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Reservoir Control Operations and Water Resources Management
Yuxue Guo and Li Liu *

Institute of Water Science and Engineering, Civil Engineering, Zhejiang University, Hangzhou 310058, China;
yuxueguo@zju.edu.cn
* Correspondence: li_liu@zju.edu.cn

1. Introduction

Water resources are among the most essential materials required for human survival
and development. Water resources management is the activity of planning, developing,
distributing, and managing the optimum use of water resources. Effective water resources
management is crucial for sustaining ecosystems, supporting economic development, and
ensuring social well-being [1]. It optimizes the use of water for food production and
energy generation, ensuring that water, food, and energy systems have access to necessary
resources while preserving environmental sustainability. Additionally, it strengthens
resilience against natural disasters such as floods and droughts, promotes equitable access
to resources, and upholds cultural and recreational values. Overall, it is essential for
balancing human and environmental needs while ensuring long-term water availability [2].
However, water resources management is currently under increasing strain due to factors
such as population growth, climate change impacts, and growing demand for water, food,
and energy [3,4].

Reservoirs are a central component of water resources management, offering essential
storage and regulation capabilities that support a range of water needs and environmental
objectives. Optimal reservoir operation is one of the most effective non-structural measures
for improving water utilization efficiency without requiring additional investment [5].
The successful operation of reservoirs and water resources requires a comprehensive un-
derstanding of modeling-related uncertainties and the integrative application of artificial
intelligence technology to generate sustainable solutions for water, food, and energy sys-
tems in a changing environment [6,7]. Through the publication of this Special Issue, we
seek to stimulate further research and dialogue on this critical topic, thereby contributing
to global efforts aimed at achieving water security and sustainability.

2. Summary of the Contributions in This Special Issue
2.1. Reservoir Flood Control Operation

Flood control operation is a significant way to prevent the threats from flood risks to
ecology, environment, infrastructure, agriculture, and even human life. Three papers ad-
dressed new models in reservoir flood control operation (contributions 1–3). Contribution
1 developed a dual-objective five-reservoir operation model by considering the flooding
risks both downstream of the basin and in the Miyun reservoir area. A parameterization–
simulation–optimization approach was employed to obtain the Pareto-optimal front, pro-
viding a list of optimal rule parameters for customized risk preferences. They found that
the current schemes result in a 10.5% higher upstream inundation loss and an unsatisfactory
CNY 17 million of equivalent water transfer loss compared to the operating rule optimized
in the study.

Contribution 2 presented a flood risk control method oriented towards floodwater
utilization that considers multiple main flood risk factors. The proposed method not only
achieved the specifications of the flood limited water level (FLWL) under various acceptable
risks but also dynamically controlled the water level to enhance floodwater utilization.
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They indicated that the proposed method raised the FLWL by 1.00 m above the present
FLWL in the absence of flood risk. The available flood resources in both the wet and dry
seasons increased, on average, by 0.83 and 0.81 billion m3, and the flood risk remained
within an acceptable range after raising the FLWL by 1.00 m.

In Contribution 3, a joint-optimized operation model of sluices in the group that
combined “offline calculation” and “online search” was proposed to investigate the optimal
sluice operation under high-intensity peak shaving and frequency regulation. The authors
found that the total number of adjustments of the sluices of the cascade hydropower
stations was reduced from 1195 to 675, a reduction of 43.5%, and the leading hydropower
station, Pubugou, met water level control requirements, whereas the fluctuations in the
water levels of the two downstream daily regulating hydropower stations, Shenxigou and
Zhentouba, were reduced by 1.38 m and 0.55 m, respectively.

2.2. AI-Based New Monitoring Technology in Water Research

Climate change has exacerbated severe rainfall events, leading to rapid and unpre-
dictable fluctuations in river water levels, necessitating the development of new monitoring
technology (contributions 4 and 5). In Contribution 4, an innovative methodology was
proposed that leveraged ResNet-50, a Convolutional Neural Network (CNN) model, to
identify distinct water level features in Closed-Circuit Television (CCTV) river imagery
under various weather conditions. They indicated that the method provided an accuracy
range of 83.6% to 96%, with clear days providing the highest accuracy and heavy rainfall
providing the lowest accuracy. The study introduced a promising real-time river water
level monitoring solution, significantly contributing to flood control and disaster manage-
ment strategies. Contribution 5 introduced a dam deformation prediction model based on
a long short-term memory (LSTM) model with interferometric synthetic aperture radar
(InSAR). With a case study in the Xiaolangdi reservoir, they revealed that the cumulative
deformation accuracy was 95% compared with the on-site measurement data at the typical
point P. The correlation between the reservoir level and dam deformation was found to be
0.81. The overall deformation error of the dam was predicted to be within 10 percent. The
results showed that the combination of InSAR and LSTM could predict dam failure and
prevent potential failure risks by adjusting the reservoir levels.

2.3. Changing Environmental Evaluation

Current global climate change and human activities have increased uncertainty in
the hydrological cycle. In this changing environment, the risks and characteristics of flood,
drought, and other disasters are varied, posing challenges to water safety (contributions 6–8).
Contribution 6 investigated sedimentation characteristics under the influence of multiple
factors in the main urban area of the Chongqing River section as a case study for the
operation of cascade reservoirs in the Jinsha River. They found that the rate of sedimen-
tation increased with sediment inflow, peak flow rate, and duration, while the location
of sedimentation shifted as the concentration ratio changed. Contribution 7 analyzed the
temporal and spatial evolution patterns of the baseflow through statistical analysis and
the Mann–Kendall test. They found a higher baseflow contribution in upstream areas com-
pared to downstream areas at both stations. The baseflow and BFI had significant upward
trends in the dry season, while their trends were not uniform during the wet period. In
Contribution 8, a new composite drought index was proposed that could comprehensively
characterize meteorological and hydrological drought by combining the standardized
precipitation index (SPI) and the standardized baseflow index (SBI). The results showed
that the established composite drought index combined the advantages of SPI and SBI
in drought forecasting, with an accuracy greater than 80% based on the trained random
forest model. The study provided reliable and valid multivariate indicators for drought
monitoring and could be applied to drought prediction in other regions.
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2.4. Integrated Water Resources Management

Water resources management is a challenging task caused by huge uncertainties and
complexities in hydrological processes and human activities (contributions 9 and 10). In
Contribution 9, a multifaceted analytical framework comprising the CRITIC method, the
standard deviation ellipse, the harmonious development coefficient, and the coupling
coordination coefficient was developed to investigate spatiotemporal evolutionary trends
and overarching harmonious development states between the high-quality economic de-
velopment and water resource systems. They indicated that the epicenter of high-quality
economic development indices was situated in the periphery of Lake Tai, whereas the
fulcrum of the water resource system indices was in Huzhou City, both displaying a
northwest–southeast orientation. Contribution 10 conducted a scientometric review and
metasynthesis of the existing uncertainty analysis research for supporting hydrological
modeling and water resources management through a co-citation, collaboration, and co-
occurrence network study. They found that the USA contributed greatly to the publications
and cooperated with most countries/territories. The Chinese Academy of Sciences was the
leading institution and had a relatively intimate relationship with other institutions. The
study also indicated that synthetical uncertainty management for hydrological models and
water resource systems under climatic and land use change will continue to be studied.

3. Conclusions

This brief report provides a valuable overview of the ten selected papers featured in
this Special Issue, with each making original contributions to advancing the state of the
art in water resources management. The ten contributions encompass four major research
subjects: (I) reservoir control operation, (II) artificial intelligence methods, (III) changing
environmental evaluation, and (IV) integrated water resources management. They offer
a high level of research and practical insights into the implementation of new methods
and strategies for water resources management and reservoir operation, supported by
case studies from various regions around the world. The future of research on water
resources management hinges on a comprehensive understanding of environmental, so-
cioeconomic, and technological factors. We hope that this Special Issue will encourage
further research in this area, leading to improved methods and techniques and providing a
deeper understanding of water resources management and reservoir operation.

Author Contributions: Conceptualization and organization, Y.G.; methodology, Y.G. and L.L. All
authors have read and agreed to the published version of the manuscript.

Data Availability Statement: The data that support the findings of this study are available on request
from the corresponding author upon reasonable request.

Conflicts of Interest: The author declares no conflicts of interest.
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Abstract: Traditional univariate drought indices may not be sufficient to reflect comprehensive
information on drought. Therefore, this paper proposes a new composite drought index that can
comprehensively characterize meteorological and hydrological drought. In this study, the new
drought index was established by combining the standardized precipitation index (SPI) and the
standardized baseflow index (SBI) for the Jiaojiang River Basin (JRB) using the copula function. The
prediction model was established by training random forests on past data, and the driving force
behind the combined drought index was explored through the LIME algorithm. The results show
that the established composite drought index combines the advantages of SPI and SBI in drought
forecasting. The monthly and annual droughts in the JRB showed an increasing trend from 1991 to
2020, but the temporal characteristics of the changes in each subregion were different. The accuracies
of the trained random forest model for heavy drought in Baizhiao (BZA) and Shaduan (SD) stations
were 83% and 88%, respectively. Furthermore, the Local Interpretable Model-Agnostic Explanations
(LIME) interpretation identified the essential precipitation, baseflow, and evapotranspiration features
that affect drought. This study provides reliable and valid multivariate indicators for drought
monitoring and can be applied to drought prediction in other regions.

Keywords: composite drought index; baseflow; LIME algorithm; Jiaojiang River Basin

1. Introduction

As a global problem, drought poses a significant challenge to the development of
human societies. With the increase in global warming, the frequency of extreme weather
events worldwide has increased, which has led to a gradual increase in the frequency and
scope of droughts, posing a severe threat to agricultural production, economic development,
and social stability. Although China has a vast area and many rivers, its uneven spatial
distribution makes it a drought-prone country. According to statistics, the economic losses
caused by meteorological disasters account for about 50% of all natural disasters, and the
losses caused by droughts account for more than 50% of meteorological disasters [1]. To

Water 2024, 16, 1466. https://doi.org/10.3390/w16111466 https://www.mdpi.com/journal/water5
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better understand and measure the characteristics of drought, scholars have adopted a
variety of drought indices, such as meteorological and hydrological indices, to assess and
compare droughts objectively. These drought indices not only help to measure the intensity,
duration, and frequency of drought occurrence but also provide a more comprehensive
assessment of its impacts on different areas and the degree of damage. Through the
comprehensive analysis of different indicators, scholars can more accurately grasp the
characteristics of drought and its impact on human society, which provides an important
basis for formulating strategies and measures to deal with drought.

Researchers have constructed different drought evaluation indices for different types
of droughts (meteorological drought, hydrological drought, agricultural drought, socio-
economic drought). For example, the Standardized Precipitation Evapotranspiration In-
dex (SPEI) [2] describes meteorological droughts, and the Standardized Streamflow Index
(SSI) [3] investigates hydrological droughts. However, because of the differences in drought-
inducing variables, a single drought index cannot comprehensively evaluate agricultural,
meteorological, hydrological, and socio-economic aspects [4–6]. Creating a comprehensive
drought index that includes multiple drought elements is necessary. Waseem et al. [7] pro-
posed a new multivariate drought evaluation method using entropy-weighted Euclidean
distance to create a composite drought index. Also, Huang et al. [8] combined SPI and SSI
and constructed another composite drought index using the entropy weighting method
in 2015. In addition, Liu et al. [9] proposed a comprehensive composite drought index by
applying the principal component analysis (PCA) method, which combined precipitation,
evapotranspiration, soil moisture, streamflow, and other hydrometeorological factors.

However, comprehensive drought indicators based on the assignment and fuzzy
synthesis methods have a certain subjective tendency when assigning weights, which
cannot process the data objectively and cause errors. The PCA method cannot reflect the
nonlinear relationship among the relevant variables. The copula function is a kind of
joint distribution that can construct the marginal distribution as an arbitrary distribution,
which can effectively describe the correlation among variables and has a wide range of
applications in hydrology and water resources [10–15]. Azhdari et al. [16] constructed
three composite hydrometeorological indices, including JDHMI-CCA, JDHMI-PCA, and
JDHMI-copula, using typical correlation analysis (CCA), principal component analysis
(PCA), and copula-based methods, and explored the mechanism of linear and nonlinear
methods in drought status assessment. Wang et al. [17] established a new meteorological
and hydrological drought index (MSDIP) using streamflow and precipitation as indicators.
However, factors such as precipitation intensity and duration can affect rapid changes
in streamflow, making it relatively unstable. Baseflow is more stable than streamflow
derived by long-term groundwater recharge, which is usually less affected by short-term
meteorological changes [18]. Odongo et al. [19] selected possible wet and dry conditions
in a study area based on SPI and SSI according to a weighted similarity metric. The
essential baseflow characteristics to replenish river flow during dry periods, SBI instead
of SSI, can better respond to hydrologic drought characteristics. Bazrkar and Chu [20]
improved hydrological drought identification by developing a new standardized base flow
index. Meresa et al. [21] explored the relationship between hydrological and meteorological
drought and watershed characteristics. They used the SPI, SPEI, SRI, and SBI to study
drought propagation under meteorological to hydrological drought conditions in nine
selected catchment areas of the Awash Basin in Ethiopia. Kwak et al. [22] used the SBI to
consider the dry and wet conditions of a dam and its storage capacity. In addition, many
studies [23–25] have demonstrated that baseflow can be used as a hydrological characteristic
factor to characterize hydrological drought conditions in a watershed. Therefore, this
study constructs a comprehensive index based on the copula function by constructing a
joint distribution function with precipitation and baseflow as marginal distributions. The
SPI is used to characterize meteorological droughts and the SBI is used to characterize
hydrological droughts so that the index can comprehensively characterize the joint features
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of meteorological droughts and hydrological droughts and improve the accuracy and
applicability of the composite drought index.

Meanwhile, with the development of computer intelligence technology, machine learn-
ing models have been applied to many fields, and the high accuracy of such models has
been proven. In meteorological and hydrological drought forecasting, the use of machine
learning models to construct regional meteorological and hydrological drought forecasting
models has made some progress. Compared with the traditional statistical regression meth-
ods, Support Vector Machine (SVM) [26], Back Propagation Neural Network (BPNN) [27],
eXtreme Gradient Boosting (XGBoost) [28], random forest (RF) [29,30], and other machine
learning algorithms have significant advantages in processing large-scale and multi-source
remote sensing data and have been gradually used in meteorological and hydrological fore-
casting. For example, Elbeltagi et al. [31] investigated the prediction accuracy of SPI-based
RF, Random Tree (RT), and Gaussian Process Regression (GPR-PUK kernel) models for
forecasting meteorological droughts in semi-arid regions. Lotfirad et al. [32] used an RF
model to demonstrate that the prediction accuracy of the SPI and SPEI can be improved by
increasing the time scale. It was also demonstrated that the SPEI is more capable than the
SPI in drought prediction. Zheng et al. [33] evaluated the predictive performance of random
forest models combined with artificial intelligence on a test set of four stocks using optimal
parameters. RF models are heavily used in several areas, such as hydrologic forecasting,
finance, and the environment. It is a more mature forecasting model. In this paper, using
the RF model to forecast regional drought ensures the accuracy of the prediction results
and the significance of each drought-affecting variable, as explained by the subsequent
LIME interpretation.

Therefore, the main objectives of this study are (1) to calculate the SPI and the SBI
based on the optimal marginal distribution function using precipitation and baseflow data;
(2) to introduce a new copula-based comprehensive drought index, which combines the
advantages of the SPI and the SBI and can simultaneously reflect both meteorological and
hydrological drought; (3) to assess the drought in the Jiaojiang River Basin (JRB) from
1991 to 2020 based on drought indices; and (4) to predict future droughts using a random
forest model and to develop a complex machine learning algorithm for the prediction of
droughts using the Local Interpretable Model-Agnostic Explanations (LIME) algorithm to
interpret the results of making complex machine learning model predictions.

2. Materials and Methods
2.1. Study Area and Dataset
2.1.1. Study Area

The Jiaojiang River Basin (JRB) is one of the eight important river basins in Zhejiang
Province. The JRB is located on the central coast of Zhejiang Province between 120◦17′6′ ′

and 121◦41′00′ ′ east longitude and 28◦32′2′ ′ and 29◦20′29′ ′ north latitude, with a watershed
area of 6603 km2 (Figure 1). The topography of the JRB slopes from west to east. The
west–central and northern Zhongshan Mountains are rolling, the coastal plain is embedded
with low hills, and the river channels are densely scattered.

2.1.2. Datasets

Twenty-two meteorological datasets and two hydrological datasets of observation
records in the JRB were obtained from the National Climate Center of the National Meteoro-
logical Administration of China (Figure 1). The records cover hydrologic information from
1991 to 2020. In this study, the JRB was divided into two sub-basins for analysis, including
the Yong’an Creek Basin (Shaduan station) and the Shifeng Creek Basin (Baizhiao station).
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Figure 1. Spatial distribution of meteorological and hydrological stations in the JRB.

2.2. Methods

The SPI (meteorological drought) and the SBI (hydrological drought) were selected
to construct a composite drought index using the Frank copula function to characterize
meteorological and hydrological drought. A random forest model was trained on the
data from 1991 to 2010 for the Shaduan (SD) and Baizhiao (BZA) stations to predict the
composite drought index from 2010 to 2021. Finally, the LIME algorithm was used to
analyze the composite drought index prediction results and interpret the importance
of each input factor. The characteristics of meteorological droughts transformed into
hydrological droughts were investigated. A flow chart of the methods used in this study is
shown in Figure 2.
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2.2.1. Drought Index

The SPI was chosen as the meteorological drought index, which can quantitatively
characterize regional drought at different time scales [34]. The SPI considers that precipita-
tion obeys a skewed distribution and normalizes precipitation, which is a good prospect
for application [35,36]. The specific computational steps of the SPI are as follows:

f (x) =
1

βγΓ(γ)
xγ−1e−x/β (1)

where β > 0 and γ > 0 are scale and shape parameters, respectively. β and γ are estimated
by the linear method of moments. Γ(γ) is used to fit the cumulative precipitation series for
a given time scale.

The cumulative probability of the precipitation sequence x is:

F(x) =
∫

f (x)dx (2)

The standard normalization was performed as follows:

F(x < x0) =
1√
2π

∫
e−Z2/2dx (3)

The final SPI value was obtained as follows:

SPI = Z = S{t − (0.10328t + 0.802853)t + 2.515517
[(0.001308t + 0.189269)t + 1.432788]t + 1

} (4)

where t =
√

ln 1
F2 , and when F > 0.5, F = 0.5, S = 1. When F ≤ 0.5, S = 1.

The standardized baseflow index (SBI) was selected as the hydrological drought index.
The baseflow was selected from the digital filtering method of the Chapman Maxwell
(CM) [37] method for baseflow separation, which effectively solves the uncertainty problem
of baseflow when surface streamflow stops flowing. The calculation formula is:

Qb(i) =
a

2 − a
Qb(i−1) +

1 − a
2 − a

Qi (5)

where Qb(i) is the base flow rate at the moment, mm; Qb(i−1) is the base flow rate at the
moment, mm; Qi is the streamflow flow rate at the moment, mm; i is the time step, d; and a
is the receding water constant. The value can be obtained through a receding water analysis.
Usually, the empirical value is set to 0.925, as obtained by Nathan and McMahon [38] based
on the characterization of six watersheds in Germany and used for baseflow partitioning.
Considering the uncertainty in the empirical recession constants when applied to other
watersheds, estimating the recession constant values using the CM filtering method can
reduce the uncertainty in baseflow separation and thus improve accuracy. In this study,
we used the automated baseflow identification method developed by Cheng et al. [39] to
compute the receding water constants of watersheds and perform baseflow separation.

The SBI calculation method is similar to the SRI computation since the baseflow value
is acquired after the filtering method processes the streamflow data. The baseflow is
utilized in place of the streamflow to perform normalization calculations, and the baseflow
probability distribution type is chosen and standardized. The drought index is then split
into two categories, as indicated in Table 1.
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Table 1. Labeling of the aridity index divisions.

Degree of Aridity SPI Value SBI Value Composite Drought Index

No drought SPI ≥ −0.5 SBI ≥ −0.5 CDI ≥ −0.5
Normal drought −1 ≤ SPI < −0.5 −1 ≤ SBI < −0.5 −1 ≤ CDI < −0.5
Heavy drought SPI < −1 SBI < −1 CDI < −1

2.2.2. Run Theory

In this study, we choose the run theory [40] for the initial judgment of the drought
index time series, rejecting and fusing three-step identification to extract drought features.
The three thresholds set are R0 = 0, R1 = −0.5, and R2 = −1. The specific steps are as
follows: (1) Initial identification when the drought index is less than R1, then the initial
judgment of the month for drought is made, as shown in Figure 3a. (2) Elimination of
non-droughts, when the drought index of a month is between R1 and R2, and only this
month reaches this standard, it is recognized that the month is non-drought and is to be
eliminated, as shown in Figure 3b.

Water 2024, 16, x FOR PEER REVIEW 6 of 19 
 

 

where 𝑄௕(௜) is the base flow rate at the moment, mm; 𝑄௕(௜ିଵ) is the base flow rate at the 
moment, mm; 𝑄௜ is the streamflow flow rate at the moment, mm; i is the time step, d; and 𝑎 is the receding water constant. The value can be obtained through a receding water 
analysis. Usually, the empirical value is set to 0.925, as obtained by Nathan and McMahon 
[38] based on the characterization of six watersheds in Germany and used for baseflow 
partitioning. Considering the uncertainty in the empirical recession constants when ap-
plied to other watersheds, estimating the recession constant values using the CM filtering 
method can reduce the uncertainty in baseflow separation and thus improve accuracy. In 
this study, we used the automated baseflow identification method developed by Cheng 
et al. [39] to compute the receding water constants of watersheds and perform baseflow 
separation. 

The SBI calculation method is similar to the SRI computation since the baseflow value 
is acquired after the filtering method processes the streamflow data. The baseflow is uti-
lized in place of the streamflow to perform normalization calculations, and the baseflow 
probability distribution type is chosen and standardized. The drought index is then split 
into two categories, as indicated in Table 1. 

Table 1. Labeling of the aridity index divisions. 

Degree of Aridity SPI Value SBI Value Composite Drought Index 
No drought 𝑆𝑃𝐼 ≥ −0.5 𝑆𝐵𝐼 ≥ −0.5 𝐶𝐷𝐼 ≥ −0.5 

Normal drought −1 ≤ 𝑆𝑃𝐼 < −0.5 −1 ≤ 𝑆𝐵𝐼 < −0.5 −1 ≤ 𝐶𝐷𝐼 < −0.5 
Heavy drought 𝑆𝑃𝐼 < −1 𝑆𝐵𝐼 < −1 𝐶𝐷𝐼 < −1 

2.2.2. Run Theory 
In this study, we choose the run theory [40] for the initial judgment of the drought 

index time series, rejecting and fusing three-step identification to extract drought features. 
The three thresholds set are 𝑅଴ = 0, 𝑅ଵ = −0.5, and 𝑅ଶ = −1. The specific steps are as fol-
lows: (1) Initial identification when the drought index is less than 𝑅ଵ, then the initial judg-
ment of the month for drought is made, as shown in Figure 3a. (2) Elimination of non-
droughts, when the drought index of a month is between 𝑅ଵ and 𝑅ଶ, and only this month 
reaches this standard, it is recognized that the month is non-drought and is to be elimi-
nated, as shown in Figure 3b. 

 
Figure 3. Schematic diagram of run theory. 𝑅଴, 𝑅ଵ, and 𝑅ଶ are the drought index equal to 0, −0.5, 
and −1, respectively. 

Figure 3. Schematic diagram of run theory. R0, R1, and R2 are the drought index equal to 0, −0.5,
and −1, respectively.

2.2.3. Theory of Two-Dimensional Copula Functions

The copula function is an important statistical tool for describing the distributional
relationships of multidimensional random variables. It is mainly used to model the joint
distribution function of random variables, which separates the marginal distribution from
dependence and makes the model more flexible. There are various types of copula func-
tions, and the common ones include Gaussian copula [41], t-distribution copula [42],
Clayton copula [43], and Frank copula [44]. Each type of copula corresponds to a different
dependence structure, so choosing an appropriate copula function is crucial for accurately
describing the dependence among variables. Among them, the Frank copula function
has a simple structure. It can be used to describe the symmetric correlation structure,
which applies to both positive and negative correlations and has no limitation on the
degree of correlation, and the variation in the upper and lower tails of the correlations
is not apparent [45]. Many drought studies have used the Frank copula function [46–48].
Therefore, this study chooses the Frank copula connecting function to construct the joint
distribution of precipitation and baseflow.
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According to Sklar’s theorem, let F and G be the marginal distribution functions of
the random variables x and y, respectively, and H be the joint distribution function, then
∀x, y ∈ R have copula function C such that:

H(x, y) = C(F(x), G(y)) (6)

If F and G are continuous, then C is unique.
The function was first proposed by Frank in 1979, and its expression is:

C(µ, υ) = −1
θ

ln[1 +
(e−θµ − 1)(e−θυ − 1)

e−θ − 1
], θ ∈ R (7)

The generated meta is as follows:

ϕθ(t) = ln[
(e−θt − 1)

e−θ − 1
], θ ∈ R (8)

where µ and υ are the marginal cumulative probabilities of the two variables, respectively,
and θ is a parameter. It can be obtained from the Kendal rank correlation coefficient τ:

τ = 1 − 4
θ
(D1(−θ)− 1) (9)

The first-order Debye function D1(θ) expression is:

D1(θ) =
1
θ

∫ θ

0

t
et − 1

dt (10)

2.2.4. Establishment of A Composite Drought Index

The precipitation and baseflow of the BZA and SD stations in the JRB are random
variables X and Y, respectively. Through the Pearson correlation coefficient method, the
correlation coefficients of precipitation and streamflow in each region were calculated
to be 0.7884 and 0.7506, which have solid correlations and can be used to construct the
joint distribution function. Where X and Y represent a particular value of precipitation
and baseflow in the plain and sandy section of Pak Chi, assuming that the corresponding
marginal distributions of the two random variables are F(x) and G(y), their joint distribution
P can be expressed by the cumulative joint probability p and copula function C as:

P(x ≤ X, y ≤ Y) = C[F(x), G(y)] = p (11)

Thus, the composite drought index is obtained from the joint distribution function:

Index = ϕ−1(p) (12)

where ϕ is the standard normal distribution.
Since meteorological droughts begin and end relatively quickly (because of a lack

of precipitation), hydrological droughts (because of insufficient streamflow) begin and
end with some delay in response to meteorological droughts. It is often the case that a
meteorological drought has already ended, and a hydrological drought has just begun.
This situation makes it difficult for decision-makers to formulate timely, rational, and
effective response strategies. The composite drought index (CDI) is a composite index
that characterizes both meteorological and hydrological droughts. It combines baseflow
and precipitation data to capture drought onset, the severity of drought conditions, and
drought duration. In this study, a similar approach to the SPI classification was used to
categorize the drought classes of the CDI, as shown in Table 1.

The CDI is particularly effective because it considers meteorological and hydrological
factors. Meteorological droughts are characterized by below-average precipitation, while
hydrological droughts are characterized by below-average surface water and groundwater
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levels. The CDI captures both factors and comprehensively describes drought conditions.
The CDI is an essential tool for drought monitoring and management. Identifying different
levels of drought severity can help policymakers and water managers make informed
decisions on water allocation and conservation measures. In addition, the CDI can be
used to track changes in drought conditions over time, thus providing early warning of
potential drought emergencies. Overall, the CDI represents a significant advance in drought
monitoring and management. It captures meteorological and hydrological factors to
provide a comprehensive picture of drought conditions and is a composite of meteorological
and hydrological indices [49].

2.2.5. Linear Regression Estimator

The linear regression method is used to estimate the slope. A positive slope value
indicates an increasing trend, while a negative value indicates a decreasing trend. The
linear regression line can be computed as follows:

y = ax + b (13)

where x and y are the explanatory variable and the dependent variable, respectively, while
a and b are the slope and intercept, respectively.

2.2.6. Mann–Kendall Trend Test

Most previous studies have assumed that sample data are serially independent. How-
ever, it is known that some hydrometeorological time series, such as water quality and flow
or rainfall time series, may exhibit serial correlation. In such cases, serial correlation affects
the ability of the Mann–Kendall (MK) [50] test to assess the significance of a trend because
Mann–Kendall and Theil–Sen cannot consider the AR (1) process for the time series.

The nonparametric MK test is the most widely used time series trend detection method.
If the total amount of data in the time series is denoted by N, the statistic S can be calculated:

S =
N−1

∑
i=1

N

∑
j=i+1

sgn
(
Yj − Yi

)
(14)

If the total amount of data in the time series is denoted by N, then the statistic is
as follows:

sgn(θ) =





+1 i f θ = Yj − Yi > 0

0 i f θ = Yj − Yi = 0

−1 i f θ = Yj − Yi < 0

(15)

A positive (negative) value of S indicates an upward (downward) trend. S is consid-
ered to be normally distributed when N ≥ 8, and its mean and variance can be computed
as follows:

E[S] = 0 (16)

var =
[N(N − 1)(2N + 5)− ∑n

i=1 tii(i − 1)(2i + 5)]
18

(17)

where ti indicates the amount of data in the ith tied group. Finally, the standardized test
statistics Z can be computed as follows:

Z =





(S − 1)/
√

var(S) S > 0

0 S = 0
(S + 1)/

√
var(S) S < 0

(18)

A positive value of Z indicates an increasing trend, while a negative value indicates
a decreasing trend. In this study, trends were tested with a significance level of α = 0.05.
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The null hypothesis of no trend was rejected if the absolute value of Z was more significant
than 1.96.

2.2.7. Random Forest

A random forest (RF) method was used to predict future drought conditions in the JRB,
based on an algorithm that Breiman proposed [51]. The method constructs a decision tree
for each sample by randomly selecting subsamples from the original sample multiple times
in a relaxed manner [52,53]. Then, the prediction results of multiple decision trees are com-
bined by averaging or voting to determine the final prediction result. Elbeltagi et al. [31]
predicted the accuracy of meteorological drought in semi-arid regions using the standard-
ized precipitation index (SPI) based on random forest (RF), random tree (RT), and Gaussian
process regression (GPR-PUK kernel) models. Zarei et al. [54] compared the ability of
six more commonly used drought indices in agricultural drought assessment using the
RF algorithm.

The composite drought index in this study was predicted using a typology to make
predictions for different levels of drought. In categorical analytics research, the complex
black-box nature makes it difficult for researchers to make sense of data insights and
model decisions [55]. Therefore, this study employs the LIME algorithm to interpret
the predicted results using LIME (Figure 4). Data storytelling, as a practical process
with an explanatory purpose, can help storytelling audiences understand the context and
reasons for generating model predictions, enabling an immersive user experience and deep
cognitive data. Introducing interpretability techniques into the data storytelling process
can enhance the explanatory effect of data stories, which can assist in decision-making.
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Figure 4. Structure of the drought story narrative.

Interpretable machine learning techniques offer a fresh approach to locating the data
story reversal point in the context of classification model prediction outcomes. Using
interpretable machine learning techniques, we may identify the critical components in the
decision-making process and better understand how a model makes a particular predic-
tion. This enables us to pinpoint pivotal moments within the data narrative, representing
significant characteristics or patterns that lead the algorithm to alter its forecasts.

3. Results
3.1. Comprehensive Hydrometeorological Drought Characteristics
3.1.1. Establishment of Composite Index and Analysis of Its Trends

According to the streamflow of the BZA and SD hydrological stations in the JRB
from 1991 to 2020, the baseflow of the two stations was divided according to Equation (5).
Figure 5 shows that the fluctuation intensities in the baseflow after the division of the
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two places are significantly reduced compared with the streamflow, indicating that the
baseflow is more stable than the streamflow, which is in line with the needs of this paper.
Subsequently, the SBI indices of the two sections were calculated based on the divided
torrent data. First, the hydrological drought index (SBI) and meteorological drought index
(SPI) were computed in this study. Then, a novel drought index based on copula was
suggested, capable of capturing both hydrological and meteorological drought. After that,
the superiority of the composite drought index was confirmed by contrasting the SPI, SBI,
and CDI on a monthly scale. The Frank copula parameter values for the BZA and SD basins
were determined to be 5.5160 and 4.1631, respectively.
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Figure 6 shows the SPI, SBI, and CDI of the JRB at the annual scale from 1991 to 2021.
The results of the linear fit for the CDI, SPI, and SBI on the annual scale are shown in
Figure 6. The results of the MK test are shown in Table 2. It can be found that the results
of the MK test are the same as those of the linear fitting, which proves the accuracy of the
trend change. The Pearson correlation coefficients of the composite drought index with
the SPI and SBI values passed the 95% confidence test, which indicates that the newly
constructed composite drought index has some reliability [56]. Figure 6 shows that the
aridity in the BZA area decreases year by year, but the aridity in the SD area increases
year by year. According to Figure 6, the fluctuation shapes of the CDI, SPI, and SBI are
similar, and when the SPI and SBI decrease, the CDI decreases at the same time, and when
the SPI and SBI increase, the CDI increases at the same time, which indicates that the
new CDI has very high accuracy and reliability in recognizing the two kinds of droughts,
namely, meteorological drought (SPI) and hydrological drought (SBI). The trend line in
Figure 6 indicates that when the SPI and SBI rise simultaneously, the CDI likewise rises
simultaneously. Similarly, the CDI falls when the SPI rises and the SBI falls, but its slope
is much smaller than the SBI. This indicates that the new CDI combines the two types of
drought indices rather than considering them as one single drought index, which can be
used to recognize drought more comprehensively.

Table 2. Results of the MK test.

Station (Drought Index) Slope Z

SD(SPI) 0.0011 2.0561
SD(SBI) −0.0015 −2.7836
SD(CDI) −0.0002 −0.4896
BZA(SPI) 0.0011 2.028
BZA(SBI) 0.0007 1.417
BZA(CDI) 0.0011 1.9859
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To make a more visual comparison, we intercepted the changes in the monthly SPI,
SBI, and CDI (1992–1998), as shown in Figure 7. Some differences in the three indices
can be observed when zooming in on the abscissa. From the inter-annual variation in the
index in Figure 7, it can be seen that droughts occurred more frequently and at higher
drought levels from 1992 to about 1998, and the same was valid from 1999 to about 2020.
The droughts captured by the drought index in this study are temporally consistent with the
droughts that historically occurred in the JRB [57], which suggests that the newly constructed
drought index has some accuracy. The CDI based on the Frank copula function constructed in
this paper has the advantages of reliability, sensitivity, and comprehensiveness. It can identify
droughts more comprehensively and issue early warnings, supporting drought detection and
prevention.

Water 2024, 16, x FOR PEER REVIEW 12 of 19 
 

 

droughts captured by the drought index in this study are temporally consistent with the 
droughts that historically occurred in the JRB [57], which suggests that the newly con-
structed drought index has some accuracy. The CDI based on the Frank copula function 
constructed in this paper has the advantages of reliability, sensitivity, and comprehensive-
ness. It can identify droughts more comprehensively and issue early warnings, supporting 
drought detection and prevention. 

 
Figure 6. The annual SPI, SBI, and CDI at the (a) BZA and (b) SD stations. 

 

Figure 7. The monthly SPI, SBI, and CDI at the (a) BZA and (b) SD stations. The red line is the 
drought identification line. 

3.1.2. Mechanisms Underlying the Propagation of Meteorological Drought to Hydrologi-
cal Drought 

Figure 6. The annual SPI, SBI, and CDI at the (a) BZA and (b) SD stations.

Water 2024, 16, x FOR PEER REVIEW 12 of 19 
 

 

droughts captured by the drought index in this study are temporally consistent with the 
droughts that historically occurred in the JRB [57], which suggests that the newly con-
structed drought index has some accuracy. The CDI based on the Frank copula function 
constructed in this paper has the advantages of reliability, sensitivity, and comprehensive-
ness. It can identify droughts more comprehensively and issue early warnings, supporting 
drought detection and prevention. 

 
Figure 6. The annual SPI, SBI, and CDI at the (a) BZA and (b) SD stations. 

 

Figure 7. The monthly SPI, SBI, and CDI at the (a) BZA and (b) SD stations. The red line is the 
drought identification line. 

3.1.2. Mechanisms Underlying the Propagation of Meteorological Drought to Hydrologi-
cal Drought 

Figure 7. The monthly SPI, SBI, and CDI at the (a) BZA and (b) SD stations. The red line is the
drought identification line.

3.1.2. Mechanisms Underlying the Propagation of Meteorological Drought to
Hydrological Drought

The three thresholds are R0 = 0, R1 = −0.5, and R2 = −1 following the three-threshold
approach of the tour theory for a drought index time series for the first judgment, culling,
and fusion of the three-step identification and extraction of drought characteristics. Figure 8
displays the outcomes from 1995 to 1998. Concurrently, the tour theory was employed to
better comprehend the modifications in meteorological and hydrological drought attributes
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following their dissemination. This aided in the identification of hydrological and meteoro-
logical drought occurrences, the extraction of drought intensity and ephemeral features,
and the analysis of the outcomes. The results showed that the duration of meteorological
and hydrological drought in the BZA station, as evaluated by the SPI and SBI, was 77 and
97 times, respectively. The meteorological droughts and hydrological droughts in the
SD station were 74 and 83 times, respectively. According to the CDI results, the drought
duration in the two stations was 150 and 150 times, respectively. Accordingly, the accuracy
of the composite drought index in the two stations was 75.3% and 73.3%, respectively.
Additionally, it may be inferred that hydrological droughts in the SD and BZA regions
occurred one month and 0.7 months behind meteorological droughts.
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3.2. Future Drought Prediction and Important Factor Identification
3.2.1. Drought Forecasting Performance

This study was based on the precipitation, baseflow, evaporation, El Niño Southern
Oscillation (ENSO), Atlantic Multidecadal Oscillation (AMO), Arctic Oscillation (AO),
North Atlantic Oscillation (NAO), Pacific Decadal Oscillation (PDO), Southern Oscillation
(SO), Indian Ocean Dipole (IOD), and composite drought index (CDI) at the BZA and SD
stations in the JRB during the period of 1991–2010. The composite drought index was also
predicted for 2011–2020. The results of the correlation calculation among the numerical
variables of the random forest model are shown in Figure 9. The correlation between the SO
and ENSO indices was more significant than 0.9 at the BZA and SD stations. The correlation
between the ENSO index and the other numerical variables was greater than that of the
SO index. The accuracy of the exercise results is shown in Table 3. Based on the results, it
can be seen that the trained model has vital prediction accuracy for no drought and heavy
drought, but the prediction accuracy for normal drought still needs to be strengthened.

Table 3. Prediction accuracy of the random forest models.

Categorization BZA SD

No drought 83% 75%
Normal drought 52% 63%
Heavy drought 83% 88%
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3.2.2. Important Factor Identification

The inversion point identification algorithm and implementation scheme proposed
in this paper apply to the subtype prediction results. For example, in drought forecasting,
the data values are compared with the thresholds of −0.5 and −1. An area has no drought
when the prediction result is more than −0.5. An area is in a normal drought when the
result is more than −1 and less than −0.5. When the prediction value is less than −1, an
area is in a heavy drought or above. This meets the needs of drought forecasting and
supports the inversion point identification algorithm for validating data storytelling.

The algorithm model was trained using various information characteristics such as
precipitation, baseflow, evapotranspiration, and the ENSO, AMO, AO, NAO, PDO, SO,
and IOD indices. The LIME algorithm model was then utilized to predict the classification
of drought, and the results were fed back to the decision maker for decision-making on
drought conditions. The classification results were characterized as “index ≥ −0.5” (no
drought), “−1 ≤ index < −0.5” (normal drought), and “index < −1” (heavy drought
and above).

Drought occurs in an area when the index is less than −0.5, which indicates a reversal
of the need for change and indicates that the characteristics of the value may alter the
outcomes. When the composite regional drought index is less than −0.5, the features
of the value can be altered. Each time a variable’s properties change inside the tale’s
structure, this can be considered data storytelling in the story point narrative. Figure 10
shows this process. In the development stage of data storytelling, which runs from story
point F0 to F2, the narrative progressively builds to a climax as one or more crucial feature
variables are changed. Based on the LIME algorithm, data storytelling interpretation
can be characterized in the following ways, as shown in Figure 10. The decision maker
continuously looks for the reversal moment, or the point in the story where the predictions
made by the model are overturned by altering the values of one or more features with
higher weights. This is performed using the LIME method to output the feature weights for
each prediction. Figure 11 displays the characteristic weights for every predicted outcome.
Precipitation, baseflow, and evaporation are the fundamental eigenvalues influencing the
impact of a drought.
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Figure 11. The importance of various variables for forecasting drought. The feature weights for (a) no
drought, (b) normal drought, and (c) heavy drought prediction.

