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Abstract: Assuming the significance of sustainability, it is considered necessary to ensure the conser-
vation of our natural resources, in addition to minimizing waste. To promote significant sustainable
effects, factors including production, transportation, energy usage, product control management,
etc., act as the chief supports of any modern supply chain model. The buyer performs the firsthand
inspection and returns any defective items received from the customer to the vendor in a process
that is known as first-level inspection. The vendor uses the policy of recovery product management
to obtain greater profit. A concluding inspection is accomplished at the vendor’s end in order to
distinguish the returned item as belonging to one of four specific categories, namely re-workable,
reusable, recyclable, and disposable, a process that is known as second-level inspection. Then, it is
observed that some defective items are suitable for a secondary market, while some are reusable,
and some can be disassembled to shape new derived products, and leftovers can be scrapped at
the disposal cost. This ensures that we can meet our target to promote a cleaner drive with a lower
percentage of carbon emissions, reducing the adverse effects of landfills. The activity of both players
in this model is presented briefly in the flowchart shown in the abstract. Thus, our aim of product
restoration is to promote best practices while maintaining economic value, with the ultimate goal of
removing the surrounding waste with minimum financial costs. In this regard, it is assumed that
the demand rate is precise in nature. The learning effect and fuzzy environment are also considered
in the present model. The proposed model studies the impacts of learning and carbon emissions
on an integrated green supply chain model for defective items in fuzzy environment and shortage
conditions. We optimized the integrated total fuzzy profit with respect to the order quantity and
shortages. We described the vendor’s strategy and buyer’s strategy through flowcharts for the
proposed integrated supply chain model, and here, in the flowchart, R-R-R stands for re-workable,
reusable, and recyclable. The demand rate was treated as a triangular fuzzy number. In this paper, a
numerical example, sensitivity analysis, limitations, future scope, and conclusion are presented for
the validation of the proposed model.

Keywords: optimization; learning effect; fuzzy environment; singed distance method; carbon
emissions; supply chain approach; sustainability

MSC: 90-XX

1. Introduction

In today’s ubiquitous environment, sustainability has become a necessity for the
creation of clean and green business. Considering the importance of sustainability, it is
necessary to ensure the conservation of our natural resources, in addition to reducing
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waste. In order to promote a significant sustainable impact, factors including production,
transportation, energy use, product control management, etc., serve as the main supports
of any modern integrated green supply chain model. By observing their roles in the
immediate landscape, we can connect them with sustainable policies for both vendors
and buyers. In this model, the vendor manages the production of the items and provides
the demanded lot to the buyer, according to the single setup and many more delivery
strategies. In order to eliminate defective items, a screening process is completed at the
vendor and buyer’s ends, respectively. These defective items are kept in seclusion, and
furthermore, permanent progress is made by asking the customer to return their used
products and gain a rebate on their successive purchases. The buyer receives the used
products from the customer, and the buyer returns these defective products to the vendor.
The vendor inspects the defective-quality products received from the buyer and separates
the defective-quality products on the basis of the quality of defective products. After that,
it is determined that some imperfect-quality items are suitable for another business sectors,
while some are reusable, some can be deconstructed to form new derivative products, and
leftovers can be scrapped at the disposal cost. The supply chain system works well when
the demand rate is deterministic and all the inventory parameters are controlled by the
vendor and the buyer. However, in general, this is not really true, because some inventory
parameters depend on the market demand. This ensures our goal of promoting a cleaner
drive with a lower percentage of carbon emissions and minimizing the adverse impacts of
landfills. The production of defective items in any industry is inescapable, regardless of the
implementation of widely recognized techniques. Within the process of manufacturing the
goods, there is still potential for a crash, which leads to the production of defective items
along with perfect-quality items.

It is impractical for any manufacturing unit to adopt the responsibility of manufactur-
ing items of a 100% perfect quality. There are many factors, including system machinery
failure, poor workmanship, etc., that increase the chance of producing imperfect-quality
items. Learning theory is beneficial where any work is in the repetition form. The learning
effect and fuzzy environment are also assumed in the present model. In our study, an EOQ
model with carbon emissions in a supply chain system, as well as shortages and product
recovery management, was derived along with a numerical analysis, where the demand
rate was treated as a triangular fuzzy number, and the holding and ordering costs were the
function of shipment. We defuzzified the joint total fuzzy profit through the singed dis-
tance method. The whole paper divided into sections and subsections as follows: Section 1
offers an introduction and literature review; Section 2 explains the notation assumptions;
Section 3 presents the basic definitions; Section 4 presents the description of the problems
and mathematical formulation; and Section 5 presents the methodology of the optimization
of the decision variable and contains subsections describing the solution method, a nu-
merical example, sensitivity analysis, and the managerial insight and observations, which
provide the results of the proposed model. Section 6 explains the conclusions of the model.
Section 7 discusses the limitations and future scope of the present model. Section 8 presents
the applications of the proposed study.

This segment provides an overview of a series of articles which are associated with the
present study. Subsequently, to establish the place of the present study within the existing
research knowledge, the available gaps are spot-lighted.

Salameh and Jaber [1] contributed their remarkable work in this aspect by considering
the impacts that these defective items have using the inventory model and introduced
the importance of screenings. Various prevailing studies have made fairly impractical
presumptions about supply chain management, stating that shortages are not permitted.
Indeed, shortages will occur with unanticipated demand or an irregular production ca-
pacity, and these occurrences will periodically influence the decisions of suppliers and
retailers. Wee et al. [2] extended the model of Salameh and Jaber [1], where shortfalls were
additionally applied in each cycle. The research of Salameh and Jaber [1] was extended by
Eroglu and Ozdemir [3] for the consideration of defective-quality items under the condition
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of shortages. An inventory model was developed by Roy et al. [4] and Sarkar and Iqbal [5]
for decaying items of a defective quality under inspection in a process where the defective
items were treated as a random variable. An EOQ mathematical model was improved by
Jaggi and Mittal [6] for decaying items of a defective quality under inspection in a process
where the screening rate is faster than the demand rate. They further concluded that all the
defective items are suitable for the secondary market and can be sold in that market at a
price lower than the original market price.

This inevitable presence of imperfect-quality items in the inventory was researched
further using possible realistic approaches. This research incorporated the proposal of
many models which considered planned backorders, along with effective screening tests at
the vendor’s end, faulty production techniques, etc. The model of Salameh and Jaber [1]
was resolved by Maddah and Jaber [7] for the expected whole worth per unit time using
the very renowned theorem of Ross [8].

Relative increments in the levels of carbon emissions mainly occur because of the
modes of transport through which they are produced. In order to maintain the standard
emission norms, the index of carbon emissions must be checked by the organization so as
to sustain their due quality standards and, thus, promote their brand value. Hua et al. [9]
presented an inventory model based on a carbon footprint. In this vein, Howitt et al. [10]
contributed to research through their work based on the CO2 emissions of the global
space freight. Guereca et al. [11] discussed cleaner research for the institutes of Mexico
based on a carbon footprint. Gurtu et al. [12] proposed an inventory model with the effect
of the fuel cost in regard to carbon emissions. Sarkar et al. [13] studied the impacts of
variable transportation and carbon emissions on the three-echelon supply chain model.
Tiwari et al. [14] presented a sustainable inventory model for deteriorating defective items
under carbon emissions. Sarkar et al. [15] explained the best approach by considering the
carbon emissions of the supply chain. Thomas and Mishra [16] considered a sustainable
supply chain model with waste reduction under carbon emissions for 3D printing and
carbon minimization in some plastic industries.

Supply chain model management is helpful in identifying the best methods to apply in
numerous industries. Each participant in a supply chain has the objective of fulfilling their
tasks and obtaining the best outcomes of their processes. Various theories have previously
been stated and proved. Sarkar et al. [17] proposed an SCM with inflation and a credit
period for perishable items. Jaber and Goyal [18] explained a three-level supply chain
model based on multiple players. Furthermore, Jaber et al. [19] extended a supply chain
model, through learning, into a three-level supply chain model. Bazan et al. [20] described
an SCM with greenhouse carbon emissions under energy utilization and applied a different
approach. Aljazzar et al. [21] proposed a two-level SCM with credit financing for the
purpose of strong coordination between the vendor and buyer.

In a recent scenario, Gautam and Khanna [22] derived an integrated SCM for the
seller, as well as the buyer, which was sustainable, since it assumed the production
of defective-quality items and carbon emissions. Later on, some researchers, such as
Gautam et al. [23], Mashud et al. [24], and Rout et al. [25], proposed works with
different strategies.

Alamari et al. [26] proposed an EOQ model with inflation and carbon emissions
under the effect of learning for deteriorating items. This study was continued using the
learning coefficient, as calculated in Khan et al. [27], reporting on the effects of learning
and screening errors on the economic production model under supply chain and stochastic
lead time demands.

Marchi et al. [28] presented an economic production model with the effects of the
energy efficiency, production, reliability, and quality.

Afshari et al. [29] reported the impacts of learning and forgetting on the feasibility
of adopting additive manufacturing in a supply chain model. Jaber and Peltokorpi [30]
showed the impact of learning on the order quantity problem in regard to the production
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and group size. Masanta and Giri [31] proposed a closed-loop SCM with the effect of
learning in an inspection process where the demand rate is a function of the price.

Jaggi et al. [32] presented an inventory model with a trade credit period and shortages
based on a fuzzy concept and inspection of deteriorating items. In order to improve on
previous research, Jaggi et al. [33] proposed a mathematical model with a fuzzy environ-
ment for deteriorating items under shortage, where the demand rate depends on time.
Jaggi et al. [34] improved an EOQ model with a fuzzy environment and trade credit under
the condition of shortages. Rout et al. [35] generalized an EOQ model with a fuzz-2 envi-
ronment under the policy of a refill system. Patro et al. [36] explained an EOQ model with
the influence of learning for imperfect-quality items in a fuzzy system. Bhavani et al. [37]
presented a green EOQ model with shortages in a fuzzy environment. Jayaswal et al. [38]
presented an EOQ with the effects of learning and a credit financing policy in a cloudy
fuzzy environment.

In this light, we discussed the research gaps and studied a great deal of literature,
described in the review provided above. Jayaswal et al.’s [38] study did not involve the
formation of an integrated joint profit model. Considering this fact, the present study was
framed by considering the need to develop an integrated model that used the approaches of
learning and the fuzzy effect. Jayaswal et al. [39], described a fuzzy based inventory model
with learning effect and credit policy under human learning and backorders. Wright [40]
gave learning theory which is beneficial for ordering policy. Jayaswal and Mittal [41]
presented an imperfect based inventory model with credit policy and inflationary condition
under fuzzy environment.

Mittal and Sarkar [42] proposed a supply chain model with a credit policy for imperfect-
quality items at a random energy price, where the global minimum cost was calculated
for the supply chain model. In this vein, Wang et al. [43] worked on a closed-loop sup-
ply chain and also described competitive dual collecting in regard to consumer behavior.
Using their model, Wang et al. [43] proposed a hybrid closed-loop supply chain model
with competition concerning the reform of imperfect items and different types of product
markets. Wang et al. [44] presented a supply chain model for Hybrid closed-loop with
competition in recycling and product markets. The process of inspection for the separation
of defective items through different approaches was briefly explained by the inventory
model of Khanna et al. [45]. We selected some recent literature published between 2000
and 2022, as shown in Table 1. The idea of this proposed model is that it can fulfill the
research gaps through a new approach. The present study discussed in this paper is shown
at the bottom of Table 1. Our paper studies the impacts of leaning and carbon emissions on
an integrated green supply chain model for defective items in a fuzzy environment. The
present paper considers case studies of the seller–buyer supply chain model and reviews
the available literature on joint inventory models, which were explained in order to manage
the data. Consequently, to validate the proposed supply chain model, we constructed a
dataset, following Hsu and Hsu [46] and Gautam et al. [23]. The introductory research in
the area of defective goods was carried out by Rosenblatt and Lee [47], whose findings
were later highlighted by many other scholars. Their research was based on the effects that
are observed during the optimal production cycle time due to the production of imperfect
products. Furthermore, Cardenas-Barron [48] made efforts to correct the possible mathe-
matical modeling errors identified in the model of Salameh and Jaber [1]. The proposed
study reviews the notion of managing the defective items using the best-known approaches,
which, in turn, can be applied in an attempt to create cleaner, greener, and more sustainable
surroundings. There are numerous industries that are working to make the best use of all
the defective items, as well as the used items. This not only in the interest of the retailers
but, instead, benefits the overall supply chain.

4



Mathematics 2023, 11, 301

Table 1. Selected contributions.

Authors Imperfect Items SCM Fuzzy Environment
Carbon

Emissions
Learning

Salameh and Jaber [1]
√

Tiwari et al. [14]
√ √

Marchi et al. [28]
√ √

Gautam et al. [23]
√ √

Masanta and Giri [31]
√ √ √

Jayaswal et al. [38]
√ √ √

Our paper
√ √ √ √ √

2. Assumptions and Notations Used in the Model

Following are the assumptions and notations.

2.1. Notations

The notations and decision variables are shown in Appendix A.

2.2. Assumptions

We made some assumptions in regard to our proposed mathematical model, which
are given below:

� It is considered that the buyer, customer, and vendor are involved in this supply chain
model, where one type of item is used.

� No lead time is considered in this proposed model.
� The demand rate for the produced items is imprecise in nature.
� The demand function is taken as the triangular fuzzy number.
� The upper and lower fuzzy deviations of the demand rate follow the effect of learning.
� The buyer’s holding cost is a decreasing function of the shipment, H1(n) = h0+

h1
nμ and

H2(n) = h0 +
h2
nμ , where h0, h1, and h1 are the fixed holding cost, n is the shipment,

and μ is the supporting parameter.
� The buyer’s ordering cost is a decreasing function of the shipment,

Ac(n) = Ao +
A1
nμ , where A0, A1 are the fixed ordering cost, n is the shipment,

and μ is the supp-orting parameter.
� The process of manufacturing is controlled at the vendor’s end, and the manufactured

items are delivered at the buyer’s end via multiple replacements without a first
screening test. This leads to the delivery of a certain number of defective items, which
follow a uniform distribution.

� This model assumes that the rate of demand is less than the rate of production.
� The buyer performs the first round of the inspection of the lot received from

the vendor.
� The buyer provides the customers with perfect-quality items only. This implies that

the rate of inspection is greater than the demand rate.
� To avert any incoming shortages while the inspection is taking place, the buyer limits

α to follow α <
(

1− D
w

)
.

� All defective items segregated after the first round of inspection at the buyer’s end
are maintained up to the time of their upcoming procurement, and the cost involved
in carrying these defective items is regarded as less than that involved in carrying
perfect items.

� The last consumers return their used goods at the buyer’s end in order to conduct a
permanent operation, and these returned items collectively follow a uniform distribu-
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tion. These items are returned by the vendor, along with the collection of imperfect-
quality items.

� The communal effort implemented by the vendor and the buyer is proposed to be a
modern policy and a cleaner and sustainable action, thus ensuring that no movement
of empty vehicles occurs. From this point of view, the lot containing the imperfect-
quality items and used goods, on behalf of the buyer, is sent back to the seller upon
the delivery of the successive lot by the same vehicle. This means that the buyer is
not responsible for paying any transportation costs and carbon emission costs when
returning imperfect-quality and used items.

� It is considered that the carbon emissions are produced due to the multiple shipments
and transportation. Here, we applied some carbon emission costs.

� The vendor applies the cost of the warranty for the imperfect-quality items returned
by the buyer.

� It is assumed that the vendor uses the strategy of product recovery management, and
its activities are in the flowchart abstract.

� Shortages are entirely backlogged at the buyer’s end.
� The proposed model is solved using the concept of an integrated approach combining

the cost components at the vendor’s and buyer’s ends.

2.3. Description of the Proposed Mathematical Model through a Flowchart

In this section, we describe all methodology and steps of the calculation of the
proposed integrated supply chain model for the joint total fuzzy profit, as given in
the Figures 1 and 2.

 
Figure 1. The activity of the vendor and buyer in a flowchart.

6
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Figure 2. Presentation of the proposed model through a flow chart.

3. Some Basic Definition

There are some basic definitions which are highly important for the enlargement of
the present study, and these are explained in Section 3.1.

3.1. Regarding the Fuzzy Concept

In this section, we provide some definitions that are very useful for the development
of this model, which are given below:

Definition 1. If R is a universal set and W is any set on R, then the fuzzy set of W on R is

represented by
∼
W, which, mathematically, can be written as

∼
W =

{(
r, λ ∼

W

(∼
r
))

: r ∈ R
}

, where
λ ∼

W
represents a membership function, such that λ ∼

W
: R → [0, 1] . The triplet (d1, d2, d3) is used as

the triangular fuzzy number, and this number should be associated with the condition d1 < d2 < d3.
The continuous membership function is defined below:

λ ∼
W

=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

d − d1

d2 − d1
d1 ≤ d ≤ d2

d3 − d
d3 − d2

d2 ≤ d ≤ d3

0 Otherwise

7
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Definition 2. If c is any number and 0 ∈ R, then the signed distance from c to 0 will be d(c, 0) = c,
and if c < 0, then the signed distance from c to 0 will be d(−c, 0) = −c. Let it be assumed that

Ω is the family of fuzzy sets
∼
C defined on R. Then, α − cut, C(α) = [CL(α), CU(α)] is ∀αε[0, 1],

and CL(α) and CU(α) will be the continuous function of α. Then, we can write the value of C(α),
which is shown below and shown in Figure 3.

C(α) =
⋃

0�α�1
[CL(α)α, CU(α)α]

Figure 3. Membership function of a triangular fuzzy number.

Definition 3. If
∼
C is the member of Ω, then the signed distance from

∼
C to

∼
01 is as given below:

(i)

d(c, 0) =
1
2

∫ 1

0
[CL(α) + CU(α)]dα

Definition 4 If
∼
C = (c1, c2, c3) is a triangular fuzzy number, then the α − cut of

∼
C is

C(α) = [CL(α), CU(α)], where CL(α) = c1 + (c2 − c1)α and CU(α) = c3 − (c3 − c2)α for

αε[0, 1]. The signed distance from
∼
C to

∼
01 is:

(ii)

d(
∼
C, 0) =

(c1 + 2c2 + c3)

2

3.2. Learning Curve

The learning (learning curve) demonstration is a statistical (geometric) development
that expresses the falling cost necessary to achieve any cyclic process (operation). This
concept expresses the notion that as the sum amount of the units produced doubles, the
price per unit declines by a certain regular percentage. Wright [40] suggested that the
learning concept (learning curve) is a power function formulation and is represented by
Ty = T1y−b, where Ty represents the time required to produce the yn th units, T1 represents
the time to produce the opening unit y, and b represents the learning slope and shown in
the Figure 4.

8
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Figure 4. Wright’s curve.

4. Mathematical Formulation

4.1. Theoretical Description

This section begins with the hypothetical explanation and meaning of the problem,
following an individual and joint view of both the vendor and buyer, respectively. The
problem is described in regard to the buyer, customer, and vendor for one kind of item
in the supply chain model. The goods involved are proposed to take a fuzzy demand
shape. The vendor is responsible for the production of the items, the sale operations are
managed at the vendor’s end, and the consumer then purchases the item, uses it, and
returns it to the buyer. The activities of the vendor and buyer are in the flowchart contained
in the abstract. The process starts when the buyer places the order, where the demand
rate is imprecise in nature, and the lower and upper deviation of the demand follow the
effect of learning, while the holding and ordering costs of the buyer are the function of the
shipment. The vendor manufactures the quantity ordered by the buyer and, subsequently,
delivers it to the purchaser through several deliveries. Carbon emissions are produced
during the construction process and transportation. The delivered lot essentially contains
defective items, which are identified and segregated by the buyer through a first round of
inspection. A sustainable and clean campaign is inaugurated by supply chain researchers
in an effort to achieve better product recovery. This drive encourages consumers to return
all used items to the buyer in order to receive a rebate on their sequential purchases. The
buyer is responsible for keeping the imperfect-quality products and used goods until the
last of the shipment cycle and returns them, collectively, to the seller upon the reception
of the successive lots. Defect formation can be found with various possibilities in the
lots containing defective and used goods. Thus, to promote the full recovery of these
products, another round of screening is encouraged on the vendor’s side. Based on the
circumstances of the goods, during the second round of inspection carried out by the
vendor, the products are classified as re-workable items, reusable items, recyclable items,
and disposable items, respectively. A re-workable product is of a good quality in nature
and is sold in the secondary market. Reusable goods are not sufficient for trading in another
business and are used to produce the derived goods. Those items that do not fit into one of
these categories are labeled as recyclable. In the final step, those items that amount to scrap
are classified as disposable.

4.2. Problem Description

Keeping in mind today’s demand pattern, which does not ensure a compromise
between the quality and quantity requirements for a particular type of item, the proposed
models based on a single buyer, customer, and vendor for a single item were considered.
It is initially assumed that the buyer considers a fuzzy annual rate of demand in D units.
The required supply is expressed as nY units, which have to be managed by the vendor,
and is delivered in n number of shipments, which are equal to Y units. In view of the
inevitable defects in the manufactured lot, the demanded shipments may contain some
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defective items, which will lead to the development of warranty costs on the part of the
vender. As soon as the shipment order is complete, an inspection of the lot is carried out
at the buyer’s end, and after the inspection, all the imperfect-quality items are isolated
from the perfect-quality items. Let us assume that the defective percentage of a lot is α.
By the end of the cycle, the total count of imperfect-quality items will be αnY. In addition,
the buyer encourages all their consumers to return the items that they used. Since the
quantity of items that are of a good quality items is β, the consumers will return βnY to
the buyer by the end of the cycle, through which the buyer obtains a cost termed as the
discount cost, which is nothing compared to the claim that was initially applied to the
consumers to ensure a constant drive by returning their used items. The returned items
tend to follow a uniform distribution. In the case of the returned defective items, the buyer
uses them as a substitute to obtain an incentive cost from the vendor in order to supply
the consumers with a rebate for each item that they returned after using it. The buyer
tends to keep all these defective items, along with the used items, for one complete cycle,
until the very end of the cycle and afterwards, when they return these isolated items to the
vendor via the same transport vehicle that arrives to deliver the next shipment. This allows
the vendor to include a warranty cost and an incentive cost on returned lots of items that
contain defective and used items. At the vendor’s end, a second inspection test of the lot of
products returned by the buyer is carried out. The flowchart in the abstract explains the
activities of the vendor and buyer in the supply chain. The fraction of re-worked items in
the lot is η1γnY. The fraction of reused items in the lot is η2γnY. The fraction of recycled
items in the lot is η3γnY. The fraction of disposable products in the lot is η4γnY. The
present mathematical model was divided into two parts in the form of the vendor’ strategy
and the buyer’s strategy, which are provided in the following sections.

4.2.1. Vendor’s Strategy Model

In this section, the vendor’s inventory incorporates two time phases. The former
is the production phase (production time), and the other is the non-production phase
(non-production time). The inventory at the vendor’s end is illustrated in Figure 5 and the
calculation of the holding cost has shown in the Figure 6.

Figure 5. Representation of production and non-production systems in a supply chain model T.
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Figure 6. Explanation of the vendor’s holding cost.

In reality, without any cost, no one can undertake production; therefore, some cost is
required for production. The vendor incorporates the remaining costs during the produc-
tion phase, defining such costs as the ordering cost (Ov), material and labor cost (MLv),
energy cost (ECv), fixed transportation cost (FTCv), variable transportation cost (VTCv),
holding cost (IHCv), warranty cost (WCv), incentive cost (ICv), re-working cost (RCv),
reusing cost (RECv), recycling cost (RECCv), screening cost (SCv), disposal cost (DCv),
carbon emission cost during the production phase (CEPCv), carbon emission cost during
transportation (CETCv), and carbon emission cost during the disposal process (CEDCv).

The total cost for vendor during the production process can be defined as shown
in Equation (1).

Now, the vendor’s total cost, (TCv), is:

TCv = Ov + MLv + ECv + FTCv + VTCv + IHCv + WCv + ICv + SCv + RCv + RECv + RECCv + DCv + CEPCv
+CETCv + CEDCv

(1)

Each cost component of the vendor’s total cost (TCv) is calculated, and these are given
by Equations (2)–(16):

Ordering cost(Ov) = Ov (2)

Material and labor costs(MLv) = cmηTp (3)

Fixed transportation cost(FTCv) = nFt (4)

variable transportation cost(VTCv) = nYVt(1 + γ) (5)

Holding cost(IHCv) = Hc

[
nY2

η
− n2Y2

η
+

n(n − 1)(1− α)Y2

2D

]
(6)

Warranty cost(WCv) = wcαnY (7)

Incentive cost(ICv) = icβnY (8)

Screening cost(SCv) = I2γnY (9)

Reworking cost (RCv) = rwη1γnY (10)

Reusing cost(RECv) = ruη2γnY (11)

Recycling cost(RECCv) = rcη3γnY (12)

Disposal cost(DCv) = dwη4γnY (13)

Carbon emissions during production phase(CEPCv)= cpnY (14)
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Carbon emissions during transpotation(CETCv)= nct1 + nYct1(1 + γ) (15)

Carbon emissions during disposal process(CEDCv) = ct2 η4γnY (16)

Energycost(ECv) = ceTp

(
ξ + Kη

nY

)
(17)

The value of each component cost obtained from Equations (2)–(17) is obtained by
adding in Equation (1). Then, we get:

TCv(n, Y) = Ov + cmηTp + nFt + nYVt(1 + γ) + Hc

[
nY2

η
− n2Y2

η
+

n(n − 1)(1− α)Y2

2D

]
+ wcαnY + icβnY

+I2γnY + rwη1γnY + ruη2γnY + rcη3γnY + dwη4γnY + cpnY+nct1 + nYct1(1 + γ)

+ct2 η4γnY + ceTp

(
ξ + Kη

nY

) (18)

The total revenue of the vender stems from different sources, such as the sale of
perfect-quality products (=c1(1− α)nY), the sale of re-worked items which are sold in the
secondary market at the reduced price (= p1η1γnY), the sale of reused items which are
sold in different markets (= p2η2γnY), and the sale of re-cycled items which are sold in
the primary market as raw materials (= p3η3γnY). The total revenue for the vender is the
sum of all the revenues from the different sources, which is given below:

TRv(n, Y) = c1(1− α)nY + p1η1γnY+p3η3γnY + p2η2γnY (19)

The total profit for the vender during the production process is:

TPv(n, Y) = TRv(n, Y)− TCv(n, Y) (20)

The values of TRv(n, Y) and TCv(n, Y), adding in Equation (20), are:

TPv(n, Y) = [c1(1− α)nY + p1η1γnY+p3η3γnY + p2η2γnY]

−
[

Ov + cmηTp + nFt + nYVt(1 + γ) + Hc

[
nY2

η
− n2Y2

η
+

n(n − 1)(1− α)Y2

2D

]
+ wcαnY

+icβnY + I2γnY + rwη1γnY + ruη2γnY + rcη3γnY + dwη4γnY + cpnY+nct1 + nYct1(1 + γ)

+ct2 η4γnY + ceTp

(
ξ + Kη

nY

)] (21)

The total profit for the vender during the production process in a fuzzy environment,
as obtained from Equation (21), is given below:

∼
TPv(n, Y) = [c1(1− α)nY + p1η1γnY+p3η3γnY + p2η2γnY]

−
[

O + cmηTp + nFt + nYVt(1 + γ) + Hc

[
nY2

η
− n2Y2

η
+

n(n − 1)(1− α)Y2

2
∼
D

]
+ wcαnY

+icβnY + I2γnY + rwη1γnY + ruη2γnY + rcη3γnY + dwη4γnY + cpnY+nct1 + nYct1(1 + γ)

+ct2 η4γnY + ceTp

(
ξ + Kη

nY

)]
(22)

The total profit obtained from the Equation (22) for the vender during the production
process can be defuzzified using the signed distance method. The signed distance between
∼

TPv(n, Y) and
∼
0 is defined below:
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d
( ∼

TPv(n, Y),
∼
0
)
= [c1(1− α)nY + p1η1γnY+p3η3γnY + p2η2γnY]

−

⎡⎢⎢⎣Ov + cmηTp + nFt + nYVt(1 + γ) + Hc

⎡⎢⎢⎣nY2

η
− n2Y2

η
+

n(n − 1)(1− α)Y2

2d
(∼

D
∼
0
)

,

⎤⎥⎥⎦+ wcαnY

+icβnY + I2γnY + rwη1γnY + ruη2γnY + rcη3γnY + dwη4γnY + cpnY+nct1 + nYct1 (1 + γ)

+ct2 η4γnY + ceTp

(
ξ + Kη

nY

)]
(23)

Here, we consider that d
( ∼

TPv(n, Y),
∼
0
)

= φ1(n, Y) and use the definition of the signed

distance concept:

φ1(n, Y) = [c1(1− α)nY + p1η1γnY+p3η3γnY + p2η2γnY]

−
[

Ov + cmηTp + nFt + nYVt(1 + γ) + Hc

[
nY2

η − n2Y2

η + 2n(n−1)(1−α)Y2

4D+Δh
D−Δl

D

]
+ wcαnY

+icβnY + I2γnY + rwη1γnY + ruη2γnY + rcη3γnY + dwη4γnY + cpnY+nct1 + nYct1(1 + γ)

+ct2 η4γnY + ceTp

(
ξ+Kη

nY

)] (24)

4.2.2. Buyer’s Strategy Model

In this section, we explain the activity of the buyer’s policies from the vendor’s point of
view. As per the agreement contracted between the vendor and buyer, the vendor supplies
Y units to the buyer, and the buyer receives Y units. The buyer’s inventory includes the
sales of defective and non-defective items and the screened Y units in the first round of
screening. The buyer supplies the good-quality items to the customers. Moreover, shortages
are allowed only under conditions of complete backlogging. A pictorial representation of
the inventory at the buyer’s end is shown in Figure 7 and for multiple orders have shown
in the Figure 8. The buyer presents another strategy, where the customers are permitted to
return their used products.

Figure 7. Buyer’s inventory representation for time T.
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Figure 8. Buyer’s inventory representation for nth cycle.

The screening time is given as:

T4 =
Y
ω

(25)

The inventory level is completed at T1, and its value is:

T1 =
Y(1− α)− B

D
(26)

The time taken to create shortages after their accumulation, when an inventory is
exhausted, is given as:

T2 =
B
D

(27)

The time taken to finish the backorders is given as:

T3 =
B

w(1− α)− D
(28)

The inventory level after removing the backorders, which is equal to Z = Y − B, can
be calculated, i.e., T3D + B after simplification (the calculation is shown in Appendix A),
and we can write:

T3D + B =
BD

w(1− α)− D
+ B =

Bw(1− α)

w(1− α)− D
(29)

Z =
Bw(1− α)

w(1− α)− D
(30)

The time taken for one shipment is given as T = T1 + T2

T =
Y(1− α)− B

D
+

B
D

(31)

The value of the cycle length using the expected approach based on the equation is:

E[T] =
Y(1− E[α])

D
(32)

The total cost for the buyer is the sum of all the costs, including the ordering cost (Ob),
screening cost (SCb), purchase cost (PC), inventory carrying cost for good-quality items
(IHCGb), inventory carrying cost for defective items (IHCDb), collection and handling cost
of used items (CHCb), shortage cost (S Cb), and the incentive cost (ICb).

Now, the total cost for the buyer can be written as given below:

TCb(n, B, Y) = PC + Ob + SCb + IHCGb + IHCDb + CHCb + SCb + ICb (33)

From Equation (33), each cost component can be calculated, and they are given below:

Ordering cost (Ob), Ac(n) = Ao +
A2

nμ (34)
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Screening cost (SCb)= I1nY (35)

Purchase cost (PC) = c1nY

Collection and handling cost of used items (CHCb ) = ccβnY/2 (36)

Incentive cost (ICb ) = ciβnY (37)

� inventory carrying cost for good quality items (IHCGb)

IHCGb = h1(n)
[

n
{

2Y(1− α)(w(1− α)− D)− wB(1− α)

2(w(1− α)− D)

}
(T3)

+
n
2

{
2Y(1− α)(w(1− α)− D)− wB(1− α)

2(w(1− α)− D)

}
(T1 − T3)

] (38)

where h1(n) = ho +
h1

nμ

� inventory carrying cost for defective items (IHCDb)

IHCDb = h2(n)
[

nαY2(1− α)

D

]
(39)

where h2(n) = ho +
h2
nμ

shortage cost (SRCb) = sc

⎡⎣nB2

2D
+

nB2

2w
(

1− α − D
w

)
⎤⎦ (40)

Calculating the values of all the costs from Equations (34)–(40), adding in Equation (33),
we get:

TCb(n, B, Y) = c1nY + Ao +
A2
nμ + I1nY + (h o

+
h1

nμ )

[
n
{

2Y(1− α)(w(1− α)− D)− wB(1− α)

2(w(1− α)− D)

}
(T3)

+
n
2

{
2Y(1− α)(w(1− α)− D)− wB(1− α)

2(w(1− α)− D)

}
(T1 − T3)

]
+(h o +

h2

nμ )

[
nαY2(1− α)

D

]

+ccβnY/2 + sc

⎡⎢⎢⎣nB2

2D
+

nB2

2w
(

1− α − D
w

)
⎤⎥⎥⎦+ ciβnY

(41)

The total revenue obtained by the buyer from different kinds of sources, such as the
sale of good-quality items to the customers (=c2(1− α)nY), the vendor returning all the
imperfect-quality items according to the type of warranty cost (= w cαnY), and the vendor
returning the used items (= i cβnY). The total revenue for the buyer is the sum of all the
revenues from the different sources, which is given below:

TRb(n, B, Y) = c2(1− α)nY + wcαnY+icβnY (42)

The total profit for the buyer is:

TPb(n, Y, B) = TRb(n, Y, B)− TCb(n, Y, B) (43)

Calculating the values of TRb(n, B, Y) and TCb(n, B, Y) from Equations (42) and (41),
replacing in Equation (43), we get:
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TPb(n, Y, B) = [c2(1− α)nY + wcαnY+icβnY]

−
[
c1nY + Ao +

A2
nμ + I1nY + (h o

+
h1

nμ )

[
n
{

2Y(1− α)(w(1− α)− D)− wB(1− α)

2(w(1− α)− D)

}
(T3)

+
n
2

{
2Y(1− α)(w(1− α)− D)− wB(1− α)

2(w(1− α)− D)

}
(T1 − T3)

]
+(h o +

h2

nμ )

[
nαY2(1− α)

D

]

+ccβnY/2 + sc

⎡⎣nB2

2D
+

nB2

2w
(

1− α − D
w

)
⎤⎦+ ciβnY

⎤⎦
(44)

As per our assumption, the demand rate is imprecise in nature. Thus, the total profit

for the buyer in a fuzzy environment, based on Equation (44), is represented by
∼

TPb(n, Y, B),
which is given below:

∼
TPb(n, Y, B) = [c2(1− α)nY + wcαnY+icβnY]

−
[
c1nY + Ao +

A2
nμ + I1nY + (h o

+ h1
nμ )

⎡⎣n

⎧⎨⎩ 2Y(1−α)

(
w(1−α)−

∼
D
)
−wB(1−α)

2
(

w(1−α)−
∼
D
)

⎫⎬⎭(T3)

+ n
2

⎧⎨⎩ 2Y(1−α)

(
w(1−α)−

∼
D
)
−wB(1−α)

2
(

w(1−α)−
∼
D
)

⎫⎬⎭(T1 − T3)

⎤⎦+(h o +
h2
nμ

)[
nαY2(1−α)

∼
D

]

+ccβnY/2 + sc

⎡⎣ nB2

2
∼
D

+ nB2

2w
(

1−α−
∼
D
w

)
⎤⎦+ ciβnY

⎤⎦

(45)

The total fuzzy profit based on Equation (45) for the buyer can be defuzzified us-

ing the signed distance method. The signed distance between
∼

TPb(n, Y, B) and
∼
0 is

defined below:

d
( ∼

TPb(n, Y, B),
∼
0
)

= [c2(1− α)nY + wcαnY+icβnY]

−
[
c1nY + Ao +

A2
nμ + I1nY + (h o

+ h1
nμ )

⎡⎣n

⎧⎨⎩ 2Y(1−α)

(
w(1−α)−d

(∼
D,

∼
0
))

−wB(1−α)

2
(

w(1−α)−d
(∼

D,
∼
0
)
)

⎫⎬⎭(T3)

+ n
2

⎧⎨⎩ 2Y(1−α)

(
w(1−α)−d

(∼
D,

∼
0
)
−wB(1−α)

2
(

w(1−α)−d
(∼

D,
∼
0
)
)

⎫⎬⎭(T1 − T3)

⎤⎦+ (h o +
h2
nμ )

⎡⎣ nαY2(1−α)

d
(∼

D,
∼
0)

⎤⎦

+ccβnY/2 + sc

⎡⎢⎢⎢⎣ nB2

2d
(∼

D,
∼
0)

+ nB2

2w

⎛⎝1−α−
d
(∼

D,
∼
0
)

w

⎞⎠

⎤⎥⎥⎥⎦+ ciβnY

⎤⎥⎥⎥⎦

(46)
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Here, we consider that d
( ∼

TPb(n, Y, B),
∼
0
)
= φ2(n, Y, B) and use the definition of the

signed distance concept in Equation (46). Then, we get:

φ2(n, Y, B) = [c2(1− α)nY + wcαnY+icβnY]

−
[
c1nY + Ao +

A2
nμ + I1nY + (h o

+ h1
nμ )

⎡⎣n

⎧⎨⎩ 2Y(1−α)

(
w(1−α)−− 4D+Δh

D−Δl
D

4

)
−wB(1−α)

2
(

w(1−α)− 4D+Δh
D−Δl

D

4

)
⎫⎬⎭(T3)

+ n
2

⎧⎨⎩ 2Y(1−α)

(
w(1−α)−− 4D+Δh

D−Δl
D

4

)
−wB(1−α)

2
(

w(1−α)− 4D+Δh
D−Δl

D

4

)
⎫⎬⎭(T1 − T3)

⎤⎦+ (h o

+ h2
nμ )
[

4nαY2(1−α)

4D+Δh
D−Δl

D

]
+ ccβnY/2 + sc

⎡⎣ 2nB2

4D+Δh
D−Δl

D + nB2

2w
(

1−α−− 4D+Δh
D−Δl

D

4w

)
⎤⎦

+ciβnY]

(47)

4.2.3. Integrated Model

In this case, we combined total the defuzzified profit of the vendor and buyer for the
supply chain based on Equations (24) and (47), and it is represented by φ3(n, Y, B). Then,
we get:

φ3(n, Y, B) = φ1(n, Y, B) + φ2(n, Y, B)

φ3(n, Y, B) = [c1(1− α)nY + p1η1γnY+p3η3γnY + p2η2γnY]

−
[

O + cmηTp + nFt + nYVt(1 + γ) + Hc

[
nY2

η − n2Y2

η + 2n(n−1)(1−α)Y2

4D+Δh
D−Δl

D

]
+ wcαnY

+icβnY + I2γnY + rwη1γnY + ruη2γnY + rcη3γnY + dwη4γnY + cpnY+nct1 + nYct1(1 + γ)

+ct2 η4γnY + ceTp

(
ξ+Kη

nY

)]
+ [c2(1− α)nY + wcαnY+icβnY]

−
[
c1nY + Ao +

A2
nμ + I1nY + (h o

+ h1
nμ )

⎡⎣n

⎧⎨⎩ 2Y(1−α)

(
w(1−α)−− 4D+Δh

D−Δl
D

4

)
−wB(1−α)

2
(

w(1−α)− 4D+Δh
D−Δl

D

4

)
⎫⎬⎭(T3)

+ n
2

⎧⎨⎩ 2Y(1−α)

(
w(1−α)−− 4D+Δh

D−Δl
D

4

)
−wB(1−α)

2
(

w(1−α)− 4D+Δh
D−Δl

D

4

)
⎫⎬⎭(T1 − T3)

⎤⎦+ (h o

+ h2
nμ )
[

4nαY2(1−α)

4D+Δh
D−Δl

D

]
+ ccβnY/2 + sc

⎡⎣ 2nB2

4D+Δh
D−Δl

D + nB2

2w
(

1−α−− 4D+Δh
D−Δl

D

4w

)
⎤⎦

+ciβnY]

(48)

Thus, the expected integrated defuzzified total fuzzy profit per unit time can be
determined, and it is denoted by φ4(n, Y, B). Then:

φ4(n, Y, B) =
1

E[T]
E[φ3(n, Y, B)] (49)

The values of E[φ3(n, Y, B)] and E[T] are shown in Appendix A.
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5. Integrated Model under Learning in a Fuzzy Environment

In this sequence, we move in the direction of learning shaped and governed by
Wright [40], which is mathematically shown below:

Sn = Sn1n−l (50)

where Sn is the time for the nth order, Sn1 is the initial time, and l is the learning factor.
Using Equation (50) and the defined learning for the upper and lower triangular fuzzy
numbers of the demand rate, we get:

∇D
h.i =

{ ∇D
h.1, i = 1

∇D
h.i
(
(i − 1) 365

n
)−l

, i > 1
(51)

∇D
l.i =

{ ∇D
l.1, i = 1

∇D
l.i
(
(i − 1) 365

n
)−l

, i > 1
(52)

Thus, the expected joint defuzzified total profit per unit time under learning in
a fuzzy environment can be calculated using (49), (51), and (52), and it is denoted by
φ5(n, Y, B). Then:

φ5(n, Y, B) =
1

EL[T]
EL[φ3(n, Y, B)] (53)

The values of EL[φ3(n, Y, B)] and EL[T] are shown in the Appendix A.

5.1. Solution Method

We used some useful lemma to identify the optimal values of the order quantity and
backorders under learning in a fuzzy environment, and the statement and proof of the
lemma are as given below:

Lemma 1. The joint defuzzified total profit φ5(n, Y, B) of the supply chain under learning in a
fuzzy environment is concave.

Proof. The conditions that must initially be satisfied for a specific value of the decision
variable n are given as:

∂φ5(n, Y, B)
∂Y

= 0 (54)

and
∂φ5(n, Y, B)

∂B
= 0 (55)

Using Equations (53) and (54), we obtain the maximum value of the lot size Y and
shortage units B, which, finally, are given below:

Y∗(n) =

√√√√√√√√√√√√√√√√√√√√√√√√

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(
Ao+

A2
nμ

)⎛⎜⎝D+

(
(i−1) 365

n
)−b

(∇D
h.i−∇

D
l.i)

4

⎞⎟⎠
n(1−E[α]) +

sc B2

⎛⎜⎝D+

(
(i−1) 365

n
)−b

(∇D
h.i−∇

D
l.i)

4

⎞⎟⎠
2(1−E[α])

⎡⎢⎢⎢⎢⎣
4

4D+
(
(i−1) 365

n
)−b

(∇D
h.i−∇

D
l.i)

+ 1

w

⎛⎜⎝1−E[α]−

(
(i−1) 365

n
)−b

(∇D
h.i−∇

D
l.i)

w

⎞⎟⎠

⎤⎥⎥⎥⎥⎦−
(

h0+
h1
nμ

)
B2
(

4D+
(
(i−1) 365

n
)−b

(∇D
h.i−∇

D
l.i)
)

w⎡⎢⎢⎣wE
[
(1−α)2

]
−

(
4D+

(
(i−1) 365

n
)−b

(∇D
h.i−∇

D
l.i)
)
(1−E[α])

4

⎤⎥⎥⎦
+

Ov

(
4D+

(
(i−1) 365

n
)−b

(∇D
h.i−∇

D
l.i)
)

4n(1−E[α]) +
Ft

(
4D+

(
(i−1) 365

n
)−b

(∇D
h.i−∇

D
l.i)
)

4(1−E[α]) +
ct1

(
4D+

(
(i−1) 365

n
)−b

(∇D
h.i−∇

D
l.i)
)

4(1−E[α])

Hc

(
4D+

(
(i−1) 365

n
)−b

(∇D
h.i−∇

D
l.i)
)

4(1−E[α])

⎡⎢⎢⎣ 1
η − n

2η +
2(n−1)(1−E[α])(

4D+
(
(i−1) 365

n
)−b

(∇D
h.i−∇

D
l.i)
)
⎤⎥⎥⎦+(h0+

h2
nλ

)
α+

(
h0+

h1
nλ

)
(1−E[α])

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(56)

and

18



Mathematics 2023, 11, 301

B∗(n) =

(
h0+

h1
nλ

)(
4D+

(
(i−1) 365

n
)−b

(∇D
h.i−∇

D
l.i)
)

4⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(
h0+

h1
nμ

)
w
(

4D+
(
(i−1) 365

n
)−b

(∇D
h.i−∇

D
l.i)
)

4

⎡⎢⎢⎣YwE
[
(1−α )2

]
−

(
4D+

(
(i−1) 365

n
)−b

(∇D
h.i−∇

D
l.i)
)

Y(1−E[α])

4

⎤⎥⎥⎦
−

(
h0+

h1
nμ

)
w2⎡⎢⎢⎢⎢⎢⎢⎣

w2E
[
(1− α)2

]
+

(
4D+

(
(i−1) 365

n
)−b

(∇D
h.i−∇

D
l.i)
)2

16

−
w
(

4D+
(
(i−1) 365

n
)−b

(∇D
h.i−∇

D
l.i)
)

2 (1− E[α])

⎤⎥⎥⎥⎥⎥⎥⎦

+
sc

(
4D+

(
(i−1) 365

n
)−b

(∇D
h.i−∇

D
l.i)
)

8Y(1−E[α])

⎡⎢⎢⎢⎢⎢⎣ 4(
4D+

(
(i−1) 365

n
)−b

(∇D
h.i−∇

D
l.i)
) + 1⎛⎜⎜⎝1−E[α]−−

(
4D+

(
(i−1) 365

n
)−b

(∇D
h.i−∇

D
l.i)
)

4w

⎞⎟⎟⎠

⎤⎥⎥⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(57)

Additionally, we calculated the maximum value of the shipment, given in relation to
and satisfying [24]:

φ5(n + 1, Y∗(n + 1), B∗(n + 1)) ≥ φ5(n∗, Y∗(n), B∗(n))
≤ φ5(n − 1, Y∗(n − 1), B∗(n − 1))

(58)

The conditions required to satisfy the optimal condition are as follows: ∂2[φ5(n,Y,B)]
∂Y2 < 0,

∂2[φ5(n,Y,B)]
∂B2 < 0 and

(
∂2[φ5(n,Y,B)]

∂Y2

)(
∂2[φ5(n,Y,B)]

∂B2

)
−
(

∂2[φ5(n,Y,B)]
∂Q∂S

)(
∂2[φ5(n,Y,B)]

∂S∂Q

)
> 0. The concavity of

the joint defuzzified total profit φ5(n, Y, B) of the supply chain under learning in a fuzzy environment
was proved with help of the concavity figures given in Figures 9–11. �

Figure 9. Concavity of the joint fuzzy profit with respect to the order quantity and shortages under
learning in a fuzzy environment.
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Figure 10. Concavity of the joint fuzzy profit with respect to the number of shipments and shortages
under learning in a fuzzy environment.

Figure 11. Concavity of the joint fuzzy profit with respect to the number of shipments and order
quantity under learning in a fuzzy environment.

5.2. Numerical Analysis
For the justification of the proposed model, we took all the input inventory parameters from the

works of some authors, including Salameh and Jaber [1], Gautam and Khanna [22], Jayaswal et al. [39], and
Jayaswal et al. [41]. To execute the numerical analysis, all the inventory parameters, with notations, were
collected in Table 2. The lot size (Y), shortages (B), and number of shipments are the decision variables,
and the carbon dioxide and carbon footprint were not considered as dependent variables. Instead, they
were discussed only to enable a better understanding of the carbon emission sources.
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Continuing with our consideration that the defective proportion of the lot and the defective
proportion of the used products follow the uniform probability distribution (UPD), the values are
given below:

f (α) =
{

1/0.08, 0 ≤ α ≤ 0.08
0, Otherwise

and f (β) =

{
1/0.08, 0 ≤ β ≤ 0.08

0, Otherwise

Now, all the input parameters can be inserted into Equations (55) and (56), and using Equation (57),
first of all, we obtain the optimal lot size and shortage units using the Mathematica software ver-
sion(Mathematica 9.0, Wolfram Research, Champaign, IL, USA). The optimized values of the lot size,
number of shipments, and shortages are:

Y∗ = 775 units, n∗ = 7 and B∗ = 240 units

Substituting the values of Y∗, n∗, and B∗ in Equation (52), the total expected integrated fuzzy
profit per unit time under the learning effect, φ5(n∗, Y∗, B∗), for the given model is USD 300,652. In
the absence of learning, the optimized values of the lot size, number of shipments, and shortages
are Y∗ = 887 units, n∗ = 10 andB∗ = 300 units. Substituting the values of Y∗, n∗, and B∗ in Equation
(51), the total expected integrated fuzzy profit per unit time, φ4(n∗, Y∗, B∗), for the given model is
USD 300,300. This model yields more profit (USD 300,652) under learning in a fuzzy environment
through the product recovery process as compared with the traditional studies without product
recovery (USD 131,920.88) and the study of Gautam and Khanna [22] with product recovery (USD
296,712.55). The learning in fuzzy environment concept gave positive effect in this this model has
shown in Table 3.

Table 3. Representation of the comparison with and without the learning effect.

Models
Order Size
Y (Units)

Backorder
B (Units)

Joint Profit ($)

Present study without learning in a
fuzzy environment
(φ4(n

∗, Y∗, B∗))
887 300 300,300

Present study with learning in a fuzzy
environment
(φ5(n

∗, Y∗, B∗))
755 240 300,652

5.3. Sensitivity Analysis
In this section, we discuss the effects of the inventory parameters (shown in Table 2) on the

decision variable and total integrated profit according to the change in their values. The sensitivity
analysis of the present model is presented in Tables 4–22, and managerial insight is also discussed.

Table 4. Impact of the learning rate on the decision variable and joint total fuzzy profit.

Learning
Rate (b)

Number of
Shipments

n

Lot Size
Y (Units)

Shortages B (Units)
Joint Fuzzy Profit (USD)

(φ5(n*,Y*,B*))

0.100 7 776 247 301,706
0.120 7 766 247 301,277
0.140 7 759 247 300,887
0.150 7 756 247 300,705
0.151 7 756 240 300,687
0.152 7 756 240 300,670
0.153 7 755 240 300,652
0.154 7 755 240 300,652
0.155 7 755 240 300,612
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Table 5. Impacts of upper and lower fuzzy deviations on the decision variables and joint fuzzy profit.

Upper
Deviation

ΔD
h

Lower
Deviation

ΔD
l

Number of
Shipments

n

Lot Size
Y (Units)

Shortages B
(Units)

Joint Fuzzy
Profit (USD)
(φ5(n*,Y*,B*))

6000 3000 6 805 257 299,138
10,000 5000 7 755 240 300,652
20,000 10,000 9 652 203 304,527
30,000 15,000 11 547 172 308,537

Table 6. Impacts of the defective percentage parameters on the decision variables and joint fuzzy
profit.

Defective Percentage E[α]
Number of
Shipments

n

Lot Size
Y (Units)

Shortages B
(Units)

Joint Fuzzy
Profit (USD)

(φ5(n*,Y*,B*))

0.01 6 740 260 300,780
0.02 7 745 252 300,698
0.03 7 749 245 300,674
0.04 7 755 240 300,652

Table 7. Impacts of the product recovery parameters on the decision variables and joint fuzzy profit.

Product
Recovery

E[β]

Number of
Shipments

n

Lot Size
Y (Units)

Shortages B
(Units)

Joint Fuzzy
Profit (USD)

(φ5(n*,Y*,B*))

0.1 7 783 154 300,528
0.2 7 777 234 300,590
0.3 7 767 237 300,640
0.4 7 755 240 300,652

Table 8. Impact of the vendor’s holding cost on the decision variable and joint fuzzy profit.

Holding Cost
Hc

Number of
Shipments

n

Lot Size
Y (Units)

Shortages B
(Units)

Joint Fuzzy
Profit (USD)

(φ5(n*,Y*,B*))

1 17 678 214 307,858
2 11 703 223 304,792
3 8 728 231 302,522
4 7 755 240 300,652

Table 9. Impact of the buyer’s holding cost of the good items on the decision variable and joint
fuzzy profit.

h1 n Y (Units) B (Units)
Joint Fuzzy
Profit (USD)

2 5 1020 214 301,539
3 6 919 223 301,267
4 6 849 230 301,036
5 6 796 236 300,838
6 7 755 240 300,652

24



Mathematics 2023, 11, 301

Table 10. Impact of the buyer’s holding cost of the defective items on the decision variables and joint
fuzzy profit.

Buyer’s
Holding Cost of

Defec-tive
Items h2

Number of
Shipments

n

Lot Size
Y (Units)

Shortages B
(Units)

Joint Fuzzy
Profit (USD)

(φ5(n*,Y*,B*))

0.50 7 765 743 300,696
1.0 7 762 242 300,681
2.56 7 758 241 300,666
2.00 7 755 240 300,652

Table 11. Impact of the shortage cost on the decision variables and joint fuzzy profit.

Shortage Cost Sc

Number of
Shipments

n

Lot Size
Y (Units)

Shortages B
(Units)

Joint Fuzzy
Profit (USD)

(φ5(n*,Y*,B*))

2 5 976 537 301,433
4 6 876 407 301,130
8 7 784 278 300,779

10 7 755 240 300,652

Transportation Parameters

Table 12. Impact of the fixed cost of transportation on the decision variables and joint fuzzy profit.

Fixed Cost of Transportation Ft

Number of
Shipments

n

Lot Size
Y (Units)

Shortages B
(Units)

Joint Fuzzy
Profit (USD)

(φ5(n*,Y*,B*))

5 14 383 121 302,519
10 11 496 157 301,919
15 9 593 188 301,435
20 8 678 215 301,020
25 7 755 240 300,652

Table 13. Impact of the variable cost of transportation on the decision variables and joint fuzzy profit.

Variable Cost of Transportation Vt

Number of
Shipments

n

Lot Size
Y (Units)

Shortages
B (Units)

Joint Fuzzy
Profit (USD)

(φ5(n*,Y*,B*))

0.1 7 743 236 331,024
0.2 7 746 237 323,431
0.3 7 749 238 315,838
0.4 7 752 239 308,245
0.5 7 755 240 300,652

Table 14. Impact of the fixed cost on the joint fuzzy profit.

Fixed Cost Cp

Number of
Shipments

n

Lot Size
Y (Units)

Shortages B
(Units)

Joint Fuzzy
Profit (USD)

(φ5(n*,Y*,B*))

1 7 731 232 363,927
2 7 739 235 342,835
3 7 747 237 321,743
4 7 755 240 300,652
5 7 765 243 279,561
6 7 722 245 258,471
7 7 781 248 237,382
8 6 789 251 216,293
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Carbon Emission

Table 15. Impact of the fixed carbon emission cost due to production on the decision variables and
joint fuzzy profit.

Fixed Carbon Emissions Cost Ct1

Number of
Shipments

n

Lot Size
Y (Units)

Shortages
B (Units)

Joint Fuzzy
Profit (USD)

(φ5(n*,Y*,B*))

1 7 745 237 327,016
1.5 7 755 240 300,652
2 7 766 243 274,289
3 6 787 250 221,565

Table 16. Impact of the fixed carbon emission cost due to disposal on the decision variables and joint
fuzzy profit.

Ct1 n Y (Units) B (Units)
Joint Fuzzy
Profit (USD)

1 7 745 237 327,016
1.5 7 755 240 300,652
2 7 766 243 274,289
3 6 787 250 221,565

Table 17. Impact of the vendor’s ordering cost on the decision variables and joint fuzzy profit.

Vendor’s
Ordering Cost

Ov

Number of
Shipments

n

Lot Size Y
(Units)

Shortages B
(Units)

Joint Fuzzy
Profit (USD)

(φ5(n*,Y*,B*))

500 7 755 240 300,652
600 7 755 240 299,730
700 7 755 240 298,860
800 8 754 239 298,036
900 9 754 239 297,249

Table 18. Impact of the buyer’s ordering cost on the decision variables and joint fuzzy profit.

Buyer’s
Ordering Cost

Ob

Number of
Shipments

n

Lot Size Y
(Units)

Shortages B
(Units)

Joint Fuzzy
Profit (USD)

(φ5(n*,Y*,B*))

200 7 755 240 300,652
300 7 751 239 299,766
400 8 748 237 298,930
500 8 745 236 297,324
600 9 742 235 297,383

Table 19. Impact of the material and labor cost on the decision variables and joint fuzzy profit.

Material and
Labor Cost

Cm

Number of
Shipments

n

Lot size Y
(Units)

Shortages B
(Units)

Joint Fuzzy
Profit (USD)

(φ5(n*,Y*,B*))

30 7 755 240 300,652
31 7 776 247 247,927
32 6 798 254 195,204
33 6 820 261 142,485
34 6 842 268 89,769
35 6 865 275 39,057
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Table 20. Impact of the energy cost on the decision variables and joint fuzzy profit.

Energy Cost
Ce

Number of
Shipments

n

Lot Size Y
(Units)

Shortages B
(Units)

Joint Fuzzy
Profit (USD)

(φ5(n*,Y*,B*))

0.15 7 755 240 300,652
0.16 7 775 241 300,645
0.17 7 758 241 300,638
0.18 7 760 241 300,631
0.19 7 761 241 300,624

Table 21. Impact of the buyer’s screening cost on the decision variables and joint fuzzy profit.

Buyer’s
Screening Cost

I1

Number of
Shipments

n

Lot Size Y
(Units)

Shortages B
(Units)

Joint Fuzzy
Profit (USD)

(φ5(n*,Y*,B*))

0.4 7 755 240 300,652
0.5 7 757 241 297,324
0.6 7 759 241 290,107
0.7 7 762 242 284,834
0.8 7 764 243 279,541

Table 22. Impact of the vendor’s screening cost on the decision variables and joint fuzzy profit.

