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Abstract: The failure of a rolling bearing may cause the shutdown of mechanical equipment and
even induce catastrophic accidents, resulting in tremendous economic losses and a severely negative
impact on society. Fault diagnosis of rolling bearings becomes an important topic with much attention
from researchers and industrial pioneers. There are an increasing number of publications on this
topic. However, there is a lack of a comprehensive survey of existing works from the perspectives of
fault detection and fault type recognition in rolling bearings using vibration signals. Therefore, this
paper reviews recent fault detection and fault type recognition methods using vibration signals. First,
it provides an overview of fault diagnosis of rolling bearings and typical fault types. Then, existing
fault diagnosis methods are categorized into fault detection methods and fault type recognition
methods, which are separately revised and discussed. Finally, a summary of existing datasets,
limitations/challenges of existing methods, and future directions are presented to provide more
guidance for researchers who are interested in this field. Overall, this survey paper conducts a review
and analysis of the methods used to diagnose rolling bearing faults and provide comprehensive
guidance for researchers in this field.

Keywords: rolling bearing; diagnosis; fault detection; fault type recognition; signal processing;
machine learning

1. Introduction

With the rapid development of technology and science, modern industry has become
increasingly important in our daily life. The advancement of science and technology has
led to the gradual development of large-scale and high-speed rotating machinery with
integration, precision, and intelligence. Rotating machinery is an essential part of modern
industry and is widely used in many fields, including energy and power, machinery
manufacturing, transportation, and aerospace. Once mechanical equipment is successfully
developed for production, the reliability and safety of the equipment become increasingly
crucial, and the fault diagnosis and condition monitoring of the core components become
an arduous task [1-3].

Roller bearings are widely used in rotating machinery and are an indispensable
component that supports the rotating shaft and serves as a connector between stationary
and rotating parts. Although rolling bearing damage occurs at the component level, it
frequently leads to more severe equipment failures. According to statistics, rolling bearing
failures account for 40-90% of all rotating machinery failures [4]. The initial failure of the
rolling bearing of a wind turbine will only affect itself, and the unit will remain operational.
However, as the times of abnormal operations increase, external excitations caused by
broken bearings will cause the traditional system to malfunction, resulting in a fire in
extreme cases. Roll bearing failure in the rolling mill will cause a reduction in the quality
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of rolled products, which will lead to the production line being stopped and result in
significant economic losses. Due to the complex and changing conditions operating in
rotating machinery, rolling bearings often fail before their designed life ends, and their
actual service life is often shorter than their design life, so a routine shutdown inspection is
not the best way. Therefore, an effective and intelligent fault diagnosis of rolling bearings
is of considerable practical significance for ensuring the health of rotating equipment and
machinery.

Fault diagnosis of rolling bearings is a multidisciplinary field that incorporates com-
puter science, mathematics, electronics, signal processing, engineering, and other modern
technologies. Rolling bearing fault diagnosis is to diagnose the bearing health status
through the collected operation data. Fault diagnosis can be broadly categorized into fault
detection and fault type recognition. Fault detection is to detect faults from the collected
data, while fault type recognition is to recognize faults and their types from the data.
During the past ten years, fault diagnosis of rolling bearings has attracted considerable
attention from both academics and the industry. Figure 1 shows the number of publications
on the topic of rolling bearing fault diagnosis extracted from the Scopus database. It is
clear that the number of publications has gradually increased from 2011 to 2021. There
are several survey papers on fault diagnosis. However, most of them focus on specifical
tasks or methods, such as machine learning-based methods [5] for prognostics and health
management of rolling element bearings [6], Fourier transform and enhanced fast Fourier
transform algorithms [7], artificial intelligence methods [8], spectral kurtosis [9], and signal
processing techniques [10]. Very few of them provide a general and comprehensive survey
on rolling bearing fault diagnosis using vibration signals from the perspectives of fault
detection and fault type recognition.
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Figure 1. The number of publications on rolling bearing fault diagnosis from 2011 to 2021.

To address the above limitations, this paper reviews over 150 related publications in
recent years, including over 100 publications from 2016 to 2021. These publications are well-
known or representative ones in the rolling bearing fault diagnosis community. This survey
discusses not only traditional methods based on signal processing and analysis but also
machine learning and artificial intelligence methods, including feature extraction/reduction
methods, deep learning methods, and evolutionary learning methods, to present a relatively
full picture of this field. In addition, this survey summarizes commonly used datasets,
existing limitations/challenges, and future research trends to provide researchers with
useful guidance.

The structure of the survey is task-based, including tasks for fault detection and fault
type recognition. The organization of this paper is as follows. The primary fault forms
of rolling bearings and the major research topics of rolling bearing fault diagnosis are
presented in Section 2. Then, Sections 3 and 4 review the typical works on rolling bearing
fault detection and fault type recognition, respectively. Section 5 summarizes datasets
and the limitations/challenges of existing methods and discusses future research trends in
rolling bearing fault diagnosis. Finally, Section 6 draws the conclusions.
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2. Background, Taxonomy, and Scope
2.1. Fault Forms/Types of Rolling Bearing

Rolling bearings have several types, but their basic structures remain the same. Typ-
ically, a rolling bearing consists of four parts: the inner ring, the outer ring, the rolling
element, and the cage. There are four types of corresponding faults, i.e., the inner ring fault,
the outer ring fault, the rolling element fault, and the cage fault. A rolling bearing may fail
due to internal and/or external problems/factors. Nowadays, bearing failures are mainly
caused by external factors, including improper assembly, oil lubrication failure, pollution
corrosion, and overloading. Rolling bearing faults often have the following forms [3]:

(1) Fatigue

Rolling bearings operate with great periodic contact stress between the rolling element
and the inner/outer ring surface, causing the contact surface (generally the track surface)
to fatigue and crack, which gradually extends to the raceway surface. Fatigue causes the
bearing surface material to fall off and form pits. In severe cases, the material on the surface
may fall off in large areas. Fatigue pitting and fatigue peeling are commonly used terms for
describing fatigue.

(2) Wear

The failures of the rolling bearing sealing system cause bearing wear. When the sealing
system fails, foreign matter will enter the bearing, resulting in abnormal friction between
the inner ring/outer ring and the rolling elements. Additionally, improper lubrication will
further aggravate wear, resulting in continuous material loss, increased surface roughness,
increased clearance between bearings, and decreased running accuracy.

(3) Deformation

Deformation means that the bearing surface has undergone plastic deformation, or
more specifically, a permanent indentation will appear on the bearing surface if the load
borne by the bearing exceeds the yield strength limit of the material. Incorrect assembly
methods and foreign matter appearance are the main reasons for the bearing deformation.

(4) Corrosion

Corrosion of rolling bearings occurs when chemical reactions occur on their surface.
The first one is the oxidation reaction between the water in the lubricating oil and the
bearing surface. The second one is fretting friction between components that leads to the
oxidation of surface materials. The last one is abnormal current/voltage that causes local
overheating of the bearing, resulting in welding of the element contact surface.

(5) Fracture

Rolling bearing fractures are the damage caused by local stresses exceeding the mate-
rial’s tensile strength limit. Generally, the crack propagates over time and penetrates part
of the bearing component, causing complete separation of the material and fracture of the
bearing. In addition, violent loading and unloading can also lead to bearing fracture.

2.2. Taxonomy and Scope

The purpose of rolling bearing fault diagnosis is to determine the bearing health status
by analyzing the collected operation data. Diagnostics of faults revolve primarily around
fault detection and fault type identification. Figure 2 shows the general flowchart of fault
detection and fault type recognition. Although fault detection and fault type recognition
may have some overlap, they are two different types of tasks in fault diagnosis. Specifically,
fault detection is to detect faults or non-faults from the collected data, and fault type
recognition is to recognize faults and their types from the data. Therefore, to solve these two
tasks, different procedures are often used. For fault detection, the collected bearing signals
are utilized to determine bearing status. The process often includes removing the noise
and harmonic interference from the monitoring signal using signal processing methods
and then manually identifying the fault by finding its characteristic frequency. Fault type
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recognition refers to using the existing bearing signals to construct a diagnostic system
to evaluate the unknown bearing signals. Unlike fault detection, fault type recognition
methods automatically extract or construct fault features from the signals and determine
the bearing health status using machine learning algorithms.

Feature Machine Automatic

Fault detection | :

I Signal ,| Spectrogram > Manual :

ﬁ processing analysis detection i

Rolling .| Monitor b e e e e e e e e e e
bearing g signal \N:r ------------------------------------ i

y
4
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i | manipulation learning recognition
I

Figure 2. General flowchart of rolling bearing fault diagnosis.

The monitoring data of rolling bearings can be collected from oil [11], temperature [12],
sound [13], vibration [14], and other media. Performing an oil analysis affects production
continuity because it involves shutting down equipment and opening the cover to collect
lubricant and other oil samples. Temperature measurement equipment is expensive and
cannot provide a promising monitoring effect. Temperature analysis neither has good
accuracy at the early stage of bearing fault nor distinguishes the fault types. Sound
analysis has high technical demands for signal acquisition and identification because the
acoustic signal attenuates and is susceptible to environmental noise interference. In contrast,
vibration signal characteristics are stable and easy to collect, making vibration analysis a
suitable condition monitoring technique. Vibration analysis has a firm theoretical basis.
Research on the fault diagnosis method of rolling bearings based on vibration signal has
long been a hot issue concern by domestic and foreign experts and scholars.

This survey paper summarizes the fault diagnosis methods of rolling bearings based
on vibration signals from the perspectives of fault detection and fault type recognition.
First, four types of signal processing methods commonly used for fault detection of
rolling bearings, i.e., morphological transformation-based methods, filter-based meth-
ods, decomposition-based methods, and deconvolution-based methods, are discussed.
Then, the classical fault type recognition methods are discussed from three aspects: feature
extraction, feature reduction, and classification. In addition, the recently popular deep
learning based-fault type recognition methods such as convolutional neural networks,
Autoencoder, deep belief networks, and recursive neural networks, are also discussed and
reviewed. The taxonomy of this survey is shown in Figure 3.
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Figure 3. The taxonomy of this survey.

3. Rolling Bearing Fault Detection

The failure of rolling bearings will break the original energy balance of the system, and
the most intuitive performance is abnormal vibration. The bearing fault vibration signal
shows an increase or fluctuation in amplitude in the time domain and spectrum lines of
fault characteristic frequency with prominent amplitude in the frequency domain. In [15],
four empirical formulas were summarized for calculating the theoretical fault frequencies
of the inner ring (Fj,r), outer ring (Foyter), rolling element (Fy7), and cage (Feage), as shown
in Equation (1).

NS d N, S d
Finner = bZSh (1 - Dil; cos 4’) Fouter = bZSh (1 + ﬁi cos (P)

D,S d S d
Fyap = zldbSh (1 - (ﬁ; Ccos (P)z) Fcage = %h(l - D*l;, Ccos (P)

@)

where Dy, is pitch diameter, d}, is rolling element diameter, Nj, is rolling element number, ¢
is contact angle, and S, is shaft speed, which are basic parameters. It is possible to detect
a bearing fault by observing the fluctuation of the time-domain waveforms or observing
spectral lines associated with the fault characteristic frequency. Directly measuring rolling
bearing vibrations is impossible in the real world. Generally, the sensor installed on the
bearing pedestal is used to collect the signals indirectly, resulting in a significant amount of
noise and harmonic interference in the collected vibration signals. The polluted bearing
vibration signal is not effective for detecting bearing faults. Therefore, a series of fault
detection methods based on vibration analysis was proposed to remove the noise and
harmonic interference components in the signals, enhance the fault-related pulses, reduce
the difficulty of fault detection, and improve the effectiveness of detection. Based on the
difference in signal processing principles, the fault detection methods are mainly divided
into four categories: morphological transformation-based methods, filter-based methods,
decomposition-based methods, and deconvolution-based methods.

The common rolling bearing fault detection methods are summarized in Figure 4. The
morphological transform-based methods can extract harmonic or impact components of
signals by using morphological operators with different structures, whose appropriateness
directly influences performance. The filter-based methods can adaptively identify the reso-
nance frequency band that contains rich fault information, where the division of frequency
band and the choice of subband are the key factors affecting the results. The decomposition-
based methods refer to decomposing the complex signals into simple subband signals, and
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Fault

dection

these methods should address modal aliasing, parameter setting, manually tuning, etc.
The deconvolution-based detection methods belong to blind signal processing technology,
which recovers fault characteristic signals by designing the appropriate inverse filters
and setting the deconvolution period and filter length. In addition to the method based
on recursive decomposition, which typically lacks the mathematical model as theoretical
support, other methods have the complete mathematical theory.

Morphological transform Composite morphological filter

-based methods Multi-scale morphological filter

Filter-based { Kurotgram

methods Optimal Wavelet filter

~ Empirical Mode Decomposition

Local Mean Decomposition
Decomposition Intrinsic Time Scale Decomposition
-based methods | 1 ocal Characteristic-scale Decomposition

Variational Mode Decomposition

~ Singular Spectrum Decomposition

Minimum Entropy Deconvolution

L Deconvolution Maximum Correlated Kurtosis Deconvolution

-based methods Multipoint Optimal Minimum Entropy Deconvolution Adjusted

Maximum Second Order Cyclostationary Blind Deconvolution

Figure 4. Summary of rolling bearing fault detection methods.

3.1. Morphological Transform-Based Fault Detection Methods

The morphological transform-based detection method is a signal processing method
based on mathematical morphology theory that can capture the fault-related components
in the bearing vibration signals through morphological operators, such as erosion, dilation,
open, and close. Matheron introduced mathematical morphology as a denoising method for
image processing [16], and then Maragos extended it to the field of signal processing [16,
17]. Given the characteristic of morphological transformation to remove signal noise,
several researchers have applied it to the fault diagnosis of components of mechanical
systems and conducted a great deal of research in recent years. Wang et al. [18] used a
morphological close operator to process vibration signals for extracting fault impulses.
Shen et al. [19] proposed morphological close-open transform and morphological open—
close transform by cascading the close or open operator of the morphology. Li et al. [20] and
Raj et al. [21] calculated the gradient (difference) between the dilation and erosion operator
of the morphology to obtain the vibration impact component in the signal and defined
this procedure as morphological gradient transformation. Following this, some improved
methods based on morphological gradient transformation were developed that integrated
the close and open operators [22,23] and the close—open and open—close operators [24,
25]. These morphological gradient transform methods typically change the negative
impact to positive impact, resulting in the change of signal impact components. To ensure
that the positive and negative impulses of the signal do not change after morphological
transformation, Wang et al. [26] and Meng et al. [27] utilized the mean value operator
to fuse the results of the closed and open operators. In addition, Deng et al. [28] and
Yan et al. [29] further developed the morphological hat-transform technology, which can
enhance the weak impact in the signal by subtracting the morphological transformation
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result from the original signal. Recently, Li et al. [30] proposed a morphological gradient
product method by multiplying the results of two morphological transforms through a
product operator. In addition to developing new morphological transformation methods,
multi-scale analysis was used to improve the efficiency of the existing morphological
transformation methods [31-38]. To sum up, by analyzing the available morphological
transform methods and using cascade operator, gradient operator, hat-transform, product
operator, and multi-scale analyses, researchers have developed a series of morphological
transform-based fault detection methods with excellent performance.

3.2. Filter-Based Fault Detection Methods

The filter-based detection method is to construct a narrow-band filter to remove the
noise and interference components from the bearing vibration signals and retain the fault-
related pulses. The key to the filter-based method is to determine the center frequency and
bandwidth of the narrow-band filter. A typical filter-based detection method is Kurotgram,
proposed by Antoni et al. [39,40] in 2006, which uses the bandpass filter of a tree structure
to divide the signal spectrum and then calculates the time-domain kurtosis of the filtered
signal as a measure of fault information to adaptively select a narrow-band signal with
the most fault information for subsequent analysis. The Kurotgram method has two short-
comings: one is that the parameters (center frequency and bandwidth) of the constructed
filter are not accurate enough; the other is that the Kurtosis index is easily disturbed by
noise, resulting in interference with the selection of the optimal filter. For this reason, Lei
et al. [41] and Wang et al. [42] performed a wavelet packet transform on the bearing signal
and used each wavelet node as a narrow-band filter to replace the tree structure filter of
Kurotgram and proposed two new indicators for evaluating the fault information in the
filtered signal, i.e., power spectral kurtosis and power spectral sparsity, to select the optimal
filter. Similarly, Chen et al. [43] and Moshrefzadeh et al. [44] used the dual-tree complex
wavelet transform and the maximum overlapping discrete wavelet packet transform to
generate a series of narrow-band filters, respectively. In addition, many improvements to
Kurotgram focus on proposing new evaluation indexes to replace kurtosis, such as spatial
spectrum set kurtosis [43], envelope spectrum correlation kurtosis [45], 12/11 norm [46],
negative entropy [47,48], Gini index [49], and weighted cyclic harmonic noise ratio [50], to
avoid the wrong selection of filters in the case of excessive non-Gaussian noise or accidental
impact.

Although Kurtogram and its improved methods can remove fault-independent noise
and harmonic interference from vibration signals, there is still a problem with the accuracy
of filter construction, which may lead to the loss of the signal information and affect the
extraction of fault-related pulses. As opposed to the traditional method of dividing the
frequency band layer by layer, the optimal wavelet filter methods are proposed [51-55]. Tse
etal. [51] used the Morlet wavelet as the filter, took maximizing sparsity of the filtered signal
as the objective, and applied a genetic algorithm (GA) to locate the center frequency and
bandwidth of the optimal Morlet wavelet for automatic filter construction. Similarly, Gu
et al. [52] utilized the asymmetric real Laplace wavelet as the filter and determined its center
frequency and bandwidth by simultaneously maximizing the impulse and cyclostationary
characteristics of the filtered signal.

3.3. Decomposition-Based Fault Detection Methods

The decomposition-based detection method involves decomposing the raw vibration
signal into several components, such as the fault-related pulse, the noise, and the harmonic
interference. Analyzing only the fault-related pulses can simplify the process of detecting
the fault. In 1998, Huang et al. [56,57] proposed the empirical mode decomposition (EMD)
method, which provides a new idea for analyzing non-stationary signals. Gao [58] utilized
EMD to decompose a bearing vibration signal into a series of eigenmode components with
inherent oscillation attributes and then conducted envelope spectral analysis to realize
bearing fault detection. The EMD method achieved promising performance, but it also has
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a number of deficiencies, such as end effect, modal aliasing, and over/under envelope, that
limit its applications. Huang et al. [59] proposed ensemble empirical mode decomposition
(EEMD), where Gaussian white noise is introduced in EMD to assist signal decomposition.
Li et al. [60] used EEMD to analyze bearing signals and extract bearing fault features
effectively. Even though EEMD can overcome the mode aliasing problem to some degree,
it still suffers from problems, such as low decomposition efficiency and the inability to
determine white noise amplitude adaptively. Torres et al. [61] proposed complete ensemble
empirical mode decomposition with adaptive noise (CEEMDAN), where Gaussian white
noise is adaptively added to each stage of the decomposition process. CEEMDAN can
improve computing efficiency and reduce construction errors and was successfully applied
to detect rolling bearing faults [62-64].

In 2005, Smith et al. [65] proposed the local mean decomposition (LMD), which
gradually decomposes a non-stationary signal into a linear combination composed of
multiple product function components through the moving average method. In essence,
LMD is to separate the pure FM signal and envelope signal from the original signal and
multiply the pure FM signal and envelope signal to obtain the product function component
with instantaneous frequency and physical significance. LMD shows good performance for
bearing fault detection, i.e., can avoid some over/under envelopes and has better signal
local characteristics and fewer decomposition components than EMD [65-68]. However,
the LMD method can encounter several problems in practical application, such as signal
mutation, modal aliasing, and computational inefficiency [69]. In 2007, Frei et al. [70]
proposed the intrinsic time scale decomposition (ITD), which can obtain the baseline signal
by linear transformation and can adaptively decompose a complex vibration signal into
a combination of several proper rotation components (PRCs) and a residual. ITD for
bearing fault diagnosis displays significant advantages in end effect, envelope error, and
calculation speed over EMD. However, the components decomposed by ITD produce
burrs, resulting in distortion of the instantaneous amplitude and frequency [71,72]. Local
characteristic-scale decomposition (LCD) was proposed by Cheng et al. [73,74] in 2012,
which simultaneously considers the position information of non-stationary signals in the
time domain and the frequency domain, avoiding the frequency confusion of EMD and the
signal mutation of ITD [75]. Although LCD overcomes the shortcomings of EMD and ITD,
there are still some drawbacks, such as the end effect, which often affect the processing
results [76].

All the EMD, LMD, ITD, and LCD methods adopt the idea of recursive decomposition,
which shares several similar defects. First, the end effect and the mode confusion; Second,
the recursive procedure lacks error feedback and correction; Third, the decomposition
results are easily affected by noise and abnormal components and have no physical meaning.
Dragomiretskiy et al. [77] transformed signal decomposition into a constrained variational
problem and proposed variational mode decomposition (VMD), in which the central
frequency and bandwidth of each mode depend on the optimal solution variational model
found iteratively, avoiding mode aliasing and improving the decomposition accuracy. The
decomposition effect of VMD is affected by the number of decomposed modes K and the
penalty factor o. The particle swarm optimization (PSO) and GA were applied to search the
parameter values to enhance the performance of VMD for fault detection [78-80]. Bonizzi
et al. [81] proposed the singular spectrum decomposition (SSD), which can adaptively
determine the embedding dimension required for each singular value decomposition
process and decompose the original signal in narrow-banded components. SSD has the
advantages of small end effect, weak mode aliasing and no parameter selection. EMD does
not require parameter selection either, but SSD is more effective in decomposing nonlinear
and nonstationary time series. There was the development of SSD methods that could
improve the decomposition accuracy and the detection ability of weak fault signals, which
could be applied more effectively for the fault detection of mechanical equipment [82-84].
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3.4. Deconvolution-Based Fault Detection Methods

The deconvolution-based detection method is to find an inverse filter to eliminate
the transmission path influence in the signal acquisition process and extract the fault
pulse from the noise-contaminated vibration signal. The research on deconvolution-based
methods can be dated back to 1980. Wiggins et al. [85] proposed the minimum entropy
deconvolution (MED) method to maximize the kurtosis of filtered signals and used it to
analyze seismic signals. However, MED is easily affected by a random pulse with a large
amplitude, making it impossible to accurately extract the periodic pulses corresponding to
the fault in the signal [86]. To address this, McDonald et al. [87] developed a new index
called correlation kurtosis to evaluate the periodicity and sparsity of signals and proposed
maximum correlated kurtosis deconvolution (MCKD) for maximizing the correlation
kurtosis value. MCKD overcomes the shortcomings of MED and can effectively extract
the periodic pulse corresponding to the fault when there is a single abnormal pulse in the
signal. However, the processing performance of MCKD is affected by two parameters,
i.e., the inverse filter length and the fault cycle size. Whether the parameter setting is
accurate directly affects the final processing result of MCKD. To address this issue, Miao
et al. [88] proposed sparse maximum harmonics-noise-ratio deconvolution (SMHD), which
can adaptively estimate the fault period by calculating the harmonic noise ratio of the
envelope of the filtered signal. However, SMHD generally suffers diminished performance
when analyzing the signals with harmonic components. MCKD and SMHD require a long
calculation time due to the deconvolution operation based on iteration analysis. Therefore,
McDonald et al. [89] proposed a method that does not require iterations, namely, multipoint
optimal minimum entropy deconvolution adjusted (MOMEDA), which can complete the
deconvolution in a short time but is adversely affected by the periodic oscillations of fault
pulse. Recently, Buzzoni et al. [90] introduced the second order cyclostationary index to
deconvolution methods and proposed the maximum second order cyclostationary blind
deconvolution (CYCBD) method. The performance of CYCBD is better than that of MCKD
and MOMEDA, but the fault cycle frequency needs to be set accurately to ensure the
processing effect. In order to overcome the shortcomings of these methods, researchers
have proposed some improved deconvolution methods by combining other processing
methods or using optimization algorithms to determine the optimal parameters required
for deconvolution, such as EMD combined with MED [91], PSO optimized MCKD [92],
and CS optimized CYCBD [93].

4. Rolling Bearing Fault Type Recognition

Unlike the fault detection method, machine learning algorithms were used in the
rolling bearing fault type recognition system to replace the manual observation of the
fault-related spectral lines. These methods can achieve automatic recognition of different
types of faults in rolling bearings.

A summary of the commonly used methods of rolling bearing fault type recognition
is shown in Figure 5. These traditional methods need multiple independent steps, such
as feature extraction, feature transform or feature selection, and classifier selection and
optimization, which often need to be manually set to achieve effective fault recognition
performance. The results of the previous step often significantly affect the results of the
latter step. Rich domain knowledge is required in the process of fault recognition. The
deep-learning-based fault type recognition methods can automatically learn features from
the original signals and train classifiers for effective fault recognition without human
intervention. However, the deep architecture used in these methods needs rich expertise to
design and a large number of samples to train.
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Figure 5. Summary of rolling bearing fault type recognition methods.

4.1. Traditional Fault Type Recognition Methods

Traditional rolling bearing fault type recognition methods usually include three steps:
feature extraction, feature reduction, and classification.

(1) Feature extraction

Extracting fault-related features from vibration signals is the first step to perform
rolling bearing fault type recognition. It is necessary to map the original bearing signals to
statistical features to reflect the health status of bearings. Early work on feature extraction
of rolling bearing vibration signals mainly focused on calculating various types of time-
domain or frequency-domain statistical descriptive indexes [94,95], such as root mean
square, kurtosis, skewness, average frequency, and root mean square frequency. These
indexes are easy to calculate and intuitive to understand; their values vary with the running
state of the rolling bearing.

Complexity can describe the dynamic characteristics of bearing signals under different
running conditions. More and more attention is paid to applying various complexity
evaluation indexes to fault type recognition. Yang et al. [96] used fractal dimension (FD)
to evaluate bearing signals, but the calculation speed of FD is slow, which limits its use
in online diagnosis. Caesarendra et al. [97] calculated the Lyapunov exponent of bearing
vibration signal as a feature, but its stability is vulnerable to noise interference. The entropy
of a time series is an index commonly used to quantify the degree of uncertainty or irregu-
larity. Approximate entropy (AE), sample entropy (SE), fuzzy entropy (FE), permutation
entropy (PE), and dispersion entropy (DE) were applied to fault type identification [98-102].
AE has good anti-noise performance when analyzing signals with more data points, but it
may cause inaccurate estimation when analyzing signals with fewer data points [103,104].
As an improved form of AE, SE has the advantage of low dependence on the signal length
and improved immunity to interference from noise. The disadvantage of SE is that its
computation cost is high, and it may not be appropriate for analyzing signals containing
similar information [103]. Based on SE, FE introduced a fuzzy membership function and
was capable of assessing signal uncertainty more effectively [105]. PE offers simplicity, high
robustness to dynamic noise, and a fast calculation speed and can effectively analyze non-
stationary signals with complex components [106]. Rostaghi and Azami [107] developed
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DE and proved that it was reliable in quantifying the complexity and uncertainty of time
signals through the comparative test of various time series. The computational efficiency
of DE is significantly better than that of SE, FE, and PE. Instantaneous energy distribution
(IED) of bearing vibration signals can describe the time-varying process between fault
states. Based on these characteristics, instantaneous energy distribution permutation en-
tropy (IED-PE) [108] and instantaneous energy distribution permutation dispersion entropy
(IED-DE) [109] were developed to enhance the accuracy of identifying fault types.

As performing the single-scale analysis of bearing vibration signals with complexity
and uncertainty may lead to loss of information, multiscale analysis is introduced to
entropy calculation to more accurately evaluate the vibration signals [110-115]. Costa
et al. [110] and Aziz et al. [113] used the coarsening method to calculate the entropy of
signals on multiple scales and proposed multi-scale sample entropy (MSE) and multi-scale
permutation entropy (MPE), respectively. MSE and MPE investigate the irregularity of
bearing vibration signals from multiple scales and have made significant progress toward
fault diagnosis. In addition, when MSE and MPE are used to analyze signals with fewer
data points, their calculation values will fluctuate with the increase in the scale factor,
potentially leading to evaluation results instability. Azami et al. [116,117] further proposed
multi-scale dispersion entropy (MDE) and refine composite multi-scale dispersion entropy
(RCMDE) based on the advantages of DE and the coarse-graining method to address the
shortcomings of MSE and MPE. RCMDE and MDE offer much greater computational
efficiency than MSE and MPE. Multi-group experiments have shown that RCMDE is more
valuable for identifying bearing fault types [117].

(2) Feature reduction

The more statistical features are used to describe signals, the more comprehensively
the inherent information of signals is expressed. However, the high-dimensional feature
set includes many redundant and negative-effect indexes/features. Dealing with such a
large number of useless features typically increases the computational complexity and
affects the recognition accuracy. In addition, using too many features to describe a large
number of signals may lead to dimensional disaster. Therefore, it is necessary to reduce and
compress the tremendous data resources effectively for extracting valuable information
and knowledge. Feature transformation and feature selection methods can generate a
low-dimensional feature set for fault type recognition.

Feature transformation methods are categorized based on how they preserve data
structure. Two types of feature transformation methods exist, the global preservation-based
methods, such as principal component analysis (PCA) and linear discriminant analysis
(LDA), and the local preservation-based methods, such as local preserving projections
(LPP) and margin Fisher analysis (MFA). In [118-121], the sample features reduced by
different feature transformation methods were used to perform the identification of bearing
fault types. The works in [122-124] show that the feature subset obtained by considering
the local and global information in signals with different statuses is more effective for
improving recognition performance. Chen et al. [123] proposed the Laplacian LDA (Lap-
LDA) method based on least square LDA, which can not only obtain the global structure
information of the data using LDA but also obtain the local structure information of the
data using the Laplacian map. Zhang et al. [124] proposed global-local structure analysis
(GLSA), combining the advantages of LPP and PCA.

Feature selection methods can be divided into three categories, i.e., filter-based meth-
ods, wrapper-based methods, and embedded-based methods. In the filter-based method,
the features of the original dataset are evaluated and selected according to similarity, depen-
dency, and correlation. This kind of method has fast calculation speed and low complexity.
The commonly used methods include Fisher score (FS), Laplacian score (LS), Relief-F,
and minimum redundancy maximum relevance (mRMR), which were applied to remove
irrelevant features from bearing vibration [125-128]. The wrapper-based feature selection
methods use a classifier to evaluate feature subsets for determining the most useful feature
subset for classification. Compared with filter-based methods, wrapper-based methods re-

11



Algorithms 2022, 15, 347

quire a longer computing time, but the quality of the feature subset obtained is higher. The
wrapper-based feature selection methods could be more efficient through heuristic search
algorithms. GA, PSO, and ant colony optimization (ACO) were used for subset search
in wrapper-based feature selection methods [129-131]. In order to rapidly and accurately
obtain the optimal feature subset for fault type identification, the hybrid feature selection
method combining the advantages of the two methods above developed, in which the
filter-based method is used as the first selection and the wrapper-based method is used as
a second selection [132,133]. The embedded-based methods integrate feature selection and
classifier learning, including classification and regression tree (CART) and C4.5 decision
tree, which were applied to rolling bearing fault type recognition [134].

(3) Classification

After feature extraction and feature reduction, it is necessary to train a classifier to
learn the mapping between the features and the class labels of existing bearing signals
for conducting automatic fault type recognition. The known instances with the trans-
formed/selected features and the corresponding class labels are fed into a classification
algorithm as the training set. The class label of each instance in the test set can be predicted
by the trained classifier according to their features. In the past decade, various classification
methods have been applied to rolling bearing fault type recognition, such as k-nearest
neighbor (KNN), artificial neural network (ANN), support vector machine (SVM), extreme
learning machine (ELM), and random forest (RF).

KNN has the advantages of only one parameter and easy implementation by making
classification decisions vis identifying the attributes of a limited number of neighboring
training samples around the unknown/testing sample. Yan et al. [108] calculated IDE-
PE of the bearing signal and used KNN to classify bearing fault types. It should be
noted that the performance of KNN depends on the quality of sample features. ANN
is a multilayer feedforward neural network and can perform fault type recognition by
adjusting the association relationship between a large number of network nodes [135,136].
SVM has good generalization ability, but the kernel function and related parameters need
to be selected. Zhu et al. [137] proposed a new rolling element bearing fault diagnosis
method based on multi-scale fuzzy entropy, multiple class feature selection, and SVM.
Chen et al. [138] input the symbolic entropy of the bearing signals into SVM for fault type
identification and obtained good results. ELM is a feedforward neural network that uses
random weights between the hidden layer and the input layer, and the output weights of
its output layer are calculated through regular processes. With ELM, only the number of
hidden layer neurons needs to be set. It has the advantage of rapid processing and good
generalization but the disadvantage of overfitting [139]. RF can handle high-dimensional
data effectively without a long running time, but the parameter selection of RF often affects
the classification accuracy [140]. To avoid setting classifier parameters manually, PSO is
used to adaptively determine the optimal parameters of classifiers, e.g., PSO optimized
SVM, PSO optimized ELM, and PSO optimized RF, which were proposed to improve the
accuracy of fault identification [141-143].

4.2. Deep Learning Based Fault Type Recognition Methods

Deep learning techniques have strong learnability. By stacking non-linear processing
units layer by layer, it can automatically learn effective features from the raw data without
manual feature extraction and manipulation. Deep learning methods are primarily imple-
mented based on ANN, including convolutional neural networks (CNNs), Autoencoder
(AE), deep belief networks (DBNs), and recursive neural networks (RNNs). Deep learning
methods were used to address machine vision, image processing, speech recognition, text
analysis, and other problems. Inspired by these successful applications, deep learning
methods have been gradually introduced into the field of fault diagnosis over the past five
years [144].

CNN s is the most commonly used deep learning method for fault diagnosis. The
network structure is usually composed of convolution layers and pooling layers. The
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convolution layer convolutes with the original input data to obtain shallow features, and
then the pooling layer captures the relatively important features through down sampling.
The deep characteristics of the data are gradually obtained by alternately stacking the
convolution layer and the pooling layer. CNNs were first used to identify the fault types of
rolling bearings in 2016 [145], and then it was widely used and improved [146-148]. The
input data of a CNN can be one-dimensional bearing vibration signals or two-dimensional
images (i.e., spectrogram, texture, and grayscale) converted from one-dimensional vibration
signals. Accordingly, 1D-CNNs and 2D-CNNs methods were developed. Wen et al. [146]
transformed the one-dimensional time series signals into two-dimensional image signals
through random sampling segments of the original signals and fed these images into Lenet-
5, which achieved satisfactory results in three different mechanical fault diagnosis tasks.
In [147], Wang et al. applied Morlet wavelet decomposition and bilinear interpolation to
convert the vibration signal into grayscale images and then used rectified linear units and
the appropriate dropout strategy to improve the generalization performance of CNNs for
fault diagnosis. Zhang et al. [148] proposed an improved CNN model using the original
vibration signals as inputs. This method uses a wide convolution kernel for extracting
features and suppressing high-frequency noise and small convolutional kernels in the
preceding layers for performing multilayer nonlinear mapping. The CNN-based fault
recognition methods typically extract the internal features of bearing signals through
multiple convolution layers and pooling layers and perform fault type recognition by
using the fully connected layer, which has a layer with Softmax or Signmoid function for
classification, or using other classifiers, such as KNN, to perform classification

AE is a special neural network that consists of two parts, i.e., encoding and decoding,
which is to reconstruct input data for obtaining the discriminative data information. The
use of improved AE methods has enhanced the processing performance of fault diagnosis.
For example, the denoising AE method was proposed by adding noise to the original
data, the sparsity AE method was implemented by introducing sparse constraints to the
output layer, and the stacking AE method was developed by combining multiple AEs.
In [149-152], AE and its improved versions were utilized for extracting discriminative
features from the original vibration of signals, based on which bearing fault types may
be accurately recognized. Sun et al. [149] used AE to fuse the extracted features of the
bearing signals, thereby reducing the redundancy of signals. Shi et al. [150] developed the
sparsity AE by adding a sparse penalty to AE for high-level feature learning and bearing
fault recognition. Zhou et al. [151] proposed a novel diagnosis method based on Teager
computed order spectrum and stacking AE. The results demonstrated that the proposed
method could extract features adaptively from bearing vibration signals regardless of the
speed or load changes. Gu et al. [152] used a denoising AE to extract features from the
bearing original vibration signals and inputted the extracted features to the BP network
classifier.

DBN is formed by stacking multiple restricted Boltzmann machines (RBMs), where
the output layer of the former RBM is used as the input layer of the latter RBM. These RBMs
are trained in a greedy hierarchical manner and can gradually learn expressive features
from the data. Oh et al. [153] used the directional gradient histogram of the vibration
signals as input features to the DBN model for bearing fault recognition. In [154], the
time-domain and frequency-domain features extracted from the different sensor signals
were fused as the machine health indicators through a multiple two-layer sparsity AE and
used to train a DBN for further classification. Shao et al. [155] developed a novel rolling
bearing fault recognition method called continuous DBN with locally linear embedding,
which computes a new comprehensive feature index based on locally linear embedding
to quantify rolling bearing performance degradation and uses a GA to optimize the DBN
parameters for adapting to the signal characteristics.

Considering that the rolling bearing vibration signal is essentially a time series, RNNs
with time memory functions have gradually attracted attention. RNNs can effectively
analyze and process the time information of the data by establishing the connection be-
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tween multiple cycle units and mapping the whole history of the input data to the target
vector. To address the long-term dependency, improved methods of RNNs were developed,
such as long-short-term memory (LSTM) and gated recurrent units (GRUs), which are
more effective for bearing fault recognition [156-158]. Yuan et al. [156] investigated the
performance of RNN, LSTM, and GRU in fault diagnosis, finding that LSTM performed
the best and the ensemble of RNN, LSTM, and GRU could not enhance its performance.
Zhao et al. [157] developed convolutional bi-directional LSTM combining CNN and LSTM,
where CNN extracted the robust local features from original signals and LSTM encoded
temporal information on the outputs of CNN. Zhao et al. [158] constructed a deep GRU
for effectively learning features of bearing vibration signals and applied the artificial fish
swarm algorithm to obtain the optimal parameters of the GRUs.

5. Datasets, Practices, Limitations/Challenges, and Future Research Trends

In this section, commonly used datasets are discussed to provide useful guidance and
practices for researchers and practitioners. This section also summarizes the limitations
and challenges of existing works and points out future research directions.

5.1. Commonly Used Datasets and Practices

In addition to the development of fault diagnosis methods, the collection and estab-
lishment of benchmark datasets are also necessary. The commonly used fault diagnosis
datasets are Case Western Reserve University [159], IEEE PHM 2012 Data Challenge [160],
University of Cincinnati [161], University of Ottawa [162], and Xi’an Jiao Tong Univer-
sity [163]. They are publicly available and state-of-the-art datasets in the rolling fault
diagnosis community. These datasets contain a wide range of rolling bearing operation
data, which are described in detail in the corresponding references. For the fault detection
problem, a representative signal segment is subjectively intercepted from the collected
rolling bearing data for analysis. The detection performance of the same method will
vary with different intercepted signals. For the fault type recognition problems, these
datasets cannot be directly used to test the effectiveness of the proposed methods. Data
preprocessing may be needed to solve the task. For example, the original rolling bearing
data of these datasets are often divided to form the training set and the test set to train and
test the machine learning-based methods, respectively. In addition to these datasets, there
are also some other fault diagnosis datasets that were used in the literature, but they are
not publicly available. To make fair comparisons between existing methods, it is important
to use the same experimental settings including data preprocessing and splitting. However,
this is very hard to achieve at the current stage. On the other hand, to enrich the field
of fault diagnosis, it is also necessary to develop/share good datasets of various rolling
bearing fault diagnosis tasks, such as the ImageNet [164] dataset in the computer vision
community.

5.2. Limitations and Challenges

Although many rolling bearing fault diagnosis methods were proposed and achieved
promising results. They have limitations. Most of these methods essentially focus on how
to increase the effectiveness of the diagnosis whilst paying little attention to the intelligence
and adaptability of the diagnosis systems. Specifically, the limitations/challenges of
existing techniques are summarized as follows. Some research directions/topics were
also pointed out to address these limitations.

(1) Limitations of fault detection methods: Some rolling bearing fault detection meth-
ods, such as morphological transform-based methods, filter-based methods,
decomposition-based methods, and deconvolution-based methods, often need rich
domain/prior knowledge to design and use. For example, it should be known in
advance how these methods operate, what their advantages and disadvantages are,
and whether they are suitable or effective for the task at hand. However, experts with
such knowledge are often costly to employ. In addition, the running condition of
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rolling bearings in actual services is complex and dynamic, making it very hard to
develop a method to meet the actual environment. Capturing the periodic impact
component caused by the fault in the signal is a good way to achieve fault detection
but very challenging. To address this limitation, it is promising to develop an intelli-
gent method that can automatically generate a detection model to adaptively remove
the background interference and effectively retain the fault-related impulses.

(2) Limitations of traditional fault type recognition methods: Traditional rolling bear-
ing fault type recognition methods often include three key steps, i.e., feature extraction,
feature reduction, and classification. The results of a previous step may influence the
outcomes of the following step. To ensure the whole diagnostic process is feasible
and effective, each step must be designed elaborately by experienced researchers,
such as determining which type of features to choose/extract, which features to use,
which classifier to use, and whether the classifier needs to be optimized. However, it
should be noted that such a well-designed diagnostic method may only be effective
for a specific fault diagnosis task. Therefore, it is promising to design methods that
can automatically deal with these subtasks of fault type recognition. In addition,
obtaining representative features of sample signals is the key to achieving good re-
sults. Therefore, it is a good research direction that develops a diagnostic method to
automatically and simultaneously extract and construct representative features from
the original bearing signals, to reduce the difficulty of distinguishing samples and
improve the accuracy of fault type recognition.

(3) Limitations of deep learning-based fault type recognition methods: Although the
deep-learning-based rolling bearing fault type recognition methods can automatically
achieve feature extraction, feature reduction, and classification, most of the methods
are based on neural networks, which need researchers to design their architectures
and adjust the corresponding parameters. The process of model design and param-
eter adjustment process will consume a significant amount of time and resources.
Moreover, the interpretability of the neural network-based methods is not good, i.e.,
cannot directly express the fault identification process. In addition, these methods
usually require a large number of samples to train. However, in practical engineering
applications, it is typically difficult to obtain a large number of fault samples, which
will limit the use of deep learning-based diagnosis methods.

Therefore, it is necessary to develop new rolling bearing fault type recognition methods
that do not need rich manual effort to design the architectures and select the parameters,
can effectively deal with limited training data, and learn interpretable models for fault type
recognition. These are very challenging research directions, but it is worth investigating
them to make the fault type recognition methods more applicable to real-world scenarios.

In summation, the existing rolling bearing fault diagnosis methods require rich prior
knowledge and expert experience and lack intelligence and flexibility; therefore, these meth-
ods have not been fully explored from a universal perspective. Therefore, it is necessary
to develop a rolling bearing fault diagnosis approach that relies less on prior knowledge,
domain expert experience, or human intervention and can be effectively applied to a wide
range of applications.

5.3. Future Research Directions

In addition to the aforementioned research directions/topics, there are some other
research topics that are becoming popular in this field. This subsection will discuss these
research trends.

(1) Transfer learning-based methods: The effective performance of the fault type recog-
nition methods usually needs to meet a basic assumption, namely, that the training
samples and test samples are independent and identically distributed. However, the
monitor information of rolling bearing is generally subject to working conditions,
such as the characteristic frequency and amplitude changing with rotational speed,
resulting in a large distribution difference between training data and test data, thereby
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presenting a domain migration issue. Transfer learning (TL) can extract knowledge
from one or more related scenes to help improve the learning performance of sce-
narios in the target domain [165]. TL can relax the assumption of independent and
identical distributions and provide a new solution to address the above deficiencies.
The TL-based rolling bearing fault type recognition methods were proposed and
achieved desirable results [166-168]. The TL-based recognition model, learning the
common feature space from the source domain data and the target domain data
to reduce the distribution difference between different domains, cannot adaptively
adjust its parameters for target domain tasks, thereby affecting its domain adaptabil-
ity and recognition accuracy. Thus, the further development of TL-based fault type
recognition methods is a good direction for future research to improve the classifica-
tion performance, recognition accuracy, and generalization under variable operating
conditions.

Few-shot learning methods: A large amount of labelled data is also the key to ensur-
ing the performance of existing fault type recognition methods, especially for deep
learning-based methods. In real-world scenarios, it is easy to obtain enough normal
samples due to the rolling bearing mostly running under normal conditions, but the
fault samples are typically difficult to obtain and require extensive manual effort to la-
bel. The absence of labelled fault samples will either lead to overfitting in the training
process or the class imbalance problem. Few-shot learning (FSL) is effective for distin-
guishing failure attribution accurately under very limited data conditions [169,170].
Data augmentation, data/model transfer, and meta-learning constitute the three main
threads of FSL methods. Thus, the comprehensive exploration of FSL-based fault
type recognition methods is a good direction for future research for reducing the
dependence on large amounts of data, avoiding the risk of overfitting, and improving
the applicability and recognition performance.

Evolutionary deep learning methods: Evolutionary deep learning methods aim to
deal with the limitations of deep learning methods, particularly neural networks,
by using evolutionary computation (EC) techniques. This direction includes two
main topics, i.e., using EC methods to automatically design neural networks and
using EC methods to evolve deep models by themselves. On the first topic, some
work was performed to evolve neural networks for fault diagnosis by finding the
optimal numbers of layers, network connections, numbers of filters, etc. [171-175].
These methods can reduce the requirement of expertise from both the neural network
domain and the problem domain, improve recognition performance, and decrease the
number of parameters in the evolved models. On the second topic, pure EC methods,
particularly genetic programming methods, are used to evolve deep models. GP is
a computational intelligence algorithm to achieve automatic programming without
human intervention and domain knowledge [176,177]. With a flexible program ex-
pression, GP can automatically evolve variable-length models to solve a task. GP has
shown promise in the computer vision domain by evolving deep models [178-181].
The models evolved by GP typically have better interpretability than neural networks.
However, there is little work on GP for fault diagnosis [182-184]. Figure 6 shows
an example of using GP to solve fault type recognition, where the GP method is
used to automatically generate informative and discriminative features from original
vibration signals for recognizing different fault types. The left example tree of Figure 6
is the solution evolved by GP, showing high interpretability. In addition, the solutions
are often creative and even not considered by human experts [183,184]. However,
both topics have not been fully investigated in the fault diagnosis community. There-
fore, it is promising to develop effective evolutionary deep learning approaches to
fault diagnosis.
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Figure 6. Illustrations of the proposed GPAFEC method in [183]. (a) Flowchart of GPAFEC, (b) Solu-
tion evolved by GP.