4. Discussion

Many new drought indices have been developed in past studies to monitor drought [58–60].
However, no comprehensive drought index is based on the copula function that combines
the SPI and SBI to construct a comprehensive drought index that simultaneously character-
izes meteorological and hydrological droughts. On this basis, a comprehensive drought
index based on the Frank copula is proposed to characterize JRB droughts comprehensively.
The trend line in Figure 6 reveals that the meteorological drought in the sand section has
decreased yearly, but the hydrological drought has increased yearly. The reason for this
phenomenon may be the faulty management of reservoirs because of the intensification of
extreme climate change caused by global warming. As shown in Figure 7, the composite
drought index can monitor the occurrence of meteorological drought, hydrological drought,
or both. In general, the onset of a drought is usually due to a persistent lack of rainfall,
so the SPI index is susceptible to capturing the onset of a drought. There is a delay in
the response of hydrological droughts to meteorological droughts because of complex
sink-producing processes, so the SBI effectively identifies the duration and end of droughts.

As shown in the first black rectangular boxes in Figure 7a,b, the moments when the
CDI and SPI values are less than −0.5 (considered to be the beginning of the drought) are
earlier relative to the SPI, which suggests that the CDI was comparable to the SPI in its
ability to capture the beginning of the drought. In addition, the composite drought index
appears to be similar to the SBI in terms of its capacity to detect the end of drought because
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the times at which the CDI and the SBI are more significant than −0.5 (the point at which the
drought is deemed to be over) occur later than the SPI. This is because the SPI was mainly
based on meteorological drought characteristics, which develop suddenly and rapidly. The
SBI was based on hydrological drought characteristics, with considerable delays and longer
durations. The third black rectangles in Figure 7a,b show that the CDI can include both the
beginning and the end of a drought, as captured by the SPI and the SBI. The CDI captures
the beginning of the SPI and the duration of the SBI during drought events. Furthermore,
as demonstrated by the variations in the three indices in the second black rectangular
boxes in Figure 7a,b, the CDI accurately depicted the beginning of the drought in both
cases when only a hydrological drought occurred and when no meteorological drought
occurred. These findings offer compelling evidence that the composite drought index,
which incorporates data on streamflow and precipitation, can accurately and sensitively
identify the beginning, middle, and end of a drought.

Therefore, we believe that the proposed composite index has practical applications.
Once the CDI detects a drought, practitioners, watershed managers, or agencies should
remain vigilant in warning and preventing possible droughts. In addition, the CDI was
significantly correlated with the SPI and the SBI (p < 0.05), indicating that the CDI has
good reliability. In addition, Hao and AghaKouchak [61] also compared the new composite
drought index with the SPI and the standardized soil moisture index by analyzing the
drought onset and propagation time they captured. They verified that the copula-based
composite drought index is reliable and has effective drought early warning capability. In
Figure 7, the green line representing the composite drought index is slightly lower than
the other lines, indicating that the conditions captured by the composite drought index
are more severe than those captured by the single-factor drought index. Without accurate
forecasts, people prefer predicted drought levels to be higher than actual levels, which is
more conducive to drought planning.

The number of hydrologic droughts at BZA is significantly higher than at SD, as
shown in Figure 8. This may be because the SD station controls 75% of the watershed,
whereas the BZA station controls only 40%. In addition, a random forest model was
trained on precipitation, baseflow, evapotranspiration, and the ENSO, AMO, AO, NAO,
PDO, SO, and IOD indices, which had a more accurate accuracy for no drought and heavy
drought conditions. The LIME model was then used to interpret the predictions of the
random forest to identify the leading causes of drought in the JRB region. The results
showed that precipitation, baseflow, and evapotranspiration most significantly impact the
JRB regional drought. This is consistent with the fact that precipitation, baseflow, and
evapotranspiration are all determinants of drought in each region and that the JRB is a
large and stable watershed, so it is less affected by factors such as ESNO, AMO, AO, NAO,
PDO, SO, and IOD.

There are some shortcomings in this study including the following: (1) only meteo-
rological and hydrological droughts are considered, and agricultural and socio-economic
droughts are excluded; (2) we validated the applicability of the Frank copula function in
the JRB but failed to establish a generalized method for constructing a composite drought
index; (3) there is still a need to improve the prediction accuracy of the random forest model
trained in this paper for predicting mild droughts compared to other scenarios; and (4) we
did not categorize the situation after a moderate drought, resulting in a lack of research on
the composite drought index for extreme drought situations. Furthermore, the propagation
mechanism from meteorological drought to hydrological drought was only considered on
the time scale. Therefore, the spatial propagation mechanism will be further studied.

5. Conclusions

This study constructs a new comprehensive drought index based on the copula func-
tion according to precipitation and baseflow, which can better characterize meteorological
and hydrological droughts. The random forest algorithm was used to predict drought,
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and the LIME algorithm was used to explain the importance of predictors. The following
conclusions were obtained:

(1) The CDI can comprehensively characterize meteorological and hydrological droughts,
providing reliable and powerful support for monitoring, prevention, control, and forecasting.

(2) From 1991 to 2020, the monthly and annual droughts in the BZA area of the JRB
region showed a decreasing trend, and the monthly and annual droughts in the SD area
showed an increasing trend. The subregions have different time-varying characteristics.
Most droughts occurred in the fall and winter, with mean CDI values of −0.447 and
−0.548 at the BZA and SD stations, respectively.

(3) The random forest model training results were accurate for no drought and heavy
drought, with average validation accuracies greater than 0.8 at the BZA and SD stations. The
LIME interpretation was used to find out the most important values of the characteristics
of drought impacts, such as precipitation, baseflow, and evaporation.
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Abstract: Reservoirs are susceptible to interference from inter-basin water transfer projects intended
to relieve serious water shortages. The Central Route of the South-to-North Water Division Project in
China has altered the hydrological conditions and water storage status of the terminal reservoir, the
Miyun Reservoir, thereby affecting the flood control reliability in the Chaobai River Basin. In this
study, a dual-objective five-reservoir operation model was developed, in which reservoir releases
are obtained through piecewise linear operating rules. The model considers the flooding risks
both downstream of the basin and in the Miyun reservoir area. A parameterization-simulation-
optimization approach was employed to obtain the Pareto-optimal front, providing decision-makers
with a list of optimal rule parameters to select and match their own risk preferences. All optimized
rules could ensure safe operation during the designed floods to be expected once (or more than
once) every thousand years. In contrast, the current flood operation schemes largely ignore the water
transfer between basins but primarily concentrate on storing water from floods. Thus, the Miyun
Reservoir, whose design return period is 1000 years, can easily become filled during a 100-year flood,
impeding the system’s flood control capacity. Compared to the operating rule optimized in this
study, the current schemes result in a 10.5% higher upstream inundation loss and an unsatisfactory
17 million CNY of equivalent water transfer loss.

Keywords: multi-reservoir flood control; multi-objective optimization; flood operating rule; Central
Route of the South-to-North Water Diversion Project

1. Introduction

Floods are natural disasters that pose significant threats to ecology, the environment,
infrastructure, agriculture, and even human life. As a representative flood control infras-
tructure, reservoirs retain floodwater and flatten out the peak flow by intercepting heavy
rainfall in flood storage and releasing it after the rainstorm. With frequent water shortages
across the world, there is a growing need to operate multiple and multipurpose reservoirs
such that the maximum possible water is conserved while ensuring dam safety and flood
moderation [1].

Reservoir flood operation is a typical multi-objective problem, which needs to balance
the conflicts of the benefits and flood damage [2,3], or flooding risks of multiple sites
and different flood stages [4–6]. For multiple reservoir systems, it is more challenging
to prioritize the flooding risk targets between the tributaries and mainstream [7], and
to allocate the flood-storage capacity among reservoirs [8,9]. These characteristics pose
significant modeling and optimization challenges in the flood operation of multi-reservoir
systems. Single reservoir flood control research dates back to the 1936 Flood Control
Act in the U.S. [10], and Windsor [11] pioneered the use of dynamic programming to
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optimize operation during flood periods. Multi-reservoir flood control has become a
research hot topic due to the increasing water resource demand and the rapid construction
of numerous dams in the past two decades, especially in developing countries [12–14].
The major objective of single reservoir flood control is to minimize the peak water level of
the dam or the peak flow at the downstream flood control station [6,15]. Multi-reservoir
systems have more complex objectives, aiming to minimize flooding risks at multiple flood
control stations while also maximizing flood utilization benefits. For example, Moridi and
Yazdi [16] employed an improved mixed integer linear programming to determine the
optimal allocation of reservoir flood control capacity in the Karkheh multi-reservoir system.
Their optimization objectives are reducing both downstream flooding damage and system
hydropower loss. Lu et al. [9] applied the theory of large-scale system decomposition and
coordination to balance flood control and power generation objectives for the mixed Pi
River Basin. Glavan et al. [3] optimized the design of detention reservoirs using scenario-
based economic analysis in the Lower Savinja Valley to ensure flood safety while preventing
an unacceptable loss of crop yield.

Among the considerable attempts made to derive optimal operating policies for
reservoir flood control, it usually can be achieved through implicit stochastic optimization,
explicit stochastic optimization, real-time control with forecasting, and a parameterization-
simulation-optimization model [12,17,18]. Each of these has its own advantages and
disadvantages. Implicit stochastic optimization, also known as deterministic optimization,
requires perfect foreknowledge of a flood over a lengthy time horizon [16,19], which,
evidently, is not yet reached in the current flood forecasting technologies [20]. Without the
presumption of perfect forecasting, explicit stochastic optimization and real-time operation
using uncertainty forecast are usually applicable to single reservoir flood control [6,15,21].
Nevertheless, their application to multi-reservoir systems is computationally challenging
unless operating rules can be parametrized in some way, as seen in the work of Lu et al. [9].
Parameterization-simulation-optimization involves optimizing the form of operating rules
by defining them with a small number of parameters. This method is commonly used in
conjunction with intelligent algorithms and widely applied in deriving reservoir scheduling
rules for various purposes, including water supply [22,23], hydropower generation [24,25],
and flood control [6,7]. These rules are often predefined in the form of rule curves or tables
and deduced through fitting methods from optimal processes. This may involve linear
regression analysis or surface fitting [18,26] or an iterative simulation-based optimization
by adjusting the operating rule parameters [7,27,28]. Overall, studies on flood control for
mixed-cascade reservoir systems are still rare.

The operation of reservoir systems faces abrupt hydrological changes caused by cli-
mate change and extensive human activities, such as water division. The Miyun Reservoir
is the largest reservoir in North China and was the main surface water source for Bei-
jing, the capital of China. The historical continuous decline of streamflow in the Miyun
Reservoir has achieved extensive research in terms of causes, potential impacts, and fu-
ture projections [29–32]. In recent years, climate change has led to an opposite increasing
trend of rainfall in northern China [33], leading to a sharp increase in flood control pres-
sure. Additionally, the water division from the Central Route of China’s South-to-North
Water Transfer Project into Miyun Reservoir has increased its storage, presenting new
requirements for flood control scheduling. However, the current reservoir in operation
under the influence of inter-basin water transfer predominantly focuses on water supply
issues [34,35]. The impact of inter-basin water transfer on flood control situations and thus
flood control rule adjustments remain lacking. The Chaobai River Basin, with the Miyun
Reservoir as its major controlling infrastructure, was chosen as a case study to demonstrate
the optimization of multi-reservoir flood control operations.

The rest of this paper is organized as follows. Section 2 provides detailed information
about the study area and the formation of operating rules and optimization models for
the mixed five-reservoir system. Section 3 describes the impact of SNWDP on the Miyun
Reservoir and the optimization results. The conclusions are drawn in Section 4.
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2. Methods and Materials
2.1. Chaobai River Basin

The study area is the Chaobai River Basin (39◦46′–41◦49′ N, 115◦25′–117◦35′ E) in
northern China (Figure 1a). The watershed covers an area of 19,400 km2 and has a diverse
topography, with higher elevations in the northern region and a gradual decrease in
elevation towards the southeast. It is characterized by two major tributaries, namely the
Chao River and the Bai River, which merge at the Miyun Reservoir and form the Chaobai
River downstream of the reservoir. The annual precipitation and runoff are around 553 mm
(range 500–700) and 1653 million m3 (range 615–4320) [36]. The major flood season is
June–August. Over 70% of the annual rainfall occurs during this period, predominantly in
the form of intense and localized downpours [37].
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Figure 1. Location of the Chaobai River Basin (a) and the schematic diagram of the mixed five-
reservoir flood control system (b).

The flood control system in the Chaobai River Basin consists of a cascade of five
reservoirs: the Yaoqiaoyu Reservoir (R1), Banchengzi Reservoir (R2), Miyun Reservoir (R3),
Shachang Reservoir (R4), and Huairou Reservoir (R5). The layout is depicted in Figure 1b
and numbered from upstream to downstream. The respective flood control characteristic
parameters are listed in Table 1. The reservoirs are designed with different seismic intensity
levels: R1 and R2 are at 7 degree and the downstream R3, R4, and R5 have a higher design
seismic intensity level of 8 degree. Among these reservoirs, the Miyun Reservoir serves as
the pivotal control project along the main stream of the basin, with a total storage capacity
of 4375 million m3 [38] and a drainage area of approximately 90% of the basin’s total area.
The Miyun Reservoir has long been the sole surface water resource for Beijing through
the Jingmi Canal. Since the introduction of water transfer from the Central Route of the
SNWDP in 2015, the reservoir’s role shifted to serving as an emergency strategic water
resource reserve.
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Table 1. Characteristic parameters of the Chaobai River flood control system. In the last three rows,
the characteristic water level [m3], and in parentheses the respective storage [106 m3], for each
reservoir are given.

Characteristic Water Level
[m3]

Yaoqiaoyu
Reservoir

(R1)

Banchengzi
Reservoir

(R2)

Miyun
Reservoir

(R3)

Shachang
Reservoir

(R4)

Huairou
Reservoir

(R5)

Designed flood control
standard [yr] 100 100 1000 50 100

Flood limited water level 463 (12.1) 255 (5.75) 152 (3037) 165.5 (15.65) 58 (39.4)
Design flood level 468.1 (17.37) 258.5 (8.05) 157.5 (3964) 167.95 (19.05) 64.16 (98.2)
Check flood level 469.78 (19.34) 259.3 (8.63) 158.5 (4145.4) 170 (21.2) 67.73 (144)

2.2. Multi-Reservoir Flood Control Operation Model

The general goal for reservoir flood control is to ensure the safety of both the reservoir
itself and the downstream flood control stations. In general, the model objectives during
the floods are (1) to minimize the vulnerability (or economic losses) caused by flooding of
the reservoir in terms of the reservoir risk water level and the duration of such a high level,
and (2) to minimize the damage due to peak outflow from the reservoir at critical locations
downstream of the reservoir.

Flood control in the study area is unique because both the upstream reservoir area
and downstream flood space have undergone significant urbanization, and the urban
development within the Beijing metropolitan area has placed extremely high demands on
flood safety in Miyun Reservoir. The flood control objects in this study are (1) the upstream
Miyun Reservoir area (Zone A in Figure 1) and (2) the downstream Suzhuang flood control
station (Zone B).

The potential inundation losses in the Miyun Reservoir area are due to the continuous
decline in the reservoir water level over the past few decades [30]. The long-term exposed
reservoir’s original inundation area has been developed and inhabited by humans. The
flooding risk of the area upstream of the Miyun Reservoir is simulated using the economic
losses of human settlements, infrastructure, and agriculture. Forested areas will be sub-
merged when the water level is between 152 m (the flood limited water level, FLWL) and
155 m. When the water level exceeds 155 m, seven towns will be submerged. When the
water level reaches 158.5 m (the check flood level, CFL), the water supply security will be
impaired. The standardized inundation losses at different water levels under the CFL are
collected and calculated (Figure 2a). Therefore, flooding damage can occur at any time
when the water level is higher than the FLWL, which is unique and unlike others that are a
threat only when the risky water level is exceeded.

The downstream area of the Chaobai River Basin has important towns and a major
transport railway and highway. The Suzhuang station is designated as the flood control
site. The discharge is jointly managed by the Miyun (R3), Shachang (R4), and Huairou
(R5) reservoirs. The safe carrying capacity at Suzhuang station is 600 m3/s, exceeding
which would result in varying degrees of flooding. Through flood routing simulations, the
extent of inundation and damage in the channel can be determined. Figure 2b illustrates
the relationship between the total discharge and the downstream losses due to flooding.
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Figure 2. Relationships between inundation loss in the Miyun Reservoir area and the reservoir
storage (a), and the downstream losses and discharge in the Suzhuang flood control section (b).

The inundation losses in the Chaobai River Basin are semi-quadratic (or linear) func-
tions of the decision variables. To simplify the model calculation and ensure the stability of
the optimization process across time periods, we use the quadratic function instead of the
flooding damage as the target and normalized it as follows:

MinimizeF1 =
T

∑
t=1

(
Vt

3 −VFLWL,3

VDFL,3 −VFLWL,3

)2

(1)

MinimizeF2 =
T

∑
t=1

(
Rt

3+Rt
4 + Rt

5
Rmax,3 + Rmax,4 + Rmax,5

)2

(2)

These objectives are subjective to the following constraints.
Water balance constraint

Vt
i =

{
Vt−1

i + It
i ∆t− Rt

i ∆t i = 1, 2, 4, 5
Vt−1

i +
(

It
i + Rt

1 + Rt
2 − Rt

i
)
∆t i = 3

(3)

Reservoir water storage or level constraint

Zmin,i ≤ Z
(
Vt

i
)
≤ Zmax,i (4)

Outflow constraint
Rmin,i ≤ Rt

i ≤ Rmax,i (5)

where, Vt−1
i and Vt

i are the beginning and ending storages of reservoir i ∈ {1, 2, . . . 5} in
period t (m3), respectively. Specifically, Vt

3 is the ending storage of the Miyun Reservoir.
VFLWL,3 and VDFL,3 are the storages corresponding to the flood limited water level and
designed flood level (m3), respectively. I, R, Z are the natural inflow (m3/s), reservoir
outflow (m3/s), and reservoir water level (m), respectively. The intermediate flow between
reservoirs, i.e., regions between the reservoir and the flood control section, is ignored.
The Miyun Reservoir (R3) receives the discharges from the Yaoqiaoyu Reservoir (R1) and
the Banchengzi Reservoir (R2). Rt

3, Rt
4, and Rt

5 are the discharges of the Miyun (R3),
Shachang (R4), and Huairou (R5) reservoirs (m3/s), the sum of which is the flow rate at
the downstream Suzhuang flood control section. Zmin,i and Zmax,i are the lower and upper
limits of the reservoir water level (m), respectively, and are typically the dead water level
and check flood level (CFL), respectively, during the flood season. Rmin,i and Rmax,i are the
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boundaries of the outflow constraints and are equal to the ecological flow requirement and
the reservoir spillway capacity of the respective reservoir at the check flood level (m3/s).

2.3. Operating Rules

Flood control operating rules are used to make release decisions based on the current
hydrological conditions, such as the reservoir water level and incoming flow rates, thereby
achieving conservative safety operation during a flood. These rules can be established
using empirical relationships, simulation models, and optimization methods. The release
schemes are usually presented in the form of tables or mathematical functions, with

Qout = f (Qin, Z) =





Qout,1 Qin ∈ (Qmin,1, Qmax,1), Z ∈ (Zmin,1, Zmax,1)
Qout,2 Qin ∈ (Qmin,2, Qmax,2), Z ∈ (Zmin,2, Zmax,2)

...
Qmax,K Qin ∈ (Qmin,K, Qmax,K), Z ∈ (Zmin,K, Zmax,K)

(6)

where Qout (i.e., Rt
i in Equations (2) and (5)) is the reservoir release to be decided (m3/s),

which is usually a piecewise parametric function of the reservoir states, i.e., the inflow
Qin (m3/s) and water level Z (m). Qmin,k, Qmax,k, Zmin,k, and Zmax,k, k = 1,2,. . .K, are the
hierarchical boundaries of the classified reservoir inflow and water level.

In general, reservoirs follow uniform rules when confronted with frequent flood events.
However, a uniform parameterization scheme cannot adequately address the specific flood
safety requirements for the Chaobai River Basin. Distinct parameters have been proposed
for a similar set of rules for each reservoir, to cope with floods with different frequencies.
We use the following widely used linear decision rules [7,27,39] with hourly regulation and
four-lever hierarchy:

Rt
i =





0 Vt
i < VFLWL,i

min(α iQ
t
in,i + βi

(V t−1
i −VFLWL,i

)

∆t , Rmax,i) VFLWL,i ≤ Vt
i < VDFL,i

RDmax,i VDFL,i ≤ Vt
i < VCFL,i

Rmax,i Vt
i ≥ VCFL,i

(7)

In the case of extreme floods with a return period of over 100 years (e.g., 1000-year-
flood), the form of the rule needs to be slightly modified for reservoirs other than the Miyun
Reservoir. The discharge increases with i = 1, 2, 4, 5:

Rt
i =





RFmax,i Vt
i < VFLWL,i

min(α iQ
t
in,i + βi

(V t−1
i −VFLWL,i

)

∆t + γi Imax,i, Rmax,i) VFLWL,i ≤ Vt
i < VDFL,i

RDmax,i VDFL,i ≤ Vt
i < VCFL,i

Rmax,i Vt
i ≥ VCFL,i

(8)

where the reservoir release is decided as a linear function of both the reservoir inflow
and the water level. Qt

in,i is the reservoir inflow from the flood hydrograph and upstream
releases (m3/s); RFmax,i, RDmax,i, and Rmax,i are the maximum allowable discharges (m3/s)
under FLWL, DFL, and CFL, respectively. The parameters αi=1,2...5, βi=1,2...5, and γi=4,5 are
the decision variables that need to be optimized in this study.

2.4. Investigated Floods

The 100-year design flood hydrographs for each reservoir area are illustrated in
Figure 3. Table 2 lists the peak flood discharges for each reservoir under different return
periods. By proportionally scaling the representative floods using the peak flows and 3-day
flood quantities (not shown), the 72-h design flood hydrographs for different frequencies
are obtained.
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Table 2. Low-recurrence-interval design flood peak flow discharge.

Flood return period
[yr] 1000 100 50 20 10

Frequency [%] 0.1 1 2 5 10

Peak flow [m3/s]

R1 (Yaoqiaoyu) 2290 1500 1280 980 763
R2 (Banchengzi) 457 288 195 78 67.2

R3 (Miyun) 15,800 9320 7460 5120 3480
R4 (Shachang) 1510 975 800 590 419
R5 (Huairou) 7710 5059 4270 3280 2440

2.5. NSGA-II Solving Method

Due to the non-differentiable nature of the predefined operating rules (Section 2.3) and
the nonlinear relationship between rule parameters and flood damage, classical optimiza-
tion methods like linear programming are not suitable for optimizing the model. Instead, a
simulation-based optimization approach is employed to derive the rule parameters.

In this paper, the non-dominated sorting genetic algorithm II algorithm (NSGA-II) [40]
is implemented to identify the large set of Pareto solutions to this simulation-optimization
multi-objective model (Section 2.2). The NSGA-II eliminates the need for explicit coordina-
tion among multiple objectives and enhances the basic genetic algorithm by incorporating
fast non-dominated sorting and crowding distance mechanisms. An elite preservation
strategy in NSGA-II ensures diverse solutions that effectively approach the Pareto op-
timal front in a wide and uniform manner. Hojjati et al. [41] have found that NSGA-II
provides better approximations of the true Pareto optimal surface, depicting tradeoffs
between objectives, compared to multi-objective particle swarm optimization. The NSGA-
II algorithm is well-established and has been demonstrated to have strong optimization
capabilities in both theoretical test functions and practical production problems [25,40]. The
obtained Pareto front provides valuable insights into available compromising strategies for
decision-makers.

The operating rules (Section 2.3) are optimized for various representative flood fre-
quencies, starting from the FLWL of each reservoir. For each representative flood (Sec-
tion 2.4), a set of initial decision variables (i.e., the rule parameters) is randomly generated.
Simulation methods are then used to sequentially update the reservoir states. The operation
process and objective function values are evaluated (Section 2.2). Optimized using the
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NSGA-II algorithm, all non-dominated optimal solutions, including the Pareto front and
corresponding rule parameters, are obtained.

3. Results and Discussion
3.1. Impact of Inter-Basin Water Transfer on the Flood Control Situation of the Miyun Reservoir

Figure 4 illustrates the historical annual end-of-year storage of the Miyun Reservoir.
Before 1995, the reservoir’s water level was close to the FLWL, which has undergone
multiple adjustments [39] and currently stands at 152 m (3037 million m3). Since then, a
combination of factors including reduced rainfall, has led to consistently low reservoir
storage (Figure 4). Flood control was not a major consideration during the flood season.
Instead, the reservoir intercepted all incoming floodwater for non-flood season water
supply.
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Figure 4. Annual available water resources into the Miyun Reservoir (including external transfer),
end-of-year reservoir storage, and the historical flood limited water level (FLWL) from 1990 to
2021. The Central Route of the South-to-North Water Diversion Project (SNWDP) commenced water
transfer in 2015.

The Miyun reservoir began to receive water from the Central Route of the SNWDP in
2015, accounting for approximately 10–30% of the total inflow to the reservoir. Along with
the decreasing water supply and increasing trend of extreme floods recently, water storage
in the Miyun Reservoir has been steadily rising and reached its peak in 2021 (Figure 4).
During the flood season in 2021, the basin experienced 63% more precipitation than the
average, and the historically largest flood event, which occurred from 30 July to 2 August.
With these changes, the reservoir now seeks to maximize water storage due to the high cost
of inter-basin water transfer while mitigating potential losses caused by heavy rainfall. The
discharge during flood regulation consists of a combination of upstream floodwater and
water transferred from southern China. Consequently, the equivalent economic losses of
the Miyun Reservoir discharge can be evaluated as the product of the discharge volume
and the unit price of the transferred water.

3.2. Flood Regulation

Taking the 20-year flood (within design standard) and 1000-year flood (beyond design
standard) events as examples, Figure 5 shows the Pareto front of the dual-objective model
using the NSGA-II method. Objective F1 aims to minimize the water level of the Miyun
Reservoir, thus reducing the losses due to inundation in the reservoir area (Equation (1)).
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Objective F2 focuses on controlling the system downstream discharge in the Suzhuang
section, thus constraining the flooding risk in the downstream river channel (Equation (2)).
These objectives are in competition and reducing one will enlarge the other. Under the
two different frequency floods, the upstream target values are in a similar range, but the
downstream target values are six times larger for the 1000-year flood than for the 20-year
flood (Figure 5).
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Figure 5. The Pareto front for the dual-objective operation model under a 20-year flood and a
1000-year flood. The six points (A, B, C, A’, B’, and C’) represent the six solutions under different
flood conditions and distinct objective prioritization.

Each point on the Pareto front represents an optimal solutions alternative obtained
through the optimization of the reservoir operation. Figures 5 and 6a,b show a comparison
of the reservoir operation process under the 20-year flood. The blue point (line) labeled A
on the Pareto front indicates full focus on minimizing upstream inundation (objective F1).
In this case, the water level of the Miyun Reservoir remains relatively stable at the FLWL
(Figure 6a). To achieve this, almost all inflow is discharged, leading to high flow rates
in the Suzhuang station, and the peak value even surpasses the system’s natural inflow
(Figure 6b). As the concern shifts toward prioritizing the downstream flood safety (the
trade-off point B on the Pareto front), the reservoir storage gradually increases (orange
curve in Figure 6a) from the FLWL (3037 million m3) to 154.7 m (3422 million m3) within
72 h. In return, the system release exhibits a noticeable peak attenuation effect (Figure 6b).
The goal of red point (curve) C is to minimize downstream flooding by intercepting as
much incoming floodwater as possible in the Miyun Reservoir.

Under the 1000-year flood, the system is still capable of safeguarding the entire basin
(Figure 6c,d). None of the selected three scenarios causes the water level of the Miyun
Reservoir to surpass the DFL. As the system’s designed flood has two peaks, the reservoirs
effectively capture the first peak while the attenuation effect on the second peak is noticeably
diminished. This weakness can be attributed to the shrinking flood control storage of the
reservoirs during the operation.

The optimal decision variables (i.e., rule parameters) under each frequency design
flood are provided in the Supplementary Materials (Table S1). The rule-based operation
typically involves two steps: (1) evaluation of the magnitude of the incoming flood by
comparing the forecast peak flow and quantity to the historical flood records; and (2)
releasing the water according to the operating rules with the corresponding parameters
and Equations (6)–(8).
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Figure 6. The reservoir operation process in terms of the Miyun Reservoir storage (a,c) and the basin’s
downstream total discharge (b,d) corresponding to the points A, B, C, A’, B’, and C’ in Figure 5.

3.3. Compariosn to the Current Operating Rules

The existing flood control rules for the five reservoirs listed in Table 3 are designed
independently for the single-objective single-reservoir condition. In general, the reservoir
discharge varies in different characteristic water level ranges. When reservoir storage is
below the FLWL, all incoming floodwater is stored in the reservoirs. When water level
exceeds FLWL, reservoirs with small flood control capacity, i.e., R1, R2, and R4, are designed
to discharge either up to the maximum capacity or at predetermined flow rates. The Miyun
Reservoir (R3) and Huairou Reservoir (R5) adjust their discharge considering the inflow
rate more extensively, with small release under low inflow conditions and high release
when there is a significant inflow.

Taking the 100-year flood as an example, the current rules lead to greater flood control
loss in both the upstream and downstream areas compared to the dual-objective multi-
reservoir integrated optimization result (Figure 7a). For illustrative purposes, we compare
the current rules with the closest optimal Pareto solution, the rule parameters of which are
listed in Table 3.
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Table 3. The current flood control operating rules for individual reservoirs and the optimized rule
parameters for the integrated operation of the five reservoirs on the Chaobai River when confronting
a 100-year flood.

Criteria R1 R2 R3 R4 R5 Upstream
Damage

Downstream
Damage

Release
from R3

Release according to the current rules [economic
equivalence] [106 m3]

Z < FLWL 0 0 0 0 0 15.91 9.1 479
FLWL ≤ Z < DFL RFmax,1 80 {600, 1000, 1500} a Qt

in,4
Qt

in,5RDmax,5

5059
a

DFL ≤ Z < CFL RDmax,1 200 {Qt
in,3, RDmax,3} a {420, 670} a RDmax,5

Z ≥ CFL Rmax,1 Rmax,2 {Qt
in,3, Rmax,3} a Rmax,4 Rmax,5

Rule parameters for the Pareto optimal

αi 0.2698 0.3616 0.3528 0.4129 0.4032 14.4 8.9 471.6
βi 0.5586 0.6210 0 0.4779 0.0114

Note: a: the specific determination of how much to release is found in the respective reservoir flood operation
scheme.
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Under the current rules, the primary focus of the Miyun Reservoir is on inflow inter-
ception, regardless of the background of the SNWDP. The reservoir tends to fill up prem-
aturely, thus reducing its flood control capacity in the latter stages. It is evident from the 
storage process shown in Figure 7b that the current rules could rapidly increase the water 
level to the DFL, after which all inflow must be released. Conversely, the optimized rules 
(blue curve in Figure 7b) allow for water storage at lower inflow rates and dynamically 
adjust the outflow proportionally to the inflow and storage, resulting in more gradual 
filling. The optimized rules, with emphasis on reservoir storage, i.e., discharging in re-
sponse to both incoming water and dynamic changes in storage, lead to a more continuous 
reservoir outflow process. This helps avoid the frequent abrupt changes in discharge ob-
served under the current rules (Figure 7c). 

In terms of flood damage, the current rules for a 100-year flood lead to 10.5% more 
loss in the upstream reservoir area compared to the optimized rules. Downstream inun-
dation losses are similar, but the Miyun Reservoir incurs an additional 7.4 million m3 spill. 
Assuming a unit water price of 2.33 CNY for the water transferred to Beijing via the Cen-
tral Route of the SNWDP [42], the surplus water is worth about around 17 million CNY. 

4. Conclusions 
In this study, a multi-objective model for mixed-reservoir flood control operation was 

developed. The operating rules were optimized using the NSGA-II algorithm. The mixed 
five-reservoir system in the Chaobai River Basin was selected because the major flood con-
trol reservoir, the Miyun Reservoir, has been significantly influenced in terms of both its 
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Figure 7. Comparison of operation under current rules and optimized rules in terms of the objective
values (a), the Miyun Reservoir storage process (b), and the basin’s downstream total discharge (c).

Under the current rules, the primary focus of the Miyun Reservoir is on inflow intercep-
tion, regardless of the background of the SNWDP. The reservoir tends to fill up prematurely,
thus reducing its flood control capacity in the latter stages. It is evident from the storage
process shown in Figure 7b that the current rules could rapidly increase the water level
to the DFL, after which all inflow must be released. Conversely, the optimized rules (blue
curve in Figure 7b) allow for water storage at lower inflow rates and dynamically adjust
the outflow proportionally to the inflow and storage, resulting in more gradual filling.
The optimized rules, with emphasis on reservoir storage, i.e., discharging in response to
both incoming water and dynamic changes in storage, lead to a more continuous reservoir
outflow process. This helps avoid the frequent abrupt changes in discharge observed under
the current rules (Figure 7c).

In terms of flood damage, the current rules for a 100-year flood lead to 10.5% more
loss in the upstream reservoir area compared to the optimized rules. Downstream inunda-
tion losses are similar, but the Miyun Reservoir incurs an additional 7.4 million m3 spill.
Assuming a unit water price of 2.33 CNY for the water transferred to Beijing via the Central
Route of the SNWDP [42], the surplus water is worth about around 17 million CNY.

4. Conclusions

In this study, a multi-objective model for mixed-reservoir flood control operation was
developed. The operating rules were optimized using the NSGA-II algorithm. The mixed
five-reservoir system in the Chaobai River Basin was selected because the major flood
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control reservoir, the Miyun Reservoir, has been significantly influenced in terms of both its
water inflow and demand by the Central Route of the SNWDP. Unlike conventional flood
control models whose upstream risk is dam overtopping, the Miyun Reservoir faces unique
challenges: the upstream reservoir area faces inundation loss as long as the water level
exceeds the FLWL and the loss increases non-linearly with the increasing inundation depth.
The piecewise linear rules are directly proportional to the inflow and reservoir storage.
These linear rules are operational simplicity and in line with the current operation schemes
in the Chaobai River Basin. An integrated simulation-optimization frame is adopted for
the joint reservoirs. This means that the rules are optimized by accounting for the interplay,
such as the compensation effects, among the reservoirs, thereby yielding more reasonable
rules than optimizing each reservoir independently.

The model provides a range of rule parameter combinations that accommodate the
different preferences of the targets. A comparison with the current flood operating rules
revealed that the optimized rules can avoid premature reservoir filling and decrease
inundation losses in the Miyun Reservoir area and downstream of the basin.

In this study, different combinations of rule parameters are proposed to address
floods of varying frequencies. While these combinations could effectively handle floods of
the corresponding magnitudes, the effectiveness of the operating rules in different flood
coincidences in the mainstream and tributaries has not been investigated. In addition, only
piecewise linear operating rules are considered. To enhance the adaptability and robustness
of the system flood control operation, future research should leverage the optimized
parameter library derived from designed floods and the actual normal flood events. The
performances of other types of operating rules should be compared to determine the most
suitable rules for the control of basin-wide floods in future studies. The operating rules
and rule parameters could be further adjusted to provide more dynamic decision support
for operators under typical flood conditions and incorporating real-time weather forecasts.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/w15152817/s1, Table S1: Parameters for operating rules.
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Abstract: Baseflow is the part of streamflow that is mainly replenished by groundwater. The
protection of the biological environment and the growth of its water resources greatly depend on
the spatial and temporal evolution of baseflow. Therefore, the Baizhiao (BZA) and Shaduan (SD)
catchments of the Jiaojiang River Basin (JRB) in the Zhejiang province of China were selected as study
areas. The ABCD model and Eckhardt method were used to calculate baseflow and baseflow index
(BFI). The temporal and spatial evolution patterns of baseflow were analyzed through statistical
analysis and the Mann–Kendall test. The results showed that the ABCD model performs well in
simulating overall hydrological processes on the monthly streamflow at BAZ and SD stations with
NSE (Nash–Sutcliffe Efficiency) values of 0.82 and 0.83 and Pbias (Percentage Bias) values of 9.2%
and 8.61%, respectively. The spatial–temporal distribution of the BFI indicates the higher baseflow
contribution in upstream areas compared to downstream areas at both stations. The baseflow and
BFI had significant upward trends at the BZA and SD stations in the dry season, while their trends
were not uniform during the wet period. These findings are essential guidance for water resource
management in the JRB regions.

Keywords: monthly-scale hydrological modeling; baseflow simulation; ABCD model; Eckhardt
method; spatial and temporal analysis

1. Introduction

Baseflow is a relatively stable streamflow component, mainly originating from sub-
surface streamflow or delayed portions of streamflow [1–3]. Baseflow can provide the
necessary support for streamflow replenishment [4] and play a crucial role in supplement-
ing groundwater in the basin [5]. Current global climate change and human activities
have increased uncertainty in the hydrological cycle [6,7]. Many studies have analyzed
the response of streamflow to climate change and human activities [8,9]. As a relatively
stable water source, baseflow is essential in mitigating the impacts of seasonal and climatic
variations on water resources [10,11]. A better understanding of groundwater replenish-
ment and discharge processes can be achieved through temporal and spatial baseflow
analysis, supporting the scientific and rational utilization of groundwater resources [12].
Therefore, gaining in-depth insights into the temporal and spatial evolution patterns of
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baseflow in watersheds is crucial for maintaining ecological flow [13,14], managing water
resources [15], and studying the patterns of drought evolution [16–18].

Currently, scholars use various baseflow simulation methods [19–21], mainly in-
cluding numerical simulation methods [22,23], isotope methods [24], and water balance
methods [25]. For example, Song et al. [26] quantitatively assessed the contributions of
direct streamflow and baseflow to nitrogen loading in the Western Lake Erie Basins in
China using numerical simulation methods, which can provide critical information for
regional water resource management. Fillo et al. [24] used isotopic techniques to investigate
how lawn watering affected baseflow in Denver, USA. They investigated the effects of lawn
irrigation on baseflow in semiarid metropolitan regions and concentrated on examining
the isotopic ratios of water molecules. Murray et al. [27] conducted an in-depth analysis of
monthly baseflow trends in watersheds within Canada using the water balance method.
This study aimed to explore the effects of climate change on baseflow, providing critical
insights into the changes in hydrological cycles in Canada.

Water balance models can estimate relationships such as precipitation, snowmelt,
evaporation, streamflow, and groundwater recharge [28]. The ABCD model, as a four-
parameter hydrological model, uses precipitation and potential evapotranspiration as
inputs to estimate changes in evapotranspiration, streamflow, soil moisture, and ground-
water storage [29]. These four variables play crucial roles in simulating the hydrologi-
cal processes of a watershed. Model parameter calibration is essential in applying the
ABCD model, optimizing model parameters based on observed data to improve predictive
accuracy. Standard parameter calibration methods include trial and error by Bayesian
methods [30–32], which effectively adjust model parameters to adapt to the characteristics
of different watersheds [33–35].

The choice to study the Jiaojiang River Basin is motivated by its significant importance
for water resource management and ecological conservation despite facing challenges
such as insufficient mainstream monitoring stations and lacking hydrological data for sub-
watersheds. In recent years, the basin has experienced water scarcity due to the impacts of
climate change and human activities. Therefore, this research aims to apply the monthly
water balance four-parameter hydrological model (ABCD model) to (a) calculate streamflow
in data-scarce watersheds, (b) simulate baseflow in each sub-watershed, and (c) assess the
temporal and spatial evolution patterns of baseflow within the watershed. This study
also aims to (d) provide a more scientific basis for future water resource management and
ecological conservation as a powerful tool for technical support for regional water resource
assessment and management.