Vendor’s
Screening Cost

I2

Number of
Shipments

n

Lot Size Y
(Units)

Shortages B
(Units)

Joint Fuzzy
Profit (USD)

(φ5(n*,Y*,B*))

0.6 7 755 240 300,652
0.7 7 756 240 298,332
0.8 7 757 241 296,012
0.9 7 758 241 293,692
1.0 7 769 241 291,372

5.4. Managerial Insights and Observations
From Table 4, we can see that if the rate of learning increases from 0.10 to 0.153, then the order

quantity and total fuzzy profit decrease. After that, if the learning rate increases, then the order
quantity, backorder quantity, and total fuzzy profit remain constant, while the number of shipments is
constant. This means that the order quantity and backorder quantity are in a maturity situation. From
Table 5, we can see that when the values of the upper deviation and lower deviation of the demand
rate increase, the demand rate increases, and then the number of shipments and profit increase, but
the order quantity and shortage unit decrease, while the other input parameters are constant.

The impacts of the defective percentage and defective percentage of the recovery product on
the joint total fuzzy profit and decision variables can be described as follows. From Table 6, if the
value of the percentage of defective items increases, then the number of shipments and order quantity
increase, while the shortage units and total fuzzy profit decrease. In this regard, from the Table 7, we
can observe that the defective percentage of the recovery product increases, and then the shortages
and total fuzzy profit increase, while the order quantity decreases, but the number of shipments
remains constant. From Table 8, we can see that if the vendor’s holding cost increases, then the
number of shipments and total fuzzy profit decrease, but the order quantity and shortages increase.

From Table 9, we can see that if the buyer’s holding cost of the good-quality items increases,
then the number of shipments and total fuzzy profit decrease, but the order quantity and
shortages increase.
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Table 10, we can see that if the buyer’s holding cost of the imperfect-quality items increases, the
lot size and total fuzzy profit decrease, but the shortage units increase, while the that numbers of
shipment is approximately constant. It can easily be seen from Table 11 that when the value of the
shortage cost increases, then the lot size, shortage units, and total fuzzy profit decrease, while the
number of shipments becomes constant.

It can be analyzed from Table 12 and Figure 12 that when the value of the fixed transportation
cost increases, then the lot size and shortage units increase, but the total fuzzy profit and number of
shipments decrease. Similarly, as shown in Table 13 and Figure 13, when the value of the variable
transportation cost increases, then the lot size and shortage units increase, but the total fuzzy profit
increases, while the number of shipments remains unchanged. Table 14, show that when the value of
the fixed unit cost increases, the lot size and shortages increase as the number of shipments and total
fuzzy profit decrease. From the Figure 14, carbon emission cost due to production increases then total
fuzzy profit increases. From the Figure 15, if lower and upper deviation increase then total fuzzy
profit increases. Table 15, we can see that if the fixed carbon emission cost due production increases,
then the number of shipment remains almost constant, and the total fuzzy profit decreases as the
order lot size and shortages increase. From Table 16 and Figure 16, we can see that when the value
of the carbon emission cost due to disposal increases, the order quantity increases, and total fuzzy
profit decreases, while the number of shipments and shortages remain constant. We analyzed the
effects of the vendor’s ordering cost on the decision variables and total fuzzy profit, and it can easily
be seen from the Table 17 that if the value of the vendor’s ordering cost increases, then the number
of shipments increases following some values of the vendor’s ordering, whereas the shortages, lot
size, and total fuzzy profit decrease. Observing the buyer’s ordering cost, from Table 18, we can see
that if the buyer’s ordering cost increases, then the lot size, shortages, and total fuzzy profit decrease,
and the number of shipments increases. From Table 19 and Figure 17, it is clear that if the value
of the material and labor cost increases, then the order lot size and shortage units increase, but the
joint total profit decreases, and the number of shipments remains constant. It can be observed from
Table 20 and Figure 18 that when the value of the energy cost increases, then the total joint fuzzy
profit increases, but the order quantity and shortages increase, whereas the number of shipments
remains constant.

Figure 12. The carbon emission cost due to transportation vs. the total fuzzy profit.
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Figure 13. The carbon emission cost due to disposal vs. the total fuzzy profit.

Figure 14. The carbon emission cost due to production vs total fuzzy profit.

 
Figure 15. Upper and lower deviation of the demand rate vs. the joint total fuzzy profit.

29



Mathematics 2023, 11, 301

Figure 16. Material and labor cost vs. the joint total fuzzy profit.

Figure 17. Energy cost of production vs. the joint total fuzzy profit.

Figure 18. Buyer’s screening cost vs. the joint total fuzzy profit.
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It can easily be seen from Table 21 and Figure 18 that if the value of the buyer’s screening cost
increases, then the total joint fuzzy profit increases, but the order quantity and shortages increase,
whereas the number of shipments remains constant. It can easily be seen from Table 22 and Figure 19
that if the value of the buyer’s screening cost increases, then the total joint fuzzy profit increases, but
the order quantity and shortages increase, whereas the number of shipments remains constant.

Figure 19. Vendor’s screening cost vs. the joint total fuzzy profit.

6. Conclusions

In this paper, we analyzed the impacts of learning and carbon emissions on an integrated green
supply chain model for defective items in a fuzzy environment. Our study revealed that several
sustainable supply chain models would be helpful for both the vendor and buyer in cases where
the demand rate takes the form of a triangular fuzzy number. From the managerial insight and
observations, we obtained more information about the inventory parameters in regard to the decision
variables and joint total fuzzy profit. This information is more beneficial for the supply chain players.
The learning concept is a good decision maker in this model. The buyer wants a lesser order quantity
obtained more frequently and to earn more profit. The vendor will yield less production when
the demand rate is imprecise in nature, as this may pose a greater risk for sale. A joint model was
formulated by taking the vendor’s and buyer’s strategies into account, respectively. The aim was
to optimize the joint total profit φ5(n, Y, B) with the effect of learning (b) in a fuzzy environment
for the integrated supply chain value by simultaneously optimizing the number of shipments (n),
order quantity value (Y), and the shortage amount (B). The formulated model was compared with
and without learning in a fuzzy environment and is discussed in the Table 3. The results revealed
demand deviation, i.e., when the values of the upper deviation and lower deviation of the demand
rate and the demand rate increase, then the number of shipments and profit increase, but the order
quantity and shortage units decrease, while the other input parameters are constant. The numerical
analysis and sensitivity analysis were used to explore the model’s viability. The present study could
be developed with the credit financing policy and applied in the textile industry and in many science
laboratories, and this study is also useful for omnichannel.

7. Limitations and Future Research Strategy of Our Present Study

The limitations and future scope of the present paper are explained in this section. The present
proposed model is optimized for a supply chain where the rate of demand follows the triangular
fuzzy number. Furthermore, the researcher can investigate new policies to manage waste and
recovered items. The limitation of the model is that the inspection is performed at the vendor’s and
buyer’s ends in the supply chain. The inspection process may have errors or human error, and the
carbon emission cost, as well as the carbon emissions, can be considered as a decision variable in the
newest version.
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8. Applications of Our Present Study

The demand rate of any product is not fixed. In general, it varies according to time. By
considering this concept, we studied the supply chain model in cases when the demand rate is
imprecise in nature. The present work could be beneficial in the field of omnichannel environments
where the demand rate is imprecise in nature and the buyer uses the strategy of product recovery
management, performing the firsthand inspection of the lot received from the vendor. Online
shopping on Amazon, Flipkart, and Snapdeal, etc., are good examples of the present research
work’s applications.
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Appendix A

Appendix A.1 Notations and Assumptions

Notations

Y(Decision variable): Lot size (units)
B(Decision variable): Shortage inventory level of quantity (units)
Z = Y − B: Positive inventory level (units)
n(Decisionvariable): Number of shipments
D: Demand rate (units/year)
∼
D: Fuzzy demand rate (units/year)
ΔD

h : Upper deviation of fuzzy demand rate (units/year)
ΔD

l : Lower deviation of fuzzy demand rate (units/year)
b: Learning slope
μ: Learning supporting parameter
α: The proportion of defective products in a lot which are considered to obey a uniform

distribution, with the probability density function (Pdf) f (α).
β: The proportion of defective items among the used products which are considered to obey a

uniform distribution, with the probability density function (Pdf) f (β).
γ = α + β: The total proportion of defective items (in a lot and among the used products)
w: The rate of screening in the buyer model (units per year)
n: Number of shipments (integer)
Ac(n): Buyer’s ordering cost, which is a decreasing function of the shipment (n)
H1(n): Buyer’s holding cost for the good items, which is a decreasing function of the shipment

(n) (USD/unit/year)
H2(n): Buyer’s holding cost for the defective items, which is a decreasing function of the

shipment (n) (USD/unit/year)
I1: The cost associated with the inspection of the unit on the buyer side (dollar per unit)
sc: The cost associated with the shortage of units for the buyer (dollar per unit per year)
Cc: The cost associated with the collection of units for the buyer (dollar per unit per year)
Ci: The cost associated with the incentive unit for the buyer (dollar per unit per year)
T1: The time associated with the inventory level, where the stock will be zero (years)
T2: The time associated with the time required for the build-up shortage time (years)
T3: The time associated with the finished shortage time (years)
T4: The time associated with the inspection on the buyer side (in years)
η: The rate of production (unit per year)

32



Mathematics 2023, 11, 301

Ov: The ordering cost associated with the shipment in the production phase for the vendor
(dollar per shipment)

cm : The cost associated with the material sources and labor work in the production phase for
the vendor (dollar per cycle)

ce : The cost associated with the energy in the production phase for the vendor (dollar cycle)
ξ: Standard power system when production starts (kW)
k: Variable component of the power consumption during production (kWh per unit)
cp : The fixed cost associated with the carbon emissions in the production phase (dollar per

disposed unit)
ct1 : The fixed cost associated with the carbon emissions from the transportation (dollar per

transport)
ct2 : The fixed cost associated with the carbon emissions from disposed unit (dollar per

disposed unit)
cv: The variable cost associated with the carbon emission unit (dollar per unit) on the

vendor side
Vt: The variable cost associated with the transportation (dollar per unit)
Ft: The fixed cost associated with the transportation (dollar per transport)
Hc: The cost associated with the holding unit of the vendor (dollar per unit per year)
I2: The cost associated with the screened defective items on the vendor side (dollar per imperfect

quality item)
rw: The cost associated with the re-worked units (dollar per unit)
ru: The cost associated with the reused units (dollar per unit)
rc: The cost associated with the recycled unit (dollar per unit)
dw: The cost associated with the disposed units (dollar per unit)
wc: The cost associated with the warranty unit (dollar per imperfect unit)
ic : The cost associated with the incentive unit (dollar per used unit)
p1: The price associated with the re-worked product in the supply chain (dollar per re-

worked unit)
p2: The price associated with the derived items in the supply chain (dollar per derived unit)
p3: The price associated with the recycled products in the supply chain (dollar per re-

cycled unit)
Tp: Total production runtime (years)
Tn: Whole time period for the non-production phase (in years)
T: Time for one shipment (in years)
Tc: Whole cycle time (in years)
η1: Fraction of re-workable goods with pdf f (η1)
η2: Fraction of reusable goods with pdf f (η2)
η3: Fraction of recyclable goods with pdf f (η3)
η4: Fraction of waste with the probability density function f (η4), where η1 + η2 + η3 + η4= 1,

and pdf stands for the probability density function
E[.]: Expected value operator
TCv(n, Y): Total vendor cost (in USD)
TRv(n, Y): Total vendor revenue (in USD)
TPv(n, Y): Total vendor revenue (in USD)
TCb(n, Y): Total vendor cost (in USD)
TRb(n, Y): Total vendor revenue (in USD)
TPb(n, Y): Total vendor revenue (in USD)
φ1(n, Y, B): Total defuzzified vendor profit (in USD)
φ2(n, Y, B): Total defuzzified buyer profit (in USD)
φ3(n, Y, B): Total joint defuzzified profit (in USD) for the supply chain
φ4(n, Y, B): Total joint defuzzified profit (in USD) per unit time for the supply chain system
φ5(n, Y, B): Joint total fuzzy profit per unit time for the supply chain system under learning in a

fuzzy environment (in USD)
φ5(n∗Y∗, B∗): Optimized joint total fuzzy profit per unit time for the supply chain system under

learning in a fuzzy environment (in USD)
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Appendix A.2 Mathematical Formulation

Due to the large size of the equation, we assumed some new notations in Section 4.2.3 and
Equation (48), which is given below:

E[φ3(n, Y, B)] = [c1(1− E[α])nY + p1η1E[γ]nY+p3η3E[γ]nY + p2η2E[γ]nY]

−
[

Ov + cmηTp + nFt + nYVt(1 + γ) + Hc

[
nY2

η − n2Y2

η +
2n(n−1)(1−E[α])Y2

4D+Δh
D−Δl

D

]
+wcE[α]nY + icE[β]nY + I2E[γ]nY + rwη1E[γ]nY + ruη2E[γ]nY + rcη3E[γ]nY
+dwη4E[γ]nY + cpnY+nct1 + nYct1 (1 + E[γ]) + ct2 η4E[γ]nY + ceTp

(
ξ+Kη

nY

)]
+[c2(1− E[α])nY + wcE[α]nY+icE[β]nY]
−
[
c1nY + Ao +

A2
nμ + I1nY + (h o

+ h1
nμ )

⎡⎣n

⎧⎨⎩ 2Y(1−E[α])
(

w(1−E[α])−− 4D+Δh
D−Δl

D

4

)
−wB(1−E[α])

2
(

w(1−E[α])− 4D+Δh
D−Δl

D

4

)
⎫⎬⎭(T3)

+ n
2

⎧⎨⎩ 2Y(1−E[α])
(

w(1−E[α])−− 4D+Δh
D−Δl

D

4

)
−wB(1−E[α])

2
(

w(1−E[α])− 4D+Δh
D−Δl

D

4

)
⎫⎬⎭(T1 − T3)

⎤⎦+ (h o

+ h2
nμ

)[
4nαY2(1−E[α])
4D+Δh

D−Δl
D

]
+ ccE[β]nY/2

+sc

⎡⎣ 2nB2

4D+Δh
D−Δl

D + nB2

2w
(

1−E[α]−− 4D+Δh
D−Δl

D

4w

)
⎤⎦+ ciE[β]nY

and E[T] = 4nY(1−E[α])
4D+Δh

D−Δl
D .

and in Equation (52):

EL[φ3(n, Y, B)] = [c1(1− E[α])nY + p1η1E[γ]nY+p3η3E[γ]nY + p2η2E[γ]nY]

−
[

O + cmηTp + nFt + nYVt(1 + γ) + Hc

[
nY2

η − n2Y2

η +
2n(n−1)(1−E[α])Y2

4D+((i−1) 365
n )

−b
(∇D

h.i−∇D
l.i)

]
+wcE[α]nY + icE[β]nY + I2E[γ]nY + rwη1E[γ]nY + ruη2E[γ]nY + rcη3E[γ]nY
+dwη4E[γ]nY + cpnY+nct1 + nYct1 (1 + E[γ]) + ct2 η4E[γ]nY + ceTp

(
ξ+Kη

nY

)]
+[c2(1− E[α])nY + wcE[α]nY+icE[β]nY]
−
[
c1nY + Ao +

A2
nμ + I1nY + (h o

+ h1
nμ )

⎡⎢⎢⎣n

⎧⎪⎪⎨⎪⎪⎩
2Y(1−E[α])

(
w(1−E[α])−−

4D+((i−1) 365
n )

−b
(∇D

h.i−∇
D
l.i)

4

)
−wB(1−E[α])

2

(
w(1−E[α])−

4D+((i−1) 365
n )

−b
(∇D

h.i−∇
D
l.i)

4

)
⎫⎪⎪⎬⎪⎪⎭(T3)

+ n
2

⎧⎪⎪⎨⎪⎪⎩
2Y(1−E[α])

(
w(1−E[α])−−

4D+((i−1) 365
n )

−b
(∇D

h.i−∇
D
l.i)

4

)
−wB(1−E[α])

2

(
w(1−E[α])−

4D+((i−1) 365
n )

−b
(∇D

h.i−∇
D
l.i)

4

)
⎫⎪⎪⎬⎪⎪⎭(T1 − T3)

⎤⎥⎥⎦
+(h o +

h2
nμ

)[
4nαY2(1−E[α])

4D+((i−1) 365
n )

−b
(∇D

h.i−∇D
l.i)

]
+ ccE[β]nY/2

+sc

⎡⎢⎢⎣ 2nB2

4D+((i−1) 365
n )

−b
(∇D

h.i−∇D
l.i)

+ nB2

2w

(
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4D+((i−1) 365
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−b
(∇D
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D
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4w
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+ciE[β]nY]

(A1)

and EL[T] =
nY(1−E[α])

D+
((i−1) 365

n )
−b
(∇D

h.i−∇
D
l.i)

4

.
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Abstract: This research contributes an intelligent cloud-based software defect prediction system
using data and decision-level machine learning fusion techniques. The proposed system detects the
defective modules using a two-step prediction method. In the first step, the prediction is performed
using three supervised machine learning techniques, including naïve Bayes, artificial neural network,
and decision tree. These classification techniques are iteratively tuned until the maximum accuracy
is achieved. In the second step, the final prediction is performed by fusing the accuracy of the
used classifiers with a fuzzy logic-based system. The proposed fuzzy logic technique integrates the
predictive accuracy of the used classifiers using eight if–then fuzzy rules in order to achieve a higher
performance. In the study, to implement the proposed fusion-based defect prediction system, five
datasets were fused, which were collected from the NASA repository, including CM1, MW1, PC1,
PC3, and PC4. It was observed that the proposed intelligent system achieved a 91.05% accuracy for
the fused dataset and outperformed other defect prediction techniques, including base classifiers and
state-of-the-art ensemble techniques.
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1. Introduction

An exponent increase in the use of smart computing devices has been observed
during the last few years due to the availability of high-speed internet at a lower cost.
Nowadays, the demand for automated online software systems is increasing steadily,
which has triggered the need for high-quality software applications at a lower cost. Testing
is the most expensive activity in the software development process, and plays a key role in
the quality assurance process by ensuring that the end product is bug-free [1].

Many researchers in the software engineering community are working to reduce
the cost of development by focusing on cost-effective testing methods [2–4]. The cost of
testing can be significantly decreased if the faulty software modules (defective modules)
are identified before the testing stage [1–3,5]. A software module is considered as defective
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when it produces an error during execution, or does not produce the expected results.
Software defect prediction (SDP) is the process used to predict the defective modules;
it can also reduce the testing cost. Such a prediction can guide the quality assurance
team, enabling them to focus on defective modules during testing, through which the
costs of testing for non-defective modules can be saved [1,5–7]. In the modern era, all of
our day-to-day activities directly or indirectly include interactions with software systems,
especially since the recent COVID-19 pandemic, which has urged us to transition towards
online systems. Therefore, an effective and efficient software defect prediction system must
form part of the modern software development paradigm in order to achieve high-quality
software with lower costs [8–10].

This research contributes an intelligent cloud-based system for SDP using data and
decision-level machine learning fusion techniques. The proposed fusion-based software de-
fect prediction system (FSDPS) incorporates two fusion modules: data fusion and decision-
level machine learning fusion. The data fusion approach renders the proposed SDP system
more robust, enabling it to work effectively with the diverse datasets extracted from mul-
tiple sources. This approach can also resolve the issue of training with limited datasets.
Decision-level machine learning fusion involves the integration of the predictive accuracy
of three supervised classifiers, including naïve Bayes (NB), artificial neural network (ANN),
and decision tree (DT). In this approach, the prediction is performed using classification
techniques, in which iterative tuning is performed until the maximum accuracy is achieved
for each classifier. The accuracies of the optimized classification models are then integrated
using a fuzzy logic-based technique for an effective performance. The proposed fuzzy
logic-based fusion method integrates the predictions of the used classifiers by following
eight if–then fuzzy rules. These rules were developed by analyzing the prediction accuracy
of each of the used classification techniques. The cloud storage was used to store the fused
prediction model so that it could be accessed from anywhere. This strategy can also be an
aid in the paradigm of global software development. Five datasets from NASA’s cleaned
repository, including CM1, MW1, PC1, PC3, and PC4, were integrated using instance-level
fusion in order to implement the proposed system. The results show that the proposed
FSDPS outperforms the other techniques.

This paper is organized as follows. Section 2 provides a summary of the related
studies. Section 3 proposes the FSDPS and discusses its stages and activities in detail.
Section 4 discusses the detailed results of the proposed system after its implementation.
Section 5 presents the threats to the validity of the proposed research. Section 5 concludes
this research, together with the directions for future work.

2. Literature Review

Researchers have been working to reduce development costs by identifying faulty soft-
ware modules before the testing stage. Some related studies are discussed in this section.

The authors of [11] proposed a cloud-based framework for SDP. They explored four
training functions in ANN using the back-propagation method. The training functions
compared in the proposed framework included Bayesian regularization (BR), scaled conju-
gate gradient (SCG), Broyden–Fletcher–Goldfarb–Shanno Quasi-Newton (BFGS-QN), and
Levenberg–Marquardt (LM). A fuzzy logic-based engine was also incorporated to identify
which training function performed better. The cleaned versions of NASA datasets were
used by the researchers for the experiments, along with multiple performance measures.
It was observed that the BR training function showed a higher accuracy as compared to
the other functions. The authors of [12] proposed a framework for SDP using feature
selection and ensemble machine learning approaches. In ensemble learning, multiple
variants of each classification technique are generated by optimizing various parameters,
and then the best-performing variants are integrated using ensemble learning methods.
However, the used feature selection method reduced the feature set by removing the met-
rics not participating in the classification process. NASA defect datasets were used to
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implement the proposed method, which showed a higher performance as compared to the
other techniques.

The authors of [13] presented a classification framework for the detection of faulty
software modules before the testing stage. The proposed framework used an ensemble
machine learning-based classification model with the multi-layer perceptron (MLP) tech-
nique. The proposed framework detected the faulty modules in three dimensions. This was
achieved firstly by tuning the MLP until the maximum accuracy was achieved; secondly,
the tuned version of MLP was ensembled with the bagging technique; and thirdly, the
tuned version was ensembled with the boosting technique. To implement the proposed
ensemble machine learning-based classification framework, cleaned versions of NASA’s
software defect datasets were used. The performance was compared with the techniques
known from published research. In [14], the researchers presented a novel feature selec-
tion technique for SDP. They proposed a feature selection and ANN-based framework to
limit the testing costs in SDLC. They used MLP architecture along with the oversampling
method in order to tackle the class imbalance in the dataset. To implement the proposed
framework, clean versions of software defect datasets from the NASA repository were used,
and various statistical measures are used to assess the performance. The results indicated
that the proposed technique performed well, especially with the oversampling technique.

In [15], the researchers used a hybrid classification technique for SDP, which integrated
NB and ANN. For its implementation, five benchmark datasets were used, including KC1,
KC2, CM1, JM1, and PC1. The proposed technique performed better when compared with
NB, ANN, and SVM. The authors of [16] predicted software defects using various super-
vised machine learning techniques. The SMOTE technique was used by the researchers to
resample the data, along with the feature selection method for dimensionality reduction.
The experiments were performed on two widely used datasets from the PROMISE reposi-
tory, KC1 and JM1. The results indicated that RF performed better when compared to the
other techniques, with the best results obtained when boosting with RF and bagging with
DT. The authors of [17] proposed an enhanced wrapper-based feature selection method
which selects the features in an iterative manner. For the prediction, DT and NB were
used after tuning, and the experiments were performed on 25 benchmark datasets for
a detailed analysis. The performance of the proposed feature selection technique with
the used classification methods was analyzed using three measures, including the AUC,
F-measure, and accuracy. The results showed that the proposed enhanced feature selection
technique performed better than the other methods and selected fewer features with a
lower computational cost and high accuracy. In [18], the effectiveness of an ensemble of
classification techniques for SDP was discussed. The researchers developed two approaches
in this research. In the first approach, the classification is performed using base classifiers,
including the k-nearest neighbor (k-NN), DT, and NB. In the second approach, ensembles
are used for classification, and the results indicated that the ensemble approach has a
tendency to perform better than the other classification techniques. The experiments were
performed on 21 benchmark software defect datasets. The authors of [19] presented an
integrated technique to predict the workload for the next time slot in distributed clouds.
The proposed technique integrates the Savitzky–Golay filter and wavelet decomposition
with stochastic configuration networks. The researchers highlighted the significance of the
effective and efficient services that could be provided by distributed cloud data centers
after the implementation of the proposed technique.

Table 1 presents a summary of the literature review. It shows the proposed techniques
for SDP, the dataset repository from which the datasets were extracted for experiments,
the names of the used datasets, and the performance measures which were used for the
performance analysis.
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Table 1. Literature review summary.

Reference Prediction Technique Dataset Repository Datasets Performance Measures

Daoud, M. S. et al. [11]

Four training functions of back
propagation in ANN are used
for SDP. The fuzzy logic-based
technique is proposed for the
identification of the best
training function.

NASA
CM1, JM1, KC1, KC3,
MC1, MC2, MW1, PC1,
PC2, PC3, PC4, PC5

Specificity, precision,
F-measure, recall,
accuracy, AUC, R2, MSE

Ali, U. et al. [12]

A metric selection-based
variant ensemble machine
learning technique is proposed
for software defect prediction.

NASA JM1, KC1, PC4, PC5 F-measure, accuracy, MCC

Iqbal, A. et al. [13]
An ANN-based ensemble
machine learning technique is
proposed for SDP.

NASA KC1, MW1, PC4, PC5 F-measure, accuracy, AUC,
MCC

Iqbal, A. et al. [14]
A multi-filter feature selection
technique is used with ANN
for SDP.

NASA
CM1, JM1, KC1, KC3,
MC1, MC2, MW1, PC1,
PC2, PC3, PC4, PC5

F-measure, accuracy, AUC,
MCC

Arasteh, B. et al. [15]
Proposes a technique by
integrating the ANN and NB
for SDP.

PROMISE KC1, KC2, CM1, PC1, JM1 Accuracy, precision

Alsaeedi, A. et al. [16]

Various supervised
classification techniques are
used for SDP, including: SVM,
DT, RF, bagging, and boosting.
The SMOTE technique is used
to tackle the issue of
class imbalance.

NASA
PC1, PC2, PC3, PC4, PC5,
MC1, MC2, JM1, MW1,
KC3

Accuracy, precision,
F-measure, recall,
true-positive rate,
false-positive rate,
probability of false alarm,
specificity, G-measure

Balogun, A. O. et al. [17]

An enhanced wrapper feature
selection technique is
proposed. The proposed
technique is used with NB
and DT.

PROMISE, NASA,
AEEEM,

EQ, JDT, ML
PDE, CM1, KC1, KC2,
KC3, MW1,
PC1, PC3,
PC4, PC5,
ANT, CAMEL,
JEDIT, REDKITOR,
TOMCAT,
VELOCITY, XALAN,
SAFE,
ZXING,
APACHE,
ECLIPSE,
SWT

Accuracy, F-measure,
AUC

Alsawalqah, H. et al. [18] Heterogeneous ensemble
classifiers are used for SDP. PROMISE, NASA,

PC1, PC2, PC3, PC4, PC5,
KC1, KC3, CM1, JM1,
MC1, MW1, ant-1.7,
camel-1.6, ivy-2.0, jedit-4.3,
log4j-1.2, ucene-2.4,
poi-3.0, tomcat-6,
xalan-2.6, xerces-1.4

Precision, recall, G-mean

To the body of previously published work, this research contributes an intelligent sys-
tem using data and decision-level machine learning fusion to detect defect-prone software
modules. The major contributions of the proposed framework are discussed below.

1. Data fusion was performed, through which the developed classification models were
rendered more robust and effective for the test datasets. The proposed system was
implemented on a fused dataset, which was generated by fusing publicly available
defect prediction datasets from NASA’s repository, including CM1, MW1, PC1, PC3,
and PC4.

2. The prediction accuracy of three classifiers, including NB, ANN, and DT, was inte-
grated using a fuzzy logic technique. The proposed framework used eight fuzzy
logic-based if–then rules for decision-level accuracy fusion.
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3. The performance of the proposed fusion-based intelligent system was compared with
that of other state-of-the-art defect prediction systems, and it was observed that the
proposed system outperformed the other methods and achieved a 91.05% accuracy
for the fused dataset.

3. Materials and Methods

This research presents an intelligent SDP system using data and decision-level ma-
chine learning fusion techniques (Figure 1). There are two layers in the proposed FSDPS:
training and testing. Each of the two layers further consist of several stages. The training
layer consists of four stages: (1) data fusion, (2) data pre-processing, (3) classification,
and (4) fusion. This layer involves the development of the fused classification model by
integrating the predictive accuracy of NB, ANN, and DT. The test layer consists of one
stage, namely prediction. This stage involves the classification of the software module as
defective or non-defective using the fused model.

 

Figure 1. Proposed FSDPS architecture.

The workflow of the training layer begins with the data fusion stage, in which multiple
datasets are extracted from the software metric dataset repository (SWMDR) and then
integrated using instance-level fusion. The prediction model, which is trained on the fused
dataset, is more effective and robust for the test datasets, which are extracted from multiple
resources. In this research, five widely used, cleaned datasets from the NASA repository
were selected for fusion [20], including CM1, MW1, PC1, PC3, and PC4. These datasets are
available in [21]. There are, in total, 38 attributes and 3579 instances in the fused dataset.
Each of the selected datasets represents one software component, and the instances in the
dataset reflect the software modules. The features represent the software quality metrics,
which are recorded during development. One of these 38 features of the fused dataset is
the output class to be predicted, whereas the other 37 features are used for the prediction.
The output class reflects whether the particular module is defective or not.

The second stage of the training layer is data pre-processing, which is responsible
for performing three activities using the fused dataset: (1) cleaning, (2) normalization,
and (3) splitting. The data cleaning activity in the pre-processing stage handles the missing
values using the mean imputation method. Missing and null values in the attributes can
lead to false results. Normalization is the second activity in the pre-processing stage; it
involves the transformation of the attribute values into a specific range. The activities of
cleaning and normalization both simplify the data so as to help the classification framework
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to work effectively and efficiently. The data splitting activity involves the division of the
data into training and test sets, following the class split rule, with a 70:30 ratio.

Classification is the third stage of the training layer; it is responsible for classifying the
modules as defective or non-defective. The input of this stage is the pre-processed training
and testing datasets. For the classification, three techniques in the family of supervised
machine learning are used, including NB, ANN, and DT. During the development of the
classification model, the classifiers are optimized repeatedly until the maximum accuracy
is achieved. First, the classification model is developed using the training data, and the
optimization is iteratively performed until the maximum accuracy is achieved using the
test data. For NB, the default parameters are used, as their optimization decreases the
performance. In ANN, two hidden layers are used, with 33 neurons in each layer. In
this study, the initial learning rate value was 0.01; however, the highest performance was
achieved with 0.02. DT was tuned by setting the value of the confidence factor to 0.3.
However, during this stage, the default values of the remaining parameters are used. This
stage finishes by producing the classification models of NB, ANN, and DT.

The decision-level fusion is the fourth and last stage of the training layer. This stage
involves the fusion of the optimized classification models using fuzzy logic. Fuzzy rules
are used to generate the membership functions through which the prediction accuracies
of the used machine learning techniques are integrated for a higher performance. These
rules are developed by carefully analyzing the performance of each of the classifiers used
on the test dataset. The fusion stage finishes by storing the fused model in the cloud for
later use. As compared to server storage, cloud storage was selected here due to its many
advantages, including its easy access and security. Moreover, the strategy of cloud storage
can be helpful in global software development, as in this case, the fused model will be
easily accessible from anywhere.

The if–then conditions based on fuzzy rules are listed below:
IF (naïve Bayes predicts defective, neural network predicts defective and decision tree

predicts defective) THEN (the module is defective).
IF (naïve Bayes predicts defective, neural network predicts defective and decision tree

predicts non-defective) THEN (module is defective).
IF (naïve Bayes predicts defective, neural network predicts non-defective and decision

tree predicts defective) THEN (module is defective).
IF (naïve Bayes predicts non-defective, neural network predicts defective and decision

tree predicts defective) THEN (module is defective).
IF (naïve Bayes predicts non-defective, neural network predicts non-defective and

decision tree also predicts non-defective) THEN (module is not defective).
IF (naïve Bayes predicts defective, neural network predicts non-defective and decision

tree predicts non-defective) THEN (module is not defective).
IF (naïve Bayes predicts non-defective, neural network predicts non-defective and

decision tree predicts defective) THEN (module is not defective).
IF (naïve Bayes predicts non-defective, neural network predicts defective and decision

tree predicts non-defective) THEN (module is not defective).
The membership functions developed by following the if–then fuzzy rules are shown

in Table 2. These membership functions are used to integrate the accuracy of NB, ANN, and
DT. These if–then rules, which work as the base of membership functions, were developed
after various experiments on the fusion of the predictive accuracy of the used classifiers.
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Table 2. Membership functions of the proposed fuzzy logic-based fusion technique.
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Table 2. Cont.
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Figure 2 shows the rule surface of the proposed fuzzy logic-based fusion technique for
defect prediction with respect to the NB and ANN results. Figure 3 shows the prediction
process with the accuracy fusion technique, which predicts that the software module is
non-defective. NB predicts that the module is non-defective with a 0.127 confidence factor,
and ANN predicts the same with a 0.259 confidence factor; DT predicts that the module
is defective with a 0.801 confidence factor. However, as per the defined fuzzy rules, the
proposed technique predicts that the module is non-defective with a 0.248 confidence factor.

 

Figure 2. Rule surface of the proposed fuzzy logic-based fusion technique with NB and ANN.

It is demonstrated in Figure 4 that NB predicts that the module is non-defective with a
0.127 confidence factor, whereas ANN and DT both predict that the module is defective
with 0.62 and 0.801 confidence factors, respectively; therefore, that the proposed fused
model predicts that the module is defective with a 0.752 confidence factor.

The second layer of the proposed system is the testing layer, which performs real-time
prediction to identify which software module is defective and requires extensive testing.
This layer involves four activities. The first activity is the extraction of the dataset of the
untested software module for prediction. The second activity is the extraction of the fused
classification model that was saved in the cloud in the last activity of the training layer.
The third activity is the prediction, in which the data of the untested software component
function is used as the input to the fused model, and the output is extracted; this indicates
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whether the module is defective or not. The fourth and last activity of this layer is the
submission of the prediction to the software defect dataset repository.

 

Figure 3. Results of the proposed fuzzy logic based fusion technique for a non-defective module (0).

 

Figure 4. Results of the proposed fuzzy logic-based fusion technique for a defective module (1).

4. Results and Discussion

The proposed FSDPS was implemented using a fused software defect dataset. Matlab
2021a was used in this research to conduct the experiments and simulations. The fused
dataset was created by integrating the five datasets from NASA’s cleaned repository,
named CM1, MW1, PC1, PC3, and PC4. The fused dataset consists of 3579 instances,
of which 428 indicate that the modules are defective, whereas 3151 indicate that they
are non-defective. In the pre-processing stage, the used dataset underwent cleaning and
normalization processes and was then divided into two further subsets, the training set
and test set, using a 70:30 ratio. The training dataset consists of 2506 instances, and the test
dataset consists of 1073 instances. For the prediction, initially, three supervised machine
learning techniques were used, including NB, ANN, and DT. Each classifier was optimized
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so that we could obtain maximum accuracy. To analyze the performance of the proposed
fusion-based software defect prediction system, the following measures were used [22,23].

Accuracy =
(∂OR0/εOR0 + ∂OR1/εOR1)

εOR0 + εOR1
(1)

Positive Prediction Value =
∂OR1/εOR1

(∂OR1/εOR1 + ∂OR0/εOR1)
(2)

Negative Prediction Value =
∂OR0/εOR0

(∂OR0/εOR0 + ∂OR1/εOR0)
(3)

Speci f icity =
∂OR0/εOR0

(∂OR0/εOR0 + ∂OR0/εOR1)
(4)

Sensitivity =
∂OR1/EOR1

(∂OR1/εOR0 + ∂OR1/εOR1)
(5)

False Positive Ratio = 1− Specificity (6)

False Negitive Ratio = 1− Senstivity (7)

Likelihood Ratio Positive =
Sensitivity

(1− Speci f icity)
(8)

Likelihood Ratio Negative =
(1− Sensitivity)

Speci f icity
(9)

In the formulas shown above, ∂OR0 reflects the predicted non-defective modules,
and ∂OR1 reflects the predicted defective modules, whereas εOR0 reflects the expected
non-defective modules, and εOR1 reflects the expected defective modules.

To train the NB classifier, the reserved training dataset consisting of 2506 instances
was used. During the training process, 1948 instances were classified as negative out of
2206 instances, whereas 107 instances were classified as positive out of 300 instances. After
analyzing and comparing the output result and expected result in Table 3, we achieved
82% accuracy in the training process with NB. During the process of testing with NB,
872 instances were predicted as negative out of 945, whereas 22 instances were predicted
as positive out of 128. The comparison of the expected result and output result in Table 4
reflects that 83.32% accuracy was achieved during testing with NB.

Table 3. NB training.

N = 2506
(No. of Records)

Predicted Result
∂OR0, ∂OR1

INPUT

Expected output result
(εOR0, εOR1)

∂OR0
(Non-defective -0)

∂OR1
(Defective -1)

εOR0 = 2206
(Non-defective -0) 1948 258

εOR1 = 300
(Defective -1) 193 107

Table 4. NB Testing.

N = 1073
(No. of Records)

Predicted Result
∂OR0, ∂OR1

INPUT

Expected output result
(εOR0, εOR1)

∂OR0
(Non-defective -0)

∂OR1
(Defective -1)

εOR0 = 945
(Non-defective -0) 872 73

εOR1 = 128
(Defective -1) 106 22
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During the training of ANN, 2100 instances out of 2206 were classified as negative,
and 56 instances out of 300 were classified as positive. The training accuracy achieved with
ANN was 86.03 % (Table 5). During the testing process, 905 instances were predicted as
negative out of 945, and 16 instances were predicted as positive out of 128. The comparison
of the expected output and achieved output in Table 6 reflects an 85.83% accuracy.

Table 5. ANN training.

N = 2506
(No. of Records)

Predicted Result
∂OR0, ∂OR1

INPUT

Expected output result
(εOR0, εOR1)

∂OR0
(Non-defective -0)

∂OR1
(Defective -1)

εOR0 = 2206
(Non-defective -0) 2100 106

εOR1 = 300
(Defective -1) 244 56

Table 6. ANN Testing.

N = 1073
(No. of Records)

Predicted Result
∂OR0, ∂OR1

INPUT

Expected output result
(εOR0, εOR1)

∂OR0
(Non-defective -0)

∂OR1
(Defective -1)

εOR0 = 945
(Non-defective -0) 905 40

εOR1 = 128
(Defective -1) 112 16

In the training process with DT, 2073 instances out of 2206 were classified as negative,
and 199 instances out of 300 were classified as positive. The output result and expected
result are shown in Table 7. After comparing both the results, we achieved 90.66% accuracy.
During the testing process, DT classified 887 records out of 945 records as negative, whereas
26 records out of 128 were classified as positive. The comparison of the expected output
and achieved output in Table 8 reflects an accuracy of 85.09%.

Table 7. DT training.

N = 2506
(No. of Records)

Predicted Result
∂OR0, ∂OR1

INPUT

Expected output result
(εOR0, εOR1)

∂OR0
(Non-defective -0)

∂OR1
(Defective -1)

εOR0 = 2206
(Non-defective -0) 2073 133

εOR1 = 300
(Defective -1) 101 199

Table 8. DT testing.

N = 1073
(No. of Records)

Predicted Result
∂OR0, ∂OR1

INPUT

Expected output result
(εOR0, εOR1)

∂OR0
(Non-defective -0)

∂OR1
(Defective -1)

εOR0 = 945
(Non-defective -0) 887 58

εOR1 = 128
(Defective -1) 102 26
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Finally, the test data were subjected to the proposed fuzzy system, along with the
three predictions provided by the classifiers. The proposed FSDPS classifies the testing
data on the basis of the developed fuzzy rules. The fuzzy rules were developed by keeping
in mind the achieved accuracy of the classification models for the test data. The proposed
fused system classified 935 out of 945 records as negative, whereas 42 instances out of 128
were classified as positive. The expected results are compared with the achieved results in
Table 9, which reflects a 91.05% accuracy.

Table 9. Fused testing.

N = 1073
(No. of Records)

Predicted Result
∂OR0, ∂OR1

INPUT

Expected output result
(εOR0, εOR1)

∂OR0
(Non-defective -0)

∂OR1
(Defective -1)

εOR0 = 945
(Non-defective -0) 935 10

εOR1 = 128
(Defective -1) 86 42

The detailed results of the used classifiers, along with the result of the proposed
fusion-based system, are shown in Table 10. The results of NB, ANN, and DT for the
training and test datasets are shown, whereas only the results of the proposed FSDPS for
the test dataset are shown. The used classifiers were tuned multiple times until we achieved
the maximum accuracy. The proposed fusion-based system outperformed the other used
classifiers. The accuracy of NB, ANN and DT for the test datasets was 83.32%, 85.83%,
and 85.09%, respectively, whereas the proposed system outperformed all three techniques
and achieved a 91.05% accuracy for the test dataset. It can be observed that the proposed
fusion-based defect prediction system showed a significantly higher performance, as it
integrated the predictive accuracy of all three classifiers using the fuzzy logic technique.

Table 10. ML Algorithm Comparison.
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Naïve Bayes Training 0.8200 0.8830 0.3567 0.2932 0.9099 0.1170 0.6433 3.049 0.8200

Testing 0.8332 0.9228 0.1719 0.2316 0.8916 0.0772 0.8281 2.225 0.8332

Artificial neural
network

Training 0.8603 0.9519 0.1867 0.3456 0.8959 0.0481 0.8133 3.885 0.8603

Testing 0.8583 0.9577 0.125 0.2857 0.8899 0.0423 0.875 2.953 0.8583

Decision tree
Training 0.9066 0.9397 0.6633 0.5994 0.9535 0.0603 0.3367 11.00 0.9066

Testing 0.8509 0.9386 0.2031 0.3095 0.8969 0.0614 0.7969 3.310 0.8509

Fused/proposed
method

Testing 0.9105 0.9894 0.3281 0.8077 0.9158 0.0106 0.6719 31.01 0.9087

The accuracy of the proposed FSDPS is compared with that of other state-of-the-art
software defect prediction techniques in Table 11. It can be observed that the proposed
system performed better than the other techniques using the fused dataset, and achieved
91.05% accuracy. Training a classification model on a fused dataset is a complex process,
and is considered a challenging task compared to the training of a model on a single-source
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dataset. It has been observed that the pattern recognition ability of machine learning
methods for prediction can be enhanced by using the fuzzy logic technique [24]. The high
accuracy achieved by the proposed system for the fused dataset reflects the effectiveness of
fuzzy logic-based machine learning fusion techniques.

Table 11. Performance comparison of the proposed ISDPS with the other techniques.

Prediction Technique Accuracy (%)

Stacked ensemble [9] 89.10

Fused-ANN-BR [11] 85.45

FS-VEML [12] 84.97

Boosting-OPT-MLP [13] 79.08

MLP-FS [14] 85.13

NB [18] 82.65

ANN [25] 89.96

Tree [25] 84.94

Bagging [26] 80.20

Boosting [26] 81.30

Heterogeneous [27] 89.20

ADBBO-RBFNN [28] 88.65

Bagging LWL [29] 90.10

Proposed FSDPS 91.05

5. Threat to Validity

The threat to validity is a crucial aspect of any proposed research. According to [30], it is
important to explicitly analyze and mitigate threats to the validity of the proposed solution.

External validity: This type of validity analyzes whether the proposed solution is
equally effective for other datasets belonging to the same problem canvas. In this study,
five widely used benchmark software defect datasets, including CM1, MW1, PC1, PC3, and
PC4, were fused to implement the proposed FSDPS. The datasets were taken from NASA’s
cleaned software defect repository. All of the five datasets have the same attributes, which
is necessary for instance-level fusion. The conclusion of this study cannot be generalized
to other defect datasets. However, the comprehensive experimental setup, along with the
iterative parameter tuning used in this study, can be adopted by other researchers using
other datasets.

Internal validity: This form of validity analyzes whether the selected prediction
techniques are good enough for the selected datasets or for other datasets used to address
the same problem. According to [31], various factors, including the datasets, prediction
techniques, and software tools, can affect the internal validity of a software defect prediction
system. In this study, three supervised classification techniques were used in the proposed
FSDPS, including NB, ANN, and DT. These techniques were selected on the basis of their
heterogeneity and performance. Moreover, a fuzzy logic-based fusion technique was
proposed to integrate the predictive accuracy of the used classification techniques. In
future studies, researchers could use other classification algorithms with different fuzzy
logic techniques.

Construct validity: This form of validity concerns the selection of the performance
measures that are used to analyze the performance of the proposed system. In this research,
various performance measures were calculated, including the accuracy, specificity, sensitiv-
ity, positive prediction value, negative prediction value, false-positive value, false-negative
value, likelihood ratio positive, and likelihood ratio negative. However, among all of the
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calculated performance measures, the accuracy was used to compare the performance of
the proposed FSDPS with respect to the other techniques.

6. Conclusions and Future Work

Software defect prediction involves the detection of faulty modules before the test-
ing stage so that only defect-prone modules will be subjected to testing. An effective
defect prediction system can decrease software development costs by limiting the effort
involved in quality assurance activities in the testing phase. In this research, we proposed
a system for software defect prediction using data and decision-level machine learning
fusion techniques. The proposed system fused the predictive accuracy of three supervised
classifiers: NB, ANN, and DT. The accuracy was fused using fuzzy logic-based if–then
rules. To empirically evaluate the proposed system, five cleaned software defect datasets
from NASA’s repository were integrated using instance-level fusion. The datasets which
were fused for the experiments included CM1, MW1, PC1, PC3, and PC4. The experiments
reflected the higher accuracy of the proposed fusion-based defect prediction system as
compared to the other techniques. The proposed system outperformed the other techniques,
which reflects the effectiveness and robustness of the proposed decision-level fusion tech-
nique. In future work, a feature selection technique should be incorporated into the system
for a cost-effective solution. Ensemble machine learning should also be considered for
the decision-level fusion. Moreover, workload prediction for the next time slot should
also be performed so as to render cloud data services effective and efficient in software
defect prediction.

Author Contributions: S.A. (Shabib Aftaband), S.A. (Sagheer Abbas) and M.A. fused the data,
performed the analysis, and conducted the experiments. S.A. (Shabib Aftaband), M.A. and T.M.G.
prepared the original draft. H.A.H., M.A.K. and M.A. performed the detailed review and editing.
C.Y.Y. and M.A.K. performed the supervision. T.M.G., S.A. (Shabib Aftaband) and T.M.G. drafted
the pictures and tables. S.A. (Shabib Aftaband), C.Y.Y., H.A.H. and M.A.K. performed the revision
and improved the quality of the draft. All authors have read and agreed to the published version of
the manuscript.

Funding: This work was supported by the Center for Cyber-Physical Systems, Khalifa University,
under Grant 8474000137-RC1-C2PS-T5.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The simulation files/data used to support the findings of this study
are available from the corresponding author upon request.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Suresh Kumar, P.; Behera, H.S.; Nayak, J.; Naik, B. Bootstrap aggregation ensemble learning-based reliable approach for software
defect prediction by using characterized code feature. Innov. Syst. Softw. Eng. 2021, 17, 355–379. [CrossRef]

2. Balogun, A.O.; Basri, S.; Abdulkadir, S.J.; Hashim, A.S. Performance analysis of feature selection methods in software defect
prediction: A search method approach. Appl. Sci. 2019, 9, 2764. [CrossRef]

3. Balogun, A.O.; Basri, S.; Mahamad, S.; Abdulkadir, S.J.; Capretz, L.F.; Imam, A.A.; Almomani, M.A.; Adeyemo, V.E.; Kumar, G.
Empirical analysis of rank aggregation-based multi-filter feature selection methods in software defect prediction. Electronics 2021,
10, 179. [CrossRef]

4. Huda, S.; Alyahya, S.; Ali, M.M.; Ahmad, S.; Abawajy, J.; Al-Dossari, H.; Yearwood, J. A framework for software defect prediction
and metric selection. IEEE Access 2017, 6, 2844–2858. [CrossRef]

5. Song, Q.; Jia, Z.; Shepperd, M.; Ying, S.; Liu, J. A general software defect-proneness prediction framework. IEEE Trans. Softw. Eng.
2010, 37, 356–370. [CrossRef]

6. Zhang, Q.; Ren, J. Software-defect prediction within and across projects based on improved self-organizing data mining. J.
Supercomput. 2021, 78, 6147–6173. [CrossRef]

7. Ibrahim, D.R.; Ghnemat, R.; Hudaib, A. Software defect prediction using feature selection and random forest algorithm. In
Proceedings of the International Conference on New Trends in Computer Science, Amman, Jordan, 11–13 October 2017; pp. 252–257.

50



Mathematics 2023, 11, 632

8. Mahajan, R.; Gupta, S.; Bedi, R.K. Design of software fault prediction model using br technique. Procedia Comput. Sci. 2015, 46,
849–858. [CrossRef]

9. Goyal, S.; Bhatia, P.K. Heterogeneous stacked ensemble classifier for software defect prediction. Multimed. Tools Appl. 2021, 81,
37033–37055. [CrossRef]

10. Mehta, S.; Patnaik, K.S. Stacking based ensemble learning for improved software defect prediction. In Proceeding of Fifth
International Conference on Microelectronics, Computing and Communication Systems; Springer: Singapore, 2021; pp. 167–178.

11. Daoud, M.S.; Aftab, S.; Ahmad, M.; Khan, M.A.; Iqbal, A.; Abbas, S.; Ihnaini, B. machine learning empowered software defect
prediction system. Intell. Autom. Soft Comput. 2022, 31, 1287–1300. [CrossRef]

12. Ali, U.; Aftab, S.; Iqbal, A.; Nawaz, Z.; Bashir, M.S.; Saeed, M.A. Software defect prediction using variant based ensemble learning
and feature selection techniques. Int. J. Mod. Educ. Comput. Sci. 2020, 12, 29–40. [CrossRef]

13. Iqbal, A.; Aftab, S. Prediction of defect prone software modules using MLP based ensemble techniques. Int. J. Inf. Technol. Comput.
Sci. 2020, 12, 26–31. [CrossRef]

14. Iqbal, A.; Aftab, S. A classification framework for software defect prediction using multi-filter feature selection technique and
MLP. Int. J. Mod. Educ. Comput. Sci. 2020, 12, 42–55. [CrossRef]

15. Arasteh, B. Software fault-prediction using combination of neural network and Naive Bayes algorithm. J. Netw. Technol. 2018, 9,
95. [CrossRef]

16. Alsaeedi, A.; Khan, M.Z. Software defect prediction using supervised machine learning and ensemble techniques: A comparative
study. J. Softw. Eng. Appl. 2019, 12, 85–100. [CrossRef]

17. Balogun, A.O.; Basri, S.; Capretz, L.F.; Mahamad, S.; Imam, A.A.; Almomani, M.A.; Kumar, G. software defect prediction using
wrapper feature selection based on dynamic re-ranking strategy. Symmetry 2021, 13, 2166. [CrossRef]

18. Alsawalqah, H.; Hijazi, N.; Eshtay, M.; Faris, H.; Radaideh, A.A.; Aljarah, I.; Alshamaileh, Y. Software defect prediction using
heterogeneous ensemble classification based on segmented patterns. Appl. Sci. 2020, 10, 1745. [CrossRef]

19. Bi, J.; Yuan, H.; Zhou, M. Temporal prediction of multiapplication consolidated workloads in distributed clouds. IEEE Trans.
Autom. Sci. Eng. 2019, 16, 1763–1773. [CrossRef]

20. Shepperd, M.; Song, Q.; Sun, Z.; Mair, C. Data quality: Some comments on the NASA software defect datasets. IEEE Trans. Softw.
Eng. 2013, 39, 1208–1215. [CrossRef]

21. NASA Defect Dataset. Available online: https://github.com/klainfo/NASADefectDataset (accessed on 17 September 2022).
22. Ahmed, U.; Issa, G.F.; Khan, M.A.; Aftab, S.; Khan, M.F.; Said, R.A.; Ghazal, T.M.; Ahmad, M. Prediction of diabetes empowered

with fused machine learning. IEEE Access 2022, 10, 8529–8538. [CrossRef]
23. Rahman, A.U.; Abbas, S.; Gollapalli, M.; Ahmed, R.; Aftab, S.; Ahmad, M.; Khan, M.A.; Mosavi, A. Rainfall prediction system

using machine learning fusion for smart cities. Sensors 2022, 22, 3504. [CrossRef]
24. Naeem, Z.; Farzan, M.; Naeem, F. Predicting the performance of governance factor using fuzzy inference system. Int. J. Comput.

Innov. Sci. 2022, 1, 35–50.
25. Goyal, S.; Bhatia, P.K. Comparison of machine learning techniques for software quality prediction. Int. J. Knowl. Syst. Sci. 2020,

11, 20–40. [CrossRef]
26. Balogun, A.O.; Lafenwa-Balogun, F.B.; Mojeed, H.A.; Adeyemo, V.E.; Akande, O.N.; Akintola, A.G.; Bajeh, A.O.; Usman-Hamza,

F.E. SMOTE-based homogeneous ensemble methods for software defect prediction. In International Conference on Computational
Science and Its Applications; Springer: Cham, Switzerland, 2020; pp. 615–631.

27. Khuat, T.T.; Le, M.H. Evaluation of sampling-based ensembles of classifiers on imbalanced data for software defect prediction
problems. SN Comput. Sci. 2020, 1, 108. [CrossRef]

28. Kumudha, P.; Venkatesan, R. Cost-sensitive radial basis function neural network classifier for software defect prediction. Sci.
World J. 2016, 11, 126–134. [CrossRef] [PubMed]

29. Abdou, A.S.; Darwish, N.R. Early prediction of software defect using ensemble learning: A comparative study. Int. J. Comput.
Appl. 2018, 179, 29–40.

30. Wohlin, C.; Runeson, P.; Höst, M.; Ohlsson, M.C.; Regnell, B.; Wesslén, A. Experimentation in Software Engineering; Springer Science
& Business Media: Berlin/Heidelberg, Germany, 2012.

31. Gao, K.; Khoshgoftaar, T.M.; Seliya, N. Predicting high-risk program modules by selecting the right software measurements.
Softw. Qual. J. 2012, 20, 3–42. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

51



mathematics

Article

On Nash Equilibria in a Finite Game for Fuzzy Sets
of Strategies

Svajone Bekesiene 1,* and Serhii Mashchenko 2

1 Logistics and Defense Technology Management Science Group, General Jonas Zemaitis Military Academy of
Lithuania, Silo 5a, LT-10322 Vilnius, Lithuania

2 Department of System Analysis and Decision-Making Theory, Faculty of Computer Science and Cybernetics,
Taras Shevchenko National University of Kyiv, 64/13, Volodymyrska Street, 01601 Kyiv, Ukraine

* Correspondence: svajone.bekesiene@lka.lt

Abstract: The present paper investigates a finite game with fuzzy sets of player strategies. It is proven
that Nash equilibria constitute a type-2 fuzzy set defined on the universal set of strategy profiles.
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1. Introduction

In classical game theory, it is traditionally assumed that all the data of a game are
precisely known. However, in real-world scenarios, a notable feature of games is the
inherent uncertainty and inaccuracy of available information. To address this issue, one
powerful tool for modeling uncertainty is the theory of fuzzy sets (FSs).

Fuzzy sets allow for the representation of imprecise or vague data within various
components of a game model. These components include the sets of players, sets of
strategies, payoffs of players, and more. Early pioneers such as Orlovskii [1], Butnariu [2–4],
and Billot [5] were among the first to introduce fuzzy sets into the realm of non-cooperative
games. Orlovskii, for instance, leveraged the principle of decision-making in a fuzzy
environment, as outlined by Zadeh and Bellman [6], to defuzzify game-related concepts.
Building on the work of Butnariu [2–4] and Billot [5], other researchers have explored the
modeling of each player’s beliefs about the actions of other players in a fuzzy set form.

Additionally, Campos [7] made significant contributions by delving into non-cooperative
games with fuzzy payoffs. Campos’ approach is founded on a ranking method of fuzzy
numbers to defuzzify the game. By utilizing Yager’s ordering method [8] for fuzzy numbers,
Campos transformed the challenge of finding a solution for a fuzzy matrix game into a
linear programming problem.

In the context of fuzzy non-cooperative games, the Nash equilibrium, much like in
scenarios with crisp information, remains a fundamental principle of optimality. Notably,
this article focuses on aspects other than fuzzy matrix games; for those interested in
exploring this subject further, a detailed review is available in [9]. Generalizations of the
Nash equilibrium concept have primarily been cultivated within the domain of bimatrix
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games featuring fuzzy payoffs. This inclination can be attributed to the wealth of well-
established methods for constructing Nash equilibria in the realm of crisp bimatrix games.

One notable approach, advanced by Vijay et al. [10], leverages the theory of fuzzy
duality and employs a ranking function for fuzzy numbers to calculate equilibria in bimatrix
games with fuzzy payoffs. This innovative methodology ultimately leads to the formulation
of a fuzzy nonlinear programming problem, which is subsequently defuzzified.

When player payoffs are expressed as triangular fuzzy numbers, Maeda [11] intro-
duces a method employing fuzzy number ranking to convert the computation of Nash
equilibria into a crisp optimization problem whenever feasible. In the context of games
involving n-players, there has been a development that delves into non-cooperative games
featuring fuzzy parameters. Notably, in [12], a game is examined wherein payoffs depend
on certain parameters expressed as fuzzy numbers. These parameters reflect the influence
of nature, and the players possess full information, including knowledge of the mem-
bership functions of the fuzzy parameters. The approach to solving such a game draws
upon methods designed for addressing multicriteria problems with fuzzy parameters, as
originally proposed in [13].

It is essential to acknowledge that the body of research in the domain of games with
fuzzy payoffs significantly outweighs the research conducted in games featuring fuzzy sets
of strategies. This disparity, in our view, can be attributed to the advancements in fuzzy
arithmetic, which have made it relatively straightforward to introduce fuzzification in
games with fuzzy payoffs. However, it is important to note that, in both fuzzy optimization
problems and games, models with fuzzy parameters cannot entirely supplant models
utilizing fuzzy sets of strategies. The exploration of game models involving fuzzy sets
of strategies is warranted when such sets more naturally and effectively formalize the
strategic choices made by players.

