490) 0.39 (25,150) 0.42 (23,020) 1.00 (9,730)

brock200-4 0.64 (690) 0.47 (1,190) 1.00 (440) 0.41 (1,510) 0.46 (1,360) 1.00 (620)

p-hat1000-1 0.62 (1,750) 0.36 (3,020) 1.00 (1,090) 0.41 (1,680) 0.45 (1,540) 1.00 (690)

p-hat700-1 0.67 (150) 0.37 (270) 1.00 (100) — — — — — —

san1000 0.75 (120) 0.30 (300) 1.00 (90) — — — — — —

san200-0.7-1 0.48 (1,750) 0.20 (4,220) 1.00 (840) — — — — — —

san200-0.9-2 0.61 (18,850) 0.21 (53,970) 1.00 (11,530) — — — — — —

san400-0.7-3 0.62 (6,800) 0.26 (16,100) 1.00 (4,230) — — — — — —

sanr200-0.7 0.65 (2,940) 0.36 (5,270) 1.00 (1,900) 0.40 (5,240) 0.44 (4,770) 1.00 (2,080)

sanr400-0.5 0.62 (1,490) 0.38 (2,420) 1.00 (930) 0.41 (3,550) 0.47 (3,080) 1.00 (1,460)

ratio (total) 0.62 (44,300) 0.26 (105,470) 1.00 (27,640) 0.39 (37,130) 0.43 (33,770) 1.00 (14,580)

5. Conclusions

We have seen that small implementation details (in MC) can result in large changes in performance.

Modern programming languages with rich constructs and large libraries of utilities make it easier for the

programmer to do this. We have also drifted away from the days when algorithms were presented along

with their implementation code (examples here are [8,23]) to presenting algorithms only in pseudo-code.

Fortunately we are moving into a new era where code is being made publicly available (examples here

are Östergård’s Cliquer and Konc and Janez̆ic̆’s MaxCliqueDyn) via the web. Hopefully this will grow

and allow Computer Scientist to be better able to perform reproducible empirical studies.

Tomita [13] presented MCS as an improvement on MCR brought about via two modifications: (1) a

static colour ordering and (2) a colour repair step. Our study has shown that modification (1) improves

performance and (2) degrades performance, i.e., MCSa is better than MCSb.

40

Algorithms 2012, 5 583

Table 10. Calibration experiment part 2, does hardware affect relative algorithmic

performance? Values greater than 1 imply BBMC is faster than MCSa, and values less

than 1 imply MCSa is faster.

instance Fais Daleview Cyprus

brock200-1 1.26 0.70 2.03

brock200-4 1.17 0.72 2.35

hamming10-2 3.10 3.24 2.21

hamming8-4 1.16 0.86 1.24

johnson16-2-4 1.23 0.61 1.66

MANN-a27 2.62 1.93 4.12

p-hat1000-1 1.01 0.79 1.80

p-hat1500-1 0.86 0.72 1.52

p-hat300-3 1.28 0.85 2.36

p-hat500-2 1.32 0.90 2.56

p-hat700-1 1.38 0.88 1.86

san1000 1.63 1.63 1.76

san200-0.9-1 1.17 0.71 1.93

san200-0.9-2 1.61 0.88 2.36

san400-0.7-1 1.23 0.94 2.04

san400-0.7-2 1.18 0.84 2.12

san400-0.7-3 1.14 0.87 2.10

sanr200-0.7 1.24 0.70 1.95

sanr200-0.9 1.48 0.86 2.30

sanr400-0.5 1.08 0.69 1.85

sanr400-0.7 2.70 0.68 1.95

BBMC is algorithm MCSa with sets represented as bit strings, i.e., BitSet is used rather than

ArrayList. Experiments on the reference machine showed a speedup typically of a factor of 2. The

three styles of ordering were investigated. The orderings were quickly disrupted by MCQ, but in the

other algorithms minimum width ordering was the best in random problems, whereas in the DIMACS

instances there was no clear winner.

New benchmark problems (i.e., problems rarely investigated by the maximum clique community)

were investigated such as BHOSLIB, k-regular and small-world graphs. Motivation for this study was

partly to compare algorithms but also to explore these problems to determine if and when they are hard.

Finally, we demonstrated that the standard procedure for calibrating machines and rescaling results is

unsafe, and that running our own code on different machines can lead to different relative algorithmic

performance. This is disturbing. First, it suggests that to perform a fair and reliable empirical study we

should not rescale others’ results: We must either code up the algorithms ourselves, as done here and

also by Carmo and Züge [2], or download and run code on our machines. Secondly, we should run our

experiments on different machines.

All the codes used in this study are available online [34] along with instructions on how to run the

code, the DIMACS instances, random problem generator and runtime results.

41

Algorithms 2012, 5 584

Appendix

At the top of MCQ’s search, Tomita [12] sorts vertices in non-increasing degree order and the first Δ

vertices are given colours 1 to Δ respectively, where Δ is the maximum degree in the graph, thereafter

vertices are given colour Δ+ 1. This is done to prime the candidate set for the initial call to EXPAND.

Thereafter Tomita calls NUMBER-SORT immediately before the recursive call to EXPAND. A simpler

option is taken here: colouring and sorting of the candidate set is done only at the start of expand.

Using graph g10–50 as an example, in Figure 2 of [12] vertices would initially be selected in the order

[7,9,8,5,2,1,6,4,0,3] with colours respectively [6,6,6,6,6,5,4,3,2,1], i.e., using 6 colours. Here vertices

are selected in order [9,8,5,7,2,1,6,4,0,3] with colours [4,3,3,2,2,2,2,1,1,1], i.e., using 4 colours, a tighter

upper bound and vertices no longer in degree order.

Figure 11. The effect of Tomita’s initial colour ordering.

Listing 13 presents a Java implementation of MCQ as described in [12] but in our framework. Lines 18

to 20 give an initial colour to the sorted vertices. Method numberSort is now called after the selection

of a vertex (line 40). A similar change was made to MCSa. Figure 11 shows the effect of the initial

colour ordering, using G(100, p) on calls to expand (nodes). We see on the left that Tomita’s MCQ is

marginally better than MCQ1 and on the right that MCSa1 is better than Tomita’s equivalent (and we see

a similar improvement in BBMC1). In conclusion, the approach adopted here is simpler, using a single

colour-ordering procedure. In MCQ1 the effect on performance is detrimental but small, and in MCSa1

(and BBMC1a) it is beneficial.

Acknowledgements

I would like to thank Pablo San Segundo, Jeremy Singer, Ciaran McCreesh and my reviewers.

42

Algorithms 2012, 5 585

Listing 13. MCQTomita.�
1 import j a v a . u t i l . * ;

2

3 c l a s s MCQTomita ex tends MC {
4

5 MCQTomita (i n t n , i n t [] [] A, i n t [] degree , i n t s t y l e) {
6 super (n , A, degree , s t y l e) ;

7 }
8

9 void s e a r c h () {
10 cpuTime = System . c u r r e n t T i m e M i l l i s () ;

11 nodes = 0 ;

12 c o l o u r C l a s s = new A r r a y L i s t [n] ;

13 A r r a y L i s t<I n t e g e r > C = new A r r a y L i s t<I n t e g e r >(n) ;

14 A r r a y L i s t<I n t e g e r > P = new A r r a y L i s t<I n t e g e r >(n) ;

15 f o r (i n t i =0 ; i<n ; i ++) c o l o u r C l a s s [i] = new A r r a y L i s t<I n t e g e r >(n) ;

16 o r d e r V e r t i c e s (P) ;

17 i n t [] c o l o u r = new i n t [P . s i z e ()] ;

18 i n t maxDeg = d e g r e e [P . g e t (0)] ;

19 f o r (i n t i =0 ; i<maxDeg ; i ++) c o l o u r [i] = i +1 ;

20 f o r (i n t i =maxDeg ; i<n ; i ++) c o l o u r [i] = maxDeg +1;

21 expand (C , P , c o l o u r) ;

22 }
23

24 void expand (A r r a y L i s t<I n t e g e r > C , A r r a y L i s t<I n t e g e r > P , i n t [] c o l o u r) {
25 i f (t i m e L i m i t > 0 && System . c u r r e n t T i m e M i l l i s () − cpuTime >= t i m e L i m i t) re turn ;

26 nodes ++;

27 i n t m = P . s i z e () ;

28 f o r (i n t i =m−1; i >=0; i − −){
29 i f (C . s i z e () + c o l o u r [i] <= maxSize) re turn ;

30 i n t v = P . g e t (i) ;

31 C . add (v) ;

32 A r r a y L i s t<I n t e g e r > newP = new A r r a y L i s t<I n t e g e r >(i) ;

33 f o r (i n t j =0 ; j<=i ; j ++){
34 i n t u = P . g e t (j) ;

35 i f (A[u] [v] == 1) newP . add (u) ;

36 }
37 i f (newP . isEmpty () && C . s i z e () > maxSize) s a v e S o l u t i o n (C) ;

38 i f (! newP . isEmpty ()) {
39 i n t [] newColour = new i n t [newP . s i z e ()] ;

40 numberSor t (C , newP , newP , newColour) ;

41 expand (C , newP , newColour) ;

42 }
43 C . remove (C . s i z e () −1) ;

44 P . remove (i) ;

45 }
46 }
47 }

�� �

References

1. Garey, M.R.; Johnson, D.S. Computers and Intractability; W.H. Freeman and Co.: New York, NY,

USA, 1979.

2. Renato, C.; Alexandre P. Z. Branch and bound algorithms for the maximum clique problem under

a unified framework. J. Braz. Comp. Soc. 2012, 18, pp. 137–151.

43

Algorithms 2012, 5 586

3. Randy, C.; Panos M.P. An exact algorithm for the maximum clique problem. Oper. Res. Lett.
1990, 9, 375–382.

4. Torsten, F. Simple and Fast: Improving a Branch-and-Bound Algorithm for Maximum Clique. In

Proceedings of the ESA 2002, LNCS 2461, Rome, Italy, 17–21 September 2002; pp. 485–498.

5. Janez, K.; Dus̆anka, J. An improved branch and bound algorithm for the maximum clique

problem. MATCH Commun. Math. Comput. Chem. 2007, 58, pp. 569–590. Available online:

http://www.sicmm.org/ konc/ (accessed on 12 November 2012).

6. Chu, M.; Li, Z.Q. An Efficient Branch-and-Bound Algorithm Based on Maxsat for the Maximum

Clique Problem. In Proceedings of the AAAI’10, Atlanta, GA, USA, 11–15 July 2010; pp. 128–133.

7. Östergård, P.R.J. A fast algorithm for the maximum clique problem. Discret. Appl. Math. 2002,

120, pp. 197–207. Available online: http://users.tkk.fi/pat/cliquer.html/ (accessed on 12 November

2012).

8. Pardalos, P.M.; Rodgers, G.P. A branch and bound algorithm for the maximum clique problem.

Comput. Oper. Res. 1992, 19, pp. 363–375.

9. Régin, J.-C. Using Constraint Programming to Solve the Maximum Clique Problem. In

Proceedings CP 2003, LNCS 2833, Kinsale, Ireland, 29 September–3 October 2003; pp. 634–648.

10. Segundo, P.S.; Matia, F.; Diego, R.-L.; Miguel, H. An improved bit parallel exact maximum clique

algorithm. Optim. Lett. 2011, doi:10.1007/s11590-011-0431-y.

11. Segundo, P.S.; Diego, R.-L.; Augustı́n, J. An exact bit-parallel algorithm for the maximum clique

problem. Comput. Oper. Res 2011, 38, 571–581.

12. Tomita, E.; Sutani, Y.; Higashi, T.; Takahashi, S.; Wakatsuki, M. An Efficient Branch-and-Bound

Algorithm for Finding a Maximum Clique. In Proceedings of the DMTCS 2003, LNCS 2731,

Dijon, France, 7–12 July 2003; pp. 278–289.

13. Tomita, E.; Sutani, Y.; Higashi, T.; Takahashi, S.; Wakatsuki, M. A Simple and Faster

Branch-and-Bound Algorithm for Finding Maximum Clique. In Proceedings of the WALCOM
2010, LNCS 5942, Dhaka, Bangladesh, 10–12 February 2010; pp. 191–203.

14. Wood, D.R. An algorithm for finding a maximum clique in a graph. Oper. Res. Lett. 1997, 21,

211–217.

15. Tomita, E.; Toshikatsu, K. An efficient branch-and-bound algorithm for finding a maximum clique

and computational experiments. J. Glob. Optim. 2007, 37, 95–111.

16. David, E.; Darren, S. Listing all maximal cliques in large sparse real-world graphs. In Experimental
Algorithms, LNCS 6630. Comput. Sci. 2011, 6630, 364–375.

17. Knuth, D.E. Generating all Combinations and Permutations. In The Art of Computer Programming;

Pearson Education Inc.: Stoughton, MA, USA, January 2006; Volume 4, pp.1–3.

18. Li, C.M.; Quan, Z. Combining Graph Structure Exploitation and Propositional Reasoning for the

Maximum Clique Problem. In Proceedings of the ICTAI’10; Arras, France, 27–29 October 2010;

Volume 1, pp. 344–351.

19. Bentley, J.L.; McIlroy, M.D. Engineering a sort function. Softw.-Pract. Exp. 1993, 23, 1249–1265.

20. Eugene, C.F. A sufficient condition for backtrack-free search. J. Assoc. Comput. Mach. 1982, 29,

24–32.

44

Algorithms 2012, 5 587

21. David, W.M.; Beck, L.L. Smallest-Last ordering and clustering and graph coloring algorithms.

J. Assoc. Comput. Mach. 1983, 30, 417–427.

22. Pardalos, P.M.; Xue, J. The maximum clique problem. J. Glob. Optim. 1994, 4, 301–324.

23. Bron, C.; Kerbosch, J. Algorithm 457: Finding all cliques of an undirected graph [h]. Commun.
ACM 1973, 16, 575–579.

24. Akkoyunlu, E.A. The enumeration of maximal cliques of large graphs. SIAM J. Comput. 1973, 2,

1–6.

25. Tomita, E.; Tanaka, A.; Takahashi, H. The worst-case time complexity for generating all maximal

cliques and computational experiments. Theor. Comput. Sci. 2006, 363, 28–42.

26. Abu-Khzam, F.N.; Collins, R.L.; Fellows, M.R.; Langston, M.A.; Suters, W.H.;

Symons, C.T. Kernelization algorithms for the vertex cover problem: Theory and experiments.

In ALENEX/ANALC; New Orleans, LA, USA, 10–13 January 2004; pp. 62–69.

27. Segundo, P.S.; Tapia, C. A New Implicit Branching Strategy for Exact Maximum Clique. In

Proceedings of ICTAI’10; Arras, France, 27–29 October 2010; Volume 1, pp. 352–357.

28. Cheeseman, P.; Kanefsky, B.; Taylor, W.M. Where the Really Hard Problems are. In Proceedings
of the IJCAI’91, Sidney, Australia, 24–30 August 1991; pp. 331–337.

29. Gent, I.P.; MacIntyre, E.; Prosser, P.; Walsh, T. The Constrainednss of Search. In Proceedings of
the AAAI’96, Portland, OR, USA, 4–8 August 1996; pp. 246–252.

30. Zweig, K.A.; Palla, G.; Vicsek, T. What makes a phase transition? Analysis of the random

satisfiability problem. Physica A 2010, 389, 1501–1511.

31. DIMACS instances. Available online: ftp://dimacs.rutgers.edu/pub/challenge/graph/benchmark

s/clique (accessed on 12 November 2012).

32. Watts, D.J.; Strogatz, S.H. Collective dynamics of small world networks. Nature 1998, 394,

440–442.

33. Sewell, E.C. A branch and bound algorithm for the stability number of a sparse graph. INFORMS
J. Comput. 1998, 10, 438–447.

34. Prosser, P. Maximum Clique Algorithms in Java. Available online: http://www.dcs.gla.ac.uk/ pat/-

maxClique (accessed on 12 November 2012).

35. Stanford Large Network Dataset Collection. Available online: http://snap.stanford.edu/data/

index.html (accessed on 12 November 2012).

36. Benchmarks with Hidden Optimum Solutions. Available online: http://www.nlsde.buaa.edu.cn/

kexu/benchmarks/graph-benchmarks.htm (accessed on 12 November 2012).

37. Dfmax. Available online: ftp://dimacs.rutgers.edu/pub/dsj/clique (accessed on 12 November 2012).

© 2012 by the author; licensee MDPI, Basel, Switzerland. This article is an open access article

distributed under the terms and conditions of the Creative Commons Attribution license

(http://creativecommons.org/licenses/by/3.0/).

45

Algorithms 2012, 5, 654-667; doi:10.3390/a5040654
OPEN ACCESS

algorithms
ISSN 1999-4893

www.mdpi.com/journal/algorithms

Article

Extracting Co-Occurrence Relations from ZDDs
Takahisa Toda

ERATO, MINATO Discrete Structure Manipulation System Project, JST, Sapporo-Shi 060-0814, Japan;

E-Mail: toda@erato.ist.hokudai.ac.jp or toda.takahisa@gmail.com

Received: 27 September 2012; in revised form: 4 December 2012 / Accepted: 6 December 2012 /
Published: 13 December 2012

Abstract: A zero-suppressed binary decision diagram (ZDD) is a graph representation

suitable for handling sparse set families. Given a ZDD representing a set family, we present

an efficient algorithm to discover a hidden structure, called a co-occurrence relation, on

the ground set. This computation can be done in time complexity that is related not to

the number of sets, but to some feature values of the ZDD. We furthermore introduce a

conditional co-occurrence relation and present an extraction algorithm, which enables us to

discover further structural information.

Keywords: BDD; ZDD; partition; co-occurrence; data mining

1. Introduction

Enumerating a large number of sets and finding useful information from them have recently

attracted the attention of many researchers. The data structure called a zero-suppressed binary decision

diagram [1], ZDD for short, is known to be useful for compactly representing collections of sets and

for efficiently manipulating them. ZDDs have been applied to various problems. In the analysis of

transaction databases, Minato and Arimura [2,3] invented ZDD-based techniques for frequent itemset

mining. Coudert [4] introduced a ZDD-based approach to solve many graph and set optimization

problems. Sekine and Imai [5] developed a new paradigm of the exact computation for network reliability

by means of binary decision diagrams (see [6,7]), BDDs for short. Recently, for multi-terminal binary

decision diagrams, which are a well accepted technique for the state graph based quantitative analysis of

large and complex systems, a zero-suppressed version has been studied by Lampka et al. [8]. Roughly

speaking, an idea common to these is to compress a large number of sets into a ZDD (BDD) and

manipulate them without decompression.

46

Algorithms 2012, 5 655

In this paper, we study the following basic problem of ZDDs: Given a ZDD representing a set family,

extract a hidden structure, called a co-occurrence relation, over the ground set. This computation can be

done in time complexity that is related not to the number of sets, but to some feature values of the ZDD

representing the sets. Thus it is effective especially when a large number of sets are compressed into a

small ZDD. Since we do not put any domain-specific assumption on the sets represented by a ZDD, our

algorithm is widely applicable to ZDDs obtained from real-life data.

The co-occurrence relation is defined as follows: given a set S and a collection C of subsets of

S, two elements a, b ∈ S co-occur with each other for C if it holds that for all T ∈ C, a ∈ T if

and only if b ∈ T . In a series of work for finding various useful information from databases [9–11],

the co-occurrence relation was introduced, although an efficient extraction algorithm is not known.

Clearly the co-occurrence relation is an equivalence relation and it induces the partition consisting

of equivalence classes, called a co-occurrence partition. Since ZDDs represent collections of sets,

co-occurrence relations and partitions are similarly defined for ZDDs. Since elements in the same block

of a co-occurrence partition have the same behavior, when we want to find useful information from a

ZDD, we need not distinguish between them and the ZDD can be compressed further.

This paper is organized as follows. In Section 2 we introduce some basic notions on ZDDs. We

present algorithms in Section 3 and provide examples in Section 4. Concluding remarks are given

in Section 5.

2. Basic Notions on ZDDs

Since we do not treat BDDs, we only introduce ZDDs. ZDDs are graph representations for set

families. Figure 1(b) illustrates the ZDD representing the set family {∅, {e1}, {e2}, {e3}}. Whenever

a ZDD is given, we always assume that a ground set S and the order of the elements are fixed. For

simplicity, let S := {e1, . . . , en}, where the elements are numbered from 1 to n (= |S|) and ordered in

this order. The node at the top is called the root. Each internal node has the three fields V, LO and HI.

The field V holds the index of an element in S. The fields LO and HI point to other nodes, which are

called LO and HI children, respectively. The arc to a LO child is called a LO arc and illustrated by a

dashed arrow, while the arc to a HI child is called a HI arc and illustrated by a solid arrow. There are

only two non-internal nodes, denoted by ⊥ and .

Figure 1. The two graph representations for the same set family {∅, {e1}, {e2}, {e3}}.

(a) Binary Decision Tree; (b) ZDD.

1

�� ��2

�� ��

2

�� ��
3

�� ��

3
�� ��

3
�� ��

3
�� ��

 ⊥ ⊥ ⊥ ⊥

(a)

1
��

		

2
��

3
�� ��

(b)

47

Algorithms 2012, 5 656

The following two conditions for ZDDs enable a unique and efficient representation. First, whenever

an arc goes from an internal node f to an internal node g, a ZDD must satisfy V (f) < V (g). Thus no

nodes having the same index occur twice in a path. Second, a ZDD must be irreducible in the sense that

the following reduction operations cannot be applied anymore.

1. For each internal node f whose HI child is ⊥, redirect all the incoming arcs of f to the LO child

of f , and then eliminate f (Figure 2(a)).

2. Share all equivalent subgraphs (Figure 2(b)).

Figure 2. The two reduction rules for ZDDs. (a) Node Elimination; (b) Node Sharing.

��

�� ��

3

��

��

4

�� ��

�� 4

�� ��

⊥

(a)

�� �� �� ��
3
�� ��

3

�� ��

3
�� ��

4

�� ��

4

�� ��

�� 4

�� ��

4

�� ��

(b)

Now, let us see the correspondence between ZDDs and set families. Given a ZDD, for each path P

from the root to , define a subset TP of S such that ei ∈ TP if the HI arc of an internal node f is selected

(where i = V (f)); otherwise, ei �∈ TP . Note that if P contains no nodes of index i, then we can know

that ei �∈ TP due to the node elimination rule. We obtain the set family {TP : P is a path in the ZDD}.

Conversely, given a set family, construct the corresponding binary decision tree as is illustrated in

Figure 1(a) and make it irreducible by applying the two reduction rules. Observe for example that

Figure 1(b) is obtained from Figure 1(a). It is known (see [1,12] (§7.1.4), for details) that every set

family has one and only one representation as a ZDD if the size of a ground set and the order of the

elements are fixed.

For any node f in a ZDD, the graph consisting of all nodes accessible from f forms a ZDD whose

root is f . The size of a ZDD is the total number of nodes in the ZDD, including non-internal nodes. The

cardinality of a node is the total number of paths from the node to . Since in ZDDs we are interested in

paths leading to , we mean by a branch node an internal node whose two children have paths leading to

; in other words, the LO child is not ⊥. Note that a branch node is not a synonym of an internal node.

3. Algorithms

We present an algorithm to extract a hidden structure, called a co-occurrence relation, from a ZDD.

Our algorithm constructs a co-occurrence partition while traversing a ZDD. We first explain how to

traverse a ZDD and then how to manipulate a partition efficiently in the traversal. We furthermore

introduce the notion of a conditional co-occurrence relation and present an extraction algorithm.

48

Algorithms 2012, 5 657

3.1. Traversal Part

Let us first consider a naive method to compute a co-occurrence partition. Suppose that a ZDD

represents a collection C of subsets of a set S. The co-occurrence partition is incrementally constructed

as follows. We start with the partition {S} consisting of the single block S. For each path P from the

root to , we obtain a new partition from the current partition by separating each block b into the two

parts b ∩ TP and b ∩ (S \ TP) if both parts are nonempty, where TP denotes the set in C corresponding

to P . This can be done by checking which arc is selected at each node of P . For example, let us see the

ZDD given in Figure 3: If we first examine the path 1 ��� 2 ��� 3 ��� 4 → , then the block S of

the initial partition splits into the two parts {4} and S \ {4}, since HI arc is selected only at the label 4

node. It can be easily verified that after all paths are examined, the co-occurrence partition induced by

C is constructed. However, since this method depends on the number of paths (thus the size of C), this

is not effective for ZDDs which efficiently compress a large number of sets. It would be desirable if we

could construct a co-occurrence partition directly from a ZDD.

Figure 3. The computing process of our algorithm for the ZDD that represents the set family

{{e4}, {e3, e5}, {e2, e6}, {e1, e4}, {e1, e3, e5}, {e1, e2, e4, e6}} is shown below. For example,

in the third line from the bottom of the left column, the number 2 on the left side means

that was visited twice; the right arrow means that the state of e2 changed from LO to HI;

the left arrow means that the state of e3 changed from HI to LO. In the bottom of the right

column, the co-occurrence partition {{e1}, {e2, e6}, {e3, e5}, {e4}} is obtained.

1

�� ��
2

��

��

2

��

��

3

��

��

4

�� ��

4

��

��

5

�� ��

6

�� ��⊥

0 : 1, 2, 3, 4, 5, 6

0 : 1, 2, 3, 5, 6 �� 4

1 : 1, 2, 5, 6 �� 3 4

1 : 1, 2, 6 �� 3, 5 4

2 : 1, 6 �� 2 3, 5 4

2 : 1, 6 �� 2 3 5�� 4

2 : 1, 6 �� 2 3, 5 4

2 : 1 �� 2, 6 3, 5 4

3 : 1 2 6�� 3, 5 4

3 : 1 2 6�� 5 �� 3 4

3 : 1 2 6�� 3, 5 4

3 : 1 2, 6 3, 5 4

4 : 1 6 �� 2 3, 5 4

4 : 1 6 �� 2 3 5�� 4

4 : 1 6 �� 2 3, 5 4

4 : 1 2, 6 3, 5 4

Our algorithm improves the naive method above by avoiding as many useless visits of nodes as

possible. We traverse a ZDD basically in a depth-first order. In each node, we select the next node

in a LO arc first order, i.e., the LO child if the LO child is not ⊥; otherwise, the HI child. After we arrive

at , we go back to the most recent branch node and select the HI arc. Note that we need not go back to

the root, since arc types do not change until the most recent branch node. For example, in Figure 3, after

the first visit of , we go back to the label 3 node and go ahead along the path 3 → 5 → .

49

Algorithms 2012, 5 658

The difference from the usual depth-first search is that when we visit an already visited node, we

go down from the node to by selecting only HI-arcs. This is essential because the usual depth-first

search may fail to detect separable elements. For example, in Figure 4, the two elements e3 and e4 are

separable, and in our traversal the third and fourth columns in the table 3b have different arc types thus

we can know that they are really separated. On the other hand, in the usual depth-first search they are

observed as if they had a common arc type: Since an already visited node is no longer visited, the arc

type of e4 in the table 3a is not updated, which means the type remains LO.

Figure 4. Each table on the center shows the change of selected arc types when the ZDD is

traversed by the usual depth-first search. Similarly, the tables on the right correspond to the

changes when traversed by our algorithm.

1

�� ��
2

��

��

2

��

3

��

��

4

 ��

⊥

1a:
1 2 3 4

L L H H

2a:
1 2 3 4

H L L

3a:
1 2 3 4

H L L

4a:
1 2 3 4

H L L

1b:
1 2 3 4

L L H H

2b:
1 2 3 4

H L L

3b:
1 2 3 4

H L L H

4b:
1 2 3 4

H L L

Unlike the usual depth-first search, we do not skip necessary paths as the following lemma implies.

Lemma 3.1. In each visit of a node g after the first, two elements get separated when traversing the
subgraph whose root is g if and only if they get separated when going from g to with only HI-arcs.

Proof. Since the sufficiency is immediate, we only show the necessity. Suppose for contradiction that

two elements ei and ej (i < j) get separated when visiting all nodes below g, while they are not separated

when only selecting HI-arcs. Let ek denote the element corresponding to g. For the case i < k, there are

two paths from g such that they have different arc types at ej . However, in the first visit of g, we could

trace both paths and know that ei and ej are separated, which is a contradiction. For the other case k ≤ i,

there is a path from g with different arc types at ei and ej , and we could trace this path in the first visit of

g and reach a contradiction.

The traversal part is formally described in Algorithm 1. We here explain some notation and

terminology. Recall that in each internal node f , the next node of f in a LO arc first order is the LO

child if f is a branch node, i.e., an internal node whose two children have paths leading to ; otherwise,

the HI child. In order to traverse a ZDD, branch nodes are pushed onto the stack BRANCH, and visited

nodes are contained in Nvisited. The is contained in Nvisited in the initialization part, which reduces

an exceptional case in the traversal part, i.e., the loop block. For each step of the traversal, by invoking

the function Update, we update the current partition p according to which arc is selected at the currently

50

Algorithms 2012, 5 659

visited node f and whether there exist nodes hidden between f and the next node g due to the node

elimination rule. To do this efficiently, we need the following things: The graph structure G defined on

the blocks of p, the set Bnew of blocks which have been created since the last visit of , and the set EHI

of elements whose arc types are HI. The set Bnew is refreshed for each visit of . The function Update

is explained in detail in the next subsection.

Algorithm 1 Calculate a co-occurrence partition from a ZDD defined on a set S := {e1, . . . , en}
Require: ZDD is neither ⊥ nor , and n > 0

p ← the partition {S};

G ← the digraph with no arc and one vertex corresponding to the unique block S of p;

EHI ← ∅; Bnew ← ∅; Initialize BRANCH as an empty stack;

f ← the root of ZDD;

g ← the next node of f in a LO arc first order;

Nvisited ← {, f};

if f is a branch node then
push f onto BRANCH;

end if
loop

Update (f, g, p,G,Bnew, EHI);

if g �∈ Nvisited then
f ← g;

g ← the next node of f in a LO arc first order;

Nvisited ← Nvisited ∪ {f};

if f is a branch node then
push f onto BRANCH;

end if
else

while g �= do
f ← g;

g ← HI (f);

Update (f, g, p,G,Bnew, EHI);

end while
if BRANCH is empty then

return p; // End of the traversal

end if
Bnew ← ∅;

f ← the node popped from BRANCH;

g ← HI (f);

end if
end loop

51

Algorithms 2012, 5 660

3.2. Manipulation Part

In the traversal described in the previous subsection, whenever we visit a node f and select the next

node g, we update the current partition p by invoking the function Update. Namely, when we find an

element ei which is separable from the other elements in the same block, we move ei to an appropriate

block so that each block consists of inseparable elements with respect to the information up to this time.

For example, let us see the computing process in Figure 3 step by step. Suppose that we arrive at the

label 3 node after the first visit of . At this time p = {S \ {e4}, {e4}}. When we go to the label 5 node

along the HI arc, the element e3 becomes in a HI state while the other elements are in a LO state. Thus

we create a new block and move e3 into it. We furthermore memorize the arc from the previous block b,

which e3 was in, to the new block b′, which now consists of only e3. This is necessary because e5 ∈ b

soon becomes in a HI state and we have to insert e5 into b′, not a new block. We then reach and go

back to the label 2 node on the left side. The element e2 ∈ b becomes in a HI state, but we never insert

e2 into b′, since insertion is allowed only within the period from the creation of b′ until the arrival at .

Therefore, we create a new block b′′ and move e2 into it. We furthermore redirect the outgoing arc of b

to the new block b′′. In this way, we update the current partition p, the graph structure G on the blocks

of p, and the set Bnew of blocks created since the last visit of .

The function Update is formally described in Algorithm 2. Let ei and ej be the elements

corresponding to the current node f and the next node g, respectively. We move ei to another block

only if the arc type of ei changes from LO to HI or from HI to LO. Note that we need not move ei in the

other cases. This move operation for ei is done in the former part of the function Update by invoking

the function Move. The destination block of ei is determined by means of the auxiliary data structures

G and Bnew. The G defines a parent-child relation between the blocks of the current partition p. That a

block b is a parent of a block b′ implies that b′ is formed by elements which most recently went out from

b. Moving elements of b to b′ is allowed only within the period from the creation of b′ until the arrival at

, which can be decided by using Bnew.

There may be some nodes hidden between the current node f and the next node g due to the node

elimination rule. Let el be the element corresponding to such a hidden node. Since el is now in a LO

state, it suffices to move el only if the previous arc type is HI. This computation is done in the latter part

of the function Update.

We are now ready to state the time complexity of our algorithm. Recall that a branch node is an

internal node whose two children have paths leading to .

Theorem 3.2. Let k be the maximum number of HI arcs in a path from the root to . Let m be the number
of branch nodes. Let n be the size of a ground set. Algorithm 1 correctly computes a co-occurrence
partition. It can be implemented to run in time proportional to n+ km.

Proof. From Lemma 3.1 and the observations up to here, we can easily verify that Algorithm 1 correctly

computes a co-occurrence partition. Throughout this proof, we mean by a period the time period from a

visit of to the next visit.

The time necessary to create the initial partition is proportional to n. We show that the function

Update can be implemented so that the total time in a period is proportional to k. Partitions can be

manipulated so that the function Move runs in constant time. Thus the latter part of the function Update

52

Algorithms 2012, 5 661

is the computational bottleneck. To compute this part efficiently, we implement EHI as a doubly linked

list (see Figure 5). For each step of the traversal, we memorize the position of the most recently inserted

element into EHI. Note that when we arrive at and go back to the most recent branch node, we

have to recover the corresponding position in some way e.g., by means of a stack. When we insert

an element ei into EHI, we put ei in the next position of the most recently inserted element. It can be

easily verified that all elements placed before (respectively, after) the most recently inserted element are

sorted in increasing order of their indices. Thus, in order to scan all elements el ∈ EHI with i < l < j,

it suffices to search from the position of the most recently inserted element until the condition breaks.

Since the total number of elements searched in a period is proportional to k, we obtain the time necessary

to compute the function Update through a period.

Algorithm 2 Update the current partition p and the auxiliary data structures G,Bnew, EHI according to

the current node f , the selected arc type of f , and the next node g

function UPDATE(f , g, p, G, Bnew, EHI)

i ← V (f); j ← V (g);

if the HI arc of f is selected and ei �∈ EHI then
Move (ei, p, G,Bnew); EHI ← EHI ∪ {ei};

else if the LO arc of f is selected and ei ∈ EHI then
Move (ei, p, G,Bnew); EHI ← EHI \ {ei};

end if
for all el ∈ EHI with i < l < j do

Move (el, p, G,Bnew); EHI ← EHI \ {el};

end for
end function

function MOVE(ei, p, G, Bnew)

b ← the block of p which contains ei;

if the child of b is not in Bnew then
Add a new empty block b′ to p;

Add b′ to G in such a way that b′ has no child and the child of b is b′;
Bnew ← Bnew ∪ {b′};

end if
Move ei to the block corresponding to the child of b;

Delete b from p and G if b is empty;

end function

Let us consider the number of traversed nodes with repetition during the computation. Clearly the

number of periods is m + 1. For each i (0 ≤ i ≤ m), let Pi denote the path traced in the i-th period,

which starts with a branch node and ends with . The number of HI arcs in Pi is bounded above by k.

The head of each LO arc in Pi is a branch node, since the LO arc of a non-branch node is not selected

in our traversal. The LO arc of any branch node is traversed exactly once. Thus the total number of LO

53

Algorithms 2012, 5 662

arcs traversed during the computation is m. Therefore,
∑

0≤i≤m |Pi| ≤ (m+1)k+m. We conclude that

the time necessary to execute Algorithm 1 is proportional to n+ km.

Figure 5. For each step of the traversal of the ZDD given in Figure 3, the doubly linked list

of HI-state elements is shown below, where the index denotes the number of times was

visited and the double box or circle denotes the position after which an element is inserted.

0 :

0 : e4

0 → 1 : e4

1 : e3 e4

1 : e3

1 : e3 e5

1 → 2 : e3 e5

2 : e2 e3 e5

2 : e2 e5

2 : e2

2 : e2 e6

2 → 3 : e2 e6

3 : e1 e2 e6

3 : e1 e6

3 : e1 e3 e6

3 : e1 e3 e5 e6

3 : e1 e3 e5

3 → 4 : e1 e3 e5

4 : e1 e2 e3 e5

4 : e1 e2 e5

4 : e1 e2 e4 e5

4 : e1 e2 e4

4 : e1 e2 e4 e6

3.3. Conditional Co-occurrence Relations

Given a ZDD where every two elements are separable, Algorithm 1 cannot extract any useful

information from the ZDD, but even so, we want to find some structural information hidden in the

ground set. In this subsection we focus on the condition that enforces some elements always to be in a

HI state and some elements always to be in a LO state.

Let (ON,OFF) be a pair of subsets of the ground set S of a ZDD. Two elements ei, ej ∈ S are

conditionally inseparable with respect to (ON,OFF) if they co-occur with each other for all paths that

satisfy the condition: the HI arcs are always selected for all elements in ON; The LO arcs are always

selected for all elements in OFF.

Before extracting this relation, we need a preprocessing so that we can trace only paths that satisfy

the condition above. Recall that the cardinality of a node f is the number of paths from f to . It is

known (see also Algorithm C and Exercise 208 in [12]) that given a ZDD, the cardinalities of all nodes

in the ZDD can be computed in time proportional to the size of f . This computation can be done in a

bottom-up fashion: The cardinalities of ⊥ and are 0 and 1, respectively; the cardinality of each internal

node is the sum of the cardinalities of the two children. Given a pair (ON,OFF), it is easy to change

to be able to compute the numbers of paths from all internal nodes f to that satisfy the condition

concerning (ON,OFF). For convenience we call these numbers conditional cardinalities with respect to

(ON,OFF).

To construct a conditional co-occurrence partition, change Algorithm 1 as follows.

54

Algorithms 2012, 5 663

1. Return the initial partition if the conditional cardinality of the root is zero.

2. The next node g of the current node f is the LO child if the conditional cardinalities of the two

children are nonzero; else if the conditional cardinality of the LO child is zero, the HI child; else,

the LO child.

3. In the while block of Algorithm 1, the next node g is the LO child if the conditional cardinality of

the HI child is zero; otherwise, the HI child.

Theorem 3.3. Let m be the number of branch nodes. Let n be the size of a ground set. The computation
for a conditional co-occurrence partition can be done in time proportional to mn.

Proof. This theorem can be proved in a similar way to the proof in Theorem 3.2, but an upper bound for

the number of the traversed nodes cannot be similarly calculated. Indeed, because of the change in the

while block, we may have to select many LO arcs. At least we can say that the size of each path Pi is at

most n and the number of periods is at most m+ 1. Thus the time is proportional to mn.

Thanks to this theorem, when selecting a pair (ON,OFF), there is no need to worry about a rapid

increase of computation time. This is in contrast to the case where we arbitrarily select paths and compute

a co-occurrence partition from the selected paths. These paths are no longer compressed, and even if

they can be compressed in some way, the size is generally irrelevant to the size of the original ZDD, and

thus we cannot give a similar guarantee.

4. Examples

In this section we provide two examples. First, we applied our algorithm to two datasets commonly

used in frequent itemset mining. The datasets we used are mushroom and pumsb obtained from the

Frequent Itemset Mining Dataset Repository. The mushroom dataset contains characteristics of various

species of mushrooms and the pumsb dataset contains census data for population and housing. In both

datasets, each record consists of distinct item IDs, which indicate characteristics of the record. Each

record is considered as a set of items and a dataset as a set family, thus both datasets can be represented

as ZDDs (see Table 1). The parameters n and k given in Theorem 3.2 correspond to the number of

distinct items that appear in a dataset and the maximum number of items in a record, respectively.

Although the maximum item ID in the pumsb dataset is 7116 and the minimum item ID is 0, there

are only 2113 distinct item IDs. Thus we normalized the ground set to be the set {1, 2, . . . , 2113} such

that each element i in the set corresponds to the i-th item ID that appears in the pumsb dataset.

Table 1. The used datasets, where n, k,m denote the parameters given in Theorem 3.2.

#Records #Items (n) k m n+ km #ZDD Nodes

mushroom 8,124 119 23 288 6,743 791

pumsb 49,046 2,113 74 48,058 3,558,405 1,498,636

The computed partitions for the mushroom and the pumsb datasets are shown in Table 2, where

the entries in the right table are shown as original pumsb item IDs. For example, in each record of

55

Algorithms 2012, 5 664

the mushroom dataset, either elements 75 and 89 both appear or none of them do. Since items in the

same block have the same behavior, when we want to find useful information from a ZDD, we need

not distinguish between them. If the number of blocks is small, then various analyses on a ZDD can

be efficiently performed on a small set of items by selecting one representative from each block. Thus

our algorithm is useful. Unfortunately, without any constraints there are many blocks in both datasets;

however, a few constraints may reduce the number of blocks significantly. For example, in the pumsb

dataset, there are 2037 many blocks without any constraints, while the constraints ON = {5065} and

OFF = ∅ reduce the number to 71 (see Table 3 for other settings of constraints).

Table 2. The computed results for the mushroom dataset (left) and the pumsb dataset (right),

where the blocks of single items are omitted in the left table and the blocks of at most two

items are omitted in the right table. Each line corresponds to one block.

Blocks

3 74 84 92 97

75 89

73 83

Blocks

4409 4491 4494 4945 6866

49 1118 4163

5945 6855 6865

154 4497 4500

4953 5946 6856

Table 3. The numbers of blocks in various settings of constraints ON and OFF in the pumsb

dataset. In the left table, each line in the first column contains one item chosen at random

for ON, where OFF = ∅; in the right table, each line in the first column contains five items

chosen at random for OFF, where ON = ∅. Items are shown as original pumsb item IDs.

ON #Blocks

5065 71

98 330

208 408

52 45

5375 12

OFF #Blocks

1 4744 4933 5894 6021 1,466

347 1469 4447 4503 4772 1,774

0 3280 4543 6052 6062 1,898

271 5695 6140 6405 7057 1,772

2421 4656 5949 6159 6299 2,031

As a second example, we applied the algorithm for the conditional case to a set of paths enumerated

from the graph given in Figure 6. We considered paths from the vertex 01 to the vertex 47 of the

graph such that no vertices are visited twice, which are called simple paths. Since simple paths can

be identified with sets of edges, the set of all simple paths from 01 to 47 can be represented as a ZDD

whose ground set corresponds to the edge set of the graph. The number of such simple paths turns out

to be 14,144,961,271, while the corresponding ZDD in our ordering of the edge set has only 599 branch

nodes (see Table 4). This is in contrast to the pumsb dataset in the previous example, where the number

of branch nodes is roughly the same as the number of records represented by a ZDD. The ZDD of the

56

Algorithms 2012, 5 665

present example can be quickly constructed in a top-down fashion. This technique has been described in

the literature; see, e.g., [5,12], (Exercise 225 in §7.1.4). We analyzed which edges co-occur with each

other for all simple paths with the constraints ON and OFF given in Figure 6. The computed partition is

shown in the right table of Figure 6. As we showed in Theorem 3.3, once we obtain a small ZDD like in

this case, we can quickly compute co-occurrence partitions in various settings of ON and OFF.

Figure 6. We considered simple paths from the vertex 01 to the vertex 47. When the

edge set ON consists of bold edges and OFF consists of dashed edges, the blocks of the

corresponding co-occurrence partition except for blocks of single edges are shown in the

right table as the collections of edges separated by horizontal lines.

01

02

0809

12
11

10

47

05 03

06
04

07
15

20

16

13
14

19
22

21

23

17

25

24

18

26

2928
27

30

36

33

31

3738

39

34

32

35

40

44

43

41

45

46

42

Blocks

04–06 07–15 10–20 12–14 14–19

15–20 16–20 17–21 18–21 19–20

20–22 21–25 21–24 21–23 24–26

26–28 26–27 27–29 33–37 40–41

41–42 43–45

01–02 13–14 14–22 16–21 20–23

20–21 27–30 27–28 35–40 46–47

15–16 19–22 23–24

16–17 17–18 22–23

36–39 37–38

36–37 37–38

28–36 34–38

44–45 45–46

Table 4. The ZDD representing simple paths from the vertex 01 to the vertex 47, where

n, k,m denote the parameters given in Theorem 3.2.

Start End #Paths #Edges (n) k m n+ km #ZDD Nodes

01 47 14,144,961,271 92 44 599 26,448 1,085

In order to enumerate simple paths and construct ZDDs, we used the Stanford GraphBase, the

simpath and the simpath-reduce programs by Knuth [13,14]. Furthermore, in both examples we used

the Colorado University Decision Diagram Package by Somenzi [15].

5. Conclusions

We presented the following basic algorithm of ZDDs: Given a ground set S and a ZDD that represents

a collection of subsets of S, the algorithm extracts a hidden structure, called a co-occurrence relation,

on S from the ZDD. We furthermore introduced conditional co-occurrence relations and presented an

extraction algorithm, which enables us to discover further structural information. We showed that these

computations can be done in time complexity that is related not to the number of sets, but to some feature

57

Algorithms 2012, 5 666

values of a ZDD. Our algorithms are effective especially when a large number of sets are compressed

into a small ZDD.

References

1. Minato, S. Zero-Suppressed BDDs for Set Manipulation in Combinatorial Problems. In

Proceedings of 30th ACM/IEEE Design Autiomation Conference (DAC-93), Dallas, TX, USA,

June 1993; pp. 272–277.