2. Materials and Methods
2.1. Study Area

The JRB is one of the eight essential river basins in the Zhejiang Province, China. It
borders the East China Sea to the east and is situated between 120◦17′6′′ E to 121◦41′00′′ E
longitude and 28◦32′2′′ N to 29◦20′29′′ N latitude, covering an area of 6603 km2 [36], as
shown in Figure 1. The basin falls within a subtropical monsoon climate zone characterized
by four seasons, mild temperatures, and abundant rainfall. The average annual precipi-
tation is 1652 mm, and the average evaporation is 1237.9 mm (observed using a φ20 cm
evaporation pan). Precipitation distribution is higher in mountainous areas than plains,
with the southern part receiving more rainfall than the northern part. The southwestern
and northwestern mountainous regions have the highest precipitation, while the lowest
precipitation occurs in the coastal plain area of JRB. In recent years, water scarcity in the
Jiaojiang River Basin has been caused by climate change and human activities. Therefore,
studying the temporal and spatial evolution patterns of baseflow within the basin can offer
technical support for regional water resource assessment and management.
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Figure 1. Schematic of the study area.

2.2. Data

This study selected streamflow data from two hydrological stations, namely, BZA
and SD, in the JRB and conducted an analysis. The chosen data period for both stations is
unified from 1990 to 2020. The daily precipitation and evaporation pan observation data
for 24 meteorological stations within the JRB used in this study were sourced from the
China Meteorological Science Data Sharing Service website (http://data.cma.cn, accessed
on 1 May 2021).

2.3. Methodology

This study employed the Eckhardt [37] method for separating streamflow to obtain
baseflow. The simulation of baseflow results is evaluated based on the BFI. Streamflow was
simulated based on the ABCD model, and the temporal and spatial baseflow evolution
patterns were analyzed through statistical analysis and the Mann–Kendall test [38], as
shown in Figure 2.
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Figure 2. Study methodology flow chart.

2.3.1. Baseflow Separation Using Digital Filtering Method

The digital filter distinguishes between high-frequency and low-frequency signals
because the rapid response qualities of direct streamflow are comparable to high-frequency
signals, while the sluggish response characteristics of baseflow are similar to low-frequency
signals [39]. Streamflow processes can be divided into direct and baseflow according to
this split. Eckhardt [37] developed a general form for some filtering techniques, such as
the Chapman–Maxwell method [39] and Lyne–Hollick approach [40], building on earlier
research on digital filtering techniques.

bi = Abi−1 + Byi (1)

In the equation, bi represents the baseflow for time i, yi represents the total net flow
for time i, and A and B are functions of the recession coefficient α.

Assuming a linear relationship between the outflow and storage of the aquifer, the
coefficients A and B can be expressed in terms of two variables: the recession coefficient (α)
and the maximum BFI (BFImax). A more universally applicable digital filtering equation is
obtained through derivation, known as the Eckhardt Digital Filtering Method.

bt =
(1 − BFImax)αbt−1 + (1 − α)BFImaxQt

1 − αBFImax
(2)

where α is the filtering parameter, BFImax is the maximum of BFI, and Qt is the measured
streamflow at time t.

According to the research findings of Eckhardt, the parameter BFImax can take empiri-
cal values under different hydrogeological conditions: for unconsolidated porous aquifers
with perennial rivers, BFImax is taken as 0.80; for unconsolidated porous aquifers with
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seasonal rivers, BFImax is taken as 0.50; and for weakly permeable aquifers with seasonal
rivers, BFImax is taken as 0.25. The value of α has a relatively small impact on the calculation
results and can generally be set between 0.95 and 0.98.

To implement the Eckhardt method without conducting a hydrogeological investi-
gation, Fan et al. [13] proposed a reverse filtering method using recession constants to
calculate BFImax:

bt−1 =
bt

α
(bt ≤ Qt) (3)

Perform reverse iteration operations on daily flow based on the equation, and then ob-
tain BFImax by dividing the maximum possible total baseflow by the total flow. Fan et al. [13]
applied reverse filtering to generate different BFImax parameters for 1815 watersheds,
which reflects the soil heterogeneity and the spatial variability of hydroclimatic variables.

2.3.2. Baseflow Index

The baseflow index (BFI) represents the contribution of baseflow to the total stream-
flow [41], and the following equation expresses it:

BFI =

∫ t2
t1

Qb(t)dt
∫ t2

t1
Q(t)dt

(4)

where Q represents the total streamflow volume in cubic meters per second (m3/s); Qb is
the baseflow volume in cubic meters per second (m3/s); t is the time step; and t1 and t2
represent the starting and ending times, respectively.

2.3.3. The Low-Flow Index Method

The Low-Flow Index is an important indicator reflecting the characteristics of ground-
water supply to river streamflow. Q90 and Q50 represent the flow rates occurring with
frequencies equal to or greater than 90% and 50%, respectively. These flow rates are de-
termined using the daily flow duration curve [42]. The product of the Low-Flow Index
(Q90/Q50) and the annual total streamflow were taken as the observed value of the annual
baseflow to compare with the above baseflow separation estimation results.

2.3.4. ABCD Model

The watershed storage area is conceptualized as layers of soil and groundwater ac-
cording to the ABCD model [29] (Figure 3). Evapotranspiration losses happen when
precipitation reaches the soil layer, and the amount of evapotranspiration varies with soil
moisture content in a nonlinear empirical manner. There are two components to stream-
flow: baseflow is released from groundwater, and direct streamflow is the total surface
streamflow, followed by subsurface flow from precipitation and soil water. Groundwater
can be replenished by soil water seeping downhill. Many studies [31,32] have used the
ABCD model to simulate watershed streamflow in various regions and have obtained good
simulation accuracy.

Within a finite time step (monthly or yearly), the mass balance equation for soil
water is:

Si − Si−1 = Pi − Ei − Ri − Di (5)

where i represents the time step; Si−1 and Si are the soil water storage at the beginning and
end of the time step; and Pi, Ei, Ri, and Di represent the precipitation, evapotranspiration,
groundwater recharge, and direct streamflow within the time step, respectively.

In the ABCD model, the actual evapotranspiration (E) is a function of precipitation
(P) and soil water storage (S) [29]. It defines two state variables for this purpose, namely,
effective water content (Wi) and potential evapotranspiration (Yi). They can be expressed
by the following equations:

Wi = Pi + Si−1 (6)
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Yi = Ei + Si (7)

Assuming a nonlinear functional relationship between Yi and Wi, the following
is established:

Yi(Wi) =
Wi + b

2a
−
[(

Wi + b
2a

)2
− Wib

a

]0.5

(8)

where both a and b are parameters. The range of a is 0 ≤ a ≤ 1, reflecting the sensitivity of
Yi to changes in Wi, and b represents the maximum possible value of Yi:

Si = Yiexp(E0i/b) (9)

where E0i represents the potential evapotranspiration.
Utilizing Equations (3) and (4), Equation (1) can be rewritten as:

Ri + Di = Wi − Yi (10)

For the allocation of Ri and Di, the ABCD model further assumes:
{

Ri = c(Wi − Yi)
Di = (1 − c)(Wi − Yi)

(11)

where c is the third parameter of the model.
The ABCD model simplifies the groundwater layer as a linear reservoir, which can be

expressed as:
Fi = dGi (12)

where d is the fourth parameter of the model.
Substituting Equation (9) into Equation (2), we obtain:

Gi =
[c(Wi − Yi) + Gi−1]

(1 + d)
(13)

Thus, the total streamflow of the watershed Qi = Di + Fi.
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Figure 3. Conceptual diagram of the ABCD model.

2.3.5. Model Performance Evaluation

We employed a Genetic Algorithm (GA) for parameter calibration in this study. GA
aims to find the optimal solution to a given problem, analogous to Darwin’s theory of
evolution, where individual traits are preserved in a population. GA preserves a candidate
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solution set (also known as individuals) tailored to the specific problem. These candidate
solutions are iteratively evaluated to create the next generation of solutions. Solutions
with better traits are more likely to be selected and pass on their characteristics to the next
generation of candidate solutions. As generations progress, the candidate solution set can
better address the current problem.

We utilized GA to optimize the parameters of our model to maximize its fit with
observed data. Initially, we defined a fitness function to assess the quality of each parameter
set. We then initialized a population containing multiple parameter sets as candidate
solutions. Subsequently, we iteratively evaluated these candidate solutions and selected
the best based on their fitness values to generate the next generation. New solutions were
created in each generation through crossover and mutation operations and added to the
next generation’s population. After multiple iterations, we obtained a set of optimized
parameters that maximized the model’s fit with the observed data.

The normalized dimensionless NSE (Nash–Sutcliffe Efficiency) [43] compares the
variance of the measured and simulated data to determine the fit quality. The NSE value
range is −1 to negative infinity. Better simulation results and increased model reliability are
indicated by a higher NSE value closer to 1. On the other hand, a lower NSE value, nearer
0, denotes worse simulation outcomes with more significant modeling process mistakes,
and the overall dependability of the simulation findings is reduced. The model is deemed
untrustworthy if the NSE is noticeably less than 0.

Expressed mathematically as:

NSE = 1 − ∑T
t=1
(
Qt

o − Qt
m
)2

∑T
t=1
(
Qt

o − Qo
)2 (14)

where QO refers to observed values, Qm refers to simulated values, Qt denotes a specific
value at time t, and Qo represents the overall mean of observed values.

The Percentage Bias (Pbias) [44] represents the percentage difference between the
measured and simulated water flows compared to the corresponding inferred natural
water flow. The closer the Pbias is to 0, the better the model performance.

Pbias =
n

∑
i=1

Qsi − Qoi
Qoi

× 100 (15)

where Qoi is the observed flow on the i-th day; Qsi is the simulated flow on the i-th day;
Qo is the mean observed flow for the days in question; and n is the length of observed data.

2.3.6. Mann–Kendall Test

The World Meteorological Organization suggests the widely used non-parametric
Mann–Kendall test [38]. Since Mann and Kendall first put it forth, many studies have
used it to examine patterns in time series data of various variables, including temperature,
rainfall, streamflow, and water quality. The sample does not need to follow a particu-
lar distribution for the Mann–Kendall test to be valid, and it is unaffected by a small
number of outliers. Computing appropriately for non-normally distributed data such as
meteorological, hydrological, and other types is straightforward.

The null hypothesis H_0 in the Mann–Kendall test states that the time series data
X = (x1, . . . , xn) is made up of n independent random variables with identical distributions.
The alternative hypothesis H1 is a two-sided test in which the distributions of xk and xj are
different for every k, j ≤ n, and k ̸= j,. The test statistic S is calculated as follows:

S =
n

∑
k=1

n−1

∑
j=k+1

sgn
(
xk − xj

)
(16)
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Here, sgn() is the sign function, defined as follows:

sgn
(
xk − xj

)
=





0
(
xk − xj

)
> 0

1
(
xk − xj

)
= 0

−1
(
xk − xj

)
< 0

(17)

The statistic S follows a normal distribution with a mean of 0, and the variance Var(S)
is calculated as follows:

Var(S) =
n(n − 1)(2n + 5)

18
(18)

When n > 10, the standard typical statistic is calculated using the following formula:

Z =




S−1√
Var(S)

S > 0

0 S = 0
S+1√
Var(S)

S < 0


 (19)

If Z > 1.96 or Z < −1.96, at a significance level of α = 0.05, we reject the null hy-
pothesis H0, indicating enough evidence to support the alternative hypothesis H1. If
−1.96 ≤ Z ≤ 1.96, at a significance level α = 0.05, we accept the null hypothesis H0 [38].

3. Results and Discussions
3.1. Streamflow Simulation Using ABCD Model

The ABCD model parameters for the BZA and SD hydrological stations are shown in
Table 1. The parameter values for the two neighboring basins are relatively close. Once
the parameters and initial values were determined, the optimized model parameters were
used to optimize the simulated flows from 1990 to 2010. In addition, the initial values of S
and G were further optimized to obtain the best simulation results from 2011 to 2020. The
correlation with measurements is shown in Figure 4. The simulated results for the BZA and
SD hydrological stations have NSE values of 0.82 and 0.83, respectively, and Pbias values
of 9.2% and 8.61%. The overall deviation of the water quantities derived from the ABCD
model from the observations at the BZA and SD hydrological stations is positive, which
suggests that the model slightly overestimates the actual observed values of the mean
hydrological processes. The NSE is more than 0.8, and the Pbias is less than 10%, which
indicates that the ABCD model is a good fit and can be used for hydrological simulation
in JRB [45].

Table 1. The ABCD model parameters for two hydrological stations.

Station A B (mm) C D Soil Water
Storage (mm)

Groundwater
Storage (mm)

BZA 0.98 220.43 0.37 0.72 50.64 578.29
SD 0.96 283.69 0.30 0.60 27.50 675.55
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3.2. Baseflow Simulation Applying Eckhardt Digital Filtering Method

Table 2 illustrates the ABCD model parameters for the BZA and SD hydrological
stations. There are slight differences in the parameter values between the two adjacent
basins, with the parameter values for BZA consistently higher than those for SD. The
parameters at the daily scale exhibit significant fluctuations in both basins. Hence, monthly
scale parameters were adopted for excellent stability and reliability in modeling.

Table 2. Baseflow and streamflow characteristics at two hydrological stations.

Station

Average
Daily

Streamflow
(m3/s)

Average
Daily

Baseflow
(m3/s)

Maximum
Daily

Baseflow
(m3/s)

Median
Daily

Baseflow
(m3/s)

Average
Monthly

Streamflow
(m3/s)

Average
Monthly
Baseflow

(m3/s)

Monthly
Maximum
Baseflow

(m3/s)

Median
Monthly
Baseflow

(m3/s)

BZA 71.55 35.92 396.14 22.73 70.99 35.82 158.42 28.48
SD 39.33 21.81 195.80 15.31 41.36 21.72 85.72 16.82

The baseflow simulation was conducted for the SD and BZA watersheds using the
ABCD model, followed by baseflow separation using the Eckhardt digital filtering method.
To validate the baseflow separation estimation results, we used the product of the Low-
Flow Index (Q90/Q50) and the annual total streamflow as the observed value of the annual
baseflow. This observed value was compared with the baseflow calculated using the ABCD
model. The NSE and Pbias were then used to validate the baseflow calculated by the
ABCD model. Subsequently, the simulated results were evaluated using the observed
streamflow multiplied by the low-flow index (Figure 5). The NSE values for baseflow
simulation at the BZA and SD stations were 0.81 and 0.85, respectively. The Pbias values
of baseflow simulation for the BZA and SD stations were 8.65% and 5.90%, respectively,
indicating a slight underestimation of the observed values by the model. The baseflow
separation results showed that this method could effectively simulate baseflow, which can
provide a fundamental reflection of the annual variation within the watershed. Moreover,
this approach could be utilized to analyze and research the spatiotemporal evolution of
baseflow in the SD and BZA stations [46].
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Figure 5. Watershed observation and simulation of yearly Baseflow verification in the (a) BZA and
(b) SD stations.

3.3. Division of Wet and Dry Periods by BFI Value

Figure 6 illustrates the variation of monthly BFI based on the results of the digital
filtering method to derive BFI values. The BFI variation pattern at the BZA and SD
stations remained consistent throughout the year, with the maximum BFI occurring in
December and the minimum in August. The flow in rivers decreased as the seasons
changed and rainfall decreased. River replenishment has increasingly relied on subsurface
runoff, which has increased the supply of subsurface runoff. Consequently, the BFI has
increased as the percentage of subsurface runoff to river replenishment has decreased. This
has resulted in an increase in groundwater recharge, which has decreased the amount
of groundwater contributing to river flow and raised the BFI. During the summer, river
recharge is primarily dependent on precipitation and groundwater. The groundwater input
to river flow increases proportionately with rainfall, lowering the BFI [47].
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According to the monthly BFI results at the BZA and SD stations, the variation of
monthly BFI is shown in Figure 7. By comparing multi-year average BFI values, the period
from October to April was identified as the dry season, while May to September was
considered the wet season for the watershed. As a result, the rainy season was defined as
the months with BFI below average and the dry season as those with BFI above average [48].
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3.4. Spatial and Temporal Distribution Characteristics of Baseflow

The monthly baseflow and BFI statistical analysis for the BZA and SD watersheds
from 1990 to 2020 are shown in Figure 8. As indicated in Figure 8, the BFI did not exhibit
significant differences due to variations in watershed area, suggesting that the model
performed well in capturing the baseflow process. The watershed area considerably
impacted baseflow discharge, increasing baseflow as the area expanded. Numerous outliers
in the baseflow for both BZA and SD suggested significant fluctuations in monthly flow
rates [47].

Water 2024, 16, x FOR PEER REVIEW  11  of  18 
 

 

According to the monthly BFI results at the BZA and SD stations, the variation of 

monthly BFI is shown in Figure 7. By comparing multi-year average BFI values, the period 

from October to April was identified as the dry season, while May to September was con-

sidered the wet season for the watershed. As a result, the rainy season was defined as the 

months with BFI below average and the dry season as those with BFI above average [48]. 

 

Figure 7. A comparison of BFI between wet and dry seasons for (a) BAZ and (b) SD stations. The 

red (blue) color represents dry (wet) season. 

3.4. Spatial and Temporal Distribution Characteristics of Baseflow 

The monthly baseflow and BFI statistical analysis for the BZA and SD watersheds 

from 1990 to 2020 are shown in Figure 8. As indicated in Figure 8, the BFI did not exhibit 

significant differences due to variations in watershed area, suggesting that the model per-

formed well in capturing the baseflow process. The watershed area considerably impacted 

baseflow discharge, increasing baseflow as the area expanded. Numerous outliers in the 

baseflow for both BZA and SD suggested significant fluctuations in monthly flow rates 

[47]. 

 

Figure 8. The boxplots of baseflow and BFI for (a,b) BAZ and (c,d) SD stations. Figure 8. The boxplots of baseflow and BFI for (a,b) BAZ and (c,d) SD stations.

47



Water 2024, 16, 1437

The baseflow in the JRB exhibited a significant geographical gradient trend, increasing
from southwest to northeast. There was a notable gradient difference in baseflow among
different regions within the basin, ranging from below 0.27 m3/s to over 3.27 m3/s. This
may be attributed to the typically higher elevation or complex terrain in the southwest,
which could have led to a more concentrated water flow, forming high-value areas of
baseflow. Conversely, the lower terrain in the northeast may have resulted in relatively
lower baseflow. The terrain gradient could have accelerated the flow of water, influencing
the distribution of baseflow across different basin regions. The seasonal variations and
distribution of precipitation in the subtropical monsoon climate could have induced spatial
variations in baseflow. Monsoonal climates are often characterized by distinct wet and
dry seasons, which may have contributed to differences in baseflow within the basin [44].
Higher terrain in the southwest might have been more susceptible to the influence of mon-
soon rains, while the northeast could have been relatively drier. WNW winds might have
created differences in moisture transport within the basin, resulting in spatial variations in
baseflow [46]. Specific wind directions might have transported moisture to specific areas of
the basin, affecting precipitation and thus influencing baseflow formation. These factors
collectively may have contributed to the spatial variation of baseflow within the basin.

Figure 9 showed the BFI, baseflow modulus, and average annual baseflow distribution
for all Sub-watersheds at BZA and SD basins during all, wet, and dry seasons. The BZA
watershed has a spatial trend in the baseflow modulus, with larger values in the upstream
areas and smaller values in the downstream areas. The baseflow modulus in the upstream
regions exhibits a broader range of fluctuations, ranging from 140 to over 220 (L/km·s),
while it is relatively minor in the downstream areas. Geological conditions and hydrological
processes in the upstream areas may have influenced the spatial differences in the baseflow
modulus. However, the baseflow modulus was significant in upstream and downstream
areas, with a relatively large fluctuation range maintained between 100 and 180 (L/km·s) in
the SD watershed. The study suggests complex hydrological processes governing baseflow
in the entire SD watershed. Factors such as relatively flat terrain similarly affect the basin’s
baseflow formation. With comparatively more significant values in the upstream areas
ranging from below 0.66 to over 0.68, the BFI in the BZA watershed is generally smaller.
By contrast, the BFI in the SD watershed is often more significant, fluctuating within an
overall range of 0.68 to 0.74. Precipitation, evaporation, terrain, and other complicated
elements within the basin may have impacted the spatial differences in the BFI among
different locations [49–51].

Figure 10 illustrates the overall baseflow trend in the JRB. Both the BZA and SD
areas exhibit significant increases in baseflow, with a slight increase in the baseflow index
upstream of BZA and a slight decrease downstream. During the wet season, the baseflow
in BZA generally decreases significantly, while the baseflow index in BZA increases signifi-
cantly, and the SD area shows an overall significant decrease. In contrast, during the dry
season, the baseflow and baseflow index in all areas exhibit significant increases. The trends
of average baseflow discharge and BFI for all sub-basins during the wet and dry seasons
indicate an annual increase in baseflow, suggesting the basin is building up groundwater
reserves. Groundwater responds slowly to changes due to its lengthy recharging cycle.
Therefore, the increase in baseflow can indicate substantial groundwater recharge in earlier
periods, contributing to steady growth in groundwater reserves [52]. Furthermore, the
yearly increase in the BFI has demonstrated an upward tendency in the baseflow proportion
relative to the overall streamflow. Due to the subtropical monsoon climate and topography
of the JRB, there may be a more significant percentage of groundwater recharging with
total streamflow, as shown by this rise in the BFI. There were notable seasonal and regional
variations in temperature and precipitation distribution.
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Figure 11 illustrates the correlation analysis between evaporation, precipitation, and
baseflow for all sub-basins. Surface runoff and groundwater infiltration may be impacted
by changes in precipitation patterns and temperature distribution brought on by climate
change. Long-term climate patterns may have increased groundwater recharge and base-
flow generation. Groundwater recharge and circulation may have been significantly im-
pacted by the basin’s geological features [53]. Precipitation and baseflow are generally
positively correlated, while the BFI is negatively correlated. The differences between the
wet and dry seasons are not significant overall. Evaporation is generally positively corre-
lated with the baseflow and BFI. During the wet season, evaporation negatively correlates
with the baseflow and strongly positively correlates with the BFI. During the dry season,
evaporation positively correlates with the baseflow and weakly positively correlates with
the BFI. Overall, the baseflow in the BZA is more positively correlated with evaporation
than in the SD. The SD area is generally more negatively correlated with the BFI than the
BZA area. There is not much difference in the correlation of evaporation with the baseflow
and the BFI between the two basins.
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Figure 10. The trend distribution of average baseflow discharge, BFI, and baseflow modulus for all
sub-basins in (a,b) all seasons, (c,d) wet season, and (e,f) dry season.

The genesis of baseflow may have been impacted by different groundwater flow
patterns in the aquifers due to variations in the geological structure and rock types found
in the JRB [51]. During the rainy season, baseflow increased somewhat, while the patterns
varied by region. During this time, the BFI somewhat dropped, suggesting a decline
in the proportion of groundwater in the overall streamflow. During the rainy season,
there was a noticeable increase in streamflow discharge, which may have approached the
maximum baseflow discharge. This implied that while the percentage of baseflow reduced
during heavy rainfall, surface streamflow contributed comparatively more to the overall
streamflow. Throughout the dry season, baseflow showed a significant increasing trend,
whereas the rise of BFI remained pretty stable. One possible explanation for the sharp rise
in baseflow during the dry season is a combination of reduced precipitation, comparatively
low evapotranspiration, and steady groundwater recharging. The percentage of baseflow
in the overall streamflow grew during this period, indicating the growing importance of
groundwater in preserving the basin’s hydrological balance [54].

The study is constrained by limited runoff data, which may introduce uncertainties in
the simulation accuracy and the absence of measured baseflow data, leading to uncertainties
in the baseflow simulation. Future research could include field experiments for validating
baseflow simulations and conducting attribution analysis to identify critical factors, such
as climate change and human activities, influencing baseflow changes in the watershed.
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4. Conclusions

This study utilized monthly streamflow data from the BZA and SD stations in the
JRB to simulate baseflow (BFI) using the Eckhardt method and the ABCD model. In
addition, it has achieved baseflow simulation in data-scarce basins based on a monthly
scale hydrological model. The primary findings from this study are as follows:

(1) The simulated findings show that the NSE values for the BZA and SD stations are 0.82
and 0.83, and the Pbias values are 9.2% and 8.61%. According to available data, the
ABCD model generally replicates monthly hydrological processes but overestimates
the streamflow at the BZA and SD basins.

(2) Using the Eckhardt method to separate baseflow, the NSE values of baseflow simula-
tions at the BZA and SD stations were 0.81 and 0.85, respectively. The Pbias values
were 8.65% and 5.90%, respectively, which indicates that the model slightly overesti-
mates baseflow in the BZA and SD stations. According to the BFI spatial distribution,
there is a trend toward greater values in the upstream regions and lower values in
the downstream regions. The BFI rises yearly, and the monthly hydrological model’s
baseflow exhibits a relatively fast expansion pattern.

(3) The increasing trends of baseflow were relatively small during the wet season but more
significant during the dry season, highlighting the impact of seasonal variations on
baseflow simulation in the monthly-scale hydrological model. The baseflow modulus
in the upstream regions shows a broader range of fluctuations from 140–220 (L/km·s)
and 100–180 (L/km·s) at the BZA and SD stations, respectively. Geological conditions
and hydrological processes in the upstream areas may have influenced the spatial
differences in the baseflow modulus.

This study provided a detailed analysis and validation for baseflow simulation in
data-scarce basins using monthly-scale hydrological models. These findings are essential
for gaining deeper insights into applying monthly-scale hydrological models in data-scarce
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basins, scientifically managing water resources, providing environmental protection, and
adapting to climate change.
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Highlights:

• Conducted a comprehensive review analysis of over 2000 articles in integrated simulation–
optimization modeling systems, revealing significant advancements in hydrologic modeling
and water resource management.

• Unveiled the knowledge structure, frontiers, influential regions, scholars, and publications in
the field using advanced visualization techniques.

• Integrated GIS, environmental science, and data science to present a multidimensional perspec-
tive on water resource management.

• Highlighted the impact of climate change on water resource management, offering adaptive
management methods and contributing to policy making, guiding future research directions
and practical applications.

Abstract: Water resources management is a challenging task caused by huge uncertainties and
complexities in hydrological processes and human activities. Over the last three decades, various
scholars have carried out the study on hydrological simulation under complex conditions and
quantitatively characterized the associated uncertainties for water resources systems. To keep
abreast of the development of the collective knowledge in this field, a scientometric review and
metasynthesis of the existing uncertainty analysis research for supporting hydrological modeling and
water resources management has been conducted. A total of 2020 publications from 1991 to 2018 were
acquired from the Web of Science. The scientific structure, cooperation, and frontiers of the related
domain were explored using the science mapping software CiteSpace V5.4.R3. Through co–citation,
collaboration, and co–occurrence network study, the results present the leading contributors among
all countries and hotspots in the research domain. In addition, synthetical uncertainty management
for hydrological models and water resource systems under climatic and land use change will continue
to be focused on. This study comprehensively evaluates various aspects of uncertainty analysis
in hydrologic simulation–optimization systems, showcasing advanced data analysis and artificial
intelligence technologies. It focuses on current research frontiers, aiding decision–makers in better
understanding and managing the complexity and uncertainties of water resource systems, thereby
enhancing the sustainability and efficiency of responses to environmental changes.

Keywords: uncertainty; hydrologic modeling; water resources management; visualization analysis;
CiteSpace; review
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1. Introduction

Hydrological processes are affected by several elements such as the land–use type,
surface conditions, and climatic and meteorological conditions, which vary spatially and
temporally [1–5]. The increasing complexity of hydrological models, coupled with the
diversity of data sources, amplifies uncertainties in simulation and prediction. As a result,
the prediction of water availability and integrated watershed management becomes a
necessary and challenging issue restricted by the implementation of water shortages [6–8].
Meanwhile, the enormous complexities associated with human–environmental interactions
make it even more challenging to develop reliable models and schemes to support effective
hydrological modelling and water resource management. This dual challenge necessitates
innovative solutions and a deeper understanding of the uncertainties involved.

Several scholars have previously applied stochastic analysis and fuzzy mathematics
to delve into the intricate uncertainties within water resources systems. Generally, there are
three aspects of uncertainties in hydrological modeling: the systematic bias of model input,
uncertainty parameters, and structural uncertainty in hydrologic models [9–12]. Notably,
parameter uncertainty has been the subject of extensive study, with the Generalized Likeli-
hood Uncertainty Estimation (GLUE) and Bayesian methods serving as commonly utilized
tools for evaluating model parameters [13–15]. Both the GLUE and Bayesian methods
estimate parameter uncertainty based on likelihood functions [16–19]. As there exist lots of
uncertainties for water resources management, the decision makers are usually confronted
with challenges to satisfy numerous or contradictory requests [20,21]. The stochastic and
fuzzy mathematical programming methods have been adopted by various researchers to
address such uncertainties [22–26]. Due to the uncertainties and complexities of research
on hydrologic simulation and water resources management, it is essential to keep up with
the scientific structure and frontier in a certain domain of science. Then, researchers and
decision makers can stay abreast of the latest developments and insights, ensuring the
continued advancement of knowledge in hydrological sciences. Recently, an integrated
modeling system from hydrological modeling of the natural system to optimization man-
agement of the social system has been applied to real–world problems. Zhuang et al. [27]
proposed an innovative method that combines simulation and optimization techniques to
evaluate the influence of climate change on water resource dynamics. Their findings under-
score the substantial impact of uncertainties within the system, which have a pronounced
effect on the allocation of water resources, including target and shortage. Li et al. [28]
developed an integrated simulation–optimization modeling system for water resources
management under the coupled impacts of climate and land use variabilities with priority
in ecological protection. The system has tremendous significance for evaluating hydrologic
variations with complicated uncertainties and providing optimal water allocation schemes
responding to the coupled impacts of climate and land–use variations among society, the
economy, and the environment.

Although methodologies developed in previous studies can be effective in addressing
various uncertainties in hydrological modeling and water resources management, very
little analysis has been carried out from a scientometric and bibliometric perspective. Fur-
thermore, no previous review has provided the development process and the structural
relationship of scientific knowledge through visual maps in this field. Therefore, we will use
CiteSpace, a graphical tool on account of collaboration, co–citation, and co–occurrence net-
works, to provide valuable, timely, repeatable, and flexible perspectives to explore the new
emerging trends and recognize critical evidence [29–32]. This systematic review utilizes
visualization software as a key instrument for mapping the development process and struc-
tural relationships of scientific knowledge. In doing so, our research contributes to track
the trajectory of emerging trends and pinpoint critical evidence for future advancements in
these critical domains.

The main objectives for this research are to supply cooperation, co–citation, and co–
occurrence networks with related references obtained from the Web of Science (WOS) Core
Collection. Firstly, the study identifies innovative scholars, providing a comprehensive
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perspective on their contributions from a global and institutional standpoint. Secondly, a
distributed network is constructed, delving into the intricate relationships among articles,
authors, and journals. Thirdly, through a co–occurrence analysis of keywords and classes,
the research unveils pivotal themes and subjects, contributing to the delineation of critical
knowledge domains within the field. By employing visual research methodologies, this
study goes beyond conventional analyses, scrutinizing the intellectual structure, knowl-
edge characteristics, and research frontiers. In summary, the study contributes to the
development of more informed and effective strategies for water system management,
especially in addressing challenges such as water scarcity, land use, and climate change.
This research not only advances our understanding of hydrological processes but also
provides sustainable adaptive solutions for water resource management.

2. Methodology and Materials
2.1. Data Sources

The literature data adopted for this research were acquired from two common and
influential scientific databases, i.e., the Science Citation Index Expanded (SCI–E) and the
Social Science Citation Index (SSCI) of WOS [11]. The following terms were used to retrieve
related publications: TS = (“uncertain*” AND “water” AND (“modeling” OR “simulat*”)
AND (“basin” OR “watershed”) AND (“manage*” OR “allocation”)) (“TS” represents
an article subject and “*” represents a fuzzy search). Under these conditions, a total of
2020 documents with full bibliographic records were retrieved and downloaded as related
research from 1991 to 2018.

2.2. Statistical Methods

In the realm of bibliometric studies, CiteSpace has emerged as a widely utilized tool for
visualizing frontier knowledge and constructing networks within scientific domains [29].
This tool employs view maps that translate complex data into visual representations, with
nodes representing various entities such as keywords, authors, journals, and countries,
while links denote co–citation structures. Each node is characterized by three types of colors
and different thicknesses, signifying its centrality value within the network [33,34]. For
instance, a red ring around a node signifies a burst discovery, while a purple rim indicates
high betweenness centrality (≥0.1), which represents the significance of the node in the
overall network structure [35–38].

A bibliometric study was conducted using CiteSpace, focusing on publications from
1991 to 2018 and leveraging data from the 50 most–cited journals to construct an initial
knowledge network. Afterwards, each network was generated and enclosed 2020 refer-
ences. The time horizon from 1991 to 2018 was divided into three periods (i.e., 1991–1999,
2000–2009, and 2010–2018). Five types involving author, institution, country, keyword, and
cited reference were aligned with the research requirements, and a few default settings
were maintained. Subsequently, collaboration and co–occurrence networks were systemati-
cally analyzed, considering factors such as frequency, burst, and centrality. This analytical
approach aimed to identify and characterize research trends and patterns in uncertainty
modeling and management within watershed studies. Through these analyses, the study
sought to uncover the dynamics of collaboration among authors and institutions, highlight
key research themes through co–occurrence networks, and ascertain the significance of
specific contributions through burst analysis.

3. Results
3.1. Characteristics of Publications

The analysis of 2020 publications spanning the years 1991 to 2018, focusing on uncer-
tainties in hydrologic simulation and water resources management, reveals a development
tendency within the research landscape. These publications were categorized into three
document types, with articles emerging as the dominant form, constituting a substantial
95% of the total publications. Following closely were proceedings papers and reviews,
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securing the second and third positions, respectively. Figure 1 illustrates the distribution of
publication outputs across the 28–year period. Notably, the initial publication addressing
uncertainty in the hydrological system surfaced in 1992. From this point, a remarkable
escalation in publication outputs unfolded, with the number of publications soaring from
a modest 1 in 1991 to a significant 390 in 2018. The exponential growth was particularly
conspicuous in the last five years of the study period, indicating a surge in scholarly interest
and engagement with the subject matter. This result thoroughly explains why research on
uncertainty in hydrological modeling and management has attracted increasing attention
from scholars.
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Figure 1. The characteristics of publications about uncertainties in hydrologic simulation and water
resources management during 1991–2018.

3.2. Journal Co–Citation Analysis

Table 1 offers a comprehensive overview of the top ten frequently cited journals in the
relevant domain, shedding light on the prominent sources shaping research on uncertainty
in hydrological systems. The preeminent position is secured by the Journal of Hydrology,
boasting an impressive 1430 publications, underscoring its pivotal role in advancing hydro-
logical research. Following closely, Water Resources Research claims the second spot with
1368 publication. The dominance of these two journals signifies their pivotal role as major
conduits for disseminating knowledge in this critical field. For the Impact Factor (IF) level,
Water Resources Research and Hydrology and Earth System Sciences emerge as influential
players with notably higher IF values (4.361 and 4.256, respectively). These robust IF values
not only reflect the journals’ academic rigor but also signify their significant impact within
the broader realm of hydrological research. The higher IF values denote a more substantial
influence in the related areas, further emphasizing the pivotal role that these journals
play in shaping the discourse on uncertainty in hydrological systems. Researchers and
practitioners in the field can leverage these insights to navigate the wealth of literature
and stay informed about the latest developments, methodologies, and advancements in
hydrological uncertainty analysis.
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Table 1. Top10 journals according to frequency.

Journal Frequency Centrality IF (2017)

Journal of Hydrology 1430 0.18 3.73
Water Resources Research 1368 0.29 4.36

Hydrological Processes 963 0.10 3.18
Journal of the American Water Resources Association 777 0.09 2.16

Water Resources Management 773 0.05 2.64
Hydrology and Earth System Sciences 744 0.03 4.26

Environmental Modelling Software 715 0.01 4.18
Advances in Water Resources 552 0.08 3.51
Hydrological Sciences Journal 547 0.10 2.06

Journal of Environmental Management 499 0.10 4.01

3.3. Country/Territory and Institution Cooperation Analysis

The global spotlight on research addressing the uncertainties in hydrologic simulation
and water resources management is evident in the attention garnered by this field. Detailed
insights into the top ten productive countries/territories and institutions are provided in
Table 2, shedding light on the geographical distribution of research contributions. The
results highlight the USA as the foremost contributor, hosting the maximum number of
journals dedicated to the field. Following closely are China, Canada, and Australia, with
China standing out as the only developing country among the selected nations and territo-
ries. Notably, the cumulative output from the top 10 organizations constitutes a significant
portion, contributing to 29.2% of the total publications. Delving into institutional contribu-
tions, the Chinese Academy of Sciences emerges as the frontrunner, making a substantial
impact with 113 publications. Following closely are Beijing Normal University (China) and
the University of Regina (Canada), thereby further exemplifying the global collaborative
nature inherent in research on hydrologic simulation and water resource management.
These findings underscore the diverse and impactful efforts made by institutions across the
globe, with each playing a crucial role in advancing our understanding of uncertainties in
hydrology and water resource systems.

Table 2. Top 10 most productive countries based on total publications during 1991–2018.

Rank Country/Region Number Institution Number

1 USA 759 Chinese Acad Sci 113
2 China 507 Beijing Normal Univ 84
3 Canada 220 Univ Regina 80
4 Australia 139 North China Elect Power Univ 68
5 Germany 123 Texas A&M Univ 50
6 The Netherlands 101 USDA ARS 45
7 UK 100 China Agr Univ 43
8 Iran 79 Peking Univ 40
9 Spain 70 US Geol Survey 34

10 Italy 66 Delft Univ Technol 33

To obtain more collaboration information about countries and institutions, a detailed
presentation of the first 20 co–country/territory and co–institution networks are presented
in detail in Figure 2. The United States and China emerge as pivotal players in global
cooperation, exerting significant influence, particularly on countries like Canada and
Australia. Noteworthy relationships are highlighted, such as the impactful collaboration
between China and Canada, underscoring the interconnectedness of research efforts on a
global scale. And the symbiotic ties between the Chinese Academy of Sciences and Beijing
Normal University underscore the importance of institutional collaboration. Additionally,
the analysis also illustrates areas for potential enhancement in international influence. For
instance, India and Tsinghua University are identified as entities that could amplify their
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impact either by increasing their publication output or fostering closer collaborations in the
relevant domain. This insight serves as valuable guidance for countries and institutions
seeking to strengthen their global presence and contribute meaningfully to advancements
in hydrological research and water resource management. As the interconnected landscape
of global collaboration unfolds, fostering strategic partnerships and bolstering international
influence emerge as key considerations for the continued progress and innovation in
the field.
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3.4. Author Co–Citation Analysis

In Figure 3, an item density visualization unveils the most influential authors shaping
the landscape of uncertainty in hydrological systems. Notably, the preeminent figure in
hydrological modeling is Arnold from the United States Department of Agriculture, whose
impactful contributions have garnered widespread recognition, reflected in an impressive
citation frequency of 354 [38]. Arnold’s seminal research serves as a cornerstone in the field,
evidenced by its broad incorporation and acknowledgment by peers. Following closely is
Beven from Lancaster University, England, occupying the second position as an influential
researcher. Subsequent noteworthy contributors include Wilby from the University of
Derby, England, Huang from the University of Regina, Canada, and Bergstrom from the
Karolinska Institution, Sweden. These scholars, prominently featured in the item density
visualization, have collectively played pivotal roles in advancing our understanding of
uncertainty in hydrological systems. It is discernible from the results that these influen-
tial figures share interconnected research threads, underscoring a collaboration in their
significant contributions to the field.

