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Editorial

Health Effects of Exposure to Environmental Pollutants: The
Combination of Traditional and Emerging Pollutants

Zhangjian Chen 1,2,* and Guang Jia 1,2,*

1 Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University,
Beijing 100191, China

2 Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public
Health, Peking University, Beijing 100191, China

* Correspondence: zhangjianchen@pku.edu.cn (Z.C.); jiaguangjia@bjmu.edu.cn (G.J.)

1. Introduction

This editorial introduces the Special Issue titled “Health Effects of Exposure to Envi-
ronmental Pollutants”. The health effects of environmental pollutants, including traditional
pollutants (such as particulate matters and heavy metals) and emerging pollutants (such as
nanoparticles), has received widespread attention [1]. These pollutants can have serious
impacts on the environment and human health. Research on the potential toxic effects
and mechanisms of environmental pollutants can provide a scientific basis for related
prevention work.

This Special Issue contains 11 articles: 10 research papers and 1 communication. The
research papers focus on the potential toxicity and mechanisms of environmental pollutants
affecting humans or the environment. Some papers highlight the potential toxicity and
mechanisms of emerging pollutants such as nanomaterials using novel methods, such
as multi-omics approaches. Some papers still focus on traditional pollutants, such as
particulate matter, heavy metals, arsenic, benzene and its homologues, but they explore
novel aspects in terms of toxicity mechanisms or biomarkers, such as microRNAs or circular
RNAs. The only communication explored the associations between uranium and radium
in groundwater and incidence of colorectal cancer in Georgia counties, USA.

2. An Overview of Published Articles

This Special Issue focuses on the potential toxic effects and mechanisms of both
emerging and traditional environmental pollutants. Emerging pollutants are represented
by nanoparticles. Shi et al. (Contribution 1) explore the size-dependent hepatotoxicity of
nano-silica. Through in vitro cell experiments combined with multi-omics methods, the
authors try to clarify the early health effects and key toxicity pathways of nanoparticles. Gao
et al. (Contribution 2) focus on the potential respiratory toxicity of nano-zinc oxide, using
animal experiments to study the MRI morphological effects on the olfactory epithelium and
olfactory bulb of rats after intranasal instillation. There are many types of nanoparticles,
and these two contributions are representative. They take typical nanoparticles as the
research object, using in vitro cell experiments and in vivo animal experiments, respectively,
combined with innovative technologies such as multi-omics, to elucidate their potential
negative health effects and mechanisms. The research paradigm is worthy of reference for
future studies.

In this Special Issue, traditional environmental pollutants are represented by air
pollutants. Sun et al. (Contribution 3) investigate the effect of ambient air pollutants on the
severity of allergic rhinitis symptoms. A prospective follow-up study was conducted among

Toxics 2025, 13, 641 https://doi.org/10.3390/toxics13080641
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patients with allergic rhinitis, and they found an association between short-term exposure
to air pollutants and exacerbation of nasal symptoms in patients with allergic rhinitis.
Wang et al. (Contribution 4) elucidate the role of Glycoprotein A Repetition Predominant
(GARP) protein in PM2.5-induced epithelial–mesenchymal transition (EMT) through the
TGF-β/SMAD pathway in pulmonary epithelial cells and discuss the therapeutic potential
of lentinan. Yang et al. (Contribution 5) focus on the neurotoxicity of PM2.5 and attempt to
elucidate the related gut–brain axis mechanism using a multi-omics approach.

In real-world environments, human exposure is often not to a single pollutant but
to a combination of multiple pollutants [2]. Therefore, studying the health effects and
mechanisms of combined exposure to environmental pollutants is of great significance.
Zhang et al. (Contribution 6) focus on various endocrine-disrupting chemicals (EDCs),
including perchlorate, nitrate, and thiocyanate, exploring their association with female
infertility and the mediation of obesity. Mascari et al. (Contribution 7) focus on the associa-
tions between environmental pollutant mixtures and red blood cell folate concentrations,
finding that higher exposure to PFASs, metals, and PAHs is associated with lower red
blood cell folate concentrations. Zheng et al. (Contribution 8) focus on the association
between combined exposure to various heavy metals and the aging biomarker α-Klotho,
finding that exposure to certain metals, particularly in combination, may reduce serum
α-Klotho levels, potentially accelerating aging processes. Li et al. (Contribution 9) ex-
plore the effects of co-exposure to benzene, toluene, and xylene (BTX) on genetic damage,
providing further support for the gene-environment interactions of BTX co-exposure and
microRNA single-nucleotide substitutions (mirSNPs) in determining the severity of DNA
strand breaks. Xu et al. (Contribution 10) also focus on the important role of non-coding
RNA in toxic biomarkers and toxicity mechanisms, but unlike contribution 9, they focus on
circular RNA. The authors found that Circ_0000284 is involved in arsenite-induced hepatic
insulin resistance by blocking the plasma membrane translocation of GLUT4 in hepatocytes
via IGF2BP2/PPAR-γ.

Rooney et al. (Contribution 11) contribute a communication exploring the carcinogenic
effects of radioactive pollutants through an ecological study. The study found that radium
in groundwater may be linked with an increased incidence of colorectal cancer (CRC).

3. Conclusions

The health effects of environmental pollutants require continuous attention, which
serves as the foundation for establishing environmental standards and formulating envi-
ronmental protection strategies. There is a wide range of environmental pollutants, and
more research evidence is needed on the potential negative health effects and related mech-
anisms of traditional and emerging pollutants. The health effects of combined exposure
to multiple pollutants on the human body are one of the important research topics in the
field of environmental health. The environmental health effects are also diverse and com-
plex, and new research methods, including high-throughput methods such as multi-omics,
deserve attention.
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Abstract: (1) Background: Silica nanoparticles (SiO2 NPs) have a high potential for hu-
man exposure and tend to accumulate in the liver. This study aimed to explore the
size-dependent cytotoxicity induced by SiO2 NPs and identify key molecular pathways at
the in vitro level through proteomics, metabolomics, and a combination of multiple omics
methods. (2) Methods: The human hepatoma cells (HepG2) cells were exposed to SiO2 NPs
of three different sizes (60, 250, and 400 nm) at doses of 0, 12.5, 25, 50, 100, and 200 μg/mL
for 24 h. (3) Results: Exposure to 60 nm SiO2 NPs induced more reduction in cell viability
than the other two larger-scale particles. Changes in the metabolomic and proteomic
profiles of HepG2 cells induced by SiO2 NPs were also size-dependent. The main pathways
that were significantly affected in the 60 nm SiO2 NPs treatment group represented choles-
terol metabolism in proteomics and central carbon metabolism in metabolomics. Moreover,
common enrichment pathways between differential proteins and metabolites included
protein digestion and absorption and vitamin digestion and absorption. (4) Conclusions:
Exposure to SiO2 NPs could induce size-dependent cytotoxicity and changes in proteomics
and metabolomics, probably mainly by interfering with energy metabolism pathways.

Keywords: metabolomics; multi-omics; nanomaterials; proteomics; silica nanoparticles

1. Introduction

Silica particles are abundant in nature and mainly in two forms: crystalline and amor-
phous. The chemical formula for crystalline silica and amorphous silica is the same, yet
their structures differ. Crystalline silica is arranged regularly, while amorphous silica is
arranged in disorder. Crystalline silica includes tridymite, quartz, and cristobalite. Amor-
phous silica includes mesoporous silica and crystalline silica. There are three sources of
amorphous silica: natural existence, the by-product of power stations or metallurgical
processing, and synthesis [1]. Silicon dioxide is one of the most produced nanomaterials in
the world [2]. Synthetic amorphous silica (known as E551 in the European Union) is widely
used in processed foods, for example, to prevent powdered products from clumping and

Toxics 2025, 13, 232 https://doi.org/10.3390/toxics13040232
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for thickening paste products [3]. SiO2 NPs have some unique properties, such as larger
specific surface area and pore volume, controllable particle size, easy-to-modify surfaces,
excellent porosity, good biocompatibility, etc. Because of these characteristics, porous SiO2

NPs are widely used in drug delivery and biomedicine [4,5], coatings [6,7], cosmetics [8],
etc. Therefore, SiO2 NPs have a high potential for human exposure through food, industrial,
pharmaceutical, and cosmetic exposure, and they enter the body through oral, inhalation,
intravenous, and skin-to-skin contact methods.

Many in vivo and in vitro experiments have shown that SiO2 NPs may can cause
harm to a variety of organs, including the liver and spleen [9], lungs, immune system [10],
cardiovascular system [11], and intestines [12]. Hepatotoxicity was one of the target-organ
effects of oral exposure to nanomaterials, including SiO2 NPs [13–15]. Previous in vivo
studies have found that SiO2 NPs tend to accumulate in the liver and cause pathological
changes after oral exposure [16,17]. Furthermore, other investigations demonstrated the
transport of SiO2 NPs to the liver in mice via intratracheal instillation [18] or intravenous
exposure [9,19]. In several subchronic and chronic animal trials, SiO2 NPs were shown
to generate adverse hepatotoxicity results such as liver atrophy, fatty liver, and hepatic
fibrosis [20,21]. For example, adult male Sprague–Dawley rats treated with 1000 ppm SiO2

NPs for 28 days showed severe vacuolar degeneration of hepatocytes and focal coagulation
necrosis of some hepatocytes [16]. In addition, smaller-sized SiO2 NPs can cause liver
damage even at a lower dose [22,23]. In vitro experiments have also shown that SiO2 NPs
can induce oxidative stress [24,25] and DNA damage [26] and increase mitochondrial-
induced apoptosis [27] in human hepatoma cells. However, the key mechanism and toxic
pathway of hepatotoxicity induced by SiO2 NPs as well as its size dependence are still
unclear and need further study. The human hepatoma cells (HepG2) are widely used to
study hepatotoxicity experimental materials [28–32]. Although HepG2 cells are a type of
liver cancer cells, they can perform many differentiated liver functions and are often used
as an in vitro substitute for primary human hepatocytes. Therefore, the cytotoxicity of SiO2

NPs of different sizes was carried out to provide ideas and clues for toxicity.
High-throughput technologies like proteomics and metabolomics have arisen and

are still developing as a result of the ongoing advancements in biotechnology, which
are aimed at determining the mechanism of toxicity [33–35]. Increasingly, in vitro cell
studies and omics technologies are being used in nanotoxicology to investigate toxicity
pathways and mechanisms [36–38]. Proteomics is the study of the whole complement of
proteins in cells, their structure and function, and the identification of biomarkers that
can forecast both qualitative and quantitative changes in cells upon exposure to harmful
substances [39]. Compared to the transcriptome or proteome, metabolomics measures the
total metabolites in living systems and concentrates on metabolic pathways, which are
more representative of the cellular phenotype [40]. Multiple omics can integrate phenotypic
changes at different levels to demonstrate a more comprehensive biological phenotype
and better proof, whereas individual omics can indicate cellular phenotypic changes at
separate molecular levels. The function of biomolecules can be thoroughly examined using
multi-omics combination analysis, which can also screen important proteins, or metabolic
pathways and provide coordination mechanisms for various biological layers.

Proteomics and metabolomics were employed in this study to investigate the funda-
mental toxic pathway and demonstrate the cytotoxicity of SiO2 NPs in human hepatoma
cells (HepG2). In order to investigate the size dependency of the cytotoxicity, three amor-
phous SiO2 NPs with varying diameters (60, 250, and 400 nm) were chosen as the test
nanoparticles. In order to properly screen for important proteins and metabolites linked to
the liver cytotoxicity of SiO2 NPs and associated hazardous pathways, a correlation study
between proteomics and metabolomics was also conducted.
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2. Materials and Methods

2.1. Characterization of SiO2 NPs

Three different sizes (60, 250, and 400 nm) of silica nanoparticles (SiO2 NPs) were
synthesized by the National Center for Nanoscience and Technology (Beijing, China).
The particle size and dispersity were measured by transmission electron microscope (TEM;
JEOL JEM-200CX, Tokyo, Japan) and quantitatively analyzed by GMS 3.0 software. To eval-
uate the agglomeration and stabilization of nanoparticles in ultrapure water, dynamic light
scattering (DLS) was used to detect the hydrodynamic diameters and zeta potential of SiO2

NPs (at the concentration of 100 μg/mL) in ultrapure water using the ZetaSizer Nano ZS90
(Malvern Instruments Ltd., Malvern, UK).

2.2. Cell Culture and Exposure to SiO2 NPs

Human hepatocellular carcinoma cells (HepG2) used in the study were purchased from
the National Biomedical Experimental Cell Resource Library of China. HepG2 cells were
grown in Minimum Essential Medium (MEM, Gibco, New York, NY, USA) supplemented
with 10% fetal bovine serum (FBS, Hyclone, Thermo Scientific, New York, NY, USA),
1% MEM Non-Essential Amino Acids Solution (100×) (NEAA, Gibco, Thermo Scientific,
New York, NY, USA), and 2% GlutaMAX-1 (Gibco, Thermo Scientific, New York, NY, USA)
and maintained at 37 ◦C in a humidified atmosphere containing 5% CO2. After reaching
80% confluence, the cells were digested by 0.25% trypsin and seeded to 96-well plates
at a density of 1 × 104 cells per well or 60 × 15 MM plates with 5 × 105 cells per well.
After a 36 h cultivation period, the medium was replaced by the fresh medium that
contained different concentrations of SiO2 NPs suspensions.

2.3. Cell Viability Assay

To determine the cytotoxicity of SiO2 NPs, cell viability was assessed by the Cell
Counting Kit-8 assay (CCK-8, Biotopped, Dojindo Laboratories, Kumamoto, Japan).
After exposure to 0, 12.5, 25, 50, 100, and 200 μg/mL SiO2 NPs (60, 250 and 400 nm)
for 24 h, the cells in the 96-well plate were incubated with CCK-8 solution for 2 h. Then,
the supernatants were collected, and a microplate reader was used to detect the value of
optical density (OD) at 450 nm. The cell viability was assessed by the following formula:
[(experimental wells − blank wells)/(control wells − blank wells)] × 100%.

2.4. Proteomics
2.4.1. Protein Sample Preparation

HepG2 (1 × 107/sample) was exposed to SiO2 NPs (0 and 100 μg/mL) for 24 h and
then lysed with lysate containing 1 mM PMSF. Three biological replicates were set up.
Protein concentration was measured using the BCA assay kit (ThermoFisher, New York,
NY, USA). Next, 50 μg of protein per sample was taken and different groups of samples
diluted with lysate to the same concentration and volume. Then, 1/50 sample mass was
added to 1 mg/mL pancreatic enzyme Trypsin-TPCK and digested overnight at 37 ◦C.
After transferring the samples to a new tube, a labeling reaction was performed using
a TMTpro reagent containing 20 μL of anhydrous acetonitrile (ThermoFisher, USA); then,
it was incubated for 1 h at room temperature. The reaction was terminated with 5 μL 5%
hydroxylamine for 15 min, and the aliquots were stored at −80 ◦C for later use.

2.4.2. High-pH Reverse-Phase Separation and Mass Spectrometry (HPLC-MS) Assay

Reverse-phase separation was performed on an Agilent 1100 HPLC, and the gra-
dient consisted of mobile phases A (H2O-FA (99.9:0.1, v/v)) and B (ACN-H2O-FA
(80:19.9:0.1, v/v/v)). Samples were loaded at a flow rate of 2 μL/min to pre-column Ac-
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claim PepMap100, 100 μm × 2 cm (RP-C18, ThermoFisher, New York, NY, USA), and then
separated by Acclaim PepMap RSLC, 75 μm × 50 cm (RP-C18, ThermoFisher, New York,
NY, USA), at the flow rate of 300 μL/ min. Samples were collected for 8–60 min. Samples
were lyophilized for mass spectrometry (MS) using EASY-NLC 1200 liquid chromatogra-
phy (ThermoFisher, New York, NY, USA). The mass range of the full MS scan was set at
350–1500 m/z, and the 20 highest peaks were MS/MS-scanned.

2.4.3. Proteomic Data Analysis

All raw data were analyzed using Proteome Discover 2.4. Then, the trusted proteins
were screened according to the Score Sequest HT > 0 and the unique peptide ≥ 1, and the
blank values were removed. Differential proteins were screened on the condition that
foldchange > 1.2 times and p-value < 0.05. The differential proteins were then analyzed for
GO/KEGG enrichment to describe their functions.

2.5. Metabolomics
2.5.1. Metabolomic Sample Preparation

HepG2 (1 × 107/sample) was exposed to SiO2 NPs (0 and 100 μg/mL) for 24 h.
The sample was treated with 20 μL of internal standard (L-2-chlorophenyl alanine,
0.06 mg/mL, methanol configuration), pre-chilled methanol/water (V:V = 4:1), and 200 μL
of chloroform and then sonicated in the ice water bath for 20 min and centrifuged for
10 min (13,000 rpm, 4 ◦C). The supernatant was evaporated with a centrifugal concentra-
tion dryer, i.e., 80 μL of methoxyamine hydrochloride pyridine solution (15 mg/mL), and
then vortexed for 2 min. An oxime reaction was performed in a 37 ◦C shaking incubator for
90 min. The sample was treated with 50 μL of BSTFA (containing 1% TMCS) derivatization
reagent, 20 μL of n-hexane, and 10 μL internal standards (C8/C9/C10/C12/C14/C16/C18/
C20/C22/C24; all were configured with chloroform) at 70 ◦C for 60 min. At last, the sample
was kept at room temperature for 30 min for GC-MS metabolomics analysis.

2.5.2. Gas Chromatography–Mass Spectrometry (GC-MS) Analysis

Metabolic spectra were analyzed using gas chromatography–mass spectrometry (7890B-
5977A, Agilent, Santa Clara, CA, USA). DB-5MS capillary columns (30 m× 0.25 mm× 0.25μm,
Agilent J&W Scientific, Folsom, CA, USA) were used; the carrier gas was high-purity helium
(purity was not less than 99.999%), the flow rate was 1.0 mL/min, and the temperature of the
inlet was 260 ◦C. Electron bombardment of the ion source (EI) was used at a temperature
of 230 ◦C, with a four-stage rod temperature of 150 ◦C and electron energy of 70 eV.
The scanning mode was the full-scan mode (SCAN), and the quality scanning range was
50–500 m/z.

2.5.3. Metabolomic Data Analysis

Qualitative and relative quantitative analyses of the original non-targeted metabolomics
data were conducted by the software of MS-DIAL 4.70. After standardization of the original
data, unsupervised principal component analysis (PCA) and supervised orthogonal partial
least squares analysis (OPLS-DA) were used to observe the overall distribution. The cri-
teria for screening were the VIP value of the first principal component of the OPLS-DA
model > 1 and the p-value value of the t-test < 0.05. Finally, based on the KEGG database,
the differential metabolites were enriched by metabolic pathway enrichment.

2.6. Integrative Metabolomics and Proteomics Analysis

To determine their shared pathway information, the differential proteins and differ-
ential metabolites were concurrently mapped to the KEGG pathway database using the
MetaboAnalyst 6.0 platform. The linkages between graphical objects in the KEGG pathway
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and details about the orthogenic genes in the KEGG GENES database are both contained in
the KGML (KEGG Markup Language) file, a sub-library of the KEGG database. A more
methodical investigation of the relationship between the proteome and the metabolome
is made possible by the ability to determine the network relationship between proteins
and metabolites.

2.7. Statistical Analysis

For statistical analysis, R software (version 4.1.1) was utilized. Additionally, all of the
outcomes were mean ± SD. When necessary, one-way ANOVA with Tukey’s correction
and unpaired Student’s t-test were employed. For all data, a p-value of less than 0.05 was
deemed statistically significant.

3. Results

3.1. Characterization of SiO2 NPs

SiO2 NPs were characterized before use. Transmission electron microscopy (TEM)
images showed that the 60 nm, 250 nm, and 400 nm SiO2 NPs used in this study were all
spherical and well dispersed (Figure 1a–c), with equivalent diameters of 73 ± 3.573 nm,
278.41 ± 10.324 nm, and 426.173 ± 27.428 nm, respectively. The hydrated particle sizes
of these three SiO2 NPs in ultrapure water were 173.8 ± 6.259 nm, 472.4 ± 14.81 nm, and
500.7 ± 14.16 nm, respectively, and zeta potentials were −28.4 ± 0.424 mV, −36.2 ± 0.696 mV,
and −36.84 ± 0.865 mV, respectively. This indicates that SiO2 NPs still had slight agglomer-
ation in an aqueous solution, even if they were well dispersed.

Figure 1. Characterization of SiO2 NPs. The morphologies of SiO2 NPs at 60 nm (a), 250 nm (b), and
400 nm (c) were observed under transmission electron microscopy (TEM). The hydrated particle size
distribution and zeta potential of SiO2 NPs of three different sizes in ultrapure water were detected
by DLS (d).
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3.2. Cytotoxicity of SiO2 NPs in HepG2 Cells

The cell viability was measured using the CCK-8 kit after treatment of SiO2 NPs
with three different sizes at gradient concentrations for 24 h. As shown in Figure 2, cell
viability was decreased after exposure to SiO2 NPs, and 60 nm SiO2 NPs induced more
reduction in cell viability than the other two larger-scale particles. Compared with the
control group (0 μg/mL), the 60 nm SiO2 NPs treatment group at a dose of 100 μg/mL
reduced the cell viability significantly. However, the result did not show a significant
dose–response relationship. After exposure to 60 nm SiO2 NPs, cell viability in the 12.5,
25, 50, 100, and 200 μg/mL groups was reduced to 89.30%, 77.56%, 76.11%, 80.81%, and
83.49%, respectively. Cell viability after exposure to the other two larger-scale SiO2 NPs
(250 and 400 nm) at these doses barely showed any cytotoxicity.

Figure 2. Effect of SiO2 NPs on the viability of HepG2 cells (mean ± SD, n = 3). HepG2 cells were
treated with SiO2 NPs (60, 250, and 400 nm) at 0, 12.5, 25, 50, 100, and 200 μg/mL for 24 h. The cell
viability was significantly decreased in the 60 nm SiO2 NPs treatment groups when the treatment
concentration was 100 μg/mL, but no obvious change was found in the 250 nm and 400 nm SiO2

NPs treatment groups. Cell viability did not decrease in a dose-dependent relationship. Significant
difference from the control (* p < 0.05).

3.3. Proteomics

After being treated with 100 μg/mL SiO2 NPs for 24 h, HepG2 cells were lysed, and
proteins were extracted. Proteomics was performed in HPLC-MS. Through the processing
of raw MS data, 67,388 peptides were extracted, and 6829 protein groups were identified.
As shown in Figure 3, PCA scoring plots revealed a significant difference between the
control group and the three SiO2 NPs treatment groups, especially between the 60 nm or
250 nm SiO2 NPs treatment group and control group, in which the difference was shown
in proteomics characteristics.