2. Minato, S.; Arimura, H. Efficient Method of Combinatorial Item Set Analysis Based on

Zero-Suppressed BDDs. In Proceedings of IEEE/IEICE/IPSJ International Workshop on
Challenges in Web Information Retrieval and Integration (WIRI-2005), Tokyo, Japan, April 2005;

pp. 3–10.

3. Minato, S.; Arimura, H. Frequent closed item set mining based on zero-suppressed BDDs. Trans.
Jpn. Soc. Artif. Intell. 2007, 22, 165–172.

4. Coudert, O. Solving Graph Optimization Problems with ZBDDs. In Proceedings of the 1997
European Conference on Design and Test, Paris, France, March 1997; pp. 224–228.

5. Sekine, K.; Imai, H. A Unified Approach via BDD to the Network Reliability and Path Numbers.

Technical Report 95-09, Department of Information Science, University of Tokyo, 1995.

6. Akers, S.B. Binary decision diagrams. IEEE Trans. Comput. 1978, 27, 509–516.

7. Bryant, R.E. Graph-Based algorithms for boolean function manipulation. IEEE Trans. Comput.
1986, 35, 677–691.

8. Lampka, K.; Siegle, M.; Ossowski, J.; Baier, C. Partially-Shared zero-suppressed multi-terminal

BDDs: Concept, algorithms and applications. Form. Methods Syst. Des. 2010, 36, 198–222.

9. Minato, S. Finding Simple Disjoint Decompositions in Frequent Itemset Data Using

Zero-Suppressed BDDs. In Proceedings of IEEE ICDM Workshop on Computational Intelligence
in Data Mining, Houston, TX, USA, November 2005; pp. 3–11.

10. Minato, S.; Ito, K. Symmetric item set mining method using zero-suppressed bdds and application

to biological data. Trans. Jpn. Soc. Artif. Intell. 2007, 22, 156–164.

11. Minato, S. A Fast Algorithm for Cofactor Implication Checking and Its Application for Knowledge

Discovery. In Proceedings of IEEE 8th International Conference on Computer and Information
Technology (CIT 2008), Sydney, Australia, July 2008; pp. 53–58.

12. Knuth, D.E. The Art of Computer Programming Volume 4a; Addison-Wesley Professional: New

Jersey, NJ, USA, 2011.

13. Knuth, D.E. The Stanford GraphBase. Available online: http://www-cs-faculty.stanford.

edu/uno/sgb.html (accessed on 4 September 2012).

14. Knuth, D.E. SIMPATH and SIMPATH-REDUCE. Available online: http://www-cs-faculty.

stanford.edu/uno/programs.html (accessed on 4 September 2012).

58

Algorithms 2012, 5 667

15. Somenzi, F. CUDD: CU Decision Diagram Package: Release 2.5.0. Available online: http://vlsi.

colorado.edu/fabio/CUDD/ (accessed on 4 September 2012).

© 2012 by the author; licensee MDPI, Basel, Switzerland. This article is an open access article

distributed under the terms and conditions of the Creative Commons Attribution license

(http://creativecommons.org/licenses/by/3.0/).

59

Algorithms 2013, 6, 1-11; doi:10.3390/a6010001
OPEN ACCESS

algorithms
ISSN 1999-4893

www.mdpi.com/journal/algorithms

Article

Maximum Disjoint Paths on Edge-Colored Graphs:
Approximability and Tractability
Paola Bonizzoni 1, Riccardo Dondi 2,* and Yuri Pirola 1

1 Department of Computer Systems and Communication, University of Milan-Bicocca, Viale Sarca

336, Milan, Italy; E-Mails: bonizzoni@disco.unimib.it (P.B.); pirola@disco.unimib.it (Y.P.)
2 Department of Humanities and Social Sciences, University of Bergamo, Via Donizzetti 3, Bergamo,

Italy

* Author to whom correspondence should be addressed; E-Mail: riccardo.dondi@unibg.it;

Tel.: +39-03520-52423

Received: 31 October 2012; in revised form: 13 December 2012 / Accepted: 18 December 2012 /
Published: 27 December 2012

Abstract: The problem of finding the maximum number of vertex-disjoint uni-color paths

in an edge-colored graph has been recently introduced in literature, motivated by applications

in social network analysis. In this paper we investigate the approximation and parameterized

complexity of the problem. First, we show that, for any constant ε > 0, the problem is not

approximable within factor c1−ε, where c is the number of colors, and that the corresponding

decision problem is W[1]-hard when parametrized by the number of disjoint paths. Then,

we present a fixed-parameter algorithm for the problem parameterized by the number and

the length of the disjoint paths.

Keywords: social networks; disjoint paths; fixed-parameter algorithms; hardness

of approximation

1. Introduction

Social networks are usually represented and studied as graphs. Vertices represent the elements

analyzed (e.g., individuals), while edges represent a binary relation between the considered elements.

Among the different properties considered to study such graphs, one of the most relevant is the vertex

connectivity of two given vertices. Vertex connectivity is a measure of the information flowing from

one vertex to the other, and it has many applications. For example, it is used for the identifications

60

Algorithms 2013, 6 2

of important structural properties of a social network, like group cohesiveness and centrality [1,2]. A

classical result of graph theory, known as Menger’s theorem, states that vertex connectivity is equivalent

to the maximum number of disjoint paths between two given vertices.

While a lot of interest has been put in the study of networks that represent a single type of relation,

a natural extension that has been recently introduced in literature [3] is to consider multi-relational

social networks, that is social networks where more than one kind of relation between elements of the

network is considered. In order to investigate vertex connectivity in multi-relational social networks,

the combinatorial problem known as Maximum Colored Disjoint Paths (MAX CDP) has been introduced

in [3]. MAX CDP asks for the maximum number of vertex-disjoint uni-color paths in an edge-colored

graph, where the different edge-colors represent different kinds of relation.

The computational and approximation complexity of MAX CDP has been investigated in [3]. When

the input graph contains exactly one color, MAX CDP is polynomial time solvable (it can be reduced to

the maximum flow problem), while it has been shown to be NP-hard when the edges of the graph are

colored. Moreover, MAX CDP is shown to be approximable within factor c, where c is the number of

colors of the edges of the input graph, but not approximable within factor 2 − ε, for any ε > 0, even

when c is a fixed constant.

In [3], it is also investigated a variant of the problem, denoted as �-LCDP, where the length of the

paths in the solution are (upper) bounded by an integer � ≥ 1. The �-LCDP problem is NP-hard, for

� ≥ 4, while it admits a polynomial time algorithm when � ≤ 3. This variant of the problem can be

approximated in polynomial time within factor (�− 1)/2 + ε.

In this paper we investigate the approximation and parameterized complexity of MAX CDP and

�-LCDP. First, we show in Section 3 that MAX CDP is not approximable within factor c1−ε, for any

constant ε > 0, and that the corresponding decision problem (CDP) is W[1]-hard when parametrized

by the number p of disjoint uni-color paths. Then, in Section 4, we give a fixed-parameter algorithm

for �-LCDP, when � and the number of disjoint uni-color paths are considered as parameters. Table 1

summarizes the results known about the complexities of these problems along with the new results

presented in this work.

Table 1. Complexity status of MAX CDP.

Problem Parameter Status Ref.

MAX CDP c NP-hard for any c ≥ 2,
[3]

c-approximable

Inapprox. within c1−ε new

CDP p W[1]-hard new

�-LCDP � NP-hard for � ≥ 4 [3]

Poly-time for � ≤ 3 [3]

�-LCDPp (�, p) FPT new

61

Algorithms 2013, 6 3

2. Definitions

In this section we give some preliminary definitions that will be useful in the rest of the paper. First,

in this paper, we will consider only undirected graphs. Consider a set of colors C = {1, . . . , c}. In the

paper we denote by c the cardinality of C. A C-edge-colored graph (or simply an edge-colored graph

when the set of colors is clear from the context) is defined as G = (V, E), where V denotes the set of

vertices of G and E = {E1, . . . , Ec} denotes a collection of edge sets, where the set Ei, with i ∈ C,

represents the set of edges colored with color i. Notice that, for a given pair of vertices vi, vj , there may

exist more than one edge between vi and vj (each of these edges is associated with a distinct color of C).

A path π in G is called a uni-color path if all the edges of π have the same color, that is they belong

to the same set Ei (for some i ∈ C). Given two vertices x, y ∈ V , an xy-path is a path between vertices

x and y. Two paths π′ and π′′ are internally disjoint (or, simply, disjoint) if they do not share any internal

vertex, while a set of paths are internally disjoint if they are pairwise internally disjoint.

Next, we introduce the formal definitions of the problems we deal with in this paper, namely the

optimization problem MAX CDP, the decision problem (CDP) naturally associated with MAX CDP, and

the corresponding length-bounded variants �-LCDP and �-LCDPp.

Problem 1. MAXIMUM COLORED DISJOINT PATHS (MAX CDP).

Input: a set C of colors, a C-edge-colored graph G = (V, E), and two vertices s, t ∈ V .

Output: the maximum number of disjoint uni-color st-paths.

Problem 2. COLORED DISJOINT PATHS (CDP).

Input: a set C of colors, a C-edge-colored graph G = (V, E), a non-negative integer p, and two vertices

s, t ∈ V .

Output: Do there exist at least p disjoint uni-color st-paths in G?

The �-LENGTH COLORED DISJOINT PATHS (�-LCDP) problem is a variant of MAX CDP where the

length of the paths in the solution is bounded by an integer � ≥ 1. The �-LCDPp problem is the decision

version of �-LCDP which asks if there exists a solution of �-LCDP with cardinality at least p.

3. Approximation and Parameterized Complexity of MAX CDP

In this section, we present a reduction from MAXIMUM INDEPENDENT SET to MAX CDP. Since the

reduction preserves the solution cost, it implies that MAX CDP is not approximable within factor c1−ε,

for any ε > 0, and that CDP is W[1]-hard when the parameter is the size p of the solution.

Given an undirected graph GI = (VI , EI), the MAXIMUM INDEPENDENT SET (MAX INDSET) problem

asks for an independent set I ⊆ VI of maximum cardinality, i.e., a maximum-cardinality set I such that

if v′, v′′ ∈ I then {v′, v′′} �∈ EI . In the following, starting from a graph GI , we construct a gadget (an

edge-colored graph) GC , such that finding an independent set I of cardinality k in GI is equivalent to

finding k disjoint uni-color st-paths in GC . First, we describe the edge-colored graph GC associated

with a generic graph GI , then we prove some properties of the computed gadget.

Description of the gadget. Let GI = (VI , EI) be an undirected graph, with V = {v1, . . . , vn} and

EI = {e1, . . . , em}. Without loss of generality, we assume that GI is connected, since a maximum

62

Algorithms 2013, 6 4

independent set of a non-connected graph is the union of the maximum independent sets of its connected

components. Let ΠEI
be an ordered list of the edges of GI , based on some ordering. We construct an

edge-colored graph GC = (VC , E1, . . . , En) associated with GI as follows. Informally, the vertex set VC

is composed by two distinguished vertices s and t and a vertex for each edge of GI , while each set Ei,

1 ≤ i ≤ c, is composed connecting the vertices associated with edges of GI incident to vi in the same

order as they appear in ΠEI
. Formally, the set of colors is:

C = {1, . . . , n}

Now, we define the vertex set VC :

VC = {s, t} ∪ {ui,j | {vi, vj} ∈ EI}

Finally, we define the edge set Ei, 1 ≤ i ≤ n:

Ei =
{{ui,x, ui,y} | no edge {vi, vz} appears between {vi, vx} and {vi, vy} in the list ΠEI

}∪{{s, ui,j} | ui,j is the first edge incident in vi of the list ΠEI

}∪{{ui,j, t} | ui,j is the last edge incident in vi of the list ΠEI

}
Figure 1 represents an example of an undirected graph GI and of the edge-colored graph GC associated

with it.

Figure 1. An example of a graph GI and the edge-colored graph GC associated with it. For

convenience, we labelled the edges of GI such as they correspond to the vertices in GC . The

colors of the edges in GC are indicated by numbers placed near the edges, while the two

distinguished vertices s and t are highlighted in grey. The order ΠEI
of the edges of GI is

simply the lexicographic order of their labels.

2

a d

1 c 4

b e

3

(a) GI

4 d 2

4
2

1 3
2 3

s a c e t

2 1 4
3

3 b 1

(b) GC

Given a graph GI with n vertices and m edges, the associated edge-colored graph GC has m + 2

vertices, O(mn) edges, and n colors, i.e., c = n.

Properties of the gadget. First, we introduce the following properties of the gadget.

Remark 1. A uni-color st-path of color i, with 1 ≤ i ≤ c, contains each vertex ui,x of GC associated
with an edge incident in vi ∈ VI .

63

Algorithms 2013, 6 5

Proof. The proof follows by construction, since the edges of color i, with 1 ≤ i ≤ c, induce a st-path that

contains each vertex ui,x of GC associated with an edge incident in vi ∈ VI ordered as in list ΠEI
.

Next, we prove the two main results of the reduction from MAX INDSET to MAX CDP.

Lemma 2. Let GI = (VI , EI) be an undirected graph and I ⊆ VI be an independent (vertex) set for GI .
Then, we can compute in polynomial time (at least) |I| disjoint uni-color st-paths in the edge-colored
graph GC associated with GI .

Lemma 3. Let GI = (VI , EI) be an undirected graph and GC be the edge-colored graph associated
with GI . If there exist k disjoint uni-color st-paths in GC , then we can compute in polynomial time an
independent set I ⊆ VI for GI , with |I| = k.

The first lemma is easily proved by showing that the uni-color st-paths associated with the vertices

of the independent set I are pairwise disjoint. Conversely, the second lemma can be proved by showing

that the vertices of GI associated with the k uni-color st-paths of GC form an independent set for GI .

Proof of Lemma 2. By construction, in GC there exists a uni-color st-path associated with each vertex v

of the original graph GI . We will show that the set P of paths of GC associated with each vertex v ∈ I

are internally disjoint. Let πi and πj be two paths of P associated with vertices vi and vj , respectively,

of I . Notice that the two paths πi and πj connect the vertices which represent the edges of GI incident

to vi and vj , respectively. Since I is an independent set in GI , no edge e′ ∈ EI is incident to both vi and

vj (i.e., ui,j �∈ EI), thus πi and πj are (internally) disjoint.

Proof of Lemma 3. Let P be the set of k disjoint uni-color st-paths of GC . Since each color is (bi-

univocally) associated with a single path in GC which, in turn, is (bi-univocally) associated with a single

vertex of GI , we can define a set I ⊆ VI that consists of the vertices of GI associated with a path of P .

Clearly, |I| = |P | = k. We claim that I is an independent vertex set for GI . Suppose that I is not an

independent set, thus there exist two vertices vi, vj ∈ I such that {vi, vj} ∈ EI . Let ui,j be the vertex

of GC representing edge {vi, vj}. Since vi, vj ∈ I , then there exist two paths πi, πj in P associated with

vi and vj . By Remark 1, both paths must contain vertex ui,j as an internal vertex, since edge {vi, vj}
is incident to both vi and vj . Hence paths πi and πj are not internally disjoint, which contradicts our

assumption and thus I is an independent set for GI .

Consequences. Lemmas 2 and 3 prove the existence of an L-reduction [4] from MAX INDSET to

MAX CDP with constants β = γ = 1. Hence, considering that, unless P = NP, MAX INDSET cannot be

approximated in polynomial time within factor |VI |1−ε
for any constant ε > 0 [5], and that |VI | = c, the

following theorem holds.

Theorem 4. For any constant ε > 0, MAX CDP cannot be approximated within factor c1−ε in polynomial
time unless P = NP.

This result greatly improves the previous inapproximability factor 2− ε for MAX CDP [3] and, given

the c-approximation algorithm presented in [3], it is the asymptotically optimal inapproximability ratio

for MAX CDP. However, notice that the inapproximability factor 2 − ε for MAX CDP given in [3] holds

even if c is a fixed constant, while in our reduction c is not fixed.

64

Algorithms 2013, 6 6

From the parameterized complexity point of view, the reduction also implies the W[1]-hardness of

the decision problem CDP, as stated in the following theorem.

Theorem 5. CDP is W[1]-hard when parameterized by the number p of disjoint uni-color st-paths.

Proof. The reduction presented by Lemmas 2 and 3 is also a parameterized reduction [6] from

INDEPENDENT SET (the decision problem naturally associated with MAX INDSET) to CDP (indeed the

size of an independent set of GI is identical to the number of disjoint uni-color st-path in GC). Since

INDEPENDENT SET is W[1]-hard when the parameter is the size of the required independent set [7], then

also CDP is W[1]-hard when parametrized by number p of disjoint uni-color st-paths.

4. A Fixed-Parameter Algorithm for �-LCDPp

In this section, we study �-LCDPp, the length-bounded (decision) version of MAX CDP, which asks if

there exist p uni-color disjoint st-paths of length at most �. We show that �-LCDPp is fixed-parameter

tractable when the parameters are � and p by presenting a parameterized algorithm based on the color
coding technique [8]. For an introduction to parameterized complexity see [6]. Notice that �-LCDPp is

unlikely to admit fixed-parameter tractable algorithms when parameterized only by p or only by �. Indeed

in the latter case, �-LCDPp is already NP-hard when � = 4 [3]. In the former case, we have proved in

the previous section that CDP (hence �-LCDPp, when � = n) is W[1]-hard when parameterized by p.

Color coding is a technique initially introduced to design fixed-parameter algorithms for various

restrictions of the subgraph isomorphism problem. It then gained popularity and it has been successfully

applied to tackle the computational hardness of various problems on networks and graphs [9–11], on

strings [12,13], and problems of subset selection [14,15]. The basic idea of the color coding technique

applied on graph problems is, first, to “color” the vertices of the graph from a set of k colors (for an

appropriate choice of the number k of colors), and, then, to find a solution of the given problem with the

additional constraint that the vertices of the solution are colored with distinct colors (called a “colorful”

or “color coded” solution), if such a solution exists. The process is re-iterated with a different coloring

if a colorful solution is not found.

The key theoretical result, which allows to obtain deterministic algorithms based on the color coding

technique, is the deterministic construction of k-perfect families of hash functions. A family F of hash

functions from a set U (the vertex set in the traditional applications of color coding) to the set {1, . . . , k}
of colors is k-perfect if, for each subset U ′ of U such that |U ′| = k, there exists a hash function f in

F such that U ′ is colorful w.r.t. f , i.e., f assigns a distinct label to each element of U ′. In fact, if the

given problem has a solution S of size k, then there exists a hash function in F such that solution S is

colorful. Hence, it suffices to test if there exists a colorful solution for one of the colorings given by the

hash functions of the k-perfect family in order to guarantee the existence of a solution of the original

problem, if such a solution exists. Crucial to the overall running time is the size of a k-perfect family

and the time required to enumerate and evaluate the hash functions of the family. Currently, the best

bounds (such as [8,16,17]) are, in general, explicit constructions of families of size 2O(k) logO(1)(|U |) in

time proportional to their size.

The description of the parameterized algorithm for the �-LCDPp problem is divided into two parts.

First, we present a procedure that, given an edge-colored graph GC and a vertex-coloring function λ,

65

Algorithms 2013, 6 7

verifies if in GC there exist p disjoint uni-color st-paths long at most � and with the additional constraint

that the inner vertices of the p paths are colored with distinct colors. Then, we show that, by exploiting

well-known properties of families of perfect hash functions, the previous procedure can be used to

solve the �-LCDPp problem in polynomial time (if p and � are parameters). In the following, to avoid

ambiguities between vertex’s and edge’s colors, function λ will be called vertex-labelling function (or,

simply, a labelling function) instead of the traditional term of coloring function.

A dynamic-programming procedure for the L-labelled �-LCDPp problem. Let

GC = (V,E1, . . . , Ec) be a C-edge-colored graphs with two distinguished vertices s and t, and

let λ be a labelling function which maps each vertex v of V \ {s, t} to a label λ(v) belonging to a set

L (we assume that λ assigns a distinct label to each vertex of a solution of �-LCDPp). Let L ⊆ L be a

fixed set of labels. A simple path π in GC is L-labelled if and only if the labels of its vertices (with the

exclusion of s and t) are contained in L and are pairwise distinct. A set {π1, . . . , πk} of simple paths

is L-labelled if and only if there exists a partition {L1, . . . , Lk} of L such that each πi is Li-labelled.

We say that a path π is g-colored, with g ∈ C, if all of its edges belong to set Eg. The L-labelled

�-LCDPp problem, given GC and λ : V → L with |L| = (� − 1)p, asks if there exists an L-labelled

solution for the �-LCDPp problem on GC . We solve the L-labelled �-LCDPp problem by combining two

dynamic-programming recurrences. The first one, M [L, v, g], tests if, for a set of labels L ⊆ L, there

exists an L-labelled g-colored path from vertex s to a vertex v different from t. The second one, P [L],

tests if, for a set of labels L ⊆ L such that |L| = (� − 1)q for some integer q ∈ [0, p], there exists a

partition {L1, . . . , Lq} of L in q subsets such that each set Li labels a gi-colored st-path of length l ≤ �.

Recurrence for M [L, v, g] is defined as follows (where � represents the disjoint union operator):

M [L, v, g] =

⎧⎪⎪⎨
⎪⎪⎩
1 if v = s

0 if L = ∅ and v �= s

max
{
M [L′, u, g] | L = L′ � {λ(v)} ∧ {u, v} ∈ Eg

}
otherwise

(4.1)

Correctness of the previous recurrence is proved by the following lemma.

Lemma 6. M [L, v, g] is true if and only if there exists an L-labelled g-colored path from s to v.

Proof. The proof is by induction on the cardinality of L. If |L| = 0, the base cases apply and a path

which does not use any label exits if and only if v = s. Now, assume that M [L, v, g] is correct for

any L such that |L| ≤ k (for some k) and we will prove the correctness of M [L′, v, g] for all L′ such

that |L′| = k + 1. Moreover, assume that v �= s, since, otherwise, the first base case applies which is

clearly correct. Then, an L′-labelled g-colored path from s to v �= s exists if and only if (i) λ(v) ∈ L

and (ii) there exists an L′′-labelled g-colored path π from s to a vertex u such that {u, v} ∈ Eg and

L′′ = L′ \ {λ(v)}. Since |L′′| = |L′| − 1 = k, path π exists if and only if M [L′′, u, g] is true. The

inductive case of Equation 4.1 tests the above mentioned conditions, hence M [L′, v, g] is correct also for

sets of labels L such that |L| = k + 1, concluding the proof.

Clearly, M can be used to test if there exists an L-labelled g-colored st-path, as illustrated by the

following corollary.

66

Algorithms 2013, 6 8

Corollary 7. The existence of an L-labelled g-colored st-path can be tested in time O(2|L| |Eg|).

Proof. By Lemma 6, to test the existence of an L-labelled g-colored st-path, it suffices to test the

existence of a vertex v such that {v, t} ∈ Eg and M [L, v, g] is true. For a fixed color g and a fixed

set L of labels, the time needed to evaluate M [L, v, g] for all v ∈ V is O(|Eg|) since each edge is

considered only a constant number of times (twice, indeed). Since there exist 2|L| distinct subsets of L,

the overall time is O(2|L| |Eg|).
The second recurrence, P [L], which, given an integer q ∈ [0, p] and a subset L ⊆ L such that

|L| = (�− 1)q, solves the L-labelled �-LCDPq problem, is defined as follows:

P [L] =

⎧⎪⎪⎨
⎪⎪⎩
1 if L = ∅

max
{
P [L′] ∧ M [L′′, v, g] |
L = L′ � L′′ ∧ |L′′| = (�− 1) ∧ g ∈ C ∧ {v, t} ∈ Eg

} otherwise
(4.2)

Notice that we implicitly assume that the solution of the ∅-labelled �-LCDP0 problem is always YES

(i.e., P [∅] = 1).

Correctness of Equation 4.2, as proved in the following lemma, derives from Corollary 7, from the

bound on the cardinality of L′′, and from the disjointness of L′ and L′′.

Lemma 8. Given an edge-colored graph GC and a vertex-labelling function λ : V → L with
|L| = (�− 1)p, then there exists an L-labelled set S of p disjoint uni-color st-paths of length at most �
if and only if P [L] is true.

To prove this lemma, we first prove some intermediate results.

Property 9. Let Li and Lj be two disjoint subsets of L, let vi and vj be two distinct vertices, and gi and
gj be two (possibly equal) colors. Then M [Li, vi, gi] and M [Lj, vj, gj] are both true if and only if there
exist two disjoint uni-color paths πi and πj from s to vi and vj , respectively.

Proof. By Lemma 6, since both M [Li, vi, gi] and M [Lj, vj, gj] are true, paths πi and πj exist labelled

with set Li and Lj , respectively. Since Li and Lj are disjoint, there could not exist a common vertex v

(different from s), otherwise λ(v) would belong to both Li and Lj . Hence, πi and πj are disjoint.

Property 10. The length of an L-labelled path π from s to a vertex v �= t is, at most, |L|.

Proof. All the vertices (but s, which is not labelled) of π are labelled with distinct labels in L, hence

there could be at most |L|+ 1 vertices in π.

Proof of Lemma 8. We prove the correctness of P by induction on the number of paths p. If p = 0, then

|L| = (�− 1)p = 0. Thus, the base case applies and, since we assume that 0 paths always exist, it is also

correct. Let us assume that P is correct for any p ≤ k and let us prove its correctness for p = k+1. First,

we prove that if P [L] is true, then a solution S for �-LCDPp can be built. Notice that the second case of

Equation 4.2 tries every possible bi-partition of set L in two sets L′ and L′′ of cardinality |L| − (� − 1)

and � − 1, respectively. If function P [L] is true, then at least one of the bi-partitions verifies the given

67

Algorithms 2013, 6 9

conditions. Notice that |L′| = |L| − (�− 1) = (�− 1)(k+1)− (�− 1) = (�− 1)k. Hence, by induction

hypothesis, since P [L′] is true, there exists an L′-labelled set S ′ of k disjoint uni-color st-paths. The

other conditions, as shown in the proof of Corollary 7, test the existence of an L′′-labelled g-colored

st-path π for some color g ∈ C. Thus, if there exists a bi-partition which satisfies all the conditions,

then there exits an L-labelled set S = S ′ � {π} of k + 1 uni-color st-paths. Moreover, since L′ and L′′

are disjoint, by Property 9, path π and any path of S are disjoint. Furthermore, since |L′′| = � − 1, by

Property 10, the length of π is, at most, � (in particular, �− 1 from s to vertex v, plus 1 from v to t). As

a consequence, S is an L-labelled set of p = k + 1 disjoint uni-color st-paths of length, at most, �.

Now, we prove that if there exists an L-labelled set S of (k+1) disjoint uni-color st-paths, then P [L]
is true. For each path π ∈ S , let Li be the set of labels labelling πi. Since the paths in S are disjoint,

also the sets L1, . . . , Lk+1 are disjoint. Moreover, since the length of each path is at most �, we have

that |Li| ≤ (� − 1). Notice that |L| is (� − 1)(k + 1), thus it is possible to find a partition of L in p

sets L′
1, . . . L

′
k+1 of cardinality � − 1 such that each Li is a subset of L′

i. Let us consider a generic path

πi. Since πi is a uni-color st-path (of length at most �), then there exists a vertex v and a color g such

that M [L′
i, v, g] is true and {v, t} ∈ Eg (Corollary 7). Finally, since L̄′

i = L \ L′
i is a set of labels of

cardinality (� − 1)k and S \ {πi} is an L̄′
i-labelled set of k disjoint uni-color st-paths of length at most

�, by induction hypothesis we have that P [L̄′
i] is true. Therefore, the bi-partition {L′

i, L̄
′
i} satisfies all the

condition of Equation 4.2 and P [L] is true.

An immediate consequence is that the L-labelled �-LCDPp problem can be solved in polynomial time

when � and p are parameters.

Corollary 11. The L-labelled �-LCDPp problem can be solved in time O(22�pm), where m =
∑

g∈C |Eg|.

Proof. The evaluation of M needs O(2|L|m) time. For a fixed L ⊆ L, the evaluation of P [L] requires

O(2|L|m) and, since there are 2|L| possible subsets of L, the time needed to evaluate P is O(2|L|) +
O(2|L|2|L|m) = O(22�pm).

The algorithm for �-LCDPp. As explained before, it is possible to explicitly construct a k-perfect

family F of hash functions, that is a set F of hash functions from a universal set U to the set of integers

{1, . . . , k} such that for each U ′ ⊆ U of cardinality k there exists a hash function f ∈ F which assigns

distinct integers to the elements of U ′. It has been shown (see, for example, [8,16,17]) that a k-perfect

family of hash functions of size 2O(k) logO(1) |U | can be explicitly constructed in time proportional to

its size. As a consequence, the �-LCDPp problem can be solved by solving the L-labelled �-LCDPp

problem for all the labelling functions given by the hash functions of a (� − 1)p-perfect family (where

U = V) in time 2O(�p)O(m logO(1) |VC |). We remark that this algorithm is mainly of theoretical interest,

since the running times are impractical even with modest choices of the parameters � and p. However,

as formalized by the following theorem, it settles the parameterized complexity of the �-LCDPp problem

for the parameters � and p.

Theorem 12. The �-LCDPp problem parameterized by the bound on the path length � and the number p
of disjoint uni-color st-paths is in FPT.

68

Algorithms 2013, 6 10

5. Conclusions

In this paper we have considered the MAX CDP problem, a combinatorial problem motivated by

applications in social network analysis that, given an edge-colored graph GC , asks for the maximum

number of disjoint uni-color paths in GC . We have shown that the problem is not approximable within

factor c1−ε, for any constant ε > 0, and that the corresponding decision problem (CDP) is W[1]-hard

when parametrized by the number p of disjoint uni-color paths. Then, we have given a fixed-parameter

algorithm for �-LCDPp, a restriction of the problem where the length of the disjoint paths are bounded

by a parameter. An interesting open problem is to improve the time complexity of the fixed-parameter

algorithm for �-LCDPp. Moreover, kernelization complexity issues are still completely unexplored.

Acknowledgments

Paola Bonizzoni and Riccardo Dondi have been supported by the PRIN 2010/11 grant “Automi e

Linguaggi Formali: Aspetti Matematici e Applicativi”.

References

1. Hanneman, R.; Riddle, M. Introduction to Social Network Methods. In The SAGE Handbook of
Social Network Analysis; Scott, J., Carrington, P.J., Eds.; SAGE Publications Ltd.: Thousand Oaks,

CA, USA, 2011; pp. 340–369.

2. Wasserman, S.; Faust, K. Social Network Analysis: Methods and Applications (Structural Analysis
in the Social Sciences); Cambridge University Press: Cambridge, UK, 1994.

3. Wu, B.Y. On the maximum disjoint paths problem on edge-colored graphs. Discret. Optim. 2012,

9, 50–57.

4. Ausiello, G.; Crescenzi, P.; Gambosi, V.; Kann, G.; Marchetti-Spaccamela, A.; Protasi, M.

Complexity and Approximation: Combinatorial Optimization Problems and their Approximability
Properties; Springer-Verlag: Berlin/Heidelberg, Germany, 1999.

5. Zuckerman, D. Linear Degree Extractors and the Inapproximability of Max Clique and Chromatic

Number. In Proceedings of the 38th Annual ACM Symposium on Theory of Computing; ACM:

New York, NY, USA, 2006; pp. 681–690.

6. Niedermeier, R. Invitation to Fixed-Parameter Algorithms; Oxford University Press: Oxford, UK,

2006.

7. Downey, R.G.; Fellows, M.R. Fixed-parameter tractability and completeness II: On completeness

for W[1]. Theor. Comput. Sci. 1995, 141, 109–131.

8. Alon, N.; Yuster, R.; Zwick, U. Color-coding. J. ACM 1995, 42, 844–856.

9. Fellows, M.R.; Fertin, G.; Hermelin, D.; Vialette, S. Upper and lower bounds for finding connected

motifs in vertex-colored graphs. J. Comput. Syst. Sci. 2011, 77, 799–811.

10. Betzler, N.; van Bevern, R.; Fellows, M.R.; Komusiewicz, C.; Niedermeier, R. Parameterized

algorithmics for finding connected motifs in biological networks. IEEE/ACM Trans. Comput.
Biol. Bioinf. 2011, 8, 1296–1308.

69

Algorithms 2013, 6 11

11. Dondi, R.; Fertin, G.; Vialette, S. Complexity issues in vertex-colored graph pattern matching. J.
Discret. Algorithms 2011, 9, 82–99.

12. Hüffner, F.; Wernicke, S.; Zichner, T. Algorithm engineering for color-coding with applications to

signaling pathway detection. Algorithmica 2008, 52, 114–132.

13. Bonizzoni, P.; Della Vedova, G.; Dondi, R.; Pirola, Y. Variants of constrained longest common

subsequence. Inf. Process. Lett. 2010, 110, 877–881.

14. Koutis, I. A faster parameterized algorithm for set packing. Inf. Process. Lett. 2005, 94, 7–9.

15. Fellows, M.R.; Knauer, C.; Nishimura, N.; Ragde, P.; Rosamond, F.A.; Stege, U.; Thilikos, D.M.;

Whitesides, S. Faster fixed-parameter tractable algorithms for matching and packing problems.

Algorithmica 2008, 52, 167–176.

16. Chen, J.; Lu, S.; Sze, S.H.; Zhang, F. Improved Algorithms for Path, Matching, and Packing

Problems. In SODA; Bansal, N., Pruhs, K., Stein, C., Eds.; SIAM: Philadelphia, PA, USA, 2007;

pp. 298–307.

17. Alon, N.; Gutner, S. Balanced Hashing, Color Coding and Approximate Counting. In IWPEC;

Chen, J., Fomin, F.V., Eds.; Springer: Berlin/Heidelberg, Germany, 2009; Volume 5917, pp. 1–16.

© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article

distributed under the terms and conditions of the Creative Commons Attribution license

(http://creativecommons.org/licenses/by/3.0/).

70

Algorithms 2013, 6, 43-59; doi:10.3390/a6010043
OPEN ACCESS

algorithms
ISSN 1999-4893

www.mdpi.com/journal/algorithms

Article

Computational Study on a PTAS for Planar Dominating
Set Problem
Marjan Marzban and Qian-Ping Gu *

School of Computing Science, Simon Fraser University, Burnaby BC, V5A 1S6, Canada;

E-Mail: mmarzban@cs.sfu.ca

* Author to whom correspondence should be addressed; E-Mail: qgu@cs.sfu.ca;

Tel.: +1-778-782-6705; Fax: +1-778-782-3045.

Received: 2 November 2012; in revised form: 10 January 2013 / Accepted: 13 January 2013 /
Published: 21 January 2013

Abstract: The dominating set problem is a core NP-hard problem in combinatorial

optimization and graph theory, and has many important applications. Baker [JACM 41,1994]

introduces a k-outer planar graph decomposition-based framework for designing polynomial

time approximation scheme (PTAS) for a class of NP-hard problems in planar graphs. It is

mentioned that the framework can be applied to obtain an O(2ckn) time, c is a constant,

(1+1/k)-approximation algorithm for the planar dominating set problem. We show that the

approximation ratio achieved by the mentioned application of the framework is not bounded

by any constant for the planar dominating set problem. We modify the application of the

framework to give a PTAS for the planar dominating set problem. With k-outer planar graph

decompositions, the modified PTAS has an approximation ratio (1 + 2/k). Using 2k-outer

planar graph decompositions, the modified PTAS achieves the approximation ratio (1+1/k)

in O(22ckn) time. We report a computational study on the modified PTAS. Our results show

that the modified PTAS is practical.

Keywords: dominating set problem; PTAS; branch-decomposition based algorithms; planar

graphs; computational study

1. Introduction

An important research area in graph theory and networks is domination; it has been energetically

investigated for many years due to its large number of real-world applications, such as resource

71

Algorithms 2013, 6 44

allocation [1,2] and voting [3]. Haynes et al. In their books, [4,5] provide a good survey on domination

problems. Let G be a simple undirected graph with the set of vertices V (G) and the set of edges E(G).

We denote |V (G)| by n. The r-dominating set D of G is a subset of V (G) containing r vertices, such

that for every vertex v in V (G), either v ∈ D or v is adjacent to a vertex in D. The minimum integer

r for which G has a r-dominating set is called the domination number of G and is denoted by γ(G).

The dominating set problem is to decide that given a graph G and an integer r, whether γ(G) ≤ r. The

optimization version of this problem is to find a minimum dominating set.

The dominating set problem is a core NP-hard problem in combinatorial optimization and graph

theory [6]. There is a long history of research on the approximation and exact algorithms to tackle the

intractability of the problem. A minimization problem P is α−approximable (α ≥ 1) if there is an

algorithm which gives a solution for any instance of P in polynomial time in the instance size with

solution value at most αOPT , where OPT is the value of an optimal solution for the instance of P . If

P is (1 + ε)−approximable for any fixed ε > 0 then P has a polynomial time approximation scheme

(PTAS). The dominating set problem for general graphs is (1 + log n)−approximable [7], however, it is

not approximable within a factor (1 − ε) lnn for any ε > 0 unless NP ⊆ DTIME(nlog logn) [8]. The

dominating set problem has been widely studied on an important class of graphs, the planar graphs. A

graph is planar if it can be drawn on the sphere with no crossing edges. The dominating set problem in

planar graphs (planar dominating set problem) remains NP-hard [6] but admits a PTAS [9].

The fixed parameter algorithms have played a central role in exact algorithms for the planar

dominating set problem. A minimization problem P is fixed-parameter tractable if given a parameter r,

whether OPT of P is at most r can be decided in f(r)nO(1) time, where f(r) is a computable function

depending only on r [10]. Such an algorithm is called a fixed parameter tractable (FPT) algorithm.

Readers may refer to [11] for a survey on new techniques for developing exact algorithms for NP-hard

problems. It is shown in [10] that for general graphs, the dominating set problem is not fixed-parameter

tractable unless some collapses occur between parametrized complexity classes. However, the planar

dominating set problem is fixed-parameter tractable [10]. The planar dominating set problem also admits

a linear size kernel [12].

Recent progresses in FPT algorithms result in subexponential time exact algorithms for the planar

dominating set problem [13–15]. These algorithms use the tree-/branch-decomposition based approach

and have running time O(2c
√

γ(G)n+nO(1)), c is a constant. The branch-decomposition based algorithm

by Fomin and Thilikos (called FT algorithm in what follows) [14] achieves a smallest constant c in the

exponent of the running time. The notion of branch-decomposition of graphs is introduced by Robertson

and Seymour [16]. Informally, a branch-decomposition of a graph G is a collection of vertex cut sets

of G that decomposes G into subgraphs with each edge of G a minimal subgraph. The width of a

branch-decomposition is the maximum size of the vertex cuts in the collection. The branchwidth of G,

denoted by bw(G), is the minimum width of all possible branch-decompositions of G. Given a graph G

and a branch-decomposition of G with width β, FT algorithm finds an optimal solution in O(2(3 log4 3)βn)

time for the dominating set problem.

For a planar graph G, it is known that a branch-decomposition of minimum width bw(G) can be

computed in O(n3) time [17,18] and bw(G) ≤ 3
√
4.5γ(G) [14,19]. Alber et al. [12] give an O(n3) time

algorithm which computes a subgraph H (kernel) of G such that H has O(γ(G)) vertices, γ(H) ≤ γ(G),

72

Algorithms 2013, 6 45

and a minimum dominating set of G can be constructed from a minimum dominating set of H in linear

time. Notice that for a subgraph H of G, bw(H) ≤ bw(G). From the above, the FT algorithm solves the

planar dominating set problem in O(2(3 log4 3)bw(G)γ(G) + n3) and O(215.13
√

γ(G)γ(G) + n3) time (The

running time of FT algorithm can be further improved to O(211.98
√

γ(G)γ(G) + n3) using fast matrix

multiplication in the dynamic programming step of the algorithm [20]. However, this improvement is

only of theoretical interest because the fast matrix multiplication is not practical [21]).

For graphs with small treewidth/branchwidth, an FPT algorithm may be efficient to find an optimal

solution, however, for graphs with large treewidth/branchwidth, one may have to rely on approximation

algorithms for the planar dominating set problem. A PTAS is highly desired if the solution values are

required to be close to optimal with a guaranteed approximation ratio. Baker introduces a framework

to obtain PTAS for a class of NP-hard problems [9]. This framework is based on decomposing a planar

graph into k-outer planar subgraphs.

A graph G is called outer planar or 1-outer planar if it has a planar embedding such that all vertices of

G are incident to a same face (called outer face). For k > 1, G is a k-outer planar graph, if it has a planar

embedding such that removing the vertices of G incident to the outer face will result in a (k − 1)-outer

planar graph. A k-outer planar graph G has a branchwidth of at most 2k. Baker’s PTAS framework for a

problem P in a planar graph G is to decompose G into a collection of k-outer planar subgraphs, find an

optimal partial solution of P in each subgraph by an exact algorithm, and take the union of the optimal

partial solutions as a solution of P in G. When the framework is used for a minimization problem,

G is decomposed in such a way that every two “neighbor” k-outer planar subgraphs share “one-level”

vertices. Baker shows that the framework gives a 2O(k)n time (1+1/k)-approximation algorithm for the

vertex cover problem in planar graphs and mentions that the framework can be applied to obtain 2O(k)n

time (1 + 1/k)-approximation algorithms for many other minimization problems, including the planar

dominating set problem [9]. For a maximization problem like the independent set problem in planar

graphs, Baker’s framework gives a 2O(k)n time k/(k + 1)-approximation algorithm.

We show that the approximation ratio of Baker’s framework is not bounded by any constant for the

planar dominating set problem when two “neighbor” k-outer planar subgraphs share only “one-level”

of vertices. To get a PTAS for the planar dominating set problem, the application of the framework has

to be modified. We modify the application of the framework by decomposing G into k-outer planar

subgraphs such that every two “neighbor” subgraphs share “two-levels” of vertices. Let O(2ckn), c

is a constant, be the running time of Baker’s framework with “one-level” of overlapping vertices for

the planar dominating set problem. We show that the modified application of the framework gives a

PTAS with approximation ratio (1 + 2/k) for the planar dominating set problem. By decomposing G

into 2k-outer planar subgraphs with “two-level” overlapping vertices, the modified PTAS achieves the

approximation ratio (1 + 1/k) in O(22ckn) time.

In addition to the theoretical progresses in the algorithms for the dominating set problem, the practical

performance of algorithms for the problem has received much attention. A computational study of

an exact algorithm (FT algorithm) for the planar dominating set problem is reported in [21]. The

study shows that the FT algorithm is practically efficient for graphs with small branchwidth. Heuristic

algorithms for the dominating set problem have also been well investigated and a computational study

of heuristic algorithms is reported in [22]. However, the practical performance of a PTAS is not known

73

Algorithms 2013, 6 46

for the planar dominating set problem. One hurdle in evaluating the practical performance of a PTAS

is the implementation of the algorithm. We conduct a computational study to evaluate the practical

performance of the modified PTAS for the planar dominating set problem. In our implementation, the

FT algorithm is used to compute an optimal partial solution in each k-outer planar subgraph. Our results

show that the PTAS finds solutions with values very close to optimal in a practical time and much better

than those given by well used heuristic algorithms. The computational study gives a concrete example

on using a PTAS for solving important NP-hard problems in planar graphs and shows that the PTAS is

practical for the planar dominating set problem. This work provides a tool for computing solutions close

to optimal for the planar dominating set problem.

The next section gives preliminaries of the paper. In Section 3, we review Baker’s framework,

show that the approximation ratio of the framework is not bounded by a constant with “one-level” of

overlapping vertices for the planar dominating set problem, and modify the application of the framework

to give a PTAS for the problem. In Section 4, we report the computational study results. The final section

concludes the paper.

2. Preliminaries

A graph G consists of a set V (G) of vertices and a set E(G) of edges, where each edge e of E(G)

is a subset of two elements from V (G). For edge e = {u, v} ∈ E(G), we say that vertices u and v are

adjacent. The node degree of a vertex u is the number of vertices adjacent to u. Vertex u is dominated by

vertex v if u and v are adjacent or u = v. Vertex u is dominated by a set D if u is dominated by a vertex

of D. Edge e is covered by a vertex u if u ∈ e. For a subset U ⊆ V (G) and a subset A ⊆ E(G), we

denote by G[U] and G[A] the subgraphs of G induced by U and A, respectively. For a subset A ⊆ E(G),

we denote by E(G) \A by A when G is clear from the context. A separation of graph G is a pair (A,A)

of subsets of E(G). For each A ⊆ E(G), we denote by ∂(A) the vertex set V (A) ∩ V (A). The order of

separation (A,A) is |∂(A)| = |∂(A)|.
A graph G is planar if G has a planar embedding (a draw on a sphere without edge crossing). We call

a planar embedding of G a plane graph. A face of a plane graph G is a connected region of the sphere

bounded by edges and vertices of G and containing no edge or vertex of G in its interior. For a plane

graph G and a face f of G, let VG(f) be the set of vertices in V (G) incident to f . Given a plane graph G

and a face fo (called outer face) of G, let V1 = VG(fo). For i ≥ 1, let Ui = ∪i
j=1Vj , Gi = G[V (G) \ Ui],

fi be the face of Gi such that fo ⊆ fi, and Vi+1 = VGi
(fi). We call the vertices of Vi level i vertices of

G. Intuitively, Gi is the plane graph obtained from removing vertices of levels 1, 2, ..., i from G. Vi+1 is

the vertices of Gi incident to the outer face of Gi.

