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Editorial

180th Anniversary of Ludwig Boltzmann
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Natal 59078-970, Brazil

* Correspondence: sergio.silva.highres@imd.ufrn.br

Everybody who has devoted themselves in some way to the study of the scientific
disciplines knows the giant contribution that Ludwig Boltzmann made to theoretical
physics. Born in Vienna on 20 February 1844 into a world on the cusp of scientific revolution,
Boltzmann showed an aptitude for mathematics and physics from a young age. Influenced
by prominent scientists such as Christian Doppler and Josef Stefan, who followed him from
his early studies at the University of Vienna, he completed his doctoral thesis in 1866 on the
behavior of gases, a topic that would become central to most of his future works and which
would mark him in the following century as one of the most important figures in the history
of physics, alongside contemporaries such as James Clerk Maxwell and Josiah Willard
Gibbs, establishing foundational principles that continue to shape the field of statistical
physics to this day.

By the age of 25, he had already been appointed as a full professor of mathematical
physics at the University of Graz, Austria. Widely regarded as one of Austria’s great-
est scientists, Boltzmann received invitations to occupy prestigious chairs in theoretical
physics at leading academic centers, most notably in Berlin, Germany. In addition, he was
awarded numerous honorary titles, reflecting the high esteem in which he was held by the
scientific community.

His profound interest in thermodynamics shaped Boltzmann’s early academic career,
beginning the development of the kinetic theory of gas by introducing the idea of monads
in a modern key and by highlighting the necessity of employing statistical methods in
physics [1]. In 1872, by the age of only 28, he established the groundwork for contem-
porary statistical mechanics with a pair of influential papers: “Weitere studien über das
wärmegleichgewicht unter gasmolekülen” (Further Studies on the Thermal Equilibrium
of Gas Molecules) [2] and “Über die beziehung eines allgemeinen mechanischen satzes
zum zweiten hauptsatz der wärmetheorie” (On the relationship of a general mechanical
theorem to the second law of thermodynamics) [3]. In these papers, Ludwig Boltzmann
introduced groundbreaking concepts such as the transport equation that bears his name
and the statistical interpretation of entropy. His incorporation of probabilistic reasoning
into physics revolutionized our comprehension of thermodynamics, entropy, and transport
theory and provided insights into the second law of thermodynamics, which is central to
modern physics, facilitating subsequent scientific advancements that continue to shape the
various disciplines.

Boltzmann, by studying the approach to equilibrium in a system, introduces following
the kinetic equation:

∂

∂t
f (v, t) + a · ∇v f (v, t) = C[ f (v, t)] , (1)

Entropy 2025, 27, 394 https://doi.org/10.3390/e27040394
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today named the Boltzmann equation, for a single-particle probability distribution function
f (v, t), where C[ f ], the collisional term, accounts for the binary interactions among the
monads of the system. In this way, he was able to introduce the so-called H-functional,

H[ f ] =
∫

f (v, t) ln f (v, t) dv (2)

which, together with the relation dH/dt ≤ 0, constitutes his celebrated H-theorem.
Several years later, Josiah Willard Gibbs [4], a pioneer in the study of statistical

mechanics, introduced the well-known expression

S[p] = −kB

∫
p(x, v, t) ln(p(x, v, t)) dx dv , (3)

which shows an evident similarity with the H-functional (2), where p(x, v, t) is the proba-
bility distribution function of the system in the phase space. The dimensional constant kB

has since been baptized in honor of Ludwing as the Boltzmann constant. This relation (3) is
now known as Boltzmann–Gibbs entropy. It is used in statistical mechanics to measure how
disordered or random a system with many parts is on a microscopic level. The legitimacy
of this last statement finds validity in the following expression:

S = kB ln(W) , (4)

written in this form by Max Planck [5] during his studies on black-body radiation. Al-
though Boltzmann never explicitly wrote this last relation, it is nowadays known as the
Boltzmann–Planck formula of entropy. Epigraphed on the Boltzmann tomb as a testimony
to his enormous contribution to this field, it is a pillar in the field of thermostatistics.

However, Boltzmann’s ideas, probably due to their extraordinary innovation, were not
largely accepted and recognized as such initially by the wider scientific community. These
have given rise to several controversial discussions with prominent personalities, such as
Ernst Mach, and have also given rise to the birth of logical paradoxes like Maxwell’s devil,
the Poincare recurrence, and the Loschmidt paradox, to cite the most well known, which,
in some way, exist in contrast to the prediction made by the H-theorem, and which have
only recently found partial explanations.

Furthermore, Boltzmann’s contributions to the understanding of heat, energy, and the
behavior of gases in terms of statistical laws have surely revolutionized the way scientists
today approach the behavior of matter. The principles he introduced have profoundly
influenced not only physics but also fields such as biology, engineering, and even economics,
where statistical approaches play a fundamental role in the understanding of many complex
systems. A complete compilation of Ludwig Boltzmann’s published works, including all
his articles originally published in journals, can be found in ref. [6].

This Special Issue celebrates the 180th anniversary of Ludwig Boltzmann’s birth by
bringing together high-quality reviews and original research articles that examine the
enduring influence of Boltzmann’s concepts on statistical physics and related fields. Our
aim is not only to acknowledge Boltzmann’s foundational contributions but also to explore
how his pioneering ideas continue to inspire advancements at the forefront of contemporary
science and technology. The breadth of research presented here demonstrates the ongoing
relevance of statistical mechanics in diverse domains.

The articles featured in this Special Issue illustrate the far-reaching impact of Boltz-
mann’s work. Tamburrini, Davis, and Moya (2023) [7] introduce the Ehrenfest procedure
as an efficient alternative to probability density functions for macroscopic properties in
systems with multiple degrees of freedom, such as plasmas. This approach, rooted in the
conjugate variable theorem and fluctuation–dissipation theorem, offers a computationally
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efficient method for studying adiabatic invariants in magnetized plasmas. Their study
validates theoretical predictions through test particle simulations, demonstrating the utility
of statistical mechanics in understanding dynamical systems far from equilibrium.

Kais (2024) [8] investigates quantum phase transitions in finite systems, challenging
the conventional view that true criticality only emerges in the thermodynamic limit. Tra-
ditionally, finite-size scaling methods have been employed to extrapolate results to larger
systems, but recent advances in ultra-cold atomic and molecular systems have raised new
questions about the nature of phase transitions in genuinely finite systems. By developing
a finite-size scaling approach tailored for such cases, this study examines quantum critical
parameters in the context of chemical processes at ultra-cold temperatures. The recent
observation of a quantum phase transition in a single trapped 171Yb+ ion suggests that
these transitions may play a fundamental role in chemical bond formation and dissociation,
offering fresh perspectives on quantum chemistry.

Expanding on the statistical framework for microscopic systems, Alvarez-Estrada
(2024) [9] extends a previous analysis of the quantum Wigner function and non-equilibrium
equations for a microscopic particle in one spatial dimension. By deriving new solutions for
the hierarchy equations and linking them to a Smoluchowski equation, this study develops
a model describing molecular chain growth through atomic binding and catalyst activation
in three-dimensional space. This work provides valuable insights into stochastic dynamics
at the microscopic scale.

Rondoni and Di Florio (2024) [10] contribute to the fundamental understanding of
the Boltzmann equation by analyzing conditions under which probability behaves analo-
gously to mass. They emphasize that probability is the only suitable mathematical tool for
describing small systems that deviate from the classical Boltzmann equation. Their study
underscores the continued relevance of Boltzmann’s insights in interpreting statistical
mechanics applications.

From a conceptual perspective, Gimbel (2024) [11] explores the broader implications
of Boltzmann’s statistical approach to entropy. This study highlights how his 1877 for-
mulation introduced quantization, reformulated entropy, and challenged deterministic
interpretations of the laws of nature. Boltzmann’s statistical perspective on the Second
Law of Thermodynamics marked a paradigm shift, aligning with other scientific develop-
ments of the time, such as Darwin’s theory of evolution and Hutton’s geological theories.
This paper also examines potential influences between Boltzmann and Darwin, noting
Boltzmann’s frequent references to evolutionary theory in his later writings.

Edrisi, Patwa, and Morales Escalante (2024) [12] examine Wehrl entropy for harmonic
potential benchmark problems, deriving a steady-state analytical formula. However, their
findings indicate a lack of theoretical results on absolute entropy monotonicity in the
presence of friction. By employing a stochastic Monte Carlo numerical solver, this study
provides numerical evidence suggesting the possibility of monotonic behavior, shedding
light on entropy evolution in non-equilibrium systems.

In the domain of granular suspensions, Gómez González and Garzó (2024) [13] inves-
tigate non-Newtonian transport properties using inelastic Maxwell models and BGK-type
kinetic approaches. Their study explicitly accounts for collisions between granular particles
and a molecular gas, contrasting with traditional coarse-grained models. By employing
both inelastic Maxwell models (IMM) and BGK-type kinetic models, they provide exact
transport property computations and detailed velocity moment analyses. Notably, their
findings highlight the phenomenon of discontinuous shear thickening (DST), demonstrat-
ing its dependence on mass ratios and other parameters.

Hunt, Sahimi, and Newman (2024) [14] apply percolation theory and ecological op-
timality principles to refine predictions of plant species richness based on net primary
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productivity. Their approach enhances species-energy theory by offering a more precise
expression for primary productivity as a function of precipitation and potential evapo-
transpiration, improving our understanding of biodiversity patterns and non-climatic
influences on ecosystem dynamics.

Addressing the dynamics of complex networks, van Elteren, Quax, and Sloot
(2024) [15] identify two critical roles that nodes play in catalyzing abrupt transitions. Ini-
tiator nodes act as amplifiers of short-lived fluctuations, destabilizing neighboring nodes,
while stabilizer nodes encode long-term memory, counteracting cascading effects. This
study introduces a new framework for understanding and controlling endogenous metasta-
bility in networked systems, with implications for fields ranging from epidemiology to
financial systems.

In the realm of materials science, Svyetlichnyy (2025) [16] simulates the powder bed
fusion (PBF) process for functionally graded materials (FGM) fabrication using a combina-
tion of unity-based deposition models and lattice Boltzmann method (LBM) simulations.
By introducing a diffusion model for material mixtures, specifically AISI 316L austenitic
steel and 18Ni maraging 300 martensitic steel, this study demonstrates consistency with
experimental data. The proposed approach offers a powerful tool for simulating, studying,
and optimizing FGM production in PBF processes, reinforcing the practical applications of
Boltzmann’s methods in modern engineering.

Finally, Boguñá and Serrano (2025) [17] present a statistical mechanics framework
for directed networks, conceptualizing them as ensembles of interacting fermions. Their
approach systematically models network structures and dynamics, introducing novel per-
spectives and analytical tools for studying directed networks. By addressing reciprocity and
other network characteristics, their work provides a principled method for investigating
influence propagation and connectivity in complex systems.

We are honored to present this Special Issue as a tribute to Ludwig Boltzmann’s scien-
tific vision. The breadth and depth of the research included here reaffirm the foundational
role of statistical mechanics, and we hope the articles included herein will inspire future
investigations into the challenges and opportunities that lie ahead.

Conflicts of Interest: The authors declare no conflicts of interest.
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Evaluating the Adiabatic Invariants in Magnetized Plasmas
Using a Classical Ehrenfest Theorem
Abiam Tamburrini 1,*, Sergio Davis 2,3 and Pablo S. Moya 1,*

1 Departamento de Física, Facultad de Ciencias, Universidad de Chile, Santiago 8370459, Chile
2 Research Center in the Intersection of Plasma Physics, Matter and Complexity (P2mc), Comisión Chilena de

Energía Nuclear, Casilla 188-D, Santiago 8320000, Chile; sergdavis@gmail.com
3 Departamento de Física, Facultad de Ciencias Exactas, Universidad Andres Bello, Santiago 8370136, Chile
* Correspondence: abiamtamburrini@gmail.com (A.T.); pablo.moya@uchile.cl (P.S.M.)

Abstract: In this article, we address the reliance on probability density functions to obtain macroscopic
properties in systems with multiple degrees of freedom as plasmas, and the limitations of expensive
techniques for solving Equations such as Vlasov’s. We introduce the Ehrenfest procedure as an
alternative tool that promises to address these challenges more efficiently. Based on the conjugate
variable theorem and the well-known fluctuation-dissipation theorem, this procedure offers a less
expensive way of deriving time evolution Equations for macroscopic properties in systems far from
equilibrium. We investigate the application of the Ehrenfest procedure for the study of adiabatic
invariants in magnetized plasmas. We consider charged particles trapped in a dipole magnetic field
and apply the procedure to the study of adiabatic invariants in magnetized plasmas and derive
Equations for the magnetic moment, longitudinal invariant, and magnetic flux. We validate our
theoretical predictions using a test particle simulation, showing good agreement between theory
and numerical results for these observables. Although we observed small differences due to time
scales and simulation limitations, our research supports the utility of the Ehrenfest procedure for
understanding and modeling the behavior of particles in magnetized plasmas. We conclude that this
procedure provides a powerful tool for the study of dynamical systems and statistical mechanics out
of equilibrium, and opens perspectives for applications in other systems with probabilistic continuity.

Keywords: Ehrenfest theorem; magnetized plasmas; non-equilibrium statistical mechanics

1. Introduction

Statistical mechanics provides a theoretical framework and a toolbox that gives us
a deep understanding and detailed description of the collective behavior of particles in
physical systems. One of the main advantages of statistical mechanics lies in its ability
to relate observable macroscopic properties to the microscopic properties of individual
particles. By using probabilistic and statistical methods, we can greatly simplify the analysis
of complex systems, and obtain general rules applicable to a wide range of conditions.
Through this connection, we can understand how macroscopic properties emerge from
the behavior of particles at the microscopic level [1]. Furthermore, statistical mechanics
offers a unified approach to analyze equilibrium and non-equilibrium systems. It allows
us to study not only systems at thermodynamic equilibrium but also non-equilibrium
systems [2–5]. This capability is especially relevant for modeling complex phenomena in
nature [6–8]. Treating a non-equilibrium system is still an open task [9]. However, we have
seen approximations based on the fundamental theory of statistical mechanics, such as the
principle of maximum entropy [10], that, from first principles and information theory [11],
we can infer probability distribution for the state of the system, which is most likely given
certain restrictions and the information available. This approach allows us to describe the
dynamics of non-equilibrium systems by providing a coherent picture of how they evolve

Entropy 2023, 25, 1559. https://doi.org/10.3390/e25111559 https://www.mdpi.com/journal/entropy6
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over time, thus providing a clear prescription for constructing models in non-equilibrium
statistical mechanics [12,13]. These models have been explored to understand the time
evolution of dynamical systems [14–17], leaving us with general rules applicable to this
type of system [18].

Although we can find plasma in an equilibrium state, usually when collisions are
scarce, a plasma is typically a system out of equilibrium with a high number of degrees of
freedom [19]. In the study of plasmas, there are various approaches from non-equilibrium
statistical mechanics that allow an adequate description of these complex systems. Two
prominent approaches are non-extensive statistical mechanics [20] and superstatistics [21],
both aimed at addressing the features that emerge when plasma particles are far from
thermodynamic equilibrium. Non-extensive statistical mechanics represents a theoretical
framework that quantifies the distance from equilibrium in these systems through non-
extensive entropy. This approximation generalizes the Boltzmann–Gibbs entropy, which
has traditionally been used to describe systems in thermodynamic equilibrium. However,
plasmas often have dynamic and structural properties that differ significantly from a classi-
cal steady state. In this sense, non-extensive statistical mechanics offers a more suitable way
to characterize systems with non-trivial fluctuations and correlations, which is common
in plasmas due to their turbulent behavior and non-linear transport properties [22–25].
On the other hand, superstatistics is another approach that is not based on generalizing
the Boltzmann–Gibbs entropy, but instead proposes the existence of other parameters
that follow a distribution different than Boltzmann [21,26,27]. These parameters can be
considered effective temperatures in different cells of the plasma, where each cell has a
temperature distribution that deviates from a global temperature in a possible thermody-
namic equilibrium. In this view, the plasma particles do not experience a single, global
temperature, but rather ‘feel’ different temperatures depending on the cell they belong to.
This non-trivial characteristic of temperature in the plasma has important implications for
the dynamics and macroscopic properties of the system. These advanced theoretical tools
contribute to a better understanding of the physical processes in plasmas [28–31].

In general, from the point of view of statistical mechanics, these systems are described
by partial differential equations (PDEs) for the time-dependent probability distribution
function of the system. With this, it is possible to calculate the macroscopic properties
of the system using the expectation value of its microscopic properties. The plasmas are
described by Vlasov’s PDE [32]. This equation comes from Liouville’s theorem, where the
Hamiltonian involves kinetic terms and the interaction of charged particles with electro-
magnetic fields [33]. There is no general analytical solution to this problem for arbitrary
electromagnetic fields for the probability density function, and the numerical methods are
extremely expensive in terms of computational cost, as they require the discretization of
space and time with a grid size as small as the desired resolution, which depends of the
highest frequency of modes of oscillation in the plasma, typically the frequency associated
with the electrons [34].

To study the plasma macroscopic properties, we have developed new non-equilibrium
statistical mechanics techniques, in particular, what has been called the ‘Ehrenfest pro-
cedure’ due to its resemblance to Ehrenfest’s theorem in quantum mechanics [35]. The
procedure allows the construction of particular differential equations associated with an ar-
bitrary and time-dependent macroscopic property w. Using two fundamental theorems of
statistical mechanics, the conjugate variable theorem (CVT) and the fluctuation–dissipation
theorem (FDT) [18,36], it is possible to relate the derivatives in time and space of the
probability density function with the derivatives in time and space of an arbitrary time-
dependent macroscopic property. Therefore, employing this feature, we can eliminate the
explicit dependence of the probability density function, ρ, on the original PDE, obtaining a
particular PDE associated with an arbitrary macroscopic property w. Moreover, in Ref. [35],
the procedure was applied to the Vlasov equation to formulate new equations for the
general evolution of arbitrary fluctuations in collisionless plasmas.
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On the other hand, it is well known that in classical mechanics, whenever there is a
system with periodic movements, the action integral

∮
pdq, with p and q the generalized

variables in the phase space, taken over a period, is a constant of motion [37]. If under
small perturbations in the system this quantity remains constant, then we call it adiabatic
invariant. These quantities are important in plasma physics and help us simplify the
answer in cases involving complex motion. The study of adiabatic invariants allows us to
identify and characterize properties and relations that remain constant during the temporal
evolution of a system. It is possible to predict significant quantities and magnitudes of
systems in different stages [38]. It allows studying conditions in which the system is stable
or maintains an equilibrium state [39]. At the particle scale, it allows the characterization
of their movement and the understanding of their dynamics in environments where they
interact with electromagnetic fields, such as particles trapped in the Earth’s magnetic
field [40], giving rise to Earth’s radiation belts. In particular, for particles trapped in a
dipole magnetic field, there are three invariants associated with three types of movement,
namely: gyromotion around magnetic field lines, bouncing between two magnetic mirror
points, and orbital motion around the Earth due to the curvature drift [41–43]. In this
work, we make use of the Ehrenfest procedure applied to the Vlasov equation to study the
adiabatic invariants in a magnetized collisionless plasma.

We have organized this document as follows. First, in Section 2, we show the three
adiabatic invariants associated with the three motions of the particles under a magnetic
field, and we present the expression that the Ehrenfest procedure determines for the time
evolution of each of these quantities. Then, in Section 3, we present the numerical result
obtained from a test particle simulation and show the correlation between the analytical
expression shown in Section 2 and the numerical result. Finally, in Section 4, we summarize
our findings and present the main conclusions.

2. Ehrenfest Procedure in Adiabatic Invariants

As already mentioned, in a previous study [35], it was shown that by applying the
Ehrenfest procedure to the Vlasov equation, it is possible to derive a dynamical PDE for an
arbitrary observable, equivalent to the Vlasov equation. Following Ref. [35], we define the
Ehrenfest operator given by

Eh[•] =
〈∂•

∂t
+ v · ∂r•+

F
m
· ∂v•

〉
, (1)

where the brackets correspond to the expectation value, defined as follows:

W(t) =
〈
w(r, v, t)

〉
=
∫

drdv ρ(r, v)w(r, v, t) (2)

Therefore, the PDE for the arbitrary observable corresponds to the equation that
follows the form

∂

∂t
〈
w
〉
= Eh[w] , (3)

namely,
∂

∂t
〈
w
〉
=
〈∂w

∂t

〉
+
〈

v · ∂rw
〉
+
〈 F

m
· ∂vw

〉
, (4)

where the notation Eh[w] represents the expression derived from the Ehrenfest procedure
on an arbitrary observable, equal to the temporal evolution of this observable w.

Here, we are interested in the study of adiabatic invariants of particles trapped in a
magnetic field. For example, in the case of the Earth’s radiation belt, there are three main
motions of the particles due to their interaction with the approximate dipole magnetic field
of the Earth [44]. Given this approximation, it is clear to see that due to the curvature of the
field, there will be different drifts that give rise to these movements [37]. The invariants,
their associated motion, and the Ehrenfest procedure applied to each of them are described
below.
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• First Invariant.

The first invariant of magnetic moment is associated with the Larmor gyration, and it
is given by the expression,

µ =
mv2
⊥

2B
. (5)

Considering the magnetic moment as an observable µ = w, we replace the right hand
of Equation (5) in Equation (4):

∂

∂t
〈
µ
〉
= Eh[µ] .

Therefore, we obtain

∂

∂t
〈
µ
〉
= −

[〈
mv2
⊥

2
∂

∂t

(
1
B

)〉
+

〈
mv2
⊥

2
v · ∇r

(
1
B

)〉]
, (6)

where Equation (6) corresponds to the Ehrenfest expression for the time variation
of the magnetic moment. The first addend of this expression refers to the temporal
variation of the magnetic field. If the magnetic field has fast variations, it can cause
direct variation in the magnetic moment of a particle. If the change in the magnetic
field is fast enough, it could even induce electric currents, which in turn would affect
its magnetic moment. The second addend refers to the existence of drifts. Given a
curvature in the magnetic field, the Larmor orbits can expand or contract accordingly,
and the particles may lose or gain energy in the transverse direction, affecting the
average magnetic moment.

• Second Invariant.

The second adiabatic invariant, known as the longitudinal invariant, is associated
with the periodic motion along the magnetic field line for particles trapped between
two magnetic mirror points. It is possible to study this motion indirectly through the
pitch angle between the particle velocity and the magnetic field direction, given by
the expression

cos(θ) =
B · v
|B||v| . (7)

Considering the pitch angle as an observable cos(θ) = w, we replace the right hand of
Equation (7) in Equation (4):

∂

∂t
〈

cos(θ)
〉
= Eh[cos(θ)] =

〈
v · (v̂ · ∇r)B̂

〉
. (8)

Thus, Equation (8) shows that when a charged particle moves in a nonuniform mag-
netic field, it experiences a magnetic force that acts perpendicular to its velocity and
the magnetic field. We can demonstrate this non-uniformity in Equation (8), given by
the gradient of the projected field on the direction of movement of the particle. This
force can change the direction of motion of the particle, which in turn affects the angle
between the velocity and the magnetic field lines, that is, the pitch angle.

• Third Invariant.

Finally, the third adiabatic invariant, called magnetic flux invariant, is associated with
the nonuniform B field drift, which if it is not time-dependent, should expect close
trajectories; therefore, we can study it indirectly through the average (squared) radial

9
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distance of a particle radio particles. Then, making the observable w = r2, we replace
in Equation (4), obtaining

∂

∂t
〈
r2〉 = Eh[r2] = 〈v · r〉. (9)

In this case, it is more direct to see that the variation of the average radial distance of
each particle will depend on whether it moves in the radial direction. For this reason,
the variation of the third invariant depends directly on the projection of the velocity
of the particles in the radial direction.
The set of equations that form Equations (6), (8), and (9) corresponds to the analyt-
ical results for the temporal evolution of the quantities that allow us to study the
movements to which the three adiabatic invariants are associated in this system. To
verify these three expressions obtained using the Ehrenfest procedure, both sides of
Equations (6), (8), and (9) will be compared using the data extracted from test particle
simulations.

3. Numerical Results for Testing the Ehrenfest Procedure in Adiabatic Invariants

In order to verify the theoretical expressions derived in Section 2, we developed a
test particle simulation [45] code written in the C++ programming language. In this kind
of simulation, the particles follow the trajectories prescribed by the electromagnetic field,
do not interact with each other, as in particle-in-cell simulations [34,46,47], and do not
influence the dynamics of electromagnetic fields. Our objective was to simulate the outer
Earth’s radiation belt conditions. The particles were trapped by the Earth’s magnetic field,
which was considered a dipole magnetic field of the form

B(r) =
3(m · r)− r2m

r5 , (10)

where r is particle position, and m is the magnetic moment that, in our case, was considered
in the ẑ direction. In setting the initial conditions, we adopted a Maxwellian distribution
comprising 105 particles. The velocities were stochastically assigned according to this
distribution, employing the Box–Muller method and employing a thermal velocity that
aligns with energy levels on the order of keV, normalized with respect to the rest energy
of electrons. The particles were injected in a small cube near the magnetic equator at a
radial distance of 4.5± 0.5 RE, with RE being the Earth’s radius. The simulation was run
for 1.4× 106 time steps ∆τ = 0.1, where τ = c t/RE represents the normalized time, and c
is the speed of light. To obtain the velocity and position of the particle, the Boris algorithm
was used, which is based on Liouville’s theorem, and preserves energy by construction
without being symplectic [48]. The first result corresponds to the particle trajectories, where
we notice that the particles follow the expected behavior given the conditions. In Figure 1,
we can see the evolution of the particle distribution in four different moments during
the simulation. Three of them (τ = 1, 100, and 500) correspond to the first moments of
the simulation in which the radiation belt is still forming, and the last one (τ = 20,000)
corresponds to a later stage in which the belt has been completed.

Since the spatial particle distribution reaches a stationary state, that is, once the
radiation belt has been formed after approximately 10,000 time steps, and the particles
follow their periodic motion, we build the time series for each quantity. On the one hand,
we build the time derivative of the observable, and on the other, we build the time series for
the quantities that the Ehrenfest procedure indicates to determine the time evolution of the
observable; that is, using the simulation we construct and compare the left and right sides
of the Equations (6), (8), and (9), and to construct the expectation values of the different
quantities, we calculate the arithmetic average over all the particles for a fixed time, given
by the discrete data that we can extract from the simulation. In the left column of Figure 2,
from top to bottom, time series corresponding to both sides of Equations (6), (8), and (9)
are plotted in red and blue. In addition, the right column of the same figure shows scatter
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plots of the same quantities (magnetic moment, pitch angle, and average radial distance),
so we compare them with each other with respect to the trend line that represents Slope
1 (black dashed line). We calculate the Pearson correlation coefficient between quantities
and plot both sides of the Equations (6), (8), and (9) to be able to see the level of correlation
between both sides of the Ehrenfest equation for each adiabatic invariant. Finally, we made
a linear fit to each data set and calculated the slope of the fit in each case, which is shown
in Figure 2 along with the Pearson correlation coefficient.

Figure 1. Particle trajectories in the x̂-ŷ plane in the left panel and x̂-ẑ plane in the right panel , in
four different time steps: τ = 1, τ = 100, τ = 500, and τ = 20,000.

In the complete dynamics of the system, we have that the three adiabatic invariants
are on different time scales. For example, the first invariant is on the order of the motion
of the cyclotron around the magnetic field line, given by the Larmor frequency, and the
flux invariant is given by the precession of particles around the Earth. This means that the
equations of motion must be solved over a wide range of time scales.

Since the time series are constructed based on different parameters and fluctuate
on different time scales, the data of each series were normalized before being treated
for construction, This allows the order of fluctuation of each time series to be the same,
eliminating the error caused by the centered derivative by having to make a finite difference
between quantities that are in the order of 10−25, such as the magnetic moment. The time
series show small differences that are best evident in the lower window of each time series,
where we approach a specific time interval.

We can see that the three invariants fluctuate on different time scales, and each quantity
presents a different noise in its curve. For example, for the magnetic moment, it is possible
to distinguish its distinctive oscillation period with respect to the equilibrium value being
at least 10 times smaller than the other two quantities. On the other hand, for the average
radius of the orbit, it is possible to distinguish a period of oscillation around the equilibrium
value, but at the same time, it contains noise in the curve, which occurs to a lesser extent
for the pitch angle. From this second invariant, we can see that the fluctuation follows the
same behavior and, as expected, presents a better Pearson correlation coefficient of 0.964
compared to the correlation coefficient of 0.941 obtained for the magnetic moment.

We also note that by the construction of the second invariant, this is already normalized
and is where we find the best slope m = 0.958, and as expected, it is better than the slope
of the magnetic moment m = 0.856, which, in principle, fluctuates in the order previously
mentioned. Finally, for the third adiabatic invariant, we note that although the curve
contains more noise, this expression presents the best Pearson correlation coefficient of
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0.980, and in the zoom window, we distinguish that the time series also follows the same
behavior.

, , ,

, , ,

, , ,

, , ,

, , ,

, , ,

Figure 2. Application of the Ehrenfest procedure to particles trapped in a dipole magnetic field. Left:
time series of the left-hand (blue) and right-hand (red) sides of Equation (4) using data extracted
from the simulation. From top to bottom, each panel corresponds to the Ehrenfest procedure applied
to the magnetic moment, pitch angle, and radial distance, respectively. Right: correlations between
left- and right-hand sides of each relation. In each scatter plot, the solid black line represents the
maximum in each column, and black dashed lines represent the tendency and identity, respectively.

Although the analytical expression suggests that the relationship between the temporal
evolution of the adiabatic invariant should be 1 to 1 with the expression determined by
the Ehrenfest procedure, it is expected to obtain small differences between the time series
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that represent both sides of the Equations obtained using the Ehrenfest procedure. This is
because it only approximates the behavior of a Vlasov system since, by using the numerical
simulation, we discretized the space. The numerical methods are in fact finite differences;
that is, we are working only with a section of the phase space and not with the entire
phase space as a Vlasov system would follow. In Figure 2, these differences and errors are
manifested by less than one correlation coefficient and also in that the slopes of the fits
for each quantity are below the 1-to-1 relationship suggested by the analytical expression.
Despite this, we notice in the time series windows that each quantity follows the same
behavior and presents a very good correlation and a slope very close to Slope 1.

4. Conclusions

In this article, we have explored the applicability of the Ehrenfest procedure for
the study of adiabatic invariants in magnetized plasmas. The reliance on probability
density functions to obtain macroscopic properties in systems with a high number of
degrees of freedom and the expensive techniques, both theoretical (such as canonical
transformations in the Vlasov equation) and computational to solve the problem, motivated
us to propose a procedure that would allow obtaining information about the system in
a less expensive way than conventional methods, that is, the Ehrenfest procedure. This
procedure is based on general rules such as the conjugate variable theorem [18], valid
for states arbitrarily far from equilibrium, covering specific cases such as hypervirial [49]
relations in statistical mechanics and the expression of temperature in the microcanonical
ensemble, as derived by Rugh and generalized by Rickayzen [50,51]. Its validity remains
independent of considerations about ergodicity or a priori equality of probabilities for
microstates in a thermodynamic system, even when the existence of such a system is
uncertain. Instead, it holds as long as we base our reasoning on incomplete information,
given in the form of expected values. This theorem can serve as an alternative tool for the
estimation of parameters in probability distributions that present sufficient statistics, seen
from the perspective of frequentist statistics.

We have demonstrated the application of our ‘Ehrenfest procedure’ to the Vlasov
equation for collisionless plasmas. We use the general relation in equation (4), which gives
the time evolution of any macroscopic property in a Vlasov system. From Ehrenfest’s
general relation, we have derived the partial differential equation for the study, both direct
and indirect, of the three adiabatic invariants: magnetic moment, longitudinal invariant,
and magnetic flux, which we show in Equations (5), (7), and (9). We compare the theory
with the numerical simulations, and the results suggest a good agreement between the
theory and the numerical simulations for the magnetic moment, the average radius of
the orbit, and the pitch angle, which suggests that the procedure is suitable for these
observables. In addition, the increase in the statistics of the problem since the simulation
approaches a Vlasov system, and we only have a part of the phase space, together with the
fact that the numerical methods used are of finite difference, can give rise to differences
and errors in the observed correlations, which explains the fluctuations and noises present
in the curves of the different quantities analyzed. Due to the aforementioned, with this
procedure, we were able to demonstrate the equality given by the analytical expression in
the numerical simulation data up to the simulation precision. It is also worth mentioning
that although Boris’s algorithm is based on construction on Liouville’s theorem, it is not
symplectic; therefore, it does not preserve the volume in the phase space. Thus, although it
is expected that there is some numerical error, we observe that the analytical expressions
are mostly confirmed by the simulations up to numerical precision.

We have observed an increase in the Pearson correlation coefficient and the slope of
the linear fit as we increase the statistics collected from the problem. Specifically, by in-
creasing the number of particles in the simulation by an order of magnitude, the correlation
coefficient increases significantly, as shown in Figure 3, where we also see that it seems to
stabilize between 104 and 105. Here, we present the case of 105 particles, as it is the smallest
number that leads to meaningful results without the use of unnecessary numerically ex-
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pensive simulations. In summary, we have shown that the Ehrenfest procedure is a general
useful tool, applicable to any system following a continuity equation for probability, such
as the Vlasov equation in collisionless plasmas. Given these advantages, applications seem
to come naturally. For example, in a plasma modeled by the Fokker–Planck equation, it
would be possible to have expressions for observables with dependencies on the drift and
diffusion coefficient. It remains for future work to show that this procedure is useful to
analyze the case in which the magnetic field intensity is suddenly altered in this system of
trapped particles, simulating a geomagnetic storm. In such a case, it should be possible to
violate the third adiabatic invariant and expect the particles to undergo radial diffusion [44]
that, in principle, may be estimated using this procedure. In general, this procedure al-
lows one to quickly obtain equations of dynamic evolution for particular properties and,
therefore, seems to be a powerful addition to the study of out-of-equilibrium plasmas or
dynamical systems in general.

Figure 3. The upper panel shows the change in the slope of the linear fit for each quantity as we
increase the particle statistics of the problem in steps of an order of magnitude. The lower panel
shows the variation of the Pearson correlation coefficient by increasing the number of particles. The
error associated with each data is on the order of 0.02% on average; therefore, the error bars are not
distinguishable on the scale of the figure.
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Abstract: The quantum Wigner function and non-equilibrium equation for a microscopic particle
in one spatial dimension (1D) subject to a potential and a heat bath at thermal equilibrium are
considered by non-trivially extending a previous analysis. The non-equilibrium equation yields a
general hierarchy for suitable non-equilibrium moments. A new non-trivial solution of the hierarchy
combining the continued fractions and infinite series thereof is obtained and analyzed. In a short
thermal wavelength regime (keeping quantum features adequate for chemical reactions), the hierarchy
is approximated by a three-term one. For long times, in turn, the three-term hierarchy is replaced by a
Smoluchovski equation. By extending that 1D analysis, a new model of the growth (polymerization)
of a molecular chain (template or te) by binding an individual unit (an atom) and activation by a
catalyst is developed in three spatial dimensions (3D). The atom, te, and catalyst move randomly
as solutions in a fluid at rest in thermal equilibrium. Classical statistical mechanics describe the
te and catalyst approximately. Atoms and bindings are treated quantum-mechanically. A mixed
non-equilibrium quantum–classical Wigner–Liouville function and dynamical equations for the atom
and for the te and catalyst, respectively, are employed. By integrating over the degrees of freedom of
te and with the catalyst assumed to be near equilibrium, an approximate Smoluchowski equation is
obtained for the unit. The mean first passage time (MFPT) for the atom to become bound to the te,
facilitated by the catalyst, is considered. The resulting MFPT is consistent with the Arrhenius formula
for rate constants in chemical reactions.

Keywords: non-equilibrium Wigner function and hierarchy for moments; short thermal wavelength
and long-time regimes; approximate Smoluchovski equation; catalyzed polymerization

1. Introduction

Non-equilibrium quantum statistical mechanics has its own scientific importance [1–17],
and its applications make it even more important. Part of the latter, of paramount relevance,
are chemical reactions [18–23]: in them, typically, atoms/molecules in an initial state are not
the same as those in the final one, while on the other hand, those processes occur in the
presence or inside a statistical medium (for instance, a fluid). Here, chemical reactions can
be understood in a broad sense and include, namely, biochemical processes [23]. The very
formation and breaking up of bound states with discretized binding energies in chemical
reactions unavoidably requires quantum mechanics and statistical mechanical concepts, even
if other features in those processes can be accounted for in terms of classical physics for that
purpose. For further knowledge regarding thermodynamics and statistical mechanics, see, for
instance [24–28].

Before proceeding further, it seems adequate to remind the reader of part of the
previous work that has motivated the present one. For that purpose, see [29,30] and
references therein.

The non-equilibrium dynamics of a closed classical gas composed of a large number
of identical non-relativistic particles was described by the classical Liouville distribution
f and equation, which depend on the time t and on the positions and momenta of all
particles with some suitable initial condition at t = 0. It was assumed that only the inner
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part of the gas was off-equilibrium while the remainder of it was at equilibrium at absolute
temperature T. The standard Boltzmann equilibrium distribution feq with temperature T,
being Gaussian in all momenta, generated a family of orthogonal polynomials in the latter:
the standard Hermite polynomials. The latter, upon integrating on the momenta, enabled
the introduction of non-equilibrium moments (depending on t and particle positions). The
Liouville equation gave rise to an infinite three-term hierarchy for those classical moments.
The hierarchy was entirely different from the standard Bogoliubov–Born–Green–Kirkwood–
Yvon (BBGKY) hierarchy [1,3,4]. The hierarchy was solved in terms of suitable infinite
continued fractions of operators. Those continued fractions suggested and allowed for the
implementation of a long-time approximation. After further approximations, the lowest
non-equilibrium moment was shown to satisfy a Smoluchovsky equation, which is formally
similar to the one characterizing the so-called Rouse model in polymer dynamics [31]. An
approximate approach to thermal equilibrium over a long time can then be established.

Attempts at extensions of those procedures to quantum processes faced two difficulties.
First, it was not warranted that, contrary to the classical situation, quantum–mechanical
distributions be non-negative in certain limited spatial domains. This, in turn, would, in
general, prevent a direct use of the corresponding equilibrium distribution to generate, in
the standard way, a family of orthogonal polynomials in momenta and, so, non-equilibrium
moments. Such difficulty was bypassed by invoking a suitable generalization of the theory
of orthogonal polynomials, as will be illustrated later in Section 2.3 of this work. The
second difficulty was (and still continues partly to be) that, after having implemented that
solution of the first difficulty, the resulting hierarchy for the non-equilibrium moments is
not, in general, a three-term one: this demands proper analysis.

The present work presents: (1) a new study of non-equilibrium quantum statistical
mechanics aimed at providing a new (at least, partial) solution to the second difficulty
(Section 2) and (2) one possible application to a certain chemical reaction: namely, the one
playing a key role in the polymerization of a molecular chain [32] (Sections 3 and 4). In so
doing, previous analysis will be generalized [30,33] in a non-trivial way.

Section 2 presents: a one-dimensional (1D) non-equilibrium quantum Wigner function
(W) and dynamical equation, the introduction of a family of orthogonal polynomials
generated by the equilibrium Wigner distribution (Weq), a general n-term recurrence relation
for non-equilibrium moments of the corresponding W (determined, in turn, by those
orthogonal polynomials), a formal solution by combining continued operator fractions and
series expansions thereof, an approximate three-term recurrence relation for short thermal
wavelengths (still in the quantum regime), long-time approximations, and an irreversible
Smoluchowski equation.

Section 3 treats a three-dimensional (3D) model for the addition (polymerization) of
one single atom to a freely jointed molecular chain acting as a template (te) activated by a
catalyst in a fluid at equilibrium at a given temperature.

Section 4 studies the model in Section 3 through 3D non-equilibrium quantum–
classical Wigner–Liouville functions, a dynamical equation for the individual atom, the
te, and the catalyst, and successive approximations (assuming that the te and catalyst are
at thermal equilibrium) so as to yield a standard 3D non-equilibrium Wigner equation.
At this stage, the 1D developments in Section 2 (short thermal wavelength and long-time
approximations in Section 2) are extended to the above standard 3D equation, thereby
yielding a Smoluchowski equation for the single atom, and a mean first passage time
(MFPT) equation for the atom to become attached to the te chain.

Successive approximations are made for conditions suitable for chemical reactions.
Section 5 offers the conclusions and some discussions.
This work is a contribution to “180th Anniversary of Ludwig Boltzmann”, a Special

Issue of Entropy.
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2. One-Dimensional Wigner Function and Equation
2.1. General Aspects

We consider a simplified model of a microscopic non-relativistic particle of mass m in
one spatial dimension (x) in a finite interval Ω (= (−L/2,+L/2)), which is large on the
microscopic scale although possibly small on the macroscopic one, by omitting unnecessary
details. The particle is subject to a real (time-independent and velocity-independent) potential
V = V(x) in −L/2 < x < L/2 and to a heat bath (HB) at absolute temperature T. The
quantum particle Hamiltonian is H = −(h̄2/2m)(∂2/∂x2)+V, with h̄ being Planck’s constant.
For definiteness, the wave functions may be assumed to fulfill Dirichlet boundary conditions
in | x |= L/2.

The conditions on the potential V = V(x) are:

V(x) = V(−x) (for simplicity, although strictly unnecessary).
V(x) is attractive (< 0) in the interval −a < x < a (0 < a < L/2); it is very small (with an
arbitrary sign) in a <| x |< L/2 and vanishes fast as | x |→ L/2. Specifically, V(x) is finite
everywhere, and its magnitude |V| is appreciable only in the limited interval −a < x < a;
a is understood to be the range of V.
V(x) and all dnV(x)/dxn for n = 1, 2, 3, . . . are continuous everywhere.

In general, H has both a denumerably infinite number of discrete states with non-
negative energy (an almost continuous spectrum: L being large but finite at the microscopic
scale) and, in principle, a finite discrete spectrum (j = d) with energies Ed < 0. With j being
a general label, let φj = φj(x) generically denote a suitably normalized eigenfunction of H
with corresponding eigenvalue Ej.

As a simplifying assumption, V(x) does give rise to only one bound state
(bound spectrum).

The denumerably infinite discrete (almost continuous) spectrum Ej of H has a small
spacing, approaches a continuous spectrum more the larger L is, and would become a
continuous one (sweeping the continuous positive real axis 0 < Ej < +∞) if L−1 → 0.
We shall always denote it by CS, even if the small L−1 remains > 0. The eigenfunctions
corresponding to CS are φj = φk(x), with j ≡ k being an almost continuous wavevector
and eigenvalues Ej = Ek = h̄2k2/(2m) ≥ 0. The CS eigenfunctions are normalized through:
(φk, φk′) =

∫
dxφ∗k φk′ = δk,k′ (a Kronecker delta). Also, by taking into account the bound

state: (φd, φd) =
∫

dxφ∗d φd = 1 (normalized) and (φd, φk) =
∫

dxφ∗d φk = 0. Integrations
are performed over Ω. Hence, φd and all CS φk span two separate Hilbert subspacesHd
andHCS. See [34–36].

The time (t) evolution of the quantum particle is given by the general density operator
ρ = ρ(t) (a statistical mixture of quantum states) for t > 0. It fulfills the (t-reversible)
operator equation ∂ρ/∂t = (ih̄)−1[H, ρ] ([H, ρ] = Hρ− ρH being the commutator) with
initial condition ρ(t = 0) = ρin. The Hermitian and positive-definite linear operators ρ(t)
and ρin act on the Hilbert space spanned by the set of all eigenfunctions of H. See [34].

Let β = (kBT)−1, with kB being Boltzmann’s constant. We shall introduce the fixed
and physically relevant x-independent momentum and thermal wavelength:

qeq = (2m/β)1/2, λth = h̄/qeq (1)

We now resort to the non-equilibrium (reversible) Wigner function [1,2,4,6–8,37] at t,
which reads formally:

W(x, q; t) =
1

πh̄

∫
dx′ exp

[
2i
h̄

x′q
]
⟨x− x′|ρ(t)|x + x′⟩, (2)
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The initial Wigner function Win is given by Equation (2) by using ρ(t = 0). The
equilibrium density operator ρeq = exp[−βH] determines the equilibrium Wigner function
Weq (x, q) formally as:

Weq (x, q) =
1

πh̄

∫
dx′ exp

(
i2qx′

h̄

)
⟨x− x′|ρeq |x + x′⟩. (3)

A more specific analysis is required since Ω is not strictly an infinite interval. However,
as L is large, we shall approximate spatial integrals as those for an infinite length interval
when such approximations are harmless unless some specific discussion is required. Strictly
speaking, as Ω is not an infinite interval, the q′ are discretized momenta and

∫
dq′ (which

will appear later) should be interpreted as a series. However, as L is large, we shall
disregard the small spacings in q′ and understand

∫
dq′, as the notation indicates, as an

integral (q′ thus varying continuously) instead of as a sum. This remark and interpretation
will apply and be understood whenever integrations over momenta occur later. We shall
accept that all integrals (or all series) over momenta converge for large values of the latter:
explicit expressions and computations will support this assumption. Summarizing: as
L is large and unless otherwise stated, we shall approximate using practical calculations
(without writing it explicitly) spatial integrals by those in −∞ < L < +∞ and series over
momenta by integrations over them in −∞ < q < +∞.

Integrability properties of the Wigner function hold and will not be considered here for
brevity: they have been treated previously in [29,30] and, in particular, in references therein.

In principle, ∑j will denote sums over all eigenfunctions in j = d and j = CS; that is,
the former includes the contribution of both the single (bound state) discrete eigenfunction
plus that of an infinite summation over the whole CS ones. Since L is large, we approximate
for the CS: ∑j → (L/(2π))

∫
dk as L−1 → 0. Therefore, with the latter understanding for a

large-interval Ω, Weq is approximated as:

Weq(x, q) =
1

(πh̄)

∫
dx′ exp

(
i2qx

h̄

)
∑

j
exp[−βEj]φj(x− x′)φ∗j (x + x′). (4)

While at T = 0 there is no transition between the bound state and the CS ones; such
a transition is indeed possible for T > 0 (due to the HB) and can play a key role as kBT
approaches |Ed|. We emphasize that the contribution of the bound state becomes more
negligible the higher the temperature is (quasi-classical regime) and even disappears in the
full classical regime. On the other hand, there seems to be no compelling reason for not
using the quasi-classical or even classical formula as rough or zeroth-order approximations
in regions where the contributions due to the bound states are negligible.

For t > 0, the exact (t-reversible) dissipationless quantum master equation for the
general off-equilibrium Wigner function W [6,37] is:

∂W(x, q; t)
∂t

= − q
m

∂W(x, q; t)
∂x

+ MQW, (5)

MQW =
∫

dq′W(x, q′; t)
∫ idx′

πh̄2

[
V(x + x′)−V(x− x′)

]
exp

[
i2(q− q′)x′

h̄

]

=
dV
dx

∂W
∂q
− h̄2

3!22
d3V
dx3

∂3W
∂q3 +

h̄4

5!24
d5V
dx5

∂5W
∂q5 − · · · , (6)

with initial condition Win. W is real: this can be directly established through either Equation (2)
or Equation (6) by taking complex conjugates and changing x′ → x′′ = −x′.

If h̄→ 0, then the above equation becomes the classical Liouville equation [1,4,6].

∂W(x, q; t)
∂t

= − q
m

∂W(x, q; t)
∂x

+
dV
dx

∂W
∂q

(7)
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2.2. Equilibrium Wigner Function near the Classical Limit

Recall that in the classical case, the equilibrium (or Boltzmann’s) canonical distribution
describing the thermal equilibrium of a classical particle with an HB is proportional to
a Gaussian in q: that is, exp

[
−βq2/(2m)

]
, with q now being the classical momentum. In

the high temperature or small β (quasiclassical) regime, Wigner [6] obtained successive
approximations for Weq(x, q) as a power series in h̄. Equations (22) and (25) in [6] (the
leading terms in that expansion for Weq(x, q)) are directly recast as:

Weq(x, q) = c0 feq[1 + c1 + c2
∂2V
∂x2 H2(q/qeq)] (8)

with

feq = exp[−(q2/q2
eq + βV)] (9)

c1 = h̄2[− β2

12m
∂2V
∂x2 +

β3

24m
(

∂V
∂x

)2] (10)

c2 =
(βh̄)2

48m
(11)

where c0 = 2πh̄. H2 denotes the standard Hermite polynomial of second order [38]. We
shall refer to the contributions associated with c1 and c2 as quantum contributions in the
quasiclassical regime. Actually, Wigner’s series in [6], after factoring out c0 feq, turns out to
also be a power series in β and q so that the contributions in his Equation (25) contain only
up to quadratic powers in q. The latter have been rewritten in terms of H2 in (8) in order to
facilitate an eventual comparison with Weq if desired.

In the classical case (h̄ = 0) with attractive V in some domain, feq contains the factor
exp[−βV], which is > 1 and can be certainly large in the regions where V < 0. Recall that
in the classical case, in the latter domains there are no bound states but a continuum of
classical orbits. At this point, one may wonder how such a continuum of classical orbits
can become a discrete set of bound states if one resorts back to the quantum (statistical)
regime of interest here. The above quasiclassical expressions do provide some hint for that.
In fact, for Weq as given in by the small β (or, formally, small h̄) Equation (8), by integrating
over y (with y = q/qeq) and doing some algebra, one has that

∫
dyWeq tends to:

c0π1/2 exp[−βV].

[
1− h̄2 β2

12m
∂2V
∂x2 +

h̄2β3

24m
(

∂V
∂x

)2

]
(12)

We state that the crucial term −h̄2 β2

12m
∂2V
∂x2 is a qualitative signal of how a continuum of

classical orbits can become a discrete set of bound states even if it does not provide a
quantitative mechanism. In fact, the attractive V, being finite and having minima (with
values < 0) in certain domains, have ∂2V

∂x2 > 0 at those minima. Then, the leading correction

−h̄2 β2

12m
∂2V
∂x2 tends to reduce the importance of V(< 0) in those domains and contributes to

restrict a continuum of classical bounded orbits to a discrete set of quantum bound states.

The remaining term h̄2β3

24m ( ∂V
∂x )

2 (> 0) would tend to reinforce exp[−βV] (with −V(> 0))
but at a smaller amount due to the additional factor β and due to the fact that it is small
and vanishes at the minimum ( ∂V

∂x = 0). We shall regard this qualitative behavior as an
indication that even the lowest quantum corrections to the classical fre,eq contain certain,
even if small and partial, signals of quantum effects.

21



Entropy 2024, 26, 104

2.3. Weq as a Quasi-Definite Functional of Momenta

Notice that neither Weq nor W can be warranted to be nonnegative in general [8,37,39,40].
However, by invoking a suitable extension [41] of the theory of orthogonal polynomials, it
is natural: (i) to accept that Weq is a quasi-definite functional of momenta (as one can justify
through examples in certain cases: see references in [29]) and (ii) to invoke that Weq can be
regarded as a generating function to construct recurrently an infinite family of orthogonal
polynomials in q.

Let y = q/qeq. We introduce (unnormalized) orthogonal polynomials HQ,n = HQ,n(y)
in y determined by Weq, which acts as a (in general, non-Gaussian) weight function. The
term n is a non-negative integer. HQ,n(y) also depends parametrically on x, although such
a dependence is not displayed explicitly. Under the assumptions about V in Section 2.1,
Weq is an even function of q: this is immediately confirmed, in particular just by looking at
the classical and quasiclassical expressions for it given in Section 3.2. Then, HQ,n is even or
odd in y for even or odd n, respectively. We choose HQ,0 = HQ,0(y) = 1. We also choose:
HQ,1 = HQ,1(y) = y, HQ,2 = HQ,2(y) = y2 + ϵ2,0, HQ,3 = HQ,3(y) = y3 + ϵ3,1y, and so on.
In general, the HQ,n terms are constructed recurrently as follows. We impose for n ̸= n′

and any x (left unintegrated) that
∫

dyWeq(x, y)HQ,n (y)HQ,n’(y) = 0, (13)

where

HQ,n(y) = yn + ∑
j

ϵn,n−jyn−j + · · · (14)

with 0 ≤ j ≤ n and n− j = 2, 4, . . .. Here, ϵn,n−j are dimensionless and y-independent (though
x-dependent, in general). One has ϵn,n−j = 0 if j is odd so that HQ,n(−y) = (−1)HQ,n(y).

The nonvanishing ϵn,n−2 for low-order n = 2, 3, 4, 5 (j even) are

ϵ2,0 = −⟨y2⟩, ϵ3,1 = −⟨y
4⟩
⟨y2⟩ , (15)

ϵ4,2 =
⟨y2⟩⟨y4⟩ − ⟨y6⟩
⟨y4⟩ − ⟨y2⟩2 , ϵ4,0 =

⟨y2⟩⟨y6⟩ − ⟨y4⟩2
⟨y4⟩ − ⟨y2⟩2 (16)

ϵ5,3 =
⟨y4⟩⟨y6⟩ − ⟨y2⟩⟨y8⟩
⟨y2⟩⟨y6⟩ − ⟨y4⟩2 , (17)

⟨yn⟩ =
∫

dyWeq(x, q)yn
∫

dyWeq(x, q)
. (18)

They fulfill the following exact quantum identities:

(ϵ3,1 − ϵ4,2)ϵ2,0 + ϵ4,0 = 0 (19)

−(ϵ4,2 − ϵ5,3)ϵ3,1 + ϵ4,0 − ϵ5,1 = 0 (20)

ϵ5,1 =
⟨y4⟩⟨y8⟩ − ⟨y6⟩2
⟨y2⟩⟨y6⟩ − ⟨y4⟩2 (21)

There is an infinite number of identities among higher ϵ values, which lie outside our
scope here. In the strict quantum regime, HQ,n(y) are different from the standard Hermite
polynomials. The procedure for successively constructing HQ,n(y) based upon (13) and (14)
becomes increasingly cumbersome as n increases, even if it is conceptually straightforward:
notice that possible recurrence relations among HQ,n(y) are still lacking so far. In the
classical limit (h̄→ 0), with Weq(x, q) approximated by the classical Boltzmann distribution
c0 feq , the orthogonal polynomials HQ,n(y) are equal to 2−nHn(y), with Hn(y) being the
standard Hermite polynomials [38]. Then, for the latter, the computation of all coefficients
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in the (classical) counterpart of (14) boils down to that of ⟨yn⟩ and the latter to that of
Gaussian integrals. In the classical limit, one finds:

ϵ2,0 = −1
2

, ϵ3,1 = −3
2

, ϵ4,0 =
3
4

, ϵ4,2 = −3, ϵ5,3 = −5, ϵ5,1 =
15
4

(22)

which are x-independent. The term ϵ2,0 in the quantum regime will play an important role:
it will be studied in Section 2.7.

2.4. Non-Equilibrium Moments and Hierarchy

We shall proceed to the non-equilibrium Equations (5) and (6). We shall use the (un-
normalized) polynomials in y (= q/qeq) HQ,n = HQ,n(y) (n = 0, 1, 2, 3, . . . ) orthogonalized
in y (for fixed x) by using the equilibrium distribution Weq as a weight function. The actual
HQ,n(y) lead to defining the non-equilibrium moments (n = 0, 1, 2, . . .):

Wn = Wn(x; t) =
∫

dyHQ,n(y)W (23)

The initial moments Win,n for Wn are obtained by replacing W with Win in Equation (23). The
transformation of the one-dimensional Equations (5) and (6) into a linear hierarchy for the non-
equilibrium moments Wn will play an important role in this work. It can be carried out through
direct computations and cancellations employing Equations (13) and (23), which are increasingly
cumbersome as n increases. The general (t-reversible) hierarchy implied by Equations (5) and (6)
for any n reads:

∂Wn

∂t
= −Mn,n+1Wn+1 −

n

∑
n′=1

Mn,n−n′Wn−n′ (24)

The M’s are t-independent operator coefficients, which are characterized below. In general,
the quantum hierarchy is not a three-term one. The following operator coefficients for any
n will play a key role:

Mn,n+1Wn+1 ≡
qeq

m
∂Wn+1

∂x
(25)

Mn,n−1Wn−1 = − qeq

m

[
(ϵn+1,n−1 − ϵn,n−2)

∂Wn−1

∂x

]
+

n
qeq

∂V
∂x

Wn−1 −
qeq

m
∂ϵn,n−2

∂x
Wn−1. (26)

Thus, in the exact non-equilibrium quantum hierarchy (24), the contributions from
Wn+1 always have the same structure (−(qeq/m)∂Wn+1/∂x) for any n. Then Mn,n+1 is n-
independent.

It is very convenient to perform a Laplace transform of the general hierarchy (24) so
as to replace each Wn with its Laplace transform W̃n = W̃n(s) =

∫ +∞
0 dtWn(t) exp(−st).

Then, the above hierarchy (24) becomes the Laplace-transformed quantum hierarchy:

sW̃n = Win,n−Mn,n+1W̃n+1 −
n

∑
n′=1

Mn,n−n′W̃n−n′ (27)

with the same t-independent operators (the M’s) as in (24). Notice that Mn,n′=0 = 0 for
any n except for n = 1, and Mn,n−n′ = 0 if n− n′ is even. For simplicity and without any
essential loss of generality, we shall assume Win,n = 0 for , n > 0 while only Win,n=0 ̸= 0.

In detail, the lowest equations in the Laplace-transformed quantum hierarchy (27) are:
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sW̃0 = Win,0 −M0,1W̃1 (28)

sW̃1 = −M1,2W̃2 −M1,0W̃0 (29)

sW̃2 = −M2,3W̃3 −M2,1W̃1 (30)

sW̃3 = −M3,4W̃4 −M3,2W̃2 (31)

sW̃4 = −M4,5W̃5 −M4,3W̃3 −M4,1W̃1 (32)

sW̃5 = −M5,6W̃6 −M5,4W̃4 −M5,2W̃2 (33)

sW̃6 = −M6,7W̃7 −M6,5W̃5 −M6,3W̃3 −M6,1W̃1 (34)

and so on for higher values of the integer n. A key feature of the non-equilibrium hierarchies
(24) and (27) is that all operator coefficients (M) in the former are expressed in terms of
V and of quantities computed out of the equilibrium Wigner function Weq. The Mn,n′

for n = 0, 1, 2, 3, 4 are identified upon comparing Equation (27) and Equations (28)–(32).
Specifically, the operator coefficients (M) in the above equations follow directly from:

sW̃0 = Win,0 − qeq

m
∂W̃1

∂x
, (35)

sW̃1 = − qeq

m
∂W̃2

∂x
+

qeq

m
∂

∂x
(
(ϵ2,0)W̃0

)
+

1
qeq

dV
dx

W̃0, (36)

sW̃2 = − qeq

m
∂W̃3

∂x
+

qeq

m
∂

∂x
(
(ϵ3,1 − ϵ2,0)W̃1

)
+

qeq

m
dϵ2,0

dx
W̃1 +

2
qeq

dV
dx

W̃1, (37)

sW̃3 = − qeq

m
∂W̃4

∂x
+

qeq

m
∂

∂x
(
(ϵ4,2 − ϵ3,1)W̃2

)
+

qeq

m
dϵ3,1

dx
W̃2 +

3
qeq

dV
dx

W̃2, (38)

sW̃4 = − qeq

m
∂W̃5

∂x
+

qeq

m
∂

∂x
(
(ϵ5,3 − ϵ4,2)W̃3

)
+

qeq

m
dϵ4,2

dx
W̃3 +

4
qeq

dV
dx

W̃3

+
h̄2

22q3
eq

d3V
dx3

(
−6 +

ϵ4,2

ϵ2,0

)
W̃1 (39)

The ϵn,n−2 in the first four Equations (35)–(38) do contain inside them (even if not in
an explicit way) quantum effects arising from Weq.

The derivations of the successive equations in the non-equilibrium recurrence start-
ing from the equation for sW̃3 onward are increasingly difficult, as they involve exact
cancellations in order to arrive at consistent equations.

Thus, Equation (38) for sW̃3 makes use of the identity in (19) and it involves the exact
cancellation of the contribution of W̃0.

Also, Equation (39) for sW̃4 employs the identity in (20) and involves other exact
cancellations in such a way that the contribution of W̃1 is explicitly proportional to the
quantum correction h̄2

22q3
eq

d3V
dx3 (of order h̄2) as it stands. We emphasize that such a contri-

bution multiplying W̃1 in Equation (39) for sW̃4 has an explicit quantum origin. In that
aspect, (39) does differ from (35)–(38). The reason for that difference is that the quantum
corrections in Equations (5) and (6) manifest themselves explicitly only at order h̄2 and
then, in turn, in the equations in the hierarchy at orders n ≥ 4.

The very fact that the full quantum Equation (39) for n = 4 does contain a term of
order h̄2 in W̃1 confirms that the quantum hierarchy (24) is not a three-term hierarchy.

W̃n′ (0 < n′ ≤ n− 1) do carry n-dependent coefficients, which increase with n. In
particular (and leaving aside other contributions), the equation for sW̃5 can be shown to
contain in its right-hand-side (h̄2/q3

eq)(∂
3V/∂x3)W̃2 as the highest spatial derivative of V,

while that for sW̃6 contains (h̄2/q3
eq)(∂

3V/∂x3)W̃3 and (h̄4/q5
eq)(∂

5V/∂x5)W̃1 and so on.
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We stress that the complicated structure of the general hierarchy (24) is a genuine
consequence of quantum mechanics. If h̄ → 0, the hierarchy for the classical limit of W̃n
becomes the following three-term one for Equation (7):

∂Wn

∂t
= −Mn,n+1Wn+1 −Mn,n−1Wn−1 (40)

Mn,n+1 ≡
qeq

m
∂

∂x
(41)

Mn,n−1 = − qeq

m

[
(ϵn+1,n−1 − ϵn,n−2)

∂

∂x

]
+

n
qeq

∂V
∂x

. (42)

with Mn,n−n′ = 0 for n′ ̸= 1 and the same Mn,n+1. Specifically, one has:

Mn,n−1 =
qeqn

m
[
1
2

∂

∂x
+

m
q2

eq

∂V
∂x

] (43)

Notice the crucial simplification for h̄→ 0: ϵ become independent on x.