Then, differentially expressed proteins between the SiO2 NPs treatment groups and
control groups were screened. It was found that there were 236, 120, and 48 differential pro-
teins in the 60 nm, 250 nm, and 400 nm SiO2 NPs treatment groups, respectively (Figure 4a).
This suggests that the smaller the particle size of SiO2 NPs, the more differential proteins
affected, and the greater the effect on cells. Meanwhile, these differential proteins inter-
sected with other size groups, but the proportion was less than 50%, which meant that SiO2
particles as small as 60 nm may induce many new effects on cell protein expression. Among
236 differential proteins between the 60 nm SiO2 NPs treatment group and control group,
131 proteins were up-regulated, and 105 were down-regulated (Figure 4b). The cluster
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heat map of these differential proteins visually demonstrates the characteristic difference
between SiO2 NPs treatment groups and control groups (Figures 4c and A1a,b).

Figure 3. Multivariate analysis of proteomics in the control group and SiO2 NPs-treated

(100 μg/mL) groups. PCA 3D plots were drawn to compare the difference between the control
group and the treatment groups (a). Pairwise comparisons between the control group and 60 nm
(b), 250 nm (c), and 400 nm (d) treatment groups were also carried out. The control group and the
three SiO2 NPs treatment groups were relatively far apart on the score map, revealing significantly
separations, especially between the 60 nm or 250 nm SiO2 NPs treatment group and the control group
(control-1, control-2, and control-3).

Based on KEGG enrichment pathway analysis (Figure 4d,e and Figure A1c,d), the main
pathways that were significantly affected in the 60 nm SiO2 NPs treatment group included
cholesterol metabolism, complement and coagulation cascades, alcoholism, etc. Compared
with the 250 nm and 400 nm SiO2 NPs, 60 nm SiO2 NPs significantly enhanced pathways
such as the Ras signaling pathway and weakened the pathways such as glycosaminoglycan
biosynthesis–heparin sulfate/heparin. Therefore, the treatment of SiO2 NPs could induce
size-dependent proteomic changes: the smaller the particle size, the greater the impact.
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Figure 4. Proteomics and pathway analysis of SiO2 NPs. A Venn diagram of the different proteins
in three treatment groups compared to the control group showing that the size of SiO2 NPs affected
different proteins (a). A volcano map of proteins with varying expression levels in the 60 nm
treatment group (b). A heat map of cluster analysis comparing the 60 nm treatment and control
groups revealing a notable difference (c). The KEGG enrichment analysis bubble plot, generated in
descending order of −log10 p-value in the 60 nm SiO2 NPs treatment group (d). The bar pattern of
different protein numbers in different pathways of KEGG compares the three particle-size treatment
groups (e).
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3.4. Metabolomics

After being treated with 100 μg/mL SiO2 NPs for 24 h, HepG2 cells were also digested
for untargeted metabolomics in GC-MS. After metabolite identification, 496 metabolites
were included in subsequent analysis. As shown in Figure 5, PCA and OPLS-DA plots
revealed that the control group and the three SiO2 NPs treatment groups were significantly
separated, indicating a difference in metabolic characteristics.

Figure 5. Multivariate analysis of metabolites in the control group and SiO2 NPs-treated

(100 μg/mL) groups. Pairwise comparisons between the control group and 60 nm (a), 250 nm (b),
and 400 nm (c) treatment groups carried out through PCA 2D plots. PCA was performed by the
expression of trusted metabolites. The control group and the SiO2 NPs treatment groups of three
sizes are significantly separated, indicating the difference in metabolic characteristics. OPLS-DA
compares the difference between the control group and the treatment groups of three different sizes,
respectively (d–f).

Then, differentially expressed metabolites between the SiO2 NPs treatment groups
and control group were screened. It was found that there were 18, 36, and 24 differential
metabolites in the 60 nm, 250 nm, and 400 nm SiO2 NPs treatment groups, respectively
(Figure 6a). Among 18 differential metabolites between the 60 nm SiO2 NPs treatment
group and control group, which were mainly divided into the category of lipids and lipid-
like molecules, 8 proteins were up-regulated, and 10 were down-regulated (Figure 6b).
However, most of the differential metabolites (97%) in the 250 nm SiO2 NPs treatment
group were down-regulated, while most of the differential metabolites (92%) in the 400 nm
SiO2 NPs treatment group were up-regulated. These results also indicate that SiO2 NPs
with different particle sizes induced different metabolic changes. The cluster heat maps of
the differential metabolites in the 60 nm, 250 nm, and 400 nm SiO2 NPs treatment groups
compared with the control group are shown in Figures 6c and A2a,b.

Based on KEGG enrichment pathway analysis (Figure 6d,e and Figure A2c,d), the main
metabolic pathways that were significantly affected in the 60 nm SiO2 NPs treatment group
included the central carbon metabolism in cancer, arginine biosynthesis, and alanine,
aspartate, and glutamate metabolism pathways, among others. Compared with the 250 nm
and 400 nm SiO2 NPs, 60 nm SiO2 NPs significantly enhanced pathways such as glyoxylate
and dicarboxylate metabolism. Therefore, the treatment of SiO2 NPs could induce metabolic
changes, which were shown to vary with the change in particle size.
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Figure 6. Metabolomics and pathway analysis of HepG2 cells treated with SiO2 NPs. A Venn
diagram of the different metabolites in treatment groups of three different sizes compared with
the control group demonstrates the difference in the size of SiO2 NPs on differential proteins (a).
Differentially expressed metabolites in the 60 nm treatment group shown on a volcano map (b).
The characteristic difference between the 60 nm treatment group and control group shown by a
cluster analysis heat map (c). A KEGG enrichment analysis bubble plot drawn in the descending
order of −log10 p-value corresponding to each entry in the 60 nm SiO2 NPs treatment group (d).
The bar graph of different metabolite numbers in different pathways of KEGG comparing the three
particle size treatment groups (e).

3.5. Correlation Analysis of Proteomics and Metabolomics

We further combined the results of proteomics and metabolomics to find key events at
different molecular levels induced by SiO2 NPs. At first, the correlations between differen-
tial proteins and differential metabolites were confirmed by Pearson correlation analysis
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(Figures 7a and A3). For example, among these differential proteins and metabolites in-
duced by 60 nm SiO2 NPs, more than 86.9% were significantly correlated. According to
the results of the correlation analysis between differential proteins and differential metabo-
lites, the correlation network diagram was plotted (Figure 7b). The differential proteins
apolipoprotein A-II (APOA2), midkine (MDK), and apolipoprotein E (APOE) and the differ-
ential metabolites L-glutamine dehydrated and L-glutamine were found to have the largest
numbers of associations, respectively. Moreover, pathways in cancer and central carbon
metabolism in cancer were the two pathways that had the largest numbers of associations
in the 60 nm SiO2 NPs treatment group (Figure 7c), differing from the other two treatment
groups (Figure 7d,e).

Figure 7. Correlation analysis of proteomics and metabolomics. A correlation heat map of differen-
tial proteins and differential metabolites treated with 60 nm SiO2 NPs (a) (* p < 0.05; ** p < 0.01, ***
p < 0.001). The correlation network diagram drawn according to the correlation analysis results of
the differential gene and the differential metabolite (b). In the figure, the shape size is related to the
number of connections, and the thickness of the connection between the shapes represents the degree
of correlation. In the KGML network diagrams of differential proteins and metabolites in the 60
nm (c), 250 nm (d), and 400 nm (e) SiO2 NPs treatment groups, the red color indicates up-regulated
proteins or metabolites, and the blue color indicates down-regulated proteins or metabolites.
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Through the analysis of the combined pathways of protein metabolism, it was found
that the significantly enriched pathways were mainly as follows: arginine biosynthesis,
complement and coagulation cascades, and cholesterol metabolism in the 60 nm group;
galactose metabolism and valine, leucine, and isoleucine biosynthesis in the 250 nm group;
and aminoacyl-tRNA biosynthesis in the 400 nm group. The two pathways cholesterol
metabolism and central carbon metabolism in cancer were the common pathways between
the three size groups. The pathway results of the 250 nm group and the 400 nm group were
similar. Moreover, several key metabolic pathways were also screened by KGML analysis,
including glyoxylate and dicarboxylate metabolism and amino acid metabolism (glycine,
serine, and threonine metabolism). In addition, there were complex interactions between
differential proteins (EGLN1 (Egl nine homolog 1) and MET (hepatocyte growth factor
receptor)) and metabolites (fumaric acid and alpha-ketoglutarate), which can lead to SiO2

NPs-induced metabolic dysfunction.

4. Discussion

Humans experience exposure to SiO2 NPs through various pathways, and many
reports are confirming the adverse effects of SiO2 NPs on human health. Therefore, study-
ing the cytotoxic effects and mechanisms of SiO2 NPs is necessary for safety assessment.
The liver is the main target organ for SiO2 NPs. The objective of this study was to analyze the
effects of SiO2 NPs exposure on cellular metabolism based on proteomics and metabolomics
techniques and to explore the mechanism of cytotoxicity. Through the differential pro-
teins and differential metabolites screened after exposure to smaller-sized SiO2 NPs at
100 μg/mL, we found that SiO2 NPs could interfere with cholesterol metabolism, glucose
metabolism, and amino acid metabolism, eventually leading to cytotoxicity. This pro-
vides clues for the potential mechanism underlying the cytotoxicity induced by SiO2 NPs.
This study also helps to deepen our understanding of the potential health risks caused by
SiO2 NPs and contributes to the application of combined omics in toxicological assessment.
The harmful effects of silica are influenced by the size of the nanoparticles. The 60 nm
treatment group in our study exhibited more cytotoxicity than the 250 nm and 400 nm
groups. Numerous further in vitro and in vivo investigations have also demonstrated a
strong correlation between the size of the particles and the cytotoxicity of SiO2 NPs [41,42].
Yang et al. studied the effects of four different-sized particles (68, 43, 19, and 498 nm) on
HepG2 cells and found that smaller silica particles had higher toxic effects for the probable
reason that smaller particles on the nanoscale were more easily endocytosed [23]. Demir
et al. [43] used Drosophila melanogaster to detect the genotoxic activity of different SiO2 NPs
with different sizes (6, 15, 30, and 55 nm) and observed significant induction of oxidative
DNA damage, which was indirectly related to SiO2 NPs size. In addition, this study found
that the omics results of SiO2 NPs are also highly correlated with the size of the particles,
consistent with some other findings [44,45]. In proteomics, we found the particle size
became smaller, and the number of differential proteins also became smaller (whether the
differential proteins were up- or down-regulated). Similarly, Bannuscher et al. [44] treated
NR8383 alveolar macrophages with three sizes of SiO2 NPs (7, 15, and 40 nm) and found
that the overall clustering structure of the untargeted proteomics results was similar, but
the counts of proteins decreased with size. Karkossa et al. [45] found similar results in that
the amount of change in protein and metabolomics results was related to the size of the
particles. Thus, consistent with previous findings, smaller particles tend to have higher
cytotoxicity and bring greater perturbations at the protein or metabolic level than larger
ones. At present, nanotoxicology studies are still basically based on mass concentration
as the dose unit, and this study is the same. However, the toxicity of nanoparticles is
affected by various physicochemical parameters, including size, surface structure, etc., and

15



Toxics 2025, 13, 232

some studies have found that surface area is more effective as a dose index when studying
particles of different size ranges [46,47], which is a follow-up aspect worthy of attention.

Proteomics is essential for understanding complex biochemical processes at the protein
level. The results showed that protein synthesis-related pathways were affected by SiO2

NP, including ribosome, translational, and transcriptional pathways. In our study, 60 nm
particles disrupted RNA modifications (NOP10, NHP2, and SNU13 down-regulated), spli-
somes (HNRNPM, RBMX, and SNU13 down-regulated), and ribosome proteins (MRPL11,
MRPL14, and MRPL23 down-regulated). In addition, from the proteomics results, we found
that SiO2 NP exposure also affected cholesterol metabolism, and the differential proteins
related to cholesterol metabolism screened in this study were up-regulated, such as APOB,
APOE, APOA1, APOA2, APOC1, ANGPTL8, and LRP2. Some studies have yielded the
same or similar results. Duan et al. [48] used an ICR mouse model to find that the level
of cholesterol and LDL cholesterol in serum and liver tissue was significantly increased,
and the ratio of HDL to LDL cholesterol was significantly reduced A zebrafish biological
model was used to find that SiO2 NP could activate lipid metabolism pathways. Chatter-
jee et al. [49] treated HepG2 with four types of amorphous SiO2 NPs with different surface
areas and also found perturbations of steroid-cholesterol biosynthesis. This suggests that
repeated exposure to SiO2 NP may be a risk factor for metabolic and cardiovascular dis-
eases such as metabolic syndrome, non-alcoholic fatty liver disease, atherosclerosis, and
type II diabetes [50].

SiO2 NPs interfered with several key metabolic pathways, including glyoxylate and
dicarboxylate metabolism and glycine, serine, and threonine metabolism, which could
exacerbate oxidative stress and lead to liver damage. These results are similar to those of
other studies [48,51]. Chatterjee et al. [52] conducted metabolomics with amorphous SiO2

NP-treated HepG2 cells and ICR mouse livers and found that inhibition of glutathione
metabolism and oxidative stress were some of the main causes of amorphous SiO2 NPs-
mediated hepatotoxicity. Enrichment analysis of differential metabolites showed that
arginine biosynthesis and alanine, aspartic acid, and glutamate metabolism were affected by
SiO2 NP exposure. The liver is essential for maintaining normal glucose homeostasis, which
ensures the energy supply of various tissues in the body through gluconeogenesis, glycogen
decomposition, glycogen synthesis, glycolysis, and so on [53]. From the metabolomics
results, we found that the differential metabolite (D-fructose-1-phosphate, beta-D-glucose)
content associated with glucose metabolism decreased, and the glycolysis/gluconeogenesis
pathway was blocked.

Through the joint pathway enrichment analysis of proteomics and metabolomics, it
was also found that arginine biosynthesis and cholesterol metabolism were two signifi-
cantly altered pathways, echoing the results of the above-mentioned single omics results.
The correlation analysis showed that amino acid metabolism was also affected by SiO2

NP. In addition to being precursors to numerous metabolic intermediates, amino acids
are essential for energy metabolism and protein synthesis. We found the content of α-
ketoglutaric acid, fumaric acid, glycine, L-glutamine, and serine increased and the aspartic
acid content decreased. Fumarate and α-ketoglutaric acid, the intermediates in the citric
acid cycle (TCA), promote the accumulation of fumarate and succinate, respectively [54],
diffusing in the cytosol and ultimately promoting a pseudo-hypoxic state that favors tumor
development [55]. The three enzymes engaged in the de novo synthesis of purine nu-
cleotides and the two enzymes involved in the de novo synthesis of pyrimidine nucleotides
both require glutamine as a substrate [56]. In addition to the fact that a large part of the
lactic acid produced in cancer cells comes from glutamine [57], glutamine decomposition
and reducing carboxylation can lead to anabolic reactions of fatty acids and cholesterol.
The one-carbon route, which involves serine and glycine, is involved in the production of
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purines and pyrimidines as well as the regulation of cancer cells’ epigenetic traits [58,59].
Aspartic acid is the only amino acid that can directly enter gluconeogenesis without en-
tering the TCA cycle [60]; it is a carbon source synthesized by purine and pyrimidine,
and the decrease in its expression directly affects the level of purine and pyrimidine [60].
Our results show that SiO2 NPs disrupt energy metabolism in HepG2 cells, similar to the
results of previous studies [61].

The advantage of this study is its use of a combination of proteomics and metabolomics
analysis, which helped to determine the functional pathways involved in cytotoxicity
and elucidate its underlying mechanisms. Systems biology, including proteomics and
metabolomics, provides a lot of data that can be used to reveal novel biomarkers and
biological pathways involved in the way nanomaterials act. However, the wide range
of physicochemical properties of proteins dictates that only a subset of all proteins are
detected by current technology, and metabolomics data also show lower sensitivity than
commonly used toxicological methods [62]. Therefore, by integrating results from multiple
cellular reaction layers from different omics methods, a higher level of confidence can
be obtained.

5. Conclusions

In summary, the present study focused on cytotoxicity and omics changes in
HepG2cells after exposure to SiO2 NPs of different sizes. It was demonstrated that ex-
posure to SiO2 NPs could induce size-dependent cytotoxicity and changes in proteomics
and metabolomics, probably mainly by interfering with energy metabolism pathways,
including cholesterol metabolism and arginine biosynthesis. Our findings provide scientific
insights for the exploration of toxicity mechanisms of SiO2 NPs.
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OD Optical density
HPLC-MS High-pH reverse-phase separation and mass spectrometry
GC-MS Gas chromatography–mass spectrometry
PCA Principal component analysis
OPLS-DA Orthogonal partial least squares analysis
KGML KEGG markup language
SD Standard deviation
TEM Transmission electron microscopy
APOA2 Apolipoprotein A-II
MDK Midkine
APOE Apolipoprotein E
EGLN1 Egl nine homolog 1

Appendix A

Figure A1. Proteomics and pathway analysis in 250 nm and 400 nm SiO2 NPs treatment groups.

The heat map of cluster analysis demonstrates the characteristic difference between 250 nm (a) or
400 nm (b) treatment group and control group. KEGG enrichment analysis bubble plots drawn in the
descending order of −log1010 p-value corresponding to each entry in 250 nm SiO2 NPs treatment
group (c) and 400 nm SiO2 NPs treatment group (d).
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Figure A2. Metabolomics and pathway analysis in 250 nm and 400 nm SiO2 NPs treatment groups.

The heat map of cluster analysis demonstrates the characteristic difference between 250 nm (a) or
400 nm (b) treatment group and control group. KEGG enrichment analysis bubble plots drawn in the
descending order of −log1010 p-value corresponding to each entry in 250 nm (c) and 400 nm SiO2

NPs treatment group (d).
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Figure A3. Correlation heat map of differential proteins and differential metabolites treated with

250 nm (a) or 400 nm (b) SiO2 NPs (* p < 0.05; ** p < 0.01; *** p < 0.001).
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Abstract: Since zinc oxide (ZnO) nanoparticles (NPs) have been widely applied, the nano community
and the general public have paid great attention to the toxicity of ZnO NPs. We detected 20-nm
ZnO NPs biotoxicity following nasal exposure utilizing the non-invasive and real-time magnetic
resonance imaging (MRI) technique. MR images were scanned in the rat olfactory epithelium (OE)
and olfactory bulb (OB) on a 4.7 T scanner following the treatment (as early as 1 day and up to
21 days after), and the histological changes were evaluated. The influence of the size of the ZnO NPs
and chemical components was also investigated. Our study revealed that 20-nm ZnO NPs induced
obvious structural disruption and inflammation in the OE and OB at the acute stage. The results
suggest that the real-time and non-invasive advantages of MRI allow it to observe and assess, directly
and dynamically, the potential toxicity of long-term exposure to ZnO NPs in the olfactory system.
These findings indicate the size-dependent toxicity of ZnO NPs with respect to the olfactory bulb.
Further study is needed to reveal the mechanism behind ZnO NPs’ toxicity.

Keywords: zinc oxide; nanoparticles; toxicity; olfactory system; magnetic resonance imaging

1. Introduction

Zinc oxide (ZnO) nanoparticles (NPs) have been employed in a wide range of rubber,
cosmetic, foods, medical, and biological fields [1,2]. The potential health risks of mass-
produced nanomaterials have received great public and academic attention. ZnO NPs’
aerosol exposure can originate from welding fumes and manufacturing processing [3,4],
which has been proven to cause pulmonary impairment [5,6] and metal fume fever [7].

Studies have shown the translocation of nanosized particles from the nose to the
central nervous system (CNS), an important mechanism by which these particles enter
the brain. An early study demonstrated the anterograde axonal transport of 50-nm silver-
coated gold colloids along the olfactory nerve to the olfactory bulb in the squirrel monkey
after intranasal instillation [8]. Oberdörster, G. et. al. investigated the migration of inhaled
ultrafine 13C particles (36 nm) in the rat brain and found that after 6 h of inhalation exposure,
there was a significant and sustained increase in 13C concentration in the olfactory bulb,
from which they inferred that the migration of 13C particles from the nasal cavity to the
CNS was mainly accomplished via olfactory sensory neurons [9]. Likewise, metal oxide
NPs such as manganese oxide (MnO) and iron oxide have been found to translocate into the
brain via the olfactory route [10–12]. Therefore, we hypothesized that environmental and
occupational exposures to ZnO NPs by the respiratory system, by virtue of their extremely
small size, may enter the nasal cavity and affect the CNS via the olfactory pathway.

Nano-sized particles may exhibit distinct biological responses in contrast to bulk-sized
particles of the same chemical composition [13]. Some cellular studies have reported the high
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cytotoxicity of ZnO NPs compared with larger-sized ZnO particles [14,15]. NPs were found to
cause more immune function, inflammation, and transcriptomic responses than larger particles
of the same material within the in vivo studies focused on nasal olfactory epithelium (OE), the
respiratory tract, and oral exposure [16–18]. Tin-Tin-Win-Shwe et. al. demonstrated the size-
dependent immune function of ultrafine carbon black in mice’s olfactory bulb (OB) following
intranasal instillation [16]. After oral administration, ZnO NPs showed more transcriptomic
responses than bulk-sized ZnO in rat liver [18]. Studies addressing the possibility of the effects
of ZnO NPs versus larger-sized particles on the OB are very limited.

ZnO NPs have been manufactured in bulk and widely applied. The potential health risks
of the mass-produced nanomaterials prompted us to pay attention to the NP’s safety application.
ZnO NPs belong to highly soluble metal oxide. The results from cellular experiments demon-
strate that ZnO NPs are more toxic than other metal oxide NPs [19–21]. Our understanding of
how the ZnO NPs may disturb the olfactory pathway is poor. Cellular studies co-incubating
human nasal mucosa cells with ZnO NPs illustrated cytotoxic, pro-inflammatory, and apopto-
sis responses in these cells [22,23]. Short-term inhalation exposure to ZnO NPs caused nasal
necrosis in rats [24]. In the previous study, we proved that 30-nm ZnO NPs instilled in the nasal
cavities of rats caused cellular injury and inflammation to the OE [25].

In this study, to further identify the influence of particle scale on the olfactory system
(OE and OB), we applied magnetic resonance imaging (MRI) and histochemical methods
to investigate the size effect of the intranasal exposure of nano-sized and submicron-sized
ZnO particles (20 and 500 nm) on rats. Moreover, the influence of the chemical properties
of the ZnO NPs and the zinc ions dissolved before the instillation was also considered.

The novelty of this article is that our study identifies the ZnO NPs-induced adverse
effect on the olfactory bulb. As far as we know, olfactory bulb damage caused by ZnO
NPs has never been reported before. The olfactory impairment caused by NPs could be
screened by MRI. This work will facilitate the study of the link between ZnO NPs exposure
and neurodegenerative disease.