Branch-decomposition based algorithms play a central role in the PTAS studied in this paper. The

notion of branch-decomposition is introduced by Robertson and Seymour [16]. A branch-decomposition
of graph G is a pair (φ, T) where T is a tree each internal node of which has degree 3 and φ is a bijection

from the set of leaves of T to E(G). Consider a link e of T and let L1 and L2 denote the sets of

leaves of T in the two respective subtrees of T obtained by removing e. We say that the separation

(φ(L1), φ(L2)) is induced by this link e of T . We define the width of the branch-decomposition (φ, T)

to be the largest order of the separations induced by links of T . The branchwidth of G, denoted by

74

Algorithms 2013, 6 47

bw(G), is the minimum width of all branch-decompositions of G. In the rest of this paper, we identify a

branch-decomposition (φ, T) with the tree T , regarding each leaf of T as an edge of G.

Given a branch-decomposition T of G, an optimization problem P in G may be solved by the dynamic

programming method as follows: convert T into a rooted binary tree by replacing a link {x, y} of T with

three links {x, z}, {y, z}, {z, r}, where z and r are new nodes to T , and r is the root of T . For a link

e = {u, v} of T , assume u is the end node reachable from root r by passing through e. Let Ae be the set

of leaves of T reachable from r by passing through e. Link e = {u, v} is called a leaf link if u is a leaf

node, otherwise an internal link. An internal link e has two child links e1 and e2 covered by u. Notice

that Ae = Ae1 ∪ Ae2 . For a leaf link e, all partial solutions of P in the subgraph G[Ae] can be computed

by enumeration. For an internal link e, assume that all partial solutions of P in the subgraph G[Ae1] and

those in G[Ae2] have been computed. Then all partial solutions of P in the subgraph G[Ae] are computed

by merging the partial solutions in G[Ae1] and those in G[Ae2]. The merging process is performed in a

bottom-up way, from each leaf link to the link {z, r}, to find an optimal solution of P in G.

The FT algorithm is a branch-decomposition-based algorithm for the planar dominating set

problem. In FT Algorithm, the number of partial solutions in G[Ae] is 3|∂(Ae)|. To compute

a partial solution in G[Ae], every pair (s1, s2) is checked, where s1 and s2 are partial solutions

in G[Ae1] and G[Ae2], respectively. Notice that each of |∂(Ae)|, |∂(Ae1)|, |∂(Ae2)| is at most the

width of the given branch-decomposition T . When an optimal branch-decomposition T (of width

bw(G)) is given, the FT algorithm takes O(2(3 log4 3)bw(G)) time and O(3bw(G)γ(G)) memory space

to compute the partial solutions in G[Ae]. A planar graph G can be reduced to a kernel of

size O(γ(G)) in O(n3) time and there are O(γ(G)) merging steps for the kernel. An optimal

branch-decomposition of the kernel can be computed in O((γ(G))3) time. The FT algorithm solves

the planar dominating set problem in O(2(3 log4 3)bw(G)γ(G) + n3) time [14]. For many other NP-hard

problems, branch-decomposition-based algorithms usually have exponential time and memory space

in the width of a given branch-decomposition. The exponential time and memory space are often a

bottle-neck in applying branch-decomposition-based algorithms in practice.

3. PTAS for Planar Dominating Set Problem

3.1. Baker’s Framework for Minimization Problem

We review Baker’s PTAS framework for minimization problems. We define the terminology for

describing the framework. Given a plane graph G with m levels of vertices, for integers 2 ≤ k < m and

2 ≤ s ≤ k + 1, let r = �(m − s)/k�. We define U(0, s) = ∪s
j=1Vj; U(i, s) = ∪k

j=0V(i−1)×k+s+j for

1 ≤ i < r; and U(r, s) = ∪m
j=(r−1)×k+sVj . Then G[U(0, s)] is the plane subgraph of G induced by the

vertices of G with levels 1, ..., s and is s-outer planar; each G[U(i, s)] is the subgraph of G induced by

the vertices of G with levels (i− 1)× k + s, ..., i× k + s and is (k + 1)-outer planar for 1 ≤ i < r; and

G[U(r, s)] is the subgraph of G induced by the vertices of G with levels (r − 1) × k + s, ...,m and is

t-outer planar, where t = m − [(r − 1) × k + s] + 1 ≤ k + 1. Below is Baker’s PTAS framework for

minimization problems.

75

Algorithms 2013, 6 48

1. Let G be a plane graph with m levels of vertices for an outer face and k ≥ 2 be an integer. Compute

the vertex sets V1, ..., Vm.

2. for s = 2, ..., k + 1

(a) Compute subgraphs G[U(i, s)] for i = 0, 1, ..., r.

(b) For every subgraph G[U(i, s)], find an optimal solution S(i, s) by an exact algorithm.

(c) Let Ss = ∪r
i=0S(i, s).

3. Let S be a set of S2, ..., Sk+1 with the minimum cardinality.

Baker [9] gives a proof that the above framework achieves a (1 + 1/k)-approximation ratio for the

minimum vertex cover problem in plane graph G: find a minimum subset C of V (G) such that every

edge of G is covered by a vertex in C. We review Baker’s proof of the approximation ratio for the vertex

cover problem. This proof gives a base on our later argument for the planar dominating set problem.

Given a plane graph G, let C be a minimum vertex cover of G. Given integer k, let S(i, s) be a

minimum vertex cover of G[U(i, s)] and let C(i, s) = C ∩U(i, s), s = 2, ..., k+1 and 0 ≤ i ≤ r. Since

no vertex of G in V (G) \ U(i, s) covers any edge of G[U(i, s)], C(i, s) is a vertex cover of subgraph

G[U(i, s)]. From this and the fact that S(i, s) is a minimum vertex cover of G[U(i, s)], |S(i, s)| ≤
|C(i, s)|. Therefore, Ss = ∪r

i=0S(i, s) is a vertex cover of G and

|Ss| ≤
r∑

i=0

|S(i, s)| ≤
r∑

i=0

|C(i, s)| (1)

Since the vertices of Vi×k+s appear in both subgraphs G[U(i, s)] and G[U(i+ 1, s)], 0 ≤ i < r,

r∑
i=0

|C(i, s)| = |C|+
r−1∑
i=0

|C ∩ Vi×k+s| (2)

Notice that

k+1
min
s=2

{
r−1∑
i=0

|C ∩ Vi×k+s|} ≤ |C|
k

(3)

Let S be a Ss with a minimum cardinality. Then from Inequalities (1), (2), and (3), we have |S| ≤
|C|+ |C|

k
, that is, the solution produced by Baker’s framework has the approximation ratio (1 + 1/k) for

the minimum vertex cover problem in planar graphs.

3.2. Modified Framework for Planar Dominating Set Problem

In [9], it is mentioned that the framework in the previous section can be applied to obtain a (1+1/k)-

approximation algorithm for the planar dominating set problem. We show that this is not true. Recall

that for the vertex cover problem, no vertex of G in V (G)\U(i, s) can cover any edge of G[U(i, s)]. This

implies that for a minimum vertex cover C, C(i, s) = C∩U(i, s) is a vertex cover of subgraph G[U(s, i)]

and a minimum vertex cover S(i, s) of G[U(i, s)] has the property |S(i, s)| ≤ |C(i, s)|. However, for

the planar dominating set problem, the intersection of a minimum dominating set of G and U(i, s) may

not be a dominating set of G[U(i, s)] because a vertex of G in V (G) \ U(i, s) can dominate a vertex of

G[U(i, s)]. More specifically, let D be a minimum dominating set of G, D(i, s) = D∩U(i, s) and S(i, s)

76

Algorithms 2013, 6 49

be a minimum dominating set of G[U(i, s)]. Then D(i, s) may not be a dominating set of G[U(i, s)] and

|S(i, s)| ≤ |D(i, s)| may not hold. Below we show by an example that the approximation ratio of the

mentioned application of Baker’s framework is not bounded by any constant for the planar dominating

set problem.

Let G be a plane graph with 4 levels of vertices shown in Figure 1. Let Xi be the set of vertices of

G with labels (i, 1), ..., (i, x), 1 ≤ i ≤ 6. The subgraph G[Xi] is a chain and there is a unique vertex

in G dominating all vertices of Xi. For a large x, G has a unique minimum dominating set D with its

six vertices shown as black squares in the figure. Let k = 2. For s = 2, the subgraphs G[U(0, 2)]

and G[U(1, 2)] are shown in Figure 2 (a) and (b), respectively. Let D(0, 2) = D ∩ U(0, 2). Then

D(0, 2) (the set of vertices denoted by black squares) is not a dominating set of G[U(0, 2)]. On the

other hand, a minimum dominating set S(0, 2) of G[U(0, 2)] contains a fraction of vertices in X3 and

|S(0, 2)| > |D(0, 2)| for large x = |X3|. Similarly, a minimum dominating set S(1, 2) of G[U(1, 2)]

contains a fraction of vertices in X2 and |S(1, 2)| > |D(1, 2)|. Let S2 = S(0, 2)∪S(1, 2). Then |S2|/|D|
is not bounded by any constant for non-constant x.

Figure 1. A plane graph G with four levels of vertices.

1,1 1,2 1,x

2,1

2,2

2,x

3,1

3,2

3,x

4,1 4,2 4,x

5,1 5,2 5,x

6,1

6,x

Figure 2. (a) Subgraph G[U(0, 2)] and (b) Subgraph G[U(1, 2)] of G.

1,1 1,2 1,x

2,1

2,2

2,x

3,1

3,2

3,x

2,1

2,2

2,x

3,1

3,2

3,x

4,1 4,2 4,x

5,1 5,2 5,x

6,1

6,x

(a)

(b)

X X3 2

77

Algorithms 2013, 6 50

For s = 3, the subgraphs G[U(0, 3)] and G[U(1, 3)] are shown in Figure 3 (a) and (b),

respectively. Then a minimum dominating set S(0, 3) of G[U(0, 3)] contains a fraction of vertices in

X4 and a minimum dominating set S(1, 3) of G[U(1, 3)] contains a fraction of vertices in X5. Let

S3 = S(0, 3) ∪ S(1, 3). Then |S3|/|D| is not bounded by any constant for non-constant x = |X4|.
Therefore, for a set S of S2 and S3 with the minimum cardinality, |S|/|D| is not bounded by any constant

for non-constant x.

Figure 3. (a) Subgraph G[U(0, 3)] and (b) Subgraph G[U(1, 3)] of G.

1,1 1,2 1,x

2,1

2,2

2,x

3,1

3,2

3,x

4,1 4,2 4,x

5,1 5,2 5,x

4,1 4,2 4,x

5,1 5,2 5,x

6,1

6,x

X4

X5

(a)

(b)

We modify the application of Baker’s framework to get a PTAS for the planar dominating set problem.

The idea for the modification is that instead of decomposing G into (k + 1)-outer planar subgraphs with

two neighbor subgraphs G[U(i, s)] and G[U(i+1, s)] overlapping on one level of vertices, we decompose

G into (k+2)-outer planar subgraphs with two neighbor subgraphs overlapping on two levels of vertices.

For each subgraph, we find a minimum set which dominates only k levels of vertices in the subgraph.

The formal modification is described below.

Let G be a plane graph with m levels of vertices. For integers 2 ≤ k < m and 2 ≤ s ≤ k + 1, let

r = �(m − s)/k�. We define W (0, s) = ∪s
j=1Vj; W (i, s) = ∪k

j=−1V(i−1)×k+s+j for 1 ≤ i < r; and

W (r, s) = ∪m
j=(r−1)×k+s−1Vj . G[W (0, s)] is the subgraph of G induced by the vertices of G with levels

1, ..., s and is s-outer planar; each G[W (i, s)] is the subgraph of G induced by the vertices of G with

levels (i− 1)× k + s− 1, ..., i× k + s and is (k + 2)-outer planar for 1 ≤ i < r; and G[W (r, s)] is the

subgraph of G induced by the vertices of G with levels (r − 1)× k + s− 1, ...,m and is t-outer planar,

where t = m− [(r−1)×k+s]+2 ≤ k+2. We call the vertices of G[W (0, s)] with level s, the vertices

of each subgraph G[W (i, s)] (1 ≤ i < r) with levels (i− 1)× k + s− 1 and i× k + s, and the vertices

of G[W (r, s)] with level (r − 1) × k + s − 1 the vertices on boundary; and call the other vertices the

interior vertices.

1. Let G be a plane graph with m levels of vertices for an outer face and k ≥ 2 be an integer. Compute

the vertex sets V1, ..., Vm.

2. for s = 2, ..., k + 1

78

Algorithms 2013, 6 51

(a) Compute subgraphs G[W (i, s)] for i = 0, 1, ..., r.

(b) For subgraph G[W (0, s)], find a minimum subset S(0, s) of W (0, s) that dominates every

vertex of ∪s−1
j=1Vj (every interior vertex).

For every subgraph G[W (i, s)], i = 1, ..., r − 1, find a minimum subset S(i, s) of W (i, s)

that dominates every vertex of ∪i×k+s−1
j=(i−1)×k+sVj (every interior vertex).

For subgraph G[W (r, s)], find a minimum subset S(r, s) of W (r, s) that dominates every

vertex of ∪m
j=(r−1)×k+sVj (every interior vertex).

(c) Let Ss = ∪r
i=0S(i, s).

3. Let S be a set of S2, ..., Sk+1 with the minimum cardinality.

Theorem 3.1 The modified application of Baker’s framework gives an O(2(6 log4 3)(k+2))kn) time (1 +

2/k)-approximation algorithm for the planar dominating set problem.

Proof: We first show the approximation ratio of the framework. Notice that Ss = ∪r
i=0S(i, s) dominates

every vertex of

(∪s−1
j=1Vj) ∪ [∪r−1

i=1 (∪i×k+s−1
j=(i−1)×k+sVj)] ∪ (∪m

j=(r−1)×k+sVj) = ∪m
j=1Vj = V (G)

that is, Ss is a dominating set of G. Let D be a minimum dominating set of G and let

D(i, s) = D ∩W (i, s), s = 2, ..., k + 1 and 0 ≤ i ≤ r. Since no vertex of G in V (G) \ W (i, s)

can dominate any interior vertex of G[W (i, s)] and D dominates every vertex of G, D(i, s) dominates

every interior vertex of G[W (i, s)]. From this and the fact that S(i, s) is a minimum subset of W (i, s)

dominating every interior vertex of G[W (i, s)], |S(i, s)| ≤ |D(i, s)|. From this, we have

|Ss| ≤
r∑

i=0

|S(i, s)| ≤
r∑

i=0

|D(i, s)| (4)

Since the vertices of Vi×k+s−1 and Vi×k+s appear in subgraphs G[W (i, s)] and G[W (i+1, s)], 0 ≤ i < r,

r∑
i=0

|D(i, s)| ≤ |D|+
r−1∑
i=0

|D ∩ Vi×k+s−1|+ |D ∩ Vi×k+s| (5)

Notice that

k+1
min
s=2

{
r−1∑
i=0

|D ∩ Vi×k+s−1|+ |D ∩ Vi×k+s|} ≤ 2|D|
k

(6)

Let S be an Ss with a minimum cardinality. Then from Inequalities (4), (5), and (6), we have

|S| ≤ |D|+ 2|D|
k

. that is, the solution produced by the modified algorithm has the approximation ratio

(1 + 2/k) for the planar dominating set problem.

Given a planar graph G, a planar embedding of G can be computed in linear time [23]. It is obvious

that Step 1 and Step 3 can be computed in linear time. Step 2 (a) and (c) can be computed in O(kn)

time. Recall that FT Algorithm (by Fomin and Thilikos [14]) is the most efficient known exact algorithm

for the planar dominaing set problem. We use FT Algorithm for Step 2 (b). Given a graph G and a

branch-decomposition of G with width β, FT Algorithm finds an optimal solution for the dominating set

problem in O(2(3 log4 3)βn) time. Each subgraph G[W (i, s)] is (k + 2)-outer planar and has branchwidth

79

Algorithms 2013, 6 52

at most 2(k + 2). A branch-decomposition of G[W (i, s)] with width at most 2(k + 2) can be computed

in linear time [24]. Each vertex of G appears in at most two subgraphs for a specific value s. Therefore,

Step 2 (b) takes

k+1∑
s=2

r∑
i=0

O(2(6 log4 3)(k+2)|W (i, s)|) =
k+1∑
s=2

O(2(6 log4 3)(k+2)n) = O(2(6 log4 3)(k+2)kn)

time which is the dominating part of the modified application’s running time. []

Notice that if G is decomposed into (2k+2)-outer planar subgraphs, the modified PTAS achieves the

approximation ratio (1 + 1/k) and has running time O(2(12 log4 3)(k+1)kn).

We conclude this section by comparing the running time of the modified PTAS with that of the

application of Baker’s framework in Section 3.1 for the planar dominating set problem. We assume that

the most efficient FT Algorithm is used in Step 2 (b) of both algorithms. Assume that G is decomposed

into (k + 1)-outer planar subgraphs in Baker’s framework in Section 3.1. Then a branch-decomposition

of G[U(i, s)] with width at most 2(k + 1) can be computed in linear time and Step 2 (b) takes

k+1∑
s=2

r∑
i=0

O(2(6 log4 3)(k+1)|U(i, s)|) = O(2(6 log4 3)(k+1)kn)

time which is the dominating part of the framework’s running time. The constant in the exponent of the

running time of the modified PTAS for the approximation ratio (1 + 1/k) is as twice as that of Baker’s

framework in Section 3.1.

4. Computational Study of PTAS

We study the practical performance of the PTAS for the planar dominating set problem. The PTAS

is implemented in C++ and its performance is tested for four different classes of graphs including the

Delaunay triangulations of point sets taken from TSPLIB [25] (Class (1)), triangulations (Class (2)) and

intersection graphs (Class (3)) generated by LEDA [26] and Gabriel graphs (Class (4)) generated using

the points uniformly distributed in a two-dimensional plane. Those classes of graphs are well used in

previous computational studies and the branchwidth of the graphs increases in the size of graphs (for

classes of graphs with small branchwidth such as the maximal random planar graphs from LEDA [26],

the FT algorithm can find optimal solutions efficiently [21] and thus they are not interesting in this study).

The computer used for testing has an AMD Athlon(tm) 64 X2 Dual Core Processor 4600+ (2.4 GHz)

and 3 GByte of internal memory. The operating system is SUSE Linux 10.2.

We use the FT algorithm to compute an optimal solution for each (k + 2)-outer planar subgraph.

There are three major steps of FT Algorithm:

1. Compute a linear size kernel H of the subgraph using the O(n3) time kernelization algorithm by

Alber et al. [12].

2. Compute an optimal branch-decomposition of H by the O(n3) time algorithm [17,18].

3. Find an optimal solution for H by dynamic programming based on the branch-decomposition of

H and compute an optimal solution for the subgraph from the optimal solution for H .

80

Algorithms 2013, 6 53

Step 3 has exponential time complexity and memory complexity in the width of the

branch-decomposition used, and is the dominating part in the running time and used memory of the

FT algorithm. Thus we include the kernelization in the FT algorithm because, for a kernel H of a graph

G, bw(H) ≤ bw(G) and it often happens that bw(H) < bw(G) for a kernel computed. Also, the effort

for computing an optimal branch-decomposition reduces the running time and used memory in practice.

For a planar graph G, the FT algorithm implemented runs in O(2(3 log4 3)bw(H)γ(G) + n3) time and uses

O(3bw(H)γ(G)) memory space. Readers may refer to [21] for more details on the practical performance

of the FT algorithm.

Table 1 shows the computational results of the PTAS for the planar dominating set problem. For

every instance, we calculate the approximated solutions for two different values of k, 3 and 4, and, for

every value of k, we calculate the (k + 2)-outer planar decomposition for every face of the instance. We

choose the best value for an approximated solution. For some instances with small branchwidth, we also

include the optimal solutions computed by the FT algorithm and reported in [21] in the column of ”Exact

Alg.”. The size of a minimum dominating set of graph G, computed by the FT algorithm, is indicated by

γ(G) in Table 1, and for every value of k, DPTAS is the size of dominating set computed by the PTAS.

In the table, bw is the branchwidth of G, β is the branchwidth of a kernel H of G in the FT algorithm

and the largest branchwidth of a kernel H of a (k+2)-outer planar subgraph in PTAS. The running time

is in seconds. For two large instances rand16000 and rand20000, we only compute γ(G) but not the

minimum dominating sets by the FT algorithm due to the memory constraint. These values of γ(G) are

identified by “*”.

In order to compare the size of dominating sets obtained from the PTAS with the optimal solutions,

we include some instances with small branchwidth for every class of graphs, such that a minimum

dominating set can be computed by FT Algorithm. The Exact Alg. column shows the results of FT

Algorithm reported in [21]. We use two values for k to decompose the instances into (k+2)-outer planar

component. Notice that the branchwidth of every (k+2)-outer planar graph is at most 2(k+2). Hence, by

increasing k the size of subgraphs and their branchwidth will increase. Theoretical results suggest that

increasing k gives smaller approximated solutions for minimization problems. Our computing results

confirm the theoretical analysis of the k-outer planar decomposition method. For example, for k = 4,

every instance can be decomposed into subgraphs with a branchwidth of at most 12. This is the largest

value of branchwidth that can be processed on our computational platform in a practical time.

Since the theory of NP-completeness has reduced hopes that NP-hard problems can be solved

in polynomial time, heuristic and approximation algorithms have attracted more attentions. These

algorithms compute near optimal solutions within a reasonable time for problems of practical size.

We compare the performance of the PTAS with the performance of three different heuristic algorithms

introduced in [22] for the planar dominating set problem. In what follows we briefly explain these

heuristic algorithms (for more details please refer to [22]).

In [22], six heuristic algorithms for the dominating set problem are studied. We test the performance

of these six methods, but only report three of them with better performances. The three reported

heuristics are described below. Let D be a dominating set computed by these heuristics.

81

Algorithms 2013, 6 54

Table 1. Computational results (time in seconds) of PTAS for the planar dominating

set problem.

Graph |E(G)| bw Exact Alg. k = 3 k = 4
G γ(G) β time DPTAS β time DPTAS β time

(1) kroB150 436 10 23 10 10 28 8 2.07 - - -

pr299 864 11 47 11 37 56 10 11.42 - - -

tsp225 622 12 37 12 110 46 9 5.21 - - -

a280 788 13 43 13 337 53 10 8.40 51 12 12.09

rd400 1183 17 - - - 75 10 35.30 74 12 351.93

pcb442 1286 17 - - - 79 10 10.46 78 10 10.86

d657 1958 22 - - - 123 10 64.89 120 12 604.10

pr1002 2972 21 - - - 190 10 115.65 182 12 1253.9

(2) tri2000 5977 8 321 7 198 361 7 175.59 - - -

tri4000 11969 9 653 7 1903 724 7 733.06 - - -

tri6000 17979 9 975 8 3576 1136 8 1994.53 - - -

tri8000 23975 9 1283 7 7750 1430 7 2858.63 - - -

tri10000 29976 9 1606 7 16495 1804 7 4977.06 - - -

tri11000 32972 14 - - - 1987 8 5910.8 1958 8 12341.1

tri12000 35974 14 - - - 2164 7 5370.18 2132 7 6865.08

tri14000 41974 15 - - - 2514 7 8220.49 2434 7 9208.72

tri16000 47969 16 - - - 2920 7 10060.1 2885 7 12794.4

(3) rand6000 10293 11 1563 9 150 1658 8 104.85 - - -

rand10000 17578 13 2535 10 869 2850 8 535.87 2692 9 432.23

rand15000 26717 14 3758 12 2769 4144 10 1313.14 - - -

rand16000 28624 13 4002* 13 5917 4379 10 2443.27 4295 11 2027.7

rand20000 35975 14 4963* 14 13993 5465 10 4241.65 5368 12 5017.02

rand25000 40378 16 - - - 7101 8 6407.91 6632 12 9470

(4) Gab500 949 13 115 12 238 136 10 18.02 129 10 18.95

Gab600 1174 14 135 14 3074 164 10 26.05 156 10 22.10

Gab700 1302 14 162 14 5710 187 10 22.81 183 10 24.30

Gab800 1533 17 - - - 225 10 51.82 205 12 24.30

Gab900 1758 17 - - - 243 10 48.39 231 12 344.50

Gab1000 1901 18 - - - 260 10 49.69 259 12 781.89

Gab1500 2870 21 - - - 402 10 116.37 385 12 960.71

Greedy: Initially, D is empty. In each iteration, a vertex which dominates a maximum number of

vertices in V (G) \D is added to D.

Greedy-Rev: Initially D = V (G). In each iteration, a vertex is removed from D, such that the

resulting set remains a dominating set of G. A vertex is chosen to be removed, by ordering the vertices

of D in increasing node degree, and removing the first vertex that does not dominate any vertex uniquely.

82

Algorithms 2013, 6 55

Greedy-Vote: Initially, D is empty. This algorithm does not include a vertex u in D only based on the

number of vertices which are dominated by u. It uses a more complex voting scheme to select a vertex

to be included. We omit the details of the selection scheme and readers may refer to [22] for details.

Table 2. Computational results for heuristic algorithms and PTAS for the planar dominating

set problem (time in seconds).

Graph |E(G)| γ(G) Greedy Alg. Greedy-Rev Alg. Greedy-Vote Alg. PTAS
G DGr time DRev time DV ote time DPTAS time

(1) kroB150 436 23 27 0.002 31 0.01 31 0.002 28 2.08

pr299 864 47 54 0.003 63 0.032 62 0.005 56 11.42

tsp225 622 37 49 0.153 54 0.02 50 0.003 46 5.21

a280 788 43 51 0.004 62 0.025 62 0.006 51 12.09

rd400 1183 - 78 0.007 92 0.032 90 0.009 74 351.93

pcb442 1286 - 76 0.908 90 0.063 87 0.01 78 10.86

d657 1958 - 126 0.016 146 0.128 143 0.021 120 604.10

pr1002 2972 - 190 0.032 236 0.328 194 0.04 182 1253.9

(2) tri2000 5977 321 365 0.116 379 1.119 464 0.168 361 175.59

tri4000 11969 653 729 0.183 765 1.792 787 0.544 724 733.06

tri6000 17979 975 1118 0.418 1166 4.14 1306 0.541 1136 1994.53

tri8000 23975 1283 1449 0.715 1522 7.003 1653 0.918 1430 2858.63

tri10000 29976 1606 1819 1.117 1906 11.524 2302 1.572 1804 4977.06

tri11000 32972 - 2040 1.375 2116 14.092 3431 2.561 1958 12341.1

tri12000 35974 - 2186 1.607 2278 16.538 2741 2.243 2132 6865.08

tri14000 41974 2576 2.462 2664 22.976 3317 3.163 2434 9208.72

tri16000 47969 - 2917 2.839 3033 30.694 3684 4.005 2885 12794.4

(3) rand6000 10293 1563 1932 0.748 2166 4.517 2908 1.206 1658 104.85

rand10000 17578 2535 3197 2.06 3618 13.33 4164 2.878 2692 432.23

rand15000 26717 3758 4698 4.861 5402 29.487 7277 7.641 4144 1313.14

rand16000 28624 4002* 5039 5.176 5744 35.589 7552 10.327 4295 2027.7

rand20000 35975 4963* 6273 8.053 7168 55.948 8571 11.903 5398 5017.02

rand25000 45327 - 7772 12.467 8942 91.039 11865 20.615 6632 9470

(4) Gab500 949 115 146 0.006 173 0.039 160 0.007 129 18.95

Gab600 1174 135 168 0.007 199 0.051 171 0.009 156 22.10

Gab700 1302 162 200 0.01 242 0.072 238 0.012 183 24.30

Gab800 1533 - 227 0.012 270 0.097 307 0.019 205 24.30

Gab900 1758 - 254 0.016 303 0.103 323 0.022 231 344.50

Gab1000 1901 - 280 0.019 344 0.146 423 0.03 259 781.89

Gab1500 2870 - 426 0.042 507 0.335 496 0.051 385 960.71

We study the performances of the above heuristic algorithms for the four classes of planar graphs

that are used in the study of the PTAS. These heuristic algorithms are implemented in C++. Table 2

shows the computational results of these heuristic algorithms and the PTAS. In Table 2, DGr, DRev, and

DV ote are the sizes of dominating sets computed by the heuristic algorithm Greedy, Greedy-Rev, and

Greedy-Vote, respectively. For every graph instance, if the size of the instance allows the application of

the FT algorithm, we include the size of the minimum dominating set of the instance, as well. For the

PTAS, we include the best result DPTAS for every instance from Table 1. Time in the table is in seconds.

83

Algorithms 2013, 6 56

The results in the table show that the heuristic algorithms are always faster than the PTAS. However,

the size of dominating sets computed by the heuristics are larger than those by the PTAS for most of

instances.

Based on our computational results, the Greedy algorithm gives the smallest dominating sets

compared to other heuristic algorithms. Table 3 shows the results of our computational study for the

FT algorithm, Greedy (the best heuristic method) and PTAS for graph instances whose branchwidths are

small enough to run the FT algorithm.

Table 3. Computational results for Exact, Greedy and PTAS algorithms for small instances

(time in seconds).

Graph |E(G)| Exact Alg. Greedy Alg. PTAS
G γ(G) time DG time DPTAS time

(1) kroB150 436 23 10 27 0.002 28 2.08

pr299 864 47 37 54 0.032 56 11.42

tsp225 622 37 110 49 0.153 46 5.21

a280 788 43 337 51 0.004 51 12.09

(2) tri2000 5977 321 198 365 0.116 361 175.59

tri4000 11969 653 1903 729 0.183 724 733.06

tri6000 17979 975 3576 1118 0.418 1136 1994.53

tri8000 23975 1283 7750 1449 0.715 1430 2858.63

tri10000 29976 1606 16495 1819 1.117 1804 4977.06

(3) rand6000 10293 1563 150 1932 0.748 1658 104.85

rand10000 17578 2535 869 3197 2.06 2692 432.23

rand15000 26727 3758 2769 4698 4.861 4144 1313.14

rand16000 28624 4002* 5917 5039 5.176 4295 2027.7

rand20000 35975 4963* 13993 6273 8.053 5398 5017.02

(4) Gab500 949 115 238 146 0.006 129 18.95

Gab600 1174 135* 3074 168 0.007 156 22.10

Gab700 1302 162* 5710 200 0.01 183 24.30

Since the branchwidth of graphs in Class(1) grow quickly in the size of graphs, we have only included

small instances of this class in Table 3. From the results of the table, we recommend the FT algorithm

for optimal solutions if the branchwidth of a graph in Class (1) is smaller than 14. For the instances

of Class (2), FT Algorithm is time consuming. If the running time is the driving factor, we suggest the

Greedy algorithm for this class of graphs. For the instances of Classes (3) and (4), as the results in Table

3 suggest, the sizes of dominating sets computed by Greedy are considerably bigger than those computed

by the PTAS. Moreover, the FT algorithm is time consuming, rendering the PTAS a better choice. For

instance, for graph instance rand20000 with 35,975 edges, the FT algorithm takes almost four hours to

compute the size of an optimal dominating set (not the set itself), while the PTAS computes a dominating

set of a slightly larger size than the optimal value in less than two hours.

Table 4 shows the computational results for the instances that the FT algorithm is not able to find an

optimal solution in practical time and memory space. The computational results show that for all of these

84

Algorithms 2013, 6 57

instances, except one, the DPTAS is smaller than DGr. In summary, for applications with running-time

priority, Greedy is a better choice to compute an approximated dominating set, and if the running-time

is not a big concern, the PTAS is a better option for instances whose optimal dominating set cannot be

computed by the FT algorithm in a practical time.

Table 4. Computational results for Greedy and PTAS for large instances (time in seconds).

Graph |E(G)| Greedy Alg. PTAS
G DGr time DPTAS time

(1) rd400 1183 78 0.007 74 351.93

pcb442 1286 76 0.908 78 10.86

d657 1958 126 0.016 120 604.10

pr1002 2972 190 0.032 182 1253.9

(2) tri11000 32972 2040 1.375 1958 12341.1

tri12000 35974 2186 1.607 2132 6865.08

tri14000 41974 2576 2.462 2434 9208.72

tri16000 47969 2917 2.839 2885 12794.4

(3) rand25000 45327 7772 12.467 6632 9470

(4) Gab800 1533 227 0.012 205 24.30

Gab900 1758 254 0.016 231 344.50

Gab1000 1901 280 0.019 259 781.89

Gab1500 2870 426 0.042 385 960.71

5. Concluding Remarks

It is mentioned that Baker’s k-outer planar graph decomposition framework can be applied to

obtain a PTAS for the planar dominating set problem. We show that, in order to get a PTAS for the

planar dominating set problem, the mentioned application needs some modification. We modify the

application and give a PTAS for the planar dominating set problem. We also report a computational

study on the modified PTAS. Computational studies on exact algorithms and heuristic algorithms for

the planar dominating set problem have already been conducted, but no report on PTAS has yet been

given. Our study on the PTAS makes the computational study of planar dominating set problem more

comprehensive. For larger k, the PTAS gives better solutions, but is more time/memory consuming.

Due to the computation platform limitation, we only evaluated the PTAS for small k. It would be

interesting to test the practical performances of the PTAS for larger k on more powerful computation

platforms. The practical performances of PTASes for other optimization problems in planar graphs are

worth investigation.

Acknowledgements

The authors thank the anonymous reviewers for their constructive comments.

85

Algorithms 2013, 6 58

References

1. Berge, C. Graphs and Hypergraphs; American Elsevier: New York, NY, USA, 1973.

2. Liu, C. Introduction to Combinatorial Mathematics; McGraw-Hill: New York, NY, USA, 1963.

3. Norman, R.; Harary, F.; Cartwright, D. Structural Models: An Introduction to the Theory of
Directed Graphs; Wiley: Weinheim, Germany, 1966.

4. Haynes, T.W.; Hedetniemi, S.T.; Slater, P.J. Domination in Graphs. In Monographs and Textbooks
in Pure and Applied Mathematics; Marcel Dekker: New York, NY, USA, 1998.

5. Haynes, T.W.; Hedetniemi, S.T.; Slater, P.J. Fundamentals of Domination in Graphs. In

Monographs and Textbooks in Pure and Applied Mathematics; Marcel Dekker: New York, NY,

USA, 1998.

6. Garey, M.R.; Johnson, D.S. Computers and Intractability, a Guide to the Theory of
NP-Completeness; Freeman: New York, NY, USA, 1979.

7. Johnson, D.S. Approximation algorithms for combinatorial problems. J. Comput. Syst. Sci 1974,

9, 256–278.

8. Fiege, U. A threshold of lnn for approximating set cover. J. ACM 1998, 45, 634–652.

9. Baker, B.S. Approximation algorithms for NP-complete problems on planar graphs. J. ACM 1994,

41, 153–180.

10. Downey, R.G.; Fellows, M.R. Parameterized Complexity. In Monographs in Computer Science;

Springer-Verlag: Berlin/Heidelberg, Germany, 1999.

11. Fomin, F.V.; Grandoni, F.; Kratch, D. Some new techniques in design and analysis of exact

(exponential) algorithms. Bull. EATCS 2005, 87, 47–77.

12. Alber, J.; Fellows, M.R.; Niedermeier, R. Polynomial time data reduction for dominating set. J.
ACM 2004, 51, 363–384.

13. Alber, J.; Bodlaender, H.L.; Fernau, H.; Kloks, T.; Niedermeier, R. Fixed parameter algorithms for

dominating set and related problems on planar graphs. Algorithmica 2002, 33, 461–493.

14. Fomin, F.V.; Thilikos, D.M. Dominating sets in planar graphs: Branch-width and exponential

speed-up. SIAM J. Comput. 2006, 36, 281–309.

15. Kanj, I.A.; Perkovic, L. Improved Parameterized Algorithms for Planar Dominating Set. In

Proceedings of the 27th Mathematical Foundations of Computer Science. LNCS 2420, Warsaw,

Poland, Augaust, 2002; pp. 399–410.

16. Robertson, N.; Seymour, P.D. Graph minors X. Obstructions to tree decomposition. J. Comb.
Theory Ser. B 1991, 52, 153–190.

17. Gu, Q.; Tamaki, H. Optimal branch-decomposition of planar graphs in O(n3) time. ACM Trans.
Algorithm 2008, 4, 30:1–30:13.

18. Seymour, P.D.; Thomas, R. Call routing and the ratcatcher. Combinatorica 1994, 14, 217–241.

19. Fomin, F.V.; Thilikos, D.M. New upper bounds on the decomposability of planar graphs. J. Graph
Theory 2006, 51, 53–81.

20. Dorn, F. Dynamic Programming and Fast Matrix Multiplication. In Proceedings of the 14th Annual
European Symposium on Algorithms (ESA2006) LNCS 4168, Zurich, Switerland, September, 2006;

pp. 280–291.

86

Algorithms 2013, 6 59

21. Marzban, M.; Gu, Q.; Jia, X. Computational study on planar dominating set problem. Theor.
Comput. Sci. 2009, 410, 5455–5466.

22. Sanchis, L.A. Experimental analysis of heuristic algorithms for the dominating set problem.

Algorithmica 2002, 33, 3–18.

23. Hopcroft, J.; Tarjan, R. Efficient planarity testing. J. ACM 1974, 21, 549–568.

24. Tamaki, H. A linear Time Heuristic for the Branch-decomposition of Planar Graphs. In

Proceedings of the 11th Annual European Symposium, Budapest, Hungary, 16–19 September 2003;

pp. 765–775.

25. Reinelt, G. TSPLIB-A traveling salesman library. ORSA J. Comput. 1991, 3, 376–384.

26. Library of Efficient Data Types and Algorithms, Version 5.2. Available online:

http://www.algorithmic-solutions.com/leda/index.html (accessed on 1 July 2007).

© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article

distributed under the terms and conditions of the Creative Commons Attribution license

(http://creativecommons.org/licenses/by/3.0/).

87

Algorithms 2013, 6, 60-83; doi:10.3390/a6010060
OPEN ACCESS

algorithms
ISSN 1999-4893

www.mdpi.com/journal/algorithms

Article

Tractabilities and Intractabilities on Geometric
Intersection Graphs *
Ryuhei Uehara

School of Information Science, Japan Advanced Institute of Science and Technology,

Asahidai 1-1, Nomi, Ishikawa 923-1292, Japan; E-Mail: uehara@jaist.ac.jp

* Parts of Results were Presented at ISAAC 2008 and WALCOM 2008.

Received: 23 October 2012; in revised form: 10 January 2013 / Accepted: 14 January 2013 /
Published: 25 January 2013

Abstract: A graph is said to be an intersection graph if there is a set of objects such that each

vertex corresponds to an object and two vertices are adjacent if and only if the corresponding

objects have a nonempty intersection. There are several natural graph classes that have

geometric intersection representations. The geometric representations sometimes help to

prove tractability/intractability of problems on graph classes. In this paper, we show some

results proved by using geometric representations.

Keywords: bandwidth; chain graphs; graph isomorphism; Hamiltonian path problem;

interval graphs; threshold graphs; unit grid intersection graphs

1. Introduction

A graph G = (V,E) is said to be an intersection graph if and only if there is a set of objects such that

each vertex v in V corresponds to an object Ov and {u, v} ∈ E if and only if Ov and Ou have a nonempty

intersection. Interval graphs are a typical intersection graph class, and widely investigated. One reason is

that interval graphs have wide applications including scheduling and bioinformatics [1]. Another reason

is that an interval graph has a simple structure, and hence we can solve many problems efficiently,

whereas the problems are hard in general [1,2]. Some natural generalizations and/or restrictions on

interval graphs have been investigated (see, e.g., [2–4]). One of the reasons why these intersection

graphs are investigated is that their geometric representations sometimes give intuitive simple proof of

the tractable/intractable results. On the tractable results, we can solve a problem by using their geometric

88

Algorithms 2013, 6 61

representations. The geometric representation of a graph gives us an intuitive expression of how to solve

a problem using the representation. On the other hand, on the intractable representation, we can express

the difficulty of a problem using the geometric representation of a graph. This gives us an intuition of

why the problem is difficult to solve. That is, the property of the graph representation also represents the

intractableness of the problem. This extracts the essence of the difficulty of the problem and helps us to

understand not only the property of the class of graphs, but also the difficulty of the problem.

In this paper, the author reorganizes and shows some related results about graph classes with

geometric representations presented at two conferences [5,6] with recent progress. We will mainly

consider threshold graphs, chain graphs, and grid intersection graphs. A threshold graph is a graph such

that each vertex has a weight, and two vertices are adjacent if and only if their total weight is greater

than a given threshold value. The vertex set of a threshold graph is partitioned into two groups such that

“light” vertices induce an independent set while “heavy” vertices induce a clique. The threshold graphs

form a proper subclass of interval graphs, and can be represented in a compact representation of O(n)

space. A chain graph is a bipartite analogy of the notion of threshold graphs. From a threshold graph,

we can obtain a chain graph by removing edges between heavy vertices. In a sense, a chain graph can be

seen as a two dimensional extension of a threshold graph. From this viewpoint, a grid intersection graph

is a two dimensional extension of an interval graph. More precisely, a bipartite graph G = (X, Y,E) is

a grid intersection graph if and only if each vertex x ∈ X (and y ∈ Y) corresponds to a vertical line (a

horizontal line, resp.) such that two vertices are adjacent when they are crossing.

We first focus on a tractable problem on a graph that has a geometric representation. The bandwidth

problem is one of the classic problems defined below. A layout of a graph G = (V,E) is a

bijection π between the vertices in V and the set {1, 2, . . . , |V |}. The bandwidth of a layout π equals

max{|π(u)− π(v)| | {u, v} ∈ E}. The bandwidth of G is the minimum bandwidth of all layouts of

G. The bandwidth has been studied since the 1950s; it has applications in sparse matrix computations

(see [7,8] for survey). From the graph theoretical point of view, the bandwidth of G is strongly related

to the proper interval completion problem [9]. The proper interval completion problem is motivated by

research in molecular biology, and hence it attracts much attention (see, e.g., [10]). However, computing

the bandwidth of a graph G is one of the basic and classic NP-complete problems [11] (see also [12,

GT40]). Especially, it is NP-complete even if G is restricted to a caterpillar with hair length 3 [13]. The

bandwidth problem is NP-complete not only for trees, but also for split graphs [14] and convex bipartite

graphs [15]. From the viewpoint of exact algorithms, the problem seems to be a difficult one; Feige

developed an O(10n) time exact algorithm for the bandwidth problem of general graphs in 2000 [16], and

recently, Cygan and Pilipczuk improved it to O(4.383n) time (see [17–19] for further details). Therefore

approximation algorithms for several graph classes have been developed (see, e.g., [15,20–23]). Only

a few graph classes have been known for which the bandwidth problem can be solved in polynomial

time. These include chain graphs [24], cographs and related classes (see [25] for the details), interval

graphs [26–28], and bipartite permutation graphs [6,29] (see [25] for a comprehensive survey).

One of the interesting graph classes for which the bandwidth problem can be solved efficiently is

the class of interval graphs. In 1987, Kratsch proposed a polynomial time algorithm of the bandwidth

problem for interval graphs [30]. Unfortunately, the algorithm has a flaw, which has been fixed by

Mahesh et al. [27]. Kleitman and Vohra also show a polynomial time algorithm [26], and Sprague

89

Algorithms 2013, 6 62

improves the time complexity to O(n log n) by sophisticated implementation of the algorithm [28]. All

the algorithms above solve the decision problem that asks if an interval graph G has bandwidth at most

k for given G and k. Thus, using binary search for k, we can compute the bandwidth bw(G) of an

interval graph G in O(M(n) · log bw(G)) time, where M(n) = O(n log n) is the time complexity to

solve the decision problem [28]. In the literature, it is mentioned that there are two unsolved problems

for interval graphs. The first one is direct computation of the bandwidth of an interval graph. All the

known algorithms are strongly dependent on the given upper bound k to construct a desired layout.

To find a best layout directly, we need deeper insight into the problem and/or the graph class. The

second one is to improve the time complexity to linear time. Since interval graphs have a relatively

simple representation, many NP-hard problems can be solved in linear time including early results of

recognition [31] and graph isomorphism [32].

Another interesting class consists of chain graphs. Chain graphs form a compact subclass of bipartite

permutation graphs that plays an important role in developing efficient algorithms for the class of

bipartite permutation graphs [33,34]. The algorithm by Kloks, Kratsch, and Müller computes the

bandwidth of a chain graph in O(n2 log n) time [24]. Their algorithm uses the algorithm for an interval

graph as a subroutine, and the factor O(n log n) comes from the time complexity to solve the bandwidth

problem for the interval graph in [28].

In this paper, we propose simple algorithms for the bandwidth problem for the classes of threshold

graphs and chain graphs.

The first algorithm computes the bandwidth of a threshold graph G in O(n) time and space. We note

that threshold graphs form a proper subclass of interval graphs, and can be represented in a compact

representation of O(n) space. The algorithm directly constructs an optimal layout, that is, we give a

partial answer to the open problem for interval graphs, and improve the previously known upper bound

O(n log n log bw(G)) to optimal.

Extending the first algorithm for threshold graphs, we next show an algorithm that computes the

bandwidth of a chain graph in O(n) time and space. This algorithm also directly constructs an optimal

layout, and improves the previously known bound O(n2 log n) in [24] to optimal.