2.5. Formal Solution of General Hierarchy

It is methodologically important and useful to obtain a formal solution of the general
quantum hierarchy (24) that is not a three-term one (that is, without proceeding to the
classical regime). For that purpose, one solves the hierarchy (24) for n > 0 recurrently.
Then, all Wn for n > 0 can be expressed through suitable linear operators in terms of W0
and of the initial condition Win,0 (assuming Win,n = 0 for n > 0). In particular, it will be
important to get W1 as a linear functional of W0.

In practice, it is convenient to operate in terms of Laplace transforms by employing (27).
The solution of the hierarchy proceeds specifically as follows: (i) for suitable n0 ≥ 2, in the
equation of the hierarchy (27) yielding W̃n0(s), one omits W̃n0+1(s) and solves formally the
resulting equation for W̃n0(s) in terms of those W̃n0−n(s) for n > 0 appearing in the right-
hand-side of that equation; (ii) one proceeds to the equation of the hierarchy yielding W̃n0−1(s),
reshuffles into it the above expression for W̃n0(s), and solves for W̃n0−1(s); (iii) one proceeds by
iteration to the equations for W̃n0−n(s) for n > 1 and so on until one arrives at W̃1(s) in terms of
W̃0(s). Then, one repeats the above procedure for W̃n0+1(s) and infers by induction what the
formal structure of the solution is as n0 → +∞. One finds (s-dependences being understood for
brevity as suitable):

W̃1(s) = D1(s)[−M1,0]W̃0(s). (44)

D1 =
1

sI −M1,2D2(M2,1 + M2,3D3M3,4D4M4,1 + M2,3D3M3,4D4M4,5D5M5,6D6M6,1 + . . . )
, (45)

D2 =
1

sI −M2,3D3(M3,2 + M3,4D4M4,5D5M5,2 + M3,4D4M4,5D5M5,6D6M6,7D7M7,2 + . . . )
, (46)

D3 =
1

sI −M3,4D4(M4,3 + M4,5D5M5,6D6M6,3 + M4,5D5M5,6D6M6,7D7M7,8D8M8,3 + . . . )
(47)

and so on. The D vales are continued-fraction linear operators. I is the unit operator. In a
compact form:

Dn = Dn(s) =
1

sI −Mn,n+1Dn+1(Mn+1,n + Nn+1,n)
(48)

Nn+1,n = Nn+1,n(s) = Mn+1,n+2Dn+2Mn+2,n+3Dn+3Mn+3.n + . . . (49)

with the understanding that if the infinite continued fraction related to Dn in (48) is
approximated by a finite continued fraction by cutting it off at some n0, the infinite series
for Nn+1,n is approximated by a finite sum that is cut off at n0; thereby, its last term contains
Mn0.n.
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Then, one has the exact equation for W̃0(s):

sW̃0(s) = Win,n −M0,1D1[−M1,0]W̃0(s) (50)

For previous approaches to stochastic equations that make use of continued fractions,
see [42,43]. As a general reference on ordinary continued fractions, see [44]. Notice the
genuine cyclic structure (determined by the structure of the hierarchy) in successive terms
in the denominators in Dn. For instance, in D1, the contribution M2,3D3M3,4D4M4,1 in
the series N2,1 indeed achieves a cyclic structure in the indices of M due precisely to

M4,1 = − h̄2

22q3
eq

∂3V
∂x3

(
−6 + ϵ4,2

ϵ2,0

)
, which is a quantum correction depending explicitly on h̄

(and also implicitly on it through ϵ4,2
ϵ2,0

). In the strict classical limit, ϵ2,0 = −(1/2) and
ϵ4,2 = −3, and that quantum correction disappears. And there is similarly with M6,1 in
M2,3D3M3,4D4M4,5D5M5,6D6M6,1 and so on.

There are other approaches (different from the one pursued here, to the best of the
present authors’ knowledge) to the analysis of general linear recurrence relations: see, for
instance [45].

2.6. Convergence: A Qualitative Analysis

A detailed mathematical study lies outside the scope of this work, as we shall limit
ourselves to indicate arguments justifying convergence. We shall consider first the case
h̄ → 0. Then, one has the three-term hierarchy in Equations (40), (41) and (43) for the
Liouville equation. Equation (48) still holds with the series Nn+1,n → 0 so that

Dn = Dn(s) =
1

sI −Mn,n+1Dn+1Mn+1,n
(51)

with Mn,n+1 and Mn+1,n being given in Equations (41) and (43). We shall introduce the
n-independent operators

F = Mn,n+1[(−Mn+1,n)/(n + 1)] (52)

a+ =
1

F1/4 Mn,n+1
1

F1/4 , a− =
1

F1/4 [(−Mn+1,n)/(n + 1)]
1

F1/4 (53)

Let s = 0 in Equation (48) and iterate it indefinitely. By using Equations (52) and (53), a
direct formal computation yields:

Dn(0) = 2−1/2 Γ((n/a +−2) + 1/2)
Γ((n/2) + 1)

F−1/4 AF−1/4, A =
1

a−Aa+
(54)

where Γ is the standard Gamma function [46] and the operators F and A being n-independent.
The following formal and short discussion (simplifying unimportant dependences for it) may
be adequate. Let us assume the operator F = − ∂

∂x (a
∂

∂x + b) with real functions a = a(x) ≥ 0
and b = b(x) acting on functions f = f (x). Upon transforming f → g with f = exp(−b/a)g,
F → F1 with F1 = −[ ∂

∂x − (b/2a)]a[ ∂
∂x + (b/2a)]. The operator F1 (acting on g) is non-

negative. The preceding argument is closely related to the one to be employed later in
Section 2.9 regarding (62). Going backwards, that enables us to give a meaning to F−1/4, a+,
and a−. A can be formally regarded as an operator-continued fraction. Even if a rigorous
characterization for it is lacking at present, Equation (54) indicates that Dn(0) factorizes into the
n-independent operator F−1/4AF−1/4 times an explicit function of n. For large n, Γ((n/2)+1/2)

Γ((n/2)+1)

behaves as 2n−1/2 [44] and Dn(0) tends to vanish proportionally to n−1/2. This suggests that
the operator Dn(s) in Equation (51) also tends to vanish as n−1/2 for large n. We shall employ
this large n behavior in order to assess, for the general hierarchy (24), the convergence of
Dn(s) and Nn+1,n(s) in Equations (48) and (49), respectively. That is, in these assessments
for continued fractions and infinite series in the exact solutions, we estimate that the exact
operator Dn(s) behaves for large n and fixed and finite s as n−1/2 (times an n-independent

26



Entropy 2024, 26, 104

operator). The application of such estimates to the operators Nn+1,n(s) and some judicious
guess for the last factor in each operator contribution (Mn+3,n in the first contribution in (49)
and so on) leads us to infer that the operator Nn+1,n is more negligible compared to Mn+1,n
the larger n is. Then, upon estimating Dn+1 in the right-hand-side of (48) to be of order
n−1/2 and noticing that Mn+1,n is of order n, it follows that Dn in the left-hand-side of (48)
is of order n−1/2 consistently. This suggests that D1 in Equation (50) is finite. Even if full
mathematical justifications are lacking, it is felt that the arguments above provide reasonable
support towards the finiteness and well-posedness of the present developments based upon
non-equilibrium moments and hierarchy.

2.7. Properties at Equilibrium: ϵ2,0

The equilibrium Wigner function in (4) and the definitions of the equilibrium moments
using Weq(x, q) as the generating function implies that all Wn = Weq,n = 0 for n =
1, 2, 3, . . . , while only the lowest one is non-vanishing:

W0 = Weq,0 =
1

qeq
∑

j
exp[−βEj]φj(x)φ∗j (x) (55)

In this case, Win,n = 0 for any n = 0, 1, 2, . . . . On the other hand, one has the general equation:

M1,0Wn = − qeq

m
∂

∂x
((ϵ2,0)Wn) +

1
qeq

∂V
∂x

Wn (56)

Equation (24) for equilibrium and n = 1 imply

M1,0Weq,0 = 0 (57)

Equation (57) and the expression for M1,0 from (56) with the condition that in the classical
(h̄→ 0) limit, −ϵ2,0 = 1/2, can be recast as two alternative and exact representations, each
having its own interest. First, Equation (57) implies:

−ϵ2,0(x)Weq,0(x) = (1/2) exp[− m
q2

eq

∫ +∞

x
dx′

1
ϵ2,0(x′)

∂V
∂x′

], (58)

Since Weq,0 ≥ 0, it follows that −ϵ2,0 ≥ 0 for any x.
Second, an explicit representation of −ϵ2,0 in terms of Weq,0 and V is:

ϵ2,0(x) = − 1
2Weq,0(x)

− m
q2

eqWeq,0(x)

∫ +∞

x
dx′Weq,0(x′)

∂V
∂x′

, (59)

The formally infinite integration limits in Equations (58) and (59) are to be understood in
the framework (very large L) and conditions on V stated in Section 2.1. In particular, since V is
appreciable in a finite interval (−a < x < a), the integrals in Equations (58) and (59) converge.

2.8. One-Dimensional Non-Equilibrium Hierarchy: Small Thermal Wavelength

Let δx be a typical scale of variation of V: for instance, a fraction (say, 1/5 to 1/10)
of one nanometer. We shall consider a quantum regime with a relatively small thermal
wavelength with, say, λth/δx < 1: some features in it are treated as in the classical regime
while others behave quantum mechanically. In such a regime, chemical reactions of the
kind we are interested in occur. Such a regime is not the strict classical high-temperature
limit. For assumptions and estimates characterizing such a regime, see Section 3.2 in [30]. A
summary of those estimates is the following. Let the mass m be about one to two orders of
magnitude larger than the neutron mass. The range of V may be about 0.1 to 0.5 nanometers.
The value of kBT may lie, for instance, between 300 K (room temperature) and, say, 1200 K.
| V | may vary between 1 and a few eV, and let V0 be a positive constant energy having a
value in such a range. Let ∂nV

∂xn be estimated as δnV
(δx)n . In turn, δV is estimated as one order
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of magnitude smaller than V0, and δnV is estimated as one order of magnitude smaller than
δn−1V, n = 2, 3, . . . .

In Equation (39), h̄2

q3
eq

∂3V
∂x3 appears to be smaller than 1

qeq
∂V
∂x by a factor (λth

δx )
2 times a con-

tribution smaller than unity. This suggests we can neglect the quantum correction containing
h̄2

22q3
eq

∂3V
∂x3 [−6+ ϵ4,2

ϵ2,0
] compared to the one containing 1

qeq
∂V
∂x in Equation (39). Similar approxima-

tions can be carried out in the equation for ∂W5/∂t (by neglecting the contribution containing
(h̄2/q3

eq)∂
3V/∂x3) and in the equation for ∂W6/∂t (by neglecting (h̄2/q3

eq)(∂
3V/∂x3) and

(h̄4/q5
eq)(∂

5V/∂x5)) and so on. In general, we shall accept as a plausible approximation (appli-
cable in applications for chemical reactions) that in Equation (24), one can neglect, on average,
all contributions due to all Mn,n−n′Wn′ with n′ = 2, . . . n− 1 compared to Mn,n−1Wn−1. Then,
Equation (24) becomes the approximate (t-reversible) three-term hierarchy

∂Wn

∂t
= −Mn,n+1Wn+1 −Mn,n−1Wn−1, (60)

but we still retain the full Mn, n − 1 (including its own quantum corrections) in Equa-
tion (26). The latter makes Equation (60) differ from Equation (40), in which Mn, n− 1 is
given in Equation (43).

Alternatively, in D1, the contribution M2,3D3M3,4D4M4,1 (with a cyclic structure in
the indices of M) is smaller than M2,1 thanks formally to the h̄2 in the contribution M4,1.
In physical terms, we proceed to the quantum regime with a relatively small thermal
wavelength as characterized above: then, on average, the magnitude of the values implied
by the action of the operator M2,3D3M3,4D4M4,1 on a generic function may be smaller
(by about one to two orders of magnitude) than those by the operator M2,1. Then, in
D1, it appears plausible to discard the contribution M2,3D3M3,4D4M4,1 and, by a similar
argument, the full M2,3D3M3,4D4M4,5D5M5,6D6M6,1 + . . . compared to M2,1. It is stressed
that the full M2,1 is still kept (thereby still taking into account certain quantum effects). The
actual counterpart to Equation (48) for the three-term hierarchy (60) is, for n = 1, 2, 3 . . . :

Dn = Dn(s) =
1

sI −Mn,n+1Dn+1Mn+1,n
(61)

That is consistent with the operator-continued fractions that follow directly from Equa-
tion (60). We shall continue to assume the initial condition Win,0 ̸= 0, Win,0 ̸= Weq,0, and
Win,n = 0 for n ̸= 0 for simplicity. This amounts to discarding all contributions in the opera-
tors containing cyclic structures: that is, to discard M2,3D3M3,4D4M4,5D5M5,6D6M6,1 + . . .
in D1 and so on for Dn for n = 2, 3, . . . .

The following remark can be regarded as a gratifying check of consistency. At very
high temperatures, practically in the classical regime, and based upon [6], we shall ap-
proximate the one-dimensional equilibrium quantum distribution to a leading order by
the classical distribution: Weq ≃ c0 feq with feq = exp

[
−β((q2/2m) + V)

]
, thereby ne-

glecting the corrections computed in [6]. Then, the computations of all ϵn,n−j boil down
to computing Gaussian integrals. From (15) and (16), one easily finds: ϵ2,0 = −1/2 and
ϵ4,2 = −3. Then, under that approximation corresponding to the classical regime, one finds
−6 + ϵ4,2

ϵ2,0
= 0 in Equation (39) and, consequently, the hierarchy Equations (35)–(39) reduce

to a three-term one. The same reduction of Equation (24) to a three-term hierarchy occurs
for any n.

Notice as well the following behavior. Consider the Laplace transform of Equation (60),
which implies W̃n(s) = −DnMn,n−1W̃n−1(s) for n ≥ 1. For fixed and finite s and large n, Dn
behaves as n−1/2. Then, sW̃n(s) is subdominant compared to Mn,n+1W̃n+1(s)+ Mn,n−1W̃n−1(s).
In turn, that behavior will be consistent with the long-t approximation in the next subsection.

28



Entropy 2024, 26, 104

2.9. One-Dimensional Non-Equilibrium Hierarchy: Long-Time Approximation

We shall proceed to approximations adequate for a long-time non-equilibrium evolu-
tion based upon Equation (60), with chemical reactions in mind.

The operators Mn,n+1 and Mn,n−1 in (60) have dimensions (time)−1.
The characteristic or effective evolution times associated with those operators, denoted

as (τ∗)−1, have orders of magnitude that can be estimated easily. Thus, the τ∗ associated
with Mn,n+1 is about λthm(δx)/h̄) and so on for the various terms contributing to Mn,n−1
(the estimates of which depend on x).

We shall consider t about and larger than those effective evolution times. Then, as large t
corresponds to small s, the simplest (long-time) approximation can be formally conjectured
for each n = 1, 2, . . . as follows: We replace Dn(s) in Equation (61) with the s-independent
operator Dn(s = ϵ) (with fixed and small s = ϵ > 0), and then, one has the approximation:
W̃n(s) ≃ Dn(s = ϵ)[−Mn,n−1]W̃n−1 (also regarded as a short-memory approximation). The
system formed by the inverse Laplace transform of W̃1(s) ≃ D1(s = ϵ)[−M1,0]W̃0 together
with Equation (60) for n = 0 completes the long-time approximation scheme. This amounts to
the argument that the t-dependence of Wn(t), n = 1, 2, . . . would be approximately enslaved
by that of Wn−1(t). That immediately yields the following quantum equation:

∂W0

∂t
=

qeq

m
∂

∂x
[D1(s = ϵ)M1,0W0] (62)

with the above initial condition Win,0. Providing a suitable approximation method or ansatz
yielding D1(s = ϵ) is a difficult open problem: see [30]. The diffusion-like Equation (62)
appears to be t-irreversible. However, at the present stage, we do not warrant that all
eigenvalues of − qeq

m
∂

∂x D1(s = ϵ)[−M1,0] are nonnegative.
For the sake of a complementary understanding, we shall accept as a plausible ap-

proximation that the linear operator D1(s = ϵ) be replaced by a non-negative function
D = D1(s = ϵ) ≥ 0 of x.

We introduce f0(x; t) through:

W0 = exp
[∫ x

0
dx′u(x′)

]
f0, (63)

u(x) = − qeq/m)(∂(−ϵ2,0)/∂x) + (1/qeq)(∂V/∂x)
(2qeq/m)(−ϵ2,0)

. (64)

Then, Equation (62) becomes

∂ f0

∂t
=

[
∂

∂x
+ u(x)

] q2
eqD(−ϵ2,0)

m2

[
∂

∂x
− u(x)

]
f0. (65)

Recall that −ϵ2,0 is nonnegative for any x (Section 2.7). Then, all eigenvalues of

[ ∂
∂x + u(x)]

q2
eqD(−ϵ2,0)

m2 [ ∂
∂x − u(x)] are nonnegative, and the solution of Equation (65) tends

towards Weq,0 for t→ +∞ for any Win,0 (irreversibility and thermalization).
Regarding stochastic equations, see [18,31,47–49].
The 1D developments in this section will be very useful at a certain stage

(Sections 4.4 and 4.5) in the 3D model for polymerization explained in the following sections.

3. Towards a Model for Catalyzed Polymerization

Throughout this and the following section, we consider a fluid at rest in thermal
equilibrium at absolute temperature T in an interval about room temperature and in
three-dimensional (3D) space. The fluid plays the role of an HB. Then, we consider
three ensembles immersed in the fluid: (1) an ensemble of widely separated independent
unbound units (atoms and/or small molecules); (2) an ensemble of widely separated,
independent, freely jointed (fj) chains as templates (te); and (3) an ensemble of widely
separated independent catalysts.
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3.1. Ensemble of Widely Separated Independent Unbound 3D Units

Let an ensemble of identical Neuu non-relativistic microscopic units (atoms and/or
small molecules) with equal masses be widely separated from and interacting negligibly
with one another. To fix the idea, we concentrate on one of them, denoted as “1”, with mass
M1, position vector R1, momentum Π1(=-ih̄∇1), and quantum kinetic energy Π2

1/2M1, ∇1
as the 3D gradient operator with respect to R1. Any wavefunction of the ensemble of Neuu
units factorizes into the product of Neuu individual wavefunctions.

The 3D scalar product of two individual wavefunctions ψj, j = 1, 2 for the same unit 1
that depends on the same R1 reads:

(ψ1, ψ2)3 ≡
∫

d3R1ψ∗1 ψ2 , (66)

with the integration being carried out over R1, and ∗ denoting the complex conjugate.

3.2. Ensemble of 3D Freely Jointed (fj) Chains as Templates (te)

We consider, also immersed in the fluid, a very dilute solution of identical te molecular
chains described below that are adequately separated (and then independent) from one another.
That is, the fluid contains an ensemble of such template chains. Any chain is supposed to be
adequately long. Regarding molecular chains from various standpoints, see [21,23,31,32,50–55].

This subsection will remind the reader of a model for a single 3D te formed by
Nte − 1 non-relativistic atoms or small molecules as an open, linear, freely jointed (fj)
molecular chain. Let Rte,i, ¶te,i, and Mte,i be the position and momentum vectors and
the mass, respectively, of the i-th atom in the te (i = 2, . . . , Nte). The total mass of the te
is: Mte = ∑Nte

i=2 Mte,i. Let Pte,CM = ∑Nte
i=2 Pte,i be the total momentum operator of the te,

and let yi = Rte,i+1 − Rte,i, i = 2, . . . , Nte − 1 be the relative position vectors (the bond
vectors) along the te. The latter is treated in the framework of the Born–Oppenheimer
approximation [56] so that the most rapidly varying electronic degrees of freedom have
already been integrated out. Eel(< 0) is the electronic energy (essentially, a constant),
which will always be subtracted out from the outset.

In 3D spherical coordinates, the three-momentum operator associated with yi reads:

−ih̄∇yi = −
a3,i

yi
− ih̄ui

∂

∂yi
, (67)

with

yi = yiui , a3,i = ih̄uθi

∂

∂θi
+ ih̄uφi

1
sin θi

∂

∂φi
, (68)

with the three orthonormal vectors:

ui = (cos φi sin θi, sin φi sin θi, cos θi) , (69)

uθi = (cos φi cos θi, sin φi cos θi,− sin θi) , (70)

uφi = (− sin φi, cos φi, 0) (71)

Let:

e3,l ≡ ih̄ul − a3,l , (72)

l = 2, . . . , Nte − 1 [53–55]. The total quantum kinetic energy of the te is:

P2
te,CM/2Mte +

Nte−1

∑
i,j=2

Aij[−ih̄∇yi ][−ih̄∇yj ] (73)
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The constants Aij are given by: M−1
i + M−1

i+1 if i = j, −M−1
i if j = i− 1, −M−1

j if j = i + 1,
and 0, otherwise. So: Aij = Aji.

Approximate models for a te as a 3D molecular chain with constrained distances (bond
lengths) between successive pairs of neighbor atoms due to strong harmonic-oscillator-like
vibrational potentials (covalent bonds that are not as strong as electrical degree-of-freedom
interactions) have been constructed [33,53–55]. In short, the te is modeled as a freely jointed,
or fj, molecular chain. For the sake of a short justification of the latter, as a dominant ef-
fective approximation of the covalent bonding (neglecting other weaker interactions), let
nearest-neighbor atoms interact through harmonic-oscillator-like potentials with vibra-
tional frequencies ω0,j [53]. The vibrational energies h̄ω0,j (much smaller than Eel) are
supposed to be larger than KBT [53–55]. One is also assuming that, on that energy scale,
angular degrees of freedom are not constrained. In such a regime, yj equals, approximately,
the constant equilibrium distance dj (bond length).

One can also entertain other molecular te with additional constrained distances
between successive pairs of next-to-nearest-neighbor units due to (somewhat weaker)
harmonic-oscillator-like vibrational potentials: freely rotating molecular chains. Freely
rotating chains can be approximated by f j ones that include persistent lengths (namely,
effective bond lengths, which amount to constraining approximately both the above yj and
also the angles between neighboring bond vectors) [21]. Such models do provide useful
approximations for real single-polymer chains under various conditions [21]. In the present
work, dealing with fj chains will suffice, with the understanding that the bond lengths can
be interpreted as either fixed bond lengths in fj chains or as persistent lengths in freely
rotating chains.

Let θ, φ denote, collectively, the two sets θ2, . . . , θNte−1, φ2, . . . , φNte−1, respectively.
Different 3D variational computations [33,53–55] enable us to consistently derive the same
3D model for an f j molecular chain with fixed yj = dj while allowing for purely angular
motion of the bond vectors. From those coinciding results, by omitting the total zero-point
energy Ezp of the vibrations and factoring out the overall center-of-mass motion, one arrives
at the following 3D quantum purely angular Hamiltonian and at the scalar product for the
fj molecular chain:

H̃3, f j =
Nte−1

∑
i,j=2

Aij

2didj
e3,ie3,j (74)

(ψ1, ψ2)3, f j ≡
∫
[dΩ]3ψ1(θ, φ)∗ψ2(θ, φ) , (75)

with [dΩ]3 = ΠNte−1
i=2 dθidφi. The integration is carried out over the whole Nte − 2 set of

solid angles. The angular motion of the te is described by wavefunctions ψ = ψ(θ, φ) and
eigenfunctions of the stationary Schrodinger equation, with energy eigenvalues E:

H̃3, f jψ = Eψ (76)

The purely angular motions described by H̃3, f j will be essential for the understanding
of what follows.

The analysis in the remainder of this subsection is intended only as a methodological
and essential step towards the study of polymerization in Section 4.

So, we suppose that KBT is adequately smaller than all h̄ω0,i and that all vibrational
states of any fj chain are the ground-state ones, so that the relevant degrees of freedom of
the fj chain are the rotational ones (say, in principle, those corresponding to H̃3, f j).

The evolution of an individual fj chain in the fluid at KBT can be described in principle
by a non-equilibrium Wigner distribution and equation. However, due to the influence
of the fluid at such KBT, it will be physically adequate to approximate the quantum
description of the rotational motions of the template fj chain as provided by classical
statistical mechanics and, hence, by classical Liouville distribution functions.
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For units 2, . . . , Nte forming the template fj chain, the approximate transition to classical
mechanics reads: e3,i → −a3,c,i, −ih̄ ∂

∂θi
→ πθi,c, −ih̄ ∂

∂φi
→ πφi,c. So, −a3,c,i = πθi,cuθi +

πφi,cuφi . The small terms proportional to ih̄u are taken as negligible and, so, are disregarded.
The terms πθi,c, πφi,c are classical momenta and are canonically conjugate to θi, φi, respectively.
The terms πθ,c, πφ,c denote the set of all πθi,c, πφi,c, respectively.

Then, the quantum Hamiltonian H̃3, f j for the angular motion of the te chain is approx-
imated by the following classical one (factoring out the center-of-mass motion):

H̃3, f j,c = ∑Nte−1
i,j=2 (Aij/2didj)(−a3,c,i)(−a3,c,j). Let fte,c = fte,c(θ, φ, πθ,c, πφ,c; t) be the non-

equilibrium classical Liouville distribution function for the te. Accordingly, [H̃3, f j,c, fte,c]Pb
denotes the standard classical Poisson bracket (Pb) of H̃3, f j,c and fte,c [57]. The non-equilibrium
classical Liouville equation is:

∂ fte,c

∂t
= [H̃3, f j,c, fte,c]Pb (77)

Let [dΩ]3,L = ΠNte−1
i=2 dθidπθi ,cdφidπφi ,c. Total probability is consistently conserved:

∂
∫
[dΩ]3,L fte,c/∂t = 0. These classical approximations for the te chain are instrumental

and will be implemented directly in Sections 4.1 and 4.2.

3.3. Ensemble of Widely Separated Independent 3D Catalyst (cat) Molecules

Let an ensemble of identical non-relativistic individual catalyst units be widely sepa-
rated from (with negligible interactions with) one another. Each catalyst unit (cat for short)
is a medium-size molecule (formed by other small molecules, monomers. . . ). The total
mass of a cat unit is M0.

The fluid is at rest and in thermal equilibrium at a KBT adequately smaller than all
vibrational energies of a cat molecule. Then, by assumption, all relevant vibrational states
in the cat are the ground ones, and the relevant degrees of freedom in it are the rotational
ones and those associated with its corresponding center of mass.

With an enormous simplification, at the given T, the cat is modeled as a slow and free
massive molecule of mass M0 with position vector R0, which approximates the location of
its center-of-mass and disregards the spatial extension of the catalyst. Alternatively, R0 can
also be considered approximately by assumption as the location of a quite reduced domain
of the catalyst (the “active” site or center), which will interact with the individual unit and
the relevant part of the template and without taking into account the spatial extension of
the cat.

To fix the ideas, in a quantum-mechanical setting, let Π3,0 be the quantum momentum
canonically conjugate to R0. The quantum Hamiltonian of the free catalyst is H̃3,enz ≃
Π2

3,0/2M0. We advance that from Section 4.1 onward, at the given T, it will suffice to
approximate the behavior of the cat by employing classical mechanics.

4. 3D Catalyzed Polymerization of One Single Atom by a Chain: Mixed
Quantum–Classical Description

We shall consider a model for chain growth through polymerization: technically,
for what is known as insertion polymerization. A (slightly simplified) example is: · · · −
(CHR − CH2)n − [Ti] + (CHR − CH2) → · · · − (CHR − CH2)n − (CH2 − CHR) − [Ti].
(CHR − CH2) plays the roles of the individual “small” molecule 1 and of one "small"
molecule in the te chain (denoted, in turn, as · · · − (CHR− CH2)n). [Ti], symbolizing, in
short, the complex TiCl4 − AIR3), is the catalyst. See [32].

We suppose that the number of unbound units Neuu is approximately equal both to
the number of template chains and also to the number of individual cat molecules. Then,
the fluid at equilibrium and at rest can also be regarded approximately as an ensemble
formed by copies adequately separated from one another: with each copy, in turn, being
a triplet formed by one unbound unit, one fj chain, and one cat molecule. We consider
that each copy has a finite volume, albeit it is quite large on the microscopic scale. Those
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three entities are now regarded as not separated from one another, on average, so that
interactions among them occur. Those interactions will be modeled in what follows.

The action of the catalyst enables an unbound unit to become attached to the fj te
chain so as to give rise to another larger chain made up of Nte atoms. The individual unit is
treated quantum-mechanically since its binding to the te is a chemical reaction.

4.1. Interactions of a Unit, an fj Chain, and a Catalyst

An individual unit (certainly influenced by its interaction with the catalyst and with
the te fj chain) is dealt with quantum-mechanically, as this genuinely applies to its binding
process to the template fj chain. In principle, the dynamics are accounted for by a quantum
Wigner function [4,6,37].

We introduce the relative vector from that unit to the first atom in the template:
y1 = Rte,2 − R1. We suppose a rotational-invariant interaction potential between the
individual unit and the first atom in the te chain: U1(y1) = U1(y1) (y1 =| y1 |). This is
appreciable in 0 ≤ y1 ≤ y1,2. Specifically, U1(y1): (1) is repulsive (> 0) for short distances
in 0 ≤ y1 ≤ y1,0, (2) is attractive (< 0) in y1,0 ≤ y1 ≤ y1,1, (3) is repulsive in y1,1 ≤ y1 ≤ y1,2,
and (4) vanishes very quickly for y1 > y1,2. The term y1 varies inside the microscopically
large but finite volume of each copy of the ensemble referred to at the beginning of this
section. In short, U1(y1) vanishes very quickly beyond a domain having a size of order of
at most a few bond lengths in the te chain.

Another crucial interaction potential U0, activation of the polymerization process, is
supposed among the individual units, unit 2 in te, and the cat. The catalyst (also denoted
here as unit 0) interacts simultaneously with the atomic unit (unit 1) in the ensemble and
unit 2 in the te through the real, spherically symmetric potential U0(y0, y0 + y1), with
y0 = R1 − R0. The properties of U0(y0, y0 + y1) will not be discussed at this stage. Its
assumed effective behavior (specifically, that of the average of U0(y0, y0 + y1) over y0) will
be considered a posteriori in Section 4.3.

Units 0 and 1 will be included in the overall CM and in the general description in
Section 3.2, where they are enlarged with y0, y1. The model is being constructed with
the following crucial numbering convention. The set of all material entities is numbered
successively in the following sequence: 0 (cat), 1 (individual unit), and 2,3,. . . Nte (those in
the te) consistently with the definitions and numbering of the y. In turn, such a numbering
convention and the above choice of potentials U1(y1) and U0(y0, y0 + y1) will be consistent
with the individual unit 1 to be bound to unit 2 in the te. Accordingly, we also introduce
A00 = M−1

0 + M−1
1 , A01 = A10 = −M−1

1 and so on for A11, A12, and A21 upon consistently
extending the definitions of Aij in Section 3.2.

The quantum purely kinetic Hamiltonian for the cat, the individual units, and the
template is Π2

3,0/2M0 + Π2
1/2M1 + P2

te,CM/2Mte + 2−1 ∑Nte−1
i,j=2 Aij[−ih̄∇yi ][−ih̄∇yj ].

At this stage, one performs the following transformations: (i) one introduces and factors
out the contribution of the total center-of-mass (for te, unit 1, and cat); (ii) one introduces all
relative vectors y0, y1, y2,. . . , yNte−1 and makes use of Equation (74) for y2,. . . , yNte−1; and
(iii) one adds U0, U1, and all vibrational potentials accounting for the structure of the fj chain
and implements the transition giving rise to fixed bond lengths in the te. Then, one infers the
following effective quantum Hamiltonian (omitting the overall center-of-mass for all material

entities): ∑1
i,j=0 2−1Aij[−ih̄∇yi ][−ih̄∇yj ]+

A12+A21
2d2

e3,2[−ih̄∇y1 ]+∑Nte−1
i,j=2

Aij
2didj

e3,ie3,j +U0 +U1.
It will be supposed that the cat, evolving in the fluid at the temperature T assumed, can

be described approximately through classical statistical mechanics and that it has random
motion during the effective duration of the process catalyzed by it. Let ß3,c,0 be the classical
momentum, which is canonically conjugate to y0, for the classical cat.

As for the cat, the evolution of the fj te chain inside the fluid at thermal equilibrium at
those temperatures is also described approximately through classical statistical mechanics: recall
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the analysis and the transition to classical variables in Section 3.2. Then, one can entertain the
reasonableness of the following formal mixed quantum–classical Hamiltonian structure:

A00ß2
3,c,0

2
+

(A01 + A10)ß3,c,0[−ih̄∇y1 ]

2
+ 2−1 A11[−ih̄∇y1 ][−ih̄∇y1 ] +

A12 + A21

2d2
(−a3,c,2)[−ih̄∇y1 ] +

Nte−1

∑
i,j=2

Aij

2didj
(−a3,c,i)(−a3,c,j) + U0 + U1 (78)

with the sole purpose of using it as a key guide to directly formulate a mixed quantum–
classical Wigner–Liouville equation, as we shall do in Section 4.2.

4.2. Mixed Wigner–Liouville Equations for the Ensemble, te, and Catalyst

Let ß3,c,1 be a momentum, which is canonically conjugate to R1, for the individual unit
treated quantum-mechanically. Use will be made of the classical variables employed in
Sections 3.2 and 4.1 for the te and catalyst, respectively.

The system formed by a unit, an fj chain, and a cat is described, by assumption, by a
mixed (quantum–classical) distribution function in phase-space. The following quantum
Wigner-like one for unit 1 and a classical Liouville-like one for the chain and the cat will
be considered: fm = fm(y1, θ, φ, y0, ß3,c,1, πθ,c, πφ,c, ß3,c,0; t). By assumption, fm fulfills the
time (t)-reversible Wigner–Liouville equation that follows naturally by starting from the
mixed Hamiltonian structure in (78) by operating quantum-mechanically (via Wigner) with
it for the variables of the individual unit and classically (via Liouville) for those of the te
and the catalyst. One finds directly:

∂ fm

∂t
= −(A11ß3,c,1 + A21(−a3,c,2) + A01ß3,c,0)(∇y1 fm) +

∫
d3ß3,c,1,0 fm(ß3,c,1,0)

∫ id3y1,0

h̄(πh̄)3 ×

exp(
2i(ß3,c,1 − ß3,c,1,0)y1,0

h̄
)[U1(y1 + y1,0)−U1(y1 − y1,0) +

U0(y0, y0 + y1 + y1,0)−U0(y0, y0 + y1 − y1,0)] +

+A12ß3,c,1[
∂(−a3,c,2)

∂θ2

∂ fm

∂πθ2

−

∂(−a3,c,2)

∂πθ2

∂ fm

∂θ2
+

∂(−a3,c,2)

∂φ2

∂ fm

∂πφ2

− ∂(−a3,c,2)

∂πφ2

∂ fm

∂φ2
] + [H̃3, f j,c, fm]Pb −

(A00ß3,c,0 + A10ß3,c,1)(∇y0 fm) + (∇y0U0(y0, y0 + y1))(∇ß3,c,0 fm), (79)

with H̃3, f j,c = ∑N−1
i,j=2(Aij/2didj)(−a3,c,i)(−a3,c,j) (recall Section 3.2). [H̃3, f j,c, fm]Pb denotes

the standard classical Poisson bracket [57] (recall Equation (77)). It approximates, in the clas-
sical regime, an integral contribution for the chain analogous to the one for the individual
unit in Equation (79). We have interpreted the formulation of this mixed quantum–classical
formulation by writing directly the pair A01ß3,c,0(∇y1 fm) and A10ß3,c,1(∇y0 fm) together
with the pair A21(−a3,c,2)(∇y1 fm) and A12ß3,c,1 times (the Poisson bracket of (−a3,c,2)
and fm). Instead of the mixed quantum–classical Equation (79), a more basic treatment
would have taken a fully quantum-mechanical Wigner equation for all (individual unit,
te, and cat) entities, with Poisson brackets replaced by the corresponding integrals, as a
starting point. However, in order not to encumber the analysis, it seemed more economical
not to proceed like that but to start out from the mixed quantum–classical Equation (79).
We advance that both te and cat will be supposed to be in classical states at approximate
thermal equilibrium in the next subsection, which also supports such a shortened strategy.
The term fm(ß3,c,1,0) inside the integral in Equation (79) is (omitting the writing of repeated
variables) obtained just by replacing ß3,c,1 with ß3,c,1,0 in fm.

Through direct partial integrations, total probability is shown to be conserved consis-
tently: ∂

∫
d3y1

∫
d3ß3,c,1

∫
d3y0

∫
d3ß3,c,0

∫
[dΩ]3,L fm/∂t = 0.
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4.3. Template and Catalyst at Thermal Equilibrium: Integration over Their Degrees of Freedom and
Non-Standard Effective Hamiltonian

The dynamics will be considered for a sufficiently long time (t). As the fluid is at
thermal equilibrium at absolute temperature T, it seems physically reasonable that in each
triplet, the te chain and cat are approximately at thermal equilibrium at the same T, and that
under their influence, the individual atomic unit evolves off-equilibrium so as to give rise
to polymerization. The resulting dynamics of the individual atomic unit are not expected
to alter the statistical equilibrium states of the fj chain and of the cat. Actually, such an
assumption underlies the very formulation of Equation (79).

We accept the approximate factorization of the non-equilibrium distribution:
fm ≃ f1 feq,2 feq,0 with an off-equilibrium f1 = f1(y1, ß3,c,1, t) for the individual atomic
unit. The cat is described by the (t-independent) classical Boltzmann equilibrium distribu-
tion (A10 = A01):

feq,0 = Z−1
eq,0 exp[−(KBT)−1[(A00/2)ß2

3,c,0 + A10ß3,c,0ß3,c,1 + U0]], which depends on

ß3,c,0, ß3,c,1, y0, and y1 (with Zeq,0 =
∫

d3y0d3ß3,c,0 exp[−(KBT)−1[(A00/2)ß2
3,c,0 + U0)]]).

We also accept that the te chain is described by the (t-independent) classical Boltzmann
equilibrium distribution (A12 = A21): feq,2 = Z−1

eq,2 exp[−(KBT)−1[(A12/d2)ß3,c,1(−a3,c,2) +

H̃3, f j,c,2]], which depends on all variables of the te and ß3,c,1 (with
Zeq,2 = [dΩ]3,L exp[−(KBT)−1H̃3, f j,c,2]), which includes ß3,c,1(−a3,c,2).

Notice that (−a3,c,2) is coupled to ∇y1 in Equation (79).
We integrate Equation (79) with

∫
[dΩ]3,L

∫
d3y0d3ß3,c,0 and perform the approximate

replacement fm ≃ f1 feq,2 feq,0
The contribution of A12ß3,c,1 times the Poisson bracket involving f1 feq,2 feq,0 and mul-

tiplying it plus the contribution of the Poisson bracket ([H̃3, f j,c,2, f1 feq,2 feq,0]Pb) gives a
vanishing result.

Then:
∫
[dΩ]3,L fm ≃ f1 feq,0

∫
[dΩ]3,L feq,2, and

∫
[dΩ]3,L fm(−a3,c,2) ≃

f1 feq,0
∫
[dΩ]3,L feq,2(−a3,c,2) = f1 feq,0[−((KBTd2)/A12)(∇ß3,c,1

∫
[dΩ]3,L feq,2)].

The function
∫
[dΩ]3,L feq,2 ≡ f2 = f2(ß3,c,1) is studied in the Appendix A.

Consequently:
∫

d3y0d3ß3,c,0
∫
[dΩ]3,L fm ≃ f1 f2 f0, with

f0 =
∫

d3y0d3ß3,c,0 feq,0 = exp[(2KBT)−1(A2
10/A00)ß2

3,c,1].
Equation (79) becomes, in terms of W = W(y1, ß3,c,1, t) = f1 f2 f0:

∂W
∂t

= −[A11ß3,c,1 − (KBT)(∇ß3,c,1 ln f2)− (A2
10/A00)ß3,c,1](∇y1W) +

∫
d3ß3,c,1,0 ×

W(y1, ß3,c,1,0, t)]
∫ id3y1,0

h̄(πh̄)3 exp(
2i(ß3,c,1 − ß3,c,1,0)y1,0

h̄
)[U1,e f f (| y1 + y1,0 |)−

U1,e f f (| y1 − y1,0 |)] (80)

U1,e f f (| y1 |) = U1(| y1 |) + U0,e f f (| y1 |) (81)

U0,e f f (| y1 |) =
∫

d3y0U0(y0, y0 + y1) exp[−(KBT)−1U0)]∫
d3y0 exp[−(KBT)−1U0]

(82)

We shall assume the following properties of U0,e f f (| y1 |) = U0,e f f (y1) (y1 =| y1 |): (a1) it
is repulsive for 0 ≤ y1 ≤ y1,3, where y1,0 ≤ y1,3 < y1,1; (a2) it is attractive for y1,3 ≤ y1 ≤ y1,2;
and (a3) it tends to vanish for adequately large values of y1(> y1,2). We allow, at this stage,
for U0(y0, y0 + y1) to give rise to bound states of the catalyst for the system formed by the
individual unit and the te. Such a possibility can be entertained at the level of Equation (79)
but lies outside the scope of Equation (80) and its consequences, which concentrate on the
individual atom 1. See the comments in Section 5.

Upon recalling the properties assumed for U1, it follows that U1,e f f (| y1 |) = U1,e f f (y1):
(1) is repulsive in 0 ≤ y1 ≤ y1,0; (2) is attractive in y1,0 ≤ y1 ≤ y1,1; (3) is repulsive in
y1,1 ≤ y1 ≤ y1,2; and (4) tends to vanish for adequately large values of y1(> y1,2). Two
important additional points are: (5) U1,e f f (y1) continues to be attractive in y1,0 ≤ y1 ≤ y1,1
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in spite of the possibility that U0,e f f (y1) can be repulsive in y1,0 ≤ y1 ≤ y1,3; and (6)
U1,e f f (y1) is considerably less repulsive than U1(y1) in y1,1 ≤ y1 ≤ y1,2. The basic effect
due to U0,e f f (y1) (and, hence, due to the catalyst) is to offset and make lower the positive
values of U1(y1) in y1,1 ≤ y1 ≤ y1,2. We shall assume later (Section 4.5) that U1,e f f (y1) does
give rise to bound states (specifically, to one bound state).

Equation (80) depends only on the degrees of freedom of the individual unit.
Equation (80) with (81) is the standard Wigner equation for the non-standard quantum
Hamiltonian: H̃n−s,1 = −(h̄2/2)((A11 − (A2

10/A00)))∇2
y1

+ [ln f2](ß3,c,1 → −ih̄∇y1) +
U1,e f f (| y1 |). In so doing, we are correcting some misprint in the non-standard quantum
Hamiltonian H̃n−s,1 in Section 5.1 in [33]: such a misprint is inconsequential regarding the
developments in [33].

Equation (80) directly yields the probability flux conservation:

∂

∂t

∫
d3ß3,c,1W = −∇y1

∫
d3ß3,c,1[A11ß3,c,1 − (KBT)(∇ß3,c,1 ln f2)−

−(A2
10/A00)ß3,c,1]W (83)

∂

∂t

∫
d3y1

∫
d3ß3,c,1W = 0 (84)

4.4. Standard Approximate Effective Quantum Hamiltonian for the Individual Unit

As it is difficult to handle H̃n−s,1, it will be approximated by the new effective Hamil-
tonian H̃e f f ,1 below. Accordingly, one approximates: −(KBT)(∇ß3,c,1 ln f2) ≃ A12σß3,c,1:
see Appendix A. The constant σ(> 0 and dimensionless) accounts for the influence of the
classical fj chain on the dynamics of unit 1. After this approximation, Equation (80) becomes
the standard Wigner equation for the effective standard quantum Hamiltonian for unit 1:
H̃e f f ,1 = −(h̄2/2)A11,e f f∇2

y1
+ U1,e f f (| y1 |), where A11,e f f = (A11 − (A2

10/A00)) + A12σ,
which yields a (quasi-)continuous spectrum of eigenvalues and one bound state associated
with (quasi-)unbound motion and polymerization of the individual unit, respectively.

Let W = W(y1, ß3,c,1, t) be the (effective) non-equilibrium Wigner function for a quan-
tum particle with mass A−1

11,e f f and subject to the potential U1,e f f (| y1 |). The corresponding
non-equilibrium Wigner equation reads:

∂W
∂t

= −[A11,e f f ß3,c,1](∇y1W) +
∫

d3ß3,c,1,0W(y1, ß3,c,1,0, t)]×
∫ id3y1,0

h̄(πh̄)3 exp(
2i(ß3,c,1 − ß3,c,1,0)y1,0

h̄
)[U1,e f f (| y1 + y1,0 |)−U1,e f f (| y1 − y1,0 |)] (85)

The equilibrium distribution determined by Equation (85) is Weq.

4.5. Extension of Sections 2.8 and 2.9 to Equation (85): Small Thermal Wavelength and
Long-Time Approximations

The one-dimensional analysis in Section 2 can now be directly extended to the D = 3
Equation (85): namely, equilibrium distribution Weq, the family of orthogonal polynomials
generated by the former, non-equilibrium moments and hierarchy, and small thermal
wavelength (corresponding to the absolute temperature T assumed for the fluid) and long-
time approximations. Details will be omitted. Then, the 1D long-time approximations in
Section 2.9, extended directly to 3D by following [30], lead to the irreversible D = 3 Smolu-
chowski equation for the lowest moment W[0] = W[0](y1, t)(=

∫
d3ß3,c,1)W(y1, ß3,c,1, t))

for the individual atomic unit (y1 = (y1,1, y1,2, y1,3)):

∂W[0]

∂t
= Dqeq A11,e f f

3

∑
α=1

∂

∂y1,α
M[1α ],[0]W[0] (86)

M[1α ],[0]W[0] = −qeq A11,e f f
∂

∂y1,α
(ϵ[2],[0]W[0]) + +

1
qeq

∂U1,e f f

∂y1,α
W[0] (87)
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D (assumed to be y1-independent ) and ϵ[2],[0] are the natural 3D counterparts of the 1D
ones in Section 2.9. The equilibrium distribution for (87) is:

W[0],eq = ∑j exp(−Ej/(KBT))ϕj(y1)
∗ϕj(y1).

The terms ϕj(y1) and Ej are, for all possible values of the set of subindices j, the (almost)
continuum and bound-state eigenfunctions and energies of H̃e f f ,1 (H̃e f f ,1ϕj(y1) = Ejϕj(y1)).
Since U1,e f f = U1,e f f (| y1 |) = U1,e f f (y1), Weq is seen to depend on y2

1, ß2
3,c,1, and (y1ß3,c,1)

2.
Then: ϵ[2],[0] = −

∫
d3ß3,c,1Weq(ß3,c,1)

2
α/(q2

eq
∫

d3ß3,c,1Weq)(< 0) is seen to be independent
on α = 1, 2, 3 and to depend only on y1. Consistently, W[0],eq fulfills: M[1α ],[0]W[0],eq = 0,
which is a set of three partial differential equations that are compatible and explicitly
solvable for W[0],eq, since U1,e f f and ϵ[2],[0] depend on y1. We shall assume that U1,e f f gives
rise to just one bound state.

The physically interesting solution is, naturally, spherically symmetric W[0] = W[0](y1, t)
so that Equation (86) becomes:

∂W[0]

∂t
= Dqeq A11,e f f (

∂

∂y1
+

2
y1

)(−qeq A11,e f f
∂

∂y1
(ϵ[2],[0]W[0]) +

1
qeq

∂U1,e f f

∂y1
W[0]) (88)

now with qeq = (2KBT/A11,e f f )
1/2. It is convenient to replace W[0] with another distribu-

tion f = f (y1, t) = y−2
1 W[0](y1, t). Equation (88) becomes:

∂ f
∂t

= Dqeq A11,e f f
∂

∂y1
(−qeq A11,e f f

∂

∂y1
(ϵ[2],[0] f ) +

1
qeq

∂U1,e f f

∂y1
f +

2
y1

qeqϵ[2],[0]A11,e f f f (89)

4.6. Mean First Passage Time

It is important to compute approximately the (average) time required for unit 1 to
become attached to the chain as a next-neighbor of unit 2 in the te chain in the presence of
and under the influence of the cat. For that purpose, the mean first passage time (MFPT)
formalism, which provides an estimate of the latter time, is very useful. For references
about the MFPT formalism, see [18,47,58]. In the present application of the MFPT, we shall
extend [30,33,59]. The MFPT t(y1) function is the solution of the following so-called adjoint
equation associated with Equation (89):

Dq2
eq A2

11,e f f (−ϵ[2],[0])
∂2t(y1)

∂y2
1
− Dqeq A11,e f f (

1
qeq

∂U1,e f f

∂y1
+

2qeqϵ[2],[0]A11,e f f

y1
)

∂t(y1)

∂y1
= −1 (90)

provided that suitable boundary conditions are added. The properties of U1,e f f (y1) have
been explained in Section 4.3. Accordingly, the boundary conditions adequate for polymer-
ization are the following: t(yabs) = 0 (absorption) and [∂t(y1)/∂y1]y1=yre f = 0 (reflection).
The radial distance yre f is supposed to fulfill: y1,0 ≤ yre f ≤ y1,1. The radial distance yabs
is supposed to be larger than (but close to) y1,2. The term t(y1) is interpreted here as an
estimate of the time required for the individual atom 1—near yabs and, thus, far from unit 2
of the te—to reach y1 under the action of the cat. If y1,0 ≤ y1 ≤ y1,1, then t(y1) estimates
the time required for unit 1 to become bound to unit 2 of the te.

Then, by direct integration, the solution of Equation (90) with those boundary
conditions is:

t(y1) =
∫ yabs

y1

ds1

s2
1D(qeq A11,e f f )2

J(s1) (91)

J(s1) = −
∫ s1

yre f

ds2s2
2

ϵ[2],[0](s2)
exp[− 1

2KBT

∫ s1

s2

ds3(∂U1,e f f /∂s3)

ϵ[2],[0](s3)
] (92)
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For definiteness, we have chosen y1,2 = yabs in Equation (91).
Reference [30] studied an MFPT for a simpler chemical reaction between two atoms with

neither a te molecular chain nor a cat (and not having required to start out from any sort of
mixed Liouville–Wigner equation, as has been the case here). In spite of that relative simplicity,
the resulting MFPT is rather similar to that described by Equations (91) and (92). The detailed
analysis of the MFPT in [30] can be extended rather directly to Equations (91) and (92) and
will be omitted. The resulting MFPT in [30] displays a temperature dependence consistent
with the Arrhenius formula for rate constants in chemical reactions, and the same is true for
Equations (91) and (92). For brevity, we shall limit ourselves to a direct estimate based upon the
properties of U1,e f f : yielding the Arrhenius formula here.

We suppose that y1 fulfills yre f ≤ y1 ≤ y1,1. We choose suitable estimates for −ϵ[2],[0]
to let them to be displaced without large errors outside

∫ s1
s2

ds3, and we subsequently
perform the resulting integration

∫ s1
s2

ds3(∂U1,e f f /∂s3). Then, we argue that an estimate

of the dominant contribution to the exponential inside J(s1) is: exp[ 1
2KBT [

U1,e f f
(−ϵ[2],[0])

(y+)−
U1,e f f

(−ϵ[2],[0])
(y−)]]. The radial distance y+ is larger than y1,1 and is not far from the y1 at

which
U1,e f f

(−ϵ[2],[0])
is positive (with repulsive U1,e f f ) and takes on its largest values. The radial

distance y− is smaller than y1,1 and is not far from the y1 at which
U1,e f f

(−ϵ[2],[0])
is negative (with

attractive U1,e f f ) and takes on its minimum values. We remind that −ϵ[2],[0] is positive
(Section 2.7). It is plausible that −ϵ[2],[0](y+) (−ϵ[2],[0](y−)) is dominated by the almost
continuous spectrum (the bound state). Then, an estimate of the the MFPT is:

t(y1) ≃
∫ yabs

y1

ds1

s2
1D(qeq A11,e f f )2

∫ s1

yre f

ds2s2
2

(−ϵ[2],[0](s2))
×

exp[
1

2KBT
[

U1,e f f

(−ϵ[2],[0])
(y+)−

U1,e f f

(−ϵ[2],[0])
(y−)]] (93)

Other contributions to J(s1) are regarded as subdominant and, hence, discarded. The
term t(y1)

−1 for yre f ≤ y1 ≤ y1,1 provides an approximate estimate of a rate constant

for polymerization activated by the cat. Then, notice that factor exp[− 1
2KBT [

U1,e f f
−ϵ[2],[0]

(y+)−
U1,e f f
−ϵ[2],[0]

(y−)]] is responsible for and characteristic of an Arrhenius behavior. It also explains

why the inclusion of the cat activates polymerization: in fact, the latter (due to U0,e f f < 0)
makes U1,e f f (> 0) be smaller than U1(> 0) in y1,1 ≤ y1 ≤ y1,2.

One can obtain directly another solution of Equation (90) with other boundary con-
ditions: namely, with reflection for y1 ≥ y1,2 and reflection for y1 ≤ y1,1. However, such
a solution has been discarded as it implies properties that disagree with the physically
expected ones (implied correctly by Equations (91) and (92)).

5. Conclusions and Discussion

The first part (Section 2) of this work dealt with the basic quantum Wigner function and
non-equilibrium equation for a microscopic particle subject to a potential V and to a heat bath
(HB) at thermal equilibrium. Previous analyses were extended non-trivially. For simplicity,
only 1D was considered, with the extension to 3D being direct. The case in which V has
one bound state (plus an infinite number of discrete states that approximate the standard
continuum or scattering states) was considered. The equilibrium Wigner distribution generates
an infinite number of orthogonal polynomials in momentum. The latter enabled us to define
an infinite family of non-equilibrium moments. Commonly, Wigner functions are employed
to evaluate expectation values for suitable operators in phase space (see, for instance [7,8]).
On the other hand, the present approach is not specifically concerned with phase space; rather,
the former focuses on the information encoded in non-equilibrium moments (depending
on the spatial positions of the particles as time evolves and becomes long): specifically, in
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the lowest moment, which can give probabilistic information. The non-equilibrium Wigner
equation yields a general n-term hierarchy for the corresponding moments. A new non-
trivial solution of the non-equilibrium hierarchy that combines operator-continued fractions
and the infinite series thereof is obtained and analyzed; arguments are given to support its
finiteness. In a short thermal wavelength regime (retaining quantum features and adequate
for chemical reactions), the non-equilibrium hierarchy is approximated by a three-term one.
In a long-time approximation, the approximate three-term hierarchy is, in turn, approximated
by a Smoluchovski equation. Among other open issues left open by the present study, we
quote here the following: (i) further improvements regarding the theory of the generalized
orthogonal polynomials in [41], which can benefit the construction of the HQ,n(y); (ii) further
analysis for infinite n-term hierarchies (n > 3); and (iii) mathematically rigorous analysis
of continued fractions of operators. In fact, in previous works (see [29,30] and references
therein) and in the present one, we have handled continued fractions of operators and the
infinite series thereof in a formal way, with effort to provide arguments to justify consistency,
convergence, and an approximate approach to equilibrium for long t. Recall, for instance, the
operator A in Section 2.6. However, regarding (iii) in particular, we have been recognizedly
unable to obtain mathematically rigorous results that, to the best of our knowledge, appear to
be lacking.

In the second part (Sections 3 and 4) of this work, a new model of the growth (poly-
merization) of a molecular chain (template, te) by binding an individual atom activated by
a catalyst is developed in 3D. The atom, te, and cat move randomly as solutions in a fluid
at rest (playing the role of an HB) in thermal equilibrium. Classical statistical mechanics
describe te and cat approximately. The individual atom is treated quantum-mechanically.
Mixed non-equilibrium quantum–classical Wigner–Liouville functions and dynamical
equations for the individual atom and for the te and cat, respectively, are employed. By
assuming the latter two to be at thermal equilibrium, integrating over their degrees of
freedom, and through a further approximation regarding the degrees of freedom of the te, a
standard 3D effective non-equilibrium Wigner equation is obtained for the individual atom.
Upon extending to the latter Wigner equation the moment methods together with the short
thermal wavelength and long-time approximations in Sections 2.8 and 2.9, respectively, an
approximate 3D Smoluchowski equation is obtained for the individual atom. The mean
first passage time (MFPT) for the individual atom to become bound to the te, facilitated by
the cat, is considered. The resulting MFPT displays a temperature dependence consistent
with the Arrhenius formula for rate constants in chemical reactions.

The following properties of typical insertion polymerizations occurring in practice
should be mentioned (see Section 3.6.1 in [32]). Firstly, the cat does not emerge unchanged
as a consequence of the polymerization process: that is, its final state is different from the
initial one. Secondly, it continues to reside, in the form of deteriorated fragments, at the
relevant end of the augmented te chain.

Motivated by those facts, two comments regarding the model presented here seem in
order. Our treatment allows for the catalyst to remain weakly bound to the enlarged chain
formed by atom 1 bound to the initial te chain: that can, in principle, occur for suitable
U0(y0, y0 + y1). The model, with the chosen numbering of material units and dynamical
variables, has been formulated precisely in order to account for that: the individual unit
is numbered atom 1 and will become bound to atom 2 (one end atom in the te). Then, at
the end of the process, the cat (numbered as 0) may remain bound to atom 1 as a possible
additional extension of the chain (see Figure 1). On the other hand, our treatment does not
seem to account for the deterioration of the catalyst: a generalization (outside our scope
here) would be required for that.
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Figure 1. Catalyst (circle), individual unit atom (box), and freely jointed template formed by 11 units
(small boxes). Dashed lines represent binding (bonds). The successive numbering is: catalyst (unit 0),
individual atom 1, and, in the template, atom 2, atom 3,. . . , atom 11. After polymerization, atom 1
becomes bound to atom 2, and the catalyst is bound (weakly) to atoms 1 and 2. The term y1 is the
vector (not displayed) along the dashed line from atom 1 (box) to atom 2 (small box).
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Appendix A. 3D Single-Unit Polymerization by Classical fj Chain at Equilibrium:
Computations

The formula f2 = f2(ß3,c,1) =
∫
[dΩ]3,L feq,2 will be studied here by extending [33].

First, Gaussian integrations over ΠNte−1
i=2 dφidπφ,c,i in [dΩ]3,L are performed by generalizing

directly the rotational invariant methods in [60]. The result is:
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f2 = exp[
A2

12(A−1
2 )22ß2

3,c,1

2KBT
]([
∫
(
[dΩ]3,2

det∆2
)1/2]−1

∫
(
[dΩ]3,2

det∆2
)1/2 ×

exp[− A12

2KBT

Nte−1

∑
i,j=2

(A12(A−1
2 )2i)(ß3,c,1ui)((∆2,1)

−1)ij(A12(A−1
2 )j2)(ß3,c,1uj)] (A1)

The (Nte − 2)× (Nte − 2) matrix A2 with non-vanishing elements Aij, i, j = 2, . . . , Nte − 1
is symmetric, tridiagonal, and has positive eigenvalues. A−1

2 and detA2 are the inverse and the
determinant, respectively, of A2. The (Nte − 2)× (Nte − 2) matrices ∆2 and ∆2,1 have elements:
(∆2)ij = (A−1

2 )ijuiuj and (∆2,1)ij = A12(A−1
2 )ijuiuj, respectively. The integral in Equation (A1)

with (∆2,1)
−1 = 0 has been studied in [53,60]: it was found that the dominant contributions are

equal to one another and come from all tiny domains with (uiuj)
2 close to +1. One finds:

f2 ≃ exp[
A2

12(A−1
2 )22ß2

3,c,1

2KBT
][
∫ 2π

0
dφ2

∫ π

0
dθ2 sin θ2]

−1
∫ 2π

0
dφ2

∫ π

0
dθ2 sin θ2 ×

exp[−A2
12(A−1

2 )22(u2ß3,c,1)
2

2KBT
] (A2)

A12 and (A−1
2 )22 account, respectively, for the influences of unit 2 and of all units 2,. . . ,Nte−

1 on the dynamics of unit 1. At this stage, one approximates: −(KBT)(∇ß3,c,1 ln f2) ≃ A12σß3,c,1,
σ = −A12(A−1

2 )22σ1 with constant σ1, 0 < σ1 < 1.
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Abstract: We review, under a modern light, the conditions that render the Boltzmann equation
applicable. These are conditions that permit probability to behave like mass, thereby possessing
clear and concrete content, whereas generally, this is not the case. Because science and technology
are increasingly interested in small systems that violate the conditions of the Boltzmann equation,
probability appears to be the only mathematical tool suitable for treating them. Therefore, Boltz-
mann’s teachings remain relevant, and the present analysis provides a critical perspective useful for
accurately interpreting the results of current applications of statistical mechanics.

Keywords: dynamical systems; probability; observables

1. Introduction

Statistical mechanics arose to interpret thermodynamic results from an atomistic
perspective. That is an objectively difficult task because thermodynamics is deterministic.
It views matter as a continuum characterized by a reduced number of variables, and it is
irreversible in time. Partial differential equations are the suitable mathematical tool for such
a description of physical objects. On the contrary, the microscopic dynamics of atoms are
considered deterministic when dealing with fluids in non-extreme conditions. However,
they are time-reversal invariant, with a few notable exceptions, such as Prigogine [1].
Being discrete rather than continuous, these dynamics are represented by systems of
many ordinary differential equations. The difficulty, then, does not lie in doubts about
the atomistic hypothesis, which have been dispelled long ago [2], when the Brownian
motion was explained [3]. The difficulty concerns the above very different mathematical
descriptions that have been developed for macroscopic and microscopic dynamics. Indeed,
they are so different that they could even look incompatible.