Additionally, there are instances where players are unable to precisely formulate their
sets of strategies. The foundations of the approach to studying games with fuzzy strategies
and fuzzy sets of strategies were established by Orlovskii [1], Butnariu [2–4], and Billot [5].
In [1], a two-person game with FSs of strategies and players’ goals is examined. For each
player, crisp numerical assessments of game strategic profiles are provided. The players’
goals are expressed in the form of FSs over the set of assessments. The game model is
grounded in Bellman and Zade’s [6] principle of decision-making in a fuzzy environment.
For each player, a decision FS is defined as the intersection of the FSs representing the
goal and strategies. In a defuzzified game, the membership functions (MFs) of decision
FSs serve as the players’ payoff functions. A similar fuzzy game model is also explored in
Aristidou and Sarangi [14]. The concept of equilibrium in this context aligns with the Nash
equilibrium, with the sole distinction that it is defined within a fuzzy extension of the game.
The existence of an equilibrium in a fuzzy game is demonstrated. Garazic and Cruz [15]
propose an approach grounded in the development of fuzzy controllers. According to
Arfi [16], a linguistic fuzzy game is defined utilizing linguistic fuzzy strategies, linguistic
fuzzy preferences, and various forms of reasoning and inference. While it is important to
acknowledge that this review is not exhaustive in its coverage of the existing literature, it is
evident that models involving FSs of strategies and/or fuzzy strategies incorporate them
indirectly by leveraging the Bellman and Zadeh approach or various types of preference
relations in tandem with fuzzy goals.

We believe that the adoption of these alternative approaches arises from a lack of
mathematical methods that directly facilitate the study of the impact of fuzzy sets of players’
strategies on a set of Nash equilibria. This research is motivated by the aspiration to develop
the requisite methodology and derive the corresponding outcomes. It is important to note
that the research conducted is fundamentally theoretical in nature. Practical applications
of these findings warrant a separate investigation and fall beyond the scope of this article.
The primary objectives of this article can be summarized as follows:

• To establish a rationale for the assertion that fuzzy sets (FSs) of players’ strategies in a
finite game give rise to a type-2 fuzzy set (T2FS) of Nash equilibria, characterized by a
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specific, simplified form that is practical for real-world applications, as opposed to the
general form T2FS.

• To conduct an in-depth examination of the properties of this T2FS.
• To develop a decomposition method for the construction of Nash equilibria T2FS.
• The practical significance of this research lies in its capacity to:
• Explore game scenarios in which the adoption of crisp strategies constrains players’

abilities to effectively resolve conflicts. Example 1 in Section 5.4 provides insight into
such a scenario.

• Enable the modeling of uncertainty inherent in human judgments and the uncertainty
associated with determining acceptable strategies. Such FSs of strategies might en-
compass categories like ‘Proven strategies’, ‘Robust strategies’, ‘Acceptable strategies’,
and similar distinctions.

Finally, this article presents a compelling argument for the incorporation of FSs of
player strategies in a game, highlighting that they give rise to Nash equilibria in the
form of a T2FS defined over the set of strategy profiles. This approach not only enriches
the modeling of strategic interactions but also provides a more nuanced perspective on
decision-making in situations characterized by imprecision and ambiguity. Through this
exploration, we contribute to the growing body of research at the intersection of game
theory and fuzzy logic, further enhancing our understanding of strategic behavior in
complex, uncertain environments.

2. Materials and Methods

2.1. A Classic Finite Game

A finite non-cooperative game can be formally represented in the normal form
〈Xi, ui : i ∈ N〉, where N = {1, . . . , n} is the finite set of players; n = |N| ≥ 2 is the
cardinality of this set; Xi is the finite set of strategies xi of the player i ∈ N; ui(x) is the
payoff function of the player i ∈ N, which is defined on the set X = ∏

i∈N
Xi of the strategies

profiles x = (x1, . . . , xn) = (xi)i∈N .
A Nash equilibrium of the game 〈Xi, ui : i ∈ N〉 is the strategies profile x̂ =

(x̂1, . . . , x̂n) = (x̂i)i∈N for which the inequalities

ui(x̂) ≥ ui(xi, x̂N\i) for all xi ∈ Xi and i ∈ N (1)

hold, where x̂N\i = (x̂1, . . . , x̂i−1, x̂i+1 . . . , x̂n) = (x̂j)j∈N\{i} is the collection of strategies of

the players j ∈ N\{i}. The choice of the strategy x̂i by each player i ∈ N seems reasonable.
Indeed, it is not profitable to deviate from these strategies for each of them individually.
We denote by NE(X) the set of Nash equilibria of the game 〈Xi, ui : i ∈ N〉.

2.2. Type-2 Fuzzy Sets

The T2FS concept was proposed by Zadeh in [17] as an extension of the type-1 fuzzy
sets (T1FSs). According to Mizumoto and Tanaka [18], a T2FS, denoted by C̃, on a crisp
set X is characterized by the fuzzy membership function MC̃ : X → [0, 1][0,1] . For fixed

x′ ∈ X, the value of MC̃(x′) is the T1FS MC̃(x′) =
{
(u, μM̃C̃(x′)(u)) : u ∈ Ux′

}
on the set

Ux′ ⊆ [0, 1] of primary membership degrees u of x′ to the T2FS C̃ with corresponding
membership function μM̃C̃(x′)(u), u ∈ Ux′ . In [19], the representation of the T2FS C̃ in the

form C̃ =
{
(x, M̃C̃(x′)) : x ∈ X

}
=
{
(x,
{
(u, μM̃C̃(x)(u)) : u ∈ Ux

}
) : x ∈ X

}
is called the

vertical-slice manner.
Another definition, based on the ideas of Karnik and Mendel [20], was given by

Mendel and John [21]. A T2FS C̃ on a crisp set X̃ is characterized by the type-2 member-
ship function (T2MF) ηC̃(x, u), that is C̃ =

{
((x, u), ηC̃(x, u)) : x ∈ X, u ∈ [0, 1]

}
, where

ηC̃(x, u) = μM̃C̃(x)(u) for all u ∈ Ux, and ηC̃(x, u) = 0 for all u /∈ Ux. The value ηC̃(x, u) is

a crisp number from the interval [0, 1], known as a secondary grade of pair (x, u) to C̃.
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Remark 1. The primary membership degree u is usually understood as the degree of manifestation
of some property (that defines the given fuzzy set) for x ∈ X. The secondary grade is usually [19]
associated with the degree of truth of the corresponding primary degree u of this property for x.

Following [21], we define embedded T2FSs and T1FSs for a T2FS C̃ ={
((x, u), ηC̃(x, u)) : x ∈ X, u ∈ [0, 1]

}
. Assume that ux = μCe1(x) ∈ [0, 1] is a unique pri-

mary degree of membership for each x ∈ X, where μCe1(x), x ∈ X is the MF of the
T1FS Ce1 = {(x, μCe1(x)) : x ∈ X}. This T1FS is called embedded in the T2FS C̃. We de-
fine the embedded T2FS C̃e2 in C̃ in the form C̃e2 =

{
((x, ux), ηC̃e2(x, ux)) : x ∈ X

}
with

ηC̃e2(x, ux) = ηC̃(x, μCe1(x)) for all x ∈ X.

Remark 2. Each element of the type-2 fuzzy collection C̃ =
{
((x, u), ηC̃(x, u)) : x ∈ X, u ∈ [0, 1]

}
is interpreted as a subset. Thus, the collection is represented as the classical union of its elements in
the sense of T1FSs.

In [21], Mendel and John stated that each T2FS can be represented as a collection of all
possible embedded T2FSs. We shall need one special case of a T2FS to be defined according
to [22–25]. Let A =

{
ηC̃(x, u) : ηC̃(x, u) > 0, x ∈ X, u ∈ [0, 1]

}
be the set of all possible pos-

itive values of secondary grades for the T2FS C̃ =
{
((x, u), ηC̃(x, u)) : x ∈ X, u ∈ [0, 1]

}
.

Assume that the set A is finite.
According to [22], an embedded T2FS C̃e2(α) =

{
((x, ux), ηC̃e2(α)(x, ux)) : x ∈ X

}
in the T2FS C̃ has a constant secondary grade α ∈ A if, for each x ∈ X, the unique
primary degree ux = μCe1(α)(x) ∈ [0, 1] exists for which ηC̃e2(α)(x, ux) ≡ α, i.e., C̃e2(α) ={
((x, μCe1(α)(x)), α) : x ∈ X

}
. Here, μCe1(α)(x), x ∈ X is the MF of the embedded T1FS

Ce1(α) =
{
(x, μCe1(α)(x)) : x ∈ X

}
in the T2FS C̃.

Remark 3 ([25]). Obviously, for the T2FS C̃ and each α ∈ A, there is the unique embedded
T1FS Ce1(α) =

{
(x, μCe1(α)(x)) : x ∈ X

}
, which is corresponding to the embedded T2FS C̃e2

(α) with the constant secondary grade α. Hence, C̃e2(α) =
{
(Ce1(α), α)

}
={

(
{
(x, μCe1(α)(x)) : x ∈ X

}
, α)
}
=
{
((x, μCe1(α)(x)), α) : x ∈ X

}
.

Further, we consider another special case of a T2FS.

Definition 1. We say that the T2FS C̃ is decomposable by secondary grades into a collection of em-
bedded T2FSs with constant secondary grades if there are the T2FSs C̃e2(α) ={
((x, μCe1(α)(x)), α) : x ∈ X

}
=
{
(Ce1(α), α)

}
with constant secondary grades α ∈ A, re-

spectively, which are embedded in the T2FS C̃ satisfying C̃ =
{

C̃e2(α) : α ∈ A
}

.

Remark 4. In view of Remark 3, if the T2FS C̃ is decomposable by secondary grades α ∈ A into
the collection C̃ =

{
Ce2(α) : α ∈ A

}
of embedded T2FSs with constant secondary grades, then

the T2FS C̃ is represented as a collection C̃ =
{
(Ce1(α), α) : α ∈ A

}
of embedded T1FSs Ce1(α),

α ∈ A, each of which is assigned the constant secondary grade α ∈ A, respectively.

3. Formulation of the Problem

Consider a finite non-cooperative game in the normal form 〈Xi, ui : i ∈ N〉.
Assumption 1. Assume that the game 〈Xi, ui : i ∈ N〉 has at least one Nash equilibrium in pure
strategies, that is NE(X) �= ∅.

Let X̃i =
{
(x, μX̃i

(xi)) : xi ∈ Xi

}
, i ∈ N be some FSs with the MFs μX̃i

(xi), xi ∈ Xi

i ∈ N on the sets Xi of pure strategies of players i ∈ N, respectively. We shall call X̃i,
i ∈ N the FSs of strategies. We represent a game with FSs of strategies in the normal form
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〈
X̃i, ui : i ∈ N

〉
. A natural question is: ‘When is there a need for such game formulation?’

To answer this question, we consider the following examples. Suppose that some decision
maker (DM) is trying to predict the outcome of a conflict between players, which can be
formulated as some classical finite game with crisp sets of player strategies. The issue is
that the DM only knows the degrees of membership of the player strategies to some FSs of
their strategies. The following question arises: ‘What is the set of Nash equilibria in the
case when the sets of players’ strategies are fuzzy?’

4. Main Idea

First, we generalize inequalities (1) for the case of arbitrary subsets Si ⊆ Xi, i ∈ N of
strategies. They take the form

ui(x̂) ≥ ui(xi, x̂N\i) for all xi ∈ Si and i ∈ N. (2)

We denote by S = ∏
i∈N

Si ⊆ X the set of the strategy profiles. The subsets Si ⊆ Xi,

i ∈ N of strategies are parameters of inequalities (2) that the sets of constraints depend
upon. In addition, for the game G(S) = 〈Si, ui : i ∈ N〉, we denote by

NE(S) =
{
(x, μNE(S)(x)) : x ∈ X

}
(3)

the crisp set of Nash equilibria with the MF characteristic function

μNE(S)(x) =
{

1, ui(x) ≥ ui(yi, xN\i) for all yi ∈ Si and i ∈ N;
0, otherwise;

(4)

and with the support supp(NE(S)) =
{

x ∈ S : μNE(S)(x) = 1
}

of the set NE(S).

Remark 5. We use the MF (4) representation of a crisp set of Nash equilibria for the convenience of
presenting the proposed method.

For each fixed strategy profile x ∈ X = ∏
i∈N

Xi of the initial game 〈Xi, ui : i ∈ N〉,

consider the mapping Vx : 2S → [0, 1] given by

Vx(S) =
{

1, x ∈ supp(NE(S));
0, otherwise;

(5)

S = ∏
i∈N

Si, Si ⊆ Xi, i ∈ N. For any strategic profile x ∈ X, the mapping Vx associates each

collection of the subsets Si ⊆ Xi, i ∈ N of strategies with the value of the MF

μNE(S)(x) = Vx(S), x ∈ supp(NE(S)) = {x ∈ X : Vz(S) �= 0} (6)

of the crisp set of Nash equilibria NE(S). With Zadeh’s extension principle [26] at hand, we
extend the domain of the mapping Vx to the collection of FSs X̃i =

{
(x, μX̃i

(xi)) : xi ∈ Xi

}
,

i ∈ N of strategies that are defined on universal sets Xi, i ∈ N of strategies, respectively,
and generalize formulae (3) and (6) to this case. We denote by Ẽ a set of Nash equilibria
of the game

〈
X̃i, ui : i ∈ N

〉
for FSs of strategies, and we denote by MẼ(x), x ∈ X the

corresponding MF. In this case, for each fixed x = x∗, the value of the MF MẼ(x) coincides
with the image Vx∗( X̃) of the FS X̃ = ∏

i∈N
X̃i of strategies profiles under the mapping Vx∗ ,

that is,
M Ẽ(x∗) = Vx∗( X̃). (7)
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According to Zadeh’s extension principle [26], the image of the FS X̃ of strategies
profiles under the mapping Vx∗ : 2X → [0, 1] (see (5)) is the FS

Vx∗( X̃) =
{
(u, μVx∗ ( X̃)(u)) : u ∈ {0, 1}

}
(8)

with the MF

μVx∗ ( X̃)(u) = max
{

min
i∈N

{αi} : αi ∈ [0, 1]; u = Vx∗(X(α))

}
(9)

u ∈ supp(Vx∗(X(α))), where

supp(Vx∗(X(α)) =
{

u ∈ {0, 1} : u = Vx∗(X(α)); α = (αi), αi ∈ [0, 1], i ∈ N
}

(10)

is the support of the FS Vx∗(X(α));
X(α) = ∏

i∈N
Xi(α) is the set of strategies profiles of the game G(X(α)) = 〈Xi(α), ui : i ∈ N〉;

Xi(αi) =
{

xi ∈ Xi : μX̃i
(xi) ≥ αi

}
is the αi-cut, αi ∈ [0, 1] of the FS X̃i ={

(x, μX̃i
(xi)) : xi ∈ Xi

}
of strategies of the player i ∈ N;

α = (αi)i∈N is the vector of αi-cuts levels, αi ∈ [0, 1], i ∈ N of strategies FSs;

Vx∗(X(α)) = μNE(X(α))(x∗) (11)

is the image of the collection of cuts Xi(αi) =
{

xi ∈ Xi : μX̃i
(xi) ≥ αi

}
, αi ∈ [0, 1], i ∈ N of

the FSs X̃i, i ∈ N of strategies under the mapping Vx∗ (see Equation (6)).

Remark 6. Let Ωi =
{

μX̃i
(xi) : xi ∈ Xi

}
, i ∈ N be the sets of membership degrees values

μX̃i
(xi), xi ∈ Xi, i ∈ N of the FSs X̃i =

{
(x, μX̃i

(xi)) : xi ∈ Xi

}
, i ∈ N of strategies, respec-

tively. Note that the cardinalities of the sets Ωi, i ∈ N are |Ωi| ≤ |Xi|, i ∈ N, respectively. It
is clear that when obtaining αi-cuts, αi ∈ [0, 1], i ∈ N of the FS X̃i, i ∈ N we can assume that
αi ∈ Ωi, i ∈ N rather than αi ∈ Ωi, i ∈ N, respectively.

Thus, in view of (7)–(11) and Remark 6, for fixed x = x∗, the values of the MF
M Ẽ(x∗) form the FS

{
(u, μM Ẽ(x∗)(u)) : u ∈ {0, 1}

}
on {0, 1} with the MF μM Ẽ(x

∗)(u) =

max
{

min
i∈N

αi : αi ∈ Ωi, i ∈ N, u = Vx∗(X(α))

}
, u ∈ supp(MẼ(x

∗)), where supp(MẼ(x
∗)) ={

u ∈ {0, 1} : u = Vx∗(X(α)), αi ∈ Ωi, i ∈ N
}

is the support of the FS MẼ(x
∗). Then, invok-

ing (10) and (11) yields

μM Ẽ(x∗)(u) = max
{

min
i∈N

αi : αi ∈ Ωi, i ∈ N, u = μNE(X(α))(x∗)
}

,

u ∈ supp(MẼ(x∗)) =
{

u ∈ {0, 1} : u = μNE(X(α))(x∗), αi ∈ Ωi, i ∈ N
}

.
(12)

Therefore, we conclude that the set of Nash equilibria Ẽ is an FS on X with the
MF whose values form FSs on {0, 1} for each x ∈ X. Then, according to [17], Ẽ is the
T2FS on X. In the manner of vertical slices (see Section 2.2), the T2FS Ẽ on X has the
form Ẽ = {(x, MẼ(x)) : x ∈ X} =

{
(x,
{
(u, μMẼ(x)(u)) : u ∈ Ux

}
) : x ∈ X

}
. In this for-

mula, μMẼ(x)(u), u ∈ {0, 1} is the MF of the FS MẼ(x) =
{{

(u, μMẼ(x)(u)) : u ∈ {0, 1}
}

of values of fuzzy degree of membership of the strategies profile x ∈ X to the T2FS Ẽ,
and Ux = supp(MẼ(x)) is the set of primary membership degrees, where supp(MẼ(z))
is the support of the FS MẼ(x) for x ∈ X. According to Section 2.2, we can also char-
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acterize the T2FS Ẽ by means of the T2MF ηẼ(x, u) = 0 for u /∈ Ux and ηẼ(x, u) =

max
{

min
i∈N

αi : αi ∈ Ωi, i ∈ N, u = μNE(X(α))(x)
}

for u ∈ Ux. This conclusion allows us to

introduce the following notion.

Definition 2. By the set of Nash equilibria of the game
〈

X̃i, ui : i ∈ N
〉

for the FSs X̃i ={
(x, μX̃i

(xi)) : xi ∈ Xi

}
of strategies is meant the T2FS

Ẽ = {((x, u), ηẼ(x, u)) : u ∈ {0, 1}, x ∈ X} (13)

on X with the T2MF

ηẼ(x, u) =

⎧⎨⎩max
{

min
i∈N

αi : αi ∈ Ωi, i ∈ N, u = μNE(X(α))(x∗)
}

,

0,

u ∈ Ux;
u /∈ Ux.

(14)

In this definition,

Ux =
{

u ∈ {0, 1} : u = μNE(X(α))(x), αi ∈ Ωi, i ∈ N
}

(15)

is the set of primary membership degrees u ∈ {0, 1} with strictly positive secondary grades
ηẼ(x, u), which coincides with the support supp(MẼ(x)) (see (12)) of the FS MẼ(x) of fuzzy
membership degrees of the strategy profile x ∈ X;

μNE(X(α))(x) =
{

1, x ∈ NE(X(α));
0, otherwise

(16)

is the MF (characteristic function) of the crisp set

NE(X(α)) =
{
(x, μX(α)(x)) : x ∈ X

}
(17)

of Nash equilibria of the game G(X(α)) = 〈Xi(αi), ui : i ∈ N〉 for the sets Xi(αi), i ∈ N of
strategies (see (3),(4) with S = X(α) and Si = Xi(αi), i ∈ N);

Xi(αi) =
{

xi ∈ Xi : μX̃i
(xi) ≥ αi

}
, i ∈ N (18)

is the αi-cuts, αi ∈ Ωi of the FS X̃i of strategies of the player i ∈ N;
α = (αi)i∈N is the vector of αi-cuts levels, αi ∈ Ωi, i ∈ N of the FSs X̃i, i ∈ N of

strategies;
Ωi =

{
μX̃i

(xi) : xi ∈ Xi

}
, i ∈ N are the sets of the membership degrees values

μX̃i
(xi), xi ∈ Xi, i ∈ N of the FSs X̃i, i ∈ N of strategies (see Remark 6), respectively;

X(α) = ∏
i∈N

Xi(αi) is the set of strategies profiles of the game G(X(α)) =

〈Xi(αi), ui : i ∈ N〉, α = (αi)i∈N , αi ∈ Ωi, i ∈ N.

Remark 7. Since primary membership degrees u ∈ {0, 1} of the T2FS Ẽ take only two values, 0 or
1, by Remark 2, this yields an interesting interpretation of the T2FS Ẽ. Similarly to a crisp set, there
are only two options for each strategy profile x ∈ X: either x completely belongs to the T2FS Ẽ (the
primary membership degree is u = 1), or it does not belong completely (u = 0). Unlike a crisp set,
the degrees ηẼ(x, 0) and ηẼ(x, 1) of truth of the identification of these two facts can differ from 1
and take values in the closed interval [0, 1].
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5. Nash Equilibria T2FS of a Game with Fuzzy Sets of Strategies

5.1. A Decomposition of Nash Equilibria T2FS

Proposition 1 justifies the decomposability (see Definition 1) of Nash equilibria T2FS
of a game with FSs of strategies on a collection of embedded T2FSs with constant sec-
ondary grades.

Proposition 1. The Nash equilibria T2FS Ẽ of the game
〈

X̃i, ui : i ∈ N
〉

for FSs of strategies is
decomposable by secondary grades min

i∈N
αi into the collection

Ẽ =
{

Ẽe2(X(α)) : α= (αi

)
i∈N

, αi ∈ Ωi, i ∈ N} (19)

of the embedded T2FSs

Ẽe2(X(α)) =

{
(NE(X(α)), min

i∈N
αi)

}
(20)

where NE(X(α)) is the embedded T1FS. It is a crisp set (a crisp set is a special case of a T1FS),
which is the set of Nash equilibria of the game G(X(α)) = 〈Xi(αi), ui : i ∈ N〉 with the crisp sets
Xi(αi), i ∈ Nof strategies.

Proof of Proposition 1. By (13), the Nash equilibria T2FS is given by Ẽ =
{((x, u), ηẼ(x, u)) : u ∈ {0, 1}, x ∈ X}. According to (14), Ẽ = {((x, u), 0) : u /∈ Ux} : x ∈ X}
∪
{{

((x, u), max
{

min
i∈N

αi : αi ∈ Ωi, i ∈ N, u = μNE(X(α))(x)
}
) : u ∈ Ux

}
. Since Remark 2 al-

lows us to ignore the pairs (x, u) that have secondary grades equal to 0, we conclude that

Ẽ =

{{
((x, u), max

{
min
i∈N

αi : αi ∈ Ωi, i ∈ N, u = μNE(X(α))(x)
}
) : u ∈ Ux, x ∈ X

}
, which is

equivalent Ẽ =

{
(x,
{
(μNE(X(α))(x), min

i∈N
αi) : αi ∈ Ωi, i ∈ N

}
), x ∈ X

}
according to (14). Fur-

ther, regrouping the elements leads to Ẽ =

{
(x, (μNE(X(α))(x), min

i∈N
αi)) : αi ∈ Ωi, i ∈ N, x ∈ X

}
=

{{
((x, (μNE(X(α))(x)), min

i∈N
αi) : x ∈ X

}
: αi ∈ Ωi, i ∈ N

}
. Then, invoking (17) yields Ẽ ={

(NE(X(α)), min
i∈N

αi) : αi ∈ Ωi, i ∈ N
}

whence (19) comes by (20). �

A characteristic feature of the proposed decomposition approach is its independence
from the chosen method for calculating the sets NE(X(α)) of Nash equilibria of games
G(X(α)) = 〈Xi(αi), ui : i ∈ N〉 for crisp sets Xi(αi), i ∈ N of strategies. Denote by

Ω =

{
min
i∈N

αi : αi ∈ Ωi, i ∈ N
}

(21)

the set of secondary grades of the Nash equilibria T2FS Ẽ of the game
〈

X̃i, ui : i ∈ N
〉
. Corol-

lary 1 states that the T2FS Ẽ can be directly decomposed by the set Ω of secondary grades.

Corollary 1. The Nash equilibria T2FS Ẽ of the game
〈

X̃i, ui : i ∈ N
〉

for FSs of strategies is
decomposable by secondary grades γ ∈ Ω into the collection

Ẽ =
{
(Ee1

γ , γ) : γ ∈ Ω
}

(22)

of the embedded T2FSs Ẽe2
γ =

{
(Ee1

γ , γ)
}

. For each γ ∈ Ω, the embedded T1FS

Ee1
γ = ∪

α=(αi)i∈N , αi∈Ωi , i∈N: min
i∈N

αi=γ
NE(X(α)), γ ∈ Ω (23)
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is the union of the crisp sets NE(X(α)) (a crisp set is a special case of a T1FS). For each α =
(αi)i∈N , αi ∈ Ωi, i ∈ N such that min

i∈N
αi = γ, the set NE(X(α)) is a Nash equilibria set of the

game G(X(α)) = 〈Xi(αi), ui : i ∈ N〉 for the sets Xi(αi), i ∈ N of strategies.

Proof of Corollary 1. Formulae (19) and (20) imply that Ẽe2(X(α)) ={
(NE(X(α)), min

i∈N
αi) : α= (αi

)
i∈N

, αi ∈ Ωi, i ∈ N}. According to Remark 3, each ele-

ment of this collection can be interpreted as a subset. Thus, the collection is represented as
the classical union of its elements in the sense of T1FSs. With this at hand, we conclude that
by (21), associated to each γ ∈ Ω is the subset ∪

α=(αi)i∈N , αi∈Ωi , i∈N: min
i∈N

αi=γ
{(NE(X(α)), γ)}

in the collection Ẽ. Therefore, an appeal to (23) yields (22). �

5.2. Calculation of a Nash equilibria T2FS

First, we construct the sets Ωi =
{

μX̃i
(xi) : xi ∈ Xi

}
, i ∈ N of membership degrees

values of the FSs X̃i =
{
(x, μX̃i

(xi)) : xi ∈ Xi

}
, i ∈ N of strategies, respectively. For each

αi ∈ Ωi, i ∈ N, according to (18), we construct the αi-cuts Xi(αi) =
{

xi ∈ Xi : μX̃i
(xi) ≥ αi

}
,

i ∈ N of the FS X̃i, i ∈ N, respectively. Next, we construct the Nash equilibria sets
NE(X(α)) of the games G(X(α)) = 〈Xi(αi), ui : i ∈ N〉, α = (αi)i∈N for crisp sets Xi(αi),
i ∈ N, αi ∈ Ωi, i ∈ N. To construct the Nash equilibria sets NE(X(α)), one can use any
known method. Further, we use the representation of the T2FS Ẽ in the form of a collection
of embedded T2FSs with constant secondary grades (see Corollary 1). To this end, we need
to construct the embedded T1FS Ee1

γ = ∪
α=(αi)i∈N , αi∈Ωi , i∈N: min

i∈N
αi=γ

NE(X(α)) for each γ ∈ Ω

according to (23). Once all embedded T1FS Ee1
γ with constant secondary grades γ ∈ Ω have

been obtained, the resulting Nash equilibria T2FS has the form Ẽ =
{
(Ee1

γ , γ) : γ ∈ Ω
}

according to (22) and (23).
By Remark 1, the T2FS Ẽ can be interpreted as the collection of unions

Ee1
γ = ∪

α=(αi)i∈N , αi∈Ωi , i∈N: min
i∈N

αi=γ
NE(X(α)), γ ∈ Ω of Nash equilibria sets NE(X(α)) of

the fuzzy games G(X(α)) = 〈Xi(αi), ui : i ∈ N〉 for the corresponding crisp sets Xi(αi),
i ∈ N of strategies for α = (αi)i∈N , αi ∈ Ωi, i ∈ N, such that min

i∈N
αi = γ with the degree of

truth of the set Ee1
γ being equal to γ.

5.3. Properties of Constructing of the Nash equilibria T2FS

Propositions 2 and 3 point at some useful properties of the Nash equilibria T2FS of the
game with FSs of strategies.

Proposition 2. If a strategy profile x ∈ X is (is not) a Nash equilibrium of the game G(X(α∗)) =〈
Xi(α

∗
i ), ui : i ∈ N

〉
for the collection of levels α∗i ∈ Ωi, i ∈ N of cuts Xi(α

∗
i ) of FSs X̃i, i ∈ N

of strategies, then a primary degree of membership u = 1 (u = 0) of the strategy profile x to the
Nash equilibria T2FS has a secondary grade (degree of truth) not smaller than γ∗ = min

i∈N
α∗i , i.e.,

ηẼ(x, 1) ≥ γ∗ (ηẼ(x, 0) ≥ γ∗).

Proof Proposition 2. Let α∗i ∈ Ωi, i ∈ N and u = μNE(X(α∗))(x) = 1 (u = μNE(X(α∗))(x) = 0).

Then, by (15), u ∈ Ux. Therefore, in view of (14), ηẼ(x, 1) = max
{

min
i∈N

αi : αi ∈ Ωi, i ∈ N,

μNE(X(α∗))(x) = 1 = μNE(X(α))(x)
}
≥ min

i∈N
α∗i = γ∗ (ηẼ(x, 0) = max

{
min
i∈N

αi : αi ∈ Ωi, i ∈ N ,

(μNE(X(α∗))(x) = 0 = μNE(X(α))(x)
}
≥ min

i∈N
α∗i = γ∗). �
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In other words, according to Proposition 2, the guaranteed value of the degree of truth
γ∗ ∈ Ω of the primary degree of membership u = 1 (u = 0) of the strategy profile x ∈ X to
the Nash equilibria T2FS is determined by the levels α∗i ∈ Ωi, i ∈ N of cuts of the FSs X̃i,
i ∈ N of strategies, under which the strategy profile x is (is not) a Nash equilibrium of the
game G(X(α∗)) =

〈
Xi(α

∗
i ), ui : i ∈ N

〉
.

Proposition 3. The Nash equilibria T2FS Ẽ is not empty.

Proof Proposition 3. We denote by αmin = (αmin
i )i∈N the vector of least levels αmin

i = min
αi∈Ωi

αi

of αi-cuts of FSs X̃i of players strategies i ∈ N. Assume that Ẽ = ∅. Then, according to formu-

lae (19) and (20), the equality Ẽ =

{
(NE(X(α)), min

i∈N
αi) : α= (αi

)
i∈N

, αi ∈ Ωi, i ∈ N} = ∅

is held. This entails NE(X(α)) = ∅ for any α= (αi)i∈N, αi ∈ Ωi, i ∈ N including for
αmin = (αmin

i )i∈N. Therefore, NE(X(αmin)) = ∅. With the equalities Xi(α
min
i ) = Xi, i ∈ N at

hand, we conclude that NE(X) = ∅ having utilized (18) and Remark 6, a contradiction to
Assumption 1. �

5.4. Example of Constructing the Nash Equilibria T2FS

Assume that some DM analyzes a conflict of two players. The model of this conflict is a
generalization of the well-known prisoner’s dilemma game to the case of fuzzy sets “Predictable
Strategies” of players 1 and 2. The DM perceives sets X1 = {P1, A1, F1} and X2 = {P2, A2, F2}
of players 1 and 2 strategies in the form of FSs X̃1 = {(P1; 1), (A1; 1), (F1; 0, 7)} and X̃2 =
{(P2; 1), (A2; 1), (F2; 0, 5)}, respectively. Here, the strategies Pi, Ai, Fi have a sense of a peaceful,
aggressive, and frenzied behavior, respectively, of the player i = 1, 2. Table 1 contains the
payoffs vectors (u1(x1, x2), u2(x1, x2)), x1 ∈ {P1, A1, F1}, x2 ∈ {P2, A2, F2} of players. The
DM intends to predict Nash equilibria.

Table 1. Payoffs vectors of players.

Strategy F2 A2 P2

F1 (0, 0) (2, −1) (4, −2)
A1 (−1, 2) (1, 1) (3, 0)
P1 (−2, 4) (0, 3) (2, 2)

According to Remark 6, the sets of membership degrees of FSs X̃1 and X̃2 of strate-
gies are given by Ω1 = {0, 7; 1} and Ω2 = {0, 5; 1}, respectively. For each pair α1 =
{0, 7; 1} and α2 = {0, 5; 1}, we use (18) to construct the corresponding cuts Xi(αi) ={

xi ∈ Xi : μX̃i
(xi) ≥ αi

}
, i = 1, 2 of FSs X̃i, i = 1, 2, respectively. Then, we construct the

sets NE(X(α1; α2)) of Nash equilibria of the games G(X(α1; α2)) = 〈X1(α1), u1; X2(α2), u2〉,
α1 = {0, 7; 1}, α2 = {0, 5; 1} in the form (3)–(4). We get

NE(X(0, 7; 0, 5)) = {((F1, F2); 1)} ∪ {((x1, x2); 0) : (x1, x2) ∈ {P1, A1, F1} × {P2, A2, F2}\{(F1, F2)}}, (24)

NE(X(0, 7; 1)) = {((F1, A2); 1)} ∪ {((x1, x2); 0) : (x1, x2) ∈ {P1, A1, F1} × {P2, A2, F2}\{(F1, A2)}}, (25)

NE(X(1; 0, 5)) = {((A1, F2); 1)} ∪ {((x1, x2); 0) : (x1, x2) ∈ {P1, A1, F1} × {P2, A2, F2}\{(A1, F2)}}, (26)

NE(X(1; 1)) = {((A1, A2); 1)} ∪ {((x1, x2); 0) : (x1, x2) ∈ {P1, A1, F1} × {P2, A2, F2}\{(A1, A2)}}. (27)

According to Remark 2, the Nash equilibria T2FS has the form

Ẽ = {(NE(X(0, 7; 0, 5)) ∪ NE(X(1; 0, 5)); 0, 5), (NE(X(0, 7; 1)); 0, 7), (NE(X(1; 1)); 1)} =
{(((F1, F2); 1); 0, 5), (((A1, F2); 1); 0, 5), (((F1, A2); 1); 0, 7), (((A1, A2); 1); 1)}∪
{(((x1, x2); 0); 1) : (x1, x2) ∈ {P1, A1, F1} × {P2, A2, F2}\{(A1, A2)}}.

(28)
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6. Discussion

In this section, we discuss the Nash equilibria T2FS obtained in Section 5.4 in compari-
son with solutions for crisp game settings. The DM who is analyzing a two-player conflict
in the example might interpret the T2FS Ẽ as follows:

• The strategic profile (A1, A2) is a Nash equilibrium with the degree of truth being
equal to 1;

• The strategic profile (F1, A2) is a Nash equilibrium with the degree of truth being equal
to 0,7;

• The strategic profiles (F1, F2) and (A1, F2) are Nash equilibria with degrees of truth
being equal to 0,5;

• Any strategic profile other than the above is a Nash equilibrium with the degree of
truth being equal to 0.

If this DM perceives sets of players’ strategies crisply, then the following Nash equilib-
ria would exist for him:

• (A1, A2) in the case of a pessimistic assessment of possible strategies of players in the
form of crisp sets {P1, A1} and {P2, A2} of player 1 and 2, respectively;

• (F1, F2) in the case of a pessimistic assessment of possible strategies of players in the
form of crisp sets {P1, A1, F1} and {P2, A2, F2} of player 1 and 2, respectively.

At the same time, the DM does not know degrees of truth of all Nash equilibria and
misses the equilibria (A1, F2) and (F1, A2). Thus, we conclude that game models with fuzzy
sets of strategies are more informative.

7. Conclusions

According to the proposed approach, the set of Nash equilibria for the game with
fuzzy sets of strategies can be decomposed into a collection of embedded T2FSs with
constant secondary grades. These sets are relatively simple to use in practice, in contrast to
general T2FSs. The results we have obtained allow us to break down the Nash equilibria
T2FS based on secondary grades into finite collections of sets. These collections represent
Nash equilibria sets for games corresponding to different cuts of FSs of players’ strategies.
Thus, the proposed approach allows us to determine several solutions to the same game
depending on the required degree of truth. The properties of the Nash equilibria T2FS
are studied.

One possible avenue for future research could involve developing a similar approach
for coalition games. Along with other studies of fuzzy games, the authors hope that the
proposed approach certainly expands the scope of game theory in social sciences, artificial
intelligence, and many other fields.
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1. Introduction

Zadeh [1] pioneered the concept of fuzzy sets and laid the foundation for fuzzy math-
ematics. Following this, Liu [2] introduced the notions of fuzzy invariant subgroups and
fuzzy ideals and subsequently discussed several fundamental properties. Ahsan et al. [3–6]
conducted extensive research on the structures and properties of fuzzy semirings, integrating
fuzzy concepts into semiring structures and catalyzing further research in this area. Liu [7]
provided precise definitions of the operations of L-fuzzy ideals in rings. Consequently, nu-
merous researchers have delved into the studies of fuzzy prime ideals in rings. Swamy [8]
introduced the concepts of fuzzy ideals and fuzzy prime ideals of rings with truth values in a
complete lattice. Furthermore, Malik and Mordeson [9] undertook a thorough examination to
characterize all fuzzy prime ideals and confirmed the key properties associated with them.
Nanda [10,11] contributed by defining fuzzy fields and subsequently introduced the notions
of fuzzy algebras and fuzzy ideals over fuzzy fields. Biswas [12] enhanced the definitions of
fuzzy fields and fuzzy linear spaces. Subsequently, Kuraoka and Kuroki [13] introduced fuzzy
quotient rings derived from fuzzy ideals and investigated the relationship between fuzzy
quotient rings and fuzzy ideals. Gu and Lu [14] raised concerns regarding the validity of
Nanda’s definition of fuzzy fields, prompting redefinitions of fuzzy fields and fuzzy algebras.
Then, they proved that the homomorphic image is a fuzzy algebra. Moreover, researchers
have delved into the studies of fuzzy quotient algebras. In subsequent works, scholars pri-
marily focused on exploring fuzzy ideals in semigroups [15–18]. Zhou, Chen, and Chang [19]
introduced the concepts of L-fuzzy ideals and L-fuzzy subalgebras. Additionally, Addis,
Kausar, and Munir [20] provided the concept of homomorphic kernels on fuzzy rings and
proved three homomorphism theorems. Korma, Parimi, and Kifetew [21] conducted a study
on the properties of homomorphisms on fuzzy lattices and their quotients. As a result, three
isomorphism theorems regarding the quotients of fuzzy lattices were developed by them.

Adak, Nilkamal, and Barman [22] conducted a research on fuzzy semiprime ideals of
ordered semigroups. Hamidi and Borumand [23] explored the properties of EQ-algebras.
Kumduang and Chinram [24] investigated fuzzy ideals and fuzzy congruences in Menger
algebras. Furthermore, various scholars [25–27] have examined alternative approaches to
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analyzing distinct algebraic structures. Since associative algebra is a very important class of
algebraic structures, its theories can be applied to group, ring, and semiring structures. It is an
important foundation of modern mathematics. On the other hand, algebraic structures hold a
significant position in mathematics with wide-ranging applications in many disciplines such
as theoretical physics, computer sciences, information sciences, coding theories, and so on.
The study of fuzzy associative algebra is helpful to better understand other fuzzy algebraic
structure theories. This serves as ample motivation for us to revisit assorted concepts and
findings from the realms of abstract algebras, thereby extending their applications to the
broader framework of fuzzy sets.

In this paper, we provide the preliminaries in Section 2. In Section 3, we introduce the
concepts of fuzzy subalgebras and fuzzy ideals, and then we discuss their properties. The
quotients constructed by fuzzy ideals are presented in Section 4. In Section 5, we provide
three isomorphism theorems of fuzzy algebras.

2. Preliminaries

In this section, we provide fundamental theoretical knowledge, serving as the basis
for subsequent sections.

Definition 1 ([28]). Let (L,≤) be a poset. A poset (L,≤,∧,∨) is a lattice if any two elements a, b
have a least upper bound a ∨ b and a greatest lower bound a ∧ b, which we denote as L for short.
A lattice L is called a complete lattice if each of its subsets S has ∨S and ∧S, where ∨S and ∧S
represent the least upper bound and the greatest lower bound of all elements in S, respectively. In
particular, ∨∅ and ∧∅ represent the smallest element 0 and the largest element 1 of L, respectively.

Definition 2 ([29]). Let X be a nonempty set and L be a complete lattice. A fuzzy subset of X is a
function μ : X → L, where μ is called the membership function, X is called the carrier of μ, L is
called the truth set of μ, and for all x belonging to X, μ(x) is called the degree of membership of x.

We use FL(X) = {μ | μ : X → L} to represent the set of all membership functions on X.

Definition 3 ([29]). We define operations ∧, ∨ on FL(X) as follows:

μ(x) ∨ μ′(x) = max
{

μ(x),μ′(x)
}

,

μ(x) ∧ μ′(x) = min
{

μ(x),μ′(x)
}

,

μ̄(x) = 1− μ(x),

for all x ∈ X, μ, μ′∈FL(X).

Definition 4 ([30]). Let A be a linear space on a field F, in which the multiplication operation is
defined as (α, β) → αβ, and it satisfies the axioms

(1) α(β + γ) = αβ + αγ,
(2) (α + β)γ = αγ + βγ,
(3) (kα)β = α(kβ) = k(αβ),
(4) α(βγ) = (αβ)γ,

for all α, β, γ ∈ A, k ∈ F; then, A is called an associative algebra over F.

Definition 5. Let A and B be associative algebras. Then, B is a subalgebra of A if B ⊆ A, and
every fundamental operation of B is the restriction of the corresponding operation of A.

3. Fuzzy Subalgebras and Fuzzy Ideals

In this section, we first give the concept of fuzzy associative algebras. Secondly, we
define fuzzy subalgebras, fuzzy homomorphisms, and fuzzy ideals in fuzzy associative
algebras and prove that the intersections of fuzzy subalgebras are fuzzy subalgebras, the
intersections of fuzzy ideals are fuzzy ideals, and both the homomorphic images and
preimages of fuzzy ideals are fuzzy ideals.
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Definition 6. Let A be an associative algebra over the number field F and L be a complete lattice.
μA ∈ FL(A) is a fuzzy algebra on A, satisfying

(1) μA(a1)∧μA(a2)≤μA(a1 + a2),
(2) μA(a1)∧μA(a2)≤μA(a1 · a2),
(3) μA(a1)≤μA(k · a1),
(4) μA(e) = 1;

for all a1, a2∈A, k ∈ F, e is a constant in A, and we denote it as (A, μA).

Remark 1. If A is a ring, then it satisfies (1), (2), and (4) of Definition 6; if A is a group, then it
satisfies (1), (4) or (2), (4) of Definition 6; if A is a semiring, then it satisfies (1), (2), and (4) of
Definition 6, and it is a commutative semigroup under addition; and if A is an associative algebra,
then it is a commutative group under addition, and the associative algebra has one more scalar
multiplication operation than a semiring.

Definition 7. Let A be an associative algebra, B be a subalgebra of A, L be a complete lattice, and
μA|B ∈ FL(A); then, (B, μA|B) is a fuzzy subalgebra of (A, μA).

Definition 8. Let (A, μA), (B, μB) be fuzzy algebras and a function α : A → B be a homomor-
phism from A to B. A mapping α : (A, μA) → (B, μB) is called a fuzzy homomorphism from
(A, μA) to (B, μB) if

μA(a) ≤ μB
(
α(a)

)
,

for all a ∈ A.

Example 1. The addition, multiplication, and scalar multiplication of polynomial sets over a field F
form associative algebras.

Let f1(x) = a1x2 + b1x+ c1 and f2(x) = a2x2 + b2x+ c2; then,
(

f1(x), μ1
)

and
(

f2(x), μ2
)

are fuzzy algebras. Suppose that α :
(

f1(x), μ1
)
→
(

f2(x), μ2
)

and μ2( f2(x)) = 1.5
(

μ1
(

f1(x)
))

,

for any ax2 + bx + c ∈ f1(x) and μ2
(
α(ax2 + bx + c)

)
= 1.5μ1

(
ax2 + bx + c

)
; thus, α is a

fuzzy homomorphism.

Remark 2. (1) A fuzzy homomorphism α : (A, μA) → (B, μB) is called a fuzzy monomorphism
from (A, μA) to (B, μB) if α : A → B is an injection;

(2) A fuzzy homomorphism α : (A, μA) → (B, μB) is called a fuzzy epimorphism from
(A, μA) to (B, μB) if α : A → B is a surjection;

(3) A fuzzy homomorphism α : (A, μA) → (B, μB) is called a fuzzy isomorphism from
(A, μA) to (B, μB) if α : A → B is a bijection.

Remark 3. (1) For all a ∈ A, μB
(
α(a)

)
=
∨

μA

(
α−1(α(a)

))
if a mapping α : (A, μA) →

(B, μB) is a fuzzy homomorphism;
(2) For all a ∈ A, μB(α(a)) = μA(a) if a mapping α : (A, μA) → (B, μB) is a fuzzy

isomorphism.

Definition 9. Let A be an associative algebra, R be a subalgebra of A, L be a complete lattice, and
a fuzzy set of R be a function μR : R → L. Then,

(1) (R, μR) is a fuzzy left ideal of (A, μA) if μR(a · b) ≥ μR(b) for all a ∈ A, b ∈ R;
(2) (R, μR) is a fuzzy right ideal of (A, μA) if μR(a · b) ≥ μR(a) for all a ∈ R, b ∈ A;
(3) (R, μR) is a fuzzy ideal of (A, μA) if μR(a · b) ≥ μR(a) ∨ μR(b) for all a ∈ R, b ∈ R.

Theorem 1. Let (A, μA) be a fuzzy algebra and {(Bi, μBi )|i ∈ I} be a set of fuzzy subalgebras of
(A, μA). Then,

∧
i∈I

(Bi, μBi ) is a fuzzy subalgebra of (A, μA).
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Proof. It is obvious that
∧
i∈I

Bi ⊂ A and
∧
i∈I

Bi is a subalgebra of A. Then, we have

∧
i∈I

μBi (ai + bi) ≥
∧
i∈I

(
μBi (ai) ∧ μBi (bi)

)
=
∧
i∈I

μBi (ai) ∧
∧
i∈I

μBi (bi),

∧
i∈I

μBi (ai · bi) ≥
∧
i∈I

(
μBi (ai) ∧ μBi (bi)

)
=
∧
i∈I

μBi (ai) ∧
∧
i∈I

μBi (bi),

and ∧
i∈I

μBi (kai) = μB1(ka1) ∧ . . . ∧ μBn(kan)

≥ μB1(a1) ∧ . . . ∧ μBn(an)

=
∧
i∈I

μBi (ai);

for all ai, bi ∈ Bi, k ∈ F, and
∧
i∈I

μBi (e) = 1.

In conclusion,
∧
i∈I

(Bi, μBi ) is a fuzzy subalgebra of (A, μA).

Theorem 2. Let (A, μA) be a fuzzy algebra and {(Ri, μRi )|i ∈ I} be a set of fuzzy ideals of
(A, μA). Then,

∧
i∈I

(Ri, μRi ) is a fuzzy ideal of (A, μA).

Proof. It is easy to obtain that
∧
i∈I

Ri is a subalgebra of A. Then, we have

∧
i∈I

μRi (ai · bi) ≥
∧
i∈I

(
μRi (ai) ∨ μRi (bi)

)
=
∧
i∈I

μRi (ai) ∨
∧
i∈I

μRi (bi),

for all ai, bi∈Ri.
In conclusion,

∧
i∈I

(Ri, μRi ) is a fuzzy ideal of (A, μA).

Remark 4. Let (A, μA) be a fuzzy algebra and {(Bi, μBi )|i ∈ I} be a set of fuzzy subalgebras of
(A, μA) [respectively, let {(Ri, μRi )|i ∈ I} be a set of fuzzy ideals of (A, μA)]. Then,

∨
i∈I

(Bi, μBi )

may not be a fuzzy subalgebra of (A, μA) [respectively,
∨
i∈I

(Ri, μRi ) may not be a fuzzy ideal of

(A, μA)].

Example 2. Consider polynomial algebras in Example 1, where addition, multiplication, and scalar
multiplication are defined in a conventional manner. Consider that two of these fuzzy subalgebras,
(F1, μ1) and (F2, μ2) are sets of fuzzy polynomial algebras:

(1) (F1, μ1): The fuzzy degree of the fuzzy subsets of all constant polynomials is 1; the fuzzy
degree of the other polynomials is 0.

(2) (F2, μ2): The fuzzy degree of fuzzy subsets of all linear polynomials is 1; the fuzzy degree
of the other polynomials is 0.

Obviously, both (F1, μ1) and (F2, μ2) are fuzzy subalgebras. However, (F1, μ1) ∨ (F2, μ2) is
not a fuzzy subalgebra; for example, the fuzzy degree of quadratic polynomial x2 is 0 in (F1, μ1) ∨
(F2, μ2); however, x2 is neither a constant polynomial nor a linear polynomial.
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Remark 5. One can provide an example of fuzzy ideals by following the construction method
described in Example 2.

Theorem 3. Let (A, μA), (B, μB) be fuzzy algebras, f : (A, μA) → (B, μB) be a fuzzy epimor-
phism, and (R, μR) be a fuzzy ideal of (A, μA). Then, ( f (R), μ f (R)) is a fuzzy ideal of (B, μB).

Proof. It is easy to obtain that f (R) is a subalgebra of B.
Suppose that a, b ∈R; thus, f (a), f (b) ∈ f (R). Then,

μ f (R)
(

f (a) · f (b)
)
=

∨
f (z)= f (a)· f (b)

μR(z)

=
∨

z=a·b
μR(a · b)

≥
∨

z=a·b

(
μR(a) ∨ μR(b)

)
=
(∨

μR(a)
)
∨
(∨

μR(b)
)

= μ f (R)
(

f (a)
)
∨ μ f (R)

(
f (b)

)
.

In conclusion, ( f (R), μ f (R)) is a fuzzy ideal of (B, μB).

Theorem 4. Let (A, μA), (B, μB) be fuzzy algebras, f : (A, μA) → (B, μB) be a fuzzy homo-
morphism, and (R, μR) be a fuzzy ideal of (B, μB). Then, ( f−1(R), μ f−1(R)) is a fuzzy ideal of
(A, μA).

Proof. It is easy to obtain that f−1(R) is a subalgebra of A.
Suppose that a, b ∈ f−1(R); thus, f (a), f (b) ∈ R. Then, from Remark 3(1), we have∨

μ f−1(R)(a · b) = μR
(

f (a · b)
)

= μR
(

f (a) · f (b)
)

≥ μR
(

f (a)
)
∨ μR

(
f (b)

)
=
∨

μ f−1(R)(a) ∨
∨

μ f−1(R)(b).

In conclusion, ( f−1(R), μ f−1(R)) is a fuzzy ideal of (A, μA).

4. Quotients of Fuzzy Algebras

In this section, we define the quotients constructed by fuzzy ideals and establish the exis-
tences of fuzzy homomorphisms and fuzzy isomorphisms between these quotient structures.

Definition 10. Let (A, μA) be a fuzzy algebra and (R, μR) be a fuzzy ideal of (A, μA). We define
an addition, a multiplication, and a scalar multiplication operations on A/R as follows:

(1) (a · R) + (b · R) = (a + b) · R,
(2) (a · R) · (b · R) = (a · b) · R,
(3) k(a · R) = (ka) · R,

for all a, b ∈ A, k ∈ F.

Theorem 5. Let (A, μA) be a fuzzy algebra, (R, μR) be a fuzzy ideal of (A, μA). There exists an
a ∈ A such that μA(a) = 1, μA/R is defined by

μA/R(a′/R) =

⎧⎨⎩ 1, a′ ∈ R,
sup
b∈R

μA(a′ · b), a′ /∈ R, ;

then, (A/R, μA/R) is a fuzzy algebra, which is called a fuzzy quotient algebra of (A, μA).
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Remark 6. First, we prove that the operations on A/R are well-defined.
Let a′, a′′, b′, b′′ ∈ A, r ∈ R, a′ · r and b′ · r belong to the same class, a′′ · r and b′′ · r belong

to the same class, thus,
μA(a′ · r) = μA(b′ · r), μA(a′′ · r) = μA(b′′ · r),

sup
r∈R

μA(a′ · r) = sup
r∈R

μA(b′ · r), and sup
r∈R

μA(a′′ · r) = sup
r∈R

μA(b′′ · r).

(1) If a′, b′ ∈ R, a′′, b′′ ∈ R, then
μA
(
(a′ · a′′) · r

)
= 1 = μA

(
(b′ · b′′) · r

)
.

(2) If a′, b′ /∈ R, a′′, b′′ /∈ R, then
sup
r∈R

μA
(
(a′ · a′′) · r

)
= sup

r∈R
μA
(
a′ · (a′′ · r)

)
= sup

a′′ ·r=r̄,
r̄∈R

μA(a′ · r̄),

sup
r∈R

μA
(
(b′ · b′′) · r

)
= sup

r∈R
μA
(
b′ · (b′′ · r)

)
= sup

b′′ ·r= ¯̄r,
¯̄r∈R

μA(b′ · ¯̄r),

and a′ · r̄ ∈ a′ ·R, b′ · ¯̄r ∈ b′ ·R , then sup
a′′·r=r̄,

r̄∈R

μA(a′ · r̄) = sup
b′′·r=¯̄r,

¯̄r∈R

μA(b′ · ¯̄r), thus, sup
r∈R

μA
(
(a′ · a′′) · r

)
= sup

r∈R
μA
(
(b′ · b′′) · r

)
, we can obtain that the multiplication operation is well-defined. In the same

way, we can obtain that addition and scalar multiplication operations are well-defined.
Next, we prove Theorem 5.

Proof. Let us prove that the result under multiplication is true.
Suppose that a1, a2 ∈ A.
(1) If a1, a2 ∈ R, then

μA/R
(
(a1 · R) · (a2 · R)

)
= μA/R

(
(a1 · a2) · R

)
= 1;

thus, μA/R(a1 · R) ∧ μA/R(a2 · R) ≤ μA/R((a1 · R) · (a2 · R)).
(2) If a1 ∈ R, a2 /∈ R, then

μA/R
(
(a1 · R) · (a2 · R)

)
= sup

b∈R
μA
(
(a1 · a2) · b

)
≥ sup

a1∈R,a2 /∈R
μA(a1 · a2

)
∧ sup

b∈R
μA(b)

≥ sup
a1∈R,a2 /∈R

μA(a1 · a2) ∧ 1

= μA/R(a2 · R).

In addition, μA/R(a1 · R) = 1; then, μA/R(a1 · R) ∧ μA/R(a2 · R) = μA/R(a2 · R). Thus,
μA/R(a1 · R) ∧ μA/R(a2 · R) ≤ μA/R

(
(a1 · R) · (a2 · R)

)
.

In conclusion, the result under multiplication is true.
Similarly, we can prove that the results under addition and scalar multiplication are

true.
Thus, (A/R, μA/R) is a fuzzy algebra.

Remark 7. The definition of μA/R in Theorem 5 conforms to the Zadeh extension principle.

Theorem 6. Let (A, μA) be a fuzzy algebra; there exists an a ∈ A such that μA(a) = 1. Let
(R, μR) be a fuzzy ideal of (A, μA) and (A/R, μA/R) be a fuzzy quotient algebra of (A, μA). μA/R
is defined by

μA/R(a′/R) =

⎧⎨⎩ 1, a′ ∈ R,
sup
b∈R

μA(a′ · b), a′ /∈ R, .

We define a mapping as follows:

v : (A, μA) → (A/R, μA/R), v(a′) = a′/R,

69



Mathematics 2024, 12, 1125

for all a′ ∈ A; then, v is a fuzzy homomorphism.

Proof. First, it is easy to obtain that v is a homomorphism.
Next, we prove that v is a fuzzy homomorphism.
(1) If a1, a2∈ R, then

μA/R
(
(a1 · R) · (a2 · R)

)
= μA/R

(
(a1 · a2) · R

)
= 1.

Thus, μA(a1) ∧ μA(a2) ≤ μA/R
(
(a1 · R) · (a2 · R)

)
.

(2) If a1 ∈ R, a2 /∈ R, then

μA/R
(
(a1 · R) · (a2 · R)

)
= sup

b∈R
μA
(
(a1 · a2) · b

)
≥ sup

a1∈R
μA(a1) ∧ sup

a2 /∈R
μA(a2) ∧ sup

b∈R
μA(b)

= sup
a1∈R

μA(a1) ∧ sup
a2 /∈R

μA(a2) ∧ 1

≥ μA(a1) ∧ μA(a2).

Thus, μA(a1) ∧ μA(a2) ≤ μA/R
(
(a1 · R) · (a2 · R)

)
.

In conclusion, the result under multiplication is true. Similarly, we can prove that the
results under addition and scalar multiplication are true.

Hence, v is a fuzzy homomorphism.

Theorem 7. Let (A, μA), (B, μB) be fuzzy algebras, f ′ : (A, μA) → (B, μB) be a fuzzy ho-
momorphism, (R, μR) and (R′, μR′) be fuzzy ideals of (A, μA) and (B, μB), respectively, and
(A/R, μA/R) and (B/R′, μB/R′) be fuzzy quotient algebras of (A, μA) and (B, μB), respectively.
A mapping f : (A/R, μA/R) → (B/R′, μB/R′) is defined as follows:

f (a · R) = b · R′, f (R) ⊆ R′, f (a · R) = f (a) · R,

for all a · R ∈ A/R, b · R′ ∈ B/R′, μB/R′ is defined by

μB/R′(b/R′) =

⎧⎨⎩ 1, b ∈ R′,
sup

f (a/R)=b/R′
μA(a · R), b /∈ R′, ;

then, f is a fuzzy homomorphism.

(A, μA)
f ′−−−−→ (B, μB)

α

⏐⏐6 ⏐⏐6β

(A/R, μA/R)
f−−−−→ (B/R′, μB/R′)

Proof. First, it is easy to obtain that f is a homomorphism.
Next, we prove that f is a fuzzy homomorphism.
Let us prove that the result under multiplication is true.
(1) If b ∈ R′, then μB/R′(b · R′) = 1; thus, μA/R(a · R)≤ μB/R′(b · R′).
(2) If b /∈ R′, then

μB/R′(b · R′) = sup
f (a·R)=b·R′

μA/R(a · R)

= ∨
f (a·R)=b·R′

μA/R(a · R)

≥ μA/R(a · R).
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In conclusion, the result under multiplication is true.
Similarly, we can prove that the results under addition and scalar multiplication

are true.
Hence, f is a fuzzy homomorphism.