More precisely, we first give a simple interval representation for a given threshold graph, and simplify

the previously known algorithm for interval graphs. (We also show a new property of a previously

known algorithm to show correctness.) Next, the simplified interval representation of a threshold graph

is extended to the one of a chain graph in a nontrivial way.

Next we turn to the intractable problems on a graph that has a geometric representation. We focus

on the class of grid intersection graphs that is a natural bipartite analogy and 2D generalization of the

class of interval graphs; a bipartite graph G = (X, Y,E) is a grid intersection graph if and only if G

is an intersection graph of X and Y , where X corresponds to a set of horizontal line segments, and Y

corresponds to a set of vertical line segments. It is easy to see that the class of chain graphs is a proper

subset of the class. Otachi, Okamoto, and Yamazaki investigate relationships between the class of grid

intersection graphs and other bipartite graph classes [35]. In this paper, we show that grid intersection

graphs have a rich structure. More precisely, we show two hardness results. First, the Hamiltonian cycle

problem is still NP-complete even if graphs are restricted to unit length grid intersection graphs. The

Hamiltonian cycle problem is one of the classic and basic NP-complete problems [12]. Second, the

90

Algorithms 2013, 6 63

graph isomorphism problem is still GI-complete even if graphs are restricted to grid intersection graphs.

(We say the graph isomorphism problem is GI-complete if the problem is as hard as to solve the problem

on general graphs.) The results imply that (unit length) grid intersection graphs have so rich structure

that many other hard problems may still be hard even on (unit length) grid intersection graphs.

We note that they are solvable in linear time on an interval graph [32,36]. Hence we can observe that

the generalized interval graphs have so rich structure that some problems become hard on the graphs.

Intuitively speaking, the linear (or one dimensional) structure of an interval graph makes these problems

tractable, and this two dimensional extension makes them intractable. Such results for intractability

also can be found in the literature; the Hamiltonian cycle problem is NP-complete on chordal bipartite

graphs [37], and the graph isomorphism problem is GI-complete on chordal bipartite graphs and strongly

chordal graphs [38].

It is worth mentioning that, recently, the computational complexity of the graph isomorphism problem

for circular arc graphs became open again. (A circular arc graph is the intersection graph of circular arcs,

which is another natural generalization of an interval graph.) The first “polynomial” time algorithm was

given by Wu [39], but Eschen pointed out a flaw [40]. Hsu claimed an O(nm) time algorithm for the

graph isomorphism problem on circular-arc graphs [41]. However, recently, a counterexample to the

correctness of the algorithm was found [42].

2. Preliminaries

The neighborhood of a vertex v in a graph G = (V,E) is the set NG(v) = {u ∈ V | {u, v} ∈ E}, and

the degree of a vertex v is |NG(v)| denoted by dG(v). If no confusion can arise we will omit the index G.

For a subset U of V , the subgraph of G induced by U is denoted by G[U]. Given a graph G = (V,E),

its complement Ḡ = (V, Ē) is defined by Ē = {{u, v} | {u, v} �∈ E}. A vertex set I is an independent
set if and only if G[I] contains no edges, and then the graph Ḡ[I] is said to be a clique. Two vertices u

and v are called twins if and only if N(u) ∪ {u} = N(v) ∪ {v}.

For a graph G = (V,E), a sequence of distinct vertices v0, v1, . . . , vl is a path, denoted by

(v0, v1, . . . , vl), if {vj, vj+1} ∈ E for each 0 ≤ j < l. The length of a path is the number of edges

on the path. For two vertices u and v, the distance of the vertices, denoted by dist(u, v), is the minimum

length of the paths joining u and v. A cycle consists of a path (v0, v1, . . . , vl) of length at least 2 with an

edge {v0, vl}, and is denoted by (v0, v1, . . . , vl, v0). The length of a cycle is the number of edges on the

cycle (equal to the number of vertices). A path P in G is said to be Hamiltonian if P visits every vertex

in G exactly once. The Hamiltonian path problem is to determine if a given graph has a Hamiltonian

path. The Hamiltonian cycle problem is defined similarly for a cycle. The problems are well known

NP-complete problem (see, e.g., [12]).

An edge that joins two vertices of a cycle but is not itself an edge of the cycle is a chord of that

cycle. A graph is chordal if every cycle of length at least 4 has a chord. In this paper, we will discuss

about intersection graphs of geometrical objects. Interval graphs are characterized by intersection graphs

of intervals, and it is well known that chordal graphs are intersection graphs of subtrees of a tree (see,

e.g., [2]). A graph G = (V,E) is bipartite if and only if V can be partitioned into two sets X and Y such

that every edge joins a vertex in X and the other vertex in Y . We sometimes denote a bipartite graph by

91

Algorithms 2013, 6 64

G = (X, Y,E) to specify the two vertex sets. A bipartite graph is chordal bipartite if every cycle of

length at least 6 has a chord.

A graph (V,E) with V = {v1, v2, . . . , vn} is an interval graph if there is a finite set of intervals

I = {Iv1 , Iv2 , . . . , Ivn} on the real line such that {vi, vj} ∈ E if and only if Ivi ∩ Ivj �= ∅ for each i and

j with 0 < i, j ≤ n. We call the set I of intervals an interval representation of the graph. For each

interval I , we denote by R(I) and L(I) the right and left endpoints of the interval, respectively (therefore

we have L(I) ≤ R(I) and I = [L(I), R(I)]). An interval representation is called proper if and only if

L(I) ≤ L(J) and R(I) ≤ R(J) for every pair of intervals I and J or vice versa. An interval graph is

proper if and only if it has a proper interval representation. It is known that the class of proper interval

graphs coincides with the class of unit interval graphs [43]. That is, any proper interval graph has a

proper interval representation that consists of intervals of unit length (explicit and simple construction is

given in [44]). Moreover, each connected proper interval graph has essentially unique proper (or unit)

interval representation up to reversal in the following sense (see, e.g., [45, Corollary 2.5]):

Proposition 1 For any connected proper interval graph G = (V,E) without twins, there is a unique
ordering (up to reversal) v1, v2, . . . , vn of n vertices such that G has a unique proper interval
representation I(G) such that L(Iv1) < L(Iv2) < · · · < L(Ivn) (and hence R(Iv1) < R(Iv2) <

· · · < R(Ivn)). In other words, for a connected proper interval graph G = (V,E) without twins,
there exists a vertex ordering v1, v2, . . . , vn such that every interval representation of G satisfies either
L(Iv1) < L(Iv2) < · · · < L(Ivn) or L(Ivn) < · · · < L(Iv2) < L(Iv1).

We note that when G contains twins u and v, they correspond to the congruent intervals with

L(Iv) = L(Iu) and R(Iv) = R(Iu). In a sense, the ordering is still unique even if G contains twins

up to isomorphism if the graph is unlabeled.

For any interval representation I and a point p, N [p] denotes the set of intervals that contain the

point p.

A graph G = (V,E) is called a threshold graph when there exist nonnegative weights w(v) for all

v ∈ V and a threshold value t such that {u, v} ∈ E if and only if w(u) + w(v) ≥ t.

Let G = (X, Y,E) be a bipartite graph with X = {x1, x2, . . . , xn} and Y = {y1, y2, . . . , yn′}. The

ordering of X has the adjacency property if and only if, for each vertex y ∈ Y , N(y) consists of vertices

that are consecutive in the ordering of X . A bipartite graph G = (X, Y,E) is said to be a chain graph
if and only if there are orderings of X and Y that fulfill the adjacency property, and the ordering of X

satisfies that N(xn) ⊆ N(xn−1) ⊆ · · · ⊆ N(x1). (The last property implies that the ordering of Y also

satisfy N(y1) ⊆ N(y2) ⊆ · · · ⊆ N(yn′); see, e.g., [46].)

A graph G = (V,E) with V = {v1, v2, . . . , vn} is said to be a permutation graph if and only if

there is a permutation σ over V such that {vi, vj} ∈ E if and only if (i − j)(σ(vi) − σ(vj)) < 0.

Intuitively, each vertex v in a permutation graph corresponds to a line segment �v joining two points

on two parallel line segments L1 and L2. Then two vertices v and u are adjacent if and only if the

corresponding line segments �v and �u intersect. The ordering of vertices gives the ordering of the

points on L1, and the permutation of the ordering gives the ordering of the points on L2. We call

the intersection model a line representation of the permutation graph. When a permutation graph is

bipartite, it is said to be a bipartite permutation graph. Although a permutation graph has (exponentially)

92

Algorithms 2013, 6 65

many line representations, a connected bipartite graph essentially has a unique line representation up to

isomorphism (see [47, Lemma 3] for further details):

Lemma 2 Let G = (V,E) be a connected bipartite permutation graph without twins. Then the line
representation of G is unique up to isomorphism.

The following proper inclusions are known (see, e.g., [46,48]):

Lemma 3 (1) Threshold graphs ⊂ interval graphs; (2) chain graphs ⊂ bipartite permutation graphs.

A natural bipartite analogy of interval graphs are called interval bigraphs which are intersection

graphs of two-colored intervals so that we do not join two vertices if they have the same color. Based

on the definition, Müller showed that the recognition problem for interval bigraphs can be solved in

polynomial time [49]. Later, Hell and Huang show an interesting characterization of interval bigraphs,

which is based on the idea to characterize the complements of the graphs [50]. Recently, efficient

recognition algorithm based on forbidden graph patterns is developed by Rafiey [51].

A bipartite graph G = (X, Y,E) is a grid intersection graph if every vertex x ∈ X and y ∈ Y can

be assigned line segments Ix and Jy in the plane, parallel to the horizontal and vertical axis so that for

all x ∈ X and y ∈ Y , {x, y} ∈ E if and only if Ix and Jy cross each other. We call (I,J) a grid
representation of G, where I = {Ix | x ∈ X} and J = {Jy | y ∈ Y }. A grid representation is unit
if all line segments in the representation have the same (unit) length. A bipartite graph is a unit grid
intersection graph if it has a unit grid representation.

Otachi, Okamoto, and Yamazaki show some relationship between (unit) grid intersection graphs

and other graph classes [35]; for example, interval bigraph is included in the intersection of unit grid

intersection graphs and chordal bipartite graphs. It is worth mentioning that it is open whether chordal

bipartite graphs are included in grid intersection graphs or not.

Two graphs G = (V,E) and G′ = (V ′, E ′) are isomorphic if and only if there is a one-to-one

mapping φ : V → V ′ such that {u, v} ∈ E if and only if {φ(u), φ(v)} ∈ E ′ for every pair of

vertices u, v ∈ V . We denote by G ∼ G′ if G and G′ are isomorphic. The graph isomorphism
(GI) problem is to determine if G ∼ G′ for given graphs G and G′. A graph class C is said to be

GI-complete if there is a polynomial time reduction from the graph isomorphism problem for general

graphs to the graph isomorphism problem for C. Intuitively, the graph isomorphism problem for the class

C is as hard as the problem for general graphs if C is GI-complete. The graph isomorphism problem

is GI-complete for several graph classes; for example, chordal bipartite graphs, and strongly chordal

graphs [38]. On the other hand, the graph isomorphism problem can be solved efficiently for many

graph classes; for example, interval graphs [32], probe interval graphs [52], permutation graphs [53],

directed path graphs [54], and distance hereditary graphs [55].

3. Polynomial Time Algorithms for the Bandwidth Problem

A layout of a graph G = (V,E) on n vertices is a bijection π between the vertices in V and the set

{1, 2, . . . , n}. The bandwidth of a layout π equals max{|π(u)− π(v)| | {u, v} ∈ E}. The bandwidth
of G, denoted by bw(G), is the minimum bandwidth of all layouts of G. A layout achieving bw(G) is

93

Algorithms 2013, 6 66

called an optimal layout. On a layout π, we denote by S < S ′ for two vertex sets S, S ′ if and only if

π(u) < π(v) holds for every pair of u ∈ S and v ∈ S ′.
For given graph G = (V,E), a proper interval completion of G is a superset E ′ of E such that

G′ = (V,E ′) is a proper interval graph. Hereafter, we will omit the “proper interval” since we always

consider proper interval completions. We say a completion E ′ is minimum if and only if |C ′| ≤ |C ′′| for

maximum cliques C ′ in G′ = (V,E ′) and C ′′ in G′′ = (V,E ′′) for any other completion E ′′.
For a minimum completion E ′, it is known that bw(G) = |C ′| − 1, where C ′ is a maximum

clique in G′ = (V,E ′) [9]. Let G = (V,E) be an interval graph with an interval representation

I = {Iv1 , Iv2 , . . . , Ivn}. For each maximal clique C, there is a point p such that N [p] induces the

clique C by Helly property. Thus, for any given graph G, we can compute bw(G) by Algorithm 1.

Algorithm 1: Bandwidth of a general graph

Input : Graph G = (V,E)

Output: bw(G)

generate a proper interval graph G′ = (V,E ′) that gives a minimum completion of G;

make the unique proper interval representation I(G′) of G′;
find a point p such that |N [p]| ≥ |N [p′]| for any other point p′ on I(G′);
return (|N [p]| − 1).

In Algorithm 1, the key point is how to find the minimum completion of G in the first step. The

following observation may not be explicitly given in literature, but it can be obtained from the results

in [9] straightforwardly (for example, the proof of Theorem 3.2 in [9], this fact is implicitly used):

Observation 4 For a minimum completion G′ = (V,E ′) of G = (V,E), let I(G′) = (I ′v1 , I
′
v2
, . . . , I ′vn)

be the unique proper interval representation of G′ stated in Proposition 1. Then the ordering
v1, v2, . . . , vn gives an optimal layout of G, and vice versa.

Here we show a technical lemma for the proper interval subgraph of an interval graph that will play

an important role of our results.

Lemma 5 Let G = (V,E) be an interval graph with V = {v1, v2, . . . , vn}, and I = {Iv1 , Iv2 , . . . , Ivn}
an interval representation of G. Let J = {Ju1 , Ju2 , . . . , Juk

} be a subset of I such that J forms a
proper interval representation. That is, we have U = {u1, . . . , uk} ⊆ V , and we can order J as
L(Jui

) ≤ L(Jui+1
) and R(Jui

) ≤ R(Jui+1
) for each 1 ≤ i < k. Let ρ be the injection from J to I with

Jui
= Ivρ(i) for each 1 ≤ i ≤ k ≤ n. Then, G has an optimal layout π such that each interval Jui

appears
according to the ordering in J . More precisely, for each i with 1 ≤ i < k, we have π(vρ(i)) < π(vρ(i+1)).

Proof. The proof is strongly related to the algorithm, which we call Algorithm KV, developed by

Kleitman and Vohra in [26]. To be self-contained, we give a description of Algorithm KV in Appendix A.

We recall that for given an interval representation of an interval graph G = (V,E) and a positive integer

k, Algorithm KV constructs a layout π of V that achieves the bandwidth at most k if bw(G) ≤ k. The

main idea is as follows. We assume that we give the interval representation I and bw(G) as an input to

Algorithm KV. Through the construction of the optimal layout π, indeed, Algorithm KV does not change

the ordering in J . We note that Algorithm KV itself does not mind the set J . That is, for an interval

94

Algorithms 2013, 6 67

graph G = (V,E), Algorithm KV does not change the ordering of any subset J if J induces a proper

interval graph.

Basically, Algorithm KV greedily labels each interval from 1 to n, from left to right. Unlabeled

intervals are divided into two groups; the intervals incident to labeled intervals and others. The former

group is again divided into sets Sq
j . A set Sq

j contains unlabeled intervals that should have labels up to

(j + q), where q is the largest label so far. In the first saturated Sq
j with respect to (j + q), the interval

having the smallest left endpoint is chosen as the next interval (ties are broken by the right endpoints).

To prove the lemma, we have to show the leftmost unlabeled interval Jui
in J has to be chosen before

Jui+1
when Algorithm KV chooses an interval in J . When Algorithm KV picks up the first saturated

Sq
j in Step 7, we have Sq

1 ⊆ Sq
2 ⊆ · · · ⊆ Sq

j . Hence, by a simple property of proper intervals, Sq
j

contains all unlabeled Jui
with i′ < i ≤ i′′ such that Jui′ is the rightmost labeled interval in J and Jui′′

is the rightmost unlabeled interval in J that is adjacent to a labeled interval. Among them, Algorithm

KV picks up the interval that has the smallest left endpoint (in Step 2 or 8). Thus, with appropriate

tie-breaking, the next labeled interval can be Jui′+1
before Jui′+2

. Therefore, Algorithm KV labels all

intervals in J from left to right, and we have the lemma.

3.1. Linear Time Algorithm for a Threshold Graph

We first show a linear time algorithm for computing bw(G) of a connected threshold graph G. For a

threshold graph G = (V,E), there exist nonnegative weights w(v) for v ∈ V and t such that {u, v} ∈ E

if and only if w(u) + w(v) ≥ t. We assume that a threshold graph is given in the standard adjacency

list manner. That is, each vertex has its own neighbor list and it knows its degree and weight. We

assume that G is connected and V is already ordered as {v1, v2, . . . , vn} with w(vi) ≤ w(vi+1) for

1 ≤ i < n (this sort can be done in O(n) time by a standard bucket sort [56, Section 5.2.5] according

to the degrees of vertices; ties may occur by twins, and are broken in any way). We can find � such

that w(v�−1) + w(v�) < t and w(v�) + w(v�+1) ≥ t in O(n) time. Then G has the following interval

representation I(G):

• For 1 ≤ i ≤ �, vi corresponds to the point i, that is, Ivi = [i, i].

• For � < i ≤ n, vi corresponds to the interval [j, �], where j is the minimum index with w(vi) +

w(vj) ≥ t.

For example, Figure 1(a) is a threshold graph; each number in a circle is its weight, and threshold

value is 5. We have � = 5 and its interval representation is given in Figure 1(b).

Figure 1. (a) Threshold graph and (b) its interval representation.

(a)

v1 v2 v3 v4 v5

v6

v7 v8 v9

v10

3 3 3 4 4

1 1 2 2 2

v1 v2 v3 v4 v5

v6

v7

v8

v9

v10

(b)

95

Algorithms 2013, 6 68

Theorem 6 We assume that a connected threshold graph G = (V,E) is given in the interval
representation I(G) stated above. Then we can compute bw(G) in O(n) time and space.

Proof. We first observe that L(Ivi) < L(Ivi+1
) and R(Ivi) < R(Ivi+1

) for each vi with 1 ≤ i < �, and

L(Ivi) ≥ L(Ivi+1
) and R(Ivi) = R(Ivi+1

) = � for each i with � < i < n. That is, G consists of two

proper interval graphs induced by {v1, v2, . . . , v�} and {v�, v�+1, . . . , vn} (note that v� is shared). Their

proper interval representations also appear in I(G). Hence, by Lemma 5, there exists an optimal layout

π of V = {v1, . . . , vn} such that π(v1) < π(v2) < · · · < π(v�) and π(v�) > π(v�+1) > π(v�+2) > · · · >
π(vn). Thus we can obtain an optimal layout by merging two sequences of vertices.

To obtain an optimal layout, by Observation 4, we construct a minimum completion of G from two

sequences. The longest interval is given by vn; since G is connected, [L(Ivn), R(Ivn)] = [1, �]. Hence,

we extend all intervals (except Ivn) to length �− 1 and construct a minimum completion. We denote the

extended interval Ivi by I ′vi . That is, the length of I ′vi = � − 1 for all i with 1 ≤ i ≤ n. The extension

is illustrated in Figure 2. The extension of intervals Ivi for i > � is straightforward; just extend them to

the right, which does not increase the size of a maximum clique. Thus we focus on the points Ivi = [i, i]

with i ≤ �, which are extended to I ′vi with length �− 1.

Figure 2. Construction of a minimum completion.

v1 vlvl-1vmvm-1 vm+1v2

vn
vn-1

vl+1

vl+2

If I ′vi does not contain the point 1, I ′vi has to contain the point � since it has to have length � − 1. On

the other hand, once I ′vi contains the point �, we can set I ′vi = [i..� + i − 1] without loss of generality.

Otherwise, the size of a maximum clique at the left side of the point i may increase. Similarly, once I ′vi
does not contain the point �, we can set I ′vi = [−� + i + 1..i] without loss of generality. That is, we can

assume that L(I ′vi) = i or R(I ′vi) = i for each 1 ≤ i ≤ �. If two intervals I ′vi and I ′vj satisfy i < j ≤ �,

L(I ′vi) = i, and R(I ′vj) = j, we can make R(I ′vi) = i, and L(I ′vj) = j without increasing the size of a

maximum clique. Specifically, we can take R(I ′v1) = 1 and L(I ′v�) = �.

From the above observation, a minimum completion is given by the following proper interval

representation of n intervals of length �− 1 for some m with 1 ≤ m < �: (0) for each i > �, L[Ivi] = j,

where j is the minimum index with w(vi) + w(vj) ≥ t; (1) for each 1 ≤ i ≤ m, R[Ivi] = i, and (2) for

each m < i ≤ �, L[Ivi] = i (Figure 2). Thus, to construct a minimum completion, we search the index

m that minimizes a maximum clique in the proper interval graph represented by above proper interval

representation determined by m.

In the minimum completion, there are � distinct cliques Ci = N [i], one induced at each point i with

1 ≤ i ≤ �. Now we consider a maximum clique of the corresponding proper interval graph for a fixed

m ∈ [1..�].

96

Algorithms 2013, 6 69

At points in [m + 1..�], it is easy to see that N [m + 1] ⊆ · · · ⊆ N [�] and hence the point � induces

maximum clique of size (n− (�+ 1) + 1) + (�− (m+ 1) + 1) = (n−m).

We next consider each point i in [1..m]. At the point i, N [i] induces a clique that consists of

{vi, vi+1, . . . , vm} and {vj, vj+1, . . . , vn}, where j is the minimum index with w(vi)+w(vj) ≥ t. Hence

we have a clique of size (m− i+ 1) + (n− j + 1) at point i. Thus we have to find i in [1..m] that gives

a maximum one.

Therefore, for a fixed m, we compute these two candidates for a maximum clique from [1..m] and

[m + 1..�], compare them, and obtain a maximum one. For every m, we have to find a minimum one

of the maximum cliques, whose size gives bw(G) + 1. Thus we can compute bw(G) by Algorithm 2.

Algorithm 2: Bandwidth of a threshold graph

Input : Threshold graph G = (V,E) with w(v1) ≤ w(v2) ≤ · · · ≤ w(vn) and t

Output: bw(G)

let � be the minimum index with w(v�) + w(v�+1) ≥ t;

set bw := ∞;

for m = 1, 2, . . . , �− 1 do
set lc := 0; // size of a maximum clique at points in [1..m]

for i = 1, 2, . . . ,m do
let j be the minimum index with w(vi) + w(vj) ≥ t;

if lc < (m− i+ 1) + (n− j + 1) then set lc := (m− i+ 1) + (n− j + 1);

;

if max{lc, n−m} < bw then bw := max{lc, n−m};

;

return (bw − 1).

The correctness of Algorithm 2 follows from Observation 4, Lemma 5 and the above discussions.

Algorithm 2 runs in O(n2) time and O(n) space by a straightforward implementation. However,

careful implementation achieves O(n) time and space as follows. When the algorithm updates m in step

3, the proper interval representation does not change except for one vertex vm+1. We assume that the

value of the variable m is changed from m′ to m′′ = m′ + 1. Then, the interval I ′vm′′ is “flipped” from

right to left centered at m′′. More precisely, changing from m′ to m′′ = m′ + 1 means changing I ′vm′′

from [m′′..� + m′′ − 1] to [−� + m′′ + 1..m′′], or equivalently, from L(I ′vm′′) = m′′ to R(I ′vm′′) = m′′.
This flip has two influences: First, the variable lc, which was the size of a maximum clique in [1..m′],
will be updated by either (1) current lc + 1 (added by vm′′ since it is flipped from L(Ivm′′) = m′′ to

R(Ivm′′) = m′′) or (2) n − j + 2, which is the size of clique induced at the new point m′′, where j is

the minimum index with w(vm′′) + w(vj) ≥ t. Second, the maximum clique in the range [m′′ + 1..�] is

updated from (n−m′) to (n−m′′). Thus, to find a maximum clique in the range [1..m′′], the algorithm

does not need to check all indices in [1..m′′] by the for-loop in steps 5 to 8. Precisely, we move step 4 to

between steps 2 and 3, and replace the for-loop in steps from 5 to 8 by the following steps;

let j be the minimum index with w(vm) + w(vj) ≥ t;

set lc := max{lc+ 1, n− j + 2};

97

Algorithms 2013, 6 70

We can precompute a table that gives the minimum index j with w(vi) + w(vj) ≥ t for each i in O(n)

time. Using the table, the modified algorithm runs in O(n) time and space.

We assume that a connected threshold graph G = (V,E) is given in the interval representation I(G)

stated above. Let V0 and V1 be the sets of light and heavy vertices vi with i ≤ � and i > �, respectively.

Then, for a connected threshold graph G = (V,E), we have an optimal layout that satisfies V 0
0 < V1 <

V 1
0 , where V 0

0 and V 1
0 are a partition of V0 such that w(v) < w(u) for each v ∈ V 0

0 and u ∈ V 1
0 .

Moreover, the optimal layout gives a maximum clique G′[V1 ∪ V 1
0] of the graph G′ = (V,E ′) where E ′

is the completion. We can also partition V1 into V 0
1 = {vn, vn−1, . . . , vm′} and V 1

1 = {vm′−1, . . . , v�+1}
such that N(vm) = {vn, . . . , vm′} on G = (V,E). Then we can observe that any arrangement of vertices

in V 1
0 ∪ V 1

1 gives us an optimal layout. The following corollary will give us an important property in a

chain graph.

Corollary 7 For a connected threshold graph G = (V,E), we have an optimal layout with indices m

and m′ such that V 0
0 < V 0

1 < (V 1
0 ∪ V 1

1) and any arrangement of vertices in V 1
0 ∪ V 1

1 gives an optimal
layout. Moreover, there is no edge between u ∈ V 0

0 and v ∈ V 1
0 ∪ V 1

1 on the completion.

3.2. Linear Time Algorithm for a Chain Graph

We next show a linear time algorithm for computing bw(G) of a connected chain graph

G = (X, Y,E). We assume that X = {x1, x2, . . . , xn} and Y = {y1, y2, . . . , yn′} are already ordered by

inclusion of neighbors; N(xn) ⊆ N(xn−1) ⊆ · · · ⊆ N(x1) and N(y1) ⊆ N(y2) ⊆ · · · ⊆ N(yn′). Since

G is connected, we have N(x1) = Y and N(yn′) = X . We assume that a chain graph G = (X, Y,E)

with |X| = n and |Y | = n′ is given in O(n + n′) space; each vertex y ∈ Y stores one endpoint d(y)

such that N(y) = {x1, x2, . . . , xd(y)}, and each vertex x ∈ X stores one endpoint n′−d(x)+1 such that

N(x) = {yn′ , yn′−1, . . . , yn′−d(x)+1}. (We abuse the degree d(·) as a maximum index of the neighbors.) A

chain graph has an intersection model of horizontal and vertical line segments (an example in Figure 3(a)

has an intersection model in Figure 3(c)); X corresponds to a set of horizontal line segments such that

all left endpoints have the same x-coordinate, and Y corresponds to a set of vertical line segments such

that all top endpoints have the same y-coordinate. By the property of the inclusions of neighbors, on the

intersection model, vertices in X can be placed from top to bottom and vertices in Y can be placed from

right to left such that the lengths of their line segments are monotone. This also can be transformed to the

line representation of a bipartite permutation graph in a natural way (Figure 3(b)). Then the endpoints

on L1 are sorted as xn, . . . , x1, yn′ , . . . , y1 from left to right.

Figure 3. Chain graph (a) and its corresponding representations (b)–(e).

wiper (x2)

L1

L2
(b) (c) (d)

y1

y2

y3

y4

y5

y6x6

x5

x4

x3

x2

x1
x6 x5 x4 x3 x2 x1 y1y2y3y4y5y6 y1y2y3y4y5y6

x6

x5

x4

x3

x2

x1

y1y2

y3
y4
y5
y6

x3

x2

x1

x6 x5 x4

(e)

y1y2

y3y4

y5
y6

x3

x2

x1

x6
x5 x4

(a)

r=1

l=5

wiper (x2)

wiper (x2)

98

Algorithms 2013, 6 71

For a chain graph G = (X, Y,E), a graph Hi = (X∪Y,Ei) is defined as follows [24]: We first define

H0 = (X ∪ Y,E0) to be a graph obtained from G by making a clique of X; that is, E0 = E ∪ {{x, x′} |
x, x′ ∈ X and x �= x′}. For 1 ≤ i ≤ n− 1, let Ci be the set {x1, x2, . . . , xi} ∪N(xi+1). Then the graph

Hi is obtained from G by making a clique of Ci. More precisely, Ei := E ∪ {{xi′ , xi′′} | 1 ≤ i′, i′′ ≤
i} ∪ {{yj′ , yj′′} | (n′ − d(xi+1) + 1) ≤ j′, j′′ ≤ n′}. Then, the following lemma plays an important role

in the algorithm in [24], which computes the bw(G) for a chain graph G by finding the minimum value

of bw(Hi) for each i.

Lemma 8 ([24]) (1) Hi is an interval graph for each i; (2) bw(G) = mini bw(Hi).

We first observe that H0 is a threshold graph that has an interval representation in the form shown in

Figure 3(c); that is, we project the representation in Figure 3(c) onto a horizontal line. The length of

each xi does not change, and each yj degenerates to a point on the line. Intuitively, we can regard each

y ∈ Y as a point and each x ∈ X as an interval. More precisely, we assign the weights of the vertices

as follows. For each yj ∈ Y , w(yj) = j. For each xi ∈ X , w(xi) = 2|X| + |Y | − j, where j is the

minimum index of N(x). Letting t = 2|X|+ |Y |, we can obtain the desired threshold graph with interval

representation obtained from the projection of one in Figure 3(c). Thus, by Theorem 6, bw(H0) can be

computed in O(n+ n′) time and space. Hereafter, we construct all minimum completions of Hi directly

for 1 ≤ i ≤ n− 1.

We introduce a wiper(xi) which is a line segment joining two points p1 and p2 on L1 and L2,

respectively, on the line representation of a chain graph G = (X, Y,E) as follows (Figure 3(b)); p1

is a fixed point on L1 between x1 and yn′ , and p2 is a point on L2 between xi+1 and q, where q is the right

neighbor point of xi+1 on L2. More precisely, q is either (1) xi if N(xi) = N(xi+1), or (2) the maximum

vertex yj in N(xi) \ N(xi+1) if N(xi) \ N(xi+1) �= ∅. Using the wiper, Hi can be obtained from G by

making a clique Ci which consists of the vertices corresponding to line segments intersecting wiper(xi)

on the line representation.

Intuitively, the interval representation of Hi can be obtained as follows; first, we construct a line

representation of G and put the wiper(xi) (Figure 3(b)), second, we modify it to the intersection model

of horizontal and vertical line segments with wiper(xi) placed between xi and xi+1 or yj , where yj

is the minimum vertex in N(xi+1) (Figure 3(c)), and finally, we stretch the wiper(xi) to vertical line

segment, or just a point 0 on an interval representation, and arrange the line segments corresponding to

the vertices in X and Y (Figure 3(d)). We note that the interval representation of Hi in Figure 3(d) is a

combination of two interval representations (Figure 1(b)) of two threshold graphs that are separated by

the wiper(xi). More precise and formal construction of the interval representation of Hi is as follows.

By Helly’s property, the intervals in the clique Ci share a common point, say 0 (which corresponds to

wiper(xi)). Then, centering the point 0, we can construct a symmetric interval representation as follows

(Figure 3(d)); (1) each xi′ ∈ X with i′ ≤ i corresponds to an interval [0, (d(xi′) − d(xi))], (2) each

xi′ ∈ X with i′ > i corresponds to the point −(i′−i) = i−i′(< 0), (3) each yj ∈ Y with j > n′−d(xi+1)

corresponds to an interval [−(d(yj)− i), 0] = [(i−d(yj)), 0], and (4) each yj ∈ Y with j ≤ n′−d(xi+1)

corresponds to the point i − j + 1. We let XR
i := {xi′ ∈ X | i′ ≤ i}, XL

i := {xi′ ∈ X | i′ > i},

Y L
i := {yj ∈ Y | j > n′ − d(xi+1)}, and Y R

i := {yj ∈ Y | j ≤ n′ − d(xi+1)}. Then, two induced

subgraphs Hi[X
R
i ∪ Y R

i] and Hi[X
L
i ∪ Y L

i] of Hi are threshold graphs, which allows us to apply the

99

Algorithms 2013, 6 72

algorithm in Section 3.1. (In Figure 3(d), Hi[X
R
i ∪ Y R

i] is induced by {x1, x2, y1, y2} and Hi[X
L
i ∪ Y L

i]

is induced by {x3, x4, x5, x6, y3, y4, y5, y6}.) Now we are ready to prove the main theorem in this section.

Theorem 9 We assume that a chain graph G = (X, Y,E) is given in O(n + n′) space as stated above.
Then we can compute bw(G) in O(n+ n′) time and space.

Proof. By Lemma 8, we can compute bw(G) by computing the minimum bw(Hi) for

i = 0, 1, 2, . . . , n− 1. By the fact that H0 is a threshold graph and Theorem 6, we can compute bw(H0)

in linear time and space. We only consider the case that 1 ≤ i ≤ n− 1. We separate the proof into

three phases.

Algorithm: Consider a fixed index i. The basic idea is similar to the algorithm for a threshold graph.

We directly construct a minimum completion of Hi. When G is a threshold graph, we put a midpoint m

such that each point [j, j] less than or equal to m is extended to an interval Iv with R[Iv] = j, and each

point [j, j] greater than m is extended to an interval Iv with L[Iv] = j, where v is the vertex corresponding

to the point [j, j]. Similarly, we put two midpoints � in Hi[X
L
i ∪ Y L

i] and r in Hi[X
R
i ∪ Y R

i]. Now we

make a proper interval representation instead of a unit interval representation to simplify the proof. (We

note that any proper interval representation can be extended to a unit interval representation in a natural

way [44]. Hence we can use a proper interval representation instead of a unit interval representation.)

For two midpoints � and r, we make a proper interval representation as follows; (1) for each xi′ ∈ XL
i

with i′ ≥ �, I ′xi′
= [i − n..i − i′], (2) for each xi′ ∈ XL

i with � < i′, I ′xi′
= [i − i′..0], (3) for each

yj ∈ Y R
i with r < j(≤ n′ − d(xi+1)), I

′
yj

= [0..i − j + 1], and (4) for each yj ∈ Y R
i with j ≤ r,

I ′yj = [i − j + 1..i]. In Figure 3(e), we give an example with � = 5 and r = 1. For each possible pair

(�, r) of � and r with i+ 2 ≤ � ≤ n and 1 ≤ r ≤ n′ − d(xi+1)− 1, we compute the size of a maximum

clique in the proper interval representation. At this time, we have three candidates for a maximum clique

at the left, the center, and the right parts of the proper interval representation. More precisely, for each

fixed i, �, and r, we define three maximum cliques RCi(�, r), CCi(�, r), and LCi(�, r) in three proper

interval graphs induced by {x�, x�+1, . . . , xn} ∪ {yj, yj+1, . . . , yn′}, where yj is the minimum vertex in

N(x�), {x1, x2, . . . , x�−1}∪{yr+1, yr+2, . . . , yn′}, and {x1, x2, . . . , xi′}∪{y1, y2, . . . , yr}, where xi′ is the

maximum vertex in N(yr), respectively. For example, in Figure 3(e), three sets are {x5, x6, y4, y5, y6},

{x1, x2, x3, x4, y2, y3, y4, y5, y6}, and {x1, x2, y1}, and hence RCi(5, 1) = {x5, y4, y5, y6} at point -3

(or R(x5)), CCi(5, 1) = {x1, x2, x3, x4, y2, y3, y4, y5, y6} at point 0, and LCi(5, 1) = {x1, x2, y1} at

point 2. Thus for (�, r) = (5, 1), we have a maximum clique CCi(5, 1) of size 9. For each pair

(�, r), we compute max{|RCi(�, r)|, |CCi(�, r)|, |LCi(�, r)|}, and then we take the minimum value of

max{|RCi(�, r)|, |CCi(�, r)|, |LCi(�, r)|} for all pairs, which is equal to bw(Hi)+ 1 for the fixed i. In the

case in Figure 3(d) (i = 2), (�, r) = (3, 2) gives the minimum value 6(= RC2(3, 2) = CC2(3, 2)). We

next compute the minimum one for all i, which gives bw(G) + 1. Summarizing, we have Algorithm 3.

Correctness: By Lemma 8, each graph Hi is an interval graph and mini bw(Hi) = bw(G). For the

interval representation of Hi, we consider two proper interval subgraphs. The first induced subgraph

Hi[X
R
i ∪Y L

i], which consists of positive length intervals in Hi, is a proper interval graph, and the second

induced subgraph Hi[X
L
i ∪ Y R

i], which consists of intervals of length 0 (or points), is also a proper

interval graph. Hence, by Lemma 5, there is an optimal layout that keeps their natural orderings over

100

Algorithms 2013, 6 73

XR
i ∪ Y L

i and XL
i ∪ Y R

i . Therefore, by Observation 4, we can compute bw(Hi) by extending intervals

in them together to be proper. Using the same argument as in the proof of Theorem 6, we can use the

set XR
i ∪ Y L

i of intervals as a proper interval representation as is, and we must extend each interval in

XL
i ∪ Y R

i to be proper with respect to XR
i ∪ Y L

i . Using the same argument twice, we can see that using

the idea of two midpoints � and r achieves an optimal layout.

Algorithm 3: Bandwidth of a chain graph

Input : Chain graph G = (X, Y,E) with N(xn) ⊆ · · · ⊆ N(x1) and N(y1) ⊆ · · · ⊆ N(yn′)

Output: bw(G)

bw := bw(H0) // by Algorithm 2

for i = 1, 2, . . . , n− 1 do
construct the interval representation I(Hi) of the graph Hi with wiper(xi);

for � = n, n− 1, . . . , i+ 1 do
for r = 1, 2, . . . , n′ − d(xi+1) do

if max{|RCi(�, r)|, |CCi(�, r)|, |LCi(�, r)|} < bw then
bw = max{|RCi(�, r)|, |CCi(�, r)|, |LCi(�, r)|};;

return (bw − 1).

Linear time implementation: A straightforward implementation gives O((n+ n′)3) time and O(n+

n′) space algorithm. We here show how to improve the time complexity to linear time. Intuitively, we

maintain the differences of three maximum cliques LCi, CCi, and RCi efficiently, and we use the same

idea as in the proof of Theorem 6 twice.

We first fix i = 1. In this case, we can compute LC1, CC1, and RC1 in O(n + n′) time;

the algorithm first starts RC1
′ := {x1, y1, . . . , yn′−d(x2)}, CC1

′ := {x1, yn′−d(x2)+1, . . . , yn′}, and

LC1
′ := {x2, . . . , xn, yn′−d(x2)+1, . . . , yn′}. That is, all points in XR

2 (= {x2, . . . , xn}) are extended to

the left, and all points in Y L
2 (= Y \ N(x2)) are extended to the right. If max{|LC1

′|, |RC1
′|} > |CC1

′|,
the algorithm flips the interval (or updates � or r) into CC1

′, decreases |LC1
′| or |RC1

′|, and increases

|CC1
′|. Repeating this process, in O(n+n′) time, when the algorithm meets max{|LC1|, |RC1|} = |CC1|

or max{|LC1|, |RC1|} = |CC1| − 1, the value gives the minimum size of the maximum cliques in three

parts, or equivalently, gives a minimum completion of H1. When we have a minimum completion of H1,

we say this pair (�, r) is the best pair for H1.

Now, we compute LC2, CC2, and RC2 from LC1, CC1, and RC1 with the best pair for

H1 in O(d(x1)− d(x3)) time. Intuitively, H2 is obtained from H1 by the following steps; (1) remove

Ix2 = [1, 1] from the point 1, and put it as an interval [0, d(x1)]; (2) shift all positive points

Iyj at d(x1) − j + 1 with yj ∈ N(x1) \ N(x2) to d(x2) − j + 1; and (3) remove all intervals

Iyj = [−1, 0] with yj ∈ N(x2) \ N(x3) and put them at d(x2) − j + 1 as points. The movements

have influences on LC1, CC1, and RC1, and from them, we construct LC2, CC2, and RC2, and obtain

the best pair for H2 in a similar way to that used in the proof of Theorem 6. Then, since N(x3) ⊆
N(x2) ⊆ N(x1), the total difference (or the total number of flipped intervals) can be bounded above

by |{x2} ∪ (N(x1) \N(x2)) ∪ (N(x2) \N(x3))| = |{x2} ∪ (N(x1) \N(x3))| = d(x1) − d(x3) + 1.

Hence the computation of LC2, CC2, and RC2 from LC1, CC1, and RC1 requires O(d(x1)− d(x3)) time.

101

Algorithms 2013, 6 74

Repeating this process, the computation of LCi, CCi, RCi, and the best pair of Hi from LCi−1, CCi−1,

and RCi−1 with the best pair for Hi−1 requires O(d(xi−1)−d(xi+1)) time for each 1 < i ≤ n. Hence, by

maintaining the differences, the total computation time of Algorithm 3 is the sum of the computations

of (1) bw(H0), (2) LC1, CC1, RC1, and the best pair of H1, and (3) LCi, CCi, and RCi with the best pair

of Hi from LCi−1, CCi−1, RCi−1, and the best pair of Hi−1 for i = 2, 3, . . . , n − 1, which is equal to

O(n+ n′) +
∑n−1

i=2 O(d(xi−1)− d(xi+1)) = O(n+ n′).
Here we extend Corollary 7 to a chain graph.

Corollary 10 For a connected chain graph G = (X, Y,E), we assume that X = {x1, x2, . . . , xn} and
Y = {y1, y2, . . . , yn′} are already ordered by inclusion of neighbors. Then we have an optimal layout
that satisfies X0 < Y0 < X1 ∪ Y1 < X2 < Y2 such that (1) X0 = {x1, . . . , xi}, X1 = {xi+1, . . . , xj},
and X2 = {xj+1, . . . , xn} for some 1 ≤ i ≤ j ≤ n, and (2) Y2 = {y1, . . . , yk}, Y1 = {yk+1, . . . , y�},
and Y0 = {y�+1, . . . , yn′} for some 1 ≤ k ≤ � ≤ n. Any arrangement of vertices in X1 ∪ Y1 gives us an
optimal layout. Moreover, the bandwidth is determined by an edge between (1) X0 and Y0, (2) (X1∪X2)

and (Y0 ∪ Y1), or (3) X2 and Y2.

Proof. For an optimal layout, we have a corresponding wiper. Then the set X0 is determined by xi ∈ X

which is the maximum vertex in X not crossing the wiper. Then Y0 is determined by the maximum

vertex yk in N(xi). Similarly, the set Y2 is determined by the minimum vertex y� not crossing the wiper,

and X2 is determined by the minimum vertex in N(y�). Considering the maximum cliques which can

give the bandwidth, the corollary follows.

4. Intractable Problems on a (Unit) Grid Intersection Graph

In this section, we turn to the grid intersection graphs and intractable problems for the class.

4.1. The Hamiltonian Cycle Problem

We give two hardness results for grid intersection graphs in this section.

Theorem 11 The Hamiltonian cycle problem is NP-complete for unit grid intersection graphs.

Proof. It is clear that the problem is in NP . Hence we show NP-hardness. We show a similar reduction

in [57]. We start from the Hamiltonian cycle problem in planar directed graph with degree bound two,

which is still NP-hard [58]. Let G0 = (V0, A) be a planar directed graph with degree bound two. (We

deal with directed graphs only in this proof; we will use (u, v) as a directed edge, called arc, which

is distinguished from {u, v}.) As shown in [57,58], we can assume that G0 consists of two types of

vertices: (type �) with indegree two and outdegree one, and (type �) with indegree one and outdegree

two. Hence, the set V0 of vertices can be partitioned into two sets V� and V� that consist of the vertices

in type � and �, respectively.

Moreover, we have two more claims; (1) the unique arc from a type � vertex has to be the unique arc

to a type � vertex; and (2) each of two arcs from a type � vertex has to be one of two arcs to a type

� vertex. If the unique arc from a type � vertex v is into one of a type � vertex u, the vertex u has

to be visited from v to make a Hamiltonian cycle. Hence the vertex u can be replaced by an arc from

102

Algorithms 2013, 6 75

v to the vertex w which is pointed from u. On the other hand, if one of two arcs from a type � vertex

v reaches another type � vertex u, the vertex u should be visited from v. Hence the other arc a from v

can be removed from G0. Then the vertex w incident to a has degree 2. Hence we have two cases; w

can be replaced by an arc, or we can conclude G0 does not have a Hamiltonian cycle. Repeating these

processes, we have the claims (1) and (2), which imply that we have |V�| = |V�|, the underlying graph

of G0 is bipartite (with two sets V� and V�), and any cycle contains two types of vertices alternately.

By the claims, we can partition arcs into two groups; (1) arcs from a type � vertex to a type �
vertex called thick arcs, and (2) arcs from a type � vertex to a type � vertex called thin arcs. By

above discussion, we can observe that any Hamiltonian cycle has to contain all thick arcs (Moreover,

contracting thick arcs, we can show NP-completeness of the Hamiltonian cycle problem even if we

restrict ourselves to the directed planar graphs that only consist of vertices of two outdegrees and

two indegrees.)