3.5. Reference Citation Bursts Analysis

The identification of citation bursts in a publication is a strong indicator of its widespread
recognition within its scientific domain. Moreover, it serves as a tool for discovering emerging
research fields, often characterized by clusters with citation bursts [39]. In Table 3, where
the top ten references are presented, the time horizon spans from 1991 to 2018, with the red
line denoting the citation bursts. Notably, the first significant milestone paper in this field,
dating back to 1991, focused on model evaluation in simulations and exhibited a substantial
burst strength of 24.61 [10]. Following closely, the second highest burst–ranking reference
delves into the calibration and validation of the SWAT model, boasting a burst strength of
18.6 [40]. Remarkably, eight references within this study are closely linked to the SWAT

60



Water 2024, 16, 285

model, suggesting its prominence as possibly the most widely adopted model in hydrological
modeling and water resources management. The visual representation of citation bursts
not only highlights pivotal contributions but also offers valuable insights into the temporal
dynamics and evolving emphases within this research domain.
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Gassman et al., 2007 [44] 12.64 2013 2015 ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▂▂▂

Taylor et al., 2012 [45] 11.29 2015 2018 ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▃
Beven et al., 2001 [14] 8.61 2004 2009 ▂▂▂▂▂▂▂▂▂▂▃▃▃▃▃▃▂▂▂▂▂▂▂▂▂
Huang et al., 2012 [46] 7.98 2016 2018 ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃
Harou et al., 2009 [47] 7.94 2015 2018 ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▃

Arnold et al., 2012 [40] 18.60 2015 2018
Abbaspour et al., 2015 [41] 14.80 2016 2018
Abbaspour et al., 2007 [42] 13.88 2013 2015

Yang et al., 2008 [43] 12.72 2013 2016
Gassman et al., 2007 [44] 12.64 2013 2015

Taylor et al., 2012 [45] 11.29 2015 2018
Beven et al., 2001 [14] 8.61 2004 2009
Huang et al., 2012 [46] 7.98 2016 2018
Harou et al., 2009 [47] 7.94 2015 2018

3.6. Subject Categories Co–Occurrence Analysis

The dual–map overlays offer a comprehensive view of the intricate landscape of
scientific journals, incorporating data from over 10,000 journals sourced from WOS [48].
In Figure 4, the visualization of publications spanning the years 1991 to 2018 pertaining
to the topic of uncertainty in hydrological systems is presented, revealing a dynamic
and multifaceted network. The colored curves in the figure delineate the process from
left to right, showcasing the evolution of research fields and their interconnections. The
distinct separation of citing and cited maps across various research fields is evident in
the visualization. Each color cluster is indicative of a specific field, providing a visual
representation of the interdisciplinary nature of uncertainty in hydrological systems re-
search. Notably, three primary domains stand out in the landscape of publications on
uncertainty in hydrologic modeling and water resource management: the blue cluster
corresponds to Ecology/Earth/Marine, the yellow to Veterinary/Animal/Science, and the
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red to Mathematics/Systems/Mathematical. The blue cluster forms a significant portion of
publications and citation links, suggesting a robust foundation in environmental science.
Intriguingly, the yellow cluster demonstrates a unique intersection between hydrological
systems and veterinary sciences. Meanwhile, the red cluster highlights the quantitative
and mathematical aspects inherent in uncertainty analyses. Furthermore, the spatial distri-
bution of citation links originating from the upper right corner of the map indicates a broad
interdisciplinary approach. Publications on the uncertainty in hydrological systems draw
from diverse disciplines, including environmental science, ecology, geology, mathematics,
and chemistry. This interdisciplinary nature underscores the complex and multifaceted
character of uncertainty in hydrological modeling and water resource management, em-
phasizing the need for a holistic and integrated approach to address the challenges posed
by uncertainties in this critical field of study.
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3.7. Keywords Co–Word Analysis

The co–word study performed in this research serves a crucial function in uncovering
hotspots and understanding the structure of the relevant scientific domain [36,49]. To
construct the co–occurrence network (Figure 5), the first 20 items were selected, each
represented by a cross, where the size reflects its frequency—larger sizes indicating higher
occurrence rates. In this Figure, “Uncertainty” emerges as the most frequent keyword
with 932 occurrences, followed by “basin” (584), “model” (492), “management” (447), and
“climate change” (437). “Uncertainty” emerges as the most frequent keyword with 932
occurrences, followed by “basin” (584), “model” (492), “management” (447), and “climate
change” (437). The centrality of each node in the network signifies its importance, and
among the top 20 keywords, “water quality”, “management”, and “simulation” stand
out with high centrality values, indicating their critical roles in the field of uncertainty
in hydrological systems. This underscores the heightened attention towards research on
uncertainties associated with water quality, reflecting a significant focus within the broader
scope of hydrological modeling and water resources management.
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3.8. Document Co-Citation Analysis
3.8.1. Research Cluster Analysis

The reference relationships within the realm of uncertainty in hydrologic modeling and
water resources management not only adhere to the objective law of scientific development
but also intricately reflect the intellectual structure of the field [12]. To further determine
the distribution rule of references, the top 20 references between 1991 and 2018 were picked
out. Figure 6 vividly illustrates the central clusters that define the domain of uncertainty
in hydrologic modeling and water resources management. The high modularity value
of 0.76 underscores a distinctly defined landscape within the field, providing a clear
conceptual framework [38,39,50,51]. Within these references, a granular dissection reveals
96 clusters, with 14 of them appropriately labeled. The study field on uncertainty in
hydrologic modeling and water resources management exhibits a multifaceted nature,
encompassing diverse aspects such as management objects (water resource and water
quality), measures (stochastic programming and statistical learning), simulation techniques
(SWAT), technological applications (GIS), and specific study areas (China and Canada). This
comprehensive coverage suggests that the study of uncertainty in hydrological modeling
and integrated management has evolved into a relatively mature and nuanced area of
research in recent years. The multitude of identified clusters and labeled aspects attests to
the richness and depth of scholarship within this domain.

3.8.2. Timeline View of Typical Clusters

The timeline visualization presented in Figure 7 offers a comprehensive overview
of the temporal evolution of various clusters, providing valuable insights into the tra-
jectory and longevity of distinct research themes. Ten prominent clusters are delineated
along horizontal timelines, each encapsulating a unique set of studies and developments.
Figure 7 not only portrays the temporal progress of these clusters but also highlights
the three most cited references associated with each timeline. Examining the illustration,
it becomes evident that individual clusters exhibit varying temporal spans, with some
enduring for approximately 20 years, while others have a more concise duration. For
instance, clusters such as #0 and #6, focusing on the SWAT model, demonstrate a prolonged
period of significance from 1994 to 2016. Essential achievements within these clusters
are notably concentrated between 2005 and 2015, showcasing a concentrated period of
impactful research.
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Cluster #4, centered on uncertain management, stands out with a commendable span
of 16 years, underscoring its enduring relevance and continued activity. In contrast, cluster
#7, centered on the GIS–based model, concludes in 2007, suggesting a shift in research
specialties and the emergence of new directions within the relevant research landscape.
The timeline visualization not only serves as a historical record of the longevity of research
clusters but also allows for the identification of pivotal periods and transformative shifts in
research focus. It provides a dynamic perspective on the evolution of key themes, enabling
researchers to trace the development and impact of various clusters over time.

4. Conclusions

This research offers a comprehensive scientometric review that synthesizes the state of
uncertainty analysis in hydrologic simulation and water resources systems through a metic-
ulous examination of bibliographic data. The investigation encompasses diverse dimen-
sions, including the characteristics of publications, collaboration among countries/territories

64



Water 2024, 16, 285

and institutions, co–citation of scholars and references, as well as the co–occurrence of top-
ics and keywords. By delving into these multifaceted aspects, the study provides valuable
insights into the current state of research in this critical domain.

Over the past three decades, there have been approximately 2020 publications related
to the uncertainty in the hydrological system, and the number has increased steadily, which
indicates that this field is receiving increasing attention from scholars. Generally, the USA,
China, Canada, Australia, and Germany were the first five prolific countries, and at the
same time, the Chinese Academy of Sciences, Beijing Normal University, University of
Regina, North China Electric Power University, and Texas A&M University were the first
five prolific institutions in this related field. The USA contributed greatly to the publications
and cooperated with most countries/territories. The Chinese Academy of Sciences was the
leading institution and had a relatively intimate relationship with other institutions.

Most studies were published in the representative journals in this field, such as the
Journal of Hydrology and Water Resources Research. Arnold, Beven, and Huang were the
representative scholars who made outstanding contributions to the field of uncertainty
in hydrologic simulation and water resources management. Research on the uncertainty
in hydrologic simulation and water resources management covered broad subjects, such
as environmental science, ecology, geology, mathematics, and chemistry. Through the
keyword analysis, uncertainty, hydrological simulation, climate change, calibration, and
optimization were the hotspots in the research domain. Research on water quality and
sensitivity analysis have been proven new topics over the years. By evaluating the co–cited
network, the primary study field was determined to be hydrological simulations using the
SWAT model, and this topic is becoming more and more mature.

In conclusion, this study field for the uncertainty in hydrologic simulation and water
resources management is still a research front, and it needs to be further explored and
improved in the following aspects. (i) The current uncertainty research mainly concentrates
on hydrological models, and further exploration in areas such as structure, parameters,
and data collection can enhance the reliability of hydrological predictions and decision–
making. (ii) The uncertainty analysis of hydrological systems is insufficient to study the
water–transforming pattern within atmospheric water, surface water, and groundwater
included in the hydrological cycle, and new methods should be used to explore each link
of the eco–hydrological process. (iii) As a single method was unable to meet the study
of the uncertainty in the hydrological system, future research will likely focus on the
establishment of coupled uncertainty analysis methods for synthetical uncertainty in hy-
drological model application and management. This research provides a broad perspective
for uncertainties in integrated simulation–optimization modeling system. Furthermore,
the study contributes to the development of more informed and effective strategies for
water system management, especially in addressing challenges such as water scarcity, land
use, and climate change. In summary, this research not only advances our understand-
ing of hydrological processes but also provides sustainable adaptive solutions for water
resource management.
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Abstract: With the large-scale development and grid connection of renewable energy, hydropower
faces more intense and frequent peak shaving and frequency regulation, giving rise to water level
fluctuations and frequently forced sluice adjustments at hydropower stations. This paper proposes
a model that combines “offline calculation” and “online search”. First, feasible sluice opening
combinations for different water levels at each hydropower station are calculated offline, and a sluice
operation strategy table is constructed. Subsequently, an optimal sluice operation strategy is searched
online according to the real-time water level and various regulatory requirements. As an example, we
select three hydropower stations in the middle reach of the Dadu River in China, namely, Pubugou,
Shenxigou, and Zhentouba. The results show that the total number of adjustments of the sluices of
the cascade hydropower stations was reduced from 1195 to 675, a reduction of 43.5%, and the leading
hydropower station, Pubugou, met water level control requirements, whereas the fluctuations in the
water level of the two downstream daily regulating hydropower stations, Shenxigou and Zhentouba,
were reduced by 1.38 m and 0.55 m, respectively. The results indicate that the sluices of hydropower
stations were optimally used under high-intensity peak shaving and frequency regulation.

Keywords: reservoir scheduling; flood control scheduling; sluice operation; water level regulation;
Dadu River Basin

1. Introduction

A typical cascade hydropower development is composed of a leading power station
with a large storage capacity and multiple run-of-the-river power stations whose storage
capacity is regulated on a daily basis [1,2]. With the recent large-scale development and
connection of renewable energy to the grid, hydropower stations face more intense and
frequent peak shaving and frequency regulation tasks [3–5]. For power stations subjected to
daily regulation with poor storage control, frequent changes in load instructions are likely
to cause large fluctuations in the water level. During the flood season, the drastic changes
in water level greatly increase the risk of flood control operation in cascade reservoirs. Thus,
sluices must be used to regulate reservoir levels and downstream flow to ensure the safety
of reservoir dams, and downstream objects need to be protected. Traditional decision-
making regarding the management of power station sluices relies on scheduling handbooks
or human experience. However, high-intensity peak shaving and frequency regulation
have led to more complex and repeated changes in upstream and downstream hydraulic
conditions, meaning that traditional calculation methods based on water balance have
difficulties complying with the accuracy requirements of water level regulation. In turn, this
causes a mismatch in the flow of the upstream and downstream power stations, resulting
in frequent adjustments to the operation and opening of sluices. Furthermore, small power
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stations are often close to each other and have close hydraulic connections. Transmission
times vary from several minutes to several hours, requiring sluice operation decisions to
be generated quickly. Thus, the traditional decision-making method is labor-intensive,
high-risk, and insufficiently responsive. In addition, the nonlinear relationship between
water level, flow rate, and sluice opening, as well as the time-varying characteristics of the
sluice opening flow rate with the reservoir water level, further compound the complexity
of the problem. Therefore, solving the two complex problems of accuracy and efficiency of
decision-making regarding sluice operation is the key to optimizing power stations under
high-intensity peak shaving and frequency regulation.

In recent years, scholars have conducted research from different perspectives, such as
energy and revenue optimization, flood control scheduling, and joint operation of sluices.
In terms of energy and revenue optimization, scholars have established different models
and compared their optimization effects. For example, De Ladurantaye D [6] presented
both a deterministic and a stochastic mathematical model to maximize the profits obtained
by selling electricity produced through a cascade of dams and reservoirs in a deregulated
market, and the results demonstrated the superiority of the stochastic model over the
deterministic one. Avesani D [7] presented a comparative assessment of revenues provided
by short-term optimizations driven by two econometric models, which may be beneficial
for hydropower companies to enhance the expected revenues from storage hydropower
systems, especially those characterized by large storage capacity. Regarding flood con-
trol scheduling [8–10], reservoir flood control scheduling has the characteristics of being
multiconstraint, high-dimension, nonlinearity, and difficult to solve [11]. The overall ap-
proach has evolved from one or a few reservoirs securing a single flood protection object
to multi-objective refined and comprehensive scheduling of a large group of reservoirs
for multiple flood protection objects across a whole basin, including optimal scheduling
modeling and solving, regular scheduling rule extraction, and flood risk assessments.
For example, He et al. [12] proposed the improved sparrow algorithm (ISSA) combining
Cauchy mutation and reverse learning strategy, which provided a new and effective way
to solve the problem of flood control optimization of reservoir groups. Wang [13] proposed
a multi-objective modeling and optimization method for flood control, scheduling large
reservoir clusters based on different pre-defined frameworks. This effectively solved the
complex optimization problem of scheduling schemes for large-scale reservoir clusters.
Xu et al. [14] proposed an optimal scheduling model for flood resource utilization to derive
optimal scheduling rules for the Three Gorges in flood season, considering flood risk.
Huang et al. [15] proposed a multi-objective operation and risk decision-making model
to provide strategies for real-time reservoir control to reduce flood risk. Zhu et al. [16]
proposed the main steps that constitute optimal flood control decision-making and per-
formed a flood control risk assessment, which showed improved reliability of flood control
decisions. Nevertheless, these studies were mostly concerned with flood events, with the
water level or flow rate as decision variables, and they rarely focused on the operation
of power station sluices. In terms of sluice utilization, Su et al. [17] proposed an optimal
scheduling model for reservoir flood control considering spillway constraints to generate
a more accurate, executable flood control scheduling strategy. Kim et al. [18] proposed
an optimal sluice decision-making method based on the particle swarm optimization al-
gorithm, which can be effectively used to determine optimal sluice scheduling rules and
generate sluice opening and closing strategies during the flood season. However, these
studies tended to focus on individual power stations and in-depth research on the joint use
of sluices in groups of cascade power stations has not yet been reported.

This paper proposes a method named the “Sluice Decision Method Based on Sluice
Operation Strategy Table”, which consists of “offline calculation” and “online search” to
enhance the accuracy and efficiency of sluice operation in a group of cascade power stations
under high-intensity peak shaving and frequency regulation. First, an “offline calculation”
of the feasible sluice operation scheme at different water levels is conducted, and a sluice
operation strategy for the cascade hydropower stations is developed. Then, according to
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the current status and scheduling requirements of the group of cascade power stations, the
optimal sluice control strategy is searched online in the strategy master list. Finally, a case
study is conducted in the middle-course cascade power stations of the Dadu River.

2. Methods
2.1. Model Principles and Calculation Steps

The use of sluices in cascade hydropower stations requires simultaneous decisions on
the combination of sluices and the extent to which each sluice is opened. Cascade power
stations often have dozens or even hundreds of different sluices; thus, numerous options
exist, with a complex nonlinear relationship between the water level, flow rate, and degree
of sluice opening. In addition, the variation in the sluice flow with the reservoir water level
with time further exacerbates the complexity of the problem. In the practical scheduling
of hydropower stations, the traditional optimization decision-making method for sluices
involves manually calculating the water level process for various sluice operation schemes
at each time period and selecting sluice schemes based on this calculation. However, this
method is susceptible to the curse of dimensionality, leading to potential adverse effects on
computational efficiency and accuracy.

To this end, in this study, we first calculated all feasible sluice operation schemes at
different water levels based on the rules of the symmetrical opening of sluices of each
power station and established a master list of sluice operation strategies for power stations,
which was stored to reduce real-time decision-making computations. In the real-time
decision-making process, based on the control objectives of fewer adjustments of sluice
and water level stability, the optimal sluice operation strategy for cascade power stations
was generated using an “online search” of the master list of sluice operation strategies
for power stations. Usually, the opening of sluices does not change significantly over a
short period of time; hence, the real-time decision-making model uses a 15-min calculation
scale. The model uses power and water forecast information as boundaries, simulates and
deduces the operation of each power station in the cluster of cascade power stations within
24 h, and determines whether the intra-day scheduling process of the reservoir meets the
scheduling requirements based on simulation deduction results; if so, the current sluice
opening is maintained, and otherwise, based on the forecast information and scheduling
requirements for the future, an “online search” is conducted to find the optimal sluice
control strategy. A flowchart illustrating the calculation process is presented in Figure 1.
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2.2. Establishment of Sluice Operation Strategy Table Based on “Offline Calculation”

As the operation mode and requirements of the sluices at each power station are
different, the feasible sluice combinations under different conditions are also different,
and the decision is affected by many variables. The inclusion of all sluices in the group of
cascade power stations in the optimization calculation could lead to the curse of dimen-
sionality. Therefore, it is necessary to conduct an “offline calculation” of the feasible sluice
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combinations for different water levels and flow conditions, construct a sluice operation
strategy table, and store the feasible combinations to achieve accurate and rational sluice
regulation. We selected four indicators, namely water level, combination of sluices, sluice
opening, and discharge flow rate, of each power station to construct a sluice operation
strategy table for each station as follows:

Step 1: Identifying the water level interval between normal and dead levels of each
power station in increments of 0.1 m.

Step 2: Determining the feasible combinations of sluice options at different water
levels. Therefore, it is necessary to analyze the feasible combination of sluices at different
water levels according to the sluice operation mode and operation requirements and retain
the feasible combination of sluices at each water level. In the table, an open sluice is
represented by 1, and a closed sluice is represented by 0.

Step 3: Enabling discrete sluice openings in increments of 0.1 m based on the feasi-
ble sluice combinations at different water levels. Considering the adverse effects of the
zigzag currents on the safe operation of power stations, when multiple sluices need to be
opened at each power station, it is necessary to ensure that these sluices are opened in a
consistent manner.

Step 4: Calculating the sum of the flow rate of each sluice under each scheme for
different water levels, sluice combinations, and sluice opening combination schemes, using
the flow curve of each discharge facility. Considering the numerous scenarios covered by
the sluice operation strategy table, it is impractical to display all of them. Therefore, this
paper presents an example using a hydropower station with five sluices to demonstrate
the sluice operation strategy table when the water level is h m, and the discharge rate is
Q m3·s−1. Refer to Table 1 for specific details, eij represents the i-th sluice in the j-th scheme.

Table 1. Example of sluice operation strategy table.

Water Level/m Discharge Rate/(m3·s−1) Sluice Combination
Sluice Opening/m

1# 2# 3# 4# 5#

h Q

00100 e11 e21 e31 e41 e51
01010 e12 e22 e32 e42 e52
10001 e13 e23 e33 e43 e53
10101 e14 e24 e34 e44 e54
11111 e15 e25 e35 e45 e55

2.3. “Online Search”-Based Sluice Operation Strategy Generation

After building the sluice operation strategy table, a sluice operation strategy is ef-
ficiently generated using the “online search” method. First, the operational status and
processes of each cascade power station under different incoming water and load con-
ditions are deduced based on the power requirements [19]. Based on the results of each
cascade power station, it is determined whether the water level and flow rate of each
station meet the control requirements, and if the control requirements are met, the extent to
which the sluices are opened remains unchanged; otherwise, to meet the water level and
flow constraints, an “online search” is conducted for the optimal control strategy with the
objective of performing the minimum number of sluice operations.

2.3.1. Objective Function

The primary optimization objective of the model is to minimize the number of sluice
operations by optimizing the decision on the opening of each by optimizing the opening of
each sluice. However, in calculations, situations often arise where the objective function
values of multiple schemes are equal. To address such situations, the model introduces
a second optimization objective function. Considering that a significant change in flood
discharge flow and resulting fluctuations in water level may occur if the amplitude of two
adjacent adjustments is too large, the secondary optimization objective is to minimize the
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opening change amplitude of adjacent sluice adjustments. Only when there are multiple
solutions that result in equal values for the primary optimization objective function will the
secondary objective function values of these solutions be calculated. The solution with the
best secondary objective function value will then be selected among them. The objectives
of the model are as follows:

F1 = min
n

∑
i=1

T

∑
t=1

di,t ,di,t =

{
0 ei,t = ei,t−1
1 ei,t 6= ei,t−1

(1)

F2 = min|
n

∑
i=1

ei,t −
n

∑
i=1

ei,t−1| (2)

In the formula, i is the number of sluices, i = 1, 2, . . ., n; n is the total number of sluices;
t is the sequence number of the calculation period, t = 1, 2, . . ., T; T is the total number of
time periods; di,t is the number of adjustments during time period t of sluice i in the power
stations; ei,t and ei,t−1 is the opening of the sluice i during the period t and t − 1.

2.3.2. Constraints

a. Water balance [20] constraint

Vi,t+1 = Vi,t + (Ii,t −Qi,t)∆t (3)

In the formula, i is the number of the hydropower stations, i = 1, 2, . . ., N, N is the total
number of cascade hydropower stations; t is the sequence number of the calculation period,
t = 1, 2, . . ., T; T is the total number of time periods, T = 96; Vi,t and Vi,t+1 are the reservoir
storage volumes of the hydropower station i at t and t + 1, respectively; Ii,t is the average
inlet flow of the hydropower station i at t; Qi,t is the average outlet flow of the hydropower
station i at t; ∆t is the computational interval, ∆t = 15 min.

b. Power quantity balance constraint

E =
T

∑
t=1

N

∑
i=1

(Pi,t × ∆t) (4)

In the formula, i is the number of the hydropower stations, i = 1, 2, . . ., N, N is the
total number of cascade hydropower stations; t is the sequence number of the calculation
period, t = 1, 2, . . ., T; T is the total number of time periods, T = 96; Pi,t is the output power
of the hydropower station i in time period t; E is the total power generation; ∆t is the
computational interval, ∆t = 15 min.

c. Power balance constraint

Poutput,t =
N

∑
t=1

Pi,t (5)

In the formula, i is the number of the hydropower stations, i = 1, 2, . . ., N, N is the total
number of cascade hydropower stations; t is the sequence number of the calculation period,
t = 1, 2, . . ., T; T is the total number of time periods, T = 96; Poutput,t and Pi,t are the total
output power of cascade power stations and the hydropower station i in time period t.

d. Power station output constraint

Pi,t,min ≤ Pi,t ≤ Pi,t,max (6)

In the formula, i is the number of the hydropower stations, i = 1, 2, . . ., N, N is the
total number of cascade hydropower stations; t is the sequence number of the calculation
period, t = 1, 2, . . ., T; T is the total number of time periods, T = 96; Pi,t is the load of the
hydropower station i in time period t; Pi,t,min and Pi,t,max are the upper and lower limits of
output of hydropower station i in time period t.
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e. Flow rate balance constraint

Qi,t = Qi,t,e + qi,t (7)

In the formula, i is the number of the hydropower stations, i = 1, 2, . . ., N, N is the
total number of cascade hydropower stations; t is the sequence number of the calculation
period, t = 1, 2, . . ., T; T is the total number of time periods, T = 96; Qi,t, Qi,t,e, and qi,t are
the outflow, power generation flow, and waste flow, respectively, of hydropower station i
in time period t.

f. Power generation flow rate constraint

Qi,t,e,min ≤ Qi,t,e ≤ Qi,t,e,max (8)

In the formula, i is the number of the hydropower stations, i = 1, 2, . . ., N, N is the
total number of cascade hydropower stations; t is the sequence number of the calculation
period, t = 1, 2, . . ., T; T is the total number of time periods, T = 96; Qi,t,e,min and Qi,t,e,max
are the upper and lower limits of the power generation flow rate of hydropower station i in
time period t, respectively; Qi,t,e are the power generation flow of hydropower station i in
time period t.

g. Discharge flow rate constraint

Qi,t,min ≤ Qi,t ≤ Qi,t,max (9)

In the formula, i is the number of the hydropower stations, i = 1, 2, . . ., N, N is the
total number of cascade hydropower stations; t is the sequence number of the calculation
period, t = 1, 2, . . ., T; T is the total number of time periods, T = 96; Qi,t,min and Qi,t,max
are the upper and lower limits of the discharge flow rate of hydropower station i in time
period t, respectively.

h. Water level constraint

Zi,t,min ≤ Zi,t ≤ Zi,t,max (10)

In the formula, i is the number of the hydropower stations, i = 1, 2, . . ., N, N is the
total number of cascade hydropower stations; t is the sequence number of the calculation
period, t = 1, 2, . . ., T; T is the total number of time periods, T = 96; Zi,t is the water level of
hydropower station i in time period t; Zi,t,min and Zi,t,max are the upper and lower limits of
the water level of hydropower station i in time period t, respectively.

i. Outbound flow rate variation constraint

∆Qi,t ≤ ∆Qi,t,max, ∆Qi,t =
∣∣Qi,t −Qi,t−1

∣∣ (11)

In the formula, i is the number of the hydropower stations, i = 1, 2, . . ., N, N is the
total number of cascade hydropower stations; t is the sequence number of the calculation
period, t = 1, 2, . . ., T; T is the total number of time periods, T = 96; ∆Qi,t and ∆Qi,t,max,
respectively, are the variation and maximum variation in the outflow of the power station
between time period t and t− 1; Qi,t and Qi,t−1 are the outflow of the power station in time
period t and t− 1.

2.3.3. Search Strategy

The method proposed in this paper utilizes the sluice operation strategy table, which
eliminates a large number of solutions that do not meet operational requirements, shortens
the decision space, and avoids the complexities of multi-objective solving by prioritizing
the two optimization objectives. Therefore, the use of the traversal search algorithm in
this model can meet the requirements of calculation accuracy and efficiency and can avoid
getting stuck in local optimal solutions. The specific calculation steps are as follows:
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Step 1: Taking the opening of each sluice of each hydropower station at the initial
calculation time of the model as the initial solution and deducing the water level and flow
rate based on this initial solution.

Step 2: Adjusting the sluice opening one hour in advance if the power station’s water
level/flow rate is projected to exceed the limit and making an immediate adjustment if less
than one hour remains until the moment the limit will be exceeded. If it is necessary to
adjust the sluice, recording the time of adjustment.

Step 3: Searching for the set of sluice opening combinations P1 among the sluice
operation strategy table based on the water level of the hydropower station at the time
of adjustment.

Step 4: Searching for a set of feasible sluice opening combinations P2 that satisfy the
various constraints among the set of sluice combinations P1.

Step 5: Calculating the objective function (Equations (1) and (2)) value of each scheme
in the set of feasible sluice opening combinations P2, and selecting the best scheme from P2.
A flowchart illustrating the process of “online search” is presented in Figure 2.
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3. Case Study
3.1. Overview of the Study Area

The Dadu River basin [21] is the fifth largest hydropower base in China. It is the main
peak shaving and frequency regulation power source for the Sichuan power grid and a key
barrier for flood control in the Yangtze River Basin and surrounding area. The Pubugou,
Shenxigou, and Zhentouba power stations (hereinafter referred to as “Pu–Shen–Zhen”) in
the middle reaches of the Dadu River are mainly used for power generation. On average,
they receive grid load adjustment instructions approximately twice per minute. Owing to
the complex inflows between areas and cross-sectional tidal restrictions, the three power
stations have been afflicted by a long-term power and water mismatch. In particular,
the two downstream power stations that were being regulated daily had poor storage
performance and short hydropower transmission times, resulting in high-intensity peak
shaving and frequency regulation, which produced severe fluctuations in the water level,
requiring the frequent use of sluices for water level safety control.
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The Pubugou power station flood discharge facilities include three spillways and a
flood discharge tunnel. The spillways have three inlet sluices with openings of 12 m× 17 m
(width × height). When open, the sluices should be uniformly open, and the frequency of
use should be reduced when the water level is below 840 m. The size of the flood discharge
tunnel opening is 11.0 m × 11.5 m (width × height), and long-term use with a small degree
of opening should be avoided. The Shenxigou flood discharge facilities include three
sluices and two flood discharge tunnels. There are three sluices with openings of 7.0 m
× 17.0 m (width × height), which adhere to the principle of “uniform symmetry”. These
sluices have two gates with an outlet size of 9 m × 11.5 m (width × height). The reservoir
level should be higher than 650 m when opening, and operations should be avoided in the
sluice vibration area. The Zhentouba flood discharge facilities include five sluices, with a
total of five openings, each 8.0 m × 16 m (width × height). When operated under low flow
rate conditions, asymmetric opening of sluices and excessive discharge by a single sluice
should be avoided. The main feature parameters of the three stations are listed in Table 2.
The geographical location of the Dadu River Basin is shown in Figure 3.

Table 2. Feature parameters of power stations in the middle reaches of the Dadu River Basin.

Power
Station

Regulating
Ability

Normal Water
Level/m

Dead Water
Level /m

Installed
Capacity/MW

Spillway
Opening Size/m

Discharge Tunnel
Opening Size/m

Sluice Opening
Size/m

Pubugou Incomplete
annual regulation 850 790 3600 12 × 17 11 × 15 —

Shenxigou Daily regulation 660 655 660 — 7 × 17 9 × 11.5
Zhentouba Daily regulation 624 618 720 — — 8 × 16
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3.2. Data Sources

In this study, the period from 5 July to 5 August 2019 was selected as a typical period.
The data used in model calculations include the total load process of the Pu–Shen–Zhen
station every 15 min, inflow of Pubugou every 15 min, runoff process between Pubugou
and Shenxigou every 15 min, runoff process between Shenxigou and Zhentouba every
15 min, water level process of each station every 15 min, and sluice opening process.
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3.3. Analysis and Discussion
3.3.1. Load Process Analysis

In conducting an exhaustive examination of the actual and planned outputs of the Pu–
Shen–Zhen cascade power station over the course of a month, a conspicuous dissimilarity
between the two datasets comes to the forefront. The maximum deviation between the
actual and planned outputs of the Pu–Shen–Zhen cascade power station amounts to a
substantial 2682 MW, which represents a significant deviation of 68.4% from the initially
projected output. Further analysis reveals an average deviation of 488 MW, indicative of
a significant variance equivalent to 14.6% of the planned output value when considering
the average deviation percentage. Remarkably, close to 12% of the analyzed time period
exhibits deviations surpassing the threshold of 1000 MW.

Additionally, the actual output process exhibits highly volatile fluctuations, charac-
terized by substantial gaps between peak and valley levels, with deviations exceeding
1500 MW, accounting for a notable 32% of the maximum output. These findings pro-
vide compelling evidence of the arduous tasks undertaken by the three stations within
the Pu–Shen–Zhen cascade power system, which are responsible for high-intensity peak
shaving and frequency regulation activities. Given the elevated frequency and magnitude
of load changes, these stations face the formidable challenge of ensuring grid stability
and operational efficacy. A comprehensive visualization of these findings is provided in
Figures 4 and 5 for reference. Among them, Figure 4 shows the Pu-Shen-Zhen output
variation process with 15-min intervals, 7/5 represents 5 July 2019 at 00:00 (This is also the
same in the following figures), and Figure 5 shows the distribution frequency of deviation
between planned output and actual output.
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The temporal variation between the actual and planned output processes exhibits an
irregular and capricious nature. To conduct a meticulous analysis, a representative day,
11 July 2019, was selected for a detailed examination. Notably, throughout this particular
day, the planned output showcases a persistent fluctuation in the vicinity of 4000 MW. It
is worth highlighting that the planned output demonstrates a commendable convergence
with the actual output, harmoniously synchronized until the early afternoon, prior to 12:00.
However, subsequent to this temporal threshold, a subtle but discernible decline can be
seen in the actual output. Finally, after 18:00, a marked precipitous descent is encountered,
in stark contrast to the planned output’s swift resumption to its prior trajectory following
a minor ephemeral dip. As a consequence, a substantial deviation between the actual
and planned outputs emerges, reflecting the intricacies inherent in the dynamic interplay
between these two factors. The variation between actual and planned outputs at different
times on 11 July 2019, with 15-min intervals, is depicted in Figure 6 (This is also the same
in the following figures).
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The inherent randomness and unpredictability in the total load of the Pu–Shen–Zhen
system pose significant challenges in effectively managing the daily water level of the
power station. To accommodate the frequent fluctuations in load instructions, the daily
regulation hydropower station experiences sharp rises and falls in its water level, which
compromises the station’s safety. This unfavorable situation necessitates constant sluice
adjustments to regulate the water level. The following section provides a detailed analysis
of the water level and sluice scheduling processes.

3.3.2. Analysis of Water Level Process

To complete the power generation task of each power station, this study simulated the
scheduling process of the power stations for the next 24 h, predicted the risk of each power
station exceeding their water level and flow rate limits, and adjusted sluices in advance
to meet the regulation and control requirements of each power station. Pubugou has an
incomplete annual regulating capacity and requires water level control, with objectives
that should be completed as far as possible. Following rolling optimization, the water level
of the Pubugou power station was controlled at 840.62 m, which is 0.31 m above the target
water level of 840.31 m and meets the water level control requirements. The two stations
of Shenxigou and Zhentouba should ensure that the water level is as stable as possible.
Before optimization, the water level at Shenxigou fluctuated between 655.11 and 658.85 m,
and the lowest water level was only 0.11 m from the dead water level, which posed a
significant safety risk. After optimization, the water level at Shenxigou power station was
controlled between 656.51 and 658.87 m; thus, the range was reduced to 1.38 m, and the
lowest water level was 1.51 m from the dead water level, thereby avoiding the risk of the
reservoir emptying. Before optimization, the water level at Zhentouba fluctuated between
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618.61 and 622.96 m, and the lowest water level was only 0.61 m from the dead water level.
After optimization, the water level of Zhentouba was in the range of 619.15 to 622.95 m,
reducing the fluctuation to 0.55 m, and the lowest water level was 1.15 m from the dead
water level, which prevented the water level from falling near the dead storage level and
improved the scheduling operation of the power station. The process of water level before
and after optimization of Pu-Shen-Zhen with 15-min intervals is shown in Figure 7.
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3.3.3. Analysis of the Sluice Operation Process

The sluice scheduling of power stations is based on traditional manual experience,
and the sluice scheduling process often encounters the problems of frequent opening
and closing sluices, multiple adjustments, and unsound sluice operation processes. The
Shenxigou and Zhentouba stations have small storage capacities, and their reservoir water
levels tend to rise and fall steeply due to the influence of the upstream reservoir, resulting in
the forced use of sluices to make adjustments, which is not conducive to the safe operation
of reservoirs and increases the pressure on workers.

In this study, the combination of offline calculations and online searches not only
eliminated irrational feasible sluice solutions and improved the scientific basis of sluice
decision-making but also reduced the number of sluice operations and relieved pressure
on workers. Following optimization, the total number of sluice movements at the Pu–Shen–
Zhen stations was reduced by 43.5%, from 1195 to 675. Sluice movements were reduced by
37.4% at Pubugou, 59.7% at Shenxigou, and 18.1% at Zhentouba. The numbers of sluice
adjustments at each power station are listed in Tables 3–5.

Table 3. The adjustment times of the sluices at Pubugou hydropower station.

Mode Spillway 1# Spillway 2# Spillway 3# Flood Discharging Tunnel Total

Before optimization 4 8 7 144 163
After optimization 11 10 11 70 102

Table 4. The adjustment times of the sluices at Shenxigou hydropower station.

Mode Sluice 1# Sluice 2# Sluice 3# Flood Discharging
Tunnel 1#

Flood Discharging
Tunnel 2# Total

Before optimization 132 132 132 110 149 655
After optimization 0 0 0 132 132 264

Table 5. The adjustment times of the sluices at Zhoutouba hydropower station.

Mode Sluice 1# Sluice 2# Sluice 3# Sluice 4# Sluice 5# Total

Before optimization 55 0 98 134 90 377
After optimization 65 50 72 50 72 309

In order to fully compare the differences before and after optimization on a long-term
scale, this study conducted an optimization of the sluice operation process for one month
at 15-min intervals. The specific operation of each sluice with 15-min intervals is shown
in Figure 8. In Figure 8, the dashed line represents before optimization, and the solid
line represents after optimization. It can be seen from the figure that, before optimization,
unsound practices occurred, such as frequent opening and closing within a short period of
time and frequent small changes in the extent to which sluices were opened. At Shenxigou
power station, in particular, the degree of openness of all five sluices repeatedly changed.
After optimization, the operations of sluices at each power station became more regular,
and the opening of each sluice became more stable, enhancing the scientificity and accuracy
of sluice decision-making.

The current gate scheduling process predominantly relies on manual experience-based
scheduling. However, due to the inherent limitations of manual scheduling, dispatchers
face challenges in accurately predicting the flow and water level trends of the future
cascade power station group. Consequently, they struggle to select the most optimal gate
operation plan, leading to the undesirable phenomenon of repeated opening adjustments
and frequent gate openings and closures within the power station.
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To provide a comprehensive analysis, we consider 8 July 2019 as a representative day,
focusing on the intraday gate scheduling process. At the Shenxigou hydropower station, at
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01:00, the gate openings for the 1# and 2# spillway tunnels were initially increased from
5.5 m to 6.5 m and 7.5 m, respectively. However, after maintaining this configuration for
30 min, the openings were subsequently decreased. Furthermore, at 10:00, the opening
of the 2# flood discharge tunnel was adjusted from 5.5 m to closed. However, after a
brief 15-min interval, the gate was reopened to 3.0 m. Such inconsistencies and frequent
adjustments in gate openings highlight the limitations of manual scheduling, which fails to
consider future water flow trends and optimal gate configurations.

Alternatively, by leveraging a model that comprehensively considers future water
flow trends and various gate combinations, a more refined approach to gate scheduling
can be achieved. The model’s optimized gate opening adjustments only occur once during
a 24-h period, specifically at 11:30, effectively avoiding the irrational occurrence of frequent
gate opening changes during actual dispatching. Similarly, at the Zhentouba hydropower
station, the impact of upstream gate operations in the actual dispatching process resulted in
frequent changes in gate openings at 01:30, 11:00, and 20:00. The specific process of sluice
operation with 15-min intervals on 8 July 2019 is shown in Figure 9, and the comparison
parts mentioned above have been marked with red frame in the Figure 9. However, through
the application of the model optimization, the number of gate opening adjustments is
significantly reduced, resulting in a more regular and rational gate operation method.
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By addressing the shortcomings of manual scheduling and embracing the advance-
ments offered by model optimization, the gate scheduling process can achieve greater
accuracy, efficiency, and stability, minimizing unnecessary fluctuations and improving the
overall operational performance of the power station.

4. Conclusions

In this study, in view of the frequent operation of sluices in the group of cascade power
stations under high-intensity peak shaving and frequency regulation, a joint-optimized
operation model of sluices in the group was established. A sluice operation strategy table
was created via offline calculations to ensure rational and timely decision-making with
respect to sluice opening. Based on the initial state of each power station and water forecast
information, we simulated the water level of each reservoir for the next 24 h and then
conducted an online search for the optimal sluice operation strategy to automate sluice
opening at each station. The main conclusions are summarized as follows:

(1) The method proposed in this paper efficiently addressed the problem of frequent
sluice operations at the Pu–Shen–Zhen cascade power stations under high-intensity peak
shaving and frequency regulation and enhanced the scientific basis of decision-making of
the power station group scheduling. The total number of times the sluices of the cascade
power stations were used was reduced from 1195 to 675, a reduction of 43.5%.

(2) The method proposed in this paper can reduce the fluctuation amplitude of water
level in daily regulating power stations and ensure the safety of cascade power station
operation while meeting the requirements of water level control in the leading power
station. The optimized water level of Pubugou differs from the target water level by a mere
0.31 m, whereas the water level fluctuations of the two downstream daily regulating power
stations of Shenxigou and Zhentouba were reduced by 1.38 m and 0.55 m, respectively.