Theorem 8. Let (A, μA), (B, μB) be fuzzy algebras, f : (A, μA) → (B, μB) be a fuzzy homo-
morphism, and (R, μR) be a fuzzy ideal of (B, μB). Thus, ( f−1(R), μ f−1(R)) is a fuzzy ideal of
(A, μA), and (A/ f−1(R), μ1) is a fuzzy quotient algebra. We define a mapping as follows:

α : (A/ f−1(R), μ1) → (B/R, μ2), α
(
a/ f−1(R)

)
= b/R,

for all a/ f−1(R) ∈ A/ f−1(R), and μ2 is defined as follows:

μ2(b/R) =

⎧⎪⎨⎪⎩
1, b ∈ R,

sup
α(a′/ f−1(R))=b′/R,b′∈R

μ1
(
(a · a′) · f−1(R)

)
, b /∈ R, .

If b ∈ R, then μ1
(
α−1(b/R)

)
= 1, and there exists an a′′/ f−1(R) ∈ A/ f−1(R) such that

μ1
(
a′′/ f−1(R)

)
= 1; then, α is a fuzzy isomorphism.

Proof. First, we prove that α is a homomorphism.
Suppose that a1/ f−1(R), a2/ f−1(R),(a1 · a2)/ f−1(R),(a1 + a2)/ f−1(R) ∈ A/ f−1(R),

b1/R, b2/R, (b1 + b2)/R,(b1 · b2)/R,b/R, b∗/R ∈ B/R,α
(
a1/ f−1(R)

)
= b1 ·R, α

(
a2/ f−1(R)

)
=

b2 ·R,α
(
(a1 · a2)/ f−1(R)

)
= b ·R, α

(
(a1 + a2)/ f−1(R)

)
= b∗ ·R, b1 · b2 = b, b1 + b2 = b∗; then,

we have

α
((

a1/ f−1(R)
)
·
(
a2/ f−1(R)

))
= α
(
(a1 · a2)/ f−1(R)

)
= b · R

= (b1 · b2) · R

= (b1 · R) · (b2 · R)

= α
(
a1/ f−1(R)

)
· α
(
a2/ f−1(R)

)
,

α
((

a1/ f−1(R)
)
+
(
a2/ f−1(R)

))
= α
(
(a1 + a2)/ f−1(R)

)
= b∗ · R

= (b1 + b2) · R

= (b1 · R) + (b2 · R)

= α
(
a1/ f−1(R)

)
+ α
(
a2/ f−1(R)

)
,

and
α
(

k
(
a1/ f−1(R)

))
= α
(

k
(
a1/ f−1(R)

))
= (kb1) · R

= kα
(
a1/ f−1(R)

)
.

Thus, α is a homomorphism.
Next, we prove that α is a bijection.
(i) For any a1/ f−1(R), a2/ f−1(R) ∈ A/ f−1(R), if a1/ f−1(R) �= a2/ f−1(R), then

α
(
a1/ f−1(R)

)
�= α
(
a2/ f−1(R)

)
; thus, α is an injection.

(ii) For any b/R ∈ B/R, there exists an a1/ f−1(R) ∈ A/ f−1(R) such that α
(
a1/ f−1(R)

)
=

b1/R; thus, α is a surjection.
From the above proof, we can obtain that α is an isomorphism.
Finally, we prove that α is a fuzzy isomorphism.
Suppose that b1, b2 ∈ B; then,
(1) If b1, b2 ∈ R, then
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μ2
(
(b1 · R) · (b2 · R)

)
= μ2

(
(b1 · b2) · R

)
= 1 = μ1

(
(a1 · a2) · f−1(R)

)
.

Thus, μ2
(
(b1 · R) · (b2 · R)

)
= μ1

(
(a1 · a2) · f−1(R)

)
.

(2) If b1 ∈ R, b2 /∈ R, since (A/ f−1(R), μ1
)

is a fuzzy algebra, we have
μ1
(
(a1 · a2 · a′) · f−1(R)

)
≥ μ1

(
a1 · f−1(R)

)
∧ μ1

(
a2 · f−1(R)

)
∧ μ1

(
a′ · f−1(R)

)
; thus,

μ2
(
(b1 · R) · (b2 · R)

)
= μ2

(
(b1 · b2) · R

)
= sup μ1

(
(a1 · a2 · a′) · f−1(R)

)
≥ sup

α
(

a1· f−1(R)
)
=b1·R,

μ1
(
a1 · f−1(R)

)
∧ sup

α
(

a2· f−1(R)
)
=b2·R

μ1
(
a2 · f−1(R)

)
∧ sup

α
(

a′ · f−1(R)
)
=b′ ·R,b′∈R

μ1
(
a′ · f−1(R)

)
= 1∧ sup

α
(

a2· f−1(R)
)
=b2·R

μ1
(
a2 · f−1(R)

)
∧ 1

= sup
α
(

a2· f−1(R)
)
=b2·R

μ1
(
a2 · f−1(R)

)
≥ μ1

(
a2 · f−1(R)

)
.

From the definition of fuzzy algebras, we have μ1
(
(a1 · a2) · f−1(R)

)
≥ μ1

(
a1 ·

f−1(R)
)
∧ μ1

(
a2 · f−1(R)

)
; thus, μ1

(
(a1 · a2) · f−1(R)

)
≤ μ2

(
(b1 · R) · (b2 · R)

)
.

Conversely, whether b1 · b2 ∈ R or b1 · b2 /∈ R, there always exists an (a1 · a2) · f−1(R) ∈
A/ f−1(R) such that μ1

(
(a1 · a2) · f−1(R)

)
≤ μ2

(
(b1 · R) · (b2 · R)

)
.

In conclusion, the result under multiplication is true.
Similarly, we can prove that the results under addition and scalar multiplication

are true.
In conclusion, α is a fuzzy isomorphism.

5. Homomorphism Theorems

In this section, we give the concept of homomorphic kernels and prove that they are
fuzzy ideals. In addition, three homomorphism theorems are proved.

Definition 11. Let (A,μA),(B,μB) be fuzzy algebras, α : (A, μA) → (B, μB) be a fuzzy homo-
morphism, and L be a complete lattice. Then, the kernel of α is defined as follows:

Kerα = {a ∈ A | α(a) = 0}, μ : Kerα → L, μ(a) = 1,
which we denote as (Kerα,μ) for short.

Example 3. Let (A,μA),(B,μB) be fuzzy matrices, α : (A, μA) → (B, μB), and for all (a, μa),
(c, μc)∈ (A, μA), α

(
(a, μa)

)
= (a, μa) · (c, μc) = (b, μb); then, Kerα = {(c, μc) ∈ (A, μA)|(a, μa) ·

(c, μc) = 0}, and the 0 here represents the null matrix.

Theorem 9. (Kerα,μ) is a fuzzy ideal of (A, μA).

Proof. Suppose that a, b ∈ Kerα; then,

μ(a · b) ≥ μ(a) ∧ μ(b) = 1∧ 1 = 1 = μ(a) ∨ μ(b).

Thus, (Kerα,μ) is a fuzzy ideal of (A, μA).
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Theorem 10. Let (A, μA), (B, μB) be fuzzy algebras and α : (A, μA) → (B, μB) be a fuzzy
epimorphism. There exists an a ∈ A such that μA(a) = 1, (A/Kerα,μA/Kerα) is a fuzzy quotient
algebra of (A, μA), and μA/Kerα is defined by

μA/Kerα(a′/Kerα) =

⎧⎨⎩ 1, a′ ∈ a/Kerα,
sup

b∈a/Kerα

μA(a′ · b), a′ /∈ a/Kerα, .

If a′ ∈ a/Kerα, then, μB(α(a′)) = 1. v : (A, μA) → (A/Kerα,μA/Kerα) is a fuzzy
homomorphism, and v(a′) = a′/Kerα for all a′ ∈ A. We define a mapping as follows:

β:(A/Kerα,μA/Kerα) → (B,μB), β
(
a′/Kerα

)
= α
(
a′
)
,

for all a′ ∈ A; then, β is a fuzzy isomorphism.

(A, μA)
α ��

ν ��

(B, μB)��

β

(A/Kerα, μA/Kerα)

Proof. Suppose that a1, a2 ∈ A. We can obtain that β is a homomorphism using Theorem 6.

We only need to prove that β is a bijection and μB

(
β
(
(a1 · a2)/Kerα

))
= μA/Kerα

(
(a1 ·

a2)/Kerα
)
.

First, we prove that β is a bijection.
(i) For any a1, a2 ∈ A, if a1/Kerα �= a2/Kerα, then, α(a1) �= α(a2); thus, β is an injec-

tion.
(ii) For any c ∈ B, since α is surjective, there exists an a′ ∈ A such that α(a′) = c. Since

a′/Kerα ∈ A/Kerα, then β(a′/Kerα) = α(a′) = c; thus, β is a surjection.

Next, we prove that μB

(
β
(
(a1 · a2)/Kerα

))
= μA/Kerα

(
(a1 · a2)/Kerα

)
.

(1) If a1, a2 ∈ a/Kerα, then μA/Kerα

(
(a1 ·Kerα)·(a2 ·Kerα)

)
= μA/Kerα

(
(a1 · a2)·Kerα

)
=

1. In this case, μB
(
α(a1 · a2)

)
= 1.

Thus, μA/Kerα

(
(a1 · a2) · Kerα

)
=μB

(
β
(
(a1 · a2) · Kerα

))
.

(2) If a1 ∈ a/Kerα, a2 /∈ a/Kerα, then

μA/Kerα

(
(a1 · Kerα) · (a2 · Kerα)

)
= μA/Kerα

(
(a1 · a2) · Kerα

)
= sup

b∈a/Kerα

μA
(
(a1 · a2) · b

)
≥ sup

a1∈a/Kerα

μA(a1) ∧ sup
a2 /∈a/Kerα

μA(a2) ∧ sup
b∈a/Kerα

μA(b)

= sup
a1∈a/Kerα

μA(a1) ∧ sup
a2 /∈a/Kerα

μA(a2) ∧ 1

≥ μA(a1) ∧ μA(a2).

For any a1, a2 ∈ A,

μB
(
α(a1 · a2)

)
= ∨μA

(
α−1(α(a1 · a2)

))
≥ μA(a1) ∧ μA(a2);

then, μA/Kerα

(
(a1 · a2) · Kerα

)
≤μB

(
β
(
(a1 · a2) · Kerα

))
.
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Let β′ : (B, μB) → (A/Kerα, μA/Kerα), and β′(α(a′)) = a′/Kerα for all a′ ∈ A.
(3) If a1, a2 ∈ a/Kerα, then the process of the proof is similar to (1).
(4) If a1 ∈ a/Kerα, a2 /∈ a/Kerα, then

μA/Kerα

(
(a1 · Kerα) · (a2 · Kerα)

)
= μA/Kerα

(
(a1 · a2) · Kerα

)
= sup

b∈a/Kerα

μA((a1 · a2) · b)

≥ sup
a1∈a/Kerα

μA(a1) ∧ sup
a2 /∈a/Kerα

μA(a2) ∧ sup
b∈a/Kerα

μA(b)

= 1∧ sup
a2 /∈a/Kerα

μA(a2) ∧ 1

≥ μA(a2).

From the definition of μB, μB
(
α(a1 · a2)

)
≥ μA(a1) ∧ μA(a2), we have

μB

(
β
(
(a1 · a2) · Kerα

))
= μB

(
α(a1 · a2)

)
≤ μA/Kerα

(
(a1 · a2) · Kerα

)
.

Hence, μB

(
β
(
(a1 · a2) · Kerα

))
= μA/Kerα

(
(a1 · a2) · Kerα

)
.

In conclusion, the result under multiplication is true. Similarly, we can prove that the
results under addition and scalar multiplication are true; thus, β is a fuzzy isomorphism.

Theorem 11. Let (A, μA) be a fuzzy algebra, (R1, μR1) and (R2, μR2) be fuzzy ideals of (A, μA),
(R2, μR2) be a fuzzy subalgebra of (R1, μR1), (A/R1, μ1) and (A/R2, μ2) be fuzzy quotient al-
gebras of (A, μA),

(
(A/R2)/(R1/R2), μ3

)
be a fuzzy quotient algebra of (A/R2, μ2). There

exists an (a′′/R2)/(R1/R2) ∈ (A/R2)/(R1/R2) such that μ3
(
(a′′/R2)/(R1/R2)

)
= 1, μ1 is

defined as follows:

μ1(a/R1) =

⎧⎪⎨⎪⎩
1, a ∈ (a′′/R2)/(R1/R2),

sup
a′∈(a′′/R2)/(R1/R2)

μ3

((
(a · a′)/R2

)
/(R1/R2)

)
, a /∈ (a′′/R2)/(R1/R2), .

We define a mapping as follows:
α :
(
(A/R2)/(R1/R2), μ3

)
→ (A/R1, μ1), α

(
(a/R2)/(R1/R2)

)
= a/R1,

for all (a/R2)/(R1/R2) ∈ (A/R2)/(R1/R2); then, α is a fuzzy isomorphism.

Proof. For any a1, a2 ∈ A, a1/R1, a2/R1 ∈ A/R1,(a1/R2)/(R1/R2),(a2/R2)/(R1/R2) ∈
(A/R2)/(R1/R2), we have α

(
(a1/R2)/(R1/R2)

)
= α

(
(a2/R2)/(R1/R2)

)
⇔ a1/R1 =

a2/R1; thus, α is a well-defined bijection.
Similarly, we can obtain that α is a homomorphism using Theorem 6; thus, α is an

isomorphism.
Next, we prove that α is a fuzzy isomorphism.
(1) If a1, a2 ∈ (a′′/R2)/(R1/R2), then

μ1
(
(a1 · R1) · (a2 · R1)

)
= μ1

(
(a1 · a2) · R1

)
= 1 = μ3

((
(a1 · a2)/R2

)
/(R1/R2)

)
.

Thus, μ1
(
(a1 · R1) · (a2 · R1)

)
= μ3

((
(a1 · a2)/R2

)
/(R1/R2)

)
.

(2) If a1 ∈ (a′′/R2)/(R1/R2), a2 /∈ (a′′/R2)/(R1/R2), since
(
(A/R2)/(R1/R2), μ3

)
is a fuzzy algebra, we have μ3

((
(a1 · a2 · a′)/R2

)
/(R1/R2)

)
≥ μ3

(
(a1/R2)/(R1/R2)

)
∧
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μ3
(
(a2/R2)/(R1/R2)

)
∧ μ3

(
(a′/R2)/(R1/R2)

)
; thus,

μ1((a1 · R1) · (a2 · R1)) = μ1((a1 · a2) · R1)

= sup
a′∈(a′′/R2)/(R1/R2)

μ3

((
(a1 · a2 · a′)/R2

)
/(R1/R2)

)
≥ sup

a1∈(a′′/R2)/(R1/R2)

μ3
(
(a1/R2)/(R1/R2)

)
∧ sup

a2 /∈(a′′/R2)/(R1/R2)

μ3
(
(a2/R2)/(R1/R2)

)
∧ sup

a′∈(a′′/R2)/(R1/R2)

μ3
(
(a′/R2)/(R1/R2)

)
= sup

a1∈(a′′/R2)/(R1/R2)

μ3
(
(a1/R2)/(R1/R2)

)
∧ sup

a2 /∈(a′′/R2)/(R1/R2)

μ3
(
(a2/R2)/(R1/R2)

)
∧ 1

= sup
a1∈(a′′/R2)/(R1/R2)

μ3
(
(a1/R2)/(R1/R2)

)
∧ sup

a2 /∈(a′′/R2)/(R1/R2)

μ3
(
(a2/R2)/(R1/R2)

)
≥ μ3

(
(a1/R2)/(R1/R2)

)
∧ μ3

(
(a2/R2)/(R1/R2)

)
.

Thus, μ3
(
(a1 · R2)/(R1/R2)

)
∧ μ3

(
(a2 · R2)/(R1/R2)

)
≤ μ1

(
(a1 · a2)/R1

)
.

Conversely, whether a1 · a2 ∈ (a′′/R2)/(R1/R2) or a1 · a2 /∈ (a′′/R2)/(R1/R2), there

always exists an a ∈ (a′′/R2)/(R1/R2) such that μ1(a/R1) = μ1
(
(a1 · a2)/R1

)
= μ3

((
(a1 ·

a2)/R2
)
/(R1/R2)

)
.

In conclusion, the result under multiplication is true. Similarly, we can prove that the
results under addition and scalar multiplication are true.

Hence, α is a fuzzy isomorphism.

Theorem 12. Let (A, μA) be a fuzzy algebra, (H, μH) be a fuzzy algebra of (A, μA), and (R, μR)
be a fuzzy ideal of (A, μA); then, (HR/R, μ4) and (H/H ∩ R, μ5) are fuzzy quotient algebras.
We define a mapping as follows:

α′ : (HR/R, μ4) → (H/H ∩ R, μ5), α(hr/r) = h/h ∩ r,
for all hr/r ∈ HR/R, there exists an h′′r/r ∈ HR/R such that μ4(h′′r/r) = 1, and μ5(h/h ∩ r)
is defined by

μ5(h/h ∩ r) =

⎧⎨⎩ 1, h ∈ h′′r/r,
sup

h′∈h′′r/r
μ4
(
(hr · h′r)/r

)
, h /∈ h′′r/r, ;

then, similar to the proof of Theorem 11, we can obtain that α′ is a fuzzy isomorphism.

6. Conclusions

In this paper, we discussed the properties of fuzzy ideals and quotients of fuzzy asso-
ciative algebras. In Section 3, we provided the concepts of fuzzy associative algebras, fuzzy
homomorphisms, and fuzzy ideals over a common number field. In Theorems 1 and 2,
we proved that the intersections of the subalgebras were fuzzy subalgebras and the in-
tersections of fuzzy ideals were fuzzy ideals. In Theorems 3 and 4, we showed that if
f : (A, μA) → (B, μB) is a fuzzy epimorphism, then the homomorphic images and preim-
ages of fuzzy ideals are fuzzy ideals. In Section 4, we defined an addition, a multiplication,
and a scalar multiplication operation on quotient structures constructed by fuzzy ideals. We
proved that the quotient structures created by fuzzy ideals were fuzzy algebras and there
were fuzzy homomorphisms between fuzzy algebras and its fuzzy quotient algebras. In
Theorem 7, we proved that if (R, μR) and (R′, μR′) are fuzzy ideals of (A, μA) and (B, μB),
respectively, then f : (A/R, μA/R) → (B/R′, μB/R′) is a fuzzy homomorphism. In Section 5,
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we defined the concepts of kernels in fuzzy homomorphisms, and in Theorem 9, we proved
that the kernels were fuzzy ideals. In particular, we proved that if α : (A, μA) → (B, μB) is
a fuzzy epimorphism, then A/Kerα is isomorphic to (B, μB). Moreover, we proved two
other homomorphism theorems.

This work helps us to better understand other specific fuzzy algebra structure theories
and provides important theoretical support for the study of other algebraic theories. On
this basis, the classification and representation of fuzzy associative algebras can be studied
in the future.
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29. Negoită, C.V.; Ralescu, D.A. Applications of Fuzzy Sets to Systems Analysis; Birkhäuser: Basel, Switzerland, 1975.
30. Meng, D. Abstract Algebra: Associative Algebra; Science Press: Beijing, China, 2011.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

77



mathematics

Article

The Operational Laws of Symmetric Triangular Z-Numbers

Hui Li 1, Xuefei Liao 2,*, Zhen Li 3, Lei Pan 4, Meng Yuan 5 and Ke Qin 4

1 School of Economics, Shanghai University, Shanghai 200444, China; youlanlihui@shu.edu.cn
2 School of Economics and Management, Zhejiang Ocean University, Zhoushan 316022, China
3 School of Logistics and Maritime Studies, Bahrain Polytechnic, Isa Town 33349, Bahrain;

wesley.lee@polytechnic.bh
4 School of Management, Shanghai University, Shanghai 200444, China; pl239201@shu.edu.cn (L.P.);

2532129158@shu.edu.cn (K.Q.)
5 Qian Weichang College, Shanghai University, Shanghai 200444, China; yuanmeng@shu.edu.cn
* Correspondence: liaoxuefei@zjou.edu.cn; Tel.: +86-21-6613-4414-805

Abstract: To model fuzzy numbers with the confidence degree and better account for information un-
certainty, Zadeh came up with the notion of Z-numbers, which can effectively combine the objective
information of things with subjective human interpretation of perceptive information, thereby improv-
ing the human comprehension of natural language. Although many numbers are in fact Z-numbers,
their higher computational complexity often prevents their recognition as such. In order to reduce
computational complexity, this paper reviews the development and research direction of Z-numbers
and deduces the operational rules for symmetric triangular Z-numbers. We first transform them
into classical fuzzy numbers. Using linear programming, the extension principle of Zadeh, the
convolution formula, and fuzzy number algorithms, we determine the operational rules for the
basic operations of symmetric triangular Z-numbers, which are number-multiplication, addition,
subtraction, multiplication, power, and division. Our operational rules reduce the complexity of
calculation, improve computational efficiency, and effectively reduce the information difference
while being applicable to other complex operations. This paper innovatively combines Z-numbers
with classical fuzzy numbers in Z-number operations, and as such represents a continuation and
innovation of the research on the operational laws of Z-numbers.

Keywords: Z-numbers; symmetric triangular fuzzy numbers; operational laws

MSC: 03E72

1. Introduction

In 1965, Zadeh [1] introduced the theory of fuzzy sets to effectively cope with uncertain
information. The theory highlights the fuzziness and uncertainty of human thinking,
reasoning, and perception of peripheral matters. It extended the characteristic function
from the binary ‘0’ or ‘1’ relationship to the interval ‘0’ to ‘1’ by introducing the concept of
membership degree, thereby quantitatively processing fuzzy information.

Nevertheless, relying solely on membership degree makes it difficult to accurately
describe the uncertainty in practical situations. Therefore, to resolve the uncertainty of
non-membership degree, researchers have made various extensions and derived batches of
theories such as intuitionistic fuzzy sets [2], hesitant fuzzy sets [3], type-2 fuzzy sets [4],
and interval-type intuitionistic fuzzy sets [5]. Moreover, in 2013 Masamichi and Hiroaki [6]
defined the boundaries of a sequence of fuzzy sets in view of the level set of fuzzy sets and
provided the boundaries, derivatives, and properties of the fuzzy set-valued mapping.

The aforementioned theories are only capable of addressing the issue of information
uncertainty, and lack the ability to handle incomplete and unreliable information, which is
typically only accessible in real-world situations. To this end, in 2011 Zadeh [7] introduced
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the notion of Z-numbers to consider the dependability of information. Compared to the
traditional fuzzy sets, Z-numbers add a reliability measure to further enhance the flexibility
and validity in the decision direction. Therefore, Z-numbers with fuzzy constraints are
more flexible and closer to human thinking; this theory has great potential for application
to the information described by probabilistic and fuzzy natural language.

From the current research outcomes on Z-numbers, we have observed four primary
issues of interest. The first involves extensions and special cases of Z-number theory.
Zadeh [7] initially introduced the notions of Z-information and Z+-numbers as defini-
tions derived from Z-numbers. Pal et al. [8] proposed Z-number-based computing with
word algorithms and simulated experimental figures for evaluating demand satisfaction.
Banerjee and Pal [9] introduced decision information into the structure of Z-numbers and
presented the notion of Z*-numbers. Pirmuhammadi et al. [10], Peng, Wang [11], and
Mondal et al. [12] proposed the concept of normal Z-numbers, hesitant uncertain linguistic
Z-numbers, and linguistic hesitant Z-numbers, respectively. Tian et al. [13] introduced
fuzzy ZE-numbers, while Haseli et al. [14–16] proposed a decision support model using
the BCM and MARCOS methods based on fuzzy ZE-numbers. Aliev et al. [17] initiated
a general method for constructing specific functions based on extension of the Z-number
principle. Moreover, Massanet et al. [18] raised a new method for creating hybrid discrete
Z-numbers based on discrete Z-numbers.

The second issue involves the study of various methods for sorting Z-numbers. Bakar
and Gegov [19] developed a multi-layer approach to classifying Z-numbers. Aliev et al. [20]
presented a method to ascertain the sorting of continuous and discrete numbers in Z-
numbers. A novel Z-number ranking method which takes the weights and fuzziness
degree of the prime points and the scalability of fuzzy numbers into account was extended
by Jiang et al. [21]. Ezadi et al. [22] introduced sigmoidal functions and symbolic means for
sorting Z-numbers.

The third issue involves studying various methods for computing Z-numbers.
Aliev et al. [23] developed an approach for the direct computation of Z-numbers by combin-
ing possibility constraints with probability constraints and defined arithmetic operations
for discrete Z-Numbers. Subsequently, the operations of continuous Z-numbers were
further provided by Aliev et al. [24] through discretization. Aiming to reduce computa-
tional complexity and improve computational efficiency, Aliev et al. [25] presented a basic
approach for developing the concept of Z-Numbers and provided examples to demonstrate
the validity of their method using the Hukuhara distance. Qiu et al. [26] presented the
process of computing the generalized difference for discrete and continuous Z-numbers.
Shen and Wang [27] defined multidimensional Z-numbers and proved their basic oper-
ations. Kang et al. [28] presented a methodology of fuzzy set uncertainty using entropy
and considering the effect of fuzzy set measure and range of fuzzy sets. Peng et al. [29]
defined a series of Z-number operational laws on the basis of Archimedean t-norms and t-
conorms. To balance reduced arithmetic complexity with retention of the inherent meaning
of Z-numbers, Zhu et al. [30] put forward a method for approximate Z-number computa-
tion (Z-ACM) in view of kernel density estimation. Based on the idea of transformation,
Kang et al. [31] proposed an improved method for converting Z-numbers into classical
fuzzy numbers, greatly simplified the operations of Z-numbers with the loss of a certain
amount of information, and promoted the application of Z-numbers to a degree.

The fourth issue involves research on the actual applications of Z-numbers.
Zhang et al. [32] combined Z-numbers with the best–worst method and TODIM (an
acronym in Portuguese referring to interactive and multi-criteria decision-making) to
conduct performance evaluation for the technological service platforms. Ashraf et al. [33]
and Nazari-Shirkouhi et al. [34] applied Z-numbers to supplier selection. Combining Z-
numbers with DEMATEL method, Zhu et al. [35], Wang et al. [36], and Akhavein et al. [37]
presented evaluation methods for the co-creative sustainable value propositions of smart
product service systems, human error probability, and sustainable projects ranking. In-
tegrating linguistic Z-numbers and the projection method, Huang et al. [38] built a new
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model for failure mode and effect analysis. Moreover, numerous experts have expanded
the notion of Z-numbers based on hesitant fuzzy sets and used optimization models to
build frameworks for solving multi-criteria decision-making, group decision-making, and
three-way decision-making problems [11,39–44].

Previous research on the operational rules of Z-numbers has mainly focused on
proposing a general method of computation using constraints, then used discretization
to obtain the operational rules of continuous Z-numbers. This category of methods is
extremely complicated, inefficient, and error-prone; for this reason, many researchers have
chosen to combine Z-numbers with other methods in order to derive the operation formulas.
Hence, to improve the efficiency of operation and make it easier to understand, we take
symmetric triangular Z-numbers as our research object and study their operational rules,
including number-multiplication, addition, subtraction, multiplication, power squares,
and division.

The main contribution of our approach is as follows. First, we convert Z-numbers
directly into classical fuzzy numbers using Zadeh’s extension principle and the operational
rules of classical fuzzy numbers for operations of Z-numbers, which does not appear in
any previous related papers. Second, we use many linear correlation methods to calculate
the symmetric triangular Z-numbers, which is simple in both calculation principle and
process and as such can reduce the complexity of the operations. Third, we derive the
formulas of the basic operations for Z-numbers, which can be directly used to simplify the
complex operations involved in many realistic problems and expand the application areas
of Z-numbers. Our calculation method can reduce uncertainty and prevent information
loss while processing information, which can minimize information differences.

We structure the remainder of this paper as follows: Section 2 briefly introduces the
related definitions and notation; Section 3 deduces the operational rules for symmetric
triangular Z-numbers; finally, Section 4 draws the conclusions.

2. Preliminaries

To begin, a number of fundamental concepts are first concisely introduced.

Definition 1 (Zadeh [1]). In a given domain U, the fuzzy number A can be defined as

A = {〈t, μA(t)〉|t ∈ U},

where μA : U → [0, 1] is the membership function of A’, while μA(t) depicts the degree of
belongingness of t ∈ U in A.

Definition 2 (Van Laarhoven and Pedrycz [45]). A is a triangular fuzzy number which can be
defined as (ap, aq, ar); its membership function can be determined as

μA(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, t ∈ (−∞, ap)

t − ap

aq − ap
, t ∈ (ap, aq)

ar − t
ar − aq

, t ∈ (aq, ar)

0, t ∈ (ar,+∞),

where ap and ar are respectively the upper and lower bounds of A. When ar − aq = aq − ap, A is a
symmetric triangular fuzzy number.

Definition 3 (Zadeh [7]). A Z-number Z is an ordered fuzzy number pair, denoted as Z = (A, B),
where A,B could be either natural languages or numbers. Z is associated with T, which is a real-
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valued uncertain variable. Fuzzy number A represents the fuzzy constraint R(T) on the values
which T can take, defined as T is A, represented as

R(T) : T is A → Poss(T = t) = μA(t),

where μA is the membership function of A and t is a generic value of T. When T is a random
variable, the probability distribution of T represents a probabilistic restriction on T, which can be
expressed as

R(T) : T is p,

where p is the probability density function of T. Under this circumstance,

R(T) : T is p, p → Prob(t ≤ T ≤ t + dt) = p(t)dt.

If T is a random variable, then T is A represents a fuzzy event in R, the probability of which
can be defined as

p =
∫

R
μA(t)pT(t)dt,

where pT is the underlying probability density of T. Fuzzy number B is the fuzzy restriction on the
reliability measure of A, expressed as

B =
∫

R
μA(t)pT(t)dt, (1)

where pT is not known, whereas the constraint on pT is known, which can be presented in Figure 1.

Figure 1. The membership function of A and probability density function of T.

In effect, Z = (A, B) can be regarded as a restriction on T, defined as

Prob(T is A) is B.

Definition 4 (Aliev et al. [23]). In a Z-number represented by Z = (A, B), if the fuzzy restriction
A of the real-valued indefinite variable T on the domain U is a discrete fuzzy set

μA : {t1, t2, · · · , tn} → [0, 1], and{t1, t2, · · · , tn} ∈ R
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and B is the reliability measure for A, which is also a discrete fuzzy set

μB : {b1, b2, · · · , bn} → [0, 1], and{b1, b2, · · · , bn} ∈ [0, 1],

then Z = (A, B) is a discrete Z-number.

Definition 5 (Aliev et al. [24]). In a Z-number represented by Z = (A, B), if the fuzzy restriction
A of the real-valued indefinite variable T on the domain U is a continuous fuzzy set

μA : U → [0, 1]

and B is the reliability measure for A, which is also a continuous fuzzy set, then Z = (A, B) is a
continuous Z-number.

Definition 6 (Zadeh [7]). Let ζ and τ be fuzzy sets with membership functions μ and v, and let
f : �2 → � be a function; then, f (ζ, τ) is also a fuzzy set with membership function

π(h) = sup{μ(s) ∧ v(t)|h = f (s, t)}, (2)

where s and t are the values within the range of ζ and τ.

Definition 7 (Wang [46]). Let ξ be a fuzzy number; its α-level sets (or α-cuts) ξα can be ex-
pressed as

ξα =
{

t ∈ �|μξ(t) ≥ α
}

= [min
{

t ∈ �|μξ(t) ≥ α
}

, max
{

t ∈ �|μξ(t) ≥ α
}
] = [ξL

α , ξR
α ],

where μξ(t) is the membership function of ξ and � is the universe of discourse. The functions ξL
α

and ξR
α have the following attributes:

(a) ξL
α is a monotonously growing left continuous function,

(b) ξR
α is a monotonously lessening left continuous function,

(c) ξL
α ≤ ξR

α , α ∈ [0, 1].

Example 1 (Aliev et al. [24]). Given that A = (al , am, au) is a symmetric triangular fuzzy
number, an α-cut Aα = {t ∈ �|μA(t) ≥ α} is a closed interval:

Aα = [AL
α , AR

α ] = [al + α(am − al), au + α(au − am)]

= [am − (1− α)(am − al), am + (1− α)(au − am)].

Definition 8 (Kang et al. [31]). The basic idea of translating Z-numbers into classical fuzzy
numbers is as follows. First, the reliability part B is transformed into a crisp value by defuzzification,
then the weight of the crisp value is multiplied by the restriction part A, and finally, using the
approximate invariance property of the fuzzy expectation, the product is converted into a commonly
used classical fuzzy number.

Step 1: Assuming that A = (ak, al , am, an) is a trapezoid fuzzy number and B = (bl , bm, bn)
is a triangular fuzzy number, B can be transformed into a crisp number by the center of gravity
method with

γ =

∫
tμB(t)dt∫
μB(t)dt

=

∫ bm

bl

t
t − bl

bm − bl
dt +

∫ bn

bm
t

bn − t
bn − bm

dt

1
2
(bn − bl)

.
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Thus, the gravity center of B = (bl , bm, bn) is computed as

γ =
bn − bl

2
. (3)

Step 2: Taking the gravity center value γ of the reliability part B as the weight of the restriction
part A, the weighted Z-value can be written as

Zγ = {(t, μAγ)|μAγ(t) = γμA(t), t ∈ [0, 1]}. (4)

Step 3: Because A = (ak, al , am, an) is a trapezoidal fuzzy number, Zγ can be calculated by

Zγ =
√

γ × A = (
√

γ × ak,
√

γ × al ,
√

γ × am,
√

γ × an). (5)

Remark 1. If A = (ak, al , am) is a triangular fuzzy number, Equation (5) becomes

Zγ =
√

γ × A = (
√

γ × ak,
√

γ × al ,
√

γ × am). (6)

Definition 9 (Kwiesielewicz [47]). Let A = (ap, aq, ar), B = (bp, bq, br) be two triangular
fuzzy numbers, where ar ≥ aq ≥ ap ≥ 0 and br ≥ bq ≥ bp ≥ 0. Then, their addition, difference,
number-multiplication, and division can be shown as follows:

A + B = [ap + bp, aq + bq, ar + br], (7)

A − B = [ap − br, aq − bq, ar − bp], (8)

and

A
B

= [
ap

br
,

aq

bq
,

ar

bp
].

Definition 10 (Aliev et al. [24]). The multiplication and division of fuzzy numbers
A = (ap, aq, ar) and B = (bp, bq, br) are both fuzzy sets. The multiplication can be expressed as

A × B = U
α∈(0,1]

α(A × B)α,

where the α-cut is expressed as

(A × B)α = [min(aα
1 · bα

1 , aα
1 · bα

2 , aα
2 · bα

1 , aα
2 · bα

2), max(aα
1 · bα

1 , aα
1 · bα

2 , aα
2 · bα

1 , aα
2 · bα

2)], (9)

where aα
1 = ap + α(aq − ap), aα

2 = ar + α(ar − aq), bα
1 = bp + α(bq − bp), bα

2 = br + α(br − bq).
The division can be denoted as

A
B

= U
α∈(0,1]

α

(
A
B

)α

,

where the α-cut is expressed as(
A
B

)α

=

[
min
(

aα
1

bα
1

,
aα

1
bα

2
,

aα
2

bα
1

,
aα

2
bα

2

)
, max

(
aα

1
bα

1
,

aα
1

bα
2

,
aα

2
bα

1
,

aα
2

bα
2

)]
. (10)

Definition 11 (Kallenberg [48]). Suppose that (S, T) are two-dimensional continuous random
variables which have probability density f (s, t). Then, R = S + T is still a continuous random
variable with probability density

fS+T(r) =
∫

R
f (r − t, t)dt =

∫
R

f (s, r − s)ds. (11)
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Let the marginal probability density of (S, T) with respect to S,T be fS(s) and fT(t). If S and
T are independent of each other, Equation (11) will be reduced to the convolution formula

fS ◦ fT =
∫

R
fS(r − t) fT(t)dt =

∫
R

fS(s) fT(r − s)ds. (12)

If R =
T
S

, then

fS ◦ fT =
∫

R
|s| fS(s) fT(sr)ds. (13)

If R = ST, then

fS ◦ fT =
∫

R

1
|s| fS(s) fT(

r
s
)ds. (14)

Definition 12 (Aliev et al. [24]). In order to discretize fuzzy numbers, a method is presented.
The idea is to split the assistance of a fuzzy number B, Supp(B), into several subintervals bk,
k = 1, · · · , n. In particular, the subintervals are of the same size, i.e., the spacing is constantly
Δb = bk+1 − bk.

Example 2. Consider B = (0.4, 0.5, 0.6); its support Supp(B) will be discretized into
n = 11 points in the way shown below: bj1 = 0.4, bj2 = 0.425, · · · , bj11 = 0.6. Then, the
discretized fuzzy number can be attained as

B =
0

0.4
+

0.2
0.42

+
0.4

0.44
+

0.6
0.46

+
0.8
0.48

+
1

0.5
+

0.8
0.52

+
0.6

0.54
+

0.4
0.56

+
0.2

0.58
+

0
0.6

.

In the succeeding sections, we will use the above definitions and methods to derive
the operational rules of the symmetric triangular Z-numbers.

3. Operational Rules

This section introduces the operational rules for Z-numbers. The first step in the
operations is all about converting Z-numbers into ordinary fuzzy numbers, as defined
in Definition 8. Because the operations studied here are based on symmetric triangular
Z-numbers, A = (ap, aq, ar), B = (bp, bq, br), the value of the weight γ of the reliability
part B is always as shown in Equation (3). Considering that calculating the second com-
ponent of the derived Z-number requires a relatively long computation time, whereas
the calculation processes are similar to each other, we only provided examples for the
number-multiplication and addition operations in this section.

3.1. Number-Multiplication Formula

Theorem 1. Let λ be a real number and let Z = (A, B) = ((ap, aq, ar), (bp, bq, br)) be a symmetric
triangular Z-number. The formula for the number-multiplication of the continuous symmetric
triangular Z-number is

λZ = λ(A, B) = (λA, B).

Proof. First, multiplying a real number λ ∈ R by the base of Equation (6), we can obtain

λZγ = (λ
√

γ × ap, λ
√

γ × aq, λ
√

γ × ar).

From Equation (3), γ =
br − bp

2
. Let Z̄γ = λZγ. Because the weights remain un-

changed after the number-multiplication, the formula becomes

Z̄γ = (λ
√

γ × ap, λ
√

γ × aq, λ
√

γ × ar).
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Therefore, the final likelihood measure B is unchanged, and we obtain

λZ = λ(A, B) = (λA, B).

Example 3. Assume that Z = (A, B) = ((1, 2, 3), (0.7, 0.8, 0.9)), and calculate 3Z.

According to Equation (3), we have γ =
0.9− 0.7

2
= 0.1. Accordingly, we can determine that

Z̄0.1 = 3Z0.1 = (3
√

10× 1, 3
√

10× 2, 3
√

10× 3) = (3
√

10, 6
√

10, 9
√

10).

Finally, we obtain

3Z = (A, B12) =
(
(3
√

10, 6
√

10, 9
√

10), (0.7, 0.8, 0.9)
)

.

3.2. Addition Formula

Theorem 2. Let Z1 = (A1, B1) = ((a1p, a1q, a1r), (b1p, b1q, b1r)) and let Z2 = (A2, B2) =
((a2p, a2q, a2r), (b2p, b2q, b2r)) be continuous symmetric triangular Z-numbers. Then, their sum
Z12 can be deduced as

Z12 = Z1 + Z2 = (A12, B12),

where A12 = (aγ
1 , aγ

2 , aγ
3 ) = (

√
γ1a1p +

√
γ2a2p,

√
γ1a1q +

√
γ2a2q,

√
γ1a1r +

√
γ2a2r),

B12 =
∫

R μA12 p12dt, γ1 =
b1r − b1p

2
, γ2 =

b2r − b2p

2
, μA12 is the membership function of

A12, and p12 is the probability density of A12.

Proof. Based on Equation (6), the fuzzy transformations of Z1 and Z2 are

Zγ
1 =

√
γ1 A1 = (

√
γ1a1p,

√
γ1a1q,

√
γ1a1r),

Zγ
2 =

√
γ2 A2 = (

√
γ2a2p,

√
γ2a2q,

√
γ2a2r).

According to Equation (7), the sum of the two can be derived as

Zγ
12 = Zγ

1 + Zγ
2 = (

√
γ1a1p +

√
γ2a2p,

√
γ1a1q +

√
γ2a2q,

√
γ1a1r +

√
γ2a2r).

From Equation (3), it is known that γ1 =
b1r − b1p

2
, γ2 =

b2r − b2p

2
, where b1r and b1p

denote the third and first possibility of Z1, respectively, while b2r and b2p denote the third
and first possibility of Z2, respectively. Therefore, substitution yields

Zγ
12 =(

√
b1r−b1p

2
a1p+

√
b2r−b2p

2
a2p,

√
b1r−b1p

2
a1q+

√
b2r−b2p

2
a2q,

√
b1r−b1p

2
a1r+

√
b2r−b2p

2
a2r).

At this point, Z-numbers A and B have been transformed into simple fuzzy numbers
Zγ

1 and Zγ
2 , and are transformed into Zγ

12 by symbolic operations; the subsequent step is to
convert the simple fuzzy number Zγ

12 into a Z-number again.
According to Equation (4), the membership functions of Z1 and Z2 can be transformed

into the membership functions of their corresponding fuzzy numbers as follows:

μ
γ
A1

=
b1r − b1p

2
μA1 = PosAγ

1 ,

μ
γ
A2

=
b2r − b2p

2
μA2 = PosAγ

2 .

Then, according to Equation (2), we can find that
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μ
γ
A12

(v) = sup
u
(μγ

A1
(u) ∧ μ

γ
A2
(v − u)).

Let aγ
1 , aγ

2 , and aγ
3 be the three coordinate values on the horizontal axis. At this point,

the range of the membership function after transformation and summation is (0, β) instead
of (0, 1), where β denotes the maximum of the triangular fuzzy number, i.e., the vertex

of the vertical axis coordinate corresponding to aγ
2 . Then, β is min

{
b1r − b1p

2
,

b2r − b2p

2

}
,

which, as it is contrary to the initial required range of (0, 1), should be normalized to

μA12 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

t − aγ
1

aγ
2 − aγ

1
, t ∈ (aγ

1 , aγ
2 )

aγ
3 − t

aγ
3 − aγ

2
, t ∈ (aγ

2 , aγ
3 )

0, otherwise.

(15)

Then, A12 = (aγ
1 , aγ

2 , aγ
3 ) = (

√
γ1a1p +

√
γ2a2p,

√
γ1a1q +

√
γ2a2q,

√
γ1a1r +

√
γ2a2r).

Accordingly, we can use μA12 to calculate B12 in view of Equation (1) by

B12 =
∫

R
μA12 p12dt. (16)

From Equation (12), we can obtain P12 = P1 ◦ P2 =
∫

R p1(u)p2(v− u)du, and according
to Equation (1)

B1 =
∫

R
μA1(t)p1(t)dt, B2 =

∫
R

μA2(t)p2(t)dt,

the values of p1(u) and p2(v − u) in calculating P12 can be determined.
Nevertheless, if the calculation is carried out directly, many solutions will be obtained,

and they should be subject to⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫
R

p(t)dt = 1

p(t) > 0

∫
tp(t)dt =

∫
tμA(t)dt∫
μA(t)dt

=

∫
t

t − ap

aq − ap
dt∫ t − ap

aq − ap
dt

.

(17)

Under such conditions, p12 can be derived, then B12 can be obtained by substituting
p12 and μA12 into Equation (16). Accordingly, we can obtain

Z12 = Z1 + Z2 = (A12, B12).

Example 4. Assume that Z1 = (A1, B1) = ((1, 2, 3), (0.7, 0.8, 0.9)), Z2 = (A2, B2) =
((7, 8, 9), (0.4, 0.5, 0.6)) and calculate Z12 = Z1 + Z2.

First, according to Equation (3), the values of γ1 and γ2 can be derived as

γ1 =
0.9− 0.7

2
= 0.1, γ2 =

0.6− 0.4
2

= 0.1.
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As a result, the value of A12 is calculated as follows:

A12 = (aγ
1 , aγ

2 , aγ
3 ) = (

√
γ1a1p +

√
γ2a2p,

√
γ1a1q +

√
γ2a2q,

√
γ1a1r +

√
γ2a2r)

= (
√

0.1× 1 +
√

0.1× 7,
√

0.1× 2 +
√

0.1× 8,
√

0.1× 3 +
√

0.1× 9)

=

(
8√
10

,
√

10,
12√
10

)
.

According Equation (15), the following membership function is obtained after normalization:

μA12 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

√
10t − 8

2
, t ∈

(
8√
10

,
√

10
)

12−
√

10t
2

, t ∈
(√

10,
12√
10

)
0, otherwise.

The next step is to calculate P12. Considering the greater difficulty of calculating the probability
density of continuous fuzzy numbers, we discretize and convert them to discrete fuzzy numbers
according to Definition 12.

First, we divide B equally into (l − 1) points and define each part as bl.
For example, B1 = (0.7, 0.8, 0.9) can be divided into 10 points:

B1 =
0

0.7
+

0.2
0.72

+
0.4
0.74

+
0.6

0.76
+

0.8
0.78

+
1

0.8
+

0.8
0.82

+
0.6
0.84

+
0.4

0.86
+

0.2
0.88

+
0

0.9
.

According to the discretization, it is known that

bj,l =
n

∑
i=1

μAj(tji)Pj,l(tji), j = 1, 2

where j corresponds to Z1 or Z2. When j = 12, it corresponds to Z12.
Thus, we obtain a linear programming model where bj,l is a target value and the model satisfies

the following constraints:

μAj(tj1)Pj,l(tj1) + μAj(tj2)Pj,l(tj2) + ... + μAj(tjn)Pj,l(tjn) → bj,l

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑ Pj,l = 1

Pj,l � 0

∫
tPj,ldt =

∫
tμA(t)dt∫
μA(t)dt

Thus, we can obtain all Pj,l values for the lth b value; this is then continuousized and the
probability density functions P1,l and P2,l are obtained by fitting. Finally, we obtain P12,l using the
convolution formula P12 = P1 ◦ P2, then all P12 values are obtained by iteration.

Taking the fourth point as an example, the probability density functions after fitting are
N(2, 0.36) and N(8, 0.76), respectively; thus, the convolution formula can be used to find the
probability density of the point P12, which is equal to N(10, 0.83).
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Substituting each copy of P12 into B12,l =
∫

μA12 P12,ldt yields a series of values for B12.

Again taking the fourth point as an example, we have

B12,4 =
∫

μA12 P12,4dt

=
∫ √

10
8√
10

√
10t − 8

2
· 1

0.83
√

2π
e
−
(t − 10)2

2 · (0.83)2
dt +

∫ 12√
10√

10

12−
√

10t
2

· 1
0.83

√
2π

e
−
(t − 10)2

2 · (0.83)2
dt.

The two endpoints and vertices are chosen to form B12 = (0.62, 0.72, 0.79).
Finally, we obtain

Z12 = (A12, B12) =

((
8√
10

,
√

10,
12√
10

)
, (0.62, 0.72, 0.79)

)
.

3.3. Subtraction Formula

The addition and subtraction operations for Z-numbers are extremely similar in
thought and procedure to the addition and subtraction of ordinary numbers. To derive
the subtraction expression, we transform the Z-numbers into classical fuzzy numbers first,
then use the operational rules of classical fuzzy numbers to determine the expression
of Ak. Finally, we apply the convolution formula to obtain the expression of Bk. The
difference in the derivation process mainly lies in the fuzzy number operator formula and
the convolution formula used to calculate P12.

Theorem 3. Let Z1 = (A1, B1) = ((a1p, a1q, a1r), (b1p, b1q, b1r)) and Z2 = (A2, B2) =
((a2p, a2q, a2r), (b2p, b2q, b2r)) be continuous symmetric triangular Z-numbers and let the dif-
ference between these two be Zk; then, we have

Zk = Z1 − Z2 = (Ak, Bk),

where Ak = (aγ
1 , aγ

2 , aγ
3 ) = (

√
γ1a1p −

√
γ2a2r,

√
γ1a1q −

√
γ2a2q,

√
γ1a1r −

√
γ2a2p),

Bk =
∫

R μAk pkdt, γ1 =
b1r − b1p

2
, γ2 =

b2r − b2p

2
, μAk is the membership function of Ak,

and pk is the probability density of Ak.

Proof. In views of Equation (6), the fuzzy transformations of Z1, Z2 are

Zγ
1 =

√
γ1 A1 = (

√
γ1a1p,

√
γ1a1q,

√
γ1a1r),

Zγ
2 =

√
γ2 A2 = (

√
γ2a2p,

√
γ2a2q,

√
γ2a2r).

Then, according to Equation (8), we have

Zγ
k = Zγ

1 − Zγ
2 = (

√
γ1a1p −

√
γ2a2r,

√
γ1a1q −

√
γ2a2q,

√
γ1a1r −

√
γ2a2p).

Similar to the addition process, it can be determined from Definition 6 that

μ
γ
Ak
(v) = sup

u
(μγ

A1
(v + u) ∧ μ

γ
A2
(u)).

After normalization, μAk is expressed as Equation (15). Therefore,

Ak = (
√

γ1a1p −
√

γ2a2r,
√

γ1a1q −
√

γ2a2q,
√

γ1a1r −
√

γ2a2p).
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Similar to Equation (17), P1 and P2 are under the three range condition restrictions.
Based on Equation (12), it is easy to find that Pk = P1 ◦ P2 =

∫
R p1(u+ v)p2(u)du. Then, B12

can be obtained by substituting pk and μAk into Equation (16). Hence, we can derive that

Zk = Z1 − Z2 = (Ak, Bk).

3.4. Multiplication Formula

Theorem 4. Let Z1 = (A1, B1) = ((a1p, a1q, a1r), (b1p, b1q, b1r)) and Z2 = (A2, B2) =
((a2p, a2q, a2r), (b2p, b2q, b2r)) be continuous symmetric triangular Z-numbers and let the multipli-
cation of these two be Z∗. Then, Z∗ can be expressed as

Z∗ = Z1 × Z2 = (A∗, B∗),

where A∗ = (
√

γ1
√

γ2a1pa2p,
√

γ1
√

γ2a1qa2q,
√

γ1
√

γ2a1ra2r), B∗ =
∫

R μA∗ p∗dt,

γ1 =
b1r − b1p

2
, γ2 =

b2r − b2p

2
, and μA∗ and p∗ are the membership function and probabil-

ity density of A∗, respectively.

Proof. Similar to the previous proof processes, we first let Z∗ = Z1 ×Z2 and then transform
them into classical fuzzy numbers, that is,

Zγ
1 =

√
γ1 A1 = (

√
γ1a1p,

√
γ1a1q,

√
γ1a1r),

Zγ
2 =

√
γ2 A2 = (

√
γ2a2p,

√
γ2a2q,

√
γ2a2r),

where γ1 =
b1r − b1p

2
, γ2 =

b2r − b2p

2
.

Then, we must apply α-cuts to perform the multiplication calculation. When studying
symmetric triangular fuzzy numbers, there will be a linear equation on the left and right
side after α-cut processing. Next, we mark the left side to indicate the symbol as L and the
right as R. The classical fuzzy number after the α-cut can be obtained as

¯Zγ1
1 = [ZL

1α, ZR
1α] = [

√
γ1(a1q − a1p)α +

√
γ1a1p,

√
γ1(a1q − a1r)α +

√
γ1a1r],

¯Zγ2
2 = [ZL

2α, ZR
2α] = [

√
γ2(a2q − a2p)α +

√
γ2a2p,

√
γ2(a2q − a2r)α +

√
γ2a2r].

Per Equation (9), it is reasoned that

¯Z∗γ∗ = ¯Zγ1
1 × ¯Zγ2

2 = [ZL
1α, ZR

1α]× [ZL
2α, ZR

2α] = [Z∗
α

L, Z∗
α

R],

where
Z∗

α
L = min

{
ZL

1αZL
2α, ZL

1αZR
2α, ZR

1αZL
2α, ZR

1αZR
2α

}
,

Z∗
α

R = max
{

ZL
1αZL

2α, ZL
1αZR

2α, ZR
1αZL

2α, ZR
1αZR

2α

}
.

After the modeling is completed, it is known that the ordinate corresponding to point
L is less than that corresponding to point R. Therefore, after analysis, it is found that

Z∗
α

L = ZL
1αZL

2α =[(a1q−a1p)(a2q−a2p)α
2+(a1pa2q+a2pa1q−2a1pa2p)α+a1pa2p]

√
γ1
√

γ2, (18)

Z∗
α

R = ZR
1αZR

2α =[(a1q−a1r)(a2q−a2p)α
2+(a1ra2q+a2ra1q−2a1ra2r)α+a1ra2r]

√
γ1
√

γ2. (19)

In the next step, in order to find the membership degree μ, α needs to be calculated first.
Let Z∗

α
L = m, which denotes the magnitude of the length of the horizontal axis taken

by the new membership degree after multiplying the two membership degrees and is an
unknown number. Transforming Equation (18), we obtain
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α =

−(a1pã2 + a2pã1) +

√
(a1pã2 − a2pã1)2 +

4ã1 ã2m√
γ1
√

γ2

2ã1 ã2
,

where we discard the roots of α < 0 and where ã1 = a1q − a1p = a1r − a1q, ã2 = a2q − a2p =
a2r − a2q.

Similarly, letting Z∗
α

R = n, after transforming Equation (19) we have

α =

−(a1r ã2 + a2r ã1) +

√
(a2r ã1 − a1r ã2)2 +

4ã1 ã2n√
γ1
√

γ2

2ã1 ã2
,

where we discard the roots of α > 1 and ã1 = a1q − a1p = a1r − a1q, ã2 = a2q − a2p =
a2r − a2q.

Due to the nature of symmetric triangular fuzzy numbers, it is obvious that

m + n = 2
√

γ1
√

γ2a1qa2q.

Therefore, the membership function of Z∗ is

μA∗ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−(a1p ã2+a2p ã1)+

√
(a1p ã2−a2p ã1)2+

4ã1 ã2m√
γ1
√

γ2

2ã1 ã2
, m∈ (

√
γ1
√

γ2a1pa2p,
√

γ1
√

γ2a1qa2q)

−(a1r ã2+a2r ã1)+

√
(a2r ã1−a1r ã2)2+

4ã1 ã2(2
√

γ1
√

γ2a1qa2q−m)
√

γ1
√

γ2

2ã1 ã2
, m∈ (

√
γ1
√

γ2a1qa2q,
√

γ1
√

γ2a1ra2r)

0, otherwise.

(20)

As a result, A∗ = (
√

γ1
√

γ2a1pa2p,
√

γ1
√

γ2a1qa2q,
√

γ1
√

γ2a1ra2r).
The following steps are similar to the addition and subtraction calculation processes.

First calculating P∗ and then applying Equation (14), we obtain

P∗(v) = P1 ◦ P2 =
∫

R

1
|u| p1(u)p2(

v
u
)du.

It should be noted that a fundamental condition of the multiplicative convolution
formula is that P1 and P2 are independent of each other. Then, B∗ can be obtained by
substituting p∗ and μA∗ into Equation (16). Thus, the conclusion is obtained:

Z∗ = Z1 × Z2 = (A∗, B∗).

3.5. Power Formula

Theorem 5. Let λ be a real number and let Z = (A, B) = ((ap, aq, ar), (bp, bq, br)) be a symmetric
triangular Z-number. Its powers can be calculated by

Zλ = (Aλ, Bλ),

where Aλ = ((
√

γap)λ, (
√

γaq)λ, (
√

γar)λ), Bλ =
∫

μλ
A p(uλ)du, γ1 =

b1r − b1p

2
,

γ2 =
b2r − b2p

2
, μλ

A is the membership function of Aλ, and p(uλ) is the probability density

of Aλ.

90



Mathematics 2024, 12, 1443

Proof. The power operation is actually a generalization of the multiplication calculation.
First, we can make Zλ

1 = (Aλ, Bλ), which means that Zλ
1 is obtained by multiplying λ

times Z1.
When λ = 1, Zλ

1 = Z1. When λ = 2, Zλ
1 = Z2

1 = Z1 ×Z1, and accord-
ing to the multiplication formula derived earlier, Z2

1 = (A2, B2), where Aλ = A2 =
((
√

γap)2, (
√

γaq)2, (
√

γar)2). Analogously, when λ=3, Zλ
1 =Z3

1 = Z1×Z1×Z1=(A3, B3),
where Aλ = ((

√
γap)3, (

√
γaq)3, (

√
γar)3).

Assume that An = ((
√

γap)n, (
√

γaq)n, (
√

γar)n) holds when λ = n. Then,
An+1 = An × A = ((

√
γap)n+1, (

√
γaq)n+1, (

√
γar)n+1).

Therefore, we can find that when λ ∈ R, Aλ = ((
√

γap)λ, (
√

γaq)λ, (
√

γar)λ).
For Bλ, when λ = 2, Bλ = B2 =

∫
μ2

A(t)p2(t)dt. Using Equation (20), we can find that
the membership function of Aλ is

μλ
A =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ
√

m −√
γap√

γã1
, m ∈ ((

√
γap)λ, (

√
γaq)λ)

λ
√

m −√
γar√

γã1
, m ∈ ((

√
γaq)λ, (

√
γar)λ)

0, otherwise.

Then, according to Equation (14), we can find

P(u2) =
∫

R

1
|u| p2(u)du.

The same extends to the condition when λ ∈ R:

P(uλ) =

(∫
R

1
|u| p(u)du

)λ−2(∫
R

1
|u| p2(u)du

)
.

Accordingly, by combination with Bλ =
∫

μλ
A p(uλ)du, we can find the value of Bλ.

Finally, we obtain
Zλ = (Aλ, Bλ).