6. Conclusions

The rolling bearing is an indispensable part of rotating machinery, and its running
status typically affects the operation of the whole equipment. The research into rolling
bearing fault diagnosis technology is of great significance to ensure the safe and stable
operations of rotating machinery. This paper comprehensively reviewed existing fault
diagnosis methods of the rolling bearing in terms of fault detection and fault type recogni-
tion. For fault detection, the methods, i.e., morphological transformation-based methods,
filter-based methods, decomposition-based methods, and deconvolution-based methods,
were discussed. For fault type recognition, traditional methods and deep learning-based
methods were discussed. The commonly used datasets of fault diagnosis were presented
for better practices. In addition, we summarized the limitations of existing methods and
pointed out future research directions, which provides helpful guidance for researchers
who are interested in this field. Overall, this field of fault diagnosis has potential for future
study. Given the current limitations, it is still needed to develop automatic, intelligent, ef-
fective, and efficient methods for rolling bearing fault diagnosis under real-world scenarios.
In addition, some topics such as transfer learning, few-shot learning, and evolutionary
deep learning can also be further investigated to enrich this field.
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Abstract: In this paper, a monitoring method for DC-DC converters in photovoltaic applications
is presented. The primary goal is to prevent catastrophic failures by detecting malfunctioning
conditions during the operation of the electrical system. The proposed prognostic procedure is based
on machine learning techniques and focuses on the variations of passive components with respect
to their nominal range. A theoretical study is proposed to choose the best measurements for the
prognostic analysis and adapt the monitoring method to a photovoltaic system. In order to facilitate
this study, a graphical assessment of testability is presented, and the effects of the variable solar
irradiance on the selected measurements are also considered from a graphical point of view. The main
technique presented in this paper to identify the malfunction conditions is based on a Multilayer
neural network with Multi-Valued Neurons. The performances of this classifier applied on a Zeta
converter are compared to those of a Support Vector Machine algorithm. The simulations carried
out in the Simulink environment show a classification rate higher than 90%, and this means that the
monitoring method allows the identification of problems in the initial phases, thus guaranteeing the
possibility to change the work set-up and organize maintenance operations for DC-DC converters.

Keywords: DC-DC converters; prognostic analysis; multi-valued neuron neural network; support
vector machine; Zeta converter

1. Introduction

The development of smart cities leads to an increase in the complexity of electrical
grids, and new challenges need to be addressed, such as the spread of electric vehicles and
the management of renewable energy systems [1,2]. In this sense, new devices, control
techniques and monitoring methods are needed for proper energy management [3-7]. The
technical optimization of the new electrical generators allows an increase in efficiency for
renewable systems, but it is not sufficient for the correct distribution of this energy, which
is difficult to predict and highly variable [8,9]. For this reason, the development of new al-
gorithms capable of predicting production from renewable sources and managing electrical
loads will be a very important field of interest for many researchers [10-12]. Furthermore,
the development and control of devices used as an interface between generators and the
grid, or generators and other devices, play a fundamental role in the correct distribution of
energy [13-17]. In this sense, the control of DC-DC converters represents a very important
aspect because they can be used as an interface with renewable energy systems producing
a Direct Current (DC) and are essential for all those systems powered by batteries, such as
electric vehicles. In addition to controlling these devices, it is very important to monitor
their state of health during the operation of the electrical system.
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In traditional diagnostic systems, the main objective is to identify and localize faults,
which leads to a complete loss of functionality. On the other hand, in prognostic systems,
the subject of the analysis is the malfunction condition. This means that the prognostic
system focuses on slight variations from the nominal point of work, identifying partial
losses of functionality that precede catastrophic failures. In this way, it is possible to
organize maintenance operations, increasing the reliability of the electrical system and
reducing recovery times.

In this paper, the definition of a prognostic analysis for DC-DC converters is carried
out and verified through a simulation procedure in a Matlab-Simulink environment. The
converter taken into consideration is a Zeta converter, which allows for a high voltage
gain and low ripple in the output current using four passive components [18-20]. These
components are the main subjects of the prognostic analysis, and their variations with
respect to the nominal values are used as indexes of the state converter of health. In fact,
when a malfunction occurs on a passive component, its value changes; this introduces
a variation of the working point [21,22] and could produce catastrophic consequences.
To make the simulations as close as possible to the real functioning of the converter, the
parasites of the real active and passive components are considered in Simulink.

The specific case of prognostics addressed in this paper involves the DC-DC con-
verter featuring a photovoltaic (PV) input. This introduces two additional challenges to
the prognostic problem. The first is the non-linear current-voltage characteristic of the
source, which can result in irregular trends (if compared with ideal voltage and current
sources, often used in diagnostics and prognostics problems) of the converter current and
voltages. The second is the functional relationship between the characteristics and the
environmental quantities of temperature and irradiance. Both difficulties might lead to
erroneous classifications of the working condition of the converter. To address this problem,
a specific normalization approach is used to decouple the prognostic-sensitive quantities
from the environmental-dependent nature of the source.

Prognosis is performed by means of a supervised machine-learning approach. Several
sensitive electrical quantities are measured on the passive elements of the operating circuit
in the time domain and are processed by a Multilayer neural network with Multi-Valued
Neurons (MLMVN). This classifier falls in the category of supervised learning algorithm,
and it presents three layers with complex weights. Thanks to its complex nature, the
MLMVN is easily adaptable to the classification of electrical quantities, which are usually
expressed by phasors. Compared to real feed-forward neural networks, this classifier
presents a derivative-free learning algorithm that facilitates the correction of the weights
and reduces the computational cost. In several applications, MLMVN offers a better
generalization capability than other machine learning techniques and its implementation
in power line monitoring is presented in [23], where frequency response measurements
are processed. The performance of the MLMVN in this new application is compared to
that obtained by using a Support Vector Machine (SVM), which is one of the most used
techniques in the field of data classification [24,25].

The paper is organized as follows: Section 2 shows the main characteristics of the
renewable energy system taken into consideration, the theoretical aspects of the prognostic
procedure, and the use of the MLMVN, Section 3 presents the main results of the simulation
procedure, Section 4 reports the result discussion, and Section 5 shows the conclusions.

2. Materials and Methods

The analysis method proposed focuses on a photovoltaic system constituted by a
230 W solar panel and a Zeta converter connected to a DC microgrid (48 V). The DC-DC
converter must guarantee the energy transfer from the source to the grid, and several
techniques can be used to achieve this goal, such as the Maximum Power Point Tracking
(MPPT) control [26,27]. The MPPT algorithm’s purpose is to control the converter duty-
cycle (D) to ensure an optimal operating point is achieved on the PV source. If no condition
is required on the output current and voltage, classic MPPT aims at setting the source
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voltage as close as possible to the maximum power voltage. Since this voltage changes
according to the environmental conditions, either a tracking algorithm (e.g., the Perturb &
Observe) or a model-based algorithm (also based on machine-learning methods) should be
used. In this paper, the MPPT algorithm is not simulated because it does not represent a
fundamental aspect of the prognostic analysis. The main idea the monitoring procedure is
based on is to fix the duty-cycle for the short time interval necessary to extract the voltage
and current measurements. This avoids putting the converter out of service and allows
the definition of its state of health without interrupting the energy transfer. Therefore,
during the prognostic analysis, the duty-cycle of the converter is not varied to reach the
maximum power point, thus limiting the variability of the measurements and facilitating
the localization of malfunctions. Once the prognosis is finished, the MPPT algorithm can
vary the duty-cycle again. Since the measurement procedure requires only a few periods at
the converter switching frequency, the prognostic analysis does not significantly affect the
energy production.

2.1. Photovoltaic Source

The energy source considered in this paper is a 230 W solar panel with 60 multicrys-
talline cells TW230P60-FA by Tianwei New Energy [28]. The main electrical characteristics
of the panel are extracted from its datasheet and reported in Table 1, where Vpp and Ijpp
are the maximum power point voltage and current, respectively, V¢ is the open-circuit
voltage, and Isc is the short-circuit current.

Table 1. Characteristics of the photovoltaic panel at the Standard Test Condition.

Vrmpp Inpp Voc Isc xr N Cell
294V 7.82 A 373V 822 A 0.06%/°C 60

Based on these characteristics, it is possible to implement an equivalent circuit model
in a Simulink environment for the panel and extract the voltage-current curves as the solar
irradiance and the working temperature change. Figure 1a,b shows these curves obtained
for different values of irradiance and temperature.

Irr = 400W/m?
- Irr= if)()()\’\"/’m2 8 F
it Irr = 800W/m” =
<Y —1rr = 1000W/m? < 6l
§ Tre = 1200W/m> é
5 5 4r
(ST &,
\ 2 .
0 % s
0 5 10 15 20 25 30 35 40
Voltage (V) VolgaLy)
(a) (b)

Figure 1. Voltage—Current curves of the photovoltaic panel; (a) curves obtained with fixed tempera-
ture (25 °C) as the irradiance varies, (b) curves obtained with fixed irradiance (1000 W/m?) as the

temperature varies.

Obviously, the input current and voltage depend on the environmental conditions,
and this is reflected in the internal electrical quantities of the DC-DC converter. Since the
measurements extracted from the DC-DC converter for evaluating its state of health are
sensitive to the changes in the input current and voltage, those measurements are sensitive
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to the environmental conditions of the PV device as well. This can create confusion
during the classification of malfunctions because the monitoring system must be able to
discriminate the variations introduced by the aging of the components from those caused
by changes in solar irradiance and working temperature.

To avoid this problem, a simple solution could be to add the values of the irradiance
and temperature to the set of measurements processed by the classifier. However, these
quantities are not easily measurable from a practical point of view, and this solution makes
the training stage more complex by requiring a very large dataset. In this paper, a graphical
method is proposed for choosing the time-domain measurements less sensitive to variations
in solar irradiance and temperature.

2.2. Zeta Converter

The DC-DC converter considered in this paper is a Zeta converter, which is a fourth-order
non-inverted step-up/step-down circuit that guarantees high voltage gain and low ripples in
the output voltage and current [18,29]. A Simulink model is used to verify the operation of
the converter connected to the photovoltaic source and that of the monitoring method.

Figure 2 shows the whole system reproduced in Simulink and used during the simula-
tion procedure: a Pulse Width Modulation (PWM) technique is implemented to drive the
converter switches S; and S, (N-channel Power MOSFET) with opposite phases.

Solar Panel
(TW 230P60)

DC Grid

DC Grid

PWNII Signal PWM ISig,nal J_

Figure 2. General diagram of the photovoltaic system and Zeta converter circuit.

When the switch S; is in conduction mode, the inductor L1 absorbs energy from the
DC source, and, at the same time, L, absorbs energy from the source and capacitor Cy. This
means that the input current ig(t) is equal to the sum iy 1 (¢) + iz 2(f), and these two currents
increase linearly, as shown in Figure 3a,b, which are extracted from the Simulink model
considering a solar irradiance of 1000 W/m? and an operating temperature of 25 °C. In
the opposite condition (S; Off and S; On), the input current is zero, and the current iy 1(t)
flows through S, to charge capacitor C;. Simultaneously, i 5(f) crosses the circuit (Cp-R)
and returns through the closed switch Ss.
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Figure 3. Converter currents in time domain: (a) current Iy 1; (b) current in the inductor I 5.

The currents i11(t), i 2(t), and igo(t) present three different ripples, Aij1(t), Air(t), and
Aigy(t), respectively. The latter is the most important to define the conduction mode of the
circuit: if current igy(t) becomes zero during the Switch-Off period, the converter works
in the Discontinuous Conduction Mode (DCM). Otherwise, the Continuous Conduction
Mode (CCM) requires a non-zero current in S; when the switching from off to on mode
occurs. By operating in CCM, it is possible to reduce the electrical stress on the converter
components and obtain a lower ripple on the output quantities. For this reason, only the
CCM is considered in this work, and the dimensioning of the analog components has been
performed to ensure this condition.

As shown in [18], the voltage gain G of the Zeta converter can be calculated through
Formula (1), where V; is the input voltage imposed by the photovoltaic source and V¢
is the output voltage of the converter. Consequently, Formula (2) is used to describe the
relationship between the mean value of the input current Is and the output current Ip.

_Yo_ D

5 @

C= Vs 1-D

Inh = 1 2
o o s 2

As for the dimensioning of the passive components, one of the main aspects is to
ensure a sufficient margin between CCM and DCM. In addition, ripples of voltages and
currents are also considered, as shown in [18]. The variation ratios of the currents i;; and
irp are expressed by the terms # and {, respectively, and are calculated as follows,

A, /2 1-D R

I 2G fL ®)

7= AiLz /2 D R
I 2G fL
where capital letters are used to indicate the average values of the quantities, and R
represents the load resistance. Similarly, the variation ratios of the voltages are calculated as,

(4)

Ay /2 D1

P~V T2 FOR ®)

_Dy/2 D 1
V, 8G f2G I,
where p is the variation ratio of the voltage across Cy, and ¢ is that of the output voltage.

Table 2 summarizes the nominal values of the converter components that ensure CCM
operation and limit the output ripple to 5%.

(6)
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Table 2. Converter components.

Ly [mH] Ly [mH] Cq [pF] Cy [pF]
5 5 24 24

2.3. Fault Classes

To propose a prognostic approach for photovoltaic systems focused on parametric
faults, the corresponding classes must be defined starting from tolerance ranges around
the component nominal values. In fact, parametric faults are deviations of components
from the nominal values that produce a partial loss of functionality. These variations could
introduce undetectable consequences from a general point of view in the functioning of the
system but by choosing appropriate measurements, the variations can be identified and
localized in a specific component or in a group of components.

The nominal intervals of the four passive components are defined, starting from the
nominal values shown in Table 2 and applying a 15% tolerance. These variations are con-
sidered acceptable as they guarantee an output ripple lower than 10% and maintain CCM
operation. The parametric failure conditions correspond to a maximum decrease of 70%
for each passive component. Table 3 summarizes the operating ranges of each component.

Table 3. Operating ranges.

L; (mH) L, (mH) Cq (uF) C, (uF)
Nominal Range (4.25-5.75) (4.25-5.75) (2.04-2.76) (2.04-2.76)
Malfunction Condition (1.5-4.25) (1.5-4.25) (0.72-2.04) (0.72-2.04)

It is necessary to highlight that the single failure hypothesis is assumed because it is
the most likely, and no-fault propagation is expected. This means that only one passive
component at a time can be considered defective, and five classes of failure are used.
The nominal working condition of the converter is called “class 0”, and it presents all
components in their nominal ranges. The other classes are summarized in Table 4.

Table 4. Fault Classes.

Fault Class Description
0 Each component is in the nominal range
1 Malfunction on Lq
2 Malfunction on L,
3 Malfunction on Cyq
4 Malfunction on C,

Therefore, the main objective of the classifier is to identify these working conditions
starting from specific measurements extracted from the DC-DC converter. To make the
monitoring system suitable from a practical point of view, it is important to offer a low
intrusive level using as few measures as possible. For this reason, in the next paragraphs of
this paper, a selection method of the measurements is proposed based on the testability
level of the circuit and on the influence of the environmental conditions.

All the time-domain measures considered in this work have two information contents:
the first is linked to the average value of the quantities and the second to their ripples.
Therefore, the dataset matrix used to train the neural classifier must contain two columns
for each measurement and one column for the corresponding class. The general form of
the dataset is (7),

Ql, Q, ... 0

Q%m Qir ... 0

. : )
N, N.

Qu Qs o 4
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where, for example, Q% . 18 the first measure of the mean value of the quantities Q; (voltage

or current) and Qir is its ripple. A significant number of samples are used for each fault
class, and the total number of rows belonging to the dataset is Ng. It should be noted that
keeping the duty cycle fixed; it is possible to reduce the size of the dataset matrix and
the variability of the measurements. In fact, the values of the measured quantities in the
nominal conditions are known, and the recognition of malfunctions is facilitated. If the
duty-cycle is continuously changed, it would be necessary to add a column containing the
different values of D and replicate the structure shown in (7) for each value of D.

2.4. Testability Analysis

Testability analysis represents a fundamental step in each diagnostic and prognostic
system. Thanks to this study, the identifiable components are defined, thus facilitating the
selection of test points and the definition of the achievable objectives.

Since the Simulation After Test (SAT) techniques are usually used to detect parametric
faults in analog circuits, the main step is the definition of the failure equations. These
equations present the component values as unknowns and are obtained by comparing the
circuit responses at specific points with their nominal forms. The solvability level of the
failure equations corresponds to the testability of the circuit, and its maximum value is
the total number of passive components. If the testability is less than the maximum value,
one or more ambiguity groups can be defined: they are sets of components that cannot be
uniquely determined starting from the selected measurements.

Several methods have been developed in recent years in order to facilitate the cal-
culation of testability in different types of electrical circuits [30]. The study of linear
time-invariant circuits is widespread in the literature, and the calculation methods in the
frequency domain can be easily adapted to different topologies [31]. Regarding the non-
linear time-variant circuits, the testability evaluation presents many complexities due to
the different topologies that the circuit assumes during operation. In the case of DC-DC
converters, two different topologies are used in Continuous Conduction Mode (CCM), one
for each switching period, while in Discontinuous Conduction Mode (DCM), the topologies
become three due to the cancellation of the inductor current.

In such cases, a time-domain method can be used [32]. The first step is to choose a
specific switching period in steady-state conditions and to sample the inputs, which are
the circuit power supply quantities. In this way, vector uy is obtained. The second step is
the definition of the output vector, as shown in (8), where p is the vector of the unknown
parameters and y is a vector of measurements obtainable from the circuit.

tr
yT(p,uo)=:[y(hfp,uo)”,y(hfpfuoyn---fV(“”P'”O)H} ®

Then, the failure equations can be obtained by (9),

yr(p,uo) = yr* )

where y;* is the vector of measurements extracted from the circuit. Finally, testability is
calculated as the rank of the Jacobian matrix obtained stating from these equations.

The equivalence between the time-domain procedure proposed here and the testability
analysis performed in the Laplace domain is presented in [33]. In this paper, the testability
assessment of the Zeta converter is carried out through SapWinPE (SapWin for Power
Electronics), which is a program for simulating analog switching circuits. A specific
algorithm called TAPSLIN (Testability Analysis for Periodically switched Linear Networks)
is implemented on SapWinPE to perform the testability analysis in symbolic form [32].
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2.5. Multilayer Neural Network with Multi-Valued Neurons (MLMVN) and Its Adaptation to a
Zeta Convertor

2.5.1. Main Characteristics

The main tool proposed in this paper for identifying the state of health of DC-DC
converters is a neural network-based classifier. It is a feed-forward Multilayer neural
network with Multi-Valued Neurons that uses a derivative-free learning algorithm during
the backpropagation procedure. Each neuron is a Multi-Valued Neuron (MVN) with
multiple complex-valued inputs (X, ... , X;;) and complex-valued weights (W1, ..., Wy,).
This neural network might be used either in a continuous or in a discrete version.

A three-layer neural network with discrete output neurons is used in this paper: each
neuron belonging to the last layer employs a discrete activation function dividing the
complex plane into k equal sectors and adjusting the output to the lower border of the
sector that contains the weighted sum of the inputs z (z = X1 Wi + Xo Wo + ... + X5 W,,).
The discrete activation function is represented by Formula (10), as it is described in [34].

P(z) =Y =¢, =2/ if 2mj/k < arg(z) < 27(j +1)/k (10)

where j is an index of a sector where the weighted sum is located, k is the total number of
the sectors, and arg(z) represents the argument of the weighted sum.

Since this neural network is feed-forward, the backpropagation of the output errors is
the main procedure for the correction of the complex weights during the training phase.
These errors are calculated starting from a dataset containing corrected classification ex-
amples and applying the correction rules in a supervised procedure. As it is shown in (3),
the last column of the dataset matrix contains the desired outputs, which are the fault
classes corresponding to the time-domain measurements. The dataset rows are processed
in succession during the training phase, and the error value for each neuron in the output
layer is calculated by the difference between the number (a root of unity) determining the
lower border of the desired sector and the actual output. Therefore, the error for each sam-
ple belonging to the dataset corresponds to the difference between two complex numbers
located on the unit circle.

Applying the standard correction rules presented in detail in [34], it is possible to
modify the complex weights without introducing derivative terms, thus facilitating the
backpropagation procedure compared to other feed-forward neural networks and reducing
the computational cost. Formula (11) shows how to calculate the adjustment of a neural

network weight,

km Xfm s 35
AW = 5k,m Yim-1

(1 +1) zim’

(11

where AWik’m is the adjustment for the i-th weight of the k-th neuron belonging to the
layer m, ay ,, is the corresponding learning rate (complex-valued in general, but set equal
to 1 in all actual applications), 1,1 is the number of the neuron inputs equal to the

number of the outputs of the previous layer,

z; m‘ is the magnitude of the weighted sum,

0} , is the neuron error obtained through the backpropagation method, and ?zs',mq is the
conjugate-transposed of the input.

This learning rule allows the correction of the weights for each sample of the dataset
s(s=1,..., Ng). While the error should be backpropagated starting from the output
neurons up to the input ones, after all the neurons errors were found, the weights should
be adjusted starting from the first hidden layer to the last one. Figure 4 shows the initial
error definition for a neuron in the output layer.
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Figure 4. General configuration of the MLMVN and error definition in the output layer.

Once the errors have been calculated for the output layer neurons, the errors should
be backpropagated by applying Formula (12).

1 N im -1
Sfm-1 = (s 1) Yl G (Wk ) (12)

In order to simplify the training procedure reducing the computational cost, a batch
algorithm based on the Linear Least Square (LLS) method can be introduced, as shown
in [35]. In this case, the errors calculated for each sample belonging to the dataset are
saved in a specific matrix without correcting the complex weights. When all samples
have been processed, this matrix presents Ng rows, as shown in (13). Since the number
of samples is greater than the number of weights, an oversized system of equations is
obtained, and different techniques can be applied, such as Q-R decomposition and Singular
Value Decomposition (SVD), reducing the number of iterations required for the calculation
of the corrections.

1 1 1

5%m 5%,m ... 5g,m

51,m 52,m 5n,m
. . . (13)
Ns Ns Ns

51,711 51,m R e

To improve the performance of the classifier, the soft margin technique described
in [36] is used. In this case, the purpose of the correction is not only to position the outputs
within the desired sectors but, for each of them, to minimize the distance of all output
neuron-weighted sums from the bisector of the desired sector as much as possible. In this
way, better classification results are obtained avoiding the ambiguity caused by outputs
close to the boundary of two different sectors.

2.5.2. Neural Classifier for Zeta Converter

In order to adapt the MLMVN to the objective of the paper, a number of binary neurons
equal to that of the passive components are used in the output layer. The binary neurons
divide the complex plane into two different sectors: the first corresponds to the upper half
plane [0 7r) and is identified by the value 0; the second sector corresponds to the phase
interval [7r 27r) and is encoded by the number 1. As it is shown in Figure 5, the first (labeled
by 0) sector is used to indicate the nominal behavior of the corresponding component,
while the second sector (labeled by 1) is used to describe its malfunction condition.
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Figure 5. Set-up of the output layer and coding of the classes.

When, for example, only the first output neuron is “high”, the first fault class is
identified, which means that a problem is detected on L. This rule is used for classes 1
to 4, while class 0 corresponds to a “low” value on each output neuron. It is necessary to
highlight that the “winner take all” technique is used to avoid the presence of two outputs
on the “high” value at the same time. This means that only the minor error output is
considered equal to 1. Formula (14) describes the dataset matrix introducing the coding of
the fault classes.

Qlm Q, --- 0000
Q, Q, ... 0000
. . : (14)
Qs Qs ... 0001

As for the measurements belonging to the dataset, they are used to create complex
inputs as follows: each value corresponds to the phase of a complex number with a
magnitude equal to 1. These numbers are the inputs of the MLMVN.

3. Results

This paragraph presents the simulation results obtained by applying the prognostic
approach to the photovoltaic system described above. The main steps of the simulation
procedure can be summarized as follows:

e first selection of measurements;
e testability analysis;
e neural network training.

3.1. First Selection of the Measurements

The first step of the prognostic procedure is the selection of the most significant mea-
surements to obtain a correct evaluation of the converter status. Since the DC source
corresponds to a photovoltaic panel, the input voltage and current are highly variable and
depend on the incident solar irradiance and the temperature of the panel. This means that
variations in measured quantities can be introduced due to changes in environmental con-
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ditions. If these measurements are used as inputs to the monitoring system, classification
errors may occur. To avoid this issue, measurements on the component’s quantities are first
normalized against input quantities (which are in general known due to their use in almost
any MPPT algorithm). Among the normalized quantities, the ones with lower sensitivity
towards irradiance and temperature are chosen as inputs for the prognostic classification.

Therefore, the best choice of measurements includes all voltages and currents with
low sensitivity compared to the input ones.

As said before, the dataset used to train the neural network-based classifier contains
measurements of ripples and mean values. Initially, all currents and voltages on the passive
components are taken into consideration, and their variations with respect to the irradiance
and temperature are graphically evaluated through the Simulink model. The operating
points considered for this simulation are extracted from [37] and represent common situa-
tions with a realistic relationship between irradiance and working temperature. Table 5
summarizes these working points.

Table 5. Operating conditions.

Operating Point Irradiance (W/m?) Temperature (°C)
A 400 15
B 800 45
C 1200 65

Starting from a common situation characterized by an irradiance of 1000 W/m? and a
working temperature of 55 °C, and considering the fixed grid voltage of 48 V, the maximum
power point is obtained with a duty cycle of 0.6. This working condition is chosen as the
starting point to evaluate the effects of changes in environmental conditions. Therefore,
the duty-cycle is set at 0.6, and the changes in voltages and currents across the passive
components are analyzed by moving to the three operating conditions presented in Table 5.
Since the environmental situation changes but the duty-cycle is kept constant, the three
working points shown in Figure 6 are obtained. These three points indicate three different
pairs of input voltage and current. As previously said, to correctly choose the quantities to
be measured during the monitoring procedure, the sensitivity of all voltages and currents
with respect to these changes is studied.

15 . ; ; ;
— Irr = 400 W/m® (15°C)
— Trr = 800 W/m> (45°C)
Irr = 1000 W/m? (55°C)
—— Irr = 1200 W/m? (65°C)
10k Maximum Power Point |
<
e e e et iy T
L
—
=
O
5 L =
A
I
I
I
l
0 1 Il ] L 1 Il . 1 Il
0 5 10 15 20 25 30 35 40

Voltage (V)

Figure 6. Variations of the working point and variations of the input current and voltage.
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It should be noted that the duty-cycle value used in this paper is not mandatory and
that several methods can be used to choose it. In this case, the starting point is a condition
of maximum power transfer, and this value of D is maintained. Once this parameter has
been chosen, it is necessary to keep it constant during the generation of all the samples
belonging to the dataset matrix.

In this paper, the sensitivity analysis is performed graphically by using the Simulink
model described above.

Analyzing the simulation results, it can be observed that the voltage ripples on the
passive components and the average values of the currents exhibit a low level of sensitivity
with respect to the irradiance and temperature variations. For this reason, the average
values of the inductor currents and the ripples of the capacitor voltages are selected as
possible measurements. Figure 7a—d presents the approximately constant behavior of these
quantities with respect to the changes in input current and voltage.
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Figure 7. Sensitivity of the measurements with respect to the variation of environmental conditions;
(a) ripple of the voltage on the first capacitor Vcyyippie; (b) ripple of the voltage on the second capacitor
Varipple; (€) mean value of the current through the first inductor I 1eqn; (d) mean value of the current
through the second inductor If 5641

3.2. Testability Assessment of the Zeta Converter

The testability analysis of the Zeta converter is performed following the theoretical
approach described above and using the software TAPSLIN. Figure 8 shows the symbolic
circuit developed on SapWin and the consequent analysis in the Laplace domain. The test
points used in this case are those corresponding to the previously selected measurements.
Therefore, the voltages across the capacitors and currents flow through the inductors are
considered for the testability evaluation.
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Figure 8. Testability analysis of the Zeta converter through SapWin and TAPSLIN.

The results obtained show the absence of ambiguity groups and guarantee the possi-
bility of detecting malfunctions in each passive component. Therefore, the dataset used
to train the classifier contains the measurements of two voltage ripples and two current
average values (15).

Ve, Vear Tim 12w 0000
: (15)

N, N, N, ' N,
VClS VCZSr ILlSm ILZSm 0001

3.3. Neural Network Training and Validation

The training of the MLMVN is performed through a Matlab application developed
by the authors. This algorithm processes the dataset matrix (11), modifying the complex
weights through a Q-R decomposition. The simulation procedure used to create the dataset
can be summarized as follows:

e the first step is the creation of 400 random values in the nominal range and 100 random
values in the malfunction condition for each passive component;

e  using these values, 100 samples for each fault class can be obtained in the hypothesis
of a single failure;

e the values of the components are used in Simulink to simulate different working
conditions and extract the corresponding measurements (voltage ripple on capacitors
and mean current values on inductors);

e repeating these steps for three irradiance values (400, 800, and 1200 W/m?), a dataset
matrix containing 1500 samples is obtained.

The three environmental conditions used to create the dataset matrix allow the cov-
ering of an extremely wide range of possible scenarios. In this way, it is possible to train
MLMVN in a very short time and to exploit its generalization capability to correctly classify
many operating conditions not present during the learning phase. Once the dataset has
been created, the cross-validation method is used to perform the training of the MLMVN.
This means that two phases are performed: the first, called the learning phase, uses 80% of
the samples belonging to the dataset for the correction of the weights, while in the second
step, called the test phase, the performance of the classifier is verified using the remaining
20% of the samples. The same data split is maintained for complete training, and then it is
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changed five times to use all samples both in the learning and test phases. Whenever the
data for training and testing are changed, the weights are initialized to random values.

Figure 9a shows the global classification results obtained during the training procedure,
while in Figure 9b, the performance of the classifier for each fault class is presented in a
histogram chart. In both cases, the index used to evaluate the accuracy of the MLMVN is
the Classification Rate (CR), defined as the ratio between the number of correctly classified
data and the total number of processed data.
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Figure 9. Classification Results; (a) performance of the classifier during the training phase: the
red line represents the CR of the learning phase, and the blue line is the CR obtained in the test
phase; (b) classification results for each fault class shown in the Matlab application at the end of each
training epoch.

In order to compare the performance of the MLMVN with that of the other machine
learning techniques, a quadratic SVM algorithm is considered. During the training phase,
the SVM presents a classification rate of 88.7%. This result has been obtained by processing
the same dataset used for the MLMVN-based classifier and using a cross-validation method.
Since the one-against-one method is used during the training phase of the SVM algorithm,
10 binary classifiers are defined, each of which presents 13 support vectors.

As shown in Figure 10a,b, further validations of the results can be achieved using
these two classifiers for processing new measurements extracted directly from the Simulink
model. Two validations are proposed in this paper: the first is obtained by processing
new measurements under the same conditions of the training phase (Figure 10a), while
the second uses different values of irradiance and temperature (Figure 10b). In particular,
the results shown in Figure 10b have been obtained by randomly setting the four fault
conditions in some of the environmental situations shown in Table 6. These operational
situations represent some typical values of environmental conditions systems in Italy.

Table 6. Real working conditions used for validation.

Irradiance Temperature Irradiance Temperature Irradiance Temperature
1 W/m? 1°C 2 W/m? 2°C 3 W/m? 3°C

500 25 705 40 390 19
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Figure 10. Comparison between MLMVN and SVM; (a) performance obtained by processing mea-
surements under the same conditions of the training phase; (b) performance obtained by processing
measurements with different irradiance and temperature values.
Finally, Table 7 summarizes the results obtained during the simulation procedure.
Table 7. Simulation Results.
Classifier Hyperparameters Learning Phase Test Phase Validation 1 Validation 2
MLMVN 75 Neurons 92% 91.66% 96.66% 86.66%
SVM 13 Support Vectors 88.7% - 93.33% 83.33%

4. Discussion

The results reported in the previous paragraph show excellent performances of the
MLMYVN-based classifier both in training and in validation.

During the training procedure, the neural classifier with 75 neurons in the hidden
layer allows a classification rate of 92% in the learning phase and 91.66% in the test phase.
Comparable results can be obtained by increasing the number of neurons in the hidden
layer, but this produces a greater difference between the two phases. Therefore, the
generalization capability of the neural network decreases by using more than 75 neurons,
which means that the CR, obtained by processing new measurements during validation,
decreases. Figure 11 summarizes the heuristic procedure used to select the best number
of neurons.

As regards the validations, it can be stated that the MLMVN confirms a classification
rate higher than 90% using the same conditions as the training, while in the second valida-
tion, there is a reduction of up to 86.66%. These results show the possibility of obtaining
good performances even without introducing numerous environmental conditions into the
dataset used during the training phase.

However, one consideration is needed: observing the results obtained for each class
of failure, it can be stated that the main problem is to correctly classify the presence of
malfunctions on C,. This aspect is not particularly important when the environmental
conditions are similar to those used in training but becomes relevant otherwise. In fact,
two false negatives are presented in Figure 10b, and this could be a problem for practical
applications. Therefore, even if the classification rate does not decrease significantly, it is
advisable to use a dataset with various environmental conditions during the training phase.
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Figure 11. Classification rate with respect to the number of neurons in the hidden layer.

5. Conclusions

In this paper, a prognostic procedure to monitor the operating conditions of a power
converter in photovoltaic applications was proposed. The approach is based on a machine-
learning classifier that receives, as inputs, a subset of time-domain measurements of the
DC-DC converter and produces, as output, a class that identifies one of four possible
faulty components.

To achieve proper fault classification in the presence of an environmental-dependent
source, such as a PV device, a normalization procedure was implemented. Among the
normalized quantities, a selection of those relevant for testability but insensitive to the
irradiance and temperature of the PV source was used. The full system was implemented
in Matlab Simulink to generate the datasets used for the classifier training and validation,
considering operating conditions compatible with the common operation of a power-
producing PV device.

The results from the MLMVN are compared against a standard SVM classifier. The
proposed classifier outperforms the SVM both in the training accuracy and in the validation
set generalization capabilities.

The simple computational nature of the classifier makes it a prime candidate to be
implemented in the embedded environment as well since, differently from deep-learning
classification strategies, it shows a very small memory footprint.
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Abstract: This paper develops a data-driven fault tree methodology that addresses the problem
of the fault prognosis of an aging system based on an interpretable time causality analysis model.
The model merges the concepts of knowledge discovery in the dataset and fault tree to interpret the
effect of aging on the fault causality structure over time. At periodic intervals, the model captures
the cause—effect relations in the form of interpretable logic trees, then represents them in one fault
tree model that reflects the changes in the fault causality structure over time due to the system
aging. The proposed model provides a prognosis of the probability for fault occurrence using a
set of extracted causality rules that combine the discovered root causes over time in a bottom-up
manner. The well-known NASA turbofan engine dataset is used as an illustrative example of the
proposed methodology.

Keywords: knowledge discovery in dataset; fault tree; causality analysis; aging system

1. Introduction

The aging of a system is characterized by the progressive deterioration of its initial
performance over time, including—among other factors—the occurrence of faults that
adversely affect the system’s reliability [1]. Causality analysis methods aim to diagnose
the fault event through identifying, isolating and quantifying the effect of the root causes
on the system performance so that the appropriate maintenance actions can be performed
to restore the system to good condition [2]. The future fault behaviour and its drawback
on the system’s performance are essential in order to optimize the maintenance decision-
making [3]. Gao et al. [4] proposed a comprehensive survey of real-time fault diagnosis
methods that are mainly categorized into model-, signal-, and knowledge-based techniques.
The fault prognosis task provides a model that depicts the progression of a specific failure
mode from its inception until the time of failure [5]. The time causality analysis builds a
prognostic model that captures the fault causality behaviour over time [6].

A prognostic model may use a mathematical expression that quantifies the fault
causality evolution or a graphical representation that depicts the changes in the causality
structure over time [7]. Both the event-based and the data-driven methods are commonly
deployed to provide relevant fault prognostic models. The event-based method requires
the involvement of experts from different fields with detailed prior knowledge about
the fault time causality. However, this knowledge could be biased and reflects only the
expert opinions about the fault development [8]. On the other hand, the data-driven
method can directly extract the fault evolution knowledge from the data, which is unbiased
knowledge and reflects the fault causality. However, it lacks the interpretability and the
expert knowledge representation to identify fault hierarchical causality over time [9].

Waghen and Ouali [10] have developed a data-driven fault tree method for causality
analysis which addresses the lack of interpretability of the data-driven model and over-
comes the model-based limitation regarding the expert prior knowledge. The method
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visualizes the fault causality architecture of a simple system using one-level fault tree
that consists of three layers. The condition layer identifies the fault root causes and their
coverage ranges within the dataset. The pattern layer arranges the root causes in the form
of interpretable conjunctions. The solution layer combines some selected patterns that
depict the fault event. Although the proposed tree is interpretable for the expert, the model
hides the fault hierarchical cause-and-effect relations in a complex system. Moreover, it
reflects the fault causality in a static way without considering the influence of a system'’s
aging on the change in the fault causality structure over time.

From a practical point of view, human experts look for models that are able to ex-
plain and represent the fault causality structure in addition to having prediction capability.
Ensuring that the fault and its impact and consequences are well represented to human
experts guarantees optimal preventive maintenance actions. Another challenge in a com-
plex system with regard to data-driven fault prognosis models is graphically modeling the
deterioration and performance degradation. Consequently, the fault causality structure can
be changed over a system’s life. Therefore, these complex systems need models that are
able to capture these changes in an interpretable manner. This is a crucial feature that helps
anticipate the impacts of a fault and provides more precise knowledge about the processes
that will be affected in the future by a currently occurring fault.

In this paper, an interpretable time causality analysis (ITCA) methodology is devel-
oped to address the problem of fault prognosis in an aging system using a data-driven
fault tree model. We aim to build a time-dependent multilevel causality model based on
the selection of feasible solutions that characterize the fault occurrence at a certain period
from a set of representative time series historical datasets to address the causality analysis
over time in a meaningful way. The ITCA model is a combination of different common
one-level fault trees that depict the changes of the fault causality structure at periodic
intervals. At each defined period, the ITCA methodology identifies, isolates, and represents
the possible causes of the fault event in the form of the interpretable one-level fault tree.
These constructed trees over defined periods are merged into a common one-level fault
tree that graphically summarizes the changes in the fault causality structure over time.
This procedure is iteratively repeated for each unexplained cause from the previous level
until the final multilevel ITCA model is constructed. The proposed construction procedure
ensures that redundant knowledge is eliminated within the ITCA model, while maximizing
its interpretability over the time. Finally, a set of causality rules are deduced from the ITCA
fault tree that characterize the dynamic change effect of the causality structure in the causes
of a fault occurrence.

The rest of the paper is organized into four sections. Section 2 reviews the available
methods for achieving the fault prognosis based on time causality analysis and discusses
the main challenges. Section 3 develops the ITCA methodology. It explains the data
preparation, the construction of the fault tree models over time, and the deduction of the
time causality rules for fault prognosis. Section 4 illustrates the ITCA methodology using
the NASA turbofan engine degradation dataset. The performance of the ITCA model to
predict the fault is demonstrated by the fault trend over time. Section 5 concludes the
paper and discusses the contribution of the ITCA methodology in achieving the fault
prognosis task.

2. Time Causality Analysis Methods

Time causality analysis is a causal interference over time where the temporary de-
pendency between events over the stochastic process is captured and represented using
analytical methods. The time causality analysis can achieve the fault prognosis task by
providing the expert with the essential knowledge regarding the fault evolution and the
change in its causality structure over time [11]. Schwabacher distinguishes the model-based
and data-driven methods to address the fault prognosis issue. In what follows, a brief
literature review of each prognostic method is discussed, and their strengths and limitations
are highlighted to clarify the research gap [7].
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The model-based method for time causality analysis relies heavily on human expertise
to describe the system’s behaviour over time in degraded conditions [12]. Lu, Jiang [13]
address the drawback of the system downtime due to fault evolution in complex industrial
process by expert knowledge enrichment. First, the time-delayed mutual information
(TDMI) is employed to model the fault causality in the form of a time-delayed signed
digraph (TD-SDG) mode. Then, a general fault prognosis strategy is used to optimize
the system’s downtime based on TD-SDG and the principal component analysis (PCA)
technique. Darwish, Almouahed [14] propose an enriched fault tree for Active Assisted
Living Systems (AALS). The fault tree basic events are ranked according to the degree of
their importance based on the expert prior knowledge and the imprecise failure probabili-
ties of those basic events. Ragab, El Koujok [15] combine the domain knowledge with the
extracted knowledge from the database to build an enriched fault tree. First, the expert
constructs the fault tree skeleton, which represents the main causality structure for the
fault event. Then, some extracted patterns from the database that may depict unknown
combinations of root causes are deployed to enrich the initial fault tree. Yunkai, Bin [16]
integrate the bond graph modelling technique with the Bayesian network to predict the
faults in a high-speed train traction system. The bond graph represents the system structure
that is mainly constructed based on expert prior knowledge, while the Bayesian network
enriches the expert prior knowledge represented by the bond graph through discovering
the hidden causal relations.

Indeed, the model-based time causality approach can provide interpretable and rela-
tively accurate models that can be built from the first principle of the system’s faults. It is
mainly applicable on simple systems with well-known causes where human knowledge
about the faults, their occurrence and development is clear. Its limited implementation
in complex systems has been overcome by enriching those models based on data-driven
techniques, in which the unseen events are discovered and added to the model’s prior
knowledge. However, forming the model skeleton prior to knowledge by the expert in
complex systems to identify the principal causality structure of the faulty situation and
combining and positioning the extracted hidden fault knowledge from the data in the
constructed model is a challenging task.

Unlike the model-based methods, the data-driven time causality method explores the
data using machine learning (ML) techniques and does not impose a model to predict the
behaviour of a complex system [17]. The ML data-driven methods build unbaised models
and are able to deal with noisy and correlated variables [18]. Zhang, Wang [19] proposed
a methodology to predict the remaining useful time (RUL) using the Wavelet Packet
Decomposition of the vibration signal and Fast Fourier Transform. The pre-processed
signals are treated as input features to learn the Artificial Neural Network (ANN) that
predicts the RUL. Wu, Ding [20] implemented the long short-term memory (LSTM) neural
network rather than relying on feature engineering and an ANN for fault prognosis in
aircraft turbofan engines. The main advantage of LSTM over an ANN is its ability to
learn long-term dependencies between input features and over the equipment lifetime
to give accurate RUL prediction. Razavi, Najafabadi [21] developed an adaptive neuro-
fuzzy inference system (ANFIS) algorithm that combines the ANN and a fuzzy rule-based
model to predict the RUL of aircraft engines. The ANFIS algorithm has been applied to
maintenance scheduling problems.

Although the data-driven models offer an accurate prediction of the RUL, they suffer
from a lack of interpretability [22]. This is because they are too shallow to understand
the fault causality structure and its changes over time. Therefore, an expert may not
be able to deeply understand the cause—effect relations within a complex system. With
regard to this challenge, several methods have been proposed to simplify and unlock
the model interpretability. Li, Wang [23] employed the Deep Belief Network (DBN) to
model the geometric error structure of the backlash error. The DBN was built using
restricted Boltzmann machines and energy-based models to predict the fault geometric.
Su, Jing [24] have proposed a dynamic extraction knowledge method that illustrates the
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relationship between the environmental stresses and the system failure modes using a
fuzzy causality diagram and a Bayesian rough set of multiple decision classes to weigh
the extracted knowledge. Kimotho, Sondermann-Woelke [25] addressed the challenge of
maintenance action recommendation for industrial systems based on remote monitoring
and diagnosis. They proposed an interpretable event-based decision tree that graphically
identifies some problems associated with particular events and conducts evidence-based
decisions. Medjaher, Moya [26] used Dynamic Bayesian Networks (DBNs) to quantify the
failure prognostic in complex systems. The fault time series data are divided into several
periods and a Bayesian network is constructed for each period. The obtained networks are
connected through the chronology of periods to depict the changes in the fault causality
structure over time and quantify the fault behaviour.

On the other hand, the achieved data-driven methods attempt to unlock the time-
dependent relations between the system variables in an interpretable manner in addition
to capturing the change in the fault causality through the periods. However, building an
interpretable data-driven model that can directly grasp the influence of the system aging on
the fault causality structure and summarize the fault behaviour in one model, is a challenge
that still needs to be overcome. The main motivation of this study is to build an interpretable
time causality analysis model that characterizes, first, the hierarchical causality structure
between the fault event, intermediate causes, and root-causes; and second, the influence
of the system aging on that structure over time. Thus, the proposed ITCA methodology
will achieve the fault prognosis task in an efficient way through anticipating the fault
event based on the causal relations discovered over time. It will be developed in the
following section.

3. The ITCA Methodology

Figure 1 depicts the four-phase ITCA methodology. The main input dataset is an
unlabelled timestamp of observations that can represent sequential data. We assume that
the system undergoes a certain degradation trend, depicted by the sequential data, from a
normal state to a failure state, represented by green and red colors, respectively. Phase 1
prepares several labelled subsets from the input data. Each subset is formed by a sub-
sequence of degraded observations, beginning from normal observations (green colors) to
failure ones (red colors), gradually. Phase 2 iteratively builds the appropriate logic tree
corresponding to each subset of data, and then aggregates them into one common fault tree.
Phase 3 constructs the ITCA model by going deeply through each variable in the above
common fault tree and seeks its root-causes. Phase 4 deduces the time causality rules that
determine the effects that the system aging has on the evolution of the fault occurrence
over time. In what follows, each phase of the proposed methodology is explained in detail.

5 Data preparation Construct one level tree ITCA construction
Normal state
‘ Define the unlabelled (n) Discover the knowledge 3 Verify the common logic
/ b b b b S R
subsets p ‘ tree over the defined periods |
Obtain the similar . o Derive the time
Generate (n-1) labe_:lled » . feasible solutions » Connect the common » causality rules
3 data sets based on time . logic trees to their
Construct the common . corresponding event
\ logic tree . =
. Generate new (n-1) sub-
- Assign the probabilities datasets }
Failure state /) ~ ]

t |

Figure 1. The four-phase ITCA methodology.
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3.1. Phase 1: Data Preparation

Phase 1 splits the main input data into several subsets according to the expert’s prior
knowledge about the process degradation trend. Each subset contains the sequential
observations that represent the system state at a certain period and the observations that
characterise the failure state or the worst deterioration condition of the system. The expert
should identify the observations that represent the failure before splitting the rest of the
data into equal or non-equal sizes of subsets, according to his judgment about the amount
of system degradation. Equal and non-equal sizes of subsets are suitable for linear and
nonlinear degradation processes, respectively. Hence, the original main data are divided
into 7 subsets, where the last one contains the failure observations and the others contain
degraded observations. Those 1 subsets will be concatenated to form (n — 1) datasets. Each
dataset will contain two classes of observations corresponding to failure and degraded data.

Figure 2 depicts the data preparation procedures, in which X; and X, are two variables.
Beginning from the main timestamped dataset, the observations in the last period A,
belong to the failure state. Then, (n — 1) subsets are extracted. Each subset SS; contains
the observations of the period A;, I =1, ..., ], where (j) is the index of the last observation
for a given period. At the end, (n — 1)-labelled datasets are concatenated. Each dataset D;
contains the observations of the period A;, labelled as class i and the observations of the
last period Ay, labelled as class 7.