2. Materials and Methods

2.1. Chemicals

ZnO NPs with a diameter of 20 nm and Fe2O3 NPs with a diameter of 30 nm were
purchased from Haitai Nano Material Co., Ltd., Nanjing, China, and ZnO NPs with a diameter
of 500 nm were purchased from National Pharmaceutical Chemical Reagent Co., Ltd., Beijing,
China. We used sodium carboxymethyl cellulose (CMC) as an agent to suspend the NPs, which
was manufactured by Sinopharm Chemical Reagent Co., Ltd., Shanghai, China. CMC is a
water-soluble polymer that increases the viscosity of a solution, thereby helping to disperse
nanoparticles and prevent aggregation. By forming a viscous solution, CMC effectively reduces
the settling rate of the particles and therefore provides a good suspension aid.

2.2. Characterization of NPs

For the particle size characterization, the ZnO and Fe2O3 NPs were measured using
JEM-200CX transmission electron microscopy (JEOL, Japan). The purity of the NPs was
evaluated via an X-ray fluorescence spectrometer (Bruker, Germany). For the crystalline
phase characterization, the NPs were analyzed via D/MAX 2000 X-ray diffraction (Rigaku,
Japan). The specific surface area of the NPs was measured using an ASAP2010 Brunauer–
Emmett–Teller technique. ZnO NP-CMC suspension was prepared by dispersing the ZnO
NPs within 1 wt% CMC saline solution. The Fe2O3 NPs were also dispersed within the
same solution to prepare Fe2O3 NP-CMC suspension. The concentration of Zn2+ in the
supernatant of ZnO NP-CMC suspension was determined using complexometric titration:
ammonia–ammonium chloride buffer solution (pH 10.0) was added to the suspension,
followed by the addition of Chromium Black T indicator, and titration was carried out with
a standard solution of 9.92 mM Na2EDTA. The endpoint of the titration was reached when
the color of the mixture changed from sky blue to purplish red. The concentration of Zn2+

in the 20-nm and 500-nm ZnO NP-CMC suspensions was to be about 0.065 mg·mL−1 in
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both cases. The ZnO NP-CMC suspensions were centrifuged at 12,000× g rpm and/or
16,099× g for 10 min; then, the supernatants were extracted.

2.3. Animals

All experimental animals were handled in accordance with the National Committee for
the Ethics and Use of Laboratory Animals. Male Sprague-Dawley rats (140–200 g in weight)
were bought from the Animal Laboratory of Zhongnan Hospital of Wuhan University. The
rats were group-housed in clean polypropylene cages in the SPF-level laboratory animal
room. They are maintained within a light-cycle-controlled and temperature-controlled
environment. Relative humidity was kept at 50 ± 5%. Rats are free to commercial rodent
food and water. The animals were subjected to experimental studies following at least
5 days of laboratory domestication.

2.4. Experimental Preparation

Animals without obvious nasal structural abnormalities were chosen for intranasal
exposure. Exposure doses were designed in the same way as our previous study [25].
Animals were randomly separated into five groups to receive unilateral intranasal drops of
one of the following 40 μL of solution/suspension (given with a 20 μL pipette tip):

(1) 1 wt% saline solution of CMC, n = 8;
(2) Supernatant of 40 mg ZnO mL−1 20-nm ZnO NP-CMC suspension (S-ZnO20), n = 5;
(3) 40 mg Fe2O3 mL−1 Fe2O3 NP-CMC suspension (Fe2O3), n = 8;
(4) 40 mg ZnO mL−1 20-nm ZnO NP-CMC suspension (ZnO20), n = 8;
(5) 40 mg ZnO mL−1 500-nm ZnO NP-CMC suspension (ZnO500), n = 8.
Before the intranasal exposure, all suspensions were sonicated for 10 min.

2.5. MRI Study

A Bruker Biospec 4.7 T/30 cm small animal scanner was utilized to perform all MRI
scans. A 12 cm diameter Helmholtz volume coil was used for radiofrequency (RF) pulse
transmission, and a 2.5 cm diameter single loop surface coil was used for signal reception,
both of which were decoupled. The nasal structures of the animals were scanned via the
spin-echo T1-weighted MRI sequence to avoid including unsuitable animals in the trials. At
0 days (before) and 1 day (1 d), 4 days (4 d), and 7 days (7 d) after intranasal instillation,
T2-weighted image acquisition screening for OE defects and quantitative measurement of
T1 values were performed on the OE of all rats under chloral hydrate anesthesia (5 wt%
solution, 7 mL kg−1 dosage), respectively, to monitor changes in the OE dynamically in
the following five groups: CMC (n = 6), S-ZnO20 (n = 5), Fe2O3 (n = 6), ZnO20 (n = 6), and
ZnO500 (n = 6). At the same time points, T2-weighted images were acquired to monitor OB
alterations in five groups (n = 3 in each group). At 21 days (21 d), the damage to the olfactory
bulbs of the ZnO20 (n = 3) and ZnO500 (n = 3) groups were scanned with T2-weighted
and T1 inversion recovery images. The spin-echo T1-weighted image parameters were as
follows: repetition time: 400 ms; echo time: 15 ms; field of view: 1.5 cm × 1.5 cm; matrix
size: 128 × 128; slice thickness: 0.8 mm; and number of averages: 2. The T2-weighted image
parameters were as follows: a repetition time of 3000 ms; 6 echoes, with echo times ranging
from 25 to 175 ms; and an echo interval of 25 ms. T1 values of the OE were measured by
the fast Look–Locker T1 imaging measurement sequence (LL T1) with a repetition time of
5000 ms. The T1 values were fitted by 24 small-angle gradient echo signals acquired with an
excitation interval of 150 ms. The imaging parameters for the T1 inversion recovery sequence
were as follows: repetition time: 5000 ms; echo time: 15 ms; inversion recovery time: 450 ms.
In the other MRI scans, the field of view parameters, matrix size, slice thickness, and number
of averages are the same as those in the spin-echo T1-weighted image.

2.6. Histologic Examination

At 1 and 22 days after treatment, except for the S-ZnO20 group, two typical rats in every
group were executed for pathohistological evaluation of the OE and OB. For hematoxylin–
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eosin staining, animals were perfused with 0.9 wt% NaCl and 4 wt% paraformaldehyde
solutions through the left ventricular aorta. The OE and OB of each animal were then
dissected, sampled, and fixed in 4 wt% paraformaldehyde solutions for one night. For the
next 7 days, the fixed OE samples were decalcified within 15% EDTA. After that, the OE and
OB specimens were embedded in paraffin and sliced to a thickness of 4 μm. The sections were
deparaffinized, rehydrated, and stained with hematoxylin and eosin. At last, the sections
were dehydrated, cleared, and covered with a neutral balsam.

2.7. Statistical Analysis

The region of interest (ROI) on the LL T1 image was selected in ectoturbinate 2 (suscep-
tible region) of the instilled side of the OE in the CMC group, and the T1 value of ROI was
fitted using a house-made MATLAB program. The data were expressed as mean ± standard
deviation and statistically analyzed using the SPSS19.0 software package. Two-way analy-
sis of variance (ANOVA) was used to analyze T1 value data. Two-tailed Student’s t-tests
were used to evaluate the statistical significance of inter- and intro-group differences. The
significance level was set at p < 0.05 with Bonferroni correction for multiple comparisons.

3. Results

3.1. Characterization Results of NPs

In Table 1, the range of the diameter of the ZnO NPs (20 nm) was between 15 and
30 nm, and the length range was between 20 and 40 nm. The purity was 99.9 wt%. The
specific surface area was 31.5 m2·g−1. The crystalline structure was a zincite phase crystal.
Figure 1B shows representative transmission electron microscopy images of 20-nm ZnO
NPs. The characterization results of the Fe2O3 NPs and the ZnO NPs (500 nm) are shown
in Table 1 and Figure 1.

Figure 1. Representative transmission electron microscopy images and X-ray diffraction spectra of
Fe2O3 nanoparticles (NPs), 20-nm zinc oxide (ZnO) NPs, and 500-nm ZnO NPs. (A–C) transmission
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electron microscopy images; (D) X-ray diffraction spectra. A and B: bar 200 nm; C: bar 500 nm.
The TEM images and X-ray diffraction spectra of Fe2O3 NPs and 500-nm ZnO NPs are from the
literature [25].

Table 1. The characterization results of Fe2O3 NPs, 20-nm and 500-nm ZnO NPs (the data of Fe2O3

and 500-nm ZnO NPs are from the literature [25]).

Samples Purity (%) Diameter (nm) Specific Surface Area (m2·g−1) Crystalline Structure

Fe2O3 97.9 25–40 10.0 Maghemite

ZnO20 99.9 Width = 15–30
Length = 20–40 31.5 Zincite

ZnO500 >99.9 Width = 240–440
Length = 360–660 51.1 Zincite

3.2. Toxic Effects of 20-nm ZnO NPs

T2-weighted images of the OE are shown in Figure 2. At 1 d, 4 d, and 7 d after
intranasal exposure, the rats instilled with CMC, S-ZnO20, and Fe2O3 exhibited no evident
abnormities in the OE compared to before the treatment (0 d). At 1 d, the rats treated with
ZnO20 occasionally exhibited hyperintensity in areas of the OE in the bilateral turbinates,
which can be explained by the septal window connecting two sides of the nasal cavity. The
regions with hyperintensity were visible at 4 d and 7 d after the exposure to ZnO20. At
1 d, compared with the rats instilled with ZnO20, those treated with ZnO500 exhibited
less-pronounced edema in OE. Edema was less apparent on T2-weighted images at 4 d and
7 d after the exposure to ZnO500.

 

Figure 2. T2-weighted images of the OE before (0 d) and at 1, 4, and 7 days after exposure to CMC,
S-ZnO20, Fe2O3, ZnO20, and ZnO500. The white arrow indicates the bright signal in the turbinate at
1 d in the ZnO20 group, while the white arrowhead marks the bright signal in the turbinate at 1 d in
the ZnO500 group, suggesting different extents of edema.

Figure 3 shows the T1 relaxation time (T1 value) changes in the ectoturbinate 2 of
the instilled side of the OE in the CMC, S-ZnO20, Fe2O3, ZnO20, and ZnO500 group rats
over time.
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Figure 3. Histogram graph showing the T1 relaxation time (T1 value) of the region of interest (ROI)
in the olfactory epithelium (OE) before (0 d) and after intranasal instillation in each group of rats.
The white dashed line indicates the ROI in the ectoturbinate 2 of the OE in the CMC group. At 1 d,
in the ZnO20 group, the T1 value of the ROI significantly increases compared with its baseline at
0 d (#, p = 0.003), which is significantly higher than that of the CMC, S-ZnO20, and Fe2O3 groups,
respectively (**, p < 0.005, ***, p < 0.001). At 1 d, the T1 value in the ROI of the ZnO500 group is
significantly higher than that of the Fe2O3 and S-ZnO groups, respectively (*, p < 0.05; **, p < 0.01).
At 4 d, the T1 value of the ZnO20 group is significantly higher than that of the S-ZnO20 group
(*, p < 0.05).

Two-way ANOVA revealed that the main effects of time, group, and time × group
interaction were statistically significant for T1 value. At 1 d, the T1 value of the ZnO20
group significantly increased compared to its baseline (0 day) (1830.3 ± 118.5 ms vs.
1453.8 ± 148.6 ms, p = 0.003). It also significantly increased compared to the CMC group
(vs. 1521.67 ± 78.2 ms, p < 0.005), S-ZnO20 group (vs. 1368.6 ± 121.3 ms, p < 0.001), and
Fe2O3 group (vs. 1415.7 ± 132.4 ms, p < 0.001) at 1 d, respectively. There was a trend
of a rise in the OE’s T1 value in the ZnO20 group relative to that in the ZnO500 group.
After that, the T1 value of the ZnO20 group gradually decreased to 1664.3 ± 213.5 ms at
4 d and 1543.7 ± 54.7 ms at 7 d, respectively. At 4 d, the T1 value of the ZnO20 group
was higher than that of the S-ZnO20 group (1664.3 ± 213.5 ms vs. 1314.8 ± 78.0 ms,
p < 0.05). In the ZnO500 group at 1 d, a significant T1 value increase was seen compared
to the Fe2O3 group (1661.2 ± 145.8 ms vs. 1415.7 ± 132.4 ms, p < 0.05) and S-ZnO20 (vs.
1368.6 ± 121.3 ms, p < 0.01), respectively. An upward trend was shown compared to its
baseline (0 day) (vs. 1450.7 ± 88.2 ms). Then, the T1 value of the ZnO500 group returned
to the normal level.

Figure 4 shows the T2-weighted images of the OB in one representative rat from the
CMC, S-ZnO20, Fe2O3, ZnO20, and ZnO500 groups at each time point before and after
intranasal instillation. At 4 d, bright signal intensity was shown in the ZnO20 group along
part of the lateral and dorsal borders of the treated OB, which became more pronounced
at 21 d. Transient bright signal intensity on the lateral border in the ZnO500 group was
shown at 4 d. However, it returned to a normal level at 21 d. At 21 d, the treated OB size in
the ZnO20 group showed a significant decrease compared with left untreated OB, while no
apparent shrinkage was observed in the ZnO500 group. The treated OB in CMC, S-ZnO20,
and Fe2O3 groups had not shown any changes in T2 signal intensity until 7 d.

Figure 5 shows the inversion recovery T1-weighted images of the rat OB at 1, 4, 7,
and 21 days after intranasal instillation of ZnO20. At 7 d, there was an apparent region
of low signal intensity along the lateral border of the instilled side of the OB, indicating
tissue edema and inflammation. At 21 d, the instilled side of the OB significantly shrunk
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compared with the control side, probably due to the thinning of the olfactory nerve layer
(ONL) to some extent.

 

Figure 4. The T2-weighted image of the olfactory bulb (OB) before and after exposure to CMC,
S-ZnO20, Fe2O3, ZnO20, and ZnO500. At 4 d and 21 d, the white arrow indicates the region of
high signal intensity along the lateral and dorsal border of the right treated OB in the ZnO20 group,
suggesting edema.

 

Figure 5. The inversion recovery T1-weighted images of the rat olfactory bulb (OB). In panel (A), the
black dashed line outlines the distinct layer structure of the control side of the OB in the CMC group,
from the outer layer to the inner layer, including the ONL (olfactory nerve layer), GL (glomerular
layer), EPL (external plexiform layer), GCL (granule cell layer), and SEZ (subependymal zone). In
panel (B), the inversion recovery T1-weighted images of the OB in the ZnO20 group at 1 d, 4 d, 7 d,
and 21 d are shown. The arrow indicates the region of low signal intensity in the inversion recovery
T1-weighted image on the instilled side, and the arrowhead reveals the thinning of the ONL.
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3.3. Structural Changes of the OE and OB

In Figure 6, cellular damage and inflammation in OE, as well as olfactory nerve fiber
losses in OB, are induced by 20-nm ZnO NPs. The normal structure of the OE in the CMC-
treated rat is presented in Figure 6A, which is composed of epithelial cells (E), lamina propria
(LP), and turbinate (TB). The olfactory axons penetrate and terminate in the olfactory glomeruli
after traveling across the surface of the OB, which constitute the ONL (Figure 6F). The ZnO20
group showed an acute inflammatory cell infiltration in the OE at 1 d, with disorganized
epithelial cells, accompanied by the disappearance or reduction of olfactory axons. At 22 d, it
was likely an epithelial cell reproduction originating from the LP, indicating a recovery state
of the injured OE. A vacuole was apparent in the ONL on the lateral OB as early as 1 day
after the treatment. By 22 days after the treatment, the olfactory axons no longer formed an
intact layer, and the thickness of the ONL was thinner than before. The blood vessels in the
OE and OB of the ZnO20-treated rats were significantly dilated, suggesting increased vascular
permeability due to inflammatory reactions. At 22 d, the hematoxylin–eosin staining results
of the OE and OB in both the Fe2O3 and ZnO500 groups illustrated well-organized columnar
epithelial cells and the compact structure of the ONL.

 

Figure 6. The hematoxylin–eosin staining images of rat olfactory epithelium (OE) and olfactory bulb
(OB) after exposure to CMC, Fe2O3, ZnO20, and ZnO500. (A–E) represent the stainings of the OE at 1 d
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after exposure to CMC, at 22 d after exposure to Fe2O3, at 1 d and 22 d after exposure to ZnO20, and
at 22 d after exposure to ZnO500, respectively. (F–J) represent the correspondent stainings of OB. The
white arrowheads mark infiltrated phagocyte cells, and the black arrow points out the cellular debris
in (C). TB: turbinate; LP: lamina propria; E: epithelial cells; a: bundles of olfactory axons; bv: blood
vessel; ONL: olfactory nerve layer; GL: glomerular layer; EPL: external plexiform layer (bar: 50 μm).

4. Discussion

The main findings of this study are that the qualitative and quantitative analysis
on the OE and OB in rats using MRI and combined with histopathological examination
confirm that intranasally instilled 20-nm ZnO NPs acutely results in cellular damage and
inflammation in the OE, accompanied with edema and atrophy in the OB.

Our experimental results are consistent with the viewpoint of particle size as a major
factor influencing the toxic effects of nanomaterials. The size of the NPs makes their
movement in the body across cell membranes and normal diffusion barriers possible.
We found that 20-nm ZnO NPs caused the most severe damage to the rat OE and OB.
Quantitative T1 value measurement illustrated that at 1 d, the T1 value of the OE in the
ZnO20 group increased compared to those in all of the other groups at the same time
point, which was consistent with the T2-weighted imaging results, suggesting most severe
edema [26] in the OE of the ZnO20 group. An obvious low signal intensity was observed
in the inversion recovery T1-weighted image on the lateral side of the OB of the ZnO20
group at 7 d, which may mark tissue edema, followed by atrophy at 21 d. The MRI findings
were identified via the histological results. Typical pathological features of the OE in the
ZnO20 group were structural disorganization of the epithelial cell layer, disappearance
or shrinkage of the olfactory axons, and infiltration of inflammatory cells; the OB was
characterized by the thinning of the ONL. Changes in vascular permeability induced by
inflammatory responses were present in both the OE and OB. For the 500-nm ZnO NPs,
the instilled side of the OE and OB did not appear to be very obviously damaged, either
from the MRI findings (only a transient olfactory epithelial edema highlight signal was
visible on the T2 weighted image) or from the hematoxylin–eosin pathology findings. These
results suggest that 20-nm ZnO NPs exert more toxicity responses to the OE and OB than
those induced by 500-nm ZnO NPs. The olfactory nerve axon diameter is <200 nm [27],
which may be the “threshold” limiting the uptake of particulate matter into the olfactory
nerve terminals. Elder et al. [10] found that inhaled 30-nm MnO NPs could enter the
OB via the olfactory nerve. Then, there were increases in Mn concentrations in the OB,
striatum, frontal cortex, and cerebellum. Tumor necrosis factor-α protein, macrophage
inflammatory protein-2, and glial fibrillary acidic protein were also increased in the OB.
Bermudez et al. [28,29] found that 20-nm TiO2 NPs induced inflammatory responses and
cytotoxicity in rats at a rate 5–10 times higher than 300-nm TiO2 NPs. Our results also found
that the smaller the particle size, the more likely they were to cause injury to the OE and
OB. Wang et al. [11] reported the TEM results of neurodendron degeneration, membranous
structure disruption, and the lysosome increase in the OB after long-term and low-dose
intranasal exposure to nano-sized Fe2O3 (21 nm). However, in our study, the MRI results
at each time point did not show any signal abnormality in the OE and OB after Fe2O3
NPs exposure, and the hematoxylin–eosin pathology results did not show any significant
damage (except for vasodilatation). Therefore, we conclude that Fe2O3 NPs did not cause
obvious damage to the olfactory system of the rats in the present experiment. Fe2O3 NP
was designed as a negative control in our study because it is classified as insoluble metal
oxide. The element-dependent nanotoxicity of metal oxide NPs implies that the Zn element
might be the toxicant form. Zn2+ could inhibit cellular energy production by blocking
mitochondrial respiration and could even induce neuronal death. Given that ZnO NP is a
kind of highly soluble metal oxide, we infer that the releases of zinc ions will rise as the
particle size decreases. We suggest that the dissolution should be regarded as a crucial step
in producing the toxicity of ZnO NPs.
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There are some arguments about the induction of the adverse effects of ZnO NPs.
Due to the high solubility of ZnO NPs, some in vitro studies have suggested that ZnO-
NP cytotoxicity stems mainly from the release of Zn2+ ions [24,30,31]. However, several
studies suggest that particle dependence is another important toxicity mechanism for ZnO
NPs [32–35]. A review discussed that ZnO NP-induced genotoxicity could originate from
the release of Zn2+ ions and particle form [36]. Given that the smaller the particles of
substances with the same chemical properties are, the greater solubility they have, the
[Zn2+] in both the supernatants of the 20-nm and 500-nm ZnO NP-CMC suspensions was
measured in our study. Exceeding our expectations, the [Zn2+] is equal in both suspensions.
Furthermore, the [Zn2+] in the supernatant of the 20-nm ZnO NP-CMC suspension did not
induce significant defects to the OE and OB. We show that the dissolved fraction of the
ZnO NPs in suspension does not account for the toxicity of the ZnO NP-CMC suspensions
to the rat olfactory system, which is consistent with the results of our previous research [25]
and the toxicity of the ZnO NP suspensions to Daphnia magna [33].

ZnO NPs are among the more soluble metal oxide nanomaterials. Therefore, it is more
likely to be transformed into soluble zinc ions after in vivo treatment. Except for the particle
size factor, dissolved Zn2+, as the other negligible aspect, may play a major role in the
ZnO NPs’ toxicity to nasal mucosal cells [22]. Previous studies have found that intranasal
instilled ZnSO4 can destroy OE, leading to peripheral afferent nerve deafferentation [37].
Persson et al. reported that Zn2+ (as ZnCl2) could be translocated along the olfactory nerves
of the rat into the olfactory bulb and even the anterior portion of the olfactory cortex, and
that zinc ions have been found to accumulate in the olfactory glomerulus axon terminals
of primary olfactory neurons [38]. We speculate that the slightly acidic environment
(pH 5.5–6.5) of the nasal mucosa [39] and the low pH within cytoplasmic vesicles (e.g.,
lysosomes, pH 5.2) facilitate the dissolution of ZnO NPs [40]. In line with this opinion,
surface coatings on the ZnO nanoparticles mitigated cellular responses such as cell stress,
inflammatory, and apoptosis [23]. Interestingly, accumulated Zn in the form of ZnO in rat
liver has recently been revealed, demonstrating some overlaps and considerable specificity
in metabolism profiles related to the antioxidant systems and energy metabolism pathways
versus ZnSO4 exposure [35]. ZnO in particulate form in the OB synaptosomes and brain
has been found following nasal exposure of rats to airborne ZnO NPs (12–14 nm particle
size), demonstrating an OB–brain translocation pathway for ZnO NPs [41]. However, the
brain-region-specific distribution of exogenous ZnO NPs was not further clarified in that
study. In a sense, our study located the ZnO NPs-induced adverse effect in OB.