In recent years, the large-scale development and connection of renewable energy has
placed greater requirements on cascade hydropower scheduling. In the future, the method
proposed in this paper can be improved through the following aspects:

(1) Advanced algorithms such as series methods [22] and heuristic algorithms can be
used to solve the model proposed in this paper. The use of data mining [23–25], artificial
intelligence [26–28], and digital twins [29,30] could also be further explored in the future to
further improve the accuracy and timeliness of scheduling decisions.

(2) This study was conducted in the Dadu River Basin of China, and can also be
conducted in multiple basins in the future to further improve the scientific and universal
nature of this method.
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Abstract: Climate change has exacerbated severe rainfall events, leading to rapid and unpredictable
fluctuations in river water levels. This environment necessitates the development of real-time,
automated systems for water level detection. Due to degradation, traditional methods relying on
physical river gauges are becoming progressively unreliable. This paper presents an innovative
methodology that leverages ResNet-50, a Convolutional Neural Network (CNN) model, to identify
distinct water level features in Closed-Circuit Television (CCTV) river imagery of the Chengmei
Bridge on the Keelung River in Neihu District, Taiwan, under various weather conditions. This
methodology creates a virtual water gauge system for the precise and timely detection of water
levels, thereby eliminating the need for dependable physical gauges. Our study utilized image
data from 1 March 2022 to 28 February 2023. This river, crucial to the ecosystems and economies
of numerous cities, could instigate a range of consequences due to rapid increases in water levels.
The proposed system integrates grid-based methods with infrastructure like CCTV cameras and
Raspberry Pi devices for data processing. This integration facilitates real-time water level monitoring,
even without physical gauges, thus reducing deployment costs. Preliminary results indicate an
accuracy range of 83.6% to 96%, with clear days providing the highest accuracy and heavy rainfall the
lowest. Future work will refine the model to boost accuracy during rainy conditions. This research
introduces a promising real-time river water level monitoring solution, significantly contributing to
flood control and disaster management strategies.

Keywords: ResNet-50; Convolutional Neural Network; water level detection; river monitoring
system; real-time monitoring system; virtual water gauge; grid-based

1. Introduction

The escalating impact of climate change, marked by a worldwide increase in severe
weather events, particularly unpredictable and rapid fluctuations in river water levels,
necessitates the development of reliable, real-time water level detection systems [1–3]. In
Taiwan, a country experiencing a heightened frequency of typhoons and heavy rainfall [4,5],
the increased risk of rising river water levels underscores the need for remote hydrological
monitoring, especially during typhoons or significant precipitation [6]. This situation
highlights the vital importance of automated water level measurement systems [7–10].

Traditional methods, which heavily rely on physical river gauges, are becoming in-
creasingly unreliable due to environmental degradation [11–15]. An alternative approach
using CCTV cameras to monitor water gauges installed in significant rivers and flood-prone
areas has been explored. Yu [16] proposed a differencing image technique that detects
minor changes in water levels by analyzing the Region of Interest (ROI) between previous
and current frames and applying the Otsu threshold method. However, the robustness of
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this method under different illuminations and locations still needs to be tested. Kim [17]
developed a cloud-based system, the River Eye Image Water Level Gauge, which integrates
video surveillance for river flow and water level measurements. This system is currently
undergoing testing at four sites. Hiroi [18] presented a water-level sensor system that
uses infrared image processing for real-time river-level monitoring and accurate flood
prediction in urban areas. Pan [19] developed a low-cost unmanned surveillance system
that uses a map-based web service, video cameras, water level analyzers, and wireless
communication routers for real-time water level measurements. The deep learning-based
method demonstrated superior performance in terms of accuracy and stability. Sabba-
tini [20] proposed a computer vision solution for automatic river water-level monitoring,
showing excellent performance in discerning frame quality, especially during nighttime.
Narayanan [21] introduced a method that uses participatory sensing and computer vision
to estimate flood levels.

However, the absence of gauges in some rivers and inaccurate readings due to inade-
quate maintenance hinder precise water level detection [22,23]. As illustrated in Figure 1,
poorly maintained gauges often present unclear numerical readings, preventing image
recognition technology from accurately determining the current water level and leading to
potential misjudgments. This highlights an urgent need for further research to mitigate
these issues.
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To address this challenge, this paper introduces an innovative approach that utilizes
existing CCTV footage to establish a virtual water gauge. This method subsequently
applies image processing techniques to determine the current water level of the river. The
proposed model, which employs ResNet-50 [24–26], a Convolutional Neural Network
(CNN) model [27–31], is trained using data derived from the CCTV river imagery of the
Chengmei Bridge on the Keelung River in Neihu District, Taiwan. This data was collected
from 1 March 2022 to 28 February 2023.

The Keelung River, an essential water system in Northern Taiwan, has an approximate
length of 96 km and a catchment area of around 512 square kilometers. It traverses promi-
nent cities in Northern Taiwan, including Taipei, New Taipei, and Keelung, significantly
influencing these regions’ geographical and economic landscapes.

The Keelung River has been the site of numerous severe floods throughout the years,
marked by notably devastating events brought on by Typhoon Lynn in October 1987,
Typhoon Winnie in August 1997, Typhoon Xangsane in October 2000, and Typhoon Nari in
September 2001. These typhoons unleashed torrential rains, leading to extensive flooding
within the Keelung River basin. For example, Typhoon Xangsane in 2000 resulted in an
inundation of approximately 465 hectares spanning various districts in Taipei City, New

86



Water 2024, 16, 158

Taipei City, and Keelung City, causing 59 fatalities and flooding around 10,000 households.
Moreover, Typhoon Nari in 2001 led to severe flooding in the Keelung River basin, sub-
merging numerous areas in Taipei City, New Taipei City, and Keelung City, resulting in
104 deaths and approximately 20,000 flooded households.

The most recent incident occurred on 16 October 2022, when Typhoon Nisha swept
across the Keelung River basin. This event led to a dramatic surge in the river’s water level,
peaking at 5.04 m, exceeding the alert level by two meters. This occurrence highlighted the
Keelung River basin’s vulnerability to flood risks under extreme weather conditions. Such
disasters can significantly impact residents in low-lying areas and the surrounding com-
munities, resulting in property damage, road traffic disruptions, and casualties. Therefore,
implementing effective flood prevention measures and disaster management strategies in
the Keelung River basin is critically important to mitigate the impacts of future extreme
weather events.

This study is particularly significant for the Keelung River, especially near the Cheng-
mei Bridge. Its geographical location, impact on the surrounding cities, and environmental
challenges make it an ideal site for testing our innovative water level detection methods.
Influenced by heavy rainfall, the river’s water level fluctuations allow us to refine and test
our system to enhance the region’s flood prevention and disaster management strategies.

A unique feature of this study is the utilization of the existing CCTV infrastructure
installed across numerous rivers. By integrating a cost-effective hardware device, Rasp-
berry Pi [32–34], the pretrained grid-based virtual water gauge model can be executed
to determine the current river water level. This approach significantly reduces the cost
of establishing river water level monitoring facilities and can be readily implemented in
various locations.

The paper is structured as follows: The subsequent section will detail the methodology,
including the model’s training and operation. The following section will present the study’s
results, including its effectiveness during heavy rainfall. The concluding section will discuss
the implications of the study, its limitations, and future research directions. This innovative
approach represents a significant advancement in flood control and disaster management,
offering considerable potential for enhancing cities’ resilience to flooding and other water-
related disasters.

2. Materials and Methods

In this section, we elaborate on developing and implementing three primary models
designed to enhance the accuracy and reliability of river water level monitoring. Firstly, the
Grid Selection Model uses CCTV footage and image processing techniques to identify the
optimal grid for establishing a virtual water gauge. Secondly, the Grid State Recognition
Model accurately determines the state of the selected grid, categorizing it as devoid of
water, partially filled with water, or filled with water. This categorization is crucial for
determining the river’s current water level. Lastly, the Water Level Calculation Model
calculates the water level height of the virtual water gauge, converting the grid’s state
into a numerical value that represents the river’s current water level. These models work
collectively to provide accurate, real-time water level detection. Their methodologies,
execution, and collaborative functioning are detailed in the following sections and depicted
in Figure 2.

2.1. Grid Selection Model

The Grid Selection Model, a critical system component, is designed to select representa-
tive grids from CCTV footage. These grids effectively reflect water level variations, forming
the foundation for a virtual water gauge. The model operates in five stages. River imagery
and weather data are initially collected to guide the subsequent processes. Following this,
the recognition area within the imagery is identified, focusing on relevant areas to enhance
efficiency and precision. The images are then divided into smaller, manageable grids for
individual examination. These images undergo dynamic binarization, transforming into
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a binary format for a streamlined analysis. The final stage involves selecting grids that
accurately reflect water level changes. These grids provide data for precise water level
monitoring. Each stage is meticulously fine-tuned to maximize the model’s effectiveness,
with an in-depth exploration of each stage offering a comprehensive understanding of the
Grid Selection Model’s operation.
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2.1.1. Collection of River Imagery and Weather Data

The acquisition of river imagery is a critical phase in our methodology. For a mean-
ingful analysis, gathering images representing various water level changes is essential.
Notably, images captured after rainfall events, which cause water levels to surge, are
particularly valuable, as they distinctly record fluctuations in water levels.

Simultaneously, we collect weather information specific to the river’s location, en-
compassing the current weather conditions and sunrise and sunset times. This data aid
in refining the threshold for binarization during the dynamic image binarization stage,
considering the environmental factors in the imagery. These weather data are typically
acquired from meteorological observation stations or similar entities.

For this study, river imagery was sourced from the CCTV at the Chengmei Bridge
on the Keelung River in Taiwan. This open data was gathered from 1 March 2022 to
28 February 2023 via the Water Resources Agency’s Water Situation Image Monitoring
Station’s cloud service platform, a Ministry of Economic Affairs subsidiary. The CCTV
river images, with a resolution of 1920 × 1080, are updated every minute, as illustrated in
Figure 3.

Additionally, weather data, including hourly weather conditions and sunrise and
sunset timings from 1 March 2022 to 28 February 2023, was compiled for the Neihu
District of Taipei City, where the Chengmei Bridge is situated. These data were sourced
from the Central Weather Bureau’s website, Taiwan’s Ministry of Transportation and
Communications Division.

This comprehensive collection of river imagery and weather data forms a solid foun-
dation for the subsequent stages of our Grid Selection Model, significantly enhancing the
accuracy of our water level monitoring system.
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2.1.2. Determination of the Recognition Area

The initial step in establishing a virtual water gauge within the CCTV footage of a
river involves selecting an appropriate region. This region is the basis for filtering suitable
unit grids to construct the virtual water gauge. The selection of this region is critical and
should align with the actual water level fluctuations in the river.

This designated region assists in selecting the ideal grid units that constitute the virtual
water gauge. The lower limit of this region corresponds with the lowest point of the actual
water level, represented as zero on the water gauge. Conversely, the upper limit of this
region aligns with the highest point of the water level. This process and the corresponding
water levels are depicted in Figure 4.
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In locations equipped with water gauges, the proposed grid-based virtual water level
can be directly inferred from the height of the water gauge, as demonstrated in the image.
However, for areas lacking water gauges, it becomes necessary to calculate the conversion
formula and parameters that link the virtual water level to the actual water level. This
process requires on-site measurements. Using this information, the current water level in
the river can be accurately determined, even in locations where water gauges are absent or
the readings are obscured.

In this case, when identifying the recognition area from the collected CCTV river
imagery at Chengmei Bridge, the lowest point within the recognition area corresponds
with the part of the river where the water level is 0 m on the water gauge. Conversely, the
highest point aligns with the highest point on the river water gauge, situated at 7.5 m. This
is illustrated in Figure 5.
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2.1.3. Image Gridification

The next step in creating a virtual water gauge from the river imagery involves
segmenting the identified area within the image into a grid format. The dimensions of
these grids should closely correspond to the pixel count in the image that represents the
unit height of the actual water level. With appropriate segmentation, we can select the
most suitable grids to form the virtual water gauge.

For the ensuing grid selection, we employ the ResNet50 model, which is implemented
using the TensorFlow package in Python, to identify the features of the grid images. This
methodology will assist us in selecting grids suitable for constructing the virtual water
gauge. It is imperative to note that the image input size for the ResNet50 model is 224 × 224.
Therefore, we must ensure that the grid dimensions do not introduce any distortions or
alterations to the inherent features of the grid during the scaling process to match the
required input size.

To this end, the number of pixels corresponding to the grid height, denoted as GridPixel,
is determined using Equation (1). Assuming the unit height of the actual water level
corresponds to P pixels in the image, the formula is as follows:

GridPixel =
{

7× 2N |N = blogP/7
2 c} (1)

N is an exponential term in this equation that adjusts the grid size to closely approx-
imate P. This formula aims to align the grid height (GridPixel) with the image height (P)
corresponding to the unit height of the actual water level. Simultaneously, it ensures that,
when increased by a power of 2 (to the Nth power), the final size is 224× 224. The choice of
7 as the base in this formula is informed by the fact that, when 224 is continuously halved,
the smallest value achievable is 7.

In this study, involving the river imagery from Chengmei Bridge, an actual 1 m
corresponds to 65 pixels in the image. According to Equation (1), where P is given as 65, the
value of GridPixel can be calculated by using Equation (1): GridPixel = {7×2N|N = blog65/7

2 c
= 3} = 7 × 23 = 56, which simplifies as the GridPixel is 56.

Therefore, when performing image gridification, a grid height unit of 56 pixels should
be used for processing. Figure 6 shows the recognition region partitioned into grids of
uniform size, each approximating the unit height of the real-world water level.

2.1.4. Dynamic Image Binarization

The binarization process is crucial in image recognition, particularly when recognizing
river water levels [35,36]. However, employing dynamic image binarization is necessary
due to several potential complications. Traditional static thresholding methods often
need to perform better when applied to images captured under various environmental
conditions. A single threshold value may not be universally suitable for different lighting
and weather conditions or times of the day. This can lead to suboptimal binarization and,
consequently, decreased recognition accuracy. Additionally, a static approach needs more
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flexibility to adapt in real time to environmental changes, which can further compromise
the reliability of the image recognition process.
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To illustrate this, refer to Figure 7, which showcases images taken at 8:00 a.m. at the
Nanhu Bridge over the Keelung River under different weather conditions. These images
were binarized using a fixed threshold of 150. Figure 7a depicts a sunny day, and Figure 7b
represents an overcast day. The results demonstrate that a fixed threshold can discern
the water gauge’s numbers in Figure 7b. However, in Figure 7a, some numbers need to
be more identifiable, indicating the limitations of using a fixed threshold under varying
weather conditions.
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Figure 7. Binarized images at 8:00 a.m. at Nanhu Bridge on Keelung River using a fixed threshold of
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We have proposed a polynomial regression model [37] to address these shortcomings
and establish a dynamic binarization threshold prediction model. This model is designed
to predict the optimal binarization threshold in real time, enabling it to adapt to changing
environmental factors. In this study, we implemented this dynamic binarization threshold
prediction model to binarize image data within a specified timeframe. For instance, Figure 8
demonstrates the dynamically predicted threshold values for each hour from 0:00 to 23:00
between 15 March and 18 March 2022.

Using the threshold values predicted by our model, we successfully improved the
image recognition accuracy of CCTV images for Chengmei Bridge on the Keelung River
spanning 2022 to 2023, as shown in Figure 9.
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Figure 9. (a) Binarization of an image captured on a sunny day at 5:00 p.m. with a threshold value
of 70. (b) Binarization of an image captured on a rainy day at noon with a threshold value of 110.
Source: https://fmg.wra.gov.tw/fmgp/ccd_proxy?sn=40 ((a) accessed on 7 May 2022, (b) accessed
on 16 May 2022).

The binarization process of images requires distinct threshold values depending on
varying weather conditions and times. For instance, Figure 9a illustrates that a threshold of
70 is optimal for binarizing images taken on a clear, sunny day at 5:00 p.m. Conversely, for
images captured on a rainy day at noon, a higher threshold value of 110 is recommended,
as demonstrated in Figure 9b.

This dynamic binarization strategy allows for acquiring binarized images ideally
suited for recognition tasks, effectively circumventing the constraints of traditional static
image binarization. This adaptability to environmental variations ensures reliable and
accurate image recognition, regardless of the prevailing conditions during image capture.

2.1.5. Selection of Grids for Virtual Water Gauge

This study introduces a grid selection method for creating a virtual water gauge.
As illustrated in Figure 10, following the binarization of the image, the process selects
an appropriate grid from each row to construct the virtual water gauge. The crucial
characteristic of the grids chosen as candidates for the virtual water gauge within the same
column is their ability to distinctly differentiate between water-free, partially water-filled,
and fully water-filled states. This method enhances the precision in recognizing water
levels under varying environmental conditions, thus contributing to advancements in
image recognition.
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Each identical grid from the collected river images undergoes a binarization process, 
with all historical data of the same grid categorized into three groups: “no water”, 
“partial water”, and “full water”, as displayed in Figure 12. 

Figure 10. Select suitable grids from each row to construct a virtual water gauge.

Figure 11 exemplifies this concept with two images from the same row in their original
and binarized forms. Figure 11a depicts a clear day without water, while Figure 11b
represents a rainy day with a water-filled grid. It is evident from these images that the blue
grid exhibits significant differences in the binarized images between the water-free and
fully water-filled states, while the yellow grid does not. Therefore, the blue grid is more
suitable than the yellow grid for constructing the virtual water gauge. This innovative
method enhances the precision of water level recognition, contributing significantly to
advancements in image recognition techniques.

Water 2024, 16, 158 9 of 23 
 

 

under varying environmental conditions, thus contributing to advancements in image 
recognition. 

 
Figure 10. Select suitable grids from each row to construct a virtual water gauge. 

Figure 11 exemplifies this concept with two images from the same row in their orig-
inal and binarized forms. Figure 11a depicts a clear day without water, while Figure 11b 
represents a rainy day with a water-filled grid. It is evident from these images that the 
blue grid exhibits significant differences in the binarized images between the water-free 
and fully water-filled states, while the yellow grid does not. Therefore, the blue grid is 
more suitable than the yellow grid for constructing the virtual water gauge. This innova-
tive method enhances the precision of water level recognition, contributing significantly 
to advancements in image recognition techniques. 

 
(a) 

 
(b) 

Figure 11. Grid selection for the virtual water gauge based on binarized images of different water 
levels. (a) Sunny day with no water in the grid. (b) Rainy day with full water in the grid. 

The grid selection method proposed in this study encompasses the following four 
primary steps: 
1. Grid Clustering 

Each identical grid from the collected river images undergoes a binarization process, 
with all historical data of the same grid categorized into three groups: “no water”, 
“partial water”, and “full water”, as displayed in Figure 12. 

Figure 11. Grid selection for the virtual water gauge based on binarized images of different water
levels. (a) Sunny day with no water in the grid. (b) Rainy day with full water in the grid.

The grid selection method proposed in this study encompasses the following four
primary steps:

1. Grid Clustering Each identical grid from the collected river images undergoes a bina-
rization process, with all historical data of the same grid categorized into three groups:
“no water”, “partial water”, and “full water”, as displayed in Figure 12. To facilitate
this process, we employ a semi-supervised auto-labeling technique using ResNet50,
and we start with a small set of manually labeled images under the categories of “no
water”, “partial water”, and “full water”. Using this labeled set, we train an initial
model. This trained model is then used to predict labels for the unlabeled images.
Images where the model’s predictions are highly confident are identified and added to
the labeled set with their predicted labels, known as pseudo-labeling. We then retrain
the model on this newly augmented labeled set. This iterative process performs
pseudo-labeling and retraining the model until a specified stopping condition is met,
such as no significant improvement in the model performance. This semi-supervised
auto-labeling approach allows the model to progressively learn from a more extensive
dataset, improving its performance, even if the initial labeled dataset is small.

2. Grid Preprocessing Before extracting features with the ResNet50 model, ensuring that
the grid size meets the model’s input requirements, i.e., 224 × 224, is imperative. If
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the grid size does not meet the ResNet50 model’s input requirements, the original
grid is expanded to 224 × 224 using bilinear interpolation [38–41]. This preserves the
details and features of the original grid, ensuring visual consistency and preventing
shape or pixel distortion, thereby enabling the extraction of accurate feature vectors.

3. Grid Feature Extraction This step primarily involves extracting features of each grid’s
“no water”, “partial water”, and “full water” states using ResNet50. Preprocessed
grid historical images are input into the ResNet50 model. Assuming the number of
images is n, the input shape is (n, 224, 224). After convolution calculations, the feature
vector is extracted from the layer before the fully connected layer, with a shape of (n,
7, 7, 2048), which is then transformed into a one-dimensional array for the subsequent
similarity calculations. Figure 13 illustrates that we ultimately obtained the feature
vectors for the three categories.

4. Virtual Water Gauge Grid Selection This step aims to select the most suitable grid
from each row to serve as a virtual water gauge. Here is the process:

• Feature Vector Similarity Calculation for Each Grid For each grid, compute its
feature vectors under three different water level states: “no water” (denoted as
N), “partial water” (denoted as P), and “full water” (denoted as F). These feature
vectors, which encapsulate the image characteristics of each grid under different
water level states, are obtained through the previously mentioned Grid Feature
Extraction model.

• Cosine Similarity Calculations The cosine similarity formula calculates the simi-
larity between feature vectors of different water level states [42–45], denoted as
SA×B. This formula is given by

SA×B =
AB

||A|| ||B|| (2)

where A and B are the feature vectors, • denotes the dot product, and ||A||
and ||B|| are the magnitudes of vectors A and B, respectively. For this analysis,
we substitute (A, B) in the formula with (N, P), (N, F), and (P, F) to calculate
the cosine similarities for these combinations. A value closer to 1 for a cosine
similarity indicates a higher similarity between the feature vectors of two water
level states. Therefore, if a grid’s feature vectors under different water levels have
a high cosine similarity, it implies that the grid’s feature vectors are ineffective
in distinguishing between water level states, making it less suitable as a virtual
water level gauge.

• Similarity Average Calculations For each grid, we calculate the average of the
cosine similarities SN×P, SN×F, and SP×F to get Similarity[r][k], which represents
the similarity of the kth grid in the rth row:

Similarity[r][k] =
(SN×P + SN×F + SP×F)

3
(3)

Figure 14 provides a box plot illustrating the similarity values for each row of
grids. These values were derived from images captured at the Chengmei Bridge
on the Keelung River, collected from 1 March 2022 to 28 February 2023.

• Select the grid with minimum similarity Finally, we select the grid with the
smallest average similarity for each row to serve as the virtual water level gauge.
Grid[i]virtual water gauge represents the index of the grid with the smallest similarity
in the ith row, and argmin_k [46] is a function that delivers the index k of the
minimum value in the sequence Similarity[i]:

Grid [i]virtual water gauge = argmin_k(Similarity[i][k]) (4)
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The steps outlined earlier form the proposed grid selection method in this research.
This method aids in identifying the most fitting grid to serve as a virtual water gauge for
detecting water levels. As depicted in Figure 15, the grid with the lowest similarity value
within its row, marked by a red box, is selected as the virtual water gauge.

2.2. Grid State Recognition Model

In this study, we design individual Grid State Recognition Models for each grid
identified by the Grid Selection Models to compose the virtual water gauge. The primary
purpose of these Grid State Recognition Models is to discern the current water level status
of the grid from real-time CCTV footage, categorizing it as “no water”, “partial water”, or
“full water.”
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level height of the physical water gauge.

To build the Grid State Recognition Model, we employ the architecture of the ResNet50
model. The model input for each grid of the virtual water gauge is the binary grid image
of all the historical image data after being clustered into the “no water”, “partial water”,
and “full water” categories. We resized the binary grid image to 224 × 224 using bilinear
interpolation. After multiple training iterations, we successfully trained a model capable
of identifying the grid status as “no water”, “partial water”, or “full water” based on the
input binary grid image, as depicted in Figure 16.
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2.3. Water Level Calculation Model

Our Water Level Calculation Model uses the “no water”, “partial water”, and “full
water” states of a virtual water gauge grid, as identified by the Grid State Recognition
Model, as the input. These states are utilized to calculate the water level of the virtual water
gauge. We assume that the height of a grid corresponds to the actual water level, referred
to as GridHeight, where GridHeight is equal to 0.86 m based on a grid size of 56 pixels and a
correspondence of 1 m to 65 pixels in the river image from the Chengmei Bridge CCTV.

For the “no water” state, the corresponding river water level is 0, while, for the “full
water” state, it is 1 × GridHeight. For the “partial water” state, we first calculate the grid
water level height ∆H within the grid, which is then converted into the corresponding river
water level height ∆H × GridHeight.

The calculation of the water level height ∆H within the “partial water” grid is carried
out in four steps, as depicted in Figure 2:

1. Preprocessing The binary “partial water” state is converted by dividing the image
values by 255. Pixels with water are converted to 0 and those without water to 1,
producing a 56 × 56 matrix.

2. Horizontal Water Ripple Filtering We employ two convolution operations to filter out
horizontal water ripples [47–49]. The first convolution operation uses a 1 × 7 filter ma-
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trix with all values set to 1 and a stride of 7. Each row undergoes separate convolution
operations, resulting in a 56 × 8 matrix (see Figure 17). To calculate the vertical height
of the water level in the grid, the 56 × 8 matrix obtained from the first convolution
operation undergoes a second convolution operation to produce a 56 × 1 matrix. This
operation uses a 3 × 8 filter matrix with all values set to 1 and a stride of 1, with
convolution performed from bottom to top. To prevent the original grid height from
being affected by the convolution operation, a padding operation [50,51] is performed
on the 56 × 8 matrix before the second convolution. The padding matrix is 2 × 8 with
all values set to 1, as illustrated in Figure 18.

3. Vertical Water Ripple Filtering For a more precise determination of the water level
height, we further process the matrix obtained from the lateral ripple filtering for
vertical ripple filtering. A single convolution operation is used to eliminate vertical
water ripples gradually. Before this operation, the 56 × 1 matrix undergoes padding,
with a 2 × 1 padding matrix where all values are 0. Then, a convolution operation is
performed using a 3 × 1 filter matrix with all values set to 1 and a stride of 1. This
operation yields a 56 × 1 matrix of water probabilities for each row (see Figure 19).

4. Grid Water Level Height Calculation Lastly we transform the matrix of water proba-
bilities into a matrix of 1s and 0s by setting a threshold value θ. Values below θ are
converted to 0 and those above θ to 1, resulting in the grid water level height matrix
H. The grid water level height ∆H is then calculated using Equation (5); in this case, θ
is 0.7, and the GridPixel is 56.

∆H =
∑GridPixel

1 H[i]
GridPixel

(5)

Subsequently, the river water level is calculated using Equation (6), where NFull_Water
represents the total number of “full water” grids.

LevelHeight = (1×NFull_Water + ∆H)×GirdHeight, (6)

Our Water Level Calculation Model provides a comprehensive approach for estimating
water levels from CCTV images. By integrating the Grid State Recognition model, we can
interpret the state of the grid and calculate the corresponding water level. This model is a
highly effective tool for real-time monitoring and predicting river water levels, significantly
contributing to disaster prevention and management.
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3. Results

This section delves into assessing the model’s accuracy, cost-effectiveness, and overall
performance. A crucial aspect of the validation procedure entails determining the feasibility
of implementing real-time river water level monitoring on a Raspberry Pi platform. The
platform from which the study’s data are sourced solely provides CCTV river images for the
Keelung River Chengmei Bridge, devoid of any physical measurement data. Consequently,
our precision assessment relies exclusively on the model’s results. Nevertheless, during the
preliminary evaluation stages, we manually interpreted the water levels from the images,
marking them to establish a baseline for the model assessment. Consequently, we expanded
the grid matrix of the virtual water gauge from its original 9 grids, which correspond to
the actual water gauge, to 15 grids. This augmentation ensures that the coverage spans the
lowermost section of the image.

3.1. Model Accuracy

The process of authenticating the model’s accuracy principally involved the following
essential steps:
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1. Image Clustering Leveraging the weather data from the Central Weather Bureau, the
river images under investigation were categorized into three distinct classes: sunny,
cloudy, and rainy.

2. Initial Water Level Determination The water level for the first frame in the test video
was manually annotated to establish an initial reference point.

3. Evaluation of the Virtual Water Gauge Accuracy This process acknowledges that the
river water level exhibits sudden surges or drops when an anomaly is observed in the
virtual water gauge level, as demonstrated in Figure 20. A rapid decline promptly
follows an increase, which we classify as a spike, signifying an error in the water level
assessment. Figure 20a,b illustrate the outcomes of the Water Level Calculation Model
under rainy and heavy rain conditions, respectively. The results of the Water Level
Calculation Model under clear weather conditions are presented in Figure A1. If the
current water level diverges from the previous one by more than θ, it is marked as
a spike, indicating a potential error in the water level assessment. In this study, θ
was assigned to correspond to GridPixel. The formula utilized to compute accuracy is
provided by Equation (7):

Accuracy =
(Total number of tests−Number of spikes)

Total number of tests
(7)
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to 6:00 p.m. (b) Heavy rain, 16 October 2022, 6:00 a.m. to 3:00 p.m. The red squares are the grids
constituting the virtual water gauge.

During the initial evaluation, the accuracy of the virtual water gauge level was found
to be 93% on sunny days, 88.4% on cloudy days, and a mere 50.1% on rainy days. A
thorough analysis of the inaccurate image data indicated that the primary source of these
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errors was wrong predictions of the dynamic binarization values, which significantly
distorted the water level estimates.

Crucial adjustments were implemented to rectify these issues, primarily focusing on
refining the dynamic binarization threshold prediction model. However, the original model
incorporated weather factors, and the influence of the rainy day factor was reduced due to
the limited volume of image data from rainy days.

The dynamic binarization threshold prediction model was restructured into three
distinct models, each tailored for sunny, cloudy, and rainy conditions. This modification
aimed to bolster the model’s adaptability to various weather conditions and, importantly, to
equip each model with a dedicated dataset for enhanced learning and prediction accuracy.

The results of these adjustments were highly encouraging. The accuracy of the virtual
water gauge level increased to 96.3% on sunny days, 90.9% on cloudy days, and, remarkably,
83.6% on rainy days, as illustrated in Figure 21. These improvements underscore the
effectiveness of the refined approach in minimizing errors associated with inaccurate
dynamic binarization predictions, particularly under adverse weather conditions.
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Figure 21. Impact of the binarization threshold on the accuracy of the virtual water gauge level.

Upon rectifying the dynamic binarization values, the model demonstrated enhanced
accuracy across all weather conditions, with a substantial improvement observed under
rainy conditions. This underscores its effectiveness and robustness in accurately determin-
ing water levels.

The model’s accuracy ranged from 83.6% to 96%. The highest accuracy was recorded
during clear weather conditions, while the lowest was observed during heavy rainfall. This
fluctuation can be attributed to the complexity and clarity of river imagery under different
weather conditions.

3.2. Virtual Water Gauge System

This research combines the proposed grid-based virtual water gauge with the Rasp-
berry Pi and corresponding river water level sensor components to design a low-cost
system for real-time river water level monitoring.

The system encompasses the following characteristics:

• Main Functions: The CCTV monitoring function can capture images with a resolution
of 1920 × 1080. It also detects the image grid water level and calculates the water level
height utilizing a virtual water gauge.

• Specifications: The system has sensors for the temperature, humidity, light intensity,
and rain detection. It also incorporates a waterproof infrared camera, an Internet
of Things communication module, Arduino Mega2560, Raspberry Pi 4B, solar pan-
els, a solar power manager, a rechargeable lithium battery, a waterproof box, and
support rods.

• Power Supply: The system can accommodate a maximum power supply of 5 V, 3 A
and utilizes a 20 W monocrystalline silicon solar panel and a 10 Ah lithium battery.

• Cost: USD 750.
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The developed physical system is depicted in Figure A2. Figure A2a presents an exte-
rior view of the virtual water gauge system, while Figure A2b illustrates the configuration
of the components within the waterproof box.

3.3. Grid-Based Methods and Infrastructure Integration

To verify if the grid-based virtual water gauge system could fulfill the requirements of
real-time river water level monitoring using a Raspberry Pi, we implemented the system
on both a standard PC and a Raspberry Pi 4 to analyze an image of Chengmei Bridge’s
water level. The time required for a single frame was recorded as 0.1259 s and 0.5428 s,
respectively. Table 1 shows the PC and Raspberry Pi 4B hardware specifications used in
this validation process.

Table 1. Hardware specifications of the PC and Raspberry Pi 4B used for performance testing.

Model Type Specification Computing Time

PC
CPU: i5-8300H

GPU: GTX: GTX-1650
RAM: 20 GB

0.1259 s

Raspberry Pi 4 B CPU: ARM Cortex A72
RAM: 8 GB 0.5418 s

We amalgamated grid-based methods with infrastructure elements like CCTV cameras
and Raspberry Pi devices for data processing. This fusion of technologies enabled us to
devise an efficient system capable of real-time monitoring, thereby enhancing the reliability
of our model.

Integrating the virtual water gauge system significantly enhanced the real-time moni-
toring capabilities of our model. This system, which operates independently of the reliabil-
ity of physical gauges, demonstrated its ability to provide accurate water level readings
while effectively reducing deployment costs.

When applied to real-time river monitoring, this system presents several benefits:

• Speed and Efficiency: As indicated in the tests, the system can process images swiftly,
even on a low-powered device like a Raspberry Pi. This facilitates near-real-time
monitoring, essential when immediate responses to fluctuating water levels are needed,
such as during floods or heavy rainfall.

• Accessibility and Cost-Effectiveness: Using a Raspberry Pi makes the system highly ac-
cessible and cost-effective. A Raspberry Pi is affordable and widely available, allowing
system deployment in multiple locations without substantial financial expenditure.

• Automation and Accuracy: The system automates the process of water level monitor-
ing, eliminating the need for time-consuming and error-prone manual measurements.
Incorporating image recognition and the virtual water gauge also enhances the preci-
sion of water level readings.

• Flexibility: The system can be adapted to monitor various rivers or bodies of water
by simply changing the image source, making it a flexible solution tailored to diverse
monitoring needs.

• Environmentally Friendly: The ability of the system to operate on a low-powered
device like a Raspberry Pi means it can be powered by renewable energy sources, such
as solar panels, marking it as an environmentally friendly solution.

4. Discussion

This section examines the model’s accuracy and performance validation, particu-
larly emphasizing its performance under various weather conditions. Furthermore, we
investigate how weather conditions affect the precision of the virtual water gauge to en-
hance the model’s decision-making in future scenarios. Despite this, we acknowledge
certain constraints of our study, including the necessity to gather data in differing climates
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and the challenge of establishing the virtual water gauge scale without a physical water
gauge. We propose the following solutions to mitigate these challenges and increase the
system’s practicality.

1. Clarifying Model Accuracy The initial data accuracy for rainy days was 50.1%, mainly
due to threshold prediction errors within the dynamic binarization prediction model.
This resulted from the reduced sample size during heavy rainfall periods, which
diluted the binarization threshold characteristics during the modeling process. While
the adjusted accuracy increased to 83.6%, we could further augment the model accu-
racy by applying techniques such as Resampling [52], Cost-Sensitive Learning [53],
or other methods to manage unbalanced datasets and enhance the model’s ability to
predict binarization thresholds. Alternatively, installing a photometric sensor at the
monitoring site to set the binarization threshold directly based on lumen values could
minimize errors in the judgment of the virtual water gauge water levels due to the
binarization threshold.

2. The Relationship between Weather and Virtual Water Gauge Accuracy We categorized
the images into sunny, cloudy, and rainy conditions to analyze the influence of
different weather scenarios on the model.

• During sunny days, spikes were primarily attributed to misinterpretations caused
by sun reflections on the grid, fallen leaves or other debris, and large waves
created by strong winds on the water’s surface.

• On cloudy days, the reflection and shadow on the water surface, influenced by
cloud variations, could cause the intensity of the sunlight on the river surface
to change rapidly as the cloud layer moves. This may induce fluctuations in
the light intensity during the image processing stage, potentially leading to
inaccuracies in water level detection. Consequently, future measures may require
algorithm adjustments or the utilization of data from other sensors to mitigate
the impact of these light fluctuations on water level measurements.

• On rainy days, especially during intense rainfall, the selected grid was filled with
rainwater, leading to misjudgments of a full water level, or the rain hitting the
water surface caused large waves, leading to misjudgments of a waterless state.

In the future, we can deploy the Boyer–Moore majority algorithm [54,55] or other
data mining techniques to identify the primary categories or samples to circumvent
or rectify situations where the grid is misjudged.

3. Merits of the Grid-Based Approach The grid-based method used in this study offers
two key benefits:

• Efficiency in Image Processing: With the image size of 1920 × 1080 pixels and the
grid size of 56 × 56 pixels, this approach substantially reduces the computational
complexity and workload by up to 98.6%. This efficiency enables real-time river
water level monitoring, enhancing the system’s overall performance.

• Precision in Height Calculations: Unlike traditional water gauges that use me-
ter units, the grid height calculations allow for a more detailed height scale,
capturing exact height data, such as 1.23 m. This granularity provides compre-
hensive height information, enhancing the accuracy and precision of water level
measurements and predictions.

4. Limitations and Future Directions Compared to physical water gauges, a fundamental
limitation of this research is the necessity to gather river image data under various
climatic conditions for training before deployment unless preexisting historical river
image data are available. We plan to introduce an automated process in future research
to overcome this limitation. This approach will involve establishing a computerized
data collection and processing workflow to save time and ensure data consistency. In
instances where rivers are equipped with actual water gauges, the scale of the virtual
water gauge can be defined based on the water gauge in the image. However, another
challenge arises for rivers without real water gauges. In these cases, a temporary
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ruler must be established on-site during the initial setup. This ruler is then screen-
captured, and the scale of the virtual water gauge is defined through it. In response
to these challenges, our lab is harnessing Augmented Reality (AR) technology to
measure object heights using CCTV or mobile camera devices such as mobile phones.
This approach aims to alleviate the need for physically establishing a ruler on-site.
Furthermore, we plan to apply geometric and trigonometric functions to correct
height deviations caused by camera angles. These advancements can significantly
enhance the accuracy and applicability of virtual water gauges. By implementing
these strategies, we aim to address the current limitations and expand the application
of virtual water gauges, enabling swift deployment in most rivers.

This study illuminates the complexities and considerations of utilizing AI technology
for intelligent water resource management and environmental sciences. Despite the iden-
tified challenges and limitations, this research has demonstrated promising potential for
applying AI in this domain. We anticipate that the insights garnered will not only enhance
the accuracy and reliability of our existing model but also lay the groundwork for future
innovations. As we refine our methodology and explore new techniques, we are committed
to advancing our understanding and application of AI technology in hydro-informatics
systems toward a more sustainable future.

5. Conclusions

The research presented in this paper demonstrates the significant potential of AI
technology in environmental sciences and water resource management. Our study focused
on developing and validating a grid-based virtual water gauge model, which utilized a
Raspberry Pi platform, for real-time river water level monitoring. The model’s accuracy
varied across different weather conditions, with the best results achieved on sunny days at
96.3%, cloudy days at 90.9%, and rainy days at 83.6%.

This study also culminated in the design of a cost-effective and efficient real-time
river water level monitoring system. The system combines the grid-based virtual water
gauge with a Raspberry Pi and other corresponding components, providing an accessible
and automated solution for water level monitoring. The system demonstrated a strong
performance, even on a low-powered device, and offered flexibility in monitoring various
rivers or bodies of water.

However, the research also identified certain limitations and challenges. These in-
cluded data collection under varied climatic conditions and the challenge of establishing
a virtual water gauge scale without a physical water gauge. Future work should address
these limitations and improve the model’s accuracy and robustness.

Potential future improvements include applying unbalanced dataset management
techniques to enhance binarization threshold predictions, deploying data mining tech-
niques to rectify grid misjudgments, and automating model training. Additionally, future
research could explore applying geometric and trigonometric functions to correct height
deviations caused by camera angles.