With statistical physics, the gap has been filled adding statistical notions to the purely
mechanical ones, and profiting from the mind-boggling number of degrees of freedom that
must be integrated out to go from atoms to continuum [4]. This second aspect was initially
overlooked by Boltzmann’s contemporaries, who criticized him on the grounds of the
laws of mechanics [5]. As a matter of fact, certain sentences in Boltzmann’s fundamental
paper [6] prompted criticism because they lack reference to probabilistic arguments and
seem to imply a direct derivation of irreversible relaxation to equilibrium from the purely
reversible dynamics of atoms:

“It has thus been rigorously proved that, whatever may be the initial distribution of
kinetic energy, in the course of a very long time it must always necessarily approach
the one found by Maxwell. The procedure used so far is of course nothing more than a
mathematical artifice employed in order to give a rigorous proof of a theorem whose exact
proof has not previously been found. It gains meaning by its applicability to the theory of
polyatomic gas molecules”.

Whether this interpretation of Boltzmann’s intention is correct or not, Loschmidt and
Zermelo legitimately, and correctly, pointed out that mechanics by itself does not justify
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the result. Boltzmann’s reply, then, set things straight once and for all. Although, to
date, the argument can be considered quite subtle. In a sense, Boltzmann agreed with the
criticism, without admitting any error in his original point of view, but simply elaborating
on it. He invoked a probabilistic argument, which does not belong to mechanics, but is
powerfully unavoidable: given the number of molecules that make a macroscopic object, it
is unreasonable not to take seriously the probabilistic predictions. In his own words, this is
Boltzmann’s answer to Zermelo:

“The applicability of probability theory to a particular case cannot of course be proved
rigorously. If, out of 100,000 objects of a certain kind, about 100 are annually destroyed
by fire, then we cannot be sure that this will happen next year. On the contrary, if the
same conditions could be maintained for 101010

years, then during this time it would
often happen that all 100,000 objects would burn up on the same day; and likewise there
will be entire years during which not a single object is damaged. Despite this, every
insurance company relies on probability theory. It is even more valid, on account of the
huge number of molecules in a cubic millimetre, to adopt the assumption (which cannot
be proved mathematically for any particular case) that when two gases of different kinds
or at different temperatures are brought in contact, each molecule will have all the possible
different states corresponding to the laws of probability and determined by the average
values at the place in question, during a long period of time. These probability arguments
cannot replace a direct analysis of the motion of each molecule; yet if one starts with a
variety of initial conditions, all corresponding to the same average values (and therefore
equivalent from the viewpoint of observation), one is entitled to expect that the results of
both methods will agree, aside from some individual exceptions which will be even rarer
than in the above example of 100,000 objects all burning on the same day. The assumption
that these rare cases are not observed in nature is not strictly provable (nor is the entire
mechanical picture itself) but in view of what has been said it is so natural and obvious,
and so much in agreement with all experience with probabilities, from the method of least
squares to the dice game, that any doubt on this point certainly cannot put in question
the validity of the theory when it is otherwise so useful. It is completely incomprehensible
to me how anyone can see a refutation of the applicability of probability theory in the fact
that some other argument shows that exceptions must occur now and then over a period
of eons of time; for probability theory itself teaches just the same thing”.

(We would like to stress one aspect of this reply that is also quite important, although
not directly related to the debate between Boltzmann and Zermelo, hence usually not
considered. Boltzmann clearly indicates that a mathematical explanation of a physical
phenomenon cannot be taken as applicable without restrictions. Indeed, any mathematical
model is just that: it cannot replace reality in all its aspects. It suffices to keep this in mind
to realize paradoxes may simply lie in the incorrect application of a theory to situations
exiting its range of validity. The problem may be not lack of mathematical rigour, but
of physical relevance.) One should note that, strictly speaking, Boltzmann reasonings
apply to a special class of macroscopic objects, the rarefied gases. Nevertheless, over the
years, the Boltzmann equation has been extended to an incredibly wide range of systems
and phenomena. First, within the realm of physics, it has been extended to classical
systems subjected to external forces, as well as to quantum and relativistic mechanics,
with applications, e.g., in solid state physics and astrophysics, cf., e.g., [7,8]. Successively,
applications have been produced in fields such as social sciences, economics, and traffic
studies [9–13], just to mention a few examples. In mathematics, the study of the Boltzmann
equation has also produced fundamental results, of general interest. For instance, the proof
of the existence of solutions [14]. More recently, Cercignani’s conjecture [15], that has been
influential in understanding dissipation from a microscopic point of view, was proven to
be substantially correct [16].

Even through all that, one comes to realize that probability, the primary tool of
statistical physics, is crucial for accurately handling quantities related to discrete lumps
of matter composed of numerous microscopic constituents, especially on the scale where
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they seem to exhibit continuous behavior. But, thanks to this tool, statistical physics
may in principle be used even beyond of the realm of thermodynamics if is it true, as
it is, that even insurance companies rely on it. In fact, statistical physics has turned its
attention more and more to the study of small systems, which are not guaranteed to be
in Local Thermodynamic Equilibrium (LTE), and require thermodynamic quantities to be
interpreted in a different or wider sense than in thermodynamics. Indeed, LTE requires,
at least, that systems should possess a microscopic, mesoscopic and macroscopic scale
in space and time w.r.t the observer. This condition cannot be ensured for all systems to
which statistical physics is applied. This can lead, for instance, to finite size effects and
fluctuations entailing blurred boundaries between different states of aggregation matter.
This gives probabilities an even wider role in the description of small systems than in the
statistical mechanics of macroscopic objects. Often, probability is the only sensible thing to
compute. The trouble is that probability is immaterial.

In this paper, we analyze various notions of probability, highlighting this fact, and then
deomnstrate how it may be seen turning material within the framework of the Boltzmann
equation. This may be useful in correctly interpreting a large fraction of present day
statistical mechanics results.

2. Probability: Obscure and Practical

How can probability be useful? Karl Popper maintained that probabilistic results can-
not be falsified, thus contradicting his concept of science: For although probability statements
play such a vitally important role in empirical science, they turn out to be in principle impervious to
strict falsification” [17]. Further:

“In whatever way we may define the concept of probability, or whatever axiomatic for-
mulations we choose: so long as the binomial formula is derivable within the system,
probability statements will not be falsifiable. Probability hypotheses do not rule out
anything observable; probability estimates cannot contradict, or be contradicted by, a
basic statement; nor can they be contradicted by a conjunction of any finite number of
basic statements; and accordingly not by any finite number of observations either” [17].

Of course, Popper’s view of science can be criticized, but there is a fact: suppose
meteorologists have computed that the probability of rain tomorrow is 0.999. We go out
carrying an umbrella, and we find the Sun is shining. Have we refuted the meteorologists’
prediction? Of course not. Consequently, if it rains it also does not prove anything about
the mentioned calculations. So, why is probability interesting?

In the mathematical sciences, probability is a rather recent subject. In the XVI century,
it was conceived to improve chances of winning in gambling. However, it rapidly came to
constitute the basis of statistical and quantum mechanics, as well as of chaos theory and
of the sciences of “complexity”. It is dominant in finance, in the interpretation of medical
tests, in epidemiology, weather forecasts, etc. On the other hand, can we grasp the meaning
of a statement like:“there is a probability of 10−40 that a nuclear power plant blows up”?
When and how will we experience a number like that, so that we develop an opinion about
its significance? What do scientists say?

Joh Archibald Wheeler, who would constantly make use of probabilities in his scientific
activity, stated that “Probability, like time, is a concept invented by humans, and humans have to
bear the responsibility for the obscurities that attend it. Obscurities there are whether we consider
probability defined as frequency or defined a la Bayes” [18].

The great probabilist, Bruno de Finetti, in the preface of his treatise on probability
theory said,

My thesis, paradoxically, and a little provocatively, but nonetheless genuinely, is sim-
ply this:

PROBABILITY DOES NOT EXIST
The abandonment of superstitious beliefs about the existence of Phlogiston, the Cosmic
Ether, Absolute Space and Time, . . . , or Fairies and Witches, was an essential step along
the road to scientific thinking. Probability, too, if regarded as something endowed with
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some kind of objective existence, is no less a misleading misconception, an illusory attempt
to exteriorize or materialize our true probabilistic beliefs [19].

Clearly, profound familiarity with the subject does not eliminate obscurities, and
probability appears immaterial. Simple considerations may help us understand these
statements.

The classical notion of probability gives an objective rule to attribute a probability to
some expected event E. For finitely many possible events, N say, the classical probability
is objectively defined by counting as

Prob(E) =
N(E)

N
(1)

where N(E) is number of possible outcomes yielding E. This means that the single events
are declared equally probable. Coin tossing is the usual example of this kind: the single
events are heads and tails; therefore, each of them is attributed a probability of 1/2. It is
a simple and appealing notion of probability, that looks particularly useful to deal with
situations that totally defeat our understanding. However, it is obviously not suitable
e.g., for tossing loaded coins or dice; or for YES or NO answers to “Is it going to rain?”
Moreover, paradoxes arise if the set of possible events cannot be counted, particularly for
continuous sets of events. Think, for instance, of the Bertrand Paradox: there are three
different, apparently equally legitimate, probabilities for the event L, which represents the
probability that a chord of a circle of unit radius is longer than

√
3, the length of the side of

the inscribed equilateral triangle:

• given two points on the circumference, consider the chord joining them, and take one
of the two points as the vertex of one inscribed equilateral triangle. If the chord lies
outside the triangle, it is shorter than

√
3; if it intersects the triangle, it is longer than

or equal to
√

3. Now, the vertices of the triangle delimit three arcs of equal length, and
only one of them corresponds to a chord longer than

√
3. Therefore, the probability of

L is 1/3.
• consider a radius of the circle, and choose a point on it. There is a chord perpendicular

to this radius, and its length is larger than
√

3 if the point is closer to the center of the
circle than to the circumference. Therefore, the probability of L is 1/2.

• take a point anywhere within the circle and construct a chord with this point as its
midpoint. The chord is longer than

√
3 if the point lies within a concentric disk of

radius 1/2 the radius of the larger circle. The area of the smaller circle is 1/4 of the
full disk; therefore, the probability of L is 1/4.

Despite the numerous solutions that have been devised to solve this conundrum, see,
e.g., Ref. [20], it remains that they all refer to some kind of superior principle that can only
be subjective. Hence, they cannot be taken as objectively valid, at least not in the sense of
the mass of a stone. One may then adopt a subjective notion of probability at the start. This
amounts to saying that probability should be assigned by the one interested in it, defining

Prob(E) = maximum someone consistently puts at stake to win 1 in an unbiased game

There is an immediate advantage with respect to the classical notion of probability: it
is always possible to unambiguously associate a probability with an event, even in the
question of whether or not I am a robot. But there are difficulties as well. First of all,
different people may have different views on the event E, and that may make the scientific
activity cumbersome.

In some cases, one may think that probabilities are objectively imposed by the sequence
of events. One then may rely on a different kinds of counting events, thinking that at each
time only a finite number of events has occurred, but assuming that extrapolation to
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infinitely many events is possible. This constitutes the frequentist approach. Let Nt be the
number of observations, or experiments repeated in time up to time t. Then,

Prob(E) = lim
t→∞

N(E; t)
Nt

where N(E; t) is the number of outcomes regarding E in the time t. This notion of probability
is very suggestive e.g., in dealing with situations that are often repeated in time or space,
such as weather forecasts or car accidents. However, many events happen only once or a
few times in a lifetime, and can be dramatically positive or negative, like nuclear power
plants accidents or becoming Captain Regent of the San Marino Republic. Even harder
problems are posed by events that happen frequently, but not enough for us to extract a
reliable predictive rule, e.g., earthquakes or pandemics.

From these considerations, one might ask why bother at all to use probabilities. The
fact is that the above has not stopped people from referring to probabilities. This is
understandable if one realizes that probability, like any other mathematical tool, yields a
model, one description of one aspect of reality, and does not intend to represent the whole
reality. However, as such, it can change its meaning depending on the problem at hand;
and it can do so without causing any inconvenience, enabling us to better understand the
problems at hand. Indeed, James Clerk Maxwell argued that

They say that Understanding ought to work by the rules of right reason. These rules
are, or ought to be, contained in Logic; but the actual science of Logic is conversant at
present only with things either certain, impossible, or entirely doubtful, none of which
(fortunately) we have to reason on. Therefore the true Logic for this world is the Calculus
of Probabilities, which takes account of the magnitude of the probability (which is, or
which ought to be in a reasonable man’s mind). This branch of Math., which is generally
thought to favour gambling, dicing, and wagering, and therefore highly immoral, is the
only ‘Mathematics for Practical Men’, as we ought to be [21].

How can one be practical? The approach that has proven successful is refraining from
adopting a specific interpretation of probability, in general, and to develop a mathematical
theory within which unambiguous conclusions can be reached, by means of suitable
calculations. In doing so, one must also bear in mind that results will refer to a rational
framework, not to reality, and connection with reality will have to be assessed case by case.
The mathematical framework suitable to this task is that of axiomatic probability, briefly
summarized as follows:

• There is a set Ω called sample space, which contains all the “elementary” events ω;
• there is a collection of subsets of Ω, F (Ω) that has the structure of a σ−algebra

of subsets E ⊂ Ω, representing all (elementary and combined) events to which a
probability is to be assigned;

• for all E ∈ F , P(E) ≥ 0, P(∅) = 0, and P(Ω) = 1, where ∅ is the empty set;
• for E1 ∩ E2 = ∅ one has P(E1 ∪ E2) = P(E1) + P(E2);
• given an infnite sequence of disjoint events, {Ei}∞

i=1 with Ei ∩ Ej = ∅ if i ̸= j, one has

P

(
∞⋃

i=1

Ei

)
=

∞

∑
i=1

P(Ei) (2)

Given these axioms, the rest follows, provided one has a suitable method of assigning
probabilities to the elementary events. However, this method does not necessarily need to
be a general rule endowed with a specific interpretation.

When do we need probabilities? When events (apparently) follow no rule, like the
outcomes of coin tossing, or the trajectories of pollen grains in water, that are called random
phenomena. Singularly, such phenomena follow no rule, but it may happen that their
collective large-scale behaviour is described by (possibly evolving) probabilities that follow
precise rules, which are called stochastic processes. Deterministic processes, on the other
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hand, are singularly subjected to strict rules, such as those of classical mechanics, in which
the future is totally determined by the initial conditions. However, because such evolutions
require exact knowledge of the initial conditions, something that is never achievable in
practice, probabilities play a fundamental role also in the case of deterministic evolutions,
especially those that are known as chaotic. As a matter of fact, determinism and randomness
are but points of view, more or less convenient, depending on many factors. One cannot
empirically decide the “true” nature of a given phenomenon. One can only try to make our
descriptions effective: i.e., satisfactory for our purposes, and we are satisfied when we can
make reliable predictions.

Let us investigate how such an elusive and immaterial notion as probability became
concrete and, in fact, “material” thanks to Boltzmann’s work and the Boltzmann equation.
This may then serve as a guide to the use of probabilities in realms in which they often
are the only suitable mathematical tool, but still bear the consequences of being “obscure”
and “immaterial”.

3. Mass vs. Probability

Consider N particles, each with d degrees of freedom, which obey the equations of
motion ẋ = G(x), on their phase spaceM, which is n-dimensional, with n = 2dN. Let Φt

represent the operator, which yields the solution of the equation of motion at time t, Φtx, if
x is the initial condition. The functions of phase, O :M−→ R, are considered microscopic
properties of such particles. Then, time averages

O(x) = lim
t→∞

1
t

∫ t

0
O(Φsx)ds (3)

are postulated to represent macroscopically observable quantities. The idea is that a
measurement tool and the macroscopic object of interest interact for a macroscopic time,
which is very long compared to microscopic times, and the result is represented by the
time average of the quantity of interest. Assuming that one is treating objects amenable to
thermodynamic analysis, which are described by a handful of observables, the t→ ∞ limit
results in a very good mathematical idealization of the measurement time, since that may
last 1012 or more microscopic units. Moreover, the dependence on the initial condition x
of a trajectory, γ(x) = {Φtx}t∈R, representing the microscopic history of a given (single)
object of interest, is irrelevant. (This is not necessarily true in small systems, in which
local thermodynamic equilibrium is not verified; hence, thermodynamic relations may be
inapplicable.) This suggests that the time average (3) may be obtained by replacing the
impossible-to-compute phase space trajectory with a phase space probability distribution µ
that weighs the different regions ofM proportionally to the frequency with which γ(x)
visits them:

O(x) =
∫

M
Odµ = Eµ[O] . (4)

Here, the right hand side is called the phase space average. Because the left hand side
of Equation (4) depends on x, while the right hand side does not, one must specify that
the equality is not expected to hold for all x ∈ M. At most, one can ask that it holds for
µ-almost every x ∈ M, i.e., as long as its possible violations are confined within a set E ∈ M
of vanishing probability:

µ(E) =
∫

E
dµ = 0,

which by definition does not affect the integral in Equation (4).
The investigation of the validity of Equation (4) has led to the development of ergodic

theory, concerning the properties of dynamical systems and their invariant measures. In
its standard formulation, this mathematical theory states that there are four equivalent
properties called ergodicity, including the validity of Equation (4). Letting (M, µ, Φ) be
a dynamical system with µ, an invariant measure under the dynamics Φ defined on the
phase spaceM, the following properties are equivalent:
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(E1) For every integrable function O : M 7→ R, time average and phase space average
coincide for µ-almost every x, which means for all x ∈ M apart from a set E of
vanishing measure, i.e., such that µ(E) = 0:

O(x) = Eµ(O) , µ− a.e. x ∈ M (5)

(E2) For every measurable A ⊂M and for µ-a.e. x ∈ M, the fraction of time a trajectory
spends in A is given by:

τA(x) = µ(A) , µ− a.e. x ∈ M (6)

where the fraction of time is defined by

τA(x) = lim
t→∞

1
t

∫ t

0
χA(Φsx)ds (7)

(E3) There are no non-trivial integrals of motion. In other words, let O be a function of
phase, such thatO(Φtx) = O(x) for all t and for µ-a.e. x ∈ M, and letO be integrable.
Then,

O(x) = constant , µ− a.e.x ∈ M (8)

(E4) The dynamical system is metrically indecomposable. In other words, let A be an
invariant measurable set, i.e., Φt A = A for all t. Then, either µ(A) = 1 or µ(A) = 0.
When that is the case, the expressionM = A ∪ (M\A) is called metrically trivial
decomposition ofM.

It is easy to see that ergodicity may be realized in simple dynamical systems whose
phase space trajectories γ(x) move parallel to each other and with the same phase space
“velocity”, i.e., same G(x). Take for instance a two-dimensional torus as M, and let
trajectories be oriented so that they do not close on a periodic orbit. (Cutting the torus to
obtain a square, with periodic boundary conditions, it suffices that the components of G be
not rational with respect to each other.) This is but an example of an ergodic system whose
trajectories remain close to each other in time, while they explore the whole phase space,
thus satisfying E2. Now, imagine that probability belongs to phase space sets like mass
belongs to chunks of matter moving in space. In other words, let us mimic the conservation
of mass in real space with the conservation of probability in phase space, although the
difference between the two is huge, as is shown even by the dimensions of real space, which
is 3, and ofM, which is O(2× 3× 1023) for spherical atoms. That means that probabilities
may evolve, obeying

µt(E) = µ0
(
Φ−tE

)
(9)

and, if the evolving probability has a density, it satisfies the (generalized) Liouville equation

∂ f
∂t

= −divΓ( f G) = −G · ∇Γ f − f divΓG (10)

If the equilibrium distribution is the microcanonical ensemble, which, for an ideal gas, is
the uniform distribution of microstates with specific energy, and if the initial distribution
is not uniform, the ergodic property does not lead in time to the equilibrium distribution.
In our example of parallel trajectories, a lump of probability continues to go round and
round in M, never spreading to become uniform. This will be revealed by the phase
space averages of observables that will correspondingly fluctuate in time, as the support
of this initial probability moves within M. If one pushes further the analogy between
probability and mass, taking the spread of probability in phase space as representing
the spread of the molecules of a gas in their container, ergodicity does not suffice to
describe the irreversible relaxation of macroscopic states to their equilibrium. Therefore,
a stronger property, that implies ergodicity, has been considered to describe the most
common irreversible phenomenon, see, e.g., Ref. [22]. This condition is called mixing, and
is defined by two equivalent properties:
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(M1) For every pair of measurable sets in the phase space, A, B ⊂M, the following holds:

lim
t→∞

µ(Φ−t A ∩ B) = µ(A)µ(B) , or lim
t→∞

µ(A ∩ΦtB) = µ(A)µ(B) (11)

(M2) for every pair of observables, e.g., O,P ∈ L2(M, µ), the following holds:

lim
t→∞

∫

M
(O ◦Φt)Pdµ =

∫

M
Odµ

∫

M
Pdµ , (12)

i.e., lim
t→∞

Eµ

[
(O ◦Φt)P

]
= Eµ(O)Eµ(P)

The meaning of M1 is that, in time Φt, B will occupy a fraction of A equal to its
measure in the full M. As A can be taken in any region of phase space, in particular
within the support of an invariant measure under consideration, this means that an initial
ensemble supported in B will reach in time and will stay in any corner of the support
of µ. When the microcanonical ensemble is the relevant invariant measure, this means
that the probability “contained” in B will eventually be uniformly distributed over the
whole M. This can be seen observing that the invariance of µ implies µ(A ∩ ΦtB) =
µ(Φ−t(A ∩ ΦtB)) = µ(Φ−t A ∩ B), and µ(A)µ(ΦtB) = µ(A)µ(B). Then, for sufficiently
long times, one may approximately write

µ
(

A ∩ΦtB
)

µ(A)
≈ µ(B) , provided µ(A) ̸= 0 (13)

which becomes exact in the t→ ∞ limit.
Property M2, in particular, expresses the decay of correlations of microscopic events

in phase space. When the correlation function of the functions O and P , defined by

G(t) = Eµ

[
(O ◦Φt)P

]
−Eµ(O)Eµ(P) (14)

does not vanish, the measurements of O and P are, in a sense, not independent. The decay
in time of such correlation indicates a sort of irreversible loss of memory about the initial
state. Indeed, a simple calculation appears to confirm that relaxation to an equilibrium
state, for a Hamiltonian particle system, is achieved under mixing [23]:

Eµt(O) =
∫

M
Oρtdx =

∫

M
O(ρ0 ◦Φ−t)dx

=
∫

M
(O ◦Φt)ρ0dx t→∞−→

∫

M
Odx

∫

M
ρ0dx = Edx(O). (15)

Here, the dynamics is assumed to be phase space volume-preserving, so that the Jaco-
bian determinant denoted by J−t equals 1. Then, ρ0 = constant is the invariant probability
density (its integral equals 1), and mixing has been applied, considering the probability den-
sity as a single observable. The result is that the initial value of the observable irreversibly
converges to its microcanonical value. A mixing counterpart to the uniform translation on
the two-dimensional torus is the so-called Arnold’s CAT map, defined by

(
x′

y′

)
=

(
1 1
1 2

)(
x
y

)
mod 1 . (16)

Despite the apparent formal consistency, numerous difficulties arise with these phase
space calculations. Although the same rules applying to mass have been applied to
probability, the second obviously remains an immaterial abstract concept. For instance,
mixing also holds for systems made of a single particle confined within convex walls [24],
which surely cannot expand to fill its container, while the probability does. One conceptual
difficulty with Equation (15) is that the probability density ρt is treated like a microscopic
physical property of a given object, which it is not. It represents a probability, that is a
completely different object. One microscopic quantity, the kinetic energy say, is an objective
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quantity defined for a single concrete object of interest, which is represented by a single
geometric point in the phase space. On the other hand, a probability may either refer to
collections of systems, or sequences of experiments, each represented by a single phase in
the phase space, or it can be subjectively introduced. In all cases, a distribution of phases in
phase space is obtained, but the degree of crowding of phase points in different regions
has no bearing on the evolution of a given single system. For example, beyond the cases
of systems with a single particle, numerous large systems (high probability) could exist
within a small region of phase space, each corresponding to uniform mass density. In
such instances, the probability would evolve while the mass of the systems of interest
remains unchanged. The evolution of phase space probabilities is not directly related to
what pertains to thermodynamic quantities. That is solely determined by the equations of
motion and the corresponding initial condition. Being associated with a higher or lower
amount of companion phases does not modify its fate.

The question arises: under which conditions does probability turn material? Indeed,
acknowledging, as Maxwell implied, that we have no better tool than probability does not
imply that it can be used uncritically. We get a glimpse of that in Poincaré’s considerations
on the laws that govern the large number of molecules constituting a gas:

“It seems at first that the orderless collisions of this innumerable dust can only engender
an inextricable chaos before which the analyst must retire. But the law of great numbers,
that supreme law of chance, comes to our assistance. In face of a semi-disorder we should
be forced to despair, but in extreme disorder this statistical law re-establishes a kind of
average or mean order in which the mind can find itself again” [25].

Understanding these facts definitely helps in uncharted territories. Great numbers
and extreme disorder seem to be essential, but often they are not present.

4. Hamiltonian Particle Systems and Ensembles

Because a priori it is not possible to decide which microscopic dynamics are better
suited to the task of describing macroscopic systems, one almost universally begins with
classical Hamiltonian mechanics, proven extremely successful in describing an incredible
variety of macroscopic phenomena. This was Laplace’s opinion:

“We may regard the present state of the universe as the effect of its past and the cause of
its future. An intellect which at a certain moment would know all forces that set nature
in motion, and all positions of all items of which nature is composed, if this intellect were
also vast enough to submit these data to analysis, it would embrace in a single formula
the movements of the greatest bodies of the universe and those of the tiniest atom; for such
an intellect nothing would be uncertain and the future just like the past would be present
before its eyes”.

(Note, however, that Laplace made that statement in an essay on probabilities. Indeed,
he considered such an intellect out of our reach. This was not the manifesto of reductionism,
as it is often portrayed, but the vindication of probabilities [26]). This was a very bold
statement, considering the fact that experience was limited to large, observable objects,
which typically come in small numbers, like planets and comets. In principle, there is no
relation with the exceedingly large assemblies of invisibly tiny molecules that constitute a
macroscopic body. This may be a cause of concern; hence, it must be subjected to testing
whenever new phenomena are considered. The outcome is that statistical mechanics has
greatly advanced by relying on Hamiltonian dynamics.

Consider a system of N particles, each having d degrees of freedom, characterized by a
Hamiltonian H = H(Γ), where Γ = (q, p) ∈ M, and by the following equations of motion:

q̇ =
∂H
∂p

, ṗ = −∂H
∂q

(17)

As already mentioned, the connection with physical measurements begins from the ob-
servation that they take a positive time, and from the assumption that they yield the time
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average of one phase function. If the measurement takes a time τ, and it starts when the
microstate is Γ, the result of the measurement is postulated to be

O0,τ(Γ) =
1
τ
O0,τ =

1
τ

∫ τ

0
O(ΦtΓ) dt (18)

where by the symbol Os,t we mean the time integral of O from time s to time t, and the bar
denotes time averaging.

If one accepts this picture, it follows that measurements depend on τ and are therefore
subjective because different observers may choose different initial times and different τ’s.
They also depend on Γ, hence their result is a random variable because Γ is unknown.
However, this contradicts Thermodynamics, which is an objective and deterministic theory,
universally confirmed by experimental tests. One possibility to accord Equation (18) with
experience is to assume that τ is very large, virtually infinitely larger than the microscopic
scales concerning the evolution of Γ, and that over such a long time, O has explored many
times—hence with proper frequencies—its range of values so that the initial condition
Γ is irrelevant. The same would hold if, in the time τ, generic phase space trajectories,
with negligible exceptions, thoroughly explore the phase space, which is property E2 of
Section 3. However, while E2 is sufficient for the result, it is not necessary, and typically
impossible. One way or another, we obtain

1
τ

∫ τ

0
O(ΦtΓ) dt ≈ O(Γ) = lim

τ→∞

1
τ

∫ τ

0
O(ΦtΓ) dt ≈ o ∈ IR (19)

where mathematically the first approximate equality is due to the fact that τ should be very
large, although it cannot be infinite, and the second to the fact that the range of O may not
be perfectly explored. As long as the approximations fall below the scale of thermodynamic
interest, equality can thus be used, and o represents the result of a measurement. This
picture is justified by Fermi as follows:

“Studying the thermodynamical state of a homogeneous fluid of given volume at given
temperature [. . . ] we observe that there is an infinite number of states of molecular
motion that correspond to it. With increasing time, the system exists successively in all
the dynamical states that correspond to the given thermodynamical state. From this point
of view we may say that a thermodynamical state is the ensemble of all the dynamical
states through which, as a result of the molecular motion, the system is rapidly passing”
[27].

Callen adds that, if the system passes sufficiently rapidly through representative
atomic states, a measurement effectively averages over all them, and the system is in
equilibrium [28]. If, on the other hand, the transitions from atomic state to atomic state is
ineffective (e.g., the system is trapped in a small subset of states, or the transition rate is too
slow) a macroscopic measurement does not yield a proper average over all possible atomic
states, and the system is not in equilibrium. A different description must be adopted in such
situations, which are in fact well known; think, e.g., of metal alloys subjected to thermal
treatments. However, when the microscopic values of O are indeed sufficiently rapidly
explored, compared to macroscopic observation times, a single system of interest reveals
itself through O as the average over the ensemble of such possibilities. To the observer,
the system revealed by O appears like the average over the ensemble of its microscopic
phases, and the result of the measurement equals an average with respect to a phase space
probability distribution, called ensemble. However, this implicitly requires the macroscopic
state to be stationary; if it shifts during the measurement, the observable cannot explore
its range with the frequencies corresponding to that state, and different initial microstates
may lead to different observable values. In fact, this is the case of, e.g., ageing systems.

Given a dynamical system like Equation (17), it is not obvious that Equation (19) holds,
and even if it does, the statement is so complex that it may be impossible to prove. Therefore,
the validity of Equation (19) is commonly postulated together with the assumption that
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there is an invariant probability distribution µ on M, such that a measurement yields
Equation (4) for µ-almost every x ∈ M, and for every phase function O. What is obvious
is that dense exploration of the hugely dimensional phase space cannot be the reasons
why experience taught us that Equation (4) can be used, at least in the case of equilibrium
systems, with the classical ensembles as probability distributions.

This fact can be explained without invoking the ergodic properties E1–E4. Given a
single variable O, its time average may appear like a full phase space average, even if
its phase space trajectory ΦtΓ explores a limited region ofM. It suffices that the range
of values of O be visited with proper frequencies; then the result is the same. Does this
ever happen? Khinchin proved that this does indeed happen for the relevant observables
of rarefied gases [29]. He noted that the subtleties of microscopic dynamics count little
compared to the following:

(a) macroscopic systems are made of very many particles: N ≫ 1;
(b) only several and special phase functions are physically relevant;
(c) it does not matter if ensemble averages disagree with time averages on limited sets of

trajectories.

For rarefied gases, the relevant phase functions are sums of molecular contributions,
O(Γ) = ∑N

n=1 o(qn, pn), where (qn, pn) is the vector of configurations and momentum
of the n-th particle. These functions are appropriate for the pressure, temperature and
density of rarefied gases, whose energy can also be expressed as H = ∑N

n=1 h(qn, pn),
because interactions among particles are energetically negligible. (Interactions are, however,
essential for the condition of LTE, hence for the existence of thermodynamic properties, to
be established.) Then, in the microcanonical case, which here means a uniform probability
distribution inM, Khinchin proved the validity of the following relation:

Prob

(
|O −Emc(O)|
|Emc(O)|

≥ K1N−1/4

)
≤ K2N−1/4 , (20)

where K1 and K2 are positive constants, O is the time average of O, and Emc(O) its
phase space average in the microcanonical ensemble. In other words, the probability (in
the microcanonical sense) that time averages differ by a small amount from the phase
space averages is small if N is large: the larger N the smaller the probability of even
smaller differences.

In this framework, the physically relevant ergodicity follows by and large from the
N ≫ 1 condition, combined with the validity of the law of large numbers. That makes
the range of sum variables of interest quite narrow, close to a single constant, when the
single molecular contributions o can be considered independent, identically distributed,
random variables. Then, exploration of the range of all the observables of interest does
not take a long time. (See, e.g., Ref. [30] for an interesting analysis of the observables
that relax to an equilibrium state, while others do not relax, because the underlying Toda
dynamics are integrable, hence, not ergodic.) The details of the microscopic dynamics
become irrelevant, while ensembles, i.e., probabilities in phase space, turn considerably
useful. Even though probability, per se, is an “immaterial” and abstract mathematical
notion, it becomes quite useful in the description of equilibrium states, under the above
conditions. With the derivation of the Boltzmann equation a further step is taken forward,
allowing time evolution.

5. Boltzmann Equation from the Probabilistic BBGKY Hierarchy

Let us specify the above general treatment of probabilities in phase space to the case of
N identical spherical hard particles of mass 1. These particles are subjected to no external
forces, and only interact elastically when they collide. We may think of their interaction
potential as being zero when the particle centers are at a distance larger than their diameter,
and infinitely high when this distance equals their diameter, so that particles are neither
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deformed, nor do they penetrate each other, when they collide. Denote a probability density
in the phase spaceM by

f (N)
N (Γ; t) = f (N)

N (q1, p1; . . . ; qN , pN ; t) (21)

with notation indicating the joint probability of N particles out of N. In absence of external
forces, there are no accelerations between collisions; hence, ṗi = 0 for every particle, and
Γ̇ = (q̇1, 0; . . . ; q̇N , 0). The Liouville equation can be written as

∂ f (N)
N
∂t

+
(

divΓΓ̇ + Γ̇ · ∇Γ

)
f (N)
N =

∂ f (N)
N
∂t

+
N

∑
i=1

pi · ∇qi
f (N)
N = 0 (22)

where we have used the fact that the dynamics is Hamiltonian; hence, the first term in
brackets is null. If we introduce the s-particle distribution function

f (s)N (q1, p1; . . . ; qs, ps; t) =
∫

dqs+1dps+1 . . . dqNdpN f (N)
N (q1, p1; . . . ; qN , pN ; t) (23)

and we integrate the Liouville equation over the variables qs+1, ps+1 . . . qN , pN , we ob-
tain [31]:

∂ f (s)N
∂t

+
s

∑
i=1

pi · ∇qi
f (N)
N = F(s)

(
f (s+1)
N , f (s+1)′

N

)
(24)

where F(s) is a function of the joint (s + 1) particles distribution before collision f (s+1)′
N ,

and of the corresponding distribution after collision f (s+1)
N . Therefore, Equation (24) is not

closed: computing f (s)N requires knowledge of f (s+1)
N . The set of distributions f (s)N and their

evolution equations, Equation (24), constitute the BBGKY hierarchy. In particular, taking
s = 1 and making F(1) explicit by solving the elastic collision dynamics, one obtains

∂ f (1)N
∂t

+ p · ∇q f (1)N = (N − 1)σ2
∫

R

∫

S−
[ f (2)

′
N − f (2)N ]|(p− p∗) · n|dp∗dn (25)

for the one-particle probability distribution function, obtained integrating out the coordi-
nates and momenta of all particles but one. Here, σ is the diameter of one particle; hence,
σ2 is the collision cross section; n is the unit vector in the direction going from the center of
the test particle of position q and momentum p, labelled by 1, to that of another particle of
momentum p∗; the range of integration S− is the hemisphere within which (p− p∗) · n < 0,
i.e., particles directed toward each other before collision; and (N − 1) is the number of par-
ticles with which the test particle, can collide, assuming they all have the same probability
of doing it, having integrated over all their momenta p∗. Moreover, having denoted by f (2)N
the two-particle distribution function, whose expression immediately before and after the
collision respectively takes the form

f (2)
′

N = f (2)N (q, p′; q + σn, p′∗; t) and f (2)N = f (2)N (q, p; q + σn, p∗; t) (26)

where q∗ = q + σn gives the position of the second particle at the moment of collision, and

p′ = p− [n · (p− p∗)]n and p′∗ = p∗ + [n · (p− p∗)]n (27)

where p′ and p′∗ are, respectively, the momenta of the test particle and of the other colliding
particle before collision, while p and p∗ denote the corresponding momenta after collision.

To solve this equation, one needs a closure assumption on f (2)N . The equation

f (2)N (q, p; q∗, p∗; t) = f (1)N (q, p; t) f (1)N (q∗, p∗; t) (28)
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is known in the kinetic theory of gases as the stosszahlansatz, or hypothesis of molecular
chaos. It amounts to assuming that when two particles collide, they are independent. As the
dynamics of particles is deterministic, this statement may only have a statistical meaning,
justified by some kind of dynamical randomness, that can be legitimately called chaos. (In
the theory of dynamical systems, the term chaos is often used to indicate systems that have
at least one positive Lyapunov exponent. This notion was not available to Boltzmann and,
indeed, he did not need this kind of chaos.) Then, writing f in place of f (1)N to simplify the
notation, and recalling that v = p because we assumed unit masses, Equation (25) takes
the form

∂ f
∂t

+ v · ∇q f = (N − 1)σ2
∫

R

∫

S−
[ f ′ f ′∗ − f f∗]|(v− v∗) · n|dv∗dn (29)

where primes mean before collision and ∗ second particle, and small particles, small σ,
imply q∗ ≈ q. This is the celebrated Boltzmann equation. Given its probabilistic derivation,
which begins with the distribution f (N)

N in phase space, f (q, p, t)dqdp represents the
probability that particle 1 be found in the volume element dq around q, with momentum
within the set dp around p, at time t. The classical interpretation of probability we have so
far adopted, then states that, given a very large collection of independent macroscopically
equal systems, each made of N hard spheres, the fraction of them having particle 1 within
dqdp equals f dqdp. If one assumes, in addition, that particles are indistinguishable, a
simple combinatorial factor turns f dqdp into the fraction of ensemble members having
one particle, whichever it is, in dqdp at time t. It remains to connect this probability to
material properties, like the density of the gas in dqdp.

6. Boltzmann Equation from Mass Balance in Real Space

The probability distribution f appearing in Equation (29) is obtained projecting the
one for N particles defined on the corresponding 2dN dimensional phase space, down to
the 2d dimensional one-particle space. Given a single system of interest and the ensemble
interpretation of the probability in phase space, the condition f (1)N (q, p; t) > 0 does not
imply that particle 1 actually lies within the volume dqdp, since only a fraction of the
systems of the ensemble has particle 1 in dqdp: particle 1 of the complementary fraction
of systems does not lie in dqdp. (If particles are indistinguishable and the 1-particle
probability distribution has been correspondingly normalized, the same can be stated for
any single particle of the systems of the ensemble.) In particular, dqdp could be empty
because the BBGKY hierarchy can be developed for any N ≥ 1, and a few particles only
occupy a limited region of space. Therefore, one could conclude that even the Boltzmann
equation is immaterial, and there is no compelling reason to take it as a description of a
given material system.

However, a physical derivation of the Boltzmann equation is also available. It does
not start from a probability distribution on a phase spaceM, which is a continuum of
geometric points, each of which represents a whole N-particles system. This derivation
refers to a single system made of a very large number N of small, but finite size, particles
of mass 1, with positions and velocities in a given volume ∆q∆p. The particles in such
a volume constitute a discrete rather than a continuous set, and can be represented by a
continuous density of mass only when many of them populate ∆q∆p. Therefore, given
the finite size of the particles, such a volume has to be small, to appear like a point on the
macroscopic scale. However, unlike the volumes dqdp of the previous section, which can
be arbitrarily small, it cannot be infinitesimal. Indeed, it has to be much larger than the
volume of a single particle, so that many of them can be lodged in it [32,33]. This highlights
another essential difference between probability and mass densities. Let us denote by Cij of
size ∆q∆p one cell centered around a discrete set of lattice points (qi, pj). The mass density
within Cij is defined as the mass of one particle times the number density ρ(qi, pj; t), the

55



Entropy 2024, 26, 171

number of particles per unit volume around (qi, pj). Letting nij be the number of particles
in cell Cij, at time t, one may thus write

nij(t) = ρ(qi, pj; t)∆q∆p ; ∑
i,j

nij(t) = N (30)

and may try to approximate this set of discrete mass densities using a continuous function
ρ, so that

N =
∫

Vµ

ρ(q, p; t)dqdp (31)

where Vµ is the set of positions and momenta available to particles of the system. This
makes no sense unless nij is very large in each cell Cij; hence, such cells must be relatively
large. Furthermore, particles have to collide: their motion has to be random, so that a
uniform distribution can be rapidly achieved within each Cij. Large nij, together with
dynamical randomness, makes the particles entering or leaving a cell just a negligible
number, compared to those staying inside. At the same time the cells must be sufficiently
small compared to the observation scale, that they appear like a point. A wide separation
of scales, possible only if N is very large, is required.

Let us now follow the motion of one set of particles lying in one cell ∆q∆p at time t, as
they stroll in Vµ. Let us assume that ρ accurately describes the mass density as a continuum.
In the absence of external forces, collisions are the only mechanism that allows velocities to
change. If, in a time dt, the particles in ∆q∆p undergo no collisions, the position q of one
of them turns q + vdt, while its momentum p is unchanged, and all the particles in the cell
∆q∆p, centered about (q, p), will be found in the cell ∆q̂∆p̂ centered about (q + vdt, p).
This is achieved by evolving in time all points of the original cell with the same dynamics
of the particles in it. Therefore, in the absence of collisions, one has

ρ(q + vdt, p, t + dt)∆q̂∆p̂ = ρ(q, p, t)∆q∆p (32)

As q and p are canonically conjugate variables, and between two consecutive collisions
each particle can be considered by itself as a whole Hamiltonian system, we obtain
∆q̂∆p̂ = ∆q∆p, and

ρ(q + vdt, p, t + dt) = ρ(q, p, t) (33)

On the other hand, if particles collide, one additional term arises:

ρ(q + vdt, p, t + dt) = ρ(q, p, t) +
(

dρ

dt

)

coll
dt (34)

which defines the collision term. Finally, expanding the left-hand side of Equation (34) to
first order in dt, one obtains

ρ(q, p, t) +
∂ρ

∂t
dt + v · ∇q ρdt = ρ(q, p, t) +

(
dρ

dt

)

coll
dt (35)

because ρ depends on t both explicitly and implicitly through the position coordinates.
Dividing by dt yields:

∂ρ

∂t
+ v · ∇qρ =

(
dρ

dt

)

coll
(36)

where v · ∇qρ represents streaming in position space. There is no streaming in momentum
space, because no field acts on the particles, but particles may enter or exit ∆p thanks
to collisions.

Relation (36) expresses the conservation of mass, and does not require any inter-
pretation of a probabilistic nature: it is based on the objective counting of particles (or
measurement of mass density) and on their deterministic Hamiltonian dynamics. Assum-
ing that instantaneous collisions of three or more particles are negligible in a gas of hard
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spheres, the collision term should be expressed as a function of the number of pairs of
particles located inside ∆q that may either enter (gain term) or leave (loss term) ∆p because
of collisions. Let ρ(2) be the density of such pairs. As the initial condition of the N particles
is not known, going beyond Equation (36) requires some assumption on the collision term,
analogously to Equation (25). One may then rely on the large value of N, on the smallness
of the particles, and on the disorder produced in configuration and velocity space by the
collisions, which make sensible the factorization of ρ(2):

ρ(2)(q, p; q + σn, p∗; t) = ρ(1)(q, p; t)ρ(1)(q + σn, p∗; t) (37)

That, indeed, means that each of the n∆q particles in an elementary volume ∆q may
collide with any of the remaining n∆q − 1 ≈ n∆q either for a gain or a loss of particles
in the elementary volume ∆p. This is a rarefied gas condition, because it means that
no particle can hide behind another one. Then, integrating over all possible velocities
yields an expression like Equation (29), which makes sense only if particles are many and
small. The equation for the mass distribution turns identical to Equation (29), introducing
ρ = ρ(1)/N. Therefore, the Boltzmann equation is obtained again. Its solution ρ enjoys the
same properties that f enjoys.

At the same time, the conceptual difference between f of Equation (25) and ρ of
Equation (36) could not be greater. In the first case one considers the fraction of identical
abstract systems that enjoy certain properties out of the total of an ideal hypothetical
continuum of identical systems; in the second case one considers the number of particles
of a single concrete, experimentally observable system. Probabilistically, all calculations
can be performed for a large collection of identical systems made of any number N ≥ 1 of
particles; physically, a single systems is considered and N must be huge. At this level of
description, there is no stringent reason for one quite sophisticated abstract object like f
to behave similarly to a material tangible object, such as ρ. Nevertheless, this is precisely
what happens if probability is required to evolve like a fluid made of geometric points
obeying the equations of motion of the system that each of them separately represents,
and the stosszahlansatz holds. That may well be mathematically too hard to prove within a
general Hamiltonian framework, also because it is not verified in a series of systems, hard
to fully classify, cf. integrable systems. However, experience has demonstrated that it does
hold in very many situations; situations in which we may legitimately state that probability
turns material: probability can be formally identified with mass.

What is the cost of such an identification? When can the stosszahlansatz be justified?
In the first place, one would think that large N makes particles independent before collid-
ing, because they may have hardly met before, but this is not enough. Particles are not
independent after having collided with each other. Moreover, the factorization condition

f (s)N (q1, p1, . . . , qs, ps; t) =
s

∏
j=1

f (1)N (qj, pj; t) (38)

is hard to obtain because particles do not overlap, and s of them occupy a volume of order
O(sσ3). Thus, large s increases the region to be excluded from the free motion of particles,
resulting in correlations among them that may persist over time. This suggests that s = 2 is
the best candidate for the postulated independence. Also, large N helps in making rare
the encounters between the same pair of particles only if the density is small; otherwise
packed particles may collide forever with the same small group of companions. Then,
σ should be small. On the other hand, collisions of hard spheres are defocussing, and
have a randomizing effect on positions and velocities, which is beneficial for the decay
of correlations. Therefore, N and σ should be tuned so that the total cross section is not
negligible. Grad identified the scaling regime in which all the above is realized, now known
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as Boltzmann–Grad limit [34]. It consists in keeping Nσ2 positive and finite, while N
grows:

Nσ2 = constant > 0 which implies σ2 ∼ 1
N

, Nσ3 ∼ N−
1
2 (39)

In this limit, the volume occupied by particles is negligible, while the total cross section
is finite. More precisely, let λ denote the mean free path and τ the mean free time as,
respectively, the typical microscopic length scale of the system, which is the distance
traveled on average by a particle between collisions, and the corresponding mean time.
The first is defined by the the ratio between the volume and the total cross section of
the particles, the second by the ratio between this distance and the typical speed. Then,
denoting by |Ω| the available volume, and letting β = 1/kB T, so that the typical speed for
particles of mass 1 is

√
2/β, we have

λ =
|Ω|

Nπσ2 , τ =

√
β

2
|Ω|

Nπσ2 (40)

which remain finite in the Boltzmann–Grad limit. This implies a net effect produced
by particle collisions, which is necessary to randomize their motion. Together with the
vanishing of the excluded volume, the limit of Equation (40) is also necessary to make
correlations rapidly decay, when N is large. Physically, this picture corresponds to a rarefied
gas, in which particles collide, but the time average of their interaction energy is negligible
compared to the time average of their kinetic energy. Whether the assumptions apply or
not, only experience can tell. An important result implied by the Boltzmann–Grad limit
is that f (2)N remains factorized in time, if the solution of the s-th equation of the BBGKY

hierarchy, f (s)N , exists is unique, and starts factorized as s factors f (1)N for all s [31].
Arguably, the most relevant conceptual result stemming from the Boltzmann equa-

tion is the H-theorem. It can be concisely illustrated as follows: let the H-functional be
defined by

H( f ) =
∫

V×R3
f log( f ) dpdq (41)

where V ⊂ R3 is the volume in which a gas is contained. For f a solution of the Boltzmann
equation within the volume V, the H-theorem states

d
dt

H( f ) ≤ 0 (42)

where the equality holds if and only if f is constant for q ∈ V and the p are distributed as a
Maxwellian probability distribution.

A point that may at times be overlooked, is that the solution of the Boltzmann equation
requires a specification of initial and boundary conditions, like any other integro-differential
equation. The form of the boundary of V is crucial, particularly for the validity of the
H-theorem and, in general, for the overall solution. For instance, reflecting or periodic
boundaries are commonly used, and the boundary is typically assumed to be piece-wise
smooth, although works on irregular boundaries have been performed, cf. [35]. Moreover,
V must be compact for physical properties such as pressure to have a definite equilibrium
positive value.

The H-theorem shows that the Boltzmann equation exhibits irreversible behaviour,
which appears in contrast to the time-reversal invariant laws of classical mechanics govern-
ing the motion of particles. In reality, various approximations and hypotheses, which are
extraneous to the dynamics of an N particle system, have been introduced to pass from
the evolution of probabilities in phase space to the Boltzmann equation. The N particle
system has been approximated by a system consisting of infinitely many particles, verifying
the molecular chaos hypothesis, through the Boltzmann–Grad limit, thus breaking time
reversibility. The interesting fact is that such approximations and hypotheses perfectly
represent the physics of a rarefied gas.
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We conclude this section by noting that there exists quantum mechanical and relativis-
tic generalizations of the Boltzmann equation, cf., e.g., Refs. [7,36]. These generalizations
have proven successful in an exceedingly wide range of applications, including transport of
electrons in solid conductors and in astrophysical plasmas. The most direct extensions are
the classical ones, specifically concerning particles that are accelerated by external fields,
such as electric fields. In this case, streaming in velocity space is introduced in addition to
the streaming in position space. Denoting by F the external force and by m the mass of the
particles, its effect on v appears as the acceleration F/m. This acceleration smoothly guides
a particle inside or outside an element of velocity space, analogous to how velocity guides
a particle inside or outside an element of position space. Consequently, the Boltzmann
equation may be re-written as

∂ρ

∂t
+ v · ∇qρ +

F
m
· ∇vρ =

(
dρ

dt

)

coll
(43)

In sufficiently hot plasmas made of charged particles of charge c, collisions can be ne-
glected. Thus, denoting the electric and magnetic fields acting on these particles as E and
B, respectively, Equation (43) can be re-written as

∂ρ

∂t
+ v · ∇qρ +

c
m
(E + v× B) · ∇vρ = 0 , (44)

which is known as the Vlasov equation. In reality, variations of the Boltzmann equation are
numerous. The kinetic theory of wave turbulence [37] finds applications from quantum to
astrophysical phenomena, including anomalous transport. There are Boltzmann equations
for thermostatted rather than Hamiltonian dynamics, and for a wide spectrum of variously
interacting systems, such as the components of blood, or the individuals in a social network
etc. It is impossible to list all of them. Of course, there is a difference between these
variations and the original Boltzmann equation: the interaction rules are often rather
loosely known, which makes the fundamental hypothesis of molecular chaos hard to justify.
Nevertheless, these variations provide valuable insights into non-standard and even non-
physical phenomena. The interested readers may easily find the relevant literature, which
is not within our scope.

7. Concluding Remarks

In this paper we have reviewed some of the reasons that, in principle, could make
probability an abstract physically inapplicable mathematical tool, while it is clear that it
is arguably the most effective tool physicists can use. The point is that such effectiveness
does not arise for free; it is the result of informed, repeatedly tested, and verified choices,
as revealed by the derivation of the Boltzmann equation. Uncritical use of probabilities can
easily lead to errors. Keeping in mind the teachings of statistical mechanics, which have
unfolded since Boltzmann’s glorious work of 180 years ago, is thus beneficial for future
developments, which will venture in largely uncharted territory, often at variance with our
established knowledge of macroscopic objects. Indeed, the microscopic fluctuations are not
observable in the behaviour of macroscopic objects in thermodynamic conditions, although
present day technology allows us to measure them in microscopic observations [38,39]. On
the contrary, fluctuations may even dominate the behaviour of small systems, and require
suitable approaches, whose results must be properly interpreted, especially if one insists on
using the thermodynamic language. For instance, when dealing with situations in which
there is no dissipation, one may find that the derivations of thermodynamic relations are
only formal, and that the relevant quantities only have a statistical meaning. However, even
more problematic may be the extension to nonequilibrium (dissipative or non-dissipative)
states, where even the formal thermodynamic analogies may fail [40]. At present, one must
proceed by examples, as a comprehensive theory of small and nonequilibrium systems is
still missing, although notable works are being performed, see, e.g., Ref. [41] for one review.
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Abstract: Phase transitions happen at critical values of the controlling parameters, such as the
critical temperature in classical phase transitions, and system critical parameters in the quantum case.
However, true criticality happens only at the thermodynamic limit, when the number of particles
goes to infinity with constant density. To perform the calculations for the critical parameters, a
finite-size scaling approach was developed to extrapolate information from a finite system to the
thermodynamic limit. With the advancement in the experimental and theoretical work in the field of
ultra-cold systems, particularly trapping and controlling single atomic and molecular systems, one
can ask: do finite systems exhibit quantum phase transition? To address this question, finite-size
scaling for finite systems was developed to calculate the quantum critical parameters. The recent
observation of a quantum phase transition in a single trapped 171 Yb+ ion indicates the possibility
of quantum phase transitions in finite systems. This perspective focuses on examining chemical
processes at ultra-cold temperatures, as quantum phase transitions—particularly the formation and
dissociation of chemical bonds—are the basic processes for understanding the whole of chemistry.

Keywords: quantum phase transitions; finite-size scaling; formation of chemical bond

1. Formation of the Chemical Bond

Classical phase transitions, like solid–liquid–gas or order–disorder spin magnetic
phases, are all driven by thermal energy fluctuations by varying the temperature. On
the other hand, quantum phase transitions happen at absolute zero temperature, with
quantum fluctuations causing the ground state energy to show abrupt changes as one
varies the system parameters like electron density, pressure, disorder, or external magnetic
and electric fields [1]. As a consequence of Heisenberg’s uncertainty principle, the position
and the velocity of a quantum object cannot both be measured precisely, causing the ground
state energy to show abrupt changes as one varies the system parameters. For example,
one can look at the melting of a Wigner lattice (see Figure 1), as suggested theoretically
by the physicist Eugene Wigner, a metal that typically conducts electricity could become
an insulator when the density of electrons is reduced to ultra-cold temperatures. What
has recently been observed experimentally by Park and Demler [2] is the melting of the
crystal state into liquid because of quantum fluctuations near absolute zero temperature.
These results highlight the beautiful fundamental fact of wave–particle duality in quantum
mechanics, wherein electrons behave as “particle-like” in the solid phase, but as “wave-
like” in the melted liquid phase. In quantum spin systems, continuous and discontinuous
quantum phase transitions have been studied as a function of varying external magnetic
fields, pressure, and disorder. In an analogy with the critical point at the classical liquid–gas
phase transition in water, Jimenez et al. [3] provided experimental evidence of a quantum
critical point in the geometrically frustrated quantum antiferromagnet SrCu2(BO3)2 by
controlling both the pressure and the applied magnetic field at low temperatures. These
phase transitions are associated with singularities of the free energy that occur only in
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the thermodynamic limit, where the system size approaches infinity. M.E. Fisher and
others developed the finite-size scaling, a systematic theoretical approach that allows one
to extrapolate information on the criticality of the finite system to the thermodynamic limit.
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Figure 1. (Left) Classical phase transition in a macroscopic system, like water, as characterized in the
(T,P) plane. The regimes wherein liquid water, solid ice, and water vapor are stable are represented
in three different colors, whereas the black curves indicate phase boundaries wherein two phases
can co-exist in equilibrium. (Middle) Melting of a Wigner crystal to a Fermi liquid due to increasing
electron density. Being a quantum phase transition, such transformations can occur even at absolute
zero due to quantum fluctuations. (Right) Quantum phase transition (QPT) in a finite system like
a single two-level system coupled with an external Bosonic reservoir. Unlike in classical phase
transitions wherein macroscopic variables like pressure, temperature, etc., are usually involved, the
control variable for a QPT like this is simply the energy separation of the system relative to that of
the bath.

However, theoretical and experimental results indicate the existence of quantum
phase transitions of finite systems. Plenio and coworkers [4] show that the Quantum Rabi
Model (QRM), a two-level spin interacting with a single-mode bosonic field, exhibits a
continuous quantum phase transition as one varies the spin-field coupling constant and
energies. They prove that in the limit where the spin energy over the field energy tends
to infinity, the system has two phases, as follows: the normal phase where the boson field
is in the ground state and the superradiant phase where the boson field is excited (see
Figure 1). Recently, Cai et al. [5] experimentally observed this continuous quantum phase
transition in a system composed of only the two hyperfine atomic levels interacting with
the bosonic motional states of an 171 Yb+ ion in a Paul trap. They measured the spin-up
populations in the two hyperfine states in the ground state manifold 2S1/2 and the rescaled
phonon number associated with the spatial motion of the ion along one of its principal
axes. The motional degree of freedom can be well described as a quantum harmonic
oscillator and thus serve as the Bosonic mode in the quantum Rabi model. This exciting
new experimental observation of quantum phase transition in finite systems opens up a
new field of research understanding in the quantum critical phenomena of finite systems at
ultra-cold temperatures.

Theoretically, the quantum critical phenomena and symmetry breaking of electronic
structure configurations of finite systems have been studied extensively for decades. Her-
schbach and coworkers [6] pioneered the field of dimensional scaling for electronic structure
calculations and have discussed the symmetry breaking of electronic structure configura-
tions of both single atoms and simple molecular systems [6]. This approach generalizes
the Schrodinger equation to the large-dimensional space and solves the resulting sim-
ple equation at the limit D→ ∞. At this limit, the electrons take a fixed position in the
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large-D effective potential, allowing one to study the criticality and symmetry breaking as
one varies the parameters controlling the system, such as the nuclear charge, interatomic
distance in diatomic molecules, and external electric and magnetic fields. For example,
symmetry breaking at the large-D limit of the electronic structure configurations of atoms
and simple molecular systems has one-to-one mapping to the criticality of mean-field
theory, in analogy to the mean-field criticality of fluid and magnetic systems [7]. To carry
out the calculations to the physical space, D = 3, we have shown that one can describe such
quantum phase transitions of finite systems in Hilbert space with the analogy between the
thermodynamic limit and the size of the Hilbert space [8]. To obtain the exact quantum
critical parameters, a finite-size scaling can be formulated in the Hilbert space by replacing
the number of particles with the number of basis functions used to obtain the exact ground-
state wave function (see Figure 2). This approach can be used to describe the symmetry
breaking of electronic structure configurations and the quantum criticality of atomic and
molecular systems as one varies parameters in the Hamiltonian [9]. Moreover, another
approach to quantum phase transition in describing atom–diatomic phase transitions is the
use of the inverse participation ratio and the Rényi entropy as other good markers for the
critical point [10,11].
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Figure 2. (a) Individual atomic sites trapped by a harmonic potential field generated from an optical
tweezer. (b) Formation of a molecular bound state when the individual traps are adiabatically brought
close to one another through the tunnelling of electronic density. (c) If the traps are strongly bound
one can simplify the process using the model of delta function potential wells. (d) Formation of the
bonding (orange) and anti-bonding (blue) electronic states when the wells are brought closer to a
critical distance.

Quantum phase transitions are also used as a standard tool in experiments on ultra-
cold atoms, particularly to demonstrate the BEC (Bose–Einstein Condensation) and BCS
(Bardeen–Cooper–Schrieffer) cross-over [12]. Here, “Feshbach resonance” is used to change
the effective interactions of atoms in a controlled way. At “criticality” the two-atom scatter-
ing length diverges which gives rise to many interesting phenomena for the interaction of a
cloud of atoms. This occurs when the scattering state of an inter-atomic interaction potential
is nearly resonant with the bound state of the potential above it. In this case, an atom pair
with the resonant scattering energy have a large probability of forming the bound state.
The scattering length diverges in this case if the scattering state energy is exactly resonant
with that of the bound state. In an ultra-cold gas, the scattering length can be tuned through
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the resonance by applying an external magnetic field. Thus, the basic characteristics of
Feshbach molecule formation are a divergence of the atom–atom scattering length when
approaching the transition from the dissociated side and a divergence of the size of the
molecule when approaching the transition from the bound-state side [13,14].

Next, we would like to argue that at ultracold temperatures, using optical tweezers
that use a highly focused laser beam to hold and adiabatically move the two separate
atoms, allows one to watch the formation of the chemical bond. This might describe the
formation/dissociation of chemical bonds as a quantum phase transition between a free
atomic state phase and a molecularly bonded state phase. In Figure 2 we describe this
possibility wherein we have separate tweezers trapping two individual atoms (Figure 2a)
when brought close to one another, leading to the formation of a joint bound state
through tunnelling (Figure 2b). To gain insight into the process we envision the event in
Figure 2c,d as two sharply peaked delta function wells signifying each strongly trapped
atomic site. When the effective distance between the wells is below a certain limit we
see a new-bonding (orange) and an anti-bonding (blue) molecular state develop. The
bonding state has an enhanced electronic density in the region between the two sites
which acts as a cohesive bond for molecule formation. By opening such new ways of
examining the formation/dissociation of chemical bonds as quantum phase transitions,
one might envision a universal classification of chemical systems. To illustrate this
approach, we examine the bond formation of a simple generic homonuclear dimer
A2 formed from two atomic constituents of A. In the bonded configuration, the total
ground state electronic energy of the system A2 without correction due to vibrational
degrees of freedom can be computed from either a simple Hartree-Fock treatment under
the Born–Oppenheimer approximation and subsequently refined with advanced post-
Hartree-Fock methods to include static and dynamic correlation. Just like in the QRM
model, one might construct a fictitious two-level system in this problem wherein one of
the ‘levels’ corresponds to the aforesaid bound state energy of A2 at the equilibrium bond
length and the other being the ground state energy computed similarly for the free atoms
of A. The energy separation between the two forms the excitation energy in the two-level
system, just like in the QRM. The interaction of this two-level system with the vibrational
stretch mode of A2 can now be envisioned to include non-Born–Oppenheimer effects.
The said stretch mode with its characteristic frequency under harmonic approximation
will form the Bosonic reservoir in the QRM, and the coupling parameter g in the QRM
will be replaced by electronic–vibrational coupling strength. After mapping the details
of the problem to the QRM model, one can find the critical point and see how it is related
to the equilibrium distance (R = Req) in the formation of the molecular state of A2 (see
Figure 3). So far, we have not discussed the electron and nuclear spin interaction in
the case of the formation of A2, but one can add the spin degrees of freedom to the
analysis and examine the hyperfine splitting changes from free atoms to the formation
of molecules.