In clinics, olfactory impairment and deficits have been reported in neurodegenerative
disorders such as Parkinson’s disease (PD) and Alzheimer’s disease (AD) [42,43]. Damage
to the olfactory pathway may be an early sign of AD and PD [44,45]. Epidemiologic
investigations have shown a link between excessive zinc exposure and demyelinating
diseases [46]. Zinc dysregulation will lead to an increase in extracellular Zn2+ concentration,
which may precipitate β amylase and play a role in Alzheimer’s disease [47]. Van Denderen
et al. [48] suggested that a decrease in the metabolic activity in the olfactory brain would
result in a drop of the nerve fiber density in the anterior cerebral artery after ZnSO4-induced
loss of olfaction. A decrease in nerve fiber density in the precommunicating part of the
anterior cerebral artery was also found in patients with Alzheimer’s disease [49]. Moreover,
ZnO NPs have been reported to be involved in the pathogenesis of neuronal diseases [50]
and cause neural stem cell apoptosis [51]. For occupational workers chronically exposed to
zinc-containing powders, fumes from zinc-plating factories, and welding environments,
ZnO NPs might deposit in the nasal mucosa and subsequently undergo cellular uptake
of primary olfactory sensory neurons, enter the olfactory bulb via axonal transport, and
arrive at the olfactory cortex or even deeper brain regions via the axonal transmission
of secondary olfactory neurons, resulting in excessive Zn element overload in the brain.
Suppose that inhalation of ZnO NPs adversely affects the olfactory system and induces or
aggravates the development of neurodegenerative disorders; in this case, the health of the
occupationally exposed population should be given more attention.
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As a well-established technique in medical and biological applications, the value of
MRI has been greatly underestimated for nanotoxicology studies. The results of this study
indicate that MRI could be used as a bio-screening tool to assess the reverse consequences
of nasal exposure to ZnO NPs. It is important to ensure the safe application of nanomateri-
als [52] by elucidating the biological effects of nanomaterials and then exploring ways to
eliminate and avoid their nanotoxicity.

5. Conclusions

The global rise in nanomaterials production has prompted people to pay attention
to the safe application of NPs. We found acute toxicity effects on the rat olfactory system
using MRI technology via nasally instilled 20-nm ZnO NPs. Our study revealed that 20-nm
ZnO NPs caused obvious structural disruption and inflammation to the OE and OB at the
acute stage. The results of our study support the viewpoint of the size-dependent toxic
effect of NPs. The T1 value of the OE in the ZnO20 group increased at 1 d, consistent
with the T2-weighted imaging results, suggesting severe edema. OB edema and atrophy
were illustrated in the inversion recovery T1-weighted images following cellular damage
and inflammation in the OE. The MRI findings were identified via the histological results.
Structural disorganization of the epithelial cell layer, shrinkage of the olfactory axons, and
infiltration of inflammatory cells are typical pathological features in the OE; the OB was
characterized by the thinning of the ONL. Changes in vascular permeability were present
in both the OE and OB. To the best of our knowledge, OB damage caused by ZnO NPs
has never been reported before. The results suggest that the real-time and non-invasive
advantages of MRI allow it to directly and dynamically observe and assess the potential
toxicity of long-term exposure to ZnO NPs in the olfactory system. More studies are
required to pinpoint the mechanism behind the ZnO NPs’ toxicity.

In the future, our research will focus on the biosafety assessment of manufactured
nanoparticles, including, but not limited to, the nanoparticle toxicity of long-term nasal
exposure and the transport mechanism of nanoparticles in neurodegenerative disease.
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Abstract: Air pollution has become a serious public health problem and there is evidence that air
pollution affects the incidence of allergic rhinitis. To further investigate the effect of ambient air
pollutants on the severity of allergic rhinitis symptoms, a prospective follow-up study in patients with
allergic rhinitis was conducted. A total of 167 allergic rhinitis patients with a mean age of 35.4 years,
who were visiting the hospital, were enrolled. The daily symptom severity of allergic rhinitis and the
concentrations of six air pollutants, including PM2.5, PM10, SO2, CO, O3 and NO2, were collected
through follow-up investigations. The impact of ambient air pollutants on symptom severity was
assessed via multi-pollutant models. Among several typical ambient air pollutants, we observed
correlations of allergic rhinitis symptoms with PM2.5, PM10, CO, SO2 and NO2, whereas O3 showed
no such correlation. Specifically, PM2.5 and PM10 were significantly associated with sneezing and
nasal blockage. NO2 was significantly correlated with symptoms of rhinorrhea, itchy nose and itchy
eyes. CO was significantly linked to sneezing and nasal blockage symptoms. These air pollutants
not only had a direct impact on allergic rhinitis symptoms but also exhibited a lagging effect. This
study indicates that short-term exposure to air pollutants is associated with exacerbation of nasal
symptoms in patients with allergic rhinitis, leading to a decline in their quality of life.

Keywords: allergic rhinitis; ambient air pollution; prospective study; nasal symptoms

1. Introduction

Since the onset of global industrialization, the pollution problem has become in-
creasingly serious. To date, air pollution remains a major public health problem. In fact,
according to a report released by the World Health Organization (WHO) in 2022, 99% of
the global population lived in places that failed to meet the air quality guidelines of the
WHO [1]. It was further estimated that outdoor ambient air pollution contributed to 4.2 million
premature deaths globally in 2019 [2]. Research on air pollution and respiratory health
has been extensive, driven by the direct impact of air pollutants on the human respiratory
system. Numerous studies have demonstrated associations between air pollution and
health issues such as acute lower respiratory infections, chronic obstructive pulmonary
disease (COPD), asthma, lung cancer and allergic rhinitis [3]. These studies also highlight
that there is no identified threshold below which exposure to air pollution can be deemed
safe [4,5].

Allergic rhinitis, one of the most prevalent chronic diseases globally, is typically char-
acterized by sneezing, nasal itching, nasal blockage and runny nose. It affects an estimated
10–40% of the global population, annually contributing to approximately USD 17.5 billion
in health-related economic losses [6]. For those afflicted, allergic rhinitis can cause sleep
disturbances, fatigue, mood depression, reduced sense of smell and cognitive impairment,
thereby profoundly impacting their quality of life and productivity in both learning and
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work settings [7,8]. Furthermore, allergic rhinitis stands as a notable risk factor for asthma,
otitis media and allergic conjunctivitis. Prolonged exposure to allergic rhinitis can exac-
erbate or precipitate lower respiratory tract disorders, particularly asthma [9]. Allergic
rhinitis is a multifactorial disease determined by a combination of genetics and the environ-
ment. In recent decades, the prevalence of allergic rhinitis among populations has risen
steadily, with atmospheric pollution increasingly recognized as a pivotal environmental
risk factor [10]. Epidemiological investigations have revealed that exposure to airborne fine
particulate matter (PM2.5) was associated with heightened rates of clinic visits for allergic
rhinitis [11]. Animal studies demonstrated that PM2.5 exposure exacerbated nasal allergy
symptoms in an ovalbumin (OVA) sensitized murine model of allergic rhinitis [12].

The role of PM2.5 in allergic rhinitis has been extensively studied, revealing its ca-
pacity to induce cellular oxidative stress and inflammatory responses, particularly in
inflamed nasal mucosal epithelial cells [11,13]. PM2.5-induced oxidative stress is postu-
lated as a mechanism exacerbating allergic rhinitis symptoms [14]. An allergic rhinitis
mouse model study demonstrated that N-acetylcysteine, as an antioxidant agent, alleviated
PM2.5-induced symptoms, underscoring involvement of PM2.5 in oxidative stress and
inflammation [14]. With advancing research, the epigenetic impacts of PM2.5 have been
gaining attention in the last decade. Exposure to PM2.5 in the nasal mucosa of allergic
rhinitis rats induced oxidative stress, which triggered autophagy through the damage of
DNA, RNA and proteins. This process potentially exacerbated the condition by intensifying
autophagy activity. Furthermore, they discovered that miR-338-3p effectively suppressed
the autophagy induced by PM2.5 [15]. In an allergic rhinitis mouse model, it was shown
that PM2.5 exposure led to the elevated DNA methylation of the IFN-γ gene promoter in
CD4+ T cells, mediated by the ERK-DNMT pathway. This resulted in a reduction in Th1
cell numbers, a perpetuation of the Th1/Th2 imbalance and the exacerbation of allergic
rhinitis [16].

Unlike the case with PM2.5, epidemiological inquiries into the relationship between
sulfur dioxide (SO2) and allergic rhinitis have produced a heterogenous set of results:
whereas certain studies have discerned a connection between SO2 exposure and the onset
of allergic rhinitis [17], others fail to corroborate this association [18], thereby highlighting
an inconclusive landscape. Besides variations in research methodologies, factors such as
geographical differences, distinct time frames and the diversity of study populations have
also contributed to the complexity of understanding how SO2 impacts allergic rhinitis. In
an experiment utilizing an HDM-induced allergic rhinitis mouse model, brief exposure to
SO2 not only augmented nasal symptom severity but also elevated serum Immunoglobulin
E (IgE) levels and increased the infiltration of eosinophils in allergic rhinitis mice, alongside
up-regulated expression of Th1/Th2/Th17 cytokines in the nasal mucosa. Strikingly, they
found that prolonged SO2 exposure had the opposing effect of reducing serum IgE levels
in these mice [19]. While numerous studies attest to the influence of ozone (O3), nitrogen
dioxide (NO2), carbon monoxide (CO) and SO2 on the progression of allergic rhinitis, there
is still a relative dearth of dedicated research in this area.

In the realm of epidemiological explorations of allergic rhinitis in relation to air pollu-
tion, numerous researchers have employed retrospective studies [20–22] as well as cohort
study designs [23,24] to explore the relationships between ambient pollutant concentrations
and outpatient-visit frequencies. Existing epidemiological and experimental research has
illuminated the link between air pollution and allergic rhinitis, but many questions remain
undetermined. One such question pertains to whether a discernible time-delay exists
between pollutant exposure and allergic rhinitis symptoms. More attention has been paid
to the effects of air pollutants on the incidence and prevalence of allergic rhinitis [25,26],
whereas less environmental epidemiological research has been conducted on the effects of
ambient air pollutants on the severity of allergic rhinitis symptoms—essentially, on the pro-
gression and exacerbation of the condition. These knowledge gaps limit our comprehensive
understanding of disease mechanisms and hinder the development of precise prevention
and treatment strategies.
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In view of the above background, this study aimed to investigate in depth the dynamic
relationship between ambient air pollution levels and allergic rhinitis symptoms through
a prospective study, with a special focus on the effect on symptoms of fluctuations in
pollutants. By integrating data from multiple sources, including air quality monitoring
records and the medical records of allergic rhinitis patients, this study could provide new
evidence to elucidate the impact of air pollution on allergic rhinitis.

2. Materials and Methods

2.1. Study Design and Participants

This panel study, conducted from May 2023 to January 2024, recruited patients with
allergic rhinitis who visited the same hospital and had lived continuously in Hangzhou
city, China, for at least one year. Ultimately, 167 participants agreed to and completed
the research study, all of whom lived within 5 km of the hospital. The age range of the
participants was around 35 years. Baseline investigations were conducted to gather the
demographic details, the medical histories, the family histories and the lifestyle habits
of the subjects, which were considered as control variables in the analysis. All included
subjects were diagnosed with allergic rhinitis by professional physicians according to the
guidelines for the Diagnosis and Treatment of Allergic Rhinitis in China [9]; these guide-
lines encompass recurrent symptoms such as sneezing, rhinorrhea, nasal blockage and
nasal itching, alongside serological confirmation of specific IgE antibodies to allergens.
Individuals with severe cardiopulmonary conditions, immune system disorders, those
undergoing immunosuppressive therapies, pregnant or breastfeeding individuals and
those with non-allergic rhinitis, nasal polyps, or chronic sinusitis were excluded from this
study. During the entire study period, the allergic rhinitis symptoms were tracked daily
through questionnaires (Table S1). All patients completed the survey and had complete
symptom data. Ethical clearance for this research was obtained from the Ethics Commit-
tee of Hangzhou Medical College and written informed consent was secured from all
participants prior to their enrollment in this study.

2.2. Measurement of Ambient Air Pollution Data

Atmospheric quality monitoring data were collected from the China National Environ-
mental Monitoring Center (CNEMC, http://www.cnemc.cn/ (accessed on 24 April 2024)),
as announced by the local environmental protection monitoring center. The data were
obtained from the average daily air monitoring report in Hangzhou City, where the daily
average concentration of ambient air pollutants is calculated as the arithmetic mean of the
hourly concentrations over a 24 h period (O3 concentration value is the arithmetic mean
of the ozone concentration over the largest consecutive 8 h period of the day). This study
focused on the main air pollutants monitored in daily life, including PM10, PM2.5, O3, SO2,
NO2 and CO. This study employed the daily average concentrations of these pollutants as
reported by the monitoring center.

2.3. Health Effect Measurements

Throughout the follow-up period of this study, information on the allergic rhinitis
symptoms of the study subjects was collected. In accordance with the Chinese Guideline for
Allergic Rhinitis [9], symptoms included sneezing (the number of episodes of paroxysmal
sneezing in a day), rhinorrhea (the number of episodes of nose blowing in a day), nasal
blockage and nasal itching, as well as eye itching. The symptom scoring system ranged
from a minimum of 0 to a maximum of 3. Details of the specific allergic rhinitis symptom
scoring system are presented in Table S1.

2.4. Statistical Analysis

All data were expressed as mean ± standard deviation (SD) for the continuous vari-
ables or as percentages for the categorical variables. Spearman correlation analysis was
used to investigate the correlation between the pollutants. Based on the previous litera-
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ture [27], generalized linear mixed models (GLMMs) were employed to analyze the nasal
symptom changes according to air pollutants among patients, incorporating each unique
identifier of the study subject (as a random intercept model) to account for the repeated
measurements of symptoms. Guided by the Akaike Information Criterion (AIC), this study
exhaustively examined various pollutants and ultimately constructed models encompass-
ing the six atmospheric pollutants, with stratification based on the included pollutants.
Given the interdependence among levels of air pollutants, we compared each optimal
multi-pollutant model based on the number of pollutants included. The formula for the
GLMM is as follows:

Yit = b0 + ui + A1X1 + . . . + AnXn + β Pollutants + εit

where Yit is the allergic rhinitis symptom score in the i-th subject at time t, b0 means the total
intercept, ui means the random intercept for the subject i, X1–Xn mean covariates, A1–An
are regression coefficients for X1–Xn, β means the regression coefficient for air pollutant
and εit is the error for the i-th subject at time t.

The corresponding symptoms were represented by β-values, which can be positive
or negative: positive values indicate an increase in the health effect with an increase in
pollutant concentration, while negative values indicate a decrease in the health effect. When
the 95% confidence intervals of the β-values include zero, there is no significant correlation
between the level of exposure to the pollutant and the health outcome. All statistical
analyses were conducted using R software version 4.4.1 (R Foundation for Statistical
Computing) and a two-tailed p-value < 0.05 was deemed statistically significant.

3. Results

3.1. Participants

The baseline characteristics of the participants and their symptom scores at enroll-
ment are presented in Table 1. A total of 167 participants were enrolled in this study,
with a mean age of 35.4 years. In total, 60 of the participants (35.9%) were male and
107 (64.1%) were female. The mean body mass index (BMI) was 23.9 ± 3.9 kg/m2 for
males and 21.1 ± 2.5 kg/m2 for females. The mean serum IgE level among participants
was 376.5 IU/mL. Among the participants, 13 (7.8%) were smokers, while 154 (92.2%)
were non-smokers. Additionally, 24 (14.4%) participants were alcohol consumers and 143
(85.6%) were non-drinkers. At the time of enrollment, the study participants exhibited
symptom scores for allergic rhinitis as follows: sneezing scored 1.4 ± 0.8, nasal blockage
scored 2.3 ± 0.8, rhinorrhea scored 1.7 ± 0.7, an itchy nose scored 1.5 ± 0.8 and itchy eyes
scored 1.4 ± 0.9. These scores indicate that allergic rhinitis was indeed affecting the daily
lives of the study subjects.

Table 1. Baseline characteristics of the study population (N = 167).

Variable Mean ± SD or N (%)

Age (years) 35.4 ± 12.1

Gender
Male 60 (35.9%)

Female 107 (64.1%)

High (cm)
Male 175 ± 5.2

Female 160.9 ± 5.6

Weight (kg)
Male 73.4 ± 12.7

Female 55 ± 7.3

40



Toxics 2024, 12, 663

Table 1. Cont.

Variable Mean ± SD or N (%)

BMI (kg/m2)
Male 23.9 ± 3.9

Female 21.1 ± 2.5

IgE (IU/mL) 376.5 ± 398

Smoking status
Smoker 13 (7.8%)

Never smoker 154 (92.2%)

Drinking status
Drinker 24 (14.4%)

Never drinker 143 (85.6%)

Sneezing a 1.4 ± 0.8
Nasal blockage a 2.3 ± 0.8

Rhinorrhea a 1.7 ± 0.7
Itchy nose a 1.5 + 0.8
Itchy eyes a 1.4 ± 0.9

a The symptom scores at enrollment.

3.2. Ambient Air Pollution

Table 2 illustrates the daily average concentrations of ambient air pollutants on a
monthly basis during the follow-up study period. Notably, PM2.5, PM10, SO2 and NO2
exhibited evident variations over the progression of months. Specifically, concentrations in
the atmosphere demonstrated a gradual decline from May through July, followed by an
upward trend from July until January of the following year. Figure 1 depicts the correlations
among these air pollutants. These included significant correlations between PM2.5 and
PM10 (r = 0.96), PM2.5 and SO2 (r = 0.69), PM2.5 and NO2 (r = 0.82), PM2.5 and CO (r = 0.66),
PM10 and SO2 (r = 0.74), PM10 and NO2 (r = 0.82), PM10 and CO (r = 0.55), SO2 and NO2
(r = 0.73), SO2 and CO (r = 0.32), NO2 and CO (r = 0.55), NO2 and O3 (r = −0.20) and CO
and O3 (r = −0.17).

Table 2. The means of the ambient air pollutants by month during the follow-up study period.

May June July August September October November December January

PM2.5
(μg/m3) a 27.6 ± 9.8 23.2 ± 9.4 14.4 ± 5.4 19.1 ± 7.7 22.1 ± 9.3 29.7 ± 15.3 34.5 ± 13.6 53.4 ± 37.1 66.8 ± 32

PM10
(μg/m3) a 49.6 ± 18.1 39.2 ± 15.4 25.8 ± 7.9 31.8 ± 10.9 34 ± 12.9 47.3 ± 19.7 63.1 ± 22.1 81.1 ± 50.8 93 ± 42.4

SO2
(μg/m3) a 6.2 ± 0.8 5.9 ± 0.8 5.6 ± 0.5 5.7 ± 0.4 5.9 ± 0.6 7.1 ± 0.6 7.3 ± 1 7.5 ± 1.2 7.6 ± 1.3

NO2
(μg/m3) a 26 ± 6.3 22.2 ± 4.4 16 ± 3.7 16.6 ± 3.3 19.5 ± 3.2 32.4 ± 11.2 41.3 ± 12.2 49.2 ± 21.2 47.3 ± 14.7

CO
(mg/m3) a 0.6 ± 0.1 0.6 ± 0.1 0.6 ± 0.1 0.6 ± 0.1 0.7 ± 0.1 0.6 ± 0.1 0.7 ± 0.1 0.8 ± 0.2 0.9 ± 0.2

O3
(μg/m3) b 128.7 ± 37.5 131.9 ± 57.6 96.1 ± 33.5 130.5 ± 45.7 123.9 ± 43.8 126.5 ± 29.7 77.6 ± 27.9 51 ± 22.8 57.5 ± 21.4

a The arithmetic means of the daily average concentrations. b The arithmetic means of the daily maximum
continuous 8 h concentrations.
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Figure 1. The correlation between the air pollutants on lag 0. The numbers of the figure are spearman
correlation coefficients. PM2.5, particulate matter with diameter < 2.5 μm; PM10, particulate matter
with diameter < 10 μm; SO2, sulfur dioxide; NO2, nitrogen dioxide; O3, ozone; CO, carbon monoxide.

3.3. Lagged Effects of Ambient Air Pollutants on Allergic Rhinitis Symptoms

The lagged effects of the ambient air pollutants on allergic rhinitis symptoms are
shown in Figures 2 and S1 and in Table S2. The symptom scores indicate the severity
of the symptoms, with higher scores indicating greater severity (Table S1). The β-values
represent the change in symptom scores for each unit increase in pollutant concentration.
PM2.5 emerged as a prominent influencer, showing statistically significant links with both
sneezing (β ranging from 0.072 to 0.141, with p-values between <0.001 and 0.041) and nasal
blockage (β ranging from 0.068 to 0.123, p-values from 0.006 to 0.034) across lags 0 to 4,
peaking in impact at lag 3 for sneezing (β = 0.141, p = 0.019) and nasal blockage (β = 0.123,
p = 0.006). PM10 also demonstrated a significant association with sneezing across lags 0
to 3 (β ranging from 0.052 to 0.082, p-values from 0.009 to 0.045) and with nasal blockage
from lags 0 to 2 (β ranging from 0.071 to 0.081, p-values from 0.002 to 0.024). NO2 exhibited
significant correlations with rhinorrhea over lags 0 to 1 (β ranging from 0.006 to 0.008,
p-values from 0.030 to 0.048). CO showed significant correlations with sneezing from lags
0 to 2 (β ranging from 0.122 to 0.283, p-values from 0.001 to 0.021), with the highest impact
observed at lag 2 (β = 0.283, p = 0.001) and it was correlated with nasal blockage from lag 1
to lag 3 (β ranging from 0.101 to 0.236, p-values from 0.008 to 0.032), reaching its maximum
effect on nasal blockage at lag 2 (β = 0.236, p = 0.008). SO2 was significantly correlated with
sneezing specifically at lag 4 (β = 0.093, p = 0.025).
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Figure 2. Lagged effects of air pollutants on allergic rhinitis symptom scores in patients with allergic
rhinitis. Lagged effects of PM2.5 (A), PM10 (B), SO2 (C), NO2 (D), CO (E), and O3 (F) on allergic rhinitis
symptoms are presented. PM2.5, particulate matter with diameter < 2.5 μm; PM10, particulate matter
with diameter < 10 μm; SO2, sulfur dioxide; NO2, nitrogen dioxide; O3, ozone; CO, carbon monoxide.