Despite the challenges, this study provides valuable insights into the application of
AI technology in hydro-informatics systems. As we continue to refine our methodology
and explore new techniques, we remain committed to enhancing our model’s accuracy,
reliability, and practicality, laying the groundwork for future innovations in this critical
area. Ultimately, we aim to advance the understanding and application of AI technology in
environmental sciences, contributing to a more sustainable future.
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Abstract: Since improving floodwater utilization may increase flood risk, flood risk control methods
for trade-offs between these factors have research value. This study presented a flood risk control
method oriented towards floodwater utilization which considers multiple main flood risk factors.
The proposed method not only achieves the boundaries of the flood limited water level (FLWL)
under various acceptable risks but also dynamically controls the water level to enhance floodwater
utilization. A case study conducted on the Danjiangkou reservoir yielded the following results:
(1) The proposed method provides FLWL dynamic control boundaries under various acceptable risks.
(2) The proposed method reveals the potential to raise the FLWL, with a possibility to raise it by
1.00 m above the present FLWL under the absence of flood risk. (3) The available flood resources in
both the wet and dry seasons increase, on average, by 0.83 and 0.81 billion m3, and the flood risk
remains within the acceptable range after raising the FLWL by 1.00 m, which contributes to enhancing
floodwater utilization.

Keywords: dynamic control boundary; risk analysis; flood risk control map; floodwater utilization;
acceptable flood risk

1. Introduction

Floods are significant natural disasters that result in casualties and property dam-
age [1]. Reservoirs are crucial for flood control and floodwater utilization and lead to
conflicts between the two [2]. With growing populations and socio-economic development,
water shortages in some regions are becoming more acute [3]. Therefore, enhancing flood-
water utilization becomes necessary [4]. The flood limit water level (FLWL) balances flood
control and floodwater utilization [5]. In China, reservoirs typically stay below the FLWL
during the wet season [6]. However, the conventional FLWL is designed to overemphasize
low-probability floods, leading to the insufficient utilization of floodwater [7]. Realizing the
dynamic control of the flood limit water level (DC-FLWL) is an available way to improve
floodwater utilization; this involves controlling water levels in safe regions for trade-off
benefits between flood risk and floodwater utilization [8].

The relationship between risks and benefits is characterized by mutual antagonism,
and enhancing the advantages will inevitably entail certain potential hazards. Realizing
the dynamic control of the FLWL enhances floodwater utilization, yet it also introduces
uncertainties to a certain extent, potentially giving rise to additional flood-related risks [9].
Therefore, research on the DC-FLWL and the generated risks associated with this approach
has become popular in recent years. Tan et al. [10] studied the DC-FLWL taking into
account the spatial uncertainty of floods. Zhou et al. [11] realized the DC-FLWL with the
aim of improving water resource utilization using a multi-objective optimization algorithm
and an aggregation decomposition method. Zhang et al. [12] discussed and improved the
DC-FLWL on the basis of forecast information. Gong et al. [13] conceptualized river flood
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routing as a hypothetical reservoir based on the Muskingum model and analyzed its impact
on dynamic control boundaries. Ning et al. [14] assessed flood risk by considering flood
forecast uncertainty and analyzed the impacts at different FLWLs. Mu et al. [15] established
the dynamic water level to optimize water resource utilization and estimated the flood risk
resulting from flood forecast errors. Pan et al. [16] identified dynamic control areas using
the pre-discharge method and built a risk analysis model. Lu et al. [17] integrated a flood
risk analysis model with various risk sources and studied their impacts on flood risk. Du
et al. [18] discovered both the risks and benefits of floodwater utilization increases in the
wake of increasing the FLWL, albeit at different rates.

The theories and methods for realizing the dynamic control of FLWL and flood
risk control are being continuously enhanced. Nevertheless, there are still unresolved
issues that warrant further investigation in the field of the DC-FLWL and its associated
risks: (1) The existing research on the DC-FLWL mainly focuses on studying the dynamic
control boundaries and does not consider the variability of the dynamic control boundaries
under different acceptable flood risks. (2) Previous studies have primarily concentrated
on floodwater utilization while paying limited attention to reservoir operation and risk
control in the context of the DC-FLWL. The DC-FLWL is crucial to improving floodwater
utilization and ensuring an acceptable flood risk, which is also an urgent problem in the
current research on the flood risk control method. This paper identified key risk factors
and proposed a flood risk control method oriented towards floodwater utilization. The
proposed method achieved the dynamic control boundaries of the FLWL under various
acceptable risks and provided a supportive role for the DC-FLWL.

2. Methodology

The risk control method oriented towards floodwater utilization proposed in this
paper consists of the following components: (1) The identification of the main risk factors
affecting flood control operation; (2) the uncertainty of the main risk factors, including
reservoir inflow, interval floods, and forecast errors; (3) the development of a risk analysis
model, (4) the modeling of the flood risk control method; (5) an assessment of the risks and
benefits of floodwater utilization.

2.1. The Identification of The Main Flood Risk Factors

There are various flood risk factors that can affect reservoir flood control operation,
including flood shape, flood forecast error, outflow discharge error, scheduling lag time,
and river flood routing errors [19]. It is not feasible to analyze the combined influence of all
risk factors. Instead, it is important to consider the main risk factors comprehensively [20].
The forecasted flood is a significant source of uncertainty and serves as the primary input
for the model. Additionally, the uncertainties of interval floods must be also considered
for reservoirs with downstream flood control tasks [21]. Therefore, the uncertainties
of reservoir inflow, interval floods, and flood forecast errors are key focal points in the
following paragraphs.

2.2. An Uncertainty Analysis of The Main Flood Risk Factors
2.2.1. The Uncertainty of Reservoir Inflows

Since the uncertainty of reservoir inflows is one of the most important risk factors,
it is crucial to have a large number of reservoir inflows that encompass different types,
magnitudes, and shapes. While design floods and historical floods provide some insight,
they are not sufficient. Therefore, it is necessary to simulate reservoir inflows [22]. Disag-
gregation methods break down runoff from larger time scales into smaller ones based on
historical runoff, which effectively captures the statistical characteristics of both large- and
small-scale runoff [23].

In this study, the correlated disaggregation model was used due to its ease of imple-
mentation and the availability of code for this model. Taking the flood volume (over T
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days) during the wet season decomposed into daily flow components as an example, the
basic form of the correlated disaggregation model is shown as the following equation:

Q = AV + Bε (1)

where Q is the daily flow during the wet season; V is the flood volume during the wet
season, which is generally believed to follow the Log-Person Type III distribution; and A, B
and ε are the parameter matrixes of the model. The parameter estimation and simulation
steps of the correlated disaggregation model are mentioned in [24].

2.2.2. The Uncertainty of Interval Floods

For a reservoir with a downstream area flood control task, the uncertainty of the
interval flood is a significant flood risk factor [25]. When interval floods do not meet the
requirements of flood risk analysis, alternatives can be generated in accordance with the
joint distribution relationship between the reservoir inflow and the interval flood [26].
Their joint distribution relationship is a complex multivariate issue that can be built by
using the Copula function.

The Copula function describes the correlation between multiple variables which can
connect their marginal distributions with their joint distribution when their marginal
distributions have already been determined with certainty [27]. The joint distribution
function can be represented as the following equation:

G(x1, x2) = Cθ(M1(x1), M2(x2)) (2)

where G(x1,x2) is the joint distribution function; M1(x1) and M2(x2) are the marginal distri-
bution functions of X1 and X2, respectively; and Cθ(·) is the Copula function. The Copula
function and its parameters are optimized based on historical runoff, and the optimization
process is discussed in [28].

2.2.3. The Uncertainty of Forecast Error

The forecast error is a significant factor contributing to the uncertainty in flood risk.
Assuming an unbiased flood forecast, the forecasted flow at each time follows normal
distribution [29]. The relative error is used to comprehensively reflect the forecast error,
and the following equation can be obtained:

U(t) = O(t)[1 + α(t)] (3)

where U(t) is the forecasted inflow or interval flood; O(t) is the observed inflow or interval
flood; and α(t) is the relative error. Both the relative errors of inflow and interval flood obey
the normal distribution, and their distribution parameters can be estimated in accordance
with historical flood forecast results [30].

2.3. The Development of a Risk Analysis Model

This paper analyzes the flood risk generated by the main risk factors described in the
previous section. The Monte Carlo simulation method [31] was performed m times on the
basis of operation rules. When the flood risk control objective is compromised under n
floods, flood risk ratio (RR) can be mathematically described as Equation (4):

RR = P(A) = P
(

Z(t) > Zmax

∣∣∣
∣∣∣D(t) > Dsafety

)
=

n
m
× 100% (4)

where P(A) denotes the probability of damage to the risk control objective, which is defined
by the water level not exceeding the flood control water level (FCWL) and the discharge of
the flood control station not exceeding the allowable discharge shown in this paper; Z(t) is
the water stage; D(t) is the discharge of the flood control station; Zmax is the FCWL; and
Dsafety is the allowable discharge of the flood control station.
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2.4. Flood Risk Control Method Oriented towards Floodwater Utilization

In this paper, the upper limit of the FLWL is taken for the risk control water level
(RCWL), and the lower boundary of FLWL is the present FLWL. Therefore, when RCWLs
under various flood return periods are obtained by using the reservoir flood control risk
analysis model, dynamic control domain under a certain acceptable risk ratio can be
realized. Figure 1 provides a schematic illustration of how one calculates the RCWL, and
the detailed process is explained below.
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Figure 1. Schematic illustration detailing the calculation of the RCWL.

Step 1: Define the flood risk control objective. The water level does not exceed the
FCWL, and the discharge of the flood control station does not exceed its allowable dis-
charge.

Step 2: Develop the risk analysis model. The risk analysis model is developed on the
basis of the flood risk control objective and operation rules.

Step 3: Determine the computational accuracy of the RCWL as ∆H = 0.01 m, and set
the scheduling time as t = 0.

Step 4: Set the present RCWL H(t) at scheduling time t as the present FLWL.
Step 5: Calculate the risk ratio (RR) using the risk analysis model.
Step 6: If RR is not greater than the acceptable risk ratio (ARR), set H(t) = H(t) + ∆H

and switch to Step 7. Otherwise, set H(t) = H(t) − ∆H and switch to Step 8.
Step 7: If H(t) is not higher than the FCWL, return to Step 5. Otherwise, set

H(t) = H(t) − ∆H and switch to Step 8.
Step 8: If t is less than T, which represents the number of scheduling periods, set

t = t + 1 and execute Step 4. Elsewise, finish this process.
For this paper, the RCWLs and the boundaries of the FLWL under various acceptable

risks were determined through extensive simulations of floods. Subsequently, the reservoir
flood risk control map was generated by considering the lower boundaries of the FLWL.
For the wet season, the flood risk control map was directly applied to the DC-FLWL. If the
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water level exceeds the upper boundary under acceptable risk, the risk will be greater than
the acceptable risk. In such cases, the water level should be decreased below the dynamic
control upper boundary of FLWL to reduce flood risk based on forecast information.
Conversely, the water level should be elevated within the dynamic control domain of the
FLWL to enhance floodwater utilization based on forecast information.

Therefore, the core principle of the flood risk control method is realizing the DC-
FLWL for balancing floodwater utilization and flood risk. Based on a reservoir flood
risk control map, the risk control method in this paper, facilitates improved floodwater
utilization within acceptable flood risks, offering technical support for reducing flood risk
and enhancing floodwater utilization in reservoir flood control operation.

2.5. Risk and Benefit Assessment

As mentioned above, the risks and benefits of floodwater utilization are influenced
by the water level, and elevated water levels increase flood risk but enhance floodwater
utilization. In this paper, the highest water level (HWL), the average storage capacity
deducted from the dead storage capacity during the wet season (ASC), and the storage
capacity deducted from the dead storage capacity in the last stage of the wet season (SCT)
are used to evaluate the risks and benefits of floodwater utilization.

HWL = max
t∈[1,T]

{Zt} (5)

ASC =

T
∑

t=1
(Vt −VDWL)

T
(6)

SCT = VT −VDWL (7)

where Vt and Zt are the storage capacity and water level, respectively; VT is the storage
capacity in the last stage of the wet season; and VDWL is the dead storage capacity. The
HWL is used to measure the flood risk, and the ASC and the SCT are both used to measure
the benefits of floodwater utilization.

3. Case Study

The Danjiangkou reservoir in China’s Han river is a water source project for the
middle route of the South-to-North Water Diversion Project, the aim of which is to alleviate
the water scarcity of 19 large and medium-sized cities [32]. The first phase of this water
diversion project created a multi-year average annual transfer of 9.5 billion m3 of water. As
of 30 March 2023, this water diversion project has transferred over 55 billion m3 of water
and implemented approximately 9 billion m3 of ecological water replenishment. This has
directly benefited more than 85 million people, including over 5 million individuals who no
longer have to deal with bitter and salty water or highly fluoridated water. The Danjiangkou
reservoir is a multi-year adjustment water conservancy project, which provides various
benefits. On the basis of the optimal scheduling plan of the Danjiangkou reservoir, it
carries out flood control for the Han River, with the Huangzhuang station serving as the
control station. The wet season spans from 21 June to 10 October. During the summer
wet season, which occurs before 20 August, the FLWL is set at 160.00 m. Similarly, during
the autumn wet season, which starts from 1 September, the FLWL remains at 163.50 m.
Figure 2 plots the geographical location relationship between the Danjiangkou reservoir
and the Huangzhuang station.
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Figure 2. The geographical location relationship between the Danjiangkou reservoir and
Huangzhuang station.

According to the optimal scheduling plan of the Danjiangkou reservoir, the protection
standard for the downstream control area is set at a frequency of once in 100 years. For
the sake of guaranteeing downstream safety for floods that occur once in 100 years or
less, the reservoir operates using a graded compensation and regulation mode. For floods
that exceed the rate of occurring once in 100 years, the reservoir operates using a graded
control and discharge mode. Therefore, this paper only considers the floodwater utilization
operation mode of the Danjiangkou reservoir for floods that occur once in 100 years or less.

The Danjiangkou reservoir operates according to the proposed operation rules during
the wet season and maintains the water level near the FLWL. However, there is a tendency
to release water during the wet season, and it is difficult to refill the reservoir in the last
stage of wet season, resulting in the prominent conflict between water supply and flood
control. This paper considers four historical floods (ones in 1935 and 1975 in the summer
wet season and ones in 1964 and 1983 in the autumn wet season) and upscales them to
design floods with magnitudes of once in every 5, 10, 20, 50, and 100 years. Additionally,
historical daily runoff data from 1969 to 2018 (50 years) and the interval historical daily
runoff data from the Danjiangkou reservoir and Huangzhuang station from 1989 to 2018
(30 years) during the wet season were used for the work presented in this paper.

4. Results
4.1. Simulation of Reservoir Inflow

The correlated disaggregation model was constructed based the on Danjiangkou
reservoir daily inflow during the wet season from 1969 to 2018 and evaluated by using
statistics, including the mean, coefficient of variation, daily lag-1 autocorrelation, and
probability density function. Taking the summer wet season as an example, the daily
reservoir inflow processes of the last 50 years were simulated 100 times. Box plots of
statistics pertaining to the simulated daily inflow are shown in Figure 3. The light blue
boxes describe the distribution characteristics of the corresponding statistic, while the
horizontal line represents the median of the corresponding statistic. The red dots connected
by a red solid line describe the corresponding statistic of the historical data. As shown in
Figure 3, the red dots are all inside the light blue boxes, which indicates that the obtained
daily inflow is consistent with the statistics of historical daily inflow. In addition, the
statistics of the simulated data exhibit a similar trend to that of the historical data, which
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indicates that the statistical properties of the historical daily inflow have been well captured
and that the simulated daily inflow exhibits the same continuity as the historical data.
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variation; (c) the daily lag-1 autocorrelation.

In order to further verify that the correlated disaggregation model can effectively
reproduce the observed statistics of flood volume (FV), the FV in 1 day, 3 days, 7 days, and
15 days of the simulated and observed inflow were calculated, respectively. Box plots of
the probability density functions of the simulated FV1, FV3, FV7, and FV15 are shown in
Figure 4. It can be seen that the historical probability density functions of FV, which are
highly skewed, are very well captured in different time periods. Therefore, the correlated
disaggregation model restores the entire distribution features of FV and daily inflow and
can be used to simulate the mass of the daily inflow of the Danjiangkou reservoir.

4.2. Simulation of Interval Flood

The reservoir inflow floods and the interval floods during the wet season from 1989 to
2018 were used to establish their joint distribution relationship. Taking the summer wet
season as an example, the contour plot of joint distribution probabilities between reservoir
flood volume and interval flood volume is illustrated in Figure 5. Their joint distribution
probability can be conveniently obtained from Figure 5; if the reservoir flood volume and
the interval flood volume are greater than 13.5 and 12.5 billion m3, respectively, their joint
distribution probability is about 1% (see the red auxiliary line). Once the joint distribution
relationship between reservoir flood volume and interval flood volume was obtained, on
the basis of the mass of the simulated reservoir floods, it is possible to obtain the abundant
interval floods by using the same ratio amplification method according to the 7-day flood
volume under a certain flood return period.
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4.3. The Influence of Flood Forecast Error

According to the “Danjiangkou Water Conservancy Project Flood Control Operation
Special Report”, the maximum relative error of the reservoir flood forecast αI and the
interval flood forecast αq are 30% and 20%, respectively. Taking into account the most
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unfavorable conditions, the forecasted reservoir flood values were assumed to be smaller
than the observed values, while the forecasted interval flood values were assumed to be
larger than the observed values. To study the influence of flood forecast error, the relative
errors were deemed to change in interval of 5%. Taking the once-in-100-year flood of 1975’s
summer wet season as an example, each set of relative errors was randomly generated for
10,000 forecast floods. Statistics for the highest water level values under various relative
errors are shown in Figure 6.
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Figure 6 reveals that the mean and maximum of highest water level gradually increases
with relative error. There is no flood forecast error when αI = 0% and αq = 0%, and the
mean and maximum are both 165.70 m. The larger the relative error is, the larger the mean
and maximum are and the higher the flood risk may be.

4.4. A Flood Risk Control Map and Flood Risk Control Method Oriented toward
Floodwater Utilization

The RCWLs of the reservoir for various acceptable risk ratios (0, 5%, 10%, 15%, 20%)
and flood return periods (5a, 10a, 20a, 50a, 100a) can be calculated by calculating the
RCWL based on 30,000 simulated floods. The RCWLs for the same acceptable risk ratio
and various flood return periods can be used to draw the dynamic control domain of the
FLWL under an acceptable risk ratio. In the absence of flood risk, diagrams of the RCWLs
for various flood return periods are shown in Figure 7. The light blue area represents the
dynamic control domain of the FLWL, situated above current the FLWL (160.00 m and
163.50 m, respectively) and below the lower boundary line of the RCWLs for various flood
return periods. The reservoir operates without flood risk by dynamically controlling the
water level within the light blue area.
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The dynamic control domains of the FLWL under various acceptable risk ratios can
be used to draw flood risk control maps, as proven by Figure 8. The dynamic control
domain under an acceptable risk ratio and its corresponding flood risk ratio can be easily
determined from Figure 8. For example, if the acceptable risk ratio is 5%, the water level
should be dynamically controlled in the green area. Flood risk control maps can be also
used to study the potential of raising the FLWL under the acceptable risk ratio. Assuming
an acceptable risk ratio of 0 (under the absence of flood risk scenario), the minimum
RCWLs during the summer and autumn wet seasons are 161.13 m and 164.86 m (see
Figures 7 and 8), respectively, and raising the FLWL by 1.00 m based on the current FLWL
poses no flood risk for the four historical floods upscaled to various flood return periods.
Therefore, from a flood control safety perspective, it can be concluded that there is no flood
risk when the FLWLs of the reservoir are raised to 161.00 m and 164.50 m (an increase of
1.00 m from the current FLWL), respectively, during the summer and autumn wet seasons.

4.5. The Risks and Benefits of Floodwater Utilization

Data pertaining to a total of 50 years (1969–2018) of the historical floods during the
wet season were used to evaluate the risks and benefits of floodwater utilization after the
FLWL is raised by 1.00 m, and the findings indicate that the discharge of the Huangzhuang
station did not exceed its allowable limit in any of these years. The changes in the HWL,
ASC, and SCT before and after the FLWL was raised are noted in Figure 9.

Figure 9a reveals that the HWL increases after FLWL is raised. The annual mean and
maximum of the highest HWLs after the FLWL was raised are 165.24 m and 170.59 m,
respectively, which are larger than the values before the FLWL was raised. Nonetheless,
the HWL after the FLWL raised does not exceed the FCWL (171.70 m), indicating that the
flood risk remains within a controllable range.
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Figure 9b demonstrates that the ASC values all increased after the FLWL was raised.
The annual mean and maximum of the ASC are 8.64 and 9.43 billion m3, respectively, and
the ASC values are, on average, 10.68% (9.66–12.13%) more than the ones from before
the FLWL was raised. In addition, the ASC values are, on average, 0.83 billion m3 more
than the ones before the FLWL was raised, which is 8.74% of the average annual volume
(9.5 billion m3) of water transferred by the aforementioned water transfer project over
many years. As a consequence, the average available flood resources during the wet season
increased after the FLWL was raised.

Figure 9c illustrates that the SCT values are all higher than the ones from before the
FLWL was raised. The annual mean and maximum of the SCT are 11.40 and 16.01 billion m3,
respectively, and the SCT values are, on average, 8.13% (1.10–12.78%) more than the ones
from before the FLWL was raised. Moreover, the SCT are values, on average, 0.81 billion m3

more than the ones from before the FLWL was raised, which is 8.53% of the average annual
volume of water transferred. Hence, the average available flood resources at the end of the
wet season increased after the FLWL was raised.

5. Discussion

During reservoir operation and management, the flood risk control method oriented
towards floodwater utilization can be directly applied to the DC-FLWL on the basis of
the flood risk control map (Figure 8). Assuming an acceptable risk ratio of 5%, taking the
summer wet season as an example, if the water level on 3 July is 166.00 m, the risk ratio
exceeds 5% but is not higher than 10% (as indicated by the auxiliary line in Figure 8a),
and the water level could be decreased adequately in the green area to reduce flood risk.
Conversely, if the water level on 3 July is 161.00 m, the risk ratio does not exceed the
acceptable risk ratio of 5%, and the water level may be prompted to the green area to
enhance floodwater utilization based on the forecast information. The aim of this flood risk
control method is to realize the DC-FLWL under an acceptable risk ratio, thereby enhancing
floodwater utilization as much as possible while ensuring an acceptable risk level.

Furthermore, the risk ratios of various FLWLs were studied for the creation of this
paper to verify the reasonability of the dynamic control domains of the FLWL under various
acceptable risk ratios. The FLWL was raised in increments of 0.50 m, and the risk ratios of
various FLWLs were calculated using a risk analysis model on the basis of 30,000 simulated
floods. Figure 10 demonstrates more detailed information about the changes in risk ratio
under various FLWLs and flood return periods (5a, 10a, 20a, 50a, 100a).
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The results in Figure 10 reveal that the risk ratio gradually increases as the FLWL
increases, and Figure 9 also indicates that the both risks and benefits increased as FLWL
rose, which is in line with some existing studies [33–35]. Specifically, taking the flood of
shown by the red curve and red cones in Figure 10a for the summer wet season as an
example, the risk ratio remains relatively constant when the FLWL is less than 164.00 m.
However, the risk ratio steeply increases with increasing FLWL when the FLWL is greater
than 164.00 m. It is important to note that the risk ratios are 0 when the FLWLs are not more
than 161.00 m and 164.50 m, respectively, during the summer and autumn wet seasons,
which validates the potential of raising the FLWL in another way. This means that when
the FLWL is raised from the current FLWL by 1.00 m, the flood risks for floods that occur
once in 100 years and less remain unchanged and are all 0, which is the reason why many
studies aim to enhance floodwater utilization without increasing the flood risk [36,37].
Whilst raising the FLWL has the potential to increase flood risk, this rule is not absolute.
The flood risk may remain the same after raising the FLWL in some cases [38–40].

From what has been discussed above, it can be concluded that the flood risk is
within a controllable range when the FLWL is raised by 1.00 m, based on the present
study’s FLWL, and the ASC and SCT both increased (annual average increase of 0.83 and
0.81 billion m3, respectively), according to Figure 9, which effectively improves floodwater
utilization and contributes to guaranteeing the water supply and power generation of the
Danjiangkou reservoir.

6. Conclusions

Realizing the DC-FLWL is one of the ways of enhancing floodwater utilization, and
the focus of this approach is to balance flood risk and the benefits of floodwater utilization.
This paper presents a flood risk control method oriented towards floodwater utilization that
achieves the dynamic control domains of the FLWL under various acceptable risk ratios,
considering multiple main risk factors. Based on the comprehensive attention paid in this
paper to the main flood risk factors, including the uncertainty of reservoir inflow, interval
floods, and flood forecast errors, a risk analysis model was constructed, after which the
process of calculating the RCWL was proposed to acquire the reservoir flood risk control
map, both which were used in the flood risk control method oriented towards floodwater
utilization. Then, the risks and benefits of floodwater utilization were investigated. Finally,
the Danjiangkou reservoir was used as a case study. Based on our study, the following
conclusions can be drawn.

(1) The dynamic control domains of the FLWL under various acceptable risk ratios
and flood risk control maps were obtained, and the flood risk control method could
improve floodwater utilization by realizing the DC-FLWL under acceptable risk ratios.

(2) The potential of raising the FLWL was studied by using the established risk analysis
model. The results show that the risk ratio increases as the FLWL rises. The FLWL
could be raised by 1.00 m based on the present FLWL during the summer and autumn
wet seasons under the absence of flood risk.

(3) The assessment criteria, namely the HWL, ASC, and SCT values, were used to quan-
titatively measure the risks and benefits of floodwater utilization. The flood risk
is within an acceptable range, and the available flood resources in the wet and dry
seasons could be increased by about 10.68% and 8.13%, respectively, which could
effectively improve the floodwater utilization and contribute to water supply safety.

The flood risk control method proposed in this paper achieves the dynamic control
of the FLWL to improve floodwater utilization under the acceptable flood risk. However,
amidst the backdrop of global climate change, considering key risk factors as compre-
hensively as possible, achieving the DC-FLWL, and weighing the risks and benefits of
floodwater utilization remain as challenges for the future.
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Abstract: This article calculates the indices for high-quality economic development and water re-
source systems across 25 cities in the Yangtze River Delta from 2011 to 2021. Utilizing a multifaceted
analytical framework comprising the CRITIC method, standard deviation ellipse, harmonious devel-
opment coefficient, and coupling coordination coefficient, we investigate spatiotemporal evolutionary
trends and overarching harmonious development states between the two systems. Results indicate:
(1) Throughout the research period, mean values of high-quality economic development indices
fluctuated within the range of 0.05 to 0.68, while water resource carrying capacity indices oscillated
between 0.18 and 0.81. (2) The epicenter of high-quality economic development indices is situated
in the periphery of Lake Tai, whereas the fulcrum of the water resource system indices is located
in Huzhou City, both displaying a northwest-southeast orientation. (3) Coupling coordination de-
velopment exhibits a propitious advancement trajectory, with certain locales attaining exemplary
coordinated growth.

Keywords: high-quality economic development; water resource systems; standard deviation ellipse;
coupling coordination development

1. Introduction

The issue of high-quality economic development and the developmental trends in wa-
ter resource carrying capacity is a comprehensive issue, which is included in the process of
researching the sustainable development path of society–economy–resources–environment.
Amidst the acceleration towards an epoch characterized by high-quality economic ex-
pansion, harmonizing the relationship between water resource utilization efficacy and
superior economic growth becomes an exigent quandary warranting immediate redress.
The 2018 Yangtze River Delta Leadership Roundtable emphasized “Focusing on Quality,
Fostering Integration” as its thematic cornerstone, delineating the blueprint for integrated
high-quality development in the region. Serving as a pivotal strategic overlay within the
Delta, the Yangtze River Delta is primed not only to advance its own elevated economic
development but also to actuate industrial transference and diffusion to the surrounding
area, thereby engendering high-quality growth in neighboring provinces. The National
Development and Reform Commission, in its “Socioeconomic Development Report” in
2017 and 2018, explicitly underscores the imperative for high-quality development to en-
gender a resource-efficient and ecologically benign development architecture. To carve out
a focal zone of exceptional economic development within the Yangtze River Delta, there is a
compelling necessity to pivot away from an unsustainable growth model predicated upon
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high input, consumption, and pollution, towards augmenting the efficiency of input factors.
Policy documents such as the “Yangtze River Delta Regional Integration Development Plan”
and the “Yangtze River Delta Ecological Green Integrated Development Demonstration
Zone Overall Plan” advocate the pre-emptive transmutation of ecological assets into socio-
economic developmental advantages. Currently, the water demand in the Yangtze River
Delta region is increasing, while the increasingly severe water shortage and water environ-
ment degradation problems are seriously constraining the sustainable development of the
regional industrial economy. At the same time, the uneven allocation of water resources in
the region leads to the low economic value of water resources, and the utilization of water
resource flow capital and stock capital, as the core of the three-dimensional water resource
ecological footprint model, are closely related to economic development. The Yangtze River
Delta, as the first urban agglomeration in China, is a strategic area for China’s economic
development and also a sensitive area for environmental protection, and the coordination
between its economy and environment is particularly important, and it is significant to
explore the coordination relationship between the economy and the environment based on
the perspective of a large watershed in the evolution of spatial and temporal patterns.

With the advancement of urbanization, the traditional provincial and administrative
economies are changing to urban agglomerations, which are important for promoting
regional economic development and water resource management. Therefore, it is urgent to
analyze the correlation between water resources and economic development at the scale of
urban agglomerations, so as to reveal the efficiency of water resource use and the impact of
economic development on the sustainable use of water resources. The correlation between
water resources and economic development at the scale of urban agglomerations is therefore
urgent. Therefore, our manuscript concurrently calculates indices for high-quality economic
development and water resource systems, employing coupling coefficients and standard
deviation ellipses to gauge the spatio-temporal distribution and centroidal dispersion of
high-quality economic development and water resource systems, respectively. It delves
into their spatial evolutionary trends within the period under investigation and calculates
their degree of coordinated development (coupled coordination and elliptic difference
models). The assessment is undertaken from both spatiotemporal matching trends and
quantitative synergy perspectives, aiming to elucidate the operative mechanisms under
various states of coordination. This serves as a foundational reference for enhancing
water resource utilization efficiency, expediting high-quality economic advancement, and
facilitating the amelioration of urban aquatic environments, thereby mitigating the inherent
contradictions within the water resource high-quality economic development system to
achieve sustainable progress in both domains.

2. Literature Overview

Presently, scholars both domestically and internationally have embarked on extensive
research endeavors to examine the intricate interrelationship between water resources and
economic development, yielding a myriad of significant findings. International research
concerning the nexus between economy and environment commenced in the mid-20th
century [1–3], concentrating primarily on an array of focal points such as the societal and
economic ramifications on water resource demand and impact, and the role and limita-
tions of water resources in the progression of urbanization, as well as the implications
of water resources provision on economic proliferation [1–8]. Ren et al. [9] established
a system dynamics model of water resources, water environment, and water ecological
carrying capacity, and explored the relationship between water resources and ecology in
the Wulansu Sea by simulating five scenarios. Luo et al. [10] constructed an economic–
water–ecological framework and established a harmonious regulation model to explore
the degree of harmonious development in the Shaying River Basin. The research about
China in this realm originated in the 1970s, with environmental economics serving as the
theoretical cornerstone. A large number of studies [11–14] have led to a rich discussion
around the existence of environmental Kuznets curves. These studies have pointed out that
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achieving harmonious and sustainable development of the economy and the environment
is key to the social stability of countries. Given the complexities of demographic struc-
ture, economic systems, and disparate resource allocation, Chinese scholars [15–17] have
undertaken rigorous analyses of water resources and economic growth. Situating urban
development as the backdrop for research, multifarious methodologies such as Fuzzy
Set Theory, Multi-objective Models of Aquatic Ecological Carrying Capacity, and Semi-Γ
Distribution Indices based on Particle Swarm Optimization have been employed to scruti-
nize varying scales, including urban water bodies, metropolitan clusters, catchment areas,
and provincial domains, in locations such as the Henan Province, East Lake in Wuhan,
Changsha-Zhuzhou-Xiangtan Urban Agglomeration, Yangtze River Delta Catchment, and
Jiangsu Province. These studies [18–20] aim to evaluate the water environment’s carrying
capacity, the responsiveness of urban clusters to water resources, water level fluctuations,
and the carrying capacity of urban water resources, in an endeavor to elucidate sustainable
models for water resource management. Furthermore, treating economic development
and water resources as discrete yet interrelated systems for coupled research constitutes
another investigative modality for deciphering their mutual interplay [21,22]. Zhang
et al. [23] used the four major river basins in the Henan Province as the research scale,
and analyzed the evolution of the coupled coordination degree of water resources use and
economic and social development by using the coupled coordination degree model and
gray prediction method.

In summary, research focusing individually on water resources and economic develop-
ment is relatively prevalent, encompassing theoretical frameworks, evaluative assessments
of developmental phases, and case studies. The methodologies employed range from
conventional trend analysis to computationally intensive techniques based on the Envi-
ronmental System of Equations Framework (ESEF), system dynamics models, and neural
network-based models of water resource carrying capacity [24–26]. However, current stud-
ies that consider both elements predominantly scrutinize the development of one aspect
through the lens of the other, and there is a notable lack of comprehensive exploration
of the mechanisms of their interaction, synergistic growth, and influencing factors. Thus,
it becomes challenging to holistically appraise their regional compatibility and specific
impact mechanisms. Our marginal contribution lies in the fact that the study is based on the
Yangtze River Delta urban agglomeration, which has the most developed water resource
system and economic development system, and the study of the coupling of resources
and economy in this region can help other regions and urban agglomerations in China to
explore new development paths. Secondly, the CRITIC methodology is used to measure the
high-quality development of the water resource system and economy, to rationally judge
the current development status of each city from the perspective of objective empowerment,
and to help the government to formulate the direction of local green development.

3. Overview of the Research Region

The Yangtze River Delta, situated at the downstream confluence of the Yangtze River,
flanked by the Yellow Sea and the East China Sea, constitutes an ecotone characterized by
a maritime–terrestrial interface. Comprising two provinces, Jiangsu and Zhejiang, along
with the municipality of Shanghai, the region spans an expansive geographical expanse of
approximately 219,000 square kilometers. The climatic conditions predominantly exhibit
subtropical monsoonal characteristics, with elevated warming rates primarily observed dur-
ing the winter and spring months, and a relative attenuation during the summer. Trends in
temperature fluctuations, warming rates, and the contributions to warming from urbaniza-
tion effects exhibit a commendable congruence with those of other regions. Hydrologically,
the Yangtze River Delta boasts an intricate network of water bodies, featuring prominent
lakes such as Taihu, Hongze, and Jinniu in Jiangsu, and Xihu, Donghu, and Qiandao in
Zhejiang. In addition to significant rivers like the Yangtze, Qiantang, and the Grand Canal,
the area is also replete with other noteworthy waterways such as Shanghai’s Huangpu and
Wusong rivers, Jiangsu’s Qinhuai and Xinshu rivers, and Zhejiang’s Oujiang and Lingjiang
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rivers. The region is further enriched by a plethora of lacustrine resources, riparian zones,
and wetlands. These aquatic resources play an indispensable role in sustaining agricultural
irrigation and industrial development within the Yangtze River Delta milieu.

The Yangtze River Delta, centered on Shanghai and radiating to the surrounding
cities, has become one of the most dynamic and economically developed regions in the
world’s major urban agglomerations. In 2022, Jiangsu’s GDP exceeded the 12 trillion-yuan
mark and its economic scale stepped up to a new level, while Zhejiang’s GDP exceeded
7.5 trillion yuan and Shanghai’s GDP exceeded 4 trillion yuan. Based on the country’s
economic policies and as a region created by the state to become rich first, the Yangtze
River Delta has achieved remarkable economic results and provided a good model for
China’s economic development. In recent years, under the guidance of the country’s new
development philosophy, the economic development of the Yangtze River Delta region has
also turned to green, environmental protection, and sustainability.

4. Indicator Framework and Research Methodology
Indicator Framework

In alignment with the unique attributes of the Yangtze River Delta, we provisionally
select an evaluative index system to gauge the levels of high-quality economic development
and water resource systems. Utilizing the CRITIC method, we ascertain the weights of
these indices. After determining the weights, we labeled the attributes in Table 1 with
reference to existing studies and the relevance of each indicator. The “+” represents that
the indicator layer will have a positive impact on the target layer and the “−” represents
that the indicator layer will have a negative impact on the target layer. The water resource
system encompasses three dimensions, namely water resource availability, utilization,
and conservation, and includes a total of seven indicators. On the other hand, high-
quality economic development is segmented into four dimensions: industrial structure,
technological innovation, ecological environment, and standard of living, comprising a
total of nine indicators. Within this, the index of industrial advancement is calculated based
on the ratio of the output value of tertiary to secondary sectors. The rationalization of
the industrial structure is assessed by drawing upon methodologies proposed by Deng
Huihui et al. [27]. Given the data paucity regarding the output value of the productive
service sector in most cities, the proportion of employment in productive service industries
(productive services industries mainly include R&D, design and other technical services
for production activities, cargo transportation, general aviation production, warehousing
and postal courier services, information services, financial services, energy-saving and
environmental protection services, productive leasing services, business services, human
resource management and vocational education and training services, wholesale and
trade brokerage and agency services, and productive support services) is adopted as a
surrogate metric.

Table 1. Indicator system for evaluating water resource system and high-quality economic development.

Objective Layer Criteria Layer Indicator Layer Unit Weight Attribute

Water Resource
System

Water Resource
Availability

Total Water Resources 10,000 m3 0.150 +
Annual Precipitation 10,000 m3 0.170 +

Water Resource
Utilization

Total Urban Water Supply 10,000 m3 0.169 +
Domestic Water Consumption per Capita 10,000 m3 0.152 +

Industrial Water Consumption 10,000 m3 0.102 −
Water Resource
Conservation

Industrial Wastewater Discharge 10,000 m3 0.057 −
Wastewater Treatment Rate % 0.200 +
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Table 1. Cont.

Objective Layer Criteria Layer Indicator Layer Unit Weight Attribute

High-Quality
Economic

Development

Industrial Structure
Industrial Advancement Index - 0.104 +

Rationalization of Industrial Structure - 0.110 +
Proportion of Productive Service Sector % 0.132 +

Technological
Innovation Number of Patents Granted Individual 0.097 +

Ecological
Environment

Green Coverage Rate in Built-up Areas % 0.103 +
Comprehensive Utilization Rate of

Industrial Solid Waste % 0.103 +

Standard of Living
Per Capita GDP Yuan/Person 0.155 +

Per Capita Education Expenditure Yuan/Person 0.108 +
Hospital Bed Availability per

10,000 People
Beds/10,000

People 0.089 +

Note: Source: Statistical Yearbook and Statistical Bulletin of Municipalities.

5. Research Methodology
5.1. Refinement of the CRITIC Method

In the selection of water resource system evaluation models and methods, representa-
tive research methods mainly include subjective empowerment methods such as principal
component analysis [28], the fuzzy comprehensive evaluation method [29] and objective
empowerment methods such as the BP neural network [30], data envelopment analysis
method [31] and Topsis [32]. Subjective empowerment is subject to human influence, so we
choose the objective empowerment method. The CRITIC (Criteria Importance Through
Inter-criteria Correlation) methodology, originally postulated by Diakoulaki (1995), serves
as an objective algorithm for attribute weighting. This method harnesses the differential
attributes and inter-criterion discordances to reflect the informational content and distinc-
tiveness of each criterion, consequently establishing their respective weights. Variability is
for the differences in the magnitude of the values of the same indicator among different
samples, which is determined by the standard deviation of each indicator, and the standard
deviation is calculated for each column after preprocessing. The size and direction of con-
flict is expressed by the correlation coefficient, which can be expressed as ∑n

i=1
(
1−

∣∣rij
∣∣),

where rij is the correlation coefficient between the jth indicator and the ith indicator, and it
also indicates that for the positive correlation and the negative correlation which have the
same absolute value, the conflict between the indicators is the same. If two indicators have
a strong positive correlation, it means that their conflictability is low. The weight of the
indicator is calculated according to the difference and conflict of the indicator, and let Cj be
the amount of information contained in the jth indicator, and the weight of indicator j is the
proportion of the information Cj (i.e., the product of the difference and conflict) contained
in indicator j to the proportion of all of the information, which is expressed as follows:

Cj =
σj

x ∑n
i=1

(
1−

∣∣rij
∣∣) j = 1, 2, . . . , n (1)

where a larger Cj signifies a higher informational content and correspondingly a greater
weight for the j criterion.