‘Where:

( Phase 1: Data preparation ) (A) is the time period

Main dataset

(58) is the divided subset
(D) is the generated data set
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Data sets
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w
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\ Failure state '

Figure 2. Data preparation phase.

3.2. Phase 2: Build a One Level Fault Tree

Phase 2 iteratively extracts all of the logic trees that differentiate the fault event (class
n) from each class i, i =1, ..., (n — 1) of the degraded observations individually. Each
logic tree highlights the relevant variables that discriminate the observations of the failure
state from the degraded ones, from one period to another. Then, the obtained logic trees
are merged into one common fault tree, which identifies and isolates the variables that
discriminate the failure state from the degraded ones over time. To do so, Waghen and
Ouali [10] developed a four-stage methodology, named Interpretable Logic Tree Analysis
(ILTA), to build a one-level fault tree from a two-class dataset (i.e., normal and failure
classes). The methodology discovers the knowledge from the dataset (Stage 1); forms
feasible solutions (Stage 2); constructs the fault tree (Stage 3); and finally quantifies the
fault tree using Bayes’ theorem (Stage 4). Although such a methodology can be applied
separately with each dataset D;, i =1, ..., (n — 1), the merged fault tree may be difficult
to interpret due to the dependence of the datasets over time. To overcome this limitation,
Stage 2 of the ILTA methodology needs to be improved. Nevertheless, for the convenience
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of the reader, we briefly recall the four stages of the ILTA methodology and highlight the
improvements to Stage 2 in the following.

e  Stage 1: Discover knowledge. Discovering knowledge from a two-class dataset can be
achieved through different pattern generation and extraction techniques, such as the
logic analysis of data (LAD) [27] and prediction rule ensembles (PRE) [28]. The pattern
is a conjunction of certain conditions that discriminate one class of observations from
another class. Each condition includes a variable, an inequality sign, and a cut point
value. Furthermore, the percentage of observations covered by a given pattern may
characterize the knowledge expanse caught by that pattern. However, when the obser-
vations of the same class are covered by more than one pattern, an overlap between
those patterns may occur, with a certain percentage leading to redundant knowledge.

e  Stage 2: Obtain similar feasible solutions. A solution is defined as a combination
of certain patterns that cover the observations of the same class. Each solution can
be characterized by its coverage (Cov) and overlap (OL) percentages. The feasible
solution is a solution that respects certain criteria. In the ILTA methodology, only the
feasible solution that maximizes the class Cov and minimizes the class OL is selected,
which leads to maximizing the interpretability and minimizing the redundancy of the
discovered knowledge. However, in the ITCA methodology, we need to search for all
of the feasible solutions that respect not only the Cov and OL threshold percentages,
but also with minimal number of patterns to capture the common knowledge at the
same level over time. In other words, the minimal number of patterns having the
maximum Cov and the minimum OL allows us to characterize the fault using global
knowledge at the first levels of the tree. When this causality is represented in the
tree and the related knowledge is removed from the dataset, the subsequent feasible
solutions will reveal other knowledge that depicts sub-causalities not yet discovered
and represented in the tree. As Stage 2 aims to select similar feasible solutions that
characterize knowledge discovery over time, we seek the most frequent patterns over
the predefined periods of time. In addition, the frequent pattern involves the same
variable and inequality sign in the shared conditions, independent of the cut-point
values. Therefore, the initial version of the burn-and-build algorithm proposed in [10]
is improved to form a set of feasible solutions instead of only one for each period,
using another decision criterion called the solution tolerance selection (STS) threshold.
Hence, a time-based searching algorithm is developed in the ITCA methodology to
obtain all the similar feasible solutions over time. It is depicted in the following
Algorithm 1.

Figure 3 illustrates the proposed time-based searching algorithm using the above three
concatenated datasets D1, D, and Dj of the toy example (Figure 1). Applying Step 1 to
Step 4, the algorithm finds a set of five feasible solutions that respect the STS threshold of
90%. To clearly understand this, we assume that each solution consists of only one pattern.
From Dy, S1: Py : (X7 <30) and Sy : P> : (X, > 10) are obtained with 98% and 100% of
Cov, respectively. From D5, there is only one formed solution S3 : P53 : (X; < 20) with a
Cov of 90%. From Dj3, the obtained solutions Sy : Py : (X7 < 10) and S5 : P5 : (Xp > 20)
have 95% and 100% Cov, respectively. Note that the patterns P;, P; and P4 share the same
condition on X; except the cut points. Consequently, at Step 5, the algorithm selects Sy,
S3 and Sy as the only three similar solutions that characterize the evolution of the same
condition through the three periods A1, Ay, and A3, respectively. However, the algorithm
does not select Sy and S5 because there is a loss of information during the period A, even
though they are similar, by sharing the same condition of X, during A; and A3. Hence, the
algorithm evaluates all of the similar feasible solutions and selects the ones that dominate
the maximum number of periods.
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Algorithm 1. Time-based searching algorithm: Search for similar feasible solutions over time.

Input.
(i) (n-1)-labelled datasets corresponding to the defined time periods (A);
(ii) Set of generated patterns: Peen={P1,Ps,...., Pi}; where (1) is the number of the discovered patterns;
(iii) Overlap (OL) threshold;
(iv) Solution tolerance selection (STS) threshold.
For each (n-1)-labelled dataset that represents a defined time period (A):
Step 1. Select a start pattern (Pi) and calculate its coverage.
1.1. Remove the overlapped patterns with Pibased on the preset overlap threshold:
i. At number of combination (n) =2;
ii. Select the combination with Pi that has the maximum coverage.
1.2. Repeat (the sub-steps 1.1-i and ii) until the number of combinations (n) = number of the discovered patterns;
1.3. Compare the selected combinations at each n and select the combination that maximizes the coverage with a
minimal number of patterns.

Step 2. Select another pattern (Pi) as a start point and repeat 1.1, 1.2 and 1.3.

Step 3. Repeat 2 until considering each pattern as a start point.
Step 4. Compare the selected combinations over the start patterns Piand select the combination that includes the minimal
number of patterns and its coverage value within the STS threshold.
End
Step 5. Compare the selected combinations that represent (n-1)-labelled datasets and select the combinations that maximize the
similarity over the defined periods (A), where each period (A) is represented by only one combination.
Output.

Set of similar feasible solutions: Sol = {S1, Ss,...., Sk I; where (k) is the number of similar feasible solutions.

Figure 4 depicts the curve of the cut-point values that reflect the evolution of similar
feasible solutions obtained over the three periods Aq, A, and A3. Note that these periods
are consecutive, and the cut-point curve may have a positive, negative, or constant trend
over time depending on how the cut-point values change over time.

e Stage 3: Construct a common logic tree over time. The similar feasible solutions
obtained are visualized in a one-level fault tree through the condition, pattern, and
solution layers. At the condition layer, all the involved conditions are connected to
their respective patterns using the AND gate. At the pattern layer, all the patterns
of the similar feasible solutions are connected to that solution using the OR gate.
Similarly, at the solution layer, all the selected similar feasible solutions are connected
to the fault event using the OR gate.

e  Stage 4: Assign the probabilities. The common logic tree is quantified using the
probabilities of the solutions, patterns and conditions involved in similar feasible
solutions obtained from the concatenated dataset individually. Let Ny and Nt be
the number of observations covered by the condition Cy and the total number of
observations in one concatenated dataset, respectively. Equations (1) to (4) calculate the
probabilities of the fault class P(CL) and the involved solutions P (Sq) g=12,...Q,
patterns P (P;) j = 1..J, and conditions P(Cy) k = 1..K as follows:

P(C) = )
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Figure 3. Example of selecting similar feasible solutions over the periods Ay, Ay, and Ag3.

For a simple cause—effect relation between the fault event and its root causes, the
common one-level logic tree can depict the fault causality structure at each period, as well
as over time through the trend of cut-point curves of similar feasible solutions employed
in the tree. For a complex causality structure, the one-level logic tree is not sufficient to
completely represent a fault occurrence because the variables involved at the condition
layer may represent the intermediate causes, and not necessarily the root causes of the
fault event. Therefore, each one of those variables needs a second level of decomposition
or more to explore the solution that will explain its causality structure at each period.
Accordingly, Phase 3 constructs many levels of the tree to address the complex causality
structure over time.
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Figure 4. Curve of the cut-point values of similar feasible solutions obtained over time.

3.3. Phase 3: The ITCA Model Construction

Phase 3 builds, in a sequential up-bottom structure, several connected common logic
trees to depict unexplained causes through multilevel structure. Each level includes
three stages: verify the common logic trees” construction, connect those trees to their
corresponding causes, and generate new labelled sub-datasets that exclude the variables
associated with causes already explained from the concatenated datasets. In Phase 3,
each cause (i.e., condition) of the obtained common logic trees in Phase 2 is considered
as a new event that needs to be explained in a lower level using a new common logic
tree. This procedure is iteratively repeated to construct a multilevel tree that represent the
fault causality structure over time. In such hierarchical structures, the common feasible
solutions at the first level characterize the fault event using general fault indicators, while
the common feasible solutions at the lower levels will use specific fault indicators to explain
the last causes of the tree.

e  Stage 1: Verify the common logic trees’ construction over the defined periods. This
stage verifies the knowledge representability of the constructed logic tree for each
defined period of time and decides whether the further decomposition of its involved
condition is required or not. At each decomposition level, verification of the tree
knowledge is characterized by the coverage of the common feasible solution, which
assists in avoiding decomposing the weak information branches. Therefore, the model
construction is verified to sustain the tree at a non-redundant knowledge level based on
the pre-set coverage threshold. Meanwhile, the construction phase can be interpreted
if there is no common tree that is able to provide sufficient knowledge representability,
or if there are no more variables in the dataset for any further root cause explorations.

e  Stage 2: Connect the common logic trees to their corresponding causes. The applied
relaxation in selecting a common feasible solution over the defined periods is very
useful in constructing a common logic tree that easily demonstrates the change in the
causality at a given level of decomposition in the ITCA model. However, it could
happen if the time-based searching algorithm fails to form only one common logic
tree that dominates all the defined periods at a certain decomposition level. This
case could happen if there is a lack of extracted knowledge or a tight range in the
solution tolerance selection (STS). To solve this situation, different common logic trees
may be found by the algorithm, but each period is dominated by only one common
feasible solution. Therefore, if such a situation rises, a time—OR gate is proposed to
connect the different common logic trees to represent the change in the event causality
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knowledge over all the defined periods at a given decomposition level. The time-OR
gate acts as a time switch that shifts between the common logic trees according to their
corresponding periods. Hence, an expert could observe the fault behaviour over time
based on the proposed common similar solution trees at a certain decomposition level
of the ITCA model.

Figure 5 presents an example of the time-OR gate functionality in a one-level ITCA
model. Two common feasible solutions, S; and S5, are found by the time-based searching
algorithm. S; characterizes the fault event at only A; and A, using the OR gate (G2)
between the patterns P; and P». While S, represents the fault even only at only Az with
one pattern, P;. This allows P3 to be connected directly to S, without any need for an OR
gate. The time—-OR gate (G1) enables ITCA to fully demonstrate the fault event causality
over the three defined periods (A1, Ay and A3). It switches between S and S, according to
the selected corresponding period that is dominated by the solution. For instance, at the
periods A; and A, the time—-OR gate (G1) enables only S; to depict the fault event causality.
On the other hand, during the period A3, the fault causality is explained only by S,.

Solution layer

) ‘

[ ]
Pattern layer Pl I P2
1 1

Condition layer Cl: V2>l I C2: V1 <A2 @3:V3=13
Periods | A1 value Periods |22 value Periods | A3 value
Al 10 Al 500 A3 5
A2 20 A2 400

Where () is the condition cutpoint values that dominate certain periods

Figure 5. Time-OR gate functionality in the ITCA model.

e  Stage 3: Generate new (m — 1) sub-datasets. In a case in which the added common
logic trees are verified at a certain decomposition level of the ITCA model, each one of
the involved conditions in the tree is used to generate new labelled sub-datasets based
on the condition variable cut-point values. Figure 6 takes the example of Figure 3.
It presents the generation of the three two-class sub-datasets Dgz), Déz) and Déz) at
the second decomposition level using the variable X; cut-point values 10, 20 and 30,
respectively. Note that the generated new sub-datasets contain (m — 1) columns each
time that a variable is removed from the data.
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Figure 6. Generating new labelled data subsets in the ITCA methodology.

3.4. Phase 4: Derive the Time Causality Rules

Based on the calculation of the probabilities of root causes, causes and fault events in
the final ITCA model, Phase 4 derives the time causality rules that represent the change in
occurrence probabilities from one period to another. Each time causality rule summarizes a
specific structure of the cause—effect relations over the time between the root causes, causes
and fault events within the ITCA model in the form of an algebraic formula based on the
above Equations 1 to 4 (Stage 4, Phase 2). The obtained time causality rules allow the
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fault event occurrence to be controlled based only on its root causes. Moreover, these rules
enable managing the fault occurrence over the defined time horizon, which makes them
more suitable and appropriate for the task of making a prognosis.

4. Case Study

Most aging systems that include bearings, seals, glands, shafts, and couplings are
more likely to suffer from several degradation processes due to harsh operating constraints
such as high temperatures, vibration, and dynamic load, and likely the deficiency of the
maintenance plan as well. In this section, the ITCA methodology is deployed on simu-
lated data that reproduce the degradation of a turbofan engine proposed by NASA. It is
known as the PHMOS challenge dataset. The dataset is generated by the Commercial Mod-
ular Aero-Propulsion System Simulation (C-MAPSS) simulator based on MATLAD® and
Simulink® [29]. The simulator uses the combination of three specific operation variables to
generate different degradation profiles. The high-pressure compressor (HPC) degradation
fault mode is selected as an illustrative example.

Based on the C-MAPSS user guide, as shown in Figure 7A, the engine consists of
several interconnected subsystems (inlet, bypass nozzle, fan, low-pressure compressor
(LPC), high-pressure compressor (HPC), combustor, high-pressure turbine (HPT), low-
pressure turbine (LPT), and core nozzle). The fuel valve controls the fuel flow into the
combustor that turns the HPT. The HPT rotates the HPC, LPT, LPC and the inlet fan.
The turbofan engine has two state variables: the fan speed and the core speed [30]. Based
on the thermodynamic cycle, the air is compressed and combusted by the engine to produce
propelling. Figure 7B describes the ambient airflow to the engine. First, the air enters the
engine through the inlet and the fan. Then, it is divided by the splitter into two portions.
One portion passes through the compressor and then the burner to mix with fuel and
produces combustion. The hot exhaust passes through the core and fan turbines to the
nozzle, while the other portion is bypassed to the back of the engine. The airflow is
controlled by the bypass ratio, which is the ratio of the bypassed mass airflow to the mass
airflow that goes through an engine core [31]. The HPC’s main functionality drives the
airflow to higher pressure and temperature states to prepare it for combustion by using its
spinning blades. Therefore, the change in the bypass ratio is the main control element for
controlling the HPC outlet air pressure and its temperature for the burning phase.

Fap Combustor N1 LPT
\ Bypass | | Bypass
= Path Nozzle
2
1 0D
E
2 e
| I o
g E E Core
3 I - Nozzle
T [17]
3
o

(A) (B)

Figure 7. The simulated turbofan engine based on C-MAPSS [32] (images courtesy of NASA).
(A) Simplified diagram of the turbofan engine; (B) Turbofan engine modules layout and connections.

The challenge addressed by the ITCA methodology is to model the HPC fault causality
structure in a dynamic manner so that the model can demonstrate the effect of the root
cause changes over time on the main HPC degradation curve.
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4.1. Dataset Description

The dataset consists of 21 measurement variables that describe the HPC fault mode
(Table 1) and 465 timestamp observations. The generated data are divided into training
and testing sets with 258 (60%) and 207 observations (40%), respectively. The constant (—),
increasing (1) or decreasing (J.) trend that depicts each variable over time is mentioned
in Table 1.

Table 1. Variable descriptions of the HPC fault mode.

Variable Description (Unit) Trend (—, 1, |) Variable Description (Unit) Trend (—, 1, |)
Total temperature at fan . Ratio of fuel flow to

12 inlet (R) - phi Ps30 (pps/psi) v
Total temperature at Corrected fan speed

T4 LPC outlet (R) t NRI (rpm) !
Total temperature at Corrected core speed

130 HPC outlet (R) T NRe (tpm) +
Total temperature at .

T50 LPT outlet (R) 0 BPR Bypass ratio (rpm) 0

P Pressure at fan inlet . farB Burner fuel-air ratio .

(psia) ar (without unit)
Total pressure in bypass . Bleed enthalpy
P15 duct (psia) htBleed (without unit) T
P30 Total pressure .at HPC 1 Nf dmd Demanded fan speed .
outlet (psia) (rpm)

Physical fan speed HPT coolant bleed

Nf (rpm) T wsl (Ibm/s) +
Physical core speed LPT coolant bleed

Ne (rpm) + W32 (Ibm/s) v

. . Static pressure at HPC
epr Engine pressure ratio — Ps30 outlet (psia) +
PCNfR_dmd Demanded corrected .

fan speed (rpm)

Note that the majority of the variables have an increasing or decreasing trend over the time, except T2, P2, P15,
epr, farB, Nf_dmd and PCNfR_dmd, which are constant no matter the fault mode.

4.2. The HPC Fault Prognosis Using the ITCA Model

In what follows, the main results of the proposed four-phase ITCA methodology
applied on the NASA turbofan engine dataset are presented and discussed to perform the
HPC fault prognosis task. As per the first phase, the training dataset is ordered according
to the timestamp variable and divided into six equal, unlabelled subsets, where each subset
SS; i = 1..6 depicts the period of time A; i = 1..6. The subsets are ordered in a timely
manner, where SS; represents the best normal state of the turbofan while 55¢ depicts its
worst or failure state. Consequently, five labelled datasets are concatenated from those
6 subsets as follows D;: SS; versus SSq i = 1..5. Each dataset has 86 labelled observations.
Note that the dataset is divided by fixed width for simplicity. However, the expert can
assign different width thresholds to produce non-equal data subsets. Meanwhile, the
number of subsets is important to capture the evolution of the faults over time. This is a
trade-off between time step resolution and ITCA construction time. Phase 2 and Phase 3
are iteratively repeated to construct the ITCA model. The coverage tolerance selection STS
threshold used by the time-based searching algorithm (Stage 2 of Phase 2) is set to 10%.
In addition, the coverage threshold is set to 90% to control redundant knowledge in the
common trees at Stage 1 of Phase 3, when a new level is considered in the ITCA model.
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Figure 8 depicts the final ITCA model of the HPC fault mode. It includes six levels
of decomposition to reproduce the causality structure between the HPC fault and its root-
causes over six periods of time. Note that each level of the ITCA model consists of three
layers that represent the solutions, patterns, and conditions related to the fault event or
to one of its causes. The first level includes only one common feasible solution S; over
the five defined time periods (A1 to As). Sq has only one pattern, P;, which includes only
one condition: C; : P30 > Aq. The plot Al of Figure 8 characterizes the degradation of
the variable P30 over time. Note that the cut-point curve (blue line) bounds the trend of
the variable P30 in time. Additionally, the plot A2 of Figure 8 shows the common feasible
solution coverage and the overlap percentages over the five time periods. Regarding
Level 2 of the ITCA model, the same interpretation above can be performed for the variable
T50. It is clear that the ITCA model captures the trend of the involved variables based on
the cut-point curves.

Solution layer

A1 A2 A3 A4 A5

C1: P30 > A1

. Q-
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Figure 8. Obtained ITCA model of the HPC degradation mode.

At Level 3, two common feasible solutions, Sz and Sy, are found by the time-based
searching algorithm. These solutions respect the construction setting; S3 explains the cause
(C2 ¢ T50 < Ap) at the time periods A; and A, while S; dominates the three other
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periods Az to As. Sz and S4 each have only one pattern and condition. The plots C2 and
D1 of Figure 8 depict the bordering of the cut-point curves that represent the degradation
trends of the variables T24 and NF, respectively. Meanwhile, the C1 and D2 plots show the
solution coverage and overlap percentages over the corresponding time periods. Sz and S4
describe the full-time causality of the cause event (C; : T50 < Aj) through the time-OR
gate by toggling between the two feasible solutions. Hence, S5 explains the event causality
at only A1 and A;, while Sy illustrates the causality of the same event at Az, A4, and As.

At Level 4, two other feasible solutions, S5 and Sg, are found that explain the events
C3: T24 < Az)and C4 : NF > Ay, respectively. At Level 5, only one common feasible
solution Sy is found that explains both events’ (Cs : Ps30 < As and Cg : Phi < Ag) causality
over the five periods of time. This solution includes one pattern P; with only one condition
C7 : NRF < Ay. The same reasoning can be made with the only common feasible solution
Sg, which explains the condition C; at the last level of the ITCA model using only one
pattern Pg that consists of one root cause: Cg : BPR < Ag. The cut-point curve of Figure 8.
H1 bounds the trend of Cg.

From the obtained logic tree of Figure 8, the ITCA model confirms the discussion
above about the main root cause of the HPC fault mode. Effectively, the first level of the
ITCA model identifies the variable P30 (total pressure at HPC outlet) as the only fault
indicator of the HPC degradation over time. Therefore, P30 can be employed to predict
the remaining useful time of the turbofan engine according to the HPC fault mode. At the
second level, the variable T50 (total temperature at an LPT outlet) is discovered to explain
the effect of the temperature of combustion on the total pressure at the HPC outlet. T50
refines the knowledge discovered about P30. The same reasoning continues until reaching
the final Level, 6, where the ITCA model discovers the variable BPR (bypass ratio), which is
identified by the expert as the main control element that affects the occurrence of the HPC
fault mode over time. Therefore, the ITCA model provides the expert with more refined
knowledge, outlining the effects of the root causes on the fault trend over time, which help
him to achieve the prognosis task in an efficient way.

The probabilities associated with the ITCA model are calculated using Equations (1) to (4)
of Stage 4, Phase 2. They quantify the occurrence of similar feasible solutions, patterns, and
associated conditions, period after period, at each level of the ITAC model. Figure 9 plots
the probabilities of the eight discovered conditions over five periods of time. Note that the
occurrence of each feasible solution is equal to the probability of its associated conditions due to
the structure of the obtained logic tree. For example, plot A in Figure 9 represents the probability
curve of Sy : Pj : C; over the periods A to As. The maximum probability value is equal to 0.16
at each period, since the original data are divided into six equal-size data subsets. Therefore,
each subset represents .16 from the original data size. Note that each common feasible solution
tries to maximize its class coverage, so that the associated condition probability value may not
exceed that coverage value over the five periods.

Based on the ITCA model and the calculation of probabilities, only one time causality
rule can be derived over five investigated periods, as follows:

P(HPC(A;)) = P(Cs(A;))i=1...5 ®)

The time causality rule expresses the contribution of the root-cause on the occurrence
of the HPC fault, period after period, according to the Cg cut-point curve. Each cut-point
value provides the essential knowledge to sustain the turbofan for more or less time in
each defined period interval through the maintenance action. For instance, the turbofan
can spend more time in Ay by making the Cg variable (BPR) value under the corresponding
cut-point value for a set of time.
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P(C1) 0 P(C2) e P(C3) 0 P(ca) 0
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Figure 9. Probability calculations of the HPC fault mode.

4.3. Validation of the ITCA Model

The accuracy of the obtained ITCA model is quantified using the testing dataset.
Five concatenated datasets are formed to represent the five periods of time in the same
manner as the data preparation of the training datasets. The mean and the standard error
for each period are calculated using the time causality rule and 1000 random data samples;
each has a size of 135 observations that provides a 95% confidence level, as shown in
Figure 10. Based on the error in each period, an average error distribution is generated
over the five periods.
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Figure 10. Accuracy of the ITCA model.

From another point of view, the variables T2, P2, P15, epr, farB, Nf_dmd and PC-
NfR_dmd are not considered in the ITCA model of Figure 8 because they have a constant
trend over time (see Table 1). However, the variables NC, NR¢, htBleed, W31 and W32 have
a changeable trend, but are not included in the ITCA model. To investigate this situation,
the correlation matrix between those omitted variables and those already considered in the
ITCA model are measured, as depicted in Table 2. In each column, the bold value shows
the maximum correlation value. The variables NRc, htBleed, and both W31 and W32 are
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correlated to the variables phi, Nrf and Ps30, respectively, with a correlation value that is
higher than 0.6. Except for the variable NC, which measures the physical core speed, and
is correlated to P30 with the highest absolute value of 0.17. Accordingly, it seems to be
relevant for the HPC degradation. This could be overlooked by the ITCA model.

Table 2. Correlation matrix. The bold cell shows the maximum correlation value.

NC NRc htBleed W31 W32
T24 —0.159 —0.502 0.595 —0.629 —0.614
T30 —0.211 —0.459 0.534 —0.543 —0.582
T50 —0.153 —0.548 0.644 —-0.727 —0.699
P15 —0.001 —0.014 0.065 —0.059 -0.107

P30 0.175 0.588 —0.651 0.718 0.739
Nf —0.167 —0.594 0.707 —0.750 —0.743
Ps30 -0.171 —0.594 0.689 —0.761 —0.742

phi 0.158 0.616 —0.688 0.722 0.721
NRf —0.169 —0.582 0.708 —0.746 —-0.715
BPR —0.184 —0.575 0.605 —0.663 —-0.714

5. Conclusions

This paper has proposed an interpretable time causality analysis (ITCA) methodology
for aging systems. The ITCA model represents the fault hierarchy causality by using the
logic of the graphical fault tree and the knowledge discovery in the dataset. The obtained
tree models the effect of the system’s aging on the changes in the fault causality structure
over time to better achieve fault prognosis. The illustrated case study demonstrates its use-
fulness and ability to discover only the relevant root cause that impacts the fault behaviour.
Based on the model’s interpretability, the expert is able to use the time causality structure of
the turbofan HPC degradant performance to support his decision. Thus, the ITCA model
provides the expert with the deep causality knowledge that explains the fault evolution
over time. Unlocking the data-driven model’s complexity by providing an interpretable
graphical model, in addition to summarizing the evolution of the fault over time in one
interpretable model are the two major contributions of the ITCA model over the current
time causality data-driven models for fault prognosis. The ITCA model takes a further step
towards reinforcing the link between experts and data-driven models. Such a model will
help experts elucidate and implement the maintenance decision-making process.

Our next research work will be to assist the expert by better optimizing the system
performance through a set of control actions to maximize the RUL. We hope to allow our
future ITCA model to demonstrate the system’s reaction regarding a set of proposed control
actions based on its causality rules and link the impact of a given proposed action to the
RUL. The expert still needs to observe this system’s reaction, represented by the new fault
causality structure that reflects the system’s response to the causality rule control actions
that are taken, and note how this improves the RUL. Therefore, the future ITCA model
must include different scenarios for fault causality structures that reflect the impact of the
different combinations of control actions based on the derived causality rules.
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Abstract: With the advancing integration of fluctuating renewables, a more dynamic demand-side,
and a grid running closer to its operational limits, future power system operators require new tools
to anticipate unwanted events. Advances in machine learning and availability of data suggest great
potential in using data-driven approaches, but these will only ever be as good as the data they are
based on. To lay the ground-work for future data-driven modelling, we establish a baseline state
by analysing the statistical distribution of voltage measurements from three sites in the Norwegian
power grid (22, 66, and 300 kV). Measurements span four years, are line and phase voltages, are
cycle-by-cycle, and include all (even and odd) harmonics up to the 96th order. They are based on four
years of historical data from three ELSPEC Power Quality Analyzers (corresponding to one trillion
samples), which we have extracted, processed, and analyzed. We find that: (i) the distribution of
harmonics depends on phase and voltage level; (ii) there is little power beyond the 13th harmonic;
(iii) there is temporal clumping of extreme values; and (iv) there is seasonality on different time-scales.
For machine learning based modelling these findings suggest that: (i) models should be trained in
two steps (first with data from all sites, then adapted to site-level); (ii) including harmonics beyond
the 13th is unlikely to increase model performance, and that modelling should include features that
(iii) encode the state of the grid, as well as (iv) seasonality.

Keywords: machine learning; power systems; harmonic distortion; power quality

1. Introduction
1.1. Motivation and Background

The introduction of ever-increasing amounts of intermittent renewable generation,
coupled with the increasing electrification of European societies, leads to an increased
strain on the power grid and its operation [1-3]. In order to maintain high security of
supply, it is paramount to evolve the tools used for power systems operations [4]. One such
tool would be the ability to predict undesired events with sufficient prediction horizon to
facilitate mitigating actions [5-7].

The development of such tools is encouraged by recent advancements in data-driven tech-
niques, machine learning (ML), available data volumes, and computational resources [8-10].
These algorithms can derive insights from data without being explicitly told what to look for
in the vast data steams [11,12], which is particularly beneficial in the domain of power system
fault prediction. An explicit detailed modeling of the power system is cumbersome and
would not encapsulate conditions the modeler does not know about, that could lead to faults,
such as icing on transmission lines, faults in critical components or reoccurring abnormalities.

Data driven methods are only as good as the data they rely on, and only have the
capability to predict situations that the model have been trained on [13-15]. In a best case
scenario, the models are trained on a complete and large dataset, and it can rely on the
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automatic tuning of model parameters [16,17]. This is, however, often not the case in real
word applications. In the case of fault prediction in the power system, the number of faults
occurring are very small compared to normal operating conditions [18].

To achieve high performance with data driven methods, the analyst must therefore
pre-process the data—essentially guiding the algorithms in selecting their focus. This type
of pre-processing includes dimensionality reduction, feature selection, feature engineering,
and rescaling of features and prediction targets [19,20]. While there are aspects of an art (or,
more precisely, intuition based on experience and domain knowledge) to these activities,
they depend on an understanding of the behaviour of the underlying power system.

This paper seeks to establish (aspects of) the statistical foundation of the behaviour of
the power system at the levels of transmission and distribution, cf. Figure 1. By establishing
the statistical and temporal behaviour of cycle-by-cycle voltage harmonics from three sites
in the Norwegian grid, we derive implications for the data-driven modelling of power grid
events. Although the data are sourced from the Norwegian grid, we expect results to apply
to other national grids.

Production & Assets Transmission & Distribution Consumption

QEW | | & e

Figure 1. Illustration of the scope of the paper. The figure shows the entire value chain of electricity

(from left to right—generation, distribution, and consumption). Machine learning techniques are
relevant in all links of the chain (see also our literature overview). Our focus (highlighted in blue and
black) is on the background state of the grid at transmission and distribution voltage levels.

1.2. Relevant Literature
1.2.1. Data-Driven Methods in Power Grids

Applications of data-driven methods in power grids are motivated by the need to
predict and mitigate intermittency in a grid that leans heavily on renewables [21,22]. Works
tend to focus on: (i) equipment degradation; (ii) forecasting (and control) of demand and
production; or (iii) grid-scale power quality (PQ) and continuity of supply. For equipment
degradation, focus is either on individual assets (usually with the aim of predictive mainte-
nance) or their interaction with the grid at large. The most relevant assets are wind turbines,
hydroelectric power plants, photovoltaic power plants, and distribution transformers.

Focusing on key assets (and their subcomponents), refs. [23,24] used event and state
logs from wind-turbine control systems to train supervised learning algorithms (neural
networks, boosted trees, and support vector machines). They report successful predic-
tion of fault states with lead times in the order of five minutes to an hour. In a similar
vein, refs. [25,26] monitoring data from sub-components (e.g., compressors, generators,
turbines) are used to detect and predict anomalous behaviour in hydro power stations.
They demonstrate implementations of self-organizing maps and neural networks within
the control loops, but unfortunately do not report on model performance. For photovoltaic
systems, forecasting of faults appears to be less advanced and the literature focuses on
fault detection and characterization. For example, ref. [27] integrates system data (currents,
voltages, temperature) and uses neural networks to detect and classify abnormal operating
conditions. Based on multispectral drone imagery, ref. [28] deploys convolutional neural
networks (CNNSs) to detect various types of panel damage. Overall, there is significant
potential in machine learning approaches to predicting the condition of photovoltaic sys-
tem due to the large amount of non-correlated data sources (weather, system data, and
imagery), see also [29,30]. Finally, multiple works attempt to predict failure of distribution
transformers by combining event logs and data from outgassing of insulating oil. While [31]
deploys a fairly complicated scheme involving agents, neural networks, and evolutionary
methods, ref. [32] uses gradient boosted trees and claims a superior performance compared
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to their reviewed literature. The state-of-the-art in the use of machine learning to predict
transformer failures is reviewed in [33].

On the production side, data-driven forecasting methods for wind and photovoltaic
systems are mainly concerned with: (i) using (and improving upon) numerical weather
prediction models; and (ii) relating the weather conditions to actual power output. For
example, ref. [34] uses neural networks to accelerate wind-field computation for a compli-
cated topography while [35] uses model ensembles (k-nearest neighbours, support vector
regression, and decision trees) to relate local wind-speed measurements to turbine power
output. For solar forecasting, ref. [36] compare 68 machine learning-based forecasting
models and find that (a) tree-based methods perform best but (b) that there is significant
variation between the performance of different models in space and time. See also [37,38]
for reviews. Hydro power forecasting, on the other hand, is more often cast as a scheduling
problem. For example, ref. [39] feeds climate data, expected demand curves, and market
conditions into a reinforcement learning system for optimal (most profitable) long-term
scheduling. See also [40] for a recent review. Research on demand forecasting, on the
other hand, is frequently coupled to control schemes for residential and commercial smart
buildings [41,42] or vehicle-to-grid technologies [43,44]. In addition, there is a sprawling
literature on customer segmentation [45,46], building performance assessments [47], and
residential level demand forecasting [48,49].

With a focus on components and their impact on the remainder of the grid, ref. [50]
uses the recurrent incidence of minor events to predict major outages, ref. [51] couple
event logs from distribution transformers to meteorological data, and ref. [52] connects
meteorological data to component states to predict the impact of extreme weather. Focusing
on power quality alone, refs. [53,54] detect and identify PQ anomalies using either neural
networks and decision trees, extensive feature engineering, or semi-supervised learning
approaches, respectively. Finally, ref. [55] include anomaly prediction and—by using
random forests—obtains inherently explainable models. Similarly, our own recent works
have also focused on predicting PQ disturbances using a variety of data sources, methods,
and features [56-61]. Unfortunately, most works (including our own) omit describing the
underlying data, and instead jump straight to feature engineering and machine learning.

1.2.2. Harmonic Distortions

In this work, we will focus on voltage harmonics in the distribution and transmis-
sion grid. These have previously been analyzed in [62-64]. The first two characterize
harmonics (and THD) time-series by control limit violations and build statistics thereof.
Limits are either derived from probability of occurrence or national standards. The latter
focuses on how voltage flicker is coupled to harmonic distortions near four industrial sites.
The statistical analyses of [62,63] revolve around control limits and their violations with
little focus on the statistical distributions of the underlying measurements. The analysis
in [64] summarizes the statistical distribution into the 95 percentile of observed values. All
analyses are based on data aggregated to the order of minutes.

1.2.3. The Literature Gap

Based on our review, most works appear to focus on data-driven modelling of asset
state and performance as well as scheduling, forecasting, and the control of production
and consumption. There are few works focusing on the conditions of the grid itself. Those
that do tend not to discuss the underlying state. We therefore attempt to answer two open
questions. First, what the underlying statistical distribution of harmonics measurements
are, especially at aggregation intervals below 60 s? Second, how should the underlying
state of the power grid influence the design of data-driven fault prediction methodologies?

1.3. Contributions and Organization

In Section 2, the underlying data and data sources are described, as well as a brief
introduction to the power system being analyzed and the methodology utilized in the later
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results section. Section 3 offers insights into the key statistical properties that are found in
the data. Finally, the discussion and conclusions are presented in Sections 4 and 5.

2. Methodology

We focus on the voltage harmonics component of power quality data. We consider
the statistical properties of (time-series of) harmonic power up to a particular order, total
harmonic distortion (THD), as well as the contribution of each order to THD. We further
analyze how the largest (>99 percentile) values for THD are distributed in time. We
compute THD from harmonics measurements and consider up to six voltage channels.

Figure 2 shows the flow of harmonics measurements from source to analysis. Roughly
following the figure from left to right, we will discuss data sources and the data flow, as
well as the various data processing steps. We also address the three largest challenges
encountered when working with the data.

Compute Compute
THD Parquet I

Extract-Transform-Load
(Dynamic Data Grabber)

&
THD Contributions Statistics

Parquet Compute HDF5
Parquet Hit Tables

Compute
Fractal Scaling

Aggregate Data Visualize
by Month

Present

Figure 2. Dataflow (left to right) from source to analysis. Boxes indicate processing steps and text
on arrows indicates the file format used. Grey shading indicates proprietary technology. Unshaded
steps are our own scripts (based on the Python). The ETL (Extract-Transform-Load) steps interact with
ELSPEC’s proprietary PQSCADA system (using our own Dynamic Data Grabber package) to extract
voltage and harmonics data as dataframes into Parquet files. Dataframes are aggregated by month and
then consumed by various analysis scripts. These output data in HDF5 format for use by plotting scripts.

2.1. Data Origin

SINTEEF has conditional access to power quality data for the majority of the Norwegian
power system through agreements with distribution system operators (DSOs) and the
Norwegian transmission system operator (TSO) Statnett. The data cover the period from
January 2009 to early March 2020. The nominal line voltages at the locations where the
measuring instruments are installed varies from 10 to 420 kV. A total of roughly 270 years
of PQ data have been collected from 49 measurement nodes, giving on average 5-6 years
of historical data from each node. However, the number of years of available data varied
significantly from node to node.

In this work, we focus on three sites as full coverage of the available data would either:
(i) require a different analytical approach; or (ii) clutter the presentation needlessly. The
three sites were chosen to have different voltage levels, are placed in different locations
in the Norwegian power grid and have long and robust time series. In conjunction, these
sites constitute the basis for the below analysis and discussion.

All sites are located in the Norwegian grid so they are exposed to the Norwegian power
mix, barring bottlenecks between price zones. The power mix is dominated by power from
hydroelectric plants (85%), followed by biomass (12%) and wind (4%) [65], (data from 2018).

2.2. Data Flow, Extraction, and Processing

Raw data are recorded by ELSPEC Power Quality Analyzers (PQAs), https://www.
elspec-ltd.com/metering-protection/ (accessed on 26 April 2022) compressed, and then for-
warded to a PQSCADA, https:/ /www.elspec-ltd.com/power-quality-software-pqscada-
software/ (accessed on 26 April 2022) database for permanent storage. The Elspec PQAs
sample voltage, current, power waveforms at up to 50 kHz, but employ lossy compression
(at the edge) to reduce the data volume and velocity. Due to their proprietary nature, the de-
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tails of the compression are not well documented. The PQSCADA database can be queried
for a wide range of performance parameters, including—but not limited to—aggregated
voltage and harmonics data. We extract data from this database through a small stack
of Python [66] scripts that abstract away various data engineering complications. These
depend heavily on Numpy [67] and Pandas [68].

We extract data from sites at three different grid voltage levels. For each level, there
are two data packages. The first covers four years, six voltage (three phase-to-ground, three
phase-to-phase) channels, and eight harmonics. The second covers a month, three voltage
channels (phase-to-ground), and 96 harmonics. Data are aggregated by calculating mean
values in intervals of 1/50 Hz. Each site in the first (second) package contains 3.6 x 101!
(3.9 x 1019) samples. See also Table 1.

Table 1. We extract two data packages. The first covers four years, six voltage channels, eight
harmonics. The second covers a month, three voltage channels, 96 harmonics. They contain 3.6 x 1011
and 3.9 x 10'% samples, respectively.

Site Voltage Period Vllfﬁ;‘;‘;““s Aggregation
1 22kV 2015 to 2018 V58 100331 1/50 Hz, Mean
2 66 kV 2015 to 2018 V5 100331 1/50 Hz, Mean
3 300kV 2015 to 2018 V58 100331 1/50 Hz, Mean
1 22kV January 2017 V9% 1/50 Hz, Mean
2 66 kV January 2017 V?‘,‘z‘%é 1/50Hz, Mean
3 300kV January 2017 ve,% 1/50 Hz, Mean

Uncompressed sizes for the data packages are ~2.8 TB and 240 GB, respectively. To
deal with this amount of data efficiently, we use column storage with lossless compression
(Parquet (https://parquet.apache.org (accessed on 26 April 2022))) and slice data into
subsets for processing.

2.3. Data Processing: THD and Harmonic Contributions

For each harmonic component, querying the database of ELSPEC data returns the
harmonic voltage as a fraction of the fundamental voltage component. We use this value
(i) directly, (ii) to calculate THD, and (iii) to calculate the contribution of the harmonic to
THD. This is done as follows.

For the i-th phase, the voltage in the j-th harmonic is v;; = ¢; jv; o, where ¢; ¢ is the
value returned by the device. v; g is the value of the fundamental voltage of the i-th phase.
The THD for the i-th phase is:

o\ & G
01,0 j=1

and the contribution of the j-th harmonic to the overall THD is ¢? / THD2 Depending on the

site and temporal coverage, data is available for either 8 or 96 harmonlcs (j, max = {8,96}
as well as phase-to-ground (i = {1,2,3}) or phase-to-phase voltages (i = {12,23,31}).

\/Z] max 02, j,max
THD; = =Y @

2.4. Data Processing: Cumulative Distribution Functions, Histograms, and Percentiles

Statistical analysis of data in this work is fairly standard although some adaptions are
made to deal with the large volumes. We explore and present the statistical distributions
of measurements using their (normalized) cumulative distribution distribution functions
(CDFs) For some Variable x (for example, THD measurements), the normalized CDF is

= [y p(x')dx'/ [5° p(x") dx’, where p(x) is the probability density function of x. For
a flrute number of samples, C and p can be approximated by computing the (cumulative)
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histogram of x. In other words, given N samples, C(x¢) = N(x < x;)/N is the fraction of
samples with values of x below some threshold x;.

Owing to the large amounts of data, we calculate histograms individually for each
voltage channel and harmonic order in time-slices of one month. The histograms over the
entire time-period are then the sums of the monthly histograms. The cumulative histograms
are then computed as their cumulative sum.

All percentiles in our analysis are approximate. The standard (exact) way of calculating
percentiles requires loading (and sorting) all samples in memory, which proved difficult.
Instead, we estimate percentiles from the cumulative distribution functions. Numerically,
for the desired percentile P, this amounts to finding the value of x; at P = C. This means
that the numerical accuracy of our percentile calculations is limited by the binning used
during histogram calculation. We use 256 logarithmically spaced bins in the range 0.01 to
10, corresponding to an upper bound on the numerical accuracy of ~10~2.

2.5. Data Processing: Time-Distribution of THD Excursions

While our dataset has no information about whether events (e.g., voltage drops, rapid
voltage changes, interruptions, or earth faults) occur, we can nevertheless try to understand
how the largest excursions (outliers) of harmonic power behaves. In other words, we
wish to determine how the largest values of harmonic power are distributed in time. Do
they occur regularly? Do they cluster together? Does their distribution depend on the
time-scale?

We characterize the time-distribution of excursions by determining the fractal dimen-
sion D of a downsampled and binarized THD signal. For each minute, we determine
whether any of the samples therein have a value exceeding the 99 percentile of the (four-
year) THD distribution. If it does, the minute is tagged as containing an outlier (and
vice versa). We then calculate D by box-counting (and slope-fitting) the binarized time-
series [69]. This method essentially asks how many boxes N(s) of a given size s (the
time-scale) are required to completely cover the binary signal. The fractal dimension is
the slope D of the power-law N oc s~P. We compute D from least-squares regression of
log;,(N(log;,s)). For a given time-scale s, D = 1 indicates that excursions are uniformly
distributed. Conversely, D < 1 indicates temporal clustering of excursions. We consider
a range Smin < S < Smax With spmin = 300 s (five times the time-resolution of our binary
signal) and smax = 292 days (a fifth of the four year measurement period).

2.6. Challenges

During data extraction and initial data exploration, we have encountered three chal-
lenges that constrain our analysis.

1. Compression Thresholds—The ELSPEC PQA instruments have a compression algorithm
that introduces a lower cut-off level for the harmonic components in their compression
algorithm. Contributions to the overall signal below this cut-off value for each
harmonic component will not be recorded in the stored data from the instrument.
This threshold may vary between measuring devices, depending on the harmonic
noise and the needs of the measurements at the given site. The threshold is usually
set to be in a range from 0.1 to 0.2% of the base harmonic component. Values below
this level will be stored as 0 values, and is referred to as such in the discussion below.

2. Computational Tractability—We had initially set out to load 96 harmonics and six volt-
ages for all three nodes over the four year time period. However, the database proved
uncooperative and required frequent restarts during the extraction. We therefore
limited the analysis of 96 harmonics to a month.

3. THD Calculation—The ELSPEC instruments also record THD directly, although neither
the aggregation interval nor function is clearly documented. We observe a median
difference of 21% (ranging from 0 to 56% at the 1 and 99 percentile, respectively)
between the THD calculated by our own procedure and the THD directly reported
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by the ELSPEC instrument. We base the analysis in this paper on the above THD
calculation for transparency reasons.

3. Results
3.1. Presence of Harmonics

Figure 3 shows the fraction of cycles (per month) with power > 0 for three sites in
the Norwegian power grid between 2015 to 2018. By grouping data by harmonic channel,
phase, month, and site, we find the following.

1. Across all voltage levels, non-negligible amounts of non-zero measurements occur
only on the third, fifth, and seventh harmonics;

2. Atthe22 kV level and across all phases, 95% of measurements of the seventh harmonic
are non-zero. For the fifth harmonic, there are non-zero measurements in 70% of cases.
The third harmonic differs across phases. On V5, non-zero measurements are more
common (40%) than on V; and V3 (10% each). Non-zero observations on the third and
fifth harmonic are clustered in time rather than being spread out evenly. The clusters
are not evenly distributed and do not appear to correlate with seasons;

3.  Atthe 66 kV level, we find the same patterns as at the 22 kV level, with most non-
zero measurements found in the seventh, fifth, and third harmonics. Across all
phases, we find non-zero values for the seventh and fifth harmonics in 75 and 55%
of cases, respectively. For the third harmonic, non-zero values are unbalanced across
phases. On Vi, V3, and V3, we count 55, 65, and 35% of non-zero values, respectively.
Observing no differences in the temporal distribution of counts, V3 appears to have a
generally lower level of non-zero counts;

4. Atthe 300 kV level, there is a marked difference between the periods of March 2017
to July 2018 and the remainder of the observation period. Inside this period, 45% of
measurements across phases (and for the third, fifth, and seventh harmonic channel)
are non-zero. Outside this period (and overall), only 3 (19)% of measurements are non-
zero (again, for the third, fifth, and seventh harmonic channel). The temporal patterns
(in the period of March 2017 to July 2018) are identical across phases, except for the
third harmonic channel on V;, where 87% of all samples are non-zero (compared to 45
and 55% for the third and fifth harmonic, respectively).