3.6. Division Formula

Theorem 6. Let Z1 = (A1, B1) = ((a1p, a1q, a1r), (b1p, b1q, b1r)) and Z2 = (A2, B2) =
((a2p, a2q, a2r), (b2p, b2q, b2r)) be continuous symmetric triangular Z-numbers and let the division
formula of these two be Zs. Then, it can be deduced that

Zs =
Z1

Z2
= (As, Bs),

where As =

(√
γ1a1p√
γ2a2p

,
√

γ1a1q√
γ2a2q

,
√

γ1a1r√
γ2a2r

)
, Bs =

∫
R μAs psdt, γ1 =

b1r − b1p

2
, γ2 =

b2r − b2p

2
,

μAs is the membership function of As, and ps is the probability density of As.

Proof. Let Zs =
Z1

Z2
, where Z1 = (A1, B1) and Z2 = (A2, B2). Then, we can convert Z1 and

Z2 to fuzzy numbers as follows:

Zγ1
1 = (

√
γ1a1p,

√
γ1a1q,

√
γ1a1r),

Zγ2
2 = (

√
γ2a2p,

√
γ2a2q,

√
γ2a2r),

where γ1 =
b1r − b1p

2
, γ2 =

b2r − b2p

2
.
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For these two triangular fuzzy numbers, their α-cuts are

¯Zγ1
1 = [ZL

1α, ZR
1α] = [

√
γ1(a1q − a1p)α +

√
γ1a1p,

√
γ1(a1q − a1r)α +

√
γ1a1r],

¯Zγ2
2 = [ZL

2α, ZR
2α] = [

√
γ2(a2q − a2p)α +

√
γ2a2p,

√
γ2(a2q − a2r)α +

√
γ2a2r].

From Equation (10), the α-cut of ¯Zγs
s =

¯Zγ1
1
¯Zγ2
2

is

[ZL
1α, ZR

1α]

[ZL
2α, ZR

2α]
= [ZL

sα, ZR
sα],

where ZL
sα = min

{
ZL

1α

ZL
2α

,
ZL

1α

ZR
2α

,
ZR

1α

ZL
2α

,
ZR

1α

ZR
2α

}
, ZR

sα = max

{
ZL

1α

ZL
2α

,
ZL

1α

ZR
2α

,
ZR

1α

ZL
2α

,
ZR

1α

ZR
2α

}
.

Similar to the proof process of multiplication, it is known that ZL < ZR. As a result,

ZL
sα =

ZL
1α

ZR
2α

=

√
γ1(a1q − a1p)α +

√
γ1a1p√

γ2(a2q − a2r)α +
√

γ2a2r
,

ZR
sα =

ZR
1α

ZL
2α

=

√
γ1(a1q − a1r)α +

√
γ1a1r√

γ2(a2q − a2p)α +
√

γ2a2p
.

Let ZL
sα = m, which is an unknown function that represents the range of values. We

discard the roots of α < 0; hence,

α =
m
√

γ2a2r −
√

γ1a1p√
γ1(a1q − a1p)− m

√
γ2(a2q − a2r)

=
m
√

γ2a2r −
√

γ1a1p√
γ1 ã1 − m

√
γ2 ã2

,

where ã1 = a1q − a1p = a1r − a1q, ã2 = a2q − a2p = a2r − a2q.

Let ZR
sα = n, which is an unknown function that represents the range of values. We

discard the roots of α > 1; therefore,

α =
n
√

γ2a2p −
√

γ1a1r√
γ1(a1q − a1r)− n

√
γ2(a2q − a2p)

=
n
√

γ2a2p −
√

γ1a1r√
γ1 ã1 − n

√
γ2 ã2

.

Due to the nature of the symmetric triangular fuzzy number, it is obvious that

m + n = 2
√

γ1a1q√
γ2a2q

.

The membership function of Zγs
s is

μAt =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

m
√

γ2a2r −
√

γ1a1p√
γ1 ã1 − m

√
γ2 ã2

, m ∈
(√

γ1a1p√
γ2a2p

,
√

γ1a1q√
γ2a2q

)
2
√

γ1a1qa2p −
√

γ2a2pa2qm −√
γ1a1ra2q√

γ1 ã1a2q − 2
√

γ1 ã2a1q +
√

γ2 ã2a2qm
, m ∈

(√
γ1a1q√
γ2a2q

,
√

γ1a1r√
γ2a2r

)
0, otherwise.

Then, As =

(√
γ1a1p√
γ2a2p

,
√

γ1a1q√
γ2a2q

,
√

γ1a1r√
γ2a2r

)
.

Next, we use Equation (13) to calculate the probability density Ps:
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Ps(v) = P1 ◦ P2 =
∫

R
|u|p1(u)p2(uv)du.

Finally, we again use Equation (16) to obtain Bt. Therefore, we have

Zs =
Z1

Z2
= (As, Bs).

At this point, all of the mentioned operational rules related to Z-numbers have been
proposed and proven. Compared to other computational methods, our proposed method
simplifies the operations by converting them into classical fuzzy numbers and deriving
the two components of the desired Z-number via the operational laws of the classical
fuzzy numbers. When facing more complex Z-number operations, using these theorems of
basic operations can greatly reduce computational complexity, enabling the application of
Z-numbers to a wider range of fields.

4. Conclusions

Z-number proposals integrate objective natural language information and subjective
human understanding, taking both the vagueness of information and the level of “trust-
worthiness” of fuzzy information into account. Therefore, Z-numbers provide a great deal
of convenience in describing and analyzing uncertain information. Many researchers have
studied the concept since its introduction. Drawn from the theoretical foundation of fuzzy
sets theory and optimization methods, they have provided basic operational laws of com-
mon algebraic operations for Z-numbers. In a more straightforward manner, this paper has
focused on operational laws for symmetric triangular Z-numbers. First, we transform the
Z-numbers into classical triangular fuzzy numbers. After that, we employ the operational
laws of the classical fuzzy numbers for reference to derive the two components of the
derived Z-number. Finally, we provide the number-multiplication, addition, subtraction,
multiplication, power, and division expressions for the Z-numbers. In the fields of eco-
nomics, decision analysis, risk assessment, planning, and causal analysis, many real-life
numbers are actually Z-numbers. In previous academic research, however, they have been
simplified into other numbers due to their high computational complexity. Based on these
rules of basic operations, the application prospects of Z-numbers will be greatly improved.

There are some limitations to this article. First, this paper only proposes operational
laws for symmetric triangular Z-numbers, and does not apply to other types of Z-numbers;
hence, it is necessary to extend this method to more general Z-numbers in further theoretical
studies. Second, time and energy constraints limited our study to the multiplication, power
series, and quadratic operations of Z-numbers. We have not provided definitions and
operational rules for other calculations, including more complex algebraic operations,
expectations, and variance, which we plan to expand upon in the future. Finally, this paper
has not provided application examples to prove the applicability and scope of the proposed
operational laws, which requires further investigation in future work.
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1. Introduction and Related Work

In the 1960s, the birth of fuzzy mathematics [1] and the establishment of continuous
lattices [2] aroused the research interest of a large number of scholars. Following its
development, the theory of continuous lattices was successfully promoted to the theory
of continuous domain by G Gierz [3]. References [4–6] innovatively combined domain
theory with fuzzy mathematics, with Zhang Qiye and Fan Lei introducing the concept
of fuzzy partial order, which, in turn, led to the emergence of fuzzy domain theory. A
Chaudhuri and P Das [7] introduced a new concept of fuzzy set connectivity called
cs-connectivity. This concept is different from other connectivity concepts, and they
found that cs-connectivity is not equivalent to these existing definitions of connectivity;
they examined the validity of the standard results under this new concept of connectivity.
In references [8,9], the concept of connected sets was introduced to broaden the scope of
continuous partial order theory, and the concept of the connected continuous domain was
introduced using the concept of connected sets, with fruitful results obtained by Shang
Yun and Zhao Bin, they introduce and explore the concept of a consistently connected
continuous domain, and extend the application scope of continuous poset theory by
exploiting the characteristics of connected sets, solved the limitations of continuous
poset theory in the treatment of the real number set and the natural number set, and
to characterize it through the properties of the principal ideal and connected closed
sets, they also study the directional completeness of consistently connected complete
posets and obtains good theoretical results. In [10–12], Tang Zhaoyong introduced
and examined the connectivity on partially ordered sets from various perspectives
using step sets, resulting in a series of significant findings. In [13], Tang Zhaoyong
and Xu Luoshan deeply explore the connectivity and local connectivity of posets from
the perspective of order and topology, especially the properties of multiple intrinsic
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topologies (such as Alexandrov topology and Scott topology); they try to prove the
equivalence of the order connectivity of posets and its intrinsic topology and to show
the properties of local connectivity. Moreover, by constructing counterexamples, they
also reveal that the connectivity of the lower topology does not necessarily guarantee
the sequential connectivity of the poset itself. In [14,15], they introduce and study
the concept of connectivity, especially to explore the step set. They also explore the
construction of connected branches and show that posets can be uniquely decomposed
into the non-intersection union of these connected branches. Furthermore, they show
that the connected relations of the posets constitute an equivalence relation. These results
provide a new tool and theoretical framework for understanding and operating posets.
Reference [16] examines and characterizes the notion of the prime neutrosophic ideal and
prime neutrosophic filter. The structure of the neutrosophic open-set lattice on a topology
generated by a neutrosophic relation is described in it. They have defined the concepts of
neutrosophic ideals and neutrosophic filters on that lattice in terms of their level sets and
meet and join operations. In addition, we have examined and defined the concepts of prime
neutrosophic filters and ideals as fascinating subsets of neutrosophic ideals and filters. This
work mostly discussed neutrosophic ideals and neutrosophic filters on the lattice structure
of neutrosophic open sets. Reference [17] explores the fuzzy topology induced by fuzzy
relations, extending classical concepts, and establishes necessary and sufficient conditions
for its generation, along with characterizations involving fuzzy interval orders, preorders,
and sequential fuzzy topologies. Furthermore, the fuzzy bi-topological space generated by
the fuzzy relations is explored.

References [18–22] discussed related problems, such as fuzzy classification, fuzzy
measurement, and fuzzy decision under fuzzy theory, obtaining good results.

The research motivation for exploring the fuzzy connected set lies in the desire to ex-
pand the application of the continuous poset theory. By defining a novel fuzzy way-below
relation on the fcc complete set, we aim to deepen our understanding of this structure and
enhance its utility. Furthermore, the introduction and investigation of the concept of fcc
continuous domain serve to enrich the theoretical framework and broaden its potential
applications. This line of inquiry offers significant insights into the properties and charac-
teristics of fc sets, thereby contributing to the advancement of the field of fuzzy set theory
and its applications.

However, in fuzzy domain theory, there is no concept of connected sets. Thus, we
introduce the concepts of fuzzy connected sets and fuzzy consistently connected sets on
fuzzy posets, and their basic properties are discussed. In the third section of this paper, a
new fuzzy way-below relationship is defined on fuzzy consistently connected complete
posets, which allows for the exploration of the fuzzy consistently connected continuous
domain. In addition, its equivalent characterizations are determined.

For some basic notations and definitions, we refer the reader to [3,23–25].

2. Preliminaries

Below, we present some important terms and definitions used in this paper. Here, we
describe the definitions of fuzzy sets, domain theory, and consistently connected theory.

Definition 1 ([1]). Let X = {x1, x2, · · ·xn} be the universe of discourse. A fuzzy set A on X
is characterized by A = {(xi, μA(xi)); xi ∈ X, i = 1, 2, · · ·n}, where μA : X → [0, 1], the
membership function, gives the grade of membership of each element xi ∈ X in A.
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Definition 2 ([1]). Let X be a set, L be a complete lattice, and LX be all mappings from X to L.
Each A ∈ LX is called a fuzzy subset of X. For A ⊆ X, χA ∈ LX is the characteristic function of
A, defined as

χA(x) = 1, (x ∈ A)

χA(x) = 0, (x /∈ A)

where 0 and 1 represent the least and great elements of L.

Definition 3 ([3]). A poset is said to be complete with respect to directed sets if every directed
subset has a sup. A directed complete poset is abbreviated as a dcpo.

Definition 4 ([3]). Let L be a poset. We say that x is way − below y, in symbols x � y if for all
directed subsets D ⊆ L for which supD exists, the relation y ≤ supD always implies the existence
of d ∈ D with x ≤ d. An element satisfying x � x is said to be compact or isolated f rom below.

Definition 5 ([3]). A poset L is deemed continuous if for all x ∈ L, the set ⇓ x = {u ∈ L : u � x}
is directed and x = sup{u ∈ L : u � x}. A dcpo that is continuous as a poset is referred to as a
domain.

Definition 6 ([4]). Let X be a set and e : X × X → L be a mapping. Then, (X, e) is deemed a
fuzzy poset if e satisfies the following:

(1) ∀x ∈ X, e(x, x) = 1;
(2) ∀x, y, z ∈ X, e(x, y) ∧ e(y, z) ≤ e(x, z);
(3) ∀x, y ∈ X, e(x, y) = e(y, x) = 1 ⇒ x = y.
Then, e is referred to as a fuzzy partial order in X.

Definition 7 ([6]). Let f : X → Y be a mapping from a set X to a fuzzy poset (Y, eY). Define
f→ : LX → LY, ∀A ∈ LX , y ∈ Y, f→(A)(y) = ∨x∈X A(x) ∧ eY(y, f (x)).

Definition 8 ([8]). Let X be a poset. ∅ �= B ⊆ X. B is considered connected if for all x, y ∈ B,
there exists x = x1, x2, · · ·, xn = y such that xi ∈ B, and xi, xi+1 are comparable.

If B is connected and x, y ∈ B, then x and y are considered connected in B.

Definition 9 ([4]). Let (X, e) be a fuzzy poset, x0 ∈ X and A ∈ LX. x0 is said to be the supremum
(resp. infimum) of A, written as x0 = �A (resp. x0 = �A), if

(1) ∀x ∈ X, A(x) ≤ e(x, x0)(resp.A(x) ≤ e(x0, x));
(2) ∀y ∈ X,∧x∈X(A(x) → e(x, y)) ≤ e(x0, y)(resp.∧x∈X(A(x) → e(y, x)) ≤ e(y, x0)).

Definition 10 ([5]). Let (X, e) be a fuzzy poset. A ∈ LX. A is considered a fuzzy upper set (resp.
fuzzy lower set) if ∀x, y ∈ X, e(x, y) ∧ A(x) ≤ A(y) (resp. ∀x, y ∈ X, e(x, y) ∧ A(y) ≤ A(x)).

Definition 11 ([5]). Let (X, e) be a fuzzy poset. For all A ∈ LX, ↓ A, ↑ A ∈ LX:

∀x ∈ X, ↓ A(x) = ∨y∈X A(y) ∧ e(x, y);

∀x ∈ X, ↑ A(x) = ∨y∈X A(y) ∧ e(y, x).

Definition 12 ([5]). Let (X, e) be a fuzzy poset. For all D ∈ LX, D is a fuzzy directed subset if
(1) ∨x∈XD(x) = 1;
(2) ∀x, y ∈ X, D(x) ∧ D(y) ≤ ∨z∈XD(z) ∧ e(x, z) ∧ e(y, z).
A fuzzy direct subset I ∈ LX is considered a fuzzy ideal if it is a fuzzy lower set.
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Definition 13 ([5]). Let (X, e) be a fuzzy poset. For all D ∈ LX, D is considered a fuzzy co-directed
subset if

(1) ∨x∈XD(x) = 1;
(2) ∀x, y ∈ X, D(x) ∧ D(y) ≤ ∨z∈XD(z) ∧ e(z, x) ∧ e(z, y).
A fuzzy co-direct subset I ∈ LX is considered a fuzzy filter if it is a fuzzy upper set.

Definition 14 ([5]). Let (X, e) be a fuzzy poset. SubX : LX × LX → L is considered a Subsethood
operator if

∀A1, A2 ∈ LX , SubX(A1, A2) = ∧x∈X A1(x) → A2(x).

Remark 1. The following statements are easy to verify.
(1) Both the directed set and the co-directed set are connected sets.
(2) The image of a connected set under a homomorphic mapping is a connected set.
(3) Both the totally ordered set and the one-point set are connected sets.

Definition 15 ([9]). Let X be a poset, ∅ �= D ⊆ X. D is a consistently connected set if the
following are satisfied:

(1) D is connected;
(2) ∃p ∈ X, such that D ⊆↓ p = {x ∈ X : x ≤ p}.

Definition 16 ([9]). Let X be a poset. X is a consistently connected complete poset if, for all
consistently connected sets D ⊆ X, �D exists.

Definition 17 ([9]). Let X be a consistently connected complete poset. The consistently connected
way-below relation �c of X is defined as follows:
for x, y ∈ X, x is said to be compatible when less than or equal to y, in symbols x �c y if
for all consistently connected set D, y ≤ supD implies x ≤ d for some d ∈ D. We write
⇓c x = {u ∈ X : u �c x}.

Definition 18 ([9]). Let X be a consistently connected complete poset. X is considered a consistently
connected domain if

(1) ∀x ∈ X,⇓c x is the consistently connected set in X;
(2) ∀x ∈ X, x = sup ⇓c x.

3. Fuzzy Connected Sets and Fuzzy Consistently Connected Sets

In order to extend the connected sets on posets to fuzzy domain theory in this section,
an equivalent definition in alternative form of connected sets is first provided.

Definition 19. Let X be a poset, ∅ �= B ⊆ X. B is considered connected if for every x, y ∈ B,
there exists x = x1, x2, · · ·, xn = y such that xi ∈ B, and for all i, {xi−1, xi, xi+1} is a directed set
or co-directed set.

Definition 20. Let (X, e) be a fuzzy poset. For every D ∈ LX, the fuzzy subset D is considered a
fuzzy connected set if

(1) ∨x∈XD(x) = 1;
(2) For all a, b ∈ X, there exists D(a) = D(x1), D(x2), · · ·, D(xn−1), D(xn) = D(b), such

that for every i, ⎧⎪⎨⎪⎩
D(xi−1) ∧ D(xi+1) ≤ D(xi) ∧ e(xi−1, xi) ∧ e(xi+1, xi);

or

D(xi−1) ∧ D(xi+1) ≤ D(xi) ∧ e(xi, xi−1) ∧ e(xi, xi+1).

A fuzzy connected set is abbreviated as an fc set.
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Lemma 1. Let (X,≤) be a poset, and it is considered as a fuzzy poset (X, e), L = 2. Then, for all
cases, D ∈ X is a connected set in (X,≤) if and only if the characteristic function χD is an fc set in
(X, e).

Proof. ⇒ Let D be a connected set.
(1) For every D ∈ X, D �= ∅; hence, ∨x∈DχD(x) = 1.
(2) Because D is a connected set, then, for every a, b ∈ D, there exists x1, x2, · · ·, xn ∈ D

such that
a = x1, x2, · · ·, xn = b,

and for every i, xi and xi+1 are comparable; that is, for every i,

xi = supX{xi−1, xi+1} or xi = in fX{xi−1, xi+1}.

Then,
χD(a) = χD(x1), χD(x2), · · ·, χD(xn) = χD(b)

Using Definition 2, we obtain

χD(a) = χD(x1), χD(x2), · · ·, χD(xn) = χD(b) = 1.

In addition, for every i,

e(xi−1, xi) = e(xi+1, xi) = 1 or e(xi, xi−1) = e(xi, xi+1) = 1.

From this, for every i, we obtain

1 = χD(xi−1) ∧ χD(xi+1) ≤ 1 = χD(xi) ∧ e(xi−1, xi) ∧ e(xi+1, xi)

or
1 = χD(xi−1) ∧ χD(xi+1) ≤ 1 = χD(xi) ∧ e(xi, xi−1) ∧ e(xi, xi+1).

Hence, the character function χD is an fc set in (X, e).
⇐ Let χD be an fc set in (X, e).
(1) From ∨x∈DχD(x) = 1, we have D �= ∅.
(2) Because χD is an fc set in (X, e), then for all a, b ∈ D, there exists

χD(a) = χD(x1), χD(x2), · · ·, χD(xn) = χD(b)

Therefore,
a = x1, x2, · · ·, xn = b

exists. For every i,

χD(xi−1) ∧ χD(xi+1) ≤ χD(xi) ∧ e(xi−1, xi) ∧ e(xi+1, xi)

or
χD(xi−1) ∧ χD(xi+1) ≤ χD(xi) ∧ e(xi, xi−1) ∧ e(xi, xi+1).

Then, we have

xi−1 ≤ xi, xi+1 ≤ xi or xi−1 ≥ xi, xi+1 ≥ xi,

which means that for every i, xi and xi+1 are comparable, and hence, D ∈ X is a connected
set in (X,≤).

Remark 2. A fuzzy connected set may not necessarily be a fuzzy directed (co-directed) set.
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Example 1. Let (X,≤) be a poset of Figure 1. Consider it as a fuzzy poset (X, e), L = 2,
D = {a, b, c, d}. Then, D is a connected subset of X, and χD is an fc subset, but χD is not a fuzzy
directed (co-directed) subset of (X, e).
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Figure 1. Graph of example 1.

Proposition 1. Let (X, e) be a fuzzy poset, and a fuzzy directed (co-directed) subset D ⊆ LX.
Then, D is a fuzzy connected if there exists a point x0 ∈ X such that D(x0) = 1.

Proof. It follows from D being fuzzy directed that ∨D(x) = 1. Since D is a fuzzy directed
set, by the condition that for all a, b ∈ X, D(a) ∧ D(b) ≤ ∨z∈XD(z) ∧ e(a, z) ∧ e(b, z), then
there exists x0 ∈ X. Let xa = a, xb = b, such that D(a) = D(xa), D(x0) = 1, D(xb) = D(b).
Then, we obtain

D(xa) ∧ D(xb) ≤ ∨z∈XD(z) ∧ e(xa, z) ∧ e(xb, z) ≤ D(x0) ∧ e(xa, x0) ∧ e(xb, x0).

Thus, D is an fc set.

Proposition 2. Let (X,≤) be a poset, and it is considered as a fuzzy poset (X, e), L = 2. For all
D ∈ X, χD is an fc subset if χD is a fuzzy directed (co-directed) subset.

Proof. It can be seen from the assumed conditions that there exists x0 ∈ X such that
χD(x0) = 1, and based on Proposition 1, the conclusion is true.

Definition 21. Let (X, e) be a fuzzy poset, and a fuzzy subset D ⊆ LX. D is considered a fuzzy
consistently connected set if

(1) D is a fuzzy connected set;
(2) there exists p ∈ X such that D ⊆↓ p (↓ p ∈ LX , ∀x ∈ X, ↓ p(x) = e(x, p)).
A fuzzy consistently connected set is abbreviated as an fcc set.

All fcc sets in the fuzzy poset (X, e) are denoted by CF(X), and D is an fcc ideal if D is
a fuzzy lower set. All fcc ideals in the fuzzy poset (X, e) are denoted by CIF(X).

Definition 22. Let (X, e) be a fuzzy poset. (X, e) is an fcc complete poset if for all fcc subset D,
�D exists.
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Proposition 3. Let (X,≤) be a poset, and consider it as a fuzzy poset (X, e), L = 2. (X,≤) is a
consistently connected complete set if and only if (X, e) is an fcc complete poset.

Proof. Suppose that (X,≤) is a consistently connected complete set. For all D is an fcc
set, let A = {x ∈ X : D(x) = 1}, then A ⊆ X. According to Lemma 1, A is consistently
connected, then there exists x0 ∈ X such that x0 = supA, and we need to prove that
x0 = �D.

(1) ∀x ∈ X, D(x) ≤ e(x, x0);
(2)

∀y ∈ X,∧x∈X(D(x) → e(x, y)) = 1

⇔ ∀x ∈ X, D(x) → e(x, y) = 1

⇔ ∀x ∈ X, D(x) ≤ e(x, y)

⇔ D(x) = 1

⇒ e(x, y) = 1

⇔ ∀x ∈ X, x ≤ y

⇒ x0 ≤ y

⇔ e(x0, y) = 1,

Then, we obtain ∧x∈X(D(x) → e(x, y)) ≤ e(x0, y), and hence, x0 = �D.
Conversely, suppose (X, e) is an fcc complete set and A is a consistently connected set.

Then, according to Lemma 1, χA is fcc, and (X, e) is fcc complete; as such, there exists an
x1 ∈ X such that x1 = �χA, and we need to demonstrate that x1 = �A.

(1)
∀x ∈ A ⇒ χA = 1

⇒ e(x, x1) ≥ χA(x) = 1

⇒ x ≤ x1.

(2) Suppose y ∈ X such that for all x ∈ A, x ≤ y, that is,

∀x ∈ X, χA(x) = 1

⇒ e(x, y) = 1

⇒ χA(x) ≤ e(x, y)

⇒ χA(x) → e(x, y) = 1,

Therefore, e(x1, y) ≥ ∧x∈X(χA(x) → e(x, y)) = 1, and hence x1 ≤ y. So, we have
x1 = supA.

4. Fcc Way-Below and Fcc Domain

In this section, we give definitions of fcc way-below and a fcc continuous set, as well
as equivalent characterizations of fcc domain and a discussion of related properties.

Definition 23. Let (X, e) be an fcc directed complete poset. For all y ∈ X,⇓FC y ∈ LX. This is
deemed fcc way-below if

∀x ∈ X,⇓FC y(x) = ∧I∈CIF(X)(e(y,�I) → I(x)).

From Definition 21, we plot Figure 2 as an elaborated illustration of the Definition 23.
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Figure 2. Graph of FC way-below relation.

X is a fuzzy poset, and the side length is unit length 1, where the projection coordinate
value of any point is the matching degree of membership of x and y with respect to X. D
is an fcc set, all the internal points have connectivity, and use ∗ to represent supD. As p
is a point in the unit cube, D is below the projection coordinates of p, which satisfies the
consistently connectivity of D.

Definition 24. Let (X, e) be an fcc complete set. (X, e) is considered an fcc continuous set if
∀x ∈ X,⇓FC x ∈ CIF(X) and x = � ⇓FC x.

Definition 25. An fcc directed complete poset that is an fcc continuous set is an f cc domain.

Definition 26. Let (X, e) be an fcc complete set. x is the fcc compact element in X if ⇓FC x(x) = 1.
All fcc compact elements in X are denoted KFC(X).

Definition 27. Let (X, e) be an fcc complete set, x ∈ X. Define a mapping kx : X → L:

kx(y) =

{
e(y, x), y ∈ KFC(X);

0, y /∈ KFC(X).

X is considered an fcc algebraic poset if kx is an fcc subset of X and �kx = x.

From Example 1.9 of [9] and Proposition 3, we have the following examples:

Example 2. For the poset R of real numbers, (R, e≤) is an fcc domain.

Example 3. For the poset N of natural numbers, (N, e≤) is a fuzzy algebraic domain.

Example 4. Let A be an fcc domain. Then, the principal ideal of A is an fcc domain.

Proposition 4. Let (X, e) be an fcc complete set. Then, the conditions are as follows:
(1) ∀x ∈ X, I ∈ CIF(X),∧y∈Xe(x, y) ≤ I(x);
(2) ∀x, y ∈ X,∧z∈Xe(x, z) ≤⇓FC y(x);
(3 )∀x ∈ X,⇓FC≤↓ x;
(4) ∀x, u, v, y ∈ X, e(u, x)∧ ⇓FC y(x) ∧ e(y, v) ≤⇓FC v(u).
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Proof. (1) For all x ∈ X, I ∈ CIF(X), we have ∧y∈Xe(x, y) = (∧y∈Xe(x, y))∧ (∨z∈X I(z)) =
∨z∈X(∧y∈Xe(x, y) ∧ I(z)) ≤ ∧z∈Xe(x, z) ∧ I(z) ≤ I(x).

(2) For all x, y ∈ X, we have
⇓FC y(x) = ∧I∈CIF(X)e(y,�I) → I(x) ≥ ∧I∈CIF(X) I(x) ≥ ∨z∈Xe(x, z).
(3) For all y ∈ X,we obtain

⇓FC x(y) = ∧I∈CIF(X.e)e(x,�I) → I(y) ≤ e(x,� ↓ x) →↓ x(y)

= e(x, x) →↓ x(y)

=↓ x(y).

Hence ⇓FC x ≤↓ x.
(4) For all I ∈ CIF(X, e), we have

e(u, x) ∧ e(y, v) ∧ (e(y,�I) → I(x)) ∧ e(v,�I)

≤ e(u, x) ∧ e(y,�I) ∧ (e(y,�I) → I(x))

≤ e(u, x) ∧ I(x)

≤ I(u).

Then, we obtain e(u, x) ∧ e(y, v) ∧ (e(y,�I) → I(x)) ≤ e(v,�I) → I(u). According to
Definition 23,

e(u, x)∧ ⇓FC y(x) ∧ e(y, v)

= e(u, x) ∧ e(y, v) ∧ (e(y,�I) → I(x))

≤ ∧I∈CIF(X,e)e(u, x) ∧ e(y, v) ∧ (e(y,�I) → I(x))

≤ ∧I∈CIF(X)(e(v,�I) → I(u))

=⇓FC v(u).

Hence, e(u, x)∧ ⇓FC y(x) ∧ e(y, v) ≤⇓FC v(u).

Theorem 1. Let (X, e) be an fcc domain. Then, for all x, y ∈ X,⇓FC y(x) = ∨z∈X ⇓FC
z(x)∧ ⇓FC y(z).

Proof. On the one hand, according to Proposition 4, we have
∨z∈X ⇓FC z(x)∧ ⇓FC y(z) ≤⇓FC y(x).

On the other hand, we simply need to prove that
⇓FC y(x) ≤ ∨z∈X ⇓FC z(x)∧ ⇓FC y(z).

Suppose D ∈ LX , for all a ∈ X, D(a) = ∨z∈X ⇓FC z(a)∧ ⇓FC y(z), we shall prove that
⇓FC y(x) ≤ D(x).

Firstly, D(x) is an fcc ideal.
(1) For all x ∈ X,⇓FC x is an fcc ideal.

∨a∈XD(a) = ∨a∈X∨z∈X ⇓FC z(a)∧ ⇓FC y(z)

= ∨z∈X(∨a∈X ⇓FC z(a))∧ ⇓FC y(z)

= ∨z∈X ⇓FC y(z)

= 1.

(2) For all a, b ∈ X, every fcc way-below lower set is an fcc ideal in fcc domain, so that it is
fuzzy consistently connected, according to Definition 20,

D(a) ∧ D(b) = ∨m,n∈X ⇓FC m(a)∧ ⇓FC n(b)∧ ⇓FC y(m∧ ⇓FC y(n)).
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There exists c ∈ X such that

∨m,n∈X ⇓FC m(a)∧ ⇓FC n(b)∧ ⇓FC y(m)∧ ⇓FC y(n))

≤ ∨m,n∈X ⇓FC m(a)∧ ⇓FC n(b)∧ ⇓FC y(c) ∧ e(m, c) ∧ e(n, c)

= ∨m,n∈X(⇓FC m(a) ∧ e(m, c)) ∧ (⇓FC n(b) ∧ e(n, c))∧ ⇓FC y(c)

≤ ∨m,n∈X ⇓FC c(a)∧ ⇓FC c(b)∧ ⇓FC y(c)

=⇓FC c(a)∧ ⇓FC c(b)∧ ⇓FC y(c).

Furthermore, there exists d ∈ X such that

⇓FC c(a)∧ ⇓FC c(b)∧ ⇓FC y(c)

≤⇓FC c(d) ∧ e(a, d) ∧ e(b, d)∧ ⇓FC y(c)

= (⇓FC c(d)∧ ⇓FC y(c)) ∧ e(a, d)) ∧ e(b, d)

= D(d) ∧ e(a, d) ∧ e(b, d).

Let a = x1, x2, x3 = b. Then, there exists D(a) = D(x1), D(x2), D(x3) = D(b),
such that D(x1) ∧ D(x3) ≤ D(x2) ∧ e(x1, x2) ∧ e(x3, x2). Hence, D is fuzzy consistently
connected.
(3) For all a, b ∈ X,

D(a) ∧ e(b, a) = ∨z∈X ⇓FC z(a)∧ ⇓FC y(z) ∧ e(b, a)

≤ ∨ ⇓FC z(b)∧ ⇓FC y(z)

= D(b).

Therefore, D is a fuzzy lower set.
(4) For all x ∈ X, D(x) ≤⇓FC y(x) ≤↓ y(x), then we obtain D ≤↓ y, and thus D is
fuzzy consistent.

Secondly, y = �D.
In fact, for all a ∈ X,

∧z∈XD(z) → e(z, a) = ∧z∈X(∧c∈X(⇓FC c(z)∧ ⇓FC y(c)) → e(z, a)

= ∧c∈X(⇓FC y(c) → ∧z∈X(⇓FC c(z) → e(z, a))

= ∧c∈X ⇓FC y(c) → e(� ⇓FC c, a)

= ∧c∈X ⇓FC y(c) → e(c, a)

= e(� ⇓FC y, a)

= e(y, a).

Finally,
⇓FC y(x) = ∧I∈CIF(X)e(y,�I) → I(x)

≤ e(y,�D) → D(x)

= 1 → D(x)

= D(x).

Theorem 2. Let (X, e) be an fcc complete poset. Then, (X, e) is an fcc domain if and only if
(⇓FC,�) is a fuzzy Galois adjunction between (X, e) and (CIF(X), SubX).
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Proof. Suppose that (X, e) is an fcc continuous poset. ∀x, y ∈ X, SubX(⇓FC x,⇓FC y)

= ∧z∈X ⇓FC x(z) →⇓FC y(z)

= ∧z∈X(∧I∈CIF(X)e(x,�I) → I(z)) → (∧J∈CIF(X)e(y,�J) → J(z))

= ∧z∈X(∧J∈CIF(X)(∧I∈CIF(X)e(x,�I) → I(z)) → (e(y,�J) → J(z)))

≥ ∧z∈X(∧J∈CIF(X)(e(x,�J) → J(z)) → (e(y,�J) → J(z)))

≥ ∧J∈CIF(X)e(y,�J) → e(x,�J)

≥ e(x, y).

Therefore, SubX(⇓FC x,⇓FC y) ≥ e(x, y); then, ⇓FC is fuzzy order-preserving.
For all I, J ∈ CIF(X),

e(�I,�J) = ∧x∈X I(x) → e(x,�J) ≥ ∧x∈X I(x) → J(x) = SubX(I, J).

Then, SubX(I, J) ≤ e(�I,�J), which means that � is fuzzy order-preserving.
∀x ∈ X, I ∈ CIF(X),

SubX(I, J) = ∧y∈X ⇓FC x(y) → I(y)

= ∧y∈X(∧J∈CIF(X)e(x,�J) → J(y)) → I(y)

≥ ∧y∈X((e(x,�I) → I(y)) → I(y)

≥ e(x,�I).

From (X, e) is fcc poset, we have x = � ⇓FC x, and thus

e(x,�I) = e(� ⇓FC x,�I)

= ∧y∈X ⇓FC x(y) → e(y,�I)

≥ ∧y∈X ⇓FC x(y) → I(y)

= SubX(⇓FC x, I).

Thus, (⇓FC,�) is a fuzzy Galois adjunction between (X, e) and (CIF(X), SubX).
Conversely, suppose that (⇓FC,�) is a fuzzy Galois adjunction between (X, e) and

(CIF(X), SubX), then � ⇓FC≥ 1X. Thus, for all x ∈ X,� ⇓FC x ≥ x. Since � ⇓FC x ≤
� ↓ x = x, then � ⇓FC x = x. Hence (X, e) is an fcc continuous poset, then (X, e) is an
fcc domain.

Proposition 5. Let (X, e) be an fcc continuous poset. ∀x ∈ X, ↓e x = {y ∈ X :↓ x(y) = 1} is
an fcc complete set.

Proof. Suppose that D is an fcc subset and i :↓e x → X is an embedded mapping. For all
a ∈↓e x,

e(�i→C (A), a) = ∧b∈Xi→C (A)(b) → e(b, a)

= ∧b∈X(∨i(c)=b A(c)) → e(b, a)

= ∧c∈Y A(c) → e(i(c), a)

= ∧c∈Y A(c) → e(c, a)

= e(�A, a).
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Then, �A = �i→C (A). Since ∀b ∈↓e x, e(b, x) = 1, which means A(b) → e(b, x) = 1,
furthermore ∧b∈↓ex A(b) → e(b, x) = e(�D, x) = 1. Hence, �A ∈↓e x, i.e., ↓e x is an fcc
complete set.

5. Conclusions

We discuss fuzzy connectivity under a fuzzy partial order and provide the equivalence
characterization of the connected set along with the definition of the fc set. A set is con-
sidered a connected poset if and only if its characterization functions are fuzzy-connected.
The definition of the fcc set and its equivalent characterizations are obtained. In the last
section, the definitions of fcc way-below and fcc domain are given, and the equivalence
characterizations of fcc continuous poset and fcc complete set are then discussed. Finally, a
method for deriving fcc completeness from an fcc continuous poset is established.

In this paper, we deeply explore the fuzzy connectivity under the fuzzy partial order
and provide the equivalent characterization of the connected set by defining the fuzzy
connected set (fc set). In the framework of fuzzy mathematics, connectivity is an important
concept that helps us to understand and analyze the properties of complex mathematics
structures. First, we define the connectivity of a set under a fuzzy partial order. Specifically,
a set is considered to be a connected poset if and only if its characteristic function is fuzzy
connected. This means that, under the fuzzy partial order, there is a continuous and
uninterrupted relationship between the elements in the set, which makes the whole set
present a holistic structure. In order to further understand the concept of a fuzzy connected
set, we further explore the definition of the fuzzy consistently connected set (fcc set) and its
equivalent characterization. The fcc set is a special set of fuzzy connectivity that satisfies
more stringent conditions to enable a better description of certain specific types of fuzzy
structure. Through the equivalent characterization of the fcc set, we can more clearly
recognize its properties and characteristics, providing a basis for subsequent research and
application. In the final section of this article, we introduce the concept of fcc way-below
relation and fcc domain and discuss the equivalent characterization of fcc continuous
posets and fcc complete sets. These concepts provide us with a new perspective to examine
the application of fuzzy connectivity in complex systems. In particular, we propose a
method to derive fcc completeness from the fcc continuous poset, which helps us to better
understand and apply the theory of fuzzy consistent connectivity. Overall, this paper
explores, in depth, the related concepts and properties of fuzzy consistent connectivity in
the framework of fuzzy partial order. By introducing the concepts of the fc set, fcc set, fcc
completed set, and fcc domain, we provide new ideas and methods for the study of fuzzy
consistent connectivity. These results not only help us to have a deeper understanding of
the intrinsic structure of fuzzy mathematics and complex mathematic structures but also
provide strong support for subsequent research and applications.

It is worth mentioning that the fuzzy connectivity theory explored in this paper has
broad prospects in practical applications. For example, in the fields of image processing,
social network analysis, data mining, etc., fuzzy connectivity can be used to describe
connected regions in an image, connected subgraphs in a social network, and connected
clusters in a data set. Through the analysis and utilization of these connected structures,
we can better understand and exploit the inherent laws and properties of these complex
structures. Moreover, with the continuous development of fuzzy mathematics and complex
structures, we believe that fuzzy connectivity theory will be more widely applied and
developed. In the future, we can further explore the combination of fuzzy connectivity and
other mathematical tools, such as fuzzy logic, fuzzy clustering, etc., to form a more perfect
theoretical system and methodology. At the same time, we can also focus on the application
cases of fuzzy connectivity in practical problems to promote its in-depth development
and application in various fields. For example, we can take the fuzzy poset as the starting
point and consider the connected proposition of its intrinsic topology. In conclusion, this
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paper explores fuzzy connectivity in the framework of a fuzzy partial order and proposes a
series of new concepts and methods. These achievements not only enrich the theoretical
system of fuzzy mathematics but also provide strong support for subsequent research
and application. We believe that in future studies, fuzzy connectivity theory and fuzzy
consistently connected theory will play an increasingly important role in providing us with
new ideas and methods to solve complex problems.
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Abstract: An intuitionistic fuzzy set is a more generalised tool than a fuzzy set for handling unpre-
dictability as, in an intuitionistic fuzzy set, there is scope for considering a grade of non-membership,
independent of the grade of membership, only satisfying the condition that their sum is less or equal
to 1. The motivation of this paper is to introduce the notion of intuitionistic type-2 fuzzy normed
linear space (IT2FNLS). Here, to each vector x, we assign two fuzzy real number valued grades,
one for its norm and the other for the negation of its norm. A theorem of the decomposition of the
intuitionistic type-2 fuzzy norm into a family of pairs of Felbin-type fuzzy norms is established.
Also, we deal with Cauchyness and convergence of sequences in the IT2FNLS. Later on, in the finite-
dimensional IT2FNLS, the completeness property and compactness property are explored. Finally,
we define two types of intuitionistic type-2 fuzzy continuity and examine the relations between them.

Keywords: type-2 fuzzy set; intuitionistic type-2 fuzzy normed linear space; intuitionistic type-2
fuzzy continuity

MSC: 46S40; 03E72

1. Introduction

Since L. A. Zadeh introduced the notion of a fuzzy set in 1965 [1,2], its applications
have covered a wide spectrum of fields of mathematics from fuzzy logic to fuzzy topology,
fuzzy functional analysis, fuzzy differential equations, fuzzy optimisation theory and
dynamical systems, etc.

Normed linear space is the important pillar of functional analysis, a major branch of
modern mathematics. C. Felbin [3] introduced the concept of the fuzzy norm whose metric
analogue is of the Kaleva–Seikkala [4] type and defined fuzzy normed linear space. In 1994,
Cheng and Mordeson [5] defined a fuzzy norm whose metric analogue is of the Kramosil
and Michalek [6] type by giving a grade to a norm of an element by comparing the norm
to a real number. In 2003, Bag and Samanta [7] modified the definition of the fuzzy norm
given by Cheng and Mordeson [5] and obtained a decomposition theorem from it. On
the other hand, Zadeh [2], following the legacy of his own, introduced the definition of a
type-n fuzzy set in 1975. In [8], for the first time, the notion of type-2 fuzzy normed linear
space (type-2 FNLS) was introduced by Chiney, Biswas and Samanta, and a decomposition
theorem was also proved in this setting.

The notion of an intuitionistic fuzzy set (IFS) was introduced by Atanassov [9–12] as
a generalisation of Zadeh’s fuzzy set [1]. There are situations where IFS theory is more
appropriate, as dealt with by [13]. IFS theory has successfully been applied in knowledge
engineering, medical diagnosis, decision making, career determination, etc. [14–16]. With
the advancement of time, several researchers have extended various mathematical aspects
such as groups, rings, topological spaces, metric spaces, topological groups, topological
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vector spaces, etc., in an IFS [17–24]. The definition of intuitionistic fuzzy n-normed linear
space was introduced by S. Vijayabalaji, N. Thillaigovindan and Y. Bae Jun [25] in 2007. In
2009, T. K. Samanta and Iqbal H. Jebril [26] introduced the definition of an intuitionistic
fuzzy norm over a linear space. Recently, research works have been done on intuitionistic
fuzzy normed linear spaces [27–29].

The main objective of this paper is to give an idea of intuitionistic type-2 fuzzy normed
linear space (IT2FNLS) for the first time. Here, we fuzzify the norm of a vector with an
intuitionistic version of the type-2 fuzzy norm. We decompose an intuitionistic type-2 fuzzy
norm into a family of pairs of Felbin-type fuzzy norms. Basic properties such as the convergent
sequence, Cauchy sequence and closed and boundedness of the set are also studied. The finite-
dimensional IT2FNLS is shown to be complete, and, in this space, the compactness of a subset
can be deduced from the closed and boundedness. We define the continuity of functions as
two types, namely, intuitionistic type-2 fuzzy continuity and sequentially intuitionistic type-2
fuzzy continuity. Later on, we discover that every intuitionistic type-2 fuzzy continuous
function is sequentially intuitionistic type-2 fuzzy continuous, but its converse is not true in
general, which is justified by a counterexample.

2. Preliminaries

Definition 1 ([4]). A fuzzy real number is a fuzzy set on R, i.e., a mapping η : R → I(= [0, 1])
associating each real number to its grade of membership η(t).

Definition 2 ([4]). A fuzzy real number η is convex if η(t) ≥ η(s) ∧ η(r)=min (η(s), η(r))
where s ≤ t ≤ r.

Definition 3 ([4]). If there exists a t0 ∈ R such that η(t0) = 1, then η is called a normal fuzzy
real number.

Definition 4 ([4]). The α-level set of a fuzzy real number η, 0 < α ≤ 1, denoted by [η]α, is defined
as [η]α = {t : η(t) ≥ α}.

Proposition 1 ([4]). A fuzzy real number η is convex if and only if each of its α-level sets [η]α,
0 < α ≤ 1, is a convex set in R.

Definition 5 ([4]). A fuzzy real number η is called upper semi-continuous if, for all t ∈ R and
ε > 0 with η(t) = a, there is c > 0 such that |s − t| < c = c(t) ⇒ η(t) < a + ε, i.e.,
η−1([0, a + ε)) for all a ∈ I, and ε > 0 is open in the usual topology of R.

Note 1. It can be easily seen that the α-level sets of an upper semi-continuous convex normal fuzzy
real number for each α, 0 < α ≤ 1, is a closed interval [aα, bα] where aα = −∞ and bα = +∞
are also admissible. Let us denote the set of all upper semi-continuous normal convex fuzzy real
numbers by R(I). Since each r ∈ R can be considered a fuzzy real number r̄,

r̄(t) =

{
1 if t = r
0 if t �= r

R can be embedded in R(I).

Definition 6 ([4]). A fuzzy real number η is called non-negative if η(t) = 0 for all t < 0. The set
of all non-negative fuzzy real numbers of R(I) is denoted by R∗(I).

Note 2. If we take the set {η ∈ R∗(I) : η = 0̄ or η " 0̄}, then we denote this set by R+(I).

Note 3. Arithmetic operations on fuzzy real numbers, the definition of the partial ordering of fuzzy
real numbers and the definition of the convergence of the sequence of fuzzy real numbers are taken
from [4].
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Definition 7 ([4]). Define a partial ordering ’#’ in R+(I) by η # δ if and only if aα
1 ≤ aα

2 and
bα

1 ≤ bα
2 for all α ∈ (0, 1], where [η]α = [aα

1, bα
1 ] and [δ]α = [aα

2, bα
2 ]. We write η # δ as δ $ η

when desired. The strict inequality in R+(I) is defined by η ≺ δ if and only if aα
1 < aα

2 and bα
1 < bα

2
for each α ∈ (0, 1].

Definition 8 ([2]). A fuzzy set is of type n, n = 2, 3, . . ., if its membership function ranges over
fuzzy sets of type n-1. The membership function of a fuzzy set of type 1 ranges over the interval
[0, 1].

Definition 9 ([3]). Let X be a vector space over R.
Let ||.|| : X → R∗(I).
Write
[||x||]α = [|||x|||α1, |||x|||α2 ] for x ∈ X, 0 < α ≤ 1 and suppose, for all x ∈ X, x �= 0, that

there exists α0 ∈ (0, 1] independent of x such that for all α ≤ α0,
(A) |||x|||α2 < ∞;
(B) inf|||x|||α1 > 0.

Then, (X, ||.||) is called a fuzzy normed linear space, and ||.|| is a fuzzy norm if
(i) ||x|| = 0̄ if and only if x = 0;
(ii) ||rx|| = |r|||x||, x ∈ X, r ∈ R;
(iii) For all x, y ∈ X, ||x + y|| # ||x|| ⊕ ||y||.

Definition 10 ([30]). Let X be a linear space over R. Let || || : X → F+(= R∗(I)) be a mapping
satisfying the following:
(i) ||x|| = 0̄ iff x = 0;
(ii) ||rx|| = |r|||x||, x ∈ X, r ∈ R;
(iii) For all x, y ∈ X, ||x + y|| # ||x|| ⊕ ||y||
and
(A

′
): x �= 0 ⇒ ||x||(t) = 0, ∀t ≤ 0

Then, (X, || ||) is called a fuzzy normed linear space, and || || is called a fuzzy norm on X.

Remark 1 ([30]). (i) Condition (A
′
) in Definition 10 is equivalent to the condition (A

′′
): for all

x( �= 0) ∈ X, ||x||1α > 0, ∀α ∈ (0, 1], where [||x||α] = [||x||1α, ||x||2α] and (ii) || ||iα : i = 1, 2 are
crisp norms on X.

Proposition 2 ([3]). Let {x1, x2, . . . , xn} be a linearly independent set of vectors in a fuzzy
normed linear space (X, ||.||) (of any dimension). Then, there is an η " 0̄ (η ∈ R∗(I)) with
supα∈(0,1]bα < ∞ where [η]α = [aα, bα] and such that, for every choice of scalars a1, a2, . . . , an, we
have ||a1x1 + . . . + anxn|| $ (|a1|+ . . . + |an|)η.

Definition 11 ([25]). Let E be any set. An intuitionistic fuzzy set A of E is an object of the form
A={(x, μA(x), νA(x)) : x ∈ E}, where the functions μA : E → [0, 1] and νA : E → [0, 1] denote
the degree of membership and the non-membership of the element x ∈ E, respectively, and, for every
x ∈ E, 0 ≤ μA(x) + νA(x) ≤ 1.

Theorem 1 ([31]). Suppose that {ut : t ∈ Ω} ⊂ E1 is bounded. Then, its supremum and infimum
must exist and are determined by two pairs of usual functions of λ on [0, 1]

(u−s,Ω(λ), u+
s,Ω(λ)), (u−I,Ω(λ), u+

I,Ω(λ)),

where

u−s,Ω(λ) =

{
u−s (λ) f orλ ∈ (0, 1]
u−s (0 + 0) f orλ = 0

u+
s,Ω(λ) =

{
u+

s (λ) f orλ ∈ [0, 1]\{λs
m}

u+
s (λ

s
m − 0) f orλ = λs

m(m = 1, 2, . . .)
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u−I,Ω(λ) =

{
u−I (λ) f orλ ∈ [0, 1]\{λ′

m}
u−I (λ

′
m − 0) f orλ = λ′

m(m = 1, 2, . . .)

u+
I,Ω(λ) =

{
u+

I (λ) f orλ ∈ (0, 1]
u+

I (0 + 0) f orλ = 0

u−s (λ) = supt∈Ω(ut)
−
λ , u+

s (λ) = supt∈Ω(ut)
+
λ

u−I (λ) = in ft∈Ω(ut)
−
λ , u+

I (λ) = in ft∈Ω(ut)
+
λ

and {λs
m} and {λ′

m} are all noncontinuous points of u+
s (λ) and u−t (λ) on [0, 1], respectively.

Note 4. I denotes the set of all fuzzy sets from [0, 1] to [0, 1], i.e, I = {A | A : [0, 1] → [0, 1]},
and let I0 denotes the set I0 = {ζ ∈ I : 0̄ ≺ ζ ≺ 1̄}.

Definition 12 ([8]). Let X be a linear space over R. A fuzzy subset N : X ×R+(I) → I is called
a type-2 fuzzy norm on X if, for all x, u ∈ X, c ∈ R and η ∈ R+(I),
(N1) When η = 0̄,N (x, η) = 0̄;
(N2) (∀η " 0̄,N (x, η) = 1̄) if x = 0;
(N3) (∀η ∈ R+(I), η " 0̄, N (cx, η) = N (x, 1

|c|η) if c �= 0;
(N4) ∀η1, η2 ∈ R+(I) and x, u ∈ X
N (x + u, η1 ⊕ η2) $ min{N (x, η1), N (u, η2)};
(N5) N (x, .) is a non-decreasing function of R+(I), which means, if η1, η2 ∈ R+(I) with η2 $ η1,
then N (x, η2) $ N (x, η1), and limη→∞N (x, η) = 1̄.

The pair (X,N ) is called the type-2 fuzzy normed linear space (type-2 FNLS).

Theorem 2 ([8]). Let (X,N ) be a type-2 FNLS. Assume further that
(N6) ∧{η " 0̄ : N (x, η) " 0̄} = 0̄ implies x = 0.

Define ||x||ζ = ∧{η " 0̄ : N (x, η) $ ζ}, ζ ∈ I0.
Then {||.||ζ : ζ ∈ I0} is a Felbin-type fuzzy norm on X, and (X, ||.||ζ) is a Felbin-type fuzzy

normed linear space. Also, {||x||ζ : ζ ∈ I0} is a family of Felbin-type fuzzy norms on X such that
ζ2 " ζ1 (ζ1, ζ2 ∈ I0) ⇒ ||x||ζ2 $ ||x||ζ1 .

Theorem 3 ([8]). Let {||x||ζ : ζ ∈ I0} be a family of Felbin-type fuzzy norms on a linear
space X such that ζ2 " ζ1 (ζ1, ζ2 ∈ I0) ⇒ ||x||ζ2 $ ||x||ζ1 . Now we define a function
N ′ : X ×R+(I) → I as

N ′(x, η) = ∨{ζ : ||x||ζ # η}, when (x, η) �= (0, 0̄)

= 0̄, when (x, η) = (0, 0̄) or {ζ : ||x||ζ # η} = φ

Then N ′ is a type-2 fuzzy norm on X.

Lemma 1 ([8]). Let (X,N ) be a type-2 FNLS satisfying (N6) and {e1, e2, . . . , en} be a finite
set of linearly independent elements of X. Then, for each ζ ∈ I0, there exists a λζ " 0̄ with
supα∈(0,1]bα < ∞, where [λζ ]α = [aα, bα], such that, for every choice of scalars a1, a2, . . . , an,
we have
||a1e1 + a2e2 + . . . + anen||ζ $ (|a1|+ |a2|+ . . . + |an|)λζ .

Lemma 2 ([8]). If {un} is a sequence of positive real numbers and η " 0̄ such that [η]α = [aα, bα],
then [unη]α = [unaα, unbα]. Also, if un → ∞ as n → ∞, then unη → ∞ as n → ∞.

3. Finite-Dimensional Intuitionistic Type-2 Fuzzy Normed Linear Spaces

3.1. Intuitionistic Type-2 Fuzzy Normed Linear Spaces

In this section, we introduce the notion of an intuitionistic type-2 fuzzy normed linear
space with an example. In addition, we show that the decomposition of an intuitionistic
type-2 fuzzy norm gives us a family of pairs of Felbin-type fuzzy norms.
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Definition 13. An intuitionistic type-2 fuzzy norm, or, in short, an IT2FN, on X (where X
is a linear space over R) is an object of the form A = {((x, η),N (x, η),M(x, η)) : (x, η) ∈
X ×R+(I)} where N , M are functions from X ×R+(I) to I satisfying the following conditions:
(i) When η = 0̄, N (x, η) = 0̄;
(ii) (∀η " 0̄, N (x, η) = 1̄) if and only if x = 0;
(iii) N (cx, η) = N (x, 1

|c|η), if c �= 0;
(iv) N (x + y, η1 ⊕ η2) $ min{N (x, η1),N (y, η2)};
(v) N (x, .) is a non-decreasing function of R+(I), which means, if η1, η2 ∈ R+(I) with η2 $ η1,
then N (x, η2) $ N (x, η1) and limη→∞N (x, η) = 1̄;
(vi) When η = 0̄, M(x, η) = 1̄;
(vii) (∀η " 0̄, M(x, η) = 0̄) if and only if x = 0;
(viii) M(cx, η) = M(x, 1

|c|η), if c �= 0;
(ix) M(x + y, η1 ⊕ η2) # max{M(x, η1),M(y, η2)};
(x) M(x, .) is a non-increasing function of R+(I), which means, if η1, η2 ∈ R+(I) with η2 $ η1,
then M(x, η2) # M(x, η1) and limη→∞M(x, η) = 0̄.

Definition 14. If A is an IT2FN on X (a linear space over the field R), then (X, A) is called an
intuitionistic type-2 fuzzy normed linear space or, in short, an IT2FNLS.

The following is an example of an intuitionistic type-2 fuzzy normed linear space.

Example 1. Let (X = R, |.|) be the usual normed linear space. For any fuzzy real number η " 0̄,
define η0 as follows:

η0 = a+b
2

where [a, b] denotes the closure of support of the fuzzy real number η. Let k > 0 be any fixed real
number. Define

N (x, η) =

{
η0 ' (η0 ⊕ k|x|), i f η " 0̄

0̄, i f η = 0̄

M(x, η) =

{
k|x| ' (η0 ⊕ k|x|), i f η " 0̄

1̄, i f η = 0̄

Then (X, A) is an intuitionistic type-2 fuzzy normed linear space.

Solution 1. (i) When η = 0̄, we have, from the definition, N (x, η) = 0̄.
(ii) ∀η ∈ R+(I) with η " 0̄, N (x, η) = 1̄.
⇔ η0 ' (η0 ⊕ ||x||) = 1̄

⇔
a+b

2
a+b

2 +||x|| = 1

⇔ ||x|| = 0
⇔ x = 0.
(iii) ∀η ∈ R+(I) with η " 0̄ and c( �= 0) ∈ R, we obtain N (cx, η) = η0 ' (η0 ⊕ ||cx||).
Again, N (x, 1

c η) = ( 1
c η0) ' ( 1

c η0 ⊕ ||x||) = ( a+b
2c ) ' ( a+b

2c ⊕ ||x||) = ( a+b
2 ) ' ( a+b

2 ⊕
||cx||) = η0 ' (η0 ⊕ ||cx||).
(iv) We have to show that ∀η, ξ ∈ R+(I) and ∀x, y ∈ X,

N (x + y, η ⊕ ξ) $min{N (x, η),N (y, ξ)}.
If

(a) η ⊕ ξ = 0̄,
(b) η ⊕ ξ " 0̄; η " 0̄, ξ = 0̄; η = 0̄, ξ " 0̄, then, in these cases, the relation is obvious.