Wj =
Cj

∑n
i=1
(
Cj
) j = 1, 2, . . . , n (2)

5.2. Coupling Coordination Model

The Coupling Coordination Model delineates the degree of mutual influence and
synergistic advancement between two or more interconnected systems, thereby capturing
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the equilibrium state of water resource utilization in concert with high-quality economic
development. The computational formula is as follows.

C =

√√√√
f (x)× f (y)
[

f (x)+ f (y)
2

]2 (3)

T = α f (x) + β f (y) (4)

D =
√

C× T

where D represents the coupling coordination degree, C signifies the coupling correlation
degree, and T denotes the comprehensive evaluation index. f (x) and f (y) are evaluative
values for high-quality economic development and water resource systems, respectively.
The variables α and β manifest the relative contributions of high-quality economic de-
velopment and water resource utilization. We also used the CRITIC method to assign
weights and calculate the standard deviation and correlation of the indicators, obtaining
α = 0.484 and β = 0.516. Drawing upon extant research findings [33], the phase and type
of synergistic development between water resource utilization and high-quality economic
development in the Yangtze River Delta are articulated in Table 2.

Table 2. Classification criteria for coupling coordination degrees.

Range of Coupling
Coordination Degree D Value Level of Coupling Coordination Developmental Tier Coordinated Developmental Tier

[0.0~0.3] Severe Disequilibrium Severe Regression Critical Disequilibrium and
Regression

(0.3~0.4] Moderate Disequilibrium Moderate Regression Moderate Disequilibrium and
Regression

(0.4~0.5] Mild Disequilibrium Mild Regression Mild Disequilibrium and Regression

(0.5~0.55] Moderate Coordination Moderate Development Moderate Coordinated
Advancement

(0.55~0.7] Good Coordination Favorable Development Favorably Coordinated
Advancement

(0.7~1.0] Optimal Coordination Optimal Development Optimal Coordinated Advancement

5.3. Relative Development Model

While the Coupling Coordination Model elucidates the degree of synchronized ad-
vancement between high-quality economic growth and water resources, it falls short of
quantifying the developmental disparity between the two entities. Consequently, the rela-
tive development index is introduced to delineate the level of either accelerated or lagging
development between them. The mathematical representation for the relative development
index is as follows.

P =
f (x)
f (y)

(5)

In this equation, P denotes the relative development index. When P > 1.2, it signifies
that the regional high-quality economic growth is in a state of accelerated development.
If 0.8 < P ≤ 1.2, it indicates that high-quality economic growth and water resources are
advancing in synchrony. Should P ≤ 0.8, it portrays the regional high-quality economic
growth as lagging.

5.4. Standard Deviation Ellipse Model

The standard deviation ellipse model falls under the purview of spatial pattern statis-
tical analysis, focusing predominantly on explicating the global characteristics of geograph-
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ical feature distributions. The precise computational formulae for the parameters of the
standard deviation ellipse are delineated as follows.

x′ = xi − xave; y′ = yi − yave (6)

tanθ =

(
∑n

i=1 W2
i x′2i −∑n

i=1 W2
i y′2i

)
+
√

∑n
i=1 W2

i x′iy
′
i −∑n

i=1 W2
i y′2i + 4

(
∑n

i=1 W2
i x′iy

′
i
)

2∑n
i=1 W2

i x2
i y2

i
(7)

δx =

√√√√ ∑n
i=1
(
Wix′icosθ −Wiy′isinθ

)2

∑n
i=1 W′2i

(8)

δy =

√√√√ ∑n
i=1
(
Wix′isinθ −Wiy′icosθ

)2

∑n
i=1 W2

i
(9)

where (xave, yave) represents the centroid of the coordinates (xi, yi); Wi denotes the indices
for high-quality regional economic development as well as water resource systems; x′ and
y′ symbolize the relative coordinates of individual points about the regional centroid. The
angle of rotation for the centroidal distribution pattern can be ascertained based on tanθ;
and δx and δy are the standard deviations along the X-axis and Y-axis, respectively.

5.5. Data Sources

The hydrological data principally originate from the water resource bulletins and
statistical yearbooks of various municipalities spanning the years 2010 to 2021. Economic
data are culled from the statistical yearbooks and public reports of the corresponding
municipalities for the same temporal range.

6. Analytical Outcomes
6.1. Temporal Evolution Analysis of Water Resource Systems and High-Quality Economic Indices

Utilizing Equations (1) and (2), the indices for water resource systems and high-quality
economic development within the Yangtze River Delta from 2010 to 2021 were computed.
The results for the years 2010, 2015, and 2021 are delineated in Figures 1 and 2. As evinced
by Figure 1, the mean value of the water resource system indices across the various jurisdic-
tions exhibited a sustained upward trajectory, ascending from 0.24 to 0.38—an increment
of 0.14, representing a growth rate of 58%. Except for Zhoushan, the water resource system
indices for all other cities demonstrated an ascending trend from 2010 to 2015, with the
cities of Ningbo, Yancheng, and Shaoxing registering the most substantial increments. In
the period between 2015 and 2021, Yangzhou and Nantong saw a marginal decline in their
water resource system indices, whereas all other cities maintained their upward momen-
tum, with Zhoushan, Jiaxing, and Ningbo experiencing the most considerable uplift. This
principally emanates from the heightened focus of local governments on water resource
management, as the implementation of projects aimed at water pollution remediation and
environmental construction has augmented the carrying capacity of water resources across
these jurisdictions. Concurrently, demographic and economic advancements in certain
regions have stimulated increased water consumption requirements.

Figure 2 reveals that the mean indices for high-quality economic development across
various regions escalated from 0.31 to 0.53 between 2010 and 2021, marking an increment
of 0.22 and a growth rate of 71%. In 2010, only Shanghai boasted a high-quality economic
development index surpassing 0.4, with Wenzhou registering the nadir at 0.18. By 2015, this
list had expanded to include Nanjing, Hangzhou, Suzhou, Wuxi, Zhoushan, Changzhou,
Ningbo, Zhenjiang, and Lishui, all exhibiting an overarching upward trajectory, with
Wenzhou, Suqian, Suzhou, and Nanjing manifesting particularly pronounced growth. By
2021, every city within the Yangtze River Delta had a high-quality economic development
index exceeding 0.4, signifying a notable elevation in the quality of economic development.
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Historically, the region has been a magnet for substantial foreign capital and an influx
of transient populations, thereby catalyzing urban population growth and the expansion
of construction land. Concurrently, the provision of public services at the municipal
governance level has been commensurately amplified, contributing favorably to high-
quality economic growth.
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Figure 1. Temporal evolution of water resource system indices in the Yangtze River Delta.
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Figure 2. Time evolution of economic quality development index in the Yangtze River Delta.

6.2. Analysis of Spatial Trends in Water Resource Systems and High-Quality Economic Indices

In order to rigorously delineate the spatiotemporal evolution of water resource systems
in conjunction with high-quality economic development within the Yangtze River Delta,
we employed Geographical Information Systems (GIS) to plot the standard deviational
ellipses and centroidal shifts for these systems for the years 2010, 2015, and 2021. The
overarching objective was to scrutinize the spatial equanimity between the two systems
(Figures 3 and 4). Figure 3 and Table 3 reveal that between 2010 and 2021, the centroid of
water resource quality was predominantly situated in the northeastern region of Huzhou
City. The orientation of the ellipse displayed a fluctuating trend, indicating a substantial
degree of data dispersion, yet overall, it manifested an upward trajectory. Observationally,
the spatial configuration of the water resources the Yangtze River Delta predominantly
spans from the northwest to the southeast and substantially encompasses the majority of
the central and eastern regions. From the detailed map of the ellipse position, the standard
deviation ellipse position moves first to the northwest, then to the southeast, and overall
becomes more and more eastward. Although the center of gravity of the ellipse moves
to the northwest, the coverage is gradually expanding, indicating that the water resource
elements are increasingly concentrated in the east-central region of Jiangsu, Zhejiang, and
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Shanghai, especially in the eastern coast of Wenzhou, Taizhou, Zhoushan, and so on, in the
environmental quality of the outstanding performance makes the ellipse more skewed to
the southeast and the coverage of a larger area.
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Table 3. Parameters of standard deviation ellipses for water resources systems and high-quality
economic development in the Yangtze River Delta.

Index Year
Centroid Coordinates Standard Deviation

along X-Axis
Standard Deviation

along Y-Axis
Azimuth

AngleLongitude Latitude

Water
Resources

System

2010 119◦59′2.612′′ 30◦55′49.256′′ 2.650929 1.273938 166.76
2015 119◦59′5.183′′ 30◦58′50.29′′ 2.655153 1.271567 165.64
2021 120◦24′9.608′′ 30◦49′10.88′′ 2.703458 1.301092 164.38

High-Quality
Economic

Development

2010 120◦1′36.44′′ 31◦9′45.907′′ 2.61356 1.33335 160.94
2015 120◦0′38.563′′ 31◦10′43.28′′ 2.64105 1.308516 160.83
2021 120◦1′9.404′′ 31◦9′11.851′′ 2.617677 1.313448 161.20

Figure 4 and Table 3 elucidate that between 2010 and 2021, the epicenter of high-
quality economic development was principally located in the vicinity of Lake Tai, at
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the confluence of Huzhou, Suzhou, and Wuxi, without any substantial alterations. The
orientation of the ellipse remained relatively stable. Like the water resource system,
the economic development ellipse also predominantly spans from the northwest to the
southeast and substantially covers the central and eastern regions of the Yangtze River
Delta. This suggests that the high-quality economic development has not led to egregiously
disparate regional disparities. According to the detailed map, the ellipse of high-quality
economic development is slowly moving eastward, and the center of gravity is shifting
eastward as well. Further analysis ascertains that the southeastward inclination is correlated
with the gravitational pull of technological talent in Shanghai and Suzhou, and is closely
related to the integrated development demonstration areas formed in Suzhou Wujiang,
Jiaxing Jiashan, and Shanghai Qingpu. Conversely, the northwestward inclination is
associated with the elevated levels of economic and societal development in Nanjing, the
provincial capital.

6.3. Coupling and Coordination Degree of Water Resource Systems and High-Quality Economic
Development: Dynamic Changes over Time

According to the calculated results of the coordination degree of water resource sys-
tems and high-quality economic development in the Yangtze River Delta from 2010 to
2021, an analysis is conducted in conjunction with the classification criteria in Table 2 to
assess the harmonious development between water resource systems and high-quality
economic development (Figure 5). Between 2010 and 2015, the indices of coordination
degree across various regions ranged from 0.2 to 0.7, encompassing categories such as
moderate discoordination and decline, mild discoordination and decline, moderate har-
monious development, and optimal harmonious development, indicating an overall trend
toward beneficial progress. In 2010, areas exhibiting superior development included cities
such as Shanghai, Hangzhou, Lishui, and Nanjing. This was partly attributed to the rapid
economic growth in these cities, which placed a greater emphasis on economic harmonious
development. Additionally, cities such as Lishui and Jinhua, with abundant water resources
and high developmental carrying capacities, were conducive to coordinated development
between the economy and water resources. By 2021, Shanghai and Hangzhou emerged
as cities exemplifying exceptional coordinated development, with coordination degrees
exceeding 0.7, while other cities all maintained coordination degrees greater than 0.5, falling
within the realm of either moderate or optimal harmonious development.
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Figure 5. Degree of development and spatial ellipse of the coupling between water resource systems
and high-quality economic development in the Yangtze River Delta ((left) 2010, (right) 2021).

According to Figure 6, which illustrates the relative development indices, the mean
relative development degree for high-quality economic growth and water resource systems
across various regions increased from 1.32 to 1.50 between 2010 and 2021—an increment
of 0.18, representing a 14% growth rate, indicative of a pioneering trajectory in regional
high-quality development. Within the Yangtze River Delta, advancements in economic
prosperity, population growth, and societal evolution have precipitated an escalation in
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both domestic and industrial water consumption, thereby exerting considerable strain on
the water resource systems and complicating their harmonious integration with economic
objectives. Presently, while sustaining high-quality economic development, it is imperative
to prioritize the conservation and judicious utilization of water resource systems to avert
another severe imbalance with water resource carrying capacities and to foster a syner-
getic and efficient equilibrium between high-quality economic development and water
resource utilization.
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Figure 6. Relative development of water resource systems and high-quality economic development
in the Yangtze River Delta.

7. Conclusions and Discussion
7.1. Conclusions

Upon establishing a comprehensive evaluation index system, this study employs the
CRITIC method, coupling-coordination models, and standard deviation ellipse models to
scrutinize the dynamic coupling and coordination relationship between water resources
and high-quality economic development across 25 cities in the Yangtze River Delta. The
research ascertains that both the integrated utilization of water resources and the level
of high-quality economic development in the region are on an upward trajectory. The
coupling and coordination status has undergone a transition from moderate discoordination
to optimal coordination, with the coupling type evolving from a medium-level adjustment
to a high-level coordinated state. The epicenter of high-quality economic development is
concentrated around Lake Taihu, particularly at the confluence of Huzhou, Suzhou, and
Wuxi cities, exhibiting negligible shifts and maintaining a stable azimuth angle oriented
from northwest to southeast, essentially enveloping the central and eastern portions of
the Yangtze River Delta. The centroid of water resource system quality is located in the
northeastern part of Huzhou City. Its azimuth angle manifests fluctuating tendencies, and
the data exhibit a significant dispersion. Overall, the trend is ascending, and the spatial
configuration is also oriented from northwest to southeast, broadly covering most areas in
the central and eastern parts of the Yangtze River Delta.

7.2. Discussion

The issue of the relationship between the regional economy and the environment is
an important part of the strategic topics such as the new normal of the Chinese economy,
the construction of new urbanization, the construction of ecological civilization, and the
new height of environmental protection in the new era. Currently, there are fewer studies
on spatio-temporal patterns at small scales (prefectural municipalities and the following
administrative units) based on large scales (large watersheds and national strategic regions);
therefore, this paper selects data from 25 prefectural municipalities in Yangtze River Delta
to measure the spatio-temporal patterns at small scales. The limitation of this paper is that
it does not explore the relationship between the economic and environmental systems and
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their internal components of the subsystems, and only reflects the degree of coordination
between the two systems from the numerical law, and also does not explore the many
factors affecting the environmental system. In addition, in the selection of indicators for
constructing the system, we consider the availability of data and based on previous research
to screen out all of the indicators, in which there are inevitably oversights. In this paper,
we have only conducted some preliminary explorations on economic and environmental
issues in Jiangsu, Zhejiang and Shanghai, and we should strengthen further research on
urbanization, economic development, ecological, and environmental effects of high-quality
development, and refined measurement of environmental pollution and environmental
quality in the future.

To harmonize the development of regional water resources with economic and social
advancements, the following measures could be intensified. First, to carry out special
remedial actions for the management of water abstraction, comprehensively carry out the
verification and registration of water abstraction outlets, grasp the number of constructed
water abstraction outlets, compliance and monitoring and measurement of the status quo,
standardize the behavior of water abstraction, and improve the regulatory mechanism of
water abstraction outlets, so as to lay a solid foundation for the management and control
of water use. In areas where the verification and registration tasks have been completed,
it is necessary to categorize and rectify the problems, and promote the development and
utilization of water resources in the basin to improve the order significantly. Second, to
solve the water problems in the Yangtze River Delta, we must grasp the crux of the problem,
and implement the requirement of “making water resources a rigid constraint” without
compromise, and adjust human behavior and correct human misbehavior in a timely
manner through strong regulation, so as to promote upgrading and upgrading of industries,
and advance the high-quality development of the economy and society. Third, strict water
resource demonstration and water permit management, water resource conditions as
an important constraint on the approval of relevant planning and construction projects,
effectively strengthen the demonstration of water resource and water permit management,
regulate the use of water in accordance with the law, and strictly supervise the aftermath
of the incident. To promote the zonal management of water resource development and
utilization, based on the evaluation of the carrying capacity of water resources, study
the establishment of a zonal management system for the development and utilization
of water resources, accurately identify basins and regions where water resources are
over-exploited, moderately exploited, and under-exploited, and implement differentiated
regulatory policies, so as to improve the level of management refinement, and to better
facilitate the balancing of the population, urban and industrial development with water
resource conditions. Fourthly, give play to the incentive and spurring role of the most
stringent water resource management system assessment. Further improve the assessment
content, optimize the assessment indicators, improve the assessment mechanism, and give
greater play to the role of the assessment baton. Further strengthen the daily inspection, take
random checks, unannounced visits, and other ways, strict implementation of supervision
and inspection, to promote the local and relevant units to fulfill their duties in accordance
with the law, and improve the management capacity and level. We should take warning and
disciplinary actions as the guide, and urge immediate rectification of the problems found,
and resolutely investigate, punish, and hold accountable those with serious problems.
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Abstract: The construction of cascade reservoirs is associated with considerable uncertainty in
sedimentation in the fluctuating backwater area of the terminal reservoir and poses challenges to
water safety. The sedimentation characteristics under the influence of multiple factors in the main
urban area of the Chongqing river section were analyzed as a case study for the operation of cascade
reservoirs in the Jinsha River via the utilization of a large dataset spanning back to the normal
storage of the Three Gorges Reservoir. The results of this study indicate that, owing to factors such
as upstream water, sediment inflow, reservoir operation, and river sand mining, this river section
experienced deposition on the sand bars and erosion in the main channel. The rate of sedimentation
increased with sediment inflow, peak flow rate, and duration, while the location of sedimentation
shifted as the concentration ratio changed. These results may provide technical support not only for
the operation of the Three Gorges Reservoir, but also for the governance of the fluctuating backwater
areas of other cascade reservoirs.

Keywords: fluctuating backwater area; cascade reservoirs; Three Gorges Reservoir; main urban area
of Chongqing

1. Introduction

The conditions of water and sediment boundaries in fluctuating backwater areas (FBAs)
of reservoirs are often complex as they demonstrate characteristics of both a river channel
and a reservoir. This results in notable uncertainty in the evolution of the riverbed [1],
which can pose challenges for flood control [2], navigation [3,4], the utilization of sand and
stone resources [5], water-related engineering [6], and ecological processes [7–9] in the area.
This sedimentation uncertainty has attracted the attention of both scholars and reservoir
operation management departments [10,11]. In the upper reaches of the Yangtze River, the
Three Gorges Reservoir (TGR) has become the end of a cascade reservoir group, with its
water and sediment conditions having undergone significant changes since its design [12,13].
Chongqing is one of the most important cities in China and is located in the FBA of the TGR,
meaning sedimentation problems have a greater impact on its economy and society. Therefore,
studying its sedimentation characteristics is of vital importance for not only selecting the
optimal operation plan, but also fully utilizing the benefits of the reservoir.

Several studies have investigated sedimentation in the TGR, especially in its FBA.
Based on observational data before and during the initial storage period of the TGR,
analyses indicate that sedimentation primarily occurs in the perennial reservoir area [14,15],
while the riverbed morphology is relatively stable between years. Additionally, there
is generally no obvious unidirectional erosion and deposition (E&D) in the main urban
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area of Chongqing [16]. However, some river models indicate that sedimentation will
accumulate and negatively impact ports, waterways, municipal infrastructure, and the
ecology within this river section [17]. Since the normal storage operation of the TGR in
2008, the sedimentation rate of fine sand has decreased due to the retention of sediment
in large reservoirs in the upper reaches of the Yangtze River, resulting in flocculation
and sedimentation [18–20]. However, sedimentation is still mainly distributed in the
perennial backwater area [21,22], and a lag phenomenon has been observed [23,24]. The
tributary estuaries in the reservoir area also have a certain sedimentation amount [25,26].
In the FBA, human activities such as dredging, river regulation, and dock construction
have interfered with sedimentation [27]. The usual trend of sedimentation in the flood
season and erosion in the dry season has remained unchanged in the main urban area of
Chongqing. However, the main sediment transport period has been delayed from the post-
flood period to the water level fluctuation period of the following year, with a decreased
quantity of sediment transported [28]. A sediment transport analysis has also indicated
that there has been a cumulative sedimentation phenomenon in the FBA [29,30]. This may
be avoided by increasing the water level dissipation rate of the TGR from the water level
in front of the dam at 163 m [31]. In addition, mathematical models have indicated that
the sediment saturation coefficient significantly impacts E&D [32], and the influence of
the downstream water level leads to random evolution of the riverbed [33]. In the future,
under the new water and sediment conditions following the operation of cascade reservoirs
in the upper reaches of the Yangtze River, the sedimentation quantity and rate of the TGR
will significantly decrease [34], taking up to 560 years to reach equilibrium [35].

The FBAs of cascade reservoirs, particularly tail reservoirs, face more complex water
and sediment conditions due to the joint operation of a cascade reservoir [36]. Studies
conducted following the design phase of the TGR have demonstrated that the concentrated
accumulation of sediment in the FBA would not only lead to the transformation of river
types and the elevation of flood season water levels, but also threaten the water depth of
port areas and worsen navigation conditions [37]. Currently, studies on the FBA of the
TGR, especially the river section in the main urban area of Chongqing, are primarily based
on data measured in the initial water storage stage, and measurements of normal water
storage in the TGR in 2008 and the operation of the cascade reservoirs in the Jinsha River
are lacking. In this study, we elucidated the characteristics of sediment deposition in the
FBA of the TGR under the latest water and sediment conditions, utilizing the main urban
area of the Chongqing section as a case study. Furthermore, we explored the underlying
causes to suggest timely measures to avoid adverse effects. We expect these findings to not
only provide technical support for the operation of the TGR, but also for the governance of
the FBAs of cascade reservoirs more broadly.

2. Materials and Methods
2.1. Study Area

Since the normal impoundment of the TGR in 2008, its backwater end has reached
the vicinity of Jiangjin (approximately 660 km away from the dam), with an approximately
173.4 km long FBA ranging from Jiangjin to Fuling [38]. The main urban area of Chongqing is
located in the FBA of the TGR, with a total length of 60 km. This includes the 40 km section
from Dadukou to Tongluoxia in the main stream of the Yangtze River, and the 20 km section
from Jingkou to Chaotianmen in the Jialing River. Due to the influence of geological tectonic
processes, the river section in the main urban area of Chongqing presents a continuous curved
channel shape on the plane. In the FBA of the TGR, there are six continuous bends in the main
stream of the Yangtze River and five bends in the Jialing River. The curves are connected by
relatively straight transition sections (Figure 1). This river section alternates between wide and
narrow, and the shoreline is uneven with protruding stone mouths on the shore. The main
stream of the Yangtze River during flood season is generally 700 to 800 m wide, with branching
sections measuring up to 1300 m and as little as approximately 300 m (the Tongluoxia section).
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During the flood season, the Jialing River section is generally 400 to 500 m wide, reaching up
to 800 m and as little as approximately 370 m (the Zengjiayan section).
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2.2. Data

Since 2003, the Hydrological Bureau of the Yangtze River Water Conservancy Com-
mission has conducted annual topographic observations on the main urban area of the
Chongqing river section from May to December. A terrain scale of 1:5000 is used in July
and December, and 65 fixed sections are observed monthly in the remaining months. From
2010 to 2015, to adapt to changes in the water storage of the TGR, dynamic adjustments
were made to the observation tasks. While the terrain observation tasks for the entire river
section were discontinued, the number of fixed-section observations and measurements
of key river sections were increased. In 2010, a total of 16 observations for fixed sections
were made, which were gradually reduced to nine annually by 2015. After 2016, based on
the operation of the TGR and the evolving characteristics of the river, further adjustments
were made to the observation tasks, with one observation each of the fixed sections before
and after flooding, in June and in October, respectively, followed by one topographic
observation of the entire river section in December. At the same time, terrain measurement
tasks of key river sections were discontinued.

The hydrometric control stations for incoming water and sediment in the main urban
area of Chongqing include Cuntan and Zhutuo stations in main stream of the Yangtze
River (approximately 152 km upstream of Cuntan) and the Beibei station in the Jialing
River (approximately 61 km away from the exit of the Jialing River), all of which have kept
extensive records of water and sediment observation data. The data used in this study are
detailed in Table 1.

Table 1. Data used in this study.

Type Period Measurements Source

Fixed-section terrain
2008–2009 62, June to November, once a month

Hydrological Bureau of the Yangtze
River Water Conservancy Commission

2010–2015 65, decreasing from 16 to 9 times per year
2016–2022 65, June to October, once a month

Topographic terrain
(Entire river section)

2008–2009 July, December
2016–2022 December

Topographic terrain
(Key river sections) 2010–2015 July, December

Flow discharge 2008–2022 Daily average

2.3. Method

Three methods are typically utilized to calculate the quantity of E&D for a river
channel. The first method, named the sediment-flux-method, is based on the difference
between the sediment flux entering and exiting the river channel. However, this method is
only applicable when there are sediment observation facilities at both the river inlet and
outlet. For this study area, only the sediment flux exiting the river channel can be obtained
at the Cuntan station. The Zhutuo and Beibei stations are too far away from the entrance of
the study area to be applicable. Due to the influence of sediment production in the interval,
their observed values cannot accurately represent the sediment flux entering the study area.
Therefore, this method is not appropriate for this study.

The second method is based on topography. By dissecting the study area, the two mea-
surements above that correspond to sediment storage can be calculated based on topo-
graphic data. Although there are several topographical measurements in the study area,
their measurement dates are inconsistent with the cross-section. Additionally, the frequency
of observations is much smaller than the that of the section terrain. In this study, a third
method, based on cross-sectional data [39], is adopted to reflect the entire E&D process. For
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a given river section, the channel storage (Vol) can be expressed by utilizing the frustum
volume formula:

Vol = ∑
∆x
(

Ai + Ai+1
√

Ai·Ai+1
)

3
i = 1, 2, . . . , ncs − 1 (1)

where Ai is the discharge area, ∆x is the distance from the i to i + 1 section, and ncs is the
number of sections. The total difference in the channel storage between two measurements
will be the quantity of E&D.

3. Results
3.1. Volume of Sedimentation

Since the TGR began storing water at a normal water level (175 m) in September
2008, the river section in the main urban area of Chongqing has experienced erosion of
20.672 million m3 of material. Deposition at the side bars totals 2.895 million m3, and
scouring in the main channel has reached approximately 23.567 million m3. The process
and distribution of E&D are illustrated in Figure 2 and Table 2.
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Figure 2. Distribution of E&D along the river in the main urban area of Chongqing section since 2008.

By quantifying the distribution of sedimentation, all sections above and below Chao-
tianmen in the main stream of the Yangtze River, including the Jialing River section,
exhibited erosional volumes of 17.568, 0.744, and 2.360 million m3, respectively. The av-
erage scouring depths were 1.04 m, 0.07 m, and 0.21 m, respectively (Table 3), and the
maximum sedimentation thickness was 18.3 m in the CY02 section. They were located on
the left side of the Tangjiatuo area, approximately 14 km below the confluence, with an
elevation of approximately 147 m after sedimentation (Figure 3).

3.2. Plane Changes of Shorelines and Sand Bars

The main urban area of the Chongqing section is a mountainous river with steeply
sloped banks on both sides. No significant changes to the E&D of the 170 m shoreline
were observed between 2008 and 2022. Although some areas had been adjusted due to
urban construction, the plane changes were relatively small, mostly within 30 m, and the
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shoreline was relatively stable. The plane changes of the shoreline in the main urban area
of Chongqing section are depicted in Figure 4.

Table 2. E&D in the main urban area of Chongqing section since the normal storage of the TGR in
2008, unit: 104 m.

Time Interval
Main Stream of the Yangtze River

Jialing River Whole NotesBelow
Chaotianmen

Above
Chaotianmen

September 2008~December 2008 −37.4 −24.6 −66.8 −128.8 Storage period in 2008
December 2008~June 2009 −33.5 −73.7 −18.2 −125.4 Decline period in 2009
June 2009~September 2009 −59.9 42.6 57 39.7 Flood season of 2009

September 2009~November 2009 41.6 −47.1 −72.2 −77.7 Storage period in 2009
November 2009~June 2010 16.1 70.4 94.3 180.8 Decline period in 2010
June 2010~September 2010 70.9 43 −154.3 −40.4 Flood season in 2010

September 2010~December 2010 43.8 22 139.3 205.1 Storage period in 2010
December 2010~June 2011 −113.6 −84.8 −65.9 −264.3 Decline period in 2011
June 2011~September 2011 −28.9 29.7 16.8 17.6 Flood season in 2011

September 2011~December 2011 12.5 53.8 19.4 85.7 Storage period in 2011
December 2011~June 2012 −51.4 −178.1 −72.6 −302.1 Decline period in 2012
June 2012~September 2012 166.7 30.8 91.8 289.3 Flood season in 2012

September 2012~October 2012 −21.2 −105.6 18.9 −107.9 Storage period in 2012
October 2012~June 2013 0.4 −273 −57 −329.6 Decline period in 2013

June 2013~September 2013 −57.5 −28.6 −53.8 −139.9 Flood season in 2013
September 2013~December 2013 −47.6 −137.3 8.1 −176.8 Storage period in 2013

December 2013~June 2014 −80.4 −151.2 −78 −309.6 Decline period in 2014
June 2014~September 2014 108 40.2 −3.3 144.9 Flood season in 2014

September 2014~December 2014 −89.2 −238.3 −7 −334.5 Storage period in 2014
December 2014~June 2015 −37.3 −160.2 −53.7 −251.2 Decline period in 2015
June 2015~September 2015 120.7 71.3 84.6 276.6 Flood season in 2015

September 2015~December 2015 −55.1 −106.8 −46.6 −208.5 Storage period in 2015
December 2015~June 2016 67.5 −21.1 −43.8 2.6 Decline period in 2016
June 2016~October 2016 −100.5 −31 −1.4 −132.9 Flood season in 2016

October 2016~December 2016 −42.6 54 22.6 34 Storage period in 2016
December 2016~June 2017 25.6 −112.8 −17.2 −104.4 Decline period in 2017
June 2017~October 2017 −8.2 −82.3 28.8 −61.7 Flood season in 2017

October 2017~December 2017 40.4 0.1 −10.4 30.1 Storage period in 2017
December 2017~June 2018 −37.7 −164.6 −41.8 −244.1 Decline period in 2018
June 2018~October 2018 14.6 −69.6 26.5 −28.5 Flood season in 2018

October 2018~December 2018 −7.7 −29.1 25.4 −11.4 Storage period in 2018
December 2018~May 2019 2.3 −101.1 −40.6 −139.4 Decline period in 2019
May 2019~October 2019 38 −67.6 −24.7 −54.3 Flood season in 2019

October 2019~December 2019 44.4 −51.1 6.1 −0.6 Storage period in 2019
December 2019~May 2020 17.9 40.8 0.7 59.4 Decline period in 2020
May 2020~October 2020 48.7 148.9 118.3 315.9 Flood season in 2020

October 2020~December 2020 −76.2 −81.7 −25 −182.9 Storage period in 2020
December 2020~May 2021 57.2 38.8 −41.8 54.2 Decline period in 2021
May 2021~October 2021 −8.3 30.1 60.8 82.6 Flood season in 2021

October 2021~December 2021 −11.3 2.2 26.4 17.3 Storage period in 2021
December 2021~June 2022 −89.2 −88.5 −69.7 −247.4 Decline period in 2022

June 2022~December 2022 83 34.3 −16 101.3 Flood and storage
periods in 2022

September 2008~December 2022 −74.4 −1756.8 −236 −2067.2

The 155 m and 160 m contour lines were selected to analyze changes in the sand bars
of the main urban area of Chongqing. By analyzing the flat change map of the sand bars
(Figure 5), it was found that from 2021 to 2022, the Jinshaqi section underwent marked
changes, primarily manifesting as the erosion and retreat of approximately 65 m for the
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155 m contour line at the head, and an increase of approximately 50 m in sedimentation at
the tail estuary. The overall E&D of the other sand bars was relatively small.

Table 3. Thickness of E&D in the main urban area of Chongqing section from September 2008 to
December 2022.

Section Average (m)
Maximum

Value (m) Location

Main stream of the
Yangtze River

Above Chaotianmen −1.04 1 2.0 CY34
Below Chaotianmen −0.07 18.3 CY02

Jialing River −0.21 4.4 CY52

Note: 1 “−” indicates erosion.
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Figure 3. Changes in the CY02 section from September 2008 to December 2022.

From 2008 to 2022, the left bank near Tangjiatuo, in the section below the confluence
of the main streams of the Yangtze and Jialing rivers, shrank toward the riverbank due to
construction, with a maximum shrinkage of approximately 110 m. The section downstream
from the Muzhuqi side bar on the right bank near Baishatuo was markedly affected by sand
mining, and the front of the bar had retreated notably. The maximum retreating amplitude
along the front of the bar was approximately 150 m, and the contour line of 155 m at the top
of the bend on the opposite bank had disappeared. The Manziqi side bar on the right bank
of the Cuntan section was relatively stable, and its shape and position underwent minimal
change. The riverbank on both sides of the section between the Dafosi Bridge and the
Chaotianmen Bridge had been adjusted, while the right side bar had been slightly eroded.
The contour line of 155 m had retreated by approximately 30 m, and the surface of the left
side bar had been slightly eroded. The shoreline in front of the bar was relatively stable.
Upstream of the Chaotianmen Bridge, the side bar on the opposite bank of Danzishi was
washed away, and the contour line of 155 m had retreated by approximately 150 m. The
right bank at the confluence section had been eroded with a maximum retreating amplitude
of approximately 70 m for the 155 m contour line.
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Above the confluence, the side bar on the left bank of the Zhuerqi section was markedly
affected by sand mining, with a retreat of approximately 100 m for the 155 m contour line.
There was slight erosion in the middle of Shahuba with a partial retreat of approximately
150 m. The middle section of Xiejiaqi on the right bank, upstream of the Caiyuanba Bridge,
had been slightly eroded, retreating by approximately 75 m. The E&D of Huangjiaqi on
the left bank was relatively small, and the morphology remained mostly unchanged. Due
to factors such as sand mining and construction, the total sand bar area in the Jiulongpo
reach was reduced. The surface elevation of the Sanjiaoqi sand bar on the left bank was
completely reduced to below 160 m, The elevation of the Jiuduizi sand bar on the right
bank underwent similar reductions, as the 160 m contour line at the head had shrunk and
retreated by approximately 130 m. The degree of sand mining in the upstream Hujiatan
section was relatively high—while the original elevation of the river bottom was mostly
above 160 m, the range below 160 m had markedly expanded by the end of 2022.
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The middle region of the Jinshaqi side bar on the left bank of the mouth of the Jialing
River section had eroded, and the 155 m contour line had increased up to 330 m toward the
upstream area. The tail had filled with silt, as had the 155 m contour line approximately
60 m toward the river center. The head of the convex bank of the Tuwan section downstream
of the Shimen Bridge had retreated by approximately 80 m due to the dredging of the
waterway, resulting in sediment accumulating at the top of the bend. The 160 m contour
line on the right bank had accumulated silt by approximately 30 m toward the river center,
while the shape of the other banks remained relatively stable without notable changes.Water 2023, 15, x FOR PEER REVIEW 9 of 20 
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3.3. Plane Change of Pools

The 140 m and 145 m contour lines were selected to analyze pool changes in the main
urban area of the Chongqing section, as depicted in Figure 6. From 2021 to 2022, the overall
changes to each pool were relatively small and remained relatively stable.

From 2008 to 2022, deep pools developed in the sections below the confluence, in-
cluding at the outlet section of Tongluoxia, the opposite bank of Baishatuo, the left side
of the Cuntan section, and the Danzishi section. The pools at the exit section developed
toward the left bank, with a maximum extension of approximately 180 m for the 140 m
contour line and a head drop of approximately 330 m. The Baishatuo section expanded in a
transverse direction by approximately 240 m at the head of the deep pool, and by nearly
180 m downstream at the tail of the upper deep pool. The head of the Cuntan deep pool
was slightly silted, having retreated by approximately 120 m. The tail of the Danzishi deep
pool had been silted to the left and washed to the right, and the left side of the head had
been washed, expanding approximately 90 m to the left. Many of these effects were due to
sand mining.

Deep pools developed above the confluence on the right side of Xuantanmiao; the
opposite bank of Shanhuba, Xiejiaqi, and Huangjiaqi; and the Longfengsi and Jiulongpo
areas. The head of the deep pool on the opposite bank of Shanhuba had been slightly silted
and had retreated by approximately 40 m, while the head of the deep pool on the opposite
bank of Xiejiaqi had been silted and had retreated by approximately 150 m. The length
of the deep pool at the 140 m contour line had been shortened from 300 m to 80 m in the
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upstream area of Jiulongpo, while the other deep pools experienced little change in E&D,
with minimal changes to their position and morphology.

The Jialing River section had developed deep troughs on the left side of Zengjiayan,
the right side of the upstream area of Niujiaotou, the right side of Zhongshutuo, the right
side of Ciqikou, and the right side of Dazhulin. Among them, the sedimentation in the
deep trough of Zhongshutuo was more pronounced, with an elevation of approximately
200 m at the end of the deep groove. The width of the tail of the deep groove was reduced
from 70 m to approximately 25 m, while the changes in the deep grooves of other sections
were relatively small, their positions and morphologies remaining nearly unchanged.Water 2023, 15, x FOR PEER REVIEW 10 of 20 
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3.4. Changes in the Thalweg

The interannual changes in the longitudinal profile of the thalweg in the main urban
area of Chongqing are represented in Figure 7. After the normal impoundment of the
TGR in 2008, there was evidence of E&D occurring in the river section, but the overall
changes were relatively small, generally within 1 m, except in areas where sand mining and
waterway dredging occurred. There are two probable reasons for this: Firstly, most of the
deep thalweg in the main urban area of Chongqing is composed of pebbles, which move
slowly and exhibit low-intensity sediment transport, resulting in minimal changes to E&D.
Secondly, following normal impoundment, this section has generally experienced moderate
water and low sand input conditions. Even in 2020, under relatively large water and sand
input conditions, deposition and uplift only occurred in local river sections, resulting in no
marked impact on the overall characteristics of the thalweg in this river section.

3.5. Siltation Distribution

Figure 8 illustrates the distribution of E&D in the main urban area of Chongqing
following the normal storage of the TGR below normal water storage levels from July
2008 to December 2022. Both erosion and sedimentation are distributed in the study area.
Erosion is primarily distributed in the main stream of the Yangtze River upstream of
Chaotianmen and the Jialing River reach upstream of Huanghuayuan Bridge, with an
amplitude ranging from 1 m to 3 m. Other areas are mainly characterized by sedimentation,
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with an amplitude generally within 2 m. In some areas, such as near Tangjiatuo, the
amplitude of sedimentation reached greater than 5 m.

Notably, the terrain of some areas exhibits considerable downward cutting, generally
exceeding 10 m, occasionally exceeding 20 m. These more extreme terrain changes are due
to recent human activities, such as sand mining and waterway dredging.
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Figure 7. Evolution of the thalweg in the main urban area of the Chongqing river section: (a) the
main stream of the Yangtze River; (b) the Jialing River.
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4. Discussion

Since the normal impoundment of the TGR, the main urban area of the Chongqing
river section has accumulated scouring of 20.672 million m3 due to a variety of factors,
including water and sediment inputs, reservoir operational procedures, and river sand
mining. This includes depositions of 2.895 million m3 on sand bars and scouring of
23.567 million m3 in the main channel. Overall, between 2008 and 2022, the positions of
sand bars and deep pools remained nearly unchanged, with only minor changes in the
thalweg of the river. The areas within some river sections that experienced marked changes
to E&D were mostly affected by urban construction, waterway dredging, and sand mining.
Natural contributions to E&D were relatively small, and the river regime remained fairly
stable. We identified three factors, which are discussed below, that have been primarily
responsible for the current patterns of evolution in this region.
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4.1. Impact of Income Flow and Sediment
4.1.1. Total E&D

Figure 9 illustrates the relationship between total runoff, sediment load, and E&D since
2008. The total inflow into the main streams of the Yangtze and Jialing rivers has varied
slightly in recent years. However, in 2010, the main streams of the Yangtze and Jialing
rivers experienced a total sediment inflow of 223.2 million tons, which was the highest
during the study period. Simultaneously, from November 2009 to December 2010, the main
urban area of Chongqing experienced deposition of 4.176 million m3 (excluding the impact
of sand mining, the same below), which was also the highest during the study period. A
relatively large quantity of sand deposition was also observed in 2009, 2012, and 2020, at
2.203, 1.862, and 2.552 million m3, respectively. In 2022, due to relatively low quantities of
input sand, 0.492 million m3 of erosion occurred. Similar water and sediment conditions
also occurred in the Wujiang River downstream of main urban area of Chongqing, adjacent
to the starting point of the fluctuating backwater area [40]. This indicates that when the
sediment inflow in the upstream area sharply decreases, sedimentation in the fluctuating
backwater area improves [30].
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Figure 9. Relationship between annual total runoff, sediment load, and E&D.