Site 1 (22 kV) Site 2 (66 kV) Site 3 (300 kV)
2015-01 b ]

2016-01

Month

2017-011

2018-011
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Figure 3. Fraction of non-zero observations for the first eight harmonics in each voltage channel
(denoted as Instrument Channel), grouped by harmonic. Data for all three sites are shown, see panel
titles. A period of four years is covered for each site. The fraction (see colormap on the right) is
calculated over ~1.3 x 108 samples in each month. It is clear that there are some channels (harmonics
for each phase) that are clearly more present than others, and that the pattern is to a large degree
transferable from phase to phase and from site to site. It is also clear that there is considerably less
harmonic content in the higher voltage levels. This is confirmed in Figures 5 and 6.
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The harmonic levels in Figures 4 and 5 show that there is some variation in harmonic
levels on each site. The figures show variation detailed by harmonic number, voltage level
and hour-of-day (Figure 4) and the cumulative distribution function (CDF) for each voltage
level (Figure 5). As mentioned above, the non-zero values on Site 1 (22kV) are present
on the 3rd, 5th and 7th harmonics. The presence of these odd harmonics is usual in the
modern power system, due to a high number of non-linear loads [70]. Both single- and
three-phase converters are contributing to this type of harmonic noise, for equipment such
as computers and power-intensive industry, respectively. For Site 1, the 7th harmonic is
higher than 1% for the whole analysed period. The 5th harmonic also has a considerable
presence throughout the period. This could suggest that the harmonic noise is caused by
power-intensive industry with 6-pulse three-phase rectifiers [71]. Based on the results in
Figure 4, it is clear that there is a daily variation in the harmonic levels that backs this claim.
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Figure 4. Variation in t he occurrence of non-zero values for each node averaged on a daily basis. The
3rd, 5th and 7th harmonics have been selected.
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Figure 5. Cumulative distribution function (CDF) of total harmonic distortion (THD) for three sites
(columns). We use 256 bins of uniform logarithmic spacing from 102 to 10. Distributions are
calculated over the time range from 2015 to 2018 for a total of ~5.9 x 10? samples. Top: CDFs for
each phase (see legend). Bottom: Difference between the CDFs for V, and V; as well as V3 and V;,
respectively (see legend). Statistically, the three phases always remain within six percent of each
other. See Table 2 for summary statistics.
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Figure 6. Cumulative distribution function (CDF) of total harmonic distortion (THD) for three sites
(see legend) for the phase-to-ground voltage V; plotted together for comparison. Binning and data
basis is the same as for Figure 5. (Top): CDFs for each site (see legend). (Bottom): Difference between
the CDFs for 22 and 300 kV as well as the 66 and 300 kV sites, respectively (see legend). See Table 2
for summary statistics. For higher voltage levels, the distribution shifts to smaller THD values—there
is less noise in the system.

Table 2. Summary statistics for the distribution of total harmonic distortion (THD) per site and phase.

Site Phase 1 Percentile Median 99 Percentile
22 kV % 0.15 0.49 1.48
V5 0.19 0.51 1.48
Vs 0.19 0.51 1.48
66 kV %] 0.04 0.29 1.01
%) 0.05 0.31 1.13
V3 0.05 0.32 1.26
300 kV %4 0.05 0.24 0.73
1%} 0.05 0.28 0.73
V3 0.05 0.25 0.77

On Site 2 (66 kV), there is a similar harmonic pattern as on Site 1, with the most
dominant harmonics being the 3rd, 5th and 7th. However, on this site, the 3rd is more
dominant. This is a normal observation on this power level. In addition to these odd
harmonics, there is a presence of even harmonics on the 2nd, 4th and 8th harmonics.
The presence of even harmonics is more important to monitor, as they can cause early
degradation and malfunction in the power system [72]. In the analysed period, however,
the harmonic level never exceeds 8%, which is the acceptable 10-min average according to
the Norwegian regulators requirements [73].

On Site 3 (300 kV), there is a similar harmonic pattern as on Sites 1 and 2, except
that the harmonic levels are lower than on the other sites throughout the period. There
are also some considerable even harmonic levels present on the 6th harmonic. It is also
interesting to observe that the harmonic levels are considerably higher during the period
from March 2017 to July 2018. The reason for this is not clear to the authors, but it could be
caused by a change of topology due to maintenance or construction of a new line in the
area during this period. It is also likely that the other seasonal variations that are present
during the period from 2015-2018 are caused by changes in topology, including the changes
in power generation in the area. The power generation in the areas around the analysed
sites is dominated by hydro-power (and to some extent wind-power) plants, and changes
in grid-connected generating units can affect the short-circuit impedance of the grid and
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the associated propagation of harmonic distortion [74]. For grid-connection points with
a voltage level from 35 kV to 245 kV, the 10 min average of the 6th harmonic should be
below 0.5% [73].

3.2. Total Harmonic Distortion, Phases & Voltage Levels

Figures 5 and 6 show the normalized cumulative distribution functions (CDF) of
total harmonic distortion (THD), i.e., the fraction of samples N(> THD)/N found at or
above a given THD level. Table 2 shows their respective summary statistics. We observe
the following:

1. Overall, most (99%) of the THD values are small and < 1% of their respective fun-
damental phase voltage. Distributions are narrow with most values concentrated in
the range 0.1 to 1%. Difference between different phases at the same voltage level are
always smaller than differences between voltage levels;

2. Across phases and voltage levels, the difference between phases is always < 6%. Note
that this only means that the phases are STATISTICALLY within 6% of one another.
At any given point in time, their difference may be larger than that;

3. Difference between phases cover a wider range of THD for higher voltage levels. The
largest integral difference (The area between CDF; and CDF;, ie,

i \/ (CDF; — CDF;)? dTHD.) between two phases is 0.024, 0.49, and 0.056) for 22,

66, and 300 kV, respectively. For 22 kV, the median values of V;, V;, and V3 remain
within 4% of one another. This difference grows to 10% and 15% at 66 and 300 kV,
respectively;

4. Athigher voltage levels, the distributions of THD consistently shift towards smaller
values. For 22 kV (66, 300), 99% of THD measurements (on V;) are <1.48 (<1.01,
<0.73). Median THD values shift similarly so that the median THD (on V;) at 300 kV
(66 kV) is half (a fifth) of that measured at 22 kV. The 22 kV site is consistently about
half a decade above the 300 kV site, and the 66 kV site is located between these a little
towards the 300 kV site.

Regulatory requirements for THD levels are stricter for higher voltage levels, and more
effort is made to keep these disturbances low at transmission level due to the potential
impact on all downstream distribution feeders. The THD values are usually higher at
lower voltage levels due to the proximity to the non-linear harmonic generating loads
and generators. The propagation of harmonics from the polluter to higher voltage levels
will usually be damped either by damping in grid components (lines, transformers etc.).
However, in some cases, active or passive filters may be necessary to make sure that
the harmonics do not propagate and cause damage to grid customers elsewhere in the
grid. It is, however, important to understand the frequency-dependent impedance of
the grid to understand the harmonic propagation and accurately calculate the resonance
frequency [72]. As an example, a temporary change of topology in an area of the power
system could cause harmonic levels to increase with several orders of magnitude, which
as a consequence could cause instability in the power system. In general, the higher the
frequency, the higher the resistance is. Consequently, damping of harmonics is stronger at
higher frequencies.

Researchers or technicians that seek to utilize the development of THD level or the
level of specific harmonics for predictive modelling need to take this variation in harmonic
levels into account while designing and training models. This variation in harmonic levels
may be an underlying reason why general-purpose models trained on data from many sites
in different geographic locations may have an inferior performance compared to models
trained on specific sites, even though the data volumes are considerably smaller [75].

3.3. Harmonic Contributions to Total Harmonic Distortion

In the previous subsection, a high-level picture of harmonic noise in the power system
was established through an analysis of the THD level on the three investigated sites. In
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this subsection, the contribution from each of the individual harmonics on the THD is
investigated. This will allow us to answer: (i) how many harmonics contribute (mean-
ingfully) to the THD on different voltage levels; (ii) to what extent they are contributing;
and (iii) whether there are differences in the most relevant harmonics across voltage levels.
As indicated in Section 2, we consider only the month of January 2017 due to the large
volume of data. Although only harmonics up to the 7th order is shown in the figures,
harmonics up to the 96th order has been extracted and used for analysis. Figure 7 illustrates
the average contribution of each individual harmonic to the THD over a time period of one
month. The following can be concluded.

1. Across all phases and voltage levels, 298% of the contribution towards the THD are
concentrated in at most the 13th harmonic. The next largest contributions (1.9 percent)
is the 29th harmonic on V3 in the 66 kV site. Beyond this, all other contributions
are <1%;

2. The highest individual harmonic with a total contribution of 22 % are 11th (22 kV),
13th (66 kV), and 13th (300 kV). At 22 and 300 kV, these harmonics also have a
significant (>10%) contribution on at least one phase. However, at 66 kV, the largest
harmonic with a significant contribution is the 7th;

3. At 22 kV, the 7th, 11th, and 5th harmonic contribute the most to THD. In order
(and averaged over phases), they contribute ~52, 37, and 11%. Across phases, the
contributions to THD are balanced and remain within a few % of one another;

4. At 66 kV, the 3rd, 7th, and 5th harmonics contribute the most to the THD. When
averaged over all phases, they contribute ~51, 40, and 7%, respectively. There is an
imbalance in the contribution of V3 which contributes 40% more than V; and V; to the
THD on the 7th harmonic. For the 3rd harmonic, the reverse holds;

5. At 300 kV, there are large differences (20 to 40%) between the contribution of each
phase to the THD across different harmonics. For example, on V;, the 5th harmonic
dominates THD with a contribution 60%. On V3, however, the 13th harmonic domi-
nates with a 60% contribution. On V3, the 3rd harmonic drives THD (with a contri-
bution of ~50%). The authors are not able to attribute this imbalance to any specific
phenomena, and this may be the subject of future investigations.
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Figure 7. Total average contribution to THD over the period of one month per phase (columns) and
site (rows). For each cycle, we calculate THD as well as each harmonics’ contribution to THD. We
then average over all samples of January 2017.

3.4. Harmonic Distortions over Time

After considering the THD and the contributions of individual harmonics, we now
extend the analysis to include variations in time. Figure 8 shows the monthly statistics
(median, 1 to 99, 10 to 90, and 25 to 75 percentile ranges) for the THD as well as third, fifth,
and seventh harmonic for a single phase on all three sites. We find the following.

1. For Sites 1 and 2, non-zero THD values are present during the entire measurement
period from 2015 to 2018. For site 3, only 16 out 24 months in 2015 and 2016 and
18 out of 24 months between 2017 and 2018 record THD values above the compres-
sion threshold;
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2. For all sites, THD appears to follow a seasonal pattern. For Site 1 and Site 2, me-
dian THD is about 50% higher in summer and autumn than during the winter and
spring. For Site 3, the difference is more pronounced due to many periods without
observed THD. For 2015 and 2016, non-zero THD values are recorded only in the
summer months;

3. The spread (difference between the 1 and 99 percentile) of observed THD values
(binned monthly) decreases with voltage level. Aggregating across months, the
maximum spreads are 1.71, 1.45, and 1.00% for Sites 1, 2, and 3, respectively. In the
same order, the average spreads are 0.73, 0.67, and 0.27%. Independent of voltage
level, larger spreads always occur in the summer and autumns months;

4. For Site 1 (and phase 1), the contribution of the third, fifth, and seventh harmonics
to THD over a period of 48 months is in-line with the results for a single month
(cf. Figure 7). Over time, the majority of THD is accounted for by the 5th and 7th
harmonics. For most months, both harmonics track similar medians (and spreads),
except in the spring and autumn of 2017. Over these periods, the 5th harmonic follows
a seasonal pattern (lower during winter/spring, larger during summer/autumn)
while the 7th harmonic keeps an almost constant median. Their combined contribution
leads to the deviation from seasonality earlier observed in THD;

5. For Sites 2 and 3, the contribution of individual harmonics to THD is more complicated.
For Site 2, considering only January 2017 suggests that the 3rd and 7th harmonic
should contribute most to THD. However, over time, we observe a different pattern.
Here, the 7th harmonic appears to set a baseline of distortion (with slight seasonality),
the 5th harmonic modulates additional (stronger) seasonality in the median as well as
additional noise (larger spread), and the 3rd harmonic adds even more noise (larger
spread). This shows that the analysis of a single month is insufficient and unlikely to
be representative of THD and harmonic contributions over longer time frames.
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Figure 8. Statistical descriptors of the THD and selected harmonics (rows) aggregated per month for
the three sites (columns). For each month, we indicate the median as well as 1, 10, 25, 75, 90, and
99 percentile (see legend). Grey shaded bands indicate the passage of one year.

3.5. Temporal Distribution of THD Excursions

Previous work [60] suggests that events in the power grid are not uniformly distributed
in time, but rather occur in clusters. While not having access to event data, we can analyze
the temporal distribution of THD excursions (values > 99 percentile) for the three sites
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on a signal downsampled a time-resolution of one minute. For each site, there are a total
~2 x 100 samples (minutes). For the 22, 66, and 300 kV sites, we find 34362, 39015, and

22063 min with excursions, respectively.

Figure 9 show a temporal scatterplot of THD excursions as well as the fractal di-
mension D as a function of time-scale s, on the left and right panel respectively. We find
that—irrespective of voltage level—the fractal dimension D depends on the time-scale.

In particular:

1.  Attimescales300s < s < 10° s (a few days), we find D ~ 0.34 < 1 (with slight varia-
tions across voltage levels, but a goodness of fit R ~ 0.99 for each level). This suggest
multi-scale substructure of THD excursions in time. Visually, this is manifested as
clumping of THD excursions (see Figure 9, lower panel). Clusters also vary in size

(duration) and can be decomposed into further (sub-)clusters;

2. Attime-scales > 10° s, we find D ~ 1 (R ~ 0.99). This suggests no (or at least very
little) temporal substructure in the distribution of THD excursions. Visually speaking,
there are long sequences of THD excursions with similar timing (Figure 9, upper

panel). There are only occasional large gaps in time.
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Figure 9. Left panel: Illustration of the temporal distribution of 99 percentile harmonic occurrence
for all three sites spanning one year (top-left-panel) and one week (lower-left-panel). Lower time
resolution in the figure is one minute. Right panel: Result from the application of the box-counting
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algorithm for determining the fractal nature of the distribution of the events in time.

The fractal dimension is essentially a measure of signal roughness. At timescales > 10° s,
our binary signal of THD excursions is fairly smooth (visually, excursion appear equally
spaced in time). Statistical measures will weakly depend on the timescale over which they
are calculated. For example, the mean return interval computed over a period of a weeks, a
months, or years will be similar. At timescales < 10° s, excursions clump together (the signal
is rough) so that statistical measures will strongly depend on the timescale over which they
are calculated. The mean return intervals computed over a few minutes or over a few hours

will be different.

Published works using fractal analysis apply a variety of measures and is therefore
difficult to compare to. For example, refs. [76,77] compute the fractal dimensions of one-
dimensional time-series (of power and current, respectively) to detect the presence of
(artificially induced) events and loads. Closest to our work is [78], which computes the
Hurst exponent H of a (presumably binarized) power fault time-series to determine the

timescales over which faults in transmission (and distribution systems) are correlated.

While D measures local roughness, H measures long-term correlations. (Values
‘H > 0.5 indicate long-term dependencies, while H < 0.5 indicates rapid mean reversion.)
For self-similar (self-affine) processes, D = n+ 1 — H (n = 0 for a binarized time-series), so
that locally defined roughness can be related to long-term correlations [79]. For D = 0.34
and D = 1, we find H = 0.66 and H = 0, respectively. In our case, this means that
long-term correlations are limited to timescales < 10° s. In other words, the autocorrelation
drops off at lags > 10° s and phenomena longer than a few days ago do not influence
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THD excursions. By directly computing H, ref. [78] find H ~ 0.74 (0.78) for transmission
(distribution) system faults over a time period of a few hundred days, indicating that the
power system faults have much longer correlation timescales than THD excursions. (We
have not tested for self-similarity so that any comparison that involves computing H from
D (instead of directly from the signal) should be taken with a grain of salt.)

4. Discussion

In this section, we summarise the discussion of the implications from the findings
observed in the results section above and try to indicate the consequences for the application
of data-driven predictive modelling.

4.1. Regulation on Harmonic Distortion

In Section 3.2, we found that THD and harmonic power remains well below the
Norwegian regulatory requirements of <8% of the RMS voltage on the phase [73]. However,
there is considerable variation across nodes, timescales, and seasons. Methodologies
utilizing harmonics observations must therefore account for these. Variations can be
accounted for implicitly (left to be dealt with by the model) or explicitly (by encoding into
auxiliary features). Implicit processing requires sufficiently complex models (e.g., deep
neural networks) while explicit encoding requires engineering of suitable features (e.g.,
information on time and season, node location, as well as other pertinent node metadata).

4.2. Trends in THD and Harmonic Contributions

In Section 3.2, we found that higher voltage levels have lower THD than lower voltage
levels (Figure 6), but that there is large variation across phases (Figure 5). Additionally,
in Section 3.3, we noted that harmonic channels contribute differently to THD depending
on the node (voltage level) and phase. This strongly suggests that there are site specific
variations that predictive models can exploit. Explicitly exploiting these variations will
require models to be exposed to harmonic information for each phase. As we find very
little THD contribution beyond the 13th harmonic (independent of phase and voltage level),
models are unlikely to benefit from the inclusion of data for higher orders. This is in line
with previous work [80,81].

4.3. Towards Event Prediction

Training and verification of data-driven methods requires a large amount of data to be
efficient. In general, more input data will provide a larger learning basis and better results.
However, any and all additional data should contain new (uncorrelated) information (rather
than redundant information or, even worse, noise). Which data (features) to include is often
motivated by domain-expertise, and feature engineering techniques (where features are
combined or augmented) can be very effective. In [82], for example, we have demonstrated
a procedure to assess the value of adding additional data (or features).

We have found that THD and individual harmonics (across voltage levels, phases, and
seasons) vary considerably. It is therefore unlikely that a generalized model trained on data
from all sites and phases will perform particularly well for a single site and phase. The
potential application of transfer learning techniques can remedy such issues [83]. Transfer
learning applies a two-step training procedure. First, a model is trained on data from all
sites and phases. Second, the model is refined by exposing it to data from a single target site
(and phase). Such an approach is not undertaken in this paper and is left for further works.

4.4. Statistical Robustness and Time-Correlations

In Section 3.5, we have shown that statistical measures (such as the mean return
interval of THD excursions) computed over timescales of a more than a few days tend to be
robust. Conversely, measures computed over shorter timescales depend on the timescale
over which they are computed. Additionally, THD excursions also become uncorrelated if
they are more than a few days apart. Taken together, this suggests that predictive models
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(a) do not need to take into account data more than a few days in the past, and (b) should
include features that explicitly model temporal features such as time since last event.

4.5. Actionable Event Predictions

For predictions to be actionable for power system operators, they must be reliable (few
or no false alarms), accurate (predict actual events), and timely (sufficient forecast horizon
to take action). Actions would aim to mitigate or even avoid the incipient events.

Assuming the first two are met, forecasts on time horizons of a few minutes could
trigger a control room response such as reconfiguring the grid or reducing the load on
critical components. Over longer time horizons (hours), it may be possible to do field
actions such as removing vegetation or wildlife. In some cases, an early warning could also
enable early mobilization of personnel to shorten incident response times.

If systems become sufficiently robust and accurate, actions could be initiated without
a human in the loop. In this case (and assuming sufficient control capabilities), very short
time horizons (milliseconds) may be possible.

5. Conclusions & Future Work

We have presented a statistical analysis of time-series of harmonic components for
three sites in the Norwegian power system. Variations between voltage levels, over different
time periods (hourly, monthly, and seasonally), and between individual harmonics were
quantified. The findings can be condensed into four major points:

1. The distribution of harmonics differs with phases and voltage level (site);

2. There is little power (below the ELSPEC instrument cut-off) beyond the 13th harmonic;
3. There is temporal clumping of events;

4. There is seasonality on different time-scales.

Each of these has an implication for the development of data-driven (machine learning)
models of power system behaviour. In particular:

1. Variations in harmonic power with phase and voltage level suggests that two-step
training procedures akin to transfer learning may be useful. In such a scheme, one
would (i) train a baseline model on data from all nodes and all harmonics, and then
(ii) fine-tune the model to with data from specific sites. This will result in a model
specific to each site;

2. The lack of power beyond the 13th harmonic suggests that including higher-order
harmonics will not increase the predictive power of models;

3.  Clumping suggests that models should include features such as the time-since-last-
event to distinguish between grid states (frequent alarms vs. nominal operations);

4. Seasonality suggests that models should include features such as the hour of the day
or the month of the year.

Strictly speaking, these conclusions are only valid for the set of three sites we have
analyzed. However, Norwegian grid operators have deployed PQA instruments at 49 sites
(with more being rolled out). Most of these have at least a few years worth of measurements
(and some more than a decade). Future work should therefore focus on adapting and scaling
the analysis to (a) include more sites, (b) account for grid topology (and switching), as well
as (c) explicitly account for local production and consumption profiles. Additionally, the
statistical properties of voltages, currents, and power should be included to generalize the
work even further. An early draft of this work included a preliminary statistical analysis of
cycle-by-cycle RMS voltage, but we were forced to drop it due to resource constraints.

A separate thread of work should focus on applying these lessons to the development
of predictive models. The development of predictive (machine learning) models comes
with its own set of challenges and choices—the inclusion of which we deemed to have
gone beyond the scope of this contribution.
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The following abbreviations are used in this manuscript:

PQSCADA  Name of the Power Quality Management Software

TSO Transmission System Operator
DSO Distribution System Operator
PQA Power Quality Analyzer
THD Total Harmonic Distortion
CDF Cummulative Distribution Function
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PQ Power Quality
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Abstract: In industry, electric motors such as the squirrel cage induction motor (SCIM) generate
motive power and are particularly popular due to their low acquisition cost, strength, and robustness.
Along with these benefits, they have minimal maintenance costs and can run for extended periods
before requiring repair and/or maintenance. Early fault detection in SCIMs, especially at low-load
conditions, further helps minimize maintenance costs and mitigate abrupt equipment failure when
loading is increased. Recent research on these devices is focused on fault/failure diagnostics with the
aim of reducing downtime, minimizing costs, and increasing utility and productivity. Data-driven
predictive maintenance offers a reliable avenue for intelligent monitoring whereby signals generated
by the equipment are harnessed for fault detection and isolation (FDI). Particularly, motor current
signature analysis (MCSA) provides a reliable avenue for extracting and/or exploiting discriminant
information from signals for FDI and/or fault diagnosis. This study presents a fault diagnostic
framework that exploits underlying spectral characteristics following MCSA and intelligent clas-
sification for fault diagnosis based on extracted spectral features. Results show that the extracted
features reflect induction motor fault conditions with significant diagnostic performance (minimal
false alarm rate) from intelligent models, out of which the random forest (RF) classifier was the most
accurate, with an accuracy of 79.25%. Further assessment of the models showed that RF had the
highest computational cost of 3.66 s, while NBC had the lowest at 0.003 s. Other significant empirical
assessments were conducted, and the results support the validity of the proposed FDI technique.

Keywords: machine learning; peak detection; fault diagnosis; frequency domain; low-load condition

1. Introduction

SCIMs are used to power most industrial appliances because of their robust nature and
ability to generate sufficient torque to effectively drive much larger machinery at an afford-
able cost through the process of electromagnetic induction. Injection sea water pumps, air
conditioner compressor drives, gas circulators in power generating firms, and oil exporting
pumps in the oil and gas drilling industries are only a few of the well-known applications of
SCIMs [1]. SCIMs are often prone to failures and breakdowns as a result of faults and
prolonged operation, and, if left unmonitored, often suffer major damage or breakdowns.
According to a review done by Bhowmik et al. [2], severe operating environments, insuffi-
cient insulation, purposely overloading the power supply, and factory defects are the most
typical causes of breakdowns and failure. The production down-times caused by these
flaws have frequently resulted in revenue loss, among other pitfalls. Therefore, early fault
detection is important/crucial to avoid these occurrences [1]. The consequences of these
failures have increased the need for SCIM failure diagnosis as a crucial module for overall
equipment prognostics and health management (PHM).

State-of-the-art research studies on SCIM FDI and prognostics feature data-driven
PHM technologies, with research ongoing; these studies show that data-driven Al-based
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PHM technologies rely heavily on the quantity and quality of data to train Al-based
predictive modeling [1,3]. However, the accuracy of these models is also dependent
on how suitable the method befits the nature of the available data, which has led to
various studies exploring numerous data-driven PHM methodologies. Researchers have
used advances in artificial intelligence (Al), machine learning (ML), and deep learning
to construct models that exploit current signals, vibration signals, and thermal signals
generated by equipment via sensors, examining these signals separately or combining
them for FDI [1,4,5]. Fourier analysis has proven to be effective among the different
ways of analysis owing to its convenience and nature of application, especially when it
comes to current signature analysis and/or vibration signature analysis (VSA) [5]. Fourier
transforms (FTs) are essentially concerned with the decomposition of signals from their
time domain to their frequency domain for analysis in both healthy and faulty motors,
providing a superior platform for signal interpretation and feature extraction for FDI [3,6].
Even though it can decompose signals to their frequency domains, a FT still has limitations,
such as its lack of transient information and its nature of providing only the average time of
the spectrum content, thereby lacking in providing details on variations in frequency with
regard to time of the signals [7]. Fast Fourier transforms with high computation speed and
short-time Fourier transforms that decompose data into the time-frequency domain are
frequently used to solve these challenges [7,8]. Further, according to [9], Fourier analysis is
one of the highly efficient analytical tools that is compatible with MCSA for a variety of
fault detection for SCIMs.

Although variable frequency drives (VFDs) have recently become more popular in
industries than direct online starters due to their ability to provide flexible production
control and soft motor start-up, variable frequencies, complex control systems, and harmon-
ics generated at the drive output are still some of the major concerns they are associated
with [10]. Harmonics generated by VFDs pose a significant problem for motor bearings
and stator windings since they raise their level of stress. Moreover, they have an impact
on signal quality in terms of noise ratio, particularly when using stator current signals for
FDI [5,10].

2. Motivation and Literature Review

As dependency on SCIMs by industries is on the increase due to their robust nature,
failures of these machines cannot be accommodated; therefore, the need to find solutions to
these failures or to predict possible failure time cannot be overemphasized. Globally, close
to 90% of industrial equipment relies on SCIMs as their prime mover [11]. According to
Choudhary et al. [1], faults in SCIMs are categorized based on the location of occurrence,
i.e., internal or external, and these faults are then grouped based on the nature and/or
origin of the fault, i.e., mechanical or electrical faults; the severity of each fault type depends
on its location. For instance, an external electrical fault is less threatening than an internal
electrical issue, but if left unmonitored, it can escalate to an internal electrical fault, which
can lead to a total breakdown.

Bearing and stator faults account for more than 70% of general failures in SCIMs [12].
According to an investigative report, bearing failure, unsurprisingly, has the highest per-
centage of occurrence in an SCIM (40-45% contribution) [1], which can be traced to the
nature of SCIMs, whose bearings are susceptible to damage when overloaded, misaligned,
and/or unbalanced. Moreover, the bearings are subjected to continuous loading at all times
when the SCIM is in operation. Stator failures are common as well, owing to large current
flows in their winding coils and insulation weakness caused by mechanical and electrical
stress and/or deterioration of insulation. The most common defect in a stator is an inter-
turn fault, which happens when two turns in a phase become linked as a result of failed
insulation and, if left unchecked, can lead to phase damage or more serious stator failures,
resulting in substantial maintenance costs [13]. Although not as common as stator and
bearing problems, rotor faults are one of the most commonly occurring faults, accounting
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for over 8% of all SCIM faults [1], and can lead to poor performance and/or breakdown of
the motor if left unmonitored.

For adequate FD], signals generated from these machines are employed for condition-
based monitoring, which has proven to be useful in past and present research studies [5,14,15].
Based on the nature of SCIMs, which generate vibration and thermal responses while
in operation, vibration signals have been one of the most-used measurements thus far
due to their efficiency in both time and frequency domains [16]. On the flip side, due to
the simplicity, low cost, and non-intrusive nature of obtaining current signals, MCSA has
become very popular in recent times. This can be linked to the unique current signatures
from the IM’s supply [5,15]. Due to the effectiveness/efficiency of this approach, MCSA
has been effectively employed in both stator and rotor monitoring [1,11]. Furthermore,
MCSA has also proven to be effective and compatible with Fourier analysis for discriminant
feature extraction for critical FDI [6,8,12,14,17].

In the literature, various studies have been presented for fault diagnosis frameworks
and classifications that exploit MCSA and spectral features extracted based on Fourier
series transformations of signals from their time to frequency domains. For instance, in [15],
the authors used both MCSA and FFT under different conditions. Two faults were consid-
ered in the study to evaluate their proposed algorithm using stationary and non-stationary
signals. Studies presented in [5,14] employed MCSA for SCIM fault detection in broken
rotor bars. In their methodologies, spectral features obtained from applying FFT analysis to
MCSA were applied to independent component analysis (ICA) for improved performance;
the extracted features were labeled FFT-ICA and were proven to contain a wealth of in-
formation for FDI with good outcomes when used for online fault detection. In [18], the
authors capitalized on the effectiveness of current FDI monitoring. Their proposed method-
ology used an FFT algorithm to interpret current signals for reliable anomaly detection in
the IM. The authors also used advanced signal processing techniques in their proposed
method for critical FDI at the bearing and rotor bar of SCIMs to improve the interpretation
of current signals. Duc Nguyen et al. [6], trained features extracted from the FFT spectrum
of raw current signals using a machine learning algorithm. According to their research,
their methodology presents a low-cost, accurate, and robust FDI instrument for SCIMs that
uses only current signals and is also applicable to real-world data. In [17], the authors used
a novel methodology that combined two techniques, wavelet and power-spectral-density
(PSD), to analyze the FFT spectrum of MCSA. The technique’s effectiveness was been
demonstrated in diagnosing short turns and broken rotor bars in non-constant-load-torque
SCIM applications, just as it does in constant-load-torque motor applications. In [8], Yoo
proposed a fault detection algorithm for SCIMs using FFT and PCA. He employed FFT to
analyze induction motor current in the frequency domain for fault-characteristic spectral
components and used PCA for easy extraction of features from the available components.

In reality, SCIMs and induction motors are often operated under varying loads. It is
not recommended to meet/exceed the motor’s maximum loading specification; however,
production demands may sometimes require increased loading. These situations often
induce stress and/or faults in motors, which may gradually evolve into failures [19].
On the flip side, SCIMs also experience faults that are humanly undetectable under low-
load conditions [20]. At low-load conditions, SCIMs often do not generate noise and/or
observable fault symptoms, which makes operation riskier since abrupt failures may occur,
leading to interrupted production and/or accidents. This rationale makes it necessary to
develop intelligent monitoring for early fault detection in SCIMs at low-load conditions.
Bessam et al. [20] exploited the Hilbert transform (HT) and a neural network for broken
rotor bar intelligent diagnosis in induction machines at low load. Beyond the efficiencies
and limitations of their stand-alone HT-based diagnostic technique, other signal processing
techniques could be integrated for comprehensive fault diagnostic efficiencies. For instance,
Das et al. used an extended Park’s vector approach in conjunction with FFT, DWT, and PSD
to process and extract features from current signals for distinguishing induction motor inter-
turn stator winding faults from unstable supply voltage conditions [21]. The coefficient of
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the major peak observed in FFT was used in their methodology to indicate fault severity and
load level in the IM. Hussain et al. [22] proposed a method for implementing and analyzing
current signatures from a three-phase SCIM using a combination of three signal processing
techniques: FFT, short-time Fourier transform, and continuous wavelet transform. Their
method demonstrated that MCSA can detect changes in frequency components by obtaining
the FFT-based spectrum that contains the initial information about the fault. In [23],
the authors demonstrated the non-intrusive nature and simplicity of MCSA. They presented
a methodology for detecting faults in an SCIM’s stator winding using external flux sensors
on a three-phase SCIM. The sensors were placed on the outside of the motor’s body in the
X,Y, and Z directions so as not to interfere with the motor’s operation. FFT analysis of the
stator currents revealed a short circuit fault in the SCIM stator winding.

For all these successful case studies, one major take-home is the high efficiency of FTs
for MCSA and its robustness for isolating fault frequencies on frequency bands in varying
magnitudes. This provides a reliable avenue for harnessing the information provided by
frequency-magnitude coordinates as representative features for discriminate modeling
for FDI. Peak detection offers a cost-effective diagnostic feature-extraction alternative
to spectral frequency-domain extraction and was employed in our study. Its diagnostic
efficiency has been recorded in [19,24]. According to Jena and Panigrahi [19], peak detection
was one of the techniques employed for fault localization in an automatic gear and bearing
using vibration and acoustic signals. In their study, peak detection was one of their
proposed filtering techniques, which aimed to unify the approach for both acoustic and
vibration signals for enabling fault detection. Further, in [24], using peak detection as
one of their techniques, the authors proposed a methodology for distinguishing bearing
fault signals from masking signals emitted by drive-train elements. Peaks in the frequency
spectrum were used as a discriminating technique for fault classification and separation in
their proposed model. In our quest to develop an FT-MCSA-based diagnostic framework
for SCIMs, this study makes the following contributions:

* A proposal for a three-phase MCSA-based peak detection approach for diagnostic
feature extraction. The proposed feature extraction method extracts the coordinates
of the highest peaks from the FFT, PSD, and autocorrelation function (ACF) spectra
as features.

* An extensive comparison of ML-based diagnostic models to provide a generalization
paradigm for SCIM diagnosis.

* A computational cost assessment of ML-based diagnostic models is presented, and
empirical assessments is conducted for improved diagnostic assessment of the models.

The rest of the paper is structured thus: Section 3 presents the theoretical background
of the key modules of our proposed study, while Section 4 presents an overview of the
proposed MCSA-based diagnostic method. Section 5 presents the experimental study on a
physical case study, while Sections 6 and 7 conclude the study.

3. Theoretical Background

In this section, the theoretical background of MCSA induction motor condition mon-
itoring, frequency domain feature extraction, and ML-based diagnostic models for fault
detection and isolation are discussed.

3.1. Review of Current Signature Analysis Methods

MCSA has recently become one of the most popular methods for fault detection in
induction motors, owing to its rich spectrum contents and non-intrusive nature of accessing
machines. MCSA exploits the current in the supply phases of the SCIM, which often
contains little transient and spectral characteristics. The generated current signatures leave
little room for proper interpretation of the underlying harmonics generated by the SCIM
during operation, which has been a significant challenge for MCSA. Spectral decomposition
of these signals, on the other hand, provides a more reliable avenue for understanding
system dynamics due to its robustness for representing signatures in representative spectra
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bands [25]. The signatures typically present a rationale for distinguishing between healthy
and faulty states of the machine being monitored because variations in loading of an SCIM
are often reflected in the spectral bands. When faults occur in components, they cause a
magnetic field anomaly in the regular mutual and self-inductance of the motor, resulting in
sidebands across the line frequency [26].

Since motor faults change the harmonic content of the supply current, several meth-
ods have been used to aid in the pre-processing stage for feature extraction from mea-
sured current signals for adequate comparison between current signatures to detect motor
fault signatures. These methods are fundamentally Fourier-based, and they include: fast
Fourier transform (FFT), discrete Fourier transform (FDT), mel frequency cepstral coeffi-
cient (MFCC), short-time Fourier transform (STFT), wavelet transform, empirical mode
decomposition, variable mode decomposition, etc. These popular methods are quite unique
in their efficiencies and have been reported in several studies [7,27-30]. Traditional DFT and
FFT discretize signals by representing the signal as different sinusoidal wave components,
providing a strong foundation for most other advanced discretization methods. On the
bright side, PSD offers an even more-reliable alternative to FFT due to its comparatively
higher sensitivity to spectral changes in a signal. PSD computes the energy densities of the
constituent frequencies, thereby exaggerating relevance for high-energy signal components
while suppressing the effects of lower-energy constituents [27]; however, its limitations for
transient signal representation remains a major challenge [7]. These inherent challenges
motivated the development of STFT, which provides time-frequency resolution of a signal
by taking the Fourier transform of the signal within a time window function; however,
the optimal choice of window function remains its major challenge [7].

In contrast to Fourier-based transforms, wavelet transform represents signals as
wavelet-series: a representation of a square integral function by a wavelet-created or-
thogonal series [28,30]. Due to its unique nature, the wavelet transform has been one of the
most widely used signal representation method transforms for decades and is broadly used
for discretization (discrete wavelet transform) and for transient-spectral representations
(continuous wavelet transform); however, the choice of mother wavelet remains an ex-
haustive challenge for its optimal use and remains an open area of continued research [28].
Interestingly, numerous improvements have been made on existing methods as well as
novel ideas offered over the years, including variational mode decomposition (VMD)—a
relatively new signal processing technique that can be used to easily decompose signals
into their various band-limited intrinsic mode functions. Technically, VMD is an improved
version of the wavelet transform and Hilbert Huang transforms that is noise sensitive
and devoid of the modal merging effect [29,31]. Though these methods are unique in
their efficiencies (and deficiencies) for diverse purposes, their use for diagnosis is often
motivated by the discriminative representations they provide from input signals, which
form a feature set for diagnosis.

3.2. Review of ML-Based Classification Algorithms

As previously stated, recent Al advancements have aided in the improvement of ML
and deep learning models for effective FDI, which typically involves relying on intelligent
models for improved FDI at a minimal false alarm rate even amid uncertainties. Even
though the efficiencies of these methodologies have been reported in numerous studies,
there are still underlying challenges associated with their use, such as computational cost
and their tendency to deviate from core engineering concepts, which makes them some-
times irrelevant for cost-conscious industrial applications, as presented in this study [32].
Traditional ML algorithms, on the other hand, offer a more cost-effective and dependable
platform for adequate FDI because their efficiency is rarely affected by data availabil-
ity [32,33]. The effectiveness of FDI algorithms is highly dependent on the nature of the
discriminative content of the input signal of the device under monitoring; thus, significant
discriminative feature extraction from raw signals is critical [30]. As a result, this study was
motivated to investigate various ML algorithms and their efficacy on current-based fault
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detection after peak-detection-based feature extraction. As a result, in this study, a handful
of popular ML-based classifiers are presented and discussed to present their theoretical
background for FDI.

DT is one of the most common, cost-efficient, and reliable known ML algorithms
that has been effectively employed for both regression and classification problems. DT
is an algorithm that uses a tree-like structure of decision-making rules to classify input
data into subsets and to make predictions based on this classification [34,35]. Its two main
advantages are its ease of use and its ability to present solutions with various outputs [35].
However, this model is prone to over-fitting and under-fitting, which can be overcome
with pruning. Again, even with proper pruning, a perfect solution to the problem is not
guaranteed [30]. Random forest (RF), on the other hand, mitigates the major challenges of
DT by establishing a great number of decision trees at the same instance [30]. RF passes
the presented sample through its various structures with different classifiers, computing
and storing the output of each tree, which it further compares with single outputs of the
popular trees to derive the final classifiers. By simply changing its key parameters, this
model eliminates the major problem of DT [30]. One of the well-known disadvantages of
RF is its complexity, which can result in high computational cost [36]. Booster algorithms
such as Adaboost classifier (ABC), gradient boosting classifier (GBC), and XG boost (XGB)
have been used to improve the efficiency and predictive accuracy of weak classifiers such
as DT, regressors, and so on. These boosters are ensemble learning algorithms that combine
weak learners to produce strong learners by minimizing their training errors [36]. However,
these boosters have their challenges, which provides justification for further development
of other algorithms to address such issues. For example, as more trees are added to their
structure, these models are prone to over-fitting. However, in comparison, each booster
presents a distinctive advantage over the other. GBC outperforms ABC in terms of accuracy
due to its immense flexibility, which allows the algorithm as many differentiable and convex
loss functions as possible [36]. On the other hand, XGB's scalability presents a structure
that achieves algorithmic optimization, distinguishing it from the other boosters [37].

Interestingly, some ML algorithms make their predictions based on the assumption
of a set of particular mathematical sequences or theories. For instance, k-nearest neighbor
(KNN) is predicated on the assumption that any group of data with similar features will
have similar feature values [38]. As a result, KNN performs better in cases where the
datasets are evenly distributed; however, in cases where the datasets differ slightly, the ac-
curacy of KNN may be affected [30]. On the plus side, normalization is critical in ensuring
even representation of all feature values when feeding datasets to KNN for improved
performance. Naive Bayes classifier (NBC) is a popular type of theorem-based learner;
it is based on Bayes’ theorem, which defines the relationship between two conditional
probabilities of a specific event based on available prior information about the event under
consideration [39]. NBC is a better classifier than other models whose principles are also
based on Bayes’ theorem because it presents a simpler model with a simpler computational
procedure [30].

Overall, the accuracy of ML algorithms has improved over the years, as many algo-
rithms employ techniques that would readily predict complex datasets to give an outstand-
ing result—SVM is a unique ML algorithm that employs a hyper-plane to create its decision
boundary using support vectors. It provides space for the user to define gamma parameters
for decision boundaries, and its performance is based on: the distance of the sample on
either side can change influence; its regularization parameter determines the distance
between the decision boundary and separation; its various kernels (for nonlinear bound-
aries), radial-based function (RBF), and so on [40]. SVMs are known to be computationally
efficient; however, as the parameter values increase, the computational speed significantly
drops [30], which is a major drawback for its use on large datasets. Amongst ML-based
learners, multi-layer perception (MLP) has a relatively high predictive accuracy compared
to other methods. MLP is a feed-forward neural network (FENN) with three structures by
default: input, hidden, and output layers [41]. It is very efficient for both supervised and
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unsupervised situations due to its architecture, learning sequence, and flexibility, making it
ideal for classification [30,41]. MLP’s difficulty in implementation and interpretation are
some of its significant drawbacks [41].

4. Proposed System Model

The proposed MCSA-based diagnostic framework for three-phase induction motors
fundamentally features a Fourier-based peak detection module for discriminative feature
extraction, interpreted by ML-based classifiers for diagnosis. Figure 1 shows the proposed
diagnostic framework.

PEAK

INPUT DETECTION ML-BASED

DIAGNOSTICS

*{ CONCATENATE H NORMALIZE

B -l

Current Signals
(Phase 1,2,3)

Train

Evaluate FDI
Performance

Figure 1. Proposed diagnostic model.

As shown, the model receives current signals from the three phases of the induction
motor, which are simultaneously processed via FFT, PSD, and ACF for peak-based fea-
ture extraction. The Fourier transform (and its variants) is named after Joseph Fourier
(21 March 1768-16 May 1830), and it serves as the foundation for most frequency-domain
signal processing techniques. As previously stated, FFT and PSD provide a spectral rep-
resentation of the constituent periodic components in the current signatures and can be
exploited for accurate condition monitoring. In addition, ACF provides the degree of
similarity between a discrete signal and its delayed copy as a function of the delay 7
between them.

Feature extraction from FFT, PSD, and ACF exploits peak coordinates (f;, m;) from
FTIT and PSD spectra and (7;, m;) from ACF such that for the first [ tallest peaks in each
of the three functions, their coordinates are concatenated to form the feature set. These
labeled features are then received as input by the ML-based classifiers for discriminative
modeling, validation, testing, and performance evaluation using standard classification
performance evaluation metrics. The subsections below summarize the core modules of
the proposed diagnostic framework.

4.1. Fourier-Based Peak Detection for Feature Extraction

Digital signal processing (DSP) has been a reliable condition monitoring paradigm in a
variety of applications for decades. Particularly for induction motors, current signatures are
often stationary with different periodic components that are affected by changing operating
conditions. Most signals are composed of complex synthesis of sine and cosine functions
under relaxable assumptions, which provides a reliable avenue for FFT to flourish.

Different parameters can be extracted from the spectra to make the necessary dis-
criminative inferences for diagnosis. Often, there is a change in magnitude of the spectral
components as the operating conditions of the induction motor change, and this presents
an opportunity to exploit spectral peaks and their coordinate frequency values as represen-
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tative features. Given a time-recorded signal (one-dimensional digitized current signal)
f(x) = {x1,x2,...,xp}, the Fourier transform of f(x) is traditionally denoted F(k) and is
computed using Equation (1):

2mmk

F(k):/_o;f(x)e_j( N )dx,OSmSN 1)

where f(x) is the input signal, k is the length of the transform, and F (k) is the corresponding
frequency-domain output of the signal.

PSD exaggerates the impact of high-energy components while reducing it for lower-
energy components by computing the energy densities of the constituent frequencies.
Mathematically, PSD generates a spectrum by squaring the magnitude of the FFT outputs
from Equation (1), and is obtained using Equation (2):

PS(k) = |F(k)|? @)

where PS(K) is the PSD-domain output from the FFT of the signal.

High autocorrelation (a maximum of 1) implies high similarity between the signal and
its delayed component, while the reverse is the case if autocorrelation is close to zero. ACF
can be computed via a convolution theorem using Equation (3):

i=N-1

y(t) = ) f(xi)f(xi—7)=iFFT(F(k)F(k)") ®)

i=0

where * means complex conjugation and iFFT is the inverse FFT.

Feature extraction from FFT, PSD, and ACF exploits peak coordinates such that for the
first | tallest peaks in each of these three functions, their coordinates are concatenated to
form the feature set:

A = {{ky, F(k)1, k1, PS(k)1, 7, y(11)], k2, F(k)2, ka, PS(K)2, T2, y(w2)], - - [k, F(K) s Kty PS (), Ty y (Ta)] -

4.2. Discriminative Performance Evaluation Metrics

Because every ML model is unique to its architecture, it becomes necessary to ex-
haustively explore each model’s prowess for diagnostics while also considering other
factors such as model complexity, computational costs, parametirization, etc. This presents
the need to employ standardized diagnostic/discriminative performance evaluation met-
rics. These metrics include accuracy, sensitivity, precision, F1-score, and false alarm rate
(FAR) [40]. These criteria are defined, respectively, as (4)—(8).

Accuray = 75 p iPTN TFN @)
Sensitivity = TPZ—% ©)
Precision = %—EFP (6)

FAR = Fpiipm ®)

where TP, FP, TN, and FN, respectively, are the number of correctly classified classes,
number of incorrectly classified classes, number of incorrectly labeled samples belonging
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to a class that were correctly classified, and the number of incorrectly labeled samples
belonging to a class that were incorrectly classified.

Although these metrics provide a global perspective for evaluating model classification
performance, it may become necessary to evaluate each model’s class-specific performance
to ensure a more comprehensive performance assessment. For instance, a classifier may
return an overall classification accuracy of 90% over a five-class problem set. This high
accuracy may emanate from the model’s strengths for correctly classifying three out of the
five classes, whereas it may flaw on the remaining two classes. On the contrary, another
model may return the same level of accuracy but its class-specific classification performance
may be fairly uniform for each class; hence it would be more reliable than the previous
model. This is usually the case, and presents the need for the confusion matrix, which
provides an avenue for evaluating each model’s class-specific diagnostic performance.