Adding the spin and the rotational degrees of freedom might give an exotic quantum
molecular phase. The analysis of the chemical bond formation and breaking as a quantum
phase transition at absolute zero temperature is general for any two-level model system
interacting with an environment. This, we believe, would shed unforeseen insight into the
very process of forming a chemical bond, which is at the heart of chemistry and molecular
physics. Further experimentation is required to investigate the idea, using the optically
controlled atomic beams we shall discuss in the next paragraph. One can similarly describe
the formation of chemical bonds in any dimeric system, resonance in a benzene molecule,
two base states for the molecule of the dye magenta, and nitrogen tunneling in ammonia,
to name just a few systems. For example, in the symmetry-breaking transition in the
ammonia molecule (NH3) as a function of the distance of the atoms, the molecule will
probably develop from a planar configuration with all atoms in a plane to the “buckled”
configuration where the N atom is either on top of or below the plane defined by the 3 H
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atoms. This symmetry-breaking transition is driven by a vibrational stretch mode and can
be viewed as an approximate quantum critical point.
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individual laser-cooled atoms, sodium and one cesium, in separate optical tweezers and 

then  merges  them  into  one  optical  dipole  trap,  forming  one  molecule.  One  must 
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Figure 3. (Left) Detection of critical parameters in a quantum phase transition from a finite-size scaling
approach. This can be reliably carried out without approaching the limit of infinitely many degrees
of freedom, but by successive enhancement of the dimension of the Hilbert space. (Middle) The
geometric depiction of a generic A2 dimer and a single phonon reservoir to which it can be coupled.
(Right) The two-level description of the chemical bond formation process in A2, wherein one of the
accompanying states is the free (A,A) units and the other is the bonded system.

For many decades, the scientific community has witnessed many Nobel prizes being
granted for the basic inventions and discoveries in the area of low-temperature physics,
the development of methods to cool and trap atoms with laser light, Bose–Einstein conden-
sation in dilute gases of alkali atoms, and recently for groundbreaking inventions in the
field of laser physics and the application of optical tweezers. The field of cold chemistry is
an exciting field of research, particularly for quantum information and computing science
where quantum mechanical wave-like behavior plays a central role, such as superposi-
tion, inference, and entanglement [15,16]. With the advancement of this field, recently
Liu et al. [17] presented an experimental study where they combined exactly two atoms in
a single, controlled reaction. The experimental apparatus traps two individual laser-cooled
atoms, sodium and one cesium, in separate optical tweezers and then merges them into
one optical dipole trap, forming one molecule. One must emphasize here that such a bond
formation from two individual atoms would need the participation of a third body, the
photon, which can act as a scavenger for the lost energy and drive the free atom states to
an excited molecular state [18].

In the reverse direction, once a bond is formed, excitation from the lowest vibrational
level of the ground electronic potential energy surface (PES) into the continuum (corre-
sponding to loosely bound atoms) in the same ground electronic PES can be initiated
through a detuned three-level excitation involving vibrational states of excited electronic
PESs. Thus, methods of trapping and controlling single atoms to form molecules might
open many exciting avenues for research, particularly quantum phase transitions and the
formation of chemical bonds and the possibility of creating exotic molecular quantum
phases [19–24].

In summary, the very process of chemical bond formation, cornerstone to the founda-
tion of chemistry, can be viewed using the perspective of a quantum phase transition, an
idea which thereby unifies the two disciplines and paves the road to further research to
consolidate this newly emergent intuition.
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Abstract: Ludwig Boltzmann’s move in his seminal paper of 1877, introducing a statistical under-
standing of entropy, was a watershed moment in the history of physics. The work not only introduced
quantization and provided a new understanding of entropy, it challenged the understanding of what
a law of nature could be. Traditionally, nomological necessity, that is, specifying the way in which
a system must develop, was considered an essential element of proposed physical laws. Yet, here
was a new understanding of the Second Law of Thermodynamics that no longer possessed this
property. While it was a new direction in physics, in other important scientific discourses of that
time—specifically Huttonian geology and Darwinian evolution, similar approaches were taken in
which a system’s development followed principles, but did so in a way that both provided a di-
rection of time and allowed for non-deterministic, though rule-based, time evolution. Boltzmann
referred to both of these theories, especially the work of Darwin, frequently. The possibility that
Darwin influenced Boltzmann’s thought in physics can be seen as being supported by Boltzmann’s
later writings.
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1. Introduction

The things that you are liable

To read in the Bible,

It ain’t necessarily so.

—Ira Gershwin

There is no 10,000 kg sphere of pure gold anywhere in the universe. But that fact’s
universality does not make it into a law of nature because while there does not happen to be
such a sphere, there could be. Physical laws seem to require a special sort of necessity, what
philosophers of science term “nomological necessity”, that tells us what must or cannot
happen [1]. Ludwig Boltzmann’s formulation of the Second Law of Thermodynamics [2]
was contentious in part because it challenged the traditional understanding of the nature
of that necessity in physical law.

Contemporaries like James Clerk Maxwell, Josef Lochschmidt, and Ernst Zermelo
objected to Boltzmann’s approach in order to save the traditional account of natural law.
If Boltzmann’s proposal clashes with the commitment to traditional necessity, they held,
then the proposal should be jettisoned. Boltzmann, on the other hand, opted to revise our
understanding of what should be expected from physical laws.

What accounts for Boltzmann’s willingness to be so philosophically radical? The
reason may lay in a combination of two factors: (1) Boltzmann’s brand of realism—he was
an “entity realist”, believing that atoms do exist, but not a “nomological realist”, believing
our best scientific theories merely provide a Bild, a useful picture that should not be seen as
literally true; and, (2) Boltzmann may have employed Darwinian evolution to provide a
Bild to understand the microscopic world in which random changes are responsible for the
time evolution of a system that is time-irreversible in practice, but not in principle.
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Thermodynamic entropy famously emerges from Sadi Carnot’s work on steam engines,
the machines that powered the industrial revolution. They ran on coal, which had to be
mined. Those coal mines not only provided fuel, but also unearthed the geological strata
that led to modern geology. Within the layers of rock were fossils, often of animals different
from their modern counterparts and in locations where the animals did not seem to belong.
This set the stage for new biological theories of speciation, and ultimately, Darwinian
natural selection.

Huttonian geology and Darwinian evolution are both scientific theories that differ-
entiate temporal directions without the necessity traditionally required in physics, and
both were big news in the scientific community when Boltzmann was working on entropy.
Geology and biology thus may have provided models for Boltzmann’s thinking about his
statistical picture of thermodynamics.

While Boltzmann’s overture is no smoking gun, that is, there is no direct reference to
Darwin in Boltzmann’s works in which he develops his understanding of entropy, there
are plenty of places both during and after his seminal pieces on statistical mechanics
where Boltzmann does not only refer to, but actively employs, Darwin’s thought for a
range of purposes. Based upon them, a circumstantial case can be made that Boltzmann
used biological evolution as a Bild through which to understand the time evolution of
thermodynamic systems.

2. Maxwell’s Models and Boltzmann’s Bilder

Maxwell and Boltzmann held complicated relations to scientific realism, the view that
our current best theories reflect reality. Maxwell was famous for his mechanical models,
physical analogies that were useful heuristics, but never intended to describe an underlying
reality [3]. Playing a similar role in Boltzmann’s understanding of the scientific method
was his notion of Bild, that is, pictures or models used to make sense of systems, but not
necessarily to provide accurate accounts. Indeed, he held that scientists should pursue a
range of these models, as each may be fruitful in a different way.

Yet, while both employed explicitly anti-realist approaches in doing science, both also
harbored realist ambitions. If a notion employed in the models developed by scientists,
say, of molecules, was sufficiently successful in accounting for a wide enough swath of
phenomena without glaring anomalies, then we would have warrant for considering that
notion to refer to an actual component of the universe. In both holding most scientific
work to be of mere instrumental value, while still allowing that sufficient predictive and
explanatory success provided metaphysical license, Henk de Regt [4] calls Maxwell and
Boltzmann “flexible realists”.

For Maxwell, absolute truth was restricted to the Divine [5]; only God could know
the truths of the universe with certainty. Humans could, at best, develop a rough intuitive
sense of the way the world worked, and this was aided by our ability to construct mental
metaphors, models that frame the system under investigation in terms of an analogy to
another system we understood better. “By a physical analogy I mean that partial similarity
between the laws of one science and those of another which makes each of them illustrate
the other (quoted in [6] (p. 208))”. Maxwell (and many who followed him) dedicated
great effort to constructing cognitively and actually building mechanical models of abstract
entities like the magnetic field and the luminferous aether.

As those models became able to account for increasingly greater numbers of observable
phenomena, and to predict new ones that had not been previously suspected, the question
of the realistic interpretation of the models naturally emerged.

“The question of the reality of analogies in nature derives most of its interest from
its application to the opinion, that all phenomena of nature, being varieties of
motion, can only differ in complexity, and therefore the only way of studying
nature, is to master the fundamental laws of motion first, and then examine what
kind of complication of these laws must be studied in order to obtain true views
of the universe. If this theory be true, we must look for indications of these
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fundamental laws throughout the whole range of science, and not least among
those remarkable products of organic life, the results of cerebration (commonly
called ‘thinking’). In this case, of course, the resemblances between the laws of
different classes of phenomena should hardly be called analogies, as they are
only transformed identities (quoted in [5] (p. 76))”.

Maxwell thus argues that when a model is sufficiently successful, we cannot but begin
to see it as being actually descriptive of the underlying reality. We should never forget that
it is a model and not take the model to be a full and complete description, but we must
make some limited inference in our grasping of things as they really are.

Boltzmann was deeply influenced by Maxwell’s physics, but also his epistemology.
Enticed by the success of Maxwell’s method of theorizing, he, too, hews to a scientific
methodology that employs a sort of model at its heart. But where those models were almost
exclusively mechanical for Maxwell, Boltzmann moves to a notion that was reflective of
what was happening in Austrian culture at the time.

The notion of “Bild” was very much in the air around Boltzmann [7]. On the one
hand, it is the term that was used for a photograph, a new technology that led to a wave
of philosophical conversation in the culture around reality and representation. Are the
properties of the photograph, for example, absolute truths of the world? Is it perspectival
or absolutely objective? Could it be used as evidence in a court? In science? What can be
inferred about the subject of the photograph from the image itself and with what degree of
certainty?

At the same time, it was also the root of the term “bildung”, which referred to the
process of self-creation through education and culture. In a class-conscious society, as the
urban centers of the late Austro-Hungarian Dynasty were, there was a deep connection
of the notion of “Bild” to what one should believe as a result of a process of discovery. It
connoted a relation of the proper orientation of self to the social world.

These senses are embedded in Boltzmann’s Austrian twist on Maxwell’s notion of
a mechanical model, turning it into more abstract notion of a scientific Bild. While Boltz-
mann uses the term in a multiplicity of ways [7], it is central to his approach to scientific
methodology. A Bild is a model that includes elements beyond the observable, mentally
developed cognitive constructs. These additional theoretical elements from the mind of
the theorist create an explanatory construct which can be used not only to visualize what a
system might look like that gives rise to the observed phenomena in the way a Maxwellian
mechanical model does, but also to suggest future phenomena that might be accounted for
as well.

In “On the Development of the Methods of Theoretical Physics in Recent Times”, Boltz-
mann points to Wilhelm Weber’s electro-magnetic theory which, although later discredited
by Maxwell’s theory, nonetheless suggested the hitherto undiscovered Hall effect [8]. Be-
cause even a Bild like Weber’s that turned out not to work beyond the phenomenon it was
designed to account for and yet could have such progressive elements, and because a Bild
should be thought of as a heuristic tool and not an accurate description of the underlying
reality, there is an advantage in having theoreticians create a multiplicity of different Bilder.
In “On the Fundamental Principles and Equations of Mechanics” [9], Boltzmann writes, “If
in this way we have grasped the task of thought in general and of science in particular, we
obtain conclusions that are at first sight striking. We shall call an idea about nature false if it
misrepresents certain facts or if there are obviously simpler ideas that represent these facts
more clearly and especially if the idea contradicts generally confirmed laws of thought;
however, it is still possible to have theories that correctly represent a large number of facts
but are incorrect in other aspects, so that they have a certain relative truth. Indeed, it is even
possible that we can construct a system of pictures of experience [Bildern der Erscheinungen]
in several different ways (pp. 105–106)”.

This multiplicity of distinct models from the same initial set of observations should
be seen metaphorically along the lines of mutations in a Darwinian context. Different
alterations will have potentially different advantages in terms of the “selection pressures”
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that are generated by additional experimental discoveries. Indeed, Rosa et al. [10] try to
develop a Darwinian epistemology along this line. As such, we see in Boltzmann, as with
Maxwell, that a sufficiently successful model should be taken to provide us with some
sense that we are developing a picture that is in some limited way representative of the
underlying reality.

Maxwell and Boltzmann both allow inferences from sufficiently successful models.
The nature of that inference is what is called “entity realism”. If there is an ineliminable
element of a model that shows itself to be explanatory and predictive in a wide enough
range of situations without significant failure, then there is reason to think that there is
a correlate in the real system to that part of the model. In other words, models that are
widely applicable without anomaly can give us reason to believe in something we cannot
directly observe.

However, this realism does not extend to the model as a whole. While successful
models can give us warrant for belief with respect to the furniture of the world, we must
always remember that this is a model. Hence, the theory itself will always be at best an
approximation, a mere analogy. The parts may point to real things, but the laws are not
actual universal truths. While Maxwell and Boltzmann accepted a sort of entity-realism,
they both rejected nomological realism, the view that our best current scientific theories tell
us how the underlying reality actually operates.

3. The Reality of Molecules

This shared methodological approach led to a temporary disagreement between
Maxwell and Boltzmann concerning an inference to the reality of molecules.

Michael Faraday was famously untrained in mathematics and thereby utilized mental
pictures as analogies in working out his advances in electricity and magnetism. Maxwell,
who was mathematically masterful, translated Faraday’s insights into equations, much to
Faraday’s delight [5]. Maxwell continued to use Faraday’s approach of mechanical models
prolifically, developing a range of intricate physical analogies. He treated electricity as an
incompressible fluid and the ether as a set of cogs.

But perhaps most importantly, in a series of papers beginning in 1860 with “Illustra-
tions of the Dynamical Theory of Gases” [11], Maxwell constructed mechanical models of
gases, treating them as collections of particles that began as impenetrable spheres that inter-
acted only by contact but which became decreasingly idealized as he went on. With each
new element added to the mechanical model, more empirical thermodynamic phenomena
could be derived.

Maxwell was under no illusion that he was proving anything, but rather saw himself
as providing evidence in favor of the kinetic theory of heat [6]. This evidence was the result
of our ability to account for an increasing number of observable phenomena and regularities
and suggested that this progress would likely continue with the further development of
the molecular model. Maxwell famously wrote [11] “If the properties of such a system of
bodies [as he assumed] are found to correspond to those of gases, an important physical
analogy will be established, which may lead to more accurate knowledge of the properties
of matter (p. 377)”.

The success of Maxwell’s research program impressed Boltzmann, who himself began
to contribute to it. While both were thoroughly committed to the mechanical theory of heat,
in 1871 Maxwell was more reticent to attribute reality to the molecules as a result of an
anomaly neither could account for: specific heat.

The ratio of specific heat at constant volume to specific heat at constant pressure could
be experimentally determined. Maxwell’s initial attempt with his simplified picture of
molecules failed. This was unsurprising, but when he made the model more realistic,
accounting for rotational and translational energies, even while considering the molecules
to be polyatomic, Maxwell still could not solve the problem. Boltzmann followed with his
attempt, but to no avail [4].
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Their inability to account for the correct measured values of specific heats led Maxwell
to withhold a realist understanding of the work, referring to it as “the greatest difficulty
the molecular theory has yet encountered (quoted in [4] (p. 212))”. Boltzmann contended
that the overall progress of the research program justified a realistic interpretation of atoms,
where the problem made Maxwell pull back.

Ultimately, Boltzmann did solve the problem by creating the “dumbbell model” of
diatomic molecules, which allowed for the rotational and translational motion, but because
of the bond connecting the atoms, eliminated one degree of freedom. This changed the
theoretical predictions in a way that allowed it to match the measured values. At that
point, Maxwell, Boltzmann, and most others—with notable exceptions like Ernst Mach and
Henri Poincaré—accepted the existence of atoms as having been demonstrated. His atomic
Bild gave warrant for an assertion of the reality of its central entity. As Boltzmann would
later write, “[C]ontemporary atomism provides a perfectly accurate picture [vollkommen
zutreffendes Bild] of all mechanical phenomena and, because of the self-contained nature of
this field, there is little expectation that we will discover phenomena that do not fit in the
frame of this picture [Rahmen des Bildes] [12] (p. 150)”.

4. How the H Did Boltzmann Decide to Move to a Statistical Law?

Boltzmann accepted the reality of atoms as he worked on the problem of specific heats,
also focusing on making sense of other aspects of macroscopic thermodynamics in terms
of the mechanical model, specifically, the concept of entropy. How could the macroscopic
quantity governing the conversion of energy to work in engines be understood in the mi-
croscopic context? There was a macroscopic principle, the Second Law of Thermodynamics,
that needed accounting for in terms of Boltzmann’s Bild.

Starting in 1872 with his paper “Further Studies on the Thermal Equilibrium of Gas
Molecules” [13], Boltzmann sought to model entropy on molecular systems governed by
Newtonian mechanics and thereby develop a notion of microscopic entropy that would
mirror the macroscopic notion by increasing in systems not in equilibrium and remain
constant for those that were. The 1872 paper proposes a theorem involving the quantity
that he would term H, which is the negation of entropy.

Boltzmann followed with a series of papers working on this problem, leading up to
the 1877 paper “On the Relationship between the Second Fundamental Theorem of the
Mechanical Theory of Heat and Probability Calculations Regarding the Conditions for
Thermal Equilibrium” [2], in which he derives what is known as the Boltzmann distribution.
In fact, he derives it twice in the paper: once using discrete mathematical means and again
employing the continuous means of differential equations. The former, found in Section I
of the paper, begins with the “chunking” that Boltzmann included, dividing the molecules
into velocity classes and assuming every molecule in that class to have the same velocity,
allowing him to deal with a finite number of velocity-classes. (This move, most famously,
influenced Max Planck with its idea of quantification which led to his solution of the
blackbody radiation problem). As Kim Sharp and Franz Matschinky, in their introduction
to their translation of [2], note, “This assumption does not correspond to any realistic model,
but it is easier to handle mathematically (p. 1976)”. In Section II of the paper, Boltzmann
then repeats the process, but with continuous energy distributions.

This redundancy might seem curious, but as Nadine de Courtenay [14] argues, “Boltz-
mann was one of the first physicists to recognize that mathematical language was not an
inconsequential means of expressing physical processes (p. 50)”.

Ernst Mach’s insistence on differential equations in physics, for example, was not an
innocent choice, Boltzmann argues, but begs the question in favor of his anti-atomism.
Mach’s positivism, his epistemological view that we should only believe that which is ob-
servable, led him to reject the existence of atoms as well as other in principle unobservable
concepts like Isaac Newton’s absolute space. Mach insisted that we replace the sorts of
explanations in science that smuggle in unobservable entities and simply see differential
equations as the last word, a method that is metaphysically empty, but scientifically full.
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But this embrace of differential equations as the language of all physics was not philosophi-
cally neutral. Mach may have claimed to be trying to rid physics of metaphysical baggage,
but he was actually stacking the philosophical deck by choosing to work only in smooth
mathematical universes in making his models of the world [14]. Constraining physical laws
to the form of differential equations invisibly imported an anti-atomistic metaphysic. Math-
ematical language is not mere metaphysically neutral formalism, according to Boltzmann,
and Mach’s use made him the metaphysician he railed against.

In choosing to work in both discrete and continuous languages, Boltzmann in [2] was
dong two things. First, he was playing it metaphysically honestly, showing that his result
was not dependent on a particular picture of the underlying world. This is not to say that
he was not committed to atomism.

He was, but in showing that the result was not dependent upon discrete or continuous
foundations, he had a second goal: to show that the physics was capable of being a bridge
to connect the macroscopic world, in which the microscopic could be treated as if it were
smooth, and the microscopic world, which could not. As such, the behavior of the resulting
notion of entropy, and the statistical tools he would build around it, would provide a
picture that holds true in both frames of reference. It worked for the macroscopic world
that was seen as if it was continuous and for the microscopic world that had to be treated
as discrete. By having a single treatment that is invariant under the change from discrete to
smooth, the work had to be seen as bridging the intellectual chasm between the macroscopic
thermodynamic and the microscopic atomistic.

But there was an aspect of his result that undermined this bridge. The resulting view
of entropy was statistical. What began in the 1872 paper as an epistemic probability, a
statistical generalization resulting from our inability to account for the multitude of atoms
in a small amount of a gas, turned into a fully stochastic approach by 1877 in which the
entropy was no longer tied to properties of the individual atoms in the gas, but rather now
became a measure of the accessibility of abstract ensemble states. “Boltzmann’s explanation
was to consider the increase in entropy as a result of a statistical process, involving the
calculation of probabilities, and not as a result of a dynamic process described only by
mechanics [10]”.

Boltzmann did not give up his commitment to the atomic hypothesis, but moved
his thinking from the Maxwellian approach of deriving the macroscopic directly from
mechanical aspects of the microscopic to a higher-level picture. In shifting the object
of the law from standardly physical quantities like duration and velocity to properties
of the constructed phase space, Boltzmann was radically revising how to think of the
system and how to understand the macroscopic law governing entropy. The Second
Law of Thermodynamics was no longer deterministic, but a statistical generalization that
made what we see not necessary, but highly likely. That move, of course, generated
serious objections.

5. Defending Necessity

So, according to Boltzmann’s approach, entropy tends to increase, thereby distin-
guishing future from past, but does not always necessarily increase, and that probability is
intrinsic to the system, not a mere result of our ignorance. Critics, notably Maxwell, Josef
Lochschmidt, and Ernst Zermelo, objected to different parts of the position. Maxwell to the
nature of the probability, Lochschmidt to the lack of time-reversibility, and Zermelo to the
lack of necessity.

Maxwell did not object to the statistical move per se, but tried to show that the
system is not stochastic. The uncertainty involved remains of the epistemological sort. His
eponymous demon is a tiny intelligence in control of a valve. The demon is capable of
determining the velocity of all molecules of a gas and capable of opening or shutting the
vale at will. By choosing to only open the valve for high-velocity molecules, the demon
thus becomes capable of sorting the molecules and thereby creating increased order, that is,
of decreasing entropy.
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Entropy thereby does not necessarily increase, but our statistical sense that it generally
does is a result of our not being demonic, that is, of our having less cognitive capacity
than the fanciful being. Because its ability to alter the amount of entropy in the system
is accomplished through the intelligent processing of information, then, the appeal to
probability is epistemic and not metaphysical. In other words, the statical nature of the
Second Law would be a result of our ignorance, not a feature of the world itself [7] (p. 1278).

Josepf Lochschmidt, was a dear and close friend of Boltzmann. They both accepted the
existence of atoms and the supposition that they were governed by Newtonian mechanics.
But if this is true, Lochschmidt contended, then the properties of the laws governing
the small would have to be the same as those governing the large since the ensemble is
nothing more than a collection of necessarily determinable states. The rules governing
the parts—which are deterministic and time-reversible—should not differ from those
governing the whole.

Yet, Boltzmann’s statistical approach creates an asymmetry between future and past.
This, Lochschmidt argues, is problematic. “[I]n any system, the entire course of events
becomes retrograde if at a certain moment the velocities of all its elements is reversed
(quoted in [15] (p. 200))”. Given that Newtonian mechanics is time-reversible, reflecting
the velocities of all molecules would follow Newton’s laws and decrease entropy, but this
reversed system is as much a model of Newton law as the non-reversed one. As Flamm
points out of the reflection, “This procedure is equivalent to time reversal”, that is, the
backward running film of the universe decreases entropy, but still fits the underlying
mechanics Boltzmann uses.

It should be noted that this was also a line that was used against Darwin’s theory
of evolution. Critic William Hopkins [16] wrote, “a phenomenon is properly said to be
explained, more or less perfectly, when it can be proved to be the necessary consequent
of preceding phenomena, or more especially, when it can be clearly referred to some
recognized cause; and any theory which enables us to be to do this may be said in a precise
and logical sense, to explain the phenomenon in question. But Mr. Darwin’s theory can
explain nothing in this sense, because it cannot possibly assign any necessary relation
between the phenomena and the causes to which it refers them (p. 267)”.

Zermelo’s objection took a different route. If the entropy of a system is based upon the
distribution of positions and velocities, and these obey Newtonian principles, then given
enough time, the system will eventually find itself back in the original orientation. But,
since there was an increase in entropy moving away from the initial state, there would
have to have been a decrease in order for the original state to recur.

The Second Law of Thermodynamics is a purported law of nature. Laws of nature
are more than mere rules of thumb. They say what must happen. Making a law of nature
into a statistical generalization is to undermine it as a law of nature. In physics, during that
period, Hermann Bondi [17] contends, “it was widely thought that the perfect predictability
of Newton’s solar system ‘clockwork’ was what any physical science, nay what any human
endeavor should aim to achieve (p. 159)”. Boltzmann’s understanding of entropy denied
it and therefore, to many, it seemed not to be good science. As Bondi reported Ernest
Rutherford as having said, “If you get a statistical answer, you asked the wrong question”.

Boltzmann wrestled with all three of these concerns, acknowledging that they were,
indeed, concerns that needed to be taken seriously. And yet, he did not waver from his
approach. Formulating different versions of responses to them, he always stayed true to
his approach. He was willing in the move from the micro- to the macroscopic to accept a
deeply stochastic picture of nature which differentiated future from past, but which did not
possess the sort of necessity that had been considered an essential aspect of physical law.
What accounts for this digging in of his intellectual heels in the face of strong objections to
the different aspects of his view from people he respected?

One possibility is another successful Bild, another cognitive framework that allowed
him to make sense of this unusual world in a way that made sense to him. That heuristic
could have been provided by Darwin’s theory of natural selection.
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6. Darwin in Germany and Austria around Boltzmann

Darwin’s Origin of Species first appeared in German translation in April 1860, translated
by Germany’s most prominent paleontologist, Heinrich Georg Bronn, whose own research
had been proceeding parallel to Darwin’s [18]. However, Bronn passed away two years
after the translation’s publication. As a result, Darwinism in Germany required someone
else to act as its spokesperson. Stepping into this role was the young, handsome, and
charismatic Ernst Haeckel who famously spoke to the German Society of Naturalists and
Physicians at Stettin in September of 1863, and with an address of historical significance,
the twenty-nine year old zoologist launched the era of Darwinism in Germany. “With
the translator Bronn”, he told the assembled crowd, “I see in Darwin’s direction the only
possible way to come close to understanding the great law of development that controls
the whole organic world [18] (p. 157)”.

The approach that Haeckel develops, and which becomes greatly influential in the
German-speaking world during Boltzmann’s time, however, is less Darwinian and more in
line with that of Jean Baptiste Lamarcke. We see this sort of Lamarckian understanding
of Darwin in the writings of Hermann von Helmholtz [19]. Boltzmann studied with
Helmholtz in Berlin in 1871, just before Boltzmann’s initial work on the H theorem, and we
find in Helmholtz’s personal notebook from that period (notes which he used to give his
lectures) passages like the following:

“Recapitulation of Darwin’s hypotheses: The law of heredity demonstrates a
range of variations in all classes of organisms although the fewest differences
arise among species in the wild. What remains to be determined is the limits of
this change. This is where the following comes into consideration: that a much
greater influence is to be expected from natural breeding than from artificial selec-
tion. The hypothesis of an independent origin of each species becomes incredibly
unlikely as a result of (a) the homology among different species (b) Metamerism
within the same species (c) Paleontological developments, and (d) the geographi-
cal affinity of like organisms to live together”. [20]

The reference here to “metamorism” shows the ways in which Helmholtz saw Darwin
as connected to his own research program on color perception and thereby would have
likely been a topic Helmholtz would have been thinking about during the period when
Boltzmann was in contact with him.

Boltzmann left Berlin for a position back in Vienna which he occupied until 1876, just
before the publication of his statistical approach to entropy. At that time, his colleague was
Ernst Mach, who had been installed in the newly created chair in “the history and philos-
ophy of the inductive sciences”. In this position, which Boltzmann himself would later
occupy, Mach became a public spokesperson for his philosophical position of positivism.
While the scientific and epistemological disagreements between Mach and Boltzmann
are extremely well-trod ground, one point of agreement between them was their mutual
enthusiasm for Darwinism (see [21]). Indeed, Mach asserts that it must have its imprint
on all of human thought. For example, in his inaugural address “On Transformation and
Adaptation in Scientific Thought” [22] for his position at Prague (the post he held before
moving to Vienna), Mach writes, that “[K]nowledge, too, is a product of organic nature.
And although ideas, as such, do not comport themselves in all respects like independent
organic individuals, and although violent comparisons should be avoided, still, if Darwin
reasoned rightly, the general imprint of evolution and transformation must be noticeable in
ideas also (quoted in (pp. 217–218))”.

While we can trace Boltzmann’s public and published references to Darwin at least
as far back as 1886, nine years after his transformative approach to entropy, it is clear that
Boltzmann would have been surrounded by discussion of Darwin’s theory from the wider
culture and from important intellectual figures with whom he was interacting at the time
he was working on this new understanding of the Second Law.
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7. Darwin in Boltzmann

There is no smoking gun. We do not have Boltzmann in a correspondence or a footnote
citing Darwin’s influence on his thought in developing his statistical understanding of
the Second Law of Thermodynamics. However, what we do have is a range of testimony
from Boltzmann about a wide range of other ways that Darwin influenced his thinking at
the time and afterward, some closer and others farther from this topic. We can also find
analogues in the treatment and evidence of natural selection that mirror the arguments
raised against Boltzmann’s approach to the Second Law of Thermodynamics, and in the
analogous situations, the concerns cease to be serious concerns. Putting this together, we
may not be able to demonstrate that Boltzmann was thinking of the time evolution of
ensembles of atoms along the lines of the adaptations of species in ecosystems, but it would
fit comfortably within the larger confines of how we do know that Boltzmann dealt with
other issues in epistemology and science.

Indeed, Darwin occupied a privileged place in the science of this time. In 1886,
nine years after the statistical turn and while Boltzmann is working on the argument
addressing Loschmidt’s objection in print in his article “Neuer Beweis zweier Sätze über
das Wärmegleichgewicht unter mehratomigen Gasmolekülen”, he is called to give a talk to
the Austro-Hungarian Imperial Academy on the Second Law of Thermodynamics [23]; he
began by reflecting on the centrality of science in general on human progress.

“If we regard the apparatus of experimental natural science as tools for obtaining
practical gain, we can certainly not deny its success. Unimagined results have
been achieved, things that the fancy of our forebears dreamt in their fairy tales,
outdone by the marvels that science in concert with technology has realised
before our astonished eyes. By facilitating the traffic of men, things and ideas,
it helped to raise and spread civilization in a way that in earlier centuries is
paralleled most nearly by the invention of the art of printing. And who is to set
a term to the forward stride of the human spirit! The invention of a dirigible
airship is hardly more than a question of time. Nevertheless I think that it is not
these achievements that will put their stamp on our century: if you ask me for
my innermost conviction whether it will one day be called the century of iron, or
steam, or electricity, I answer without qualms that it will be named the century of
the mechanical view of nature, of Darwin [23] (p. 15)”.

Boltzmann thought Darwin more important than air travel.
It should not be lost that this is in a paper discussing the notion of entropy and

that instead of calling Darwin’s work “the theory of evolution” or “speciation by natural
selection”, instead Boltzmann chooses a name that explicitly parallels the phrase he used for
the kinetic theory of gases—the mechanical view of heat. Indeed, Boltzmann’s discussion
seeks to erase the distinction between the explanatory sciences like physics and the merely
descriptive historical sciences. “Since the mighty upswing of geology, physiology and
so on, but above all since the general acceptance of the ideas of Darwin, these sciences
boldly undertake to explain the forms of minerals and of organic life [23] (p. 16)”. With the
“mighty upswing” of geology and the great success of Darwin, there were examples of a
mechanical approach to the world in which the development of a scientific system is the
result of accidental, not deterministic factors, a fact that was not lost on Boltzmann.

Boltzmann not only admired the theory of evolution; he was clearly reading Darwin
closely. Boltzmann reflects on the most profound questions of humanity “whence do we
come, whither shall we go” and asserts that “essential and undeniable progress” has been
made in “the present century, thanks to most careful studies and comparative experiments
on the breeding of pigeons and other domestic animals, on the coloring of flying and
swimming animals, by means of researches into the striking similarity of harmless to
poisonous animals, through arduous comparisons of the shape of flowers with that of the
insects that fertilize them (p. 14)”. This is a list, almost chapter by chapter, of the evidence
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that Darwin sets out for his theory in The Origin of Species. Clearly, Boltzmann not only
read the book, but knew its structure and argumentation intimately.

The influence of Darwin can be seen in multiple ways in the thought of Boltzmann:
two epistemological, one metaphysical, and two scientific.

7.1. Darwin as an Answer to Kantianism

The structure of the human mind was a lively question among physicists of Boltz-
mann’s time. The advancements of science required a foundation in epistemology. We
had to know what knowledge was in order to continue to increase it. The prevailing
trend in Continental philosophy in the 19th century moved away from the scientific and
toward the romantic. The idealism of Friedrich Hegel ruled supreme in German-speaking
philosophy departments. As such, philosophers seemed of little use when facing the chal-
lenge of non-Euclidean geometry or the rise of atomism, which posited the existence of
the unobservable.

Some, like Boltzmann’s contemporary at Vienna, Mach, took on a thoroughgoing em-
piricism, arguing that only what could be observed should play a part in our understanding
of the world. Diametrically opposed to the Naturphilosophie, this meant the elimination
of God and other purely speculative metaphysical entities like the spirit. Influenced by
the work of Gustav Fechner, Mach [24] contended that we could do away not only with
the idea of the soul, but with the notion of mind altogether, replacing it with a purely
materialistic psychophysics. This monism stood as the key move in establishing a general
stance: “all metaphysical elements are to be eliminated as superfluous and as destructive
of the economy of science (xxxviii)”. Having done away with the mind/soul, Mach also
sought to cleanse science of Newton’s absolute space and absolute time, atoms, and any
other theoretical construct that was not reducible to sense perceptions.

Others did not take Mach’s positivist route, but sought the last major philosophical
figure who did take science seriously, which sparked a rebirth of Kantianism in Germany.
Immanuel Kant argues in his Critique of Pure Reason [25] that certain mathematical and
scientific notions, such as Euclidean geometry and Newtonian mechanics, are what he terms
“synthetic a priori”. The logical distinction between analytic and synthetic propositions
distinguishes between those like “bachelors are unmarried” and “bachelors are slobs”,
wherein analytic sentences like the former have a predicate that is contained in the meaning
of the subject, whereas synthetic sentences like the latter have a predicate that is not a part
of the meaning of the subject. The a priori/a posteriori distinction is epistemological in
separating those propositions that could be known without perception from those that
require observation.

Before Kant, it was supposed that all analytic propositions are a priori and all synthetic
propositions are a posteriori, but Kant argues that there is a subset of propositions that
are synthetic a priori, i.e., that we know without experience, but which are not merely
definitional. Consider the Euclidean axioms. We know that you can draw a circle of any
size around any point, but this truth is not merely one that is arrived at through unpacking
the notions of circle and point. It is a synthetic proposition in possessing content beyond
the definition of the words making it up.

Kant’s question, then, is “How are a priori synthetic judgements possible?” His answer
is that they are an innate part of the structure of the human mind. They function as the
categories by which the mind takes the raw manifold of perception, such as the blur of
colors taken in by the eyes, and out of them constructs complex perceptions. The sensory
organs provide the content of what we observe, but the necessary categories of the mind
provide the form and when the activity of the mind acts upon the raw data fed in from the
senses, the result is the observations we make of the world around us.

Because they are innate, they are universal. All humans begin with the same con-
ceptual foundations. Observation can add to it, but all people start with the same set of
categories to construct the world. And since these are the structural elements implicit
within our observations, no possible experience could contradict them. They are apodictic,
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viz., necessarily true and in principle unfalsifiable. Because these are the ideas that build
the world out of our perceptions, no perception could possibly falsify it, since it built those
perceptions.

A number of major figures who championed a revived version of the Kantian synthetic
a priori as the basis for their justification of scientific truths were scientists Boltzmann held
in the greatest respect. Heinrich Hertz, for example, writes in the prefatory note to his book
The Principles of Mechanics: Presented in a New Form [26]:

“The subject-matter of the first book is completely independent of experience. All
the assertions made are a priori judgments in Kant’s sense. They are based upon
the laws of the internal intuition of, and upon the logical forms followed by, the
person who makes the assertions; with his external experience they have no other
connection than these intuitions and forms may have (p. 45)”.

Indeed, Hertz and Boltzmann had a lively correspondence with Hertz contending
with Kant that the laws of thought must be synthetic a priori [27].

Boltzmann’s response in [28] is to counter this brand of neo-Kantianism, which he
thinks is so absurd as to be a joke, with Darwin.

“What then will be the position of the so-called laws of thought in logic? Well, in
light of Darwin’s theory they will be nothing else but inherited habits of thought.
Men have gradually become accustomed to fix and combine the words through
which they communicate and which they rehearse in silence when they think,
as well as the memory pictures of those words and everything in the way of
internal ideas used for the denoting of things, in such a manner as to enable
them always to intervene in the world of phenomena in the way intended, and
in inducing others to do likewise, that is to communicate with them. These
inventions are greatly promoted by storing and suitable ordering of memory
pictures and by learning and practicing speech, and this promotion is the criterion
of truth. This method for putting together and silently rehearsing mental images
as well as spoken words became increasingly perfect and has passed into heredity
in such a way that fixed laws of thought have developed. . .One can call these
laws of thought a priori because through many thousands of years of our species’
experience they have become innate to the individual, but it seems to be no more
than a logical howler of Kant’s to infer their infallibility in all cases. . .According
to Darwin’s theory this howler is perfectly explicable. Only what is certain has
become hereditary; what was incorrect has been dropped. In this way these laws
of thought acquired such a semblance of infallibility that even experience was
believed to be answerable to their judgement. Since they were called a priori, it
was concluded that everything a priori was infallible (pp. 194–195)”.

Boltzmann is adopting an early version of the view that would later be famously
held by Noam Chomsky, that a result of evolution is an inherent linguistic faculty that is
innate and results in a particular intrinsic grammar beneath all human language-use [29].
This explains the correct elements of the Kantian synthetic a priori, Boltzmann contends,
without committing us to the flawed apodictic aspect.

Boltzmann’s epistemological approach was pragmatic, seeing the forming of beliefs
based on observations as evidence as a successful adaptation of our ancestors. The human
mind is an artifact of evolution and so, therefore, must the structures by which it determines
what we ought to believe based upon what it is fed through the sense organs. Darwin,
instead of Kant, forms the basis for his understanding of why the human mind is capable
of scientific theorizing and testing.

What is most important in the current context, though, and should be emphasized, is
that the move Boltzmann is making here epistemologically is to undermine the apodictic
nature of Kantian synthetic a priori truths, that is, the necessity of these propositions,
preferring instead a view in which they are the result of a Darwinian evolutionary pro-
cess by which they arise accidentally through a historical process. This is very much
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homeomorphic to the move Boltzmann makes in 1877 with respect to the Second Law of
Thermodynamics, taking it from a proposition whose necessity must be asserted to the
result of probabilistic historical processes.

7.2. Darwin as a Metaphor for the Scientific Method

Darwin provides not merely the basis on which we should understand why humans
are capable of science, but also provides a way of understanding the means by which
scientific results become rationally accepted by the scientific community. Boltzmann writes
in [30] “[N]o theory is absolutely true, and equally hardly any absolutely false either, but
that each must gradually be perfected, as organisms must according to Darwin’s theory.
By being strongly attacked, a theory can gradually shed inappropriate elements while the
appropriate residue remains (p. 153)”.

Evolution is not only a theory, but a theory that provides an image for how the-
ories emerge, survive, and grow. Rosa et al. in [10], expand upon this metaphori-
cally Darwinian approach in their article “Constructivism and Realism in Boltzmann’s
Thermodynamic Atomism”.

7.3. Darwin as Support for the Materialist Worldview

Boltzmann’s atomistic worldview not only provided him with a picture of the micro-
scopic workings of thermodynamic systems, but provided a thoroughgoing ontology (that
is, a catalogue of everything that exists in reality). Heat had been considered a substance
from Aristotle to the advocates of phlogiston theory. The mechanical theory of heat allowed
for the simplification of our catalogue of things in the universe, and Boltzmann saw the
mechanical theory of heredity as doing the same.

In the German-speaking world of the 19th century, one of the most important scientists
connected with evolution was Haeckel, most remembered for his aphorism “Ontogeny
recapitulates phylogeny”. Coming out of the Naturphilosophie movement which leaned
heavily on research in embryology and morphology paired with a robust religious meta-
physic, Haeckel developed an explicitly evolutionary theory, albeit one that was more in
line with that of Lamarck than Darwin’s approach. But Haeckel [31] added a German
philosophical twist to his view, placing Geist (spirit or soul) at the heart of the biological.

“No reproach is more frequently made against the science of to-day, especially
against its most hopeful branch, the study of development, than that it degrades
living Nature to the level of a soulless mechanism, banishes from the world the
ideal, and kills all the poetry of existence. We believe that our unprejudiced,
comparative, genetic study of soul-life gives the lie to that unjust accusation. For
if our uniform or monistic conception of Nature is rightly founded, all living
matter has a soul, and that most wondrous of all natural phenomena that we
usually designate by the word spirit or soul is a general property of living things.
Far other than believing in a crude, soulless material, after the manner of our
adversaries, we must rather suppose that the primal elements of soul-life, the
simple forms of sensibility, pleasure, pain, the simple forms of motion, attraction,
and repulsion, are in all living matter, in all protoplasm. But the grades of the
up-building and composition of this soul vary in different living beings, and
lead us gradually upwards from the quiescent cellsoul through a long series of
ascending steps to the conscious and rational soul of man (p. 173)”.

Contrary to the more mechanical picture of Darwin, Haeckel is explicit in his insertion
of the metaphysical into the material. Life is a combination of matter and soul, body
and spirit.

Boltzmann rejected the metaphysical dualism inherent in the position, asserting that
all phenomena from astronomy to psychology could be accounted for in terms of the
behavior of the material constituents of the world. The biggest challenge for this sort of
metaphysical materialism, of course, is human consciousness. But Boltzmann [12] sees
Darwin as having given us the tools for that.
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“The brain we view as the apparatus or organ for producing word pictures
[Bilder], an organ which because of the pictures’ great utility for the preservation
of the species has, comfortably with Darwin’s theory, developed in man to a
degree of particular perfection, just as the neck of the giraffe and the bill of the
stork have developed to an unusual length (p. 69)”.

The human mind is no more mysterious than any other of a range of biological
curiosities. Humans are just animals and our intelligence is just one more example of a
notable adaptation. From [32], “From a Darwinian point of view we can grasp furthermore
what is the relation of animal instinct to human intellect. The more perfect an animal, the
more it shows incipient traces of intellect alongside instinct (p. 138)”.

7.4. A Darwinian Explanation of the Development of Photosynthesis, Mind, and Life Itself

Life requires decreasing entropy, as such an essential element of life is the collection
of free energy for the purpose of doing the work needed to maintain life. Using his
understanding of radiative entropy, Boltzmann was able to make sense of the process
according to Englebert Broda [21]. Boltzmann contends that plant photosynthesis arose
and developed during a Darwinian struggle for improved supply of free energy:

“The dependence of plant life on light had been discovered in London by Jan
Ingen-Housz, a Dutchman mostly living in Vienna, in 1779. However, Ingen-
Housz did not know why exactly light is needed. Indeed he could not know
it as conservation of energy was unknown in his time, and so the need for a
particular source of energy did not seem to exist. The second step had been taken
by the discoverer of energy conservation (First Law of Thermodynamics), Julius
Robert Mayer, in 1845. He wrote “The plants absorb a force, light, and produce a
force: chemical difference”. However, in his ignorance of the Second Law Mayer
could not make a distinction between useful and useless forms of energy. This
distinction, in respect to photosynthesis, was left to the physicist who understood
the Second Law better than anybody else, and who explained it in atomistic
terms, to Ludwig Boltzmann. In 1884 he had introduced the notion of the entropy
of radiation (p. 62)”.

This sort of combination of his approach to thermodynamics and Darwin’s natural
selection, Broda shows, is not limited to photosynthesis, but also gives an account of the
arising of other bioenergetic processes such as fermentation and respiration. Indeed, Broda
points to passages in Boltzmann’s later lectures in which he makes this form of argument
for the arising of consciousness and life itself.

7.5. Darwin as a Model for Thermodynamics

Again, while we do not have Boltzmann asserting the connection between Darwinian
evolution and the time evolution of thermodynamic systems as a part of his thinking in the
1877 move to a statistical understanding of entropy, we do have instances of Boltzmann
publicly connecting the two after the fact. Boltzmann employs Darwin’s thought as a Bild,
a heuristic model, for the development of statistical mechanics. There is significant textual
evidence that the two are connected in Boltzmann’s thought after the development of his
statistical notion of entropy, which allows for an inference that Darwinian evolution may
have served as a structural model for Boltzmann in developing his statistical understanding
of thermodynamics.

In [12], Boltzmann connects mental phenomena, which he understands as material
interactions that are the result of human evolutionary history, with the physical phenomena
of electricity and, more importantly, for this point, heat. “Mental phenomena may well be
much more remote from material ones than thermal or electric from purely mechanical ones,
but to say that the two former are qualitatively while the latter three are only quantitatively
different seems to me mere prejudice (72)”. While Boltzmann used the term “mechanical”
in different ways in various contexts, here, he is clearly meaning something along the lines
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of being governed by the laws of mechanics (as opposed to Maxwell’s equations); as such,
he is not creating a mechanical picture of mind in the sense that the mind is a result of
Newton’s laws of motion, but he is creating a mechanical theory of mind which does not
require any sort of non-material soul.

It is mere prejudice, a fallacy to be eliminated, to distinguish between mental and
thermal systems. They are not identical, but of the same sort, Boltzmann contends. As
such, the type of arguments that support evolutionary outcomes would not be of a dif-
ferent epistemic species from the sort from those we give in making arguments about
thermodynamics.

Indeed, we see in his “Reply to a Lecture on Happiness Given by Professor Ost-
wald” [33], an evolutionary discussion that maps very closely to a discussion of molecules
in a gas. “As regards the concept of happiness, I derive it from Darwin’s theory. Whether
the in the course of aeons the first protoplasm developed ‘by chance’ in the damp mud
of the vast waters on the Earth, whether egg cells, spores, or some other germs in the
form of dust or embedded in meteorites once reached Earth from outer space, is here a
matter of indifference. More highly developed organisms will hardly have fallen from
the skies. To begin with there were thus only very simple individuals, simple cells or
particles of protoplasm. Constant motion, so-called Brownian molecular motion, happens
with all small particles as is well-known; growth by absorption of similar constituents and
subsequent multiplication by division is likely explicable by purely mechanical means. It is
equally understandable that these rapid motions were influenced and modified by their
surroundings. Particles in which the change occurred in such a way that on average (by
preference) they moved to regions where there were better materials to absorb (food), were
better able to grow and propagate so as soon to overrun all the others (176)”.

The approach to evolution reduces the generally macro-level interaction of members
of species with their environment, giving rise to selection pressures which affect the
relative success of mutations, and places it in a microscopic framework in which atomic-
level interactions, like Brownian motion, are in play and driven “by chance”. Framing the
process stochastically while speaking of the average speed of small particles in rapid motion
is directly parallel to the sort of calculations Boltzmann was undertaking in understanding
the time evolution of gases with notions like the mean free path. The convergence of
vocabularies and concerns between the two is not only striking, it is clearly intentional.
Boltzmann is explicitly connecting evolution with thermodynamics.

It should be noted that the Professor Ostwald to whom Boltzmann is responding is
Wilhelm Ostwald, a Nobel laureate who was one of the last major opponents of atomism,
preferring a system based on energy as a foundational concept. From his [34], “What we
hear originates in work done on the ear drum and the middle ear by vibrations of the
air. What we see is only radiant energy which does chemical work on the retina that is
perceived as light. When we touch a solid body we experience mechanical work performed
during the compression of our fingertips. . .From this standpoint, the totality of nature
appears as a series of spatially and temporally changing energies, of which we obtain
knowledge in proportion as they impinge upon the body and especially upon the sense
organs which fashioned for the reception of the appropriate energies (159)”.

Ostwald was seeking to do away with particles, making energy the primary metaphys-
ical constituent of the universe. In his evolutionary example, he is taking organisms—a
clear instance of things—and intuitively elevating them so that the evolutionary example
rhetorically supports his atomism.

It should be noted that Boltzmann uses in his example here, in the influence of
Brownian motion. Ironically, it was Jean Perrin’s experimental work on Brownian motion
that led Ostwald to finally relent and reject his energetics theory for atomism. Perrin’s
experiments verified the theoretical work of Albert Einstein [35]. Boltzmann could not
have known at the time that Brownian motion would have this effect on Ostwald or that
Einstein would explain it in terms of atomic interaction several years later. Indeed, as John
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Blackmore [36] persuasively argues, it is unlikely that Boltzmann was aware of Einstein’s
work on his matter.

We see a similar move on the part of Boltzmann in [32]: “We must mention also that
most splendid mechanical theory in the field of biology, namely the doctrine of Darwin.
This undertakes to explain the whole multiplicity of plants and the animal kingdom from
the purely mechanical principle of heredity, which like all mechanical principles of genesis
remains of course obscure (p. 132)”.

Note the phrasing “that most splendid mechanical theory in the field of biology”.
Boltzmann is creating a class of mechanical theories, of which the mechanical theory of
heat is the most obvious example, but then including with a celebratory nod a member of
the group in biology.

But the most important element comes a couple of pages later when Boltzmann
highlights an unexpected element of the evolutionary process: the expected unexpected,
that is, the instances in which random mutations give rise to unfit organisms. “It is well-
known that Darwin’s theory explains by no means merely the appropriate character of
human and animal bodily organs, but also gives an account of why often inappropriate
and rudimentary organs or even errors of organization could and must occur (136)”.

Darwinian evolution is driven by random mutations (although they did not under-
stand the genetic force driving it at the time). That randomness will not always give rise to
more fit organisms, but will be expected to create dead ends at an expected statistical rate.
Yes, we generally focus on the developments that drive the process forward, but given that
it is a random process there will also be expected cases of the undesirable and indeed the
unexpected.

Evolution can run backward. The eye can develop, but then if a subpopulation takes
to inhabiting caves, selection pressures could undo what eons of selection processes had
constructed. It is the general case, but not absolutely necessary, that members of species
become more complex to fit their environment.

This is an instance of Darwinian evolution enacting its own version of Zermelo’s
objection. It is perfectly possible that a strange set of circumstances could take a species
and do and then undo all of the changes. Evolution is a time-oriented theory, yet there is
a miniscule possibility that it will return that on which it works to its original stage. It is
highly unlikely, but theoretically conceivable. That does not mean that evolution has not
been working. It is just an unusual possibility given the statistical nature of the process.

But, if we accept this likelihood in the biological sense, Boltzmann seems to be saying,
why would we have any problem with the analogue in the thermodynamic case? Clearly,
we should not, and if Boltzmann was using Darwinian evolution, the mechanical theory of
inheritance, as a Bild underlying his construction of statistical mechanics, then we have a
perfectly reasonable explanation for why none of the concerns and objections raised would
have seemed to be concerning to Boltzmann.

8. Conclusions

In 1877, Ludwig Boltzmann made a stunning shift. His new version of the Second Law
of Thermodynamics was a statistical regularity, lacking the standard sort of nomological
necessity that had been traditionally asserted as an essential property for a law of nature. It
was a bold move that was novel in physics, but not in science writ large. Huttonian geology
and especially Darwinian evolution, two theories that were tremendously prevalent in
scientific discourse at the time, possessed structural similarities. In the decades after his
shift in the understanding of entropy, Boltzmann refers to both of these theories.

This is especially true with respect to Darwin’s work, of which Boltzmann was a vocal
supporter. Indeed, we see Boltzmann model elements of his approach to the scientific
method on Darwin. Evolution plays a central role in his understanding of the acquisition of
human knowledge, of the emergence of life and consciousness, and Boltzmann considers
ways in which his work on entropy must be a part of biological evolution itself.
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All of this was after 1877, but given Boltzmann’s time in Berlin with Hermann von
Helmholtz, whose work bridged the physical and biological and who was thinking and
speaking about Darwin, there is reason to believe that Darwin was on Boltzmann’s mind
just before his bold new understanding of entropy emerged.

After his view solidified, Boltzmann used Darwinian analogies to explain his work
to the public. Boltzmann saw the connection between his approach and Darwin’s to be
similar enough to be able to use the latter as a Bild, a conceptual picture capable of making
the latter more clear to the mind.

As a result of all of this circumstantial evidence, there seems to be warrant for con-
sidering the possibility that Darwin helped Boltzmann make the switch that appears in
1877. Again, there is no smoking gun here, but we do have a variety of different sorts
of evidence garnered around a hypothesis. The inference based upon that is similar to
Darwin’s own approach to argumentation in The Origin of Species, an inductive method
of inference he learned from his own teacher William Whewell [37], who called such an
approach to reasoning “consilience”.

What strikes the contemporary mind as odd about this claim is that a biological system
could be used as a model for a physical system. Going back to August Comte and through
the Logical Positivists (who develop in part from the ideas of Philipp Frank, Boltzmann’s
own student), the reductionist picture of science has psychology reducing to biology, which
is just complicated chemistry, which in turn is nothing but physics. As such, when we
look at the origin of ideas in the most basic of the sciences, physics, then surely the only
influences are to be found in the discourse among physicists. But recall what Boltzmann
himself thought his own era was the age of—the age of Darwin. While it may seem to
those who have internalized the reductionist scheme to put the intellectual cart before the
scientific horse, Boltzmann’s own epistemology freed the scientist to find an appropriate
Bild wherever one could.

If this inference is correct, then, Darwin and Boltzmann become the scientific Porgy
and Bess with the reworked Gershwin’s lyric: “The phase space sectors where you’d find a
system’s vectors. . .it ain’t necessarily so”.
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Abstract: Kinetic theory provides modeling of open quantum systems subject to Markovian noise via
the Wigner–Fokker–Planck equation, which is an alternate of the Lindblad master equation setting,
having the advantage of great physical intuition as it is the quantum equivalent of the classical
phase space description. We perform a numerical inspection of the Wehrl entropy for the benchmark
problem of a harmonic potential, since the existence of a steady state and its analytical formula have
been proven theoretically in this case. When there is friction in the noise terms, no theoretical results
on the monotonicity of absolute entropy are available. We provide numerical results of the time
evolution of the entropy in the case with friction using a stochastic (Euler–Maruyama-based Monte
Carlo) numerical solver. For all the chosen initial conditions studied (all of them Gaussian states),
up to the inherent numerical error of the method, one cannot disregard the possibility of monotonic
behavior even in the case under study, where the noise includes friction terms.

Keywords: kinetic theory; quantum information; Wigner–Fokker–Planck; Monte Carlo; Euler–Maruyama;
open quantum systems; Wehrl entropy; quantum entropy; Husimi transform

1. Introduction

Open quantum systems is an area of great importance in both Computational and
Applied Mathematics and Physics due to the relevance of its applications in topics such as
quantum optics, semiconductors, and lately, quantum computing and information science.
In particular, quantum computing and information sciences are experiencing a booming
development given the recent advances (circa 2019 by Google and IBM) in the experimental
implementation of quantum computers of the order of 100 qubits in the current NISQ (Noisy
Intermediate Scale Quantum) era. This reflects the need to have a holistic understanding of
quantum information and quantum entropy, particularly in the present NISQ era, since, to
this day, quantum computing devices are error-prone due to the effects of environmental
noise. Therefore, it is also of fundamental importance to conduct an interdisciplinary study
of open quantum systems encompassing this physical phenomenon, their mathematical
modeling, and a computational model of their mathematical abstraction.

There is a direct connection between quantum computing and information sciences
and Wigner–Fokker–Planck models. The Wigner–Fokker–Planck equation is completely
equivalent to the more common model for open quantum systems in quantum computing
and information, namely the Lindblad master equation, in the case where the related
variables of the system are continuous (specifically position and momentum, suitable then
for a phase space formulation), as opposed to spin variables for example. Open quantum
systems are fundamental to the study of quantum computing and information, because,
in the NISQ era, environment noise is the fundamental challenge to the preservation of
information in quantum computers. Most importantly, recent techniques [1] actually make
use of environment noise to get the state indeed to the ground state, from which to then
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start the quantum computation. These techniques are called “ground-state preparation
via Lindbladians” and have been very popular in the last year in the domain of current
mathematical and computational challenges in quantum computing and information.

The purpose of this work is to perform a numerical study of the behavior of quantum
entropy (as a measure of quantum information) for specific computational methods of
open quantum systems models, namely, Monte Carlo stochastic solvers based on Euler–
Maruyama techniques. Of the different models for open quantum systems, we particularly
draw our attention to the Wigner–Fokker–Planck equation, which in the case of a harmonic
potential V(x) = x2/2 (taking units such that h̄=m = 1) is as follows:

wt + k · ∇xw− x · ∇kw = ∇(x,k) · (D∇(x,k)w) + γ∇k · (wk). (1)

where w(x, k, t) is the Wigner quasi-probability density function (quasi-PDF, since it might
be negative in some phase space regions) defined over a position-momentum phase space
(x, k) ∈ R2 at time t, where the momentum is formally given by p = h̄k, D is the diffusion
matrix, and γ is a friction coefficient. This model represents a quantum phase-space
picture via the quasi-PDF w for a small subsystem in which the Hamiltonian transport
is being perturbed by Markovian noise, introduced by a larger environment through
energy exchanges with the subsystem. Noise is represented in this Equation then through
the diffusion operator and the friction terms. For completeness, we mention that the
Wigner–Fokker–Planck equation in the general case of an arbitrary potential V(x) has the
following form:

wt + k · ∇xw + Θ[V]{w} = ∆kw+∇k · (kw) + ∆xw, where

Θ[V ]{w} = −i/(2π)d
∫

δV(x, η) w(x, k′, t) exp{iη · (k− k′)} dk′dη on R2d, (2)

where δV(x, η) = V(x + η/2)− V(x − η/2). This more general case that includes non-
harmonic potentials can be represented through the pseudo-differential integral operator
Θ[V ]{w} [2] above acting on the given potential V(x). However, the harmonic case will
be the focus of our numerical studies, since the Wigner–Fokker–Planck equation converges
to an analytically known steady-state solution [3] for potentials of this form, which can be
further interpreted as capturing the effects of decoherence due to the environment.

The current state of the research field, encompassing different kinds of numerical
methods for open quantum systems, in general, can be stated in the following way. Several
types of numerical methods have been used in the computational modeling of open
quantum systems. Their mathematical modeling through Wigner–Fokker–Planck equations
and their subsequent numerical solution via Monte Carlo stochastic simulations (in the
context of Quantum Optics, for example) have been reported [4], as well as discrete velocity
numerical methods for a stationary Wigner Equation [5]. It is known though that there
is a natural stochastic error in the numerical solution by Monte Carlo methods, where
this error will decrease as N−1/2 by increasing the number of samples N. Therefore,
the computational cost, inferred through the number of sample points, needs to grow
quadratically to reduce the error linearly. There are previous works as well on the numerical
simulation of Wigner models for quantum tunneling phenomena [6], as well as literature
on operator splitting type methods for the Wigner–Poisson system [7], and also on the
semi-discrete analysis of the Wigner Equation [8].

The phenomena of open quantum systems need a numerical description that reflects
inherently the physics of quantum transport and noise (represented by diffusion for Marko-
vian interactions). In Monte Carlo methods for open quantum systems models, such as
the Wigner–Fokker–Planck equation [4], this is achieved with the combination of finite
differences representing the transport plus the random sampling from normal distributions
that model the diffusion processes (via the well-known connection between random walks
and diffusion in the Feynman-Kac formulation). The combination of these two is called the
Euler–Maruyama method (to first order), and it is a known numerical procedure for the
solution of stochastic differential equations [9]. Extensions of the Monte Carlo method de-
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scribed are possible for Wigner functions that have a negative part, such as signed-particle
methods [10,11]. This would be achieved by splitting the Wigner function into the sum
of two parts, a positive part w+ and a negative part w−, both of which on their own can
formally be considered probability densities. The distributions associated with w+ and w−
would be related: when one loses a particle, the other would gain one, and vice versa. On
the other hand, Discontinuous Galerkin (DG) methods can be designed to mimic numeri-
cally convection-diffusion problems, as is the case for Local DG or Nonsymmetric Interior
Penalty Galerkin methods. For example, Ref. [2] focused on an adaptable DG scheme for
Wigner–Fokker–Planck, where a Nonsymmetric Interior Penalty Galerkin method was used
as a numerical method. There is literature on the use of Discontinuous Galerkin Methods in
equations of the Quantum–Liouville type [12], as well as numerical modeling of a Quantum
Liouville–Poisson system [13]. However, the aforementioned equations in the last sentence
consider only quantum transport in the problem, because diffusion does not appear in
Liouvillian transport. Previous works where the noise due to the environment in an open
quantum system is modeled in a DG setting for master equations have been in reported
in [14,15], for example.