4.1.2. Process

The impact of incoming water and sediment processes during the year primarily mani-
fests as consistency between the distribution of incoming sediment and flow discharge [41].
The maximum sediment transport capacity in the main urban area of Chongqing occurs
when the flow discharge is 12,000–25,000 m3/s (Cuntan hydrometric station) and is referred
to as the main sediment transport flow discharge. If large quantities of sediment are input
during this flow discharge, the majority of the sediment is carried away, resulting in a low
degree of sedimentation occurring in that river section, accompanied by some scouring.
During the flood season, peak flow is typically greater than 25,000 m3/s, the upper limit of
the main sediment transport flow discharge. Two distinct patterns are observed in different
flood peak conditions:

The larger the flood peak during the flood season, the longer the duration of the flood
process, and the more easily sedimentation occurs in the main urban area of the Chongqing
section. During the flood season in 2012, from 12 June to 8 August, there were two major
floods on 6 July and 24 July, with peak flows of 50,500 and 63,200 m3/s at the Cuntan
hydrometric station. During these two floods, the duration of the flow discharge exceeding
25,000 m3/s reached 17 days, with 13 and 15 days exceeding 30,000 m3/s, respectively.
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Therefore, during the observation period from 12 June to 18 July, and from 18 July to
8 August, a large degree of sediment deposition occurred, with depositions of 2.137 and
2.511 million m3, respectively.

If the peak flow during the flood season is small, the flood process features a sharp
peak with a steep rise and fall, a short flood duration, and small quantities of sediment
deposited, and erosion is occasionally observed. From 8 August to 8 September 2012,
a flood process occurred in the main urban area of Chongqing reach, with a peak flow
on September 3rd of 47,300 m3/s at Cuntan Station. Flows exceeding 25,000 m3/s only
spanned five days. Although the largest sand peak of the year occurred on 6 September, it
lagged behind the flood peak by three days, with a corresponding flow rate of 22,900 m3/s.
From 8 August to 8 September, not only did the sediment input in the main urban area of
the Chongqing section not settle, but a significant transport process was observed, with a
total sand loss of 1.755 million m3.

4.1.3. Discharge Ratio of the Main Streams of the Yangtze and Jialing Rivers

The impact of the discharge ratio of the Yangtze and Jialing rivers on E&D in the
main urban area of Chongqing primarily manifests as differences in the location of sedi-
mentation [42]. When this ratio is relatively low, the water from the main stream of the
Yangtze River imparts a significant lifting effect on the Jialing River section, resulting in
the sediment in the Jialing River section being more prone to deposition. For example,
from 18 July to 20 August 2014, and from 15 July to 18 August 2015, the discharge ratio of
the two rivers was relatively low, at 0.16 and 0.14, respectively. During these periods, the
Jialing River section experienced depositions of 0.476 and 0.707 million m3, respectively.

When the ratio is relatively large, the jacking effect of the main stream of the Yangtze
River on the Jialing River section is weakened, and the Jialing River section becomes more
prone to sediment transport. From 18 July to 17 August 2013, a major flood occurred in the
main urban area of Chongqing. This event was primarily induced by rising waters in the
Jialing River, which exhibited a maximum annual flow discharge of 24,500 m3/s on 20 July.
On the same day, Cuntan station also experienced a maximum annual flow discharge
of 44,900 m3/s. The entire flood process occurred over eight days, with flow discharge
durations exceeding 25,000 and 30,000 m3/s of 12 and 7 days, respectively. During this
period, the water inflow from the main stream of the Yangtze River, as measured at the
Zhutuo station, was relatively low, with the flow discharge on 20 July measured as only
22,200 m3/s. From 18 July to 25 July, during the flood process, the discharge ratio of the
two rivers reached 0.96. The large inflow of the Jialing River resulted in a large degree
of erosion in the Jialing River section and the section below Chaotianmen, experiencing
sediment erosion quantities of 0.258 and 0.3 million m3, respectively. The river section
upstream of Chaotianmen exhibited an accumulated deposition of 1.14 million m3. In
2020, notable flooding events occurred in the main streams of both the Yangtze and Jialing
rivers. The average discharge ratio from 22 May to 10 October was 0.28, indicating a strong
mutual support effect between the two rivers. During the 2020 flood season, there was
marked sedimentation in the main streams of both the Yangtze and Jialing river sections
(3.621 million m3).

4.2. Impact of the TGR

Changes in the storage level of the TGR during the storage and dissipation periods
after September 2008 are shown in Figure 10. After storage levels reached 175 m, the main
urban area of the Chongqing river section was impacted, altering its natural E&D pattern of
“flood siltation, dry erosion” to some extent [10]. This manifested primarily as the impact
of water storage in the post-flood stage, leading to a decrease in sand transportation, which
was unable to carry away pre-flood siltation and the occurrence of sedimentation. Only
during the dissipation period, when the storage level decreased and the upstream flow
increased, did sand transportation begin, resulting in the river section being eroded.
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This river section was weakly affected at the end of the flood season during the
early stage of impoundment, especially when the storage level was below 168 m. During
this period, the flow measured at Cuntan station was observed to be nearly at the main
sediment transport flow discharge status, with the river section still possessing some
sediment-carrying capacity. In 2008, 2011, 2012, and 2013, during the initial impoundment
period, erosion was observed. Additionally, an equilibrium state of E&D was maintained
in 2009. Following the 2010 flood season, there was an autumn flood process, wherein
the peak flow measured at Cuntan station reached 33,000 m3/s. Due to the influence
of incoming flow, 2.13 million m3 of sediment accumulated in the river section from
10 September to 18 September 2010. As the flood subsided and the main stream returned to
its channel, 1.53 million m3 sediment was carried through the reach between 18 September
and 30 September. Similarly, from 5 September to 24 September 2014, an autumn flood
resulted in slight sedimentation during the initial impoundment period, after which it
shifted to erosion.

In the later stage of water storage as the storage level gradually rises, especially when
the storage level exceeds 168 m, the river section is primarily influenced by the water level.
During this time, flow velocity slows, sediment carrying capacity decreases, and sediment
is more prone to deposition. For example, in the later stages of water storage in 2008,
2010, and 2011, notable sedimentation was observed. In the later stage of water storage
in 2013, the river section was scoured by 0.86 million m3, which may be primarily due to
the influence of sand mining. Calculations based on the cross-section data revealed that
terrain changes owing to sand mining amounted to 0.877 million m3. Owing to the impact
of sand mining, a slight sedimentation of 0.017 million m3 was observed during this period.
In 2014, the river section was also affected by sand mining and exhibited erosion, but also
accumulated 0.078000 million m3 of sediment during this period. In 2015, the sediment
inflow from the upstream decreased further. Although there was some sedimentation
during the flood season, some erosion was observed in the main urban area of Chongqing
during the later stage of water storage.

During the pre-flood period, as the storage level declined and upstream flow increased,
the river section gradually regained a large amount of sediment carrying capacity. Since
175 m water storage was reached, erosion was the predominant state during the pre-flood
period, and in years with more sedimentation during the preliminary stage, the degree of
erosion during the pre-flood period was also greater.
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4.3. Impact of Human Activities

In recent years, sand mining activities have increased in frequency in the main ur-
ban area of Chongqing [43], and channel regulation projects have been implemented in
multiple places [44,45]. Sand mining and channel regulation have markedly impacted
riverbed E&D. Figure 11 highlights typical anthropogenic activities of sand mining and
waterway regulation in selected years. From the interannual variation in the cross-section,
anthropogenic activities such as these have been observed to result in marked changes
to the elevation of local areas of the cross-section, with frequent interannual variations.
Since 2011, the Hydrological Bureau of the Yangtze River Commission has organized sand
mining surveys on the river sections in the main urban area of Chongqing. According to
their survey data, the total quantity of sand mined in 2011 and 2012 was approximately
1.477 and 1.535 million tons, respectively.
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The impact of sand mining activities on riverbed E&D has two main effects. Firstly, it
affects calculations of the quantities of E&D, which masks the natural E&D characteristics
of the river. For example, 15 October 2012 to 23 February 2013 experienced the largest
volume of sand mined, based on the comparison of fixed cross-section data. By using
the channel storage method, we found that the local terrain changes in the main urban
area of Chongqing resulting from sand mining amounted to approximately 3.165 million
m3. However, the total quantity of E&D in the main urban area of the Chongqing river
section was only 3.623 million m3 during this period. Secondly, after sand mining, a large
degree of sedimentation was observed in the sand mining area during the flood season. A
typical cross-section of sand mining and siltation is shown in Figure 12. The sand mining
sections CY02, CY03, and CY06 all experienced large degrees of sedimentation during the
flood process. The maximum siltation height in the CY02 section was approximately 5.4
m, and it was 5 m in the CY03 section. The CY06 section also experiences repeated sand
mining operations during the year. From December 2011 to June 2012, there were two
major sand mining operations near the starting point at 360 and 390 m, with a maximum
mining height of nearly 7 m. On 6 July and 24 July, there were two major floods, resulting
in severe sedimentation in the excavation area. As of 12 September, the majority of the
mining area has been filled with sediment.
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5. Conclusions

In this study, we analyzed the sedimentation characteristics of the main urban area of
the Chongqing river section located in the FBA of the TGR based on terrain measurements
and hydrological data collected following the normal storage of the TGR in 2008. The results
of this study demonstrate that accumulated erosion has occurred through sedimentation
on sand bars and erosion in main channels of 2.895 and 20.672 million m3, respectively.
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However, river sections have exhibited little change within 30 m of the shorelines, and
the positions of sand bars and deep pools in the river section are nearly unchanged.
Furthermore, the amplitude of changes in the thalweg are rarely greater than 1 m.

The evolution of the river sections in this area has been influenced by multiple factors,
including water and sediment inputs, reservoir operations, and river sand mining. As
sediment inflow and peak flood discharge and duration increase, sedimentation quantities
increases, and its location shifts with the change in the confluence ratio of the main streams
of the Yangtze and Jialing rivers. In recent years, anthropogenic activities such as sand
mining and waterway regulation have led to cumulative erosion.

This study elucidated the sedimentation that has occurred since the normal water
storage of the TGR and, by extension, the operation of most cascade reservoirs in the Jinsha
River, including those taking place under the water. The results of this study serve as a
reference for the evolution of rivers in cascade reservoirs over an extended period into the
future. Furthermore, these results provide support for the comprehensive improvement of
FBA and the optimization of joint operations in cascade reservoirs.
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Abstract: The Xiaolangdi reservoir has a storage capacity of more than 10 billion cubic meters, and
the dam has significant seasonal deformation. Predicting the deformation of the dam during different
periods is important for the safe operation of the dam. In this study, a long short-term memory (LSTM)
model based on interferometric synthetic aperture radar (InSAR) deformation data is introduced
to predict dam deformation. First, a time series deformation model of the Xiaolangdi Dam for
2017–2023 was established using Sentinel-1A data with small baseline subset InSAR (SBAS-InSAR),
and a cumulative deformation accuracy of 95% was compared with the on-site measurement data at
the typical point P. The correlation between reservoir level and dam deformation was found to be 0.81.
Then, a model of reservoir level and dam deformation predicted by neural LSTM was established.
The overall deformation error of the dam was predicted to be within 10 percent. Finally, we used the
optimized reservoir level to simulate the deformation at the measured point P of the dam, which was
reduced by about 36% compared to the real deformation. The results showed that the combination
of InSAR and LSTM could predict dam failure and prevent potential failure risks by adjusting the
reservoir levels.

Keywords: SBAS-InSAR; LSTM; rockfill dam; deformation prediction; reservoir storage level scheduling

1. Introduction

Rockfill dams are large hydraulic structures composed of various rock materials
equipped with impermeable core walls made of special materials. Dams play important
roles in terms of water storage, flood control, sand drainage, and power generation. They
have a great influence on the development of industry and agriculture and the local
geological environment [1,2].

During the construction of a rockfill dam, different materials are used in different
embankment zones; the same embankment zone may be constructed differently in the field,
leading to inevitable differences in deformation in different areas of the dam [3]. After the
dam is completed and commissioned, the reservoir begins to store water and adjusts its
level according to certain rules. The dam body also undergoes seasonal deformation as the
hydrostatic pressure on the dam changes with the rainfall and reservoir levels [4].

Rockfill dams have more complex deformation characteristics than conventional
structures or concrete dams. To assess the overall structural health in a timely manner, the
periodic deformation monitoring of dams is essential. It can be used to predict how a dam
will deform over a period of time in the future to determine if any safety hazards exist
and to take appropriate actions to prevent the main body of the dam from crumbling or
collapsing [5].

Most traditional dam deformation monitoring methods use geodetic techniques, such
as using level and total station measurements for observations [6]. In addition, more
sophisticated global satellite positioning techniques can be employed [7]. Sensors such as
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embedded flexible pipes can also be installed inside dams for monitoring [8]. Although
these methods are widely used, they are labor-intensive and expensive. In addition, these
methods can only reflect the deformation of monitoring points or lines. However, they do
not accurately reflect the overall deformation of a dam. Some scholars have used numerical
simulations to reconstruct the deformation characteristics of an entire dam using similar
methods, provided that the design and construction parameters of each part of the dam
are available, and the overall deformation is calculated via computer simulations [9,10].
Currently, many rockfill dams were built and put into operation worldwide so early that
some of the dam parameters are missing, and this method cannot be used.

Interferometric synthetic aperture radar (InSAR) can acquire information on the de-
formation of the Earth’s surface on a millimeter scale over time [11]. It has been widely
used to map deformations caused by geological events, such as landslides, earthquakes,
and volcanic eruptions [12–15]. It has also achieved good results in monitoring the effects
of human activities such as mining, groundwater extraction, road subsidence, and urban
development [16–24]. In addition, large regional surface studies, such as polar permafrost
and glacier monitoring, have great potential [25–27].

With respect to the monitoring of dam deformation using InSAR, Zhou et al. [28,29]
showed that the overall deformation of the Shuibuya Dam obtained using the multiple-
temporal InSAR (MT-InSAR) technique is in agreement with the results of in situ geodetic
measurements. On this basis, the numerical model of dam deformation using finite ele-
ment analysis can be complemented by surface deformation monitored via InSAR. Ruiz-
Armenteros et al. [30] used MT-InSAR to study a dam in southern Spain and observed
significant vertical settlement in the main body of the dam, with deformations mainly dis-
tributed in the center of the dam and part of the slope adjacent to the dam. Biondi et al. [31]
studied the deformation characteristics of the Mosul Dam using the PS-InSAR technique
and showed significant settlement at the center of the dam and opposite deformation trends
at the two ends of the dam. A crack was found in the dam that seriously threatened its safe
operation. Xiao et al. [32] combined ICEsat-2, Sentinel-1, and Sentinel-2 satellite data and
used the small baseline subset InSAR (SBAS-InSAR) technique to investigate the failure
of the Sardoba Dam in 2020. The dam failure section showed abnormal settlement, and it
was hypothesized that seepage may have occurred inside the dam, resulting in changes
in the pressure-bearing capacity and structural stability of the dam, thereby causing the
accident. Bayik, Abdikan, and Arıkan [33] monitored the Atatürk Dam in Turkey using
multiple images from three satellites, ERS, ENVISAT, and Sentinel-1A, in different orbits,
and they found that the dam was still settling 28 years after its construction. However, the
deformation characteristics of the dam were different in different periods and showed that
the water storage level and the dam deformation were not always correlated.

Long short-term memory (LSTM) is one of the most influential methods in the field
of deep learning [34–38], and many researchers have used LSTM models to explore the
potential information of data in investigations such as surface observations. Jean et al. [39]
used an LSTM model to assess seismic vulnerability across India and prioritize areas in
need of protective measures. Li et al. [40] achieved real-time monitoring and prediction
of landslide displacement using a deep learning framework based on LSTM to study
landslides in the Three Gorges area of China. Chen et al. [41] used the LSTM model
based on sliding window data to build a model for predicting future precipitation with
precipitation data of up to 40 years in some regions of Turkey as the dependent variable
and analyzed the lag period of the precipitation time series by adjusting the model’s
hyperparameter. Radman, Akhoondzadeh, and Hosseiny [42] used the InSAR technique to
obtain surface deposition data near Lake Urmia in Iran and developed a predictive LSTM
model combining environmental parameters such as groundwater content to investigate
the driving factors affecting surface deposition. The LSTM model proved to be excellent for
the time series data. We used longer-period InSAR deformation data and combined them
with daily water storage level data to better utilize the data mining capability of LSTM.
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The overall workflow diagram of this study is shown in Figure 1, and the main work
can be divided into three parts:

(1) Obtain the spatial and temporal evolution characteristics of dam surface deformation
by constructing a time series model of the Xiaolangdi Dam using SBAS-InSAR.

(2) Analyze the deformation law of the InSAR model and propose an LSTM network
model using water storage level data to predict the surface deformation of the dam.

(3) Optimize the prediction model and propose a reservoir level scheduling scheme
and finally verify the feasibility of the scheme using the InSAR-LSTM deformation
prediction model.
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2. Materials
2.1. Study Area

The Xiaolangdi Dam was constructed in 2001 and is located 40 km north of Luoyang
City, Henan Province, China, on the main stream of the Yellow River, as shown in Figure 2.
The dam is a comprehensive large-scale water conservancy project that integrates siltation
reduction, flood control, water supply control, irrigation, and power generation. The dam
is a key project in the management and development of the Yellow River, controlling a total
basin area of 694,000 km2, accounting for 92.3% of the Yellow River.
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Figure 3 shows the structure of the dam. The inside of the dam is a clay-inclined core
wall that prevents water seepage, whereas the outside is composed of rock and clay. With a
storage capacity of 12.65 billion m3, the highest elevation of the dam is 283 m. The normal
storage level is 275 m, the heads above and below the dam are approximately 100 m, and
the highest historical water storage level was 273.35 m.
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2.2. Dataset

In this study, the radar image data used were from the Sentinel-1 satellite launched by
the Copernicus program of the European Space Agency, using the data type single look
complex (SLC) and the polarization method of vertical send and vertical receive (VV). This
satellite is equipped with a C-band (5.6 cm wavelength) SAR sensor, the satellite revisit
period is 12 days, and the acquisition interval for a few phases of images is 24 days. The
imaging mode was interferometric wide-width (IW), with each image having a width of
250 km and resolution of 5 × 20 m. A total of 174 images acquired in the Earth’s ascending
orbit were used in this study, and the experimental area and coverage of the images are
shown in Figure 4a.
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3. Methods
3.1. InSAR Deformation Model

The InSAR technique uses the phase difference between two satellite passes to ob-
tain a ground digital elevation model [43]. The differential InSAR (D-InSAR) technique
introduces an external DEM based on two images to obtain surface deformation informa-
tion [44]. The application of D-InSAR for regional deformation monitoring is often affected
by orbital parameter errors, topographic data errors, phase noise caused by interference
loss correlations, phase decoupling errors, and atmospheric delays. To solve this problem,
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Ferretti proposed the PS-InSAR technique, which eventually formed the technical theo-
retical system of MT-InSAR [45–50]. Its classical methodological theory, SBAS-InSAR, can
perform phase analysis on coherent targets to obtain time series deformations. Its powerful
ability to model time series deformations has been demonstrated in many studies [51–53].

In this study, we used SBAS-InSAR to process Sentinel-1 data and build a time series
model of dam deformation, as shown in Figure 5a. After acquiring the raw image data, all
the images were corrected using the precision orbit data provided by the ESA. The data
were assembled into differential interferometric image pairs according to a time–space
baseline of 90 days and 2% of the maximum spatial baseline of all images. The topographic
phases were removed using SRTM DEM data at a 90 m resolution which were acquired by
the US Space Shuttle. The data were filtered using Goldstein’s algorithm [54]. The phase
was deconvolved using a minimum-cost flow algorithm [52]. External control points were
introduced for trajectory refinement, and the mean displacement rate of the observation
points was obtained for terrain correction. The atmospheric phase was estimated and
removed in the next step, and the deformation was inverted using the singular value
decomposition method to generate a deformation model of the mean displacement rate
and time series and finally geocoded to transfer the deformation from the radar coordinate
system to the geographic coordinate system.
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Figure 5. (a) SBAS-InSAR data processing. (b) Projection of the on–site measurement data of the dam
deformation at typical point P.

3.2. Validation of InSAR Deformation Model Reliability

Synthetic-aperture radar acquires images through side-view imaging, which allows us
to obtain the deformation of the observation point in the line of sight (Los) of the satellite.
This result expresses the variation in the distance between the observation point and the
satellite platform.

The deformation of the observation point in the image is the 3D deformation of the
ground point projected onto the image coordinates [55]. Ground truth data can be used
to verify the reliability of the InSAR deformation model because the deformation of the
ground observation point is usually a joint effect of deformation in multiple directions.

[
DLos
Dazi

]
=

[
cosθ sinθsinα −sinθcosα

0 cosα sinα

]


Dz
Dx
Dy


 (1)
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In general, the coordinate system used in geodetic techniques is a geographic coordi-
nate system consisting of north, south, east, and west vertical directions. In this study, we
used the measured deformation data of the Xiaolangdi Dam at the on-site point P, and the
coordinate system of the data was the local coordinate system of the dam, including the
three-dimensional deformation along the dam axis, perpendicular to the dam axis, and in
the vertical direction.

We projected the three components of the dam axis, perpendicular to the dam axis,
and vertical direction to the satellite’s line of sight according to Equation (1), as shown
in Figure 5b. Dx represents the dam axis direction component, which is positive to the
left bank of the dam; Dy is perpendicular to the dam axis direction component, which
is positive downstream of the dam; and Dz represents the vertical direction component,
which is positive in the upward direction. The angle between the flight direction of the
satellite platform and the dam axis is γ. θ is the radar incidence angle, which is the angle
between the radar line of sight and the vertical direction. α is the magnitude of the angle of
the Dx positive direction clockwise to the satellite flight direction (analogous to the satellite
heading angle in the geographic coordinate system).

3.3. InSAR Deformation Prediction Model
3.3.1. LSTM Neural Network

Deep learning is revolutionizing artificial intelligence around the world [56,57]. An
artificial neural network (ANN) is the foundation of deep learning. The artificial neural
network model consists of fully connected layers, which can be classified into input, hidden,
and output layers. The activation function is at the core of a neural network. The input
data are controlled using the activation function. Sigmoid, tanh, and ReLU are the most
commonly used activation functions. In this model, the layers are connected by weights.
The neural network learns to determine the weights between layers through training. In
traditional neural networks, information is transmitted from the input to the output layer.
This process can be considered independent. This implies that the output depends only on
the current inputs. However, in many realistic tasks, the network output depends not only
on the current input but also on its past output.

A recurrent neural network (RNN) takes sequence data as input, iterates in the di-
rection of sequence evolution, and connects all nodes (recurrent units) in a chain fashion.
The hidden layer contains a state vector that stores the historical information of all past
elements and weights of the entire network. Compared with artificial neural networks,
recurrent neural networks can jointly determine the output of the current moment and are
more suitable for time series problems, as shown in Figure 6.
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Although recurrent neural networks are used to process time series data, in practice,
storing such information for a long time is difficult. The gradient explosion problem occurs
in long-term dependency problems. In response, LSTM networks incorporate a special
control unit (memory cell) into the recurrent neural network, as shown in Figure 7.
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The specific computational process is shown in Equations (2a)–(2f), where the memory
cell consists of a control gate, update gate, and forget gate. After the data x〈t〉 at time t,
the hidden layer state vector a〈t−1〉 and the cell state parameter c〈t−1〉 are inputted into the
LSTM cell, the candidate value c̃t for the cell state parameter update is first generated by
the tanh activation function, and then a〈t−1〉 and x〈t〉 are inputted into the update cell; the
update weight Γu, the forget weight Γ f , and the output weight Γo are calculated using the
Sigmoid activation function, and the c〈t〉 of the next LSTM cell is determined according to
Γu and Γ f , while the a〈t〉 of the next cell is determined using the output weight Γo. Thus,
the LSTM cells are calculated.

c̃t = tanh
(

Wc

[
a〈t−1〉, x〈t〉

]
+ bc

)
(2a)

Γu = σ(Wu

[
a〈t−1〉, x〈t〉

]
+ bu (2b)

Γ f = σ(W f

[
a〈t−1〉, x〈t〉

]
+ b f (2c)

Γo = σ(Wo

[
a〈t−1〉, x〈t〉

]
+ bo (2d)

c〈t〉 = Γu ∗ c̃t + Γ f ∗ c〈t−1〉 (2e)

a〈t〉 = c〈t〉 ∗ tanhc〈t〉 (2f)

3.3.2. Construction of the Prediction Model

The structure of the LSTM model used in this study is shown in Figure 8 and was
implemented using the TensorFlow and sklearn modules from the Python community.
Two LSTM layers were added to the model, each with a size of 50. To prevent model
overfitting, a dropout layer was used to discard random nodes in the network at a scale of
0.2. Finally, the final output was transformed into a one-dimensional vector Ỹi using a fully
connected layer.

The gradient descent optimization of the loss function was performed using the Adam
optimization algorithm, and the mean square error was used to evaluate the accuracy of
the model. To train the model, the original data were divided into training and prediction
sets, and the k-fold cross-validation method was used for the training set, where k was set
to 2. In the training process, the training set was divided into two parts: one part was taken
as the validation set, and the other part was taken as the training set. The GridSearchCV
function was used to search for the best hyperparameters of the model and obtain the
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best-weight model. Finally, the test data were fed into the trained model, and the prediction
results were output and validated against actual data.
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4. Results and Analysis
4.1. InSAR Deformation Results and Validation

In this study, a time series model of dam deformation was established using Sentinel-1
data from March 2017 to February 2023, and the cumulative deformation of the dam body
was obtained, as shown in Figure 9. In the early stages of deformation, the dam tended to
be close to the satellite, with a maximum deformation value of 5 mm. In the middle stage
of deformation, the center of the dam tended to be far from the satellite, whereas the left
and right sides and the bottom of the dam maintained a small tendency to be close to the
satellite. In the later stages of deformation, the dam as a whole tended to move away from
the satellite, and there were significant differences in the deformation values in different
areas, with the largest deformation value of −155 mm occurring in the middle of the top of
the dam near the upstream side.

Water 2023, 15, x FOR PEER REVIEW 9 of 19 
 

 

4. Results and Analysis 
4.1. InSAR deformation results and validation 

In this study, a time series model of dam deformation was established using Senti-
nel-1 data from March 2017 to February 2023, and the cumulative deformation of the 
dam body was obtained, as shown in Figure 9. In the early stages of deformation, the 
dam tended to be close to the satellite, with a maximum deformation value of 5 mm. In 
the middle stage of deformation, the center of the dam tended to be far from the satellite, 
whereas the left and right sides and the bottom of the dam maintained a small tendency 
to be close to the satellite. In the later stages of deformation, the dam as a whole tended 
to move away from the satellite, and there were significant differences in the defor-
mation values in different areas, with the largest deformation value of −155 mm occur-
ring in the middle of the top of the dam near the upstream side. 

 
Figure 9. The time−series variation in the cumulative deformation of Xiaolangdi Dam from March 
2017 to February 2023. 

We plotted the cumulative deformation data at different times for points on the up-
stream slope, top, and downstream slope of the dam on lines, as shown in Figure 10. All 
three lines tended to have smaller deformation values on both sides, and the central part 
near the left side had the largest settlement value. The deformation value of the exposed 
water part of the upstream slope of the dam was slightly larger than that of the top of 
the dam, and the accumulated deformation values of the downstream slope were signifi-
cantly different from those of the upstream slope and top of the dam. 

  

Figure 9. The time–series variation in the cumulative deformation of Xiaolangdi Dam from March
2017 to February 2023.

163



Water 2023, 15, 3384

We plotted the cumulative deformation data at different times for points on the
upstream slope, top, and downstream slope of the dam on lines, as shown in Figure 10. All
three lines tended to have smaller deformation values on both sides, and the central part
near the left side had the largest settlement value. The deformation value of the exposed
water part of the upstream slope of the dam was slightly larger than that of the top of the
dam, and the accumulated deformation values of the downstream slope were significantly
different from those of the upstream slope and top of the dam.
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The true deformation of the dam obtained via the geodetic method at the typical point
P is shown in Figure 11b. The dam field deformation monitoring dataset consists of a total
of data in three directions, Dx, Dy, and Dz, acquired from March 2017 to December 2020.
We projected the displacement data in three directions upward to the satellite’s line of sight
according to the formula and compared them with the data obtained via InSAR, as shown
in Figure 11c. The accuracy of the accumulated deformation value for P was 95%, and the
correlation coefficient R was 0.93. We found that the data distributions of P and the InSAR
deformation values were in good agreement.
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Figure 11. (a) Location of on-site data point P. (b,c) Measured data of ground point P; Dx, Dy, and 
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Figure 11. (a) Location of on-site data point P. (b,c) Measured data of ground point P; Dx, Dy, and Dz
are measured on the ground in each of the three directions, Los is the deformation data Los after the
projection of the measured data, and SAR-Los is data from the InSAR deformation model.

4.2. Analysis of Deformation and Water Storage Level Data

Based on the InSAR deformation model data SAR-Los analyzed above, the defor-
mation of the dam was generally decreasing, but there was still a local trend of periodic
changes. At the typical point P, the deformation curve had a localized upward trend around
June each year, as shown in Figure 12.
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Figure 12. The schematic diagram of the periodicity of deformation at point P.

The overall deformation of the dam during 2018–2019 was specifically taken and
plotted. As shown in Figure 13, only the center of the dam showed obvious periodic
deformation throughout the year, and the overall deformation trends of the center of the
dam and point P are the same. But there was basically no deformation on either side or
the lower part of the dam. At this point, our conclusion is that the deformation of the dam
body of the Xiaolangdi Dam is periodic.
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Figure 13. The time series variation of the cumulative deformation of Xiaolangdi Dam from 2018
to 2019.

Henan Province has a continental monsoon climate with a large amount of rain in
the summer and little rain in the winter. In response to changes in precipitation, reservoir
levels must also be adjusted. The water contact surface on the upstream side of the dam is
subjected to hydrostatic pressure from the reservoir water. As the reservoir level changes,
the hydrostatic pressure also changes. Considering that the Xiaolangdi Dam also exhibits a
cyclic deformation trend, we speculate that hydrostatic pressure is the main driving factor
for deformation.

We compared the InSAR deformation data of the dam at the typical point P with the
water level data, as shown in Figure 14. The Pearson correlation coefficient R between the
accumulated deformation values of the InSAR model and the storage level data was 0.81.
In order to express the relationship between the two more clearly, we selected the detailed
comparison data of the storage level and deformation between 2018 and 2019 for analysis.
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Figure 14. (a) Comparison of deformation data and water storage level data at point P; (b) Stage
diagram of deformation data and water storage level data in 2018–2019, (1)–(4) are the numbering of
the different stages based on the trend of the line.

Over one year, the deformation curve can be roughly divided into four stages accord-
ing to the slope of the curve, as shown in Figure 14b, and we performed a statistical analysis
on the water storage level and deformation information in different stages, as shown in
Table 1. By analyzing the relationship between the two, we concluded that around the field
measuring point, the deformation value decreases when the water storage level increases
and increases when the water storage level decreases around the typical point P.
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Table 1. The characteristics of the water storage level and dam deformation changes at different
times.

Stage 1 2 3 4

Date 1 January 2018–6
February 2018

6 February 2018–26
March 2018

26 March 2018–18 June
2018

18 June 2018–8 January
2019

Average daily level
Average daily level change

267.2 m
+0.01 m

267.2 m
−0.02 m

253.5 m
−0.35 m

246.5 m
+0.15 m

Cumulative deformation value −7 mm −0.7 mm +14.8 mm −26.6 mm
Daily deformation rate −0.19 mm −0.01 mm +0.18 mm −0.13 mm

4.3. Prediction of Deformation Based on Reservoir Water Level Data

The Xiaolangdi Dam is subject to periodic deformation owing to changes in the
upstream reservoir level. The storage level and deformation showed a strong correlation.

In this study, data from in situ measurements were only available at the typical point
P, and the monitoring period was short and irregular. In contrast, the InSAR deformation
model has a large amount of data and a higher accuracy, which was verified by the data at
the typical point P.

The time span of the InSAR data used in the time series deformation model was six
years, with a total of 173 periods of deformation data and a total of 2386 points for each
period of InSAR deformation data. After all data were interpolated, a total of 181 data
periods were obtained, with an interval of 12 d between two data periods. Each InSAR
deformation period corresponds to twelve days of daily reservoir level data.

The InSAR-LSTM deformation prediction model was built by taking the daily reservoir
level data as input and the InSAR model deformation data as output. The data were divided
into a training set and prediction set according to the time series, and the division results
are shown in Table 2. The hyperparameter steps were applied in the model to combine the
data, and after some debugging, the best step parameter was determined to be 2, which
means that every two sets of two periods of connected data were combined, and the final
ratio of the training set and the prediction set obtained was 164:13.

Table 2. Distribution of training and prediction sets in the total data and their time spans.

Number Start Date End Date

Training set 166/164 31 March 2017 25 September 2022
Prediction set 15/13 7 October 2022 28 February 2023

The LSTM model produced thirteen sets of predictions; Figure 15a shows the first
period of data for the predicted results, which is the cumulative deformation data for the
dam on 7 October 2022. Figure 15c shows the errors of the InSAR deformation data y
and the prediction data ypred, which are shown in Figure 15b. The error calculation index
is MAE, which is calculated as in Equation (4); the relative error is still concentrated at
10 percent or less, and only some of the points of the absolute error reach 24 mm.

R =
∑(x− x)(x = y− y)√

∑(x− x)2(y− y)2
(3)

MAE =
1
n

n

∑
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At the typical point P, the comparison between the InSAR deformation data and the
prediction data is shown in Figure 15d. There are thirteen periods of data for point P. The
final cumulative deformation values for the InSAR deformation data and the predicted
deformation data were −106.8 mm and −103 mm, respectively, and the relative accuracies
were 96.4%. We used MAE, MSE, RMSE, and R as indicators for evaluating the overall
prediction accuracy, which are calculated as shown in Equations (3)–(6). The calculation
results are shown in Table 3.
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distribution of the MAE in the prediction results. The results of the remaining twelve forecasts are
presented in the Supplementary document. (d) Comparison of deformation data and predicted
results at point P.

Table 3. Accuracy evaluation for four deformation prediction models.

MAE MSE RMSE R

ANN 3.67 19.51 4.41 −0.56
RNN 4.56 25.93 5.09 0.72
LSTM 1.49 3.95 1.98 0.80

LSTM-Tem 1.37 3.45 1.85 0.83

4.4. Multimodel Comparison and Parameter Optimization

In Figure 16a, the prediction data of the ANN, RNN, and LSTM models are compared
with the InSAR deformation data, and the accuracy evaluation indexes of each model are
shown in Table 3. It can be seen that the LSTM model had the highest prediction accuracy
and the ANN model had the lowest prediction accuracy, which proves that the LSTM
model is more suitable for deformation prediction in this study.

At present, researchers studying dam deformation commonly use the rheological
deformation model, which is a real physical model. This approach requires a large num-
ber of dam-related parameters and a high level of professionalism on the part of the
researcher [58].
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The LSTM model is a mathematical model that can be modeled from a numerical point
of view, but it does not take into account the real physical meaning of the numerical values
in the calculation. In addition to hydrostatic pressure, environmental parameters such as
temperature also have an effect on the deformation of the dam. We optimized the LSTM
deformation prediction model using daily average temperature data.

Figure 16b shows the predicted data using the model with the added parameters
compared to the data without the added parameters, and a comparison of the accuracy
of the two sets of predicted and deformed data is shown in Table 3. From the accuracy
index in the table, it can be seen that adding the temperature environment parameter to
the LSTM deformation prediction model can make the prediction more closely match the
deformation data.

5. Discussion

The main body of the dam sinks under the influence of its own gravity. In the case of a
rockfill dam, which is constructed of rocks and sediment, the water stored in the reservoir
percolates from upstream to downstream, creating a seepage field. The seepage field exerts
uplift pressure on the bottom of the dam, which is equivalent to reducing the gravity of the
dam. In addition, the reservoir impoundment exerts hydrostatic pressure on the contact
surface between the dam and the water, and the dam will slowly move downstream, with
a change in hydrostatic pressure and a change in the trend of movement.

The relationship between on-site measurement displacement and storage level in the
three directions of the typical point P is shown in Figure 17a. The amount of displacement
of point P to the left and right along the axis of the dam was relatively small and showed
slow growth. In the downstream direction of the dam, the magnitude of the displacement
was basically synchronized with the rise and fall of the storage level, but there was still a
delay of about 20 days. In the vertical direction of the dam, an accelerated subsidence of
point P occurred each year after the water level fell since the uplift pressure was reduced
and slowly continued as the water level began to rise to its highest point. Compared with
the vertical settlement, the displacement along the flow direction of the dam contributed
to a larger part in the projection process. Therefore, in the process of moving away from
the satellite platform, the dam shows a small rebound trend with a decrease in the storage
water level, but the overall trend is away from the satellite platform.

From the perspective of this study’s findings, if we want to reduce the deformation of
the dam, we should try to avoid storing the reservoir at the highest level for a long period
of time in order to mitigate the movement of the dam downstream, restore the water after
the reservoir storage level decreases, use the uplift pressure to mitigate the effect of gravity
on the settlement of the dam, and avoid the prolonged operation of the reservoir at a low
water level.
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The annual cumulative deformation value of point P in 2021 reached −25.9 mm,
which is the maximum value of annual deformation in the whole monitored cycle. We
made adjustments to the actual storage level in 2021 as described above, and Figure 15b
shows a comparison of the simulated storage with the real storage level data after the
optimization was performed. We used the optimized storage level experimental data as
input into the deformation prediction model, and the results are shown in Figure 17c.
At each of the 29 points shown in the figure, the average deformation weakening value
was 4.9 mm. The final cumulative annual deformation value was −16.4 mm, which is an
effective deformation reduction of about 37%.

The Xiaolangdi Water Conservancy Hub is a large-scale water conservancy facility,
and effective reservoir storage management can extend the service life of the dam, and any
changes to the reservoir level management program must be carefully considered before
they are put into practice. In general, reservoir managers should follow a multifactorial
approach to determine the reservoir’s storage level scheduling program, such as using
actual river flow and weather data. When the weather is bad and the reservoir needs to
be kept in operation at an extreme storage level, the model can also be used in advance to
predict possible pitfalls and determine countermeasures.

6. Conclusions

The Xiaolangdi Dam was constructed more than 20 years ago, and the main body of
the dam underwent deformation during 2017–2023, which was investigated in this study.
A time series deformation model of the main body of the Xiaolangdi Dam was established
using InSAR technology, which can accurately reflect the overall deformation information
of the dam after verification using the measured data. By combining the ground truth data,
the InSAR time series deformation model, and the LSTM deformation prediction model,
we can conclude the following:

1. The InSAR deformation model shows that there is a gradual weakening in the defor-
mation trend of the dam from the center to the sides and from the top to the bottom.
Throughout the 6-year deformation cycle, although there were differences in the
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deformation trends in different parts of the dam, each region was excessively smooth.
The 6-year cumulative deformation in the middle part of the dam near the upstream
reached -155 mm, which is within the safe range for large rockfill dams.

2. The Xiaolangdi Dam continuously deforms. The satellite platform can continuously
and periodically acquire InSAR image data, which helps monitor the overall deforma-
tion of the dam over a long period of time and allows more deformation information
to be obtained. Theoretically, the combination of InSAR technology and the LSTM
model can predict the effects of different storage level planning schemes on the dam
and can then adjust storage level planning schemes in a targeted manner, attenuating
dam deformation and preventing the risk of possible larger deformations.

3. Owing to the inherent limitations of the satellite platform, ground-based measurement
data are also required to verify the reliability of the deformation and prediction models.
In the future, the launch of satellites with shorter revisit periods and higher resolutions
could enable better monitoring of surface deformation. The specific mechanism by
which hydrostatic pressure affects the structural stability of dams has not been studied
in depth in this work, and this could be the subject of future research.
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