5. Experimental Study

This study proposes an MCSA-based diagnostic framework, which was employed
on a physical testbed at the Defense Reliability Laboratory, Kumoh National Institute of
Technology, Korea. The testbed consists of different four-pole, 0.25 hp, three-phase squirrel
cage (delta connection) induction motors operating at different operating conditions, as
summarized in Table 1.

Table 1. The different fault conditions of induction motors used in the experiment.

Label Failure Mode Description

ARM-1 Rotor misalignment A condition where the center lines of coupled shafts do not coincide.
BRB-2 Broken rotor bar A stress-induced condition whereby the rotor break and/or cracks
ISC-3 Inter-turn short circuit winding A condition whereby two coils in a phase connect with each other
NOM-4 Normal operating condition No fault condition

Three-phase induction motors are often exposed to different failure modes that em-
anate from sources ranging from environmental, thermal, electrical, and other factors.
However, some failure modes are more critical than others, and they are prioritized in this
study. Misalignment in a motor drive system is severe and the most frequently occurring
condition in motor driven systems and may present itself in the form of angular, paral-
lel/ offset and /or a combination of parallel and angular misalignment [42]. In reality, it may
be highly impossible to experience a single type of misalignment in absolute absence of the
other. Often, even an acceptably aligned rotor has some level of a combination of angular
and parallel misalignment (though insignificant). On the other hand, another frequently
occurring (and critical) failure in induction motors is a broken rotor bar, which often occurs
due to mechanical stresses emanating from variable operating conditions [43]. In addition,
inter-turn short circuit winding is yet another critical and highly severe failure mode that
often results in complete motor breakdown if undetected. This failure occurs as a result
of aging and thermal stress to the insulator separating some turns in a particular phase of
the motor [1,13,44]. Consequently, our study prioritizes these three critical failure modes,
which were replicated on the testbed shown in Figure 2.
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Figure 2. A pictorial view of the experimental setup.

The induction motors were loaded via a DC loading mechanism—a DC power supply
was connected to the driven motor to induce a magnetic field between its rotor and stator,
which causes resistance in the driver, resulting in a low-load condition. The motors were
operated at a constant speed of approximately 1780 RPM (30 Hz), while data were collected
via the driver’s terminals using a NI 9246 module connected to a cDAQ-9178 connected
to a desktop computer, as shown in Figure 2 above. The digital current signals were
collected via a LabVIEW interface and stored in .csv format at a sampling rate of 50 Hz;
the spectral resolution of the signals was 0.0003 Hz. Figure 3 shows the manually induced
fault conditions to replicate rotor misalignment (ARM-1), a broken rotor bar (BRB-2),
and inter-turn short circuit winding (ISC-3) failure modes for the experiment.

(a) (b)

WSS

N

Driver

Figure 3. Fault conditions to replicate for the failure modes: (a) rotor misalignment, (b) broken rotor
bar, and (c) inter-turn short circuit winding.

ARM-1 was achieved by first aligning the motors (driver and driven) using a precision
laser alignment kit, and then to misaligned them by 0.3 mm for both parallel and angular
misalignment. BRB-2 was imitated by drilling two holes of diameter 5 mm to a depth
of 5 mm. ISC-3 was imitated by bridging seven (7) coils in the same phase. For control,
a motor with no fault/failure mode (NOM-4) was also employed.

5.1. Signal Processing for Feature Extraction

Current data were collected from the three-phases of the motors at the different
operating conditions and cleaned. Figure 4 shows a visualization of the current signals
collected from the induction motors at the different operating conditions, with red, blue,
and green representing phases 1, 2, and 3, respectively.
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Figure 4. Current signals collected from the induction motors: (a) ARM-1, (b) BRB-2, (c) ISC-3, and

(d) NOM-4.

As shown, the signals reveal some similarity in waveforms across the different op-
erating conditions apart from the phase 2 signal (in blue) of Figure 4c, whose maximum
amplitude is about 2 amperes while the rest have a magnitude of 1 ampere. Next, the sig-
nals were processed for feature extraction using the method proposed in Section 4. Figure 5
shows the respective FFT, PSD, and ACF visualizations of the signals under the different

operating conditions.

As shown in Figure 5a,b, the FFT and PSD for each of the different operating conditions
uniquely reflect different spectral bands of different magnitudes and frequency ranges,
whereby PSD is more sensitive for the 1SC-3 condition for phase 2 signals. In addition,
the ACF results in Figure 5¢ reveals differing ACF amplitudes over the time delay for each
of the phases. These were concatenated to form the feature set for discriminative modeling
for diagnosis. To develop the feature set, the proposed peak detection algorithm extracted
the ten (10) tallest peaks from the FFT, PSD, and ACF spectra, respectively, from each of the
current signals collected from the different operating conditions.
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Figure 5. Phase current signal spectra for different fault conditions: (a) FFT (b) PSD, and (c) ACFE.

5.2. Feature Evaluation

Ideally, the efficiency of traditional ML-based classifiers for diagnosis relies on the
discriminative power of the input features. Interestingly, Spearman’s correlation provides
a reliable avenue for evaluating the discrimnance amongst the features extracted from
each of the operating conditions. This tool measures the linear dependence between two
continuous variables and returns a value in the range of -1 (negative correlation) and
+1 (positive correlation). Apart from serving as an easy-to-use feature selection tool, it
fundamentally provides a hint of the level of dsiscriminance between/amongst features,
whereby a high positive and/or negative correlation implies poor discriminance in the
features and vice versa. Sometimes, it is also desirable to visually assess the features for
discrimnance. This is often supported by dimensionality reduction tools such as princi-
pal component analysis (PCA), locally linear embedding (LLE), independent component
analysis (ICA), etc. These algorithms fundamentally reduce the dimensions of a feature
set and have been employed for numerous purposes, including feature selection, feature
reduction, health index construction, etc., and are unique in their individual architectures.
For ease-of-use and familiarity in the domain, LLE was employed for reducing the features
to a three-dimensional vector for visualizing their discriminative potentials. Accordingly,
Figure 6 shows the feature assessment results.
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Figure 6. Feature evaluation results: (a) correlation heatmap between features, (b) probability density
plot of the features, and (c) LLE-assisted discriminative property assessment.

Figure 6a shows the Spearman’s correlation heatmap of the peak features extracted
from motor current signals. Overall, the feature set, which formed a 180-dimensional
feature matrix, is mostly uncorrelated, with correlation values normally distributed with a
mean of zero, as shown in Figure 6b. This hints that the features are not correlated and are,
hence, very useful for discriminative modeling. Further assessment of the features using
the LLE-based feature visualization tool shows in Figure 6c¢ that the dissimilarity between
respective feature clusters per operating condition. They are reasonably isolated in space,
as shown in the dark blue, light blue, yellow, and red circles corresponding to the ARM-1,
BRB-2, ISC-3, and NOM-4 conditions, respectively.

5.3. MLL-Based Diagnosis

Empirically, the feature extraction and evaluation processes described in the previous
subsections provide the platform upon which traditional ML-based classifiers are deployed
for fault classification. Practically, each ML-based classifier is unique in its architecture
and learning principle, and this often poses a concern when choosing the most appropriate
model for practical use. In addition, their respective cons and computational costs also pose
valid concerns during decision making. Consequently, we explore (as much as possible)
many popular traditional ML-based classifiers in our study. The classifiers summarized in
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Table 2 were employed for training (using the training feature set) and testing (using the
test feature set).

Table 2. Classifiers and their respective architecture.

Algorithm Parameter Value
Logistic regression (LR) regularization L1
Adaboost classifier (ABC) n estimators, learning rate 50, 0.1
Naive Bayes classifier (NBC) Gaussian -
k-nearest neighbor (KNN) k 5
Gaussian process classifier (GPC) kernel RBF
Random forest (RF) n estimators 120
Gradient boosting classifier (GBC) n estimators 1000
Decision tree (DT) pruning 12
Multi-layer perceptron (MLP) classifier n layers, learning rate 3,0.001
Linear SVM kernel linear
Gaussian SVM C, gamma 10,1
Quadratic discriminant analysis (QDA) regularization 0.001

For optimal efficiency, each algorithm has its own set of parameters and architecture,
as shown in Table 2. Exhaustive parameter tuning optimized parameters for each algorithm,
which are recorded in Table 2. Figure 7 illustrates the accuracy, precision, recall, and F1-
scores resulting from ten-fold cross-validation of the algorithms on the test data.
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Figure 7. Global performance evaluation of the classifiers on the test data.

In general terms, accuracy measures a model’s ability to predict classes correctly and
is represented in Figure 7 in green circles. F-1 (represented by yellow squares with blue
dotted lines) is calculated by taking the average of precision and recall, which determines
the proportion of true predictions the model makes among all actual predictions. Precision
determines the percentage of classes that are true and is represented by black triangles,
while recall determines the percentage of predicted cases that are actually true and is
represented by red stars. As observed, RF is the highest performing classifier, with a test
accuracy of 79.25%. This is followed by NBC, QDA, and GBC, whose test accuracies are
73%, 71.4%, and 70.25%, respectively. On the downside, GPC and Gaussian SVM were the
worst performing, with test accuracies of 26.55% and 25%, respectively, while the rest of
the classifiers ranged between 40% and 62%.

It can be observed that the training scores of all the classifiers (except ABC) on the
training data are almost 100%; however, their test performances are not as optimal as
anticipated. This hints at the superiority of some classifiers over others. Interestingly,
RF remains one of the most reliable ML-based classifiers and has been shown to be the
most accurate in the proposed case study. From a different perspective, assessing the
computational cost of the classifiers provides a further avenue for assessing their suitability
for practical use, especially in cost-sensitive situations where computational power is a
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concern. Table 3 summarizes the computational costs (in seconds) of the classifiers for
training and testing.

Table 3. Computational costs of training and testing process.

Classifier LR ABC NBC kNN GPC RF GBC DT mLp  OVM- SVM- QDA
Lin RBF
Cost
60 810 3 1 5030 3660 31210 72 0.71 51 370 17
(mSecs)

Table 3 reveals that the most accurate classifier, RF, takes approximately 3660 mil-
liseconds (3.66 s), whereas the second most accurate took much less than 1 s for the same
process, yet returned a reliable test accuracy. However, its efficiency is limited to the
underlying assumption that the input data distribution is Gaussian—which is not often the
case for real-life applications. On the high side, GBC revealed itself as a greedy algorithm,
as shown by its high computational cost of 31,210 milliseconds (31.2 s); yet it ranks third in
the test comparative assessment. This is followed by GPC (whose cost is 5030 milliseconds),
which is costlier than RF but still the second least accurate on the test data. Based on
the comparison, a choice of classifier can be made according to the metric being assessed.
Typically, computational speed is highly considered in most real-world scenarios, but not
at the expense of predictive efficiency. Considering such circumstances, NBC may be
preferred, since it offers both low computational cost and significantly high test accuracy.
However, RF is an appropriate choice when there is abundant computing power available
or when accuracy is critical.

Digging deeper into the algorithms, we assessed the class-specific predictive perfor-
mance of the classifiers using the traditional confusion matrix, which reveals the probability
of correct predictions of a classifier for each of the classes of interest, i.e., operating condi-
tions. Figure 8 illustrates the confusion matrix resulting from ten-fold cross-validation of
the algorithms based on the test data.
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Figure 8. Confusion matrix on test data: (a) LR, (b) ABC, (c) NBC, (d) kNN, (e) GPC, (f) RF, (g) GBC,
(h) DT, (i) MLP, (j) Linear SVM, (k) Gaussian SVM, and (1) QDA.

Close examination of Figure 8 reveals that GPC and Gaussian SVM returned the
highest false positives (FP) per class (except NOM-4), as shown in Figure 8e, k. However,
class-specific efficacy in prediction for RF (see Figure 8f) is observed in its high true positive
values (across the diagonal). Unfortunately, the false-alarm rate for ISC-3 is observed in
the 72.6% false negative to BRB-2. This implies that the model mostly recognizes data
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belonging to ISC-3 as belonging to BRB-2, and this reveals itself as a major limitation of
our study.

6. Discussion, Open Issues, and Future Work

Despite the robustness and low cost of maintenance for extended use of SCIMs [1],
the increasing industrial reliance on these power machines, with the critical need to as-
sess for efficiency, reliability, and safety, as emphasized by this study’s goals, cannot be
overstated. This study focuses on presenting an ML model that can provide a high level
of fault classification performance for various types of faults that are common in SCIMs;
nevertheless, we consider the following to be some of the study’s inadequacies: Although
the findings revealed the cost efficiency and accuracy of the proposed peak-based feature
extraction and ML-based diagnosis, the need for improved diagnostic performance is still
critical considering that against the limitations of traditional ML-based algorithms (accom-
panied with hand-crafted feature extraction processes), the superior feature extraction and
classification efficiencies of deep learning models have been shown in multiple studies.
These deep learning models—convolutional neural networks, recurrent neural networks,
etc.—are popular for automated feature learning; however, their mystical defiance from the
statistical principles from which they were fundamentally designed has been a major issue
for their adoption. In addition, other issues such as trustworthiness, computational cost,
increased complexity, over-fitting /under-fitting, high stochasticity in learning, extensive
parameterization/optimization, etc., contribute significantly to hesitation towards general-
ization. On the other hand, although the traditional, hand-crafted feature extraction process
for ML-based diagnosis offers comparatively poorer diagnostic efficiencies in relation to
deep learning models, it does offer a transparent architecture for ensuring explainability,
empirical investigations, and trustworthiness.

Under realistic situations, the occurrence of the SCIM failure modes presented in
this study are not mutually exclusive and may occur in little or intense degrees. This
presents the issue of accurately identifying the fault type (or combination of fault types)
in place. For example, turn-to-turn short circuit may be minimal (just two turns), intense
(several turns in the same phase), or may become very intense when it grows to a phase-
to-phase short circuit. Although this presents a broad opportunity for more extensive
research, it becomes an endless uphill task to replicate all the possible failure modes,
their individual degrees of severity, the possible failure combinations, and their respective
degrees of combined severity. Nonetheless, our study offers a reliable feature extraction
approach that is expected to direct continued research in the domain. On a different note,
the frequency-domain approach for SCIM fault diagnosis has some limitations, which are
mostly inherited from spectral leakage and lack of transient information. The models often
perform poorly in finite-time window situations, require high-frequency resolution for
adequate performance, and exhibit unstable variations in side-band frequencies in varying
load situations. In addition, they are often flawed at detecting certain faults at no load
conditions, especially the broken rotor bar [21,45]. On the other hand, deep learning and
time-frequency domain signal processing techniques offer better discrimninative feature
extraction efficiencies; however, they are often associated with high computational costs.
Because current signals are often stationary and do not often exhibit any transient changes,
we believe the proposed frequency-domain approach is more beneficial, considering that
the efficiencies of its counterparts—time-domain, time-frequency-domain approaches,
and deep learning methods—are insignificant, computationally expensive, and highly
unexplainable, respectively.

At minimal load conditions (as presented in our study), the peak detection technique
proposed herein offers reliable discrimininative efficiencies. Nonetheless, the high false
negatives by the best-performing classifiers for ISC-3 poses a strong concern and is cur-
rently a major motivation for our continued research. Notwithstanding, our comparative
study herein (for the ML classifiers) provides a valid yardstick for assessing the efficiencies
of our future work. From a broader perspective, beyond the efficiencies of standalone sens-
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ing/monitoring methods, combination of multiple sensing techniques has been reported
in several studies [45]. Such combinations may exploit vibration, temperature, acoustic
emissions, and so on in a unified framework for comprehensive monitoring and/or di-
agnostic MCSA [29,30]. Although these sensor fusion techniques offer valid rationale,
achieving a standardized approach for their use remains open for continued investiga-
tions. However, as part of our continued studies, we intend to explore deeper and more
comprehensive approaches.

7. Conclusions

Squirrel cage induction motors are among the most popular industrial electrical motors
due to their high motive power generation, durability, and low maintenance costs. The need
for condition monitoring presents the opportunity for CS-based fault diagnosis; however,
selecting the appropriate signals processing technique(s) for ML-based diagnostics remains
open for continued research.

This paper presented a peak detection approach for discriminative feature extraction,
which concatenates FFT, PSD, and ACF peak coordinates from the current signals sourced
from a three-phase SCIM. These features are received by various ML-based classifiers,
whose classification results are also presented in the study. An extensive comparison
of ML-based diagnostic models provides a generalization paradigm for SCIM diagnosis.
Results show that RF is the most accurate, with an accuracy of 79.25%, followed by NBC
and QDA, with accuracies of 73% and 71.4%, respectively. Furthermore, computational
cost assessment of the ML-based diagnostic models is conducted for improved diagnostic
assessment of the models. Results show that RF’s computational cost of 3.66 s is in an
acceptable range, while NBC has the lowest at 0.003 seconds.

The confusion matrix of the best-performing models revealed that the turn-to-turn
fault was imprecisely predicted, providing an avenue for future research. Amongst the
paper’s limitations, it is believed that the developed easy, nonintrusive, low-cost FDI
framework offers a reliable direction for motivating future work.
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Abstract: The quantum alternating operator ansatz (QAOA) and constrained quantum annealing
(CQA) restrict the evolution of a quantum system to remain in a constrained space, often with a
dimension much smaller than the whole Hilbert space. A natural question when using quantum
annealing or a QAOA protocol to solve an optimization problem is to select an initial state for
the wavefunction and what operators to use to evolve it into a solution state. In this work, we
construct several ansatzes tailored to solve the combinational circuit fault diagnostic (CCFD) problem
in different subspaces related to the structure of the problem, including superpolynomially smaller
subspaces than the whole Hilbert space. We introduce a family of dense and highly connected circuits
that include small instances but can be scaled to larger sizes as a useful collection of circuits for
comparing different quantum algorithms. We compare the different ansétzes on instances randomly
generated from this family under different parameter selection methods. The results support that
ansdtzes more closely tailored to exploiting the structure of the underlying optimization problems
can have better performance than more generic ansétzes.

Keywords: quantum algorithms; quantum computation; combinatorial optimization; circuit fault
diagnostics

1. Introduction

We introduce and characterize several different quantum alternating operator ansatz
(QAOA) [1] approaches to solving the combinational circuit fault diagnostic (CCFD) prob-
lem, a combinatorial optimization problem of importance for diagnosing faults in circuits. In
particular, we identify different constrained spaces of interest and explore various construc-
tions of mixing and cost operators that allow us to evolve within each constrained subspace,
allowing the protocol to focus on bringing the support of the system’s wavefunction to
an optimal or approximately optimal state within this subspace that can be significantly
smaller than the space of the physical qubits needed to run the system. There are many
such relevant subspaces, and through a different selection of mixing and phase separation
operators, even the same subspaces can be explored in very different ways.

After describing QAOAs for optimization problems, we delineate the stuck-at-fault
model of CCFD problems considered in this paper and how they can be cast as optimization
problems. We then develop several different ansatzes for solving this optimization problem,
beginning with the least constrained (measured as the resulting size of the constrained
space maintained) and ending with the most constrained. The most constrained ansatz
has a superpolynomially smaller constrained space. For circuits with a logarithmic or
lower minimum fault explanation, it can be modified to have a constrained space that
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grows subexponentially in the number of wires while the most generic approach grows
exponentially.

The methods used for constructing ansatzes in this domain can be useful for con-
structing more tailored approaches for other domains, which is an interesting avenue for
future quantum algorithms. The results from running each ansatz under several parameter
selections indicate that ansétzes more closely tailored to a problem can have better perfor-
mance than more generic ansitzes. The relative success of the simple parameter selection
methods used in this manuscript are of interest to researchers focusing on QAOAs for
other domains.

For many classes of combinatorial optimization problems that are NP-hard, the fea-
tures of specific instances can make them, in practice, more or less accessible to different
algorithms. The features of typical CCFD instances, such as a planar-like topology that is
often amendable to embedding on local two-dimensional lattice quantum architectures,
make them a strong candidate for quantum algorithms utilized on NISQ devices. Given
the real-life applications of CCFD problems, they have become problems of interest for
leveraging the potential quantum advantage for industrial purposes [2]. Our results in this
manuscript support that tailored ansétzes should be explored on NISQ quantum computers
to solve CCFD problems. The family of scalable, dense, and highly connected circuits we
introduce is a useful testbed for such devices.

Even between different QAOA algorithms, the features of particular instances can
affect which approaches are more or less promising. For example, we consider an ansatz
that is similar to a recently studied CQA approach [3] that shows promise in the regime
where an instance has higher degeneracy in the solution space and higher minimum fault
explanations, while another approach maintains a subexponential constrained space when
there is an upper bound on the minimum fault explanation. This suggests that the scaling
of the minimum fault explanation for the instances of interest is important for determining
the best ansatz to utilize.

However, there are still more considerations for implementing these approaches on
quantum systems, including the preparation of the initial state and considering the best
implementation of the required unitaries through a specific gate set. Certainly, more than
the size of the constraint is important for determining the best ansatz for a problem, and it
remains an open challenge to identify what specific features of the mixing operators and
phase-separating operators would lead to the best performance.

In Section 2, we introduce a QAOA for combinatorial optimization problems and
develop the principles around constrained quantum evolution within this context. In
Section 3, we describe the single-pair input/output circuit fault diagnostic problem over
the stuck-at fault (SAF) model, where circuit wires are either healthy or permanently
stuck at one or zero. In Section 4, we delineate different QAOA protocols, with different
resulting constrained spaces. In Section 5, we introduce a family of circuit instances to
explore the suitability of our QAOA approaches for solving this problem for small sizes. In
Section 6, we benchmark the approaches on the distribution of small-sized circuit instances
introduced in Section 5. Our results support that tailored anséitzes can be beneficial for
obtaining better performance in optimization problems such as CCFD problems, where
there is structure in the underlying problem that can be exploited.

2. Constrained Evolution in Quantum Alternating Operator Ansitzes

For combinatorial optimization problems, there have been recent advances in the
research of applying quantum algorithms to solve such problems that are centered around
the quantum approximate optimization algorithm (QAOAT1) [4], which is a very general
protocol to approximately (or exactly) solve combinatorial optimization problems, such
as the Max Cut problem [4-7]. However, further generalizations of this concept, such
as the RQAOA [8] and quantum alternating operator ansatz (QAOA) [1,5,9], have been
developed in the hope to better tailor protocols to particular problems and thereby exploit
their specific structures. For the purpose of this paper, we focus on using QAOA protocols
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to find optimal solutions to a combinatorial optimization problem. For example, the au-
thors of [5] demonstrated a near-optimal quantum unstructured search algorithm based
on using coherent phase-separation operators in the QAOA setting. Under reasonable
complexity-theoretic assumptions, the QAOA cannot be efficiently simulated by any classi-
cal computer [10]. For a small number of qubits, this has been realized on an NISQ [11]
device [12].

Given a general binary optimization problem with N bits, the quantum computer
works with N qubits over a space ©2" . The wavefunction of the system | ¢ ) is a normalized,
complex-valued vector in this space, and potential actions on this state (i.e., algorithmic
steps) are represented by unitary operators.

The QAOA works by starting the quantum system in a prepared state and then
applying a series of angle-parameterized unitaries to evolve the system into a state that is
then measured over a predetermined basis. The result can then be interpreted as a bit-string
solution to the optimization problem. The QAOA divides the task of evolving the system
into P rounds, each involving the application of two sets of operators. The first is a set
of mixing operators, which are discussed in greater detail later. The second is a diagonal
unitary operator associated with a classical cost function that acts to essentially evaluate
the quality of different configurations.

Given a classical cost function C(x), in both the QAOA and QAOA1, Hamiltonian
form phase separation operators are used such that Uc(a) = Yco13v el C(¥)| x)( x |, where

| x ) are the orthonormal computational basis states in o2 Any such state | x ) (a ket-state)
can be written as an outerproduct state of individual qubit states |x) = |xy,...,xn5) =
|x1)...|xn) with x € {0,1}N, |x;) € € and x; € {0,1}. As such, the classical cost
function is interpreted as a classical Hamiltonian He = Y .1y C(x)| x )( x | (a real-valued

diagonal matrix in (DZN). The complex exponentiation of a Hermitian operator is a unitary
operator, and so U, («) is a diagonal unitary operator.

For example, a marked state cost function associated with a single solution state
x* = (1,...,1) could be C(x) = —IT"; x;. Then, U,(a) = 1 — (1 — e "®)|x* )(x*|. The
wave function associated with the quantum system | ¢ ) = },c 9 1}» ax| x ) will therefore
evolve to | 1) = ae™ | x*) + Yoxe{0,1}7/{x*} x| x ), and so the behavior of U («) is to
add the same phases to computational basis states that have the same energy evaluations
according to the cost function C(x).

QAOAL is a type of QAOA approach with a specific mixing operator and a fixed
starting state. Both of these conditions are replaced with a more general condition in the
QAOA. In QAOA1, we begin in the uniform superposition state | + )" = \/% Yrefony|x)
so that every computational basis state | x ) has the same amplitude. The mixing operators
are single local Pauli X operators:

Uy(B) = ﬁeiiﬁaﬁ

=1

The action of o on qubit j is to flip the bit, mapping |1) to |0) and vice versa. Any
QAOA approach that utilizes U; as mentioned above is considered a QAOA1 approach for
the purpose of our descriptions. As such, QAOA1 proposes a very specific type of ansatz,
in which the mixing operator takes this form for any problem. The QAOA will generalize
this to allow for more structured ansatzes.

Then, for a single round ¢; of a QAOA (including QAOA1), we pick two degrees &; and
Bi and evolve the wave function as | (t;) ) = Uy(B;)Uc(a;)| P (ti_1) ). Uc changes the phase
of states based on their evaluation from the classical cost function in the computational basis,
while U acts as a mixer, leading to interference between the states in the superposition and
potentially leading to concentration on low-lying energy states based on the cost function
C(x) after several rounds. Indeed, as the number of rounds P goes to infinity, one can select
a; and B; such that | (tp) ) is guaranteed to minimize the cost function C(x) [4].
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For a given finite value P, there are 2P angles to select for running the algorithm
which can therefore be cast as an optimization task where one wishes to find the angles
that lead to a minimization of the cost function C(x). QAOA1, as well as the QAOA,
is a type of variational quantum algorithm (VQA) [13] for which finding the optimum
parameters is typically an NP-hard problem [14]. The landscape of the final cost given by the
quantum algorithm is known to suffer from a barren plateau [13,15-17], and optimization
with random starts can lead to convergence to the local minima [6,13]. Nonetheless, the
optimum or near-optimum solutions can follow similar patterns across instances [6,18].
For a more detailed discussion, we refer the reader to [13]. The techniques utilized in this
paper will be discussed Section 6. Once the algorithm has run for P rounds, the wave
function of the system is measured in the computational basis {| x )| x € {0,1}"} such that
the wave function collapses to a single state in that basis according to the Born rule, where
Pr(x) = |(x| p(tp)) .

For many classes of problems, including certain class of linear and quadratic constraint
problems, it is possible to find alternative mixing operators that allow us to limit the evolu-
tion of the wave function to a feasible subspace of a collection of those constraints [1,19-22].
The general problem is NP-hard, but there is a simple polynomial algorithm for bounded
operators [22]. In QAOALI, the mixing operator utilized can be associated with there be-
ing no constraint placed on the evolution, since every state is reachable under its action
(although it is clearly not the only such mixing operator). The two essential requirements
for the mixing operators are that they must take actions moving states in the constrained
space to potentially any other state in that constrained space, but they cannot move such
states outside of the constrained space.

As such, the QAOA describes a more general approach than QAOAT, in which the
mixing operator and phase-separating operators can be much more general. In particular,
they are usually tailored to the specific type of symmetries of the underlying problem (such
as the ansatz to the algorithm). Notice that the QAOA shares the same acronym as QAOA1
in the literature. For example, ref. [1] lists a compendium of mixing and phase-separating
operators that can be utilized for different combinatorial optimization problems. Specific
types of mixers have been studied more extensively. For example, XY mixers are associated
with a very simple kind of equality constraint that makes them useful for many types of
combinatorial optimization problems [23] as well as quantum chemistry [24].

3. Circuit Fault Diagnostics

Diagnosing errors and faults for gate-based digital circuits is an area of intense research,
as large-scale integrated circuits and specialized circuit designs have become abundant in
many scientific and engineering disciplines. Increasingly sophisticated automation tech-
niques used to check and correct errors in the circuit design and fabrication are increasingly
relied upon in practice. Because of the underlying combinatorial nature of this problem
as well as the local design of many modern circuits, this is a class of problems that is well
suited to typical NISQ [2,11] architectures.

We employ a simple stuck-at-fault model for analyzing circuits with a given string
of inputs and empirically found string of outputs [25]. Let n be the number of wires in
the circuit and 71, be the number of output wires. Each wire in the circuit is either healthy
or stuck at either zero (SAQ) or one (SA1). Under the assumption that faults are equally
likely to occur on every wire, the task of circuit fault diagnostics (CFD) is an optimization
problem for finding the minimum number of faults needed to explain the input-output
pair [2].

For the purpose of our discussion in this paper, we consider gates that are one-
input/one-output, two-input/one-output, or one-input/two-output. One-input/one-
output gates are an identity gate ID or an inverter gate INV. Two-input/one-output gates
are OR, AND, XOR, NOR, NAND, or XNR. One-input/two-output gates are a fan-out gate
FAN, a fan-out gate with an inverter on the first output F10, a fan-out gate with an inverter
on the second output FO1, or a fan-out gate with an inverter on both F11.
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A configuration for the problem is a 2n-bit string, where over bits 1, ..., n are the wire
bits and over bits n+1, ..., 2n are the fault bits. A valid configuration (w1, ..., Wy, f1,..., fn)
has an erroneous value of a wire w; if the corresponding f; is nonzero.

The inputs to a circuit are considered to also be potentially faulty such that the input
wires themselves could be SAQ or SA1, but the output wires have to correspond to the
empirical value they have (otherwise, this diagnosis would be invalid), but that value may
come from error propagation in the circuit or from the output value itself being SA0 or SAT.

For whatever faults are present in the circuit, the output values can always be made to
match the empirical value by taking the nonconforming output values and flipping their
values (as well as their associated fault bit). As such, the size of the valid configuration
space is 2"~ [3], since we have precisely n — n, wire locations where the fault flag can be
0 or 1. (The fault flag on the #, output wires is then forced to be such that the configuration
is indeed valid.) Figure 1 shows all possible valid fault explanations for a small circuit.
Note that there are 3 non-output wires and 2° valid fault configurations.

wy=0,fo=0
wy =0, f;=1
vy = 0fs = 0
w=0,/1=0 ws =0fs w1 fi=1
wya=1,fr=1
wi=0, fi—1
w=0/i=0 ws =0 =0 w=Lfi=1

a0, fo =0 w=17=0
wr=0.f2 wim 0, fim1 wi =0, f; =1
_ wy =0, f3 =1
w =0, f,=0 wg=1Ji =1 w=1A=1 :
wy=1,fr=1 wy=0,f=1
wy =0, fy =0 wy =0, f1 =1
3 =1,fs =1 3 =0,/3=1
w =0, f; =0 wy=1J wi=1f=1 ws=0.1

Figure 1. All possible valid fault configurations for a small circuit with one FAN gate and one
NAND gate that has a faulty output. The diagrams on the top left and right show minimum fault
explanations for this instance.

wy =1, fa =0

ws =0, f1=0
wy=1f3=0
wy=0,fr=1

wi=0,f;=1
wy=1f3=0

[

o

o
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3.1. Valid and Invalid Configurations Around Gates

Enforcing the logic of the circuit on our configurations is essentially enforcing the
logic of each individual gate on the part of the configuration that corresponds to that gate’s
inputs and outputs.

Valid configurations around gates follow the same logical delineation as valid configu-
rations for the entire circuit. For any circuit or subcircuit, including a single gate, we can
list the potential valid configurations by considering the different input/output pairs. If a
configuration is valid for a particular input/output pair, it cannot be valid for any other,
and so the valid configurations always make disjointed sets. For that circuit or subcircuit,
as discussed before, the inputs can potentially be faulty, but the outputs must match their
empirical values. However, the size of the different valid configuration sets is always
the same.

As such, the valid configurations around a gate are split by what the inputs before
considering the fault status are (If they differ from this value, there must be an associated
fault on this input.) and what the output after considering the fault status is (i.e., the
same situation as for the circuit at large). Table 1 gives a full description of all the valid
subconfiguration spaces for an NAND gate, where the first element in each entry is the
trivial valid configuration that exists for every subcircuit (or the whole circuit) by applying
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the faults on the outputs only (i.e., all wires are healthy, except the outputs that disagree
with the logical value they should have).

If a configuration is valid and maintains a state status as described by an entry in
Table 1, then swapping this subconfiguration with a state status in the same entry will also
be valid, since we did not change the values that came from previous gates or were set as
global inputs to the circuit, nor did we change the value of the output (which is then used
as an input to a gate or is a global output for the circuit).

For a circuit with a collection of gates G, we consider the input and output wires (Ig
and Oy ) for that gate. The collection of valid configuration sets around this gate

S1e:504

( )
Ve = (s, € (0,134, 5, € {0,1)104]),
is indexed by what the potential values the wire inputs S;, are set to without faults and
what the potential wire outputs S, are set to. For example, S, for an NAND gate in the
fault model is a collection of the possible inputs {(0,0), (0,1),(1,0),(1,1)}, and So, is a
collection of the possible outputs {(0), (1)}.

Table 1. Each kind of input/output pair for a faulty NAND is described. Each entry has different
valid configurations, and configurations in the same entry form a subspace such that the action of the
driver terms we construct connects the configurations of this subspace.

Entry IO Pair Valid Configurations
(0,0,0;0,0,1), (1,1,0;1,1,0),

(1,0,0;,1,0,1), (0,1,0,0,1,1)
(1,0,0,0,0,1), (1,1,0;0,1,0),

1 (0,0,0)

2 (1,0:0) (0,0,0;1,0,1), (0,1,0;1,1,1)
3 010 (00001 (L00ALD)
. 0.10) (100011 0101101)
5 o0 (0100 011010)
6 0 001100, 011110
7 1) 001010, (01110
3 1,1;1) (1,1,1,0,0,1), (0,0,1,1,1,0),

(1,0,1,0,1,0), (0,1,1;1,0,0)

4. QAOA Approaches to CFD

In this section, we give details on the construction for several QAOA approaches to
solving the CFD problem, with each constraining the evolution of the wave function to
a specific subspace and using mixing terms which connect all feasible states within this
space to one another in different ways. We map each bit in the 2n-bit string to a qubit such

2n
that the wave function of our system | ¢ ) is a normalized vector in C>". At the end of

the QAOA algorithm, we measure | ¢ ) in the computational basis to extract a solution to
our problem.

4.1. Approach 1: Transverse Field with a QUBO

This approach is closely related to a Hamiltonian description of this problem, which
is similar to, for example, the approach described in [2] for using a transverse field and
an Ising Hamiltonian with explicit fault mappings to represent this problem. As such, our
approach is in the spirit of QAOAL1 for Ising spin problems.
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The mixing operators are the Pauli X operators:

n—mne

Ug(Br) = T e .
i=1

Since the output values of the circuit have to match the given empirical values, they
are not allowed to change during the problem. As such, these qubits can be integrated out
of the problem. The phase-separating operators are associated with an Ising Hamiltonian:

UC(DCt) — eiatHf,

where the Hamiltonian counts the number of faults and enforces the logic of the gates:

Hf = ( Mi% (1105)/2) +K<Z Hg>,

i=n—ny+1 8€g

where Hg = Yyrey, (]l - Zvevgr| v)v |> associates a cost to the state being in an invalid set

for that particular gate. If a configuration x fails to be a valid configuration in the fault
around a gate g, then Hy will associate a cost to the state x.

To ensure consistency with the model, we can set x = 1, + 1, the number of outputs,
so that it is never advantageous to break a gate over placing the faults at the very end of
the circuit. The number of output bits is an upper bound on the number of faults of the
minimal fault diagnosis. For individual instances, we can set « to any value greater than
the number of faulty output bits, which is less than or equal to #,.

As in QAOAL, our initial state is the uniform superposition over 2n — n, qubits:

) = [+)7"™ = 2 Tacqoapernl ).

4.2. Approach 2: Transverse and XY Mixer with a QUBO

Any solution to the single input/output CFD problem has at most 1, faults. To exploit
this bound, we can employ the XY mixer such that over the fault bits (f1,..., fu), we
impose the constraint )" ; f; < 1,. This can be achieved in different ways, for example, by
introducing n, ancilla qubits and employing the standard ring XY mixer over the » fault
bits and 1, ancilla bits.

Note that the XY mixer operating on a computational basis state of N qubits keeps
the number of ones fixed, so if the initial wave function only has support for the compu-
tational basis states with k ones (| ) = Lyc013¥ s, x|k @x| X)), then the wave function
after applying any collection of XY mixers will still have support only for computational
basis states with k ones.

To achieve states with a number of ones between 0 and k, we can add k ancillas and
then apply the XY mixer on N + k qubits such that when those mixers are applied to a wave

function ’ PNk > = Lre {01}V sit. |x|<k Zye{0,1} st. |y|—k—|x| @x+y| )|y ), the constraint on
the number of ones in the wave function is maintained. Then, at the time of measurement,
we simply discard the ancilla qubits and consider the resulting state over N qubits.

Since the outputs, as in the previous approach, can be integrated out, and so the wire
bits correspond to the qubits between 1 and n — n,, the fault bits correspond to qubits
between n — n, and 21 — n,, and the ancillas correspond to qubits between 21 —n, + 1
and 2 n. Utilizing the XY mixer over qubits between 21 — 1, + 1 and 2 n and the transverse
field applied on the wire bits leads to

n—1, 2n-1
_ x X X s XX Yoy
Hy = < Y (Ti) + (Unan,nOH +Jn(7n_na+1) + X (‘Ti Tit1 +0; Ui+1>/
i=1 i=n—mn,+1
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which can be split into two noncommuting Hamiltonians:

n—ne L(?’l'ﬁ‘na)/zj
_ X X X Yy Y X x Y Y
Hi={) o)+ (ancrn,nuﬂ + UnUn_nD+]> + ) (‘Tn+2i‘7n+2i+1 +‘7n+2i‘7n+2i+1)/
i=1 i=1

and

L(n+10)/2] y y
H2 = Z (a’fﬁi—lggﬂi + Jn+2i71‘7n+2i>‘
i=1
When n + n, is odd, H; also has a noncommuting term associated with qubits n —
1o +1,n —n, +2,and 2 n. As for the XY mixing operators [23], we can apply commuting
mixing operators associated with H; and then H, as follows:

n—n, [(n+no)/2] o vy
Ug(Bt) = (H e’fgf‘Tix> ( H e P (Un+2i‘7n+z1+1+‘7n+2i‘7n+2i+1))
i=1

i=1

[(n+m,)/2]
; y 5 (o ;
(e"Bf(gﬁazno+1+‘7nggno+l))< | | e_lﬁf(‘7;+2i71”;+2i+”z+2171”z+2i> .

i=1

The phase-separating operators are then the same as in the previous section. The
initial state is an outer product (concatenation) of the uniform superposition over the
wire bits and a state with a uniform superposition over n + n, states with precisely n,

. o . _ 1 o
bits set to one, where | ) = |1 )| o) with |1 ) = Toie Yxefo1y-no| x) and [¢2) =

(”2”0)71/2 Yoxe{01}7 st |x|y=n, | ¥ )- We discuss the preparation of the well-known entangled

state | ¢, ), studied in several contexts with relation to the XY mixer, in Section 4.6.

4.3. Approach 3: Graph Diffusors with a Linear Field on the Fault Bits

In this approach, we tailor the mixing operators to maintain the valid fault config-
uration space. Around each gate, a mixing operator is associated with swapping valid
fault configurations around that gate, utilizing the descriptions given in Section 3.1 such
that, given a valid configuration, the mixing operators populate states that are also valid
configurations.

Given a set of logical gates G = {g1,...,gm} in the fault model over wy, ..., w, wires
and fi,. .., f fault bits, define V;S’ i50) a5 detailed in Section 3.1. We wish to construct the
collection of unitaries U = {U‘g), e Ué:), ey Ugﬂ)} associated with the mixing operator
of each gate and the respective tuple of input/output pairs for each gate. (Note that the
index (r) runs over a set of input/output pairs to the gate, so it is typically an n-tuple and
not a single integer.) For example, as in the circuit considered in Section 3 and illustrated
in Figure 1, if g is an NAND gate, then {Ug), ey Ug)} are associated with the eight
input/output pairs for an NAND gate. We define the uniform superposition over the

: () ‘ D\ _ 1 , ot
collections Vg’ as | Vg, > = m Evevg) |v). (See Table 1 for such a description for an
NAND gate) Then, we define each mixing operator associated with a specific input/output
pair for a specific gate:

ug () = 1= (1= ) [V ) (% |
—1- (1= )/ VI ¥ o) (ul

(7)
ouUEVy,
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Then, we define the mixing operator associated with each gate:

Uy, (B H U, (Bt)-
=)

Here, Uy, (B¢) are unitary because U(] )(ﬁt) are mutually commutative over the in-

()

put/output pair index j. Uy, which has an eigenvalue ¢'* for an eigenvector ’ V( /) > and

an eigenvalue of one for any vector in the range of the projector 1 — ‘ Vgi >< Vg(zj ‘ Then,
we define

) = ﬁugxﬁt),

as the mixing operator for this ansatz, where we apply each gate one after another. However,
for circuits with a highly regular structure (such as those introduced in Section 3), we can
group many commutating unitaries together and apply all U;(B;) with in two steps.

The cost function (also one-local) simply counts the number of faults of the configura-
tions:

2n

uc(“t) _ H(eiact(]lfaf)&)_

i=n

The feasibility space and how it is connected through the action of U is more compli-
cated for this approach than previous approaches such that it cannot be as easily described
by a uniform superposition over the states. We begin with a known feasible configuration
and apply U;(B¢) to explore the feasible configuration from there. A simple starting state
used for this purpose is the state with only faults placed on the faulty output states.

We also consider a modified protocol which includes a second cost function that has
this state as its minimum, in clear inspiration from a similar CQA [3] approach. A sufficient
(and one-local) cost function puts a penalty on every bit that does not conform with the
initial state chosen. As such, the cost associated with any state in the space is given by its
Hamming distance from the initial state. Let xX = {x{,...,x3,} be the computational basis
string associated with the initial state |¢) = | x0). Then, the initial state cost function
operator can be implemented as

Hem —(1-2x0)o7) /2.

For this modified protocol, we have three sets of operators: the initial state cost
function operator, the mixing operators, and the phase-separating operator. As such,
we generalize the QAOA protocol to have three angles to select for every round such
that the state evolves under (a1, 81,71, &2, B2, V2, ---,&p, Bp,¥p). For step t;, [¢(t;)) =
Us (7)) Uz (Bi)Uc(a;)| ¢(ti1) ). In Section 6, we consider the performance of both ap-
proaches for small circuit instances and different parameter selection methods. Since
Us and U, are both one-local operators, it is also straightforward to apply them together in
a device.

4.4. Approach 4: Transverse Field on Faults with an Oracle Circuit Simulator

Rather than representing the wire and fault bits explicitly, in our next approach, we
focus on the space of valid fault configurations (of dimensions 2" ~"). Notice that for any
invalid fault configuration, it can be made a valid configuration by simply flipping the fault
bit for the output bits which are incorrect.

Consider a fault configuration f = (f1,..., fu—n,) Over non-output wires. The energy

of the state is dependent on the number of nonzero fault bits P(f) = Y |" f; as well as
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the number of implied faults needed on the outputs to make this a valid configuration
Qf) = ity (wi — S(f,i))?, where S(f,1) is the value placed on the output wire w;
when simulating the circuit with the given inputs and the fault configuration f over the
non-output wires.

Then, R(f) = P(f) + Q(f) counts the total number of faults implied by the fault
configuration f in this constrained space. By constructing an oracle that simulates the
circuit and then uses this information to find the proper fault count, we have a phase

separation operator with the same cost function as in Section 4.3:

Ue(w) = Y e™R@xy(x).
x€{0,1} 1o

As in QAOAL, our starting state will be | ) = | + )" " = \/ﬁ Lrefoaym-mo | f)-
and we use the one-local Pauli X mixing operators:

Ua(Br) = ﬁff’*iﬁt(gfx)-
i=1

To see how U.(t) can be implemented in practice, we consider a protocol where
ancilla qubits are used for the computation of the faults needed on the outputs. Let
| p(r;_1)) € C*"™ be the wave function at the beginning of round r;, with the initial wave
function defined as shown above. We show how | {(r;) ) is then generated over the current
round. For r; € [r1, 7], we have

[v(ri) ) = Ueire| 0) | $(ri1) )| 0),,

n

= ) (xlIf))al0) s, 8(2) ), (Simulate Circuit)
xe{0,1}n—no
| u(ri)) = Ue(a;)| v(ri)) (Apply Phases)
2n X .
=TI M2 % £ %) non | 860 D,
j=n+1 xe{0,1}"
2n .
= ¥ ( Y el“fxf'>|f<x>>n|x>nn0|g<x>>nu
xefo, 1m0 \j=n+1
100, 9(ri) ) 0),, = Uil p(ri)) (Undo Simulation)
p(r)) = Hl e P () (Apply Mixing)
1

Here, U, implements the simulation of the faulty circuit such that f(x) is the valid
configuration over the wire bits that | x ) specifies from the non-output fault bits, while g(x)
are the required faults on the output bits such that x & g(x) & f(x) is a valid configuration
over the 2n bits.

4.5. Approach 5: Bounded Fault Count with Oracle Circuit Simulator

In this section, rather than restricting ourselves to the subspace of all fault configura-
tions, we wish to restrict ourselves to the fault configurations up to a maximum number of
faults. To accomplish this task, we can use the XY mixer also discussed in Section 4.2 by
utilizing ancilla qubits in a complimentary way. Here, we have n — n, non-output fault
flag bits (the same as in Section 4.4) and 7, ancilla qubits to allow for representation of all
state configurations with faults less than or equal to 7,.

The cost function remains the same as that used in Section 4.4, and the same procedure
with the simulation of the circuit to find the faults on the end bits can be used, except for
the aforementioned replacement of the mixing operator.
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C . -1/2
The }mfaal state is then | 1,L7>. = (:0) .Z:xe{(),l}n—no st [y <o Yyef0,1) st. [yh=no— x|y
| x)|y), similar to the state mentioned in Section 4.2. Note that since we also have implied
faults, the maximum number of faults that can be expressed is between 1, and 2 n,. The
initialization of this state is discussed in more detail in Section 4.6.