In the particular context of mathematical studies of entropy in open quantum systems,
Ref. [3] uses classical (mathematically speaking) entropy methods from kinetic theory,
which consider relative entropies:

eφ( f |g) =
∫

Rn
φ( f /g)g(dx), (3)

(where eφ is the relative entropy function of f with respect to g, and φ the generating
function) such as the logarithmic relative entropy, related to:

φ1(α) = α ln(α)− α + 1, α ∈ R+, (4)

or the quadratic relative entropy, related to:

φ2(α) = K(α− 1)2, α ∈ R, K > 0, (5)

to establish the conditions that imply the existence of a thermal equilibrium state, proving
an exponential decay towards it. In [16], the free energy (or Kullback relative entropy of ρ
with respect to exp(−V)) is presented for the study of Fokker–Planck equations. In [17],
entropy methods for diffusive PDEs are presented in general, and in particular as well for
Fokker–Planck equations which might be possibly nonlinear.

Though the physical entropy in quantum Mechanics for a density matrix representa-
tion, the Von Neumann entropy:

S = −Tr(ρ̂ log(ρ̂)) (6)

which is well known and constitutes the quantum extension of the classical Boltzmann/Shannon
entropy:

H = −
∫

Ωx

∫

Ωp
f log( f )dxdp. (7)

The definition of entropy in the Wigner formulation is not as direct as an extension
since log(w) might not be able to be evaluated as a real-valued function for cases where
w < 0 (which can happen; however, for Gaussian states, their Wigner function w(x, p, t) ≥ 0
is nonnegative). However, one can use the Wehrl entropy [18], which is essentially the
Boltzmann/Shannon H entropy abovementioned applied to the nonnegative Husimi
transform of the Wigner function. Previous mathematical work [19] has also indicated that
the only physically relevant quantum Fokker–Planck equation that makes quantum entropy
grow monotonically (for all admissible initial conditions) is the frictionless one (γ = 0).
However, mathematical studies of the quantum relative entropy in the Wigner–Fokker–
Planck equation are indeed helpful and necessary to establish the convergence of its initial
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value problem to the steady-state solution in the harmonic problem precisely through
entropy methods [3] as abovementioned. The result provided in [3] proves mathematically
the convergence to the steady state.

Naturally, the abovementioned relative entropy results in [3] are crucial for showing
convergence to a steady-state solution for the Wigner–Fokker–Planck initial value problem
(IVP) under a harmonic potential, via entropy methods. There will be two distinctions
between the nature of this result and our numerical studies though. The first one is that we
will focus on the absolute entropy, not the relative entropy, where, as we have mentioned, it
is known that monotonic behavior of the physical Von Neumann entropy is only guaranteed
for the frictionless case γ = 0.

Second, our studies will not include the Von Neumann entropy but focus on the Wehrl
entropy (absolute), where rather than the Wigner function it is the Husimi function the one
in Wehrl’s entropy argument. Therefore, though there are similarities in the functional form
of the relative logarithmic entropy for the Wigner function w (or rather their positive and
negative parts w±) and the absolute Wehrl entropy for the Husimi function h(w); in reality,
they are analytically different. On the other hand, a generalized study of Fokker–Planck
equations indicates that interpreting them as gradient flows in a Wasserstein metric (via a
variational formulation of them) [20] is helpful to find exponential convergence of them by
entropy production studies. Works related to this research direction have been performed
in [16] and [21] for the Fokker–Planck equation, for the Lindblad equation in [22–24]. There
is work as well on the gradient flows of the entropy for finite Markov Chains [25], as well
as on the exponential decay of Rényi divergence under Fokker–Planck equations [26].

Regarding numerical studies of entropy in kinetic equations, there are previous nu-
merical studies on kinetic equations for different applications, where the numerical entropy
is monitored during the time evolution of the respective problem. Work on this regard
has been done for the Vlasov–Boltzmann–Poisson system for electron transport in semi-
conductors [27], for the Vlasov–Poisson system [28], as well as for Fokker–Planck–Landau
Type Equations for plasmas [29], and for the coupled Vlasov–Poisson Fokker–Planck–
Landau equation [30], describing transport plasma models for Coulomb, Maxwell type,
and hard-sphere particle interactions. In the particular application of open quantum sys-
tems, however, to the best of our knowledge, a numerical study of the absolute quantum
entropy for the Wehrl entropy in the case of a Wigner–Fokker–Planck equation is lacking
in the literature. Our contribution to the discipline is to fill this gap by studying precisely
these numerical aspects in the particular case of a harmonic potential, which is the main
aim of our work. We conclude from our numerical studies that, for most of the chosen
initial conditions (all of them Gaussian states), we have observed monotonic behavior of
the Wehrl entropy, whereas for one case, though the behavior might seem nonmonotonic
without including the inherent error of the stochastic method used, one cannot disregard
the possibility of monotonic behavior when considering the uncertainty error natural to
our stochastic Monte Carlo method.

2. Materials and Methods

In this work, we utilize stochastic numerical methods of the Monte Carlo type (based
on the Euler–Maruyama method) appropriate for the solution of the convective-diffusive
Wigner–Fokker–Planck equation under a harmonic potential. Given the known initial and
steady states, we compute the time evolution using the Monte-Carlo Euler–Maruyama
Method, monitoring as well the L2-type distance to the steady state and the Wehrl entropy
applied to the Husimi transform as a sanity check. We solve analytically for the Husimi
transform of a Gaussian state of the Wigner–Fokker–Planck, finding the expected initial
and final values of the Wehrl entropy. We study two particular cases of Gaussian states:
the harmonic groundstate (since we will choose it as the initial condition of our initial
value problem) and the steady-state analytical solution to which we expect to converge
numerically, as well as Gaussian states (Gaussian Wigner functions) whose covariance
matrix is proportional to one of the two previously mentioned cases.
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2.1. Monte-Carlo Solver: Euler–Maruyama Method

We will be using the ground state of the quantum harmonic oscillator in its Wigner
representation as our initial condition in the numerical solution of the Wigner–Fokker–
Planck Equation [31]:

w0(x, p) =
2
h

e−
a2 p2

h̄2 − x2

a2 . (8)

To tackle the numerical solution of the Wigner–Fokker–Planck equation, we will
employ the Euler–Maruyama method. This well-known stochastic numerical technique is
particularly well-suited for simulating the dynamics of quantum systems in the presence of
noise, namely open quantum systems. The Euler–Maruyama method is used to discretize
the evolution of the Wigner function by following the trajectory of points in phase space,
randomly sampling from the initial condition as a probability distribution (since it is a
nonnegative function given that it is a Gaussian state, and therefore, its Wigner function is
a Gaussian) to generate our sample of points constituting a point distribution. To choose
successive states for our Wigner–Fokker–Planck kinetic equation in our simulations, we
discretize both the transport (via a forward Euler time-step) and diffusion (via a random
walk simulation of it by sampling from a Gaussian distribution with covariance related to
the diffusion matrix representing the environment noise) processes over small time steps,
incorporating in this way both deterministic transport and random diffusion components
of the dynamics. Therefore, the phase-space point that represents the state of the system at
the successive time t + ∆t for the i-th trajectory in particular is given by:

(xi, pi)(t + ∆t) = (xi, pi)(t) + ∆t(pi,−xi − γpi)(t) + E⃗i, (9)

where E⃗i ∈ R2 is a random variable sampled from a Gaussian with covariance matrix 2D∆t.
More information about this is given in Section 2.2 and Equation (11). This approach allows
us to mimic discretely the continuous evolution of the quantum state considering as well
the random fluctuations induced by the environment. The Euler–Maruyama method is
a numerical technique that falls under the category of Monte Carlo methods, specifically
within the realm of stochastic differential Equations (SDEs). Monte Carlo methods involve
the use of random sampling to obtain numerical results, and in the context of SDEs,
these methods are employed to simulate the evolution of stochastic processes. The Euler–
Maruyama method is particularly suited for solving stochastic differential equations of the
form below:

dXt = a(Xt)dt + b(Xt)dWt, (10)

where Xt is the state of the system at time t, a(Xt) and b(Xt) are deterministic functions,
dt is the differential time step, and dWt is the differential increment of a Wiener pro-
cess/Brownian motion. The stochastic term dWt = Wn+1 −Wn denotes one step in the
random walk. However, we approximate this difference as 2D∆tN (0, 1), where N (0, 1)
represents the normal distribution with a mean of zero and a variance of one [9], and we
have denoted by D the value of the diffusion matrix in the numerical simulations as well.
The specifics are explained below.

2.2. Pseudo-Code and Methodology Description

The Wigner–Fokker–Planck equation can be formally considered to be related to an
SDE of the form (10). As abovementioned, Monte Carlo simulation methods have been
proposed for solving equations of this type, in the context of quantum optics [4]. Let the
Wigner function at time t = 0 be w(x, p, 0). We then obtain an initial collection of N points
(qi(0), pi(0)) ≡ z⃗i(0) in phase space by randomly sampling from w(x, p, 0). To each point
z⃗i(t), a transport and diffusion part are applied to evolve the point to the next time step
t + ∆t, as per the Euler–Maruyama method:

z⃗i(t + ∆t) = z⃗i(t) + α⃗i(t)∆t + E⃗i, (11)
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where α⃗i = (pi,−qi − γpi) is the transport vector for Equation (1), and E⃗i ∈ R2 is a random
variable with covariance matrix 2D∆t. The term with α⃗i represents the transport process
(deterministic) and the term with E⃗i represents the diffusion (random) process. These
processes are applied iteratively to all points at each time step. At the final time T, we
obtain a final set of points z⃗i(T). This set of points is equivalent to a distribution obtained
by sampling N points from the analytical solution of the WFP equation at time T.

It is important to note that this method applies in principle to nonnegative Wigner
functions since Monte Carlo methods such as the Euler–Maruyama algorithm use prob-
ability densities, which are nonnegative by definition. Though one can use decompo-
sitions of the Wigner function into the difference w+ − w− of two nonnegative Wigner
functions w+ and w− as in the so-called signed-particle method [32–34], we only con-
sider in this work specific initial conditions and potentials (namely, Gaussian states
and harmonic potentials, respectively) for the method of choice that have the property
w(x, p, 0) ≥ 0 =⇒ w(x, p, t) ≥ 0 ∀t > 0. This is because it is known that for the case
when w(x, p, 0) is a Gaussian state and the potential is harmonic, the time-evolution in-
duced by the Wigner–Fokker–Planck dynamics (1) keeps the state Gaussian at all times,
thus rendering a nonnegative Wigner function [35]. This justifies our use of the harmonic
oscillator potential and its ground state (8) (which is a Gaussian state) as the initial condi-
tion.

The following pseudo-code (see Algorithm 1) depicts the implementation of our
method (since in our units h̄ = 1, we have denoted the momentum as p = h̄k).

Algorithm Specifics for the Monte Carlo Solver of Wigner–Fokker–Planck

1. Parameter Definitions

• L: Length of the domain in position space.
• σq and σp: Diagonal matrix elements of the covariance matrix of the Wigner

function at the initial time.
• δt: Time step for the simulation.
• µ: Mean value vector for the initial distribution.
• µ1 and µ2: Components of the mean value vector for the position and momentum,

respectively.
• Dqq and Dpp: Diffusion coefficients for position and momentum, respectively.
• D: Diffusion matrix (assumed having zero off-diagonal terms).
• γ: Friction coefficient.

2. Array Definitions

• q: Array to store position values for each particle at each time step.
• p: Array to store momentum values for each particle at each time step.

3. Initial Conditions

• Gaussian Sampling: Initialize the position and momentum of each particle at the
first time step using normal random number generation with mean components
µ1, µ2 and standard deviations σq, σp.

4. Time Evolution Loop

• Use nested loops to iterate over each time step i and each particle j.
• Generate random noise ϵ using a multivariate normal distribution with mean µ

and 2D∆t as covariance matrix for position and momentum.
• Update the position q[i + 1, j] and momentum p[i + 1, j] of each particle using

the Euler–Maruyama stochastic method.

5. Simulation Output

• After the completion of the time evolution loop, the arrays q and p contain the
simulated trajectories of position and momentum for each particle over time.
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Algorithm 1 Euler–Maruyama for the Wigner–Fokker–Planck equation (harmonic poten-
tial)

1: Define:
2: L← 1.0
3: σq ← L√

2
4: σp ← 1√

2L
5: δt ← 0.01
6: Total_Time← 50.
7: NumO f TimeStep← round{ Total_Time

δt
}

8: NumO f Particles← 104

9: µ1 ← 0.
10: µ2 ← 0.
11: µ←

[
µ1 µ2

]

12: Dqq = 1., Dpp = 1.
13: γ = 1.

14: D ←
[

Dqq 0
0 Dpp

]

15: Arrays Initialization:
16: q← zeros[NumO f TimeStep, NumO f Particles]
17: p← zeros[NumO f TimeStep, NumO f Particles]
18: Initial Conditions:
19: q[1, :]← normrnd(µ[1], σq, [1, NumO f Particles])
20: p[1, :]← normrnd(µ[2], σp, [1, NumO f Particles])
21: Update:
22: for each i ∈ NumO f TimeStep do
23: for each j ∈ NumO f Particles do
24: ϵ← mvnrnd(µ, 2Dδt)
25: q[i + 1, j]← q[i, j] + p[i, j]δt + ϵ[1]
26: p[i + 1, j]← p[i, j] + (−q[i, j]− γp[i, j])δt + ϵ[2]
27: end for
28: end for

The algorithm simulates the stochastic evolution of a system governed by a Langevin
equation, incorporating random noise to account for the effects of an external environment.
This type of simulation is commonly used in the study of open quantum systems, where
the Euler–Maruyama method provides a computationally efficient approach to capture the
stochastic dynamics of the system. The generated trajectories allow researchers to analyze
the behavior of the system and study phenomena, such as decoherence and dissipation in
quantum systems. Langevin dynamics is a mathematical and computational framework
used to model the motion of particles in a physical system subject to random forces and
friction. It is commonly applied in various scientific fields, including physics, chemistry,
and biology, to describe the stochastic behavior of particles in a medium. The Langevin
equation, named after the French physicist Paul Langevin, is a stochastic differential
equation that incorporates both deterministic and random components to simulate the
dynamics of a particle. The equation is often used in the context of Brownian motion,
where particles experience random forces due to collisions with surrounding molecules or
other particles.

We have written a code, in MATLAB and also its equivalent version in Python, both
available in the GitHub repository https://github.com/phjame/StochasticWFP (accessed
on 29 February 2024), for the computational implementation of our Euler–Maruyama-
based Monte Carlo solver. For both languages, we have used their respective MATLAB and
Python statistical toolboxes to fit a 2D Gaussian distribution onto each set of phase-space
points for every time step. Subsequently, we utilize the resulting covariance matrix at each
time step to compute the respective Wehrl quantum entropy, as well as to monitor the
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L2-norm between our numerical Wigner function at each time step and the steady-state
solution µ:

µ(x, k) =
1

2π
√

5
e−(

1
5 |x|2+ 1

5 x·k+ 3
10 |k|2) (12)

The inequality condition for L2-norm [2] is as follows:
∥∥∥∥

w− µ√
µ

∥∥∥∥
L2(R2d)

≤ e−σt
∥∥∥∥

wI − µ√
µ

∥∥∥∥
L2(R2d)

(13)

with σ such that the Hessian of the quadratic form inside the argument of the Gaussian
representing the steady-state solution satisfies:

Hess
(

1
5
|x|2 + 1

5
x · k + 3

10
|k|2
)
≥ σI. (14)

More about these norm considerations can be found in Appendix A.

3. Results
3.1. Wigner–Fokker–Planck Model: Gaussian States under Harmonic Potential
3.1.1. Husimi Transform of a Gaussian State (Gaussian Wigner Function)

We want to find the Husimi transform of a Gaussian state, given by the Wigner
function:

w(x, k) =
1√

|Σ|(2π)d
exp

(
−1

2
(x, k)Σ−1(

x
k
)

)
=

1
2π
√
|Σ|

exp
(
−1

2
(x, k)Σ−1(

x
k
)

)

or in a position-momentum representation, since p = h̄k:

w(x, p) =
1

2π
√
|Σ|

exp
(
−1

2
(x, p/h̄)Σ−1(

x
p/h̄

)

)

To calculate the Wehrl entropy:

H = −
∫

h log(h)dxdp,

we need to calculate the Husimi function, obtained by applying the Husimi transform to
our Wigner function above. Namely, we have:

h(x, p) =
∫ ∫

w(x′, p′)(πh̄)−1 exp
(
−(x′ − x)2/2s2

)
exp

(
−(p′ − p)2(2s2/h̄2)

)
dx′dp′.

Thus, concretely, we have that the Husimi function for a Gaussian state is:

h =
(πh̄)−1

2π
√
|Σ|

∫ ∫
exp

(
− (x′, p′

h̄ )

2
Σ−1(

x′
p′
h̄

)

)
exp

(
− (x′ − x)2

2s2

)
exp

(
− (p′ − p)22s2

h̄2

)
dx′dp′,

or if we stick with wave-numbers k instead of momentum, we have:

h(x, k) =
(πh̄)−1h̄
2π
√
|Σ|

∫ ∫
exp

(
− (x′, k′)

2
Σ−1(

x′

k′
)

)
exp

(
− (x′ − x)2

2s2

)
exp

(
−2s2(k′ − k)2

)
dx′dk′,

equivalent to:

92



Entropy 2024, 26, 263

h(x, k) =

∫ ∫
exp

(
− (x′ ,k′)

2 Σ−1(
x′

k′
)

)
exp

(
− (x′−x,k′−k)

2 (
1
s2 0
0 4s2 )(

x′ − x
k′ − k

)

)
dx′dk′

2π2
√
|Σ|

.

If we use the notation:

Σ−1 = (
Σ−1

11 Σ−1
12

Σ−1
21 Σ−1

22
) = (

a b
c d

)

then one can prove that:

h =
1

π
√
|Σ|

exp
(

c2k2
2 s4−2dk2s2(1+as2)−2cks2x+ c2x2

8 −adx2/2−2as2x2+b2( k2s4
2 + x2

8 )+b(ck2s4−2ks2x+ cx2
4 )

d(1+as2)+s2(4− (b+c)2
4 +4as2)

)

√
4− (b+c)2

4 + 4as2 + ad + d/s2
.

Furthermore, considering that the covariance matrix is positive semi-definite and,
therefore, symmetric, then we have Σ−1

12 = b = c = Σ−1
21 , so:

h(x, k) =
1
π

√
|Σ−1| exp

(
−2s2(1+as2)dk2−4bs2kx− 1

2 a(d+4s2)x2+ 1
2 b2(4k2s4+x2)

d(1+as2)+s2(4−b2+4as2)

)

√
4− b2 + a(4s2 + d) + d

s2

,

which is equivalent to:

h(x, k) =
1
π

√
|Σ−1|√

|Σ−1|+ 4(1 + as2) + d
s2

exp


−1

2
( |Σ

−1|
s2 − 4a)x2 + 8bkx + 4(d + |Σ−1|s2)k2

[|Σ−1|+ 4(1 + as2) + d
s2 ]




or in a component-wise form:

h(x, k) =
1
π

√
|ad− b2| exp

(
[b2−a(d+4s2)]x2−8bs2kx+4s2[b2s2−(1+as2)d]k2

2[d(1+as2)+s2(4−b2+4as2)]

)

√
4− b2 + a(4s2 + d) + d

s2

which we can also write as:

h(x, k) =
1
π

√
|ad− b2|√

4− b2 + a(4s2 + d) + d
s2

exp
(
−1

2
(x, k)S−1(

x
k
)

)

with the new inverse covariance matrix:

S−1 =
1

d(1 + as2) + s2(4[1 + as2]− b2)
(

a(d + 4s2)− b2 4bs2

4bs2 4s2[(1 + as2)d− b2s2]
).

The covariance matrix S is the one we will use in our calculations of the Wehrl entropy
for the Husimi function of a Gaussian state.

3.1.2. Husimi Transform of Steady-State Solution for Harmonic Benchmark Problem

We only need to find specifically the covariance matrix for this case. Since we have in
general that:

S−1 =
1

d(1 + as2) + s2(4[1 + as2]− b2)
(

a(d + 4s2)− b2 4bs2

4bs2 4s2[(1 + as2)d− b2s2]
)
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where:

Σ−1 = (
Σ−1

11 Σ−1
12

Σ−1
21 Σ−1

22
) = (

a b
c d

),

so for the inverse covariance matrix of the steady-state solution, we have:

Σ−1
∞ = (

2/5 1/5
1/5 3/5

) = (
0.4 0.2
0.2 0.6

),

since:

Σ∞ = (
3 −1
−1 2

).

Choosing the parameter value s = 1/
√

2 ⇐⇒ 2s2 = 1, then we have:

S−1
∞ =

1
d + a + ad/2− b2/2 + 2

(
a(d + 2)− b2 2b

2b [(2 + a)d− b2]
)

S−1
∞ =

1
3
5 + 2

5 + 2
5

3
5 /2− 1

5
2
/2 + 2

(
2
5 (

3
5 + 2)− 1

5
2

2 1
5

2 1
5 [(2 + 2

5 )
3
5 − 1

5
2
]
)

S−1
∞ =

1
1 + 1

10 + 2
(

2
5 (

3+10
5 )− 1

5
2

2 1
5

2 1
5 [( 10+2

5 ) 3
5 − 1

5
2
]
)

S−1
∞ =

1
3 + 1

10
(

2
5 (

13
5 )− 1

5
2 2

5
2
5 [( 12

5 ) 3
5 − 1

5
2
]
)

S−1
∞ =

1
15 + 1

2
(

2
5 (13)− 1

5 2
2 [(12) 3

5 − 1
5 ]

)

S−1
∞ =

2
31

(
25
5 2
2 35

5
) =

2
31

(
5 2
2 7

) =
1

31
(

10 4
4 14

),

whose determinant is:

S−1
∞ =

140− 16
312 =

124
312 =

4
31

.

Therefore, we have that:

S∞ =
31
4
× 1

31
(

14 −4
−4 10

) = (
7/2 −1
−1 5/2

),

for which:

ln(|S∞|)
2

=
ln(31/4)

2
≈ 1.0238.

3.1.3. Husimi Transform of Harmonic Groundstate

We will get the covariance matrix of the Gaussian associated with the Husimi trans-
form of the harmonic ground state. Again, we have that:

S−1 =
1

d(1 + as2) + s2(4[1 + as2]− b2)
(

a(d + 4s2)− b2 4bs2

4bs2 4s2[(1 + as2)d− b2s2]
)

where:
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Σ−1 = (
Σ−1

11 Σ−1
12

Σ−1
21 Σ−1

22
) = (

a b
c d

)

so for the inverse covariance matrix of the harmonic ground state, we have:

Σ−1
0 = (

2 0
0 2

)

since choosing a position domain of length L = 1, we have that:

Σ0 = (
1/2 0

0 1/2
)

Choosing the parameter value s = 1/
√

2 ⇐⇒ 2s2 = 1, then we have:

S−1
0 =

1
d + a + ad/2− b2/2 + 2

(
a(d + 2)− b2 2b

2b [(2 + a)d− b2]
)

S−1
0 =

1
2 + 2 + 4/2− 0 + 2

(
2(2 + 2)− 0 0

0 [(2 + 2)2− 0]
)

S−1
0 =

1
8
(

8 0
0 8

) = (
1 0
0 1

) = Id,

therefore, S0 = Id and det(S0) = 1, for which:

ln(|S0|)
2

=
ln(1)

2
= 0.

3.1.4. Wehrl Entropy of a Gaussian State through Its Husimi Transform

Gaussian states in the Wigner formulation are represented simply by Gaussians. They
are the only states for which their Wigner functions w(x, k) ≥ 0 are nonnegative over all
their domain. Moreover, the harmonic potential will transform Gaussian states into other
Gaussian states until the steady-state solution is achieved [35].

We can evaluate their Wehrl entropy by the Husimi function h(x, k). The Husimi
function, obtained by applying a Husimi transform to our Wigner function, will be another
Gaussian since w is Gaussian, though in general different from w(x, k) in its analytical form.
However, h will still be represented by a formula such as:

h(x, k, t) =
1√

|Σ|(2π)d
exp

(
−1

2
(x, k)Σ−1(

x
k
)

)
=

1
2π
√
|Σ|

exp
(
−1

2
(x, k)Σ−1(

x
k
)

)
,

where d = 2.
The Wehrl’s entropy is obtained by calculating the following:

H = −
∫

h log(h)dxdk,

H = −
∫ 1

2π
√
|Σ|

exp
(
−1

2
(x, k)Σ−1(

x
k
)

)
log

(
1

2π
√
|Σ|

exp
(
−1

2
(x, k)Σ−1(

x
k
)

))
dxdk =

H = −
∫ 1

2π
√
|Σ|

exp
(
−1

2
(x, k)Σ−1(

x
k
)

)
[log

(
1

2π
√
|Σ|

)
− 1

2
(x, k)Σ−1(

x
k
)]dxdk =

− log

(
1

2π
√
|Σ|

)
[

1
2π
√
|Σ|

∫
exp

(
−1

2
(x, k)Σ−1(

x
k
)

)
dxdk]+
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1
2π
√
|Σ|

∫
exp

(
−1

2
(x, k)Σ−1(

x
k
)

)
1
2
(x, k)Σ−1(

x
k
)dxdk =

− log

(
1

2π
√
|Σ|

)
+

1/2
2π
√
|Σ|

∫
exp

(
−1

2
(x, k)Σ−1(

x
k
)

)
(x, k)Σ−1(

x
k
)dxdk,

since our Gaussians are normalized to 1. Since Σ is a positive definite matrix, this means it
can be diagonalized into a matrix with positive eigenvalues:

Σ = Q−1DQ, D = diag(di), di > 0, i ∈ 1, 2.

Since then, its inverse Σ−1 is also positive definite, one can perform the unique
Cholesky factorization of Σ−1 via a nonsingular upper triangular matrix U:

Σ−1 = UTU,

where it holds that:

|Σ−1| = |UTU| = |U|2 ⇐⇒ |Σ| = 1/|U|2,

so:

H = log
(

2π
√
|Σ|
)
+

1/2
2π
√
|Σ|

∫
exp

(
−1

2
(x, k)UTU(

x
k
)

)
(x, k)UTU(

x
k
)dxdk =

H = log
(

2π

|U|

)
+
|U|/2

2π

∫
exp

(
−1

2
(x, k)UTU(

x
k
)

)
(x, k)UTU(

x
k
)dxdk,

and defining the coordinate transformation:

(
y
z
) = U(

x
k
) ⇐⇒ (y, z) = (x, k)UT ,

which means that:
dydz = |U|dxdk ⇐⇒ dxdk = dydz/|U|,

H = log
(

2π

|U|

)
+
|U|/2

2π

∫
exp

(
−1

2
(y, z)(

y
z
)

)
(y, z)(

y
z
)dydz/|U| =

H = log
(

2π

|U|

)
+
|U|/2

2π

∫
exp

(
−y2 + z2

2

)
(y2 + z2)dydz/|U| =

H = log
(

2π

|U|

)
+

1/2
2π

∫
exp

(
−y2 + z2

2

)
(y2 + z2)dydz =

H = log
(

2π

|U|

)
+

〈
y2 + z2〉

2
,

one can notice that the second term is fixed, so it is a constant for all possible Gaussians,
and therefore, the entropy is mostly defined by the first term. Since we have:

|Σ| = 1
|U|2 =⇒

√
|Σ| = 1

|U| ,

then:

H = log
(

2π
√
|Σ|
)
+

〈
y2 + z2〉

2
,
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so, finally:

H =
log(|Σ|)

2
+ log(2π) +

〈
y2 + z2〉

2
,

or equivalently:

H =
log(|Σ|)

2
+ C, C = log(2π) +

〈
y2 + z2〉

2
,

which, after diagonalization of the covariance matrix, can be equivalently expressed as:

H =
log(d1) + log(d2)

2
+ C, C = log(2π) +

〈
y2 + z2〉

2
.

Since solutions are known to converge to a steady state, this means that entropy will
converge as well to its steady-state value. For the particular case of D = Id, γ = 1, we have:

Σ∞ = (
3 −1
−1 2

), (15)

To complete the calculation, we simply recall that:

〈
y2 + z2〉

2
=

1/2
2π

∫
exp

(
−y2 + z2

2

)
(y2 + z2)dydz =

2
2

2π

∫
dz exp

(
− z2

2

) ∫
dy exp

(
−y2

2

)
y2 =

1
2π

∫
dz exp

(
− z2

2

)
(−

∫
d[exp

(
−y2

2

)
]y) = [

1√
2π

]2
∫

dz exp
(
− z2

2

) ∫
exp

(
−y2

2

)
dy = 1,

However, because there is a constant shift by C in the value of the Wehrl entropy H,
in our numerical results section, we will limit ourselves to report the nonconstant part of
this entropy, namely log(|Σ|)

2 for Gaussian states.
Given our knowledge of the convergence in the Wigner–Fokker–Planck equation to a

Gaussian steady-state in an exponential decay fashion [3], we notice that, indeed, the en-
tropy might not strictly increase (one has freedom to choose, mathematically, the variances
of a Gaussian representing the Gaussian state as higher or lower than the respective ones
for the steady-state solution). The expected behavior when starting from a Gaussian state
as the initial condition is that, under a harmonic potential, the entropy will converge to the
steady-state entropy value.

The advantage of having a numerical solver of open quantum systems in the
Wigner–Fokker–Planck formulation is that we can monitor closely (up to numerical error)
the evolution of the entropy functional we chose to observe (the Wehrl entropy in our
case), observing its behavior to determine numerically the type of behavior (either mono-
tonic or not) for a given set of initial conditions, though one knows that the entropy will
converge to a steady-state value in an attractor fashion. We monitor the Wehrl entropy
then for Gaussian states under a harmonic potential in the Wigner–Fokker–Planck model
for open quantum systems via Monte Carlo numerics, solving our convection-diffusion
equation as a stochastic equation with an Euler–Maruyama methodology, as described in
the previous subsections.

3.1.5. Numerical Results of Entropy Behavior

We present below the results of a numerical simulation of the Wigner–Fokker–Planck
equation under a harmonic potential taking as initial condition a Gaussian state. In this case,
the state is guaranteed to be Gaussian at all times, approaching in the limit as time goes to
infinity for a known Gaussian steady-state analytical solution [3]. We specifically focus on
the behavior of the Wehrl entropy (minus its constant shift) log(det(Σ))/2 applied to the
Husimi transform of our Wigner function representing the Gaussian states taken as initial
conditions. For reference, we include in our plots a straight line with the analytical value of
the steady-state Wehrl entropy log(|Σ|)/2 to which the entropies for the numerical solutions
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are expected to converge (which was indeed observed in our numerical simulations, as our
subsequent figures will show).

Our first set of studies considers the evolution of an open quantum system whose
initial condition is the harmonic ground state. After a long enough time, it converges
numerically to the analytical steady-state solution. We study the numerical evolution of the
Wehrl entropy at our different time iterations. In this case, the entropy increases from the
initial value in the groundstate case towards the steady-state value, oscillating numerically
around this limit value due to the inherent error in Monte Carlo methods (see Figure 1).

0 10 20 30 40 50

Time (t)

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

E
n
tr

o
p
y
 (

H
)

Entropy (H) vs Time (t)

Entropy of Numerical Solution

Analytical Steady State Entropy

Figure 1. Numerical time evolution of the Wehrl entropy starting from a harmonic groundstate initial
condition, until the steady state is achieved numerically.

Our second study considers the evolution of our open quantum system starting from
a Gaussian state whose covariance matrix is 2.252 = 5.0625 times the one for the harmonic
oscillator. In this case, the entropy of the related Gaussian state is bigger than in the previous
case, and it evolves by first sharply decreasing over a short time and then bouncing back
up briefly (see Figure 2), until it decreases and oscillates numerically around the steady
state. However, this brief nonmonotonic bounce is of the order of ∆H = 0.02, which is
below the inherent stochastic uncertainty of our Monte Carlo method (of the order of
ϵ = 0.03), obtained by observing the time evolution of our stochastic solver starting from
the steady-state solution itself as initial condition (see Figure 3). Because the nonmonotonic
bounce is below the uncertainty of the numerical method, up to the numerical error, we
cannot deny the possibility of monotonic decay of the Wehrl’s entropy being present in this
plot within the uncertainty bounds.

For the third set of results, we will try different cases where the initial condition is
related to a Gaussian state, whose covariance matrix is not diagonal. We will try first as
a sanity check to start with the steady state as the initial condition. This will render the
numerical simulation as simply noisy oscillations around the known equilibrium state with
its given entropy value (see Figure 3), and in fact, this simulation will indicate the inherent
uncertainty of our Euler–Maruyama method as it oscillates numerically around the steady
state with the stochastic error of the method.
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Figure 2. Numerical time evolution of the Wehrl entropy starting from a Gaussian state whose
covariance is 2.252 = 5.0625 times the harmonic groundstate one, until the steady state is achieved
numerically. Error bars were included to also consider the inherent uncertainty of the Monte Carlo
method in use.
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Figure 3. Numerical time evolution of the Wehrl entropy starting from the steady state as the initial
condition, oscillating around it with the inherent numerical error of Monte Carlo methods.

We now will try as initial condition a Gaussian state, with the covariance matrix being
a multiple of the steady state one, to study how the numerical solution will converge to
the steady state (and particularly its entropy) from initial conditions with higher variances
in the diagonalizing directions (more spread). We start then from a Gaussian state with a
covariance matrix with values 1.5 times the ones of the steady state. Its entropy value is
shown to converge to the steady-state entropy again (see Figure 4).
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Figure 4. Numerical time evolution of the Wehrl entropy starting from a Gaussian state with a
covariance matrix 1.5 times the steady-state one, having its entropy converge to the steady-state value.

Our last numerical examples start from initial conditions reflecting squeezed states
centered at the origin with diagonal covariance matrices. One of them is such that (in units
where h̄ = 1 = m) ∆x = 1 = σx, ∆p = 1/2 = σp (Figure 5), and the other one is such that
∆x = 1/2 = σx, ∆p = 1 = σp (Figure 6). Its entropy values converge to the steady state
one during the numerical evolution time for both cases (see Figures 5 and 6).
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Figure 5. Numerical time evolution of the Wehrl entropy starting from a squeezed state such that
∆x = 1 = σx, ∆p = 1/2 = σp, having its entropy converge to the steady-state value.
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Figure 6. Numerical time evolution of the Wehrl entropy starting from a squeezed state such that
∆x = 1/2 = σx, ∆p = 1 = σp, having its entropy converge to the steady-state value as well.

4. Discussion

We find that the monotonic behavior of the entropy with time for the case with friction
cannot be denied for any of the five initial conditions we picked. Without considera-
tion of the inherent uncertainty in the numerical method of choice (Euler–Maruyama),
one might feel tempted to interpret the inherent oscillations in the entropy evolution
as nonmonotonic behavior. However, when including the natural stochastic error from
the Euler–Maruyama-based method, one cannot disregard the possibility of monotonic
behavior, since all oscillations are within the error bars of the numerical method. The
neglect of these considerations would represent overfitting. Though we selected particular
cases of Gaussian states as initial conditions, these were chosen based on their importance
within the problem. Namely, the harmonic ground state is the paradigmatic case of a
coherent state, studying as well a thermal state related to it, squeezed states are important
as minimal uncertainty states with variances different from the coherent state ones, and
the steady-state solution for the harmonic potential under noise is crucial to understand
since all well-posed initial conditions converge to it. Though theoretical studies cannot
guarantee monotonic behavior for a completely different entropy (the Von Neumann one),
except for the frictionless case γ = 0, the numerical evidence seems to suggest that at least
for Gaussian states one should explore the theoretical possibility of monotonic behavior of
the Wehrl entropy in this case (or trying to find a counterexample perhaps related to the
case where the average behavior without uncertainty considerations seems monotonic on a
naive analysis).

5. Conclusions

We studied numerically the behavior of the Wehrl entropy related to the quantum
information of a benchmark open quantum system problem, formulated in terms of the
Wigner–Fokker–Planck equation. This benchmark problem is namely the case of a harmonic
potential subject to Markovian noise producing diffusion and friction over the quantum
transport of the problem. The main motivation to study the quantum entropy for an open
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quantum system via Monte Carlo methods based on Euler–Maruyama techniques is the
absence of theoretical results that can guarantee either monotonicity or its opposite of
absolute entropies of importance such as the Von Neumann or the Wehrl one (except for the
Von Neumann entropy in the particular frictionless case γ = 0). Our numerical results for
specific initial conditions, namely some particular Gaussian states related to the harmonic
groundstate and the steady state (and some other Gaussian states with covariance matrices
proportional to these two), seem to indicate that, within the error bounds of the numerical
method, monotonicity could not be denied for the explored cases. These numerical results
might motivate further theoretical work to study if one can guarantee for Gaussian states
(or a subset of them) the monotonic behavior of Wehrl entropy in this benchmark case of a
harmonic potential. On the other hand, one could also try to find a counterexample possibly
related to the case that was closest yet unsuccessful (within the bounds of the numerical
error of our method) to violating monotonicity from the particular cases of initial conditions
selected. Further work will be considered in the extension of these numerical techniques
for the case of non-Gaussian states or nonharmonic potentials, where the signed-particle
method as in [11], for example, could be used.
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Appendix A. Weighted L2-Distance between Wigner Function and Steady-State
Solution for Harmonic Potential

We consider the following weighted L2-distance between the Wigner function w(x, p, t)
at time t and the steady-state solution for the harmonic potential µ(x, p) = limt→∞ w(x, p, t)
as in [2]: ∣∣∣∣

∣∣∣∣
w− µ√

µ

∣∣∣∣
∣∣∣∣
L2

. (A1)

If we proceed to calculate this weighted distance, we have that:
∣∣∣∣
∣∣∣∣
w− µ√

µ

∣∣∣∣
∣∣∣∣
L2

=
∫

dxdk(w− µ)2/µ

=
∫

dxdk(w2/µ− 2w + µ)

=
∫

dxdk(w2/µ)− 1, (A2)

the last line standing true because Wigner functions are normalized to 1 in phase space.
Now, the integral in Equation (A2) will only converge if the resulting function w2/µ is
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indeed a Gaussian distribution. If the subtraction of the inverse covariance matrices of w2

and µ is not positive definite, then the related integral will diverge and the norm will blow
up to infinity. This imposes constraints as to which Wigner functions will result in this
L2-distance being well defined. Specifically, let us take µ to be the normalized Gaussian
centered at the origin with covariance matrix:

Σµ =

[
3 −1
−1 2

]
, (A3)

and w to have the covariance matrix:

Σw(t) =
[

A(t) B(t)
B(t) D(t)

]
, (A4)

where A(t), B(t), and D(t) are time-dependent parameters such that not only Σw is positive
definite at all times but also that w2/µ has a positive definite covariance matrix at all times.
This is satisfied for w2/µ if the condition det

(
2Σ−1

w − Σ−1
µ

)
(t) > 0 holds. One can show

that this condition is equivalent to satisfying:

Q ≡ 20− 4B− B2 + A(D− 4)− 6D
−6B2 + A(6D− 20)

< 0. (A5)

In the case where the initial condition w|t=0 is the harmonic oscillator ground state,
the norm of w|t=0 = w0 is well defined. The covariance matrix of w0 is, after taking
h̄ = m = ω = 1, Σ0 = I/2, where I is the identity matrix. Thus, Q = −61/34 for w0, which
is less than 0.

Now, let us consider the Wigner functions with covariance matrices C0Σ0 and CµΣµ,
where C0 and Cµ are positive real numbers. There exist valid values of C0 and Cµ such that
the norm (A1) is defined. Applying the condition (A5) to these covariance matrices, we
obtain the following results:

C0 ∈ (0, 10− 2
√

5) ∪ (
20
3

, 10 + 2
√

5)), (A6)

Cµ < 2. (A7)

These conditions are part of the motivations in our choice of coefficients in the analysis
of the Wehrl entropy for our Monte Carlo numerical solutions presented in this work.
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Abstract: The Boltzmann kinetic equation for dilute granular suspensions under simple (or uniform)
shear flow (USF) is considered to determine the non-Newtonian transport properties of the system. In
contrast to previous attempts based on a coarse-grained description, our suspension model accounts
for the real collisions between grains and particles of the surrounding molecular gas. The latter is
modeled as a bath (or thermostat) of elastic hard spheres at a given temperature. Two independent
but complementary approaches are followed to reach exact expressions for the rheological properties.
First, the Boltzmann equation for the so-called inelastic Maxwell models (IMM) is considered. The
fact that the collision rate of IMM is independent of the relative velocity of the colliding spheres allows
us to exactly compute the collisional moments of the Boltzmann operator without the knowledge of
the distribution function. Thanks to this property, the transport properties of the sheared granular
suspension can be exactly determined. As a second approach, a Bhatnagar–Gross–Krook (BGK)-type
kinetic model adapted to granular suspensions is solved to compute the velocity moments and the
velocity distribution function of the system. The theoretical results (which are given in terms of
the coefficient of restitution, the reduced shear rate, the reduced background temperature, and the
diameter and mass ratios) show, in general, a good agreement with the approximate analytical results
derived for inelastic hard spheres (IHS) by means of Grad’s moment method and with computer
simulations performed in the Brownian limiting case (m/mg → ∞, where mg and m are the masses
of the particles of the molecular and granular gases, respectively). In addition, as expected, the
IMM and BGK results show that the temperature and non-Newtonian viscosity exhibit an S shape in
a plane of stress–strain rate (discontinuous shear thickening, DST). The DST effect becomes more
pronounced as the mass ratio m/mg increases.

Keywords: granular suspensions; Boltzmann kinetic equation; inelastic Maxwell models; BGK-type
kinetic model; non-Newtonian transport properties

1. Introduction

A very usual way of assessing the effect of the surrounding fluid on the dynamics
properties of solid particles is through an effective fluid–solid force [1–4]. In some models,
this force is simply proportional to the velocity particle (Stokes linear drag law) [5–12]. This
type of force attempts to mimic the energy dissipated by grains due to their friction on the
interstitial viscous gas. A more sophisticated model [13] also incorporates a Langevin-like
stochastic term that accounts for the energy transferred to grains due to their “collisions”
with particles of the background gas. However, although this coarse-grained approach has
provided reliable results in the past, it would be desirable to consider a suspension model
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that takes into account the real collisions between grains and particles of the surrounding
(molecular) gas. This sort of suspension model (which was inspired by a previous work
of Biben et al. [14]) has been recently proposed [15]. In this model, granular particles are
assumed to be sufficiently rarefied so that they do not disturb the state of the molecular
(background) gas. As a consequence, the interstitial gas may be treated as a thermostat at
the temperature Tg. Moreover, although the concentration (mole fraction) of grains is quite
small, apart from the elastic collisions between solid and molecular gas particles, one has
to consider the inelastic collisions between grains themselves. This model can be useful to
analyze transport properties in particle-laden suspensions [16] where very dilute particles
(like aerosols) are immersed in a fluid (like air).

The rheological properties of a granular suspension under simple (or uniform) shear flow
(USF) have been recently determined [17]. In contrast to previous attempts [5–8,10–12,18], the
results obtained in Ref. [17] were derived from the collisional model proposed in Ref. [15].
On the other hand, a limitation of these results is that they were approximately obtained by
employing Grad’s moment method [19], namely, a method based on the truncation of a
series expansion of the velocity distribution function in (orthogonal) Sonine polynomials.
The use of this approximate method is essentially motivated by the form of the collision
rate for inelastic hard spheres (IHS) appearing inside the Boltzmann collision operator.
The collision rate for IHS is proportional to the magnitude of the normal component of
the relative velocity of the two spheres that are about to collide. This velocity dependence
of the collision rate for IHS prevents the possibility of deriving exact expressions for the
transport properties in the USF problem, even in the case of elastic collisions.

A possible way to overcome the technical difficulty of the hard-sphere kernel is to
consider the so-called inelastic Maxwell models (IMM). As for the conventional Maxwell
molecules [20–22], the collision rate of IMM is independent of the relative velocity of the
two colliding spheres [23]. The use of IMM instead of IHS opens up the possibility of ob-
taining exact analytical results of the Boltzmann equation in some specific nonequilibrium
situations, like the USF. In particular, the knowledge of the collisional moments of the
Boltzmann equation for IMM enables a clear exploration of the impact of inelasticity on
the non-Newtonian transport properties of the granular suspension without introducing
uncontrolled approximations.

Another possible alternative for obtaining exact results is to consider a kinetic model
that retains the relevant physical properties of the Boltzmann collision operator but turns
out to be more tractable than the true kinetic equation. This route has been widely employed
in the past in the case of molecular dilute gases where it has been shown that several exact
solutions in far from equilibrium states agree very well with Monte Carlo simulations of the
Boltzmann equation. Here, we will consider a kinetic model for granular suspensions [24]
to complement the theoretical expressions obtained from the Boltzmann equation for
IMM. Since this kinetic model is based on the well known Bhatnagar–Gross–Krook (BGK)
model [22] for molecular gases, we will refer to it as a BGK-type kinetic model.

The objective of this paper is to determine the rheological properties of granular particles
immersed in a bath of elastic hard spheres under USF. At a macroscopic level, the USF is
characterized by constant number densities for solid and gas particles, a uniform temperature,
and a (common) linear velocity profile Ug,x = Ux = ay, where a is the constant shear
rate. Here, Ug and U denote the mean flow velocities of the molecular and granular gases,
respectively. Since we are interested here in the steady state where the system admits a
non-Newtonian hydrodynamic description, an external thermostat force (proportional to the
peculiar velocity) must be introduced to keep the temperature Tg of the molecular gas constant.

The use of an IMM as well as a BGK-type kinetic model allows us to exactly compute
the rheological properties of the granular suspension. These properties are expressed
as nonlinear functions of the (reduced) shear rate a∗ = a/γ (where γ is a drift coefficient
characterizing the friction of solid particles on the viscous gas), the coefficient of restitution,
the (reduced) background temperature T∗g , and the diameter σ/σg and mass m/mg ratios.
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Here, σg and mg are the diameter and mass of the particles of the molecular gas, respectively,
while σ and m are the diameter and mass of the solid particles, respectively.

A very interesting phenomenon appearing in gas–solid suspensions is the so-called
discontinuous shear thickening (DST), where the non-Newtonian shear viscosity of the
granular suspension drastically increases with the shear rate. In most of the cases, the DST
phenomena occurs in highly concentrated suspensions of particles such as mixtures of
cornstarch in water [25]. Although several mechanisms have been proposed in the granular
literature [25] to explain this nonequilibrium discontinuous transition, the problem is still
not understood.

As occurs for IHS [17], our results show that the kinetic granular temperature and
the non-Newtonian viscosity exhibit a DST effect for sufficiently large values of the mass
ratio m/mg. In fact, in the Brownian limiting case (m/mg → ∞), the expressions of the
rheological properties derived here reduce to those previously obtained [26] from a coarse-
grained description based on the Fokker–Planck operator. This agreement justifies the use
of this latter approach to analyze the DST effect in dilute granular suspensions [27]. It
is important to remark that the DST effect found here occurs in a system with a simple
structure (low-density granular gas immersed in a dilute molecular gas). This means that
the origin of this phenomenon is essentially associated here with the nonlinear response
of the granular suspension to the presence of large shear rates rather than to the complex
structure of the system.

Apart from the transport properties (which are related to the second-degree velocity
moments), the explicit forms of the higher-degree velocity moments as well as the velocity
distribution function of the granular gas were also obtained from the BGK model. This is one
of the main advantages of using a kinetic model instead of the true Boltzmann equation. Our
results show, in particular, that the fourth-degree moments of the distribution function also
exhibit a DST effect. With respect to the velocity distribution function, as expected, we find
that its distortion from equilibrium is more significant as both the mass m/mg and diameter
σ/σg ratios depart from 1. In addition, a comparison between the BGK results and numer-
ical solutions of the Boltzmann equation from the direct simulation Monte Carlo (DSMC)
method [28] for IHS shows a generally good qualitative agreement between both approaches.

The plan of the paper is as follows. The Boltzmann kinetic equation for a granular gas
immersed in a bath of elastic hard spheres under USF is presented in Section 2. The balance
equations for the temperatures of the molecular and granular gases are also displayed.
Section 3 deals with the calculations carried out for IMM of the rheological properties of
the granular suspension. While a shear thinning effect is always found for the nonlinear
shear viscosity of the molecular gas, the corresponding shear viscosity of the granular
gas exhibits a DST effect for sufficiently large values of the mass ratio m/mg. The results
derived from the BGK-type kinetic model are provided in Section 4, while a comparison
between the theoretical results obtained for IHS, IMM, and BGK model is displayed in
Section 5 for several systems. Our results highlight a good agreement for the rheology
between the three different approaches. Moreover, theoretical results obtained from the
IMM and BGK model are also compared against computer simulations in the Brownian
limit (m/mg → ∞), showing a good agreement. The paper is closed in Section 6 with some
concluding remarks.

2. Boltzmann Kinetic Equation for Sheared Granular Suspensions

We consider a set of solid particles (granular gas) of mass m and diameter σ which are
immersed in a solvent (molecular gas) constituted by particles of mass mg and diameter
σg. As usual, the granular gas is modeled as a gas of hard disks (d = 2) or spheres (d = 3)
with inelastic collisions. In the simplest model, the inelasticity of collisions is characterized
by a constant (positive) coefficient of normal restitution α ≤ 1, where α = 1 refers to
elastic collisions. On the other hand, collisions between solid particles and particles of
the molecular gas are elastic. We also assume that the number density of grains is much
smaller than that of solvent so that the state of the latter is not perturbed by the presence of
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the former. In these conditions, we can treat the molecular gas as a bath or thermostat at the
temperature Tg (once the parameters of the system, specifically the shear rate, have been
set). Moreover, although the granular gas is sufficiently rarefied, we take into account the
collisions among grains in its corresponding Boltzmann kinetic equation.

We assume that the system (granular particles plus solvent) is subjected to USF. As
said in the Introduction section, this state is characterized by constant densities ng and n,
uniform temperatures Tg and T, and by a (common) linear profile of the x component of
the flow velocities along the y axis:

ng ≡ const, n ≡ const, (1)

∇Tg = ∇T = 0, (2)

Ug,i = Ui = aijrj, aij = aδixδjy, (3)

with a being the constant shear rate. Here, ng, Ug, and Tg are the number density, the mean flow
velocity, and the temperature, respectively, of the molecular gas. In terms of its one-particle
velocity distribution function fg(r, v; t), these hydrodynamic fields are defined as

{
ng, ngUg, dngTg

}
=
∫

dv
{

1, v, mgV2
}

fg(v), (4)

where V = v−U is the peculiar velocity. Note that in Equation (4), the Boltzmann constant
kB = 1. We will take this value throughout the paper for the sake of simplicity. In addition,
in Equations (1)–(3), n, U, and T denote the number density, the mean flow velocity, and
the (granular) temperature, respectively, of the granular gas. They are defined as

{n, nU, dnT} =
∫

dv
{

1, v, mV2
}

f (v). (5)

Since the only spatial gradient present in the USF problem is the shear rate, the
pressure tensor

Pg = mg

∫
dv VV fg(v) (6)

of the molecular gas, and the pressure tensor

P = m
∫

dv VV f (v) (7)

of the granular gas are the relevant fluxes in the problem. They provide information on the
transport of momentum across the system. Our main target is to determine Pg and P for
arbitrary shear rates.

One of the main advantages of the USF at a microscopic level is that it becomes a
spatially homogeneous state when the velocities of the particles are referred to a Lagrangian
frame moving with the linear velocity Ui = aijrj. In this new frame and in the steady state,
the distribution functions of the molecular and granular gases adopt the form

fg(r, v) = fg(V), f (r, v) = f (V). (8)

In addition, as the state of the solvent is not perturbed by the solid particles, the tempera-
ture Tg in the USF state increases in time due to the viscous heating term −aPxy > 0. Thus,
as usual in nonequilibrium molecular dynamics simulations [29], an external nonconser-
vative force (thermostat) is introduced in the molecular gas to achieve a stationary state.
Among the different possibilities, for simplicity, a force proportional to the particle velocity
(Gaussian thermostat) of the form Fg = −mgξV is considered in this paper. The parameter
ξ is chosen to be a function of the shear rate by the condition that Tg reaches a constant
value in the long time limit. Analogously, the granular gas is also subjected to this kind of
Gaussian thermostat (i.e., F = −mξV), where ξ is the same quantity for the solvent and the
solid particles.

108



Entropy 2024, 26, 265

Under the above conditions, in the low-density regime, the distribution function fg(V)
of the molecular gas obeys the nonlinear (closed) Boltzmann equation

−aVy
∂ fg

∂Vx
− ξ

∂

∂V
·V fg = Jg[V| fg, fg], (9)

while the distribution function f (V) of the granular gas obeys the kinetic equation

−aVy
∂ f

∂Vx
− ξ

∂

∂V
·V f = J[V| f , f ] + JBL[V| f , fg]. (10)

Here, Jg[ fg, fg] and J[ f , f ] are the nonlinear Boltzmann collision operators for the molecular
and granular gases, respectively, and JBL[ f , fg] is the linear Boltzmann–Lorentz collision
operator [30,31]. The balance equations for Tg and T can easily obtained by multiplying
both sides of Equations (9) and (10) by mgV2 and mV2, respectively, and integrating over
velocity. The results are

−aPg,xy = dξ pg, (11)

−aPxy −
d
2

pζg = dξ p +
d
2

pζ, (12)

where pg = ngTg and p = nT are the hydrostatic pressures of the molecular and granular
gases, respectively, and the partial production rates ζ and ζg are defined, respectively, as

ζ = − m
dnT

∫
dv V2 J[v| f , f ], ζg = − m

dnT

∫
dv V2 JBL[v| f , fg]. (13)

The cooling rate ζ gives the rate of kinetic energy loss due to inelastic collisions between
particles of the granular gas. It vanishes for elastic collisions (α = 1). The term ζg gives the
transfer of kinetic energy between the particles of the granular gas and the solvent. This
term vanishes when the granular and molecular gases are at the same temperature (Tg = T).
Equation (11) implies that, in the steady state, the viscous heating term (−aPg,xy > 0) is
exactly balanced by the heat extracted in the gas by the external thermostat. On the other
hand, since ζg can be positive or negative, Equation (12) implies that, in the steady state,
the term −aPxy − (d/2)pζg is exactly compensated for the cooling terms arising from
collisional dissipation (ζ p) and the thermostat term (ξ p).

The USF state is, in general, a non-Newtonian state characterized by shear-rate-
dependent transport coefficients. In particular, one can define the non-Newtonian shear
viscosity of the molecular gas as

ηg = −Pg,xy

a
. (14)

Analogously, the non-Newtonian shear viscosity of the granular gas is given by

η = −Pxy

a
. (15)

In addition, beyond the Navier–Stokes domain, normal stress differences are expected in
the USF. This means that Pg,xx ̸= Pg,yy ̸= Pg,zz and Pxx ̸= Pyy ̸= Pzz.

It is quite evident that the evaluation of the rheological properties of the molecular
and granular gases requires the knowledge of the pressure tensors Pg and P. The nonzero
elements of these tensors can be obtained by multiplying by mgVV and mVV both sides of
Equations (9) and (10), respectively, and integrating over V. However, to achieve explicit
forms for Pg and P, one has to compute the collisional moments

Ag = mg

∫
dVVVJg[ fg, fg], (16)

B = m
∫

dVVVJ[ f , f ], C = m
∫

dVVVJBL[ f , fg]. (17)
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In the case of IHS, the collisional moments Ag, B, and C cannot be exactly computed.
As said in the Introduction section, a good estimate of them for IHS was made in Ref. [17]
by means of Grad’s moment method [19]. This method is based on the expansion of
the distributions fg(V) and f (V) in a complete set of orthogonal polynomials, with the
coefficients being the corresponding velocity moments of those distributions. The above
expansion generates an infinite hierarchy of moment equations that must be truncated at a
given order. This truncation allows one to arrive at a closed set of coupled equations for
the velocity moments that can be recursively solved. Thus, since the results derived in
Ref. [17] for the rheological properties of molecular and granular gases are approximated,
it is convenient to revisit the problem and determine the exact expressions for the non-
Newtonian transport properties of the granular suspension. To achieve such exact forms,
two independent approaches will be considered in this paper: (i) the Boltzmann kinetic
equation for IMM; and (ii) a BGK-type kinetic model for IHS. This task will be carried out
in the next two sections.

3. Rheology from Inelastic Maxwell Models

In this section, we will consider an IMM, namely, a collisional model where the
collision rate of the two colliding spheres are independent of their relative velocity. In this
case, the Boltzmann collision operator Jg[ fg, fg] (this is a simple version of the Boltzmann
collision operator for Maxwell molecules) of the molecular gas can be written as [22]

Jg[v1| fg, fg] =
νM

g

ngSd

∫
dv2

∫
dσ̂
[

fg(V′′1 ) fg(V′′2 )− fg(V1) fg(V2)
]
, (18)

where Sd = 2πd/2/Γ( d
2 ) is the total solid angle in d dimensions and νM

g is an independent-
velocity collision frequency. In Equation (18), the primes on the velocities denote the initial
values {V′′1 , V′′2 } that lead to {V1, V2} following a binary collision:

V
′′
1 = V1 − (σ̂ · g12)σ̂, V

′′
2 = V2 + (σ̂ · g12)σ̂. (19)

The effective collision frequency νM
g can be seen as a free parameter of the model to

be chosen to attain agreement with the properties of interest of the original Boltzmann
equation for IHS. For instance, to correctly capture the velocity dependence of the original
IHS collision rate, we can assume that the IMM collision rate is proportional to

√
Tg.

In the context of IMM, the inelastic Boltzmann collision operator J[ f , f ] is [23,31]

J[V| f , f ] =
νM

nSd

∫
dV2

∫
dσ̂
[
α−1 f (V′′1 ) f (V′′2 )− f (V1) f (V2)

]
, (20)

while the Boltzmann–Lorentz collision operator JBL[ f , fg] is defined as [22]

JBL[V| f , fg] =
νM

0
nSd

∫
dV2

∫
dσ̂
[

f (V′′1 ) fg(V′′2 )− f (V1) fg(V2)
]
. (21)

The relationship between (V′′1 , V′′2 ) and (V1, V2) in Equation (20) is

V′′1 = V1 −
1 + α

2α
(σ̂ · g12)σ̂, V′′2 = V2 +

1 + α

2α
(σ̂ · g12)σ̂, (22)

while in Equation (21), it is

V′′1 = V1 − 2µg(σ̂ · g12)σ̂, V′′2 = V2 + 2µ(σ̂ · g12)σ̂ (23)

where
µg =

mg

m + mg
, µ =

m
m + mg

. (24)
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In addition, as in the case of the collision frequency νM
g , the collision frequencies νM and

νM
0 for granular–granular and granular–molecular collisions, respectively, can be chosen to

optimize the agreement with the results derived from IHS. We will choose them later.
As mentioned in previous works on IMM [26], the main advantage of computing

the collisional moments of the Boltzmann operator for Maxwell models (both elastic and
inelastic models) is that they can be exactly provided in terms of the velocity moments of
the distribution functions without the explicit knowledge of the latter. This property has
been exploited to compute the second-, third-, and fourth-degree collisional moments of
IMM for monocomponent and multicomponent granular gases [31]. The exact knowledge
of the second-degree collisional moments allow us to obtain exact expressions for the
rheological properties of the molecular and granular gases. Let us separately evaluate the
rheology of both gases.

3.1. Rheological Properties of the Molecular Gas

The pressure tensor of the molecular gas is defined by Equation (6). To obtain the
nonzero elements of this tensor, one multiplies both sides of the Boltzmann equation (9) by
mgViVj and integrates over velocity. The result is

aikPg,kj + ajkPg,ki + 2ξPg,ij = −
2νM

g

d + 2
(

Pg,ij − pgδij
)
, (25)

where pg = ngTg is the hydrostatic pressure of the molecular gas. Upon obtaining
Equation (25), use is made of the result [31]:

Ag,ij = mg

∫
dVViVj Jg[ fg, fg] = −

2νM
g

d + 2
(

Pg,ij − pgδij
)
. (26)

The (reduced) elements of the pressure tensor P∗g = Pg/(ngTg) can be easily obtained
from Equation (25). They are given by

P∗g,xx =
1

1 + 2ξ̃

[
1 +

2ã2

(1 + 2ξ̃)2

]
, P∗g,yy = P∗g,zz =

1
1 + 2ξ̃

, P∗g,xy = − ã
(1 + 2ξ̃)2

. (27)

Here, we introduce the quantities

ã =
a

ν̃M
g

, ξ̃ =
ξ

ν̃M
g

, ν̃M
g =

2
d + 2

νM
g . (28)

The constraint P∗g,xx + (d− 1)P∗g,yy = d leads to a cubic equation relating ξ̃ and ã:

ã2 = dξ̃(1 + 2ξ̃)2. (29)

The real root of Equation (29) gives the shear-rate dependence of ξ̃(ã). It is given by

ξ̃(ã) =
2
3

sinh2
[

1
6

cosh−1
(

1 +
27
d

ã2
)]

. (30)

Comparison between the results derived here for P∗g,ij with those recently [17] obtained
for IHS by means of Grad’s moment method [19] shows that both results are identical if the
effective collision frequency νM

g is given by

νM
g =

4π(d−1)/2

Γ
(

d
2

) ngσd−1
g

√
Tg

mg
. (31)

Henceforth, we will take the choice (31) for νM
g .
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From Equations (27), one can identify the (dimensionless) non-Newtonian shear
viscosity η∗g = νM

g ηg/pg = −P∗g,xy/ã and the (dimensionless) normal stress difference
Ψ∗g = P∗g,xx − P∗g,yy as

η∗g =
1

(1 + 2ξ̃)2
, Ψ∗g =

2ã2

(1 + 2ξ̃)3
. (32)

Note that the results derived here for Maxwell molecules yield Pg,yy = Pg,zz. This result
contrasts with the one obtained for hard spheres by numerically solving the Boltzmann
equation by means of the DSMC method [28], where it has been shown that Pg,yy ̸= Pg,zz.
However, the difference (Pg,yy− Pg,zz) found in the simulations is, in general, quite small [9].

It is also important to note that in the case of Maxwell molecules there is an exact
equivalence between the description with and without the drag force −mξV. Nevertheless,
for non-Maxwell molecules, this type of force does not play a neutral role in the transport
properties of the system [32].