4. Discussion

This study investigated the association between allergic rhinitis symptoms and the
levels of ambient air pollutants by tracking changes in the severity of rhinitis symptoms
among 167 patients based on the panel design, concurrently monitoring fluctuations in
pollutant concentrations during this timeframe. Our findings suggest that certain ambient
air pollutants are not only correlated with allergic rhinitis symptoms, but they also show
delayed or lagged effects.

In the WHO Global Air Quality Guidelines issued in December 2021 [1], the air
quality guideline levels of PM2.5, PM10, O3, NO2, SO2 and CO were 15 μg/m3, 45 μg/m3,
100 μg/m3, 25 μg/m3, 40 μg/m3 and 4 μg/m3, respectively. During the study period, the
concentrations of PM2.5, PM10 and NO2 were slightly below the guideline levels on some
days, generally remaining at the same level. The levels of SO2 and CO were lower than the
guideline levels throughout the study period. Therefore, our study has a certain degree of
generalizability. Vehicle exhaust emissions, kerosene combustion, industrial emissions and
biomass combustion are common sources of ambient air pollutants. Whereas NOx and CO
are the main precursors of surface O3 [28], NOx and SO2 are important precursors of PM2.5
and their oxidized product NO3 may be the main driver of PM2.5 [29,30]. The correlation
of PM with CO, SO2 and NO2 was also found in our study, which makes it difficult to
isolate the effect of a single pollutant on allergic rhinitis symptoms. This intricate interplay
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among pollutants explains why the results of related epidemiological studies frequently
show inconsistencies and have yet to be fully reconciled.

Considering the complex interactions and potential synergistic effects between pol-
lutants, we used multi-pollutant modeling and found that PM2.5, PM10, NO2 and CO
were each associated with allergic rhinitis symptoms. Specifically, our findings indicate
that PM2.5, PM10 and CO cumulatively affect sneezing and nasal blockage, while NO2
shows a cumulative effect on rhinorrhea, itchy nose and itchy eyes. Consistent with our
results, Tang et al. reported that short-term exposures to ambient air pollutants, including
PM2.5, PM10 and CO, were linked to a heightened frequency of outpatient visits for allergic
rhinitis [31]. Moreover, elevated outdoor concentrations of NO2 and PM10 were correlated
with a higher likelihood of airway allergies and allergic rhinitis in children [32]. Luo and
colleagues utilized Cox proportional hazard models to evaluate the relationship between
long-term air pollutant exposure and allergic rhinitis risk, concluding that prolonged expo-
sure to PM2.5, PM10 and NO2 elevated the likelihood of developing allergic rhinitis [33].
In alignment with our findings, a cohort investigation revealed a dose–response relation-
ship between chronic air pollution exposure and rhinitis severity in adults. Furthermore,
heightened levels of exposure to PM2.5, PM10 and NO2 were directly linked to intensified
rhinitis symptoms [34]. Regarding SO2 and O3, a population-based study found a positive
correlation between ambient SO2 levels and allergic rhinitis risk in primary school chil-
dren [17]. Meanwhile, a strong association between prolonged environmental O3 exposure
and an augmented allergic rhinitis symptom risk was reported in children [35]. Conversely,
a time-series study reported that exposure to PM10, NO2 and O3 significantly elevated the
hospitalization risk due to allergic rhinitis, whereas SO2 did not emerge as a significant risk
factor for allergic rhinitis-related hospital admissions [18]. Intriguingly, despite SO2 and
CO concentrations being well below air quality guideline levels during the study period,
we still found a weak correlation between these pollutants and allergic rhinitis symptoms.
The association between O3 and increased allergic rhinitis symptoms, however, was not
significant. Differences in the results of similar studies might be attributed to variations
in the study population, geographic location and timing. These factors can influence
the levels and proportions of ambient air pollutants, as well as the age demographics of
the study populations. Additionally, regional climate differences may also contribute to
these discrepancies.

Regarding the lagged effects of air pollutants on allergic rhinitis, discrepancies in re-
sults across different regions, time periods and research methodologies have been observed.
In this study, we found that PM2.5 was significantly associated with sneezing and nasal
blockage symptoms from lag 0 to lag 4. A previous study reported that PM2.5 concentra-
tions were associated with an increased risk of allergic rhinitis, occurring at lags 1 and 2,
partly aligning with our findings [36]. In a study conducted in Lanzhou, China, short-term
exposure to air pollutants was linked to a rise in allergic rhinitis visits, specifically with O3
influencing visits at a lag of 0–6 days and CO at 0–7 days [37]. Another study identified
significant associations between CO and O3 exposure and respiratory outpatient visits
across lags 0 to 4, but found no significant link between SO2 exposure and such visits. In
addition, NO2 was relevant to respiratory outpatient visits only at lag 1 [38]. In this study,
NO2 showed a significant correlation with rhinorrhea symptoms at lags 0 to 1, indicating
an escalating trend. It also correlated with itchy nose and eye symptoms at lag 1. CO was
significantly correlated with nasal symptoms from lag 0 to lag 2, while SO2 was found to
have a significant correlation with sneezing symptoms at lag 4. In addition to aligning with
previous research findings, the significance of our study lies in its extension beyond the
scope of earlier works, which primarily focused on the incidence of allergic rhinitis and
hospital visits. Our research narrows the gap by delving into a less-explored realm of nasal
allergy symptoms.

In this study, we innovatively employed a panel research methodology to investigate
the impact of ambient air pollutants on symptoms of allergic rhinitis, thereby enhancing
the credibility of our results and refining our understanding of how individual pollutants
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affect several typical symptoms of the disease. Nonetheless, it is important to acknowledge
its limitations. Our sample solely comprised patients from a single hospital, numbering
only 167 individuals, which may limit the generalizability. Additionally, unlike clinical
trials, ecological studies cannot directly measure individual exposure levels to ambient
air pollutants. For descriptive studies on air pollutants, we used data from atmospheric
monitoring stations and applied GLMMs to assess relationships between exposure levels
and symptoms. This approach might lead to less accurate study results due to the indirect
estimation of exposure. Allergens may have a correlation with pollutants that can also
have an effect on allergic rhinitis symptoms. There is no way for this study to assess daily,
individual-specific allergen exposure levels. Although allergens may act as a confounding
factor, potentially affecting the results, this is a common limitation of ecological research.
Similarly, the fact that our survey did not explore the effects of temperature and humidity on
the study subjects makes it impossible to determine the effects of temperature and humidity
on the results, which is also a limitation of this paper. We plan to recruit more patients to
further investigate the impact of air pollution on different types of allergic rhinitis.

5. Conclusions

This study employed a prospective follow-up design to investigate the association
between a mixture of various ambient air pollutants and the symptoms of allergic rhinitis
in patients. This study found that ambient air pollutants were correlated with the severity
of allergic rhinitis symptoms, with air pollutants exhibiting delayed effects in the multi-
pollutant model. This finding thereby added to the evidence regarding the associations
between short-term concurrent exposure to air pollutants and allergic rhinitis symptoms.
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Abstract: PM2.5 (fine particulate matter) is an air pollutant widely present in urban and
industrial areas, which has emerged as a significant threat to human health. Specifically,
long-term exposure to PM2.5 could lead to various lung diseases, including pulmonary
fibrosis and Chronic Obstructive Pulmonary Disease (COPD). The Glycoprotein A Repeti-
tions Predominant (GARP) protein, a key receptor and regulator for TGF-β1, has recently
emerged as a vital cytokine in PM2.5-induced pulmonary pathological changes. As a
membrane glycoprotein, GARP binds to TGF-β, keeping it in an active state. Herein,
PM2.5 treatment upregulated GARP and promoted Epithelial–Mesenchymal Transition
(EMT) via TGF-β/SMAD signaling pathway activation. Conversely, lentinan (a shiitake
mushroom-derived polysaccharide) effectively reversed the PM2.5-induced GARP up-
regulation, alleviating EMT. This study elucidates the role of GARP in PM2.5-induced
EMT through the TGF-β/SMAD pathway in pulmonary epithelial cells and discusses the
therapeutic potential of lentinan.

Keywords: COPD; PM2.5; lentinan; GARP; EMT

1. Introduction

Lung diseases account for a substantial proportion of morbidities and mortalities
worldwide, posing significant health risks [1]. Air pollution—especially by fine particulate
matter (PM2.5)—is among the many factors that contribute to the development of respira-
tory illnesses [2]. Owing to the fact that they are small enough to penetrate deep into the
lungs and enter the bloodstream, PM2.5 particles have been linked to various respiratory
conditions, ranging from chronic bronchitis to more severe complications such as emphy-
sema and lung fibrosis [3–5]. According to the research, long-term exposure to PM2.5 could
exacerbate inflammation in the airways [6], triggering symptoms such as coughing [7],
wheezing [8], and shortness of breath [9]. Moreover, prolonged PM2.5 exposure could
increase the risk of developing more severe lung conditions, with its impact also extending
to the cardiovascular system, further complicating overall health [10]. Therefore, given the
ubiquity of PM2.5 in urban and industrial areas, addressing air pollution could be crucial
to reducing the burden of lung diseases and improving public health.

Toxics 2025, 13, 166 https://doi.org/10.3390/toxics13030166
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The specific mechanism of PM2.5 exposure in lung diseases involves the exacerba-
tion of airway inflammation and remodeling, which activates Epithelial–Mesenchymal
Transition (EMT) processes in lung epithelial cells [11]. The cellular alterations that follow
promote airway obstruction and pulmonary fibrosis, which are hallmarks of Chronic Ob-
structive Pulmonary Disease (COPD) [12]. According to research, EMT contributes to the
loss of epithelial integrity, elevating the risk of respiratory infections and causing a further
decline in lung function [13]. Therefore, understanding the mechanisms through which
PM2.5 mediates EMT could provide crucial insights into the treatment of lung diseases.
Regarding tumorigenesis, PM2.5 could also induce chronic inflammation and Oxidative
Stress (OS), which are crucial factors that promote EMT in various cancer types [14]. Fur-
thermore, PM2.5 exposure could trigger signaling pathways such as TGF-β and NF-κB [15],
a transition that enhances cancer cell migratory and invasive capabilities, contributing to
metastasis and a poor prognosis [16,17].

Lentinan, a polysaccharide derived from the cell wall of shiitake mushrooms, could
strengthen the host immune system, helping in preventing various illnesses. Lentinan
has been shown to exert anti-inflammatory effects via immune response modulation [18].
Specifically, it could inhibit the secretion of pro-inflammatory cytokines such as TNF-
α, IL-6, and IL-1β, thus reducing inflammation. Lentinan achieves this effect through
the regulation of key signaling pathways, including the NF-κB and MAPK pathways,
which are crucially involved in inflammatory responses [19]. Research has reported
lentinan’s potential in alleviating chronic inflammatory illnesses, such as Rheumatoid
Arthritis (RA) and Inflammatory Bowel Disease (IBD), highlighting its potential utility
as an adjunctive therapy to conventional anti-inflammatory treatments [20]. The anti-
inflammatory properties of lentinan could also help reduce airway hyper-responsiveness
and tissue damage in asthma and COPD patients. Additionally, lentinan could play an anti-
tumor role by alleviating inflammatory response and reducing the production of EMT [21].
Nonetheless, research on the role of lentinan in alleviating air pollutant-induced EMT is
relatively scarce.

The Glycoprotein A Repetitions Predominant (GARP) protein is a transmembrane
protein that regulates TGF-β on the cell surface by binding to it, thus activating the TGF-
β signaling pathway [22]. In cancer, GARP enhances TGF-β activation, thus promoting
EMT, which, in turn, leads to increased tumor cell migration and invasion, ultimately
promoting tumor progression and metastasis [23]. Moreover, GARP upregulation has
been associated with immune evasion in various malignancies, further supporting tumor
growth [24,25]. In respiratory diseases, particularly COPD and asthma, GARP upreg-
ulation might contribute to airway remodeling and fibrosis via TGF-β-mediated EMT,
resulting in airway obstruction and reduced lung function [26]. Furthermore, GARP
could influence inflammatory responses within the airways, exacerbating symptoms of
pertinent conditions [27]. However, the role of GARP in PM2.5-induced lung diseases
remains unclear. Although the role of GARP in immune modulation and cancer has
been extensively studied, its involvement in particulate matter-induced EMT, partic-
ularly in respiratory diseases, remains largely unexplored. This study is the first to
identify GARP as a key regulator of PM2.5-induced EMT and to investigate the thera-
peutic potential of lentinan, in mitigating this process. The results offer new perspec-
tives on PM2.5’s pathological effects on lungs, suggesting GARP’s promise in treating
airway illnesses.

49



Toxics 2025, 13, 166

2. Materials and Methods

2.1. Cell Culture and PM2.5 Sampling and Preparation

Beas-2B human bronchial epithelial cells were obtained from Pricella Life Science
and Technology Co., Ltd. (Wuhan, China). The cell culture was maintained in Dulbecco’s
Modified Eagle Medium (DMEM) (Gibco, Gaithersburg, MD, USA). To create the com-
plete medium, we supplemented the DMEM with 10% Fetal Bovine Serum (FBS) (Gibco,
Gaithersburg, MD, USA) and a 1% antibiotic solution [containing 100 IU/mL penicillin
and 100 μg/mL streptomycin (Beyotime, Shanghai, China)]. The cells were grown in a
humidified incubator (Thermo Scientific, Waltham, MA, USA), maintaining a temperature
of 37 ◦C and a 5% CO2 atmosphere. Upon reaching 80–90% confluency, the Beas-2B cells
were trypsinized to detach them, then replated uniformly in well plates or culture dishes.
Subsequently, these cells were exposed to varying concentrations of PM2.5 culture solution
for a 24 h period before being harvested for further experimentation.

Herein, PM2.5 was sampled 1.5 m above the ground on the roof of Baotou Medical
College’s laboratory building using an air sampler KB-6210 with a flow rate of 100 L/min.
The sampling lasted 21 h (from 9:00 to 6:00 the next day), and the sampling temperature, air
pressure, and site conditions were recorded. The collected samples were folded in half twice
using tweezers, placed in tinfoil, and balanced in a dryer for 24 h. We previously conducted
a chemical analysis of the composition of PM2.5. Research showed that rare earth elements
exhibit a strong positive correlation with inorganic elements, indicating a consistent source
or shared anthropogenic influences, primarily from coal and oil combustion as well as
industrial pollution. The high enrichment factors of Se, Cd, Ag, Pb, and As in PM2.5
suggest that their origins are largely attributed to anthropogenic pollution, with minimal
influence from crustal sources [28]. After removing the filter membrane, the samples were
weighed with the same electronic balance as before sampling, and stored in a refrigerator
at 20 ◦C, awaiting further tests. Subsequently, the particles were dissolved in DMEM at a
concentration of 1000 μg/mL and stored at 4 ◦C in the laboratory, awaiting further study.
Finally, the cells were treated with different concentrations of PM2.5 (0, 6.25, 12.5, and
25 μg/mL) for 24 h.

2.2. Cell Proliferation Assay

Cell viability was evaluated utilizing the Cell Counting Kit-8 (CCK-8) assay (Biosharp,
Hefei, China). In summary, BEAS-2B cells were plated at a density of 5000 cells per
well in 96-well plates and exposed to different concentrations of PM2.5 for 24 h. For the
experimental group, the culture medium was continuously refreshed with a new solution
containing lentinan. After the incubation period, the old medium was discarded and
substituted with an equal volume of fresh medium enriched with 10% CCK-8 reagent. The
cells were then further incubated for 2 h at 37 ◦C. Ultimately, the absorbance was recorded
at 450 nm using a microplate reader (Multiskan MK3, Thermo Fisher Scientific, Waltham,
MA, USA).

2.3. Wound Healing Assay (WHA)

First, Beas-2B cells from each group were inoculated into 6-well plates. At 70–80%
growth, a straight line was evenly drawn in the pores with a 200 μL gun tip. After cleaning
the cell fragments with PBS, a serum-free medium was added. The images of cells were
observed at 0 and 24 h and photographed using a microscope. The scratch area was
quantified using ImageJ version 1.50 software.
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2.4. Transwell Assay (TWA)

Cellular invasion was evaluated using a Transwell chamber setup. Initially, Matrigel
was mixed with DMEM at a dilution of 1:8. This blend was then placed into cold Transwell
chambers (8 μm pore size, Corning, New York, NY, USA) and left to incubate at 37 ◦C
for 2 h to facilitate gel solidification. Subsequently, a cell suspension at a concentration of
1 × 105/mL was prepared, and 100 μL of this suspension was introduced into the upper
chamber containing serum-free medium. Meanwhile, the lower chamber was filled with
700 μL of DMEM enriched with 10% FBS. After a 48 h incubation period, cells that migrated
to the lower side of the membrane were counted using an inverted microscope and stained
with crystal violet. To fix the cells, a 4% Paraformaldehyde (PFA) solution was applied for
15 min.

2.5. Real-Time Polymerase Chain Reaction (RT-PCR)

Herein, RT-PCR was performed using the Applied Biosystems GeneAmp 9700 PCR sys-
tem (Applied Biosystems), with human GAPDH employed as an internal control. All real-
time data were analyzed using the comparative Ct method and normalized to GAPDH. The
primers for the amplification of GARP cDNA were as follows: forward (5′–3′): GCATAG-
CAACGTGCTGATGGAC; reverse (5′–3′): GATGCTGTTGCAGCTCAGGTCT. The primers
for the amplification of TGF-β1 cDNA were as follows: forward (5′–3′): TACCTGAACC-
CGTGTTGCTCTC; reverse (5′–3′): GTTGCTGAGGTATCGCCAGGAA. The primers used
to amplify GAPDH were as follows: forward (5′–3′): ACAACTTTGGTATCGTGGAAGG;
reverse (5′–3′): GCCATCACGCCACAGTTTC.

2.6. Western Blot (WB) Assay

Cells were collected, and protein levels were quantified via the BCA assay kit (Bey-
otime, Beijing, China). Following this, proteins underwent separation using SDS-PAGE,
which were subsequently transferred onto PVDF membranes (Millipore, Burlington, NJ,
USA). The membranes were then blocked with 5% non-fat milk for a duration of 2 h
before being incubated overnight at 4 ◦C with primary antibodies targeting Vimentin
(1:1000; Affinity, Cincinnati, OH, USA), E-Cadherin (1:1000; Affinity, Cincinnati, OH, USA),
N-Cadherin (1:1000; Affinity, Cincinnati, OH, USA), GARP (1:1000; Proteintech, Wuhan,
China), TGF-β1 (1:800; Abcam, Cambridge, UK), p-SMAD2/3 (1:1000; Abcam, Cambridge,
UK), and β-Actin (1:10,000; Affinity, Cincinnati, OH, USA). After this incubation, the mem-
branes were treated with HRP-conjugated secondary antibodies (1:5000; Affinity, Cincinnati,
OH, USA) at room temperature for an hour. Lastly, the membranes were visualized using
ECL reagent (APPLYGEN, Beijing, China).

2.7. RNA Interference

GARP inhibitor (si-GARP) and si-GARP Negative Control (si-NC) were sourced from
IGEBio (Guangzhou, China). Liposome 2000 reagent (Invitrogen) was used to complete the
transfection. Briefly, the cells were first inoculated onto a six-well plate. Afterward, a MEM
solution infused with either si-GARP or si-NC was combined with another MEM solution
containing Liposome 2000 reagent. This concoction was then employed to transfect the
cells over a 6 h period. Once the transfection was complete, the cells were subjected to
PM2.5 exposure for 24 h, after which they were harvested and stored, ready for subsequent
experimental procedures.

2.8. Statistical Analysis

Each experiment was conducted three separate times. We used GraphPad Prism 9.0
for all statistical analyses. When comparing the two groups, we ran a Student’s t-test. For
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comparisons involving more than two groups, we used a one-way ANOVA followed by
Tukey’s post hoc test. We considered results with * p < 0.05 to be statistically significant,
and those with ** p < 0.01 to be highly significant.PM2.5

3. Results

3.1. Lentinan Reversed the PM2.5-Induced Decrease in Cell Activity

Following exposure to varying levels of PM2.5 and lentinan, cell viability was eval-
uated using the CCK-8 assay. The findings revealed that, when compared to the control
group, cells treated with a PM2.5 concentration of 12.5 μg/mL showed a notable decline
in proliferation activity (p < 0.01) (Figure 1A). For subsequent experiments, PM2.5 doses
of 6.25, 12.5, and 25 μg/mL were chosen as the focus groups. In contrast, while treatment
with 50/100 μg/mL lentinan failed to counteract the diminished cell viability caused by
PM2.5 exposure, a significant improvement was observed at a lentinan concentration of
200 μg/mL (p < 0.05) (Figure 1B). As a result, 200 μg/mL lentinan was selected for further
experimental treatments.

Figure 1. Lentinan reversed the PM2.5-induced decreased cell activity: (A) CCK-8-detected effect of
different concentrations of PM2.5 on Beas-2B cell viability after 24 h of treatment; and (B) CCK-8-
assessed protective effect of lentinan onPM2.5-induced cell damage. Compared to the control group,
*: p < 0.05, **: p < 0.01. Compared to the PM2.5 group, #: p < 0.05. n = 3.

3.2. PM2.5 Promoted Invasive, Migratory, and EMT Induction Abilities in Beas-2B Cells

After treatment with different concentrations of PM2.5 (0, 6.25, 12.5, and 25 μg/mL) for
24 h, Beas-2B cells were assessed for their migratory, invasive, and EMT induction abilities
using WHA, TWA, and WB. Compared to the control group, Beas-2B cells exposed to
PM2.5 exhibited higher migratory and invasive abilities (Figure 2A,B). Furthermore, PM2.5
significantly upregulated N-Cadherin and Vimentin, and downregulated E-Cadherin, in
a dose-dependent manner, suggesting that it induced the EMT process in Beas-2B cells
(Figure 2C).
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Figure 2. PM2.5 enhanced the invasive, migratory, and EMT induction abilities of Beas-2B cells.
(A) WHA-detected migratory ability of Beas-2B cells; (B) TWA-detected invasive ability of Beas-
2B cells; and (C) WB-detected expression of EMT-related proteins N-Cadherin, E-Cadherin, and
Vimentin. *: p < 0.05, **: p < 0.01.