4.6. Size of the Relevant Constrained Space and Summaries for the Approaches

In each of the approaches delineated in Section 3, the size of the constrained space
of interest which the evolution of the wave function is limited to differs. In Table 2 and
Figure 2, each approach is summarized by the type of mixing operator, the type of cost
function, the size of the constrained space, and the complexity of each round.

Table 2. Depending on our selection of mixing and phase-separating operators, we can constrain the
evolution of the wave function to constrained spaces of differing sizes.

Approach Mixing Operator Cost Function Size of Constrained Space Round Complexity
1 Pauli X Ising 0(22m) 0(1)
2 XY mixer and X Ising 02" (n+41ny)™) o(1)
Gate-based . _—
3 diffusors Pauli Z 02" ) o(1)
4 Pauli X Circuit Oracle 02" ) O(Cp)
5 XY mixer Circuit Oracle O(n') O(Cp)

Unconstrained Space ~ iR
Bounded Faults ~ O(2" ™ (n + n,)"™)
Valid Faults ~ 2™ "

Valid Bounded Faults ~ O(n"°)

Figure 2. A visual representation of the subspaces that the wave function is kept within during
evolution through each QAOA approach.

While the approaches in Sections 4.3 and 4.4 differ greatly in the type of mixing and
phase separation operators used, they constrain the system to the same subspace. Consider
the exploration of this space under these two different approaches. The latter begins with a
uniform superposition over all valid fault configurations, and the neighborhood of each
computational basis state under the action of each Pauli X operator in the mixer is a state
that is a bit flip away, similar to a high-dimensional hypercube. The former begins with
a single feasible state, and the neighborhood of each state under the action of the mixing
operator is dependent on the available transformations around each gate to move it to a
new fault configuration.

Moreover, while the cost functions associated with these two approaches are equivalent,
the resulting phase separation operators for implementing these cost functions are very
different. For example, while each call to the cost function runs in O(1) for the fault
counting in the former, each call to the cost function in the latter will require simulating the
corresponding circuit, which has a particular depth C,. For example, for the distribution
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of the circuits introduced in Section 5, the depth of the classical circuit grows as O(1/n)
if we choose the diameter and depth to be equal. (This relationship holds for the family
considered for the experiments in this paper.)

Approaches 2 and 5 require the preparation of a particle number-conserving state
studied in many areas of quantum computation and quantum chemistry [26-29]. We refer
the reader to the appendix of [23] for a discussion of this state in the context of a QAOA
with the XY mixer. In general, for a uniform superposition over n qubits preserving a

number k, the state can be constructed with () = O (nk> CNOT gates [29], which can

be prohibitive for a circuit with a large bound on the number of faults. However, the
authors of [26] provided a projective measurement method that grows polynomially with
n and independent of k for large n values. Alternatively, one can use an approach similar
to Approach 3, where the initial state is a computational basis state in the feasible space.
The initial state selection for an QAOA remains an important area of current research [23],
including warm starts [30,31]. Moreover, the number of minimum faults for many circuits
of interest can be much less than #,, and one could adapt the approaches to utilize this
smaller space.

5. Random CFD Instances with Balanced Width and Depth

To demonstrate how these different approaches practically perform in the CFD prob-
lem, we introduce a family of random instances that scale with a single size parameter and
allow for detailed analysis at small sizes. Figure 3 shows the first few such circuits with
increasing sizes. The central feature is that both the depth of the circuit and the number of
inputs or outputs (width) scale together with the size and number of wires of the circuit.
We randomly select the inputs for the whole circuit and apply faults to the outputs such
that every output is faulty. We randomly select the inputs and gates at each spot from the
relevant gate set for every size to generate the instances used in Section 6.

The valid fault configurations for an instance of the smallest circuit in the family are
in Figure 1. Unlike all the other circuits, this has only one output, and so we modified the
model for this small circuit for our experiments such that placing a fault on the output wire
required two faults, whereas every other location required one.

oo o
B e

Figure 3. Diagrams for circuit instances of the CFD problem considered in Section 6, depending on
the number of qubits, from these small, local, and dense circuits. Every box is a two intput/one
output gate, every dot is a one input/two output gate, and every diamond is a one intput/one output
gate. If a top wire has a T and a bottom wire has a L at the same depth, they refer to the same wire
(which has been wrapped around).

While at large scales we expected the performance of any specific ansatz strategy to
decrease with the problem size, at the small sizes used for our simulations, the performance
could vary by problem size in a more complicated fashion. For all instances, the maximum
number of faults needed was two, since there were two outputs. We generated 100 instances
that were filtered such that the minimum fault explanation required a single fault.

Approach 3, unlike all the other approaches, would be initialized in a solution state
without this filtering. For larger-sized circuits of this family, the chance of a randomly
selected instance having a minimum fault explanation that saturates this bound is increas-
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ingly diminished, but this filtering is an important step for the small-sized circuits of
this family.

For the filtered data sets of different sizes, the specific topology of the circuits can still
lead to important differences in fault configurations. For example, the circuit depicted at
the bottom middle of Figure 3 has much more diversity in the typical size (or degeneracy)
of the solution space compared with the smaller sizes. Solution degeneracy has been seen
to have a beneficial impact on a variety of optimization problems for QAOAs.

6. Performance with Different Parameter Optimizations

Using the family of CFD instances from the previous section, we consider the perfor-
mance of QAOA strategies with different methods of parameter optimization: BRUTE,
INTERP, LINANGOPT, and LINCOEFOPT. Each of the first three requires the expected cost
of the final wave function to update the angle parameters. For implementation on a quan-
tum computer, the expected cost of the final wave function has to be sampled with repeated
measurements, and there will be a trade-off between repeated runs to accurately compute
this value and run the protocol with updated parameters based on the approximation [6].
The angles were selected from the interval [—7, 77].

For BRUTE, we chose 100 random seeds and ran the Nelder-Mead algorithm with
100 iterations to optimize each choice, using the final Hamiltonian as the cost function and
selecting the choice that minimized the cost function the most. For INTERP, we used the
interpolation function called INTERP in [6], which showed good performance from this
method in their results. We used the Nelder-Mead algorithm (with 100 random seeds and
100 iterations each) on p = 2 and then for p > 2, beginning with the linear interpolation
from p — 1 and optimizing with 100 iterations for this result. For LINANGOPT, we started
the protocol with a linear ramp for each angle (i.e., for round k € [1, p], ay = k7t/p and
Bx = ™ — kt/p) and then optimized the angles (with 200 iterations). For LINCOEFOPT,
we used a coefficientI' € {9/10,1/2,1/4,1/8,1/16} and used the same linear ramp but
replaced ay, By with I, B;I' and then optimized I' over 20 iterations before selecting the
best performing I'.

In each situation described, Approach 3 (with an initial state cost function) is different
from the other approaches, since it has three angles to select for a single round k. As
the initial starting point for LINANGOPT and LINCOEFOPT (with T'), it begins with
Yk=mn—kn/p o =0k <p)2kn/p)+0O(k > p)(m—2km/p) (reaching a maximum
around p/2 and minimums at 0 and p), and ; = k 7t/p. Note that Approach 3 was also
considered without an initial state cost function, and the results support that this seemed
to benefit its performance.

The results from [6] suggest that the Nelder-Mead algorithm can perform as well
as other optimization algorithms, such as the Broyden—Fletcher-Goldfarb—Shanno algo-
rithm. Utilizing other optimizers for these tailored ansétzes is an interesting area of future
study [21,32,33]. We report the results with p set to 2 and 3 for BRUTE, 5 for INTERP, 5 and
10 for LINANGOPT, and 50 for LINCOEFOPT.

The relative simulation range capable on a workstation grows depending on the size
of the relevant constrained space for the problem and so the more constrained approaches
have an increased simulation range, as such we report results on larger instances for these
approaches for each parameter selection. Figure 4 details the performance of each ansatz
with each parameter selection strategy.
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Figure 4. Performance of ansatzes with different parameter selections. The solid lines indicate the
performance on the median of the instances, while the ribbons correspond to the lower and upper
quantiles. Markers correspond to the success probabilities of individual instances.

The results support that ansidtzes which exploit a more constrained space by tailoring
the operators used to the problem structure generally perform better in the CFD problem
and therefore are important methods for improving the practical applicability of QAOAs
and other variational quantum algorithms. Indeed, Approaches 4 and 5 consistently per-
formed the best, and Approach 3 performed comparably with some parameter selections for
certain sizes. Surprisingly though, Approach 1 performed quite strongly for LINCOEFOPT
with p = 50. The performance across these different metrics generally supports that while
a linear tramp function might be well suited for certain approaches, such as Approaches 1
and 4, it is interesting to consider different functions to parameterize the angles for other
approaches. Utilizing an initial state cost function showed advantages for Approach 3
in each parameter selection method except for LINANGOPT, where the benefit was not
as clear.

The performance showed high variance under BRUTE and INTERP for most ap-
proaches. Approach 3 in particular seemed to struggle more at very low p values, perhaps
because the initial state had full support for a particular solution and had to use mixing
operators to explore the space, while the other approaches began with a uniform super-
position over all states in the particular subspace. Since INTERP utilizes the results from
BRUTE at p = 2, this difficulty can translate to this approach as well. While INTERP can
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alleviate the high cost associated with brute force evaluation to find good parameters with
stepwise optimization as p is scaled higher, the parameters found at low p values can
potentially be associated with a local minimum that may be the best cost minimization
the algorithm can accomplish at this depth, and then the algorithm is subsequently stuck
around this choice at higher p values.

Approach 3 also showed striking performance differences between instance sizes,
especially for LINANGOPT with p = 5 and LINCOEFOPT with p = 50. Approach 3 is
initialized to a computational basis state with faults on the outputs, and so the distance, in
terms of the number of mixing operators, to find a minimum state as well as the degeneracy
of the solution space may play a more acute role compared with other approaches. For
example, as noted in Section 5, the instances with 13 wires had instances with higher
degeneracy than that at lower sizes. This typical degeneracy growth with the problem size
for the circuits of interest is one reason leveraging quantum algorithms may be beneficial.

Note that the results were based on the number of rounds p, but the actual depth of a
quantum circuit to implement each of the different approaches will differ, especially for
larger circuit instances. Moreover, Approaches 2 and 5 used a starting state that required
more involved preparation before the procedure could begin.

7. Conclusions

One of the most compelling areas for utilizing variational quantum algorithms on
NISQ devices arises from solving optimization problems, including those with hard con-
straints. The quantum alternating operator ansatz (QAOA) and constrained quantum
annealing (CQA) are methods that can enforce those constraints naturally throughout
the protocol or anneal. Designing approaches that can usefully use the structures of dif-
ferent optimization problems remains an important task for developing state-of-the-art
quantum algorithms.

Designing mixing operators and phasing operators for a constrained space can be more
general than satisfying a global hard constraint, such as satisfying many local constraints
(such as the valid configurations around a faulty gate [3], as in Section 4.3), a practical
bound on the maximum value a counting problem can yield (Sections 4.2 and 4.5), or
simply finding a way to represent a Hamiltonian that is difficult to implement without
ancillas (Sections 4.4 and 4.5).

In this paper, we constructed several general approaches to exploit constrained quan-
tum evolution to solve the CFD problem, some of which had superpolynomially smaller
constraint subspaces. While some of these approaches may be related to protocols that
could be implemented on a quantum annealer, others are more challenging and therefore
better suited for QAOAs or digital adiabatic simulations. We introduced a family of random
circuits that are parameterized by a single size parameter, which can be useful for bench-
marking future NISQ devices. Simulations of QAOA protocols with optimized parameters,
interpolated and optimized parameters, and linear interpolation suggest that more ad-
vanced ansétzes can give better performance by utilizing the underlining structure of an
optimization problem. As such, designing and experimenting with more novel operators
for solving optimization problems remains an important area for future research. Nonethe-
less, the initial states of several approaches are more involved to prepare, and the unitaries
necessitated for each ansatz require further analysis under specific quantum architectures.

There are many interesting areas of future work that arise from the constructions
considered in this paper. It would be interesting to explore approaches such as Approach
5 with an initial state in the computational basis to relieve the cost of preparing a highly
entangled initial state. Since the number of minimum faults needed for a circuit can be
much smaller than the upper bound given, it would be of interest to explore several of the
approaches where this is utilized to form a more constrained ansatz, especially in Approach
5. For example, if the minimum number of faults needed is known to scale logarithmically,
the constrained space can then scale subexponentially for Approach 5. Given the rich
and growing literature of approaches to find suitable parameters for QAOAs, it would be

114



Algorithms 2022, 15, 356

interesting to utilize such approaches for the ansitzes introduced here, especially those that
are less cost prohibitive for intermediate p values, where the advantage of more tailored
ansétzes could be more pronounced compared with more generic ansitzes using the same
parameter selection approach. Given that near-term quantum devices are likely to be noisy
and have inaccuracies in the application of gates, it would be interesting to compare these
ansitzes in this regime and consider modifications. The performance of each ansatz varied
over the instances, and it would be interesting to analyze what kind of features of an
instance can be predictive of the performance of an ansatz. Finally, it would be of interest
to consider other optimization problems in which similar structures can be exploited to
tailor ansédtzes.
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Abstract: Since failure of steam turbines occurs frequently and can causes huge losses for thermal
plants, it is important to identify a fault in advance. A novel clustering fault diagnosis method for
steam turbines based on t-distribution stochastic neighborhood embedding (t-SNE) and extreme
gradient boosting (XGBoost) is proposed in this paper. First, the t-SNE algorithm was used to map
the high-dimensional data to the low-dimensional space; and the data clustering method of K-means
was performed in the low-dimensional space to distinguish the fault data from the normal data. Then,
the imbalance problem in the data was processed by the synthetic minority over-sampling technique
(SMOTE) algorithm to obtain the steam turbine characteristic data set with fault labels. Finally, the
XGBoost algorithm was used to solve this multi-classification problem. The data set used in this
paper was derived from the time series data of a steam turbine of a thermal power plant. In the
processing analysis, the method achieved the best performance with an overall accuracy of 97% and
an early warning of at least two hours in advance. The experimental results show that this method
can effectively evaluate the condition and provide fault warning for power plant equipment.

Keywords: fault diagnosis; steam turbine; t-distribution stochastic neighborhood embedding (t-SNE);
extreme gradient boosting (XGBoost); clustering

1. Introduction

Thermal power plays an important role in power generation. Thermal power gen-
eration consumes enormous amounts of available coal energy, resulting in a shortage of
coal energy. In order to conserve energy consumption, reduce pollution and protect the
environment, thermal power plants should adopt advanced scientific and technological
means to reduce energy efficiency loss, and strengthen research on fault diagnosis of main
power generation (e.g., steam boilers and turbines) [1-3].

In recent years, the rapid development of information technologies, computer tech-
nologies and other new technologies has brought new progress in equipment condition
monitoring and fault diagnosis [4,5]. The application of machine learning in intelligent
diagnosis has achieved good results. The main machine learning algorithms include sup-
port vector machines (SVM) [6,7] and its improved algorithms, decision trees, its improved
algorithms [8,9], artificial neural network (ANN), and its improved algorithms [10,11],
etc. These algorithms can achieve better classification results for data sets with a large
number of fault tags. Deng et al. [12] used the improved particle swarm optimization
(PSO) algorithm to optimize the parameters of least squares support vector machines
(LS-SVM) to construct an optimal LS-SVM classifier, which is used to classify the fault.
In Sun’s research [13], a fault diagnosis method based on wavelet packet analysis and
SVM was proposed. Firstly, the wavelet packet transform was used to decompose and
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denoise the signal, and the original fault feature vector was extracted for reconstruction.
The improved SVM algorithm was used to diagnose the fault based on the new fault feature
vector. Wu et al. [14] proposed a deep transfer learning method based on the hybrid domain
adversarial learning (HDAL) strategy for rotating machines in nuclear power plants.

Since failure of steam turbines occurs frequently and causes huge losses in thermal
plants, it is important to identify the fault in advance. Thermal power plants use big data
technology to deeply mine data value [15-18], which also makes itself more optimized,
safer, and more economical. The steam turbine is one of the most important equipment
in thermal power plants [19,20]. A large amount of steam turbine data, such as condition
monitoring data, fault data and so on, has been accumulated in power plant automation
systems, which contain characteristic data about the steam turbine fault condition. Accurate
fault diagnosis can find the fault in time, repair it in advance, and ensure normal production.
However, due to data acquisition and artificial records, the fault records cannot be directly
related to the automatic acquisition of time series data. More seriously, due to the low
efficiency and low quality of manual recording, the sample data with a large number of
labels cannot be directly obtained. In addition, the turbine has high reliability and is in
normal operation for a long time, which makes it difficult to provide a large amount of
faulty sample data. Since the signals collected by the automatic system are nonlinear and
non-stationary, the fault features are often drowned by external factors such as noise and
the traditional signal processing; thus, analysis technology is severely limited. Therefore,
an effective method for feature extraction and fault diagnosis for steam turbines is needed
for this condition.

After analyzing the recent progress, a novel fault diagnosis method based on t-
distribution stochastic neighborhood embedding (t-SNE), K-means clustering, synthetic
minority over-sampling technique (SMOTE) and extreme gradient boosting (XGBoost)
is proposed in this paper. Since the vibration signal collected by samplers had a high
dimensional feature and the data could not be visualized, t-SNE was used to map the
high-dimensional data to the low-dimensional space. Most of the data collected from the
thermal plant was unlabeled, so the data clustering method of K-means was used in the
low-dimensional space to distinguish the fault data from the normal data for automatic
fault identification. The imbalance problem in the data was processed by the SMOTE
algorithm to obtain the steam turbine characteristic data set with fault labels. Finally, the
XGBoost algorithm was used to solve this multi-classification problem. When the steam tur-
bines were detected by the trained model in this paper, the prediction information fed back
to the thermal power plant immediately. This early warning information for a predictive
failure will give the thermal power plant enough time to deal with the problems in advance.
During this time, the plant could use other methods to reasonably determine when to take
action. Compared with the above literature, the differences between the proposed method
and other studies are shown in Table 1. The main objective of the proposed method was to
develop a novel procedure for actual power plant data.

Table 1. Research comparison of the proposed method.

Proposed Method Other Literatures

Data set source
Data length
Fault label

Fault verification
Iterative strategy for research

Significance of research

Actual data from the actual
plant
Larger (months or even years)
Partly missing or being
blurred

Based on real faults in the
plant

Determined by the actual

operation of the plant

Solving practical problems

Experimental data or
numerical simulation data
Smaller (hours or days)

Identified by the experiment
Based on simulated faults

Unable to iterate

Continuous improvement of
research algorithms
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The rest of this paper is organized as follows. Section 2 discusses methods. Section 2.1
introduces and discusses the performance indicator extraction based on t-SNE and K-
means. Section 2.2 introduces the imbalanced data recognition model based on SMOTE and
XGBoost. A model evaluation method is presented in Section 2.3. Section 3 presents the
data experiment and results and discussion of the proposed method. Finally, conclusions
are drawn in Section 4.

2. Methods
2.1. Performance Indicator Extraction Based on t-SNE and K-Means

The t-SNE algorithm is a nonlinear dimensionality reduction algorithm that maps
multi-dimensional data into two or more dimensions by the similarity of high-dimensional
data [21,22]. It has been applied to many fields, including image processing [23], genet-
ics [24], and materials science [25]. In this paper, the input of t-SNE is signal features
extracted by data acquisition equipment. According to the similarity of signal features,
these features are further reduced. The main algorithm is as follows and the source code of
the t-SNE algorithm is in Appendix A.

(1) The conditional probability of distribution p;; between the corresponding data x;
and x; in the high-dimensional space is calculated to represent the similarity between the
data. The high-dimensional data, x; and x;, correspond to the mapping points y; and y; in
a low dimension and g); is their similar conditional probability distribution. The initial

value is Y(0) = {vi v2 - wyn} pji and g;; are calculated as follows.

exp(—||x; — x]-H2/2cTi2)

Pili = M
T Ligrexp(— |l — xel[?/207)
2
__expfyi—yll)
q]\l - 2 (2)
Yz exp(—llyi —yell)
where 0; is the Gaussian distribution variance centered on x;.
(2) Calculating the joint probability density p;; of high dimensional samples.
py = 250 @)
(3) Calculating the joint probability density g;; of the low dimensional samples.
2 _l
(14 v —yil?)
q9ij = 4)
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(4) Calculating the loss function C and its gradient. C is defined by the Kullback-
Leibler (KL) distance to evaluate the similarity degree of joint probability density p;; and

ij-
C=KL=Y, Y pijlog % (5)
if

6C o\ —1

5y, = 40 (pii — ) (vi — ) (14 v = vl (©)
(5) Iterative updating.
Y =y %€ (y(f—l) _ y(f—z)) @
oy

where t is the number of iterations, 7 is the learning rate, and «/(-) is the momentum factor.
(6) Returning to (4) and (5) until the number of iterations is reached.
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After obtaining the low-dimensional data output by the t-SNE algorithm, the K-means
clustering algorithm [26] was used to classify the data into two categories. This algorithm
is used to classify fault dangerous intervals. When a single fault hazardous interval is
identified, the data is divided into fault data and normal data. However, the lack of failure
records leads to an imbalance problem.

2.2. Imbalanced Data Recognition Model Based on SMOTE and XGBoost

Sampling methods are very popular for balancing the class distribution. Over- and
under-sampling methodologies have received considerable attention to counteract the
effect of imbalanced data sets. The SMOTE algorithm is simple and efficient, has good
anti-noise ability, and can improve the generalization of the model [27,28]. The formal
procedure is as follows.

The minority class is over-sampled by taking each minority class sample and inserting
synthetic examples along the line segments connecting any/all of the k minority class
nearest neighbors. Depending on the amount of over-sampling required, neighbors are
randomly selected from the k nearest neighbors. Synthetic samples are generated as follows:
take the difference between the feature vector of sample and its nearest neighbor; multiply
this difference by a random number between 0 and 1, and add it to the feature vector
under consideration. This results in the selection of a random point along the line segment
between two specific features. This approach effectively forces the decision region of the
minority class to become more general [29].

Boosting is a machine learning technique that can be used for regression and classi-
fication problems. It generates a weak learner at each step and accumulates them in the
overall model. If the weak learner for each step is based on the gradient direction of the
loss function, it can be called gradient boosting decision tree (GBDT) [30]. The difference
with GBDT is that only the first derivative of the loss function is used to compute the
objective function. The XGBoost approximates the loss function using the second order
Taylor expansion. The main algorithm is as follows and the source code of the XGBoost
algorithm is in Appendix A.

Assume that a data setis D = {(x;, ;) }(|D| = m,x; € R",y; € R), then we obtain n
observations with m features each and with a corresponding variable y. Let i be defined as
a result given by an ensemble represented by the generalized model as follows:

K
Ji=¢x) =) fitxi) fr € F 8)
k=1

where fj is a regression tree, and fi(x;) represents the score given by the k-th tree to the i-th
observation in data. In order to functions f, the following regularized objective function
should be minimized:

L(¢) = Zl(ﬁi/yi) + ;Q(fk) )

where [ is the loss function. To prevent too large complexity of the model, the penalty term
Q) is included as follows:

Qfe) = 9T + A lwl? (10)

where 7y and A are parameters controlling penalty for the number of leaves T and magnitude
of leaf weights w respectively. The purpose of Q(fy) is to prevent over-fitting and to
simplify models produced by this algorithm.

An iterative method is used to minimize the objective function. The objective function
that minimized in j-th iterative to add f; is:

19 = Y 1(31,900 4 i) + QL) an
i=1
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Equation (11) can be simplified by using the Taylor expansion. Then, a formula can be
derived for loss reduction after the tree split from a given node:

Lsplit - ) - - (12)

2 2
1| (Zier, i) N (Cicr, 8i) (Lic1 1)
Yiep, hi+ A Yiehi+A  Yiethi+A

where I is a subset of the available observations in the current node and I, I are subsets
of the available observations in the left and right nodes after the split. The functions g; and
h; are defined as follows:

8i = 9yl (yi,}?(j_l)) (13)

h = a;(]._m I (yi,yu—l)) (14)

The XGBoost algorithm has many advantages: it prevents over-fitting by increasing
the complexity and compression of the loss function; it optimizes the number of iterations
through cross-validation; and it improves the computational efficiency of the model through
parallel processing. This algorithm is implemented in the “xgboost” package for the
“Python” language provided by the creators of the algorithm.

2.3. Model Assessment Method

The confusion matrix [31] is a classical method for evaluating the results of classifica-
tion models:

Ni1 N2 -+ Ny
Ny1 Ny -+ Ny

Co=1 . T (15)
N N2 -+ N

where N;; represents the probability that class i is divided into class j on the verification set.
Accuracy, recall, and Fl-score [32] play a role in the evaluation of the classification
model. Through these complementary evaluation indexes, with the results of the confusion
matrix, the algorithm model can be evaluated, optimized and screened, and the optimal
algorithm model suitable for the data can be obtained.
Accuracy refers to the ratio of the predicted correct number in the test results of the
test set to the total number of samples, which is expressed as follows.

>.i Nij
Y L Nij

Accuracy = (16)

The precision of class i indicates the ratio between the number of class i predicted
correctly and the number of class i predicted in the test set results, which is expressed as
follows:

Precision = —i 17)
Lj Nij

Recall refers to the ratio between the number of correct class i predicted in the test

results of the test set and the number of class i. The equation is as follows:

Nii
Y. Nij

Recall = (18)
F1-score is calculated by precision and recall. Since these two values are not intuitive

enough, they are more intuitive after conversion. The larger the value, the better the result.

The formula is as follows:
2PR

“PFR

where P is the accuracy and R represents the recall rate.

1 (19)
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Through the accuracy rate, recall rate, and Fl-score, which can reflect the quality of
classification results, we can adjust and optimize the classification model.

To better understand the proposed fault diagnosis of the steam turbine process, we
summarize the main procedures as follows.

Step 1: Extraction of performance indicators. The t-SNE algorithm is used for dimen-
sion reduction. Then, cluster analysis is performed on the low-dimensional data. With the
fault records, the fault data and normal data of the clustering result are distinguished.

Step 2: Imbalanced data detection model. The imbalance problem in the data is
processed by the SMOTE algorithm. We used the XGBoost algorithm to solve this multi-
classification problem.

Step 3: Model evaluation method. The confusion matrix is used to evaluate the results
of classification models.

Figure 1 shows a schematic diagram of the proposed fault diagnosis of the steam
turbine process in this paper.

( Original Data )
t-SNE

v

Low-dimensional
Eigenvector

K-means Clustering

v

Fault Type

|
SMOTE

v

XGBoost Classification Model
Construction and Parameter
Optimization

v

Model Evaluation

( Result Output )

Figure 1. Flow chart of model construction.
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3. Experiments, Results and Discussion
3.1. Introduction of Data Set

The data set in this paper was derived from the time series data of Steam Turbine 2 in
a thermal power plant in China. The data set include the following two parts.

(1) One was from the supervisory control and data acquisition (SCADA) system. The
original sampling period of the SCADA system was less than one millisecond. The data set
was the interval sampling data of every one second.

(2) The other was the fault information from the manual record and the system
application and product (SAP). The fault information mainly came from the manual record
of the power plant, including the fault content and the recorded time. However, some
of the fault information was not part of the equipment operation faults and could not be
effectively identified by the automated acquisition system. Therefore, in this paper, the
fault information was filtered.

After excluding measurement points with severe data loss or no data records, the
steam turbine data set contained 34 variables, such as the time stamp, operating condition
parameters and status parameters. The acquisition time was eight months, and the size of
the effect data was approximately 340,000.

Table 2 shows the statistical information of the steam turbine data set. In addition,
more detailed information of the data set can be seen in Appendix B, Table Al.

Table 2. Statistical information of the data set on steam turbines.

Data Set Sample Size Time Range

Steam turbine 340,468 January to August in 2018

The fault information was obtained from the fault records manually recorded by the
power plant, including the fault content and recording time. Since some fault records were
not plant operation faults and could not be effectively identified by the data, the available
fault information was screened. The fault records selected for use are shown in Table 3.

Table 3. Five types of faults in the fault record.

No. Fault Discovery Time

3 Feb 2018 2:07
11 Feb 2018 6:19
13 Mar 2018 7:28
10 Jun 2018 7:44
7 Aug 2018 23:17

Ul W N =

3.2. Setting Labels for Different or Normal Faults

We used the fault detection time in the data record to determine the time that the fault
occurred. The data of 8~24 h before and after each fault record of the steam turbine were
intercepted for analysis. First, the t-SNE algorithm described in the previous section was
adopted to map the 34-dimensional data to a two-dimensional space. Then, the K-means
clustering method was used to separate the fault data from the normal data. The processing
results of the algorithm are visualized in Figure 2. Green data points represent normal data,
and other colors represent different fault data points.

The time-series data after clustering was compared to fault records to distinguish fault
data from normal data. As shown in Figure 3, each figure is a data graph of different faults
arranged by time. In the figure, the time of the red line is the actual time recorded for the
five types of faults.

Table 4 shows the information of failure data for five types. Compared to the time of
fault records, it can be seen that this method can distinguish fault data and normal data of
steam turbines, and it has a certain predictive ability.
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3.3. Dealing with Data Imbalance

After labelling the data, the problem to be solved was the data imbalance.

The total number of fault data was 5118 and the number of normal data was 335,350.
The ratio of normal data to faulty data was approximately 67:1, which is a very high
imbalance. The imbalance needed to be processed before building a classification model.
Immediate imbalance processing of this data set could introduce noise, which would affect
the accuracy of subsequent classification algorithms.

The normal data were sampled in sections, and the data of one day every four days
were extracted and reassembled into the normal data. The SMOTE algorithm was used to
deal with the unbalanced data of the newly formed data, and the resulting sample data set

is shown in Table 5.
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Figure 2. Two-dimensional features of five faults. (a) Two-dimensional fusion features of Fault
1. (b) Two-dimensional fusion features of Fault 2. (c¢) Two-dimensional fusion features of Fault 3.
(d) Two-dimensional fusion features of Fault 4. (e) Two-dimensional fusion features of Fault 5.
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Figure 3. Time series data of five faults. (a) Clustering results of Fault 1 based on time series.
(b) Clustering results of Fault 2 based on time series. (c¢) Clustering results of Fault 3 based on time
series. (d) Clustering results of Fault 4 based on time series. (e) Clustering results of Fault 5 based on

time series.

Table 4. Five types of fault data information table.

Advanced Time

No. Start Time End Time .
(min)
1 3 Feb 2018 0:14 3 Feb 2018 6:45 113
2 10 Feb 2018 22:02 11 Feb 2018 16:16 497
3 12 Mar 2018 19:32 13 Mar 2018 11:10 716
4 9 Jun 2018 14:53 10 Jun 2018 17:25 1011
5 7 Aug 2018 12:07 8 Aug 2018 6:25 670
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Table 5. The amount of fault data.

Original Data by SMOTE

Normal 78,513 78,513
Fault1 392 5832

Fault 2 1095 16,823
Fault 3 939 14,402
Fault 4 1593 24,655
Fault 5 1099 16,801

Ratio 15:1 1:1

3.4. Test Results

After optimizing the data imbalance in the previous section, the XGBoost algorithm
could be used for fault diagnosis. The data set was divided into a training set and a test set
and divided according to the ratio of 3:7. The results of the confusion matrix are shown in
Table 6.

Table 6. Results of confusion matrix.

Confusion Predicted Result (%)

Matrix 0 1 2 3 4 5
0 97.06 0.08 1.09 0.67 0.37 0.73
1 0.06 99.94 0 0 0 0
2 1.24 0 98.76 0 0 0
3 2.36 0 0 97.64 0 0
4 0.41 0 0 0 99.59 0
5 0.27 0 0 0 0 99.72

To better calculate the performance of the model, precision, recall rate and F1-score
were calculated, and the calculation results are shown in Table 7.

Table 7. Precision, recall and F1-score results.

Fault Label Precision Recall Rate F1-Score
0 99.18% 96.80% 97.98%
1 98.74% 100.00% 99.37%
2 94.54% 99.02% 97.07%
3 96.52% 97.63% 97.07%
4 98.52% 99.70% 99.11%
5 96.58% 99.72% 98.13%

Tables 6 and 7 show the classification results of the model for five faults of the steam
turbine. As is well-known, for a classification model, if precision, recall and F1-score have
higher values at the same time without considering other factors, the model is considered
to have better performance. The model based on the XGBoost classifier had high accuracy
in fault diagnosis of steam turbines and could identify the different types of faults.

3.5. Results and Discussion

In this paper, we developed a novel procedure for the actual data of the power plant,
and obtained the expected results for the power plant. In order to further illustrate the
superiority of the proposed method in this paper over other methods, it is necessary to
discuss the following issues.

(1) Computational efficiency.

The research object of this paper was a power plant’s big data, so the complexity of
the algorithm was one of the important issues to be considered. The complexity of the
T-SNE algorithm used in the research method of this paper is large. In general, applying
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the T-SNE algorithm for dimensionality reduction for a data set of millions of samples may
take several hours. The number of samples calculated in this paper was about 340,000, and
the training time of the model including the dimensionality reduction algorithm was less
than one hour. Such computational efficiency is perfectly acceptable for an enterprise-level
data application system. In addition, since the probability of serious faults in power plant
enterprises is often low, we generally recommend that power plants update the training
model every six months with new data, and the time to update the model here is at most
a few hours. For the calculation time of the final classification model, achievement of the
real-time effect can be considered (generally no more than 1 s).

(2) Comparison with other algorithms.

The purpose of this research paper was to develop a procedure of fault diagnosis
and prediction for the power plant data. For the data dimensionality reduction algorithm,
we chose the t-SNE algorithm. In the research process, we also compared a principal
component analysis (PCA) algorithm at the same time. Although, the PCA method had
a faster computational speed, it was still less effective than nonlinear dimensionality
reduction algorithms, such as t-SNE, for complex data of the power plant due to the linear
dimensionality reduction method [33].

For the final classification algorithm, in addition to the XGBoost algorithm, we also
compared algorithms such as SVM and random forest (RF). From the application effect
of the data in this paper, the computational results of the XGBoost algorithm and the
RF algorithm were better than SVM; moreover, considering that the XGBoost algorithm
borrows from RF and can support column sampling processing, which can not only reduce
overfitting, but also reduce computational effort [34], the XGBoost algorithm was finally
chosen in this paper.

(3) Improvement of the algorithm.

For a fault diagnosis and prediction system that is really applied to the power plant,
the most important purpose was to be able to detect and warn about the dangerous faults
in advance based on the large historical data. In this paper, the algorithm was trained with
more than 300,000 samples of data for nearly eight months, and the algorithm had some
limitations. However, in the actual application system, we used more than seven years of
historical data of the power plant to train the used model, which proved to have a good
application effect.

Furthermore, in addition to the application data set in this paper, we also validated
the pneumatic feed pump data set for this power plant. The results also showed that the
method proposed in this paper was also applicable to other equipment in the power plant.
In general, the accuracy of 90% of the actual data can meet the needs of the enterprise
management. Therefore, the research algorithm in this paper has been practically applied
in the power plant and has achieved satisfactory results.

4. Conclusions

A model based on t-SNE and XGBoost was proposed to detect the early failure of
steam turbines. The model with high accuracy was verified by the data of steam turbine
units of thermal power plants in China.

(1) The uncertainty problem of feature extraction in the unlabeled data set was solved
using t-SNE and K-means. This method can distinguish fault data and normal data, and
it has a certain foresight because it can distinguish the time when the fault occurs, which
is earlier than the fault record of manual inspection, making it more suitable for practical
application in fault diagnosis of steam turbines.

(2) The problem of data imbalance caused by fewer fault records was solved by using
the SMOTE algorithm, which is of great significance to the fault diagnosis of the steam
turbine and other mechanical equipment with fewer faulty samples.

(3) In the identification of new data, the accuracy and other indicators of the model
based on XGBoost reached more than 97%, which shows that this method has high value
in turbine fault diagnosis.
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Appendix A
The following source code for reference is the t-SNE algorithm.
Algorithm A1. T-SNE algorithm.

#!/usr/bin/env python
# coding: utf-8

import os
import sys
os.chdir (os.path.split (os.path.realpath (sys.argv [0]))[0])

import numpy
from numpy import *
import numpy as np

from sklearn.manifold import TSNE
from sklearn.datasets import load_iris
from sklearn.decomposition import PCA
import matplotlib.pyplot as plt

import pandas as pd
dfl = pd.read_excel (‘D:/data/gz5.xIsx")
dfl.label.value_counts ()
def get_data (data):
X = data.drop (columns = [‘time’, ‘label’]).values
y = data.label.values
n_samples, n_features = X.shape
return X, Y, n_samples, n_features
X1, y1, n_samplesl, n_featuresl = get_data (df1)
X_tsne = TSNE (n_components = 2,init = ‘pca’, random_state = 0).fit_transform (X1)
def plot_embedding (X, y, title = None):

x_min, x_max = np.min(X, 0), np.max(X, 0)
X = (X — x_min) / (x_max — Xx_min)
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Algorithm A1. T-SNE algorithm.

plt.figure ()
ax = plt.subplot (111)
for i in range (X.shape [0]):
plt.text (X [i, 0], X [1,1],",
color = plt.cm.Setl (y[i] * 3/10.),
fontdict = {“'weight’: ‘bold’, ‘size”: 9})
plt.xticks ([]), plt.yticks ([])
if title is not None:
plt.title (title)

plot_embedding (X_tsne, y1)

from sklearn.cluster import KMeans
from sklearn.externals import joblib
from sklearn import cluster

estimator = KMeans (n_clusters = 2)

res = estimator.fit_predict (X_tsne)
lable_pred = estimator.labels_

centroids = estimator.cluster_centers_
inertia = estimator.inertia_
from pandas import DataFrame

XA = DataFrame (res)
XA to_csv (‘D:/data/gz5out.csv’)

The following source code for reference is the XGBoost algorithm.

Algorithm A2. XGBoost algorithm.

#!/usr/bin/env python
# coding: utf-8

from xgboost import plot_importance
from matplotlib import pyplot as plt

import xgboost as xgb

from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score

import numpy as np

import pandas as pd

from xgboost.sklearn import XGBClassifier

# load data

data = pd.read_csv (‘D:/data/suanfa/kyq.csv’)

x, y = data.loc [:,data.columns.difference (['label’])].values, data [‘label’].values
x_train, x_test, y_train, y_test = train_test_split (X, y, test_size = 0.3)

data.label.value_counts ()

params ={'learning_rate”: 0.1,
‘max_depth”: 2,
‘n_estimators”:50,
‘num_boost_round”:10,
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Algorithm A2. XGBoost algorithm.

‘objective”: ‘multi:softprob’,
‘random_state”: 0,
‘silent”:0,
‘num_class’:6,
‘eta”:0.9
}

model = xgb.train (params, xgb.DMatrix (x_train, y_train))
y_pred = model.predict (xgb.DMatrix (x_test))
yprob = np.argmax (y_pred, axis = 1) # return the index of the biggest pro

model.save_model (‘testXGboostClass.model’)
yprob = np.argmax (y_pred, axis = 1) # return the index of the biggest pro
predictions = [round (value) for value in yprob]

# evaluate predictions
accuracy = accuracy_score(y_test, predictions)
print (“Accuracy: %.2{%%” % (accuracy * 100.0))

plot_importance (model)
plt.show ()

xgb1 = XGBClassifier (
learning_rate = 0.1,
n_estimators = 20,
max_depth =2,
num_boost_round = 10,
random_state = 0,
silent =0,
objective = ‘multi:softprob’,
num_class = 6,
eta=09
)

xgb1.fit (x_train, y_train)
y_pred1 = xgbl.predict_proba (x_test)
yprobl = np.argmax (y_predl, axis = 1) # return the index of the biggest pro

from sklearn.metrics import confusion_matrix
confusion_matrix (y_test.astype (‘int’), yprobl.astype (‘int’))

from sklearn.metrics import classification_report
print (“Accuracy of Classifier:’,xgb1.score (x_test, y_test.astype (‘int’)))
print (classification_report (y_test.astype (‘int’), yprobl.astype (‘int’)))

Appendix B

Table A1l. Variable name.

No. Description

FO Time stamp

F1 Turbine Speed

F2 Main Steam Pressure
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No. Description

F3 Reheat Steam Pressure
F4 Main Steam Temp
F5 Bearing Bushing 11
Fé6 Bearing Bushing 12
F7 Bearing Bushing 21
F8 Bearing Bushing 22
F9 Bearing Bushing 31
F10 Bearing Bushing 32
F11 Bearing Bushing 41
F12 Bearing Bushing 42
F13 Bearing Bushing 51
F14 Bearing Bushing 61
F15 Bearing Vibration 1X
F16 Bearing Vibration 1Y
F17 Bearing Vibration 17
F18 Bearing Vibration 2X
F19 Bearing Vibration 2Y
F20 Bearing Vibration 27
F21 Bearing Vibration 3X
F22 Bearing Vibration 3Y
F23 Bearing Vibration 3Z
F24 Bearing Vibration 4X
F25 Bearing Vibration 4Y
F26 Bearing Vibration 47
F27 Bearing Vibration 5X
F28 Bearing Vibration 5Y
F29 Bearing Vibration 57
F30 Bearing Vibration 6X
F31 Bearing Vibration 6Y
F32 Bearing Vibration 6Z
F33 Turbine Differential Expansion
F34 Rotor Eccentricity
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Abstract: The operation and maintenance (O&M) issues of offshore wind turbines (WTs) are more
challenging because of the harsh operational environment and hard accessibility. As sudden compo-
nent failures within WTs bring about durable downtimes and significant revenue losses, condition
monitoring and predictive fault diagnostic approaches must be developed to detect faults before they
occur, thus preventing durable downtimes and costly unplanned maintenance. Based primarily on
supervisory control and data acquisition (SCADA) data, thirty-three weighty features from opera-
tional data are extracted, and eight specific faults are categorised for fault predictions from status
information. By providing a model-agnostic vector representation for time, Time2Vec (T2V), into
Long Short-Term Memory (LSTM), this paper develops a novel deep-learning neural network model,
T2V-LSTM, conducting multi-level fault predictions. The classification steps allow fault diagnosis
from 10 to 210 min prior to faults. The results show that T2V-LSTM can successfully predict over
84.97% of faults and outperform LSTM and other counterparts in both overall and individual fault
predictions due to its topmost recall scores in most multistep-ahead cases performed. Thus, the
proposed T2V-LSTM can correctly diagnose more faults and upgrade the predictive performances
based on vanilla LSTM in terms of accuracy, recall scores, and F-scores.

Keywords: operation and maintenance (O&M); wind turbines (WTs); predictive fault diagnostic;
supervisory control and data acquisition (SCADA); Time2Vec (T2V); Long Short-Term Memory
(LSTM); T2V-LSTM

1. Introduction

The global wind energy installations expanded by about 14% annually from 2001 to
2020 [1]. The total wind power capacity increased from 650.8 GW in 2019 to 742.7 GW
in 2020, with a spectacular growth of 53% (over 90 GW) since 2019 [2,3]. Due to plentiful
wind resources and abundant construction sites in offshore areas, more wind farms are
installed with increased seabed depths and remote distances to shore [4]. Using the same
commercial wind turbine (WT), offshore power production is at least 1.34 times more than
the onshore site with the highest wind energy potential due to stronger and more uniform
wind resources in offshore areas [5]. However, offshore WT installation costs are about
2.64 times those of their onshore counterpart [6]. And harsher weather conditions are
challenging for the operation and maintenance (O&M) tasks of offshore WTs. Moreover,
O&M costs account for a large fraction of total lifecycle costs, with 10-15% and 25-30%
for onshore and offshore wind farms, respectively [6,7]. Unexpectedly, sudden faults
from high-risk WT components contribute significantly to the increase in O&M costs
related to downtimes and discounted revenues [8]. To reduce O&M costs and enhance
system reliability, condition monitoring (CM), fault diagnosis, and prognosis are of prior
importance through the detection of certain faults before they reach catastrophic fault
severity levels. Hence, O&M costs can be decreased along with maintenance interval
optimisation [9].
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Condition Monitoring System (CMS) can facilitate system failure prevention and WT
availability improvement through early-stage fault detections. To diagnose fault-free condi-
tions of WT components, such as the gearbox and drivetrain, CMS has been implemented
via vibration analysis [10], oil analysis [11], electrical signature analysis [12], and acoustic
emission analysis [13]. CMS-based monitoring is capable of both fault diagnosis and prog-
nosis with a high-frequency resolution, but this approach is more expensive compared to
supervisory control and data acquisition (SCADA) [14]. Thus, SCADA systems become
more favourable for WT operators to apply the CM technique due to cheaper costs; how-
ever, these have a low-frequency resolution [15]. SCADA data are normally collected under
a 10 min sampling rate. A number of data-driven studies on SCADA-based monitoring
have been utilised for performance monitoring of WT operational conditions in recent
years without retrofitting additional sensors.

Stetco et al. [16] investigated the machine learning (ML) applications for CM in WTs,
including CM for diagnosis and CM for prognosis. Diagnosis focuses on real-time fault
identifications, whilst prognosis is to predict the faults before their occurrences [17].

Classification is a supervised ML approach, applicable for fault detection, diagnosis,
and prognosis, to train a classifier by predicting its categorised outputs based on input vari-
ables, thus differentiating between healthy and faulty operations. Lu et al. [18] proposed an
online fault diagnosis for WT planetary gearbox faults employing a self-powered wireless
sensor for signal acquisition. Leahy et al. [19] applied support vector machine (SVM)
models to detect, diagnose, and predict faults in a 3 MW direct-drive turbine. However, the
classification results on feeding and air-cooling faults had deficient performances due to
the problematic classification of the SVM hyperplane. Naik and Koley [20] adopted the k-
nearest neighbour (k-NN) classifier-based protection to detect and classify multiple types of
faults in AC/HVDC transmission systems by varying fault resistance and inception angles
with a classification accuracy of 100%. Marti-Puig et al. [21] investigated several automatic
feature selection approaches based on the k-NN classifier for fault prognostics with the use
of 36 sensor variables on gearbox and transmission systems. Artificial Neural Network
(ANN) was trained by Ibrahim et al. [22] for WT mechanical faults with a median accuracy
between 93.5% and 98% in fault detection. For various classification tasks, SVM [18,19,23],
k-NN [20,21], ANN [22,24,25], and RF [25,26] are commonly used with SCADA, simulation,
or experimental data. Most importantly, accurate fault diagnosis is the prerequisite for
developing any prediction model.

ANN has been widely applied to the ML approach for supervised classification
learning [27]. The typical ANN architecture, multi-layer perception (MLP), is a feed-
forward multi-layered neural network consisting of an input layer, several hidden layers,
and an output layer. The ANN prediction results are determined by data size, data pre-
processing, selected neural network structures under their optimum activation functions,
etc. [16]. Due to its robustness towards poor-quality data with noise and system dis-
turbances, a well-trained ANN model can still make wise predictions, which cannot be
achieved by other ML classifiers [6]. With the escalation of quantitative data sizes and
complexity, ANN is a model with ideal predictive results but a slow convergence speed.