The shear-rate dependence of η∗g and Ψ∗g is plotted in Figure 1 for a three-dimensional
system (d = 3). As expected, the nonlinear viscosity η∗g decreases with increasing (reduced)
shear rate ã (shear thinning effect). The opposite effect is observed for the normal stress
difference function Ψ∗g since it increases with the shear rate. Figure 1 also highlights the
excellent agreement found between the theoretical results for the Maxwell molecules with
those obtained by numerically solving the Boltzmann equation for hard spheres from the
DSMC method [28].
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Figure 1. Plot of the nonlinear shear viscosity η∗g and the normal stress difference Ψ∗g for hard spheres
(d = 3) as functions of the (reduced) shear rate ã. Symbols refer to the DSMC results for hard spheres.

3.2. Rheological Properties of the Granular Gas

As in the case of the molecular gas, the rheology of the granular gas can be also
determined by multiplying both sides of Equation (10) by mViVj and integrating over V.
After some algebra, one achieves the result

aikPkj + ajkPki + 2ξPij = −νM
[
ν∗η Pij + p

(
ζ∗ − ν∗η

)
δij

]
− 4

d
νM

0 µg

×
[(

1− 2
d + 2

µg

)
Pij −

2
d + 2

µ
n
ng

Pg,ij −
d

d + 2
µgnTg

(
χ +

m
mg

)
δij

]
, (33)

where use is made of the results [31]:

Bij = m
∫

dVViVj J[ f , f ] = −νM
[
ν∗η Pij + p

(
ζ∗ − ν∗η

)
δij

]
, (34)
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Cij = m
∫

dVViVj JBL[ f , fg] = −
4
d

νM
0 µg

[(
1− 2

d + 2
µg

)
Pij −

2
d + 2

µ
n
ng

Pg,ij

− d
d + 2

µgnTg

(
χ +

m
mg

)
δij

]
. (35)

In Equation (33),

ζ∗ =
ζ

νM =
1− α2

2d
(36)

is the (reduced) cooling rate for the granular gas, χ = T/Tg is the temperature ratio, and

ν∗η =
(d + 1− α)(1 + α)

d(d + 2)
. (37)

The partial cooling rate ζg can be exactly obtained from Equation (34) as

ζg =
4νM

0
d

µg
[
1− µg(1 + θ)

]
, (38)

where

θ =
mTg

mgT
(39)

is the ratio of the mean square velocities of granular and molecular gas particles. The
forms (36) and (38) can be employed to fix the values of the free parameters νM and νM

0 .
They are chosen under the criterion that ζ and ζg of IMM are the same as that of IHS of
diameters σ and σ0. In this latter case, the above cooling rates are estimated by using Grad’s
approximation [17]. In this approximation,

ζIHS =
2π(d−1)/2

dΓ
(

d
2

) nσd−1

√
T
m
(1− α2), (40)

ζIHS
g =

8π(d−1)/2

dΓ
(

d
2

) ngσd−1µg

(
1 + θ

θ

)1/2
√

2Tg

mg

[
1− µg(1 + θ)

]
, (41)

where σ = (σ + σg)/2. Equations (38), (40), and (41) yield the identities

νM =
4π(d−1)/2

Γ
(

d
2

) nσd−1

√
T
m

, νM
0 =

2π(d−1)/2

Γ
(

d
2

) ngσd−1
(

1 + θ

θ

)1/2
√

2Tg

mg
. (42)

To compare with the rheological properties of IHS [17], it is convenient at this level
of the description to identify the friction (or drift) coefficient γ appearing in the Brownian
limiting case (m/mg → ∞) when the molecular gas is at equilibrium. In fact, this limiting
case is the situation considered when one employs a coarse-grained approach [1–4] to
assess the impact of the interstitial gas on the dynamics properties of grains. In this limiting
case, the expression (35) of the collisional moment Cij reduces to

CBr
ij = −8π(d−1)/2

dΓ
(

d
2

) nTgngσd−1
(mg

m

)1/2
√

2Tg

m
(P∗kℓ − δkℓ), (43)

where P∗ij = Pij/(nTg), and we take into account that in the Brownian limit µg → mg/m
and (1 + θ)/θ → 1 in the expression (42) of νM

0 . The form of Cij derived in Ref. [26] by
replacing the Boltzmann–Lorentz collisional operator (21) by the Fokker–Planck operator

γ
∂

∂V
·V f + γ

Tg

m
∂2 f
∂V2 (44)
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is
Cij = −2γnTg(P∗kℓ − δkℓ). (45)

Comparison between Equations (43) and (45) allows us to identify γ for IMM as

γ =
4π(d−1)/2

dΓ
(

d
2

) ngσd−1
(mg

m

)1/2
(

2Tg

m

)1/2
. (46)

The expression (46) for the friction coefficient γ for IMM is the same as the one obtained for
IHS [15,17].

We are now in a position to determine the nonzero elements of the (reduced) pressure
tensor P∗ij . From Equations (33) and (46), one obtains the equation

a∗ikP∗kj + a∗jkP∗ki + 2ξ∗P∗ij = −ν∗M
[
ν∗η P∗ij + χ(ζ∗ − ν∗η )δij

]
− 2µ

(
1 + θ

θ

)1/2

×
(

Xδij + YP∗ij + ZP∗g,ij

)
, (47)

where a∗ij = aij/γ, ξ∗ = ξ/γ,

ν∗M =
νM

γ
=

2d+1d√
π

ϕ
√

χT∗g , (48)

and

X = − d
d + 2

µ

(
1 + θ

θ

)
, Y = 1− 2µg

d + 2
, Z = − 2µ

d + 2
. (49)

Here,

ϕ =
πd/2

2d−1dΓ
(

d
2

)nσd (50)

is the solid volume fraction of the granular gas, T∗g = Tg/mσ2γ2, and upon deriving
Equation (48), use is made of the identity

nσd−1

ngσd−1 =
2d+ 3

2√
π

(mg

m

)1/2
ϕ
√

T∗g . (51)

As occurs for the rheology of the molecular gas, Equation (47) shows that the diagonal
elements of the pressure tensor P∗ij orthogonal to the shear plane xy are equal to P∗yy (i.e.,
P∗yy = P∗zz = · · · = P∗dd). This implies that the xx element is given by P∗xx = dχ− (d− 1)P∗yy.
The yy and xy elements of the (reduced) pressure tensor can be written as

P∗yy =
Ωyy

νyy
, P∗xy =

Ωxy − a∗P∗yy

νyy
, (52)

where

νyy = 2ξ∗ + ν∗Mν∗η + 2µ

(
1 + θ

θ

)1/2
Y, (53)

Ωyy = −ν∗Mχ
(

ζ∗ − ν∗η
)
− 2µ

(
1 + θ

θ

)1/2(
X + ZP∗g,yy

)
, (54)

Ωxy = −2µ

(
1 + θ

θ

)1/2
ZP∗g,xy. (55)

Note that the elements of the pressure tensor P∗g,yy and P∗g,xy of the molecular gas must be
expressed in terms of the (reduced) shear rate a∗ and the (reduced) thermostat parameter
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ξ∗. For this, one has to take into account the relationships between ã and ξ̃ with a∗ and ξ∗,
respectively. They are given by ã = (γ/ν̃M

g )a∗ and ξ̃ = (γ/ν̃M
g )ξ∗, where

γ

ν̃M
g

=
d + 2√

2d

(
σ

σg

)d−1 mg

m
. (56)

The equation defining the temperature ratio χ can be easily derived from Equation (47)
as

2
d

a∗P∗xy + 2ξ∗χ = −ν∗Mχζ∗ + 2µ2
(

1 + θ

θ

)1/2

(1− χ). (57)

From Equations (52) and (57), one finally obtains a∗ in terms of the parameter space of
the system:

a∗ =

√√√√√
d
2

2µ2(1 + θ−1)
1/2

(1− χ)− (ν∗Mζ∗ + 2ξ∗)χ
Ωxy/a∗

νyy
− Ωyy

ν2
yy

. (58)

As happens in the case of IHS [17], the temperature ratio χ cannot be expressed in
Equation (58) as an explicit function of the (reduced) shear rate and the remaining pa-
rameters of the system. On the other hand, for given values of the parameter space
Ξ ≡

(
χ, α, σ/σg, m/mg, ϕ, T∗g

)
, the temperature ratio can be implicitly determined from

the physical solution to Equation (58).

3.3. Brownian Limit

Before illustrating the shear-rate dependence of the rheological properties of the
molecular gas for arbitrary values of the mass ratio m/mg, it is convenient to check the
consistency of the present results with those derived in Ref. [26] for IMM by using the
Fokker–Planck operator (44). This consistency is expected to apply in the Brownian limit
m/mg → ∞. In this limiting case, at a given value of the (reduced) shear rate a∗, θ → ∞,
γ/νM

g ∝ mg/m → 0, ã ∝ mg/m → 0, ξ̃ ∝ ã2 ∝ (mg/m)2 → 0, and ξ∗ = ξ̃(ν̃M
g /γ) ∝

mg/m→ 0. Consequently, P∗g,ij = δij and the expressions of P∗yy, P∗xy, and a∗ are

P∗yy =
2− ν∗Mχ

(
ζ∗ − ν∗η

)

2 + ν∗Mν∗η
, P∗xy = −

2− ν∗Mχ
(

ζ∗ − ν∗η
)

(
2 + ν∗Mν∗η

)2 a∗, (59)

a∗ =

√√√√d
2

ν∗Mζ∗ + 2(1− χ−1)

ν∗M
(

ν∗η − ζ∗
)
+ 2χ−1

(
2 + ν∗Mν∗η

)
. (60)

Equations (59) and (60) are consistent with Equations (32), (33), and (35) of Ref. [26]. It is
important to note that, to assess consistency with the Fokker–Planck results, the size ratio
has been kept constant or proportional to the mass ratio so that ξ∗ → 0.

4. Rheology from a BGK-Type Kinetic Model of the Boltzmann Equation

We consider in this section the results derived for the USF from a BGK-type kinetic
model of the Boltzmann equation [24,33]. In the problem for the granular suspension
considered here, one has to replace the true Boltzmann operators Jg[ fg, fg], J[ f , f ], and
JBL[ f , fg] by simpler relaxation terms that retain the relevant physical properties of those
operators but are more tractable than the true kinetic equations. As in the case of IMM, let
us separately determine the rheological properties of the molecular and granular gases by
starting from these kinetic models.
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4.1. Rheological Properties of the Molecular Gas

In the case of the molecular gas, the Boltzmann collision operator Jg[ fg, fg] is replaced
by the conventional BGK kinetic model [22,34]:

Jg[ fg, fg]→ −νg

(
fg − f M

g

)
, (61)

where νg is an effective velocity-independent collision frequency and f M
g is the Maxwellian

distribution

f M
g (V) = ng

(
mg

2πTg

)d/2
exp

(
−mgV2

2Tg

)
. (62)

Thus, according to Equation (9), the velocity distribution function fg(V) obeys the BGK
kinetic equation

−aVy
∂ fg

∂Vx
− ξ

∂

∂V
·V fg = −νg

(
fg − f M

g

)
. (63)

The nonzero elements of the pressure tensor Pg,ij can be easily obtained from Equation (63)
by multiplying both sides of this equation by mgViVj and integrating over V. The BGK
expressions of the (reduced) elements of the pressure tensor P∗g,ij are given by Equations (27)

with the replacement ν̃M
g → νg. As a consequence, the results derived from the BGK

equation for the rheological properties agree with those obtained from the Boltzmann
equation for hard spheres when

νg = ν̃M
g =

8π(d−1)/2

(d + 2)Γ
(

d
2

)ngσd−1
g

√
Tg

mg
. (64)

4.2. Rheological Properties of the Granular Gas

In the case of the granular gas, we consider the kinetic model proposed by Vega Reyes
et al. [24] for granular mixtures. This kinetic model is based on the equivalence between
a system of elastic spheres subject to a drag force proportional to the peculiar velocity V
with a gas of IHS [35]. Thus, the true inelastic Boltzmann collision operator is replaced by a
relaxation term plus a drag force term. This (approximate) mapping between elastic hard
spheres plus drag force with IHS allows us to extend known kinetic models of molecular
gases to inelastic gases. Here, we consider the well-known Gross and Krook (GK) model
for molecular (elastic) mixtures [36] for the corresponding relaxation terms. With this
approach, the collision operators J[ f , f ] and JBL[ f , fg] are defined, respectively, as

J[ f , f ]→ −ν′(α)
(

f − f M
)
+

ϵ

2
∂

∂V
·V f , (65)

JBL[ f , fg]→ −ν
(

f − f̃g

)
. (66)

In Equations (65) and (66),

f M(V) = n
( m

2πT

)d/2
exp

(
−mV2

2T

)
(67)

is the Maxwellian distribution of the granular gas,

ϵ =
2π(d−1)/2

dΓ
(

d
2

) nσd−1

√
T
m
(1− α2), (68)

and the reference distribution function f̃g(V) is [36]
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f̃g(V) = n
(

m
2πT̃

)d/2
exp

(
−mV2

2T̃

)
. (69)

Note that in the definition (68) of ϵ, the cooling rate ζ was evaluated by using the Maxwellian
approximation for the distribution f . In this case, ζ is given by Equation (40).

In Equations (65) and (66), the quantities ν′, ν, and T̃ are chosen to optimize the
agreement with some properties of interest of the Boltzmann equation for IHS. The usual
method of obtaining the above parameters is to ensure that the kinetic model reproduces
the collisional transfer equations of momentum and energy for elastic collisions (α = 1).
However, since U = Ug in the USF, we only have one constraint (the one associated with
the transfer of energy) instead of two, so that T̃ and ν admit more than one form. Here,
we propose a choice (see Appendix A for more technical details) that leads to an excellent
agreement with the results obtained for IHS from Grad’s moment method [17]. More
specifically, we take the following values of T̃ and ν:

T̃ = Tg, ν =
8π(d−1)/2

dΓ
(

d
2

) ngσd−1 mmg

(m + mg)2

(
2Tg

mg
+

2T
m

)1/2
. (70)

It still remains to completely define the model to chose the effective collision frequency ν′.
It is defined here to reproduce the collisional moment

∫
dv mViVj J[ f , f ] (71)

of the Boltzmann equation for IHS when one takes Grad’s trial distribution for f [17]. This
leads to the expression

ν′ =
2π(d−1)/2

d(d + 2)Γ
(

d
2

)nσd−1

√
T
m
(1 + α)[d + 1 + (d− 1)α]. (72)

Therefore, the BGK kinetic equation for the sheared granular gas is given by

−aVy
∂ f

∂Vx
− ξ

∂

∂V
·V f = −ν′

(
f − f M

)
+

ϵ

2
∂

∂V
·V f − ν

(
f − f̃g

)
, (73)

where ν and ν′ are defined by Equations (70) and (72), respectively, and the Maxwellian
distribution f̃g is given by Equation (69) with T̃ = Tg.

The possibility of determining all the velocity moments of the distribution function is
likely one of the main advantages of employing a kinetic model instead of the true Boltz-
mann equation. In the USF problem, it is convenient to define the general velocity moments

Mk1,k2,k3 =
∫

dVVk1
x Vk2

y Vk3
z f (V). (74)

Although, here, we are essentially interested in the three-dimensional case, we will compute
the velocity moments for d = 3 and d = 2. Note that for hard disks (d = 2), k3 = 0 in
Equation (74), since the z-axis is meaningless. The hierarchy of moment equations can be
obtained by multiplying Equation (73) by Vk1

x Vk2
y Vk3

z and integrating over V. The result is

ak1Mk1−1,k2+1,k3 + (ν′ + ν + kλ)Mk1,k2,k3 = Nk1,k2,k3 , (75)

where λ = ξ + ϵ/2, k = k1 + k2 + k3, and

Nk1,k2,k3 = n
(

2Tg

m

)k/2(
ν + χk/2ν′

)
ML

k1,k2,k3
. (76)
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In Equation (75), for hard spheres (d = 3)

ML
k1,k2,k3

=
∫

dc ck1
x ck2

y ck3
z e−c2

= π−3/2Γ
(

k1 + 1
2

)
Γ
(

k2 + 1
2

)
Γ
(

k3 + 1
2

)
, (77)

if k1, k2, and k3 are even, being zero otherwise. For hard disks (d = 2),

ML
k1,k2,0 = π−1Γ

(
k1 + 1

2

)
Γ
(

k2 + 1
2

)
(78)

if k1 and k2 are even, being zero otherwise.
The solution to Equation (75) can be written as (see Appendix B of Ref. [26] for some

details)

Mk1,k2,k3 =
k1

∑
q=0

k1!
(k1 − q)!

(−a)q

(ν′ + ν + kλ)1+q Nk1−q,k2+q,k3 . (79)

The nonzero elements of the pressure tensor Pij can be easily obtained from Equation (79).
In dimensionless form, the BGK expressions of the elements of P∗ij = Pij/nTg are

P∗yy = P∗zz =
ν + ν′χ

ν′ + ν + 2λ
, P∗xy = − ν + ν′χ

(ν′ + ν + 2λ)2 a, (80)

P∗xx =
ν + ν′χ

ν′ + ν + 2λ

[
1 +

2a2

(ν′ + ν + 2λ)2

]
. (81)

The (steady) temperature ratio χ = T/Tg can be obtained from the constraint P∗xx + (d−
1)P∗yy = dχ. This yields the implicit equation

a∗ =
(

ν
′∗ + ν∗ + 2λ∗

)√d
2

χ
ν∗(1− χ−1) + 2λ∗

ν∗ + ν
′∗χ

, (82)

where a∗ = a/γ,

ν
′∗ =

ν′

γ
=

2d

d + 2
ϕ

√
χT∗g

π
(1 + α)[d + 1 + (d− 1)α], (83)

ν∗ =
ν

γ
= 2µ2

(
1 + θ

θ

)1/2
, λ∗ =

λ

γ
= ξ∗ +

ϵ∗

2
, (84)

ξ∗ =

√
2d

d + 2

(σg

σ

)d−1 m
mg

ξ̃, ϵ∗ = 2dϕ

√
χT∗g

π
(1− α2). (85)

Here, ξ̃ is given by Equation (30) and we recall that T∗g = Tg/mσ2γ2.

4.3. Brownian Limit

As in the case of IMM, it is quite interesting to consider the Brownian limiting case
m/mg → ∞. In this case, P∗g,ij = δij, µ → 1, θ → ∞, and ξ∗ → 0. Thus, following similar
steps to those made for IMM, one obtains the expressions

P∗yy =
2 + ν

′∗χ
2 + ν

′∗ + ϵ∗
, P∗xy = − 2 + ν

′∗χ
(2 + ν

′∗ + ϵ∗)2 a∗, (86)

a∗ =
(

2 + ν
′∗ + ϵ∗

)√d
2

χ
2(1− χ−1) + ϵ∗

2 + ν
′∗χ

. (87)
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4.4. Velocity Distribution of the Granular Gas

Apart from obtaining all the velocity moments, the use of kinetic models allows us, in
some cases, to explicitly determine the velocity distribution function f (V). The BGK-type
Equation (73) reads

(
1− dλ̂− âVy

∂

∂Vx
− λ̂V · ∂

∂V

)
f (V) = fR(V), (88)

where â = a/(ν′ + ν), λ̂ = λ/(ν′ + ν), and

fR(V) =
ν′

ν′ + ν
f M(V) +

ν

ν′ + ν
f̃g(V). (89)

The hydrodynamic solution to Equation (88) can be formally written as

f (V) =
(

1− dλ̂− âVy
∂

∂Vx
− λ̂V · ∂

∂V

)−1
fR(V)

=
∫ ∞

0
ds e−(1−dλ̂)seâsVy

∂
∂Vx eλ̂sV· ∂

∂V fR(V). (90)

The action of the velocity operators in Equation (90) on an arbitrary function g(V) is [26]

eâsVy
∂

∂Vx g(Vx, Vy, Vz) = g(Vx + âsVy, Vy, Vz), (91)

eλ̂sV· ∂
∂V g(Vx, Vy, Vz) = g

(
eλ̂sVx, eλ̂sVy, eλ̂sVz

)
. (92)

The explicit form of the one-particle velocity distribution function can be explicitly obtained
when one takes into account in Equation (90) the action of the velocity operators given by
Equations (91) and (92). The result can be written as

f (V) = n
( m

2T

)d/2
φ(c), c =

( m
2T

)1/2
V, (93)

where

φ(c) = π−d/2
∫ ∞

0
ds e−(1−dλ̂)s

{
ν′

ν′ + ν
exp

[
− e2λ̂s

(
c + sâ · c

)2]

+
ν

ν′ + ν
χd/2 exp

[
− χe2λ̂s

(
c + sâ · c

)2]
}

. (94)

Here, we introduce the tensor âij = âδixδjy.
In order to illustrate the shear-rate dependence of the distribution function, it is

convenient to consider the marginal distribution for d = 3:

φx(cx) =
∫ ∞

−∞
dcy

∫ ∞

−∞
dcz φ(c)

=
1√
π

∫ ∞

0
ds

e−(1−λ̂)s
√

1 + â2s2

{
ν′

ν′ + ν
exp

(
− e2λ̂s c2

x
1 + â2s2

)

+
ν

ν′ + ν
χ1/2 exp

(
− χe2λ̂s c2

x
1 + â2s2

)}
. (95)

In the Brownian limit, ξ∗ → 0, µ→ 1, θ → ∞, and so ν∗ → 2, λ∗ → ϵ∗/2, and

λ̂→ ϵ∗/2
2 + ν

′∗ , â→ a∗

2 + ν
′∗ . (96)
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Thus, when m/mg → ∞, Equation (95) becomes

φx(cx) =
1√
π

∫ ∞

0
ds

e−(1−λ̂)s
√

1 + â2s2

{
ν
′∗

2 + ν
′∗ exp

(
− e2λ̂s c2

x
1 + â2s2

)

+
2

2 + ν
′∗ χ1/2 exp

(
− χe2λ̂s c2

x
1 + â2s2

)}
, (97)

where λ̂ and â are given by Equations (96).

5. Comparison between IMM and BGK Results

In Sections 3 and 4, we made use of the Boltzmann equation for IMM and the BGK-
type kinetic model to investigate the shear-rate dependence of rheological properties in a
sheared granular suspension. These properties are expressed in terms of the coefficient of
restitution α, the reduced background temperature T∗g , and the diameter σ/σg and mass
m/mg ratios. Additionally, there exists a residual dependence on density through the
volume fraction ϕ. To avoid that, one could, for instance, reduce the shear rate using the
effective collision frequencies νM(T) or ν(T). However, for consistency with simulations
and considering the background temperature Tg as a known quantity, we opted to employ
γ(Tg) as the reference frequency.

Given that in this section the second-degree moments of the distribution function are
compared with molecular dynamics (MD) simulations for IHS in the Brownian limiting
case [18], we set fixed values of T∗g = 1 and ϕ = 0.0052 for subsequent analysis. The
selection of T∗g as a free parameter imposes a constraint between the diameter σ/σg and
mass m/mg ratios [17]:

σ

σg
=






√

π

4
√

2
n
ng

√
m
mg

1

ϕ
√

T∗g




1/(d−1)

− 1




−1

. (98)

This relation ensures convergence of results to those obtained via the Fokker–Planck
equation as m/mg → ∞, since ξ∗ → 0. Furthermore, since we want to recover the
results obtained in Ref. [17] derived from Grad’s method, we take n/ng = 10−3 (rarefied
granular gas).

The second-degree moments expressed through the reduced temperature χ, non-
Newtonian shear viscosity η∗, and the normal stress difference Ψ∗ are plotted in Figure 2
for α = 0.9 and 1. Here, Ψ∗ = P∗xx − P∗yy = dχ− dP∗yy. Equations (52) and (80) provide
analytical expressions for IMM and BGK-type kinetic model, respectively, from which
rheological properties are illustrated. Notably, there is nearly perfect agreement between
Grad’s solution for IHS, as obtained in Ref. [17], and both IMM and BGK-type results for
any mass ratio, highlighting the ability of relatively simple models to capture essential
properties of granular suspensions.

In particular, a DST transition characterized by S-shaped curves becomes more pro-
nounced as the mass ratio m/mg increases. Specifically, the non-Newtonian shear viscosity
η∗ exhibits a discontinuous transition (at a certain value of a∗) which intensifies as the
particles of the granular gas become heavier. The theoretical results are validated with
MD simulations [18] in the Brownian limiting case (m/mg → 0), showing generally good
agreement despite slight discrepancies in the transition zone. Simulations suggest a sharper
transition, likely due to the absence of molecular chaos in highly nonequilibrium situations.
To address this, DSMC simulations for IHS are performed in the same limit, showing good
agreement with theoretical results and further emphasizing a more pronounced transition.
This phenomenon is likely attributable to a sudden growth of higher-order moments, re-
sulting in a proportional increase in the deviation from theoretical predictions. As a result,
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the lower moments are also affected. Some technical details of the application of the DSMC
method are available in the supplementary material of Ref. [15].
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Figure 2. Plots of the (steady) granular temperature χ (a), the non-Newtonian shear viscosity η∗ (b),
and the normal stress difference Ψ∗ (c) as functions of the (reduced) shear rate a∗ for two different
values of the coefficient of restitution α: 0.9 (left panel) and 1 (right panel). The graphs represent
four distinct mass ratio values m/mg: 103 (yellow lines), 104 (blue lines), 106 (red lines), and the
Brownian limit (black lines). Here, T∗g = 1, d = 3, and ϕ = 0.0052. The solid lines correspond to the
IMM results, the dashed lines are the BGK-like results, and the dotted lines refer to Grad’s solution
for IHS. Symbols denote computer simulation results performed in the Brownian limit: circles refer
to the DSMC data obtained in this paper for IHS, while squares are MD results obtained in Ref. [18]
for IHS.

The simplicity of the BGK and IMM models enables exploration beyond second-
degree moments. Accordingly, we utilize the BGK-type kinetic equation to compute the
fourth-degree moments. Although similar calculations could be performed in the case of
IMM, we opt to omit them due to their extensive analytical effort. Additionally, drawing
insights from the Fokker–Planck model [26] and dry granular gases, we anticipate potential
divergences of the moments derived from IMM under certain shear rate conditions. We
focus our efforts on calculating the following fourth-degree moments:

M∗4|0 =
m2

nT2
g

∫
dVV4 f (V), (99)

M∗2|xy =
m2

nT2
g

∫
dVV2VxVy f (V). (100)
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Thus, in terms of the generic moments Mk1,k2,k3 and according to the expression (79), the
moments M∗4|0 and M∗2|xy are given by

M∗4|0 =
m2

nT2
g
(M4,0,0 + M0,4,0 + M0,0,4 + 2M2,2,0 + 2M2,0,2 + 2M0,2,2), (101)

M∗2|xy =
m2

nT2
g
(M3,1,0 + M1,3,0 + M1,1,2). (102)

Figure 3a illustrates the ratio M∗4|0(a∗)/M∗4|0(0) as a function of a∗ for α = 0.9 and
1 and three values of the mass ratio. We observe that variations in the mass ratio do
not significantly alter the trends observed in the Brownian limiting case [26]. An abrupt
transition in the higher-order moments is evident within a small region of a∗. Specifically,
the kurtosis M∗4|0 increases with the mass ratio m/mg until it converges to the value obtained
in the Brownian limit. Consistent with the conclusions drawn in Ref. [17], an increase in the
mass of the particles of the granular gas results in an elevation of the granular temperature.
Consequently, energy nonequipartition accentuates and moves the suspension away from
equilibrium, leading to an increase in kurtosis as the distribution function deviates from
its Maxwellian form. Regarding the influence of collisional dissipation, we observe that
the effect of α on M∗4|0 remains relatively discrete. Figure 3b illustrates the shear-rate
dependence of the (reduced) moment M∗2|xy. This moment vanishes in the absence of shear
rate (a∗ = 0). Similar conclusions to those made for the moment M∗4|0 can be drawn.

Theoretical predictions for the fourth-degree moments are compared against DSMC
simulations for IHS conducted in this paper in the Brownian limiting case. A qualitative
agreement is observed, although simulations suggest a sharper transition. Some quan-
titative discrepancies are noticeable, which are mainly disguised by the scale. To assess
the reliability of the BGK-type results, we focus on the region 0 < a∗ < 1, where all the
fourth-degree velocity moments of IMM are well-defined functions of the shear rate. In
addition, non-Newtonian effects are still significant in the range of values of the (reduced)
shear rate a∗ ≤ 1. To this purpose, Figure 4 shows the (reduced) fourth-degree moments
M∗4|0(a∗)/M∗4|0(0) and M∗2|xy(a∗) for α = 0.7 and 1. These moments are also illustrated as
obtained for IMM in the Brownian limit [26]. It is worth noting that the results derived
in Ref. [26] stem from considering an effective force modeling the interstitial gas, diverg-
ing from the limit of a Boltzmann–Lorentz operator modeled by a BGK-type equation
as m/mg → ∞. Consequently, since DSMC simulations employ the exact Fokker–Planck
operator, they perfectly align with the IMM results, while discrepancies emerge when
compared with the BGK-type results. It is noteworthy that the BGK-type model slightly
overestimates the deviation from the Newtonian situation (a∗ = 0), a phenomenon also
observed for molecular gases [37]. Moreover, non-Newtonian effects become apparent
even at low values of a∗.

Finally, in Figure 5, the ratio Rx(cx) = φx(cx)/(π−1/2e−c2
x ) is plotted for a∗ = 1 and

four different values of the mass ratio. Here, the marginal distribution φx(cx) is given by
Equation (95). It is evident that the deviation from equilibrium (Rx ̸= 1) becomes more
significant as the mass ratio m/mg increases. Moreover, a comparison between theory and
DSMC simulations reveals some disagreement in the BGK-type solution. Although the
relative difference of these discrepancies is relatively small (it is about 8%), this contradicts
what was observed in Ref. [9], where good agreement between the BGK solution and
DSMC data was shown in the region of thermal velocities.
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Figure 3. Plots of the (reduced) fourth-degree moments M∗4|0(a∗)/M∗4|0(0) (a) and −M∗2|xy(a∗) (b) as
functions of the (reduced) shear rate a∗ obtained from the BGK-type equation for two different values
of the coefficient of restitution α: 0.9 (left panel) and 1 (right panel). The graphs represent four
distinct mass ratio values m/mg: 103 (yellow lines), 104 (blue lines), 106 (red lines), and the Brownian
limit (black lines). Here, T∗g = 1, d = 3, and ϕ = 0.0052. Symbols refer to the DSMC results obtained
for IHS in this paper in the Brownian limit.
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Figure 4. Plots of the (reduced) fourth-degree moments M∗4|0(a∗)/M∗4|0(0) (a) and −M∗2|xy(a∗) (b) as
functions of the (reduced) shear rate a∗ obtained from the BGK-type equation for two different values
of the coefficient of restitution α: 0.7 (solid lines) and 1 (dashed lines). The graphs represent four
distinct mass ratio values m/mg: 5 (yellow lines), 10 (blue lines), 50 (red lines), and the Brownian
limit (black lines). Here, T∗g = 1, d = 3, and ϕ = 0.0052. Symbols refer to the DSMC results for IHS in
the Brownian limit (squares for α = 1 and circles for α = 0.7). The green lines are the IMM results as
obtained in Ref. [26] in the Brownian limit.
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Figure 5. Plot of the ratio Rx(cx) = φx(cx)/(π−1/2e−c2

x ) for a∗ = 1 as a function of the (reduced)
velocity cx for α = 0.9 and five different values of the mass ratio m/mg: 1 (yellow line), 5 (blue line),
10 (red line), 50 (green line), and the Brownian limit (black lines). Here, T∗g = 1, d = 3, and ϕ = 0.0052.
The dashed line refers to the DSMC results for IHS in the Brownian limit.

6. Concluding Remarks

In our study, we explored the non-Newtonian transport properties of a dilute granular
suspension subjected to USF using the Boltzmann kinetic equation. The particles are represented
as d-dimensional hard spheres with mass m and diameter σ, immersed in an interstitial gas
acting as a thermostat at temperature Tg. Various models for granular suspensions incorporate
a gas–solid force to represent the influence of the external fluid. While some models consider
only isolated body resistance via a linear drag law [5,6,8,10–12,38,39], others [13,40] include
an additional Langevin-type stochastic term. In this paper, we consider a suspension
model where the collisions between grains and particles of the interstitial (molecular)
gas are taken into account. Thus, based on previous studies [14,41], we discretize the
surrounding molecular gas, assigning individual particles with mass mg and diameter σg,
thereby accounting for elastic collisions between grains and background gas particles in the
starting kinetic equation.

Under USF conditions, the system is characterized by constant density profiles n
and ng, uniform temperatures T and Tg, and a (common) flow velocity Ux = Ug,x = ay,
where a denotes the shear rate. In agreement with previous investigations on uniform
sheared suspensions, the mean flow velocity U is coupled to that of the gas phase Ug.
Consequently, the viscous heating term due to shear and the energy transferred by the
grains from collisions with the molecular gas is compensated by the cooling terms derived
from collisional dissipation, allowing the achievement of a steady state. A distinctive
feature of the USF is that the one-particle velocity distribution function f (r, v) depends on
space only through its dependence on the peculiar velocity V = v−U. Consequently, the
velocity distribution function becomes uniform in the Lagrangian reference frame, moving
with V. This means that f (r, v) ≡ f (V). Based on symmetry considerations, the heat
flux q vanishes, making the pressure tensor P the relevant flux. Therefore, to understand
the intricate dynamics of granular suspensions under shear flow, it is imperative to focus
on their non-Newtonian properties—derived from the pressure tensor. These include
the (reduced) temperature χ = T/Tg, the (reduced) nonlinear shear viscosity η∗, and the
(reduced) normal stress difference Ψ∗.

Given that the most challenging aspect of dealing with the Boltzmann equation lies in
the collision operator, it is reasonable to explore alternatives that render this operator more
analytically tractable than in the case of IHS. Among the most sophisticated techniques
in this regard is to consider the Boltzmann equation for IMM. As in the case of elastic
collisions [20,22], the collision rate for IMM is independent of the relative velocity of the
colliding particles. As a consequence, the collisional moments of degree k of the Boltzmann
collisional operator can be expressed as a linear combination of velocity moments of degree
less than or equal to k. To complement the results derived for IMM, we also considered
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in this paper the use of a BGK-type kinetic model where the true Boltzmann operator is
replaced by a simple relaxation term. Here, we employed both approaches to compute
the rheological properties of the sheared granular suspension. Thus, our objective was
twofold. Firstly, we aimed to assess the reliability and compatibility of the proposed models
with previous results [17] obtained for IHS using Grad’s moment method. Additionally,
DSMC simulations for IHS were performed as an alternative method to validate any
potential discrepancies identified. Secondly, taking advantage of the capabilities provided
by the BGK model, we endeavored to calculate the velocity distribution function and the
higher-order moments that offer insights into its characteristics.

Before proceeding with the computation of rheological properties, it is necessary to
understand the response of the molecular fluid to shear stress. This assessment was also
conducted using both the Maxwell molecules and BGK-type kinetic model that were later
used to model the granular gas. A novelty here is the application of a force (Gaussian
thermostat) of the form F = −mξV to compensate for the energy gained through viscous
shear stresses. This force, by consistency, also applies to the granular gas, maintaining
convergence to a steady state. As anticipated, the results agree well with those obtained
through Grad’s moment method [17] (see Equations (32) and (64)). Consequently, once the
problem conditions (including the shear rate a) are defined, the molecular temperature Tg
is determined, effectively serving as a thermostat for the granular gas.

After accurately describing the rheology of the molecular gas, we focused on modeling
the granular gas. Using both the IMM and BGK-type model separately, we calculated the
nonzero elements of the the pressure tensor. The knowledge of these elements allowed
us to identify the relevant rheological properties of the granular suspension. As shown
in Figure 2, these quantities are represented as functions of the coefficient of restitution
α and the mass ratio m/mg. In particular, we find that the theoretical results obtained
from the Grad’s method for IHS, IMM, and BGK-type model show remarkable agreement,
with almost indistinguishable curves. This underlines the effectiveness of structurally
simple models in capturing the complexities of sheared granular suspensions. We observe
a DST-type transition starting at a certain value of a∗, which increases with the mass
ratio m/mg. Interestingly, similar to the MD simulations performed for IHS [18], the
DSMC data suggest a more abrupt transition than predicted by theory. Given that the
main divergences between Grad’s (for IHS) and DSMC results arise from the form of the
distribution function, the significance of investigating higher-order moments to assess the
deviation of the distribution function from its Maxwellian reference is then justified.

Based on the previous literature where discrepancies in fourth-degree moments have
been observed [26], and acknowledging the potential lengthiness of calculations, for the
sake of simplicity, we decided to employ only the BGK-type model to compute higher-order
moments. Specifically, we concentrated on the (symmetric) fourth-degree moments M4|0
and M2|xy. The shear-rate dependence of these moments is illustrated in Figure 3 for the
same parameter values of α and m/mg as those employed for the rheological quantities.
Initially, we note that the fourth-degree moments also exhibit an abrupt transition at a
value of a∗ that increases with m/mg until reaching the Brownian limit. We think that the
DST behavior will also appear in all higher moments.

Furthermore, DSMC simulations in the Brownian limit qualitatively capture the profile
of these fourth-degree moments, although some quantitative disparities are apparent. To
ascertain the extent of these discrepancies, we narrowed our focus to the interval 0 < a∗ < 1,
where non-Newtonian effects are apparent. Additionally, we included IMM results directly
as obtained from an effective Fokker–Planck-type model [26]. Figure 4 illustrates that BGK
results overestimate the deviation from the moments computed when no shear stress is
applied compared to DSMC simulations and the results obtained using an effective force to
model the interstitial gas. These disparities are also observed in the marginal distribution
function φx.

The theoretical findings presented here motivate the comparison with computer
simulations. Although the observed agreement in the Brownian limit is encouraging, there
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is scope to extend this agreement to scenarios with finite mass ratios. Our plan is to carry
out simulations of this type in the near future, which we expect will further validate and
improve our theoretical framework. In addition, we plan to extend our current findings to
finite densities by exploring the Enskog kinetic equation, which will allow us to evaluate the
involvement of density in the occurrence of these phenomena. Recent results [42] derived
in the context of the Enskog equation by using the Fokker–Planck operator have shown
that there is a transition from the discontinuous shear thickening (observed in dilute gases)
to the continuous shear thickening for denser systems. We want to see if this behavior is
also present for large but finite mass ratios. The above lines of research will be some of the
main objectives of our upcoming projects.
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Appendix A. Some Technical Details in the BGK-Type Kinetic Model

In this Appendix, we give some details on the determination of the parameters T̃ and
ν appearing in the relaxation term (66). To obtain them, we require the collisional transfer
of energy of grains due to their elastic collisions with particles of the molecular gas to
be the same as that obtained from the true Boltzmann–Lorentz collision operator. This
implies that ∫

dvV2 JBL[V| f , fg] = −ν
∫

dvV2
[

f (V)− f̃g(V)
]
. (A1)

Given that the collisional moment involving the operator JBL[ f , fg] cannot be exactly
computed for IHS, one estimates this moment by replacing f and fg with their Grad’s
solutions [19]. In this approximation, one achieves the results [17]

∫
dvV2 JBL[V| f , fg] = −

8π(d−1)/2

Γ
(

d
2

) nngσd−1 mg

(m + mg)2

(
2Tg

mg
+

2T
m

)1/2(
T − Tg

)
. (A2)

Moreover, ∫
dvV2

[
f (V)− f̃g(V)

]
= −d

nν

m

(
T − T̃

)
. (A3)
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From Equations (A2) and (A3), one obtains the identity

8π(d−1)/2

dΓ
(

d
2

) ngσd−1 mmg

(m + mg)2

(
2Tg

mg
+

2T
m

)1/2(
T − Tg

)
= ν

(
T − T̃

)
. (A4)

Equation (A4) allows us to make the identifications (70).
Finally, from Grad’s moment method [19], the collisional moment (71) can be written

as [17] ∫
dv mViVj J[ f , f ] = −νMnTg

[
ν∗IHS

η P∗ij − χ
(

ν∗IHS
η − ζ∗IHS

)
δij

]
, (A5)

where νM is defined in Equation (42) and

ν∗IHS
η =

(1 + α)[3(1− α) + 2d]
2d(d + 2)

, ζ∗IHS =
1− α2

2d
. (A6)

The BGK-type kinetic model (65) yields the result

∫
dv mViVj

[
− ν′

(
f − f M

)
+

ϵ

2
∂

∂V
·V f

]
= −nTg

[(
ν′ + ϵ

)
P∗ij − ν′χδij

]
, (A7)

where we recall that P∗ij = Pij/nTg. Comparison between Equations (A5) and (A7) yields
Equation (72) for ν′(α).
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Abstract: Species energy theory suggests that, because of limitations on reproduction efficiency,
a minimum density of plant individuals per viable species exists and that this minimum correlates
the total number of plant individuals N with the number of species S. The simplest assumption
is that the mean energy input per individual plant is independent of the number of individuals,
making N, and thus S as well, proportional to the total energy input into the system. The primary
energy input to a plant-dominated ecosystem is estimated as its Net Primary Productivity (NPP).
Thus, species energy theory draws a direct correspondence from NPP to S. Although investigations
have verified a strong connection between S and NPP, strong influences of other factors, such as
topography, ecological processes such as competition, and historical contingencies, are also at play.
The lack of a simple model of NPP expressed in terms of the principal climate variables, precipitation
P, and potential evapotranspiration, PET, introduces unnecessary uncertainty to the understanding
of species richness across scales. Recent research combines percolation theory with the principle
of ecological optimality to derive an expression for NPP(P, PET). Consistent with assuming S is
proportional to NPP, we show here that the new expression for NPP(P, PET) predicts the number of
plant species S in an ecosystem as a function of P and PET. As already demonstrated elsewhere, the
results are consistent with some additional variation due to non-climatic inputs. We suggest that it
may be easier to infer specific deviations from species energy predictions with increased accuracy
and generality of the prediction of NPP(P, PET).

Keywords: ecology; percolation theory; net primary productivity; species energy theory

1. Introduction

A long-standing problem in ecology is the quantification of the relative importance of
various factors that influence species number, S, including energy input [1], competition [2,3],
history [4–6], and heterogeneity [7]. This well-known problem has been discussed by
scientists as early as von Humboldt, Darwin, and Wallace [8–10]. The relative importance
of these factors may not be universal but instead may depend on latitude [11,12], spatial
scale [7,13–16], or the particular kind of organism under consideration [13]. Here, the
discussion will be confined to the terrestrial plant species, and in particular, trees, for which
evidence points to the dominant role of species energy theory, at least for sufficiently large
spatial scales [13,17]. The fundamental hypothesis of species energy theory is that the
number of species is proportional to the energy input into an ecosystem that, particularly
for ectotherms, such as reptiles, may be expressed directly in terms of solar energy [13].
However, for plants, it appears that the dominant input energy pathway that is relevant
to species number is the process of photosynthesis [17]. Total photosynthesis is estimated
by Net Primary Productivity, NPP, which is limited roughly equally by water and solar
energy [17,18]. As it has also been pointed out that the effects of these limitations on NPP
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are most parsimoniously expressed through the variable evapotranspiration, ET [18], it
has thus also been suggested (and verified) that among climatic variables, plant species
richness is primarily explained by ET [13] or by P + PET − PET2 (in both cases explaining
78% of variation) [13,17], where PET is potential evapotranspiration.

The purpose of this study is to determine whether or not new predictions of NPP
based on percolation theory [19] can help to reduce what uncertainty remains in the role
of species energy theory in species number S when NPP is represented as a function of
climate variables. The basis of predicting plant ecosystem NPP from percolation theory is
the success of predicting NPP (R2 = 0.97) with one universal adjustable parameter across
all climate regimes [19].

The theoretical expression for NPP is developed based on the scaling relations of
percolation theory for vegetation growth and soil formation in terms of the fundamental
pathways for water, that is, evapotranspiration and run-off, combined with an optimality
hypothesis that plant ecosystems with the greatest NPP, subject to all relevant constraints
(climatic, edaphic, and so on), will tend to dominate [19,20]. Based on its key inputs, we
refer to this optimization as the percolation optimality hypothesis. Although expressed in
terms of ecosystem productivity, there is an advantage conferred upon individuals from
their ability to intercept solar energy and reproduce themselves, which then may explain
community dominance patterns. Maximizing ecosystem productivity by increasing niche
and functional diversity, insofar as this increase is also consistent with maximizing the
number of species [21–23], has received recent support [24,25]. This support addresses
the concern in [13] that maximizing NPP could be accomplished by one or two domi-
nant species.

The percolation optimality hypothesis can predict several quantities of potential
interest, including (1) the energy input into an ecosystem as a function of climate variables;
(2) the number of plant species present in such an ecosystem; (3) by inference, the prediction
that the number of species present is proportional to the number of individuals (i.e., species
energy theory) [1,13], the More Individuals Hypothesis [26,27]; and (4) by inference, the
prediction that the average metabolic rate per individual is constant across climate regimes,
even when the average energy per species is not. It is therefore also broadly consistent
with earlier work showing that maximizing plant productivity in an ecosystem is possible
when plant diversity is maximized [24–32]. Even if species diversity does contribute to
ecological niche diversity [21], this diversity need not universally translate to genetic
diversity, however. Although further discussion of the linkages of such distinct measures
of diversity is undoubtedly required in the field of ecology, these areas of ongoing research
are not further addressed here.

Another potential application of the results presented in the present paper is the Maxi-
mum Entropy Theory of Ecology (METE). METE [28–32] exploits a minimum information
concept (the maximization of information entropy) to derive distributions of species, indi-
viduals, and energy transformations in ecosystems. Although previous statistical models
of ecological metrics have used Boltzmann entropy as a starting place, developments from
Shipley et al. (2006) [33] moved the conversation in macroecology from a state of trying to
more accurately measure and account for the variation of all climate and mechanistic vari-
ables across scales [14–16] to insights into how to use information entropy to better model
complex ecosystems. METE similarly uses the more general Shannon entropy (−∑ PilnPi)
to predict the distribution of microstates from macrostates in an ecosystem in a dynamic
steady state. The details of the treatment are beyond the scope of the present paper, but
important inputs to the METE framework include the total numbers of individuals and
species, as well as the total metabolic energy expended by an ecosystem, which the current
approach can deliver, provided a steady-state has been reached. An extension of METE
proposes an ecological equation of state, which unifies the relationships of species richness,
productivity, abundance, and biomass in ecosystems. This equation shows a positive
relationship between productivity and species richness, as mediated by the biomass and
the number of individuals in the area under consideration.
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In the context of species richness, Currie [13] details the central role of evapotranspira-
tion ET on NPP, and we therefore consider the relationship between NPP and ET in more
depth. Rosenzweig [18] determined empirically that NPP was proportional to a power
s of ET, whose value (1.69) was extracted from a global study across biomes. However,
Hunt et al. (2024 and 2021) [19,34] demonstrated that the actual value should be related to
the root mass fractal dimension. Assuming the roots follow fractal paths of least cumulative
resistance, NPP should more accurately equal the relevant mass fractal dimension predicted
by percolation theory, which quantifies the topology of such paths [35]. Since, according
to [36–38], dominant rooting depths appear to be relatively shallow (less than half a meter,
a meter, or 2 m, respectively), it was assumed that the relevant percolation mass fractal
dimension should be its value in two dimensions (2D) [35], i.e., 91/48 = 1.896 (obtained
through exact calculations and exact scaling relationships). In order to predict the proper
dependence of NPP (ET) on climate variables, P and PET, however, it becomes necessary to
determine ET(P, PET), which is a problem known in hydrology as the water balance and
viewed as a central problem of that field of study [39–41].

The water balance quantifies how much precipitation goes to evapotranspiration ET
and how much runs off, equal to P − ET [39–41]. Measurement of the water balance is
often more easily obtained through measurement of the streamflow exiting a drainage
basin than through direct measurement of ET; however, ET is not related conceptually
to the specific scale of a drainage basin except in cases of significant relief [17]. We show
how the water balance is constructed out of soil formation (see, e.g., [42]) and vegetation
growth (e.g., [43]) rates and give an overview of how the proposed ecological optimality
can be used to find the partitioning of surface water on the terrestrial Earth surface that
leads to maximum productivity. The process is based on a scaling relationship for solute
transport that describes soil depth evolution [42] and one for optimal paths that describes
the distinction between root growth rates and root lateral extent [43]. The results have
been shown to predict plant productivity as a function of climate variables [19] and are
shown here to provide accurate predictions of species richness in terms of the same climate
variables. It is also noteworthy that the result obtained for ET (P, PET) from maximizing
ecosystem NPP is almost identical to one obtained from a dynamic process model that
maximizes carbon profit [44].

Before continuing, two points should be mentioned. First, the formation of biomass
from sugar involves a set of complex processes using sugar for energy (metabolism), which
are not considered further here but help differentiate between carbon assimilation [19] and
carbon profit [44]. Second, it is important to remember that the word evapotranspiration
is constructed, in principle, from a sum of the effects of two rather different processes:
evaporation of water from bare ground or plant surfaces and the process of transpiration
by which water evaporated from the stomata of leaves, thereby drawing further water from
the ground into and through the plant.

2. Theoretical Background

NPP is limited by multiple factors. In view of its dependence on the process of
photosynthesis, sugar is constructed from water and carbon dioxide through the absorption
of photons. Therefore, solar energy, atmospheric carbon, and water may all be limiting
components, as well as soil nutrients. However, atmospheric carbon contents, though they
change significantly over time, are essentially spatially uniform in comparison with the
climatic inputs [17,18]. Spatial variability in the carbon cycle is critical at any particular time
and is, thus, due in large part to the spatial variability of climate variables, precipitation P,
and potential evapotranspiration, PET (a measure of solar energy). Because water drawn
from the soil requires water evaporation from stomata, the indirect demand for plant-
transpired water is higher than the direct demand from photosynthesis. However, an
insufficient supply of either water or solar energy will suppress photosynthesis and, thus,
plant productivity. It was proposed nearly 60 years ago [18] that both limiting components
of the carbon cycle could be accounted for using a single variable, evapotranspiration, ET.
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More recently, it has been proposed [19,34] that the soil depth should be a second input
into the dependence of NPP on ET. The soil depth also relates to percolation theory.

Roots grow primarily within a thin soil layer, variously estimated as 0.5 m, 1 m, or
2 m [36–38]. Compared with typical drainage basins, or catchments, which are measured
in kilometers or greater, this suggests that the root zone may, over a wide range of scales
and conditions, be considered nearly two dimensional (2D). The 3D root zone has also
been considered and is doubtless relevant at some scales [19]. In addition, for a variety
of reasons, roots have been proposed to follow optimal paths [43]. In a model that treats
such paths in the spirit of percolation theory, root masses occupying such paths have been
shown [43] to form self-similar fractal structures with a fractal dimension df that is nearly
equal to that of the largest 2D percolation cluster [35], df = 91/48 = 1.9.

It is argued [35] that flow in disordered porous media is dominated by the contribution
from connected paths near the percolation threshold and, thus, universal power law scaling
of percolation theory is relevant. The time required for solute introduced at a single source
(such as from a reacting soil particle) at one side of a system to reach the other side was
shown [45] to be proportional to the length of the system to a power equal to the fractal
dimension of the percolation backbone, Db, the multiply connected part of the percolation
cluster in which fluid flow and solute transport occur (as the rest of the pores are dead ends).
For conditions appropriate to weathering, i.e., either wetting soils or constant moisture
content, Db was determined [46] to be equal to 1.87. Validity of the advection-dispersion
equation at the scale of an individual pore implies equality of water and solute velocities
at that scale and requires a spatio-temporal scaling relationship for the solute’s distance
traveled, given by xs = x0 (t/t0)1/D

b, where x0 is a pore separation, or typical particle
size, and x0/t0 = v0 is, in natural ecosystems, a yearly mean pore-scale flow rate [43]. The
result is

x = x0

(
t
t0

)1/1.87
(1)

Because solute transport tends to be the primary limiting factor in chemical weathering,
which itself is the principal limitation to soil formation [47], Equation (1) gives the soil
depth, while its time derivative, dx/dt, predicts the soil production function. The steady-
state (constant) soil depth is defined by the equality of soil production and the rate of soil
removal D0. Equating dx/dt with D0 yields [42]

x = x0

[
P− ET

1.87ϕD0

] 1
Db−1

(2)

where porosity ϕ is necessary to convert a mean atmospheric velocity—or flux—of precipi-
tation P less evapotranspiration ET to a water velocity in the porous medium. Since only
water flowing through the soil into the subsurface can contribute to weathering and soil
formation, the flux of water returned to the atmosphere through evapotranspiration ET
does not contribute.

A broadly analogous argument provides a relationship for vegetation root growth [43]
with the same form as Equation (1), but with one significant difference: the exponent in
the power law is predicted from percolation theory to be 1/Dopt, which, by considering
the root zone to have shallow depth, is taken to be the value [46] appropriate for 2D, i.e.,
Dopt = 1.21. The explanation is shortened here. By applying a gradient in the soil water
potential, the roots draw in water, which can intersect nutrient sources. Water flow toward
the roots is dominated by the optimal paths of percolation. Accordingly, in a search for
nutrients and water, root tip extension tends to follow optimal paths ’back up-gradient
toward nutrient sources. Thus, the actual root length l is longer than the root radial extent,
xr, due to the tortuosity of the paths with the smallest cumulative resistance, and l =
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(xr/x0)Dopt. Since root tip extension rates tend to be a property of genetics plus nutrient
and water availability [48], l has no obvious scale dependence, making l = v0 t, and

xr = x0

(
t
t0

)1/1.21
(3)

Although the length scale and flow rates for both soil formation and root growth are
represented identically, the meaning of x0 in Equation (3) is, instead of being a particle
size, a typical plant xylem diameter, while v0 is a little larger for plants, since they will be
seen to take almost twice as much of the water available is left for flowing through the
soil. Nevertheless, these particular distinctions have no effect on the vegetation optimality
condition or the predictions of the percolation model described here. On an annual scale,
the water evaporated off plant stomata is represented as the transpiration.

The production of biomass relates to the mass of an object, such as the roots. The root
architecture can be modeled as a fractal (e.g., [37]). For consistency in approach, the choice
of a 2D percolation exponent for the optimal paths’ tortuosity requires the use of the 2D
percolation exponent for the root mass fractal dimension. Using the argument that the root
mass will depend on its lateral extent, it was then proposed [43] and references therein that
NPP should be proportional to, xr

1.9, i.e., the lateral spread raised to the power of df = 1.9.
The result is the expression NPP = c ET1.9, with c being a constant. Here, transpiration,
which is typically [49] approximately 2/3 of evapotranspiration, ET, was approximated
as ET. However, the total mass in the root system must also be expressed in terms of the
vertical dimension. Thus, the yearly increase in biomass is proportional to the product of
root depth and horizontal contribution to the biomass (ET1.9).

Since NPP has an ET1.9 dependence and soil depth xs depends on P and ET as
(P-ET)1.15, it is straightforward to determine the maximum of NPP by differentiating
the product ET1.9 (P − ET)1.15 with respect to ET and setting the resulting equation to zero.
Excluding the trivial endpoint solutions, ET = 0 and ET = P (allowing division by ET and
ET − P), the resulting equation is 1.9 ET = (1.9 + 1.15) P. The result [19] is a proportionality
of ET to P with a proportionality constant involving only universal exponents from per-
colation theory [35] and a value 0.623; thus, ET = 0.623 P. The second derivative of NPP
with respect to ET is negative at ET = 0.623 P, demonstrating that this particular value
of ET generates a maximum; however, it is much easier to determine that the extremum
is a maximum by applying physical arguments. Since annual NPP cannot be negative if
plants even exist, ET can neither exceed P nor be negative. This argument is also consistent
with a physical argument that ET can only take on values somewhere between 0 and P. But,
at the endpoints of the domain, when ET = P, or when ET = 0, the above expression for NPP
yields 0. Therefore, a maximum must exist for some ET value between these two limits.

The above optimization procedure must be extended when there is a deficit of either
water or energy, i.e., P ̸= PET, with PET defined explicitly as the depth of water that would
evaporate off a free surface in one year. An index called the aridity index, AI = PET/P, has
been proposed to distinguish between the water and energy limitations. For water-limited
systems corresponding to AI > 1, the same optimization procedure was applied only to
that fraction of the ground covered by vegetation (which is proportional to AI−1), with ET
elsewhere approximated as being equal to P, and for energy-limited systems, with AI < 1,
the optimization procedure was applied only to that fraction of P that could be evaporated
(i.e., equal to PET) [19], and the remaining P contributing to run-off.

The results of the optimization, including energy and water limitations for ET (PET,P),
were then substituted back into NPP = c ET1.9 to obtain two equations for aridity indices
higher and lower than 1 [19].

NPP = c (0.623 PET)1.9 AI ≤ 1 (4)

NPP = c
[

P− 0.377
P2

PET

]1.9

AI > 1 (5)
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For P = PET (AI = 1) the two expressions are identical and equal to c (0.623 P)1.9. In
Equations (4) and (5), a single unknown parameter, c, is used to convert units of precipi-
tation in mm1.9 yr−1.9 to units of productivity, gC m−2 yr −1. Assuming the validity of
species energy theory (supported by Refs. [13,17], with further evidence of a direct pro-
portionality of S and NPP [28,50]), Equations (4) and (5) can now be utilized to predict
species richness as well. In such a procedure, an additional multiplicative parameter of
unspecified magnitude with units of m2 yr gC−1 must be utilized in order to obtain results
that are unitless. The two parameters may be combined into a single parameter, h, with
units of yr1.9 mm−1.9. Effectively, this gives the product of the number of species per gram
of carbon biomass produced (per year per meter), times the biomass produced per unit of
evapotranspiration. Doing so does, however, somewhat obscure the (assumed) central role
of NPP in the determination of species number S.

It was shown in percolation optimality theory (Hunt et al. 2024) [19] that, by compari-
son with a data summary of Budyko (1974) [40], the constant c may be treated as universal
across climate regimes with PET varying by a factor of 7, and for each separate PET value,
the aridity index AI varying by 2 orders of magnitude. The direct comparison [19] of all
the values in [40] with Equation (4) resulted in an R2 value of 0.97, assuming a universally
relevant value of c. However, the combined factor relating climate variables to S is different,
depending on what subset of the total number of plant species is considered, with the
largest value of the constant appropriate for all plant species, a smaller value for the number
of vascular plants, and a yet smaller value if only tree species are meant. Because of their
high production of biomass, expressions for tree species number S tend to require a larger
NPP per species, with fewer individuals in a given area and a correspondingly smaller
number of species. Other variation in h is expected to be traceable to other inputs to species
richness, such as heterogeneity (e.g., topography) for a given scale, geologic or climatic
history, or variation in scale.

3. Principal Data Sources

We chiefly use data from Currie, 1991 [13], who reported the dependence of tree
species richness on climatic data across North America north of Mexico. He divided up
this region into lat-lon quadrats of 2.5◦ by 2.5◦ south of 50◦ N and of the same width in
longitude, but double the height in latitude, north of 50◦ N. Thus, not all regions were
of the same size, which introduces an uncontrolled variation in S of up to a factor 2 that
is not generated by climate, with the justification of increased accuracy in other regards.
To count the number of species in each quadrat, maps of the ranges of tree species were
overlaid with one another. For each quadrat, Currie determined annual mean values
of P and PET, as well as ET (and other climate variables), referring to the methods of
Budyko [40]. At 70◦ N, roughly tundra latitude, PET dropped to under 100 mm yr−1 at
ca. 50 mm yr−1, marking the highest latitude and smallest PET values where trees were
found. Quadrats completely covered with tundra had no tree species. The largest value
of PET was about 1800 mm yr−1, while that of P was almost completely restricted to
1600 mm yr−1. Currie [13] also calculated NPP but did not represent S in terms of NPP.
Latham and Rickfels (1993) [5] augmented the data set of tree species numbers from [13]
by including additional compatible data for South America, Eastern Asia, and Japan. The
purpose of their investigation was to determine whether the greater continuity in climate in
Eastern Asia through the glacial episodes of the Pleistocene could contribute significantly
to a greater tree species richness, S. The data for South America were expressed as ranges
of values, not strictly compatible with the data of [13], and we did not incorporate them.

4. Comparison with Data

Currie [13] carefully investigated climate severity, climate variability, glacial history,
heterogeneity, and energy as potential influences on species richness and concluded that
energy was the strongest predictor, with variations in ET accounting for 78% of the vari-
ability in S. He went on to discuss that, although correlations do not demonstrate causality,
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they do serve useful functions, i.e., “when a correlation predicted by a hypothesis is weaker
than other observed correlations, one may conclude that a better hypothesis exists”. Using
this guidance, we tested Equations (4) and (5) with a constant c independent of climate
variables to investigate the accuracy of the percolation optimality model of NPP for pre-
dicting the species number (Figure 1). Because Currie (1991) [13] does not give both P
and PET values for the same site, it is not possible to compare predictions for each site
directly without the original data and generate a statistical evaluation. In their comparison
with data from [40], Hunt et al. [19] apply Equations (4) and (5) in terms of a family of
curves NPP (PET/P, PET), each as a function of AI = PET/P for different values of PET.
The separate representations of S(PET) and S(P) in [13] require developing an alternate
procedure with a coordinated comparison between the two. Thus, the value of the constant
c is the same in both comparisons, while the range of PET values shown in S(PET) must
be used as the source of distinct PET values chosen for comparing with S(P) and vice
versa. Thus, like Currie, we investigate correlations between S with PET (Figure 1) and P
(Figure 2) separately for the entire data set.

In addition to the paired test, it is possible to augment the visual test of the predictions
for S(PET) by separating different geographic scales. This is accomplished by focusing on
the data for the major provinces of the Canadian North (Nunavut, Yukon, and Northwest
Territories) since this region, with the southern boundary at 60 degrees N, accounts for
the S values in Figure 1 with PET < 400 mm yr−1 (Figure 8 in Ref. [13]). In Statistique
Canada (2022) [51], Average Annual Precipitation, by Ecoprovince (1979–2006), all P values
in these three provinces fall within the range of 80 mm yr−1 to 510 mm yr−1. Applying
these values of P for PET < 400 mm yr−1 leads to the results shown in Figure 3.