3.3. PM2.5 Activated the GARP/TGF-β/Smad Pathway

Herein, network-based predictions were performed using Genemania databases to
investigate the potential interaction between GARP and TGF-β. We found that GARP
(LRRC32) could interact with TGF-β, implying the former’s direct or indirect involvement
in the regulation of the TGF-β/SMAD pathway under PM2.5 exposure (Figure 3A). To
establish whether PM2.5 impacted the GARP/TGF-β/Smad pathway, proteins related
to this pathway were detected through WB after exposure to PM2.5 for 24 h. According
to the results, the GARP, TGF-β1, and p-Smad2/3 proteins in the cells were significantly
upregulated after exposure to PM2.5 (Figure 3B). Subsequently, the mRNA contents of
GARP and TGF-β1 were detected using PCR, revealing that the mRNA expression levels of
GARP and TGF-β1 increased with the PM2.5 exposure dose (Figure 3C,D). These findings
suggest that PM2.5 can activate the GARP/TGF-β/Smad pathway.
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Figure 3. PM2.5 activated the GARP/TGF-β/Smad pathway: (A) Protein binding was predicted
using Genemania databases; (B) WB analysis of GARP/TGF-β/Smad pathway-associated proteins;
(C) PCR-detected relative GARP mRNA expression; and (D) PCR-detected relative TGF-β1 mRNA
expression. *: p < 0.05, **: p < 0.01.
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3.4. GARP Knockdown Reversed the Effects of PM2.5 on Beas-2B Cell Migratory, Invasive, and
EMT Induction Abilities

To establish whether the GARP/TGF-β/Smad axis correlated with the effect of PM2.5
on Beas-2B cells, we successfully constructed a GARP knockdown cell model (Figure 4A).
According to the results, GARP downregulation inhibited the migratory and invasive
abilities of PM2.5-exposed cells (Figure 4B,C). Furthermore, N-Cadherin and Vimentin
were significantly downregulated, while E-Cadherin was upregulated, suggesting that
inhibiting the GARP/TGF-β/Smad pathway could reverse the PM2.5-induced EMT process
in Beas-2B cells (Figure 4D).

Figure 4. GARP knockdown reversed the effects of PM2.5 on Beas-2B cell migratory, invasive, and
EMT induction abilities: (A) PCR-detected GARP expression; (B) WHA-detected migratory ability of
Beas-2B cells; (C) TWA-detected invasive ability of Beas-2B cells; and (D) WB-detected expression of
EMT-related proteins N-Cadherin, E-Cadherin, and Vimentin. *: p < 0.05, **: p < 0.01.

3.5. Lentinan Mitigated the Impact of PM2.5 on Beas-2B Cells

Herein, Beas-2B cells were exposed to PM2.5 for 24 h and then treated with lentinan
for an additional 24 h to establish whether the latter treatment could mitigate the effect
of PM2.5 on the cells. Subsequently, the migratory, invasive, and EMT induction abilities
of the cells were detected using WHA, TWA, and WB. According to the results, lentinan
effectively suppressed the migratory and invasive properties of cells exposed to PM2.5
(Figure 5A,B). Additionally, in comparison to the PM2.5 group, treatment with lentinan led
to a marked decrease in the expression of N-Cadherin and Vimentin, while simultaneously
increasing the expression of E-Cadherin. This suggests that lentinan has the potential to
reverse the EMT process induced by PM2.5 in Beas-2B cells (Figure 5C).
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Figure 5. Lentinan inhibited the PM2.5-induced migratory, invasive, and EMT induction abilities of
Beas-2B cells: (A) WHA-detected migratory ability of Beas-2B cells; (B) TWA-detected invasive ability
of Beas-2B cells; and (C) WB-detected expression of EMT-related proteins N-Cadherin, E-Cadherin,
and Vimentin. *: p < 0.05, **: p < 0.01.
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3.6. Lentinan Inhibited the PM2.5-Induced GARP/TGF-β/Smad Pathway Activation

To establish whether lentinan treatment could impact the GARP/TGF-β/Smad path-
way in PM2.5-exposed cells, potential EMT targets and major compounds were subjected to
molecular docking analysis using Discovery Studio CDOCKER. The main extract of lentinan
was selected for docking with key GARP targets, revealing that the ligands and receptors
exhibited binding properties (Figure 6A). Proteins associated with the GARP/TGF-β/Smad
pathway were detected through WB analysis 24 h after lentinan treatment. According to
the results, the expression of the GARP, TGF-β1, and p-Smad2/3 proteins was significantly
lower post-treatment compared to the PM2.5 exposure group (Figure 6B). Subsequently,
GARP and TGF-β1 mRNA levels were detected using PCR, revealing that the mRNA ex-
pression levels of GARP and TGF-β1 were lower compared to those in the PM2.5-exposed
group (Figure 6C,D). These findings suggest that lentinan inhibited the PM2.5-induced
GARP/TGF-β/Smad pathway activation. Thus, it is demonstrated that Lentinan alleviated
PM2.5 exposure-induced epithelial–mesenchymal transition in pulmonary epithelial cells
by inhibiting the GARP/TGF-β/Smad pathway (Figure 7).

Figure 6. Lentinan inhibited the PM2.5-induced GARP/TGF-β/Smad pathway activation:
(A) Docking of Lentinan with GARP; (B) WB analysis of GARP/TGF-β/Smad pathway-associated
proteins; (C) PCR-detected relative GARP mRNA expression; and (D) PCR-detected relative TGF-β1
mRNA expression. *: p < 0.05, **: p < 0.01.
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Figure 7. Possible mechanism of lentinan in alleviating the PM2.5-induced EMT process in Beas-2B
cells. PM2.5 can upregulate GARP, activating TGF-β, thus promoting the phosphorylation of Smad2
and Smad3 and activating the GARP/TGF-β/Smad pathway, which, in turn, induces EMT in Beas-2B
cells. Lentinan inhibited GARP production and GARP/TGF-β/Smad pathway activation, thus
improving the PM2.5-induced EMT (Figdraw).

4. Discussion

Numerous studies have highlighted the crucial involvement of PM2.5 in triggering
EMT, which promotes tissue remodeling, fibrosis, and metastasis [29,30]. Due to their small
size and chemical composition, PM2.5 particles can penetrate deeply into the respiratory
system, inducing OS [31], inflammation [32], and alterations in cellular signaling [33].
One of the key mechanisms through which PM2.5 induces EMT is via TGF-β signaling
pathway activation. This pathway, often dysregulated by environmental pollutants such
as PM2.5, promotes the expression of mesenchymal markers (e.g., N-Cadherin, vimentin)
and suppresses epithelial markers (e.g., E-Cadherin), thus triggering EMT [34]. Therefore,
PM2.5 exposure could drive EMT in various models of respiratory diseases such as COPD
and asthma, as well as in cancer [35], contributing to airway fibrosis [36], lung damage [37],
and tumor metastasis [38]. In other words, PM2.5 exposure could accelerate the progression
of both respiratory diseases and cancer through EMT.

Our study reveals a previously unreported role of GARP in promoting EMT in relation
to PM2.5 exposure. Notably, GARP has been largely studied in the context of immune
modulation and TGF-β activation. Consequently, our findings on its role in EMT, par-
ticularly in respiratory cells and under conditions such as PM2.5 exposure, offer novel
insights into its potential as a therapeutic target. Specifically, we found that GARP enhances
TGF-β activation, which, in turn, induces the expression of EMT markers and facilitates
the transition from an epithelial to a mesenchymal phenotype in lung ECs. This finding
positions GARP as a novel molecular mediator of PM2.5-induced EMT, suggesting that
targeting GARP could be an avenue to mitigating the deleterious effects of PM2.5 exposure
in respiratory diseases and other related conditions.
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To further elucidate the mechanisms by which GARP regulates PM2.5-induced EMT, it
is essential to explore both Smad-dependent and Smad-independent pathways. GARP, as a
key regulator of TGF-β activation, may influence the phosphorylation of Smad2 and Smad3,
which are critical downstream effectors of the TGF-β signaling pathway. The activation
of Smad2/3 can lead to the upregulation of transcription factors such as Snail, Twist, and
ZEB1, which are known to promote EMT by repressing epithelial markers and enhancing
mesenchymal markers [39]. Future studies should investigate whether GARP directly
interacts with Smad proteins or if it modulates other signaling molecules that crosstalk
with the TGF-β pathway, such as MAPK/ERK or PI3K/Akt. Additionally, the role of
GARP in regulating non-canonical TGF-β signaling pathways, such as those involving
RhoA or JNK, should be explored to provide a more comprehensive understanding of its
regulatory mechanisms.

Moreover, the interaction between GARP and other cellular components, such as inte-
grins or extracellular matrix proteins, could also play a role in PM2.5-induced EMT [40,41].
GARP may facilitate the activation of latent TGF-β by binding to integrins, which are
known to be involved in the mechanical transduction of signals from the extracellular envi-
ronment. This interaction could be particularly relevant in the context of PM2.5 exposure,
as the physical properties of particulate matter may alter the mechanical forces within the
lung tissue, thereby influencing EMT. Further research should aim to identify the specific
integrins or other cell surface receptors that interact with GARP and determine how these
interactions contribute to the activation of TGF-β and subsequent EMT.

Although GARP has been identified as a key player in PM2.5-induced EMT, it is note-
worthy that other molecules and signaling pathways could also contribute to this process.
Potential candidates include TGF-β receptors, Smad proteins, and TFs (such as Snail, Twist,
and ZEB1), which are known to regulate EMT in various disease models. Furthermore,
PM2.5 could activate the MAPK/ERK and PI3K/Akt pathways [42], which are involved
in inflammation and cell survival, thus contributing to EMT. Therefore, targeting these
molecules could provide alternative therapeutic avenues for alleviating the harmful effects
of PM2.5 exposure.

Our findings also revealed that lentinan could alleviate PM2.5-induced EMT, a phe-
nomenon attributable to its ability to inhibit the GARP signaling pathway and reduce OS.
Lentinan could exert its effects through various mechanisms including inhibiting inflam-
mation pathway activation [43], reducing Reactive Oxygen Species (ROS) production [44],
and suppressing the expression of key Transcription Factors (TF) that regulate EMT (such
as Snail and Twist). Additionally, lentinan may protect cells by chelating toxic metals
present in PM2.5, thereby reducing their bioavailability and cellular toxicity. Polysaccha-
rides have been shown to bind metal ions, which could prevent their interaction with
cellular components. Future studies should explore whether lentinan’s protective effects
are partially mediated through this mechanism [45]. Nonetheless, hitherto, lentinan’s
molecular mechanism in protecting against PM2.5 exposure was unreported. Furthermore,
the bioavailability of lentinan in vivo is an important consideration. Polysaccharides like
lentinan may be degraded by gut microbiota into smaller oligosaccharides, which are
more easily absorbed through the intestinal mucosa. This raises the possibility that the
protective effects of lentinan observed in vitro may be mediated by its metabolites rather
than the intact polysaccharide [46]. For example, β-1,3-oligosaccharides derived from
polysaccharides have been shown to activate monocytes and release TNF-α, which may
contribute to their anti-inflammatory and protective effects [47]. Future studies should
explore the metabolic pathways of lentinan in vivo, its bioavailability, and compare the
efficacy of polysaccharides and oligosaccharides in mitigating PM2.5-induced EMT.
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In light of its findings, this study offers several valuable contributions to the medical
field. First, it identifies GARP as a novel regulator of PM2.5-induced EMT, highlighting its
involvement in TGF-β activation and its potential as a therapeutic target. Furthermore, it
provides novel insights into the mechanisms through which lentinan can mitigate PM2.5-
induced EMT, presenting a potentially natural therapeutic strategy for counteracting the
adverse effects of air pollution on lung health. Overall, our study lays the groundwork for
additional research into GARP-targeting therapies and natural compounds for respiratory
disease treatment.

Despite its valuable insights regarding GARP’s role in PM2.5-induced EMT, this
study had certain limitations. For instance, the in vivo relevance of our findings in animal
models of PM2.5 exposure remains to be fully established. This study was primarily
based on in vitro cell models, and the translation of its findings to in vivo models could
be challenging. Additionally, although our in vitro data suggest that GARP is crucially
involved in EMT mediation, we did not explore the precise molecular mechanisms linking
GARP activation to the TGF-β signaling pathway, necessitating additional research for
a deeper mechanistic understanding of how GARP influences the Smad-dependent and
Smad-independent pathways in response to PM2.5 exposure to validate its therapeutic
potential. Moreover, we did not explore the long-term effects of lentinan treatment in
chronic PM2.5 exposure models. This study did not explore the broader impact of GARP
inhibition or lentinan treatment on the immune system, as well as the potential side
effects. Finally, we have only provided preliminary insights into the mechanisms of EMT,
necessitating further detailed molecular profiling and validation in animal models to
confirm our findings and refine the potential therapeutic approaches.

Future studies should focus on elucidating the precise molecular mechanisms linking
GARP activation to both Smad-dependent and Smad-independent pathways in response
to PM2.5 exposure. Specifically, CRISPR/Cas9-mediated GARP knockout models and
RNA-seq analysis could provide deeper insights into the regulatory networks involved.
Additionally, in vivo studies using animal models of PM2.5 exposure are needed to validate
the therapeutic potential of lentinan and GARP-targeting strategies. Furthermore, the
synergistic effects of PM2.5 with other environmental pollutants, such as microplastics
and nanoparticles, should be explored to better understand the broader implications of air
pollution on lung health.

Beyond the molecular mechanisms explored herein, it is also essential to consider
the broader implications of PM2.5-induced EMT regarding environmental health and
disease prevention. Presently, PM2.5 exposure is a global concern due to its pervasiveness
in urban areas, as well as its association with a range of respiratory and cardiovascular
diseases. Therefore, understanding the molecular players involved in EMT, such as GARP,
offers critical insights into the pathophysiology of air pollution-related diseases. Moreover,
targeting GARP and other key regulators of EMT offers a promising avenue for developing
novel therapeutic strategies, especially in the face of increasing pollution levels worldwide.
Furthermore, natural compounds like lentinan, which exert protective effects against PM2.5-
induced EMT, could serve as adjuncts to contemporary therapeutic options, offering a
more holistic approach to combating the deleterious effects of air pollution. There is also a
need to explore the potential synergistic effects of combining GARP inhibition agents with
other pharmacological or lifestyle interventions in mitigating the adverse impacts of PM2.5
exposure on public health.

5. Conclusions

This article highlights the critical role of PM2.5 in EMT induction and the novel
function of GARP in this process, as well as the potential therapeutic benefits of lentinan.
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In conclusion, this study identifies GARP as a novel regulator of PM2.5-induced EMT and
highlights the therapeutic potential of lentinan in mitigating this process. Our findings
provide new insights into the molecular mechanisms underlying PM2.5-induced lung
damage, and they lay the groundwork for future research into GARP-targeting therapies
and natural compounds for the treatment of respiratory diseases. Moreover, we emphasize
the need for further investigation into unresolved questions, the identification of additional
therapeutic targets, and the in vivo validation of this study’s findings. Overall, this study
presents a step forward in understanding the molecular mechanisms underlying PM2.5-
induced lung damage and lays the groundwork for future research into EMT-targeting
therapeutic strategies for respiratory illnesses.

Author Contributions: Writing—original draft preparation, Z.W.; data curation, S.X.; conceptualiza-
tion, B.B.; software, F.W.; methodology, S.Z. and X.W.; validation, Z.W. and Z.H.; formal analysis,
Z.W.; investigation, Z.W.; resources, T.M.; writing—review and editing, T.M. and L.W.; supervision,
S.Z. and X.W.; funding acquisition and project administration, T.M. All authors have read and agreed
to the published version of the manuscript.

Funding: This research was funded by the Natural Science Foundation Project of Inner Mongolia
Autonomous Region (2022QN08019) and the Key Project of Natural Sciences for Higher Education
Institutions in the Inner Mongolia Autonomous Region (NJZZ21045).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data that support the findings of this study are available from the
corresponding author upon reasonable request.

Acknowledgments: We would also like to thank everyone who worked so hard on this whole
experiment.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Huang, J.; Deng, Y.; Tin, M.S.; Lok, V.; Ngai, C.H.; Zhang, L.; Lucero-Prisno, D.E.; Xu, W.; Zheng, Z.-J.; Elcarte, E.; et al.
Distribution, Risk Factors, and Temporal Trends for Lung Cancer Incidence and Mortality: A Global Analysis. Chest 2022, 161,
1101–1111. [CrossRef] [PubMed]
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Abstract: Air pollution has been widely recognized as a risk factor for neurological dis-
orders, and the gut microbiome may play a mediating role. However, current evidence
remains limited. In this study, a mouse model was employed with continuous exposure
to real-time air pollution from conception to late adolescence. Effects of growth-stage
air pollution exposure on the gut microbiome, host metabolites, and brain tissue were
assessed. Pathological damage in the hippocampus and cortex was observed. Fecal
metagenomic sequencing revealed alterations in both compositions and functions of the
gut microbiome. Metabolic disturbances in unsaturated fatty acids and glycerophospho-
lipids were identified in the intestine, serum, and brain tissues, with significant changes in
metabolites (e.g., gamma-linolenic acid, alpha-linolenic acid, docosahexaenoic acid (DHA),
phosphatidylethanolamine (PE), phosphatidylcholine (PC) and phosphatidylserine (PS).
Serum levels of the pro-inflammatory mediator leukotriene C4 were also elevated. Correla-
tion analysis identified a group of different gut microbiome species that were associated
with host metabolites. Furthermore, mediation analysis showed that intestinal and serum
metabolites mediated the associations between the key gut microbiome and brain micro-
biome. These findings indicate that the metabolic crosstalk in the gut–brain axis mediates
the neuronal damage in mice induced by growth-stage air pollution exposure, potentially
through pathways involving lipid metabolism and inflammation.

Keywords: air pollution; growth-stage; multi-omics; microbiome–gut–brain axis;
neuronal damage

1. Introduction

Air pollution, especially fine particulate matter (PM2.5), has been widely recognized
as a major threat to public health [1]. In recent years, the potential effects of air pollu-
tion on the nervous system have gained increasing attention [2,3]. A growing number
of epidemiological studies have shown that exposure to air pollution during early life
(e.g., pregnancy and infancy) is associated with increased risks of autism spectrum disorder
(ASD), attention deficit hyperactivity disorder (ADHD), and other neurodevelopmental
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disorders (NDDs) [4–6], a group of diseases that not only seriously affect children’s cog-
nition, behavior, and social abilities, but also have profound impacts on lifelong mental
health and socioeconomics. However, a remaining question is that the specific mechanisms
by which early-life air pollution exposure causes neurodevelopmental harm are largely
unclear. A better understanding of these mechanisms is imperative for the development of
effective interventions against NDDs.

In recent years, the description of the microbiome–gut–brain axis (MGBA) has pro-
vided a new theoretical perspective for understanding how environmental exposure, in-
cluding air pollution, affects the nervous system [7]. The MGBA is a complex signaling
network through which the gut microbiome interacts with the central nervous system via
neural, immune, endocrine, and metabolic pathways. It is hypothesized that the gut micro-
biome can influence brain development and function as well as behaviors of the host by
modulating immune responses, producing metabolites (e.g., fatty acids, neurotransmitter
precursors), activating vagal nerve signals, and affecting neuroendocrine pathways [7,8].
Both the gut microbiome and the nervous system undergo critical development in growth
stages, especially the early-life stage, and the MGBA plays an important role in maintaining
neurodevelopmental homeostasis [9,10]. Studies have shown that air pollution, particu-
larly PM2.5, significantly alters the diversity and function of the gut microbiome [11,12].
Furthermore, alterations in the microbiome induced by air pollution may further disrupt
the nervous system [13–15]. However, the exact mechanisms by which the gut microbiome
affects brain development following exposure to air pollution are largely unknown.

Metabolites, as both intermediates and endpoints of biological processes, can directly
reflect biological disturbances within the body. Changes in brain metabolism are closely
related to the pathogenesis of neurological diseases, including NDDs [16]. Previous studies
have shown that air pollution could impact brain metabolism and gene expression, con-
tributing to disease pathogenesis [17,18]. Moreover, brain metabolites are also influenced
by the cross-talk of the MGBA [19]. Therefore, metabolites may be a key mechanism linking
air pollution and the nervous system via the MGBA. However, such a hypothesis has not
been examined yet.

In recent years, advances in integrated multi-omics techniques including metage-
nomics, metabolomics, and transcriptomics, provide a more comprehensive approach to
study air pollution’s impact on the gut microbiome and various organ systems. In the
present study, a mouse model was employed to systematically investigate the health impact
of growth-stage air pollution exposure on brain development and the potential mediating
effect of the gut microbiome, with a multi-omics approach incorporating gut metagenomics,
metabolomics, and transcriptomics. The main aim was to reveal the role of the MGBA
in the associations between air pollution exposure, neural damage in offspring, and the
underlying mechanisms, which can inform the development of intervention strategies
for NDDs.

2. Materials and Methods

2.1. Animals and Study Design

The present study used 6-week-old male and female C57BL/6 mice (average weight:
20 g for males and 18 g for females) purchased from the Peking University Health Science
Center Laboratory Animal Center (Beijing, China). A total of 24 female mice and 12 male
mice were randomly assigned to either the filtered air group (FA, as the control) or the real-
world air pollution exposure group (Exp). After a one-week adaptation, males were housed
individually, while females were housed according to their group. A three-day mating
period was set, and two females were placed in the same cage with one male each night.
Once the females became pregnant, they were assigned to either the exposure or control
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group for the subsequent exposure experiment. The start of embryonic development (E0.5)
was determined when a vaginal plug was observed. After birth, the offspring mice were
weaned on postnatal day 21 (PND 21), and continued to be housed in cages exposed to
air pollution or filtered air until late adolescence. To avoid litter effects, one mouse per
litter was selected in subsequent experiments. The mice were euthanized after reaching
adulthood (10 weeks), and samples of feces, intestine, serum, and brain tissues were
collected. Fecal samples were used for metagenomic sequencing, intestine samples were
used for untargeted metabolomics and transcriptomics analysis, serum samples were used
for untargeted metabolomics analysis, and brain tissue samples were used for untargeted
metabolomics and transcriptomics analysis. The detailed experimental procedure is shown
in Figure 1. In this study, the mice were housed in an environment with a 12 h light/dark
cycle, at a temperature of 20–25 ◦C, with relative humidity maintained at 40–70%, and
provided with standard chow and clean drinking water. The study protocol was approved
by the Institutional Animal Care and Use Committee of Peking University Health Science
Center (protocol code BCJD0130, approval date: 29 April 2023).

 

Figure 1. Schematic diagram depicting growth-stage real-time air pollution exposure of mice, as well
as sample collection and testing conducted on the offspring mice. E: Embryonic day; PND: Postnatal
day; RTAAE: real-time ambient air pollution exposure.