Now, we construct a unit grid intersection graph G1 = (V1, E1) from G0 = (V0, A) which satisfies

the above conditions. One type � vertex is represented by five vertical lines and two horizontal lines,

and one type � vertex is represented by three vertical lines and one horizontal line in Figure 4 (each

corresponding line segments are in gray area). Each thick arc is represented by alternations of one

parallel vertical line and one parallel horizontal line in Figure 4, and each thin arc is represented by

alternations of two parallel vertical lines and two parallel horizontal lines in Figure 5. The vertices are

joined by the arcs in a natural way. An example is illustrated in Figure 6.

Figure 4. Reduction of thick arcs.

a ab

c d

b

dc

Figure 5. Reduction of thin arcs.

ed

a

b c

ed

a

b c

103

Algorithms 2013, 6 76

Figure 6. Reduction of a graph G0.

a

b

c

d

e

f

a

b

c

d

e

f

G0

G1

For the resultant graph G1, it is obvious that the reduction can be done in a polynomial time, and

G1 is a unit grid intersection graph. Hence we show G0 has a Hamiltonian cycle if and only if G1 has

a Hamiltonian cycle. First, we assume that G0 has a Hamiltonian cycle C0, and show that G1 also has

a Hamiltonian cycle C1. C1 visits the vertices (or line segments) in G1 along C0 as follows. For each

thick arc in G0, the corresponding segments in G1 are visited straightforwardly. We show how to visit

the segments corresponding to thin arcs (Figure 7). For each thin arc not on C0, they are visited by C1

as shown in the left side of Figure 7 (between u and v); a pair of parallel lines are used to sweep the arc

twice, and the endpoints are joined by one line segment in the gadget of a type � vertex (v). On the

other hand, for each thin arc on C0, they are visited by C1 as shown in the right side of Figure 7 (between

w and v); a pair of parallel lines are used to sweep the arc once, and the path goes from e to a. Hence

from a given Hamiltonian cycle C0 on G0, we can construct a Hamiltonian cycle C1 on G1.

Figure 7. How to sweep thin arcs.

ed

a

b c

ed

a

b c

u

v

w

u

v

w

Now we assume that G1 has a Hamiltonian cycle C1, and show that G0 also has a Hamiltonian cycle

C0. By observing that there are no ways for C1 to visit lines corresponding to thick arcs described above,

and the unique center horizontal line of a type � vertex can be used exactly once, we can see that C1

forms a Hamiltonian cycle of G1 as in the same manner represented above. Hence C0 can be constructed

from C1 in the same way.

104

Algorithms 2013, 6 77

Corollary 12 The Hamiltonian path problem is NP-complete for unit grid intersection graphs.

Proof. We reduce the graph G1 in the proof of Theorem 11 to G′
1 as follows; pick up any line segment

in a thick arc, and add one more line segment as in Figure 8. Then, it is easy to see that G1 has a

Hamiltonian cycle if and only if G′
1 has a Hamiltonian path (with an endpoint corresponding to the

additional line segment). Hence we have the corollary.

Figure 8. Hamiltonian path problem.

4.2. The Graph Isomorphism Problem

Theorem 13 The graph isomorphism problem is GI-complete for grid intersection graphs.

Proof. We show a similar reduction in [38,54]. We start by considering the graph isomorphism problem

for general graphs. Let G0 = (V0, E0) and G′
0 = (V ′

0 , E
′
0) with |V0| = |V ′

0 | = n and |E0| = |E ′
0| = m

be an instance of the graph isomorphism problem. (We will refer the graph G0 in Figure 9(1) as an

example). Without loss of generality, we assume that G0 is connected. From G0, we define a bipartite

graph G1 = (V0, E0, E1) with two vertex sets V0 and E0 by E1 := {{v, e} | v is one endpoint of e}.

(Intuitively, each edge is divided into two edges joined by a new vertex; see Figure 9(2)). Then, e ∈ E0

have degree 2 by its two endpoints in V0. It is easy to see that G0 ∼ G′
0 if and only if G1 ∼ G′

1 for any

graphs G0 and G′
0 with resultant graphs G1 and G′

1.

Figure 9. Reduction for GI-completeness.

1 2 3

4 5 6

a

b

c

d e g

f

1 2 3

4 5 6

a

b

c

d e g

f

1 2 3

4 5 6

a

b

c

d g

f
V0:

E0:

Pv:

Qe:

Ca,Cc:

Cb,Cd:

(1) G0

n

m

n

2m

2m

2m

e

(2) G1 (3) G2

105

Algorithms 2013, 6 78

Now, we construct a grid intersection graph G2 = (V2, E2) from the bipartite graph G1 = (V0, E0, E1)

such that G1 ∼ G′
1 if and only if G2 ∼ G′

2 in the same manner. The vertex set V2 consists of the following

sets (see Figure 9(3)):

V0, E0; we let V0 = {v1, v2, . . . , vn}, E0 = {e1, e2, . . . , em}, where ei = {vi, vj} for some 1 ≤ i, j ≤ n.

Pv, Qe; each vertex in Pv ∪ Qe is called pendant and Pv := {p1, p2, . . . , pn}, Qe :=

{q1, q2, . . . , qm, q′1, q′2, . . . , q′m}. That is, we have |Pv| = n and |Qe| = 2m.

Ca, Cb, Cc, Cd; each vertex in Ca ∪ Cb ∪ Cc ∪ Cd is called connector, and Ca := {a1, a2, . . . , am},

Cb := {b1, b2, . . . , bm}, Cc := {c1, c2, . . . , cm}, and Cd := {d1, d2, . . . , dm}.

The edge set E2 contains the following edges (Figure 9(3)):

1. For each i with 1 ≤ i ≤ n, each pendant pi is joined to vi. That is, {pi, vi} ∈ E2 for each i with

1 ≤ i ≤ n.

2. For each j with 1 ≤ j ≤ m, two pendants qj and q′j are joined to ej . That is, {qj, ej}, {q′j, ej} ∈ E2

for each j with 1 ≤ j ≤ m.

3. For each ej with 1 ≤ j ≤ m, we have two vertices vi and vi′ with {vi, ej}, {vi′ , ej} ∈ E1. For

the three vertices ej , vi, vi′ , we add {ej, aj}, {vi, bj}, {aj, bj}, {ej, cj}, {vi′ , dj}, {cj, dj} into E2.

Intuitively, each edge in G1 is replaced by a path of length 3 that consists of one vertex in Ca ∪Cc

and the other one in Cb ∪ Cd.

The edge set E2 also contains the edges {vi, ej} for each i, j with 1 ≤ i ≤ n and 1 ≤ j ≤ m. In

other words, every vertex in V0 is connected to all vertices in E0 (the edges are omitted in Figure 9(3)

to simplify).

Let G0 and G′
0 be any two graphs. Then, it is easy to see that G0 ∼ G′

0 implies G2 ∼ G′
2. Hence, we

have to show that G2 is a grid intersection graph, and G0 can be reconstructed from G2 uniquely up to

isomorphism.

We can represent the vertices in V0 ∪ Qe ∪ Ca ∪ Cc (white vertices in Figure 9(3)) as horizontal

segments and the vertices in E0 ∪ Pv ∪ Cb ∪ Cd (black vertices in Figure 9(3)) as vertical segments as

follows (Figure 10): First, all vertices in V0 correspond to unit length horizontal segments that are placed

in parallel. All vertices in E0 correspond to unit length vertical segments placed in parallel, and the

segments corresponding to vertices in V0 and E0 make a mesh structure (as in Figure 10). Each pendant

vertex in Pv and Qe corresponds to a short segment, and is attached to its neighbor in an arbitrary way,

for example, as in Figure 10. Each pair of connectors in Ca and Cb (or Cc and Cd) joins corresponding

vertices in V0 and E0 as in Figure 10. Then it is easy to see that the resultant grid representation gives G2.

Next, we show that G0 can be reconstructed from G2 uniquely up to isomorphism. First, any vertex

of degree 1 is a pendant in G2. Hence we can distinguish Pv ∪Qe from the other vertices. Then, for each

vertex v ∈ V2 \ (Pv ∪ Qe), |N(v) ∩ (Pv ∪Qe)| = 1 if and only if v ∈ V0, and |N(v) ∩ (Pv ∪Qe)| = 2

if and only if v ∈ E0. Hence two sets V0 and E0 are distinguished, and then Pv ∪Qe can be divided into

Pv and Qe. Moreover, we have Ca ∪ Cb ∪ Cc ∪ Cd = V2 \ (Pv ∪Qe ∪ V0 ∪ E0). Thus, tracing the paths

induced by Ca ∪Cb ∪Cc ∪Cd, we can reconstruct each edge ej = (vi, vi′) with ej ∈ E0 and vi, vi′ ∈ V0.

Therefore, we can reconstruct G0 from G2 uniquely up to isomorphism.

106

Algorithms 2013, 6 79

Hence the graph isomorphism problem for grid intersection graphs is as hard as the graph

isomorphism problem for general graphs. Thus the graph isomorphism problem is GI-complete for

grid intersection graphs.

Figure 10. Grid representation of G2.

1

2

3

4

5

6

a b c d e f g
Pendants

Connectors

5. Conclusions

In this paper, we focus on geometrical intersection graphs. From the viewpoint of the parameterized

complexity (see Downey and Fellow [59]), it is interesting to investigate efficient algorithms for these

graph classes with some constraints. What if the number of vertical lines (or the possible positions on the

coordinate of vertical lines) is bounded by a constant? In this case, we can use the dynamic programming

technique for the graphs. Do the restrictions make some intractable problems solvable in polynomial

time? From the graph theoretical point of view, a geometric model for chordal bipartite graphs is open.

It is pointed out by Spinrad in [60], but it is not solved yet. The graph isomorphism problem for unit grid

intersection graphs is also interesting. By Theorem 13, the graph isomorphism problem is GI-complete

for grid intersection graphs. In the proof, we only need two kinds of lengths—long line segments and

short line segments, but the difference of these two lengths is essential in the proof, and we cannot make

all line segments unit length in the reduction.

107

Algorithms 2013, 6 80

Appendix

A. Algorithm by Kleitman and Vohra

In [26], Kleitman and Vohra developed an algorithm for determining whether an interval graph

G = (V,E) has a bandwidth less than or equal to a given integer k. Their algorithm plays an important

role in the proof of Lemma 5. To be self-contained, we give the details of their algorithm below:

Algorithm 4: Algorithm KV

Input : An interval graph G = (V,E) and a positive integer k.

Output: A layout realizing bw(G) ≤ k if it exists.

Set Label(i) = 0 and Mark(i) = n for all i ∈ V where n = |V |. Set

U = {i ∈ V | Label(i) = 0} and q = 0;

Select i ∈ U with smallest L(i) (break ties by selecting the interval with smallest R(i)) and set

q = q + 1;

Set Label(i) = q and U = U \ {i}. If U = ∅, stop, all vertices have been labeled;

If r ∈ U overlaps i and Mark(r) = n set Mark(r) = min{Label(i) + k, n};

Let Sq
j = {r ∈ U | Mark(r) ≤ q + j}. If

∣∣Sq
j

∣∣ ≤ j for all j ≥ k − q + 1, go to step 7;

There is a j such that
∣∣Sq

j

∣∣ > j. Stop, for the bandwidth of the graph is > k;

Find the smallest value j0, such that
∣∣Sq

j0

∣∣ = j0;

Select i ∈ Sq
j0

with smallest L(i) (break ties as in Step 2). Set q = q + 1 and go to Step 3.

References

1. Golumbic, M. Algorithmic Graph Theory and Perfect Graphs, 2nd ed.; Elsevier: Amsterdam, The

Netherlands, 2004.

2. Spinrad, J. Efficient Graph Representations; American Mathematical Society: Providence, RI,

USA, 2003.

3. Fishburn, P.C. Interval Orders and Interval Graphs; Wiley & Sons, Inc.: Hoboken, NJ, USA, 1985.

4. McKee, T.; McMorris, F. Topics in Intersection Graph Theory; SIAM: Philadelphia, PA, USA,

1999.

5. Uehara, R. Simple Geometrical Intersection Graphs. In Proceedings of the Workshop on Algorithms
and Computation (WALCOM 2008); Springer-Verlag: Berlin/Heidelberg, Germany, 2008; pp. 25–

33.

6. Uehara, R. Bandwidth of Bipartite Permutation Graphs. In Proceedings of the Annual International
Symposium on Algorithms and Computation (ISAAC 2008); Springer-Verlag: Berlin/Heidelberg,

Germany, 2008; pp. 824–835.

7. Lai, Y.L.; Williams, K. A survey of solved problems and applications on bandwidth, edgesum, and

profile of graphs. J. Graph Theory 1999, 31, 75–94.

8. Chinn, P.Z.; Chvátalová, J.; Dewdney, A.K.; Gibbs, N.E. The bandwidth problem for graphs and

matrices—A survey. J. Graph Theory 1982, 6, 223–254.

108

Algorithms 2013, 6 81

9. Kaplan, H.; Shamir, R. Pathwidth, bandwidth, and completion problems to proper interval graphs

with small cliques. SIAM J. Comput. 1996, 25, 540–561.

10. Kaplan, H.; Shamir, R.; Tarjan, R. Tractability of parameterized completion problems on chordal,

strongly chordal, and proper interval graphs. SIAM J. Comput. 1999, 28, 1906–1922.

11. Papadimitriou, C.H. The NP-completeness of the bandwidth minimization problem. Computing
1976, 16, 263–270.

12. Garey, M.; Johnson, D. Computers and Intractability—A Guide to the Theory of NP-Completeness;

Freeman: Gordonsville, VA, USA, 1979.

13. Monien, B. The bandwidth minimization problem for caterpillars with hair length 3 is

NP-complete. SIAM J. Alg. Disc. Meth. 1986, 7, 505–512.

14. Kloks, T.; Kratsch, D.; Borgne, Y.L.; Müller, H. Bandwidth of Split and Circular Permutation

Graphs. In Proceedings of the WG 2000; Springer-Verlag: Berlin/Heidelberg, Germany, 2000; pp.

243–254.

15. Shrestha, A.M.S.; Tayu, S.; Ueno, S. Bandwidth of Convex Bipartite Graphs and Related Graphs.

In Proceedings of the COCOON 2011; Springer-Verlag: Berlin/Heidelberg, Germany, 2011; pp.

307–318.

16. Feige, U. Coping with the NP-Hardness of the Graph Bandwidth Problem. In Proceed-
ings of the 7th Scandinavian Workshop on Algorithm Theory (SWAT 2000); Springer-Verlag:

Berlin/Heidelberg, Germany, 2000; pp. 10–19.

17. Cygan, M.; Pilipczuk, M. Exact and approximate bandwidth. Theor. Comput. Sci. 2010,

411, 3701–3713.

18. Cygan, M.; Pilipczuk, M. Even faster exact bandwidth. ACM Trans. Algorithm 2012, 8, 1–14.

19. Cygan, M.; Pilipczuk, M. Bandwidth and distortion revisited. Discrete Appl. Math. 2012,

160, 494–504.

20. Haralambides, J.; Makedon, F.; Monien, B. Bandwidth minimization: An approximation algorithm

for caterpillars. Theory Comput. Syst. 1991, 24, 169–177.

21. Kloks, T.; Kratsch, D.; Müller, H. Approximating the bandwidth for asteroidal triple-free graphs.

J. Algorithm 1999, 32, 41–57.

22. Karpinski, M.; Wirtgen, J.; Zelikovsky, A. An Approximation Algorithm for the Bandwidth Problem
on Dense Graphs; TR-97-017, Electronic Colloquium on Computational Complexity (ECCC),

1997. Available online: http://eccc.hpi-web.de/report/1997/017/ (accessed on 24 January 2013).

23. Gupta, A. Improved bandwidth approximation for trees and chordal graphs. J. Algorithm 2001,

40, 24–36.

24. Kloks, T.; Kratsch, D.; Müller, H. Bandwidth of chain graphs. Inf. Process. Lett. 1998,

68, 313–315.

25. Kloks, T.; Tan, R.B. Bandwidth and topological bandwidth of graphs with few P4’s. Discrete Appl.
Math. 2001, 115, 117–133.

26. Kleitman, D.; Vohra, R. Computing the Bandwidth of Interval Graphs. SIAM J. Disc. Math. 1990,

3, 373–375.

27. Mahesh, R.; Rangan, C.P.; Srinivasan, A. On finding the minimum bandwidth of interval graphs.

Inf. Comput. 1991, 95, 218–224.

109

Algorithms 2013, 6 82

28. Sprague, A. An O(n log n) algorithm for bandwidth of interval graphs. SIAM J. Discrete Math.
1994, 7, 213–220.

29. Heggernes, P.; Kratsch, D.; Meister, D. Bandwidth of bipartite permutation graphs in polynomial

time. J. Discret. Algorithm 2009, 7, 533–544.

30. Kratsch, D. Finding the minimum bandwidth of an interval graph. Inf. Comput. 1987, 74, 140–158.

31. Booth, K.; Lueker, G. Testing for the consecutive ones property, interval graphs, and graph planarity

using PQ-tree algorithms. J. Comput. Syst. Sci. 1976, 13, 335–379.

32. Lueker, G.; Booth, K. A linear time algorithm for deciding interval graph isomorphism. J. ACM
1979, 26, 183–195.

33. Brandstädt, A.; Lozin, V. On the linear structure and clique-width of bipartite permutation graphs.

Ars Comb. 2003, 67, 273–281.

34. Uehara, R.; Valiente, G. Linear structure of bipartite permutation graphs with an application. Inf.
Process. Lett. 2007, 103, 71–77.

35. Otachi, Y.; Okamoto, Y.; Yamazaki, K. Relationships between the class of unit grid intersection

graphs and other classes of bipartite graphs. Discrete Appl. Math. 2007, 155, 2383–2390.

36. Keil, J. Finding hamiltonian circuits in interval graphs. Inf. Process. Lett. 1985, 20, 201–206.

37. Müller, H. Hamiltonian circuit in chordal bipartite graphs. Discret. Math. 1996, 156, 291–298.

38. Uehara, R.; Toda, S.; Nagoya, T. Graph isomorphism completeness for chordal bipartite graphs

and strongly chordal graphs. Discret. Appl. Math. 2004, 145, 479–482.

39. Wu, T.H. An O(n3) isomorphism test for circular-arc graphs. Ph.D. Thesis, Applied Mathematics

and Statistics, SUNY-Stonybrook, New York, NY, USA, 1983.

40. Eschen, E.M. Circular-arc graph recognition and related problems. Ph.D. Thesis, Department of

Computer Science, Vanderbilt University, Nashville, TE, USA, 1997.

41. Hsu, W.L. O(M · N) Algorithms for the recognition and isomorphism problem on circular-arc

graphs. SIAM J. Comput. 1995, 24, 411–439.

42. Curtis, A.R.; Lin, M.C.; McConnell, R.M.; Nussbaum, Y.; Soulignac, F.J.; Spinrad, J.P.;

Szwarcfiter, J.L. Isomorphism of graph classes related to the circular-ones property.

arXiv:1203.4822v1.

43. Roberts, F.S. Indifference Graphs. In Proof Techniques in Graph Theory; Harary, F., Ed.; Academic

Press: Waltham, MA, USA, 1969; pp. 139–146.

44. Bogart, K.P.; West, D.B. A short proof that “proper=unit”. Discret. Math. 1999, 201, 21–23.

45. Deng, X.; Hell, P.; Huang, J. Linear-time representation algorithms for proper circular-arc graphs

and proper interval graphs. SIAM J. Comput. 1996, 25, 390–403.

46. Uehara, R.; Uno, Y. On computing longest paths in small graph classes. Int. J. Found. Comput.
Sci. 2007, 18, 911–930.

47. Saitoh, T.; Otachi, Y.; Yamanaka, K.; Uehara, R. Random Generation and Enumeration of Bipartite

Permutation Graphs. In Proceedings of the 20th International Symposium on Algorithms and
Computation (ISAAC 2009); Springer-Verlag: Berlin/Heidelberg, Germany, 2009; pp. 1104–1113.

48. Brandstädt, A.; Le, V.; Spinrad, J. Graph Classes: A Survey; SIAM: Philadelphia, PA, USA, 1999.

110

Algorithms 2013, 6 83

49. Müller, H. Recognizing interval digraphs and interval bigraphs in polynomial time. Disc.
Appl. Math. 1997, 78, 189–205. Available online: http://www.comp.leeds.ac.uk/hm/

pub/node1.html (accessed on 22 January 2013).

50. Hell, P.; Huang, J. Interval bigraphs and circular Arc graphs. J. Graph Theory 2004, 46, 313–327.

51. Rafiey, A. Recognizing interval bigraphs using forbidden patterns. Unpublished work, 2012.

52. Uehara, R. Canonical Data Structure for Interval Probe Graphs. In Proceedings of the
15th Annual International Symposium on Algorithms and Computation (ISAAC 2004); Lecture

Notes in Computer Science Volume 3341, Springer-Verlag: Berlin/Heidelberg, Germany, 2004;

pp. 859–870.

53. Colbourn, C. On testing isomorphism of permutation graphs. Networks 1981, 11, 13–21.

54. Babel, L.; Ponomarenko, I.; Tinhofer, G. The isomorphism problem for directed path graphs and

for rooted directed path graphs. J. Algorithm 1996, 21, 542–564.

55. Nakano, S.-I.; Uehara, R.; Uno, T. A New Approach to Graph Recognition and Applications

to Distance Hereditary Graphs. In Proceedings of the 4th Annual Conference on Theory and
Applications of Models of Computation (TAMC 07); Springer-Verlag: Berlin/Heidelberg, Germany,

2007; pp. 115–127.

56. Knuth, D. Sorting and Searching. In The Art of Computer Programming; 2nd ed.; Addison-Wesley

Publishing Company: Boston, MA, USA, 1998.

57. Uehara, R.; Iwata, S. Generalized Hi-Q is NP-Complete. Trans. IEICE 1990, E73, 270–273.

Available online: http://www.jaist.ac.jp/˜uehara/pdf/phd7.ps.gz (accessed on 22 January 2013).

58. Plesnı́k, J. The NP-completeness of the hamiltonian cycle problem in planar digraphs with degree

bound two. Inf. Process. Lett. 1979, 8, 199–201.

59. Downey, R.; Fellows, M. Parameterized Complexity; Springer: Berlin/Heidelberg, Germany, 1999.

60. Spinrad, J. Open Problem List, 1995. Available online: http://www.vuse.vanderbilt.edu/

˜spin/open.html (accessed on 22 January 2013).

© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article

distributed under the terms and conditions of the Creative Commons Attribution license

(http://creativecommons.org/licenses/by/3.0/).

111

Algorithms 2013, 6, 84-99; doi:10.3390/a6010084
OPEN ACCESS

algorithms
ISSN 1999-4893

www.mdpi.com/journal/algorithms

Article

Dubins Traveling Salesman Problem with Neighborhoods: A
Graph-Based Approach
Jason T. Isaacs * and João P. Hespanha

Department of Electrical and Computer Engineering, University of California, Santa Barbara,

CA 93106-9560, USA; E-Mail: hespanha@ece.ucsb.edu

* Author to whom correspondence should be addressed; E-Mail: jtisaacs@ece.ucsb.edu;

Tel.: +1-805-893-7785; Fax: +1-805-893-3262.

Received: 31 October 2012; in revised form: 17 January 2013 / Accepted: 18 January 2013 /
Published: 4 February 2013

Abstract: We study the problem of finding the minimum-length curvature constrained

closed path through a set of regions in the plane. This problem is referred to as the Dubins

Traveling Salesperson Problem with Neighborhoods (DTSPN). An algorithm is presented

that uses sampling to cast this infinite dimensional combinatorial optimization problem as a

Generalized Traveling Salesperson Problem (GTSP) with intersecting node sets. The GTSP

is then converted to an Asymmetric Traveling Salesperson Problem (ATSP) through a series

of graph transformations, thus allowing the use of existing approximation algorithms. This

algorithm is shown to perform no worse than the best existing DTSPN algorithm and is

shown to perform significantly better when the regions overlap. We report on the application

of this algorithm to route an Unmanned Aerial Vehicle (UAV) equipped with a radio to

collect data from sparsely deployed ground sensors in a field demonstration of autonomous

detection, localization, and verification of multiple acoustic events.

Keywords: traveling salesman problem; graph transformation; nonholonomic vehicles

1. Introduction

Research in the area of unmanned aerial vehicles (UAV) has evolved in recent years. There is

rich literature covering various areas of autonomy including path planning, trajectory planning, task

allocation, cooperation, sensing, and communications. As the mission objectives of UAVs have increased

112

Algorithms 2013, 6 85

in complexity and importance, problems are starting to arise at the intersection of these disciplines.

The Dubins Traveling Salesman Problem with Neighborhoods (DTSPN) combines the problem of

path planning with trajectory planning while using neighborhoods to represent communication ranges

or sensor footprints. In this problem the UAV simply needs to enter a region surrounding each

objective waypoint.

1.1. Relevant Literature

The path planning problem seeks to determine the optimal sequence of waypoints to visit in order

to meet certain mission objectives while minimizing costs, such as the total length of the mission [1,2].

Path planning problems typically rely on approximating the cost of the mission by the length of the

solution to a Euclidean Traveling Salesman Problem (ETSP), where the cost to travel from one waypoint

to the next is approximated by the Euclidean distance between the two waypoints. This approximation

simplifies the overall optimization but may lead to UAV routes that are far from optimal because the

aircraft kinematic constraints are not considered.

Another area of UAV research is trajectory planning, in which the goal given an initial and final

waypoint pair is to determine the optimal control inputs to reach the final waypoint in minimum time

given kinematic constraints of the aircraft. In 1957, Dubins showed that for an approximate model of

aircraft dynamics, the optimal motion between a pair of waypoints can be chosen among six possible

paths [3]. Similar results were proven later in [4] using tools from optimal control theory. In [5], the

authors propose a means of choosing the optimal Dubins path without computing all six possible Dubins

optimal paths.

A significant amount of research has gone into combining the problems of motion planning and path

planning [6–10]. In these works, the dynamics of the UAV are taken into consideration by using the

Dubins model when determining the optimal sequence of waypoints. This problem is typically referred

to as the Dubins Traveling Salesman Problem (DTSP).

A third area of UAV related research is a version of path planning that takes into account the

communication range of the aircraft or the sensor footprint of the aircraft. This problem is best described

as a Traveling Salesman Problem with Neighborhoods (TSPN). Now, not only does one determine a

sequence of regions but also an entry point at each region. Many researchers have addressed this problem

with various regions, but most have used the Euclidean distance as the cost function [11–13]. Obermeyer

was the first to tackle the TSPN with the Dubins vehicle model in [14] using a genetic algorithm

approach, then later in [15] by using a sampling-based roadmap method, which we will call RCM, that

is proven to be resolution complete. In the latter method, the DTSPN is transformed into a General

Traveling Salesman Problem (GTSP) with non-overlapping node sets, and then to an Asymmetric

Traveling Salesmen Problem (ATSP) through a version of the Noon and Bean transformation [16].

1.2. Contributions

We propose an algorithm to approximate the DTSPN via a sampling-based roadmap method similar

to that of [15] but use a more general version of the Noon and Bean transformation [17] in which the

GTSP can contain intersecting node sets. We show that for the same set of samples this method will

113

Algorithms 2013, 6 86

produce a tour that is no longer than that of RCM from [15] and performs significantly better when the

regions intersect frequently. Finally, we report on the application of this algorithm to guide a UAV in

collecting data from a sparsely deployed sensor network.

The proposed method converts the DTSPN into a GTSP by sampling, and the Noon and Bean

transformation is used to convert the resulting problem into an ATSP, a problem with numerous exact and

approximate solvers. The optimal solution of the GTSP can then be recovered from the optimal solution

to the resulting ATSP. It should be noted that the Noon and Bean transformations [16,17] only preserve

the optimal solution. There is no guarantee that suboptimal solutions to the ATSP will result in good

solutions or even feasible solutions to the GTSP [18]. However, experimental results exist that show

that the Noon and Bean transformation works well for small to moderate instances of the GTSP [19]. In

our experience, the Noon and Bean transformation was suitable for solving GTSP instances of several

hundred nodes without any feasibility issues. For very large instances it may be appropriate to avoid the

transformation to an ATSP by using a direct GTSP solver such as the memetic algorithm due to Gutin

and Karapetyan [18].

1.3. Organization

The remainder of this article is organized as follows. In Section 2, the Dubins Traveling Salesman

Problem with Neighborhoods is formally introduced. Section 3 describes the proposed approximation

algorithm for the DTSPN. In Section 4, we present a numerical study comparing our algorithm with

an existing algorithm for various sized regions and various amounts of overlap. The results from a field

demonstration are reported in Section 5 along with a summary of modifications necessary for operational

deployment. Conclusions and future work are discussed in Section 6.

2. Problem Statement

The kinematics of the UAV can be approximated by the Dubins vehicle in the plane. The pose of

the Dubins vehicle X can be represented by the triplet (x, y, θ) ∈ SE(2), where (x, y) ∈ R
2 define the

position of the vehicle in the plane and θ ∈ S
1 defines the heading of the vehicle. The vehicle kinematics

are then written as,

⎡
⎢⎣
ẋ

ẏ

θ̇

⎤
⎥⎦ =

⎡
⎢⎣
ν cos(θ)

ν sin(θ)
ν
ρ
u

⎤
⎥⎦ (1)

where ν is the forward speed of the vehicle, ρ is the minimum turning radius, and u ∈ [−1, 1] is the

bounded control input. Let Lρ : SE(2)×SE(2) → R+ associate the length Lρ(X1, X2) of the minimum

length path from an initial pose X1 of the Dubins vehicle to a final pose X2, subject to the kinematic

constraints in Equation (1). Notice that this length depends implicitly on the forward speed of the vehicle

and the minimum turning radius through the kinematic constraints in Equation (1). This length, which

we will refer to as the Dubins distance from X1 to X2, can be computed in constant time [5].

Let R = {R1,R2, ...,Rn} be set of n compact regions in a compact region Q ⊂ R
2, and let

Σ = (σ1, σ2, . . . , σn) be an ordered permutation of {1, . . . , n}. Define a projection from SE(2) to

114

Algorithms 2013, 6 87

R
2 as P : SE(2) → R

2, i.e., P(X) = [x y]T , and let Pi be an element of SE(2) whose projection lies

in Ri. We denote the vector created by stacking a vehicle configuration Pi for each of the n regions as

P ∈ SE(2)n.

The DTSPN involves finding the minimum length tour in which the Dubins vehicle visits each region

in R while obeying the kinematic constraints of Equation (1). This is an optimization over all possible

permutations Σ and configurations P . Stated more formally:

Problem 2.1 (DTSPN).

minimize
Σ,P

Lρ(Pσn , Pσ1) +
n−1∑
i=1

Lρ(Pσi
, Pσi+1

)

subject to P(Pi) ∈ Ri, i = 1, . . . , n

The problem presented in Problem 2.1 is combinatorial in Σ, the sequence of regions to visit and

infinite dimensional in P , the poses of the vehicle. We present an algorithm to convert this problem to

a finite dimensional combinatorial optimization on a graph by first generating a set of m ≥ n sample

configurations Si ∈ SE(2), S := {S1, . . . ,Sm} such that

P(Sk) ∈
n⋃

i=1

Ri, k = 1, . . . ,m (2)

and ∀i ∃k s.t. P(Sk) ∈ Ri. The algorithm then approximates Problem 2.1 by finding the best sample

configurations P ⊆ S and the order Σ in which to visit them.

Problem 2.2 (Sampled DTSPN).

minimize
Σ,P

Lρ(Pσn , Pσ1) +
n−1∑
i=1

Lρ(Pσi
, Pσi+1

)

subject to Pi ∈ S
P(Pi) ∈ Ri, i = 1, . . . , n

3. DTSPN Intersecting Regions Algorithm

Problem 2.2 can now be formulated as a Generalized Traveling Salesman Problem (GTSP) with

intersecting node sets in the following manner. The GTSP can be described with a directed graph

G := (N ,A,V), with nodes N and arcs A where the nodes are members of predefined node sets

Vi, i = 1, 2, . . . , n. Here each node represents sample vehicle pose Si, i = 1, 2, . . . ,m, and the arc

connecting node Si to node Sj represents the length of the minimum length path for a Dubins vehicle

ci,j = Lρ(Si, Sj) from configuration Si to configuration Sj . The node set Vk corresponding to region Rk

contains all samples whose projection lies in Rk, Vk := {Si | P(Si) ∈ Rk} for i ∈ {1, 2, . . . ,m} and

k ∈ {1, 2, . . . , n}. The objective of the GTSP is to find a minimum cost cycle passing through each node

set exactly one time. An example instance of Problem 2.2 can be seen in Figure 1(a).

Next, the GTSP can be converted to an Asymmetric TSP through a series of graph transformations due

to Noon and Bean [17]. What follows is a brief summary of the Noon–Bean transformation from [17] as

115

Algorithms 2013, 6 88

it is used in this work. The transformation is best described in three stages. The first stage converts the

asymmetric GTSP to a GTSP with mutually exclusive node sets. The second stage converts the GTSP to

the canonical form by eliminating intra-set arcs. Finally the third stage converts the canonical form to a

clustered TSP and then to an Asymmetric TSP.

Figure 1. Example DTSPN with the corresponding “GTSP with intersecting node sets”.

(a) Example instance of DTSPN with three circular regions R1,R2, and R3 and samples

S1, S2, . . . , S8. The circuit through samples S2, and , S8 is the optimal tour; (b) Problem

(P0): A GTSP with intersecting node sets representation of the DTSPN example. Note: only

an essential subset of arcs is shown for clarity of illustration.

S8

S7
S6

S5

S4

S3

S2
R2

R1

R3

S1

(a)

S1 S2 S5

S6

S7

S8

S3

S4

V1

V3

V2

c1,6
c6,1

c6,8

c5,3

c3,5

c2,8 c8,2

(b)

3.1. Stage 1

We begin by restating the problem above in a compact manor to facilitate the discussion. Problem

(P0) is a GTSP defined by the graph G0 := (N 0,A0,V0) with the corresponding cost vector c0. An

example of Problem (P0) is shown in Figure 1(b). The first stage converts the GTSP (P0) to a new

problem (P1) which is a GTSP with mutually exclusive node sets. This is done by first eliminating any

arcs from A0 that do not enter at least one new node set.

Problem (P1) is a GTSP defined by the graph G1 := (N 1,A1,V1) with the corresponding cost vector

c1. Where N 1 = N 0, and V1 = V0. The arc set A1 is formed by first setting A1 = A0, and then

removing any edges that do not enter at least one new node set. Let M(i) denote the set of node sets of

which node i is a member, i.e., if i ∈ Vk, then k ∈ M(i). For every (i, j) ∈ A0, if M(j) ⊂ M(i), then

remove the arc (i, j) from set A1, see Figure 2(a).

116

Algorithms 2013, 6 89

Figure 2. Example of Problem (P1) and Problem (P2) from Stage 1 of transformation.

(a) Problem (P1): Any arcs that do not enter at least one new node set {(3, 5) and (6, 8)}
have been removed from the graph in Problem (P0); (b) Problem (P2): A large finite cost α

is added to each edge. Here ĉi,j = c2i,j , where c2i,j is defined in Equation (4).

S1 S2 S5

S6

S7

S8

S3
S4

V1

V3

V2

c1,6
c6,1

c5,3

c2,8 c8,2

(a)

S1 S2 S5

S6

S7

S8

S3

S4

V1

V3

V2

ĉ2,8
ĉ8,2

ĉ5,3

ĉ1,6
ĉ6,1

(b)

Next, a constant is added to the cost of each arc entering a new node set. Problem (P2) is a GTSP

defined by the graph G2 := (N 2,A2,V2) with the corresponding cost vector c2. Where N 2 = N 1,

A2 = A1, and V1 = V0. Notice that all arc costs are nonnegative. We now define a finite, positive

constant α as,

∞ > α ≥
∑

(i,j)∈A1

c1i,j (3)

For every arc (i, j) ∈ A1, set the cost of the arc (i, j) ∈ A2 in the following manner,

c2i,j = (|M(j)− {M(i) ∩M(j)}|)α + c1i,j (4)

Here |Z|, represents the cardinality of the set Z. Notice that Equation (4) adds to the original arc cost an

additional cost of α for each new node set entered by arc (i, j). An example of Problem (P2) can be seen

in Figure 2(b), where ĉi,j represents c2i,j .

Next, any nodes that belong to more than one node set are duplicated and placed in different node sets

so as to allow each node to have membership in only one node set. Problem (P3) is a GTSP over the

graph G3 := (N 3,A3,V3) with the corresponding cost vector c3. The set of nodes N 3 will be populated

with the same set of nodes in N 2 plus the additional nodes created to account for the nodes that fall into

multiple node sets. For every i ∈ N 2, create |M(i)| nodes and assign each to a different node set. For

all k ∈ M(i), add the node ik to N 3, and to the node set V3
k . This insures that |M(ik)| = 1. Any arcs to

and from the original nodes are duplicated as well. For every arc (i, j) ∈ A2, create the arc (ip, jq) ∈ A3

with the corresponding cost c3ip,jq = c2i,j for every p ∈ M(i) and q ∈ M(j). In addition, zero cost arcs

117

Algorithms 2013, 6 90

are added between all the spawned nodes of each multiple membership node. For each node i ∈ N 2

with multiple node set membership |M(i)| > 1, create arcs (ip, iq) ∈ A3 with associated costs c3ip,iq = 0

for all p ∈ M(i), q ∈ M(i), such that p �= q. See Figure 3(a) for an example of Problem (P3).

Figure 3. Example of Problem (P3) and Problem (P4) from Stage 1 and Stage 2 of

transformation. (a) Problem (P3): Nodes S2 and S3 from (P2) lie in multiple node sets.

These nodes are duplicated and the spawned nodes S2′ and S3′ are placed in node set V2.

Zero cost arcs (dashed arrows) are added connecting S2 to S2′ and S3 to S3′ ; (b) Problem

(P4): The intra-set arc (5, 3
′
) from Problem (P3) is removed.

S1

S5

S6

S7

S3

S4

V1

V3

V2

S
′
2

0

0

S
′
3

S2

S8

ĉ2,8
ĉ8,2

ĉ5,3

ĉ1,6

ĉ6,1

ĉ5,3

ĉ2,8
ĉ8,2

(a)

S1

S5

S6

S7

S3

S4

V1

V3

V2

S
′
2

0

0

S
′
3

S2

S8

ĉ2,8
ĉ2,8

ĉ8,2

ĉ8,2

ĉ5,3

ĉ1,6

ĉ6,1

(b)

To summarize, Stage 1 of the Noon–Bean transformation takes GTSP with intersecting node sets

and transforms it into a GTSP with mutually exclusive node sets. The following theorem from [17]

summarizes the relationships between problems (P0), (P1), (P2), and (P3).

Theorem 3.1 (Noon and Bean [17]). Given a GTSP in the form of (P0), we can transform the problem
to a problem of the form of (P3). Given an optimal solution to (P3) with cost less than (m+1)α, we can
construct an optimal solution to (P0). If an optimal solution to (P3) has a cost greater than or equal to
(m+ 1)α, the problem (P0) is infeasible.

3.2. Stage 2

The second stage takes the GTSP with mutually exclusive node sets and eliminates any intra-set arcs,

leaving a GTSP in “canonical form.” Define a problem (P4) that differs from problem (P3) only by the

arcs and arc costs. Problem (P4) is a GTSP over the graph G4 := (N 4,A4,V4) with the corresponding

cost vector c4 where N 4 = N 3 and V4 = V3. The arc set A4 is populated in the following manner. For

every i, j pair of nodes in N 3 for which M(i) �= M(j), calculate the lowest cost path from i to j over

the arc set Ai,j ⊆ A3. An arc (k, l) ∈ Ai,j if the following four conditions hold,

1. M(k) ⊆ M(i) ∪M(j),

2. M(l) ⊆ M(i) ∪M(j),

3. if M(l) = M(i) then M(k) must also equal M(i),

118

Algorithms 2013, 6 91

4. if M(k) = M(j) then M(l) must also equal M(j).

If the shortest path has finite cost, add the arc (i, j) to the arc set A4, and set the corresponding arc cost

c4i,j equal to the shortest path cost. If no feasible path exists, then the arc (i, j) will not be part of A4.

The problem defined on G4 is now in the GTSP canonical form with mutually exclusive node sets and

no intra-set arcs. See Figure 3(b) for an example of Problem (P4). The following theorem from [17]

establishes the correctness of the transformation in Stage 2.

Theorem 3.2 (Noon and Bean [17]). Given an optimal solution, y∗, to (P4), we can construct the
optimal solution, x∗, to (P3).

3.3. Stage 3

The third stage of the transformation converts the canonical GTSP to a “clustered” TSP. Problem

(P5) is a clustered TSP over the graph G5 := (N 5,A5) with the corresponding cost vector c5 where

N 5 = N 4. For every node set Vi corresponding to nodes in N 4, define a cluster Ci corresponding to

the nodes in N 5. The nodes in each cluster are first enumerated. Let i1, i2, . . . , ir denote the ordered

nodes of Ci where r represents the cardinality of the cluster, r = |Ci|. Next, a zero cost cycle is created

for each cluster by adding zero cost edges between consecutive nodes in each cluster and connecting the

first node to the last. For each cluster i with r > 1, add the arcs (i1, i2), (i2, i3), . . . , (ir−1, ir), (ir, i1)

to A5, and for each of these intra-cluster arcs assign a zero cost, i.e., c5i1,i2 = · · · = c5ir,i1 = 0. The

inter-set edges are then shifted so they emanate from the previous node in its cycle. For every inter-set

arc (ik, jl) ∈ A4, with k > 0, create the arc (ik−1, jl) ∈ A5 with the corresponding cost, c5
ik−1,jl

= c4
ik,jl

.

For each interest arc (i1, jl) ∈ A4, create the arc (ir, jl) ∈ A5 with the corresponding cost, c5
ir,jl

= c4
i1,jl

,

where r = |Ci|. See Figure 4(a) for an example of Problem (P5).

Finally, the clustered TSP is converted to an ATSP by adding a large finite cost to each inter-cluster

arc cost.

Problem (P6) is a ATSP over the graph G6 := (N 6,A6) with the corresponding cost vector c6 where

N 6 = N 5 and A6 = A5. The arc costs are differ from (P5) in the following way. For every arc

(i, j) ∈ A6, if i and j belong to the same clusters in (P5), then c6i,j = c5i,j . If i and j belong to different

clusters in (P5), then

c6i,j = c5i,j + β (5)

where

∞ > β >
∑

(i,j)∈A5

c5i,j (6)

An example can be seen in Figure 4(b), where c̄i,j depicts c6i,j . The optimal tour is shown in red.

The following theorem from [17] establishes the correctness of the transformation in Stage 3.

Theorem 3.3 (Noon and Bean [17]). Given a canonical GTSP in the form of (P4) with n node sets, we
can transform the problem into a standard TSP in the form of (P6). Given an optimal solution y∗ to
(P6) with c6y∗ < (n+ 1)β, we can construct an optimal solution x∗ to (P4).

119

Algorithms 2013, 6 92

Figure 4. Example of Problem (P5) and Problem (P6) from Stage 3 of transformation.

(a) Problem (P5): The clustered TSP is created by forming zero cost intra-set cycles and

adjusting the originating node in each inter-set arc; (b) Problem (P6): A large finite cost β

is added to each inter-set edge. Here c̄i,j = c6i,j , where c6i,j is defined in Equation (5). The

optimal tour is shown in red with a cost of ĉ8,2 + β + ĉ2,8.

S1

S2

S3

S4 S5

S6

S7

S8

S
′
2

S
′
3

ĉ2,8

ĉ2,8

ĉ8,2

ĉ8,2

ĉ5,3

ĉ1,6 ĉ6,1

C1 C2

C3

(a)

S1

S2

S3

S4 S5

S6

S7

S8

S
′
2

S
′
3

c̄5,3

c̄1,6 c̄2,8
c̄8,2

c̄6,1

c̄2,8

c̄8,2

β

β

β

β

C1 C2

C3

(b)

3.4. Performance Comparison

The Intersecting Regions Algorithm (IRA) proposed here is similar to the Resolution Complete

Method (RCM) proposed in [15] with the key exception that we use the fact that visiting one of

the samples in the intersection of multiple regions achieves the goal of visiting all the regions in the

intersection. Figure 5 illustrate this key difference. The RCM requires mutually exclusive node sets

for the conversion from DTSPN to a GTSP with disjoint node sets. To meet this requirement, samples

are assigned directly to the node set of the region from whose boundary they are drawn, as depicted in

Figure 5(b). If multiple regions overlap and a sample lies in the intersection, IRA assigns this sample to

all the node sets corresponding to the intersecting regions, as depicted in Figure 5(a), while RCM does

not. The IRA then uses this additional information in the optimization.

Theorem 3.4 (IRA Performance). Given ρ > 0, the set of n ≥ 2 possibly intersecting regions, R, and
the set of m sample configurations, S , let TIRA and TRCM denote the tours produced by IRA and the
RCM [15], respectively. Then the length of TIRA is no greater than that of TRCM ,

length(TIRA) ≤ length(TRCM) (7)

Proof. [Proof of Theorem 3.4] Let T = {S1, S2, . . . , Sn} be a feasible tour, and note that both IRA and

RCM minimize the tour length plus an additive constant while ensuring that all regions are visited. The

difference is that IRA may produce tours visiting fewer than n unique samples, should some samples lie

in the multiple regions. In particular, the IRA ensures that each leg of the tour enters at least one new

region, by construction. Therefore, in performing the optimization IRA will either consider T, or subset

of T, in which samples at the end of legs not entering an unvisited region have been removed. Due to

120

Algorithms 2013, 6 93

the Dubins distance function satisfying the triangle inequality [20], a tour that visits a redundant sample

will be longer than a tour that visits a subset of the samples. The optimal tour TIRA cannot be longer

than TRCM , because both optimize over the same set of feasible tours except for the tours in which IRA

bypasses these unneeded samples.