The author [13] investigated various other organisms (birds, reptiles, and so on) as
well but found a monotonic relationship with climate variables only for tree species. The
author noted a strong correlation with any of the energy variables, but the strongest was
with ET. The relationship with P was described as “weak”. It is important to note, however,
that the slope of the upper bound on species richness for S(PET) is not a monotonic function
of PET and that our prediction generates the observed change in curvature.

In Figures 1–3, the value of the constant h, which converts units of ET1.9 to the unitless
S, is maintained at 0.0055 yr1.9 mm−1.9.
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Figure 1. Comparison of predicted tree species number, S(PET), for various values of P with ob-
served numbers of tree species as a function of PET. The largest value of PET reported was 1800 mm 
yr−1. PWJ 220 (mm yr−1) refers to the lowest rainfall boundary where Western Junipers are reported 
[52] in Eastern Oregon, which approaches the lowest elevations along the valley floors [53]. PPP = 
460 refers to the lowest P, where Ponderosa Pines are reported [52]. PGF = 740 refers to the smallest 
value of P for which Grand Fir is reported. PGF = 1160 refers to the largest value of P for which 
Grand Fir is reported. P = 1600 refers to the upper precipitation limit on significant data (a few 
additional points are found in the vicinity of 2000 mm yr−1). Because the Canadian North data are 

Figure 1. Comparison of predicted tree species number, S(PET), for various values of P with observed
numbers of tree species as a function of PET. The largest value of PET reported was 1800 mm yr−1.
PWJ 220 (mm yr−1) refers to the lowest rainfall boundary where Western Junipers are reported [52]
in Eastern Oregon, which approaches the lowest elevations along the valley floors [53]. PPP = 460
refers to the lowest P, where Ponderosa Pines are reported [52]. PGF = 740 refers to the smallest value
of P for which Grand Fir is reported. PGF = 1160 refers to the largest value of P for which Grand Fir is
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reported. P = 1600 refers to the upper precipitation limit on significant data (a few additional points
are found in the vicinity of 2000 mm yr−1). Because the Canadian North data are severely restricted
in PET, the range 0 < PET < 400 mm yr−1 is treated separately below, while the guidance given for
Eastern Oregon is more appropriately restricted to PET > 400 mm yr−1.
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smaller PET, S appears to be 0. In Figure 2, the smallest P reported is 128 mm yr−1, likewise 
with S = 1, and converging to 0 for smaller P (though one point at 138 mm yr−1 has S = 49). 
Equations (4) and (5) yields S = 1.4 for PET = 100 mm yr−1 and P = PET, and equally for P 
= 100 mm yr−1 and PET ≥ P. For Figure 2, we chose PET = 125 mm yr−1 to denote the onset 
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Figure 2. Comparison of predicted tree species number, S, as a function of P for various values
of PET. PETTu = 125 corresponds to the Arctic Circle, a proxy for the onset of the tundra. PET
1800 corresponds to the largest PET values found in Figure 1. The other values are labeled analogously
to Figure 1, with GF referring to the smallest and largest PET values bounding the habitat of the
Grand Fir and the label BF meaning Boreal Forest.

Entropy 2024, 26, x FOR PEER REVIEW 8 of 14 
 

 

severely restricted in PET, the range 0 < PET < 400 mm yr−1 is treated separately below, while the 
guidance given for Eastern Oregon is more appropriately restricted to PET > 400 mm yr−1. 

 
Figure 2. Comparison of predicted tree species number, S, as a function of P for various values of 
PET. PETTu = 125 corresponds to the Arctic Circle, a proxy for the onset of the tundra. PET 1800 
corresponds to the largest PET values found in Figure 1. The other values are labeled analogously 
to Figure 1, with GF referring to the smallest and largest PET values bounding the habitat of the 
Grand Fir and the label BF meaning Boreal Forest. 

 
Figure 3. Comparison of predicted tree species number, S, as a function of PET for ranges of P and 
PET appropriate for the Canadian Northwest of Hudson Bay. The area between the yellow (P = 80) 
and the purple (P = 510) curves is where data are expected. The intermediate value (brown curve, P 
= 220) forms a lower bound for measured tree species at much larger values of PET in, e.g., Eastern 
Oregon and represents the driest climate there for Western Juniper but has no special relevance in 
the Canadian North, where PET does not exceed 400 mm yr−1. 

In Figure 1, the smallest PET with a non-zero S is PET = 117 mm yr−1 with S =1. For 
smaller PET, S appears to be 0. In Figure 2, the smallest P reported is 128 mm yr−1, likewise 
with S = 1, and converging to 0 for smaller P (though one point at 138 mm yr−1 has S = 49). 
Equations (4) and (5) yields S = 1.4 for PET = 100 mm yr−1 and P = PET, and equally for P 
= 100 mm yr−1 and PET ≥ P. For Figure 2, we chose PET = 125 mm yr−1 to denote the onset 
of the tundra for the reasons described next. 

Figure 3. Comparison of predicted tree species number, S, as a function of PET for ranges of P and
PET appropriate for the Canadian Northwest of Hudson Bay. The area between the yellow (P = 80)
and the purple (P = 510) curves is where data are expected. The intermediate value (brown curve,
P = 220) forms a lower bound for measured tree species at much larger values of PET in, e.g., Eastern
Oregon and represents the driest climate there for Western Juniper but has no special relevance in the
Canadian North, where PET does not exceed 400 mm yr−1.
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In Figure 1, the smallest PET with a non-zero S is PET = 117 mm yr−1 with S =1. For
smaller PET, S appears to be 0. In Figure 2, the smallest P reported is 128 mm yr−1, likewise
with S = 1, and converging to 0 for smaller P (though one point at 138 mm yr−1 has S = 49).
Equations (4) and (5) yields S = 1.4 for PET = 100 mm yr−1 and P = PET, and equally for
P = 100 mm yr−1 and PET ≥ P. For Figure 2, we chose PET = 125 mm yr−1 to denote the
onset of the tundra for the reasons described next.

PET = 50 mm yr−1, for which Equation (4) predicts S = 0.4 < 1, occurs at (70 ◦N)
(Figure 8A in Ref. [13]), which skims the northern edge of Canada west of Hudson Bay
(and marks the S = 0 contour in Figure 1A of [13]). At the Arctic Circle, values of PET
range from about 50 mm yr−1 to 200 mm yr−1, with a mean of 125 mm yr−1, which
generates S = 2, barely distinguishable from 0 in Figure 2. On the tree species map of
Canada (Figure 1A of [13]), S drops below 10 near the Arctic Circle, but not to 2. However,
for P and PET both 200 mm yr−1, within the range of PET values shown in Figure 8A of
Ref. [13], the calculated value of S is 5.

It is important to note that a PET of approximately 500 mm yr−1 (and for equal precip-
itation, calculated S = 30) occurs just north of the latitude 50◦ N [54], which corresponds
approximately to the onset of the boreal forest. Starting at approximately this latitude,
the contours of species follow latitudinal boundaries rather closely across Canada, with S
between 30 and 40 at 50◦ N. As can be seen, for such latitudes with strong energy limita-
tions, PET describes most of the variability in S, both in the figure and on the map. This
characteristic is shared in a global data set of vascular plants addressed below.

In Figure 1, within the range 1160 < PET < 1300, which corresponds to the range
of the Grand Fir [52] in PET, PGF = 740, at the dry end of the range of Grand Fir in P,
approximately matches the largest S values in the Western USA that varies from 80 to
100. However, PGF = 1160, which generates the upper limit of the P range of Grand Fir,
corresponds to S = 160 or larger, almost double the maximum number of species in the west,
and a better match for the largest values of S found in the Southeastern USA at similar PET.

Consider Figure 2 again. Since the PET ranges for the Western Juniper and the
Ponderosa Pine range from 1300 mm yr−1 to 1610 mm yr−1, but the p values vary from
220 mm yr−1 to 760 mm yr−1, their ranges are compressed on this figure to lie between the
purple and the light blue curves, where these curves are adjacent. The Grand Fir, however,
is constrained to lie between the purple and the magenta curves on the left side of the
plateau in the purple curve. Again, this puts the Grand Fir in the region where between
about 130 and 160 species are expected, but only 80–100 are found.

Currie [13] explains the existence of the cloud of points outside the range of expected
S values (above the 1600 curve) as tracing to the higher-than-expected species richness
in the (arid to semi-arid) Southwestern USA. Strong heterogeneity in topography and
water resources over relatively small spatial separations is likely the cause here, as was
demonstrated through Currie’s correlation between heterogeneity and richness. The inter-
pretation of the overall results is also enhanced by an examination of Figure 1 in Currie's
work [13], which shows local minima in S < 30 in the rain shadow of the Sierra Nevada
(Great Basin) and in two regions along the Southern High Plains with S < 20. Juniper
habitats are found in both of these relatively arid regions. Sufficient heterogeneity exists
to place juniper habitat into the same quadrat with nearby habitats that support more
(and less) trees, but not on as fine a scale as in California, where tree species numbers are
everywhere above 40 and mostly above 60. Thus, topographic effects help to limit the
number of tree species (Figure 1) at the lower range of WJ to 20 rather than 2 (which would
reflect the local association with pinon pine). Thus, the map helps in understanding the
cut-off in data at P of approximately 220 mm yr−1 for a wide range of PET with a fairly
large S value (near 20).

Although we do not show the data from Kreft and Jetz (2007) [55] for the global
vascular plant species number as a function of PET, the authors report that their data
reflect a strong correlation of species number S with PET for PET < 500, but little pre-
dictability solely from that climate variable at larger PET, similar to the result found by

137



Entropy 2024, 26, 641

Currie (1991) [13], although, in that case, the strong correlation extends to PET > 600. These
observations likely have the same cause, namely, that for sufficiently large PET, omission of
consideration of the variability in P misses most of the predictability from climate variables.

Figure 4 demonstrates that similar climates (Eastern Asia [5] and North America-
Europe [13]) with identical values of ET and, thus, to the lowest approximation of the same
NPP, may have different numbers of tree species. The enhancement factor in Eastern Asia
is approximately 2. The explanation for this discrepancy is given by Ref. [5] as related
to natural history. Thus, North America and Europe, covered in the relatively recent
geological past by ice sheets, may have fewer species since, in contrast to Eastern Asia,
sufficient time has not elapsed for the ecosystem with the maximum number of species
to develop. Currie [13] appears to have anticipated this argument, investigating North
America for a correlation between S and Pleistocene glaciation, and found none. His
interpretation was that a time span of over 10,000 years was adequate to remove the signs
of past climate within the vegetation. However, Pleistocene climates affected strongly
all of North America north of Mexico, so perhaps such an evaluation misses a critical
input. If the interpretation of Ref. [5] is correct, the Shannon entropy associated with Asian
ecosystems would be somewhat larger. Thus, maximizing Shannon entropy would, similar
to conventional statistical mechanics, eliminate information that would help establish the
history of a system. In the particular case discussed related to Holocene climate change,
the simplest calculation, replacing each probability that a tree (in N. America) belongs to
a given species by half its value (twice the value of S in E. Asia), would result in an increase
in Shannon entropy of ln (2). In the event that this is a non-equilibrium value, that difference
would then be expected to disappear with sufficient time. If, however, the difference is due
to, e.g., a greater relief (heterogeneity), then the distinction would tend to remain.

Entropy 2024, 26, x FOR PEER REVIEW 10 of 14 
 

 

is approximately 2. The explanation for this discrepancy is given by Ref. [5] as related to 
natural history. Thus, North America and Europe, covered in the relatively recent geolog-
ical past by ice sheets, may have fewer species since, in contrast to Eastern Asia, sufficient 
time has not elapsed for the ecosystem with the maximum number of species to develop. 
Currie [13] appears to have anticipated this argument, investigating North America for a 
correlation between S and Pleistocene glaciation, and found none. His interpretation was 
that a time span of over 10,000 years was adequate to remove the signs of past climate 
within the vegetation. However, Pleistocene climates affected strongly all of North Amer-
ica north of Mexico, so perhaps such an evaluation misses a critical input. If the interpre-
tation of Ref. [5] is correct, the Shannon entropy associated with Asian ecosystems would 
be somewhat larger. Thus, maximizing Shannon entropy would, similar to conventional 
statistical mechanics, eliminate information that would help establish the history of a sys-
tem. In the particular case discussed related to Holocene climate change, the simplest cal-
culation, replacing each probability that a tree (in N. America) belongs to a given species 
by half its value (twice the value of S in E. Asia), would result in an increase in Shannon 
entropy of ln (2). In the event that this is a non-equilibrium value, that difference would 
then be expected to disappear with sufficient time. If, however, the difference is due to, 
e.g., a greater relief (heterogeneity), then the distinction would tend to remain. 

In any case, the slope of log S vs. log ET is compatible with the percolation prediction, 
1.9 in both cases. 

 
Figure 4. NPP, predicted as proportional to ET1.9, is compared with species richness data from North 
America and Europe [13] and separately from Eastern Asia and Japan [5]. 

5. Discussion 
Our predicted results for NPP, known to accurately forecast [19] plant productivity 

when compared with the classic data set [40], also track species richness rather closely, 
including the precipitation and potential evapotranspiration dependencies individually. 
Using a universal constant (for North America, at least), the observed regular dependence 
of tree species number on latitude over the northern half of the continent was predicted. 
In the US, representative species (Grand Fir, Ponderosa Pine, and Western Juniper) 
showed up in approximately their appropriate positions in the NPP (P, PET) space (equiv-
alent to S (P, PET) space with a single constant of proportionality). The resulting propor-
tionality of S to NPP is consistent with the species energy theory, which makes S, N, and 
energy input all proportional to each other.  

The basis for the theoretical predictions lies in a new theory of the water balance [19] 
and the associated carbon cycle, itself developed using percolation scaling for growth, 
productivity, and soil formation, and the principle of ecological optimality. The funda-
mental basis for the optimality chosen here is similar to that proposed originally in Ref. 

Figure 4. NPP, predicted as proportional to ET1.9, is compared with species richness data from North
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In any case, the slope of log S vs. log ET is compatible with the percolation prediction,
1.9 in both cases.

5. Discussion

Our predicted results for NPP, known to accurately forecast [19] plant productivity
when compared with the classic data set [40], also track species richness rather closely,
including the precipitation and potential evapotranspiration dependencies individually.
Using a universal constant (for North America, at least), the observed regular dependence
of tree species number on latitude over the northern half of the continent was predicted. In
the US, representative species (Grand Fir, Ponderosa Pine, and Western Juniper) showed
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up in approximately their appropriate positions in the NPP (P, PET) space (equivalent to S
(P, PET) space with a single constant of proportionality). The resulting proportionality of S
to NPP is consistent with the species energy theory, which makes S, N, and energy input all
proportional to each other.

The basis for the theoretical predictions lies in a new theory of the water balance [19]
and the associated carbon cycle, itself developed using percolation scaling for growth,
productivity, and soil formation, and the principle of ecological optimality. The fundamen-
tal basis for the optimality chosen here is similar to that proposed originally in Ref. [20]
in its assumption that a relationship between NPP and water fluxes can be used as an
objective function to optimize maximum productivity. However, in Ref. [20], the opti-
mization was internal (i.e., within plants). Here, the optimality expresses a competition
for the water between plants and soil together with the mostly symbiotic relationship
between soil and plants. If the plants do not receive any water from precipitation, they
cannot grow and enrich the soil with carbon and such nutrients as nitrogen, nor can the
organic acids they otherwise produce initiate chemical weathering of the subsurface, and
the water flux can at most transport carbonic acid from the atmosphere. Thus, a necessary
precursor to soil development is completely missing in this particular scenario. On the
other hand, if the plants take all the water from precipitation, none passes by to take the
organic acids or nutrients down into the subsurface, and no soil is produced. Since most
plants scarcely grow without soil, there must be a maximum in productivity somewhere
in between, i.e., 0 < ET < P (a point summarized in a University of Texas Dallas Geonews
video: https://www.youtube.com/watch?v=xv-n54NTd9M (accessed on 23 July 2024)).

Determining the optimum in the water balance (ET) through maximization of NPP
allows the prediction of NPP as a function of climate variables. The maximization of NPP
may require maximum diversity [22], which often implies the need for sufficient time under
a stable climatic regime for all relevant ecosystem members to adapt or be transported into
the region studied. However, disturbance regimes may strongly influence these patterns in
the double role of potentially generating diversity over long time scales and taking up NPP
(as through wildfire) [56]. Our approach is in general accord with the advice of Whittaker
and Field (2000) [57]: “Predictable global patterns in species richness at the macro-scale
can be accounted for by a simple climate model, based not on actual evapotranspiration
(AET), which is an ambiguous variable, but on potential evapotranspiration (PET) and
annual rainfall [. . .] Historical contingency provides an important part of the explanation
for residual variation, left over when climate has been accounted for.” We now check
whether our results can help with the analysis of the role of historical contingency in the
distinction between Asian and North American tree species richness.

Using [58], the maximum values of PET = 2000 mm yr−1 calculated by the Thorn-
thwaite (1948) [59] or Penman–Monteith (1965) [60] method or PET = 2200 mm yr−1

calculated by the Priestley–Taylor (1972) [61] for tropical conditions (NDVI between 0.6 and
0.8), Equations (4) and (5) for P ≥ PET yields values of S equal to 418 and 501, respectively.
Accounting for the ca. factor of 2 increase in h for Eastern Asia (Latham and Rickfels,
1993 [5]), as compared with North America, would generate maximum values of 836 and
1002 for S. Notably, these two values are close to the largest recorded values in the tropics
(1000 < S < 1500) in both the Americas and Southeastern Asia (though at much smaller
scales) in [62]. The greater continuity of the predictability of species richness in Eastern Asia
as opposed to the significant disconnect in the Americas is consistent with the assertion of
Latham and Rickfels (1993) [5] regarding the role of history (“tropical conservatism”), as
well as the argument of Whittaker and Field [57] regarding the importance of an accurate
representation of the primary, i.e., climate, input to species richness in determining the
relative importance of secondary inputs. It is also possible that greater heterogeneity in
topography in Eastern Asia, with its extreme relief, might have contributed to the greater
diversity found in the Latham–Rickfels study [5].
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6. Conclusions

We presented a proof of concept for applying the hydrological principles of water
balance, the near-2D development of a soil layer across the landscape, the fractal-like
development of root structure (following the logic of percolation theory), and the water
requirements of plants to link potential evapotranspiration with species richness. We
tested this prediction with previously studied data [13] and found realistic trends for the
entire data set and for several individual species. In a later extension of the range of PET
values investigated to values consistent with the maximum observed PET in the tropics,
we discovered that a single formula (Equations (4) and (5)) generates values of S consistent
with the observation from the Arctic to the Equator and helped to understand quantitatively
the distinction between Asian and N. American tree species richness consistent with the
tropical conservatism hypothesis.

This work aims to fill a gap in existing knowledge, that is, how species richness is
mechanistically related to climate variables and water balance through constraints on
water use by transpiration by plants and spatial constraints on their root growth. It also
highlights important questions in biodiversity sciences as to what constrains overall species
diversity. It provides an energetic justification/mechanism for the formation of richness
that was already mentioned in previous work (e.g., [63]). Future work may delve more
deeply into additional data sets or link this percolation optimality framework with the
Maximum Entropy Theory of Ecology through the prediction of species richness. With
such climate-related and mechanistic constraints, it may be possible, through the use of
macroecological theory, to develop a much more complete picture of constraints on species
diversity and productivity at local and global scales.

Important aspects missing from the present formulation include that it does not
address the role of ecological networks [64], for which the data used in the present study
have no temporal dependence. Without any means to address temporal dependences, our
study therefore omits a priori potential causal inputs. Given the definition of geographic
regions defined by the author [13] of the tree study in terms of a global coordinate system
(latitude and longitude), it also seems to be impossible to expand this particular study to
address the potential effects of drainage basin architecture and river corridor correlations in
species numbers, even though the importance of such inputs is known [65,66]. In contrast
to the impossibility of modifying the present study to address such important inputs into
the temporal and spatial variability of species numbers, the results of our study may be
relatively easily incorporated into (functional or geographical) network analyses of (plant
and animal) species richness patterns and their development through time. For, as has long
been known, animal species patterns should be linked to the plants with which they are
associated [67].
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Abstract: Complex networks, from neuronal assemblies to social systems, can exhibit abrupt, system-
wide transitions without external forcing. These endogenously generated “noise-induced transitions”
emerge from the intricate interplay between network structure and local dynamics, yet their underly-
ing mechanisms remain elusive. Our study unveils two critical roles that nodes play in catalyzing
these transitions within dynamical networks governed by the Boltzmann–Gibbs distribution. We
introduce the concept of “initiator nodes”, which absorb and propagate short-lived fluctuations,
temporarily destabilizing their neighbors. This process initiates a domino effect, where the stability
of a node inversely correlates with the number of destabilized neighbors required to tip it. As the
system approaches a tipping point, we identify “stabilizer nodes” that encode the system’s long-term
memory, ultimately reversing the domino effect and settling the network into a new stable attrac-
tor. Through targeted interventions, we demonstrate how these roles can be manipulated to either
promote or inhibit systemic transitions. Our findings provide a novel framework for understanding
and potentially controlling endogenously generated metastable behavior in complex networks. This
approach opens new avenues for predicting and managing critical transitions in diverse fields, from
neuroscience to social dynamics and beyond.

Keywords: information theory; noise-induced transitions; metastability

1. Introduction

Multistability, a fundamental characteristic of complex systems [1,2], describes the
capacity of a system to occupy multiple stable states and transition between them. This
phenomenon is ubiquitous, manifesting in diverse domains from neural networks [3,4] to
opinion dynamics [5] and ecosystems [6]. While state transitions are often attributed to ex-
ternal perturbations, we propose a novel perspective: in networked systems, noise-induced
transitions can occur endogenously. These transitions emerge from local interactions that
cascade through the network, triggering large-scale regime shifts in a process we term the
“domino effect”. This mechanism offers a new understanding of how complex systems can
dramatically reconfigure without external forcing, challenging traditional views on system
stability and change.

In nonlinear systems, such as interconnected neurons, noise plays a fundamental
role in facilitating transitions between attractor states [7–9]. It enables the exploration of
larger state spaces, allowing systems to escape local minima [10,11]. While multistability
has historically been studied from an equilibrium perspective [10,12,13], recent research
has revealed how network structure fundamentally affects the stability and transitions of
complex systems [14–17].

Recent work has approached network control through algorithmic information the-
ory, which measures the computational complexity of producing network states through
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controlled interventions [18–20]. While this provides powerful tools for steering networks
through external manipulation, fundamental questions remain about how networks spon-
taneously transition between states through their internal dynamics. Our approach uses
Shannon information theory to quantify the temporal correlations that emerge naturally as
networks evolve, revealing how noise propagates through network structure to generate
endogenous transitions. This complements algorithmic approaches by focusing on the
statistical mechanisms underlying spontaneous state changes rather than the computational
complexity of producing specific states.

Our study addresses a critical gap in understanding noise-induced transitions in
networked dynamical systems out of equilibrium. We focus on systems where each node’s
state evolves according to the Boltzmann–Gibbs distribution, a framework applicable to
various phenomena including neural dynamics [21], opinion formation, and ferromagnetic
spins [22]. An example of a noise-induced transition in this model executed on a network
is shown in Figure 1.

We introduce two novel concepts: initiator nodes that propagate noise and destabilize
the system, and stabilizing nodes that maintain metastable states. To quantify the impact of
short-term and long-term correlations in these transitions, we propose two information-
theoretic measures: integrated mutual information and asymptotic information. These met-
rics, computable from observational data, provide powerful tools for analyzing metastable
dynamics across different time scales.

0 2000 4000 6000 8000 10000
Time (t)

0

0.2

0.4

0.6

0.8

1

In
st

an
ta

ne
ou

s 
sy

st
em

 m
ac

ro
st

at
e 

(
S

t
)

1

2

a

Agent state
0 1

Si S
Stabilizing dynamics

Destabilizing dynamics
b

0 0.2 0.4 0.6 0.8 1
System macrostate ( S )

0

0.1

0.2

P(
S

)

c

20

0

En
er

gy
 (

(S
)

)

0 0.25
P(S)

Figure 1. A dynamical network governed by kinetic Ising dynamics produces multistable behavior.
(a) A typical trajectory is shown for a kite network for which each node is governed by the Ising
dynamics with β ≈ 0.534. The panels show system configurations Si ∈ S as the system approaches
the tipping point (orange to purple to red). For the system to transition between attractor states, it
must cross an energy barrier (c). (b) The dynamics of the system can be represented as a graph. Each
node represents a system configuration Si ∈ S such as depicted in (a). The probability for a particular
system configuration p(S) is indicated with a color; some states are more likely than others. The
trajectory from (a) is visualized. Dynamics that move towards the tipping point (midline) destabilize
the system, whereas moving away from the tipping point are stabilizing dynamics. (c) The stationary
distribution of the system is bistable. Crossing the tipping point requires crossing a high-energy state
(dashed line). Transitions between the attractor states are infrequent and rare. For more information
on the numerical simulations, see Appendix A.2.

Integrated mutual information captures the transient destabilization of the system,
revealing the role of initiator nodes in triggering systemic transitions. Asymptotic infor-
mation, on the other hand, quantifies the long-term memory encoded by stabilizer nodes,
which ultimately reverses the domino effect and settles the network into a new stable
attractor. By manipulating these roles, we demonstrate how targeted interventions can
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either promote or inhibit systemic transitions, offering a new approach to controlling critical
transitions in complex networks.

Our computational method uncovers a network percolation process that facilitates
noise-induced transitions without external parameter changes, offering a fresh perspective
on tipping points in complex networks [23–26]. This approach bridges the gap between
local equilibrium dynamics and global system behavior, providing insights into how
network structure influences systemic transitions [14,15,27–29].

By revealing the domino-like mechanisms of endogenous state transitions, our work
has broad implications for predicting and potentially controlling critical transitions in
diverse, complex systems. From enhancing brain plasticity to anticipating ecosystem shifts,
this framework provides a foundation for understanding and managing multistability in
an interconnected world.

2. Methods

Our study focuses on dynamical systems where the state transitions of individual
nodes are governed by the Boltzmann–Gibbs distribution. This distribution, fundamental
in statistical mechanics, provides a probabilistic framework for describing the behavior
of systems in thermal equilibrium. In our context, it determines the likelihood of a node
transitioning from one state to another based on the energy difference between states and a
global noise parameter. Specifically, the probability of a node transitioning from state si to
state s′i is given by:

P(si → s′i) =
1

1 + exp(−β∆E(si, s′i))
, (1)

where ∆E(si, s′i) represents the energy difference for the state transition, and β is the
inverse temperature or noise parameter. This formulation captures the essence of how local
interactions and global noise influence state changes in our networked system. Higher
values of β correspond to lower noise levels, leading to more deterministic behavior, while
lower β values introduce more randomness into the system’s dynamics. This framework
allows us to model a wide range of phenomena, from neural activity to opinion dynamics,
within a consistent mathematical structure.

Fluctuations and their correlations at time τ are captured using Shannon’s mutual
information [30] shared between a node’s state (st

i ) at time t and the entire future system
state (St+τ), I(sτ

i : Sτ+t). The time lag t is used to analyze two key features of information
flows of a system: the area under the curve (AUC) of short-term information and the
sustained level of long-term information.

The contribution of a node to the dynamics of the system will differ depending on the
network connectivity of a node (Figure A3) [31,32]. The total amount of fluctuations shared
between the node’s current state and the system’s short-term future trajectory is computed
as the integrated mutual information.

µ(si) =
∞

∑
t=0

(I(sτ
i : Sτ+t)−ω(si)

)∆t. (2)

Intuitively, µ(si) represents a combination of the intensity and duration of the short-
term fluctuations on the (transient) system dynamics [31]. It reflects how much of the node
state is in the “working memory” of the system.

The term ω(si) ∈ R≥0 represents the system’s long-term memory. As the system
transitions between stable points, short-lived correlations evolve into longer-lasting ones,
particularly among less dynamic nodes. When ω(si) is positive, it indicates a separation
of time scales: ephemeral correlations dissipate, giving way to slower, more persistent
fluctuations. These enduring fluctuations reflect the multiple attractor states accessible to
the system, with fewer dynamic nodes becoming more aligned with future system states.

Near a stable attractor, the system primarily generates short-lived fluctuations. How-
ever, as it approaches a tipping point, longer-lasting correlations emerge. These persistent
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correlations facilitate the system’s transition from one stable attractor to another, much
like repeated nudges eventually push a ball over a hill. The asymptotic information,
ω(si), quantifies this transition potential. Higher values of ω(si) indicate a greater like-
lihood of state transition, with the exact value reflecting each node’s contribution to the
tipping behavior.

Asymptotic information distinguishes itself from other early warning signals—such as
increased autocorrelation, critical slowing down captured by Fisher information, changes
in skewness or kurtosis, and increased variance—by specifically measuring the system’s
long-term memory and temporal correlation structure. While entropy captures the overall
uncertainty or disorder in a system at a given moment, and mutual information quantifies
the shared information between components at a particular time, asymptotic information
focuses on the persistence of correlations over extended time periods. It reveals how past
states influence future configurations, capturing aspects of the system’s dynamics that are
not explained by instantaneous or short-term pairwise measures.

Using these information features, each node can be assigned to a different role based
on their contribution to the metastable transition. We denote nodes with short-lived
correlations as initiators pushing nodes towards a tipping point. In contrast, nodes with
longer-lived correlations are referred to as stabilizers. For these nodes, their dynamics are
less affected by short-lived correlations, and they require a higher mixing state to transition
from one state to another. The role assignment will be further discussed in Section 3.5.

We compute information flows using exact calculations on a randomly generated
connected graph of n = 10 nodes. The states are grouped based on their distance to the
tipping point, defined as the energy barrier between two locally stable states. For the
Ising model, this corresponds to the collection of states where ⟨S⟩ = 0.5. We evaluate the
conditional distribution up to τ = 300 time steps.

This computational process scales exponentially with the number of nodes, O(n) = 2n,
which limits its applicability to large-scale systems without employing variable reduction
techniques such as coarse-graining. Extending this analysis to larger systems will be the
focus of future research.

For detailed replication instructions, please refer to Appendix A.

3. Results

Our analysis reveals several key insights into the dynamics of metastable transitions
and tipping points in complex networks. We observe a distinct domino effect where low-
degree nodes initiate system destabilization. As the system approaches a tipping point,
information flows shift from low-degree to high-degree nodes. We identify a rise in
asymptotic information as a potential early warning signal for an impending tipping point.
Finally, we uncover a division of roles among nodes, with some acting as initiators that
propagate perturbations and others as stabilizers that influence the system’s transition
between attractor states.

In Figure 2, we visualize the information flows at different stages as the system
approaches the tipping point. While we present detailed analysis using the kite graph
for simplicity, these findings generalize to other network structures, as demonstrated in
Figure 3 and further elaborated in the Appendix A.
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Figure 2. (a–e) Information flows as distance to a tipping point, where each line color corresponds to
the matching-colored node in the kite graph inset. Far away from the tipping point, most information
processing occurs in low-degree nodes (colored in blue/purple, tail of kite). As the system moves
towards the tipping point, the information flows increase and shift towards higher-degree nodes
(colored in red/orange, core of kite). (f) Integrated mutual information as a function of distance to
the tipping point. The graphical inset plots show how noise is introduced far away from the tipping
point in the tail of the kite graph (blue/purple nodes). As the system approaches the tipping point,
the local information dynamics move from the tail to the core of the kite (red/orange nodes). (g) A
rise in asymptotic information indicates that the system is close to a tipping point. At the tipping
point, the decay maximizes as trajectories stabilize into one of the two attractor states. The color of
each line consistently matches its corresponding node in the kite graph visualization.
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3.1. Information Flow Dynamics and the Domino Effect

To decompose the metastable transition, we consider local information flows in a
given system partition, Sγ = {S′ ⊆ S|⟨S′⟩ = γ} where γ ∈ [0, 1] represents the fraction of
nodes that have state 1. This yields the conditional integrated mutual information:

µ(si|⟨S⟩) =
∞

∑
t=0

(I(sτ
i : Sτ+t|⟨Sτ⟩)−ωsi )∆t. (3)

Details about the estimation procedure can be found in Appendix A.5.
Two key observations emerge from Figure 2:
First, the tipping point is reached through a domino effect, with low-degree nodes

acting as initiators early in the process. These nodes, being more susceptible to noise
(see Figure A3), are more likely to pass fluctuations to neighbors—akin to pushing a
ball up a hill. Far from the tipping point (Figure 2a), lower-degree nodes show higher
integrated mutual information, µ(si|⟨S⟩), than higher-degree nodes. This noise injection by
lower-degree nodes increases the likelihood of a metastable transition.

Second, an increase in asymptotic behavior corresponds to the system transitioning
between attractor states. As shown in Figure 2b,c, asymptotic information remains low
far from the tipping point and steadily increases as the system approaches it. Nodes with
higher asymptotic information possess greater predictive power regarding which side of
the tipping point the system will settle on.

3.2. Path Analysis and Tipping Point Trajectories

To illustrate the information encoded in these flows, we computed trajectories from
the attractor state S = {0, . . . , 0}, simulated for t = 5 steps. Figure 4 shows a trajectory
that maximizes:

log p
(
St+1|St, S0 = {0, . . . , 0}, ⟨S5⟩ = 0.5

)
.

These trajectories reveal how the information flows measured in Figure 2c are gen-
erated by the sequence of flips originating from the tail of the kite graph. Tail nodes are
uniquely positioned to pass on fluctuations to their neighbors, eventually causing a cascade
of flips that reach the tipping point. This simple example illustrates how the network
structure can influence the system’s dynamics and the information flows that precede a
metastable transition. Where noise pushes the system towards a tipping point, originating
first in low-degree nodes for dynamics governed by the Boltzmann–Gibbs distribution.
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Figure 4. The tipping point is initiated from the bottom up. Each node is colored according to
state 0 (black) and state 1 (yellow) Shown is a trajectory towards the tipping point that maximizes
∑5

t=1 log p(St+1|St, S0 = {0}, ⟨S5⟩) = 0.5). As the system approaches the tipping point, low-degree
nodes flip first and recruit “higher” degree nodes to further destabilize the system and push it towards
a tipping point. In total, 30,240 trajectories reach the tipping point in 5 steps, and 10 trajectories have
the same maximized values as the trajectory shown in this figure (see Figure A7 for the remaining
trajectories and probabilities).
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3.3. Network Structure and Node Roles in Metastable Transitions

The domino effect is not solely determined by node degree. As the system nears the
tipping point, network effects become significant. For instance, in the kite graph, node
8 (degree 2) exhibits the highest integrated mutual information when 2 bits are flipped
(Figure 2b). In contrast, node 3 (degree 6) shows low shared information prior to the tipping
point but high shared information at the tipping point.

This transition highlights how the network structure as a whole contributes to a
system’s behavior. Local structural measures, such as degree centrality, may undervalue a
node’s contribution towards a tipping point and the eventual settlement in a new attractor.

3.4. Tipping Point Dynamics and Information Flow

At the tipping point, the system is most likely to either move to a new attractor state
or relax back to its original state (Figure 4). Path analysis reveals that the most likely paths
to the tipping point result in a configuration where a high-degree cluster of nodes must
flip. This trajectory is less likely than reversing the path shown in Figure 4, explaining why
most tipping points “fail” and relax back to the original attractor state (Figure 5b).

The increased information of node 8 around the tipping point can be understood by
considering its predictive power about the system’s future. As shown in Figure 5a, both
node 3 and node 8 have low uncertainty about the future system state, but the nature of
this certainty differs. Node 3 is more certain that the average system state will equal its
state at the tipping point, while node 8 is more certain that the future system state will have
the opposite sign to its state at the tipping point.
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Figure 5. (a) Shown are the conditional probabilities at time t = 10 relative to the tipping point. The
shared information between the hub node 3 and the tail node 8 is similar but, importantly caused
through different sources. The hub (node 3) has high certainty that the system macrostate will be
the same sign as its state. In contrast, node 8 has high certainty that the system macrostate will
be opposite to its state at the tipping point. This is caused by the interaction between the network
structure and the system dynamics whereby the most likely trajectories to the tipping point from the
stable regime are mediated by the noise-induced dynamics from the tail to the core in the kite graph
(see main text). (b) Successful metastable transitions are affected by network structure. Successful
metastable transitions are those for which the sign of the macrostate is not the same prior to and after
the tipping point, e.g., the system going from the 0 macrostate side to the +1 macrostate side or vice
versa. Shown here are the number of successful metastable transitions for Figure 3 under control and
pinning interventions on the nodes in the kite graph.
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3.5. Role Division and Interventions in Tipping Behavior

We approximate the role of a node i using the difference between integrated mutual
information and asymptotic information:

ri = max
⟨S⟩

µ∗(si|⟨S⟩)−max
⟨S⟩

ω∗(si) ∈ [−1, 1], (4)

where µ∗ and ω∗ are normalized versions of µ and ω, respectively.
Nodes with role values close to 1 are classified as “initiators” with high predictive

information about short-lived system trajectories. Nodes with values close to −1 are
“stabilizers” with high long-term predictive information about future system states.

We validated these roles using simulated interventions (Figure 3). Pinning initiator
nodes to the 0 state promotes tipping points while pinning stabilizer nodes is essential for
stabilizing transitions between attractor states.

4. Discussion

Understanding how metastable transitions occur may help in understanding how,
for example, a pandemic occurs or a system undergoes critical failure. In this paper,
dynamical networks governed by the Boltzmann–Gibbs distribution were used to study
how endogenously generated metastable transitions occur. The external noise parameter
(temperature) was fixed such that the statistical complexity of the system behavior was
maximized (see Appendix A.2).

The results show that in the network, two distinct node types could be identified:
initiator and stabilizer nodes. Initiator nodes are essential early in the metastable transition.
Due to their high degree of freedom, these nodes are more affected by external noise. They
are instigators and propagate noise in the system, destabilizing more stable nodes. In
contrast, stabilizer nodes have a low degree of freedom and require more energy to change
state. These nodes are essential for the metastable behavior as they stabilize the system
macrostate. During the metastable transition, a domino sequence of node state changes is
propagated in an ordered sequence toward the tipping point.

This domino effect was revealed through two information features, unveiling an
information cascade underpinning the trajectories toward the tipping point.

Integrated mutual information captured how short-lived correlations are passed on
from the initiator nodes. In the stable regime (close to the ground state), low-degree nodes
drive the system dynamics. Low-degree nodes destabilize the system, pushing the system
closer to the tipping point. In most cases, the initiator nodes will fail to propagate the noise
to their neighbors. On rare occasions, however, the cascade is propagated progressively
from low degree to higher and higher degree. A similar domino mechanism was recently
found in climate science [6,27]. Wunderling and colleagues provided a simplified model
of the climate system, analyzing how various components contribute to the stability of
the climate. They found that interactions generally stabilize the system dynamics. If,
however, a metastable transition was initialized, the noise was propagated through a
similar mechanism as found here, i.e., an initializer node propagated noise through the
system, which created a domino effect that percolated through the system.

An increase in asymptotic information forms an indicator of how close the system is to
a tipping point. Close to the ground state, the asymptotic information is low, reflecting how
transient noise perturbations are not amplified, and the system macrostate relaxes back to
the ground state. As the system approaches the tipping point, the asymptotic information
increases. As the distance to the ground state increases, the system is more likely to
transition between metastable states. After the transition, there remains a longer-term
correlation. Asymptotic information reflects the long(er) timescale dynamics of the system.
This “rest” information peaks at the tipping point as the system chooses its next state.

The information viewpoint uniquely offers an alternative view to understand how
metastable transitions are generated by dynamical networks. Two information features
were introduced that decompose the metastable transition in sources of high information
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processing (integrated mutual information) and distance of the system to the tipping point
(asymptotic information). A domino effect was revealed, whereby low-degree nodes initiate
the tipping point, making it more likely for higher-degree nodes to tip. On the tipping point,
long-term correlations stabilize the system inside the new metastable state. Importantly,
the information perspective allows for estimating integrated mutual information directly
from data without knowing the mechanisms that drive the tipping behavior. The results
highlight how short-lived correlations are essential to initiate the information cascade for
crossing a tipping point.

5. Conclusions

Our information-theoretic approach offers an alternative view to understanding how
metastable transitions are generated by dynamical networks. Two information features
were introduced that decompose the metastable transition in sources of high information
processing (integrated mutual information) and distance of the system to the tipping point
(asymptotic information). A domino effect was revealed, whereby low-degree nodes initiate
the tipping point, making it more likely for higher-degree nodes to tip. On the tipping point,
long-term correlations stabilize the system inside the new metastable state. Importantly,
the information perspective allows for estimating integrated mutual information directly
from data without knowing the mechanisms that drive the tipping behavior. The results
highlight how short-lived correlations are essential to initiate the information cascade for
crossing a tipping point.

6. Limitations

Integrated mutual information was computed based on exact information flows.
This means that for binary systems, it is necessary to compute a transfer matrix on the
order of 2|S| × 2|S|. This reduced the present analysis to smaller graphs. It would be
possible to use Monte-Carlo methods to estimate the information flows. However, I(sτ

i :
Sτ+t) remains expensive to compute. When using computational models, it is necessary
to compute the conditional and marginal distributions, which are on order O(2|S|) and
O(2t|S|), respectively. In Appendix A.11, we give a proof of principle of how the results
presented here would generalize to larger systems.

In addition, the decomposition of the metastable transition depends on the partition of
the state space. Information flows are, in essence, statistical dependencies among random
variables. Here, the effect of how the tipping point was reached was studied by partitioning
the average system state in terms of the number of bits flipped. This partitioning assumes
that the majority of states prior to the tipping point are reached by having fraction c ∈ [0, 1]
bits flipped. The contribution of each system state over time, however, reflects a distribution
of different states; reaching the tipping point from the ground state 0 can be done at t− 2
prior to tipping by either remaining in 0.4 bits or transitioning from 0.3 bits flipped to 0.4
and eventually to 0.5 in 2 time steps. The effect of these additional paths showed marginal
effects on the integrated mutual information and asymptotic information.

Information flows conditioned on a partition is a form of conditional mutual infor-
mation [33]. Prior results showed that conditional information produces synergy, i.e.,
information that is only present in the joint of all variables but cannot be found in any of the
subsets of each variable. Unfortunately, there is no generally agreed-upon definition of how
to measure synergy [34,35], and different estimates exist that may over or underestimate
the synergetic effects. By partitioning, one can create synergy as, for a given partition, each
spin has some additional information about the other spins. For example, by taking the
states such that ⟨S⟩ = 0.1, each spin “knows” that the average of the system equals 0.1.
This creates shared information among the spins. Analyses were performed to estimate
synergy using the redundancy estimation Imin[36]. Using this approach, no synergy was
measured that affected the outcome of this study. However, it should be emphasized that
synergetic effects may influence the causal interpretation of the approach presented here.
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A general class of systems was studied governed by the Boltzmann–Gibbs distribution.
For practical purposes, the kinetic Ising model was only tested, but we speculate that
the results should hold (in principle) for other systems dictated by the Boltzmann–Gibbs
distribution. We leave the extension to other Hamiltonian systems for future work.

The practical implementation of interventions based on our theoretical framework
faces several real-world challenges. First, in actual complex systems, measuring and moni-
toring the complete state space in real time may be technically infeasible or prohibitively
expensive. Second, the ability to perform precise, targeted interventions on specific compo-
nents of the system may be limited by physical constraints or technological capabilities.
Third, the assumption of perfect knowledge about system parameters and state transi-
tions may not hold in real-world scenarios where noise, measurement errors, and external
perturbations are present. Furthermore, the time scales at which interventions need to
be implemented may be too rapid for practical human or automated response systems.
These practical limitations suggest that while our framework provides valuable theoretical
insights, its application may require significant adaptation and simplification for real-world
implementation, potentially trading off optimal control for practical feasibility.
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Appendix A

Appendix A.1. Background, Scope and Innovation

Noise-induced transitions produce metastable behavior that is fundamental for the
functioning of complex dynamical systems. For example, in neural systems, the presence of
noise enhances information processing through several mechanisms: stochastic resonance,
where moderate levels of noise can amplify weak signals and improve signal detection;
prevention of neural networks becoming stuck in local minima, therefore maintaining
system flexibility; and enabling more efficient exploration of different neural states during
computation [37–40]. These effects have been demonstrated both in experimental studies
of neural circuits and theoretical models of neural computation.

Similarly, the relation between glacial ice ages and Earth’s eccentricity has been
shown to have a strong correlation. Metastability manifests itself through noise that
can be of two kinds [9]. External noise originates from events outside the internal system
dynamics [10,41]. Examples include the influence of climate effects, population growth,
or random noise sources on transmission lines. External noise is commonly modeled by
replacing an external control or order parameter with a stochastic process. Internal noise,
in contrast, is inherent to the system itself and is caused by random interactions of elements
within the system, e.g., individuals in a population or molecules in chemical processes.
Both types of noise can generate transitions between metastable states. In this paper, we
study the metastable behavior of internal noise in complex dynamical networks governed
by kinetic Ising dynamics.

The ubiquity of multistability in complex systems calls for a general framework to
understand how metastable transitions occur. The diversity of complex systems can be
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captured by interaction networks that dynamically evolve over time. These dynamics can
be seen as a distributive network of computational units, where each unit or element of the
interaction network changes its state based on input from its local neighborhood. Lizier
demonstrated that the dynamic interaction of complex systems can be understood through
their local information processing [42–44]. Instead of describing the dynamics of the system
in terms of domain knowledge such as voltage over distance, disease spreading rate, or
climate conditions, one can understand the dynamics in terms of information dynamics. In
particular, the field of information dynamics is concerned with describing system behavior
through its capacity to store, transmit, and modify information. By abstracting away the
domain details of a system and recasting the dynamics in terms of how the system computes
its next state, one can capture the intrinsic computations a system performs. The system
behavior is encoded in terms of probability, and the relationships among these variables
are explored using the language of information theory [45].

Information theory offers profound benefits over traditional methods used in metasta-
bility analysis, as the methods developed are model-free, can capture nonlinear relation-
ships, can be used for both discrete and continuous variables, and can be estimated directly
from data [30]. Shannon information measures, such as mutual information and Fisher
information, can be used to study how much information the system dynamics shares with
the control parameter [11,46].

Past research on information flows and metastable transitions focuses on methods
to detect the onset of a tipping point [47–49]. It often centers around an observation that
the system’s ability to absorb noise reduces prior to the system going through a critical
point. This critical slowing down can be captured as a statistical signature where the
Fisher information peaks [50]. However, these methods traditionally use some form of
control parameter driving the system towards or away from a critical point. Most real-world
systems lack such an explicit control parameter and require different methods. Furthermore,
detecting a tipping point does not necessarily lead to a further understanding of how the
tipping point was created. For example, in a finite-size Ising model, the system produces
bistable behavior. As one increases the noise parameter, the bistable behavior disappears.
The increase in noise effectively changes the energy landscape, but little information is
gained about how the metastable behavior initially emerged.

In this work, a novel approach using information theory is explored to study metastable
behavior. The statistical coherence between parts of the system is quantified by the capabil-
ity of individual nodes to predict the future behavior of the system [43]. Two information
features are introduced: Integrated mutual information measures predictive information of a
node on the future of the system, and Asymptotic information measures the long timescale
memory capacity of a node. These measures differ from previous information methods such
as transfer entropy [51], conditional mutual information under causal intervention [52],
causation entropy [53], and time-delayed variants [54] in that these methods are used to
infer the transfer of information between sets of nodes by possibly correcting for a third
variable. Here, instead, we aim to understand how the elements in the system contribute to
the macroscopic properties of the system. It is important to emphasize that information
flows are not directly comparable to causal flows [33]. A rule of thumb is that causal
flows focus on micro-level dynamics (X causes Y), whereas information flows focus on
the predictive aspects, providing a holistic view of emergent structures [43]. In this sense,
this work is similar to predictive information [55] where predictive information of some
system (S) is projected onto its consistent elements (si ∈ S) and computed as a function of
time (t).

Appendix A.2. Methods and Definitions

Appendix A.2.1. Model

To study metastable behavior, we consider a system as a collection of random variables
S = {s1, . . . , sn} governed by the Boltzmann–Gibbs distribution:
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p(S) =
1
Z

exp(−βH(S)),

where β = 1
T is the inverse temperature which controls the noise in the system, andH(S)

is the system Hamiltonian which encodes the node-node dynamics. The choice of the
energy function dictates what kind of system behavior we observe. Here, we focus on
arguably the simplest models that show metastable behavior: the kinetic Ising model and
the Susceptible-Infected-Susceptible model.

Temporal dynamics are simulated using Glauber dynamics sampling. In each discrete
time step, a spin is randomly chosen, and a new state X′ ∈ S is accepted with probability

p(accept X′) =
1

1 + exp(−β∆E)
, (A1)

where ∆E = H(X′)−H(X) is the energy difference between the current state X and the
proposed state X′.

Appendix A.2.2. Kinetic Ising Model

The traditional Ising model, originally developed to study ferromagnetism, is consid-
ered one of the simplest models that generate complex behavior. It consists of a set of binary
distributed spins S = {s1, . . . , sn}. Each spin contains energy given by the Hamiltonian:

H(S) = −∑
i,j

Jijsisj − hisi, (A2)

where Jij is the interaction energy of the spins si, sj.
The interaction energy effectively encodes the underlying network structure of the

system. Different network structures are used in this study to provide a comprehensive
numerical overview of the relation between network structure and information flows (see
Appendix A.2). The interaction energy Jij is set to 1 if a connection exists in the network.

For sufficiently low noise (temperature), the Ising model shows metastable behavior
(Figure 1c). Here, we aim to study how the system goes through a tipping point by tracking
the information flow per node with the entire system state.

Appendix A.3. Information Flow on Complex Networks

Informally, information flows measure the statistical coherence between two random
variables X and Y over time, such that the present information in Y cannot be explained by
the past of Y but rather by the past of X. Estimating information flow is inherently difficult
due to the presence of confounding factors, which potentially trap the interpretation in
the “correlation does not equal causation” paradigm. Under some contexts, however,
information flow can be interpreted as causal [31]. Let S = {s1, . . . , sn} be a random
process, and St represent the state of the random process at some time t. The information
present in S is given as the Shannon entropy:

H(S) = − ∑
x∈S

p(x) log p(x), (A3)

where log is base 2 unless otherwise stated, and p(x) is used as shorthand for p(S = x).
Shannon entropy captures the uncertainty of a random variable; it can be understood
as the number of yes/no questions needed to determine the state of S. This measure of
uncertainty naturally extends to two variables with Shannon mutual information. Let si be
an element of the state of S, then the Shannon mutual information I(S; si) is given as:

I(S; si) = ∑
Si∈S,s′∈si

p(Si, s′) log
p(Si, s′)

p(Si)p(s′)

= H(S)− H(S|si).

(A4)
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Shannon mutual information can be interpreted as the uncertainty reduction of S after
knowing the state of si. Consequently, it encodes how much statistical coherence si and
S share. Shannon mutual information can be measured over time to encode how much
information (in bits) flows from state sτ

i to Sτ+t:

I(Sτ+t; sτ
i ) = H(Sτ+t)− H(Sτ+t|sτ

i ). (A5)

Prior results showed that the nodes with the highest causal importance are those nodes
that have the highest information flow (i.e., maximize Equation (A5)) [31]. Intuitively, the
nodes for which the future system “remembers” information from a node in the past are
the ones that “drive” the system dynamics. Formally, these driver nodes can be identified
by computing the total information flow between St and si, which can be captured with the
integrated mutual information [31]:

µ(si) =
∞

∑
τ=0

I(st−τ
i ; St). (A6)

In some contexts, the nodes that maximize (A6) are those nodes that have the highest
causal influence in the system [31]. However, in general, information flows are difficult
to equate to causal flows [33,43]. Here, the local information flows are computed by
considering the integrated mutual information conditioned on part of the entire state space.
This allows for mapping the local information flows between nodes and the system over
time but does not guarantee that the measured information flows are directly causal. The
main reason is that having predictive power about the future could be completely caused
by the partitioning. In [31], the correlation measured considered all possible states, and the
measures were directly related to a causal effect.

In addition, in [31], the shared information between the system with a node shifted
over time (I(Sτ : sτ+t

i )) was considered. Applying this approach under a state partition
I(Sτ : sτ+t

i |⟨S⟩) causes a violation of the data processing inequality, as information may
flow from a node at a particular time t = t1 and then flow back to the node at t = t2, where
t2 > t1. To simplify the interpretation of the information flows and maintain the data
processing inequality, the reverse I(St+τ : sτ

i |⟨S⟩) was computed in the present study.

Appendix A.4. Noise Matching Procedure

The Boltzmann–Gibbs distribution is parameterized by noise factor β = 1
kT , where T

is the temperature and k is the Boltzmann constant. For high β values, metastable behavior
occurs in the kinetic Ising model. The temperature was chosen such that the statistical
complexity [56] was maximized. The statistical complexity C is computed as:

C = H̄(S)D(S),

where H̄(S) = H(s)
− log2(|S|)

is the system entropy, and D(S) measures the distance to disequilibrium:

D(S) = ∑
i
(p(Si)−

1
|S| )

2.

A typical statistical complexity curve is shown in Figure A1. The noise parameter
β is set such that it maximizes the statistical complexity using numerical optimization
(COBYLA method in Scipy’s optimize.minimize module) [57].
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Figure A1. (a) Statistical complexity (C), normalized system entropy (H(S)) and disequilibrium
(D(S)) as a function of the temperature (T = 1

β ) for Krackhardt kite graph. The noise parameter was
set such that it maximizes the statistical complexity (vertical black line). The values are normalized
between [0, 1] for aesthetic purposes. (b) State distribution p(S) for temperature that maximizes the
statistical complexity in (a) as a function of nodes in state 1.
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Appendix A.5. Exact Information Flows I(sτ
i ; Sτ+t)

In order to compute I(sτ
i : Sτ+t), the conditional distribution p(Sτ+t|sτ

i ) and p(Sτ+t)
need to be computed. This is achieved through direct computation on the partitions of the
state consisting of the number of bits flipped—effectively encoding the distance towards or
away from a tipping point.

We partition the state space based on the average magnetization ⟨S⟩, allowing us to
track states that are n bit flips away from the tipping point.

For Glauber dynamics, the system S transitions into S′ by randomly choosing node
si to potentially flip. The transition matrix p(St|si) = P can be constructed by computing
each entry pij as:

pij,i ̸=j =
1
|S|

1
1 + exp(−∆E)

, with

pii = 1− ∑
j,j ̸=i

pij,

where ∆E = H(Sj)−H(Si) encodes the energy difference of moving from Si to Sj.
For each partition Sγ = {S′ ⊆ S|⟨S′⟩ = γ}, we:

1. Compute transition probabilities between states within the partition
2. Renormalize probabilities to ensure conservation within the partition
3. Evaluate p(St|si) for all possible node states si in that partition

The marginal distribution p(St) is then computed as:

p(Sτ+t) = ∑
si

p(Sτ+t|sτ
i )p(sτ

i ).

This procedure provides exact information flows for states at specific distances from
the tipping point, allowing us to track how correlations evolve as the system approaches
and moves away from the transition.

Extrapolation with Regressions

Exact information flows were computed per graph for t = 500 time steps. Using
ordinary least squares, a double exponential was fit to estimate the information flows for
longer t and estimate the integrated mutual information and asymptotic information.

Appendix A.6. Noise Estimation Procedure

Tipping point behavior under intervention was quantified by evaluating the level
of noise on both sides of the tipping point. Let T1 represent the ground state where all
spins are 0, T2 where all spins are 1, and let the tipping point TP be where the instanta-
neous macrostate M(St) = 0.5. Fluctuations of the system macrostate were evaluated by
analyzing the second moment above and below the tipping point. This was achieved by
numerically simulating the system trajectories under 6 different seeds for t = 106 time
steps. The data were split between two sets (above and below the tipping point), and the
noise η was computed as:

η =
1

α2|Sw|∑w
St

w
2,

where w ∈ {⟨S⟩ < 0.5, ⟨S⟩ > 0.5}, and

St
w =

{
St if St < 0.5
1− St if St > 0.5

(A7)
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is the instantaneous system trajectory for the system macrostate above or below the tipping
point value. The factor α corrects for the reduced range the system macrostate has under
interventions. For example, pinning a node si to state 0 reduces the maximum possible
macrostate to 1− 1

n , where n is the size of the system. The correction factor α is set such
that for an intervention on 0 for a particular node, the range S⟨S⟩>0.5, α is set to n

2 − 1
n .

Appendix A.7. Switch Susceptibility as a Function of Degree

First, we investigate the susceptibility of a spin as a function of its degree. The
susceptibility of a spin switching its state is a function of both the system temperature T
and the system dynamics. The system dynamics contribute to the susceptibility through the
underlying network structure either directly or indirectly. The network structure produces
local correlations, which affect the switching probability for a given spin.

As an initial approximation, we consider the susceptibility of a target spin si to flip
from a majority state to a minority state, given the state of its neighbors, where the neighbors
are not connected among themselves. Furthermore, we assume that for the instantaneous
update of si, the configuration of the neighborhood of si can be considered to be the outcome
of a binomial trial. Let N be a random variable with state space {0, 1}|N|, and let nj ∈ N
represent a neighbor of si. We assume that all neighbors of si are i.i.d. distributed given the
instantaneous system magnetization:

M(St) =
1
|St|∑i

st
i .

Let the minority state be 1, and the majority state be 0. The expectation of si flipping
from the majority state to the minority state is given as:

E[p(si = 1|N)]p(N) = ∑
Ni∈N

p(Ni)p(si = 1|Ni)

= ∑
Ni∈N

∏
|Ni |
j p(nj)p(si = 1|Ni)

= ∑
Ni∈N

(n
k) f k(1− f )n−k p(si = 1| f ),

(A8)

where f is the fraction of nodes in the majority states, n is the number of neighbors, and k
is the number of nodes in state 0. As shown in Figure A3, this is computed as a function of
the degree of spin si. As the degree increases, the susceptibility for a spin decreases relative
to the same spin with a lower degree. This implies that the susceptibility to change due
to random fluctuations is more likely to occur in nodes with fewer external constraints as
measured by degree.

Appendix A.8. Additional Networks

The kite graph was chosen as it allowed for computing exact information flows while
retaining a high variety of degree distribution given the small size. Other networks were
also tested. In Figure A2, different network structures were used. Each node is governed
by kinetic Ising spin dynamics.
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 0.10  0.20  0.30  0.40  0.50

System stability
 Fraction of nodes with state +1

Figure A2. Adjusted mutual information for a random tree (top) and Leder–Coxeter–Frucht graphs
(middle,bottom). Each node is governed by kinetic Ising spin dynamics. Far from the tipping point
(fraction nodes 1 = 0.5), most information flows are concentrated on non-hub nodes. As the system
approaches the tipping point (fraction = 0.5), the information flows move inwards, generating higher
adjusted integrated mutual information for nodes with higher degrees.

Appendix A.9. Flip Probability per Degree

In Figure A3, the tendency for a node to flip from the majority to the minority state
is computed as a function of the fraction of nodes possessing the majority state 1 in the
system, denoted as N. Two things are observed. First, nodes with lower degrees are more
susceptible to noise than nodes with higher degrees. For a given system stability, nodes
with lower degrees tend to have a higher tendency to flip. This holds true for all distances
of the system from the tipping point. In contrast, the higher the degree of the node, the
closer the system must be to a tipping point for the node to change its state. This can be
explained by the fact that lower-degree nodes have fewer constraints compared to nodes
with higher degrees. For Ising spin kinetics, the nodes with higher degrees tend to be
more "frozen" in their node dynamics than nodes with lower degrees. Second, for a node
to flip with similar probability mass (i.e., E[p(si)|N] = 0.2), a node with higher degrees
needs to be closer to the tipping point than nodes with lower degrees. In fact, the order
of susceptibility is correlated with the degree; the susceptibility decreases with increasing
degree and fixed fraction of nodes in state 1.
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Figure A3. Susceptibility of a node with degree k switching from the minority state 0 to the majority
state 1 as a function of the neighborhood entropy for β = 0.5. The neighborhood entropy encodes
how stable the environment of a spin is. As the system approaches the tipping point, the propensity
of a node to flip from the minority state increases faster for low-degree nodes than for high-degree
nodes. Higher-degree nodes require more change in their local environment to flip to the majority
state. See for details Appendix A.7.

0.0 0.1 0.2 0.3 0.4 0.5
Fraction of nodes with state+1

Figure A4. Shortest path analysis of the system ending up in the tipping point from the state where
all nodes have state 0. The node size is proportional to the expectation value of a node that has state 1
(E[si = 1]St ,M(S5)) as a function of the fraction of nodes that have state 1. The expectation values are
computed based on 30240 trajectories; an example trajectory can be seen in Figure 4.

Appendix A.10. Synthetic Networks

For the synthetic graphs, 100 non-isomorphic connected Erdős–Rényi networks were
generated with p = 0.2. Graphs were generated randomly and rejected if they did not
contain a giant component or were isomorphic with already generated graphs. For each of
the graphs, information curves were computed as a function of the macrostate ⟨S⟩.

Noise and Time Spent

Various network structures are generated in the synthetic networks. The variety of
network structures has nonlinear effects on the information flows. The effect of intervention
in Figure 3 is made relative to the control values for the graph and seed. The second moment
(appendix: Appendix A.6) and the time spent below the tipping point are normalized with
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respect to the graph (Figure A5) and the seed. In total, 6 seeds are used (0, 12, 123, 1234,
123,456, 1,234,567).

Figure A5. Erdős–Rényi graphs generated from seed = 0 to produce non-isomorphic con-
nected graphs.

Appendix A.11. Case Study of a Larger System

In this section, we extend our analysis to a 15-node network to demonstrate the
applicability of our findings to larger systems (see Figure A6). This case study serves to
validate our theoretical insights derived from smaller networks and to illustrate how the
fundamental mechanisms of metastable transitions are preserved as network size increases.
Despite the increased computational complexity, our results indicate that the structural
features driving these transitions in smaller networks are also evident in larger ones.