2.2. Real-Time Ambient Air Pollution Exposure (RTAAE) System

To simulate real-time environmental air pollution exposure, a whole-body RTAAE
system was established. Detailed information about the RTAAE system, including the mon-
itoring system, has been provided in our previous studies [20–22]. Briefly, the individual
ventilated cages (IVCs) for the FA group were fitted with high-efficiency particulate air
(HEPA) filters to supply clean air, while the IVCs for the exposed group had the filters
removed and replaced with retention devices, allowing particles smaller than 2.5 μm to
enter. The RTAAE system was set up 10 m above ground, and approximately 200 m from
the North Fourth Ring Road in Beijing, an area with high traffic volume. According to
our previous study [21], PM2.5 and O3 were the primary pollutants in the exposure cages.
Composition analysis showed that PM2.5 mainly contained metal elements such as Fe, Na,
and Ca, and the main water-soluble substances were NH4

+ and Ca2+. In this study, the
concentrations of air pollutants in the system were continuously monitored throughout the
study. In particular, PM2.5 was collected using a BUCK LP-5 air sampling pump (AP Buck
Inc., Orlando, FL, USA) with 37 mm quartz fiber filters at a flow rate of 1.70 L/min, and
the concentration was determined by gravimetric analysis. O3 concentration ([O3]8 h,max)
was measured using a Two Technology 220 Model real-time ozone concentration detector
(2B Technologies, Boulder, CO, USA). Meanwhile, background air pollution (i.e., ambient
air pollution) concentrations were obtained from the Olympic Sports Center Monitoring
Station of the Beijing Environmental Protection Monitoring Center (approximately 4.5 km
away from the study site) (http://www.bjmemc.com.cn/, URL accessed from 1 June to 30
September 2023).
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2.3. Histopathological Analysis

Mice were euthanized after reaching adulthood, and brain tissues were immediately
collected. The tissues were first immersed in 4% paraformaldehyde solution for fixation
for at least 24 h, followed by paraffin embedding. Sections with a thickness of 4 μm from
the prefrontal cortex and hippocampus were prepared and mounted on glass slides. The
sections were then stained with hematoxylin and eosin (H&E). Finally, the slides were
observed and analyzed using a Pannoramic MIDI digital slide scanner (3DHISTECH,
Hungary) and digital slide viewing software (CaseViewer 2.4).

2.4. Gut Microbiome Assessment by Shotgun Metagenomic Sequencing

Fresh fecal samples (0.5 g, approximately four pellets) were collected from mice at
early adulthood, and then rapidly frozen in liquid nitrogen and stored at −80 ◦C until
metagenomic sequencing. First, genomic DNA was extracted from fecal samples using the
E.Z.N.A.® Stool DNA Kit D4015 (Omega, Norcross, GA, USA) following the manufacturer’
s instructions. The extracted DNA was assessed for purity and integrity using agarose gel
electrophoresis (AGE) and quantified using a Qubit fluorometer (Thermo Fisher Scientific,
Waltham, MA, USA). High-quality DNA was fragmented to ~350 bp, followed by end repair,
A-tailing, adapter ligation, purification, and PCR amplification to construct sequencing
libraries. Libraries passing quality control were sequenced on the Illumina PE150 platform
(Illumina Inc., San Diego, CA, USA). Preprocessed sequencing data were assembled into
contigs using MEGAHIT software (version 1.0.3). Assembly quality was assessed using
SOAP2.21 to ensure data reliability. Gene prediction was performed using Prokka software
(version 1.14.5) to identify functional genes in each metagenomic dataset. CD-HIT software
(version 4.8.1) was used to remove redundant genes, yielding a set of non-redundant
Uniq Genes. For gene abundance analysis, Salmon software (version 1.10.1) was used
to calculate the transcripts per million (TPM) values of each gene and normalize them
to obtain relative abundance. Functional annotation of non-redundant Uniq Genes was
performed by comparing protein sequences to multiple databases, including the NCBI
non-redundant protein database (NR, version 20170730). Taxonomic classification of Uniq
Genes was determined by mapping NR-annotated genes to specific taxonomic ranks
(kingdom, phylum, class, order, family, genus, species). The last common ancestor (LCA)
method was applied to gene abundance data to estimate taxonomic abundance at various
levels. Species abundance was calculated as the sum of all gene abundances assigned
to that species. Finally, DEGseq R package (version 1.56.1) was used for differential
analysis, with screening criteria of fold change ≥2 and FDR Q-value < 0.01 to identify
differentially expressed genes under different conditions. α-Diversity indices (Shannon,
Chao 1, Observed species, Simpson, ACE) were calculated using the Qiime (version 1.8.0)
to evaluate gut microbiome richness and diversity. β-diversity was analyzed using Bray–
Curtis distance, and differences in microbiome composition were evaluated through non-
metric multidimensional scaling (NMDS) in the “vegan” R package (version 2.6-3). The
linear discriminant analysis effect size (LEfSe) method was applied to identify significantly
different microbes between groups from the phylum to species level. Microbes were
classified and ranked based on their linear discriminant analysis (LDA) scores. Benjamini–
Hochberg (BH) correction was performed to adjust for multiple testing and control the
false discovery rate.

2.5. Untargeted Metabolomics Analysis

Liquid chromatography-mass spectrometry (LC-MS) was used for untargeted
metabolomic analysis. After euthanasia, intestine, brain tissue, and serum samples were
rapidly collected, flash-frozen in liquid nitrogen, and stored at −80 ◦C for subsequent
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metabolite extraction. Internal standard A0 was prepared by dissolving 10 mg of reserpine
and 10 mg of chloramphenicol in 10 mL of acetonitrile at a concentration of 1 mg/mL. Then,
1 mL of internal standard A0 was diluted to 0.1 mg/mL to prepare internal standard A.
Subsequently, 500 μL of internal standard A was added to 50 mL of acetonitrile to prepare
solvent B. For serum samples, 50 μL of serum was mixed with 200 μL of solvent B. For
intestine and brain tissue samples, 50 mg of tissue was homogenized with 200 μL of solvent
B using liquid nitrogen grinding. Samples were centrifuged at 12,000 rpm for 10 min at
4 ◦C. The acetonitrile supernatant was collected, and 100 μL was used for polar metabolite
analysis. Additionally, individual samples were pooled at a 1:1:1 ratio, and 10 μL was
used to prepare a quality control (QC) sample. Next, samples were analyzed using the
UPLC-Synapt XS system (Waters Corp., Milford, CT, USA). Ultra-performance liquid chro-
matography (UPLC) separation was performed using an HSS T3 column. Mobile phase A
consisted of 0.1% formic acid in water, while mobile phase B contained 0.1% formic acid in
acetonitrile. The flow rate was 0.4 mL/min, with a gradient elution from 98% A/2% B to
2% A/98% B. Separated samples were analyzed using the Synapt XS high-resolution mass
spectrometer in positive and negative ion modes. The mass range was set to 50–1200 Da,
with data acquired in MSE/DDA mode. The spray voltage was 2.0 kV, with a source
temperature of 120 ◦C and a desolvation temperature of 450 ◦C. Raw data were converted
to mzML format using MSConvertGUI software (version 3.0.24212-8361512) and imported
into MS-DIAL software (version 4.24) for peak extraction, matching, and identification.
Metabolites were identified by comparing with cationic and anionic standard databases
in MS-Dial-based mass spectral libraries. Metabolite names were further confirmed us-
ing INCHIKEY and the Human Metabolome Database (HMDB, https://hmdb.ca, URL
accessed on 20 October 2024). An unpaired Student’s t-test was used to analyze differences
between groups. An orthogonal partial least squares discriminant analysis (OPLS-DA)
model was constructed, and metabolites with VIP > 1 and p < 0.05 were selected as key
differential metabolites. Enrichment and pathway analyses were performed using the
MetaboAnalyst 6.0 platform (https://www.metaboanalyst.ca/, URL accessed on 20 Octo-
ber 2024), with pathway analysis based on the Kyoto Encyclopedia of Genes and Genomes
(KEGG) database.

2.6. Transcriptomics Analysis

Intestinal and brain tissues were used for transcriptomics analysis. Total RNA was
extracted using TRIzol® reagent (Thermo Fisher Scientific, Carlsbad, CA, USA). RNA
quality was assessed with ND-2000 (NanoDrop Technologies, Wilmington, DE, USA). and
a 5300 Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA, and only samples with
OD260/280 = 1.8–2.2 and RQN ≥ 6.5 were selected for sequencing. RNA purification,
reverse transcription, library construction, and sequencing were performed according to
standard protocols. First, mRNA was enriched using Oligo(dT) magnetic beads, frag-
mented, and then used for double-stranded cDNA synthesis, end repair, phosphorylation,
and adapter ligation to construct sequencing libraries. After library quantification, paired-
end sequencing (PE150) was performed on the NovaSeq X Plus platform (Illumina, San
Diego, CA, USA). Sequencing data were processed using fastp for quality control, remov-
ing low-quality reads. The cleaned reads were aligned to the mouse reference genome
(GRCm38/mm10) using HISAT2, followed by transcriptome assembly and gene expression
quantification with StringTie. Differential expression analysis was performed using DE-
Seq2 with |log2FC| ≥ 1 and FDR Q-value < 0.05 as the criteria for defining differentially
expressed genes (DEGs). KEGG pathway enrichment analysis of DEGs was conducted
using Python’s scipy package (version 1.13.1).
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2.7. Statistical Analysis

Data were presented as mean ± standard deviation (x ± SD). Group comparisons
were performed using Student’s t-test or ANOVA for normally distributed data and the
Wilcoxon rank-sum test or Kruskal–Wallis test for non-normally distributed data. Spearman
correlation analysis was used to assess the relationships among the microbiome, intestinal
metabolites, serum metabolites and brain metabolites. Mediation analysis was performed
to assess whether intestinal and serum metabolites mediated the relationship between gut
microbiome and brain metabolic changes. The proportion mediated was calculated as the
ratio of indirect effects to total effects, quantifying the contribution of intestinal and serum
metabolites. Mediation analyses were conducted using the “mediation” package (ver-
sion 4.5.0) in R (version 4.4.2). Statistical analyses and data visualization were conducted
using GraphPad Prism (version 9) and R (version 4.4.2). Statistical significance was set at
p < 0.05. False discovery rate (FDR) correction for multiple comparisons was performed
using the Benjamini–Hochberg (BH) method. Q-values were used for FDR adjustment in
metagenomic and transcriptomic analyses.

3. Results

3.1. Level of Air Pollutants in the Exposure System

Figure S1 shows the distribution of the concentrations of PM2.5 and [O3]8 h,max over
the study period. The mean weekly concentration of PM2.5 was 12.56 μg/m3 inside the
system and 24.41 μg/m3 in the ambient environment. The corresponding concentrations
of [O3]8 h,max were 105.49 μg/m3 and 135.76 μg/m3, respectively. In the filtered air group,
the concentrations of PM2.5 and O3 were below the limits of detection (LODs) of 0.5 μg/m3

and 0.1 ppb, respectively.

3.2. Effects of Air Pollution Exposure on the Hippocampus and Cortex

Histopathological analysis revealed that growth-stage exposure to air pollution caused
disorganized cell arrangement, neuronal shrinkage, necrosis, and edema in the hippocam-
pal CA1 and CA3 regions of offspring mice. Additionally, the cortical tissue exhibited
neuronal nuclear loss and edema (Figure 2).

 

Figure 2. Pathological changes in the hippocampus and cortex following growth-stage air pollution
exposure. Images of H&E staining in the hippocampus (scale bar = 100 μm), as well as pathological
sections of the CA1, CA3, and DG regions of the hippocampus (scale bar = 40 μm), and cortical
sections (scale bar = 40 μm). Black arrows indicate shrunken cytoplasm, reduced cell volume, and
irregular shape; blue arrows highlight edema in pyramidal cells, characterized by cell swelling and
pale cytoplasm.
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To further examine metabolic alterations in the hippocampus and cortex, untargeted
metabolomics analysis was conducted. OPLS-DA analysis (Figure 3A) was performed, and
VIP scores were calculated for each metabolite based on their contribution to group separa-
tion (Figure S2). Using a VIP threshold > 1 and p < 0.05, 11 significantly altered metabolites
were identified in the hippocampus and cortex of exposed mice (Figure 3B). A heatmap of
key differential metabolites is presented in Figure 3C. KEGG pathway topological analysis
(Figure 3D) identified significant disruptions in glycerophospholipid metabolism, glyco-
sylphosphatidylinositol (GPI)-anchor biosynthesis, and unsaturated fatty acid biosynthesis
in the exposed group. Key metabolites included PE(P-16:0/22:6(4Z,7Z,10Z,13Z,16Z,19Z)),
lysophosphatidylcholine (LysoPC) (17:0/0:0), and arachidic acid (Figure 3E). To inves-
tigate potential sex differences, separate analyses were performed for male and female
mice. Significant metabolic alterations were still observed in both sexes following expo-
sure. Differentially altered metabolites were primarily associated with pathways such as
purine metabolism, pyrimidine metabolism, glycerophospholipid metabolism, linoleic acid
metabolism, and unsaturated fatty acid biosynthesis (Figure S3).

To assess molecular alterations in the hippocampus and cortex, RNA sequencing
was performed. Under the criteria of |log2(FC)| > 1 and Q-value < 0.05, a total of 198
significantly upregulated genes and 98 downregulated genes were identified (Figure 3F).
KEGG enrichment analysis (Figure 3G) revealed significant enrichment in neural pathways
(e.g., neuroactive ligand–receptor interaction, synaptic vesicle cycle), lipid metabolism path-
ways (e.g., PPAR signaling, phospholipase D signaling), and inflammatory pathways (e.g.,
NOD-like receptor signaling). A total of 34 key differentially expressed genes were identi-
fied in these pathways, including Gabrq, Brs3, Gzma, C3, Ltb4r1, Pck1, Acox2, Angptl4,
Avpr1a, Dgkk, and Agt. Collectively, metabolomics and transcriptomics results indicate
that air pollution exposure during growth stages significantly alters lipid metabolism path-
ways, including glycerophospholipid metabolism and unsaturated fatty acid biosynthesis,
as well as pathways related to neuro-communication and inflammation in the brain.

3.3. Alterations in the Gut Microbiome Induced by Air Pollution Exposure

NMDS analysis revealed some differences in the microbiome community structure
between the exposed and control groups following exposure to air pollution (Figure 4A).
Compositions of the microbiome at the phylum and genus levels are depicted in Fig-
ure 4B,C. No significant differences were found in the α-diversity indices between the two
groups (p > 0.05) (Table 1). LEfSe analysis revealed 35 taxa with an LDA score greater
than 3, among which 15 taxa were more highly expressed in the control group, while 20
taxa were more highly expressed in the exposed group (PFDR < 0.05) (Figure 4D). The
relative abundance heatmap of the microbiome in the samples is shown in Figure S4.
KEGG pathway enrichment analysis of differentially expressed genes from metagenomic
sequencing showed significant enrichment in lipid metabolism pathways in the exposed
mice (Figure 4E). Both male and female mice exhibited changes in the microbiome structure
and lipid-related functional alterations following exposure (Figure S5).

Table 1. Alpha diversity indices of gut microbiome.

Characteristics
Control (Mean ±

SD)
Exposure (Mean ± SD) t p

Shannon index 6.50 ± 0.42 6.62 ± 0.27 −0.73 0.479
Chao1 33,650.24 ± 18,032.92 34,495.96 ± 16,589.99 −0.11 0.914

Observed species 8378.50 ± 696.35 8805.20 ± 579.11 −1.49 0.154
Simpson index 0.97 ± 0.01 0.96 ± 0.01 0.32 0.754

ACE index 9255.11 ± 890.40 9704.75 ± 569.13 −1.35 0.198
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Figure 3. Alterations in metabolomics and transcriptomics in the hippocampus and cortex following
growth-stage air pollution exposure. (A) OPLS-DA scores plot. (B) Volcano plot of brain metabolites,
with the names of the top 13 metabolites based on VIP scores labeled. (C) Heatmap of brain
metabolites abundance. (D) Topological analysis of differential metabolites in the KEGG pathway.
(E) The correlations between differential metabolites and pathways. (F) Differentially expressed genes
(DEGs): blue dots represent downregulated genes, red dots represent upregulated genes. (G) KEGG
enrichment of DEGs: the y-axis represents enriched pathways, the x-axis shows the enrichment factor,
circle size reflects gene count, and color indicates pathway p-values. Metabolomics: n = 10 per group.
Transcriptomics: n = 6 per group.

3.4. Metabolomic and Transcriptomic Alterations in the Intestine

OPLS-DA results from untargeted metabolomics analysis on intestine tissues are
shown in Figure 5A. Based on the differential contributions, VIP scores for each metabo-
lite were obtained (Figure S6). Under the screening thresholds of VIP > 1 and p < 0.05,
34 metabolites that were significantly different in the intestines of the two groups were
identified (Figure 5B). The sample expression heatmap of key differential metabolites is
shown in Figure 5C. KEGG pathway topological analysis (Figure 5D) showed that in the
exposed group, significant changes occurred in pathways related to unsaturated fatty acid
biosynthesis, alpha-linolenic acid metabolism, glycerophospholipid metabolism, pyrimi-
dine metabolism, linoleic acid metabolism, and sphingolipid metabolism. In the separate
sex analyses, similar results were also observed (Figure S7). Key differential metabo-
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lites included alpha-linolenic acid, DHA, gamma-linolenic acid, PC (16:0/18:1(9Z)), PE
(P-18:0/20:4(5Z,8Z,11Z,14Z)), stearic acid and N-Acylsphingosine (Figure 5E).

Figure 4. Effect of growth-stage air pollution exposure on gut microbiome, revealed by metagenomic
sequencing. (A) NMDS plot of gut microbiome. (B,C) Relative abundance of microbiome at the
phylum and genus levels for the samples. (D) Differential bacterial taxa identified by LEfSe anal-
ysis (Kruskal–Wallis test, PFDR < 0.05 with Benjamini–Hochberg correction) with LDA scores ≥ 3.
(E) KEGG enrichment of DEGs. The y-axis represents enriched pathways, the x-axis shows the
enrichment factor, circle size reflects gene count, and color indicates pathway Q-values. n = 10
per group.

In transcriptome analysis, a total of 425 significantly upregulated genes and 138 down-
regulated genes were identified (Figure 5F) using the criteria of |log2(FC)| > 1 and
Q-value < 0.05. KEGG enrichment analysis indicated significant enrichment in pathways
related to unsaturated fatty acid biosynthesis, including linoleic acid metabolism, arachi-
donic acid metabolism, alpha-linolenic acid metabolism, and the PPAR signaling pathway
(Figure 5G). Key differential genes included Cyp3a13, Cyp2e1, Cyp3a25, Pla2g12b, Ggt1,
Aloxe3, Acaa1b, Plin5, Me3, Hmgcs2, and Plin1. Taken together, metabolomics and tran-
scriptomics results indicate that growth-stage air pollution exposure significantly alters
unsaturated fatty acid biosynthesis, alpha-linolenic acid metabolism, and glycerophospho-
lipid metabolism in the mouse intestine.
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Figure 5. Metabolomic and transcriptomic alterations in the intestine. (A) OPLS-DA scores plot.
(B) Volcano plot of intestinal metabolites, with the names of the top 15 metabolites based on VIP
scores labeled. (C) Heatmap of intestinal metabolites abundance. (D) Topological analysis of
differential metabolites in the KEGG pathway. (E) Correlations between differential metabolites and
pathways. (F) Differentially expressed genes (DEGs): blue dots represent downregulated genes, red
dots represent upregulated genes. (G) KEGG enrichment of DEGs: the y-axis represents enriched
pathways, the x-axis shows the enrichment factor, circle size reflects gene count, and color indicates
pathway p-values. Metabolomics: n = 10 per group. Transcriptomics: n = 6 per group.

3.5. Serum Metabolomic Alterations

The OPLS-DA results from the untargeted metabolomics analysis of serum, includ-
ing the VIP scores for metabolites, are shown in Figure 6A and Figure S8. Under the
screening criteria of VIP > 1 and p < 0.05, 38 significantly different metabolites were
identified in the serum of exposed and control mice (Figure 6B). The sample expres-
sion heatmap of key differential metabolites is shown in Figure 6C. KEGG pathway
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topological analysis (Figure 6D) showed significant changes in sphingolipid metabolism,
unsaturated fatty acid biosynthesis, glycerophospholipid metabolism, arachidonic acid
metabolism, linolenic acid metabolism and arachidonic acid metabolism in the exposed
group. Key differential metabolites included sphinganine, sphingosine, gamma-linolenic
acid, oleic acid, palmitic acid, PC (16:0/20:4(5Z,8Z,11Z,14Z)), PC (16:0/18:1(9Z)), LysoPC
(18:1(9Z)/0:0), PS (18:1(11Z)/20:0), and leukotriene C4 (Figure 6E). Further analysis re-
vealed a significant increase in saturated fatty acids (oleic acid, palmitic acid) and the pro-
inflammatory mediator leukotriene C4 in the exposed group, whereas sphingolipid metabo-
lites (sphinganine and sphingosine), unsaturated fatty acid (gamma-linolenic acid), and
lipid metabolites (PC(16:0/20:4(5Z,8Z,11Z,14Z)), PC(16:0/18:1(9Z)), LysoPC(18:1(9Z)/0:0),
PS(18:1(11Z)/20:0)) were significantly reduced. As leukotriene C4, a metabolite of the
arachidonic acid pathway, is a potent pro-inflammatory mediator, its upregulation may
indicate systemic inflammation [23]. In the separate sex analyses, similar results were
also observed (Figure S9). The findings about serum metabolic changes suggest that air
pollution exposure during growth stages may disrupt lipid-related metabolic pathways
(e.g., unsaturated fatty acid, phospholipid, and sphingolipid metabolism), trigger systemic
inflammation, and impair physiological homeostasis.

3.6. Correlation Between the Gut Microbiome and Host Metabolome

Spearman correlation analysis revealed significant associations between key intesti-
nal metabolites and differences in the microbiome (PFDR < 0.05) (Figure 7A). For ex-
ample, some microbes (e.g., Alistipes.sp, g_Faecalibaculum, s_Coriobacteriaceae_bacterium
and f_Erysipelotrichaceae) were significantly associated with lipid-related metabolites (e.g.,
PE(P−16:0/20:4(5Z,8Z,11Z,14Z)), PC(16:0/18:1(9Z)), PS(18:1(11Z)/20:0), ceramide (Cer)
(d18:1/16:0), DHA and gamma−Linolenic acid) (PFDR < 0.05). Significant associations be-
tween gut microbiome and serum metabolites were also observed (PFDR < 0.05) (Figure 7B).
Notably, Alistipes.sp and s_Bacteroidales_caecimuris were positively correlated with the pro-
inflammatory metabolite leukotriene C4 in serum (PFDR < 0.05), but negatively correlated
with sphinganine, sphingosine, gamma-linolenic acid, PS, PC and LysoPC (PFDR < 0.05).
Conversely, s_Coriobacteriaceae_bacterium and o_Coriobacteriales exhibited a negative corre-
lation with leukotriene C4 (PFDR < 0.05) and a positive correlation with these metabolites
(PFDR < 0.05).

Additionally, several intestinal and serum metabolites were significantly correlated
with metabolic changes in the brain, including PE (P−16:0/22:6(4Z,7Z,10Z,13Z,16Z,19Z)),
Arachidic acid, LysoPC (17:0/0:0), and Cystine (PFDR < 0.05) (Figure 7C,D).