The property resolution complete method as used in [15], dictates that the method converges to a

solution at least as good as any nonisolated optimum solution as the number of sample configurations

goes to infinity.

Corollary 3.5 (IRA is Resolution Complete). Given ρ > 0, the set of n ≥ 2 possibly intersecting regions,
R, and the set of m sample configurations, S drawn from a Halton quasi-random sequence[21] as in
RCM, then IRA is Resolution Complete.

Proof. [Proof of Corollary 3.5] From [15], the RCM is a resolution complete method and converges as

the number of samples goes to infinity, and from Theorem 3.4, we have shown that for the same set of

sample configurations IRA will produce a tour that is no longer than RCM.

Figure 5. A comparison of IRA and RCM on an example DTSPN instance with three regions

and three sample poses. (a) Example Tour: IRA, Tour Length = 7.7; (b) Example Tour:

RCM, Tour Length = 15.4.

−4 −2 0 2 4
−1

0

1

2

3

4

5

6

(a)

−6 −4 −2 0 2 4

0

2

4

6

(b)

3.5. Complexity of Intersecting Regions Algorithm

We have provided an algorithm that takes advantage of sample configurations that lie in overlapping

regions, and we have shown that this algorithm produces a tour that is no longer than the previous best

algorithms in the literature. However, the size of the ATSP is increased by the number of multiple node

set duplicate nodes. Given m samples from n regions, this algorithm will compute the ATSP over at

most mn nodes. The worst case computational complexity of the Noon and Bean transformation [17]

121

Algorithms 2013, 6 94

is O(m2n4). Then the worst case complexity for solving the ATSP using the modified version of

Christofides’ algorithm provided in [22] is O(m3n3).

4. Numerical Results

In Theorem 3.4 we have shown that for the same sample set, IRA will perform no worse than the

resolution complete method from [15], but at the cost of solving a larger ATSP problem when there

exist samples that are contained in multiple regions. In this section, we use Monte Carlo simulation to

investigate the level of performance improvement that can be gained as well as the degree of increase in

the size of the resulting ATSP by using IRA compared with the RCM.

Figure 6. Simulation results for 100 Monte Carlo trials where both IRA and RCM optimized

over the same 50 sample poses. (a) The color represents the average of the ratio of the tour

length under IRA to the tour length under the RCM planning algorithm. Here the red regions

indicate near parity in performance while the blue regions indicate that IRA produced tours

that are approximately half the length of tours produced by the RCM algorithm; (b) The

color represents the average of the ratio of the size of the ATSP solved under IRA to the size

of the ATSP solved under the RCM planning algorithm. Here the blue regions indicate near

parity in size while the red regions indicate that IRA increased the size of the ATSP by as

much as four times.

5 10 15
0

1

2

3

4

5

6

Side Length of Bounding Box (m)

R
ad

iu
s

of
 C

irc
ul

ar
 R

eg
io

n
(m

)

0.4

0.5

0.6

0.7

0.8

0.9

1

(a)

5 10 15
0

1

2

3

4

5

6

Side Length of Bounding Box (m)

R
ad

iu
s

of
 C

irc
ul

ar
 R

eg
io

n
(m

)

1.5

2

2.5

3

3.5

4

(b)

The centers of circular regions of variable but homogeneous diameters are randomly placed in a

square of variable side length. By varying both the size of regions and the area in which the centers of

the regions are confined we are able to vary the degree of overlap. The turning radius of the UAV ρ is set

to unit radius. To solve for the tours we used the symmetric TSP solver linkern available at [23], which

uses the Chained Lin–Kernighan Heuristic from [24]. The radii of the circular regions were varied over

{0.5, 0.75, 1.00, . . . , 5.5}, and the length of the sides of the square were varied over {5, 5.5, . . . , 15}.

For the first test, we ran 100 trials where 10 regions were randomly placed in the bounding box and

50 samples were drawn from the boundaries of the regions. The results can be seen in Figure 6, where

the average ratio of the length of the tours found by the IRA to those found by RCM are displayed

122

Algorithms 2013, 6 95

for each test configuration (Figure 6(a)) as well as the average ratio of the size of the resulting ATSP

(Figure 6(b)). In a second test, we repeated the same test parameters where IRA optimized over 50

sample poses, but allowed the RCM to optimize over the same 50 samples plus an additional sample

for each duplicated node in the IRA. These extra samples ensured that both algorithms solved the same

size ATSP. The results can be seen in Figure 7, where the average ratio of the length of the tours found

by the IRA to those found by RCM are displayed for each test configuration. In both instances, it is

clear that for small regions and large bounding box (bottom right of plots), there is little to no overlap,

and the two algorithms perform equivalently. The tests of interest are when the regions grow, and the

bounding area shrinks (moving from bottom right to top left). For these cases we see that on average,

IRA finds tours that are nearly half the length of RCM. It should be noted that as the density increases,

there becomes a point where a single sample will be contained in all regions (the top left corner). In

this case, RCM would still visit n samples (one from each region) while IRA would only visit the single

sample contained in all regions. In practice there is no need for planning once it is recognized that a

single loiter circle will visit all the regions, thus both algorithms were assigned the length of one loiter

radius. It should also be noted that the size of the resulting ATSP is increased by only as much as 4×,

which is significantly less than the worst case analysis would predict (10×).

Figure 7. Simulation results for the where IRA optimized over 50 sample poses and RCM

optimized over the same 50 samples plus an additional sample for each duplicated node in

the IRA. These extra samples ensured that both algorithms solved the same size ATSP.

5 10 15
0

1

2

3

4

5

6

Side Length of Bounding Box (m)

R
ad

iu
s

of
 C

irc
ul

ar
 R

eg
io

n
(m

)

0.4

0.5

0.6

0.7

0.8

0.9

1

5. Demonstration

The algorithm presented here was demonstrated as part of a large field test conducted in June 2011 at

Camp Roberts, CA by a team consisting of Teledyne Scientific Company, the University of California,

123

Algorithms 2013, 6 96

Santa Barbara, the U.S. Army Research Laboratory, the U.S. Army Engineer Research and Development

Center, and IBM UK. The goal of the field test included the integration of multiple autonomously

controlled UAVs to gather information regarding the detection and localization of multiple acoustic

events by sparsely deployed ground sensors, and the use of the International Technology Alliance (ITA)

Sensor Network Fabric [25].

A schematic of the system used in the deployment is shown in Figure 8(a). We deployed six ToA

sensors over a region that was roughly 1.3 km × 0.5 km in size. We used GPS receivers at each sensor

to estimate their locations and synchronize them in time. Two propane cannons that have acoustic

characteristics similar to artillery were fired randomly and potentially close to one another in time.

A UAV traveled along a DTSPN tour produced by IRA, gathering ToAs and inferring possible event

locations. When the inference algorithm had sufficient confidence in a candidate event, it dispatched a

second UAV, fitted with a gimbaled camera, to fly over the estimated location and image the source. The

data gathering and event imaging was done continuously, with the events being imaged on a first come

first served basis.

Figure 8. The configuration of sensors and UAV trajectory during the field demonstration

at Camp Roberts, CA. (a) Field Demonstration Description. The acoustic sensors visited by

the data collecting UAV are shown as yellow dots; (b) The blue lines represent the GPS logs

of the path taken by data collecting UAV during the test. The desired path was sent to the

autopilot via the square waypoints. The sensors and communication regions are represented

by green and blue circles respectively.

(a)

124

Algorithms 2013, 6 97

Figure 8. Cont.

(b)

5.1. Modifications for the Demonstration

The Intersecting Regions Algorithm from above is designed as a path planning algorithm. If the

planned path is followed in an open-loop fashion, the system is susceptible to disturbances such as wind

and modeling errors. As such the IRS was modified slightly to be more robust to disturbances such as

wind as well as allow for waypoint control of the UAV. The first modification of the routing algorithm

reduced the size of the communication regions in the optimization to ensure that the resulting path would

penetrate the original communication region even under the influence of small disturbances. The second

modification involved sampling the desired path to obtain a finite sequence of waypoints to command to

the UAV autopilot.

The route flown by the mule-UAV and the communication regions used in the DTSPN path planning

algorithm are shown in Figure 9(b). It took on average two minutes and fifty seconds for the mule-UAV

to complete the circuit and collect measurements from all ground sensors. This time is conservative due

to the modifications to the algorithm that ensure that the UAV enters into each communication region

(radius = 200 m).

6. Conclusions

We have introduced an algorithm addressing the Dubins Traveling Salesman Problem with

Neighborhoods. This algorithm samples the regions and then utilizes the Noon and Bean

transformation [17] for intersecting node sets to transform the problem to an ATSP. We show that for

the same set of samples this method will produce a tour that is no longer than that of [15] and presented

numerical results that show performance improvement when there is overlap in the regions of interest.

125

Algorithms 2013, 6 98

There are many directions in which this work may be extended. Although we have focused on the

Dubins model for a fixed wing UAV, the IRA could be applied to any nonholonomic vehicle whose node

to node cost is well defined. Also, it is of interest to understand if a deterministic way to sample the

configurations would be of benefit in possibly reducing the number samples needed to achieve a certain

level of performance. For instance, if there is significant overlap, would it be beneficial to ensure that

at least one sample is taken from each subregion. Finally, for large instances of the DTSPN, we are

interested in comparing the performance of this method with direct GTSP solvers such as the memetic

algorithm due to Gutin and Karapetyan [18].

Acknowledgements

This work was supported by the Institute for Collaborative Biotechnologies through grant

W911NF-09-0001 from the U.S. Army Research Office. The content of the information does not

necessarily reflect the position or the policy of the Government, and no official endorsement should

be inferred.

References

1. Klein, D.J.; Schweikl, J.; Isaacs, J.T.; Hespanha, J.P. On UAV Routing Protocols for Sparse Sensor

Data Exfiltration. In Proceedings of the American Control Conference, Baltimore, Maryland, USA,

30 June–2 July 2010; pp. 6494–6500.

2. Bopardikar, S.D.; Smith, S.L.; Bullo, F.; Hespanha, J.P. Dynamic vehicle routing for translating

demands: Stability analysis and receding-horizon policies. IEEE Trans. Autom. Control 2010,

55, 2554–2569.

3. Dubins, L.E. On curves of minimal length with a constraint on average curvature, and with

prescribed initial and terminal positions and tangents. Am. J. Math. 1957, 79, 497–516.

4. Boissonnat, J.D.; Cérézo, A.; Leblond, J. Shortest paths of bounded curvature in the plane. J.
Intell. Robot. Syst. 1994, 11, 5–20.

5. Shkel, A.M.; Lumelsky, V. Classification of the Dubins set. Robot. Auton. Syst. 2001, 34, 179–202.

6. Le Ny, J.; Frazzoli, E.; Feron, E. The Curvature-constrained Traveling Salesman Problem for High

Point Densities. In Proceedings of the IEEE Conference on Decision and Control, New Orleans,

Louisiana, USA, 12–14 December 2007; pp. 5985–5990.

7. Le Ny, J.; Feron, E.; Frazzoli, E. On the curvature-constrained traveling salesman problem. IEEE
Trans. Autom. Control, in press.

8. Savla, K.; Frazzoli, E.; Bullo, F. Traveling salesperson problems for the Dubins vehicle. IEEE
Trans. Autom. Control 2008, 53, 1378–1391.

9. Ma, X.; Castanon, D. Receding Horizon Planning for Dubins Traveling Salesman Problems. In

Proceedings of the IEEE Conference on Decision and Control, San Diego, California, USA, 13–15

December 2006; pp. 5453–5458.

10. Rathinam, S.; Sengupta, R.; Darbha, S. A resource allocation algorithm for multiple vehicle

systems with non-holnomic constraints. IEEE Trans. Autom. Sci. Eng. 2007, 4, 98–104.

126

Algorithms 2013, 6 99

11. Dumitrescu, A.; Mitchell, J.S.B. Approximation algorithms for TSP with neighborhoods in the

plane. J. Algorithm. 2003, 48, 135–159.

12. Elbassioni, K.; Fishkin, A.V.; Mustafa, N.H.; Sitters, R. Approximation Algorithms for Euclidean

Group TSP. In Proceedings of the International Colloquim on Automata, Languages and
Programming, Lisbon, Portugal, 11–15 July 2005; pp. 1115–1126.

13. Yuan, B.; Orlowska, M.; Sadiq, S. On the optimal robot routing problem in wireless sensor

networks. IEEE Trans. Knowl. Data Eng. 2007, 19, 1252–1261.

14. Obermeyer, K.J. Path Planning for a UAV Performing Reconnaissance of Static Ground Targets in

Terrain. In Proceedings of the AIAA Conference on Guidance, Navigation, and Control, Chicago,

Illinois, USA, 10–13 August 2009.

15. Obermeyer, K.J.; Oberlin, P.; Darbha, S. Sampling-Based Roadmap Methods for a Visual

Reconnaissance UAV. In Proceedings of the AIAA Conference on Guidance, Navigation, and
Control, Toronto, Ontario, Canada, 2–5 August 2010.

16. Noon, C.E.; Bean, J.C. An Efficient Transformation of the Generalized Traveling Salesman
Problem; Technical Report 91–26; Department of Industrial and Operations Engineering,

University of Michigan: Ann Arbor, MI, USA, 1991.

17. Noon, C.E.; Bean, J.C. An Efficient Transformation of the Generalized Traveling Salesman
Problem; Technical Report 89–36; Department of Industrial and Operations Engineering,

University of Michigan: Ann Arbor, MI, USA, 1989.

18. Gutin, G.; Karapetyan, D. A memetic algorithm for the generalized traveling salesman problem.

Nat. Comput. 2010, 9, 47–60.

19. Ben-Arieh, D.; Gutin, G.; Penn, M.; Yeo, A.; Zverovitch, A. Transformations of generalized ATSP

into ATSP. Oper. Res. Lett. 2003, 31, 357–365.

20. Yadlapalli, S.; Malik, W.A.; Rathinam, S.; Darbha, S. A Lagrangian-based Algorithm for a

Combinatorial Motion Planning Problems. In Proceedings of the IEEE Conference on Decision
and Control, New Orleans, Louisiana, USA, 12–14 December 2007; pp. 5979–5984.

21. Halton, J.H. On the efficiency of certain quasi-random sequences of points in evaluating multi-

dimensional integrals. Numer. Math. 1960, 2, 84–90.

22. Frieze, A.; Galbiati, G.; Maffioli, F. On the worst-case performance of some algorithms for the

asymmetric traveling salesman problem. Networks 1982, 12, 23–39.

23. Applegate, D.; Bixby, R.; Chvátal, V.; Cook, W. Concorde TSP Solver. Available online:

http//www.tsp.gatech.edu/concorde (accessed on 9 July 2010).

24. Applegate, D.; Cook, W.; Rohe, A. Chained lin-kernighan for large traveling salesman problems.

INFORMS J. Comput. 2003, 15, 82–92.

25. Bergamaschi, F.; Conway-Jones, D. ITA/CWP and ICB Technology Demonstrator: A Practical

Integration of Disparate ISR/ISTAR Assets and Technologies. In Proceedings of SPIE, Baltimore,

Maryland, USA, 23–26 April 2012; Volume 8389, p. 83890G.

© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article

distributed under the terms and conditions of the Creative Commons Attribution license

(http://creativecommons.org/licenses/by/3.0/).

127

Algorithms 2013, 6, 100-118; doi:10.3390/a6010100
OPEN ACCESS

algorithms
ISSN 1999-4893

www.mdpi.com/journal/algorithms

Article

Computing the Eccentricity Distribution of Large Graphs
Frank W. Takes * and Walter A. Kosters

Leiden Institute of Advanced Computer Science, Leiden University, P.O. Box 9512, 2300 RA Leiden,

The Netherlands

* Author to whom correspondence should be addressed; E-Mail: ftakes@liacs.nl;

Tel.: +31-0-71-5277143; Fax: +31-0-71-5276985.

Received: 1 November 2012; in revised form: 24 January 2013 / Accepted: 31 January 2013 /
Published: 18 February 2013

Abstract: The eccentricity of a node in a graph is defined as the length of a longest shortest

path starting at that node. The eccentricity distribution over all nodes is a relevant descriptive

property of the graph, and its extreme values allow the derivation of measures such as the

radius, diameter, center and periphery of the graph. This paper describes two new methods

for computing the eccentricity distribution of large graphs such as social networks, web

graphs, biological networks and routing networks. We first propose an exact algorithm based

on eccentricity lower and upper bounds, which achieves significant speedups compared to the

straightforward algorithm when computing both the extreme values of the distribution as well

as the eccentricity distribution as a whole. The second algorithm that we describe is a hybrid

strategy that combines the exact approach with an efficient sampling technique in order to

obtain an even larger speedup on the computation of the entire eccentricity distribution. We

perform an extensive set of experiments on a number of large graphs in order to measure

and compare the performance of our algorithms, and demonstrate how we can efficiently

compute the eccentricity distribution of various large real-world graphs.

Keywords: graphs; eccentricity; diameter; radius; periphery; center

Classification: MSC 05C85, 05C12

128

Algorithms 2013, 6 101

1. Introduction

Within the field of graph mining, researchers are often interested in deriving properties that describe

the structure of their graphs. One of these properties is the eccentricity distribution, which describes the

distribution of the eccentricity over all nodes, where the eccentricity of a node refers to the length of a

longest shortest path starting at that node. This distribution differs from properties such as the distance

distribution in the sense that eccentricity can be seen as a more “extreme” measure of distance. It also

differs from indicators such as the degree distribution in the sense that determining the eccentricity of

every node in the graph is computationally expensive: the traditional method computes the eccentricity

of each node by running an All Pairs Shortest Path (APSP) algorithm, requiring O(mn) time for a graph

with n nodes and m edges. Unfortunately, this approach is too time-consuming if we consider large

graphs with possibly millions of nodes.

The aforementioned complexity issues are frequently solved by determining the eccentricity of a

random subset of the nodes in the original graph, and then deriving the eccentricity distribution from

the obtained values [1]. While such an estimate may seem reasonable when the goal is to determine

the overall average eccentricity value, we will show that this technique does not perform well when the

actual extreme values of the distribution are of relevance. The nodes with the highest eccentricity values

realize the diameter of the graph and form the so-called graph periphery, whereas the nodes with the

lowest values realize the radius and form the center of the graph, and finding exactly these nodes can be

useful within various application areas.

In routing networks, for example, it is interesting to know exactly which nodes form the periphery

of the network and thus have the highest worst-case response time to any other device [2]. Also, when

(routing) networks are modeled, for example for research purposes, it is important to measure the exact

eccentricity distribution so that the model can be evaluated by comparing it with the distribution of real

routing networks [3]. The eccentricity also plays a role in networks that model some biological system.

There, proteins (nodes in the network) that have a low eccentricity value are easily functionally reachable

by other components of the network [4]. The diameter, defined as the length of a longest shortest path,

is the most frequently studied eccentricity-based measure, and efficient algorithms for its computation

have been suggested in [5–7].

Generally speaking, the eccentricity can be seen as an extreme measure of centrality, i.e., the relative

importance of a node in a graph. Centroid centrality [8] and graph centrality [9] have been suggested as

centrality measures based on the eccentricity of a node. Compared to other measures such as closeness

centrality, the main difference is that a node with a very low eccentricity value is relatively close to

every other node, whereas a node with a low closeness centrality value is close to all the other nodes

on average.

In this paper we first discuss an algorithm based on eccentricity lower and upper bounds for

determining the exact eccentricity of every node of a graph. We also present a useful pruning strategy,

and show how our method significantly improves upon the traditional algorithm. To realize an even larger

speedup, we propose to incorporate a sampling technique on a specific set of nodes in the graph which

allows us to obtain the eccentricity distribution much faster, while still ensuring a high accuracy on the

129

Algorithms 2013, 6 102

eccentricity distribution, and an exact result for the eccentricity-based graph properties such as the radius

and diameter.

The rest of this paper is organized as follows. We consider some notation and formulate the main

problems addressed in this paper in Section 2, after which we cover related work in Section 3. Section 4

describes an exact algorithm for determining the eccentricity distribution. In Section 5, we explain how

sampling can be incorporated. Results of applying our methods to various large datasets are presented in

Section 6, and finally Section 7 summarizes the paper and offers suggestions for future work.

2. Preliminaries

We consider graphs G(V,E), where V is the set of |V | = n vertices (nodes) and E ⊆ V ×V is the set

of |E| = m edges (also called arcs or links). The distance d(v, w) between two nodes v, w ∈ V is defined

as the length of a shortest path from v to w, i.e., the minimum number of edges that have to be traversed

to get from v to w. We assume that our graphs are undirected, meaning that (v, w) ∈ E iff (w, v) ∈ E

and thus d(v, w) = d(w, v) for all v, w ∈ V . Note that each edge (v, w) is thus included twice in E: once

as a link from v to w and once as a link from w to v. We will also assume that G is connected, meaning

that d(v, w) is always finite. Furthermore it is assumed that there are no parallel edges and no loops

linking a node to itself. The neighborhood N(v) of a node v is defined as the set of all nodes connected

to v via an edge: N(v) = {w ∈ V | (v, w) ∈ E}. The degree deg(v) of a node v can then be defined as

the number of nodes connected to that node, i.e., its neighborhood size: deg(v) = |N(v)|.
The eccentricity ε(v) of a node v ∈ V is defined as the length of a longest shortest path from v

to any other node: ε(v) = maxw∈V d(v, w). The eccentricity distribution counts the frequency f(x) of

each eccentricity value x, and can easily be derived when the eccentricity of each node in the graph is

known. The relative eccentricity distribution lists for each eccentricity value x its relative frequency

F (x) = f(x)/n, normalizing for the number of nodes in the graph. Figure 1 shows the relative

eccentricity distributions of a number of large graphs (for a detailed description of these datasets, see

Section 6.1).

Figure 1. Relative eccentricity distributions of various large graphs.

10-5

10-4

10-3

10-2

10-1

100

 6 8 10 12 14 16

re
la

tiv
e

fr
eq

ue
nc

y

eccentricity value

CA-HepPh
cit-HepPh
cit-HepTh

email-Enron
facebook

130

Algorithms 2013, 6 103

Various other measures can be derived using the notion of eccentricity, such as the average
eccentricity ε(G) of a graph G, defined as ε(G) = 1

n

∑
v∈V ε(v). Another related measure is the

diameter Δ(G) of a graph G, which is is defined as the maximum eccentricity over all nodes in the

graph: Δ(G) = maxv∈V ε(v). Similarly, we define the radius Γ(G) of a graph G as the minimum

eccentricity over all nodes in the graph: Γ(G) = minv∈V ε(v). The graph center C(G) refers to the set

of nodes with an eccentricity equal to the radius, C(G) = {v ∈ V | ε(v) = Γ(G)}. Similarly, the graph

periphery D(G) is defined as the set of nodes with an eccentricity value equal to the diameter of the

graph: D(G) = {v ∈ V | ε(v) = Δ(G)}. Each of the measures explained above can be derived when

the eccentricity of all nodes is known. Figure 2 shows an example of a graph that explains the different

measures covered in this section.

Figure 2. Toy graph showing the eccentricity of its 12 nodes, with average eccentricity 4.67,

radius 3 realized by center node G, and diameter 6 realized by periphery nodes D, E and L.

A B DC

E F HG

I J LK

5
4 4

6

53
4

6

5 4 4 6

Computing the eccentricity of one node can be done by running Dijkstra’s algorithm, and returning

the largest distance found (i.e., the distance to a node furthest away from the starting node). Because

we only consider unweighted graphs and thus, starting from the current node, can simply explore the

neighboring nodes in level-order, computing the eccentricity of one node can be done in O(m) time. The

process of determining the eccentricity of one node v is denoted by ECCENTRICITY(v) in Algorithm 1.

Algorithm 1 NAIVEECCENTRICITIES

1: Input: Graph G(V,E)

2: Output: Vector ε, containing ε(v) for all v ∈ V

3: for v ∈ V do
4: ε[v] ← ECCENTRICITY(v) // O(m)

5: end for

6: return ε

This algorithm simply computes the eccentricity for each of the n nodes, resulting in an overall

complexity of O(mn) to determine the eccentricity of every node in the graph. Clearly, in graphs with

millions of nodes and possibly hundreds of millions of edges, this approach is too time-consuming. The

rest of this paper describes more efficient approaches for determining the eccentricity distribution, where

we are interested in two things:

131

Algorithms 2013, 6 104

• The (relative) eccentricity distribution as a whole.

• Finding the extreme values of the eccentricity distribution, i.e., the radius and diameter, as well as

derived measures such as the center and periphery of the graph.

We will address these issues by answering the following two questions:

• How can we obtain the exact eccentricity distribution by efficiently computing the exact value of

ε(v) for all nodes v ∈ V ? (Section 4)

• How can we obtain an accurate approximation of the eccentricity distribution by using a sampling

technique? (Section 5)

3. Related Work

Substantial work on the eccentricity distribution dates back to 1975, when the term “eccentric

sequence” was introduced to denote the sequence that counts the frequency of each eccentricity

value [10]. The facility location problem is an example of the usefulness of eccentricity as a measure

of centrality. When considering the placement of emergency facilities such as a hospital or fire station,

assuming the map is modelled as a graph, the node with the lowest eccentricity value might be a good

location for such a facility. In other situations, for example for the placement of a shopping center, a

related measure called closeness centrality, defined as a node’s average distance to every other node

(c(v) = 1
n

∑
w∈V d(v, w)), is more suitable. Generally speaking, the eccentricity is a relevant measure

when some strict criterion (the firetruck has to be able to reach every location within 10 minutes) has

to be met [11]. An application of eccentricity as a measure on a larger scale is the network routing

graph, where the eccentricity of a node says something about the worst-case response time between one

machine and all other machines.

The most well-known eccentricity-based measure is the diameter, which has been extensively

investigated in [5–7]. Several measures related to the eccentricity and diameter have also been

considered. Kang et al. [12] study the effective radius, which they define as the 90th-percentile of all the

shortest distances from a node. In a similar way, the effective diameter can be defined, which is shown to

be decreasing over time for many large real-world graphs [13]. Each of these measures is computed by

using an approximation algorithm [14] to determine the neighborhood of a node, a technique on which

we will elaborate in Section 5.3.

To the best of our knowledge, there are no efficient techniques that have been specifically designed

to determine the exact eccentricity distribution of a graph. Obviously, the naive approach, for example

as suggested in [15], is too time-consuming. Efficient approaches for solving the APSP problem (which

then makes determining the eccentricity distribution a trivial task) have been developed, for example

using matrix multiplication [16]. Unfortunately, such approaches are still too complex in terms of time

and memory requirements.

4. Exact Algorithm

In order to derive an algorithm that can compute the eccentricity of all n nodes in a graph faster than

simply recomputing the eccentricity n times (once for each node in the graph), we have two options:

132

Algorithms 2013, 6 105

1. Reduce the size of the graph as a whole to speed up one eccentricity computation.

2. Reduce the number of eccentricity computations.

In this section we propose lower and upper bounds on the eccentricity, a strategy that accommodates the

second type of speedup. We will also outline a pruning strategy that helps to reduce both the number of

nodes that have to be investigated, as well as the size of the graph, realizing both of the two speedups

listed above.

4.1. Eccentricity Bounds

We propose to use the following bounds on the eccentricity of all nodes w ∈ V , when the eccentricity

of one node v ∈ V has been computed:

Observation 1 For nodes v, w ∈ V we have max(ε(v)− d(v, w), d(v, w)) ≤ ε(w) ≤ ε(v) + d(v, w).

The upper bound can be understood as follows: if node w is at distance d(v, w) from node v, it can always

employ v to get to every other node in ε(v) steps. To get to node v, exactly d(v, w) steps are needed,

totalling ε(v) + d(v, w) steps to get to any other node. The first part of the lower bound (ε(v)− d(v, w))

can be derived in the same way, by interchanging v and w in the previous statement. The second part of

the lower bound, d(v, w) itself, simply states that the eccentricity of w is at least equal to some found

distance to w.

The bounds from Observation 1 were suggested in [6] as a way to determine which nodes could

contribute to a graph’s diameter. We extend the method proposed in that paper by using these bounds to

compute the full eccentricity distribution of the graph. The approach is outlined in Algorithm 2.

First, the candidate set W and the lower and upper eccentricity bounds are initialized (lines 3–8).

In the main loop of the algorithm, a node v is repeatedly selected (line 10) from W , its eccentricity is

determined (line 11), and finally all candidate nodes are updated (line 12–19) according to Observation 1.

Note that the value of d(v, w) which is used in the updating process does not have to be computed, as

it is already known because it was calculated for all w during the computation of the eccentricity of v.

If the lower and upper eccentricity bounds for a node have become equal, then the eccentricity of that

node has been derived and it is removed from W (lines 15–18). Algorithm 2 returns a vector containing

the exact eccentricity value of each node. Counting the number of occurrences of each eccentricity value

results in the eccentricity distribution.

An overview of possible selection strategies for the function SELECTFROM can be found in [6]. In

line with results presented in that work, we found that when determining the eccentricity distribution,

interchanging the selection of a node with a small lower bound and a node with a large upper bound,

breaking ties by taking a node with the highest degree, yielded by far the best results. As described

in [6], examples of graphs in which this algorithm would definitely not work are complete graphs and

circle-shaped graphs. However, most real-world graphs adhere to the small world property [17], and in

these graphs the eccentricity distribution is sufficiently diverse so that the eccentricity lower and upper

bounds can effectively be utilized.

133

Algorithms 2013, 6 106

Algorithm 2 BOUNDINGECCENTRICITIES

1: Input: Graph G(V,E)

2: Output: Vector ε, containing ε(v) for all v ∈ V

3: W ← V

4: for w ∈ W do
5: ε[w] ← 0 εL[w] ← −∞ εU [w] ← +∞
6: end for

7: while W �= ∅ do
8: v ← SELECTFROM(W)

9: ε[v] ← ECCENTRICITY(v)

10: for w ∈ W do
11: εL[w] ← max(εL[w],max(ε[v]− d(v, w), d(v, w)))

12: εU [w] ← min(εU [w], ε[v] + d(v, w))

13: if (εL[w] = εU [w]) then
14: ε[w] ← εL[w]

15: W ← W − {w}
16: end if
17: end for
18: end while

19: return ε

Figure 3. Eccentricity bounds of the toy graph in Figure 2 after subsequently computing the

eccentricity of node G (left) and node E (right).

A B DC

E F HG

I J LK

2|5
2|4 2|4

3|6

2|53|3
2|4

3|6

2|5 2|4 2|4 3|6

A B DC

E F HG

I J LK

3|5
3|4 4|4

6|6

5|53|3
4|4

6|6

5|5 4|4 4|4 6|6

As an example of the usefulness of the bounds suggested in this section, consider the problem of

determining the eccentricities of the nodes of the toy graph from Figure 2. If we compute the eccentricity

of node G, which is 3, then we can derive bounds 2|4 for the nodes at distance 1 (B, C, F, J and K), 2|5
for the nodes at distance 2 (A, H and I) and 3|6 for the nodes at distance 3 (D, E and L), as depicted by

the left graph in Figure 3. If we then compute the eccentricity of node E, which is 6, we derive bounds

5|7 for node I, 4|8 for node F, 3|9 for nodes A, B and G, 4|10 for nodes C, J and K, 5|11 for node K,

and 6|12 for nodes D and L. If we combine these bounds for each of the nodes, then we find that lower

and upper bounds for a large number of nodes have become equal: 4|4 for C, F, J and K, 5|5 for H and

134

Algorithms 2013, 6 107

I, and 6|6 for D and L, as shown by the right graph in Figure 3. Finally, computing the eccentricity of

nodes A and B results in a total of 4 real eccentricity calculations to compute the complete eccentricity

distribution, which is a speedup of 3 compared to the naive algorithm, which would simply compute the

eccentricity for all 12 nodes in the graph.

To give a first idea of the performance of the algorithm on large graphs, Figure 4 shows the number of

iterations (vertical axis) that are needed to compute the eccentricity of all nodes with given eccentricity

value (horizontal axis) for a number of large graphs (for a description of the datasets, see Section 6.1). We

can clearly see that especially for the extreme values of the eccentricity distribution, very few iterations

are needed to compute all of these eccentricity values, whereas many more iterations are needed to derive

the values in between the extreme values.

Figure 4. Eccentricity values (horizontal axis) vs. number of iterations to compute the

eccentricity of all nodes with this eccentricity value (vertical axis).

101

102

103

104

 5 10 15 20 25

ite
ra

tio
ns

eccentricity value

CA-HepPh
cit-HepPh
facebook

flickr
itdk0304-rlinks

4.2. Pruning

In this subsection we introduce a pruning strategy, which is based on the following observation:

Observation 2 Assume that n > 2. For a given v ∈ V , all nodes w ∈ N(v) with deg(w) = 1 have
ε(w) = ε(v) + 1.

Node w is only connected to node v, and will thus need node v to reach every other node in the graph.

If node v can do this in ε(v) steps, then node w can do this is in exactly ε(v) + 1 steps. The restriction

n > 2 on the graph size excludes the case in which the graph consists of v and w only.

All interesting real-world graphs have more than two nodes, making Observation 2 applicable in our

algorithm, as suggested in [6]. For every node v ∈ V we can determine if v has neighbors w with

deg(w) = 1. If so, we can prune all but one of these neighbors, as their eccentricity will be equal,

because they all employ v to get to any other node. In Figure 2, node G has two neighbors with degree

one, namely J and K. According to Observation 2, the eccentricity values of these two nodes are equal to

ε(J) = ε(K) = ε(G) + 1 = 4. The same argument holds for nodes D and L with respect to node H. We

expect that Observation 2 can be applied quite often, as many of the graphs that are nowadays studied

135

Algorithms 2013, 6 108

have a power law degree distribution [18], meaning that there are many nodes with a very low degree

(such as a degree of 1).

Observation 2 can be beneficial to our algorithm in two ways. First, when computing the eccentricity

of a single node, the pruned nodes can be ignored in the shortest path algorithm. Second, when the

eccentricity of a node v has been computed (line 11 of Algorithm 2), and this node has adjacent nodes w

with deg(w) = 1, then the eccentricity of these nodes w can be set to ε(w) = ε(v) + 1.

5. Sampling

Sampling is a technique in which a subset of the original dataset is evaluated in order to estimate (the

distribution of) characteristics of the (elements in the) complete dataset, with faster computation as one

of the main advantages. In this section we first discuss the use of sampling to determine the eccentricity

distribution in Section 5.1. We focus on situations where we not only want to estimate the distribution

of the eccentricity values, but also want to assess some parts of it (the extreme values) with higher

reliability. For that purpose we propose a hybrid technique to determine the eccentricity distribution by

that combines the exact approach from Section 4 with non-random sampling in Section 5.2. Finally in

Section 5.3 we consider an adaptation of an existing approximation approach from literature.

5.1. Random Node Selection

If we want to apply sampling to the naive algorithm for obtaining the eccentricity distribution, we

could choose to evaluate only a subset of size n′ of the original n nodes, and multiply the values of the

sampled eccentricity distribution by a factor n/n′ to get an idea of the real eccentricity distribution, a

process referred to as random node selection. Indeed, taking only a subset of the nodes would clearly

speed up the computation of the eccentricity distribution and realize the second type of speedup discussed

in Section 4. The trade-off here is that we no longer obtain the exact eccentricity distribution, but only

get an approximation. The main question is then whether or not this approximation is representative of

the original distribution. The effectiveness of sampling by random node selection with respect to various

graph properties has been demonstrated in [19]. Using similar arguments as presented in [20,21], the

absolute error can be assessed; indeed, when the chosen sampling subset is sufficiently large, the error is

effectively bounded.

However, there are situations where we are not interested in minimizing the absolute error, but in

minimizing the relative standard deviation (i.e., the absolute standard deviation divided by the mean)

of the distribution of a particular eccentricity value. This especially makes sense when each eccentricity

value is of equal importance, which might be the case when the extreme values of the distribution that are

realizing the radius and diameter are of relevance. Let us consider an example. The real exact eccentricity

distribution over all nodes in the ENRON dataset [22] is as follows:

ε(v) 7 8 9 10 11 12 13

f(ε(v)) 24 12 210 17 051 3 647 485 44 11

136

Algorithms 2013, 6 109

Figure 5 shows the relative standard deviation for each eccentricity value for different sample sizes

(1%, 2%, 5%, 10%, and 20%). For each sample size, we took 100 random samples to average the result.

We note that low relative standard deviations can be observed for the more common eccentricity values

(in this case, 8, 9 and 10). However, the standard deviation is quite large for the extreme values, meaning

that on many occasions, the sample did not correctly reflect the frequency of that particular eccentricity

value. Indeed, if only 11 out of 33,696 nodes (0.03%) have a particular eccentricity value (in this case, a

value of 13), we need a sample size of at least 100%/11 = 9% if we want to expect just one node with

that particular eccentricity value. Even with a large sample size of 20%, the standard deviation for the

extreme value of 13 is very high (0.63). For sample sizes of 1% or 2%, the eccentricity value of 13, that

exists in the real distribution, was never even found. Similar events were observed for our other datasets,

which is not surprising: the eccentricity distributions are tailed on the extremes, and these tails are likely

to be left out in a sample. So clearly sampling does not suffice when extreme values of the eccentricity

distribution have to be found, because such extreme values are simply too rare. However, for the more

common eccentricity values, errors are very low, even for small sample sizes.

Figure 5. Relative standard deviation (vertical axis) vs. eccentricity value (horizontal axis)

for different random sample sizes of the ENRON dataset.

 0.01

 0.1

 1

 6 8 10 12 14

re
la

tiv
e

st
an

da
rd

 d
ev

ia
tio

n

eccentricity

1% sample
2% sample
5% sample

10% sample
20% sample

5.2. Hybrid Algorithm

From Figures 4,5 we can conclude that the exact approach is able to quickly derive the more extreme

values of the eccentricity distribution, whereas a sampling technique is able to approximate the values

in between the extremes with a very low error. Therefore we propose to combine the two approaches

in order to quickly converge to an accurate estimation of the eccentricity distribution using a hybrid
approach. This technique assumes that the eccentricity distribution has a somewhat unimodal shape,

which is the case for all real-world graphs that we have investigated.

The sampling window consists of bounding variables � and r that denote between which eccentricity

values the algorithm is going to use the sampling technique. This window obviously depends on the

distribution itself, which is not known until the exact algorithm has finished. Therefore we propose to set

the value of � and r dynamically, i.e., � = minv∈V εL[v] and r = maxv∈V εU [v]. We furthermore change

the stopping criterion in line 9 of Algorithm 2 to “while |{w ∈ W | εL[w] = � or εU [w] = r}| > 0 do”.

137

Algorithms 2013, 6 110

This means that the algorithm should stop when there are no more candidates that are potentially part of

the center or the periphery of the graph. Note that these bounds apply to the candidate set W , but use

information about all nodes V , ensuring that at least the center and periphery are known before the exact

phase is terminated. When the exact algorithm has done its job, it can tighten � and r even further, based

on the eccentricity of the remaining candidate nodes: � = minv∈W εL[v]− 1 and r = maxv∈W εU [v] + 1.

After this, � and r become static, and the rest of the eccentricity distribution will be derived by using

the sampling approach outlined in Algorithm 3. We will refer to the adjusted version of Algorithm 2 as

BOUNDINGECCENTRICITIESLR.

Algorithm 3 HYBRIDECCENTRICITIES

1: Input: Graph G(V,E) and sampling rate q

2: Output: Vector f , containing the eccentricity distribution of G, initialized to 0

3: ε′ ← BOUNDINGECCENTRICITIESLR(G, �, r)

4: Z ← ∅
5: for v ∈ V do
6: if ε′[v] �= 0 and (ε′[v] ≤ � or ε′[v] ≥ r) then
7: f [ε′[v]] ← f [ε′[v]] + 1

8: else
9: Z ← Z ∪ {v}

10: end if
11: end for

12: for i ← 1 to n · q do
13: v ← RANDOMFROM(Z)

14: ε[v] ← ECCENTRICITY(v)

15: f [ε[v]] ← f [ε[v]] + (1/q)

16: Z ← Z − {v}
17: end for

18: return f

Compared to Algorithm 2, the difference in terms of input is that the hybrid algorithm given in

Algorithm 3 takes as input both the original graph and a sampling rate q between 0 and 1, where q = 0.10

means that 10% of the nodes have to be sampled. In Section 6 we will perform experiments to determine

how q should be set. The result vector f holds the eccentricity distribution and is initialized based on the

exact eccentricity values ε′ for values outside the sampling window (line 7). Nodes for which the exact

eccentricity is not yet known are added to the candidate set Z (line 9). In lines 12–17, the eccentricity

of a total of n · q random nodes are calculated, and if this value lies within the specified window, the

frequency of this eccentricity value is increased proportionally to the sample size. Finally, the eccentricity

distribution f is returned.

138

Algorithms 2013, 6 111

5.3. Neighborhood Approximation

State of the art algorithms for computing the neighborhood function have been introduced

in [12,14,23]. These algorithms can be adjusted as follows to also approximate the eccentricities. For

an integer h > 0, the normalized size of the neighborhood Nh(u) of a node u can be defined as:

Nh(u) =
1

n− 1
| {v ∈ V | 0 < d(u, v) ≤ h} |

If we determine the value of Nh(u) for increasing values of h, then the eccentricity ε(u) is the

smallest h such that the approximated value of Nh(u) is sufficiently close to 1 or does not change in

successive iterations.

We have used the Approximate Neighborhood Function (ANF) [14] algorithm by Palmer et al. in

order to approximate Nh(u) (by using the C source code available at the author’s website). Figure 6

shows the actual relative eccentricity distribution of the ENRON dataset, as well as the distribution that

was approximated using the ANF-based approach. As ANF gives an approximate result, we averaged

the result of 100 runs. We note that although the distribution shapes are very similar, ANF clearly

underestimates the eccentricity values. We furthermore mention that the obtained distribution is clearly

an approximation: a real eccentricity distribution would never have eccentricity values for which the

smallest and largest value differ more than a factor of 2. Similar results were observed for other datasets,

which leads us to believe that these approximation algorithms are not suitable for determining the

eccentricity distribution, especially because they fail at assessing the extreme values of the distribution.

Figure 6. Exact and approximated relative eccentricity distribution of the ENRON dataset.

10-5

10-4

10-3

10-2

10-1

100

 2 4 6 8 10 12 14

re
la

tiv
e

fr
eq

ue
nc

y

eccentricity value

Exact
ANF

6. Experiments

In this section we will use a number of large real-world datasets to assess the performance of both

the exact algorithm from Section 4 and the hybrid algorithm from Section 5. The performance of our

algorithms is measured by comparing the number of iterations and thus is independent of the hardware

and software that were used for the implementation.

139

Algorithms 2013, 6 112

6.1. Datasets

We use a variety of network datasets, of which the name, type and source are listed in the first three

columns of Table 1. The set of graphs covers a broad range of network types, including citation networks,

collaboration networks, communication networks, peer-to-peer networks, protein-protein interaction

networks, router topology networks, social networks and webgraphs. We will only consider the largest

connected component of each graph, which is always the vast majority of the original graph. We also

mention that some directed graphs have been interpreted as if they were undirected, and that self-edges

and parallel edges are ignored. These factors may cause minor differences between the number of nodes

and edges that we present here, and the numbers presented in the source papers. In Table 1 we also

present for each dataset the exact average eccentricity ε(G), radius Γ(G), diameter Δ(G) and center and

periphery sizes |C(G)| and |D(G)|. For a more detailed description of these graphs, we refer the reader

to the source papers in which the datasets were introduced.

Looking at the exact eccentricity distributions that we were able to compute, we can conclude

that the distribution is not perfectly Gaussian as [32] suggests, but does appear to be unimodal. The

distribution appears to be somewhat “tailed”; a positive skew is noticeable in Figure 1, which shows the

relative eccentricity distribution of a number of graphs. The tail also becomes clear when comparing the

average eccentricity value ε(G) with the radius and diameter of the graph: for every dataset, the average

eccentricity is closer to the radius. For example, for the CIT-HEPTH dataset with radius 8 and diameter

15, the average eccentricity is equal to 10.14.

Table 1. Number of nodes, edges, average eccentricity, radius, diameter, center size and

periphery size of our datasets.