Compared to ANN, the Recurrent Neural Network (RNN) is a more promising neural
network model for time- and sequence-based tasks because its recurrent structure captures
the temporal dependency among inputs with sequential characteristics to predict the next
scenario [28]. RNN is a class of deep-learning neural networks designed for variable-length
sequence inputs by remembering important events and allowing the previous values
as inputs to predict future outputs with recurrent connections in hidden layers. RNN
overcomes the over- and under-fitting issues and reduces the convergence time compared
to ANN. However, vanishing gradients, caused by error information flowing backward,
are large barriers to the success of vanilla RNNSs because of the resultant oscillating weights
or loss of long-term dependencies [29]. To address vanishing gradients, Long-Short-Term
Memory (LSTM), proposed by Hochreiter and Schmidhuber [29], is a remarkable RNN
model to control the information flow with additional interacting layers. Based on SCADA
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data, Chen et al. [30] verified the outperformance of LSTM over ANN and autoencoder (AE)
for anomaly detection. The integrated LSTM-AE model further improved the detection
accuracy due to the raw input processed by AE and the time feature managed by LSTM.
Based on both single-sensor and multi-sensor signals, LSTM outperformed RNN and
ANN on the classification of 11 faults on the wind wheel, bearing, bearing support, and
rotor [31]. For a case study of fault classification on inner, outer, and ball faults from rolling
bearings [32], LSTM demonstrated higher accuracy than ANN and SVM, and stacked LSTM
further enhanced the prediction accuracy. The advantages of LSTM have been validated
according to multiple time-series fault diagnosis tasks [30-32].

The time-series events can occur either synchronously or asynchronously. However,
most of the RNN or LSTM models fail to make use of time as a feature by considering all
inputs to be synchronous. Kazemi et al. [33] proposed a model-agnostic vector representa-
tion for time, known as Time2Vec (T2V), to be integrated with the LSTM model to refurbish
the architecture with the consumption of time features. The key contributions in this paper
can be generalised as follows:

e A feature selection method, Recursive Feature Elimination (RFE) [34], is conducted
along with an RF classifier for WT fault prediction. The weights of each feature
are computed under the RF classifier, and the RFE application reserves the optimal
number of features in order of their significance levels to maintain a balance between
prediction accuracy and computational costs.

e By integrating Time2Vec into LSTM, this approach, T2V-LSTM, has been validated to
outperform LSTM with a stationary Time2Vec activation function based on several
synchronous datasets [33]. In this paper, the data points related to downtimes are
removed to reserve only fault-free and fault data provided by the SCADA system
for the purpose of fault and no-fault predictions. Thus, a non-stationary Time2Vec
activation function is demanded to deal with the yielded asynchronous data.

e A novel deep-learning neural network model, T2V-LSTM, with an optimal non-
stationary activation function, is modelled to improve the model performance of
LSTM, successfully detecting over 84.97% of faults in advance. The comparative stud-
ies between T2V-LSTM, LSTM, and other ML classifiers are investigated for overall
and individual fault predictions based on performance metrics, including accuracy,
recall scores, precision scores, and F-scores [16].

The paper is organised as follows. Section 2 provides the SCADA operational and
status data, and the modelling process is introduced with data pre-processing, feature
engineering, and fault prognosis. The methodology studies of T2V-LSTM and the processes
of model optimisation are presented in Section 3. Section 4 investigates the comparative
predictive results from T2V-LSTM, LSTM, and other classifiers, and Section 5 presents
a discussion of this investigation. The key results and contributions are summarised in
Section 6.

2. SCADA Data

The available data were collected from a 7 MW demonstration offshore WT, owned by
the Offshore Renewable Energy (ORE) Catapult [35]. This WT is a three-bladed upwind
turbine mounted on a jacket support structure with a total height of 196 m, from blade tip
to sea level, located at Levenmouth, Fife, Scotland, UK. The regarded cut-in, rated, and
cut-off wind speeds were 3.5 m/s, 10.9 m/s, and 25 m/s, respectively [36]. More detailed
information about this WT can be seen in Figure 1. For this turbine, the collected data had
two separate groups: operational SCADA data and status data. The investigated datasets
of both groups cover a 17-month period from May 2018 to September 2019.

2.1. Operational Data and Status Data

The collected SCADA operational data include alarm data, control information, elec-
trical signals, pressure data, temperature data, turbine data, miscellaneous signals, and
other signals.
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Properties Values

Wind class IEC Class 1A

Rotor diameter 171.2m c
Capacity 7MW 2
Hub height 110.6 m

Blade length 83.5m

NACELLE WIDTH: 8m

Total height 196 m blade tip to sea level T
Generator PMG (3.3kV)

Converter Full power conversion

Drive train Medium speed (400 rpm) 5
Rated frequency 50 Hz B
Rotor speed 5.9~ 10.6 rpm

Wind speed 3.5~25m/s

Rated wind speed  10.9 m/s

Design life 25 years

Certification DNV

Figure 1. Levenmouth offshore wind turbine [35].

The SCADA system operates at a 10 min sampling rate by monitoring instantaneous
parameters, such as wind speed, pitch angle, rotor speed, yaw error, electrical power, cur-
rents, voltages, temperatures, and pressures. Taking Table 1 as an example, the minimum,
maximum, mean, standard deviation, and ending values of wind speed are collected with
the corresponding timestamps. The original dataset includes more than 2000 features and
approximately 70,000 data points with regard to the 17 months to be studied.

Table 1. Ten-minute SCADA operational data.

StartTime WindSpeed WindSpeed WindSpeed WindSpeed WindSpeed
_mps_Min _mps_Max _mps_Mean _mps_Stdev _mps_EndVal
21/05/2018 22:00:00 3.577394 10.11077 6.8690084 1.3447459 5.802108
21/05/2018 22:10:00 3.062414 10.03982 6.7177955 1.108204 6.073331
21/05/2018 22:20:00 4.69204 9.636992 7.1981784 1.0209401 8.475427

The information about requested shutdowns, faults, or warning events is provided by
status data. As seen in Table 2, fault and warning events are tracked with respect to their
corresponding event codes, on-times, and off-times. There are miscellaneous operating
states under the abnormal or faulty conditions of the WT. According to Kusiak and Li [37],
the status of fault data is assigned as follows:

If Tscapa(t) < Traur < Tscapa(t+1), then

Event.Code(t) = Event.Code(t + 1) = Event.Code(Tfuult) )

where Tscapa(t + 1) denotes the one-step behind (or 10 min behind) SCADA data since
both timestamps, t, and t 4 1, have 10 min intervals.
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Table 2. SCADA status data.

TimeOn TimeOff Event Code Event Description
21/05/2018 19:38:33 21/05/2018 19:38:39 286 (Demoted) Yaw Hydraulic Pressure Diff Too Large
21/05/2018 20:26:02 21/05/2018 20:26:10 543 Gearbox Cooling Line Pressure Too Low
21/05/2018 20:26:12 21/05/2018 20:29:20 543 Gearbox Cooling Line Pressure Too Low

The 10 min period is applied to capture any fault occurrences. For example, in Table 2,
the operational period from “21/05/2018 20:20:00” to “21/05/2018 20:30:00” should be
labelled as “Gearbox Cooling Line Pressure Too Low” with its event code of 543 due to its
fault occurrence within the 10 min time band.

As seen in Figure 2, the frequency of occurrences of each status varies. Any event code
above zero indicates an abnormality. The majority are fault event codes only occurring a
few times, but the faults under the event codes 399, 435, 570, and 1219 have occurred more
than 800 times within this period. Some event codes, such as 12 and 97, denoting SCADA
shutdown request and yaw error, respectively, are not associated with a defined fault status
despite their appearances being 932 and 1290, respectively. Aside from these two examples,
the majority of event codes are merely warnings, irrelevant to faults, so many event codes
are of minor interest in this paper. Additionally, the event codes relating to downtime due
to maintenance actions, noise curtailments, and requested owner stops in Figure 2 are to
be excluded.
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Figure 2. Frequency of alarms.

By excluding the data related to downtimes and faults with very limited frequency,
only a small number of faults can be reserved according to their relatively frequent oc-
currences, as seen in Table 3. “HPU 2 Pump Active For Too Long” relates to a fault that
occurred in the hydraulic pump unit (HPU), while “PcsOff” and “PcsTrip” relate to shut-off
faults and circuit trips within the power conditioning system (PCS), respectively. The
deep-learning model must train the classifiers for the specific fault instances defined in
Table 3. Hence, the reserved SCADA data can be classified into nine categories: (1) fault-
free; (2) HPU 2 pump active fault; (3) Blade 3 slow response; (4) pitch system fatal fault;
(5) gearbox cooling pressure fault; (6) (Demoted) gearbox pressure 2 fault; (7) PcsOff fault;
(8) PcsTrip fault; (9) sub-pitch fatal fault. The quantity of fault-free cases is much larger
than that of any individual fault case, leading to an imbalance in the investigated dataset.
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Table 3. Fault distributions.

Event Code Frequency Description
0 42,598 Fault-free
290 565 HPU 2 pump active for too long
399 998 Blade 3 too slow to respond
435 826 Pitch system fatal error
543 522 Gearbox cooling line pressure too low
570 1436 (Demoted) gearbox filter manifold pressure 2 shutdown
700 701 PcsOff *!
701 417 PcsTrip *2
1219 816 Sub-pitch priv fatal error has occurred more than 3 times

*1 PcsOff represents the shut-off faults of power conditioning system. *?> PesTrip represents the circuit trips within
power conditioning system.

2.2. Feature Engineering

The major occurrences of the faults are on the HPU, blade, pitch system, gearbox,
PCS, and sub-pitch system (see Table 3), and a huge number of original features are Count-
False/CountTrue states, apparently irrelevant to those faults. This leads to the principal
selection of 60 relevant features, which are only a small subsection of the original 2000 features.
Among the 60 features, the deviations of pitch angles, as well as the deviations of sub-pitch
positions from blades 1 and 2, 2 and 3, and 3 and 1 are considered because of possible blade
angle asymmetry or blade angle implausibility, studied by Kusiak and Verma [38].

Feature engineering aims to reduce dimensionality by eliminating features with lower
significance and improving the computational efficiency of deep-learning neural networks.
RFE [34] has been commonly applied to fit the model by recursively removing irrelevant or
redundant features.

Firstly, an estimator for accurate online fault diagnosis is required to cooperate with
RFE for dimensionality reduction. Apart from detecting the abnormality, fault diagnosis
can determine the specific fault types with an advanced multi-level fault classification. The
accuracy is used to evaluate the performance of classifiers by:

1 TP; + TN;
A —— 1 1
ceuracy kl; TP; + FP; + FN; + TN;

)]

where k is the total number of classes, TP; donates true positive in class i, when both
prediction and actuality are faulty, whilst TN; donates true negative in class i, when both
prediction and actuality are fault-free. FP; signifies false positive in class 7, when the actual
fault-free condition is wrongly predicted to be faulty, whilst FN; signifies false negative in
class i, when the actual faulty condition is wrongly predicted to be fault-free.

ML approaches, such as Decision Tree (DT), k-NN, SVM, RE, ANN, and Gradient Boost
(GB), are compared for fault diagnosis. As seen in Figure 3, RF is evidently the finest model
among all in terms of its best accuracy (0.98607386). Hence, the RF classifier is chosen to
conduct RFE using a 10-fold cross-validation for the test set. Based on the RFE process in
Figure 4, the best accuracy (0.9888) is observed by selecting 33 optimal features out of 60
for the fault diagnosis task under RF classification.

As seen in Figure 5, the weighted importance of each feature is depicted under the
RF classification. According to the optimal solution given in Figure 4, the 33 top-ranking
features in Figure 5 are reserved for predictive fault diagnosis models. The features, such
as “AverageMeasuredPtchAnglel_Max”, “GBoxFilterPres2_Mean”, etc., have advanced
significance levels. However, the features with lower significance levels than “ManualPtch-
StateCounter_EndVal” are excluded in predictive fault diagnosis studies for the purpose of
dimensionality reduction.
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Classification accuracy
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Figure 3. Comparison of classification accuracy.
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Figure 4. Cross-validation scores plotted against the number of features.
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Feature importance under RF
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Figure 5. Feature importance under RF classifier (the 33 features above the red line are reserved).

2.3. Predictive Fault Diagnosis

Fault diagnosis aims at accurately identifying the fault types within a WT in a real-
time application. However, it is insufficient to prevent damage caused by some severe
failures only through online fault diagnosis. Then, fault prognosis is recommended by
providing the predictive fault diagnosis prior to the fault occurrence, which decreases the
maintenance fees and extends machinery life.

The observed dataset for online fault diagnosis is expressed by {X;, Y;}, where X;
and Y; are the given input data and the resultant diagnosed fault class. For example,
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as the SCADA data are collected at 10 min intervals, the 10 min, 20 min, and 30 min
ahead fault predictions can be achieved with the modified datasets, {X;_1, Y}, {X;—2, Yi},
and {X;_3, Y:}, respectively, based on the original dataset, {X;, Y;}. Thus, the predictive
performances under n-step in advance will be determined using the modified dataset,

{Xt—n, Y}

3. Methods
3.1. LSTM

As vanilla RNNs, with only input gates and output gates, suffer from vanishing or
exploding gradients caused by error back-flow problems, the main challenge for vanilla
RNN:ss is to handle the long-term dependencies.

To secure the long-term dependencies, LSTM additionally inserted forget gates for the
update and control of cell states, regulating the information flow [29]. LSTM can handle
the imbalanced data and efficiently captures a sequence of time-lagged observations as
inputs for time-series classification to predict specific faults at any given time ahead. The
original LSTM model can be precisely stated as follows:

£y = o (Wrx; + Ughy + by (3)
ij = o(Wixj + Uihj_1 + b;) 4)
O; = o(Woxj + Ushj_1 + b,) 5)
Cj = 0c(Wex; + Uchj_q1 +bc) (6)
Ci=f®Ci1+ijoC; @)
h; =03, (Cj) © O )

Herein, x; is the neuron input at the timestamp j; i; 1 is the cell state at the previous
timestamp; j — 1, f;, i;, and O; stand for the forget, input, and output gates, respectively, all
determined across the sigmoid nonlinearity, ¢, with the given weights Wf, Wi, W,, We, Uf,
u;, Uy, Ue, and the assigned biases, b £ bi, by, bc. The memory cell, E]-, from Equation (6) is
estimated through an activation function, o, which is a hyperbolic tangent layer, Tanh, by
default. Then, the current cell state C; in Equation (7) is updated regarding the previous
cell state, Cj_l, and the estimated cell state, E]-, with the element-wise product operator, ©.
Finally, the output vector, ;, in Equation (8), also known as a hidden layer, is obtained from
the element-wise product of the output gate, Oj, and the cell state, Cj, across an activation
function, 3, which is also Tanh by default.

Based on the dependencies in LSTM, the forget gate, f;, controls the fraction of C;_1, to
store in Cj, filtering h;_1 and x; through the sigmoid gate, ¢. The input gate, i;, controls the
fraction of the estimated memory cell, C;, provided to C; through the sigmoid nonlinearity,
0; the output gate, O}, controls the fraction of C; flowing into the output vector, /;, through
0y, Therefore, the LSTM architecture can be drawn in Figure 6.

3.2. Time-LSTM-1

Regarding Equation (7), Cj_1 covers the information at the previous timestamp, re-
flecting the long-term interest, and x; is the last consumed item, hardly reflecting on current
recommendations. Then, Time-LSTM, proposed by Zhu et al. [39], equips LSTM with

142



Algorithms 2023, 16, 546

time gates to store time intervals in C]-, C 1 controlling the fraction of x;j on current
recommendations. Time-LSTM-1 [39] only adds one time gate, T}, to LSTM by:

T]' :U'(th]‘—i-O'(utAtj) -‘rbt) 9)

where At} is defined as the time interval for the jth event by At; = t;,1 — t;, implemented
across a sigmoid function, ¢, and Tj is also determined through o with the assigned weights,
W; and Uy, and the given bias, b;. Atj can also be recognised as the duration between the
current and the last event. Based on the basic LSTM architecture from Equations (3)—(8),
Equations (7) and (5) can be revised to:

Ci=fi0C1+i0ToC; (10)
O] = O'(Wox]‘ + Uohj—l + VoAt]‘ + bo) (11)

where V; is the added weight to calculate O; in Time-LSTM-1. Then, both the input gate,
i i and the time gate, T;, control the fraction of the estimated memory cell, Ej, provided to
the current memory cell, Cj, in Equation (10). As T}, containing the information of interval,
Atj, is provided to Cj, and then transferred to C]«H, Cj+2, - -+, the time gate, T]', benefits the
long-term interests, C]-, C]-+1, -+ -, of the LSTM model by storing Atj.

LSTM layer h
}
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Fo;;,_z:t Input Ou;%)eut @
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Figure 6. LSTM architecture.

3.3. Time-LSTM-3 and T2V-LSTM Models

For Time-LSTM-1, the single time gate T; is mainly controlled by At;. Zhu et al. [39]
developed two alternative Time-LSTM models, Time-LSTM-2 and Time-LSTM-3, both
containing double time gates, T1; and T2;. T1; controls the influence of the last consumed
item, x;, on current recommendations, while T2j stores Atj for later recommendations.
Based on T in Equation (9), T1; and T2; can be expressed by:

le :(T(thx]'—i-O'(UﬂAt]’) +btl) (12)

T2j = 0’( Wtzx]' + O’(UtzAt]') + th) (13)

where Wy, Wi, Uy, and Uy, are given weights and by and by, are given biases. Among
three LSTM models with time gates, Time-LSTM-3 is validated with the best predictions by
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coupling input and forget gates, inspired by the LSTM variant from Greff et al. [40] and the
cell state, Cj, in Equation (7) under Time-LSTM-3 can be modified by:

C]' = (1 — ij) © C];1 + i]‘ @E]' (14)

Hence, Time-LSTM-3 has a shorter processing time than Time-LSTM-2 due to its
simpler architecture and fewer parameters to calculate. By removing the forget gate,
Equation (14) can be modified by:

C] = (1—ij@T1j) @Cj_1+ij®Tl]'®E]‘ (15)
C]' = (1 — ij) ®© C]'_1 + ij O TZJ' @6]' (16)

where C j is anew cell state to store the result. The output gate, O;, in Equation (5) and the
output vector, /;, in Equation (8) can be replaced by:

Oj = o (Woxj + Uohj—1 + VoAt + b,) (17)

hj = oy (q-) ®0; (18)

Here, both ij and T1 jare filters for Ej, while T2 j stores At;, transferred to Ci, Cit1, Cjra,

-+ +, for modelling the long-term interests for later recommendations. C; is implemented
through an activation function, 0y, influencing the current recommendations.

A model-agnostic vector representation for time, known as Time2Vec, is used to
rebuild the architectures of Time-LSTM with the consumption of time features under either
stationary or non-stationary activation functions. For this reason, Time2Vec replaces the
time interval, Atj, by a model-agnostic vector, T2V ( At]-), as follows:

q wiAti+ @i, ifi=0
T2v(at)li) = {]—"(a)i~Atj]—i- ), if1<i<k (19)
where TZV(At]-) [i] is the ith element of T2V(At]-), F can be any stationary or non-stationary
activation functions, such as Sine and Tanh, and w; and ¢; are learnable parameters. Then,
in a T2V-LSTM model, all time vectors, Atj, should be replaced by Time2Vec elements,
T2V(At]-), so the time gates, T'l; and T2;, in Equations (12) and (13), respectively, and the
output gate, O;, in Equation (17) are modified as follows:

T2] = J(Wtzxj + U(UtZTZV(At])) + bt2> (21)
0) = o (Worxj + Uphjy + Vo T2V (At ) + by (22)

For T2V-LSTM, the output vector, h;, is still controlled according to Equation (18).
Therefore, based on Equations (15)—(22), the architecture of Time-LSTM-3 or T2V-LSTM can
be plotted in Figure 7. Time2Vec, determined by its selected activation function, has three
major advantages: being capable of learning both periodic and non-periodic activation
functions, having invariance to time rescaling, and being simple to combine a representation
for time with multiple neural networks [33].
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Time-LSTM-3 or T2V-LSTM layer
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Figure 7. Time-LSTM-3 or T2V-LSTM architecture.

3.4. Validations

To evaluate the performances of neural networks and other ML classifiers, it is impor-
tant to select the appropriate evaluation metrics. The accuracy in Equation (2) is commonly
applied, but the overall accuracy of classification results on datasets with a significant
imbalance is inappropriate for determining the predictive performance due to far more
quantitative fault-free samples than faulty samples. The evaluation of overall fault pre-
dictions (FPs) is reflected by the macro precision (MAP) in Equation (23), and FNs are
captured by the macro recall (MAR) in Equation (24). Moreover, the performance metrics,
micro precision (MIP) and micro recall (MIR), are applied for fault diagnosis on individual
faults, as seen in Equations (25) and (26), respectively.

MAP = }{é % (23)
MAR = ¢ x % (24)
MIP = L % (25)
MIR = Zl; % (26)

i=1
Precision x Recall

F— =2 27
score x Precision + Recall 27)

where k is the total number of classes, and [ is the specific fault class. The F-score in
Equation (27) is applied as the harmonic mean of precision and recall scores for both overall
and individual fault diagnosis methods.
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3.5. Model Optimisation

The objective of any neural network is to minimize the cost functions for the most
accurate prediction performance by optimising the weights and biases with appropriate
activation functions [41]. The Time2Vec activation function, F, in Equation (19), as well as
the activations functions of the LSTM layer, o, and 0y, in Figure 7, are pivotal to the design
of LSTM or T2V-LSTM classifiers by affecting their predictive performance.

GridSearchCV [42] is a hyper-parameter optimisation method based on a given neural
network model to optimise the individual model for each combination of hyper parameters,
such as the number of epochs, batch sizes, and activation functions. The optimization of
hyper parameters intends to maximise prediction accuracy by minimising the cost functions
and training times of neural networks. The tunes of hyper parameters are achieved by
GridSearchCV, which adopts the k-fold cross-validation (CV) to train and test the neural
network by grid-searching the combination of hyper parameters to generate the highest
average score across k repeated times. The hyper parameters tuned for T2V-LSTM can be
seen in Table 4.

Table 4. Hyper-parameter optimisation through GridSearchCV.

Hyper Parameter Grid Optimisation
Batch size 10, 20, 25, 40, 50, 60, 80, 100 25
Number of Epochs 10, 20, 25, 40, 50, 60, 80, 100 100
Activation function (F) Elu, Relu, Sigmoid, Sine (only Time2Vec), Softmax, Softplus, Softsign, Tanh Tanh
Activation function (o) Elu, Relu, Sigmoid, Softmax, Softplus, Softsign, Tanh Tanh
Activation function (o7,) Elu, Relu, Sigmoid, Softmax, Softplus, Softsign, Tanh Softmax

The optimum activation functions for both Time2Vec, F, and the hidden layer, o, are
given by Tanh, seen in Equation (28), while the optimal activation function for the final
classification output layer, 0y, is yielded by Softmax in Equation (29).

" X — X
Tan (x) = m (28)
et
Softmax(x); = = (29)
e’
=1

The softmax activation function [43] is a combination of sigmoid functions applied for
multivariate classification tasks by normalising the outputs with probabilities of each class
ranging from 0 to 1, so the target class is expressed by the highest probability.

4. Results
4.1. Overall Performance Metrics

In this subsection, the fault prediction models are extracted from timestamps t — 1
(10 min) to t — 21 (210 min). The detailed predictive performances under six classifiers
are summarised in Figure 8 in terms of accuracy, MAP, MAR, and F-score with respect to
Equations (2), (23), (24), and (27), respectively.

As seen in Table 5, all six classifiers have an upper accuracy of over 94% due to
their correct predictions on fault-free cases from the imbalanced dataset. However, the
resultant MARs and F-scores have poorer ranges of (0.61156, 0.92622) and (0.71038, 0.93537),
respectively, and SVM especially has the poorest MIR range (0.61156, 0.84711). As MAPs
(over 0.84) have better ranges than MARs (over 0.61), the resultant F-scores are promoted
by precision scores, thereby representing more FNs than FPs. Among all, T2V-LSTM has
correctly predicted more fault statuses than other classifiers due to its optimum MAR range.
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Moreover, T2V-LSTM also has the finest ranges of accuracy and F-score despite its poorer
MAP range in comparison to RF.
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Figure 8. (a) Accuracy, (b) MAP, (¢) MAR, and (d) F-score for fault predictions under six classifiers
from t — 1 (10 min) to t — 21 (210 min).
Table 5. Validation scores for overall fault prediction.
S Classifier (Overall Fault)
cores LSTM T2V-LSTM RF ANN SVM KNN ALL
Accurac MIN 0.97079 0.9742954 0.96222 0.96273 0.94477 0.96284 0.94477
y MAX 0.98441 0.9864767 0.97791 0.9777 0.96697 0.97213 0.98648
MAP MIN 0.87643 0.8912656 0.92785 0.86133 0.84729 0.89391 0.84729
MAX 0.94347 0.9469835 0.97052 0.9422 0.90898 0.92044 0.97052
MAR MIN 0.82667 0.8497778 0.70844 0.74844 0.61156 0.736 0.61156
MAX 0.91911 0.9262222 0.872 0.88978 0.84711 0.84089 0.92622
¢ MIN 0.86151 0.8788294 0.80383 0.82085 0.71038 0.81275 0.71038
-score MAX 0.92694 0.935368 0.90707 0.9067 0.87351 0.8739 0.93537
E tion ti s) MIN 299.0876 309.44707 281.5733 232.2455 174.6638 148.6676 148.6676
xecution fime 15 MAX 337.6192  346.63702 3221635  281.5004 3267903  186.6617  346.63702

As seen in Figure 8, the time index under 10 min per timestamp in the x-axis denotes
the test cases at timestamp t — n. All classification approaches demonstrate their best
accuracy, MAR, and F-score initially at t — 1, but their predictive results progressively
attenuate over time.
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As seen in Figure 8b, RF has the best MAPs over time, implying its distinction of
diagnosing fault-free conditions precisely with fewer FPs. By comparison, T2V-LSTM has
successfully predicted more faults than other classifiers due to its relatively highest MARs
in all test cases (see Figure 8c). Recall scores are always prior to precision scores in fault
classification models because of the recall and precision scores relating to undetected fail-
ures and false fault alarms, respectively [19]. As a result, T2V-LSTM reflects its superiority
over all other classifiers across overall fault predictions in terms of accuracy, MAR, and
F-score (see Figure 8a,c,d)).

Apart from the best overall prediction scores, the proposed method, T2V-LSTM,
requires the longest execution time, as seen in Table 5. However, the maximum execution
time of T2V-LSTM (346.63702 s) is still below the minimum 10 min ahead prediction
window. Thus, all six classification models can be implemented before any prediction
window in all cases under the 10 min SCADA resolution.

4.2. Performance Metrics upon Individual Faults

Herein, individual faults, depicted in Table 3, are examined across timestamps t — 1
(10 min) to t — 21 (210 min) by performance metrics, MIP, MIR, and F-score, with respect
to Equations (25)—(27), respectively. The time-domain fault prediction scores for six classi-
fication approaches across individual faults are summarised in Figures 9-12. (Demoted)
gearbox pressure 2 faults, Blade 3’s too-slow response, gearbox cooling pressure faults, and
sub-pitch fatal faults witness successful predictions due to the minimum MIR exceeding
86.27% under the proposed T2V-LSTM indicator, studied in Appendix A. Thus, in this
paper, the studies on those four individual faults are of less interest.

(a) MIP - HPU 2 pump active ) (b) MIR - HPU 2 pump active
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Figure 9. (a) MIP, (b) MIR, and (c) F-score for predictions on HPU 2 pump active faults from t — 1 to
t—21.
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(a) MIP - PcsOff (b) MIR - PcsOff
1 o A N
09
B
=
08
07 V
06 05
1234567 89101112131415161718192021 1234567 8 9101112131415161718192021
Timestamp Timestamp
e STV e T2V-LSTIV s R s AN | s SV KNN e STV s T2V -LSTIV| s R F s AN\ s SV KNN

(c) F-score - PcsOff

09
2
208
07
06
123456 78 9101112131415161718192021
Ti mesta mp
e [ STM e T2V -LSTM wgpus R F g ANN wggue SV KNN

Figure 10. (a) MIP, (b) MIR, and (c) F-score for predictions on PcsOff faults from ¢t — 1 to t — 21.
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Figure 11. (a) MIP, (b) MIR, and (c) F-score for predictions on PcsTrip faults from t — 1 to t — 21.
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Figure 12. (a) MIP, (b) MIR, and (c) F-score for predictions on pitch fatal faults from t — 1 to f — 21.
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4.2.1. HPU 2 Pump Active

As seen in Table 6, it is most appealing that the maximum MIP under SVM has

Timestamp

KNN

7 8 91011121314151617 18192021

A KNN

reached full score, whilst its minimum MIR is the poorest by approaching zero. Thus,

SVM is inapplicable for fault diagnosis on HPU 2 pump active. Regarding predictions on

fault-free cases, both LSTM models have inferior MIP ranges compared to RF. However,

T2V-LSTM is superior to all other classifiers in its best MIR range (0.7657, 0.9189), which
consequently leads to its best fault prediction with the fewest FNs and the optimum range

of F-score under T2V-LSTM (0.7555, 0.9026).

Table 6. Validation scores for HPU 2 pump active.

Scores

Classifier (HPU 2 Pump Active)

LSTM T2V-LSTM RF ANN SVM KNN ALL
MIP MIN 0.71277 0.744 0.7561 0.56667 0.59375 0.54839 0.54839
MAX 0.90385 0.9065421 0.91837 0.93902 1 0.78641 1
MIR MIN 0.6036 0.7657658 0.35135 0.20721 0 0.27928 0
MAX 0.91892 0.9189189 0.82883 0.82883 0.90991 0.72973 0.91892
. MIN 0.65366 0.7555556 0.49682 0.33577 0.01786 0.38554 0.01786
-score MAX 0.88312 0.9026549 0.85581 0.81778 0.84519 0.75701 0.90265

Figure 9 exhibits the time-domain prediction results in advance of HPU 2 pump active

faults. As seen in Figure 9b,c, SVM has the steepest downtrend in its MIR and F-score,

while T2V-LSTM goes beyond other classifiers in most test cases. Although T2V-LSTM is
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the best predictor for HPU2 pump active faults by correctly predicting 76.57~91.89% of
faults, HPU 2 pump active beholds smaller MIR ranges, compared to the predictive results
on the four specific faults in Table A1.

4.2.2. PcsOff

As seen in Table 7, SVM still has the lowest minimum and maximum values in
MIPs, MIRs, and F-scores, thereby the worst prediction results. Except for SVM, all other
classifiers have reached full MIP scores, and KNN and RF outscore their counterparts in
MIP ranges, with all MIPs surpassing 0.9. Both LSTM models outscore all other classifiers
in MIR ranges, but LSTM has a higher minimum MIR and F-score than T2V-LSTM due to
a substandard MIR (0.7173913) and F-score (0.7764706) under T2V-LSTM at t — 2, seen in
Figure 10b.

Table 7. Validation scores for PcsOff.

S Classifier (PcsOff)
cores LSTM T2V-LSTM RF ANN SVM KNN ALL
MIP MIN 0.75926 0.7884615 0.90476 0.70833 0.67568 0.90698 0.67568
MAX 1 1 1 1 0.89362 1 1
MIR MIN 0.76087 0.7173913 0.58696 0.69565 0.54348 0.63043 0.54348
MAX 0.97826 0.9782609 0.93478 0.93478 0.91304 0.84783 0.97826
. MIN 0.82 0.7764706 0.72973 0.7234 0.60241 0.75325 0.60241
-score MAX 0.97778 0.9677419 0.96629 0.94505 0.90323 0.8764 0.97778

The time-domain predictive results ahead of PcsOff faults are illustrated in Figure 10.
The degraded performances under both LSTM models can be recognisably obtained after
t —17. As seen in Figure 10a, RF and ANN have more optimal predictions on fault-free
cases by their MIPs exceeding 0.9 in all cases.

As seen in Figure 10b, both LSTM models have the highest MIRs before t — 17, despite
the poor MIR under LSTM (0.76087) at t — 12, and T2V-LSTM outclasses all other models
due to its MIRs surpassing 0.89.

However, the curtailments in MIRs under both LSTM models are visualised after
t — 18. Thus, both LSTM models can roughly predict over 80% of fault cases.

Consequently, both LSTM models have more balanced F-scores over other classifiers
(see Figure 10c). Although LSTM obtains better ranges in MIR and F-score than T2V-LSTM
(see Table 7), T2V-LSTM has predicted fault cases more correctly with respect to its greater
MIRs in most test cases from Figure 10b.

4.2.3. PcsTrip

As seen in Table 8, the MIP range (0.75342, 1) is expressively upper than the MIR range
(0.48148, 0.88889). Hence, the predictions on PcsTrip faults witness relatively lower recall
scores than precision scores, resulting in more FNs than FPs. Thus, F-scores are increased
by relatively better MIPs. However, SVM still has the worst prediction results on fault cases
due to its poorest MIR range. Both LSTM models have satisfying MIPs by surpassing 0.8,
but they are outclassed by RF, which has the most correct predictions on fault-free cases
due to its highest minimum MIP. Both LSTM models have better MIR ranges and, thereby,
more accurate fault predictions. Moreover, T2V-LSTM yields more correct predictions on
fault cases with fewer FNs and generates the resultant optimum range on F-scores.

Regarding the time-domain prediction results in Figure 11, the MIPs under both LSTM
models underperform RF, ANN, and KNN, whilst T2V-LSTM has superiority on MIRs in
most test cases. Therefore, T2V-LSTM is the best fault predictor for PcsTrip faults with its
best MIRs, leading to the fewest FNs and most balanced F-scores in Figure 11c.
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Table 8. Validation scores for PcsTrip.

S Classifier (PcsTrip)
cores LSTM  T2V-LSTM RF ANN SVM KNN ALL
MIP MIN 0.8 0.8024691 0.92308 0.77922 0.78 0.75342 0.75342
MAX 0.95238 0.969697 0.98361 1 0.97826 0.96552 1
MIR MIN 0.74074 0.7530864 0.65432 0.62963 0.48148 0.62963 0.48148
MAX 0.83951 0.8888889 0.81481 0.81481 0.75309 0.79012 0.88889
E MIN 0.7871 0.8024691 0.78519 0.75177 0.59542 0.71429 0.59542
“score MAX 0.88312 0.9056604 0.88591 0.88 0.80263 0.81013 0.90566
4.2 4. Pitch Fatal Faults
In addition to the predictions on PcsTrip faults, the predictive results on pitch fatal
faults are yielded with an even lower recall range (0, 0.69481) than the corresponding
precision range (0, 0.8871), seen in Table 9. By excluding the poorest predictor, SVM, the
MIPs and MIRs under other classifiers go beyond 0.53 and 0.22, respectively. Hence, for
pitch fatal faults, MIPs are much greater than their corresponding MIRs, resulting in more
FNs than FPs, so F-scores are downgraded by relatively poorer MIRs.
Table 9. Validation scores for pitch fatal faults.
S Classifier (Pitch Fatal Faults)
cores LSTM  T2V-LSTM RF ANN SVM KNN ALL
MIP MIN 0.53548 0.5419355 0.64286 0.53409 0 0.69412 0
MAX 0.79661 0.8076923 0.8871 0.82692 0.7931 0.82222 0.8871
MIR MIN 0.4026 0.4415584 0.31169 0.22078 0 0.33117 0
MAX 0.66883 0.6948052 0.50649 0.58442 0.45455 0.48052 0.69481
F MIN 0.50196 0.5291829 0.43439 0.33663 0.03704 0.45133 0.03704
wscore MAX 0.70383 0.7430556 0.60938 0.66176 0.54902 0.60656 0.74306

The time-domain predictions prior to pitch fatal faults are seen in Figure 12. T2V-LSTM
is the best fault predictor by having superior MIRs, and LSTM is just second to T2V-LSTM,
whilst the other classifiers yield the MIRs below 0.5 in most cases from Figure 12b. It is
noteworthy that MIRs under both LSTM models attenuate over time, obtaining lower than
0.5 after t — 17. By comparison, MIPs mainly surpass 0.5, except for the test cases under
SVM in Figure 12a.

Accordingly, as seen in Figure 12¢, all F-scores are decreased by their lower MIRs,
but both LSTM models outperform other classifiers due to their observably better recall
scores in Figure 12b, and T2V-LSTM is still the best fault predictor with the best MIRs
and F-scores for pitch fatal faults. However, compared with other faults, pitch fatal faults
witness much lower MIRs, and the diagnosed fault cases attenuate over a longer prediction
time. Particularly, since t — 17, the predictions on pitch fatal faults are yielded with minor
reliability because of MIRs going below 50%; thus, half of the faults cannot be correctly
diagnosed due to yielding more FNs than TPs.

5. Discussion

By conducting RFE to remove irrelevant and redundant information from full opera-
tional SCADA data, 33 top-ranked features in Figure 5 are reserved for fault predictions.

LSTM has been preferable for prognostics on imbalanced data owing to its ability
to store the time-lagged information and exploit the time dependency. LSTM has better
recall scores (both MARs and MIRs) and overall predictions than traditional ML classifiers
with respect to the results in Sections 4.1 and 4.2. However, there is also a dependence
across time among data, and the time feature of inputs can be either synchronous or
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asynchronous [33], but vanilla LSTM always fails to recognise time itself as a feature
by assuming all inputs to be synchronous. As the data points related to downtimes or
maintenance actions are removed, the modelling dataset is asynchronous. Hence, the
Time2Vec is adopted to remodel the LSTM architectures into T2V-LSTM (see Figure 7) by
way of Time2Vec consuming the time feature under non-stationary activation functions.

The Time2Vec activation function and the other hidden layer of T2V-LSTM in Figure 7
are chosen by Tunh, which maps the inputs into a range (—1, 1). Like Sigmoid, the derivative
of Tanh is expressed by itself, but the mapping range of Tanh is broader than that of
Sigmoid (0, 1). The classification output layer is selected by Softmax because its calculated
probabilities determine the target classes with given inputs, chiefly implemented for multi-
level classifications. The proposed T2V-LSTM model (with a Time2Vec function of Tanh)
has been certified to upgrade the prediction accuracy of LSTM and outperform all other
classifiers on both overall and individual fault predictions.

5.1. Overall Performance Metrics

Based on SCADA data with a 10 min sampling rate, T2V-LSTM provides the best
adaptability in terms of accuracy, MARs, and F-scores across all timestamps, despite its
smaller MAPs compared to RF and ANN (see Figure 8). Hence, the fewest unnecessary
maintenance actions can be led by RE, while T2V-LSTM identifies the highest quantity of
fault cases, followed by LSTM.

Integrated with Time2Vec, T2V-LSTM outscores vanilla LSTM with regard to accuracy,
MAPs, MARs, and F-scores at almost all timestamps in Figure 8. Before t — 3, T2V-LSTM
has its distinguished predictions in terms of accuracy (over 98.5%), MARs (over 91%), and
F-scores (over 92.5%). T2V-LSTM marginally attenuates its accuracy, MARs, and F-scores
over time by correctly predicting over 87.5% of faults before t — 16. However, since t — 17,
T2V-LSTM has an unexpected decline in its MARs, and it can only capture 84.97% of faults
at t — 19, while by comparison, MAPs under T2V-LSTM exceed 89% in all cases. Hence,
overall fault predictions are validated with fewer FPs than FNs.

5.2. Individual Performance Metrics

Individual faults, studied in Section 4.2, witness the most advanced predictions from
T2V-LSTM due to its best MIRs and F-scores across most test cases over time. T2V-LSTM
has mostly better prediction scores compared to vanilla L5TM, and its resultant F-scores
are well adjusted due to its more balanced MIPs and MIRs across Figures 9-12. Regarding
the fault studies in Appendix A, T2V-LSTM catches over 86.27% of fault cases and over
88.28% of fault-free cases.

HPU 2 pump active faults exhibit a satisfactory percentage of caught faults via MIRs,
mostly over 80%, as seen in Figure 9b. PcsOff faults have both excellent MIPs and MIRs
over 89% before t — 16, but the predicted MIRs have significant relegations by scoring
0.826087 at t — 18 and 0.717391 at t — 20, as seen in Figure 10b.

Under T2V-LSTM, all above-mentioned faults have balanced precision and recall
scores, but PcsTrip and pitch fatal faults see curtailed predictions over time and greater
MIPs than MIRs, resulting in both their F-scores downgraded by poorer MIRs. Fewer
PcsTrip faults are correctly predicted over time regarding its maximum MIR (88.88%) and
minimum MIR (75.30%) at timestamps t — 3 and t — 18, respectively, as seen in Figure 11b.
It is noticeable that the MIRs on pitch fatal faults are even poorer, deteriorating initially
from 69.48% to 44.15% over time, as seen in Figure 12b. The forecasts over 40 min ahead on
pitch fatal faults show poor results with the least MIRs (below 60%) among all individual
faults, and over half of the faults cannot be correctly diagnosed after t — 17.

T2V-LSTM under a non-stationary Tanh function shows its peak effectiveness for both
overall and individual fault predictions, according to its overall best accuracy, recall scores
(both MARs and MIRs), and F-scores. However, the significant mitigations in accuracy,
MARs, and F-scores from Figure 8 are mainly reflected by the attenuated MIRs and F-scores
from pitch fatal faults since t — 4 (40 min) in Figure 12b,c.
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5.3. Confusion Matrix

T2V-LSTM is the best-performing classifier for both overall fault predictions and
specific fault predictions. Then, an additive classification step is to visualise the predictions
of 10 min, 30 min, 1 h, 2 h, and 3 h in advance via the confusion matrices under T2V-
LSTM in Figure 13. The fault-free and fault cases in Figure 13 are represented by their
corresponding event codes in Table 3.

(a) T2V-LSTM 10-min prediction (b) T2V-LSTM 30-min prediction
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Figure 13. Confusion matrices under T2V-LSTM at five timestamps: (a) t — 1 (10 min); (b) ¢ — 3 (30
min); (¢)t — 6 (1 h); (d) t — 12 (2h); (e) t — 18 (3 h).

Except for more FNs than FPs from PcsTrip (event code 701) and pitch fatal faults
(event code 435), the balances between recall and precision scores are established with
regard to their unbiased FPs and FNs from confusion matrices in Figure 13.
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The most frequent (Demoted) gearbox pressure 2 faults (event code 570) witness
successful fault predictions with few FNs but obtain the 14 FPs at t — 12 from Figure 13d.
More accurate predictions can be witnessed on the Blade 3 slow response (event code 399)
by yielding, at most, 1 FN or FP. Gearbox cooling pressure faults (event code 543) have great
fault-free predictions due to minor FPs, but the relevant misdiagnosed fault cases increasing
with time, 6 and 9 FNs at timestamps ¢ — 12 and f — 18, as seen in Figure 13d,e, respectively.

Sub-pitch fatal faults (event code 1219) have TPs ranging from 161 to 168, with a
maximum of 7 FPs, resulting in MIPs over 95%. Since the fewest TPs are obtained at t — 18
in Figure 13e with 16 misdiagnosed fault cases, the minimum MIR reaches 90.96%.

HPU 2 pump active faults (event code 290) obtain the best prediction at ¢ — 3 with
the maximum 102 TPs, 9 FNs, and a total of 21 FPs, so the resultant MIP and MIR reach
82.92% and 91.89%, respectively. However, the worst prediction at ¢ — 18 is yielded with a
minimum of 85 TPs, 26 FNs, and 29 FPs in total, leading to the poorest MIP (74.56%) and
MIR (76.57%). Hence, the predictions on HPU 2 pump active faults witness less success
over a longer prediction horizon.

In addition to the HPU 2 pump active faults, the prediction scores on the least frequent
PcsOff faults (event code 700) gradually worsen over time. The best prediction on PcsOff is
att — 3, when only 1 FN and 2 FPs are obtained to confirm its notable MIP (95.74%) and
MIR (97.82%). However, the worst prediction at ¢ — 18 generates 38 TPs with a total of
6 FPs and 8 FNs, thereby yielding the resultant MIP (86.36%) and MIR (82.60%).

Regarding PcsTrip faults (event code 701), MIPs are always satisfactory concerning
the maximum 7 FPs at t — 6, whilst MIRs decline over time. The best prediction on PcsTrip
faults at t — 3 is provided with 72 TPs, 6 FPs, and 9 FNs, leading to the resultant MIP
(92.30%) and MIR (88.88%). By comparison, the worst case at t — 18 yields relatively
poorer results with 61 TPs, 4 FPs, and 20 FNs, leading to an agreeable MIP (93.84%) but an
undervalued MIR (75.30%). Hence, the pre24dictions on PcsTrip have excellent precision
scores, but the resulting F-scores are brought down by gradually declined MIRs.

In addition to PcsTrip faults, the subsequent F-scores of pitch fatal faults (event code
435) are declined by poorer recall scores. Among all faults, the pitch fatal faults witness the
most misdiagnosed fault cases, yielding the maximum FNs throughout the time. Initially,
att — 1, the MIR (69.48%) is acceptable due to 107 TPs out of 154 total fault cases, whilst the
MIP (79.85%) is much greater owing to a total of 27 FPs. With a longer prediction horizon,
more fault cases are wrongly predicted, accompanied by reduced TPs and increased FNs,
which are shown in Figure 12. It is considerable that the prediction at t — 18 yields an MIR
of merely 49.35%, along with its relevant MIP scoring 72.38%. Hence, pitch fatal faults have
observed extremely lower MIRs in comparison to other faults, and their recall scores are
exceptionally exceeded by the relevant precision scores.