If
(c) η ⊕ ξ " 0̄; η " 0̄, ξ " 0̄, then

N (x+ y, η⊕ ξ) = (η0 ⊕ ξ0)' (η0 ⊕ ξ0 ⊕ ||x + y||) $ (η0 ⊕ ξ0)' (η0 ⊕ ξ0 ⊕ ||x|| ⊕ ||y||).
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Now {η0 ' (η0 ⊕ ||x||)} $ {ξ0 ' (ξ0 ⊕ ||y||)}
{η0 ' (η0 ⊕ ||x||)} ( {ξ0 ' (ξ0 ⊕ ||y||)} $ 0̄

⇒ (η0 ) ||y||)( (ξ0 ) ||x||) $ 0̄....................(i).
So {(η0 ⊕ ξ0)' (η0 ⊕ ξ0 ⊕ ||x|| ⊕ ||y||)} ( {ξ0 ' (ξ0 ⊕ ||y||)} = {(η0 ) ||y||)( (ξ0 )

||x||)} ' {(η0 ⊕ ξ0 ⊕ ||x|| ⊕ ||y||)) (ξ0 ⊕ ||y||)} $ 0̄ by (i)
⇒ {(η0 ⊕ ξ0)' (η0 ⊕ ξ0 ⊕ ||x|| ⊕ ||y||)} $ {ξ0 ' (ξ0 ⊕ ||y||)}.

Similarly, if {ξ0 ' (ξ0 ⊕ ||y||)} $ {η0 ' (η0 ⊕ ||x||)}, we have
{(η0 ⊕ ξ0)' (η0 ⊕ ξ0 ⊕ ||x|| ⊕ ||y||)} $ {η0 ' (η0 ⊕ ||x||)}.

Thus, N (x + y, η ⊕ ξ) $min{N (x, η),N (y, ξ)}.
(v) We consider the case η ≺ ξ.

If η ≺ ξ and η = 0̄, then ξ " 0̄,
and N (x, η) = 0̄, N (x, ξ) = {ξ0 ' (ξ0 ⊕ ||x||)} $ 0̄

So N (x, ξ) $ N (x, η).
If η ≺ ξ and η " 0̄, then ξ " 0̄ and hence

{ξ0 ' (ξ0 ⊕ ||x||)} ( {η0 ' (η0 ⊕ ||x||)} = {(ξ0 ) ||x||) ( (η0 ) ||x||)} ' {(ξ0 ⊕ ||x||) )
(η0 ⊕ ||x||} $ 0̄ [since ξ0 " η0]

So {ξ0 ' (ξ0 ⊕ ||x||)} $ {η0 ' (η0 ⊕ ||x||)}
⇒ N (x, ξ) $ N (x, η), for all x ∈ X.
Thus, N (x, .) is a non-decreasing function of R+(I).
When η → ∞, then b → ∞, and hence η0 → ∞. So, limη→∞N (x, η) = 1̄.
Similarly, M satisfies all conditions of (vi)− (x) of Definition 13.

Theorem 4. Let (X, A) be an IT2FNLS. We assume further that
(xi) ∧{η " 0̄ : N (x, η) " 0̄} = 0̄ implies x = 0;
(xii) ∧{η " 0̄ : M(x, η) ≺ 1̄} = 0̄ implies x = 0.

Define ||x||ζN = ∧{η " 0̄ : N (x, η) $ ζ}, ζ ∈ I0

and ||x||ζM = ∧{η " 0̄ : M(x, η) # ζ}, ζ ∈ I0.
Then (A) {||.||ζN : ζ ∈ I0} is a family of Felbin-type fuzzy norms on X such that ζ2 $ ζ1

(ζ1, ζ2 ∈ I0) ⇒ ||x||ζ2
N $ ||x||ζ1

N
and (B) {||.||ζM : ζ ∈ I0} is a family of Felbin-type fuzzy norms on X such that ζ1 # ζ2

(ζ1, ζ2 ∈ I0) ⇒ ||x||ζ1
M $ ||x||ζ2

M.

Proof. (A) If ||x||ζN = 0̄, then ∧{η " 0̄ : N (x, η) $ ζ " 0̄} = 0̄
⇒ ∧{η " 0̄ : N (x, η) " 0̄} = 0̄
⇒ x = 0 by (xi).

Conversely, let x = 0
⇒ N (x, η) = 1̄ for all η " 0̄
⇒ ∧{η " 0̄ : N (x, η) $ ζ} = 0̄.
⇒ ||x||ζN = 0̄
(ii) If c �= 0, then

||cx||ζN = ∧{η " 0̄ : N (cx, η) $ ζ}

= ∧{η " 0̄ : N (x,
1
|c|η) $ ζ}

= ∧{|c|δ " 0̄ : N (x, δ) $ ζ}
= |c|[∧{δ " 0̄ : N (x, δ) $ ζ}]
= |c|||x||ζN

(iii)
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||x||ζN ⊕ ||y||ζN = ∧{η " 0̄ : N (x, η) $ ζ : ζ ∈ I0} ⊕ ∧{δ " 0̄ : N (y, δ) $ ζ : ζ ∈ I0}
= ∧{η ⊕ δ " 0̄ : N (x, η),N (y, δ) $ ζ}
$ ∧{μ " 0̄ : N (x + y, μ) $ ζ} [Since,N (x, η),N (y, δ) $ ζ ⇒ N (x + y, η ⊕ δ) $ ζ]

Therefore, ||x + y||ζN # ||x||ζN ⊕ ||y||ζN .
Now take 0̄ ≺ ζ1 # ζ2 and ζ1, ζ2 ∈ I0.
Since ζ1 # ζ2, we have {η " 0̄ : N (x, η) $ ζ2} ⊂ {η " 0̄ : N (x, η) $ ζ1}

⇒ ∧{η " 0̄ : N (x, η) $ ζ2} $ ∧{η " 0̄ : N (x, η) $ ζ1}
⇒ ||x||ζ2

N $ ||x||ζ1
N .

Thus, {||.||ζN : ζ ∈ I0} is a family of Felbin-type fuzzy norms on X such that ζ2 $ ζ1

(ζ1, ζ2 ∈ I0) ⇒ ||x||ζ2
N $ ||x||ζ1

N .
(B) Now we will prove that {||x||ζM : ζ ∈ I0} is also a family of Felbin-type fuzzy

norms on X such that ζ2 $ ζ1(ζ1, ζ2 ∈ I0) ⇒ ||x||ζ2
M $ ||x||ζ1

M.
Let ζ ∈ I0 and ||x||ζM = 0̄

⇒ ∧{η " 0̄ : M(x, η) # ζ} = 0̄
⇒ ∧{η " 0̄ : M(x, η) ≺ 1̄} = 0̄
⇒ x = 0 by (xii).

Conversely, we assume that x = 0̄
⇒ M(x, η) = 0̄ ∀η " 0̄
⇒ ∧{η " 0̄ : M(x, η) # ζ} = 0̄
⇒ ||x||ζM = 0̄.

By definition, it is quite obvious that ||cx||ζM = |c|||x||ζM ∀c ∈ R.

||x||ζM ⊕ ||y||ζM = ∧{η " 0̄ : M(x, η) # ζ} ⊕ ∧{η′ " 0̄ : M(y, η′) # ζ}
$ ∧{η ⊕ η′ " 0̄ : M(x, η) # ζ,M(y, η′) # ζ}
$ ∧{η ⊕ η′ " 0̄ : M(x + y, η ⊕ η′) # ζ}
$ ∧{η1 " 0̄ : M(x + y, η1) # ζ}
= ||x + y||ζM.

Let ζ1, ζ2 ∈ I0 and ζ1 # ζ2.
Now {η " 0̄ : M(x, η) # ζ1} ⊂ {η " 0̄ : M(x, η) # ζ2}

⇒ ∧{η " 0̄ : M(x, η) # ζ1} $ ∧{η " 0̄ : M(x, η) # ζ2}
⇒ ||x||ζ1

M $ ||x||ζ2
M.

Lemma 3. Let (X, A) be an IT2FNLS satisfying the condition (xi) and {e1, e2, . . . , en} be a finite
set of linearly independent elements of X. Then, for each ζ ∈ I0, there exists a λζ " 0̄ with
supα∈(0,1]bα < ∞, where [λζ ]α = [aα, bα] such that, for every choice of scalars a1, a2, . . . , an, we
have
||a1e1 + a2e2 + . . . + anen||ζ $ (|a1|+ |a2|+ . . . + |an|)λζ .

Proof. From Theorem 4, it follows that, if (X, A) is an intuitionistic type-2 fuzzy normed
linear space satisfying (xi), then ||x||ζ = ∧{η " 0̄ : N (x, η) $ ζ} is a Felbin-type fuzzy
norm for each ζ ∈ I0. Therefore, by Proposition 2, for each ζ ∈ I0, there exists a λζ such
that ||a1e1 + a2e2 + . . . + anen||ζ $ (|a1|+ |a2|+ . . . + |an|)λζ .

3.2. Convergence in Intuitionistic Type-2 Fuzzy Normed Linear Space

The idea of the convergence of sequences and some of the basic results related to
convergence are studied in this subsection.
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Definition 15. In an IT2FNLS (X, A), a sequence {xn} is said to be convergent to x ∈ X
if limn→∞N (xn − x, η) = 1̄ and limn→∞M(xn − x, η) = 0̄ ∀η " 0̄ and is denoted by
limn→∞xn = x.

Theorem 5. If a sequence {xn} in an IT2FNLS (X, A) is convergent, its limit is unique.

Proof. Let limxn = x and limxn = y.
Then, limn→∞N (xn − x, η1) = limn→∞N (xn − y, η2) = 1̄, ∀ η1, η2 " 0̄.
Now N (x − y, η1 ⊕ η2) = N (x − xn + xn − y, η1 ⊕ η2) $ min{N (x − xn, η1),N (xn −

y, η2)}
i.e, N (x − y, η1 ⊕ η2) $ min{N (xn − x, η1),N (xn − y, η2)}.

Now
limn→∞N (xn − x, η1) = 1̄, ∀ η1 " 0̄,
limn→∞N (xn − y, η2) = 1̄, ∀ η2 " 0̄.
Thus, limn→∞N (x − y, η1 ⊕ η2) = 1̄, ∀ η1, η2 " 0̄

⇒ x − y = 0
⇒ x = y.

Theorem 6. If limn→∞xn = x and limn→∞yn = y, then limn→∞(xn + yn) = x + y in an
IT2FNLS (X, A).

Proof. Since limn→∞xn = x and limn→∞yn = y,
limn→∞N (xn − x, η

2 ) = 1̄ and limn→∞M(xn − x, η
2 ) = 0̄ ∀ η " 0̄,

limn→∞N (yn − y, η
2 ) = 1̄ and limn→∞M(yn − y, η

2 ) = 0̄ ∀ η " 0̄.

N (xn + yn − x − y, η) = N (xn − x + yn − y, η)

$ min{N (xn − x,
η

2
),N (yn − y,

η

2
)}

Now, proceeding to the limit as n → ∞, we obtain limn→∞N (xn + yn − x − y, η) = 1̄
∀η " 0̄..................(i).

Also,

M(xn + yn − x − y, η) = M(xn − x + yn − y, η)

# max{M(xn − x,
η

2
),M(yn − y,

η

2
)}

Now, proceeding to the limit as n → ∞, we obtain limn→∞M(xn + yn − x − y, η) = 0̄
∀η " 0̄...................(ii).

Combining (i) and (ii), we obtain limn→∞(xn + yn) = x + y.

Theorem 7. If limn→∞xn = x and c( �= 0) ∈ R, then limn→∞cxn = cx in an IT2FNLS (X, A).

Proof. Since limn→∞xn = x,
we have limn→∞N (xn − x, η) = 1̄ and limn→∞M(xn − x, η) = 0̄ ∀η " 0̄.

Now N (cxn − cx, η) = N (xn − x, 1
|c|η)

and so limn→∞N (cxn − cx, η) = limn→∞N (xn − x, 1
|c|η) = 1̄ ∀η " 0̄.

Proceeding similarly, we obtain limn→∞M(cxn − cx, η) = 0̄ ∀η " 0̄.
Thus, we have limn→∞cxn = cx.

Theorem 8. In an IT2FNLS (X, A), every subsequence of a convergent sequence is convergent
and converges to the same limit.

116



Mathematics 2024, 12, 2176

Proof. Let {xn} be a convergent sequence in (X, A) with limn→∞xn = x and {xnr} be a
subsequence of {xn}.

Then, limn→∞N (xn − x, η) = 1̄ and limn→∞M(xn − x, η) = 0̄ ∀η " 0̄.................(i)
Now, as r → ∞, then nr → ∞, and, from (i), we easily obtain that

limn→∞N (xnr − x, η) = 1̄ and limn→∞M(xnr − x, η) = 0̄ ∀η " 0̄.
Thus, we see that the sequence {xnr} is convergent, and limr→∞xnr = x.

Definition 16. A sequence {xn} in an IT2FNLS (X, A) is said to be a Cauchy sequence if
limn→∞N (xn+p − xn, η) = 1̄ and limn→∞M(xn+p − xn, η) = 0̄, p = 1, 2, 3, . . . . . . and
∀η " 0̄.

Theorem 9. In an IT2FNLS (X, A), every convergent sequence is a Cauchy sequence.

Proof. Suppose {xn} is convergent and limxn = x.
Then limn→∞N (xn − x, η) = 1̄ and limn→∞M(xn − x, η) = 0̄ ∀ η " 0̄.
Now N (xn+p − xn, η1 ⊕ η2) = N (xn+p − x + x − xn, η1 ⊕ η2).
We also have N (xn+p − x + x − xn, η1 ⊕ η2) $ min{N (xn+p − x, η1),N (x − xn, η2)}

i.e, N (xn+p − xn, η1 ⊕ η2) $ min{N (xn+p − x, η1),N (xn − x, η2)}.
Now, limn→∞N (xn+p − x, η1) = limn→∞N (xn − x, η2) = 1̄, ∀ η1, η2 " 0̄, p = 1, 2, 3, . . .
So, limn→∞N (xn+p − xn, η1 ⊕ η2) = 1̄, ∀ η1, η2 " 0̄, p = 1, 2, 3, . . .
Proceeding similarly, we can prove that limn→∞M(xn+p − xn, η1 ⊕ η2) = 0̄, ∀ η1, η2 "

0̄, p = 1, 2, 3, . . .
Hence, {xn} is a Cauchy sequence in (X, A).

3.3. Completeness and Finite Dimensionality in Intuitionistic Type-2 Fuzzy Normed Linear Space

Basic properties related to the completeness, boundedness, compactness and finite
dimensionality in the IT2FNLS are studied in this subsection.

Definition 17. Let (X, A) be an IT2FNLS. If every Cauchy sequence in (X, A) is convergent, then
we call (X, A) to be complete.

Theorem 10. Let (X, A) be an IT2FNLS, such that every Cauchy sequence in (X, A) has a
convergent subsequence. Then, (X, A) is complete.

Proof. Let {xn} be a Cauchy sequence in (X, A) and {xnr} be a convergent subsequence
of {xn} with limr→∞xnr = x.

Then limn→∞N (xn+p − xn, η
2 ) = 1̄ and limn→∞M(xn+p − xn, η

2 ) = 0̄, p = 1, 2, 3, . . . . . .
and ∀η " 0̄.

Also, limr→∞N (xnr − x, η
2 ) = 1̄ and limr→∞M(xnr − x, η

2 ) = 0̄ ∀η " 0̄.
Now

N (xn − x, η) = N (xn − xnr + xnr − x, η)

$ min{N (xn − xnr ,
η

2
),N (xnr − x,

η

2
)}

Then, proceeding to the limit as n → ∞, we obtain limn→∞N (xn − x, η) = 1̄ ∀η "
0̄...................(i).

Similarly, going by the previous approach, we can prove that limn→∞M(xn − x, η) = 0̄
∀η " 0̄......................(ii).

Combining (i) and (ii), we have the sequence {xn}, which is convergent, and
limn→∞xn = x.

Thus, we see that every Cauchy sequence in (X, A) is convergent, and so (X, A)
is complete.
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Theorem 11. Every finite- dimensional IT2FNLS satisfying the conditions (xi) and (xii) is complete.

Proof. Let (X, A) be an IT2FNLS and dim X = k.
Let {e1, e2, . . . , ek} be a basis of X and {xn} be a Cauchy sequence in X.
Let xn = βn

1e1 + βn
2e2 + . . . + βn

k ek, βn
i ∈ R, i = 1, 2, . . . k, n ∈ N.

Now we have limn→∞N (xn+p − xn, η) = 1̄, ∀η " 0̄, p = 1, 2, 3, . . .
⇒ limn→∞N (∑k

i=1 β
n+p
i ei − ∑k

i=1 βn
i ei, η) = 1̄

⇒ limn→∞N (∑k
i=1(β

n+p
i − βn

i )ei, η) = 1̄, ∀η " 0̄, p = 1, 2, 3, . . .
Choose ζ ∈ I0 and η " 0̄.
Then there exists a positive integer n0(η, ζ) such that
N (∑k

i=1(β
n+p
i − βi)ei, η) " ζ, ∀n ≥ n0(η, ζ), p = 1, 2, 3, . . .

Now ||∑k
i=1(β

n+p
i − βi)ei||ζ = ∧{ξ " 0̄ : N (∑k

i=1(β
n+p
i − βi)ei, ξ) $ ζ}.

Therefore, ||∑k
i=1(β

n+p
i − βi)ei||ζ # η, ∀n ≥ n0(η, ζ).

Since η " 0̄ is arbitary,
||∑k

i=1(β
n+p
i − βn

i )ei||ζ → 0̄ as n → ∞ for each ζ ∈ I0, p = 1, 2, 3, . . .
⇒ (∑k

i=1 |β
n+p
i − βn

i |)λζ → 0̄ as n → ∞ where λζ " 0̄, by the Lemma 3,
⇒ ∑k

i=1 |β
n+p
i − βn

i | → 0 as n → ∞, since λζ " 0̄ for all ζ ∈ I0
⇒ {βn

i }n is a Cauchy sequence in R for each i = 1, 2, . . . , k.
Since R is complete, {βn

i }n converges for each i = 1, 2, . . . k.
Let limn→∞βn

i = βi for i = 1, 2, . . . k and x = ∑k
i=1 βiei.

Then, x ∈ X.
Now, for all η " 0̄,

N (xn − x, η) = N (
k

∑
i=1

βn
i ei −

k

∑
i=1

βiei, η)

= N (
k

∑
i=1

(βn
i − βi)ei, η)

$ miniN (ei,
1

k|βn
i − βi|

η).....................(i)

Let un = 1
k|βn

i −βi | . Then un → ∞ as n → ∞ [Since |βn
i − βi| → 0+ as n → ∞ for

i = 1, 2, . . . k].
So unη → ∞ as n → ∞, by Lemma 2.
Hence, we have limn→∞N (ei, 1

k|βn
i −βi |η) = limn→∞N (ei, unη) = 1̄ for i = 1, 2,. . . k

....................(ii).
From (i) and (ii), we obtain limn→∞N (xn − x, η) = 1̄, ∀η " 0̄.
Again, for all η " 0̄,

M(xn − x, η) = M(
k

∑
i=1

βn
i ei −

k

∑
i=1

βiei, η)

= M(
k

∑
i=1

(βn
i − βi)ei, η)

# maxiM(ei,
1

k|βn
i − βi|

η)......................(iii)

Now limn→∞M(ei, 1
k|βn

i −βi |η) = limn→∞M(ei, unη) = 0̄ for i = 1, 2,. . . k ....................(iv).

From (iii) and (iv), we obtain limn→∞M(xn − x, η) = 0̄, ∀η " 0̄.
Hence, limxn = x, i.e, the sequence {xn} is convergent.
Thus, we see that the IT2FNLS (X, A) is complete.
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Definition 18. A subset U in an IT2FNLS (X, A) is said to be bounded if, for any ζ1, ζ2 ∈ I0
with ζ1 ⊕ ζ2 # 1̄, ∃ η " 0̄ such that N (x, η) " ζ1 and M(x, η) ≺ ζ2, ∀x ∈ U.

Theorem 12. Let (X, A) be an IT2FNLS. Then, every Cauchy sequence in (X, A) is bounded.

Proof. Let us consider a Cauchy sequence {xn} in an IT2FNLS (X, A).
Then limn→∞N (xn+p − xn, η) = 1̄ and M(xn+P − xn, η) = 0̄, ∀η " 0̄ and

p = 1, 2, 3, . . .
Let ζ1, ζ2 ∈ I0 with ζ1 ⊕ ζ2 # 1̄.
Then we have limn→∞N (xn+p − xn, η) = limn→∞N (xn − xn+p, η) = 1̄ " ζ1, ∀η "

0̄ and p = 1, 2, 3, ...
For η′ " 0̄, ∃ n0 = n0(η

′, ζ1) such that N (xn − xn+p, η′) " ζ1, ∀n ≥ n0, p = 1, 2, 3, . . .
Since limη→∞N (x, η) = 1̄, ∃ ηi " 0̄ such that N (xi, ηi) " ζ1, for all i = 1, 2, 3, . . . n0.
Let η0 = η′ ⊕ η1 ⊕ η2 ⊕ . . . ⊕ ηn0 .
Then N (xn, η0) $ N (xn, η′ ⊕ ηn0) = N (xn − xn0 + xn0 , η′ ⊕ ηn0) $ min{N (xn −

xn0 , η′),N (xn0 , ηn0)}.
Therefore, N (xn, η0) $ ζ1, ∀n > n0.
Also, N (xn, η0) $ N (xn, ηn) $ ζ1, ∀n = 1, 2, . . . n0.
Hence, N (xn, η0) $ ζ1, ∀n..........................(i)
Also, we have limn→∞M(xn+p − xn, η) = limn→∞M(xn − xn+p, η) = 0̄ ≺ ζ2, ∀η "

0̄ and p = 1, 2, 3, ...
For η′0 " 0̄, ∃ n′0 = n′0(η

′
0, ζ2) such that M(xn − xn+p, η′0) ≺ ζ2, ∀n ≥ n′0, p = 1, 2, 3, . . .

Since limη→∞M(x, η) = 0̄, ∃ η′i " 0̄ such that M(xi, η′i ) ≺ ζ2, for all i = 1, 2, 3, . . . n′0.
Let η1 = η′0 ⊕ η′1 ⊕ η′2 ⊕ . . . ⊕ η′n′0

.

Then M(xn, η1) # M(xn, η′0 ⊕ η′n′0
) = M(xn − xn′0

+ xn′0
, η′0 ⊕ η′n′0

) # max{M(xn −
xn′0

, η′0),M(xn′0
, η′n′0

)}.

Therefore, M(xn, η1) # ζ2, ∀n > n′0.
Also, M(xn, η1) # M(xn, η′n) # ζ2, ∀n = 1, 2, . . . n′0.
Hence, M(xn, η1) # ζ2, ∀n...........................(ii)
Let η2 = η0 ⊕ η1.
Then, from (i) and (ii), we obtainN (xn, η2) $ N (xn, η0) $ ζ1 andM(xn, η2) #M(xn, η1) #

ζ2 ∀n, i.e, N (xn, η2) $ ζ1 and M(xn, η2) # ζ2 ∀n with ζ1 ⊕ ζ2 # 1̄.
This implies that {xn} is bounded in (X, A).

Remark 2. The converse of the above theorem is not true in general, which follows from the
following example.

Example 2. Let (X = R, |.|) be the usual real normed linear space and ||.|| be the usual Felbin-type
fuzzy norm on R, i.e,

||x||(t) =
{

1, i f t = |x|
0, otherwise

.

Define

N (x, η) =

{
1̄ i f ||x|| ≺ η

0̄ otherwise

M(x, η) =

{
0̄ i f ||x|| ≺ η

1̄ otherwise
.

Then (X, A) is an intuitionistic type-2 fuzzy normed linear space. Take the sequence {xn}
where xn = (−1)n+1, ∀n ∈ N. Then, we see that the sequence {xn} is bounded but not Cauchy.

In fact, for the above sequence, we have ||xn|| = 1̄ ∀n ∈ N.
Now choose any ζ1, ζ2 ∈ I0 such that ζ1 ⊕ ζ2 # 1̄.

119



Mathematics 2024, 12, 2176

Then, if we take any η0 " 1̄, then N (xn, η0) = 1̄ " ζ1 and also M(xn, η0) = 0̄ ≺ ζ2.
Thus, the sequence {xn} is bounded.
Also, for the given sequence, we see that ||xn+p − xn|| = 0̄ or 2̄ for any n ∈ N, and

p = 1, 2, 3, . . .
If η " 2̄, then N (xn+1 − xn, η) = 1̄ ∀n ∈ N, and, if η ≺ 1̄, then N (xn+1 − xn, η) = 0̄

∀n ∈ N.
Hence, the sequence {xn} is not Cauchy.

Definition 19. Let (X, A) be an IT2FNLS. A subset V of X is said to be closed if any sequence {xn}
in V converges to x ∈ V that is limn→∞N (xn − x, η) = 1̄ and M(xn − x, η) = 0̄ ∀η " 0̄ ⇒
x ∈ V.

Definition 20. Let (X, A) be an IT2FNLS. A subset U of X is said to be compact if any sequence
{xn} in U has a subsequence converging to an element of U.

Theorem 13. Let (X, A) be a finite-dimensional IT2FNLS satisfying the conditions (xi) and (xii)
and U ⊂ X. Then U is compact if it is closed and bounded.

Proof. Let dimX = k and {e1, e2, . . . , ek} be a basis of X.
We take a sequence {xn} in U and let xn = βn

1e1 + βn
2e2 + . . . + βn

k ek, where βn
i ∈ R,

i = 1, 2, . . . k.
Since U is bounded, {xn} is bounded. Then, for each ζ1, ζ2 ∈ I0 with ζ1 ⊕ ζ2 # 1̄,

∃ η1 " 0̄ such that N (xn, η1) " ζ1 and M(xn, η1) ≺ ζ2 for all n ∈ N......................(i).
Now ||xn||ζ1 = ∧{η " 0̄ : N (xn, η) $ ζ1}.
Then, from (i), we obtain ||xn||ζ1 # η1................(ii).
Since {e1, e2, . . . , ek} is a linearly independent set, by the Lemma 3, there exists a

λζ1 " 0̄ such that ||xn||ζ1 = ||∑k
i=1 βn

i ei||ζ1 $ (∑k
i=1 |βn

i |)λζ1 (n=1,2,. . . )...............(iii).
From (ii) and (iii), we obtain (∑k

i=1 |βn
i |)λζ1 # η1.

Now, if we take [λζ1 ]α = [aα, bα] and [η1]α = [aα
1, bα

1 ] for 0 < α ≤ 1, then (∑k
i=1 |βn

i |)aα ≤
aα

1 and (∑k
i=1 |βn

i |)bα ≤ bα
1 .

Then (∑k
i=1 |βn

i |) ≤
aα

1
aα for n=1,2,. . . , and so, for each i = 1, 2, . . . k, {βn

i }n is a bounded
sequence of real numbers.

Now {βn
1}n is bounded, and so, by the Bolzano–Weierstrass theorem, it has a conver-

gent subsequence. Let β1 denote the limit of that subsequence and let {x(1,n)}n denote the
corresponding subsequence of {xn}. By the same argument, {x(1,n)} has a subsequence
{x(2,n)} for which the corresponding subsequence of real βn

2 converges. Let β2 denote
the limit of that subsequence. Continuing in this way after k steps, we obtain a sequence
{x(k,n)}n = {x(k,1), x(k,2), . . .} of {xn} whose elements are of the form x(k,n) = ∑k

i=1 γn
i ei

with scalars γn
i satisfying γn

i → βi as n → ∞ for i = 1, 2, . . . , k.
Let x = ∑k

i=1 βiei. Then, x ∈ X.
Now, for η " 0̄, we have

N (x(k,n) − x, η) = N (
k

∑
i=1

(γn
i − βi)ei, η)

$ miniN (ei,
1

k|γn
i − βi|

η)

⇒ limn→∞N (x(k,n) − x, η) $ mini limn→∞N (ei, 1
k|γn

i −βi |η).....................(iv).

Let un = 1
k|γn

i −βi | .

Then un → ∞ as n → ∞, since |γn
i − βi| → 0+, when n → ∞.

So unη → ∞ as n → ∞ by Lemma 2.
Then we have limn→∞N (ei, 1

k|γn
i −βi |η) = limn→∞N (ei, unη) = 1̄...............(v).

Combining (iv) and (v), we obtain limn→∞N (x(k,n) − x, η) = 1̄, ∀η " 0̄......................(vi).
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Again, for all η " 0̄,

M(x(k,n) − x, η) = M(
k

∑
i=1

(γn
i − βi)ei, η)

# maxiM(ei,
1

k|γn
i − βi|

η)

⇒ limn→∞M(x(k,n) − x, η) # maxi limn→∞N (ei, 1
k|γn

i −βi |η).....................(vii)

Let un = 1
k|γn

i −βi | .

Then, un → ∞ as n → ∞, since |γn
i − βi| → 0+, when n → ∞.

So unη → ∞ as n → ∞ by Lemma 2.
Then we have limn→∞M(ei, 1

k|γn
i −βi |η) = limn→∞M(ei, unη) = 0̄...............(viii).

Combining (vi) and (vii), we obtain limn→∞M(x(k,n) − x, η) = 0̄, ∀η " 0̄.................(ix).
Combining (vi) and (xi), we obtain limn→∞N (x(k,n)− x, η) = 1̄ and limn→∞M(x(k,n)−

x, η) = 0̄, ∀η " 0̄
⇒ limn→∞x(k,n) = x, i.e, {x(k,n)}n is a convergent subsequence of {xn}n which converges to x.
Since U is closed, x ∈ U. Hence, every sequence in U has a subsequence which converges in U.
Thus, U is compact.

4. Intuitionistic Fuzzy Continuous Functions in Intuitionistic Type-2 Fuzzy Normed
Linear Space

We know that, in classical normed linear space, continuity of function at a point can be
characterised by the convergence of the sequence at that point. But here we discover that,
in an IT2FNLS setting, the sequential criterion for continuity holds partially. For this, we
introduce two types of continuous functions, namely, intuitionistic type-2 fuzzy continuous
and sequentially intuitionistic type-2 fuzzy continuous functions. Here, we show that every
intuitionistic type-2 fuzzy continuous function is sequentially intuitionistic type-2 fuzzy
continuous, but its converse is not true, which is justified by a counterexample.

Definition 21. Let (X, A) and (Y, B) be two IT2FNLSs. A mapping T : X → Y is said to be
intuitionistic type-2 fuzzy continuous (or, in short, IT2FC) at x0 ∈ X if, for each η1 " 0̄, ∃ η2 " 0̄
such that ∀x ∈ X,

NB(T(x)− T(x0), η1) $ NA(x − x0, η2) and
MB(T(x)− T(x0), η1) # MA(x − x0, η2).
T is said to be IT2FC on X if T is IT2FC at each point of X.

Definition 22. Let (X, A) and (Y, B) be two IT2FNLSs. A mapping T : X → Y is said to be
sequentially intuitionistic type-2 fuzzy continuous (or, in short, sequentially IT2FC) at x0 ∈ X if
any sequence {xn} in X with xn → x0 implies Txn → Tx0, i.e, limn→∞NA(xn − x0, η) = 1̄ and
limn→∞MA(xn − x0, η) = 0̄, ∀η " 0̄
⇒ limn→∞NB(T(xn)− T(x0), η) = 1̄ and limn→∞MB(T(xn)− T(x0), η) = 0̄, ∀η " 0̄.

If T is sequentially IT2FC at each point of X, then T is said to be sequentially IT2FC on X.

Theorem 14. Let (X, A) and (Y, B) be two IT2FNLSs and T : X → Y be a mapping. If T is
IT2FC on X, then it is sequentially IT2FC on X.

Proof. Let x0 be an arbitrary point of X and T be IT2FC on X. Then, for an η1 " 0̄, ∃ η2 " 0̄
such that ∀x ∈ X
NB(T(x)− T(x0), η1) $ NA(x − x0, η2)..........................(i)
and MB(T(x)− T(x0), η1) # MA(x − x0, η2).........................(ii).

Let {xn} be a sequence in X such that xn → x0, that is, for all η " 0̄, limn→∞NA(xn −
x0, η) = 1̄ and limn→∞MA(xn − x0, η) = 0̄.
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Then, for all η " 0̄ from (i) and (ii), we obtain limn→∞NB(T(xn) − T(x0), η) = 1̄
and limn→∞MB(T(xn) − T(x0), η) = 0̄, that is, T(xn) → T(x0) in (Y, B), and so T is
sequentially IT2FC on X.

The following example will show that a sequentially IT2FC T does not guarantee the
IT2FC of T.

Example 3. Let (X = R, |.|) be a normed linear space. For any fuzzy real number η " 0̄, define
η0 as follows:

η0 = a+b
2

where [a, b] denotes the closure of support of the fuzzy real number η. Let k, k1 > 0 be any fixed real
number. Define

NA(x, η) =

{
η0 ' (η0 ⊕ k|x|), i f η " 0̄

0̄, i f η = 0̄

MA(x, η) =

{
k|x| ' (η0 ⊕ k|x|), i f η " 0̄

1̄, i f η = 0̄

and

NB(x, η) =

{
η0 ' (η0 ⊕ k1|x|), i f η " 0̄

0̄, i f η = 0̄

MB(x, η) =

{
k1|x| ' (η0 ⊕ k1|x|), i f η " 0̄

1̄, i f η = 0̄

Then, (X = R, A) and (Y = R, B) are two IT2FNLSs.
We define a function T : X → Y by T(x) = x4

1+x2 . Then, T is sequentially IT2FC but not
IT2FC.

In fact, by Example 1, we can see that both (X, A) and (Y, B) are two ITFNLSs.
We choose a sequence {xn}, xn ∈ X such that xn → x0.
Now ∀η " 0̄, we have
limn→∞NA(xn − x0, η) = 1̄ and limn→∞MA(xn − x0, η) = 0̄

⇒ limn→∞{( a+b
2 )' ( a+b

2 ⊕ |xn − x0|)} = 1̄ and limn→∞{(k|xn − x0|)' ( a+b
2 ⊕ k|xn − x0|)} = 0̄

⇒ limn→∞
a+b

2
a+b

2 +|xn−x0|
= 1 and limn→∞

k|xn−x0|
a+b

2 +k|xn−x0|
= 0

⇒ limn→∞|xn − x0| = 0........................(i).

Now NB(T(xn)− T(x0), η) = {( a+b
2 )' ( a+b

2 ⊕ k1| x4
n

1+x2
n
− x4

0
1+x2

0
|)}

Now limn→∞(k1| x4
n

1+x2
n
− x4

0
1+x2

0
|) = 0 by using (i)

⇒ limn→∞NB(T(xn)− T(x0), η) = 1̄ ∀η " 0̄.
Also, ∀η " 0̄

limn→∞MB(T(xn)− T(x0), η) = {(k1| x4
n

1+x2
n
− x4

0
1+x2

0
|)' ( a+b

2 ⊕ k1| x4
n

1+x2
n
− x4

0
1+x2

0
|)}

Now limn→∞(k1| x4
n

1+x2
n
− x4

0
1+x2

0
|) = 0 by using (i)

⇒ limn→∞MB(T(xn)− T(x0), η) = 0̄ ∀η " 0̄.
Thus, T : (X, A) → (Y, B) is sequentially IT2FC.
Let η2 " 0̄ be given. Then, for any η1 " 0̄,
NB(T(x)− T(x0), η2) $ NA(x − x0, η1) ∀x ∈ X

⇒ NB(
x4

1+x2 −
x4

0
1+x2

0
, η2) $ NA(x − x0, η1)

⇒ {( a2+b2
2 )' ( a2+b2

2 ⊕ k1| x4

1+x2 −
x4

0
1+x2

0
|)} $ {( a1+b1

2 )' ( a1+b1
2 ⊕ k|x − x0|)} [where [a1, b1],

[a2, b2] denotes, respectively, the closure of support of the fuzzy real numbers η1, η2]
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⇒
a2+b2

2
a2+b2

2 +k1| x4
1+x2 −

x4
0

1+x2
0
|
≥

a1+b1
2

a1+b1
2 +k|x−x0|

⇒ r2

r2+k1| x4
1+x2 −

x4
0

1+x2
0
|
≥ r1

r1+k|x−x0| where r1 = a1+b1
2 and r2 = a2+b2

2

⇒ r2|1+x2||1+x2
0 |

r2|1+x2||1+x2
0 |+k1|x4+x4x2

0−x4
0−x4

0x2| ≥
r1

r1+k|x−x0|

⇒ r2|1+x2||1+x2
0 |

r2|1+x2||1+x2
0 |+k1|x−x0||x+x0||x2+x2

0+x2x2
0 |
≥ r1

r1+k|x−x0|
⇒ k1r1|x − x0||x + x0||x2 + x2

0 + x2x2
0| ≤ r2k|1 + x2||1 + x2

0||x − x0|
⇒ r1 ≤ r2k|1+x2||1+x2

0 ||x−x0|
k1|x−x0||x+x0||x2+x2

0+x2x2
0 |

.......................(ii)

If T is IT2FC on X, then (ii) is satisfied ∀x( �= x0) ∈ X.

Now in fx( �=x0)∈X
r2k|1+x2||1+x2

0 ||x−x0|
k1|x−x0||x+x0||x2+x2

0+x2x2
0 |
= 0.

Hence, from (ii), we obtain r1 = 0
⇒ a1+b1

2 = 0
⇒ a1 + b1 = 0
⇒ a1 = b1 = 0 [Since a1, b1 ≥ 0]
⇒ η1 = 0̄, which is not possible.

Therefore, T is not IT2FC.

5. Conclusions

In this work we have presented for the first time the concept of intuitionistic type-2
fuzzy normed linear space (IT2FNLS). A decomposition theorem of the intuitionistic type-2
fuzzy norm has been established. The later convergence and Cauchyness of a sequence
in IT2FNLS have been examined. Also, associated properties of various classical concepts
such as completeness, compactness, boundedness and finite dimensionality have been
studied with examples and counterexamples in this newly defined IT2FNLS. Afterwards,
two types of continuity are introduced in IT2FNLS, viz. IT2FC and sequentially IT2FC,
and final relations between them have been analysed with examples, and we found some
dissimilarity with the corresponding results in normed linear spaces.

There is a possibility of further study in the following directions:

1. The boundedness of linear operators between two IT2FNLSs can be defined.
2. The relation between the continuity and boundedness of linear operators can be

studied.
3. Four fundamental theorems, viz. the Hahn–Banach theorem, open mapping theo-

rem, closed graph theorem and the uniform boundedness principle theorem, can be
extended in IT2FNLS.

4. Some geometric properties such as strict convexity and uniform convexity, etc., can
be defined in these spaces.

5. Some fixed-point theorems in these spaces can also be studied.
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Abstract: This paper explores a multi-objective, multi-period integrated routing and scheduling
problem under uncertain conditions for distributing relief to disaster areas. The goals are to minimize
costs and maximize satisfaction levels. To achieve this, the proposed mathematical model aims
to speed up the delivery of relief supplies to the most affected areas. Additionally, the demands
and transportation times are represented using fuzzy numbers to more accurately reflect real-world
conditions. The problem was formulated using a fuzzy multi-objective integer programming model.
To solve it, a hybrid algorithm combining a multi-objective ant colony system and simulated annealing
algorithm was proposed. This algorithm adopts two ant colonies to obtain a set of nondominated
solutions (the Pareto set). Numerical analyses have been conducted to determine the optimal
parameter values for the proposed algorithm and to evaluate the performance of both the model
and the algorithm. Furthermore, the algorithm’s performance was compared with that of the
multi-objective cat swarm optimization algorithm and multi-objective fitness-dependent optimizer
algorithm. The numerical results demonstrate the computational efficiency of the proposed method.

Keywords: fuzzy multi-objective integer programming problem; multi-period integrated vehicle
routing and scheduling; multi-objective ant colony system; simulated annealing algorithm

MSC: 90B06

1. Introduction

Given the increasing frequency of disasters, millions of people are affected by natural
or man-made events each year, with the number of victims rising significantly in recent
decades. Effective planning is crucial in mitigating the impacts of such catastrophes.
Logistics play a key role in coordinating the transportation of commodities between regional
warehouses and affected areas. However, relief logistics planning involves conflicting
objectives, such as minimizing unsatisfied demands, distribution costs, and delays, while
maximizing satisfaction and fairness in product distribution [1].

Sudden disasters are unpredictable, presenting significant challenges that underscore
the need for an efficient emergency material distribution system. A key challenge for
decision-makers is finding a way to swiftly and safely deliver materials to affected areas.
Existing research largely focuses on the coordinated transportation of emergency sup-
plies, dynamic distribution, and transport uncertainties [2–4]. To effectively address the
complexities of emergency material distribution during crises, it is crucial to integrate all
these factors.
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In addition, uncertainty plays a crucial role in emergency material distribution, where
real-time information is hard to obtain. Accurate demand assessment can improve relief
allocation and reduce costs. Furthermore, transportation times may fluctuate due to traffic
jams, equipment failures, and other unpredictable events. Researchers explored fuzzy
theory and stochastic programming to address uncertain conditions. Considering that the
values of these parameters in the affected areas varies over time, the collection of reliable
prior data for stochastic programming is challenging. Fuzzy theory is thus more suitable
for optimizing these issues [5,6]. In this regard, we propose a fuzzy multi-objective integer
programming model.

Furthermore, the routing–scheduling distribution problem is NP-hard [7], and the liter-
ature primarily emphasizes the use of metaheuristic algorithms for similar problems [8–11].
By calibrating the metaheuristic algorithm to the specific characteristics of the problem,
it can generate effective solutions for planning various operations to address these chal-
lenges [6]. Building on the above discussion, we propose a fuzzy multi-objective, multi-
period integrated routing–scheduling model and adapt a hybrid algorithm based on a
multi-objective ant colony system and simulated annealing algorithm to solve the problem.

2. Literature Review

Research on disaster management is of great importance, and significant studies are
being conducted in this field. One of the first studies in the field of transportation in
relief logistics was performed by [12]. In the mentioned work, a linear programming
model was presented to determine the optimal food transportation schedule. Given the
significance of crisis management, several researchers have recently conducted extensive
reviews of the studies carried out in this area [1,13–16]. This overview will discuss research
in the relief chain response phase with an emphasis on periodic routing, multi-objective
routing–scheduling and uncertainty.

2.1. Multi-Period Relief Distribution

Some of the most important aspects of routing problems, which are addressed in this
study, are periodic routing problems where customer services must be done periodically
during a planning horizon. The aim of periodic routing is to determine the motion paths
from the service centers to the customers in each period so that the total routing costs
incurred throughout the planning horizon are minimized [17]. The periodic vehicle routing
problem was first proposed in [18], while the first mathematical model of the problem was
then presented in [19]. Over the past forty-five years, the periodic vehicle routing problem
has significantly evolved, leading to applications like the period vehicle routing problem
with time windows [20], the multi-depot and periodic vehicle routing problem [21], and
the dynamic multi-period vehicle routing problem [22]. Most research has concentrated on
using heuristic algorithms to tackle these extended PVRP models.

Li et al. proposed a multi-period vehicle routing problem for emergency perishable
materials with uncertain demand, utilizing an improved whale optimization algorithm [23].
Zhang et al. recently proposed a multi-period vehicle routing problem with time win-
dows for drug distribution during epidemics. Their model incorporates virus transmission
characteristics and fluctuations in drug demand. They employed an ε-global optimization
method with an outer-approximation scheme for achieving global ε-optimal solutions
in small instances and introduced a hybrid tabu search algorithm (HTS) for larger in-
stances [24].

2.2. Multi-Objective Relief Distribution

Research on multi-objective optimization problems gained significant popularity in
2002 [25] and has since attracted considerable attention from researchers. Recently, a new
multi-objective optimization algorithm, called the multi-objective learner performance-
based behavior algorithm, was introduced by Rahman et al. [26]. This algorithm is inspired
by the transition of students from high school to college and is evaluated against bench-
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marks and five real-world engineering optimization problems using various metrics. In
a more recent study, Abdullah et al. introduced the multi-objective fitness-dependent
optimizer (MOFDO) algorithm, an advanced version of the fitness-dependent optimizer
algorithm that combines various types of knowledge [27]. This algorithm was evalu-
ated using ZDT test functions and CEC-2019 benchmarks, showing a better performance
than recent methods, like the multi-objective particle swarm optimization, NSGA-III, and
multi-objective dragonfly algorithm, in many cases.

Rath and Gutjahr presented a three-objective optimization model with a medium-term
economic sector, a short-term economic sector, and an accident objective function [28]. To
solve the problem, a meta-heuristic scheme based on a genetic algorithm was also provided.
Ngueveu et al. introduced a transportation routing model with a stacked capacity where
the aim was to minimize the total time required for the vehicle to get applicants [2]. Ahmadi
et al. developed a multi-objective multi-depot location-routing model considering network
failure, multiple uses of vehicles, and standard relief time. The model was then extended
to a two-step stochastic program with a random travel time to determine the locations of
distribution centers [29]. Barzinpour et al. proposed a multi-objective model for distribution
centers which are located in and allocated periodically to the damaged areas in order to
distribute the offered relief commodities [18].

Mohammadi et al. developed a new multi-objective reliable optimization model
to organize a humanitarian relief chain that is able to make a broad range of decisions,
including reliable facility location–allocation, fair distribution of relief items, assignment
of victims, and routing of trucks [30]. Vahdani et al. developed a sophisticated two-
stage, multi-objective mixed integer, multi-period, and multi-commodity mathematical
model designed for a three-level relief chain [31]. Yu et al. first developed a more general
two-echelon multi-objective location routing problem model (2E-MOLRP) in consideration
of the inherent similarities in many realistic waste collection applications. Furthermore, to
solve the model, an improved non-dominated sorting genetic algorithm with a directed
local search (INSGA-dLS) was proposed [32]. Ebrahimi formulated a more comprehensive
two-echelon multi-objective location routing problem model (2E-MOLRP), taking into
account the inherent parallels in numerous practical waste collection scenarios. Moreover,
to tackle the model, they proposed an enhanced non-dominated sorting genetic algorithm
with a directed local search (INSGA-dLS) [5]. Zajac and Huber provided an overview of
the solving methods for application-oriented multi-objective routing problems [33]. They
were also analyzed in terms of algorithmic approaches and implementation strategies [34].

2.3. Relief Distribution with the Uncertain Problem

Given the unpredictable circumstances during and following a crisis, decision-makers
frequently grapple with significant uncertainties that compound the complexity of the prob-
lem [35]. Inaccurate or delayed information can result in significant casualties and property
losses. Various optimization methods in this field are presented in the problem literature.
In the following, a number of recent research articles in this field have been reviewed.

Uslu et al. considered a multi-depot vehicle routing problem with stochastic demands
and developed a chance-constrained mathematical model to cope with the problem. They
also conducted a case study for Ankara city in Turkey [36]. Golabi et al. investigated a
stochastic facility location problem for a possible earthquake in Tehran where unmanned
aerial vehicles (UAVs) are utilized [17]. Saffarian et al. proposed a bi-objective model for
relief chain logistics in an uncertain environment while considering the uncertainty in both
traveling times and demands of the damaged areas [37].

Akbarpour et al. created a max–min robust bi-objective optimization model to handle
the uncertainty in the pharmaceutical supply chain [38]. Zahedi et al. carried out an
empirical study with the aim of creating an optimal model for scheduling resources and
vehicles to cater to the needs of disaster-stricken areas with dynamic demands. The
research focused on devising a strategic plan for resource allocation during emergencies.
This comprehensive model addresses various aspects, including the heterogeneity and
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fluctuating nature of demands, simultaneous planning for goods distribution and vehicle
routing, and a multi-objective model grounded in the essential measures required during
emergencies [4].

Rawls and Turnquist presented a two-stage stochastic programming model to tackle
the uncertainties in demand and road network availability, facilitating the advanced de-
ployment of emergency relief materials [39]. Liu et al. expanded on this by integrating
transportation time uncertainties into their model and using robust optimization techniques
to handle these uncertainties [40]. Safaei et al. recognized the fluctuating nature of supply
and demand in emergency rescues and proposed a bi-level optimization model, where the
upper and lower levels adjust to minimize unmet demands [41]. Additionally, uncertainties
may occur during disasters when selecting locations for emergency warehouses [42].

Cao et al. constructed their formulation as a fuzzy tri-objective bi-level integer pro-
gramming model. They developed a hybrid global criterion method that integrates a
primal–dual algorithm, an expected value, and a branch-and-bound approach to solve the
model [19]. Wan et al. utilized trapezoidal fuzzy numbers to manage the uncertainty in de-
termining the locations for emergency materials [43]. Fuzzy credibility theory was applied
to create a fuzzy chance constraint model incorporating fuzzy demands and unlimited
material collection time [44]. Tang et al. utilized trapezoidal fuzzy numbers to represent
demand, scheduling time, and satisfaction, ensuring the equitable distribution of disaster
relief materials [45].

Our review of the literature shows that the majority of these papers concentrate
solely on optimizing specific components. Few studies considered multi-period integrated
routing–scheduling, multiple objectives and uncertainty simultaneously. Therefore, this
paper investigates the problem of integrated multi-objective, multi-period routing and
scheduling under uncertain conditions. To tackle this problem, a multi-objective fuzzy
integer programming model is proposed. Considering the intricate nature of the problem, a
multi-objective ant colony system algorithm was developed to solve the problem. The rest
of the paper is organized as follows. The proposed mathematical model is demonstrated
in Section 3. Section 4 is devoted to the multi-objective ant colony system. Numerical
analyses are performed in Section 5 to discover the most appropriate parameters for the
ant algorithm. Furthermore, several numerical tests are illustrated to demonstrate the main
concept and results of the proposed model and algorithm. Section 6 ends the paper with a
brief conclusion and future directions.

3. Fuzzy Multi-Objective Multi-Period Integer Programming Model

In this section, a fuzzy multi-objective integer programming model is proposed to
formulate the problem. The origin of the model was adapted from [3,46,47], which serves
as the foundational source for understanding its development and background. For this
aim, the following assumptions were considered:

• Limited number of periods is given;
• Number of depots is fixed;
• Heterogeneous fleet of vehicles is available;
• Capacity of vehicles is predetermined;
• Demand of each customer in each period is specified as a fuzzy parameter;
• Number of customers that should be serviced in each period is defined;
• Customers of each period are different from those of other periods;
• Distance-dependent transportation costs are assumed;
• Each vehicle starts its journey from one depot and ends at another depot, although the

starting and ending depots could be also be identical;
• Symmetric transportation network is considered;
• Traversing cost and customer’s demand are considered as fuzzy parameters.
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The indices of the model are as follows:
i An index assigned to customers located at the beginning of an edge (i = 1, . . . , N);
j An index assigned to customers located at the end of an edge (j = 1, . . . , N and j �= i);
t Index of periods (t = 1, . . . , T);
k Index of vehicles (k = 1, . . . , V);
d Index of depots (d = 1, . . . , D).

Furthermore, the parameters are listed bellow.

c̃ijt Fuzzy transportation cost of edge (i, j) between customers i and j in period t;

c̃′dit
Fuzzy transportation cost of edge (i, d) or edge (d, i) between customer i and depot d in
period t;

d̃it Fuzzy demand of customer i in period t;
w̃ijt Fuzzy transportation time of edge (i, j) customers i and j in period t;

w̃′
dit

Fuzzy transportation time of edge (i, d) or edge (d, i) between customer i and depot d in
period t;

Nt Number of customers in period t;
ck Capacity of vehicle k;
V Number of available vehicles in each period;
T Number of periods in the planning horizon;
D Number of depots;
M A big number.
B Subset of customers in each period;
A Set of depots;
G Set of all customers and depots in each period.

In the following, the Decision Variables of the model is illustrated.

xijkt ∈ {0, 1} Equals to 1 if vehicle k traverses edge (i, j) in period t, otherwise 0;
ydikt ∈ {0, 1} Equals to 1 if vehicle k traverses edge (d, i) in period t, otherwise 0;
zidkt ∈ {0, 1} Equals to 1 if vehicle k traverses edge (i, d) in period t, otherwise 0;

skdt ∈ {0, 1} Equals to 1 if vehicle k is located in depot d at the beginning of period t,
otherwise 0;

fkdt ∈ {0, 1} Equals to 1 if vehicle k is located in depot d at the end of period t, otherwise 0;
timeit ≥ 0 Arrival time to customer i in period t.

The fuzzy integer programming model of the problem is as follows:

Min f1 = ∑T
t=1 ∑Nt

i=1 ∑Nt
j=1,j �=i ∑V

k=1 xijktc̃ijt

+∑T
t=1 ∑D

d=1 ∑Nt
i=1 ∑V

k=1 ydiktc̃′dit
+∑T

t=1 ∑Nt
i=1 ∑D

d=1 ∑V
k=1 zidktc̃′dit

(1)

Min f2 = ∑D
d=1 ∑Nt

i=1 timeit ∗ d̃it (2)

The model is subjected to the following:

∑D
d=1 ∑V

k=1 yd,i,k,t + ∑Nt

j = 1
j �= i

∑V
k=1 xj,i,k,t = 1 ∀i, t (3)

∑Nt
j=1,j �=i ∑

V
k=1 xijkt + ∑D

d=1 ∑V
k=1 zidkt = 1 ∀i, t (4)

∑D
d=1 ∑Nt

i=1 ydikt −∑D
d=1 zjdkt = 0 ∀k, t (5)

∑D
d=1 ∑Nt

i=1 ydiktd̃it + ∑Nt
i=1 ∑Nt

j=1,j �=i xijktd̃jt≺ck ∀k, t (6)

timeit + w̃ijt − (1− xijkt)M ≤ timejt ∀i, j, k, t (7)

w̃′
djt − (1− ydjkt)M ≤ timejt ∀d, j, k, t (8)

∑D
d=1 ydikt + ∑Nt

j=1,j �=i xjikt −∑Nt
j=1,j �=i xijkt −∑D

d=1 zidkt = 0 ∀i, k, t (9)
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∑Nt
i=1 ∑Nt

j=1,j �=i xijkt ≤ M
(
∑D

d=1 ∑Nt
i=1 ydikt

)
∀k, t (10)

∑Nt
i∈B ∑Nt

j∈B,j �=i xijkt ≤ |B| − 1
∀k, t, ∀B ⊆ G\{A},
|B| ≥ 2

(11)

∑D
d=1 ∑Nt

i=1 ydikt ≤ 1 ∀k, t (12)

∑D
d=1 skdt = 1 ∀k, t (13)

∑D
d=1 f kdt = 1 ∀k, t (14)

∑Nt
i=1 ydikt ≤ skdt ∀k, d, t (15)

∑Nt
i=1 zidkt ≤ fkdt ∀k, d, t (16)

fkd(t−1) = skdt ∀k, d, t ≥ 2 (17)

The problem is to determine optimal routes for vehicles to service customers in a
post-disaster logistics network, aiming to minimize total costs while maximizing customer
satisfaction under uncertain conditions. The first objective function (1) focuses on mini-
mizing transportation costs, which consist of three components: transportation between
customers, between depots and customers, and between customers and depots. Due to the
inclusion of fuzzy cost parameters, the objective function is fuzzy. The second objective
function (2) aims to enhance customer satisfaction by ensuring that service is expedited for
the most demanding customers.

Constraints (3) and (4) guarantee that each customer is served exactly once per pe-
riod. Constraint (5) stipulates that each vehicle’s route begins at one depot and ends at
the other one, which is not necessarily the initial depot. Fuzzy constraint (6) requires
that the total demand from customers on a vehicle’s route must not exceed its capacity.
Constraints (7) and (8) ensure the vehicle’s route is feasible based on travel times between
customers and between customers and depots. Flow conservation is addressed in (9),
while (10) specifies that the vehicle’s route must begin at a depot. Constraint (11) pre-
vents subtours. Constraint (12) allows for a number of idle vehicles during each time
period. Constraints (13) and (14) specify that each vehicle is at one depot at the start and
end of each time period. Constraint (15) and (16) show the relationship between variables
ydikt, skdt, zidkt, and fkdt. Also, the relationship between variables fkdt and skdt is stated in
constraint (17).

To overcome fuzziness, the concept of ranking functions is proposed. A Ranking
function is a function � : F(R) → R , where F(R) is a set of fuzzy numbers defined on set
of real numbers, which maps each fuzzy number into a real line, where a natural order
exists. If we let Ã = (a, b, c) be a triangular fuzzy number, then �(Ã) = a+2b+c

4 . In addition,
arithmetic operations between two triangular fuzzy numbers defined on the real set are
presented as follows:

If Ã1 = (a1, a2, a3) and Ã2 = (b1, b2, b3) are two triangular fuzzy numbers, then

Ã1 + Ã2 = (a1 + b1, a2 + b2, a3 + b3) (18)

Ã1 ≈ Ã2 ⇔ ai = bi, i = 1, 2, 3. (19)

Ã1≺Ã2 ⇔ ai ≤ bi, i = 1, 2, 3. (20)

4. Hybrid Multi-Objective Ant Colony System and Simulated Annealing Algorithm

The multi-objective, multi-period integrated routing–scheduling problem is NP-hard,
as noted in the Introduction. As a result, many researchers have focused on metaheuristic
algorithms to tackle similar challenges. Notably, the ant colony optimization algorithm is a
prominent method for addressing various vehicle routing problems [48]. Recently, hybrid
metaheuristic algorithms have gained traction for leveraging the strengths of multiple
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approaches to solve complex optimization issues. This paper proposes a hybrid multi-
objective ant colony system combined with a simulated annealing algorithm to tackle
the problem.

Ants communicate using pheromones, which are chemical substances they release
and detect. When foraging, ants move randomly until they encounter a pheromone trail,
which they may choose to follow. The likelihood of an ant selecting a path is influenced by
the pheromone density; a higher density increases the chance of selection [40].

In the ant colony optimization (ACO) algorithm, artificial ant colonies work together
to tackle complex optimization problems. Ants traverse a network marked by artificial
pheromones. The nest represents the initial state, and food signifies the final state. Each
vehicle’s route begins and ends at a depot, corresponding to the nest and food. Ants
probabilistically select adjacent vertices based on pheromone levels on the various edges.
Pheromones are stored in a multidimensional matrix reflecting the quantity on each edge
over time. Each ant deposits pheromones on its path, which is influenced by the value
of the objective function. To prevent local optima, pheromone levels gradually evaporate.
Constraints are checked whenever an ant selects a new customer to ensure compliance with
problem requirements. Additionally, heuristic information is employed to avoid stagnation
in local optima.

To apply the ant colony optimization algorithm for multi-objective problems, multiple
ant colonies sequentially explore the solution space to find better solutions. Each ant
searches the network to generate a solution. These solutions are then compared, resulting
in a set of nondominated solutions referred to as the colony’s optimal Pareto set [49].
Assuming S1 and S2 to be two feasible solutions for a multi-objective minimization problem,
if none of the objective functions achieved by S1 are larger than the objective functions
corresponding to S2 and at least one objective function achieved by S1 is smaller than
S2, S1 dominates S2. The pheromone of the edges belonging to the optimal Pareto set is
increased so that the next colony can better discover the solutions found by the current
colony. Part of the pheromone also evaporates regularly on all edges. The main operators
of the multi-objective ant colony system are stated in the following.