Dataset Type Source Nodes Edges ε(G) Γ(G) Δ(G) |C(G)| |D(G)|
YEAST protein [24] 1 846 4 406 13.28 11 19 48 4

CA-HEPTH collab. [25] 8 638 49 612 12.53 10 18 74 4

CA-HEPPH collab. [25] 11 204 235 238 9.40 7 13 12 17

DIP20090126 protein [26] 19 928 82 406 22.01 15 30 1 2

CA-CONDMAT collab. [13] 21 363 182 572 10.58 8 15 6 11

CIT-HEPTH citation [13] 27 400 704 042 10.14 8 15 4 4

ENRON commun. [22] 33 696 361 622 8.77 7 13 248 11

CIT-HEPPH citation [13] 34 401 841 568 9.18 7 14 1 2

SLASHDOT commun. [27] 51 083 243 780 11.66 9 17 7 3

P2P-GNUTELLA peer-to-peer [25] 62 561 295 756 8.94 7 11 55 118

FACEBOOK social [28] 63 392 1 633 772 9.96 8 15 168 7

EPINIONS social [29] 75 877 811 478 9.74 8 15 614 6

SOC-SLASHDOT social [30] 82 168 1 008 460 8.91 7 13 484 3

ITDK0304-RLINKS router [26] 190 914 1 215 220 17.09 14 26 155 7

WEB-STANFORD webgraph [30] 255 265 3 883 852 106.49 82 164 1 3

WEB-NOTREDAME webgraph [31] 325 729 2 180 216 27.76 23 46 12 172

DBLP20080824 collab. [26] 511 163 3 742 140 14.79 12 22 72 9

EU-2005 webgraph [26] 862 664 37 467 426 14.03 11 21 3 4

FLICKR social [28] 1 624 992 30 953 670 15.03 12 24 17 3

AS-SKITTER router [13] 1 694 616 22 188 418 21.22 16 31 5 2

140

Algorithms 2013, 6 113

6.2. Exact Algorithm

In order to determine the performance of the exact algorithm (Algorithm 2), we can count the number

of shortest path computations that are needed to obtain the full distribution, and compare this value to

n, the number of iterations performed by the naive algorithm (Algorithm 1). The number of iterations

performed by our exact algorithm is displayed in the fourth column of Table 2, followed by the speedup

factor compared to the naive algorithm. We note that significant speedups can be observed in terms of

the number of iterations, especially for datasets for which the eccentricity distribution is wide, i.e., the

difference between the radius and diameter is very large. We believe that this is due to the fact that

the nodes that form the periphery of the network are sufficiently eccentric to have a large influence on

the more central nodes, so that their lower and upper eccentricity bounds can very quickly be fixed by

the bounding technique. We mention that the performance of our exact algorithm does not appear to be

directly related to the number of nodes. The reduction in terms of the number of nodes as a result of

our pruning strategy (see Section 4.2) is displayed in the column labeled “Pruned”, and is diverse, yet

sometimes very significant (anywhere between 1% and 34%).

To get a better idea of the performance of the algorithm, we propose to look at the quality of both the

lower and upper bounds as the exact algorithm iterates over the candidate nodes. For this we define the

measure of bound accuracy as the percentage of bound values that are correct at that iteration:

bound accuracy =
1

n
| {v ∈ V | εreal(v) = εbound(v)} |

Here, εreal(v) is the actual eccentricity value, and εbound(v) is the (lower or upper) bound that we

investigate. Figure 7 shows the lower and upper bound accuracy for a number of datasets. We can observe

that for each of the datasets, after just a few iterations, the lower bound gives a very accurate indication

of the actual eccentricity values. Apparently, the majority of the iterations are spent lowering the upper

bound, whereas the lower bound quickly reflects the actual eccentricity distribution. Thus, in order to get

an online estimate of the distribution, we could choose to consider only the lower bound, and obtain an

accuracy of around 90% after only a handful of iterations.

Figure 7. Bound accuracy vs. number of iterations for Algorithm 2.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000 10000

bo
un

d
ac

cu
ra

cy

iterations

email-Enron lower bound
email-Enron upper bound

CA-HepPh lower bound
CA-HepPh upper bound

cit-HepTh lower bound
cit-HepTh upper bound

itdk0304-rlinks lower bound
itdk0304-rlinks upper bound

141

Algorithms 2013, 6 114

Table 2. Performance (number of pruned nodes, number of iterations and speedup) of the

exact algorithm (Algorithm 2) and the hybrid algorithm (Algorithm 3).

Dataset Nodes
Exact algorithm Hybrid algorithm

Pruned Iterations Speedup Exact Sampling Total Speedup
YEAST 1 846 399 213 8.7 104 483 587 3.1

CA-HEPTH 8 638 351 1 055 8.2 150 350 500 17.3
CA-HEPPH 11 204 282 1 588 7.1 57 264 321 34.9
DIP20090126 19 928 3 032 224 89.0 8 1321 1 329 15.0

CA-CONDMAT 21 363 353 3 339 6.4 73 388 461 46.3
CIT-HEPTH 27 400 140 8 104 3.4 57 444 501 54.7
ENRON 33 696 8 715 678 49.7 536 145 681 49.5

CIT-HEPPH 34 401 150 10 498 3.3 37 271 308 112
SLASHDOT 51 083 19,255 31 1648 24 180 204 250

P2P-GNUTELLA 62 561 16 413 21 109 3.0 8 575 177 8 752 7.1
FACEBOOK 63 392 1 075 11 185 5.7 780 168 948 66.9
EPINIONS 75 877 20 779 4302 17.6 1 308 75 1 383 54.9
SOC-SLASHDOT 82 168 14 848 1460 56.3 990 156 1 146 71.7
ITDK0304-RLINKS 190 914 16 434 10 830 17.6 312 960 1 272 150
WEB-STANFORD 255 265 10 350 9 28 363 8 1 198 1 206 212

WEB-NOTREDAME 325 729 141,178 143 2277 94 1 381 1 475 4528
DBLP20080824 511 163 22 579 42 273 12.1 150 355 505 1012
EU-2005 862 664 26 507 59 751 14.4 71 1 630 1 701 507
FLICKR 1 624 992 553 242 4 810 338 200 1 618 1 818 932
AS-SKITTER 1 694 616 114 803 42 996 39.4 14 308 322 5502

6.3. Hybrid Algorithm

In our second set of experiments, we have evaluated the performance of the hybrid approach that

incorporates sampling for the non-extreme values of the distribution (Algorithm 3). We will verify the

quality of the obtained distribution by using the measure of distribution accuracy, defined as one minus

the sum of the absolute difference between the eccentricity counts of real relative eccentricity distribution

F (x) and the estimated distribution F̂ (x):

distribution accuracy = 1−
Δ(G)∑

x=Γ(G)

|F (x)− F̂ (x)|

A distribution accuracy value of 1 indicates a perfect match between the actual and estimated relative

eccentricity distributions. We note that for our hybrid approach, the error outside the sampling window is

always equal to 0. As a result of the exact approach, we have access to the real eccentricity distribution.

Therefore we can investigate the number of iterations that are needed to obtain an accuracy of 0.95 in

order to determine how we should set the sampling rate q. The sixth column of Table 2 shows the number

of iterations needed to (exactly) compute the extreme values (center and periphery), which together with

the column titled “Sampling” (averaged over 10 runs) results in the value denoted in column “Total”,

which shows the total number of iterations needed to obtain an accuracy of 0.95. Apparently, for large

graphs (over 100,000 nodes), a sampling rate of q = 0.10 is more than sufficient to accurately derive the

142

Algorithms 2013, 6 115

eccentricity distribution. An alternative would be to change the number of samples to a constant number,

which would ensure that the number of eccentricity calculations does not exceed some fixed maximum.

An advantage of the exact approach is obviously that the nodes that have a certain eccentricity value

can be pointed out exactly, whereas this is only possible for the extreme values in case of the hybrid

approach. The hybrid approach does however improve upon the exact algorithm in terms of computation

time (number of iterations) in many cases, especially for the larger graphs (over 100,000 nodes) with

relatively tight eccentricity distributions, as can be seen in the rightmost column of Table 2. A bold value

indicates the largest of the two speedups when comparing the hybrid approach and the exact approach.

The exact approach performs better than the hybrid approach in a few cases, which we believe is due to

the fact that the sampling phase should not have a too large window when the number of nodes is very

small, because then a large number of iterations would be needed to obtain a representative sample of the

distribution. This is especially the case for WEB-STANFORD, which has a very long tail. For this dataset,

the exact algorithm performs really well, whereas the hybrid approach needs quite a few more iterations.

We mention that, analogously to the performance of the exact algorithm, the performance of our hybrid

algorithm does not appear to be correlated with the number of nodes.

From the experiments in this section we can generally conclude that we have developed a flexible

approach for determining the eccentricity distribution of a large graph with high accuracy, while

guaranteeing an exact result on the extreme values of the distribution (center and periphery of the graph).

7. Conclusions

In this paper we have studied means of computing the eccentricity of all nodes in a graph, resulting

in the (relative) eccentricity distribution of the graph. It turns out that the eccentricity distribution of

real-world graphs has an unimodal shape and tends to have a positive tail. We have shown how large

speedups compared to the traditional method can be achieved by considering lower and upper bounds on

the eccentricity, and by applying a pruning strategy. Even when the exact algorithm does not immediately

give a satisfying result, the lower bounds proposed in this paper can serve as a reliable online estimate

of the distribution as a whole.

We have also investigated the use of sampling as a means of computing the eccentricity distribution.

The resulting hybrid algorithm uses the exact approach to derive the extreme values of the distribution

and a sampling technique within a specific sampling window to accurately assess the values in between

the extreme values. This results in an overall approach that is able to accurately determine the eccentricity

distribution with only a fraction of the number of computations required by the naive approach.

In future work we would like to investigate the extent to which eccentricity and other centrality

measures are related, and when the eccentricity can be used as a meaningful centrality measure. We

are also interested in how the eccentricity distribution of a graph changes over time as the graph is

evolving through the addition and deletion of nodes and edges.

143

Algorithms 2013, 6 116

Acknowledgments

We kindly thank the anonymous reviewers for providing useful and constructive comments on

our paper. This research is part of the COMPASS project, financed by NWO under grant number

612.065.926.

References

1. Sala, A.; Cao, L.; Wilson, C.; Zablit, R.; Zheng, H.; Zhao, B. Measurement-Calibrated Graph

Models for Social Network Experiments. In Proceedings of the 19th ACM International Conference
on the World Wide Web (WWW), Raleigh, NC, USA, 26–30 April 2010; pp. 861–870.

2. Magoni, D.; Pansiot, J. Analysis of the autonomous system network topology. ACM SIGCOMM
Comput. Commun. Rev. 2001, 31, 26–37.

3. Magoni, D.; Pansiot, J. Analysis and Comparison of Internet Topology Generators. In

Proceedings of the 2nd International Conference on Networking Technologies, Services, and
Protocols; Performance of Computer and Communication Networks; and Mobile and Wireless
Communications, Pisa, Italy, 19–24 May 2002; pp. 364–375.

4. Pavlopoulos, G.; Secrier, M.; Moschopoulos, C.; Soldatos, T.; Kossida, S.; Aerts, J.; Schneider, R.;

Bagos, P. Using graph theory to analyze biological networks. BioData Min. 2011, 4, article 10.

5. Magnien, C.; Latapy, M.; Habib, M. Fast computation of empirically tight bounds for the diameter

of massive graphs. J. Exp. Algorithm. 2009, 13, article 10.

6. Takes, F.W.; Kosters, W.A. Determining the Diameter of Small World Networks. In Proceedings
of the 20th ACM International Conference on Information and Knowledge Management (CIKM),
Glasgow, UK, 24–28 October 2011; pp. 1191–1196.

7. Crescenzi, P.; Grossi, R.; Habib, M.; Lanzi, L.; Marino, A. On computing the diameter of real-world

undirected graphs. Theor. Comput. Sci. 2012, in press.

8. Borgatti, S.P.; Everett, M.G. A graph-theoretic perspective on centrality. Soc. Netw. 2006, 28,

466–484.

9. Brandes, U. A faster algorithm for betweenness centrality. J. Math. Sociol. 2001, 25, 163–177.

10. Lesniak, L. Eccentric sequences in graphs. Period. Math. Hung. 1975, 6, 287–293.

11. Hage, P.; Harary, F. Eccentricity and centrality in networks. Soc. Netw. 1995, 17, 57–63.

12. Kang, U.; Tsourakakis, C.; Appel, A.; Faloutsos, C.; Leskovec, J. Hadi: Mining radii of large

graphs. ACM Trans. Knowl. Discov. Data (TKDD) 2011, 5, article 8.

13. Leskovec, J.; Kleinberg, J.; Faloutsos, C. Graph evolution: Densification and shrinking diameters.

ACM Trans. Knowl. Discov. Data (TKDD) 2007, 1, article 2.

14. Palmer, C.; Gibbons, P.; Faloutsos, C. ANF: A Fast and Scalable Tool for Data Mining in Massive

Graphs. In Proceedings of the 8th ACM International Conference on Knowledge Discovery and
Data Mining (KDD), Edmonton, Canada, 23–26 July 2002; pp. 81–90.

15. Buckley, F.; Harary, F. Distance in Graphs; Addison-Wesley: Boston, MA, USA, 1990.

16. Yuster, R.; Zwick, U. Answering Distance Queries in Directed Graphs Using Fast Matrix

Multiplication. In Proceedings of the 46th IEEE Symposium on Foundations of Computer Science
(FOCS), Pittsburgh, PA, USA, 23–25 October 2005; pp. 389–396.

144

Algorithms 2013, 6 117

17. Kleinberg, J. The Small-World Phenomenon: An Algorithm Perspective. In Proceedings of the
32nd ACM symposium on Theory of Computing, Portland, OR, USA, 21–23 May 2000; pp. 163–

170.

18. Faloutsos, M.; Faloutsos, P.; Faloutsos, C. On power-law relationships of the internet topology.

ACM SIGCOMM Comput. Commun. Rev. 1999, 29, 251–262.

19. Leskovec, J.; Faloutsos, C. Sampling from Large Graphs. In Proceedings of the 12th ACM
International Conference on Knowledge Discovery and Data Mining (KDD), Philadelphia, PA,

USA, 20–23 August 2006; pp. 631–636.

20. Eppstein, D.; Wang, J. Fast Approximation of Centrality. In Proceedings of the 12th ACM-SIAM
Symposium on Discrete Algorithms (SODA), Washington, DC, USA, 7–9 January 2001; pp. 228–

229.

21. Crescenzi, P.; Grossi, R.; Lanzi, L.; Marino, A. A Comparison of Three Algorithms for

Approximating the Distance Distribution in Real-World Graphs. In Proceedings of the Theory
and Practice of Algorithms in (Computer) Systems (TAPAS), LNCS 6595, Rome, Italy, 18–20 April

2011; pp. 92–103.

22. Klimt, B.; Yang, Y. The Enron Corpus: A New Dataset for Email Classification Research. In

Proceedings of the 15th European Conference on Machine Learning (ECML), LNCS 3201, Pisa,

Italy, 20–24 September 2004; pp. 217–226.

23. Boldi, P.; Rosa, M.; Vigna, S. HyperANF: Approximating the Neighbourhood Function of very

Large Graphs on a Budget. In Proceedings of the 20th ACM International Conference on the World
Wide Web (WWW), Hyderabad, India, 16–20 April 2011; pp. 625–634.

24. Jeong, H.; Mason, S.; Barabási, A.; Oltvai, Z. Lethality and centrality in protein networks. Nature
2001, 411, 41–42.

25. Leskovec, J.; Kleinberg, J.; Faloutsos, C. Graph evolution: Densification and shrinking diameters.

ACM Trans. Knowl. Discov. Data 2007, 1, article 2.

26. Sommer, C. Graphs; Available online: http://www.sommer.jp/graphs (accessed on 1 September

2012).

27. Gómez, V.; Kaltenbrunner, A.; López, V. Statistical Analysis of the Social Network and Discussion

Threads in Slashdot. In Proceedings of the 17th International Conference on the World Wide Web
(WWW), Beijng, China, 21–25 April 2008; pp. 645–654.

28. Mislove, A.; Marcon, M.; Gummadi, K.; Druschel, P.; Bhattacharjee, B. Measurement and Analysis

of Online Social Networks. In Proceedings of the 7th ACM Conference on Internet Measurement,
San Diego, CA, USA, 24–26 October 2007; pp. 29–42.

29. Richardson, M.; Agrawal, R.; Domingos, P. Trust Management for the Semantic Web. In

Proceedings of the 2nd International Semantic Web Conference (ISWC), LNCS 2870, Sanibel

Island, FL, USA, 20–23 October 2003; pp. 351–368.

30. Leskovec, J.; Lang, K.; Dasgupta, A.; Mahoney, M. Community structure in large networks: Natural

cluster sizes and the absence of large well-defined clusters. Int. Math. 2009, 6, 29–123.

31. Barabási, A.; Albert, R.; Jeong, H. Scale-free characteristics of random networks: The topology of

the world-wide web. Phys. Stat. Mech. Appl. 2000, 281, 69–77.

145

Algorithms 2013, 6 118

32. Magoni, D.; Pansiot, J. Internet Topology Modeler Based on Map Sampling. In Proceedings of
the 7th International Symposium on Computers and Communications (ISCC), Taormina, Italy, 1–4

July 2002; pp. 1021–1027.

© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article

distributed under the terms and conditions of the Creative Commons Attribution license

(http://creativecommons.org/licenses/by/3.0/).

146

Algorithms 2013, 6, 119-135; doi:10.3390/a6010119
OPEN ACCESS

algorithms
ISSN 1999-4893

www.mdpi.com/journal/algorithms

Article

A Polynomial-Time Algorithm for Computing the Maximum
Common Connected Edge Subgraph of Outerplanar Graphs of
Bounded Degree
Tatsuya Akutsu * and Takeyuki Tamura

Bioinformatics Center, Institute for Chemical Research, Kyoto University, Gokasho, Uji,

Kyoto 611-0011, Japan; E-Mail: tamura@kuicr.kyoto-u.ac.jp

* Author to whom correspondence should be addressed; E-Mail: takutsu@kuicr.kyoto-u.ac.jp;

Tel.: +81-774-38-3015; Fax: +81-774-38-3022.

Received: 30 October 2012; in revised form: 27 January 2013 / Accepted: 7 February 2013 /
Published: 18 February 2013

Abstract: The maximum common connected edge subgraph problem is to find a connected

graph with the maximum number of edges that is isomorphic to a subgraph of each of the

two input graphs, where it has applications in pattern recognition and chemistry. This paper

presents a dynamic programming algorithm for the problem when the two input graphs

are outerplanar graphs of a bounded vertex degree, where it is known that the problem is

NP-hard, even for outerplanar graphs of an unbounded degree. Although the algorithm

repeatedly modifies input graphs, it is shown that the number of relevant subproblems is

polynomially bounded, and thus, the algorithm works in polynomial time.

Keywords: maximum common subgraph; outerplanar graph; dynamic programming

1. Introduction

Finding common parts of graph-structured data is an important and fundamental task in computer

science. Among many such problems, the maximum common subgraph problem has applications in

various areas, which include pattern recognition [1,2] and chemistry [3,4]. Although there are several

variants, the maximum common subgraph problem (MCS) usually means the problem of finding a

connected graph with the maximum number of edges that is isomorphic to a subgraph of each of the

two input undirected graphs (i.e., the maximum common connected edge subgraph problem).

147

Algorithms 2013, 6 120

Because of its importance in pattern recognition and chemistry, many practical algorithms have been

developed for MCS and its variants [1–4]. Some exponential-time algorithms that are better than naive

ones have also been developed [5,6]. Kann studied the approximability of MCS and related problems [7].

It is also important for MCS to study a polynomially solvable subclasses of graphs, because graph

structures are restricted in many application areas. It is well-known that if input graphs are trees, MCS

can be solved in polynomial time using maximum weight bipartite matching [8]. Akutsu showed that

MCS can be solved in polynomial time if input graphs are almost trees of bounded degree, whereas

MCS remains NP-hard for almost trees of unbounded degree [9], where a graph is called an almost tree

if it is connected and the number of edges in each biconnected component is bounded by the number

of vertices plus some constant. Yamaguchi et al. developed a polynomial-time algorithm for MCS and

the maximum common induced connected subgraph problem for a degree bounded partial k-tree and a

graph with a polynomially bounded number of spanning trees, where k is a constant [10]. However,

the latter condition seems rather artificial. Schietgat et al. developed a polynomial-time algorithm

for outerplanar graphs under the block-and-bridge preserving subgraph isomorphism [11]. However,

they modified the definition of MCS by this restriction. Although it was announced that MCS can be

solved in polynomial time if input graphs are partial k-trees and MCS must be k-connected (for example,

see [12]), the restriction that subgraphs are k-connected is too strict from a practical viewpoint. As for

the subgraph isomorphism problem, which is closely related to MCS, polynomial-time algorithms have

been developed for biconnected outerplanar graphs [13,14] and for partial k-trees with some constraints,

as well as their extensions [15,16].

In this paper, we present a polynomial-time algorithm for outerplanar graphs of a bounded degree

(a preliminary version has appeared in [17]). Although this graph class is not a superset of the classes

in previous studies [9,10], it covers a wide range of chemical compounds (it was reported that 94.4%

of chemical compounds in the NCI database have outerplanar graph structures [18]). Furthermore, the

algorithm and its analysis in this paper are not simple extensions or variants of those for the subgraph

isomorphism problem for outerplanar graphs [13,14] or partial k-trees [15,16]. These algorithms heavily

depend on the property that each connected component in a subgraph is not decomposed. However, to be

discussed in Section 4, connected components from both input graphs can be decomposed in MCS, and

considering all decompositions easily leads to exponential-time algorithms. In order to cope with this

difficulty, we introduce the concept of a blade. The blade and its analysis play a key role in this paper.

It is to be noted that the number of MCS can be exponential even for trees [19]. Therefore, our

proposed algorithm and all polynomial-time algorithms mentioned above are focusing on finding the one

of MCS’s. It should also be noted that the proposed algorithm is not practical, because the polynomial

degree is very high, although it gives a non-trivial theoretical result on the computation of MCS.

2. Preliminaries

A graph is called outerplanar if it can be drawn on a plane such that all vertices lie on the outer face

(i.e., the unbounded exterior region) without crossing of edges. Although there exist many embeddings

(i.e., drawings on a plane) of an outerplanar graph, it is known that one embedding can be computed in

linear time. Therefore, in this paper, we assume that each graph is given with its planar embedding. A

148

Algorithms 2013, 6 121

path is called simple if it does not pass the same vertex multiple times. In this paper, a path always means

a simple path that is not a cycle.

A cut vertex of a connected graph is a vertex whose removal disconnects the graph. A graph is

biconnected if it is connected and does not have a cut vertex. A maximal biconnected subgraph is called

a biconnected component. A biconnected component is called a block if it consists of at least three

vertices; otherwise, it is an edge and called a bridge. An edge in a block is called an outer edge if it lies

on the boundary of the outer face; otherwise, it is called an inner edge. It is well-known that any block

of an outerplanar graph has a unique Hamiltonian cycle, which consists of outer edges only [20]. For

the details of the terminology used in graphs and outerplanar graphs, refer to an appropriate textbook on

graph theory (e.g., [21]).

If we fix an arbitrary vertex of a graph G as the root r, we can define the parent-child relationship on

biconnected components. For two vertices, u and v, u is called further than v if every simple path from

u to r contains v. A biconnected component, C, is called a parent of a biconnected component C ′ if C

and C ′ share a vertex v, where v is uniquely determined, and every path from any vertex in C ′ to the root

contains v. In such a case, C ′ is called a child of C. A cut vertex v is also called a parent of C if v is

contained in both C and its parent component (both of a cut vertex and a biconnected component can

be parents of the same component). Furthermore, the root, r, is a parent of C if r is contained in C.

For each cut vertex v, G(v) denotes the subgraph of G induced by v and the vertices further than v.

For a pair of a cut vertex v and a biconnected component, C, containing v, G(v, C) denotes the subgraph

of G induced by vertices in C and its descendant components. For a biconnected component, B, with

its parent cut vertex, w, a pair of vertices, v and v′, in B is called a cut pair if v �= v′, v �= w and

v′ �= w hold. For a cut pair (v, v′) in B, V B(v, v′) denotes the set of the vertices lying on the one of

the two paths connecting v and v′ in the Hamiltonian cycle that does not contain the parent cut vertex,

except its endpoints. B(v, v′) is the subgraph of B induced by V B(v, v′) and is called a half block. It is

to be noted that B(v, v′) contains both v and v′. Then, G(v, v′) denotes the subgraph of G induced by

V B(v, v′) and the vertices in the biconnected components, each of which is a descendant of some vertex

in V B(v, v′) − {v, v′}, and G(v, v′) denotes the subgraph of G induced by the vertices in G(v, v′) and

descendant components of v and v′, where descendants are defined via the parent-child relationship.

Example Figure 1 shows an example of an outerplanar graph G(V,E). Blocks and bridges are shown

by gray regions and bold lines, respectively. B1, B3 and e2 are the children of the root r. B4, B6 and B7

are the children of B3, whereas B4 and B6 are the children of w. Both w and B3 are the parents of B4

and B6. G(w) consists of B4, B5 and B6, whereas G(w,B4) consists of B4 and B5. (v, v′) is a cut pair

of B7, and B7(v, v
′) is a region surrounded by a dashed bold curve. G(v, v′) consists of B7(v, v

′), B8,

B9, B10, e4, e5 and e6, whereas G(v, v′) consists of B7(v, v
′), B10, e4 and e5.

If a connected graph, Gc(Vc, Ec), is isomorphic to a subgraph of G1 and a subgraph of G2, we call

Gc a common subgraph of G1 and G2. A common subgraph Gc is called a maximum common connected
edge subgraph of G1 and G2 if its size is the maximum among all common subgraphs (we use MCS

to denote both the problem and the maximum common subgraph), where the size means the number of

edges. In what follows, for the sake of simplicity, a maximum common subgraph (MCS) always means

a maximum common connected edge subgraph. In this paper, we consider the following problem.

149

Algorithms 2013, 6 122

Figure 1. Example of an outerplanar graph.

r

v’
w

B1

B2

B3

B4

B5 B6

B7

B8

B7(v,v’)

B9

v

e1

e2

e3

e6

e4

e5

outerface

B10

G(v,v’)

G(v,v’)

Maximum Common Subgraph of Outerplanar Graphs of Bounded Degree (OUTER-MCS)

Given two undirected connected outerplanar graphs, G1 and G2, whose maximum vertex degree is

bounded by a constant, D, find a maximum common subgraph of G1 and G2.

Note that the degree bound is essential, because MCS is NP-hard for outerplanar graphs of unbounded

degree, even if each biconnected component consists of at most three vertices [9]. Although we do not

consider labels on vertices or edges, our results can be extended to vertex-labeled and/or edge-labeled

cases in which label information must be preserved in isomorphic mapping. In the following, n denotes

the maximum number of vertices of two input graphs (it should be noted that the number of vertices and

the number of edges are in the same order, since we only consider connected outerplanar graphs).

In this paper, we implicitly make extensive use of the following well-known fact [13], along with

outerplanarity of the input graphs.

Fact 1 Let G1 and G2 be biconnected outerplanar graphs. Let (u1, u2, . . . , um) (resp. (v1, v2, . . . , vn))
be the vertices of G1 (resp. G2) arranged in clockwise order in a planar embedding of G1 (resp. G2).
If there is an isomorphic mapping {(u1, vi1), (u2, vi2), . . . , (um, vim)} from G1 to a subgraph of G2, then
vi1 , vi2 , . . . , vim appear in G2 in either clockwise or counterclockwise order.

3. Algorithm for a Restricted Case

In this section, we consider the following restricted variant of OUTER-MCS, which is called

SIMPLE-OUTER-MCS, and present a polynomial-time algorithm for it: (i) any two vertices in different

biconnected components in a maximum common subgraph, Gc, must not be mapped to vertices in the

same biconnected component in G1 (resp. G2); (ii) each bridge in Gc must be mapped to a bridge in G1

(resp. G2); (iii) the maximum degree need not be bounded.

It is to be noted from the definition of a common subgraph (regardless of the above restrictions) that

no two vertices in different biconnected components in G1 (resp. G2) are mapped to vertices in the

same biconnected component in any common subgraph, and no bridge in G1 (resp. G2) is mapped to an

150

Algorithms 2013, 6 123

edge in a block in any common subgraph (otherwise there would exist a cycle containing the edge in a

common subgraph, which would mean that the edge in G1 (resp., G2) is not a bridge).

SIMPLE-OUTER-MCS is intrinsically the same as the one studied by Schietgat et al. [11]. Although

our algorithm is more complex and less efficient than their algorithm, we present it here, because the

algorithm for a general (but bounded degree) case is rather involved and is based on our algorithm for

SIMPLE-OUTER-MCS.

Here, we present a recursive algorithm to compute the size of MCS in SIMPLE-OUTER-MCS, which

can be easily transformed into a dynamic programming algorithm to compute an MCS, as is true for many

other dynamic programming algorithms. The following is the main procedure of the recursive algorithm.

Procedure SimpleOuterMCS(G1, G2)

smax ← 0;

for all pairs of vertices (u, v) ∈ V1 × V2 do
Let (u, v) be the root pair (r1, r2) of (G1, G2);

smax ← max(smax,MCSc(G1(r1), G2(r2)));

return smax.

The algorithm consists of a recursive computation of the following three scores:

MCSc(G1(u), G2(v)): the size of an MCS Gc between G1(u) and G2(v), where (u, v) is a pair of the

roots or a pair of cut vertices, and Gc must contain a vertex corresponding to both u and v.

MCSb(G1(u, C), G2(v,D)): the size of an MCS Gc between G1(u, C) and G2(v,D), where (C,D)

is either a pair of blocks or a pair of bridges, u (resp. v) is the cut vertex belonging to both C

(resp. D) and its parent, Gc must contain a vertex corresponding to both u and v and Gc must

contain a biconnected component (which can be empty) corresponding to a subgraph of C and a

subgraph D.

MCSp(G1(u, u
′), G2(v, v

′)): the size of an MCS Gc between G1(u, u
′) and G2(v, v

′), where (u, u′)
(resp. (v, v′)) is a cut pair, and Gc must contain a cut pair (w,w′) corresponding to both (u, u′)
and (v, v′). If there does not exist such Gc (which must be connected), its score is −∞.

In the following, we describe how to compute these scores.

Computation of MCSc(G1(u), G2(v))

As in the dynamic programming algorithm for MCS for trees or almost trees [9], we construct a

bipartite graph and compute a maximum weight matching.

Let C1, . . . , Ch1 , e1, . . . , eh2 and D1, . . . , Dk1 , f1, . . . , fk2 be children of u and v respectively, where

Ci’s and Dj’s are blocks and ei’s and fj’s are bridges (see Figure 2). We construct an edge-weighted

bipartite graph BG(X, Y ;E) by

X = {C1, . . . , Ch1 , e1, . . . , eh2}
Y = {D1, . . . , Dk1 , f1, . . . , fk2}
E = {(x, y) | x ∈ X, y ∈ Y }

w(Ci, fj) = 0

151

Algorithms 2013, 6 124

w(Ci, Dj) = MCSb(G1(u, Ci), G2(v,Dj))

w(ei, Dj) = 0

w(ei, fj) = MCSb(G1(u, ei), G2(v, fj))

Then, we let MCSc(G1(u), G2(v)) be the weight of the maximum weight bipartite matching of

BG(X, Y ;E). It is to be noted that w(Ci, fj) = 0 (resp., w(ei, Dj) = 0) comes from the fact that

fj must be mapped to a bridge in Gc, but a bridge in Gc must not be mapped to an edge in any block

(e.g., Ci), because of the condition (ii) of SIMPLE-OUTER-MCS.

Figure 2. Computation of MCSc(G1(u), G2(v)).

G2G1
C1

C2

C3

r1
u

e1
e2

e3

D1

r2
v

f1

D2

D3

D4

f2

Computation of MCSb(G1(u, C), G2(v,D))

Let (u1, u2, . . . , uh) be the sequence of vertices in G1(u, C), such that there exists an edge, {ui, u},

for each ui, where u1, u2, . . . , uh are arranged in clockwise order. (v1, v2, . . . , vk) is defined for G2(v,D)

in the same way. It is to be noted that (C,D) is either a pair of blocks or a pair of bridges. A pair of

subsequences ((ui1 , ui2 , . . . , uig), (vj1 , vj2 , . . . , vjg)) is called an alignment if i1 < i2 < · · · < ig and

j1 < j2 < · · · < jg or jg < jg−1 < · · · < j1 hold (the latter ordering is required for handling

mirror images.), where g = 0 is allowed. We compute MCSb(G1(u, C), G2(v,D)) by the following

(see Figure 3):

Procedure SimpleOuterMCSb(G1(u, C), G2(v,D))

smax ← 0;

for all alignments ((ui1 , ui2 , . . . , uig), (vj1 , vj2 , . . . , vjg)) do;

if C is a block and g = 1 then continue; /* blocks must be preserved */

s ← 0;

for t = 1 to g do s ← s+ 1 +MCSc(G1(uit), G2(vjt));

for t = 2 to g do s ← s+MCSp(G1(uit−1 , uit), G2(vjt−1 , vjt));

smax ← max(s, smax);

return smax.

In the above procedure, the first inner for loop takes care of blocks, such as C1, C4, D1 and D4 in

Figure 3, whereas the second inner for loop takes care of half blocks, such as C2, C3, D2, D3 and D5 in

Figure 3.

For example, consider an alignment, ((u1, u2, u3), (v1, v2, v4)), in Figure 3, where all

alignments are to be examined in the algorithm. Then, the score of this alignment is given by

152

Algorithms 2013, 6 125

3+MCSb(G1(u1, C1), G2(v1, D1))+MCSp(G1(u1, u2), G2(v1, v2)) +MCSp(G1(u2, u3), G2(v2, v4)).

MCSb(G1(u1, C1), G2(v1, D1)) comes via the computation of MCSc(G1(u1), G2(v1)), in which

BG(X, Y ;E) is given by X = {C1}, Y = {D1}, E = {(C1, D1)}, and thus, the maximum weight

matching is given by w(C1, D1) = MCSb(G1(u1, C1), G2(v1, D1)). In this case, an edge, {v, v3}, is

removed and then v3 is treated as a vertex on the path connecting v2 and v4 in the outer face. For another

example, consider an alignment ((u1), (v1)) in the same figure. Then, this alignment is ignored by the

“if ... then ...” line of the procedure, because a bridge in Gc, which would correspond to {u, u1} in G1

and {v, v1} in G2, must not be mapped to an edge in C or D. However, if both {u, u1} and {v, v1} are

bridges, the resulting score would be 1 +MCSc(G1(u1), G2(v1)).

Figure 3. Computation of MCSb(G1(u, C), G2(v,D)).

u

u1

u2

u3

C1

C4

G1(u,C) G2(v,D)

v

v1

v2

v4

D1
D4

C2

C3

C D

D3

D2

D5

v3

Since the above procedure examines all possible alignments, it may take exponential time. However,

we can modify it into a dynamic programming procedure, as shown below, where we omit a

subprocedure for handling mirror images, because it is trivial. In this procedure, u1, u2, . . . , uh and

v1, v2, . . . , vk are processed from left to right. In the first for loop, M [s, t] stores the size of MCS

between G1(us) and G2(vt) plus one (corresponding to a common edge between {u, us} and {v, vt}).

The double for loop computes an optimal alignment. M [s, t] stores the size of MCS between G1(u, C)

and G2(v,D) up to us and vt, respectively. flag is introduced to ensure the connectedness of a common

subgraph. For example, flag = 0 if G1(u) is a triangle, but G2(v) is a rectangle. If C (and also D) is an

edge, flag = 0, but the procedure returns M [1, 1].

for all (s, t) ∈ {1, . . . , h} × {1, . . . , k} do
M [s, t] ← 1 +MCSc(G1(us), G2(vt));

flag ← 0;

for s = 2 to h do
for t = 2 to k do
M [s, t] ← M [s, t] + maxs′<s,t′<t{M [s′, t′] +MCSp(G1(us′ , us), G2(ut′ , ut))};

if M [s, t] > −∞ then flag ← 1;

if C is a block and flag = 0 then return 0 else return maxs,t M [s, t].

Computation of MCSp(G1(u, u
′), G2(v, v

′))
Let (u1, u2, . . . , uh) be the sequence of vertices in G1(u, u

′), such that there exists an edge {ui, u}
or {ui, u

′} for each ui, where u1, u2, . . . , uh are arranged in clockwise order. (v1, v2, . . . , vk) is defined

for G2(v, v
′) in the same way. For a pair, (ui, vj), l(ui, vj) = 1 if {ui, u} ∈ E1 and {vj, v} ∈ E2 hold,

153

Algorithms 2013, 6 126

otherwise, l(ui, vj) = 0. Similarly, for a pair, (ui, vj), r(ui, vj) = 1 if {ui, u
′} ∈ E1 and {vj, v′} ∈ E2

hold, otherwise, r(ui, vj) = 0. We compute MCSp(G1(u, u
′), G2(v, v

′)) by the following procedure,

where it does not examine alignments with jg < jg−1 < · · · < j1:

Procedure SimpleOuterMCSp(G1(u, u
′), G2(v, v

′))
if {u, u′} ∈ E1 and {v, v′} ∈ E2 then smax ← 1 else smax ← −∞;

for all alignments ((ui1 , ui2 , . . . , uig), (vj1 , vj2 , . . . , vjg)) do
if l(uit , vjt) = 0 and r(uit , vjt) = 0 hold for some t then continue;

if l(ui1 , vj1) = 0 or r(uig , vjg) = 0 holds then continue;

if {u, u′} ∈ E1 and {v, v′} ∈ E2 then s ← 1 else s ← 0;

for t = 1 to g do s ← s+ l(uit , vjt) + r(uit , vjt) +MCSc(G1(uit), G2(vjt));

for t = 2 to g do s ← s+MCSp(G1(uit−1 , uit), G2(vjt−1 , vjt));

smax ← max(s, smax);

return smax.

This procedure returns −∞ if there is no connected common subgraph between G1(u, u
′) and

G2(v, v
′) that contains (w,w′) corresponding to both (u, u′) and (v, v′). It should be noted that the

first line in the body of the main loop puts the constraint that all corresponding pairs, (uit , vjt), in an

alignment must be connected to either (u, v) or (u′, v′), and the second line puts the constraint that

(ui1 , vj1) must be connected to (u, v) and (uig , vjg) must be connected to (u′, v′).
As an example, consider an alignment, ((u1, u2, u3, u4), (v1, v2, v3, v5)), in Figure 4.

Then, the score is given by 4 + MCSp(G1(u1, u2), G2(v1, v2)) + MCSp(G1(u2, u3),

G2(v2, v3)) + MCSb(G1(u3, C3), G2(v3, D4)) + MCSp(G1(u3, u4), G2(v3.v5)), where

MCSb(G1(u3, C3), G2(v3, D4)) is given via the computation of MCSc(G1(u3), G2(v3)).

Figure 4. Computation of MCSp(G1(u, u
′), G2(v, v

′)).

u

u1 u2

u’

u3 u4

C1
C2 C3

C4

G1(u,u’) G2(v,v’)

v v’

v4

v5

v1
v2 v3

D1
D2 D3 D4 D5

D6

For another example, the score is −∞ for each of alignments, ((u1, u3), (v4, v5)), ((u1, u2), (v1, v2))

and ((u3), (v3)), whereas the score of ((u2), (v3)) is 2, since {u, u′} /∈ E, {v, v′} /∈ E, l(u2, v3) = 1,

r(u2, v3) = 1 and MCSc(G1(u2), G2(v3)) = 0. It is to be noted that vertices not appearing in an

alignment can match in a later dynamic programming process; for example, u2 can match with v2 under

an alignment of ((u1, u3), (v1, v4)), although edges {u, u2} and {v, v2} are ignored.

As in the case of SimpleOuterMCSb(G1(u, C), G2(v,D)), SimpleOuterMCSp

(G1(u, u
′), G2(v, v

′)) can be modified into a dynamic programming version.

Then, we have the following theorem:

154

Algorithms 2013, 6 127

Theorem 1 SIMPLE-OUTER-MCS can be solved in polynomial time.

Proof. First we consider the correctness of the algorithm SimpleOuterMCS(G1, G2). The

crucial points of the algorithm are that it examines all possible combinations of the neighbors via

alignments examined in SimpleOuterMCSb(G1(u, C), G2(v,D)) for each pair of cut vertices (u, v)

and via alignments examined in SimpleOuterMCSp(G1(u, u
′), G2(v, v

′)) for each pair of cut pairs

((u, u′), (v, v′)), where the connectedness in the latter case is taken care of by the use of l(ui, vj) and

r(ui, vj). It should be noted that non-neighbors of u cannot be neighbors of a node corresponding to

u in MCS, and the ordering of neighbors must be preserved by Fact 1. Therefore, examination of all

alignments covers all valid combinations of neighbors. Based on these facts, it is straightforward to see

that SimpleOuterMCS(G1, G2) correctly computes the size of MCS.

Next, we consider the time complexity. Since we examine O(n2) possible root pairs, we focus on the

case where the roots are fixed, where n is the maximum number of vertices in G1 and G2.

Although SimpleOuterMCS(G1, G2) is described as a recursive algorithm, the numbers of required

scores of MCS(G1(u), G2(v)), MCS(G1(u, C), G2(v,D)) and MCS(G1(u, u
′), G2(v, v

′)) are O(n2),

O(n2) and O(n4), respectively. Therefore, by storing these values in some tables, we can transform

SimpleOuterMCS (G1, G2) into a dynamic programming algorithm.

Computation of MCS(G1(u), G2(v)) can be done in O(n3) time per call, because a maximum weight

bipartite matching can be computed in O(n3) time [22]. Using the dynamic programming version,

the computation of each of MCS(G1(u, C), G2(v,D)) and MCS(G1(u, u
′), G2(v, v

′)) can be done in

O(h2k2) ≤ O(n4) time per call.

Therefore, the total time complexity is O(n2)×(O(n2)×O(n3)+O(n2)×O(n4)+O(n4)×O(n4)) =

O(n10). �

Though it might be possible to substantially reduce the degree of polynomial by some simplification,

as done in [11], we do not go further, because our main purpose is to present a polynomial-time algorithm

for the non-restricted (but bounded degree) case.

4. Algorithm for Outerplanar Graphs of Bounded Degree

In order to extend the algorithm in Section 3 for a general (but bounded degree) case, we need to

consider the decomposition of biconnected components. For example, consider graphs G1 and G2 in

Figure 5. We can see that in order to obtain a maximum common subgraph, biconnected components in

G1 and G2 should be decomposed, as shown in Figure 5, where there can be multiple ways of optimal

decompositions in general. This is the crucial point, because considering all possible decompositions

easily leads to exponential-time algorithms. In order to characterize decomposed components, we

introduce the concept of a blade, as shown below (see also Figure 6).

Suppose that vi1 , . . . , vik are the vertices of a half block arranged in this order, and vi1 and vik are

respectively connected to v and v′, where v and v′ can be the same vertex. If we cut one edge, {vih , vih+1
}

for ih ∈ {2, 3, ..., k−2}, we obtain two half blocks, one induced by vi1 , vi2 , . . . , vih and the other induced

by vik , vik−1
, . . . , vih+1

. However, only one half block is obtained in the case of i1 = ih or ik = ih+1,

and no half block is obtained in the case of k = 2 (see Figure 7). Each of these half blocks is a chain

of biconnected components called a blade body, and a subgraph consisting of a blade body and its

155

Algorithms 2013, 6 128

descendants is called a blade. Vertices vi1 and vik , an edge {vih , vih+1
} and vertices vih , vih+1

are called

base vertices, a tip edge and tip vertices, respectively. The sequence of edges in the shortest path from

vi1 to vih (resp. from vik to vih+1
) is called the backbone of a blade. As a result, the edges between two

blades are deleted (it does not cause a problem, because all possible configurations are examined, as

discussed later). In addition, there exists three subcases, depending on the existence of edges {vi1 , vik}
and {v′, vi1} (cases with {v, vik} can be handled in an analogous way). We need not consider the case

where {v′, vi1} is deleted, but {vi1 , vik} remains, because deletion of {v′, vi1} can be handled in the

computation of MCSp(G1(u, u
′), G2(v, v

′))):

• both {vi1 , vik} and {v′, vi1} are deleted

• {vi1 , vik} is deleted, but {v′, vi1} remains

• both {vi1 , vik} and {v′, vi1} remain

where these three cases are respectively denoted by “deletion of e”, “deletion of e” and “deletion of ê”

(see Figure 7). It is to be noted that, in any case, we cannot have multiple tip edges simultaneously for

the same pair, (v, v′), because disconnected component(s) would appear if multiple tip edges exist.

Figure 5. Example of a difficult case.

G1 G2

Figure 6. (A) Construction of blades where subgraphs, excluding gray regions (descendant

components), are blade bodies; and (B) schematic illustration of a blade.

base
vertices

tip edge

(A)
tip vertices

v

v’

vi1

vik

vih

vih+1

blade

blade

base vertex

tip edge

(B)

backbone

tip vertex

v

v’

backbone

156

Algorithms 2013, 6 129

Figure 7. Types and subcases of blades, where two other subcases for (ii) and another

subcase (i.e., {v′, vi1} remains) for (iii) and (iv) are omitted.

e

(i)

e e

(ii)

ee

(iii) (iv)

e

v

v’

vi1

vik

v’

v

vik

vi1

v’

v

vik

vi1

e

e

v

v’

vi1

vik

e

v

v’

vi1

vi2

v’

v

vik

vi1

v

v’

vi1

vik

e

v

v’

vi1

vik

v

v’

vi1

vik

v

v’

vi1

vik

In addition, we allow {v, vi1} (resp. {v′, vik}) to be a tip edge. In this case, after removing this tip

edge, the resulting half block induced by vik , . . . , vi2 , vi1 (resp. (vi1 , vi2 , . . . , vik)) is a blade body, where

vik (resp. vi1) becomes the base vertex. For example, the rightmost blade in Figure 8 is created by

removing a tip edge {u, u5} and u4 becomes the base vertex.