6. Conclusions

By integrating the vanilla LSTM model with a model-agnostic vector representation
for time, Time2Vec, a novel neural network model, T2V-LSTM, is developed to predict mul-
tivariate faults with a 7 MW offshore wind turbine based on SCADA data. This approach
has shown its efficacy on both overall and specific fault predictions by outperforming
LSTM and other ML classifiers in most test cases. It has been proven that all classification
models can be implemented prior to the next prediction window in all cases under the
10 min SCADA resolution. Using a feature selection method, RFE, to assess the importance
of features for dimension reduction, 33 optimal features are extracted to improve the pre-
diction accuracy and computing efficiency of neural networks. Regarding the T2V-LSTM
prediction results, the following conclusions can be noted:

e  As there are eight specific faults and massive data imbalances studied in this research,
T2V-LSTM can successfully predict all faults 160 min before their occurrence with an
overall recall score (MAR) of over 87.5%. T2V-LSTM outperforms LSTM and other
classifiers in terms of accuracy, recall scores (both MARs and MIRs), and F-scores in
all test cases, but with a longer lagged time, the MAR abruptly falls to roughly 85%.
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e  T2V-LSTM has satisfactory predictions on (Demoted) gearbox pressure 2 faults, Blade
3 slow response, gearbox cooling faults, and sub-pitch fatal faults, due to its minimum
MIP over 88.28% and minimum MIR over 86.27%, shown in Appendix A. Approxi-
mately 80% of the HPU 2 pump active faults are correctly predicted along with the
relevant MIPs scoring roughly 80%. PcsOff faults exhibit excellent prediction results
160 min before the occurrence, with both recall and precision scores over 89%, but the
significantly curtailed MIPs and MIRs take place over a longer prediction horizon. The
F-scores on those faults are balanced due to their unbiased and promising precision
and recall decisions.

e However, the balance between MIPs and MIRs is demolished under PcsTrip and
pitch fatal faults due to their F-scores being brought down by poorer recall scores.
PcsTrip and pitch fatal faults behold upper MIP ranges than MIR ranges and degraded
predictions over time. PcsTrip faults are successfully predicted 30 min in advance due
to their optimal MIR (88.88%), but the minimum MIR (75.30%) is obtained 3 h before
occurrence. By comparison, MIRs on pitch fatal faults have an even more critical
downtrend, reducing from 69.48% to 44.15% over time. Particularly, over half of pitch
fatal faults are misdiagnosed >170 min before occurrence. The curtailments in MIRs
on pitch fatal faults over 40 min ahead predominately contribute to the significant
degradations of overall accuracy, MARs, and F-scores. Hence, the poorest predictions
on pitch fatal faults bear a considerable burden for overall prediction accuracy.

e  The confusion matrices visually study the balance between recall and precision scores
by predicting the faults 10, 30, 60, 120, and 180 min in advance. Apart from PcsTrip
and pitch fatal faults having more biases in FNs over FPs, the other faults can acquire
the balanced F-scores due to their FNs roughly equalising FPs. For those faults with
balanced F-scores, the resultant MIPs and MIRs mostly surpass 80%, except for the
MIP (74.56%) and MIR (76.57%) from the 3 h ahead prediction on HPU 2 pump active
faults. PcsTrip faults mainly have excellent MIPs over 90%, but the degradations on
their MIRs are expected over time. Hence, the prediction curtailments provided by
HPU 2 pump active faults and PcsTrip faults over a longer prediction horizon also
contribute to the degradation of overall performance metrics.

e AsT2V-LSTM fails to predict over 40% of pitch fatal faults 40 min prior to occurrence,
future studies should critically focus on building a performance curve of pitch angle
to improve the predictions on pitch fatal faults.
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Appendix A

As seen in Table Al, the predictive results on (Demoted) gearbox pressure 2 faults,
Blade 3’s too-slow response, gearbox cooling pressure faults, and sub-pitch fatal faults
are validated across timestamps ¢ — 1 (10 min) to ¢ — 21 (210 min) by the minimums and
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maximums of their performance metrics. Both LSTM models manage to predict over 86.27%
of fault cases, outperforming their ML counterparts.

Although LSTM has the finest minimum MIP, MIR, and F-score in Table A1, T2V-LSTM
still outperforms LSTM in fault diagnosis because of greater MIRs in most test cases, as
seen in the time-domain MIR results from Figure Al.

Table A1. Validation scores for (Demoted) gearbox pressure 2 faults, Blade 3’s too-slow response,

gearbox cooling pressure faults, and sub-pitch fatal faults.

Classifier (Four Other Individual Faults)

Scores LSTM T2V-LSTM RF ANN SVM KNN ALL
MIP MIN 0.90654 0.8828829 0.90789 0.84444 0.8038 0.85106 0.8038
MAX 1 1 1 1 0.99435 0.99425 1
MIR MIN 0.88136 0.8627451 0.67647 0.71186 0.70621 0.7451 0.67647
MAX 1 1 1 1 0.96703 0.98901 1
F MIN 0.90698 0.9035533 0.77528 0.82353 0.75758 0.82162 0.75758
-score MAX 1 1 1 1 0.9805 0.97814 1
(a)MIR - Gearbox Pressure 2 (b) MIR - Blade 3 too slow
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Figure A1. MIP, MIR, and F-score from t — 1 to t — 21: (a) (Demoted) gearbox pressure 2 faults;
(b) Blade 3’s too slow response; (c) gearbox cooling pressure faults; (d) sub-pitch fatal faults.
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Abstract: A method for estimating the conditional average treatment effect under the condition of
censored time-to-event data, called BENK (the Beran Estimator with Neural Kernels), is proposed.
The main idea behind the method is to apply the Beran estimator for estimating the survival functions
of controls and treatments. Instead of typical kernel functions in the Beran estimator, it is proposed
to implement kernels in the form of neural networks of a specific form, called neural kernels. The
conditional average treatment effect is estimated by using the survival functions as outcomes of
the control and treatment neural networks, which consist of a set of neural kernels with shared
parameters. The neural kernels are more flexible and can accurately model a complex location
structure of feature vectors. BENK does not require a large dataset for training due to its special
way for training networks by means of pairs of examples from the control and treatment groups.
The proposed method extends a set of models that estimate the conditional average treatment effect.
Various numerical simulation experiments illustrate BENK and compare it with the well-known
T-learner, S-learner and X-learner for several types of control and treatment outcome functions based
on the Cox models, the random survival forest and the Beran estimator with Gaussian kernels. The
code of the proposed algorithms implementing BENK is publicly available.

Keywords: treatment effect; survival analysis; Nadaraya-Watson regression; Beran estimator; neural

network; meta-learner

1. Introduction

Survival analysis is an important and fundamental tool for modeling applications
when using time-to-event data [1], which can be encountered in medicine, reliability,
safety, finance, etc. This is a reason why many machine learning models have been
developed to deal with time-to-event data and to solve the corresponding problems in
the framework of survival analysis [2]. The crucial peculiarity of time-to-event data is
that a training set consists of censored and uncensored observations. When time-to-event
exceeds the duration of an observation, we have a censored observation. When an event is
observed, i.e., time-to-event coincides with the duration of the observation, we deal with
an uncensored observation.

Many survival models are able to cover various cases of time-to-event probability
distributions and their parameters [2]. One of the important models is the Cox propor-
tional hazards model [3], which can be regarded as a semi-parametric regression model.
There are also many parametric and nonparametric models. When considering machine
learning survival models, it is important to point out that, in contrast to other machine
learning models, their outcomes are functions, for instance, survival functions, hazard
functions or cumulative hazard functions. For instance, the well-known effective model
called the random survival forest (RSF) [4] predicts survival functions (SFs) or cumulative
hazard functions.
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An important area of survival model application is the problem of treatment effect
estimation, which is often solved in the framework of machine learning problems [5]. The
treatment effect shows how a treatment may be efficient depending on characteristics of
a patient. The problem is solved by dividing patients into two groups called treatment
and control, such that patients from the different groups can be compared. One of the
popular measures of efficient treatment that is used in machine learning models is the
average treatment effect (ATE) [6], which is estimated on the basis of observed data about
patients, such as the mean difference between outcomes of patients from the treatment and
control groups.

Due to the difference between characteristics of patients and their responses to a
particular treatment, the treatment effect is measured using the conditional average treat-
ment effect (CATE), which is defined as the mean difference between outcomes of patients
from the treatment and control groups, conditional on a patient feature vector [7]. In
fact, most methods of CATE estimation are based on constructing two regression models
for controls and treatments. However, two difficulties in CATE estimation can be met.
The first one is that the treatment group is usually very small. Therefore, many machine
learning models cannot be accurately trained on the small datasets. The second difficulty is
fundamental. Each patient cannot be simultaneously in the treatment and control groups,
i.e., we either observe the patient outcome under the treatment or control, but never both
[8]. Nevertheless, to overcome these difficulties, many methods for estimating CATE have
been proposed and developed due to the importance of the problem in many areas [9-13].

One of the approaches for constructing regression models for controls and treatments
is the application of the Nadaraya—Watson kernel regression [14,15], which uses standard
kernel functions, for instance, the Gaussian, uniform or Epanechnikov kernels. In order
to avoid selecting a standard kernel, Konstantinov et al. [16] proposed to implement
kernels and the whole Nadaraya—Watson kernel regression by using a set of identical
neural subnetworks with shared parameters, with a specific way of the network training.
The corresponding method called TNW-CATE (Trainable Nadaraya—Watson regression for
CATE) is based on an important assumption that domains of the feature vectors from the
treatment and control groups are similar. Indeed, we often treat patients after being in the
control group, i.e., it is assumed that treated patients came to the treatment group from the
control group. For example, it is difficult to expect that patients with pneumonia will be
treated with new drugs for stomach disease. The neural kernels (kernels implemented as
the neural network) are more flexible, and they can accurately model a complex location
structure of feature vectors, for instance, when the feature vectors from the control and
treatment group are located on the spiral, as shown in Figure 1, where small triangular
and circle markers correspond to the treatment and control groups, respectively. This
is another important peculiarity of the TNW-CATE. Results provided in [16] illustrated
outperformance of the TNW-CATE in comparison with other methods when the treatment
group was very small and the feature vectors had complex structure.

* fsh

Figure 1. An example of the control gg(x) and treatment g7 (x) functions, which are unknown, and of
the control (circle markers) and treatment (triangle markers) data points, which are observed.
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Following the ideas behind the TNW-CATE, we propose the CATE estimation method,
called BENK (the Beran Estimator with Neural Kernels), dealing with censored time-to-
event data in the framework of survival analysis. The main idea behind the proposed
method is to apply the Beran estimator [17] for estimating SFs of treatments and controls
and to compare them for estimating the CATE. One of the important peculiarities of the
Beran estimator is that it takes into account distances between feature vectors by using
kernels which measure the similarity between any two feature vectors. On the one hand,
the Beran estimator can be regarded as an extension of the Kaplan-Meier estimator. It
allows us to obtain SFs that are conditional on the feature vectors, which can be viewed as
outcomes of regression survival models for the treatment and control groups. On the other
hand, the Beran estimator can also be viewed as an analogue of the Nadaraya—Watson
kernel regression for survival analysis. However, typical kernels, for example, the Gaussian
one, cannot cope with the possible complex structure of data. Therefore, similarly to the
TNW-CATE model, we propose to implement kernels in the Beran estimator by means of
neural subnetworks and to estimate CATE by using the obtained SFs. The whole neural
network model is trained in an end-to-end manner.

Various numerical experiments illustrate BENK and its peculiarities. They also show
that BENK outperforms many well-known meta-models: the T-learner and the S-learner,
the X-learner for several control and treatment output functions based on the Cox models,
the RSF and the Beran estimator with Gaussian kernels.

BENK is implemented using the framework PyTorch with open code. The code of the
proposed algorithms can be found at https://github.com/Stasychbr/BENK (accessed on
27 October 2023).

The paper is organized as follows. Section 2 is a review of the existing CATE estimation
models, including CATE estimation survival models, the Nadaraya—Watson regression
models and general survival models. A formal statement of the CATE estimation problem
is provided in Section 3. The CATE estimation problem in the case of censored data is
stated in Section 4. The Beran estimator is considered in Section 5. A description of BENK
is provided in Section 6. Numerical experiments illustrating BENK and comparing it with
other models can be found in Section 7. Concluding remarks are provided in Section 8.

2. Related Work

Estimating CATE. One of the important approaches to implement personalized
medicine is the treatment effect estimation. As a result, many interesting machine learning
models have been developed and implemented to estimate CATE. First, we have to point
out an approach which uses the Lasso model for estimating CATE [18]. The SVM was also
applied to solve the problem [19]. A unified framework for constructing fast tree-growing
procedures for solving the CATE problem was provided in [20]. McFowland et al. [21]
estimated CATE by using the anomaly detection model. A set of meta-algorithms or
meta-learners, including the T-learner, the S-learner and the X-learner, were studied in [12].
Many other models related to the CATE estimation problem are studied in [22,23].

The aforementioned models are constructed by using machine learning methods,
which are different from neural networks. However, neural networks became a basis for
developing many interesting and efficient models [24-27].

Due to the importance of the CATE problem, there are many other publications
devoted to this problem [28-31].

The next generation of models that solve the CATE estimation problem is based on
architectures of transformers with the attention operations [32-34]. The transfer learning
technique was successfully applied to the CATE estimation in [35,36]. Ideas of using the
Nadaraya—-Watson kernel regression in the CATE estimation were studied in [37]. These
ideas can lead to the best results under the condition of large numbers of examples in the
treatment and control groups. At the same time, a small amount of training data may lead
to overfitting and unsatisfactory results. Therefore, the problem of overcoming this possible
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limitation motivated researchers to introduce a neural network of a special architecture,
which implements the trainable kernels in the Nadaraya—Watson regression [16].

Machine learning models in survival analysis. The importance of survival analysis
applications can be regarded as one of the reasons for developing many machine learning
methods that deal with censored and time-to-event data. A comprehensive review of
machine learning survival models is presented in [2]. A large portion of models use the
Cox model, which can be viewed as a simple and applicable survival model that establishes
a relationship between covariates and outcomes. Various extensions of the Cox model
have been proposed. They can be conditionally divided into two groups. The first group
remains the linear relationship of covariates and includes various modifications of the
Lasso models [38]. The second group of models relaxes the linear relationship assumption
accepted in the Cox model [39].

Many survival models are based on using the RSFs, which can be regarded as powerful
tools, especially when models learn on tabular data [40,41]. At the same time, there are
many survival models based on neural networks [42,43].

Estimating CATE with censored data. Censored data can be regarded as an impor-
tant type, especially for estimating the treatment effect because many applications are
characterized by time-to-event data as outcomes. This peculiarity is a reason for devel-
oping many CATE models that deal with censored data in the framework of survival
analysis [44-46]. Modifications of the survival causal trees and forests for estimating the
CATE based on censored observational data were proposed in [44]. An approach combin-
ing a treatment-specific semi-parametric Cox loss with a treatment-balanced deep neural
network was studied in [47]. Nagpal et al. [48] presented a latent variable approach to
model the CATE under assumption that an individual can belong to one of the latent
clusters with distinct response characteristics. The problem of CATE estimation by focusing
on learning (discrete-time) treatment-specific conditional hazard functions was studied
in [49]. A three-stage modular design for estimating CATE in the framework of survival
analysis was proposed in [50]. A comprehensive simulation study presenting a wide range
of settings, describing CATE by taking into account the covariate overlap, was carried out
in [51]. Rytgaard et al. [52] presented a data-adaptive estimation procedure for estimation
of the CATE in a time-to-event setting based on generalized random forests. The authors
proposed a two-step procedure for estimation, applying inverse probability weighting to
construct time-point-specific weighted outcomes as input for the forest. A unified frame-
work for counterfactual inference, applicable to survival outcomes and formulation of a
nonparametric hazard ratio metric for evaluating the CATE, were proposed in [53].

In spite of many works and results devoted to estimating the CATE with censored
data, these methods are mainly based on assumptions of a large number of examples in
the treatment group. Moreover, there are no results implementing the Nadaraya—Watson
regression by means of neural networks.

3. CATE Estimation Problem Statement

According to the CATE estimation problem, all patients are divided into two groups:
control and treatment. Let the control group be the set C = {(x1, f1),...,(xc, fc)} of ¢
patients, such that the i-th patient is characterized by the feature vector x; = (x;j1,...,x;4) €
R? and the i-th observed outcome f; € R (time to event, temperature, the blood pressure,
etc.). Itis also supposed that the treatment group is the set 7 = {(y1,h1),..., (yt, he) } of t
patients, such that the i-th patient is characterized by the feature vector y; = (yi1,...,Yi4) €
R? and the i-th observed outcome h; € R. The indicator of a group for the i-th patient is
denoted as T; € {0,1}, where T; = 0 (T; = 1) corresponds to the control (treatment) group.

We use different notations x; and y; for controls and treatments in order to avoid
additional indices. However, we use the vector z € R instead of x and y when estimating
the CATE.

Suppose that the potential outcomes of patients from the control and treatment groups
are F and H, respectively. The treatment effect for a new patient with the feature vector z is
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estimated by the individual treatment effect, defined as H — F. The fundamental problem of
computing the CATE is that only one of the outcomes f or & for each patient can be observed.
An important assumption of unconfoundedness [54] is used to allow the untreated patients
to be used to construct an unbiased counterfactual for the treatment group [55]. According
to the assumption, potential outcomes are characteristics of a patient before the patient is
assigned to a treatment condition, or, formally, the treatment assignment T is independent
of the potential outcomes for F and H that conditional on the feature vector z, which can
be written as

T L {F,H} |z (1)

The second assumption, called the overlap assumption, regards the joint distribution
of treatments and covariates. This assumption claims that a positive probability of being
both treated and untreated for each value of z exists. This implies that the following holds
with probability 1:

0<Pr{T=1|z} <1 ()

Let Z be the random feature vector from R?. The treatment effect is estimated by means
of CATE, which is defined as the expected difference between two potential outcomes, as
follows [56]:

T(z) =E[H—-F | Z = z]. ©)]

By using the above assumptions, CATE can be rewritten as
w(z) =E[H|Z=1z|—-E[F|Z=1z] 4)

The motivation behind unconfoundedness is that nearby observations in the feature
space can be treated as having come from a randomized experiment [7].

Suppose that functions go(z) and g7 (z) express outcomes of the control and treatment
patients, respectively. Then, they can be written as follows:

f=g0(z)+e h=g1(z) +¢ 5)

where ¢ is noise governed by the normal distribution with the zero expectation.
The above imply that the CATE can be estimated as

©(2) = 81(2) — go(2). (6)

An example illustrating the controls (circle markers), treatments (triangle markers)
and corresponding unknown function gy and g; are shown in Figure 1.

4. CATE with Censored Data

Before considering the CATE estimation problem with the censored data, we introduce
basic statements of survival analysis. Let us define the training set Dy, which consists of ¢
triplets (x;,6;, f;),i=1,...,c, where xiT = (xj1,...,x;4) is the feature vector characterizing
the i-th patient from the control group, f; is the time to the event concerning the i-th control
patient and J; € {0, 1} is the indicator of censored or uncensored observations. If §; = 1,
then the event of interest is observed (the uncensored observation). If §; = 0, then we
have the censored observation. Only the right-censoring is considered when the observed
survival time is less than or equal to the true survival time. Many applications of survival
analysis deal with the right-censored observations [2]. The main goal of survival machine
learning modeling is to use set Dy to estimate probabilistic characteristics of time F to the
event of interest for a new patient with the feature vector z.

In the same way, we define the training set D1, which consists of d triplets (y;, v;, h;),
i=1,...,5, wherey] = (y;1,...,Vis) is the feature vector characterizing the i-th patient
from the treatment group, #; is the time to the event concerning the i-th treatment patient
and v; € {0,1} is the indicator of censoring.
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The survival function (SF), denoted S(t | z), can be regarded as an important concept
in survival analysis. It represents the probability of survival of a patient with the feature
vector z up to time ¢, thatis, S(t | z) = Pr{T > t | z}. The hazard function, denoted
A(t | z), can be viewed as another concept in survival analysis. It is defined as the rate of
an event at time f given that no event occurred before time f. It is expressed through the SF
as follows:

At z) = —%msu | 2). @)

The integral of the hazard function, denoted H(t | x), is called the cumulative hazard

function and can be interpreted as the probability of an event at time ¢ given survival until
time t, i.e.,

't
Alt]z) = / A(r | 2)dr. ®)

J0

It is expressed through the SF as follows:
A(t|z) = —In(S(t| 2)). ©)

The above functions for controls and treatments are written with indices 0 and 1,
respectively, for instance, So(t | z) = Pr{F >t |z} and S;(t | z) = Pr{H >t | z}.

In order to compare survival models, Harrell’s concordance index, or the C-index [57],
is usually used. The C-index measures the probability that, in a randomly selected pair
of examples, the example that failed first had a worst predicted outcome. It is calculated
as the ratio of the number of pairs correctly ordered by the model to the total number of
admissible pairs. A pair is not admissible if the events are both right-censored or if the
earliest time in the pair is censored. The corresponding survival model is supposed to be
perfect when the C-index is 1. The case when the C-index is 0.5 says that the survival model
is the same as random guessing. The case when the C-index is less than 0.5 says that the
corresponding model is worse than random guessing.

In contrast to the standard CATE estimation problem statement given in the previous
section, the CATE estimation problem with censored data has another statement, which
is due to the fact that outcomes in survival analysis are random times to an event of
interest having some conditional probability distribution. In other words, predictions
corresponding to a patient characterized by vector z in survival analysis provided by a
survival machine learning model are represented in the form of functions of time, for
instance, in the form of SF S(t | z). This implies that the CATE 7(x) should be reformulated
by taking into account the above peculiarity. It is assumed that SFs as well as hazard
functions for control and treatment patients, estimated by using datasets Dy and Dy, will
have indices 0 and 1, respectively.

The following definitions of the CATE in the case of censored data can be found in [58]:

1. Difference in expected lifetimes:

tn’\ﬁX
(z) = /0 (S1(t]z) — So(t | 2))dt = E{T; — Ty | X = z}; (10)
2. Difference in SFs:
T(t,z) = S1(t | z) — So(t | z); (11)
3. Hazard ratio:
T(t,z) = M (t] z)/Ao(t | 2). (12)

We will the first integral definition of the CATE. Let 0 = ty < t; < ... < t, be
the distinct times to an event of interest, which are obtained from the set {f;,..., f;} U
{h1,...,hs}. The SF provided by a survival machine learning model is a step function,
Le. it can be represented as S(t | z) = Yiiy S0 (z) - xj(t), where x;(t) is the indicator
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function, taking a value of 1if t € [t;_1,t;]; SU)(z) is the value of the SF in interval [ti 1, ti].
Hence, the following holds:

tmax

t(z) = [ " (S1(t] z) - Solt | 2))et

S—

= i(sg) (z) - Sy (Z)) (tj—tj-1)- (13)
=

5. Nonparametric Estimation of Survival Functions and CATE

The idea to use the nonparametric kernel regression for estimating SFs and other
concepts of survival analysis has been proposed by several authors [59,60]. One of the
interesting estimators is the Beran estimator [17] of the SE, which is defined as follows:

5.
W(x,x;) ]
S(t = 1-— - , 14

where W(x, x;) are the kernel weights, defined as

_ K(x,x)
W(x,x;) = m v

The above expression is given for the controls. The same estimator can be written for
treatments, but x, ¢;, f; are replaced with y, ;, h;, respectively.

The Beran estimator can be regarded as a generalization of the Kaplan-Meier estimator
because the former is reduced to the latter if the kernel weights take values W(x,x;) = 1/n.
It is also interesting to note that the product in (14) only takes into account uncensored
observations, whereas the weights are normalized by using uncensored as well as censored
observations.

By using (14) and (13), we can construct a neural network that is trained to im-
plement the weights W(z, x;), W(z,y;) and to estimate SFs Si(t | z) and Sy(t | z) for
computing 7(z).

6. Neural Network for Estimating CATE

Let us consider how the Beran estimator with neural kernels can be implemented by
means of a neural network of a special type. Our first aim is to implement kernels K(x, x;)
by means of a neural subnetwork, which is called the neural kernel and is a part of the
whole network for implementing the Beran estimator. The second aim is for this network
to learn on the control data. Having the trained kernel, we can apply it to compute the
conditional survival function for controls, as well as for treatments, because the kernels
in (14) do not directly depend on times to events f; or h;. However, in order to train the
kernel, we have to train the whole network because the loss function is defined through SF
So(t | x), which represents the probability of survival of a control patient up to time ¢, which
is estimated by means of the Beran estimator. This implies that the whole network contains
blocks of the neural kernels for computing kernels K(x, x;), normalization for computing
the kernel weights W(x, x;) and the Beran estimator in accordance with (14). In order to
realize a training procedure for the network, we randomly select a portion (1 examples)
from all control training examples and form a single specific example from # selected ones.
This random selection is repeated N times to have N examples for training. Thus, for
every x;, 1 = 1,...,¢, from the control group, we add another vector x; from the same
set of controls. By composing n pairs of vectors (x;,Xx), k = 1,...,n, and including other
elements of training examples (¢;, f;), we obtain one composite vector of data, representing
one new training example for the entire neural network. Such new training examples
can be constructed for each i = 1,...,c. The formal construction of the training set is
considered below.
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Having the trained neural kernel, it can be successfully used for computing SF Sy (f | z)
of controls and SF S (t | z) of treatments for arbitrary vectors of features z, again applying
the Beran estimator.

Let us consider the training algorithm in detail. First, we return to the set of ¢ controls
C={(x;,d,fi),i=1,...,c} Foreveryifromset{1,...,c}, we construct N subsets Ci(r),
r=1,...,N, having n examples randomly selected from C\ (x;, é;, f;), which have indices

(r)

from the index set Z(7), i.e., the subsets C;"’ are of the form

e = {0q”, 7 {7, ke I0Y, =1, N. (16)

1

Here, N and # can be regarded as tuning hyperparameters. Upper index r indicates

that the r-th example (xl@, 5,57), fk(r)) is randomly taken from C\(x;, J;, f;), i.e., there is an

example (x]-,éj,fj) from C such that x,(cr) = X;, J,Er) =9, f,fr) = f;. Each subset Ci(r), jointly
(r)

with (x;, d;, f;), forms a training example a;"’ for the control network as follows:

al) = (Ci(r),xi,éi,fi), i=1,...cr=1,...,N. 17)

1
The number of possible examples al(r) is c- N, and these examples are used for training
the neural network, whose output is the estimate of SF Sy (¢ | x;).

The architecture of the neural network, consisting of n subnetworks that implement

(r)

the neural kernels, is shown in Figure 2. Examples a;"’ produced from the dataset of

controls are fed to the whole neural network, such that each pair (x;, x,(:) ), kel (’), is fed to
each subnetwork, which implements the kernel function. The output of each subnetwork

(r)

is kernel K(x;,x; ). All subnetworks are identical and have shared weights. After normal-

izing the kernels, we obtain n weights W(x;, x,(cr) ), which are used to estimate SFs by means
of the Beran estimator in (14). The block of the whole neural network that implements

()

the Beran estimator uses all weights W(x;,x,'), k € Z (), and the corresponding values

(5,5” and fk(r), k € IU). As a result, we obtain SF Sy(t | x;). In the same way, we compute
SFs §0(t | x¢) forall k = 1,...,c. These functions are the basis for training. In fact, the
normalization block and the block that implements the Beran estimator can be regarded as
part of the neural network, and they are trained in an end-to-end manner.

According to (13), expected lifetimes are used to compute the CATE 7(z). Therefore,
the whole network is trained by means of the following loss function:

1 N i) 2
L=< L L (B -4")" as)

ieC* k=1

Here, C* is a subset of C, which contains only uncensored examples from C, c* is the
number of elements in C¥; fk(l) is the time to an event of the k-th example from the set

C*\(x;, i, fi) and E,Ei) is the expected lifetime computed through SF Sy (# | x;), obtained by
integrating the SF:

The sum in (18) is taken over uncensored examples from C. However, the Beran
estimator uses all the examples.

One of the loss functions, which takes into account all data (censored and uncensored),
is the C-index. However, our aim is not to estimate the SF or the CHF. We aim to estimate the
difference between the predicted time to event and the expected time to event. Therefore,
we use the standard mean squared error (MSE) loss function. But the censored times
introduce bias into MSE and, therefore, they are not used.
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Figure 2. The neural network training on examples a; ’, composed of controls, for producing the
Beran estimator in the form of SF Sy(t | x;).

It is important to point out that our aim is to train subnetworks with shared training
parameters, which are the neural kernels. By having the trained neural kernels, we can
use them to compute kernels K(z, x;) and K(z,y;) and then to compute estimates of SFs
So(t | z) and S;(t | z) for controls and treatments, respectively, i.e., we realize the idea of

transferring tasks from the control group to the treatment group. Let tgo) < téo) <...< tEO)

and tgl) < tél) <...< tgl) be the ordered time moments corresponding to times fi, ..., fe
and hy, ..., hs, respectively. Then, the CATE 7(z) can be computed through SFs S;(t | z)
and Sy(t | z), again by using the Beran estimators with the trained neural kernels, i.e., in
accordance with (13), it holds that

=yt )57 (2) - Y (1 - 12D (=), (20)

j=1 k=1

where S} (G )( ) is the estimation of the SF of treatments on the interval [t [ (1) t(l) ), S (k)( ) is
(0) ,(0)
t

the estimation of SF of controls in interval [t, ", ;) and it is assumed that t(() ) = ((] I =o.

The illustration of the neural networks that predict K(z, x;) and K(z,y;) for a new
vector z of features is shown in Figure 3. It can be seen from Figure 3 that the first neural
network consists of ¢ subnetworks, such that pairs of vectors (z,x;),i = 1,...,c, are fed
to the subnetworks, where x; is taken from the dataset of controls. Predictions of the first
neural network are ¢ kernels K(z,x;), which are used to compute Sy( | z) by means of
the Beran estimator (14). The same architecture has the neural network for predicting
kernels K(z,y;), used for estimating the treatment SF S (t | z). This network consists of s
subnetworks and uses vectors y; from the dataset of treatments. After computing estimates
So(t | z) and S;(t | z), we can find the CATE 7(z).
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Figure 3. Neural networks consisting of the ¢ and s trained neural kernels, predicting new values of
kernels K(z, x;) and K(z,y;) that correspond to controls and treatments for computing estimates of
S1(t | z) and So(t | z), respectively.

Phases of training and computing CATE 7(x) by means of neural kernels are schemat-
ically shown as Algorithms 1 and 2, respectively.

Algorithm 1 The algorithm for training neural kernels

Require: Datasets C of c controls and T of s treatments, number N of generated subsets

C Z.(r) of C, number of examples in generated subsets 1
Ensure: Neural kernels K(+, -) for their use in the Beran estimator for control and treatment
data
1: fori=1,i <c¢ do

2 forr=1,r <N do

3: Generate subset Ci(r) C C\(x;,v;)

4: Form example al(r) = (Ci(r),xi, 5i,fi>
5 end for

6: end for

7. Train the weight sharing neural network with the loss function given in (18) on the set
(r)

of examples a;

Algorithm 2 The algorithm for computing CATE for a new feature vector z

Require: Trained neural kernels, datasets C and 7T, testing example z

Ensure: CATE 7(x)
1: fori=1,i <c¢ do
2 Form pair (z, x;) of vectors by using the dataset C of controls
3 Feed pair (z, x;) to the trained neural kernel and predict K(z, x;)
4: end for
5. fori=1,1 <s do
6 Form pair (z,y;) of vectors by using the dataset 7 of treatments
7 Feed pair (z,y;) to the trained neural kernel and predict K(z, y;)
8: end for

9: Compute W(z,x;),i=1,...,c, W(z,y;),i=1,...,s

10: Estimate So(t | xx) and Sy (¢ | yx) using (14)

11: Compute 7(x) using (20)
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7. Numerical Experiments

Numerical experiments for studying BENK and its comparison with available models

are performed by using simulated datasets because the true CATEs are unknown due to
the fundamental problem of causal inference for real data [8]. This implies that control
and treatment datasets are randomly generated in accordance with predefined outcome
functions.

7.1. CATE Estimators for Comparison and Their Parameters

For investigating BENK and its comparison, we use nine models, which can be united

in three groups (the T-learner, the S-learner, the X-learner), such that each group is based
on three base models for estimating SFs (the RSF, the Cox model, the Beran estimator with
Gaussian kernels). The models are given below in terms of survival models:

1.

2.

The T-learner [12] is a model which estimates the control SF Sy(¢ | z) and the treatment
SF S1(t | z) for every z. The CATE in this case is defined in accordance with (13);
The S-learner [12] is a model which estimates SF S(¢ | z, T) instead of Syo(t | z) and
S1(t | z), where the treatment assignment indicator T; € {0,1} is included as an
additional feature to the feature vector z;. As a result, we have a modified dataset

D= {(z1,01 1),/ (2¢,0c fo) (2een, v i), (Zess, 15, Bs) (21)

wherez; = (x;, T;) € RIVif T, =0,i=1,...,ciand z} ; = (y;, T;) e RTTTIf T; =1,
i=1,...,t. The CATE is determined as

T(z) = i(t](l) pl ) 5 (z,1) i t(o gl )(Z,O),‘ (22)

=1

The X-learner [12] is based on computing the so-called imputed treatment effects and
is represented in the following three steps. First, the outcome functions go(x) and
¢1(y) are estimated using a regression algorithm. Second, the imputed treatment
effects are computed as follows:

D1(yi) = hi — go(yi), Do(xi) = g1(xi) — fi- (23)

Third, two regression functions 71 (y) and 1y(x) are estimated for imputed treatment
effects D1 (y) and Dy(x), respectively. The CATE for a point z is defined as a weighted
linear combination of the functions 71 (z) and 19(z) as 7(z) = at(z) + (1 — a)7T1(2),
where o € [0,1] is a weight that is equal to the ratio of treated patients. The original
X-learner does not deal with censored data. Therefore, we propose a simple survival
modification of the X-learner. It is assumed that go(y;) and g1 (x;) are expectations
Eo(y;) and E;(x;) of the times to an event corresponding to control and treatment
data, respectively. Expectations Ey(y;) and E;(x;) are computed by means of one of
the algorithms for determining estimates of SFs So(f | z) and Sq (¢ | z). The functions
71 (y) and 1p(x) are implemented using the random forest regression algorithm for all
the basic models.

Estimations of SFs Sy(t | z) and S1 (¢ | z) as well as S(t | z, T) are carried out by means

o the following survival regression algorithms:

1.

The RSF parameters of random forests used in experiments are the following;:

e The numbers of trees are 10, 50, 100, 200;

e  Thedepths are 3,4, 5, 6;

®  The smallest values of examples which fall in a leaf are 1 example, 1%, 5%, 10%
of the training set.

The above values for the hyperparameters are tested, choosing those leading to the
best results;
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The Cox proportional hazards model [3], which is used with the elastic net regulariza-
tion with the 3 to 1 ratio coefficient Lq/Ly;

In contrast to the proposed BENK model, we use the Beran estimator with the standard
Gaussian kernels. Values 10/, i = —4, ..., 3, and also values 0.5, 5, 50, 200, 500, 700 of
the bandwidth parameter of the Gaussian kernel are tested, choosing those leading to
the best results.

In sum, we have nine models for comparison, whose notations are given in Table 1.

Table 1. Notations of the models, depending on meta-learners and base models.

Meta-Model
Survival regression algorithms T-learner S-learner X-learner
Beran estimator T-Beran S-Beran X-Beran
Cox model T-Cox S-Cox X-Cox
RSF T-SF S-SF X-SF

7.2. Generating Synthetic Datasets

As has been described above, we consider generating the artificial complex feature

spaces and outcomes in the numerical experiments. All the vectors of features, including
controls x and treatments y, are generated by means of three functions: the spiral function,
the bell-shaped function and the circular function. The idea to use these functions stems
from the goal to obtain complex structures of data, which are poorly processed by many
standard methods. The above functions are defined through a parameter ¢ as follows:

1.

Spiral functions: The feature vectors, having dimensionality 4 and being located on
the Archimedean spirals, are defined for even d as

x = (¢sin(&), & cos(E),...,¢sin(E-d/2),¢Ecos(E-d/2)), (24)
and for odd d as

x = (&sin(g), £ cos(d), .., Esin(¢ - [d/2])). 25)

Values of § are uniformly generated from the interval [0, 10] for all numerical experiments;
Bell-shaped functions: Features are represented as a set of almost non-overlapping
Gaussians. As ¢ is uniformly generated in the numerical experiments, we can define
Cmin and Cmax as corresponding bounds of the uniform distribution. Therefore, the
feature vector of dimensionality d is represented as

X = (xo,xl,. . .,xd_1),

_ gmax - gmin gmax - gmin

7 6d M7 a-1
1 —(E—i-w)*\ B
X, = 7 exp( 552 ,i=1,...,d—1. (26)

Therefore, each feature x; corresponds to its own region in the ¢ distribution;
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3.  Circular functions: The corresponding feature space is generated by using only the
even numbers of features. The feature vectors are located on the two-dimensional
circles as follows:

Crange = T
num

Cnum =

ﬂ gmax - ‘:min
2

1.2 .1 .2 1 2
X:(xl,xl,xz,xz,... X )

7 Cnum” " Cnum /7

xj = sin(zn(é —(-1 'CV””8€)> -1,

(D )

Crange

Xj = cos
Crange

Il — I{(l - 1) . Crgngg S g < i' Crgnge}, l - 1,. . .,Cnum, (27)

where I; is an indicator function.
(1 (2 )

Each pair of features (x;”’, x;”’) corresponds to their own two-dimensional circle and
to their own region in the ¢ distribution.

In all experiments, feature vectors y are generated in the same way as vectors x. How-
ever, for feature vectors x and y, from the control and treatment groups, the corresponding
times to events f and & are different and are generated by using the Weibull distribution,

as follows: (u) 12
B log(u
f&) =~ (0.0005 ~exp (1.6 é‘)) ' ~
B log(u) 1/2
h(¢) = - (0.005 -exp (0.8 - €)> ' )

where u is the random variable, uniformly distributed on the interval (0,1); values f and h
larger than 2000 are clipped to this value.

This way for generating f and / is in agreement with the Cox model. Hence, we can
use the Cox model as a base model among RSFs and the Beran estimator with Gaussian
kernels in the numerical experiments.

The proportion of censored data, denoted as p, is taken as 33% of all observations in the
experiments. Hence, parameters of censoring J; and -; are generated from the binomial distri-
bution with probabilities Pr{d; = 1} = Pr{y; = 1} =0.67, Pr{; = 0} = Pr{y; = 0} =0.33.

The Precision in Estimation of Heterogeneous Effects metric (PEHE), proposed in [61],
is used to reduce the variance in the numerical experiments. According to [61], this metric
evaluates the ability of each method to capture treatment effect heterogeneity.

If we label the test dataset as Z, then the PEHE can be defined as follows:

PEHE(Z Z (= f) | 2(0)] = 7(2))%,

Z zeZ

1 3
E(f12(0) = /0.0005 -oxp (160 (2)

1 3
1/0.005 - exp (0.8 ¢) t (2) (30)

where N; is the size of the set Z, taken for all numerical experiments as N, = 1000.

The proportion of treatments and controls in most experiments is 20%, except for
experiments studying how the proportion of treatments impacts the CATE, where the
proportion of treatments and controls is denoted as 4. For example, if 100 controls are
generated for an experiment with g = 0.2, then 20 treatments are generated in addition to
controls, such that the total number of examples is 120. The generated feature vectors in all
experiments consist of 10 features; the volume of the C set is 300 unless otherwise stated.

E(h[2(5)) =
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To select optimal hyperparameters of BENK, additional validation examples are generated,
such that they belong to only the control group, and the size of this additional validation
set is 50% of the set C size. After the BENK neural network training, this validation set is
concatenated with C for other models, which are trained using cross-validation with three
splits. For studying the dependencies, we repeat the numerical experiments 100 times and
provide the mean values across these 100 iterations.

Each subnetwork is a fully connected neural network consisting of five layers, with
corresponding activation functions ReLU6, ReLU6, ReLU6, Tanh, Softplus. Inputs for each
subnetwork are represented in the form ||x; — x;|| to ensure the symmetry property of
kernels. The non-negativity property of neural kernels is achieved by using the activation
function Softplus in the last layer of the subnetworks, which ensures that the output is
always positive.

7.3. Study of the BENK Properties

In all pictures illustrating results of numerical experiments, dotted curves correspond
to the T-learner (triangle markers), the S-learner (triangle markers) or the X-learner (the
circle marker) under the condition of using the Beran estimator with the Gaussian kernels.
Dash-and-dot curves correspond to the Cox models. Dashed curves with the same markers
correspond to the same models implemented using RSFs. The solid curve with cross
markers corresponds to BENK. The PEHE metric is used to represent results of experiments.
The smaller the values of the PEHE, the better the obtained results. To avoid clutter
of curves on the figures, we pick the best model for each T-,S- or X-learner obtained in
each experiment.

First, we study different CATE estimators using different numbers ¢ of controls, taking
the values 100, 200, 300, 500, 1000. The number of treatments ¢ is determined as 20% of
the number of controls. Values of n are equal to min{t,100}. Figures 4-6 illustrate how
values of the PEHE metric depend on the number c of controls for different estimators
when different functions are used for generating examples. Figure 4 shows the difference
between the PEHE metric of BENK and other models in the experiment, with the feature
vectors located around the spiral. The T-SE, S-Beran and X-SF models are provided in
Figure 4 because they show the best competitive metric values. In order to illustrate
how the variance in results depends on the amount of input data, the error bars are also
depicted in Figure 4. It can be seen from Figure 4 that the variance in results is reduced
with the number of controls. This property of results indicates that the neural network is
properly trained. We do not add the error bars to other graphs so as to not mask the relative
positions of the corresponding curves. Figure 5 illustrates similar dependencies when the
bell-shaped function is used for generating the feature vectors. The selected models in
this case are T-Cox, S-SF and X-Cox. Figure 6 illustrates the relationship between different
models obtained on the circular feature space. The competitive algorithms given in the
picture are T-Beran, S-Beran and X-Beran. It can be seen from Figures 4-6 that the proposed
model BENK provides better results in comparison with other models. The largest relative
difference between BENK and other models can be observed when the feature vectors are
generated in accordance with the spiral function. This function produces the most complex
data structure, such that other studied models cannot cope with it.

Another interesting question is how the CATE estimators depend on the proportion q
of treatments and controls in the training set. Particularly, for the proposed BENK model,
we try to study whether an increasing number of treatments (the set 7)) provides better
CATE results with an unchanged number of controls (the set C). The corresponding numer-
ical results are shown in Figures 7-9. One can see from Figures 7-9 that the enhancement in
the PEHE is sufficient in comparison with other CATE estimators when g is changed from
10% to 20% in the experiments with the spiral and bell-shaped functions. Moreover, we
again observe the outperformance of BENK in comparison with other estimators.
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Figure 4. The PEHE metric as a function of the number of the controls when the spiral function is
used for generating examples.
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Figure 5. The PEHE metric as a function of the number of controls when the bell-shaped function is
used for generating examples.
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Figure 6. The PEHE metric as a function of the number of controls when the circular function is used
for generating examples.
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Figure 7. The PEHE metric as a function of the part of treatments when the spiral function is used for
generating examples.
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Figure 8. The PEHE metric as a function of the part of treatments when the bell-shaped function is
used for generating examples.

In the previous experiments, the amount of the censored data was taken p = 33% of
all observations. However, it is interesting to study how this amount impacts the PEHE
of the CATE estimators. Figures 10-12 illustrate the corresponding dependencies when
different generating functions are used. It can be seen from Figures 10-12 that the PEHE
metrics for all estimators, including BENK, increase with the amount of censored data.

Table 2 aims to quantitatively compare results under the following conditions: ¢ = 400,
s =40, p = 02, m = 20, N = 1000. One can see from Table 2 that BENK provides
outperforming results. Let us compare results obtained for BENK with the results provided
by other models in Table 2. For comparison, we can apply the standard t-test. The obtained
p-values for all pairs of models are shown in the last column. We can see from Table 2
that all p-values are smaller than 0.05. Hence, we can conclude that the outperformance of
BENK is statistically significant. It is interesting to note from Table 2 that methods based
on the Cox model (T-Cox, S-Cox, X-Cox) show worse results. This can be explained by the
weak assumption of the linear relationship of features, which takes place in the Cox model.
This assumption contradicts the complex spiral, bell-shaped and circular functions and
does not allow us to obtain better results. It should be pointed out that T-NW provides
the best result for the bell-shaped generating function among results given by methods
other than BENK. This is explained by the fact that the bell-shaped function is close to
the Gaussian function; therefore, the method based on using Nadaraya—Watson kernel
regression does not crucially differ from BENK. It is also interesting to note that the efficient
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methods such as the S-learner and the X-learner often provide worse results in comparison
with the T-learner, which is rather weak in standard CATE tasks. This is due to peculiarities
of survival data, which differ from the standard regression and classification data.

Circular functions
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Figure 9. The PEHE metric as a function of the part of treatments when the circular function is used
for generating examples.
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Figure 10. The PEHE metric as a function of the amount of censored observations in the training
dataset when the spiral function is used for generating examples.
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Figure 11. The PEHE metric as a function of the amount of censored observations in the training
dataset when the bell-shaped function is used for generating examples.
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Figure 12. The PEHE metric as a function of the amount of censored observations in the training
dataset when the circular function is used for generating examples.

Table 2. The PEHE values of CATE for different models obtained via different generating functions
and the corresponding p-values.

Generating Functions

Model Spiral Bell-Shaped Circular p-Value
T-NW 5.876 4.868 5.713 0.0457
S-NW 5.759 5.868 5.946 0.0121
X-NW 4.985 5.090 6.317 0.0149
T-Cox 6.198 6.518 6.126 0.0128
S-Cox 5.959 5.941 5.963 0.0112
X-Cox 6.331 7.396 8.357 0.0178

T-SF 3.721 5.563 6.460 0.0401

S-SF 5.959 5.900 5.882 0.0035

X-SF 4.853 6.339 7.176 0.0154
BENK 2.373 3.288 3.570

It should be noted that we did not provide results of various deep neural network
extensions of the CATE estimators because they have not been successful. The problem
is that neural networks require a large amount of data for training and the considered
small datasets have led to overfitting the networks. This is why we studied models which
provide satisfactory predictions under condition of small amounts of data.

8. Conclusions

A new method called BENK for solving the CATE problem under the condition of
censored data has been presented. It extends the idea behind TNW-CATE proposed in [16]
to the case of censored data. In spite of many similar parts of TNW-CATE and BENK, they
are different because BENK is based on using the Beran estimator for training and can be
successfully applied to survival analysis of controls and treatments. However, TNW-CATE
and BENK use the same idea to train neural kernels: implementation as neural networks
instead of using standard kernels.

It is also interesting to point out that BENK does not require oneto have a large
dataset for training, even though the neural network is used for implementing the kernels.
This is due to a special way that is proposed to train the network, which considers pairs
of examples from the control group for training, as in Siamese neural networks. Our
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experiments have illustrated the outperforming characteristics of BENK. At the same time,
we have to point out some disadvantages of BENK. First, it has many tuning parameters,
including parameters of the neural network and parameters of training n and N, such
that the training time may be significantly increased in comparison with other methods of
solving the CATE problem. Second, BENK assumes that the feature vector domains are
similar for controls and treatments. This does not mean that they have to totally coincide,
but the corresponding difference in domains should not be very large. A method which
could take into account a possible difference between the feature vector domains for
controls and treatments can be regarded as a direction for further research. An idea behind
the method is to combine the domain adaptation models and BENK.

Another direction for further research is to study robust versions of BENK when there
are anomalous observations that may impact training the neural network. An idea behind
the robust version is to use attention weights for feature vectors and also to introduce
additional attention weights for predictions.

It should be noted that the Beran estimator is one of several estimators that are used in
survival analysis. Moreover, we have studied only the difference in expected lifetimes as a
definition of the CATE in the case of censored data. There are other definitions, for instance,
the difference in SFs and the hazard ratio, which may lead to more interesting models.
Therefore, BENK implementations and studies using other estimators and definitions of
the CATE can be also considered as directions for further research.

The proposed method can be used in applications that are different from medicine.
For example, it can be applied to selection and control of the most efficient regimes in the
Internet of Things. This is also an interesting direction for further research.
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