4.1. Pheromone Structure

This algorithm employs two distinct pheromone trails for two objective functions,
which are updated separately at the end of each iteration. The use of multiple pheromone
trails to address various multi-objective problems has been explored in several studies,
including unequal area facility layout, secure routing for wireless sensor networks, mini-
mizing total completion time and energy costs in single-machine preemptive scheduling,
and mixed-load school bus routing [49,50].

4.2. Heuristic Information

The heuristic information is determined based on three factors:
The travelling cost between customers i and j;
The travelling time timeit;
The amount of demand d̃jt of customer j;
For ant k located at customer i, two separate pieces of heuristic information corre-

sponding to the two objective functions of the problem are defined as follows:

ηC
ijt =

1
cijt

(21)

ηS
ijt =

1
timejtdjt

(22)
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4.3. Quasi-Random Probability Rule

When ant k is at the location of customer i, the next customer from the neighborhood
of customer i in period t is selected based on the following quasi-random probability rule:

j =

⎧⎪⎨⎪⎩argmaxl∈Nkt
i

{[(
τC

ijt

)α(
ηC

ijt

)β
]λ[(

τS
ijt

)α(
ηS

ijt

)β
]1−λ

}
Nkt

i �= ∅, q ≤ q0

j∗ o.w.
(23)

in which 0 ≤ q0 ≤ 1 is a random parameter and j∗ is a random variable selected based the
following random probability rule:

pt
ij =

[(
τC

ijt

)α(
ηC

ijt

)β
]λ[(

τS
ijt

)α(
ηS

ijt

)β
]1−λ

∑
j′∈Nk,t

i

[(
τC

ij′ t

)α(
ηC

ij′ t

)β
]λ[(

τS
ij′ t

)α(
ηS

ij′ t

)β
]1−λ j ∈ Nkt

i (24)

in which α, β and λ are parameters. The value of λ is obtained based on the following relation:

λ =

⎧⎨⎩
0 k ≤ a

k
b−a − a

b−a a < k < b
1 k ≥ b

(25)

where a and b are two parameters. According to the definition of λ, some ants use only
information about one of the objective functions, while others use information about both
objective functions.

The decision rule to service customer j after i in period t is defined as follows:

pt
(i,j) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
[(

τC
ijt

)λ(
τS

ijt

)1−λ
]α

[ηijt]
β

∑
j′∈Ni

[(
τC

ij′ t

)λ(
τS

ij′ t

)1−λ
]α[

ηij′ t
]β

j ∈ Ni

0 o.w.

(26)

in which λ ∈ (0, 1) indicates the relative importance of the objective functions. Also, α
and β are two parameters that indicate the ant’s relative tendency to follow the path using
pheromone information and heuristic information, respectively.

4.4. Pheromone Update

The pheromone level of each link is updated through two mechanisms. The evapora-
tion rule reduces the pheromone of each selected link according to the following evapora-
tion rate:

τC
ijt ← (1− ξ)τC

ijt (27)

τS
ijt ← (1− ξ)τS

ijt (28)

in which 0 < ξ < 1 is a parameter. In this way, after selection of customer j after i in period
t, its corresponding pheromone trail is reduced by a ratio of 1 − ξ and its desirability is
reduced for subsequent selections.

The pheromone levels on the links of the colony’s Pareto-optimal solutions are updated
in each iteration as follows:

τC
ijt = min

{
1, τC

ijt·ρ +
Q
C

}
(29)

τS
ijt = min

{
1, τS

ijt·ρ +
Q
S

}
(30)

in which C is the sum of the cost of Pareto-optimal solutions and S is the sum of timeit ∗ dit
where customer i is located in one of the Pareto-optimal solutions.
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In each iteration of the multi-objective ant colony system, a set of feasible solutions
was generated, which were then evaluated using the simulated annealing algorithm. This
optimization technique, inspired by the gradual cooling of metals, helps the system reach
its lowest-energy state by reducing atomic movements. It is effective in identifying global
optimal solutions, as it prevents getting stuck in local optima within the search space. The
steps of the proposed hybrid algorithm are as follows:

Step 1: Initialize all parameters of the multi-objective ant colony system.
Step 2: Initialize the computational temperature T to a great value.
Step 3: For each colony c and ant k, construct a solution s.
Step 4: If the constructed solution s is non-dominated by the current Pareto set (PS),

accept it. Otherwise, evaluate the solution based on Equation (31) and accept it with the
probability P = − E(s)

T .

E(s) = mins∗∈PS

√
( f1(s)− f1(s∗))

2 + ( f2(s)− f2(s∗))
2 (31)

Step 5: Update the pheromone trail.
Step 6: Update the temperature T according to the cooling schedule (32) and repeat

steps 3–6 until the temperature is small according to the following formula:

T(n) =
1

ρ + 1
(ρ + tanh(γn))T(n − 1), (32)

where ρ = 4 and γ is a parameter between 0.8 and 0.99.
In the following section, various numerical experiments have been carried out to

assess the effectiveness of the proposed algorithm.

5. Numerical Results

This section provides numerical examples illustrating the effectiveness of the proposed
hybrid multi-objective ant colony system and simulated annealing algorithm, along with a
discussion on model validation. The algorithm was implemented on a computer with 8 GB
of RAM and a 1.6 GHz CPU.

In the first experiment, we selected the optimal algorithm parameters. The number
of ants varied based on the number of customers across different periods; as customer
numbers increase, the solution space expands, necessitating more ants for an effective
search. According to the introduced quasi-random probability law, some ants rely solely on
the first objective function, while others focus exclusively on the second, generating Pareto-
optimal solutions. The remaining ants utilize a combination of both objective functions. In
our tests, the number of ants using information from both objective functions was fewer
than those using either function individually. This occurs because finding a Pareto-optimal
solution is considerably more complex for ants relying on a single objective function. Other
parameter values were determined experimentally and are listed in Table 1.

Table 1. The values of the parameters of the algorithm.

Parameter a b q0 ρ ξ α β T

Value 1.2 2.25 0.9 0.9 0.1 2 1 100

The second experiment presents a small example demonstrating the key concepts
and results of the proposed model and solution approach. It involves a two-objective,
two-period fuzzy vehicle routing and scheduling problem with seven disaster centers and
two distribution centers. The problem’s parameters are detailed in Tables 2–4.
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Table 2. The values of parameters c̃ijt, c̃′dit, w̃ijt, and w̃′
dit for t = 1.

Customers

Customers

1 2 3 4 5 6 7

1 (9,12,15)
(12,13,14)

(20,19,22)
(13,16,19)

(28,30,33)
(23,24,26)

(17,21,22)
(14,18,19)

(15,17,19)
(21,23,25)

(20,22,23)
(21,23,25)

2 (9,12,15)
(12,13,14)

(13,15,16)
(17,19,20)

(33,36,38)
(6,7,9)

(20,21,24)
(9,11,13)

(28,29,30)
(16,18,20)

(34,35,36)
(11,12,14)

3 (20,19,22)
(13,16,19)

(13,15,16)
(17,19,20)

(45,48,50)
(17,18,20)

(33,35,36)
(13,14,18)

(34,35,37)
(12,13,15)

(32,35,38)
(12,14,15)

4 (28,30,33)
(23,24,26)

(33,36,38)
(6,7,9)

(45,48,50)
(17,18,20)

(18,20,23)
(12,13,15)

(18,20,23)
(15,18,19)

(33,34,37)
(18,19,21)

5 (17,21,22)
(14,18,19)

(20,21,24)
(9,11,13)

(33,35,36)
(13,14,18)

(18,20,23)
(12,13,15)

(24,25,26)
(9,11,13)

(37,38,41)
(9,11,14)

6 (15,17,19)
(21,23,25)

(28,29,30)
(16,18,20)

(34,35,37)
(12,13,15)

(18,20,23)
(15,18,19)

(24,25,26)
(9,11,13)

(15,18,20)
(17,18,19)

7 (20,22,23)
(21,23,25)

(34,35,36)
(11,12,14)

(32,35,38)
(12,14,15)

(33,34,37)
(18,19,21)

(37,38,41)
(9,11,14)

(15,18,20)
(17,18,19)

Depots
1 (12,16,18)

(7,9,12)
(10,13,14)
(14,16,18)

(13,14,17)
(12,16,20)

(21,22,24)
(21,23,25)

(16,20,21)
(12,15,16)

(5,7,8)
(14,17,18)

(13,16,21)
(19,22,24)

2 (15,17,19)
(13,14,16)

(12,15,16)
(5,7,8)

(27,30,32)
(13,15,19)

(18,23,24)
(11,14,15)

(8,10,12)
(25,26,27)

(18,19,21)
(10,14,15)

(12,15,17)
(16,18,20)

Table 3. The values of parameters c̃ijt, c̃′dit, w̃ijt, and w̃′
dit for t = 2.

Customers

Customers

1 2 3 4 5 6 7

1 (32,35,36)
(14,15,16)

(42,45,47)
(8,10,12)

(21,23,25)
(13,16,17)

(28,30,33)
(32,34,36)

(43,44,45)
(18,19,21)

(25,27,28)
(10,12,17)

2 (32,35,36)
(14,15,16)

(10,12,15)
(24,25,26)

(11,12,15)
(18,19,23)

(18,20,24)
(11,13,15)

(45,47,48)
(6,8,9)

(40,43,44)
(10,12,13)

3 (42,45,47)
(8,10,12)

(10,12,15)
(24,25,26)

(20,22,23)
(18,19,20)

(21,23,25)
(15,18,19)

(44,45,47)
(22,24,25)

(43,44,46)
(19,20,22)

4 (21,23,25)
(13,16,17)

(11,12,15)
(18,19,23)

(20,22,23)
(18,19,20)

(12,13,15)
(24,26,27)

(38,40,42)
(15,17,18)

(28,30,31)
(10,13,14)

5 (28,30,33)
(32,34,36)

(18,20,24)
(11,13,15)

(21,23,25)
(15,18,19)

(12,13,15)
(22,24,25)

(21,23,27)
(18,19,21)

(19,20,22)
(23,25,26)

6 (43,44,45)
(18,19,21)

(45,47,48)
(6,8,9)

(44,45,47)
(22,24,25)

(38,40,42)
(15,17,18)

(21,23,27)
(18,19,21)

(15,16,18)
(13,15,16)

7 (25,27,28)
(10,12,17)

(40,43,44)
(10,12,13)

(43,44,46)
(19,20,22)

(28,30,31)
(10,13,14)

(19,20,22)
(23,25,26)

(15,16,18)
(13,15,16)

Table 3. Cont.

Customers

Depots
1 (6,8,9)

(14,16,18)
(12,15,18)
(12,17,18)

(9,10,12)
(14,15,16)

(14,16,18)
(11,15,18)

(14,15,19)
(12,15,16)

(7,9,10)
(10,13,15)

(25,26,28)
(10,13,15)

2 (10,13,14)
(10,13,15)

(23,24,26)
(15,18,19)

(7,12,13)
(9,10,12)

(8,11,12)
(21,23,24)

(12,14,16)
(17,18,20)

(13,14,17)
(14,17,18)

(18,23,24)
(10,13,15)
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Table 4. Fuzzy demand of disaster centers in two periods.

Periods

Customers 1 2

1 (4,9,12) (12,13,17)

2 (16,18,22) (17,18,20)

3 (7,11,13) (12,15,16)

4 (13,15,18) (16,18,19)

5 (8,12,13) (10,13,16)

6 (15,18,20) (12,17,22)

7 (14,15,18) (12,15,16)

Table 5 displays the Pareto-optimal solutions for the small example, detailing the
vehicle routes that include both distribution and disaster centers. Figure 1 illustrates Pareto-
optimal solution #1. The last column of Table 5 outlines the service schedules for disaster
centers. The small example was also solved using AMPL (A Mathematical Programming
Language) for comparison. While the objective function values from AMPL matched those
from the proposed approach, the execution time in AMPL was over three times longer.

Figure 1. Graphical representation of Pareto-optimal solution #1.

In the third experiment, benchmark examples were utilized to evaluate the perfor-
mance of the proposed model and solution approach for medium and large problems. These
examples were created by combining the standard benchmarks of the multi-depot vehicle
routing problem, which are available at http://www.bernabe.dorronsoro.es/vrp/ (ac-
cessed on November 2006). The details of the generated examples are presented in Table 6.
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Table 5. The set of Pareto-optimal solutions.

Solution
Values of Objective

Functions
Routes of Vehicles Customer Service Schedule

1
f1 = 256.2
f2 = 8040

t = 1, k = 3 : 1 → 3 → 2 → 1 → 7 → 2
t = 1, k = 2 : 2 → 5 → 4 → 6 → 1
t = 2, k = 3 : 2 → 4 → 2 → 3 → 1
t = 2, k = 1 : 1 → 6 → 7 → 5 → 2
t = 2, k = 2 : 1 → 1 → 1

time11 = 48, time12 = 16
time21 = 35, time22 = 42
time31 = 16, time32 = 67
time41 = 39, time42 = 23
time51 = 26, time52 = 53
time61 = 57, time62 = 13
time71 = 71, time72 = 28

2 f1 = 257.7
f2 = 8000

t = 1, k = 1 : 1 → 3 → 2 → 1 → 7 → 1
t = 1, k = 2 : 2 → 5 → 4 → 6 → 1
t = 2, k = 1 : 1 → 3 → 2 → 4 → 2
t = 2, k = 2 : 1 → 6 → 7 → 5 → 2
t = 2, k = 3 : 1 → 1 → 1

time11 = 48, time12 = 16
time21 = 35, time22 = 40
time31 = 16, time32 = 15
time41 = 39, time42 = 63.3
time51 = 26, time52 = 53
time61 = 57, time62 = 13
time71 = 71, time72 = 28

3 f1 = 267.6
f2 = 7000

t = 1, k = 3 : 1 → 1 → 2 → 3 → 1
t = 1, k = 2 : 2 → 5 → 4 → 6 → 1
t = 1, k = 1 : 2 → 7 → 1
t = 2, k = 1 : 1 → 3 → 2 → 4 → 2
t = 2, k = 2 : 1 → 6 → 7 → 5 → 2
t = 2, k = 3 : 1 → 1 → 1

time11 = 9, time12 = 16
time21 = 22, time22 = 40
time31 = 41, time32 = 15

time41 = 42.64, time42 = 59
time51 = 26, time52 = 53

time61 = 60.64, time62 = 13
time71 = 18, time72 = 28

4 f1 = 270
f2 = 6500

t = 1, k = 3 : 2 → 4 → 5 → 2
t = 1, k = 2 : 1 → 1 → 2 → 3 → 1
t = 1, k = 1 : 2 → 7 → 6 → 1
t = 2, k = 1 : 1 → 6 → 7 → 5 → 2
t = 2, k = 2 : 1 → 1 → 1
t = 2, k = 3 : 1 → 4 → 2 → 3 → 2

time11 = 9, time12 = 16
time21 = 22, time22 = 42
time31 = 41, time32 = 67
time41 = 14, time42 = 23
time51 = 28, time52 = 54.4
time61 = 36, time62 = 13
time71 = 18, time72 = 29.4

Table 6. The specification of the benchmark examples.

Instance Number of Periods Number of Depots Number of Vehicles

P01, P02 2 5 10

P01, P03 2 5 10

P01, P04 2 5 10

P02, P03 2 5 10

P02, P04 2 5 10

P03, P04 2 5 10

P01, P02, P03 3 5 10

P01, P02, P04 3 5 10

P01, P03, P04 3 5 10

P02, P03, P04 3 5 10

P01, P02, P03, P04 4 5 10

This section compares the performance of the proposed hybrid multi-objective ant
colony system and simulated annealing algorithm with the multi-objective cat swarm
optimization (MCSO) algorithm [51,52] and multi-objective fitness-dependent optimizer
(MOFDO) algorithm [27]. Table 7 presents the average values of the two objective functions
for the nondominated solutions identified by each algorithm in every instance. The fifth and
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seventh columns of Table 7 indicate the percentage differences between the nondominated
solutions produced by the algorithms.

Table 7. Comparing the performance of the proposed hybrid algorithm with the MCSO and MOFDO
algorithms.

Instance
Hybrid Algorithm

(This Paper)

MCSO Algorithm MOFDO Algorithm

Difference
(Percent)

Difference
(Percent)

P01, P02

f1 1362.74 1362.74 0 1358.25 −0.33

f2 4017.75 4145.76 3.08 4103.41 2.08

Time(s) 78 53 79

P01, P03

f1 1356.09 1359.93 0.28 1356.09 0

f2 4829.72 4857.84 0.57 4834.67 0.1

Time(s) 85 89 98

P01, P04

f1 1789.09 1799.18 0.56 1795.76 0.37

f2 6439.96 6521.84 1.25 6524.67 1.29

Time(s) 87 83 93

P02, P03

f1 2061.18 2156.87 4.43 2174.57 5.21

f2 5582.74 5879.67 5.05 5634.25 0.91

Time(s) 91 95 94

P02, P04

f1 1937.3 1987.56 2.52 1954.37 0.87

f2 6939.07 6921.23 −0.25 6930.14 −0.12

Time(s) 123 111 131

P03, P04

f1 2154.91 2161.76 0.31 2152.45 −0.11

f2 6302.44 6412.56 1.71 6401.27 1.54

Time(s) 145 156 163

P01, P02, P03

f1 2459.97 2598.76 5.34 2540.31 3.16

f2 5581 5987.3 6.78 5772.13 3.31

Time(s) 234 254 250

P01, P02, P04

f1 2885.83 2956.87 2.4 2871.76 −0.48

f2 7542.17 7823.18 3.59 7792.54 3.21

Time(s) 257 261 260

P01, P03, P04

f1 3055.55 3167.67 3.53 3047.75 −0.25

f2 6664.19 6718.19 0.8 6692.14 0.41

Time(s) 247 259 264

P02, P03, P04

f1 3321.51 3478.98 4.52 3214.73 −3.32

f2 8597.18 9783.45 12.12 8673.54 0.88

Time(s) 298 345 367

P01, P02, P03, P04

f1 4689.39 4893.91 4.17 4713.98 0.52

f2 8853.29 8976.76 1.37 8852.73 −0.01

Time(s) 376 671 895

The comparison of the proposed hybrid multi-objective ant colony system and simu-
lated annealing algorithm with the MCSO algorithm demonstrates that the hybrid approach
is highly effective in achieving lower objective function values, as indicated in Table 7.
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Additionally, in 8 out of 11 test instances, the hybrid algorithm provided solutions in less
CPU time than the MCSO algorithm.

While it is evident that our proposed hybrid algorithm typically demonstrates superior
performance overall, the MOFDO algorithm outperforms it in some instances. Specifically,
in 4 out of a total of 11 different cases analyzed, the MOFDO algorithm produced an f1
value that was lower than the corresponding f1 value generated by our proposed algorithm.
Furthermore, when examining the accuracy of the f2 values, we discovered that in 2 of
the 11 cases, the MOFDO algorithm yields more precise results compared to our proposed
algorithm. This shows that although our algorithm is generally more effective, the MOFDO
algorithm can still excel in particular scenarios.

Figure 2 compares the execution times of the three algorithms. The results show
that the proposed algorithm consistently outperforms the MCSO algorithm in execution
time. Furthermore, the MOFDO algorithm has consumed longer execution times in all
cases. In general, the proposed hybrid algorithm typically produces results that are better
or at least comparable to those of the MCSO and MOFDO algorithms, according to the
findings reported.

 
Figure 2. Comparing the execution times of the algorithms.

6. Conclusions and Future Directions

This paper addresses the multi-objective, multi-period integrated routing and schedul-
ing problem for distributing relief to disaster areas under uncertain conditions. We propose
a fuzzy multi-objective integer programming model to formulate the problem. To solve it,
we developed a hybrid multi-objective heuristic algorithm that combines a multi-objective
ant colony system with a simulated annealing algorithm. A small example illustrated the
key concepts of our model and solution approach. Additionally, benchmark instances were
used to evaluate the performance of the hybrid algorithm, comparing the results to those of
a multi-objective cat swarm optimization algorithm and multi-objective fitness-dependent
optimizer algorithm. The findings indicate that our hybrid algorithm effectively finds
solutions with lower objective function values in a relatively short computation time in
most cases. Future research could explore problem decomposition and customer selection
strategies to enhance algorithm performance, along with the implementation of more
powerful heuristic operators. Additionally, due to the limited supply and time in the early
periods, it is applicable to expand the model to distribute relief based on specific periods.
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36. Uslu, A.; Cetinkaya, C.; İşleyen, S.K. Vehicle routing problem in post-disaster humanitarian relief logistics: A case study in
Ankara. Sigma J. Eng. Nat. Sci. 2017, 35, 481–499.

37. Saffarian, M.; Barzinpour, F.; Eghbali, M.A. A robust programming approach to bi-objective optimization model in the disaster
relief logistics response phase. Int. J. Supply Oper. Manag. 2015, 2, 595–616. [CrossRef]

38. Akbarpour, M.; Torabi, S.A.; Ghavamifar, A. Designing an integrated pharmaceutical relief chain network under demand
uncertainty. Transp. Res. Part E Logist. Transp. Rev. 2020, 136, 101867. [CrossRef]

39. Rawls, C.G.; Turnquist, M.A. pre-positioning of emergency supplies for disaster response. Transp. Res. Part B Methodol. 2010, 44,
521–534. [CrossRef]

40. Liu, J.; Liu, J. applying multi-objective ant colony optimization algorithm for solving the unequal area facility layout problems.
Appl. Soft Comput. 2019, 74, 167–189. [CrossRef]

41. Safaei, A.S.; Farsad, S.; Paydar, M.M. Emergency logistics planning under supply risk and demand uncertainty. Oper. Res. 2020,
20, 1437–1460. [CrossRef]

42. Yu, W. Pre-disaster location and storage model for emergency commodities considering both randomness and uncertainty. Saf.
Sci. 2021, 141, 105330. [CrossRef]

43. Wan, S.P.; Chen, Z.H.; Dong, J.Y. Bi-objective trapezoidal fuzzy mixed integer linear program-based distribution center location
decision for large-scale emergencies. Appl. Soft Comput. 2021, 110, 107757. [CrossRef]

44. Najafi, M.; Eshghi, K.; Dullaert, W. A multi-objective robust optimization model for logistics planning in the earthquake response
phase. Transp. Res. Part E Logist. Trans. Rev. 2013, 49, 217–249. [CrossRef]

45. Tang, Z.; Li, W.; Yu, S.; Sun, J. A fuzzy multi-objective programming optimization model for emergency resource dispatching
under equitable distribution principle. J. Intell. Fuzzy Syst. 2021, 41, 5107–5116. [CrossRef]

46. Fazayeli, S.; Eydi, A.; Kamalabadi, I.N. Location-routing problem in multimodal transportation network with time windows and
fuzzy demands: Presenting a two-part genetic algorithm. Comput. Ind. Eng. 2018, 119, 233–246. [CrossRef]

47. Modiri, M.; Eskandari, M.; Hasanzadeh, S. Multi-objective modeling of relief items distribution network design problem in
disaster relief logistics considering transportation system and CO2 emission. Sci. Iran. 2022, in press. [CrossRef]

48. Elshaer, R.; Awad, H. A taxonomic review of metaheuristic algorithms for solving the vehicle routing problem and its variants.
Comput. Ind. Eng. 2020, 140, 106242. [CrossRef]

49. Li, W.; Xia, L.; Huang, Y.; Mahmoodi, S. An Ant colony optimization algorithm with adaptive greedy strategy to optimize path
problems. J. Ambient Intell. Humaniz. Comput. 2022, 13, 1–15. [CrossRef]

50. Sun, Z.; Wei, M.; Zhang, Z.; Qu, G. Secure routing protocol based on multi-objective ant-colony-optimization for wireless sensor
networks. Appl. Soft Comput. 2019, 77, 366–375. [CrossRef]

140



Mathematics 2024, 12, 2844

51. Pradhan, P.M.; Panda, G. solving multiobjective problems using cat swarm optimization. Expert Syst. Appl. 2012, 39, 2956–2964.
[CrossRef]

52. Ahmed, A.M.; Rashid, T.A.; Saeed, S.A.M. Cat swarm optimization algorithm: A survey and performance evaluation. Comput.
Intell. Neurosci. 2020, 2020, 4854895. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

141



Article

Discrete Pseudo-Quasi Overlap Functions and Their
Applications in Fuzzy Multi-Attribute Group Decision-Making

Mei Jing 1, Jingqian Wang 2, Mei Wang 1 and Xiaohong Zhang 1,2,*

1 School of Electrical and Control Engineering, Shaanxi University of Science & Technology,
Xi’an 710021, China; jingmei1221@163.com (M.J.); wangmeimath@163.com (M.W.)

2 School of Mathematics and Data Science, Shaanxi University of Science & Technology, Xi’an 710021, China;
wangjingqianw@163.com

* Correspondence: zhangxiaohong@sust.edu.cn

Abstract: The overlap function, a continuous aggregation function, is widely used in classification,
decision-making, image processing, etc. Compared to applications, overlap functions have also
achieved fruitful results in theory, such as studies on the fundamental properties of overlap functions,
various generalizations of the concept of overlap functions, and the construction of additive and
multiplicative generators based on overlap functions. However, most of the research studies on the
overlap functions mentioned above contain commutativity and continuity, which can limit their
practical applications. In this paper, we remove the symmetry and continuity from overlap functions
and define discrete pseudo-quasi overlap functions on finite chains. Meanwhile, we also discuss their
related properties. Then, we introduce pseudo-quasi overlap functions on sub-chains and construct
discrete pseudo-quasi overlap functions on finite chains using pseudo-quasi overlap functions on
these sub-chain functions. Unlike quasi-overlap functions on finite chains generated by the ordinal
sum, discrete pseudo-quasi overlap functions on finite chains constructed through pseudo-quasi
overlap functions on different sub-chains are dissimilar. Eventually, we remove the continuity
from pseudo-automorphisms and propose the concept of pseudo-quasi-automorphisms. Based on
this, we utilize pseudo-overlap functions, pseudo-quasi-automorphisms, and integral functions to
obtain discrete pseudo-quasi overlap functions on finite chains, moreover, we apply them to fuzzy
multi-attribute group decision-making. The results indicate that compared to overlap functions and
pseudo-overlap functions, discrete pseudo-quasi overlap functions on finite chains have stronger
flexibility and a wider range of practical applications.

Keywords: fuzzy logic; information fusion; overlap function; fuzzy multi-attribute group
decision-making
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1. Introduction

To establish a mathematical model of fuzzy objects, Zadeh proposed the concept of
fuzzy sets [1] in 1965. Many scholars have conducted extensive research on the fuzzy set
theory and applied it in pattern recognition, medical diagnosis, and fuzzy control [2–5].
In 1973, Zadeh proposed the famous CRI algorithm [6], which was a very effective tool
for describing and dealing with the fuzziness of things and the uncertainty of systems, as
well as for simulating human intelligence and decision-making. Fuzzy reasoning has been
applied with great success in industrial control and manufacturing household appliances.
However, compared with its application, the theoretical foundation of fuzzy reasoning
is not flawless. In 1993, Elkan presented a report titled “The Seemingly Right Success of
Fuzzy Logic” at the 11th Annual Conference on Artificial Intelligence [7], which caused
a huge uproar. Many scholars have commented on this. Wu discussed this debate in [8].
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Ying [9] pointed out that “although many of Erkan’s views are incorrect, and Wu has
made some clarifications, we must also recognize that the lack of systematic and in-depth
theoretical research in fuzzy logic is an undeniable fact.” Of course, there was no consensus
on this debate. In fact, this debate has never been resolved. Meanwhile, it is precisely for
this reason that fuzzy logic has become an active area of research, with many scholars
achieving significant results in the field. In recent years, research on fuzzy sets has garnered
widespread attention. Therefore, we delve into both the theoretical foundations and
practical applications related to fuzzy sets.

In 2010, Bustine et al. proposed the definition of overlap functions [10]. As a special
binary aggregation function, the overlap function has been widely used in decision-making,
image processing, classification, and other fields [11–13]. Moreover, many academics have
achieved significant outcomes in the theoretical research of overlap functions, specifically
manifested in the following aspects: (1) research on basic properties of overlap functions,
such as migrativity, homogeneity, Lipschitzianity, Archimedes, idempotence, etc. [14–16];
(2) extensions of various concepts related to overlap functions, including quasi-overlap func-
tions [17], pseudo-overlap functions [18], semi-overlap functions [19], and so on [20–22];
(3) study of inducing various types of implication operators from overlap functions and
group functions [23–25]; (4) construction of additive and multiplicative generators for
overlap functions and various generalized overlap functions [26–29].

Aggregation is an important concept in decision theory, information fusion, and fuzzy
inference systems. It involves converting several numerical values into a representative
value; this process is called aggregation, and the function that executes this process is
called an aggregation function. As powerful tools for processing information fusion,
aggregation functions have been widely used in classification [30], fuzzy systems and
control [31], hierarchical information fusion [32], and so on [33–35]. In order to better
handle information fusion problems, many scholars have degenerated the aggregation
functions (including t-norms, uninorms, t-operators, etc.) in [0, 1] to finite chains, and
achieved relevant results [36–38]. Qiao transformed the overlap function and quasi-overlap
function on [0, 1] into finite chains [39,40], and studied their related properties.

A fuzzy multi-attribute group decision-making problem can be described as a given
set of possible alternative solutions, and each solution needs to be comprehensively eval-
uated from several attributes. Our goal is to find the optimal solution from this set of
alternative solutions or to comprehensively rank this set of alternative solutions; the
ranking results can reflect the decision-maker’s intention. The presence of uncertainty
in fuzzy multi-attribute group decision-making processes can be represented by fuzzy
sets. Therefore, fuzzy logic plays an important role in the field of fuzzy multi-attribute
group decision-making. Fuzzy multi-attribute decision-making represents a non-classical
approach to multi-attribute decision-making, extending and developing classical multi-
attribute decision-making theories. Bass and Kwakernaak [41] proposed a method for
addressing fuzzy multi-attribute group decision-making under uncertainty. Following their
work, various scholars have proposed numerous types of fuzzy multi-attribute decision-
making methods. Kichert, Zimmermann, and Chen et al. [42–44] summarized the above
fuzzy multi-attribute decision-making methods. A few academics have also studied the
application of overlap functions and certain generalized overlap functions in fuzzy multi-
attribute group decision-making [45,46]. Mao et al. [47] proposed a fuzzy multi-attribute
decision-making method based on the Sugeno integral semantics of overlap functions using
fuzzy quantifiers, and verified the feasibility of this method through specific examples.
Wen [48] combined overlap functions with rough sets to propose a new class of models,
and then extended this model to multi-granularity, thereby establishing a solution method
for fuzzy multi-attribute decision-making problems. Silva et al. [49] introduced a weighted
average operator generated by n-dimensional overlap and aggregation functions, which
they applied to fuzzy multi-attribute group decision-making problems. On this basis,
Zhang et al. [18] extended the aforementioned weighted average operator and explored
the use of pseudo-overlap functions in fuzzy multi-attribute group decision-making.
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With the background information mentioned above and the current status of studying
nationally as well as globally, the research motivations and innovation points of this paper
are as follows:

(1) At present, most concepts of overlap functions and generalized overlap functions
include symmetry and continuity, which can limit their practical applications. Thus, we
remove the symmetry and continuity from overlap functions and introduce the concept of
discrete pseudo-quasi overlap functions on finite chains. In addition, we have also studied
their related properties.

(2) Currently, there is little research on constructing aggregate functions based on ordi-
nal sums. Qiao [40] used ordinal sums to construct quasi-overlap functions on finite chains.
This method constructs quasi-overlap functions on finite chains through quasi-overlap
functions on sub-chains; each sub-chain is called an addend. Therefore, we naturally
attempt to generalize the method of constructing quasi-overlap functions on the finite
chains mentioned above and use a new method to construct discrete pseudo-quasi overlap
functions on finite chains.

(3) In most literature (such as [18,47,49]), the aggregation functions used in the ap-
plication of fuzzy multi-attribute group decision-making are all continuous. However, in
the practical application of fuzzy multi-attribute group decision-making, the data objects
involved are usually discrete. On the other hand, the discrete aggregation function has
better flexibility and a wider range of applications in fuzzy multi-attribute group applica-
tions. Therefore, we apply discrete pseudo-quasi overlap functions on finite chains to fuzzy
multi-attribute group decision-making. This approach not only promotes the development
of fuzzy multi-attribute decision-making but also provides valuable reference and guidance
for the theoretical development and practical application of overlap functions.

The main contents of this paper could be summarized as follows: In Section 2, we
mainly present some basic knowledge on the topic. In Section 3, we introduce the concept
of discrete pseudo-quasi overlap functions on finite chains and study their related prop-
erties. In Section 4, we offer pseudo-quasi overlap functions on sub-chains and construct
discrete pseudo-quasi overlap functions on finite chains through pseudo-quasi overlap
functions on sub-chains. Moreover, compared to quasi-overlap functions on finite chains
generated by the ordinal sum, the discrete pseudo-quasi overlap functions on finite chains
created by pseudo-quasi overlap functions on various sub-chains are different. In Section 5,
we present the idea of pseudo-quasi-automorphism by removing the continuity from
pseudo-automorphisms. Based on this, we use pseudo-overlap functions, pseudo-quasi-
automorphisms, and integer functions to construct discrete pseudo-quasi overlap functions
on finite chains and apply them to fuzzy multi-attribute group decision-making. The
findings show that discrete pseudo-quasi overlap functions have better flexibility and
adaptability than overlap functions and pseudo-overlap functions in applications. The
research contents of this paper are shown in Figure 1.

Figure 1. Framework diagram of the paper.
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2. Preliminaries

In this portion, we mainly provide some preliminary knowledge that is used in
later sections.

Definition 1 ([10]). A binary function O : [0, 1]2 → [0, 1] is known as an overlap function if it
meets ∀x, y ∈ [0, 1],
(O1) O is symmetric;
(O2) O(x, y) = 0 ⇔ x = 0 or y = 0;
(O3) O(x, y) = 1 ⇔ x = 1 and y = 1;
(O4) O is non-decreasing;
(O5) O is continuous.

Definition 2 ([17]). A binary function QO : [0, 1]2 → [0, 1] is known as a quasi-overlap function
if it satisfies (O1)− (O4).

Definition 3 ([18]). A binary function PO : [0, 1]2 → [0, 1] is referred to as a pseudo-overlap
function if it satisfies (O2)− (O5).

Definition 4 ([20]). An n-ary function On : [0, 1]n → [0, 1] is known as an n-ary overlap function
if it meets ∀xi+1, xi+2, xi+3, . . . , xi+n ∈ [0, 1],
(On1) On is symmetry;

(On2) On(xi+1, xi+2, xi+3, . . . , xi+n) = 0 ⇔ for j ∈ N+, 1 ≤ j ≤ n, such as
n
∏
j=1

xi+j = 0;

(On3) On(xi+1, xi+2, xi+3, . . . , xi+n) = 1 ⇔ for j ∈ N+, 1 ≤ j ≤ n, such as
n
∏
j=1

xi+j = 1;

(On4) On is non-decreasing;
(On5) On is continuous.

Definition 5 ([18]). An n-ary function POn : [0, 1]n → [0, 1] is known as an n-ary pseudo-overlap
function if it satisfies (On2)− (On5).

3. Discrete Pseudo-Quasi Overlap Functions

In this part, we delete the symmetry of quasi-overlap functions and introduce the
notion of discrete pseudo-quasi overlap functions on finite chains. In addition, we discuss
some of the associated properties, like Archimedean, idempotence, and cancellation law.

We define a finite chain L as follows:
Let L = {x0, x1, x2, . . . , xn, xn+1} be a set, n ∈ N+, n ≥ 1. L is called a finite chain

when it satisfies ∀xi, xj ∈ L,
(L1) xi < xj ⇔ i < j;
(L2) x0 is the minimum element, and xn+1 is the maximum element of L.

Definition 6. A binary function PQOL : L2 → L is called a discrete pseudo-quasi overlap
function on L if it fulfills ∀xi, xj ∈ L,
(PQOL1) PQOL(xi, xj) = x0 ⇔ xi = x0 or xj = x0;
(PQOL2) PQOL(xi, xj) = xn+1 ⇔ xi = xn+1 and xj = xn+1;
(PQOL3) PQOL is non-decreasing.

A discrete pseudo-quasi overlap function PQOL is called an xn+1-section left deflation
on L when it satisfies ∀xi ∈ L,
(PQOL4) PQOL(xn+1, xi) ≤ xi.
Correspondingly, a discrete pseudo-quasi overlap function PQOL is called an xn+1-section
right deflation on L when it satisfies ∀xi ∈ L,
(PQOL5)PQOL(xi, xn+1) ≤ xi.
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Assuming L = L = {0, x1, x2, . . . xn, 1} is a finite chain, we extend the L to [0, 1],
then PQOL is a pseudo-quasi overlap function given in [21]. On the other hand, a discrete
pseudo-quasi overlap function PQOL that satisfies symmetry is a quasi-overlap function
QOL on L, as mentioned in [40]. Moreover, the above (PQOL4) and (PQOL5) correspond
to item (5) from Definition 2.1 in [40].

In the following sections, we use L to indicate the finite chain {0, x1, x2, . . . xn, 1}.
Below, we provide some examples of discrete pseudo-quasi overlap functions PQOL

on L.

Example 1. (1) Let L be a finite chain. Then, for n = 1, any discrete pseudo-quasi overlap function
PQOL is a quasi-overlap function QOL on L.

Taking L = { 1
4 , 1

3 , and 1
2}, n = 1. A graph of the PQOL is shown in Figure 2.

Figure 2. A discrete pseudo-quasi overlap function PQOL.

(2) Let L = {0, x1, x2, . . . xn, 1} be a finite chain, n ∈ N+, n ≥ 2, x2, xa, xb ∈ L, x2 < xa ≤
xb. Then, ∀xc, xd ∈ L, the function PQOL : L2 → L, defined as follows:

PQOL(xc, xd) =

{
x1, i f x1 < xc < xa, x1 < xd ≤ xb
min{xc, xd}. otherwise

is a discrete pseudo-quasi overlap function on L.
Taking L = {0, 0.1, 0.2, , . . . , 0.9, 1}, n = 9, xa = 0.3, xb = 0.6. A graph of the PQOL is

shown in Figure 3.

Figure 3. A discrete pseudo-quasi overlap function PQOL.

(3) Let L = LN = {0, 1, 2, 3, . . . , n + 1} be a finite chain with natural numbers, n ∈ N+,
n ≥ 2, xr, xs ∈ LN , 1 < xr < xs. Then, ∀xp, xq ∈ LN, the function PQOLN : L2

N → LN, defined
as follows:
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PQOLN
(xp, xq) =

{
1, i f 0 < xp < xr, 0 < xq < xs[√xpxq

]
. otherwise

is a discrete pseudo-quasi overlap function on LN.
Taking LN = {0, 1, 2, , . . . , 9, 10}, n = 9, xr = 2, xs = 6. An image of the PQOLN is shown

in Figure 4.

Figure 4. A discrete pseudo-quasi overlap function PQOLN
.

(4) Let L = LN+ = {1, 2, 3, . . . , n + 1} be a finite chain with positive integers, n ∈ N+,
n ≥ 2, xg, xh ∈ LN+ , xg �= xh, 2 < min{xg, xh}. Then, ∀xm, xn ∈ LN+ , the function PQOLN+

:
L2

N+ → LN+ , defined as follows:

PQOLN+
(xm, xn) =

⎧⎪⎨⎪⎩
1, i f xm = 1 or xn = 1
2, i f 1 < xm ≤ xg, 1 < xn ≤ xh[

2xmxn
xm+xn

]
. otherwise

is a discrete pseudo-quasi overlap function on LN+ .
Taking L+

N = {1, 2, , . . . , 9, 10}, n = 8, xg = 4, xh = 6. An image of the PQOLN
is shown

in Figure 5.

Figure 5. A discrete pseudo-quasi overlap function PQOLN+
.

We observe that “[x]” in Example 1 is an integral function; more precisely, it is a round
function to the nearest integer x. Furthermore, regarding other types of integral functions,
such as floor, ceil, and fix, their methods of constructing discrete pseudo-quasi overlap
functions on L are similar to that of the round function.

Next, we investigate the relevant properties of discrete pseudo-quasi overlap functions
on finite chains L.
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3.1. Archimedes of Discrete-Pseudo-Quasi Overlap Functions

First, we discuss the Archimedes of discrete pseudo-quasi overlap functions on L.

Definition 7. Let PQOL : L2 → L be a discrete pseudo-quasi overlap function on L. PQOL is
called Archimedean when it satisfies ∀xi, xj ∈ L − {0, 1}, (xi)

(n)
PQOL

< xj, and PQOL is given by
the following:

(xi)
(1)
PQOL

= xi, (xi)
(n+1)
PQOL

= PQOL(xi, (xi)
n
PQOL

), n ∈ N+.

Proposition 1. Let PQOL : L2 → L be a discrete pseudo-quasi overlap function on L. Then,
∀xi ∈ L − {1}, xj ∈ L, PQOL(xi, xj) is not strictly increasing.

Proof. We take xi = 0, xj, xz ∈ L, and xj < xz. Then, PQOL(xi, xj) = 0 ≤ 0 = PQOL(xi, xz).
So, xi = 0, xj ∈ L, and PQOL(xi, xj) is not strictly increasing. On the other hand, xi = 1,
xj ∈ L, we need to verify that PQOL(xi, xj) is strictly increasing. For xj, xz ∈ L, and xj < xz,
there are three different cases, as follows:
(1) xi = 1, xj = 0 < xz, PQOL(xi, xj) = 0 < PQOL(xi, xz);
(2) xi = 1, xj < xz = 1, PQOL(xi, xj) < 1 = PQOL(xi, xz);
(3) xi = 1, xj ∈ L − {0}, xz ∈ L − {1}. Suppose that PQOL(xi, xj) is not strictly increasing.
According to (PQOL3), we know that PQOL(xi, xj) = PQOL(xi, xz). Obviously, this is
contradictory to xj < xz. Thus, xi = 1, xj ∈ L, PQOL(xi, xj) is strictly increasing. Finally,
for the scenario where xi ∈ L − {0, 1}, xj ∈ L, and PQOL(xi, xj) is not strictly increasing,
the proof method is similar to [34]. To summarize, ∀xi ∈ L − {1}, xj ∈ L, PQOL(xi, xj) is
not strictly increasing.

From Proposition 1, we can immediately deduce that ∀xj ∈ L−{1}, xi ∈ L, PQOL(xj, xi)
is also not strictly increasing.

Proposition 2. Let PQOL : L2 → L be Archimedean. If PQOL is a discrete pseudo-quasi overlap
function on L, then (xi)

(n+1)
PQOL

≤ (xi)
(n)
PQOL

, n ∈ N+.

Proof. The following can directly be obtained through Definition 7, Proposition 1, and
mathematical methods of induction: (1) For n = 1, (xi)

(2)
PQOL

= PQOL(xi, xi) < xi =

(xi)
(1)
PQOL

, that is, (xi)
(2)
PQOL

≤ (xi)
(1)
PQOL

. For n = 2, (xi)
(3)
PQOL

= PQOL(xi, (xi)
(2)
PQOL

) =

PQOL(xi, PQOL(xi, xi)). According to PQOL(xi, xi) < xi and Proposition 1, we have
the following:

PQOL(xi, PQOL(xi, xi)) ≤ PQOL(xi, xi).

Thus, (xi)
(3)
PQOL

≤ (xi)
(2)
PQOL

. Assume that n = k, (xi)
(k+1)
PQOL

≤ (xi)
(k)
PQOL

. For n = k + 1, we
have the following:

(xi)
(k+2)
PQOL

= PQOL(xi, (xi)
(k+1)
PQOL

) ≤ PQOL(xi, (xi)
(k)
PQOL

) = (xi)
(k+1)
PQOL

.

Therefore, n ∈ N+, (xi)
(n+1)
PQOL

≤ (xi)
(n)
PQOL

.

Proposition 3. Let PQOL : L2 → L be a discrete pseudo-quasi overlap function on L. Then,
PQOL is not Archimedean.

Proof. Suppose that PQOL is Archimedean. Owing to Proposition 2, we know the following:

0 < · · · ≤ (xi)
(n+1)
PQOL

≤ (xi)
(n)
PQOL

≤ (xi)
(n−1)
PQOL

< · · · ≤ (xi)
(2)
PQOL

≤ (xi)
(1)
PQOL

= xi, n ∈ N+.

Thus, for n ∈ N+, lim
n→∞

(xi)
(n)
PQOL

= 0, conflicting with (xi)
(n)
PQOL

< xj for Definition 7.

Therefore, PQOL is not Archimedean.
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Now, we will discuss the idempotence of discrete pseudo-quasi overlap functions
on L.

3.2. Idempotence of Discrete pseudo-quasi overlap Functions

Definition 8. Let PQOL : L2 → L be a discrete pseudo-quasi overlap function on L. An element
xi ∈ L is called idempotent when it satisfies PQOL(xi, xi) = xi. A discrete pseudo-quasi overlap
function PQOL is called idempotent when it satisfies that ∀xi ∈ L is an idempotent element.

Obviously, 0 and 1 are idempotent elements of a discrete pseudo-quasi overlap func-
tion on L. Moreover, only the discrete pseudo-quasi overlap function PQOL on L generated
by Case (1) in Example 1 is idempotent.

Proposition 4. Let PQOL : L2 → L be a discrete pseudo-quasi overlap function on L. Then, there
exists xi ∈ L − {0, 1}, such that PQOL(xi, xi) = xi.

Proof. The proof is analogous to [16].

Proposition 5. Let PQOL : L2 → L be a discrete pseudo-quasi overlap function on L.
(1) If PQOL satisfies (PQOL4), then there exists xi ∈ L − {0, 1}, such that PQOL(1, xi) < xi.
(2) If PQOL satisfies (PQOL5), then there exists xi ∈ L − {0, 1}, such that PQOL(xi, 1) < xi.

Proof. (1) Suppose that PQOL is a discrete pseudo-quasi overlap function on L. If PQOL
satisfies (PQOL4), then ∀xi ∈ L − {0, 1}, PQOL(1, xi) ≤ xi. Moreover, according to
Proposition 4 and (PQOL3), we known that there exists xi ∈ L − {0, 1}, such that we have
the following:

xi = PQOL(xi, xi) ≤ PQOL(1, xi).

So, PQOL(1, xi) < xi. The proofs of (2) are similar to (1).

Proposition 6. Let PQOL : L2 → L be a discrete pseudo-quasi overlap function on L. If PQOL is
Archimedean, then PQOL has no idempotent element, except for 0, 1.

Proof. Suppose that there exists xi ∈ L − {0, 1}, which is an idempotent element of the
discrete pseudo-quasi overlap function PQOL on L. As PQOL is Archimedean, then
n = 1, (xi)

(1)
PQOL

= xi, and n = 2, (xi)
(2)
PQOL

= PQOL(xi, xi) = xi. Assume that n = k; we
have the following:

(xi)
(k)
PQOL

= PQOL(xi, (xi)
(k−1)
PQOL

) = PQOL(xi, xi) = xi.

So, for n = k + 1, (xi)
(k+1)
PQOL

= PQOL(xi, (xi)
(k)
PQOL

) = PQOL(xi, xi) = xi. Thus, for n ∈ N+,

(xi)
(n)
PQOL

= xi, which conflicts with (xi)
(n)
PQOL

< xj in Definition 7. Thus, PQOL has no
idempotent element, except for 0, 1.

In the end, we discuss the cancellation law of discrete pseudo-quasi overlap functions
on L.

3.3. Cancellation Law of Discrete pseudo-quasi overlap Functions

Definition 9. Let PQOL : L2 → L be a discrete pseudo-quasi overlap function on L. ∀xi, xj, xz ∈
L, PQOL is said to fulfill the left-cancellation law if we have the following:

PQOL(xi, xj) = PQOL(xi, xz) means that xi = x0 or xj = xz.

Similarly, PQOL is said to fulfill the right-cancellation law if we have the following:

PQOL(xj, xi) = PQOL(xz, xi) means that xi = x0 or xj = xz.
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Lemma 1. A discrete pseudo-quasi overlap function PQOL on L fulfills the cancellation law if
∀xi, xj, xz ∈ L satisfy the following conditions:
(1) PQOL(xi, xj) = PQOL(xi, xz) ⇒ xi = x0 or xj = xz;
(2) PQOL(xj, xi) = PQOL(xz, xi) ⇒ xi = x0 or xj = xz.

Proposition 7. Let PQOL : L2 → L be a discrete pseudo-quasi overlap function on L.
(1) PQOL fulfills the left-cancellation law ⇔ for ∀xi ∈ L − {0}, xj ∈ L, and PQOL(xi, xj) is
strictly increasing.
(2) PQOL fulfills the right-cancellation law ⇔ for ∀xj ∈ L − {0}, xi ∈ L, and PQOL(xj, xi) is
strictly increasing.

Proof. The proofs of (1) and (2) are similar. Next, we only prove (2). (2) (Necessity) Suppose
that PQOL fulfills the right-cancellation law, i �= 0, xj < xz. Since PQOL is monotonically
increasing, PQOL(xj, xi) ≤ PQOL(xz, xi). We consider PQOL(xj, xi) = PQOL(xz, xi).
Since PQOL fulfills the right-cancellation law, xi = 0 or xj = xz. Obviously, this contradicts
with xj < xz. Thus, PQOL(xj, xi) < PQOL(xz, xi). (Sufficiency) Suppose that ∀xj ∈
L − {0}, xi ∈ L, PQOL(xj, xi) is strictly increasing. So, xj < xz, and PQOL(xj, xi) <
PQOL(xz, xi). We assume that PQOL does not fulfill the right-cancellation law. Then, if
PQOL(xj, xi) = PQOL(xz, xi), it means that xi �= 0 and xj �= xz. So, xj < xz or xj > xz or
xj||xz. We consider xj < xz. Because PQOL(xj, xi) is strictly increasing, PQOL(xj, xi) <
PQOL(xz, xi). This contradicts with PQOL(xj, xi) = PQOL(xz, xi). Thus, the scenario
where xj < xz does not exist. Similarly, the scenario where xj > xz is also not valid. Finally,
we consider xj||xz. Apparently, this contradicts the premise that PQOL(xj, xi) is strictly
increasing. Therefore, PQOL fulfills the right-cancellation law.

Proposition 8. Let PQOL : L2 → L be a discrete pseudo-quasi overlap function on L. Then,
PQOL does not fulfill the cancellation law.

Proof. The proof is analogous to [17].

According to Propositions 4 and 8, we know that both discrete pseudo-quasi overlap
functions and quasi-overlap functions on L can obtain similar conclusions. That is to say,
symmetry does not significantly affect the conclusions of Propositions 4 and 8.

4. The Construction of Discrete Pseudo-Quasi Overlap Functions

In [40], Qiao proposed a method for constructing quasi-overlap functions on finite
chains based on the ordinal sum. This method mainly utilizes quasi-overlap functions on
sub-chains to create quasi-functions on finite chains, where these sub-chains are additive.
Therefore, we extend this approach and devise a new method to construct discrete pseudo-
quasi overlap functions. First, we define discrete pseudo-quasi overlap functions on a
sub-chain. We then construct a discrete pseudo-quasi overlap function on finite chains by
leveraging pseudo-quasi overlap functions on these sub-chains.

Definition 10. Let L be a finite chain, and L∗k = {[xk, xk+3]|k ∈ N, 0 ≤ k ≤ n − 2} be a sub-
chain of L. A binary function PQOL∗k

: [xk, xk+3]
2 → [xk, xk+3] is called a discrete pseudo-quasi

overlap function on L∗k when it satisfies ∀xμ, xν ∈ [xk, xk+3],
(PQOL∗k

1)PQOL∗k
(xμ, xν) = xk ⇔ xμ = xk or xν = xk;

(PQOL∗k
2)PQOL∗k

(xμ, xν) = xk+3 ⇔ xμ = xk+3 and xν = xk+3;
(PQOL∗k

3)PQOL∗k
is non-decreasing.

Theorem 1. Let L be a finite chain, k ∈ N, 0 ≤ k ≤ n − 2, [xk, xk+3] be a sub-chain of L,
and PQOL∗k

: [xk, xk+3]
2 → [xk, xk+3] be a discrete pseudo-quasi overlap function on L∗k . Then,

∀xi, xj ∈ L, the function PQOLk
: L2 → L, is defined as follows:
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PQOLk
(xi, xj) =

{
PQOL∗k

(xi, xj), i f xi, xj ∈ [xk, xk+3]

min{α1(xi), α2(xj)}. otherwise

is a discrete pseudo-quasi overlap function on L, among these, with different values of k, the functions
α1(xi) : L → L and α2(xj) : L → L have different forms, as follows:

(i) k = 0, n ≥ 4. α
(1)
1 (xi) : L → L, α

(1)
2 (xj) : L → L, separately, given by the following:

α
(1)
1 (xi) =

{
PQOL∗0

(xi, x3), i f xi ∈ [x0, x3]

xi. otherwise

α
(1)
2 (xj) =

{
xw, i f xj ∈ (x0, x3]
xj. otherwise

where w ∈ N+, 3 ≤ w ≤ n.
(ii) 1 ≤ k < n − 2, n ≥ 5; α

(2)
1 (xi) : L → L, α

(2)
2 (xj) : L → L, are defined separately,

as follows:

α
(2)
1 (xi) =

{
PQOL∗k

(xi, xk+3), i f xi ∈ [xk, xk+3]

xi. otherwise

α
(2)
2 (xj) =

{
xt, i f xj ∈ [xk, xk+3]
xj. otherwise

where t ∈ N+, k + 3 ≤ t ≤ n.
(iii) k = n− 2, n ≥ 4; α

(3)
1 (xi) : L → L, α

(3)
2 (xj) : L → L, are defined separately, as follows:

α
(3)
1 (xi) =

⎧⎨⎩
PQOL∗k

(xi, xn+1), i f xi ∈ [xn−2, xn+1]

xγθ
i f xi = xβθ

xi. otherwise

α
(3)
2 (xj) =

{
xλ, i f xj ∈ [xn−2, xn+1]
xj otherwise

for θ ∈ N+, 1 ≤ θ, βθ ≤ k − 1, 1 ≤ γθ , λ ≤ k, such as γθ ≤ λ. βθ and γθ are in one-to-one
correspondence. The details are as follows:

γ1 = k(or k − 2); i f β1 = k − 1,
γ2 = k − 1(or k − 3); i f β2 = k − 2,
. . . . . .
γk−2 = 3(or 1); i f βk−2 = 2,
γk−1 = 2; i f βk−1 = 1,

Proof. (i), (ii), and (iii) are similar. Next, we only prove (iii). Without loss of generality,
we take θ = 1, β1 = n − 3, γ1 = λ = n − 2. (PQOL1) (Necessity) If PQOLn−2

(xi, xj) =

x0, then min{α
(3)
1 (xi), α

(3)
2 (xj)} = x0, i.e., α

(3)
1 (xi) = x0 or α

(3)
2 (xj) = x0. According to

k ∈ N, k = n − 2, we know that xi /∈ [xn−2, xn+1] ∪ {xn−3}. So, α
(3)
1 (xi) = xi = x0. On

the other hand, xj /∈ [xn−2, xn+1]. So, α
(3)
2 (xj) = xj = x0. Thus, xi = x0 or xj = x0.

(Sufficiency) If xi = x0 or xj = x0. Without loss of generality, we take xi = x0. Since

xi /∈ [xn−2, xn+1] ∪ {xn−3}, we obtain α
(3)
1 (xi) = α

(3)
1 (x0) = x0. So, we have the following:

PQOLn−2
(xi, xj) = min{α

(3)
1 (xi), α

(3)
2 (xj)} = min{x0, α

(3)
2 (xj)} = x0.

On the other hand, if xj = x0, and xj /∈ [xn−2, xn+1], we also obtain α
(3)
2 (xj) = α

(3)
2 (x0) = x0.

So, PQOLn−2
(xi, xj) = min{α

(3)
1 (xi), α

(3)
2 (xj)} = min{α

(3)
1 (xi), x0} = x0. Thus, we have the

following:
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PQOLn−2
(xi, xj) = x0.

Therefore, PQOLn−2
satisfies (PQOL1).

(PQOL2) (Necessity) If PQOLn−2
(xi, xj) = x1, then min{α

(3)
1 (xi), α

(3)
2 (xj)} = x1, that

is, α
(3)
1 (xi) = x1 and α

(3)
2 (xj) = x1. For k ∈ N, k = n − 2, we know that xi /∈ [xn−2, xn+1] ∪

{xn−3}, and xj /∈ [xn−2, xn+1]. So, xi = α
(3)
1 (xi) = x1, and xj = α

(3)
2 (xj) = x1. (Sufficiency)

If xi = x1 and xj = x1. Since k = n − 2, k ∈ N, we gain xi /∈ [xn−2, xn+1] ∪ {xn−3},

and xj /∈ [xn−2, xn+1]. So, α
(3)
1 (xi) = xi = x1, and α

(3)
2 (xj) = xj = x1. Thus, we have

the following:

PQOLn−2
(xi, xj) = min{α

(3)
1 (xi), α

(3)
2 (xj)} = min{x1, x1} = x1.

Therefore, PQOLn−2
satisfies (PQOL2).

(PQOL3) ∀xi, xj, xz ∈ L, xj ≤ xz, we have several situations, specifically as follows:
(1) xi, xj, xz ∈ [xn−2, xn+1]. Since that PQOL∗n−2

is a discrete pseudo-quasi overlap func-
tion on L∗n−2. So, PQOLn−2

(xi, xj) = PQOL∗n−2
(xi, xj) ≤ PQOL∗n−2

(xi, xz) = PQOLn−2
(xi, xz).