0 50
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0 50
 

0 50
 

0 50
 

0 50
 

0 50
 

0 50
 

S  = 0.1 S  = 0.17 S  = 0.23 S  = 0.3 S  = 0.37 S  = 0.43 S  = 0.5

Time (t)

I(s
t+ i

:S
t )

Figure A6. Example of tipping behavior in a system consisting of N = 15 nodes. The colors of
the curves correspond to the nodes in the network. The information decay curves are bundled per
degree. The transition from left to right increases the number of bits flipped until the tipping point.
A wave can be seen where the integrated information flows from lower-degree nodes to higher
ones as the number of bits flipped increases. The size of the nodes is proportional to the integrated
mutual information.
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As highlighted in Section 6, the state space of a network grows exponentially (2n) with
the number of nodes, making simulations of larger systems computationally demanding.
Nevertheless, our analysis of the 15-node network supports our assertion that the foun-
dational processes identified in our primary study can be extrapolated to more complex
networks. Detailed results and discussion of this 15-node network analysis are provided to
substantiate our approach and highlight the consistency of our findings across different
network sizes.
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Figure A7. (A) Probability distribution of trajectories reaching the tipping point within 5 time steps,
starting from an initial state where all nodes are set to 0. Out of all possible trajectories, 30,240 paths
reached the tipping point. (B) Visualization of the highest-probability trajectories leading to system
collapse. These equiprobable paths demonstrate the cascading failure mechanism, where specific
initiator nodes trigger a domino effect throughout the network. The color gradient indicates the
temporal progression of state changes, illustrating the sequential nature of the collapse process.
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Abstract: Functionally graded materials (FGMs) show continuous variations in properties
and offer unique multifunctional capabilities. This study presents a simulation of the
powder bed fusion (PBF) process for FGM fabrication using a combination of Unity-based
deposition and lattice Boltzmann method (LBM)-based process models. The study intro-
duces a diffusion model that allows for the simulation of material mixtures, in particular
AISI 316L austenitic steel and 18Ni maraging 300 martensitic steel. The Unity-based model
simulates particle deposition with controlled distribution, incorporating variations in par-
ticle size, friction coefficient, and chamber wall rotation angles. The LBM model that
simulated free-surface fluid flow, heat flow, melting, and solidification during the PBF pro-
cess was extended with diffusion models for mixture fraction and concentration-dependent
properties. Comparison of the results obtained in simulation with the experimental data
shows that they are consistent. Future research may be connected with further verification
and validation of the model, by modeling different materials. The presented model can be
used for the simulation, study, modeling, and optimization of the production of functionally
graded materials in PBF processes.

Keywords: functional graded materials; powder bed fusion; lattice Boltzmann method;
modeling; simulation; selective laser melting

1. Introduction
Gradient materials (functionally graded materials, FGMs) are materials in which a

continuous change in functional or construction properties has been achieved along at least
one specific direction in a selected technological process. These materials have been known
for many centuries, although their current name only appeared recently. FGMs allow
for unique properties and behavior, tailored properties and multifunctional capabilities,
thermal resistance, corrosion and wear resistance, improved mechanical performance, light
weight, and high strength, and are widely used in aerospace, automotive, biomedical,
energy, and other applications. Details of the concept of functionally graded materials, their
use and fabrication processes can be found in [1]. Different aspects of FGM, state-of-the-art
research, and development findings can also be found in [2].

Naebe and Shirvanimoghaddam [3] presented an overview of advances in FGM
research. Materials selection, and the fabrication, characterization, analysis, and modeling
of FGMs is the focus of the overview. Additionally, challenges in the fabrication of FGMs
are discussed. Another overview of Kieback et al. [4] presents the achievements in the
field of processing techniques involving metal melting and sintering. They considered
modeling the formation of gradients in the microstructure and presented examples of
numerical simulations. DebRoy et al. [5] reviewed the process, structure, and properties of
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additive manufacturing (AM) of metallic components. They described AM processes that
consolidate materials such as powder, wire, or sheets into a dense metallic part by melting
and solidifying with the aid of an energy source such as a laser, electron beam, or electric
arc, or by the use of ultrasonic vibration in a layer-by-layer manner. One of the recent
reviews [6] is a good guide on the current state of application areas, fabrication possibilities,
and challenges in the field of FGMs. Yadav et al. [6] presented seven AM techniques that
are used most frequently for the fabrication of FGM materials: vat photo polymerization,
material extrusion, material jetting, sheet lamination, binder jetting, powder bed fusion
(PBF), and direct energy deposition.

PBF is one of the most common AM technologies used to manufacture FGMs. PBF
includes selective laser melting (SLM) and selective laser melting (SLS) processes, which
allow for precise control of the composition and microstructure of FGMs. Mussatto [7]
presented a review of several techniques of material deposition in the multi-material PFB
process: conventional spreading, patterning drums, spreading plus suction, vibrating
nozzle, hopper feeding, alternating, and electrophotographic.

Tian et al. [8] consider metallic FGMs and their processes. They noted that metallic
FGMs can be classified in different ways: structural (porosity, grain size) and compositional,
coating and bulk, and continuous and discontinuous. They also described 3D printing
or AM techniques including PBF and experimental results on chemical composition and
microstructure. Wu et al. [9] presented a review of the experimentally observed mechanical
and microstructural characteristics of interfaces in multi-material laser PBF. They described
mechanical spreading, nozzle-based, electrophotographic, and hybrid techniques that make
it possible to achieve compositional gradients and discrete boundaries in two and three
dimensions. They also show the challenges related to material transitions, such as defects,
segregation, and phase separation.

Bandyopadhyay and Traxel [10] highlighted fundamental modeling strategies, con-
siderations, results, and validation techniques using experimental data for application-
optimized designs for metal additive manufacturing. They discussed the potential for
modeling and how simulation would enhance the metal-AM optimization process.

Recent reviews on laser PBF modeling and simulations can be found in [11–13]. Multi-
material AM processes modeled by Shinjo and Panwisawas [14] used the coupled level-set
and volume-of-fluid method. They modeled the formation of the melt pool, the keyhole,
and the flow for different elements. Küng et al. [15] presented a multi-material model for
the lattice Boltzmann-based simulation of the PBF process of a binary alloy as a mixture
of two elements. The heat capacities, latent heat, and other parameters are considered to
be concentration-dependent. Melting and solidification were modeled according to the
phase diagram. They simulated a single melt track in a multi-material powder mixture.
Tang et al. [16] presented simulations of the multi-material laser PBF process using a
volume-of-fluid model. They modeled two- and three-component powders with mixed
titanium Ti, niobium Nb, vanadium V, and arsenic Ar particles.

Wang et al. [17] presented a coupled finite volume-discrete element model for SLM
on powder scale. They modeled a multilayer, multitrack process. Fotovvati and Chou [18]
presented a model based on the discrete element method and computational fluid dynamics
for the simulation of the multilayer PBF process, creating 10 layers.

Recently, the author participated in the creation and development of the SLM and SLS
processes platform, which allows for multistage multi-material simulations [19–21]. How-
ever, the scheme used in the previous simulations is based on the manufacturing process
using metal alloys and bioactive glass alternately that cannot be applied for simulation of
the PBF process of FGM fabrication.
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It should be noted that it is very difficult to find publications with modeling of the
process for FGMs. Among the various methods of material deposition that can be found
in [7], the method proposed and presented in [22,23] was chosen for the simulation.

The objective of this paper is to present a modified PBF model that allows for the
simulation of fabrication of the functionally graded material. To achieve this goal, the
Unity-based model was adopted for the chosen deposition method, and the LBM-based
model was extended with the diffusion model and concentration-dependent thermal and
mechanical properties. The results of the simulation and comparison with the experimental
data are also presented in the paper.

2. Model of PBF Processes
2.1. Holistic Model and Main Algorithm

The model of PBF processes is presented in Figure 1. First, the LBM-based model was
developed for SLM. Details of the development, testing, verification, and validation of the
SLM model and its submodels can be found in previous papers [19–21,24,25]. A platform
was created for the 3D simulation of additive layer manufacturing processes characterized
by changes in the state of matter (melting–solidification) [20]. Integration of the Unity-
based powder bed generation model into the platform allowed for multistage multilayer
multi-material simulations [19]. Then, it was shown that LBM allows for modeling not only
of the SLM but also of the SLS process [21].

Entropy 2025, 27, x FOR PEER REVIEW 3 of 16 
 

 

It should be noted that it is very difficult to find publications with modeling of the 
process for FGMs. Among the various methods of material deposition that can be found 
in [7], the method proposed and presented in [22,23] was chosen for the simulation. 

The objective of this paper is to present a modified PBF model that allows for the 
simulation of fabrication of the functionally graded material. To achieve this goal, the 
Unity-based model was adopted for the chosen deposition method, and the LBM-based 
model was extended with the diffusion model and concentration-dependent thermal and 
mechanical properties. The results of the simulation and comparison with the experi-
mental data are also presented in the paper. 

2. Model of PBF Processes 
2.1. Holistic Model and Main Algorithm 

The model of PBF processes is presented in Figure 1. First, the LBM-based model was 
developed for SLM. Details of the development, testing, verification, and validation of the 
SLM model and its submodels can be found in previous papers [19–21,24,25]. A platform 
was created for the 3D simulation of additive layer manufacturing processes characterized 
by changes in the state of matter (melting–solidification) [20]. Integration of the Unity-
based powder bed generation model into the platform allowed for multistage multilayer 
multi-material simulations [19]. Then, it was shown that LBM allows for modeling not 
only of the SLM but also of the SLS process [21]. 

 

Figure 1. The PBF process with associated physical phenomena and extended submodels for mod-
eling of mixture of two materials and diffusion. 

The model presented in this paper is further developed in the direction of a simula-
tion of a mixture of two materials. The previous multi-material model allowed for the 
simulation of two materials in a sequential way. The first material can be processed in 
several cycles with one or more layers. After that, the rest of the powder was removed 
and the powder of the second material was deposed. The second material can also be 

Figure 1. The PBF process with associated physical phenomena and extended submodels for modeling
of mixture of two materials and diffusion.

The model presented in this paper is further developed in the direction of a simulation
of a mixture of two materials. The previous multi-material model allowed for the simulation
of two materials in a sequential way. The first material can be processed in several cycles
with one or more layers. After that, the rest of the powder was removed and the powder of
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the second material was deposed. The second material can also be processed in several
cycles with one or more layers. The first material (metals or alloys) with a higher melting
temperature can be used as a matrix, and the second material (glasses or ceramics) can be
used as a filler or coverage. The materials were not mixed.

The model is now extended with an additional diffusion model, which allows for
the modeling of mixtures of different materials. Two materials with unlimited solubility
to each other are chosen to simplify the model. They are AISI 316L austenitic steel and
18Ni maraging 300 martensitic steel. These materials can be used for the fabrication of
functionally graded materials according to the scheme shown in [22,23].

The model contains the submodels presented in Figure 1, which are associated with
the physical processes and phenomena that accompany the technological processes of PBF.
Furthermore, the holistic model presented in [19,20] was supplemented with the possibility
of modeling a mixture of two materials at the same time and diffusion. The powder removal
remains in the model but is not used in calculations with mixed materials. The six basic
processes and five submodels are considered at the second and third levels. Most of them
are described in previous publications [19–21,24,25]; some elements are described in the
following sections.

The main algorithm represented as a block diagram (Figure 2) was also modified com-
pared to the previous algorithm [19,20]. The algorithm has two circuits. The first external
circuit contains the powder bed generation (Unity-based model), cycle initialization, cycle
modeling (LBM calculation module), and powder removal, which is not used here.
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Figure 2. Graphical representation of the main algorithm.

The second internal circuit of the algorithm (shown in blue inside the ‘LBM calculation
module’) performs one cycle of the PBF process. Operations are multiple repeated accord-
ing to the presented sequence, which contains the laser beam movement, heating, and
calculation of the new temperature, calculation of normal to the liquid and solid surfaces,
calculation of the fluid density and velocity, collision for fluid, heat flow and diffusion,
streaming for fluid, heat flow and diffusion, boundary condition, and movement of the
liquid–gas interface.

The external cycle prepares the simulation of one layer, while the internal one realizes
this simulation. The internal cycle is multiple repeated modeling one or many tracks,
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calculating small steps of laser movement and pauses after each track. The external cycle
can be repeated as many times as many layers are modeled. In this paper, only a single
track of the single layer is presented. The submodels, subroutines, and kernels of this
circuit are essential for the proper functioning of the entire platform. Some of these models
are described below; the others can be found elsewhere [19–21].

2.2. Powder Bed Generation Model

The Unity-based model was presented in [19,21]. This model was created by using the
publicly available Unity game engine (https://unity.com, accessed on 20 December 2024).
This model is modified to simulate the deposition of the powder of two materials. The
modeling scene created in Unity is presented in Figure 3a. The primary elements of the
scene are a powder chamber with parts separated by a thin wall with different powders,
building platform, and coater. The Unity coordinates set is also presented. The thin wall
can rotate around the vertical axes (axes Y) located in the center of the powder chamber
(supply platform). A rotation angle is set before filling parts of the chamber with powder
of different materials. The floor of the chamber can move vertically at the chosen level.
The coater can then move horizontally along the Z axes, distributing the powder on the
building platform. After that, the coater returns to the initial location. Finally, the floor
of the building planform goes downward to the height of one layer, and the cycle with
the movement of the floor of the powder chamber, the blade of the coater, and the floor
of the building platform can be repeated. Two cases of filling of the powder chamber
are also presented in Figure 3. The thin wall separating the parts of the chamber can
either be rotated or not (Figure 3b). In the second case, this wall is rotated at an angle of
25◦ (Figure 3c). After rotation, the parts are filled with the appropriate powder material.
The sizes of the powder chamber and the building platform are the same and equal to
25 × 25 mm in the Unity model, which represents the real domain of 1250 × 1250 µm. This
means that the Unity model is created on a scale of 20:1 to respond to the real domain.
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2.3. LBM Models of the PBF Process

LBM was developed from lattice gas automata [26] and is derived from the Boltzmann
equation, a fundamental equation in statistical mechanics that can be considered as one of
the computational fluid dynamics (CFD) methods. Several differential equations can be
reduced to or approximated by the Lattice Boltzmann equation (LBE): Navier–Stokes,
advection–diffusion, energy (heat conduction), Poisson, shallow water, elastic wave, Burg-
ers, and magnetohydrodynamic. Details on how to approximate these equations can be
found elsewhere [27,28].

LBM simulates the microscopic dynamics of particle distribution functions on a dis-
crete lattice grid. These particle interactions and streaming processes yield macroscopic
properties like density, velocity, temperature, enthalpy, concentration, etc. LBM uses dis-
crete time, space, and velocity and calculates macroscopic properties through collision and
streaming operations [27–29].

The approximations of different partial differential equations by LBE open up wide
possibilities for multiphysics coupling and modeling. The algorithm of LBM is easy to
implement due to the explicit streaming and collision steps and is highly suited for parallel
computations on CPU and GPU. LBM operates effectively with complex boundaries. Thus,
the model of the PFD process takes into account fluid flow with free surface (flow, surface
tension, wettability, convection, etc.), heat flow (heat source, heat transfer, heat conduction,
melting and solidification), and diffusion.

The LBM model of the PBF process is based on the previously developed model for
the modeling platform, and most of the submodels can be found in detail in previous
publications [19–21,24,25]. They contained two cooperative parts that are responsible for
the fluid and heat flow processes. Fluid flow was considered for a single material.

In this paper, the flow of the mixture is simulated. To determine the composition of
the mixture, a volume fraction of one material in the mixture is introduced. Fluid flow does
not change the composition of the mixture. The composition of the mixture is changed by
diffusion. Diffusion is simplified. Instead of considering the diffusion of many elements in
different mixtures, a mixture is considered as a single homogeneous material in which both
materials are diffused at the same rate, defined by a common diffusion coefficient.

The common algorithm of the LBM model is presented in Figure 2 as the internal
circuit. Each of the three problems (fluid and heat flow and diffusion) is solved according
to the same scheme: calculating macroscopic values based on the input distribution,
determining the equilibrium distribution based on macroscopic values, determining the
output distribution in the collision operation, and determining the input distribution based
on the output distribution in the streaming operation by transferring the components of
the distribution function to appropriate neighboring nodes, taking into account boundary
conditions and other factors. Since all the mechanical and thermal properties of a material
depend on chemical composition and temperature, all three problems are interdependent
and can be solved simultaneously as much as possible. This explains the calculation
sequence, which is described in detail in Section 2.3.4.

Such blocks as the calculation of macroscopic variables, collision and streaming opera-
tions for fluid and heat flow and diffusion are presented in the following Sections 2.3.1–2.3.3;
the other blocks can be found in previous publications [19–21,24,25].

The D3Q19 velocity model is applied for all the tasks. Therefore, 19 components of the
distribution functions that represent directions and velocities are used in the 3D models.
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2.3.1. LBM Model of Fluid Flow

Macroscopic variables, that is, the density ρ of the mixture fluid and the velocity v, are
calculated according to the following equation (vectors are indicated in bold):

ρ = ∑19
i=1 f in

i (1)

ρv = ∑19
i=1 f in

i ei (2)

where fiin—appropriate component of input distribution function of the liquid flow model,
e—phase space variable—velocity (vector), set of discrete velocities, v—velocity vector
{vx, vy, vz}, and i—component of the velocity model.

The collision operation for fluid flow calculates the output distribution function
f out based on the input f in and equilibrium f eq distribution functions. Each distribution
function contains 19 components. Then, the equilibrium f eq and output distribution
functions are defined as follows:

f eq
i = wiρ

[
1 + 3ei·v + 4.5(ei·v)2 − 1.5v·v

]
(3)

f out
i = f in

i +
∆t
τf

(
f eq
i − f in

i

)
+ Fi (4)

where wi—weights, F—external force, for example, gravity, ∆t = 1—time step, and
τf—relaxation time for fluid flow.

The streaming operation that defines input distribution function is performed
according to:

f in
i (x + ei, t + 1) = f out

i (x, t) (5)

where x—node coordinates.

2.3.2. LBM Model of Heat Flow

The new temperature T is calculated as follows:

T = Q + ∑19
i=1 gin

i (6)

where gin—distribution function of the heat flow model, Q—heat source.
The collision operation is carried out:

geq
i = wiT

[
1 + 3ei·v + 4.5(ei·v)2 − 1.5v·v

]
(7)

gout
i = gin

i −
1
τh

(
gin

i − geq
i

)
(8)

where τh—relaxation time for heat flow.
And finally, the streaming operation is as follows:

gin
i (x + ei, t + 1) = gout

i (x, t) (9)

2.3.3. LBM Diffusion Model

This is a new part of the model. The fraction of the first material in the mixture (or its
concentration) C is calculated as follows:

C = ∑19
i=1 cin

i (10)

where c—distribution function of the concentration flow.
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The collision operation is as follows:

ceq
i = wiC

[
1 + 3ei·v + 4.5(ei·v)2 − 1.5v·v

]
(11)

cout
i = cin

i −
1
τd

(
cin

i − ceq
i

)
(12)

where τd—relaxation time for diffusion.
The streaming operation for diffusion is calculated as follows:

cin
i (x + ei, t + 1) = cout

i (x, t) (13)

2.3.4. LBM Cycle and Model Interaction

The second internal circuit of the algorithm (Figure 2) begins with calculations of
macroscopic variables such as temperature (6) and material fraction (10). However, the
temperature model is more complex than (6); it takes into account melting and solidification,
and its details are described in a previous publication [20]. Here, all the properties of the
material that depend on temperature and material fraction are also calculated. Properties
of the mixture are calculated as follows:

P = P1C + P2(1− C) (14)

where P—properties of the mixture (density, melting point, specific heat capacity, thermal
diffusivity, viscosity, etc.), P1, P2—properties of the first and second materials at the actual
calculated temperature, and C—volume fraction of the first material.

The second block of the LBM algorithm is needed to define the interaction in different
interfaces (liquid–gas, solid–liquid, and solid–liquid–gas), mainly used for fluid flow
(surface tension, wettability) but also for heat transfer (additionally, solid-gas interface).

The third block calculates macroscopic variables for fluid flow: density (1) and ve-
locity (from (2) and (1)). Macroscopic velocity is used for the calculation of the equilib-
rium distribution function not only for the fluid flow problem (3), but also for the heat
flow (7) and diffusion (11) problems. The absence of velocity in (7) and (11) corresponds
to the diffusion equation (Fourier), while the presence of velocity corresponds to the
diffusion–advection equation.

Collision operations are performed in the third block for fluid flow (3) and (4) and in
the fourth block for heat flow (7) and (8) and diffusion (11) and (12).

The fifth block performs a streaming operation for all three problems according to
(5), (9), and (13). The components of the distribution functions are transferred to the
appropriate neighboring nodes.

The last block gives the boundary condition and is responsible for the movement of
interfaces connected with fluid flow (liquid–gas, solid–liquid–gas). The movements of
interfaces connected with melting and solidification (solid–liquid–gas and solid–liquid) are
considered in the first block. Details of the different interfaces used in the model can be
found in [20].

A key parameter for proper simulation and agreement on kinetics of different pro-
cesses is the relaxation time for three problems. They are calculated basing on simulation
parameters (time step, lattice length, velocity model D3Q19) and material properties (kine-
matic viscosity ν, thermal diffusivity α, diffusion coefficient D) as follows:

τf =
3ν∆t
∆x2 + 0.5 (15)

172



Entropy 2025, 27, 20

τh =
3α∆t
∆x2 + 0.5 (16)

τd =
3D∆t
∆x2 + 0.5 (17)

3. Simulation and Results
This stage of the research involves the development and verification of the model of

the PBF process objected to the fabrication of grade materials. For the verification of the
model, the data published in [22,23] were used. It explains the modeling scheme and some
parameters of material distribution.

3.1. Materils

AISI 316L austenitic steel (material 1) and 18Ni maraging 300 martensitic steel
(material 2) were chosen for the simulations. The physical properties of these materi-
als are collected in Table 1. The comparison of the diffusion coefficient with the kinematic
viscosity and thermal diffusivity shows the diffusion coefficient is several orders of mag-
nitude smaller and could be neglected, and only advection and mixing can be taken into
account. Since LBM considers the diffusion–advection equation, it allows us to model
almost pure advection Taking into account the velocity in the calculation of the equilibrium
distribution, Function (11) corresponds to advection (and mixing), while the relaxation
time in the determination of the output distribution Function (12) and (17) determines
the diffusion rate. Both materials are closely related to the movement (advection) of the
fluid. When two streams with different fractions arrive at the same node (cell), the volume
contents of both materials are summed to obtain the resulting fraction. When there is
movement of the material in the liquid, the fraction can be changed. When the liquid is
motionless, only diffusion is present.

Table 1. Physical properties of AISI 316L austenitic steel and 18Ni maraging 300 martensitic steel.

Properties AISI 316L 18Ni Maraging

Density, kg/m3 8000 8100
Melting point, K 1648–1673 1686

Specific heat capacity, J/(kg·K) 500 452
Thermal conductivity, W/(m K) 14.0–15.9 25.5

Thermal diffusivity, m2/s 3.75 × 10−6 5.5 × 10−6

Convective heat transfer coefficient, W/(m2 K) 50 50
Coefficient of thermal expansion, K−1 16–18 × 10−6 11.3 × 10−6

Dynamic viscosity, kg/(m s) 2.4–3.3 × 10−3

Kinematic viscosity, m2/s 0.3–0.41 × 10−6

Surface tension, N/m × 10−4 [30] 1.86–1.54 (T-1811.15)
Diffusion coefficient, m2/s 5 × 10−9–10−7.

Relaxation times for liquid flow (15) 0.577
Relaxation times for heat flow (16) 1.22
Relaxation times for diffusion (17) 0.505

3.2. Simulation of Powder Filling and Deposition

Figure 3 presents the simulation scheme and two examples of filling the powder
chamber with a wall rotation angle equal to 0 and 25◦. The simulations were performed for
the following cases.
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• Three rotation angles: (a) 0◦, (b) 25◦, and (c) 45◦.
• Size of the particles: (a) equal to 40 µm, (b) material 1–35 µm, material 2–45 µm,

(c) Gaussian distribution, material 1 average size 35 µm, material 2–45 µm, dispersion
for both materials—5 µm.

• Friction coefficient: (a) 0, (b) 0.2, (c) 0.6.

The deposition process from the powder chamber to building platform with the coater
is shown in Figure 4. The process is shown for a wall angle equal to 0◦ and ten layers with
a friction coefficient of 0.2 and particles of 40 µm.
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Figure 4. Powder deposition process (a) beginning of the first layer, (b) the end of the first layer,
(c) results with 10 layers. Different colors presents different materials.

The deposition results for the case of different rotation angles, Gaussian distribution
of the particle size, and coefficient of friction of 0.2 are shown in Figure 5. The white figures
in Figure 5b represent an example of domains, which are transferred to the LBM model for
further simulations. The location and sizes of the transferred domains are the same for all
simulation cases.
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3.3. Simulation of the PBF Process with LBM

The powder deposition results are transferred from the Unity-based model to the LBM
model. In fact, the simulations in Unity and LBM are performed on different scales and
different domains (Figure 5b). As mentioned above, the scale of the Unity-based model is
20:1 to respond to real sizes. LBM operates with dimensionless units of length and times.
The lattice size in the LBM model, that is, the distance between the neighboring nodes,
is equal to 1.25 µm. The entire domain is not simulated; only single tracks at different
locations are. This allows us to reduce the simulation time.

Various simulations of the PBF process were performed, mainly at the angle of 0 and
25◦, and the results of the distribution of the materials were compared with the distri-
bution of the particles before the process. The simulation tracks are located on the axis
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of the building platform (1250 × 1250 µm) and at a distance of 375 µm from the axis
symmetrically on both sides, as shown in Figure 5b. The size of the LBM modeling space is
960 × 160 × 80 µm or 768 × 128 × 64 nodes. The laser power is 300 W, the scan speed is
1000 mm/s, the laser movement distance is 850 µm (680 lattice lengths), and the laser spot
diameter is 80 µm (64 lattice lengths).

The results of one of the simulation cases of the PBF process are presented in
Figures 6–8. Figure 6 presents a process as the 3D perspective view with a rendering
at five moments of time. The left snapshot presents the initial particle deposition before
the PBF process transferred from the Unity-based model. The next three snapshots present
three moments of time during the processing of one track—at the beginning, middle, and
end of the track. The last snapshot demonstrates the track after the whole material is
solidified. Unprocessed particles are shown in grades of red and blue. Solidified material
is shown in dark colors, with the fractions of red and blue corresponding to the fractions of
the first and second materials. Materials in the liquid state are shown in color as solidified
materials but with the addition of green grade. The laser beam is shown in green.
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with LBM.

Other results are presented in Figures 7 and 8. They show the materials before and
after the PBF process as a longitudinal cross section on the track axis and three transverse
cross sections located at the center of the modeled space and at the distance of 300 µm on
both sides of the center. Unprocessed particles on the longitudinal cross sections (Figure 7)
are shown in lighter colors; solidified materials are shown in deeper colors (red and deep
blue); and a mixture is shown in an appropriate fraction of red and blue. Overheated
molten material can melt some particles completely or partially and flow beneath them,
filling the pores between unmolten particles. The flowing material initiates mixing, which
also involves diffusion. However, for the single track on the microscale, in which the
simulations with LBM were performed, highly mixed areas occupy only a small fraction,
especially when cross sections are considered. Near the surface of the melting pool, the
mixing is much higher than near its bottom. The higher mixing can be seen in the 3D view
(Figure 6). This can be explained by the higher flow velocity and the additional fast stirring
along with the slow diffusion. Near the bottom, the temperature is lower, the viscosity is
lower, and the processes of stirring and diffusion are slower; the modeling results reflect
this. Unprocessed and solidified materials are shown in the same colors on the transverse
cross sections (Figure 8).

3.4. Analisys of Material Distribution

Some deposition results as a material distribution are presented in Figure 9. The
left column represents the distribution before simulation of the PBF process. The volume
fraction of the materials is in the range of 55–62%; the rest is occupied with gas. After
the process, there is no gas and the total fraction of materials reaches 100%. The results
before and after the process are almost the same; the error can be treated as a small random
error. A transient zone from one material to another spreads from 0.25 mm for the angle of
0◦ through approximately 0.4–0.5 mm for the angle of 25◦ to the entire modeling space for
the angle of 45◦. The distribution is almost the same for different locations of the tracks for
the rotation angle of 0◦ (Figure 9a); it can also be seen in Figures 4 and 5a. The increase
in the rotation angle (Figure 9a,c) allows the transient zone to spread, but the difference
in its location and length become uncontrolled. The heterogeneity of the distribution can
also be seen in Figure 5b,c. There are several factors that influence the results obtained in
the simulations. Even if the other conditions are the same, it depends on which powder is
scraped first with the coater blade. In addition, smaller particles are deposited first; this
is especially important when the average size of powder particles of different materials
is different. The higher density particles are deposed first in one layer and go deeper
when they are deposed in several layers without melting, but in the case of the materials
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presented in this paper, the density of the materials is almost the same, and this factor does
not play a notable role. The influence of the friction coefficient on the deposition is also
noticed, but it is difficult to formulate.
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Figure 9. Distribution of two materials before (left column) and after (right column) the simulated
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It is very difficult to perform a quantitative comparison with experimental data. The
experimental results presented in [23] do not allow for the reproduction and repetition
of the study in many details. That is why the comparison can be treated as qualitative
only. The simulation can be considered qualitatively consistent with the results of the
experimental studies presented in [23] and Figure 10. The experimental results show that
diffusion can be neglected and either element can be chosen to define the fraction of the
materials, while material fraction in simulations can be obtained directly [23]. The angle
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of the wall assumes the length of the transient gradient zone of 20 mm; perhaps the angle
in the experimental studies was of 15–20◦. The length of the powder chamber and the
building platform was approximately 60–80 mm. The specimen sizes were 30 × 10 mm.
Pairs of specimens were located symmetrically on a building platform at a distance of
approximately 30 mm from each other. Two pairs differed in the order of the powders in
the powder chamber. Many other parameters are unclear.

The results in [23] demonstrate significant differences in the distribution of different
elements that define different materials. The distributions are different due to the different
locations of the specimens and the order of the powder in the powder chamber. The lack of
information does not allow the author to explain the differences obtained in experimental
studies, but the studies presented in this paper can assume that these differences can be
explained by the location of the specimens and the different sizes of the particles.
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Figure 10. Results of chemical analysis performed on samples from different locations in [23].
Different orientation of the dividing wall (a,b)—left orientation, (c,d)—right orientation. AiSI 316L
closer to the building platform (b,c), Ni superalloy closer to the platform (a,d).

4. Discussion
The results presented in the previous sections show the possibility of modeling a

complex PBF process with the mixture of two materials to obtain graded materials. Analysis
of the distribution of the materials in the final mixture and its comparison with experimental
data allows us to conclude that the complex Unity–LBM model gives adequate results, at
least qualitatively similar to the real PBF process. The analysis was performed not to show
the effectiveness of the FGM fabrication method, but to demonstrate that the LBM-based
model can be applied to the simulation of the fabrication of functionally graded material
in additive manufacturing. The Unity-based model is of its own independent importance.
Simulations by the Unity-based model of the deposition of materials with different physical
and mechanical properties allow for the simulation, study, modeling, and optimization
of deposition schemes and methods for graded materials because the PBF process that
provides homogenization does not significantly influence the final material distribution.
Future research may be connected with further verification and validation of the model,
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modeling different materials, and the optimization of the methods of manufacturing
functionally graded materials in the PFD processes.

5. Conclusions
This paper presents the results of the further development of the platform for model-

ing multi-material multilayer PBF processes directed at the simulation of the fabrication of
functionally graded materials. To achieve this goal, Unity- and LBM-based models were
modified. The Unity-based model allows for the simulation of the deposition of materi-
als with different mechanical properties to create input information for the LBM-based
model. The LBM-based model was extended with several new elements. The diffusion
phenomenon with material mixing was added; it led to the development and implementa-
tion of the diffusion model, which influenced the introduction of the third set of variables
and distribution functions. In addition to diffusion, changes were implemented in the fluid
and heat flow models. The fraction of the materials was introduced, which defines the
physical, mechanical, and thermal properties of the mixture and the effect on the simulation
parameters. The comparison of the results obtained in the simulation with the experimental
data shows that they are consistent. The presented model can be used for the simulation,
study, modeling, and optimization of the production of functionally graded materials in
PBF processes.
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Abstract: Directed networks are essential for representing complex systems, capturing
the asymmetry of interactions in fields such as neuroscience, transportation, and social
networks. Directionality reveals how influence, information, or resources flow within a
network, fundamentally shaping the behavior of dynamical processes and distinguishing
directed networks from their undirected counterparts. Robust null models are crucial
for identifying meaningful patterns in these representations, yet designing models that
preserve key features remains a significant challenge. One such critical feature is reciprocity,
which reflects the balance of bidirectional interactions in directed networks and provides
insights into the underlying structural and dynamical principles that shape their connec-
tivity. This paper introduces a statistical mechanics framework for directed networks,
modeling them as ensembles of interacting fermions. By controlling the reciprocity and
other network properties, our formalism offers a principled approach to analyzing directed
network structures and dynamics, introducing new perspectives and models and analytical
tools for empirical studies.

Keywords: complex networks; directed networks; maximum entropy; Fermi statistics;
reciprocity

1. Introduction
A directed network [1] is a representation of a complex system that captures the

asymmetry of interactions between its elements [2,3]. Directionality enriches network
structure [4,5], and is essential for understanding how influence, information, or resources
flow through a system [6], fundamentally distinguishing directed networks from undi-
rected ones. This is critical across a wide range of domains, including neuronal systems,
biological processes, transportation systems, and social networks. Moreover, directionality
fundamentally influences the behavior of dynamical processes on networks [7–10].

To gain a deeper understanding of the principles shaping real directed networks,
it is crucial to define models that accurately capture their essential characteristics and
organization. In general, network models enable researchers to distinguish meaningful
patterns from random fluctuations and provide principled explanations for the observed
regularities. The family of network models derived by maximizing the entropy of graph en-
sembles subject to the constraints imposed by observations in real-world networks offer the
least biased prediction for their properties [11,12]. However, designing maximum entropy
models for directed networks is a challenging task. This difficulty arises from the need to
account for the interplay between local node properties and global network structures.

Entropy 2025, 27, 86 https://doi.org/10.3390/e27010086
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Specifically, key features in directed networks are in-degrees and out-degrees, account-
ing for the number of incoming and outgoing connected neighbors, their correlations, and
reciprocity [11,13], or the tendency of pairs of nodes to form bidirectional connections.
Reciprocity reflects the balance or imbalance of mutual interactions and serves as a critical
indicator of the underlying structural and dynamical rules governing the system. Another
key property is clustering, the tendency of pairs of neighbors to be connected, forming trian-
gles in the network topology. In directed networks, triangles become multifaceted, splitting
into seven distinct triangle motifs depending on the orientation of the arrows [14,15]. De-
spite the recent introduction of a directed network model [16] that simultaneously explains
many features in directed networks, such as reciprocity, clustering, and other structural
properties, a general theoretical approach based on the maximum entropy principle is
still lacking.

In this paper, we introduce a statistical mechanics framework for directed networks,
treating them as systems of interacting fermions. This approach leverages concepts from
quantum statistics to describe directed networks in terms of ensembles, where network
connections or fermions are constrained by conserved quantities and the entropy of the
ensemble is maximized to fix its probability. By framing directed networks in this way, we
provide a powerful theoretical tool for modeling their structure. Our framework not only
offers new insights into the organization of real-world directed networks but also provides
a principled basis for constructing models that respect key empirical properties.

2. General Formalism
The standard approach in network science treats the nodes of a network as the funda-

mental units of the system, with links representing the interactions between these units.
This perspective naturally aligns with real-world systems, where nodes correspond to
defined entities—countries in the world trade web, proteins or genes in biomolecular inter-
action networks, individuals in society, and so on—making focusing on nodes intuitive and
practical. However, this node-centric viewpoint poses challenges when defining models
using traditional tools from statistical mechanics, as it emphasizes the entities rather than
the interactions.

In this work, we adopt a different perspective by shifting the focus from the nodes of
the network to the links connecting them. In our approach, links are treated as fermionic
“particles” that can occupy distinct energy states. The phase space of possible energy states
is defined by the possible links between the N nodes of the network. This perspective
is particularly intriguing for two reasons. First, links in a network are unlabeled, which
makes them inherently indistinguishable. Second, in a simple network without multiple
connections, only one link can occupy a given state, as no two identical links can exist
between the same pair of nodes. These properties naturally lead to a statistical interpreta-
tion of links in a network as an ensemble of identical and independent fermions, obeying
Fermi–Dirac statistics [11]. By reimagining directed networks in this manner, we not only
provide a novel statistical framework for describing their structure but also lay the ground-
work for constructing statistically rigorous principled models that capture the fundamental
constraints of directed and undirected networks alike. For instance, fermionic mapping
has been instrumental in the analytical study of different aspects of networks, from the
explanation of structural correlations in scale-free networks [17] to a topological phase
transition with divergent entropy involving the reorganization of network cycles [18].

2.1. Fermionic Approach to Directed Networks

Given a pair of nodes i and j, we define two distinct states, i → j and j → i, which
can be occupied by links, or fermions, pointing from i to j and from j to i, respectively,
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see Figure 1. Each state i→ j has an associated energy εij. The occupancy of these states
is described by the asymmetric adjacency matrix {aij}, which equals 1 if the state i → j
is occupied and 0 otherwise, analogous to the occupation number of states in systems of
indistinguishable particles. All the topological properties of the network can be computed
from the adjacency matrix. For instance, the number of incoming connections to a node, or
the incoming degree, is

kin,i =
N

∑
j=1

aji,

where N is the total number of nodes in the network. Analogously, the number of outgoing
connections from a node, or the outgoing degree, is

kout,i =
N

∑
j=1

aij.

Reciprocity implies pairs of nodes with links pointing in both directions, as shown in
the sketch at the bottom of Figure 1. In random network models, a certain default level of
reciprocity is attained when links are independent, or fermions are non-interacting. How-
ever, higher or lower values require that links are correlated, or fermions are interacting.
To account for this possibility, we assume that the energy of two links occupying the two
states i→ j and j→ i simultaneously, that is, of mutual interactions, is ε̃ij. In general, ε̃ij is
different from εij + ε ji.

i jij

ji

ij

i j

ji

i jij

Figure 1. Possible fermionic states between a pair of nodes i and j, and their associated energies. The
solid arrow indicates the presence of a directed link and the dashed arrow an empty state. When
the two fermions simultaneously occupy the two states, i→ j and j→ i, the total energy includes a
correction ∆εij added to the sum of the energies of the partially occupied states.

Due to the indistinguishability of links in a network, any directed network can be
represented in the Fock space using the basis {|a⟩ ≡ ⊗

i,j |aij⟩} defining the number of
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particles/links occupying the set of possible single-particle states. Thus, the representation
of the Hamiltonian of the network Ĥ in the basis of the Fock space defined by the adjacency
matrix is

⟨a| Ĥ |a⟩ = ∑
i<j

[
aijεij + ajiε ji + aijaji∆εij

]
, (1)

where
∆εij = ε̃ij − εij − ε ji

is the correction due to the interaction of two fermions occupying the two states i → j
and j→ i. When ∆εij > 0, the presence of two links connecting the same pair of nodes in
opposite directions is energetically unfavorable, and thus the reciprocity is lower than in
the random case. Conversely, when ∆εij < 0, the link reciprocity is higher than random
case.

In analogy to the case of indistinguishable quantum particles, it is more convenient to
work in the grand canonical ensemble, where the constraints are the following:

• the number of fermions (links) is fixed on average;
• The average energy is fixed as well.

In our formalism, this implies that the total number of links is a random variable that is
fixed on average by the chemical potential µ. The grand partition function of the system is
given by

Z = Tr
(

e−β(Ĥ−µN̂L)
)

(2)

= ∏
i<j

(
1 + e−β(εij−µ) + e−β(ε ji−µ) + e−β(ε̃ij−2µ)

)
,

where N̂L is the number of links operator and the inverse temperature β controls the
average energy of the network. The chemical potential µ fixes the average in-degree (and
out-degree) through the relation

⟨kin⟩ = ⟨kout⟩ =
1

Nβ

(
∂ ln Z

∂µ

)

β

, (3)

and the entropy of the ensemble can be computed from the partition function as

S = ln Z− β

(
∂ ln Z

∂β

)

µ

. (4)

Beyond these global thermodynamic properties, the probability of the ensemble gen-
erating a graph with adjacency matrix {aij} is computed as the probability of a particular
configuration of the system

Prob({aij}) =
1
Z ∏

i<j
e−β[(εij−µ)aij+(ε ji−µ)aji+aijaji∆εij]. (5)

The joint probability of the pair of states i→ j and i← j between nodes i and j is

Prob(aij, aji) =
e−β[(εij−µ)aij+(ε ji−µ)aji+aijaji∆εij]

1 + e−β(εij−µ) + e−β(ε ji−µ) + e−β(ε̃ij−2µ)
. (6)
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Finally, the probability of a directed link existing between nodes i and j, pij ≡ Prob(aij = 1), is

pij =
e−β(εij−µ) + e−β(ε̃ij−2µ)

1 + e−β(εij−µ) + e−β(ε ji−µ) + e−β(ε̃ij−2µ)
. (7)

Equation (7) can be used to evaluate the average in- and out-degrees of individual nodes as

κout,i = ∑
j

pij

and
κin,i = ∑

j
pji,

and the chemical potential as the solution of the equation

⟨kin⟩N = ∑
i,j,j ̸=,i

pij. (8)

Finally, we can use these results to evaluate the reciprocity of the network r, defined
as the ratio between the number of reciprocated links and the total number of links. Thus,

r =
2 ∑i<j pij(1, 1)

∑i,j ̸=i pij
, (9)

where we have defined pij(1, 1) ≡ Prob(aij = 1, aji = 1). It is important to mention here
that the freedom to chose the interaction energies ∆ϵij enables the possibility to adjust the
level of reciprocity for particular sets of nodes or with specific topological properties.

2.2. Non-Interacting Fermions

When the links are independent or, equivalently, the fermions are non-interacting,
∆εij = 0 and the energy is ε̃ij = εij + ε ji. In this situation, the connection probability pij of a
directed link between nodes i and j takes the simple form

pni
ij =

1

1 + eβ(εij−µ)
. (10)

The joint probability Prob(aij, aji) factorizes as Prob(aij, aji) = pni
ij pni

ji , and so does the
partition function

Z = ∏
i<j

(
1 + e−β(εij−µ)

)(
1 + e−β(ε ji−µ)

)
. (11)

Finally, the reciprocity becomes

r =
2 ∑i<j pni

ij pni
ji

∑i,j ̸=i pni
ij

, (12)

which corresponds to the reciprocity expected by pure chance.

2.3. Interacting Fermions

The connection probability of the system without interactions, pni
ij in Equation (10), can

be used to rewrite the connection probability for a directed link in the case of interacting
fermions, pij in Equation (7), which leads to
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pij = pni
ij

1− pni
ji (1− e−β∆εij)

1− pni
ij pni

ji (1− e−β∆εij)
. (13)

In the case of weak interactions or high temperature, the term β∆ε is small, leading to
pij ≈ pni

ij . Similarly, as seen from Equation (13), the connection probability remains un-

changed by fermionic interactions in the limits pni
ij → 0 or pni

ij → 1, where pij = pni
ij again

holds. In these extreme situations, the lack or excess of bidirectional links leaves no room
for the network to exhibit sensitivity to changes in the tendency for reciprocity. We will use
this general property in the next section when dealing with specific models.

3. Specific Random Network Models
So far, we have not specified the energies of the states {εij}, which ultimately define

the particular model at hand. To illustrate the power of our approach, we focus on two
different models within our formalism: the non-interacting Directed Soft Configuration
Model (NI-DCM) [11], and the non-interacting Directed Geometric Soft Configuration
Model (NI-DGCM) [16]. Furthermore, we also derive their maximum entropy interacting
counterparts (I-DCM and I-DGCM).

A priori, our formalism works for an arbitrary number of fermions between 0 and
N(N − 1). However, real complex networks are sparse, meaning that the average in- and
out-degrees, ⟨kin⟩ = ⟨kout⟩, are size-independent. In the rest of this paper, we consider
ensembles of sparse networks.

3.1. Directed Configuration Model

To derive the probability of connection of the DCM [11,19] within our formalism, we
make the simplest assumption that the energy of a directed link connecting nodes i and j
comes from two sources: the energetic cost that node i incurs when creating an outgoing
connection, εout,i, plus the energetic cost that node j incurs when accepting an incoming
connection, εin,j. The total energy of the fermionic state is then

εij = εout,i + εin,j. (14)

Thus, each node in the network is characterized by an associated vector (εin, εout) account-
ing for incoming and outgoing connections. The distribution of such variables is given
by the probability density function ρ(εin, εout), with marginal distributions for εin and εout,
ρin(εin) and ρout(εout).

Although models in the DCM family are not fully realistic, they serve as prominent
null models or baselines to evaluate whether observed features in real directed networks
arise due to specific processes or simply by chance.

3.1.1. Non-Interacting Directed Configuration Model (NI-DCM)

Using Equation (8), and assuming that ∆εij = 0, and replacing sums with integrals,
we can write

⟨kin⟩ = Nz
∫ ∫

ρin(εin)ρout(εout)

z + eβεin eβεout
dεindεout, (15)

where we have defined the fugacity in the standard way as z ≡ eβµ. Imposing sparsity
in the thermodynamic limit of this particular model implies that the fugacity must scale
with the system size as z ∼ N−1. This implies that the chemical potential takes the
size-dependent form

µ =
1
β

ln
[ ⟨kin⟩

N⟨e−βεin⟩⟨e−βεout⟩

]
, (16)
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provided that ⟨e−βεin⟩ and ⟨e−βεout⟩ are bounded. In this case, the dependence between
expected in- and out-degrees of nodes, κin and κout, and the in and out-energies, εin and
εout, become

κin =
⟨kin⟩
⟨e−βεin⟩ e

−βεin and κout =
⟨kout⟩
⟨e−βεout⟩ e

−βεout . (17)

Substituting Equation (14) into Equation (10) and using Equations (16) and (17), the connec-
tion probability in Equation (10) becomes the one for the directed soft configuration model:

pni
ij =

1

1 + ⟨kin⟩N
κout,iκin,j

. (18)

Notice that, when the energies of states in Equation (14) are temperature-independent, the
limit β → 0 converges to the directed version of the classical Erdös-Rényi ensemble [20]
because, in this limit, the expected degree of all nodes converges to the same value, as can
be seen from Equation (17). In the opposite limit, when β ≫ 1, the degree distribution
becomes heavy-tailed and, depending on the distribution of energies, it may undergo
a phase transition to a condensed phase where a finite fraction of nodes accumulate an
extensive number of links, as shown in [21]. This effect will occur when the averages
⟨e−βεin⟩ and/or ⟨e−βεout⟩ diverge for β > βc for a critical inverse temperture βc.

An alternative approach to Equation (14) is to fix the expected in- and out-degree
distributions by defining temperature-dependent energy levels as

εij = −
1
β

ln
(
κout,iκin,j

)
, (19)

and the chemical potential as

µ = − 1
β

ln [⟨kin⟩N]. (20)

These choices lead to the same connection probability Equation (18), with the difference that
now the expected in- and out-degrees are temperature-independent and, thus, the degree
distribution is fixed. Temperature-dependent energy levels appear in strongly interacting
systems [22–25].

The entropy of the ensemble can be calculated using Equation (4), whose leading
terms are

S = ⟨kin⟩N(ln [⟨kin⟩N]− 1) + O(ln N), (21)

recovering results in [12]. Notice that this expression does not depend on the ensemble
temperature, only on the total number of links, which is a property that is fixed in the
ensemble and does not depend on the degree distribution. This means that the same
expression holds in the alternative definition of the model where the energy of the states is
temperature-dependent.

Finally, the reciprocity of the ensemble can be evaluated using Equation (12), and reads

r =
⟨kinkout⟩2
N⟨kin⟩3

− ⟨k
2
ink2

out⟩
N2⟨kin⟩3

≈ ⟨kinkout⟩2
N⟨kin⟩3

. (22)

Thus, the reciprocity of the NI-SCM vanishes in the thermodynamic limit, even though it
can become significant if the in- and out-degrees of nodes are positively correlated and
their distributions heavy-tailed.

3.1.2. Interacting Directed Configuration Model (I-DCM)

The probability for a directed link in this model can be found by substituting
Equation (14) into Equation (7), with ∆εij ̸= 0, and imposing sparsity, which would
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again lead to Equations (16) and (17) if ⟨e−βεin⟩ and ⟨e−βεout⟩ are bounded. Alterna-
tively, Equation (13), which relates the connection probabilities in the interacting and
non-interacting formulations, provides a shortcut. The connection probability of the
NI-DCM is size-dependent with pni

ij scaling as N−1, hence approaching zero in the thermo-

dynamic limit. At this extreme, Equation (13) indicates that pij ≈ pni
ij , which implies that

the energies εin and εout, along with β and µ, define the in- and out-degree distributions as
in the non-interacting model.

In contrast, the joint probability Prob(aij, aji) in the I-DCM does not factorize, thereby
enabling the tuning of the reciprocity. The reciprocity can be calculated from Equation (9),
using the probability of having a bidirectional connection between nodes i and j from
Equation (6) after imposing the condition that, the two links are present simultaneously,
aij = aji = 1. Using that

eβ(εij−µ) =
N⟨kin⟩

κout,iκin,j
,

the reciprocity is

r =
2

N⟨kin⟩
× (23)

×∑
i<j

κout,iκin,j
N⟨kin⟩

κout,jκin,i
N⟨kin⟩ e−β∆εij

1 +
κout,iκin,j
N⟨kin⟩ +

κout,jκin,i
N⟨kin⟩ +

κout,iκin,jκout,jκin,i
N⟨kin⟩)2 e−β∆εij

,

which, up to leading order in N, gives

r =
1

(N⟨kin⟩)3 ∑
i,j

κout,iκin,iκout,jκin,je
−β∆εij . (24)

This result implies that reciprocity vanishes in the thermodynamic limit. The specific form
in which r → 0 as N → ∞ depends on the form of the interaction energy. In all cases, when
∆εij > 0, reciprocity is energetically unfavorable, and thus lower than in the NI-SCM for
the same temperature; conversely, when ∆εij < 0, the link reciprocity is higher.

For instance, a constant value independent of the specific pair of nodes, ∆εij = ε,
leads to

r =
e−βε

N⟨kin⟩3
⟨kinkout⟩2, (25)

meaning that the interaction introduces temperature-dependent rescaling as compared to
the reciprocity of the NI-SCM in Equation (22).

If, instead of a constant value, the nodes in the interaction have an additive contribu-
tion to the interaction correction energy, ∆εij = εi + ε j, then

r =
1

N⟨kin⟩3

(
∑

i
κout,iκin,ie−βεi

)2

. (26)

If εi is proportional to the temperature, εi ∝ 1/β, the NI-SCM behavior is recovered with a
temperature-independent constant rescaling. Additionally, it can incorporate dependencies
on the hidden degrees of the corresponding node, for instance, εi = −1/β ln(κout,iκin,i),
and then

r =
1

N⟨kin⟩3
⟨(kinkout)

2⟩2. (27)

Again, local correlations between the incoming and outgoing degrees of a node control
the velocity of the reciprocity’s decay. The results above also imply that a size-dependent
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negative interaction energy with intensity |ε| ∝ 1/β ln N could counteract the decay of
reciprocity in the SCM model and produce a finite value even in the thermodynamic limit.

3.2. Directed Sd Model

As we have seen in the previous section, reciprocity vanishes in the thermodynamic
limit of the DCM even when fermions interact. Similarly, clustering also vanishes due to
the size dependence of the connection probability. Finite reciprocity and clustering can
be achieved in the framework of geometric networks [26,27], where nodes are distributed
in an underlying metric space such that a distance xij can be defined between any pair of
nodes. In this situation, we assume that the energies of sending out or accepting a link are
supplemented with a cost associated with the distance between the nodes. Thus, the total
energy of a link is

εij = εout,i + εin,j + f (xij), (28)

where f (x) is a monotonically increasing function of the distance. An interesting choice is
a logarithmic function, f (xij) = ln xij, with nodes distributed in a d-dimensional Euclidean
space, Rd, according to a Poisson point process with a constant density, δ.

A prominent real system following this rationale is the Internet at the autonomous
systems (AS) level, where link directions represent customer-to-provider relationships
between autonomous systems [28]. A link from AS i to AS j indicates the flow of money
when Internet traffic is routed through that connection. Notice that, in general, ASs can act
as customers in some connections and as providers in others. In this system, the term εout,i

represents the cost that AS i must pay to maintain a connection as a customer. Similarly,
εin,j represents the cost that AS j must pay to maintain a connection as a provider. These
two costs generally depend on the size and physical infrastructure of each AS. Finally, the
term f (xij) represents the cost associated with the physical constraints of the connection,
such as, for instance, its physical length. In the case of very large ASs, a negative interaction
energy, ∆εij, represents the synergistic effect of having a bidirectional connection, typically
between the tier 1 ASs that define the core of the Internet.

In a different domain, brain connectomes are well described by the hyperbolic ge-
ometry network framework encoded by the directed Sd model [16,29] and display an
over-representation of reciprocal connections [30]. To form a synaptic connection, the
costs of maintaining neurotransmitters and neuroreceptors are incurred, along with a cost
associated with maintaining the neural fibers and the signal as it travels along the distance
covered by them.

3.2.1. Non-Interacting Directed Sd Model (NI-DSM)

When ∆εij = 0, the expected out-degree of a node with energy εout , located, without
a loss of generality, at the origin of coordinates, is given by

⟨kout(εout)⟩ = δ
∫

ρ(εin)dεin

∫ ∞

0

Vd−1rd−1

1 + rβeβ(εin+εout−µ)
dr, (29)

where Vd−1 = 2πd/2/Γ(d/2) is the volume of a (d− 1)-sphere. This expression can be
rewritten for β > d as

⟨kout(εout)⟩ = δVd−1 I(β, d)⟨e−dεin⟩edµe−dεout , (30)

where

I(β, d) =
∫ ∞

0

td−1dt
1 + tβ

=
π

β sin dπ
β

. (31)
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Thus, if we redefine the expected out- and in-degrees as κout ≡ e−dεout and κin ≡ e−dεin ,
with µ = − 1

d ln (δVd−1 I(β, d)⟨kin⟩), the connection probability becomes

pij =
1

1 + χ
β
ij

with χij ≡
xij

(µ̂κout,iκin,j)
1
d

, (32)

and

µ̂ =
βΓ
(

d
2

)
sin
(

πd
β

)

2δπ1+ d
2 ⟨kin⟩

. (33)

(The case β < d can be analyzed as in [18]). This model can be immediately identified as the
directed variant of the Sd model, first introduced in [16]. It represents a directed extension
of the Sd model originally proposed in [31], along with its equivalent formulation in the
hyperbolic plane, known as the H2 model [32]. Notably, numerous analytical results have
been derived for the S1/H2 model, including studies on degree distribution [31–33], clus-
tering [32–35], graph diameter [36–38], percolation [39,40], self-similarity [31], and spectral
properties [41]. Moreover, this model has been extended to incorporate growing networks,
weighted networks, multilayer networks, and networks with community structure, and it
also serves as the foundation for defining a renormalization group for complex networks,
see [26,27] and references therein. These analytical results and extensions of the undirected
geometric model provide a guide for future studies of the Directed Sd Model.

Unlike the DCM, geometry implies that the connection probability is size-independent.
In turn, this implies that the reciprocity and clustering are finite, as shown in [16]. Interest-
ingly, this model undergoes a topological phase transition at the critical inverse temperature
βc = d [18]. For β > βc, clustering is finite in the thermodynamic limit, whereas it vanishes
below this value. This phase transition is of a topological nature and involves the reorgani-
zation of cycles in the network; transitioning from being short-range in the clustered phase
to long-range in the unclustered one. This transition is accompanied by an anomalous
behavior of the entropy per link. From Equation (4), we can compute the entropy as

S
N⟨kin⟩

=
2β

d

(
1− πd

β
cot

πd
β

)
. (34)

Unlike standard continuous phase transitions, the entropy per link diverges at the critical
temperature from below as

S
N⟨kin⟩

∼ 1
β− d

, (35)

whereas it diverges logarithmically at higher temperatures. The origin of this anomalous
behavior is due to the fact that the number of available microstates per link at low tempera-
tures is finite, primarily connecting pairs of nodes at bounded distances. However, once
the temperature surpasses the critical temperature, the number of available microstates
becomes that of the order of the number of nodes, as links can now connect pairs of nodes
that are arbitrarily far apart.

3.2.2. Interacting Directed Sd Model (I-DSM)

When reciprocal links interact in the directed Sd model, the strategy applied for the
I-DCM, based on using Equation (13) to relate the connection probabilities in the interacting
and non-interacting formulations, cannot be used because pni

ij is independent of the system
size and does not approach zero in the thermodynamic limit. The probability of a directed
link in the I-DSM must be found by substituting Equation (28) into Equation (7), with
∆εij ̸= 0, and imposing sparsity, which leads to new definitions of the chemical potential µ
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and the relation between the expected in- and out-degrees of a given node and its in- and
out-energies εin and εout. In particular, the connection probability can be written as

pij =
χ

β
ji + e−β∆εij

χ
β
ij + χ

β
ji + χ

β
ijχ

β
ji + e−β∆εij

, (36)

where
χij = xije

εout,i+εin,j−µ. (37)

Using this expression, the average out-degree of a node with the in- and out-energies
εin,i and εout,i can be written as

⟨kout(εin,i, εout,i)⟩ = δVd−1edµe−dεout,i× (38)

×
∫ ∫

e−dεin,j ρ(εin,j, εout,j)dεin,jdεout,j

∫ ∞

0

td−1(qijtβ + e−β∆εij)

tβ + qij(1 + tβ)tβ + e−β∆εij
dt,

where qij ≡ eεout,j−εout,i+εin,i−εin,j . By integrating Equation (38) over the energies εin,i and
εout,i and equating it to ⟨kin⟩, we can obtain the value of the chemical potential µ from

edµ =
⟨kin⟩

δVd−1⟨e−d(εout,i+εin,j)
∫ ∞

0
td−1(qijtβ+e−β∆εij )

tβ+qij(1+tβ)tβ+e−β∆εij
dt⟩

, (39)

where the average in the denominator is taken over the random variables εin,i, εin,j, εout,i, εout,j,
and ∆εij. Using a similar approach, the reciprocity becomes

r =
⟨e−d(εout,i+εin,j)

∫ ∞
0

td−1e−β∆εij

tβ+qij(1+tβ)tβ+e−β∆εij
dt⟩

⟨e−d(εout,i+εin,j)
∫ ∞

0
td−1(qijtβ+e−β∆εij )

tβ+qij(1+tβ)tβ+e−β∆εij
dt⟩

. (40)

Equation (38) implies that the average in- or out-degree of a given node depends
on both εin and εout, not only on one of them, as is the case for non-interacting fermions.
This indicates that computing the degree distributions requires the explicitly solving
Equation (38). However, in the particular case of fully correlated εin and εout and ∆εij = ∆ε,
the term qij = 1, and the average in- or out-degree becomes a function of εin or εout

separately. Thus, as in the case of non-interacting fermions, we can write κout ≡ e−dεout and
κin ≡ e−dεin , with

µ = −1
d

ln
(
δVd−1 Ĩ(β, d, ∆ε)⟨kin⟩

)
, (41)

where

Ĩ(β, d, ∆ε) =
∫ ∞

0

td−1(tβ + e−β∆ε)

2tβ + t2β + e−β∆ε
dt, (42)

and the reciprocity becomes

r =

∫ ∞
0

td−1e−β∆ε

2tβ+t2β+e−β∆ε dt

Ĩ(β, d, ∆ε)
. (43)

Figure 2 shows the results of the reciprocity in this case as a function of ∆ε for different
values of β. The reciprocity converges to one in the limit ∆ε→ −∞ and approaches zero
in the limit ∆ε→ ∞, as expected. Furthermore, it increases as the temperature rises. Note
that the convergence to 1 with very low temperatures and/or a highly negative ∆ε is only
possible in the fully correlated case. In all other cases, the maximum possible value of the
reciprocity is always less than one.
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Figure 2. Reciprocity of the interacting directed Sd model for fully correlated in- and out-energies, as
a function of ∆ε. Different curves correspond to different temperatures β−1.

4. Conclusions
The statistical mechanics framework for directed networks introduced in this work

treats links as fermionic particles subject to constraints and interactions. This formalism
allowed us to describe directed networks within a principled approach that incorporates the
reciprocity and other structural properties, addressing the limitations of existing models. By
leveraging concepts from quantum statistics, our methodology redefines network modeling,
shifting the focus from node-centric descriptions to link interactions. Formulating directed
networks within a grand canonical ensemble, we demonstrated how the chemical potential
and key network features, such as the degree distribution and reciprocity, naturally emerge
from the underlying statistical framework.

The versatility and analytical power of our formalism were illustrated through appli-
cations to specific cases, including the Directed Configuration Model and the Directed Sd

model. The key results highlighted the influence of interactions on the reciprocity and clus-
tering. In the non-interacting formulations, the reciprocity vanishes in the thermodynamic
limit, whereas in the interacting models, the framework supports a tunable reciprocity
that remains finite under specific conditions. The inclusion of a geometric component in
the Sd model further showcased how spatial constraints shape the emergent properties of
the network. This framework bridges theoretical advances with empirical applicability,
providing a robust toolset for analyzing real-world directed networks. Additionally, it
paves the way for exploring dynamical processes on directed topologies and designing
models that better reflect the intricate balance of directed interactions. Future work could
extend these principles to multilayer, temporal, or weighted networks, offering a deeper
understanding of complex systems.
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