Figure 8. Example of configuration and its resulting subgraph of G1(u). Black circles,

dark gray regions and thin dotted lines denote selected vertices, blades and removed edges,

respectively. Block C1 and edges e1, e2 are the children of u in G1(u), where block H1 is

a child of e1, blocks H2, H3 are children of C1 and block H4 is a child of e2. Edges, ea, eb,

are tip edges, where {u, u5} is also regarded as a tip edge. Then, edge e1 is deleted along

with block H1, whereas edge e2 remains as it is. Block C1 is divided into block C ′
1, blades

B1, . . . , B5 and edge e′1, where blocks, H2, H3, and blades, B1, B2, B3, are children of C ′
1

and blades, B4, B5, are children of e′1. In the resulting subgraph, block, C ′
1, and edges, e′1, e

′
2,

are the children of u.

u u

e1 e2

e1’

e2

C1’

u1 u2 u3 u4 u5

ebea

C1

H1 H4

B1 B2 B3 B4 B5
H2

H3
H3

H2

H4

Since a blade can be specified by a pair of base and tip vertices and an orientation (clockwise or

counterclockwise), there exist O(n2) blades in G1 and G2. Of course, we need to consider the possibility

that during the execution of the algorithm, other subgraphs may appear from which new blades are

created. However, we will show later that blades appearing in the algorithm are restricted to be those in

G1 and G2.

157

Algorithms 2013, 6 130

4.1. Description of Algorithm

In this subsection, we describe the algorithm as a recursive procedure, which can be transformed into

a dynamic programming one, as stated in Section 3.

The main procedure, OuterMCS(G1, G2) is the same as that mentioned in Section 3, and we

recursively compute three kinds of scores: MCSc(G1(u), G2(v)), MCSb(G1(u, C), G2(v,D)) and

MCSp(G1(u, u
′), G2(v, v

′)), where cut vertices, cut pairs, blocks and bridges do not necessarily mean

those in the original graphs, but may mean those in subgraphs generated by the algorithm.

Computation of MCSc(G1(u), G2(v))

Let C1, . . . , Ch1 and e1, . . . , eh2 be children of u, where Ci’s and ej’s are blocks and bridges,

respectively. Let ui1 , . . . , uih be the neighboring vertices of u that are contained in the children of u.

We define a configuration as a tuple of the following (see Figure 8).

s(uij) ∈ {0, 1} for j = 1, . . . , k: s(uij) = 1 means that uij is selected as a neighbor of u in a common

subgraph, otherwise s(uij) = 0. uij is called a selected vertex if s(uij) = 1.

tip(uij , uik): e = tip(uij , uik) is an edge in B(uij , uik), where B is the block containing uij , uik and

u. This edge is defined only for a consecutive selected vertex pair, uij and uik , in the same block

(i.e., B(uij , uik) does not contain any other selected vertex). e is used as a tip edge, where e can

be empty, which means that we do not cut any edge in B(uij , uik). It is to be noted that, at most,

one edge in B(uij , uik) can be a tip edge, and thus, each B(uij , uik) is divided into, at most, two

blade bodies; further decomposition will be done in later steps. We also consider e and ê for

e = tip(uij , uik) whenever available.

Each configuration defines a subgraph of G1(u) as follows:

• ei = {uij , u} (i ∈ {1, . . . , h2}) remains if s(uij) = 1. Otherwise, ei is removed along with its

descendants.

• If no vertex in Ci is selected, it is removed along with its descendants. Otherwise, Ci is divided

into blocks, blade bodies (according to s(. . .)’s and tip(. . .)’s) and bridges, where edges, {uij , u}
with s(uij) = 0, are removed.

Let C ′
1, . . . , C

′
p1

and e′1, . . . , e
′
p2

be the resulting blocks and bridges containing u, which are new

‘children’ of u, for a configuration, F1. Configurations are defined for G2(v) in an analogous way.

Let D′
1, . . . , D

′
q1

and f ′
1, . . . , f

′
q2

be the resulting new children of v for a configuration F2 of G2. As

stated in Section 3, we construct a bipartite graph BGF1,F2 by

w(C ′
i, f

′
j) = 0

w(C ′
i, D

′
j) = MCSb(G1(u, C

′
i), G2(v,D

′
j))

w(e′i, D
′
j) = 0

w(e′i, f
′
j) = MCSb(G1(u, e

′
i), G2(v, f

′
j))

and we compute the weight of the maximum weight matching for each configuration pair (F1, F2)

(although a bridge cannot be mapped on a block here, a bridge can be mapped to an edge in a block of

158

Algorithms 2013, 6 131

an input graph by converting the block into smaller blocks and bridges using tip edge(s)). The following

is a procedure for computing MCSc(G1(u), G2(v)):

Procedure OuterMCSc(G1(u), G2(v))

smax ← 0;

for all configurations F1 for G1(u) do
for all configurations F2 for G2(v) do
s ← weight of the maximum weight matching of BGF1,F2 ;

if s > smax then smax ← s;

return smax.

Computation of MCSb(G1(u, C
′), G2(v,D

′))
This score can be computed, as stated in Section 3, although we should take blades into account. In

this case, we can directly examine all possible alignments, because the number of neighbors of u or v is

bounded by a constant, and we need to examine a constant number of alignments.

Computation of MCSp(G1(u, u
′), G2(v, v

′))
As in OuterMCSc(G1(u), G2(v)), we examine all possible configurations by specifying selected

vertices and tip edges (see Figure 9). Each configuration defines a subgraph of G1(u, u
′) (resp.

G2(v, v
′)). This subgraph contains three kinds of biconnected components:

(i) components connecting only to u (resp. v)

(ii) components connecting only to u′ (resp. v′) and

(iii) component connecting to both u and u′ (resp. v and v′), where this type (iii) component is

uniquely determined.

Figure 9. Example of configuration and its resulting subgraph for G1(u, u
′). Black circles,

dark gray regions and thin dotted lines denote selected vertices, blade, and removed edges,

respectively. Edges, ea, eb, are tip edges, where {u′, u′′} is also regarded as a tip edge. In

the resulting subgraph, C ′
1 is a type (i) component, e′1 and e′2 are type (ii) components and

C0(u, u
′) is a type (iii) component.

u u’ u u’

C0(u,u’)C1’

e1’
e2’

ea eb

u’’

For each of type (i) and type (ii) components, we construct a bipartite graph, as in

OuterMCS(G1(u), G2(v)), although blades might appear in the recursive process. Let the resulting

bipartite graphs be BGl
F1,F2

and BGr
F1,F2

, respectively. Let C0(u, u
′) and D0(v, v

′) be type (iii)

159

Algorithms 2013, 6 132

components (i.e., half blocks) for G1(u, u
′) and G2(v, v

′), respectively. For this pair of components, we

compute a maximum common subgraph, as in SimpleOuterMCS(G1(u, u
′), G2(v, v

′)). The following

is a pseudocode of OuterMCS(G1(u, u
′), G2(v, v

′)):

Procedure OuterMCS(G1(u, u
′), G2(v, v

′))
smax ← 0;

for all configurations F1 for G1(u, u
′) do

for all configurations F2 for G2(v, v
′) do

s ← score of the maximum common subgraph between C0(u, u
′) and D0(v, v

′);
s ← s + weight of the maximum weight matching of BGl

F1,F2
;

s ← s + weight of the maximum weight matching of BGr
F1,F2

;

if s > smax then smax ← s;

return smax.

4.2. Analysis

As mentioned before, each blade is specified by base and tip vertices in G1 or G2 and an orientation.

Each half block is also specified by two vertices in a block in G1 or G2. We show that this property is

maintained throughout the execution of the algorithm and bound to the number of half blocks and blades,

as below.

Lemma 1 The number of different half blocks and blades appearing in OuterMCS(G1, G2) is O(n2).

Proof. We prove it by mathematical induction on the number of steps in the execution of the algorithm.

At the beginning of the algorithm, this property is trivially maintained, because we only have G1 and G2.

A new half block (along with its descendants) or a new blade is created only when graphs are modified

according to a configuration or alignment. In the alignment case, it is straightforward to see that new

half blocks are half blocks of the current block or current half block. It can also be seen that whenever

a blade is newly created, it is a half block (along with descendants) of the current block or current half

block. The crucial cases lie when an existing blade is modified according to a configuration. Let u and

{u, w} be the base vertex and a backbone edge in a blade BD, respectively. Let C0 be the block in G1

(resp. G2) from which BD was created. Then, we need to consider the following three cases (Figure 10)

(new blades may also be created by a tip edge in a half block specified by a pair of selected vertices):

(a) w is not selected.

The base vertex of a new blade is the selected vertex nearest to w in the first block (i.e., block

containing u) of BD. Since the original blade body was a half block of a block C0, the resulting

blade body is also a half block of C0.

(b) w is selected, and there is no tip edge between w and its nearest selected vertex.

The resulting blade body begins from w (in the next step), which is a half block of C0.

(c) w is selected, and there is a tip edge between w and its nearest selected vertex.

The resulting blade body begins from w, which is a half block of C0. Furthermore, two (or less)

new blade bodies are created, both of which are half blocks of C0.

160

Algorithms 2013, 6 133

Therefore, we can see that every half block or blade appearing in the algorithm is specified by two

vertices in a block of G1 or G2, from which the lemma follows. �

Figure 10. Three cases considered in the proof of Lemma 1. Bold lines and dark gray

regions denote backbone edges and new blade bodies, respectively.

(a)

u

w

u

w

(b)

u

w

u

w

(c)

u

w

tip edge

u

w

Finally, we obtain the following theorem.

Theorem 2 A maximum common connected edge subgraph of two outerplanar graphs of bounded
degree can be computed in polynomial-time.

Proof. It is straightforward to check the correctness of the algorithm, because it implicitly examines

all possible common subgraphs via alignment, decomposition by configurations and bipartite matching,

where Fact 1 enables us to use alignment and dynamic programming. Therefore, we focus on the

time complexity.

Since the number of half blocks and blades is O(n2) and the maximum degree is bounded, the number

of different G1(u)’s and G1(u, u
′)’s (resp. G2(v)’s and G2(v, v

′)’s) appearing in the algorithm, some of

which can be obtained from subgraphs of G1 (resp. G2), is O(n3), where an additional O(n) factor

comes from the fact that O(n) new blocks and bridges may be created per blade. Therefore, we can

transform the recursive algorithm into a dynamic programming algorithm using O(n3)×O(n3) = O(n6)

size tables.

For each subgraph appearing in OuterMCS(G1(u), G2(v)) or OuterMCS(G1(u, u
′), G2(v, v

′)) as

an argument, the number of configurations is O(n2D−3), because there exists at most 2D−2 neighboring

vertices (excluding those nearer to the root) of u and u′ (resp. v and v′) for a constant, D, (D > 2) and

a tip edge lies between a path connecting two neighboring vertices. For some block pair, we need to

examine all possible alignments. Since the maximum degree is bounded by constant, D, we need to

examine a constant number of alignments, and thus, this calculation can be done in constant time. By

the same reason, a maximum matching can be computed in constant time. All other miscellaneous

operations, which include modification of edges and summation of scores, can be performed in O(n2)

time per pair of configurations, pair of biconnected components and pair of half blocks. Since we need

to examine O(n2) pairs of the roots, the total computation time is:

O(n2)×O(n6)×O(n2D−3)×O(n2D−3)×O(n2) = O(n4D+4)

for a constant, D (a constant factor depending only on D is ignored here, because we assume that D is a

constant). �

161

Algorithms 2013, 6 134

5. Concluding Remarks

We have presented a polynomial-time algorithm for the maximum common connected edge subgraph

problem for outerplanar graphs of bounded degree. However, it is not practically efficient. Therefore,

development of a much faster algorithm is left as an open problem. Although the proposed

algorithm might be modified for outputting all maximum common subgraphs, it would not be an

output-polynomial-time algorithm. Therefore, such an algorithm should also be developed.

Recently, it has been shown that the maximum common connected edge subgraph problem is NP-hard,

even for partial k-trees of a bounded degree, where k = 11 [23]. Since outerplanar graphs have treewidth

2 and most chemical compounds have a treewidth of at most 3 [10,18], to decide whether the problem

for partial k-trees is NP-hard for k = 3 is left as an interesting open problem.

Acknowledgments

Tatsuya Akutsu was partly supported by JSPS, Japan (Grants-in-Aid 22240009 and 22650045).

Takeyuki Tamura was partly supported by JSPS, Japan (Grant-in-Aid for Young Scientists (B)

23700017).

References

1. Conte, D.; Foggia, P.; Sansone, C.; Vento, M. Thirty years of graph matching in pattern recognition.

Int. J. Pattern Recognit. Artif. Intell. 2004, 18, 265–298.

2. Shearer, K.; Bunke, H.; Venkatesh, S. Video indexing and similarity retrieval by largest common

subgraph detection using decision trees. Pattern Recognit. 2001, 34, 1075–1091.

3. Raymond, J.W.; Willett, P. Maximum common subgraph isomorphism algorithms for the matching

of chemical structures. J. Comput. Aided Mol. Des. 2002, 16, 521–533.

4. Hans-Christian Ehrlich, H-C.; Rarey, M. Maximum common subgraph isomorphism algorithms

and their applications in molecular science: A review. WIREs Comput. Mol. Sci. 2011, 1, 68–79.

5. Abu-Khzam, F.N.; Samatova, N.F.; Rizk, M.A.; Langston, M.A. The Maximum Common Subgraph

Problem: Faster Solutions via Vertex Cover. In Proceedings of the 2007 IEEE/ACS International
Conference Computer Systems and Applications, IEEE, Piscataway, NJ, USA, 2007; pp. 367–373.

6. Huang, X.; Lai, J.; Jennings, S.F. Maximum common subgraph: Some upper bound and lower

bound results. BMC Bioinforma. 2006, 7 (Suppl. 4), S6:1–S6:9.

7. Kann, V. On the Approximability of the Maximum Common Subgraph Problem. In Proceedings
of the 9th Symposium Theoretical Aspects of Computer Science; Springer: Heidelberg, Germany,

1992; Volume 577, pp. 377–388.

8. Garey, M.R.; Johnson, D.S. Computers and Intractability; Freeman: New York, NY, USA, 1979.

9. Akutsu, T. A polynomial time algorithm for finding a largest common subgraph of almost trees of

bounded degree. IEICE Trans. Fundam. 1993, E76-A, 1488–1493.

10. Yamaguchi, A.; Aoki, K.F.; Mamitsuka, H. Finding the maximum common subgraph of a partial

k-tree and a graph with a polynomially bounded number of spanning trees. Inf. Proc. Lett. 2004,

92, 57–63.

162

Algorithms 2013, 6 135

11. Schietgat, L.; Ramon, J.; Bruynooghe, M. A Polynomial-Time Metric for Outerplanar Graphs. In

Proceedings of the Workshop on Mining and Learning with Graphs, Firenze, Italy, 1 August 2007.

12. Bachl, S.; Brandenburg, F-J.; Gmach, D. Computing and drawing isomorphic subgraphs. J. Graph
Algorithms Appl. 2004, 8, 215–238.

13. Lingas, A. Subgraph isomorphism for biconnected outerplanar graphs in cubic time. Theoret.
Comput. Sci. 1989, 63, 295–302.

14. Syslo, M.M. The subgraph isomorphism problem for outerplanar graphs. Theoret. Comput. Sci.
1982, 17, 91–97.

15. Dessmark, A.; Lingas, A.; Proskurowski, A. Faster algorithms for subgraph isomorphism of

k-connected partial k-trees. Algorithmica 2000, 27, 337–347.

16. Hajiaghayi, M.; Nishimura, N. Subgraph isomorphism, log-bounded fragmentation, and graphs of

(locally) bounded treewidth. J. Comput. Syst. Sci. 2007, 73, 755–768.

17. Akutsu, T.; Tamura, T. A Polynomial-Time Algorithm for Computing the Maximum Common

Subgraph of Outerplanar Graphs of Bounded Degree. In Proceedings of the 37th International
Symposium on Mathematical Foundations of Computer Science; Springer: Heidelberg, Germany,

2012; Volume 7464, pp. 76–87.

18. Horváth, T.; Ramon, J.; Wrobel, S. Frequent Subgraph Mining in Outerplanar Graphs. In

Proceedings of the 12th ACM SIGKDD Int. Conf. Knowledge Discovery and Data Mining; ACM:

New York, NY, USA, 2006; pp. 197–206.

19. Akutsu, T. An RNC algorithm for finding a largest common subtree of two trees. IEICE Trans. Inf.
Syst. 1992, E75-D, 95–101.

20. Syslo, M.M. Characterizations of outerplanar graphs. Disc. Math. 1979, 26, 47–53.

21. Chartrand, G.; Lesniak, L.; Zhang, P. Graphs and Digraphs, Fifth Edition; Chapman and Hall/CRC:

Boca Raton, FL, USA, 2010.

22. Cormen, T.H.; Leiserson, C.E.; Rivest, R.L.; Stein, C. Introduction to Algorithms, Third Edition;

The MIT Press: Cambridge, MA, USA, 2009.

23. Akutsu, T.; Tamura, T. On the Complexity of the Maximum Common Subgraph Problem for Partial

k-trees of Bounded Degree. In Proceedings of the 23rd International Symposium Algorithms and
Computation; Springer: Heidelberg, Germany, 2012; Volume 7676, pp. 146–155.

© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article

distributed under the terms and conditions of the Creative Commons Attribution license

(http://creativecommons.org/licenses/by/3.0/).

163

Algorithms 2013, 6, 396-406; doi:10.3390/a6030396
OPEN ACCESS

algorithms
ISSN 1999-4893

www.mdpi.com/journal/algorithms

Article

New Heuristics for Rooted Triplet Consistency †
Soheil Jahangiri Tazehkand 1,2,∗, Seyed Naser Hashemi 1 and Hadi Poormohammadi 3

1 Amirkabir University of Technology (Tehran Polytechnic), 424 Hafez Ave, Tehran, Iran; E-Mail:

nhashemi@aut.ac.ir
2 Bioinformatics Group, School of Computer Science, Institute for Research in Fundamental Sciences

(IPM), Niavaran, Tehran, Iran
3 Shahid Beheshti University, Evin, Tehran 19839-63113, Iran; E-Mail: poormohammadi@ipm.ir

† An extended abstract of this article has appeared in the proceedings of the Annual International

Conference on Bioinformatics and Computational Biology (BICB 2011) in Singapore.

* Author to whom correspondence should be addressed; E-Mail: s.jahangiri@aut.ac.ir;

Tel.: +98-936-9220139.

Received: 14 April 2013; in revised form: 26 June 2013 / Accepted: 26 June 2013 /
Published: 11 July 2013

Abstract: Rooted triplets are becoming one of the most important types of input for

reconstructing rooted phylogenies. A rooted triplet is a phylogenetic tree on three leaves

and shows the evolutionary relationship of the corresponding three species. In this paper,

we investigate the problem of inferring the maximum consensus evolutionary tree from

a set of rooted triplets. This problem is known to be APX-hard. We present two new

heuristic algorithms. For a given set of m triplets on n species, the FastTree algorithm runs

in O(m + α(n)n2) time, where α(n) is the functional inverse of Ackermann’s function.

This is faster than any other previously known algorithms, although the outcome is less

satisfactory. The Best Pair Merge with Total Reconstruction (BPMTR) algorithm runs in

O(mn3) time and, on average, performs better than any other previously known algorithms

for this problem.

Keywords: phylogenetic tree; rooted triplet; consensus tree; approximation algorithm

164

Algorithms 2013, 6 397

1. Introduction

After the publication of Charles Darwin’s book On the Origin of Species by Means of Natural
Selection, the theory of evolution was widely accepted. Since then, remarkable developments

in evolutionary studies brought scientists to phylogenetics, a field that studies the biological or

morphological data of species to output a mathematical model, such as a tree or a network,

representing the evolutionary interrelationship of species and the process of their evolution. Interestingly,

phylogenetics is not only limited to biology, but may also arise anywhere that the concept of evolution

appears. For example, a recent study in evolutionary linguistics employs a phylogeny inference to clarify

the origin of the Indo-European language family [1]. Several approaches have been introduced to infer

evolutionary relationships [2]. Among those, well-known approaches are character-based methods (e.g.,

maximum parsimony), distance-based methods (e.g., neighbor joining and UPGMA) and quartet-based

methods (e.g., QNet). Recently, rather new approaches, namely, triplet-based methods, have been

introduced. Triplet-based methods output rooted trees and networks, due to the rooted nature of triplets.

A rooted triplet is a rooted unordered leaf-labeled binary tree on three leaves and shows the evolutionary

relationship of the corresponding three species. Triplets can be obtained accurately using a maximum

likelihood method, such as the one introduced by Chor et al. [3], or the Sibley-Ahlquist-style DNA-DNA

hybridization experiments [4]. Indeed, we expect highly accurate results from triplet-based methods.

However, sometimes, due to experimental errors or some biological events, such as hybridization

(recombination) or horizontal gene transfer, it is not possible to reconstruct a tree that satisfies all of

the input constraints (triplets). There are two ways to overcome this problem. The first approach is to

employ a more complex model, such as a network, which is the proper approach when the mentioned

biological events have actually happened. The second approach tries to reconstruct a tree satisfying

as many input triplets as possible. This approach is more useful when the input data contains errors.

The latter approach forms the subject of this paper. In the next section, we will provide necessary

definitions and notations. Section 3 contains an overview of previous results. We will present our

algorithms and experimental results in Section 4. Finally, in Section 5, open problems and ideas for

further improvements are discussed.

2. Preliminaries

An evolutionary tree (phylogenetic tree) on a set, S, of n species, |S| = n, is a

rooted binary (More precisely, an evolutionary tree can also be unrooted; however, triplet-

based methods output rooted phylogenies)unordered tree in which leaves are distinctly la-

beled by members of S (see Figure 1(a)). A rooted triplet is a phylogenetic tree with

three leaves. The unique triplet of leaves, x, y, z, is denoted by ((x, y), z) or xy|z,

if the lowest common ancestor of x and y is a proper descendant of the lowest common ancestor of

x and z or, equivalently, if the lowest common ancestor of x and y is a proper descendant of the lowest

common ancestor of y and z (see Figure 1(b)). A triplet, t (e.g., xy|z) is consistent with a tree, T, or,

equivalently, T is consistent with t) if t is an embedded subtree of T. This means that t can be obtained

from T by a series of edge contractions (i.e., if in T, the lowest common ancestor of x and y is a proper

descendant of the lowest common ancestor of x and z). We also say T satisfies t, if T is consistent with t.

165

Algorithms 2013, 6 398

The tree in Figure 1(a) is consistent with the triplet in Figure 1(b). A phylogenetic tree, T, is consistent

with a set of rooted triplets if it is consistent with every triplet in the set. We call two leaves siblings or a

cherry if they share the same parent. For example, {x, y} in Figure 1(a) form a cherry.

Figure 1. Example of a phylogenetic tree and a consistent triplet. (a) A phylogenetic tree;

(b) the triplet xy|z.

(a) (b)

A set of triplets, R, is called dense if for each set of three species, {x, y, z}, R, contains at least

one of three possible triplets, xy|z, xz|y or yz|x. If R contains exactly one triplet for each set of three

species, it is called minimally dense, and if it contains every possible triplet, it is called maximally
dense. Now, we can define the problem of reconstructing an evolutionary tree from a set of rooted

triplets. Suppose S is a finite set of species of cardinality, n, and R is a finite set of rooted triplets of

cardinality, m, on S. The problem is to find an evolutionary tree leaf-labeled by members of S, which is

consistent with the maximum number of rooted triplets in R. This problem is called the Maximum Rooted
Triplets Consistency (MaxRTC) problem [5] or the Maximum Inferred Local Consensus Tree (MILCT)
problem [6]. This problem is NP-hard (see Section 3), which means no polynomial-time algorithm

can be found to solve the problem optimally unless P= NP. For this and similar problems, one might

search for polynomial-time algorithms that produce approximate solutions. We call an algorithm an

approximation algorithm if its solution is guaranteed to be within some factor of optimum solution. In

contrast, heuristics may produce good solutions, but do not come with a guarantee on their quality of

solution. An algorithm for a maximization problem is called an α−approximation algorithm, for some

α > 1, if for any input, the output of the algorithm is at most α-times worse than the optimum solution.

The factor, α, is called the approximation factor or approximation ratio.

3. Related Works

Aho et al. [7] investigated the problem of constructing a tree consistent with a set of rooted triplets

for the first time. They designed a simple recursive algorithm, which runs in O(mn) time and returns a

tree consistent with all of the given triplets, if at least one tree exists. Otherwise, it returns null. Later,

Henzinger et al. [8] improved Aho et al.’s algorithm to run in min{O(n+mn1/2), O(m+n2logn)} time.

The time complexity of this algorithm was further improved to min{O(n+mlog2n), O(m+ n2logn)}
by Jansson et al. [9] using more recent data structures introduced by Holm et al. [10]. MaxRTC is

166

Algorithms 2013, 6 399

proven to be NP-hard [6,11,12]. Byrka et al. [13] reported that this proof is an L-reduction from an

APX-hard problem, meaning that the problem is APX-hard, in general (non-dense case). Later, Van

Iersel et al. [14] proved that MaxRTC is NP-hard, even if the input triplet set is dense.

Several heuristics and approximation algorithms have been presented for the so-called MaxRTC

problem, each performing better in practice on different input triplet sets. Gasieniec et al.
[15] proposed two algorithms by modifying Aho et al.’s algorithm. Their first algorithm,

which is referred to as One-Leaf-Split [5] runs in O((m + n)logn) time, and the second

one, which is referred to as Min-Cut-Split [5], runs in min{O(mn2 + n3logn), O(n4)}
time. The tree generated by the first algorithm is guaranteed to be consistent with at least

one third of the input triplet set. This gives a lower bound for the problem. In another

study, Wu [11] introduced a bottom-up heuristic approach called BPMF (Best Pair Merge

First), which runs in O(mn3) time. In the same study, he proposed an exact exponential

algorithm for the problem, which runs in O((m + n2)3n) time and O(2n) space. According to the

results of Wu [11], BPMF seems to perform well on average on randomly generated data. Later,

Maemura et al. [16] presented a modified version of BPMF, called BPMR (Best Pair Merge with

Reconstruction), which employs the same approach, but with a little bit different of a reconstruction

routine. BPMR runs in O(mn3) time and, according to Maemura et al.’s experiments, outperforms

BPMF. Byrka et al. [13] designed a modified version of BPMF to achieve an approximation ratio of

three. They also investigated how MinRTI (Minimum Rooted Triplet Inconsistency) can be used to

approximate MaxRTC and proved that MaxRTC admits a polynomial-time, (3− 2
n−2

)−, approximation.

4. Algorithms and Experimental Results

In this Section, we present two new heuristic algorithms for the MaxRTC problem.

4.1. FastTree

The first heuristic algorithm has a bottom-up greedy approach, which is faster than the other

previously known algorithms employing a simple data structure.

Let R(T) denote the set of all triplets consistent with a given tree, T. R(T) is called the reflective triplet
set of T. It forms a minimally dense triplet set and represents T uniquely [17]. Now, we define the

closeness of the pair, {i,j}. The closeness of the pair, {i,j}, Ci,j , is defined as the number of triplets of

the form, ij|k, in a triplet set. Clearly, for any arbitrary tree, T, the closeness of a cherry species equals

n − 2, which is maximum in R(T). The reason is that every cherry species has a triplet with every other

species. Now, suppose we contract every cherry species of the form, {i,j}, to their parents, pij , and then

update R(T) as follows. For each contracted cherry species, {i,j}, we remove triplets of the form, ij|k,

from R(T) and replace i and j with pij within the remaining triplets. The updated set, R′(T ′), would

be the reflective triplet set for the new tree, T ′. Observe that, for cherries of the form, {pij, k}, in T ′,
Ci,k and Cj,k would equal n-3 in R(T). Similarly, for cherries of the form, {pij, pkl}, in T ′, Ci,k, Cj,k,

Ci,l and Cj,l would equal n-4 in R(T). This forms the main idea of the first heuristic algorithm. We first

compute the closeness of pairs of species by visiting triplets. Furthermore, sorting the pairs according

to their closeness gives us the reconstruction order of the tree. This routine outputs the unique tree, T,

167

Algorithms 2013, 6 400

for any given reflective triplet set, R(T). Yet, we have to consider that the input triplet set is not always

a reflective triplet set. Consequently, the reconstruction order produced by sorting may not be the right

order. However, if the loss of triplets admits a uniform distribution, it will not affect the reconstruction

order. An approximate solution for this problem is refining the closeness. This can be done by reducing

the closeness of the pairs, {i,k} and {j,k}, for any visited triplet of the form, ij|k. Thus, if the pair, {i,j},

is actually cherries, then the probability of choosing the pairs, {i,k} or {j,k}, before choosing the pair,

{i,j}, due to triplet loss, will be reduced. We call this algorithm FastTree. See Algorithm 1 for the whole

algorithm.

Algorithm 1 FastTree

1: Initialize a forest, F, consisting of n one-node trees labeled by species.

2: for each triplet of the form ij|k do
3: Ci,j: = Ci,j+1

4: Ci,k: = Ci,k−1

5: Cj,k: = Cj,k−1

6: end for
7: Create a list, L, of pairs of species.

8: Sort L according to the refined closeness of pairs with a linear-time sorting algorithm.

9: while |L|>0 do
10: Remove the pair, {i,j}, with maximum, Ci,j .

11: if i and j are not in the same tree then
12: Add a new node and connect it to roots of trees containing i and j.
13: end if
14: end while
15: if F has more than one tree then
16: Merge trees in any order, until there would be only one tree.

17: end if
18: return the tree in F

Theorem 1. FastTree runs in O(m+ α(n)n2) time.

Proof. Initializing a forest in Step 1 takes O(n) time. Steps 2–6 take O(m) time. We know that

the closeness is an integer value between 0 and n − 2. Thus, we can employ a linear-time sorting

algorithm [18]. There are O(n2) possible pairs; therefore, Step 8 takes O(n2) time. Similarly, the while

loop in Step 9 takes O(n2) time. Each removal in Step 10 can be done in O(1) time. By employing

optimal data structures, which are used for disjoint-set unions [18], the amortized time complexity of

Steps 11 and 12 will be O(α(n)), where α(n) is the inverse of the function, f(x) = A(n, n), and A is

the well-known fast-growing Ackermann function. Furthermore, Step 16 takes O(nα(n)) time. Hence,

the running time of FastTree would be O(m+ α(n)n2).

Since A(4, 4) = 22
265536

, α(n) is less than four for any practical input size, n. In comparison to the fast

version of Aho et al.’s algorithm, FastTree employs a simpler data structure and, in comparison to Aho

168

Algorithms 2013, 6 401

et al.’s original algorithm, it has lower time complexity. Yet, the most important advantage of FastTree

to Aho et al.’s algorithm is that it will not stick if there is not a consistent tree with the input triplets, and

it will output a proper tree in such a way that the clusters are very similar to that of the real network.

The tree in Figure 2 is the output of FastTree on a dense set of triplets based on the yeast, Cryptococcus
gattii, data. There is no consistent tree with the whole triplet set; however, Van Iersel et al. [19] presented

a level-2 network consistent with the set (see Figure 3). This set is available online [20]. In comparison

to BPMR and BPMF, FastTree runs much faster for large sets of triplets and species. However, for highly

sparse triplet sets, the output of FastTree may satisfy considerably less triplets than the tree constructed

by BPMF or BPMR.

Figure 2. Output of FastTree for a dense triplet set of the yeast, Cryptococcus gattii, data.

4.2. BPMTR

Before explaining the second heuristic algorithm, we need to review BPMF [11] and BPMR [16].

BPMF utilizes a bottom-up approach similar to hierarchical clustering. Initially, there are n trees, each

containing a single node representing one of n given species. In each iteration, the algorithm computes a

function, called e score, for each combination of two trees. Furthermore, two trees with the maximum

e score are merged into a single tree by adding a new node as the common parent of the selected trees.

Wu [11] introduced six alternatives for computing the e score using combinations of w, p and t. (see

Table 1). However, in each run, one of the six alternatives must be used. In the function, e score(C1, C2),

w is the number of triplets satisfied by merging C1 and C2, which is the number of triplets of the form

ij|k, in which i is in C1, j is in C2 and k is neither in C1 nor in C2. The value of p is the number of

triplets that are in conflict with merging C1 and C2. It is the number of triplets of the form, ij|k, in which

i is in C1, k is in C2 and j is neither in C1 nor in C2. The value of t is the total number of triplets of

the form, ij|k, in which i is in C1and j is C2. Wu compared the BPMF with One-Leaf-Split and

Min-Cut-Split and showed that BPMF works better on randomly generated triplet sets. He also

pointed out that none of the six alternatives of e score is significantly better than the other.

169

Algorithms 2013, 6 402

Figure 3. A Level-2 network for a dense triplet set of the yeast, Cryptococcus gattii, data.

Table 1. The six alternatives of e score.

If-Penalty Ratio Type

False w w/(w + p) w/t

True w − p (w − p)/(w + p) (w − p)/t

Maemura et al. [16] introduced a modified version of BPMF, called BPMR, that outperforms the

results of BPMF. BPMR works very similarly in comparison to BPMF, except for a reconstruction step

used in BPMR. Suppose Tx and Ty are two trees having the maximum, e score, at some iteration and

are selected to merge into a new tree. By merging Tx and Ty, some triplets will be satisfied, but some

other triplets will be in conflict. Without loss of generality, suppose Tx has two subtrees, namely the left

subtree and the right subtree. In addition, suppose a triplet, ij|k, in which i is in the left subtree of Tx,

k is in the right subtree of Tx and j is in Ty. Observe that by merging Tx and Ty, the mentioned triplet

becomes inconsistent. However, swapping Ty with the right subtree of the Tx satisfies this triplet, while

some other triplets become inconsistent. It is possible that the resulting tree of this swap satisfies more

triplets than the primary tree. This is the main idea behind the BPMR. In BPMR, in addition to the

regular merging of Tx and Ty, Ty is swapped with the left and the right subtree of Tx, and also, Tx is

swapped with the left and the right tree of Ty. Finally, among these five topologies, we choose the one

that satisfies the most triplets.

Suppose the left subtree of the Tx also has two subtrees. Swapping Ty with one of these subtrees would

probably satisfy new triplets, while some old ones would become inconsistent. There are examples in

which this swap results in a tree that satisfies more triplets. This forms our second heuristic idea that

swapping of Ty with every subtree of Tx should be checked. Tx should also be swapped with every

170

Algorithms 2013, 6 403

subtree of Ty. At every iteration of BPMF after choosing two trees maximizing the , the algorithm tests

every possible swapping of these two trees with subtrees of each other and, then, chooses the tree with

the maximum consistency of the triplets. We call this algorithm BPMTR (Best Pair Merge with Total

Reconstruction). See Algorithm 2 for details of the BPMTR.

Algorithm 2 BPMTR

1: Initialize a set, T, consisting of n one-node trees labeled by species.

2: while |T|>1 do
3: Find and remove two trees, Tx, Ty, with maximum e score.

4: Create a new tree, Tmerge, by adding a common parent to Tx and Ty

5: Tbest : = Tmerge

6: for each subtree Tsub of Tx do
7: Let Tswapped be the tree constructed by swapping Tsub with Ty

8: if the number of consistent triplets with Tswapped was larger than the number of triplets

consistent with Tbest then
9: Tbest : = Tswapped

10: end if
11: end for
12: for each subtree Tsub of Ty do
13: Let Tswapped be the tree constructed by swapping Tsub with Tx

14: if the number of consistent triplets with Tswapped was larger than the number of triplets

consistent with Tbest then
15: Tbest : = Tswapped

16: end if
17: end for
18: Add Tbest to T.

19: end while
20: return the tree in T

Theorem 2. BPMTR runs in O(mn3) time.

Proof. Step 1 takes O(n) time. In Step 2, initially, T contains n clusters, but in each iteration, two

clusters merge into a cluster. Hence, the while loop in Step 2 takes O(n) time. In Step 3, e score is

computed for every subset of T of size two. By applying Bender and Farach-Colton’s preprocessing

algorithm [21], which runs in O(n) time for a tree with n nodes, every LCAquery can be answered in

O(1) time. Therefore, the consistency of a triplet with a cluster can be checked in O(1) time. Since there

are m triplets, Step 3 takes
(|T |

2

)
O(m) time. In Steps 5, 9 and 15, Tbest is a pointer that stores the best

topology found so far during each iteration of the while loop in O(1) time. The complexity analysis of

the loops in Steps 6–11 and 12–17 are similar, and it is enough to consider one. Every rooted binary tree

with n leaves has O(n) internal nodes, so the total number of swaps in Step 7 for any two clusters will be

at most O(n− |T |). In Step 8, computing the number of consistent triplets with Tswapped takes no more

171

Algorithms 2013, 6 404

than O(m) time. Steps 4, 7 and 18 are implementable in O(1) time. Accordingly, the running time of

Steps 2–19 would be:
n∑

|T |=2

[
m

(|T |
2

)
+O(n− |T |) +m)

]
= O(mn3) (1)

Step 20 takes O(1) time. Hence, the time complexity of BPMTR is O(mn3).

We tested BPMTR over randomly generated triplet sets with n = 15, 20 species and m = 500,

1,000 triplets. We experimented hundreds of times for each combination of n and m. The results in

Table 2 indicate that BPMTR outperforms BPMR. However, in these hundreds of tests, there were a few

examples of BPMR performing better than BPMTR. For n = 30 and m = 1,000, in 62 triplet sets out of

a hundred randomly generated triplet sets, BPMTR satisfied more triplets. In 34 triplet sets, BPMR and

BPMTR had the same results, and in four triplet sets, BPMR satisfied more triplets.

Table 2. Performance results of Best Pair Merge with Total Reconstruction (BPMTR) in

comparison to Best Pair Merge with Reconstruction (BPMR).

No. of species and triplets % better results % worse results

n = 20, m = 500 %29 %0.0

n = 20, m = 1000 %37 %1

n = 30, m = 500 %61 %3

n = 30, m = 1000 %62 %4

5. Conclusion and Unsolved Problems

In this paper, we presented two new algorithms for the so-called MaxRTC problem. For a given set

of m triplets on n species, the FastTree algorithm runs in O(m + α(n)n2) time, which is faster than

any other previously known algorithm, although the outcome can be less satisfactory for highly sparse

triplet sets. The BPMTR algorithm runs in O(mn3) time and, on average, performs better than any other

previously known approximation algorithm for this problem. There is nonetheless still more room for

improvement of the described algorithms.

1. In the FastTree algorithm, in order to compute the closeness of pairs of species, we check triplets,

and for each triplet of the form, ij|k, we add a weight, w, to Ci,j and subtract a penalty, p, from Ci,k and

Cj,k. In this paper, we set w = p = 1. If one assigns different values for w and p, the closeness of the

pairs of species will be changed, and the reconstruction order will be affected. It would be interesting to

check for which values of w and p FastTree performs better.

2. Wu [11] introduced six alternatives for e score, each of which performs better for different input

triplet sets. It would be interesting to find a new function that can outperform all the alternatives for any

input triplet set.

3. The best-known approximation factor for the MaxRTC problem is three [13]. This is the

approximation ratio of BPMF. Since MaxRTC is APX-hard, a PTASis unattainable, unless P = NP.

However, [5] suggests that an approximation ratio in the region of 1.2 might be possible. Finding an

α−approximation algorithm for MaxRTC with α < 3 is still open.

172

Algorithms 2013, 6 405

4. It would also be interesting to find the approximation ratio of FastTree, in general, and for reflective

triplet sets.

Acknowledgments

The authors are grateful to Jesper Jansson and Fatemeh Zareh for reviewing this article, providing

useful comments and answering our endless questions.

Conflict of Interest

The authors declare no conflict of interest.

References

1. Bouckaert, R.; Lemey, P.; Dunn, M.; Greenhill, S.J.; Alekseyenko, A.V.; Drummond, A.J.;

Gray, R.D.; Suchard, M.A.; Atkinson, Q.D. Mapping the origins and expansion of the

Indo-European language family. Science 2012, 337, 957–960.

2. Felsenstein, J. Inferring Phylogenies; Sinauer Associates: Sunderland, MA, USA, 2004.

3. Chor, B.; Hendy, M.; Penny, D. Analytic Solutions for Three-Taxon MLMC Trees with Variable

Rates Across Sites. In Algorithms in Bioinformatics; Gascuel, O., Moret, B., Eds.; Springer: Berlin,

Germany, 2001; Lecture Notes in Computer Science, Volume 2149, pp. 204–213.

4. Kannan, S.K.; Lawler, E.L.; Warnow, T.J. Determining the evolutionary tree using experiments.

J. Algorithms 1996, 21, 26–50.

5. Byrka, J.; Gawrychowski, P.; Huber, K.T.; Kelk, S. Worst-case optimal approximation algorithms

for maximizing triplet consistency within phylogenetic networks. J. Discret. Algorithms 2010,

8, 65–75.

6. Jansson, J. On the complexity of inferring rooted evolutionary trees. Electron. Notes Discret.
Math. 2001, 7, 50–53.

7. Aho, A.V.; Sagiv, Y.; Szymanski, T.G.; Ullman, J.D. Inferring a tree from lowest common ancestors

with an application to the optimization of relational expressions. SIAM J. Comput. 1981, 10,

405–421.

8. Henzinger, M.R.; King, V.; Warnow, T. Constructing a tree from homeomorphic subtrees, with

applications to computational evolutionary biology. Algorithmica 1999, 24, 1–13.

9. Jansson, J.; Ng, J.H.K.; Sadakane, K.; Sung, W.K. Rooted Maximum Agreement Supertrees.

Algorithmica 2005, 43, 293–307.

10. Holm, J.; de Lichtenberg, K.; Thorup, M. Poly-logarithmic deterministic fully-dynamic algorithms

for connectivity, minimum spanning tree, 2-edge, and biconnectivity. J. ACM 2001, 48, 723–760.

11. Wu, B.Y. Constructing the maximum consensus tree from rooted triples. J. Comb. Optim. 2004,

8, 29–39.

12. Bryant, D. Building Trees, Hunting for Trees, and Comparing Trees—Theory and Methods in

Phylogenetic Analysis. PhD thesis, University of Canterbury, 1997.

173

Algorithms 2013, 6 406

13. Byrka, J.; Guillemot, S.; Jansson, J. New Results on Optimizing Rooted Triplets Consistency. In

Algorithms and Computation; Hong, S.H., Nagamochi, H., Fukunaga, T., Eds.; Springer: Berlin,

Germany, 2008; Lecture Notes in Computer Science, Volume 5369, pp. 484–495.

14. Van Iersel, L.; Kelk, S.; Mnich, M. Uniqueness, intractability and exact algorithms: Reflections on

level-k phylogenetic networks. J. Bioinform. Comput. Biol. 2009, 7, 597–623.

15. Gasieniec, L.; Jansson, J.; Lingas, A.; Ostlin, A. On the complexity of constructing evolutionary

trees. J. Comb. Optim. 1999, 3, 183–197.

16. Maemura, K.; Jansson, J. Ono, H.; Sadakane, K.; Yamashita, M. Approximation Algorithms for

Constructing Evolutionary Trees from Rooted Triplets. In Proceedings of 10th Korea-Japan Joint

Workshop on Algorithms and Computation, Gwangju, Korea, 9-10 August 2007.

17. Jansson, J.; Sung, W.K. Inferring a level-1 phylogenetic network from a dense set of rooted triplets.

Theor. Comput. Sci. 2006, 363, 60–68.

18. Cormen, T.T.; Leiserson, C.E.; Rivest, R.L. Introduction to Algorithms; MIT Press: Cambridge,

MA, USA, 1990.

19. Van Iersel, L.; Keijsper, J.; Kelk, S.; Stougie, L.; Hagen, F.; Boekhout, T. Constructing

Level-2 Phylogenetic Networks from Triplets. In Research in Computational Molecular Biology;

Vingron, M., Wong, L., Eds.; Springer: Berlin, Germany, 2008; Lecture Notes in Computer Science,

Volume 4955, pp. 450–462.

20. Kelk, S. LEVEL2: A fast algorithm for constructing level-2 phylogenetic networks from dense sets

of rooted triplets, 2008.

21. Bender, M.A.; Farach-Colton, M. The LCA Problem Revisited. In LATIN 2000: Theoretical
Informatics; Gonnet, G.; Viola, A., Eds.; Springer: Berlin, Germany, 2000; Lecture Notes in
Computer Science, Volume 1776, pp. 88–94.

© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article

distributed under the terms and conditions of the Creative Commons Attribution license

(http://creativecommons.org/licenses/by/3.0/).

174

MDPI AG
Grosspeteranlage 5

4052 Basel
Switzerland

Tel.: +41 61 683 77 34

Algorithms Editorial Office
E-mail: algorithms@mdpi.com

www.mdpi.com/journal/algorithms

Disclaimer/Publisher’s Note: The title and front matter of this reprint are at the discretion of the

Guest Editor. The publisher is not responsible for their content or any associated concerns. The

statements, opinions and data contained in all individual articles are solely those of the individual

Editor and contributors and not of MDPI. MDPI disclaims responsibility for any injury to people or

property resulting from any ideas, methods, instructions or products referred to in the content.

Academic Open
Access Publishing

mdpi.com ISBN 978-3-7258-4510-1