(2) xi, xj, xz /∈ [xn−2, xn+1] at the same time.
(2.1) xi, xz ∈ [xn−2, xn+1], xj /∈ [xn−2, xn+1], without loss of generality, we take xj =

xn−3. Then, PQOLn−2
(xi, xj) = min{α

(3)
1 (xi), α

(3)
2 (xj)} = min{PQOL∗n−2

(xi, xn+1), xn−3},
and PQOLn−2

(xi, xz) = PQOL∗n−2
(xi, xz). Since xn−3 < xn−2 ≤ PQOL∗k

(xi, xn+1) ≤ xn+1,
we have the following:

PQOLn(xi, xj) = min{PQOL∗n(xi, xn+1), xn−3} = xn−3.

According to xn−3 < xn−2 ≤ PQOL∗n−2
(xi, xz), we know that PQOLn−2(xi, xj) ≤ PQOLn−2(xi, xz).

(2.2) xi ∈ [xn−2, xn+1], xj, xz /∈ [xn−2, xn+1], without loss of generality, we take xj =
xn−4, xz = xn−3. Then, PQOLn−2(xi, xj) = min{PQOL∗n−2

(xi, xn+1), xn−4}, and we have
the following:

PQOLn−2
(xi, xz) = min{PQOL∗n−2

(xi, xn+1), xn−3}.

Thus, PQOLn−2
(xi, xj) ≤ PQOLn−2

(xi, xz).
(2.3) xi = xn−3, xj, xz ∈ [xn−2, xn+1]. Then, we have the following:

PQOLn−2
(xi, xj) = min{xn−2, xn−2} = xn−2,

and PQOLn−2
(xi, xz) = min{xn−2, xn−2} = xn−2. So, PQOLn−2

(xi, xj) ≤ PQOLn−2
(xi, xz).

(2.4) xi = xn−3, xj /∈ [xn−2, xn+1], without loss of generality, we take xj = xn−3,
xz ∈ [xn−2, xn+1]. Then, PQOLn−2

(xi, xj) = min{xn−2, xn−3} = xn−3, and we have
the following:

PQOLn−2
(xi, xz) = min{xn−2, xn−2} = xn−2.

So, PQOLn−2
(xi, xj) ≤ PQOLn−2

(xi, xz).
(2.5) xi = xn−3, xj, xz /∈ [xn−2, xn+1], without loss of generality, we take xj = xz = xn−3.

Then, PQOLn−2
(xi, xj) = min{xn−2, xn−3} = xn−3, and we have the following:

PQOLn−2
(xi, xz) = PQOLn−2

(xi, xj) = xn−3.

So, PQOLn−2
(xi, xj) ≤ PQOLn−2

(xi, xz).
(2.6) xi /∈ [xn−2, xn+1] ∪ {xn−3}, without loss of generality, we take xi = xn−4,

xj, xz ∈ [xn−2, xn+1]. Then, PQOLn−2
(xi, xj) = min{xn−4, xn−2} = xn−4, and we have

the following:

PQOLn−2
(xi, xz) = PQOLn−2

(xi, xj) = xn−4.
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So, PQOLn−2
(xi, xj) ≤ PQOLn−2

(xi, xz).
(2.7) xi /∈ [xn−2, xn+1] ∪ {xn−3}, xj /∈ [xn−2, xn+1], without loss of generality, we take

xi = xn−4, xj = xn−5, xz ∈ [xn−2, xn+1]. Then, PQOLn−2
(xi, xj) = min{xn−4, xn−5} = xn−5,

and PQOLn−2
(xi, xz) = min{xn−4, xn−2} = xn−4. So, PQOLn−2

(xi, xj) ≤ PQOLn−2
(xi, xz).

(2.8) xi /∈ [xn−2, xn+1] ∪ {xn−3}, xj, xz /∈ [xn−2, xn+1], without loss of generality, we
take xi = xn−4, xj = xz = xn−5. Then, PQOLn−2

(xi, xj) = min{xn−4, xn−5} = xn−5, and
PQOLn−2

(xi, xz) = PQOLn−2
(xi, xj) = xn−5. So, PQOLn−2

(xi, xj) ≤ PQOLn−2
(xi, xz).

Therefore, PQOLn−2
satisfies (PQOL3). In summary, ∀xi, xj ∈ L, PQOLn−2

is a discrete
pseudo-quasi overlap function on L.

Below, we provide some examples of discrete pseudo-quasi overlap functions on L in
Theorem 1. Taking L = {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1}, n = 9.

Note that the bolded parts in Tables 1–3 represent the values corresponding to xi, xj ∈
[xk, xk+3] and PQOLk

(xi, xj) = PQOL∗k
(xi, xj)(k = 0, 1, 2, ..., n − 2) in Theorem 1.

Table 1. A discrete pseudo-quasi overlap function PQOL0
on L constructed by the scenario (i) of

Theorem 1. (k = 0, xw = x3 = 0.3).

L 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0 0 0 0 0 0 0 0 0 0 0 0
0.1 0 0.1 0.1 0.1 0.3 0.3 0.3 0.3 0.3 0.3 0.3
0.2 0 0.1 0.1 0.2 0.3 0.3 0.3 0.3 0.3 0.3 0.3
0.3 0 0.1 0.2 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3
0.4 0 0.1 0.2 0.3 0.4 0.4 0.4 0.4 0.4 0.4 0.4
0.5 0 0.1 0.2 0.3 0.4 0.5 0.5 0.5 0.5 0.5 0.5
0.6 0 0.1 0.2 0.3 0.4 0.5 0.6 0.6 0.6 0.6 0.6
0.7 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.7 0.7 0.7
0.8 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.8 0.8
0.9 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.9
1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Table 2. A discrete pseudo-quasi overlap function PQOLk
on L constructed by the scenario (ii) of

Theorem 1. (k = 3, xt = x6 = 0.6).

L 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0 0 0 0 0 0 0 0 0 0 0 0
0.1 0 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
0.2 0 0.1 0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
0.3 0 0.1 0.2 0.3 0.3 0.3 0.3 0.6 0.6 0.6 0.6
0.4 0 0.1 0.2 0.3 0.4 0.4 0.4 0.6 0.6 0.6 0.6
0.5 0 0.1 0.2 0.3 0.4 0.4 0.5 0.6 0.6 0.6 0.6
0.6 0 0.1 0.2 0.3 0.4 0.5 0.6 0.6 0.6 0.6 0.6
0.7 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.7 0.7 0.7
0.8 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.8 0.8
0.9 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.9
1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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Table 3. A discrete pseudo-quasi overlap function PQOLn−2
on L constructed by the scenario (iii) of

Theorem 1. (k = 7, θ = 1, xβ1 = xk−1 = 0.6, xγ1 = xk = xλ = 0.7).

L 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0 0 0 0 0 0 0 0 0 0 0 0
0.1 0 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
0.2 0 0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
0.3 0 0.1 0.2 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3
0.4 0 0.1 0.2 0.3 0.4 0.4 0.4 0.4 0.4 0.4 0.4
0.5 0 0.1 0.2 0.3 0.4 0.5 0.5 0.5 0.5 0.5 0.5
0.6 0 0.1 0.2 0.3 0.4 0.5 0.6 0.6 0.6 0.6 0.6
0.7 0 0.1 0.2 0.3 0.4 0.5 0.7 0.7 0.7 0.7 0.7
0.8 0 0.1 0.2 0.3 0.4 0.5 0.7 0.7 0.8 0.8 0.8
0.9 0 0.1 0.2 0.3 0.4 0.5 0.7 0.7 0.8 0.9 0.9
1 0 0.1 0.2 0.3 0.4 0.5 0.7 0.7 0.8 0.9 1

Of course, the construction method of the scenario (iii) in Theorem 1 also applies to
k = 2, 3, 4, . . . n − 3. The specific details are similar to the scenario (iii) of Theorem 1.

Based on the scenario (iii) of Theorem 1, we obtain the following conclusion:

Proposition 9. Let L be a finite chain, k ∈ N, k = n − 2, [xn−2, xn+1] be a sub-chain of L, and
PQOL∗n−2

: [n − 2, n + 1]2 → [n − 2, n + 1] be a discrete pseudo-quasi overlap function on L∗n−2.
Then, ∀xi, xj ∈ L, the function PQO

L(O)
n−2

(O = 1, 2) : L2 → L is defined as follows:

PQO
L(O)

n−2
(xi, xj) =

{
PQOL∗n−2

(xi, xj), i f xi, xj ∈ [xn−2, xn+1]

min{α1(xi), α1(xj)}. otherwise

is a discrete pseudo-quasi overlap function on L, among them, α1(xi) : L → L and α2(xj) : L → L,
we have the following two different construction forms:

(i) n ≥ 5, α
(5)
1 (xi) : L → L, α

(5)
2 (xj) : L → L, separately, are defined as follows:

α
(5)
1 (xi) =

⎧⎨⎩
PQOL∗n(xi, xn+1), i f xi ∈ [xn−2, xn+1]
x0 i f xi = x0
xξ . otherwise

α
(5)
2 (xj) =

{
xπ , i f xj ∈ [xn−2, xn+1]
xj otherwise

where ξ, π ∈ N+, n − 3 ≤ ξ ≤ n − 2, n − 3 ≤ π ≤ n + 1, such as xξ ≤ xπ .

(ii) n ≥ 4, α
(6)
1 (xi) : L → L, α

(6)
2 (xj) : L → L, separately, given by the following:

α
(6)
1 (xi) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

PQOL∗k
(xi, xn+1), i f xi ∈ [xn−2, xn+1]

xn−2 i f xi = xn−3
xn−3 i f xi = xn−4
. . . . . .
x3 i f xi = x2
x2 i f xi = x1
xi otherwise

α
(6)
2 (xj) =

{
xε, i f xj ∈ [xn−2, xn+1]
xj otherwise

where ε ∈ N+, n − 3 ≤ ε ≤ n + 1,, such as xi ≤ xε.

Proof. The proof is analogous to Theorem 1.
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Below, we provide some examples of discrete pseudo-quasi overlap functions on L in
Proposition 9. Taking L = {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1}, n = 9, xξ = xπ = 0.6.

Note that the bolded parts in Tables 4 and 5 represent the values corresponding to
xi, xj ∈ [xn−2, xn+1] and PQO

L(O)
n−2

(xi, xj) = PQOL∗n−2
(xi, xj)(k = n− 2 ∈ N) in Proposition 9.

Table 4. A discrete pseudo-quasi overlap function PQO
L(1)

n−2
on L constructed by the scenario (i) of

Proposition 9. (k = 7, xξ = xπ = 0.6).

L 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0 0 0 0 0 0 0 0 0 0 0 0
0.1 0 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
0.2 0 0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
0.3 0 0.1 0.2 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3
0.4 0 0.1 0.2 0.3 0.4 0.4 0.4 0.4 0.4 0.4 0.4
0.5 0 0.1 0.2 0.3 0.4 0.5 0.5 0.5 0.5 0.5 0.5
0.6 0 0.1 0.2 0.3 0.4 0.5 0.6 0.6 0.6 0.6 0.6
0.7 0 0.6 0.6 0.6 0.6 0.6 0.6 0.7 0.7 0.7 0.7
0.8 0 0.6 0.6 0.6 0.6 0.6 0.6 0.7 0.8 0.8 0.8
0.9 0 0.6 0.6 0.6 0.6 0.6 0.6 0.7 0.8 0.9 0.9
1 0 0.6 0.6 0.6 0.6 0.6 0.6 0.7 0.8 0.9 1

Table 5. A discrete pseudo-quasi overlap function PQO
L(2)

n−2
on L constructed by the scenario (ii) of

Proposition 9. (k = 7, xε = 0.7).

L 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0 0 0 0 0 0 0 0 0 0 0 0
0.1 0 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
0.2 0 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
0.3 0 0.2 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3
0.4 0 0.2 0.3 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4
0.5 0 0.2 0.3 0.4 0.5 0.5 0.5 0.5 0.5 0.5 0.5
0.6 0 0.2 0.3 0.4 0.5 0.6 0.6 0.6 0.6 0.6 0.6
0.7 0 0.2 0.3 0.4 0.5 0.6 0.7 0.7 0.7 0.7 0.7
0.8 0 0.2 0.3 0.4 0.5 0.6 0.7 0.7 0.8 0.8 0.8
0.9 0 0.2 0.3 0.4 0.5 0.6 0.7 0.7 0.8 0.9 0.9
1 0 0.2 0.3 0.4 0.5 0.6 0.7 0.7 0.8 0.9 1

Likewise, the construction method of Proposition 9 also applies to k = 2, 3, 4, . . . n − 3.
The specific details are similar to Proposition 9.

In summary, the biggest difference between the method of constructing discrete
pseudo-quasi overlap functions on finite chains described above and the method of creating
quasi-overlap functions on finite chains through ordinal sum in [40] lies in the uniformity
of the outcomes. Quasi-overlap functions on finite chains constructed from different sub-
chains are the same, whereas the discrete pseudo-quasi overlap functions on finite chains
constructed from pseudo-quasi overlap functions on different sub-chains are different.

5. The Application of Discrete pseudo-quasi overlap Functions in Fuzzy Multi-Attribute
Group Decision-Making

In this section, we extend the binary discrete pseudo-quasi overlap function on L in
Definition 6 to an n-ary discrete pseudo-quasi overlap function on L. Then, we construct
an n-dimensional discrete pseudo-quasi overlap function using pseudo-overlap functions,
pseudo-quasi-isomorphisms, and integral functions. Furthermore, we apply the n-ary dis-
crete pseudo-quasi overlap function on L to fuzzy multi-attribute group decision-making.
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5.1. N-Ary Discrete Pseudo-Quasi Overlap Functions

To start with, we present the concept of n-ary discrete pseudo-quasi overlap functions
on L.

Definition 11. Let L = {0, x1, x2, . . . , xn, 1} be a finite chain. A function PQOn
L : Ln → L is

called an n-ary discrete pseudo-quasi overlap function on L when it satisfies ∀xi+1, xi+2, xi+3 . . . ,
xi+n ∈ L,

(PQOn
L1) PQOn

L(xi+1, xi+2, xi+3 . . . , xi+n) = x0 ⇔ for j ∈ N+, 1 ≤ j ≤ n, such as
n
∏
j=1

xi+j = x0;

(PQOn
L2) PQOn

L(xi+1, xi+2, xi+3 . . . , xi+n) = xn+1 ⇔ for j ∈ N+, 1 ≤ j ≤ n, such as
n
∏
j=1

xi+j = xn+1;

(PQOn
L3) PQOn

L is non-decreasing.

Note that we extend the finite chain L in Definition 11 to [0,1], then PQOn
L is an

n-ary pseudo-quasi overlap function. Moreover, we can readily provide the definition
of n-ary pseudo-quasi overlap functions PQOn, along with its corresponding properties
(PQOn1), (PQOn2), and (PQOn3). The definition of n-ary pseudo-quasi overlap functions
is similar to Definition 11, so it is omitted here.

Additionally, we assume that L = {0, 0.001, 0.002, . . . , 0.999, 1} in Definition 11. In this
section, we use L∗ to represent the finite chain {0, 0.001, 0.002, . . . , 0.999, 1}.

Example 2. Let L∗ be a finite chain.
(1) ∀xi+1, xi+2, xi+3, . . . , xi+n ∈ L∗, the function PQOn

L∗ : L∗n → L∗,

PQOn
L∗(xi+1, xi+2, xi+3, . . . , xi+n) = min(xi+1, xi+2, xi+3, . . . , xi+n−1, [100xi+n ]

100 )

where [·] is an integral function, is an n-ary discrete pseudo-quasi overlap function on L∗.
(2) ∀xi+1, xi+2, xi+3, . . . , xi+n ∈ L∗, x1, xe, x f ∈ L∗, xe �= x f , x1 < min{xe, x f }, the func-

tion PQOn
L∗ : L∗n → L∗,

PQOn
L∗(xi+1, xi+2, xi+3, . . . , xi+n)

=

{
x1, i f x0 < x1 < xe, x0 < xn+1 < x f
min(xi+1, xi+2, xi+3, . . . , xi+n). otherwise

is an n-ary discrete pseudo-quasi overlap function on L∗.

5.2. Generation of N-Ary Discrete Pseudo-Quasi Overlap Functions

As stated in reference [18], the generation of pseudo-overlap functions comes from
n-dimensional overlap functions and a set of weights. Therefore, we construct an n-
dimensional discrete pseudo-quasi overlap function based on the pseudo-overlap functions
mentioned above, pseudo-quasi-isomorphisms, and integral functions. Below, we introduce
the concept of pseudo-quasi-isomorphisms:

Definition 12. A unary function H : [0, 1] → [0, 1] is called a pseudo-quasi-automorphism when
it satisfies ∀x ∈ [0, 1],
(H1) H is non-decreasing;
(H2) x = 1 when and only when H(x) = 1;
(H3) x = 0 when and only when H(x) = 0.

Obviously, each pseudo-automorphism is a pseudo-quasi-automorphism given in [26].
Conversely, a continuous pseudo-quasi-automorphism is a pseudo-automorphism.
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Theorem 2. Let L∗ be a finite chain, H : [0.1] → [0, 1] be a pseudo-quasi-automorphism, and
POn : [0, 1]n → [0, 1] be an n-ary pseudo-overlap function. Then, ∀xi+1, xi+2, xi+3 . . . , xi+n ∈
[0, 1], the function PQOn : [0, 1]n → L∗ is defined as follows:

PQOn(xi+1, xi+2, xi+3, . . . , xi+n) = H(PQn(xi+1, xi+2, xi+3 . . . , xi+n))

=
[1000PQn(xi+1, xi+2, xi+3 . . . , xi+n)]

1000

(1)

where H(x) = 1
1000 F(1000x), F is an integral function, i.e., F(x) = [x], and is an n-ary pseudo-

quasi overlap function.

Proof. Suppose that POn is an n-ary pseudo-overlap function. (PQOn1) (Necessity) If we
have the following:

PQOn(xi+1, xi+2, xi+3 . . . , xi+n) = 0,

then H(PQn(xi+1, xi+2, xi+3 . . . , xi+n)) = 0, i.e., PQn(xi+1, xi+2, xi+3 . . . , xi+n) = 0. So, for

j ∈ N+, 1 ≤ j ≤ n, such as
n
∏
i=1

xi+j = 0. (Sufficiency) If j ∈ N+, 1 ≤ j ≤ n,
n
∏
i=1

xi+j = 0, then

PQn(xi+1, xi+2, xi+3 . . . , xi+n) = 0, that is, we have the following:

PQOn(xi+1, xi+2, xi+3 . . . , xi+n) = H(PQn(xi+1, xi+2, xi+3 . . . , xi+n) = H(0) = 0.

Thus, PQOn satisfies (PQOn1).(PQOn2)(Necessity) If PQOn(xi+1, xi+2, xi+3 . . . , xi+n) = 1,
then H(PQn(xi+1, xi+2, xi+3 . . . , xi+n)) = 1, that is, PQn(xi+1, xi+2, xi+3 . . . , xi+n) = 1, So,

for j ∈ N+, 1 ≤ j ≤ n, such as
n
∏
j=1

xi+j = 1. (Sufficiency) If j ∈ N+, 1 ≤ j ≤ n,
n
∏
j=1

xi+j = 1,

then PQn(xi+1, xi+2, xi+3 . . . , xi+n) = 1, that is, we have the following:

PQOn(xi+1, xi+2, xi+3 . . . , xi+n) = H(PQn(xi+1, xi+2, xi+3 . . . , xi+n)) = H(1) = 1.

Thus, PQOn satisfies (PQOn2). (PQOn3) Since F is increasing, H is increasing, and PQn

is increasing, we clearly know that PQOn is increasing. Thus, PQOn satisfies (PQOn3).
Therefore, PQOn is an n-ary pseudo-quasi overlap function.

Below, we transform the pseudo-quasi overlap function on [0, 1] in Theorem 2 into
a discrete pseudo-quasi overlap function on L∗. According to the description of function
restrictions in [50] and Theorem 2, we obtain the following conclusion:

Lemma 2. Let L∗ be a finite chain, PQOn : [0, 1]n → L∗,

PQOn(xi+1, xi+2, xi+3, . . . , xi+n) = H(PQn(xi+1, xi+2, xi+3, . . . , xi+n))

=
[1000PQn(xi+1, xi+2, xi+3, . . . , xi+n)]

1000

(2)

and be an n-ary pseudo-quasi overlap function, and let L∗ be a subset of [0, 1]. Then,
∀xi+1, xi+2, xi+3, . . . , xi+n ∈ L∗, the n-ary function PQOn : L∗n → L∗ is an n-ary discrete
pseudo-quasi overlap function on L∗. Specifically, we use PQOn

L∗ to represent an n-ary discrete
pseudo-quasi overlap function on L∗.

Based on Theorem 2, Lemma 2, and Examples 6 and 7 of [18], we can obtain the
following example:

Example 3. Let L∗ be a finite chain, and w1 = (0.3, 0.3, 0.4) be a positive weighted vector; the
following PQO(e)

L∗w1
(e = 1, 2, 3, 4, 5) : L∗3 → L∗ are ternary discrete pseudo-quasi overlap functions

on L∗ generated by w1.
(1) ∀xi+1, xi+2, xi+3 ∈ L∗, the function PQO(1)

L∗w1
: L∗3 → L∗,
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PQO(1)
L∗w1

(xi+1, xi+2, xi+3) =

⎧⎨⎩ x0, i f xi+1 = xi+2 = xi+3 = x0
[

1000xi+1xi+2xi+3
0.3xi+1+0.3xi+2+0.4xi+3

]

1000 . otherwise

is a discrete pseudo-quasi overlap function on L∗.
(2) ∀xi+1, xi+2, xi+3 ∈ L∗, the function PQO(2)

L∗w1
: L∗3 → L∗,

PQO(2)
L∗w1

(xi+1, xi+2, xi+3) =
[1000xi+1xi+2xi+3(0.3xi+1+0.3xi+2+0.4xi+3)]

1000

is a discrete pseudo-quasi overlap function on L∗.
(3) ∀xi+1, xi+2, xi+3 ∈ L∗, the function PQO(3)

L∗w1
: L∗3 → L∗,

PQO(3)
L∗w1

(xi+1, xi+2, xi+3) =

⎧⎨⎩ x0, i f xi+1 = xi+2 = xi+3 = x0
[

330xi+1xi+2xi+3
0.12xi+2xi+3+0.12xi+1xi+3+0.09xi+1xi+2

]

1000 . otherwise
is a discrete pseudo-quasi overlap function on L∗.

(4) ∀xi+1, xi+2, xi+3 ∈ L∗, the function PQO(4)
L∗w1

: L∗3 → L∗,

PQO(4)
L∗w1

(xi+1, xi+2, xi+3) =
1

1000 [
1000x2

(i+1)
x4
(i+2)

x6
(i+3)

0.420.310 ]

where (x(i+1), x(i+2), x(i+3)) is a permutation of (0.3xi+1, 0.3xi+2, 0.4xi+3), and it fulfills x(i+3) ≤
x(i+2) ≤ x(i+1), is a discrete pseudo-quasi overlap function on L∗.

(5) ∀xi+1, xi+2, xi+3 ∈ L, the function PQO(5)
L∗w1

: L∗3 → L∗,

PQO(5)
L∗w1

(xi+1, xi+2, xi+3) =
1

1000 [
1000

√
x(i+1) 4

√
x(i+2) 6

√
x(i+3)

4√0.33 6√0.4
]

where (x(i+1), x(i+2), x(i+3)) is a permutation of (0.3xi+1, 0.3xi+2, 0.4xi+3), and it fulfills x(i+3) ≤
x(i+2) ≤ x(i+1), is a discrete pseudo-quasi overlap function on L∗.

Example 4. Let L∗ be a finite chain, and w2 = (0.1, 0.1, 0.2, 0.2, 0.2, 0.2) be a positive weighted
vector. The following PQO(e)

L∗w2
(e = 1, 2, 3, 4, 5) : L∗6 → L∗ are six-variable discrete pseudo-quasi

overlap functions on L∗ generated by w2.
(1) ∀xi+1, xi+2, xi+3, xi+4, xi+5, xi+6 ∈ L∗, the function PQO(1)

L∗w2
: L∗6 → L∗,

PQQ(1)
L∗w2

(xi+1, xi+2, xi+3, xi+4, xi+5, xi+6)

=

⎧⎪⎪⎨⎪⎪⎩
x0, i f xi+1 = xi+2 = xi+3 = xi+4

= xi+5 = xi+6 = x0

[1000
√

xi+1xi+2xi+3xi+4xi+5xi+6
0.1xi+1+0.1xi+2+0.2xi+3+0.2xi+4+0.2xi+5+0.2xi+6

]

1000 . otherwise
is a discrete pseudo-quasi overlap function on L∗.

(2) ∀xi+1, xi+2, xi+3, xi+4, xi+5, xi+6 ∈ L∗, the function PQO(2)
L∗w2

: L∗6 → L∗,

PQO(2)
L∗w2

(xi+1, xi+2, xi+3, xi+4, xi+5, xi+6)

=
[1000xi+1xi+2xi+3xi+4xi+5xi+6(0.1xi+1+0.1xi+2+0.2xi+3+0.2xi+4+0.2xi+5+0.2xi+6)]

1000
is a discrete pseudo-quasi overlap function on L∗.

(3) ∀xi+1, xi+2, xi+3, xi+4, xi+5, xi+6 ∈ L, the function PQO(3)
Lw2

: L∗6 → L∗,

PQO(3)
L∗w2

(xi+1, xi+2, xi+3, xi+4, xi+5, xi+6)

=

⎧⎨⎩
x0, i f xi+1xi+2xi+3xi+4xi+5xi+6 = x0
[ 8000

2
xi+1

+ 2
xi+2

+ 1
xi+3

+ 1
xi+4

+ 1
xi+5

+ 1
xi+6

]

1000 . otherwise
is a discrete discrete pseudo-quasi overlap function on L∗.
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(4) ∀xi+1, xi+2, xi+3, xi+4, xi+5, xi+6 ∈ L, the function PQO(4)
L∗w2

: L∗6 → L∗,

PQO(4)
L∗w

(xi+1, xi+2, xi+3, xi+4, xi+5, xi+6) =
[

1000x2
(i+1)

x4
(i+2)

x6
(i+3)

x8
(i+4)

x10
(i+5)

x12
(i+6)

0.2200.122 ]

1000

where (x(i+1), x(i+2), x(i+3), x(i+4), x(i+5), x(i+6)) is a permutation of (0.1xi+1, 0.1xi+2, 0.2xi+3,
0.2xi+4, 0.2xi+5, 0.2xi+6), and it fulfills x(i+6) ≤ x(i+5) ≤ x(i+4) ≤ x(i+3) ≤ x(i+2) ≤ x(i+1), is
a discrete pseudo-quasi overlap function on L∗.

(5) ∀xi+1, xi+2, xi+3, xi+4, xi+5, xi+6 ∈ L∗, the function PQO(5)
L∗w2

: L∗6 → L∗,

PQO(5)
L∗w

(xi+1, xi+2, xi+3, xi+4, xi+5, xi+6) =
1

1000 [
1000

√
x(i+1) 4

√
x(i+2) 6

√
x(i+3) 8

√
x(i+4) 10

√
x(i+5) 12

√
x(i+6)

4√0.13 40√0.219
]

where (x(i+1), x(i+2), x(i+3), x(i+4), x(i+5), x(i+6)) is a permutation of (0.1xi+1, 0.1xi+2, 0.2xi+3,
0.2xi+4, 0.2xi+5, 0.2xi+6), and it fulfills x(i+1) ≤ x(i+2) ≤ x(i+3) ≤ x(i+4) ≤ x(i+5) ≤ x(i+6), is
a discrete pseudo-quasi overlap function on L∗.

Next, we apply the discrete pseudo-quasi overlap functions on L∗ proposed above to
fuzzy multi-attribute group decision-making.

5.3. An Application of Discrete Pseudo-Quasi Overlap Functions in Fuzzy Multi-Attribute Group
Decision-Making

At present, the aggregation functions used in most applications of fuzzy multi-attribute
group decision-making are continuous, such as the Sugeno integral based on overlap
functions in [47], the overlap function in [49], and the pseudo-overlap function in [18].
However, in practical applications of fuzzy multi-attribute group decision-making, the data
objects involved are generally discrete. Therefore, we apply the n-ary discrete pseudo-quasi
overlap function constructed above to fuzzy multi-attribute group decision-making. Firstly,
we briefly introduce the concept of fuzzy multi-attribute group decision-making.

A solution to the fuzzy multi-attribute group decision-making problem (FMAGDMP)
involves selecting the most favorable options from a list of alternatives, taking into account
various attributes of the alternatives as well as the perspectives of the specialist group.

Generally, in a FMAGDMP, let A = {a1, a2, . . . , an} be a discrete finite set of feasible
alternatives, U = {u1, u2, . . . , um} be a set of attributes, E = {ε1, ε2, . . . , εk} be a set of
decision makers, and w1 = (w11, w12, . . . , w1k)

T , w2 = (w21, w22, . . . , w2m)
T be a positive

weighted vector. Each decision maker εt creates a decision matrix St = (sij
(t))n×m, with

the columns denoting the attributes and the rows indicating the feasible alternatives. In
traditional decision-making, if the feasible alternative ai has the attribute uj, then the
decision makers εt believe that the position sij

(t) of S(t) has the value of 1, and if not,
the position sij

(t) of S(t) has the value of 0. However, under certain circumstances, some
features are usually vague, such as “reasonable price”, “market depression”, and “currency
inflation”, which are essentially ambiguous. Therefore, we need to treat them as fuzzy sets.
In this instance, the value at position sij

(t) represents the membership degree, that is, a
value in [0, 1], of the alternative ai to the fuzzy set connected to the attribute uj. Generally
speaking, profit and expenses are two important attributes. For instance, while “risk of
investment” is an expense attribute, “quality of construction project” is a profit attribute.
In addition, we assume that ϕ is an index set of the profit attributes.

We provide the solution to FMAGDMP as follows:

• Step 1. Use the following Formula (3) to convert each decision matrix S(t) = (sij
(t))n×m

into a standard decision matrix N(t) = (nij
(t))n×m;

nij
(t) =

{
sij

(t), i f j ∈ ϕ

1− sij
(t). otherwise

(3)
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• Step 2. Generate a congregate decision matrix Q = (qij)n×m by aggregating the
standard decision matrix N(t) = (nij

(t))n×m according to an n-dimensional discrete

pseudo-quasi overlap function PQO(e)
L∗w1

(e ∈ N+, 1 ≤ e ≤ 5) on L∗, where the aggrega-

tion method is shown in Formula (4) below;

qij = PQO(e)
L∗w1

(nij
(1), nij

(2), . . . , nij
(k)) (4)

• Step 3. Determine the total preference vector tpvi for each alternative ai by aggregating

the membership degrees to each attribute uj using PQO(e)
L∗w2

(e ∈ N+, 1 ≤ f ≤ 5) on L∗;

Formula (5) below shows the aggregating approach:

tpvi = PQO(e)
Lw2

(qi1, qi2, . . . , qim) (5)

• Step 4. Sort the alternatives based on the overall preference values in descending
order and select the alternative with the highest value.

Next, we demonstrate the application of the above method through the example given
in [43]. We assume that investors plan to contribute a portion of their funds to an enterprise.
Making use of a market analysis, investors narrow down the range of potential enterprises
to six:

a1 : a chemical enterprise;
a2 : a food firm;
a3 : a computer corporation;
a4 : an automobile firm;
a5 : a furniture corporation;
a6 : a pharmaceutical enterprise.
Three specialists or decision makers (ε1, ε2, ε3) with corresponding weight vectors

w1 = (0.3, 0.3, 0.4) assist the investor.
Six attributes are established by the specialist panel to assess the investments.
The profit attributes include the following:
u1 : profits in the immediate term;
u2 : profits in the medium term;
u3 : profits over the long haul.
The expense attributes include the following:
u4 : investing in danger;
u5 : investment challenge;
u6 : additional detrimental aspects of investment.
The assessments provided by the specialists regarding the degree to which the invest-

ments align with the attributes are shown in Tables 6–8, forming the decision matrix for
each specialist.

Table 6. Evaluation of specialist ε1.

S(1) u1 u2 u3 u4 u5 u6

a1 0.7 0.8 0.6 0.7 0.5 0.9
a2 0.8 0.6 0.9 0.7 0.6 0.7
a3 0.5 0.4 0.8 0.3 0.8 0.8
a4 0.6 0.7 0.6 0.7 0.8 0.6
a5 0.9 0.8 0.4 0.7 0.7 0.8
a6 0.8 0.3 0.7 0.7 0.6 0.7
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Table 7. Evaluation of specialist ε2.

S(2) u1 u2 u3 u4 u5 u6

a1 0.6 0.8 0.5 0.6 0.4 0.8
a2 0.7 0.6 0.8 0.6 0.7 0.7
a3 0.7 0.6 0.8 0.7 0.8 0.8
a4 0.6 0.7 0.5 0.6 0.8 0.7
a5 0.7 0.8 0.7 0.7 0.6 0.8
a6 0.6 0.4 0.8 0.7 0.6 0.7

Table 8. Evaluation of specialist ε3.

S(3) u1 u2 u3 u4 u5 u6

a1 0.7 0.6 0.6 0.6 0.4 0.7
a2 0.7 0.6 0.7 0.6 0.6 0.7
a3 0.6 0.5 0.8 0.5 0.8 0.8
a4 0.6 0.7 0.7 0.5 0.8 0.6
a5 0.7 0.8 0.6 0.7 0.6 0.8
a6 0.4 0.5 0.9 0.7 0.6 0.6

After applying Formula (3) from step 1 to the decision matrices S(1), S(2) and S(3)

mentioned above, we obtain the standard decision matrices N(1), N(2), and N(3), which are
shown in Tables 9–11 in that order.

Table 9. Standardization of specialist ε1 decision matrix.

N(1) u1 u2 u3 u4 u5 u6

a1 0.7 0.8 0.6 0.3 0.5 0.1
a2 0.8 0.6 0.9 0.3 0.4 0.3
a3 0.5 0.4 0.8 0.7 0.2 0.2
a4 0.6 0.7 0.6 0.3 0.2 0.4
a5 0.9 0.8 0.4 0.3 0.3 0.2
a6 0.8 0.3 0.7 0.3 0.4 0.3

Table 10. Standardization of specialist ε2 decision matrix.

N(2) u1 u2 u3 u4 u5 u6

a1 0.6 0.8 0.5 0.4 0.6 0.2
a2 0.7 0.6 0.8 0.4 0.3 0.3
a3 0.7 0.6 0.8 0.3 0.2 0.2
a4 0.6 0.7 0.5 0.4 0.2 0.3
a5 0.7 0.8 0.7 0.3 0.4 0.2
a6 0.6 0.4 0.8 0.3 0.4 0.3

Table 11. Standardization of specialist ε3 decision matrix.

N(3) u1 u2 u3 u4 u5 u6

a1 0.7 0.6 0.6 0.4 0.6 0.3
a2 0.7 0.6 0.7 0.4 0.4 0.3
a3 0.6 0.5 0.8 0.5 0.2 0.2
a4 0.6 0.7 0.7 0.5 0.2 0.4
a5 0.7 0.8 0.6 0.3 0.4 0.2
a6 0.4 0.5 0.9 0.3 0.4 0.4

The congregate decision matrix Q of Table 12 is produced by applying PQO(1)
L∗w1

of

Example 3 to the standard decision matrices N(1), N(2), and N(3) above.
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Table 12. Congregate decision matrix.

Q u1 u2 u3 u4 u5 u6

a1 0.439 0.533 0.316 0.130 0.316 0.029
a2 0.537 0.360 0.638 0.130 0.130 0.090
a3 0.350 0.240 0.640 0.210 0.040 0.040
a4 0.360 0.490 0.344 0.146 0.040 0.130
a5 0.580 0.640 0.295 0.090 0.130 0.040
a6 0.331 0.146 0.622 0.090 0.160 0.106

Afterward, the total preference vector tpvi is determined by taking into account
PQO(1)

L∗w2
of Example 4. Table 13 presents the final result. (Specifically, [·] in PQO(1)

L∗w1
and

PQO(1)
L∗w2

only represents the rounding function. For other types of integral functions, such

as floor, ceil, and fix, the results obtained are similar to those of the round function.)

Table 13. Total preference vector.

TPV a1 a2 a3 a4 a5 a6

tpvi 0.018 0.026 0.009 0.015 0.015 0.014

Eventually, we obtain the descending order of the alternative ai by utilizing Table 13:

a2 > a1 > a4 = a5 > a6 > a3

We are aware that the weighted discrete pseudo-quasi overlap functions used in steps
2 and 3 of the FMAGDMP solution are different, and the final ranking of the alternative ai

is dissimilar. In Table 14, we obtain different rankings by utilizing PQO(e)
L∗w1

and PQO(e)
L∗w2

(e ∈ N+, e = 1, 2, 3, 4, 5) from Examples 3 and 4 and other aggregation functions in [48,50].
Moreover, the above rankings are generated by different aggregation functions under the
same FMAGDMP solution.

From Table 14, we notice that the eleven aggregation methods generated by PQO(e)
L∗w1

and PQO(e)
L∗w2

(e ∈ N+, e = 1, 2, 3, 4, 5) of Examples 3 and 4 resulted in seven different sorts.

In addition, among these seven different sorts, all sorts indicate that a2 is the best, while
most sorts (five sorts) show that a3 is the worst.

By analyzing Table 14, we can see that the rankings generated by different aggregation
functions under the same FMAGDMP solution are slightly different, and compared to
other aggregation functions, the rankings obtained using discrete pseudo-quasi overlap
functions are more reasonable.

As mentioned above, we use weighted discrete pseudo-quasi overlap functions to fuse
information. However, in practical applications, there may be situations without weight
vectors. Therefore, we choose other types of discrete pseudo-quasi overlap functions as
aggregation functions to solve FMAGDMP. Of course, this type of discrete pseudo-quasi
overlap function is significantly different from Examples 3 and 4. It implies the importance
of various expert decisions or attributes in the function formula itself. Below, we apply
this type of discrete pseudo-quasi overlap function to the previous approach for solving
FMAGDMP.

Based on Theorem 2, Lemma 2, and [18], we obtain the following example:
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Table 14. Ranks obtained by different weighted discrete pseudo-quasi functions and other aggregation
functions in [49,51].

Congregate Aggregation
Function

Total Aggregation Function Ranking

Maximum Maximum a2 > a4 > a5 > a1 > a3 > a6
Minimum Minimum a3 > a5 > a1 > a4 > a2 > a6

WAP
w WAP

w a2 > x3 > a6 > a4 > a1 > a5

WAO3
0.5M

w WAO3
0.5M

w a5 > a2 > a1 > a4 > a3 > a6

WAO3
2M

w WAO3
2M

w a2 > a1 > a5 > a4 > a3 > a6

PQO(1)
L∗w1

PQO(1)
L∗w2

a2 > a1 > a4 = a5 > a6 > a3

PQO(1)
L∗w1

PQO(2)
L∗w2

a2 = a1 = a4 = a5 = a6 = a3

PQO(1)
L∗w1

PQO(3)
L∗w2

a2 > a6 > a4 > a5 > a1 > a3

PQO(2)
L∗w1

PQO(1)
L∗w2

a2 = a1 = a4 = a5 = a6 = a3

PQO(2)
L∗w1

PQO(2)
L∗w2

a2 = a1 = a4 = a5 = a6 = a3

PQO(2)
L∗w1

PQO(3)
L∗w2

a2 > a6 > a4 > a5 > a3 = a1

PQO(3)
L∗w1

PQO(1)
L∗w2

a2 > a1 > a5 > a4 > a6 > a3

PQO(3)
L∗w1

PQO(2)
L∗w2

a2 > a1 > a3 > a4 = a5 = a6

PQO(3)
L∗w1

PQO(3)
L∗w2

a2 > a5 > a4 > a1 > a6 > a3

PQO(4)
L∗w1

PQO(4)
L∗w2

a2 = a6 = a1 = a4 = a5 = a3

PQO(5)
L∗w1

PQO(5)
L∗w2

a2 > a5 > a4 > a1 > a6 > a3

Example 5. Let L∗ be a finite chain; the following PQO( f )
L∗ ( f = 1, 2, 3) : L∗3 → L∗ are ternary

discrete pseudo-quasi overlap functions on L∗.
(1) ∀xi+1, xi+2, xi+3 ∈ L∗, the function PQO(1)

L∗ : L∗3 → L∗ is defined as follows:

PQO(1)
L∗ (xi+1, xi+2, xi+3) =

1
1000 [1000 6

√
xi+1 4

√
xi+2

√
xi+3]

and is a discrete pseudo-quasi overlap function on L∗.
(2) ∀xi+1, xi+2, xi+3 ∈ L∗, the function PQO(2)

L∗ : L∗3 → L∗ is defined as follows:

PQO(2)
L∗ (xi+1, xi+2, xi+3) =

{
x0, i f xi+1 + xi+2 + xi+3 = x0

1
1000 [

6000xi+1xi+2xi+3
3xi+1+2xi+2+xi+3

]. otherwise

and is a discrete pseudo-quasi overlap function on L∗.
(3) ∀xi+1, xi+2, xi+3 ∈ L∗, the function PQO(3)

L∗ : L∗3 → L∗ is defined as follows:

PQO(3)
L∗ (xi+1, xi+2, xi+3) =

1
1000 [

2000 4√xi+1 3√xi+2
√

xi+3
1+ 4√xi+1 3√xi+2

√
xi+3

]

and is a discrete pseudo-quasi overlap function on L∗.

Example 6. Let L∗ be a finite chain; the following PQO( f )
L∗ ( f = 4, 5, 6) : L6 → L are six-variable

discrete pseudo-quasi overlap functions on L∗.
(1) ∀xi+1, xi+2, xi+3, xi+4, xi+5, xi+6 ∈ L∗, the function PQO(4)

L∗ : L∗6 → L∗,

PQO(4)
L∗ (xi+1, xi+2, xi+3, xi+4, xi+5, xi+6) =

1
1000

[1000 12
√

xi+1
10
√

xi+2
8
√

xi+3
6
√

xi+4
4
√

xi+5
√

xi+6]

is a discrete pseudo-quasi overlap function on L∗.
(2) ∀xi+1, xi+2, xi+3, xi+4, xi+5, xi+6 ∈ L∗, the function PQO(5)

L∗ : L∗6 → L∗,
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PQO(5)
L∗ (xi+1, xi+2, xi+3, xi+4, xi+5, xi+6)

=

⎧⎪⎨⎪⎩
x0, i f xi+1 + xi+2 + xi+3 + xi+4

+ xi+5 + xi+6 = x0
1

1000 [
10000xi+1xi+2xi+3xi+4xi+5xi+6

4xi+1+2xi+2+xi+3+xi+4+xi+5+xi+6
]. otherwise

is a discrete pseudo-quasi overlap function on L∗.
(3) ∀xi+1, xi+2, xi+3, xi+4, xi+5, xi+6 ∈ L∗, the function PQO(6)

L∗ : L6 → L∗,

PQO(6)
L∗ (xi+1, xi+2, xi+3, xi+4, xi+5, xi+6) =

1
1000 [

2000 7√xi+1 6√xi+2 5√xi+3 4√xi+4 3√xi+5
√

xi+6
1+ 7√xi+1 6√xi+2 5√xi+3 4√xi+4 3√xi+5

√
xi+6

]

is a discrete pseudo-quasi overlap function on L∗.

Similar to the previous approach to solving FMAGDMP, we obtain different rank-
ings by means of PQO( f )

L∗ ( f ∈ N+, f = 1, 2, 3, 4, 5, 6) in Examples 5 and 6, as shown in
Table 15 below.

Table 15. Ranks obtained by different discrete pseudo-quasi overlap functions.

Congregate Aggregation
Function

Total Aggregation Function Ranking

PQO(1)
L∗ PQO(4)

L∗
a6 > a2 > a4 > a1 > a5 > a3

PQO(1)
L∗ PQO(5)

L∗
a2 > a1 > a6 > a4 > a5 > a3

PQO(1)
L∗ PQO(6)

L∗
a2 > a6 > a1 > a4 > a5 > a3

PQO(2)
L∗ PQO(4)

L∗
a2 > a6 > a4 > a1 > a5 > a3

PQO(2)
L∗ PQO(5)

L∗
a2 = a1 = a4 = a5 = a6 = a3

PQO(2)
L∗ PQO(6)

L∗
a2 > a6 > a1 > a4 > a5 > a3

PQO(3)
L∗ PQO(4)

L∗
a6 > a2 > a4 > a1 > a5 > a3

PQO(3)
L∗ PQO(5)

L∗
a2 > a1 > a6 > a4 = a5 > a3

PQO(3)
L∗ PQO(6)

L∗
a2 > a6 > a1 > a4 > a5 > a3

From Table 15, it can clearly be seen that the nine different aggregation methods
created by PQO( f )

L ( f ∈ N+, f = 1, 2, 3, 4, 5, 6) from Examples 5 and 6 bring seven different
sorts, and among these sorts, the great majority of sorts (five sorts ) consider a2 to be the best,
while all sorts consider a3 to be the worst. Moreover, the rankings in Tables 14 and 15 can be
integrated, and further analysis shows that discrete pseudo-quasi overlap functions may be
more flexible in fuzzy multi-attribute applications compared to other aggregate functions.

In summary, the discrete pseudo-quasi overlap function applied to fuzzy multi-
attribute group decision-making not only aggregates multiple pieces of information but
also reflects the significance of different factors, such as the importance of attributes and spe-
cialists. More importantly, under the same fuzzy multi-attribute decision-making solution,
according to Tables 14 and 15, and references [18,49,51], we can see that compared to the
overlap functions and pseudo-overlap functions, which contain continuity and symmetry
and have limitations, the discrete pseudo-quasi overlap function proposed in this paper
offers a wider range of applications and greater flexibility.

6. Conclusions

In this paper, we first introduce the concept of discrete pseudo-quasi overlap functions
on finite chains and discuss their associated properties. Then, we present pseudo-quasi
overlap functions on sub-chains; based on this, we construct discrete pseudo-quasi overlap
functions on finite chains through pseudo-quasi overlap functions on sub-chains. Com-
pared to quasi-overlap functions on finite chains constructed using ordinal sums, the
discrete pseudo-quasi overlap functions on finite chains derived from pseudo-quasi over-
lap functions on different sub-chains are not the same. Finally, we present the concept
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of pseudo-quasi-automorphisms by removing the continuity assumption from pseudo-
automorphisms, and we use pseudo-overlap functions, pseudo-quasi-isomorphisms, and
integral functions to create discrete pseudo-quasi overlap functions expressed as frac-
tions on finite chains. More importantly, we apply the discrete pseudo-quasi overlap
function constructed above to fuzzy multi-attribute group decision-making. The results
demonstrate that, compared to overlap functions, pseudo-overlap functions, and other
aggregation functions, the proposed approach is both more practical and more flexible.

The results of this paper not only enrich the theoretical research on overlap functions
but also provide practical guidance for their application. In future research, we will
continue to study the theoretical knowledge and practical applications related to pseudo-
quasi overlap functions, which can be divided into the following aspects:

(1) Deriving residual-type implication operators using pseudo-quasi overlap functions
and combining them with various inference algorithms;

(2) Extending the pseudo-quasi overlap function to a more general form and studying
its related properties;

(3) Exploring the application of the pseudo-quasi overlap function as a relatively broad
aggregation function; this can be applied in other fields such as attribute reduction, fuzzy
mathematical morphology, and image processing.

Author Contributions: Writing—original draft preparation, M.J.; writing—review and editing, J.W.
X.Z. and M.W. All authors have read and agreed to the published version of the manuscript.

Funding: This study was funded by the National Natural Science Foundation of China (nos. 12271319,
12201373).

Data Availability Statement: The original contributions presented in the study are included in
reference [51], further inquiries can be directed to the corresponding author of reference [51].

Conflicts of Interest: No conflicts of interest exist in the submission of this manuscript, and all
authors approve the manuscript for publication. This work is original research that has not been
published previously and is not under consideration for publication elsewhere, in whole or in part.
All the authors listed have approved the enclosed manuscript.

References

1. Zadeh, L. Fuzzy sets. Inf. Control 1965, 8, 338–353. [CrossRef]
2. Antoniou, G.; Williams, M.A. Nonmonotonic Reasoning; MIT Press: Cambridge, MA, USA, 1997.
3. Wang, J.; Zhang, X. Intuitionistic fuzzy granular matrix: Novel calculation approaches for intuitionistic fuzzy covering-based

rough sets. Axioms 2024, 13, 411. [CrossRef]
4. Mamdani, E.H.; Gaines, R.B. Fuzzy Reasoning and Its Applications; Academic Press: Orlando, FL, USA, 1981.
5. Wang, L. A Course in Fuzzy Systems and Control; Prentice Hall PTR: Upper Saddle River, NJ, USA, 1997.
6. Zadeh, L. Outline of a new approach to the analysis of complex systems and decision processes. Trans. Fuzzy Syst. 1973, 3, 28–44.

[CrossRef]
7. Elkan, C. The paradoxical success of fuzzy logic. IEEE Expert 1994, 9, 38. [CrossRef]
8. Wu, W. An argument over the fuzzy logic. Fuzzy Syst. Math. 1995, 9, 1–10.
9. Ying, M. The compactness of fuzzy logic. Sci. Notif. 1998, 43, 379–383. [CrossRef]
10. Bustince, H.; Fernández, J.; Mesiar, R. Overlap functions. Nonlinear Anal. 2010, 72, 1488–1499. [CrossRef]
11. Bustince, H.; Barrenechea, E.; Pagola, M. Image thresholding using restricted equivalence functions and maximizing the measures

of similarity. Fuzzy Sets Syst. 2007, 158, 496–516. [CrossRef]
12. Elkano, M.; Galar, M.; Sanz, J.; Fernández, A.; Barrenechea, E.; Herrera, F.; Bustince, H. Enhancing multi-class classification in

FARC-HD fuzzy classifier: On the synergy between n-dimensional overlap functions and decomposition strategies. Trans. Fuzzy
Syst. 2015, 23, 1562–1580. [CrossRef]

13. Sanz, J.A.; Fernandez, A.; Bustince, H.; Herrera, F. Improving the performance of fuzzy rule-based classification systems with
interval-valued fuzzy sets and genetic amplitude tuning. Inf. Sci. 2010, 180, 3674–3685. [CrossRef]

14. Wang, Y.; Liu, H. The modularity condition for overlap and grouping functions. Fuzzy Sets Syst. 2019, 372, 97–110. [CrossRef]
15. Zhou, H.; Yan, X. Migrativity properties of overlap functions over uninorms. Fuzzy Sets Syst. 2021, 403, 10–37. [CrossRef]
16. Bustince, H.; Pagola, M.; Mesiar, R.; Hüllermeier, E.; Herrera, F. Grouping, overlaps, and generalized bientropic functions for

fuzzy modeling of pairwise comparisons. IEEE Trans. Fuzzy Syst. 2012, 20, 405–415. [CrossRef]
17. Paiva, R.; Santiago, R.; Bedregal, B.; Palmeira, E. Lattice-valued overlap and quasi-overlap functions. Inf. Sci. 2021, 562, 180–199.

[CrossRef]

165



Mathematics 2024, 12, 3569

18. Zhang, X.; Liang, R.; Bustince, H. Pseudo overlap functions, fuzzy implications and pseudo grouping functions with applications.
Axioms 2022, 11, 593. [CrossRef]

19. Zhang, X.; Wang, M. Semi-overlap functions and novel fuzzy reasoning algorithms. Inf. Sci. 2020, 527, 27–50. [CrossRef]
20. Gómez, D.; Rodríguez, J.T.; Montero, J.; Bustince, H.; Barrenechea, E. N-dimensional overlap functions. Fuzzy Sets Syst. 2016, 287,

57–75. [CrossRef]
21. Miguel, L.D.; Gómez, D.; Rodríguez, J.T. General overlap functions. Fuzzy Sets Syst. 2019, 372, 81–96. [CrossRef]
22. Jing, M.; Zhang, X. Pseudo-Quasi Overlap Functions and Related Fuzzy Inference Methods. Axioms 2023, 12, 217. [CrossRef]
23. Dimuro, G.P.; Bedregal, B. On residual implications derived from overlap functions. Inf. Sci. 2015, 312, 78–88.
24. Dimuro, G.P.; Bedregal, B.; Santiago, R.H.N. On (G, N)-implications derived from group functions. Inf. Sci. 2014, 279, 1–17. [CrossRef]
25. Cao, M.; Hu, B.; Qiao, J. On interval (G, N)-implications and (O, G, N)-implications derived from interval overlap and group

functions. Int. J. Approx. Reason. 2018, 100, 135–160. [CrossRef]
26. Dimuro, G.P.; Bedregal, B.; Bustince, H.; Asiáin, M.J.; Mesiar, R. On additive generators of overlap functions. Fuzzy Sets Syst. 2016,

287, 76–96. [CrossRef]
27. Qiao, J.; Hu, B. On multiplicative generators of overlap and grouping functions. Fuzzy Sets Syst. 2018, 332, 1–24. [CrossRef]
28. Zhang, X.; Wang, M. Constructing general overlap and grouping functions multiplicative generators. Fuzzy Sets Syst. 2022, 150,

297–310.
29. Qiao, J.; Hu, B. On interval additive generators of interval overlap functions and interval grouping functions. Fuzzy Sets Syst.

2017, 323, 19–55. [CrossRef]
30. Dimuro, G.P.; Fernández, J.; Bedregal, B. The state-of-art of the generalizations of the Choquet integral: From aggregation and

pre-aggregation to ordered directionally monotone functions. Inf. Fusion 2020, 57, 27–43. [CrossRef]
31. Masoudi, S.; Soltanpour, M.R.; Abdollahi, H. Adaptive fuzzy control method for a linear switched reluctance motor. IET Electr.

Power Appl. 2018, 12, 1328–1336. [CrossRef]
32. Campomanes-Alvarez, C.; Ibáñez, Ó.; Cordón, O.; Wilkinson, C. Hierarchical information fusion for decision making in

craniofacial superimposition. Inf. Fusion 2018, 39, 25–40. [CrossRef]
33. Zhang, Q.; Yang, L.T.; Chen, Z. A survey on deep learning for big data. Inf. Fusion 2018, 42, 146–157. [CrossRef]
34. Su, Y.; Liu, H. Discrete aggregation operators with annihilator. Fuzzy Sets Syst. 2017, 308, 72–84. [CrossRef]
35. Li, T.B.; Qiao, J.; Ding, W.P. Three-way conflict analysis and resolution based on q-rung orthopair fuzzy information. Inf. Sci.

2023, 638, 118959. [CrossRef]
36. De Baets, B.; Mesiar, R. Discrete triangular norms. In Topological and Algebraic Structures in Fuzzy Sets: A Handbook of Recent

Developments in the Mathematics of Fuzzy Sets; Springer: Dordrecht, The Netherlands, 2003; pp. 389–400.
37. Mas, M.; Monserrat, M.; Torrens, J. On left and right uninorms on a finite chain. Fuzzy Sets Syst. 2004, 146, 3–17. [CrossRef]
38. Mas, M.; Monserrat, M.; Torrens, J. t-operators and uninorms on a finite totally ordered set. Int. J. Intell. Syst. 1999, 14, 909–922.

[CrossRef]
39. Qiao, J. Discrete overlap functions: Basic properties and constructions. Int. J. Approx. Reason. 2022, 149, 161–177. [CrossRef]
40. Qiao, J. On discrete quasi-overlap functions. Inf. Sci. 2022, 584, 603–617. [CrossRef]
41. Bass, S.M.; Kwakernaak, H. Rating and ranking of multiple aspect alternative using fuzzy sets. Automatic 1997, 13, 47–58. [CrossRef]
42. Kichert, W.J.M. Fuzzy Theories on Decision Making: A Critical Review; Martinus Nijhoff: London, UK, 1978.
43. Zimmermamm, H.J. Fuzzy mathematical programming. In Fuzzy Sets, Decision Making, and Expert Systems; Springer: Dordrecht,

The Netherlands, 1987; pp. 71–124.
44. Chen, S.J.; Hwang, C.L. Fuzzy multiple attribute decision making methods. In Fuzzy Multiple Attribute Decision Making: Methods

and Applications; Springer: Berlin/Heidelberg, Germany, 1992; pp. 289–486.
45. Qi, G.; Li, J.; Kang, B.; Yang, B. The aggregation of Z-numbers based on overlap functions and group functions and its application

on group decision-making. Inf. Sci. 2023, 623, 857–899. [CrossRef]
46. Wang, J.; Zhang, X.; Shen, Q. Choquet-like integrals with rough attribute fuzzy measures for data-driven decision-making. IEEE

Trans. Fuzzy Syst. 2024, 32, 2825–2836. [CrossRef]
47. Mao, X.; Temuer, C.; Zhou, H. Sugeno Integral Based on Overlap Function and Its Application to Fuzzy Quantifiers and

Multi-Attribute Decision-Making. Axioms 2023, 12, 734. [CrossRef]
48. Wen, X.; Zhang, X. Overlap functions based (multi-granulation) fuzzy rough sets and their applications in MCDM. Symmetry

2021, 13, 1779. [CrossRef]
49. Da Silva, I.A.; Bedregal, B.; Bustince, H. Weighted average operators generated by n-dimensional overlaps and an application in

decision. In Proceedings of the 2015 Conference of the International Fuzzy Systems Association and the European Society for
Fuzzy Logic and Technology (IFSA-EUSFLAT-15), Gijón, Spain, 30 June–3 July 2015 ; pp. 1473–1478.

50. Cockett, J.; Robin, B.; Lack, S. Restriction categories I: Categories of partial maps. Theor. Comput. Sci. 2002, 270, 223–259. [CrossRef]
51. Merigo, J.M.; Casanovas, M. Decision-Making with distance measures and induced aggregation operators. Comput. Ind. Eng.

2011, 60, 66–76. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

166



MDPI AG
Grosspeteranlage 5

4052 Basel
Switzerland

Tel.: +41 61 683 77 34

Mathematics Editorial Office
E-mail: mathematics@mdpi.com

www.mdpi.com/journal/mathematics

Disclaimer/Publisher’s Note: The title and front matter of this reprint are at the discretion of the

Guest Editors. The publisher is not responsible for their content or any associated concerns. The

statements, opinions and data contained in all individual articles are solely those of the individual

Editors and contributors and not of MDPI. MDPI disclaims responsibility for any injury to people or

property resulting from any ideas, methods, instructions or products referred to in the content.





Academic Open 

Access Publishing

mdpi.com ISBN 978-3-7258-4832-4