3.7. Mediating Role of Intestinal and Serum Metabolites

Mediation analysis was conducted to explore the mediating effects of intestinal and
serum metabolites in the relationship between differentially abundant microbiome (with
LDA scores greater than 3) and brain metabolic changes. The results revealed that intestinal
and serum metabolites mediated the effects of microbial taxa on different brain metabolites
(proportion mediated: 9.5–99.6%, p < 0.05) (Table S1). Specifically, 13 metabolites (in-
testinal Cer(d18:1/16:0) and Ubiquinone-2, serum metabolites such as PS(18:1(11Z)/20:0),
Sphingosine, gamma-Linolenic acid, Leukotriene C4, esterase, dimyristoylphosphatidyl-
choline, 16-Hydroxyhexadecanoic acid, Phenyllactic acid, arachidoyl ethanolamide, palmi-
toylethanolamide, phenyllactic acid, and heptadecanoic acid) mediated the influence of
22 key microbial taxa (f_Coriobacteriaceae, f_Rikenellaceae, o_Coriobacteriales, g_Duncaniella,
g_Alistipes, g_Heminiphilus, g_Allobaculum, s_Muribaculaceae_bacterium_Isolate_037_Harlan,
s_Bacteroidales_bacterium, s_Bacteroidales_bacterium_55_9, s_Coriobacteriaceae_bacterium,
s_Alistipes_sp_58_9_plus, s_Alistipes_sp, s_Bacteroides_caecimuris, s_Duncaniella_dubosii,
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s_Alistipes_senegalensis, s_Alistipes_onderdonkii, s_Allobaculum_sp_539, s_Alistipes_finegoldii,
s_Alistipes_shahii, s_Alistipes_timonensis, s_Alistipes_sp_An66) on brain LysoPC(17:0/0:0) and
brain_PE(P-16:0/22:6(4Z,7Z,10Z,13Z,16Z,19Z)) metabolic changes (proportion mediated:
32.7–98.7%, p < 0.05) (Table 2).

 

Figure 6. Metabolomic alterations in serum. (A) OPLS-DA scores plot. (B) Volcano plot of serum
metabolites, with the names of the top 15 metabolites based on VIP scores labeled. (C) Heatmap
of serum metabolites abundance. (D) Topological analysis of differential metabolites in the KEGG
pathway. (E) Correlations between differential metabolites and pathways.
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Figure 7. Correlation between the gut microbiome and host metabolome. (A) Heatmap of Spearman
correlation analysis between differential taxa identified by LEfSe analysis (LDA ≥ 3) and differential
intestinal metabolites. (B) Heatmap of Spearman correlation analysis between differentially identified
taxa (LDA ≥ 3) from LEfSe analysis and differential serum metabolites. (C) Heatmap of Spear-
man correlation analysis between different intestinal metabolites and different brain metabolites.
(D) Heatmap of Spearman correlation analysis between different serum metabolites and different
brain metabolites. n = 10 per group. PFDR indicates the p-value adjusted using the Benjamini–
Hochberg method. * PFDR < 0.05, ** PFDR < 0.01, *** PFDR < 0.001.

Table 2. Mediation analysis of the microbiome and brain lipid-related metabolites.

Outcome Indicator Exposure Mediators
Indirect Effect

(95% CI)
Proportion

Mediated (%)

brain_LysoPC
(17:0/0:0)

s__Muribaculaceae_bacteriu
m_Isolate_037_Harlan_ intestinal_Cer(d18:1/16:0) 0.493 (0.106, 1.136) 75.4

s__Muribaculaceae_bacteriu
m_Isolate_037_Harlan_ serum_Esterase 0.377 (0.083, 0.792) 57.8
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Table 2. Cont.

Outcome Indicator Exposure Mediators
Indirect Effect

(95% CI)
Proportion

Mediated (%)

s__Muribaculaceae_bacteriu
m_Isolate_037_Harlan_ serum_PS(18:1(11Z)/20:0) 0.332 (0.015, 0.882) 50.8

s__Bacteroidales_bacterium intestinal_Cer(d18:1/16:0) 0.485 (0.073, 1.11) 77.3
s__Bacteroidales_bacterium serum_Esterase 0.368 (0.076, 0.763) 58.7
s__Bacteroidales_bacterium serum_PS(18:1(11Z)/20:0) 0.343 (0.068, 0.833) 54.6

s_Bacteroidales_bacterium serum_gamma-Linolenic
acid 0.283 (0.011, 0.736) 45.2

o__Coriobacteriales serum_PS(18:1(11Z)/20:0) −0.102 (−0.23, −0.021) 46.9
f__Coriobacteriaceae serum_PS(18:1(11Z)/20:0) −0.104 (−0.242, −0.022) 46.6

s__Bacteroidales_bacterium_
55_9 serum_Esterase 0.112 (0.004, 0.275) 90.1

s__Bacteroidales_bacterium_
55_9

serum_16-
Hydroxyhexadecanoic acid 0.041 (0.003, 0.172) 32.7

s__Coriobacteriaceae_bacte
rium serum_PS(18:1(11Z)/20:0) −0.064 (−0.189, −0.011) 72.7

s__Alistipes_sp_58_9_plus serum_Dimyristoylphosphatid
ylcholine 0.074 (0.004, 0.148) 66.2

s__Alistipes_sp_ serum_Leukotriene C4 0.097 (0.007, 0.213) 78.8
s__Bacteroides_caecimuris intestinal_Cer(d18:1/16:0) 0.271 (0.042, 0.554) 98.4
s__Bacteroides_caecimuris serum_Esterase 0.228 (0.045, 0.576) 83
s__Bacteroides_caecimuris intestinal_Ubiquinone-2 0.164 (0.017, 0.395) 59.7
s__Bacteroides_caecimuris serum_PS(18:1(11Z)/20:0) 0.216 (0.064, 0.477) 78.4
s__Bacteroides_caecimuris serum_Leukotriene C4 0.132 (0.01, 0.326) 48

s__Bacteroides_caecimuris serum_gamma-Linolenic
acid 0.134 (0.006, 0.415) 48.9

brain_PE(P−16:0/
22:6(4Z,7Z,10Z,13Z,

16Z,19Z))
f__Rikenellaceae serum_Arachidoyl

Ethanolamide −0.138 (−0.322, −0.014) 87.6

f__Rikenellaceae serum_Heptadecanoic acid −0.142 (−0.365, −0.018) 89.8
f__Rikenellaceae serum_Palmitoylethanolamide −0.133 (−0.309, −0.028) 84.1

g_Alistipes serum_Arachidoyl
Ethanolamide −0.128 (−0.288, −0.003) 94.3

g_Alistipes serum_Palmitoylethanolamide −0.122 (−0.288, −0.01) 90.2
g__Duncaniella serum_Phenyllactic acid 0.207 (0.032, 0.48) 51.6
g__Duncaniella serum_Sphingosine 0.397 (0.002, 1.091) 98.7
g_Heminiphilus serum_Phenyllactic acid −0.11 (−0.237, −0.01) 52.3

s__Duncaniella_dubosii serum_Phenyllactic acid 0.114 (0.008, 0.248) 37.1

g_Allobaculum seru
m_Phenyllactic acid 0.032 (0.005, 0.061) 55.4

s_Allobaculum_sp_539 serum_Phenyllactic acid 0.032 (0.01, 0.059) 74.1

s__Alistipes_senegalensis serum_Arachidoyl
Ethanolamide −0.113 (−0.256, −0.007) 72.9

s_Alistipes_finegoldii serum_Arachidoyl
Ethanolamide −0.099 (−0.231, −0.003) 69.5

s_Alistipes_finegoldii serum_Heptadecanoic acid −0.101 (−0.226, −0.002) 70.9

s__Alistipes_onderdonkii serum_Arachidoyl
Ethanolamide −0.1 (−0.257, −0.02) 74

s__Alistipes_onderdonkii serum_Heptadecanoic acid −0.103 (−0.238, −0.001) 75.8
s__Alistipes_shahii serum_Heptadecanoic acid −0.147 (−0.329, −0.022) 86.4

s__Alistipes_timonensis serum_Palmitoylethanolamide −0.096 (−0.223, −0.007) 63.7

s__Alistipes_sp_An66 serum_Arachidoyl
Ethanolamide −0.1 (−0.24, −0.003) 78.1
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4. Discussion

To our knowledge, this is among the first studies to integrate gut metagenomics,
metabolomics, and transcriptomics techniques to comprehensively examine the neurolog-
ical impact of growth-stage air pollution exposure and the mediating effects of the gut
microbiome. This study demonstrated that exposure to real-time ambient air pollution
during growth stages induced damage in the hippocampus and cortex of offspring mice,
along with alterations in brain glycerophospholipid metabolism. Additionally, changes in
the gut microbiome and lipid metabolism, unsaturated fatty acid metabolism, and inflam-
matory signaling pathways across multiple organs were observed. Such changes partially
mediated the detrimental effects of air pollution on the nervous system.

Growth stage is a crucial period for neurodevelopment, and epidemiological studies
have shown that exposure to air pollution during pregnancy and the postnatal period
can impact the neurodevelopment of offspring [4,6,24–26]. Using a whole-body real-
time exposure system to simulate real-world environmental conditions, the present study
revealed that exposure to ambient air pollution during growth stages induced pathological
changes in the cortical and hippocampal regions of mouse brain tissue, including disordered
cell arrangement, neuronal damage, and edema. This is generally consistent with previous
studies [17,27].

Although previous studies have clearly revealed the direct toxic effects (e.g., cogni-
tive dysfunction and pathological changes) of air pollution on the central nervous system
(CNS) [28–30], the exact mechanisms by which air pollution leads to neural injury re-
main largely unclear. The MGBA axis interaction may be a key mechanism involved.
Previous studies have demonstrated that air pollution, including PM2.5, NO2, and O3, sig-
nificantly alters the composition and function of the gut microbiome [31–33]. In this study,
growth-stage exposure to air pollution significantly altered gut microbiome composition in
mice. In particular, metagenomic analysis revealed that in the exposed group, the relative
abundance of s_Muribaculaceae_bacterium_Isolate_037_Harlan_, f_Rikenellaceae, g_Alistipes,
s_Prevotella_sp_PMUR increased, while f_Erysipelotrichaceae, s_Erysipelotrichaceae_bacterium,
g_Duncaniell and s_Duncaniella_dubosii decreased. Previous studies have shown that these
microbial taxa are closely linked to the health and disease status of the host and may
have impacts on host metabolism and immune homeostasis. For example, studies have
indicated that Alistipes is closely associated with colitis, and it is also linked to stress and
depression [34,35]. These microbial changes may have profound effects on host metabolism
and immune homeostasis, which could in turn impact brain development and function.

Evidence from both humans and animals has shown that air pollution can lead to
metabolic disruptions [18,36], and changes in brain metabolism play a key role in the
pathogenesis of neurological diseases [16]. At the same time, metabolites are key mediators
for the interactions between the microbiome and host in the framework of MGBA. This
study indicates that the changes in the gut microbiome induced by air pollution exposure
are closely related to the host’s metabolites. In addition to pathological damage in brain
tissue, metabolomic analysis further revealed significant alterations in glycerophospholipid
metabolism pathways. Such alterations were also observed in the intestine and serum.
Meanwhile, functional analysis of the gut microbiome also revealed significant alterations
in lipid-related metabolic pathways in different taxa, suggesting that lipid metabolism may
play an important role. Furthermore, our mediation analysis suggests that intestinal and
serum metabolites may mediate the impact of the microbiome on brain lipid metabolites
(e.g., PE and PC), linked to glycerophospholipid metabolism. Therefore, these findings
suggest that glycerophospholipid metabolism may represent an important altered cross-
talk pathway in the microbiome–gut–brain axis, contributing to neurodamage caused by
air pollution exposure during the growth stage.
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Previous evidence from human and animal studies has also shown that air pollu-
tion, particularly PM2.5, leads to disruptions in glycerophospholipid and sphingolipid
metabolism [18,36]. Glycerophospholipids are major components of eukaryotic cell mem-
branes, with PC and PE being the most abundant [37]. PC constitutes approximately 95%
of total choline in most tissues, while PE is the second most abundant glycerophospho-
lipid in cell membranes [37]. Other minor phospholipids, such as phosphatidylinositol
(PI) and PS, are also involved in the structure of biological membranes. Glycerophos-
pholipid metabolism is particularly important in the central nervous system, as it is a
major component of neuronal membranes and myelin sheaths, maintaining neuronal
stability and membrane fluidity [38]. Previous research has indicated that glycerophos-
pholipid metabolism is disrupted in Alzheimer’s disease (AD) patients and AD mouse
models [19,39]. The gastrointestinal tract is the primary source of glycerophospholipids
for brain neural membranes [40]. Recent studies have shown that disruptions in glyc-
erophospholipid metabolism are closely associated with the microbiome–gut–brain axis
in depression patients [41,42]. Therefore, disruptions in glycerophospholipid metabolism
may be a key mechanism underlying neural dysfunction and could serve as an impor-
tant metabolite in the gut–brain axis. In the present study, transcriptomic analysis of
brain tissue further revealed that air pollution exposure activated several neuro-related
pathways, particularly neuroactive ligand–receptor interactions, synaptic vesicle cycling,
and phospholipase D signaling pathways, which may be related to changes in membrane
fluidity and neuronal signal transmission. Notably, changes in the expression of Avpr1a
(vasopressin receptor 1A), Dgkk (diacylglycerol kinase K), and Agt (angiotensinogen) were
closely linked to glycerophospholipid metabolism. These genes may influence the stabil-
ity of brain cell membranes and neuronal signal transmission. Additionally, changes in
the expression of Gabrq (GABA receptor q subunit) and Chrna6 (nicotinic acetylcholine
receptor α6 subunit) could further affect neurotransmitter function and alter neuronal
signal transmission. In summary, our findings suggest that air pollution may disrupt brain
homeostasis and impair neural function by altering glycerophospholipid metabolism and
related signaling pathways, with the gut–brain axis playing a key role in this process.

Notably, significant alterations in the unsaturated fatty acid biosynthesis pathway
were also observed in the intestine, serum, and brain tissue in the present study. Mediation
analysis suggests that these changes in intestine and serum partially mediated the alter-
ations in brain lipids. Specifically, significant alterations in several fatty acids were observed
in the intestine, serum, and brain, including alpha-linolenic acid, gamma-linolenic acid,
DHA, oleic acid, palmitic acid, and arachidonic acid. These metabolites play crucial roles
in immune regulation, lipid balance, and neural health. For instance, DHA, alpha-linolenic
acid, and gamma-linolenic acid are involved in regulating inflammation and oxidative
stress [43–46]. Fatty acids are essential components of lipids, and changes in fatty acid
levels are closely linked to alterations in brain lipid metabolism. Also, transcriptomic
analysis further revealed changes in PPAR signaling pathways, linoleic acid metabolism,
and arachidonic acid metabolism in the intestine. Key differentially expressed genes, such
as Acaa1b (acetyl-CoA carboxylase 1B), which is critical for fatty acid synthesis, may affect
lipid metabolism and function in both the body and brain [47]. Additionally, Pla2g12b,
a member of the phospholipase A2 family involved in lipid metabolism, particularly in
the hydrolysis of phospholipids, may influence brain lipid metabolism by regulating lipid
distribution and transport [48]. Therefore, the biosynthesis of unsaturated fatty acids may
be an important pathway in the microbiome–gut–brain metabolic cross-talk.

The role of inflammation in neurological diseases has gained increasing attention, with
inflammation being a crucial component of the MGBA. Studies have shown that dysregula-
tion of the inflammatory response is closely associated with various neurological diseases,
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such as ASD, AD, and Parkinson’s disease (PD) [49]. This study found that growth-stage
exposure to air pollution significantly increased Leukotriene C4 levels in serum, a potent
pro-inflammatory mediator, suggesting that air pollution may trigger a systemic inflam-
matory response. Transcriptomic analysis of brain tissue revealed that exposure activated
several inflammation-related signaling pathways, including NOD-like receptor signaling.
Metabolomic analysis revealed significant changes in inflammation-related metabolites in
the intestine and serum of the exposed group, particularly DHA, alpha-linolenic acid, and
gamma-linolenic acid. The decrease in these anti-inflammatory omega-3 fatty acids may
weaken immune defense and contribute to the elevated systemic inflammation triggered
by air pollution [44,50]. Furthermore, mediation analysis suggests that Leukotriene C4 in
the serum mediates the effect of the key differential bacterium s_Bacteroides_caecimuris on
brain LysoPC levels. Therefore, the disruption of unsaturated fatty acid levels and systemic
inflammation induced by air pollution are closely related, potentially leading to brain lipid
dysregulation and neuroinflammation, further exacerbating neuronal damage.

This study reveals that exposure to air pollution during the growth stage in mice
leads to dysregulation of fatty acid metabolism, abnormal lipid metabolites, and inflamma-
tion in multiple organs (such as the intestine and brain), suggesting that environmental
factors may affect neurodevelopment by disrupting the MGBA. While fecal microbiome
transplantation shows potential for improving neurodevelopmental disorders like autism,
precise intervention strategies targeting specific strains or metabolic molecules are still
needed. Through multi-omics integration, the study identifies mechanisms by which the
gut microbiome, the intestine, and the brain interact through lipid metabolism to regulate
neurodevelopment, highlighting their potential as therapeutic targets.

This study has several strengths. First, a whole-body exposure system was used
to simulate real-time exposure conditions, offering a more realistic approximation of air
pollution exposure. Second, a multi-omics approach was employed to investigate the
effects of air pollution exposure during the growth stage on multiple organs and omics
in offspring, allowing for a more comprehensive analysis. However, several limitations
should be noted. First, as our exposure model simulates real-world conditions with air
pollution as a complex mixture, it is challenging to differentiate the effects of individual
pollutants, particularly PM2.5 and ozone. Second, this study only assessed changes in the
microbiome and host metabolites, along with their mediating relationships. Future studies
should explore more on the specific microbial strains affecting neurodamage through
metabolic pathways. Third, metabolite selection based solely on OPLS-DA VIP scores
(VIP > 1) and p-values (p < 0.05) may increase false-positive risks. Future studies should
consider refining the analytical approach to improve the reliability and robustness of results.
Fourth, further validation was not conducted using in vitro experiments with cell lines.
Future research is encouraged to validate our findings and to shed light on the relevant
molecular mechanisms.

5. Conclusions

In conclusion, our study demonstrates that growth-stage exposure to air pollution
induces neurodamage in mice, potentially via the crosstalk mechanism of the MGBA,
and dysregulation of multi-organ lipid metabolism, unsaturated fatty acid metabolism, and
systemic inflammation are the potential pathways involved. These findings provide novel
insights into the mechanisms underlying growth-stage air pollution-related neuronal damage.
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Abstract: Classified as endocrine disrupting chemicals (EDCs), perchlorate, nitrate, and
thiocyanate have been implicated with obesity and reproductive disorders. This study
used three cycles of the National Health and Nutrition Examination Survey (NHANES
2013–2018); 813 women of reproductive age were finally included. We used multivariable
logistic regression to analyze the associations between the three anions and obesity and in-
fertility. Subsequently, we performed mediation analysis to explore the potential mediating
effect of obesity on infertility in association with anion exposure. Increased concentrations
of perchlorate and nitrate showed inverse correlations with the risk of obesity (OR = 0.73,
95% CI: 0.55–0.96; OR = 0.59, 95% CI: 0.40–0.87). Perchlorate was negatively associated
with infertility (OR = 0.68, 95% CI: 0.51–0.91), and obesity was a mediator in association
between perchlorate and infertility. These findings suggest that women of reproductive age
may be protected from obesity and infertility by exposure to perchlorate and nitrate, with
obesity acting as a moderating factor in the observed association. This study provides a
valuable understanding of the complex links between environmental contaminants, obesity,
and reproductive health, and identifies potential strategies to reduce the risk of infertility
and improve women’s health.

Keywords: perchlorate; nitrate; thiocyanate; female infertility; obesity; mediation

1. Introduction

Female infertility, defined as the inability to achieve pregnancy after 12 months or
more of regular, unprotected sexual intercourse [1], influences 5.8% to 8.1% women in the
US, and is increasing year over year [2,3]. This condition not only profoundly impacts
women’s reproductive and cardiovascular health, but also exerts significant social and
psychological effects on individuals, families, and society, making it a critical public health
issue [4,5].

Obesity is defined by the World Health Organization (WHO) as having a body mass
index (BMI) greater than 30 kg/m2, a condition that affects approximately 800 million
people worldwide [6,7]. Obesity rates continue to rise globally every year [8]. About
42% adults in the US are identified as having obesity [9], with the prevalence among
women of reproductive age reaching 23% [10]. Obesity in women can lead to a number
of reproductive problems, including menstrual irregularities, endometrial abnormalities,
and infertility. Additionally, women with obesity are more susceptible to pregnancy
complications, including hypertension and gestational diabetes [11,12].

Toxics 2025, 13, 15 https://doi.org/10.3390/toxics13010015
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In the United States, perchlorate, thiocyanate, and nitrate in food and the environ-
ment are regulated by the Environmental Protection Agency (EPA) and the Food and
Drug Administration (FDA). Numerous studies have confirmed that perchlorate, nitrate,
and thiocyanate are common environmental endocrine disruptors with significant health
impacts [13–15]. Perchlorate is widely used in military and industrial sectors, including
aerospace, fireworks, and explosives, with environmental exposure mainly through contam-
inated food and drinking water [16]. Nitrate is widely used in agriculture and food preser-
vation, with dietary intake, particularly from contaminated leafy vegetables and processed
foods, being the primary source of exposure [17,18]. Thiocyanate, a cyanide metabolite, is
mainly found in cruciferous vegetables (such as broccoli and kale), leafy greens, and dairy
products, with tobacco exposure also being a major source [19,20]. Studies have empha-
sized that the levels of perchlorate, nitrate and thiocyanate in urine can serve as indicators
of previous bodily exposure [21]. These three anions are known to disrupt thyroid function
by competitively inhibiting iodine uptake at the sodium iodide symporter, thereby exerting
endocrine-disrupting effects [22,23]. Research indicated that endocrine disruption caused
by thyroid hormone dysfunction affects the hypothalamic–pituitary–ovarian (HPO) axis,
thereby influencing female reproduction [24]. Previous biomonitoring reports showed
higher exposure to perchlorate, nitrate, and thiocyanate in women. These reports under-
score the need for further investigation into the specific risks posed by these chemicals,
particularly in relation to reproductive health and endocrine function [25].

Previous studies have shown negative associations between urinary nitrate and obe-
sity, while thiocyanate showed the opposite effect [26]. Obesity can disrupt the HPO axis
through mechanisms such as insulin resistance and increased androgen production, po-
tentially leading to infertility and negatively affecting women’s reproductive capacity [27].
Based on these findings, we hypothesize that obesity may mediate the relationship be-
tween perchlorate, nitrate, thiocyanate, and infertility. Previous studies have confirmed
the association between these anions and the risk of metabolic disorders [28–32]; some
studies found that perchlorate was associated with increasing birthweight, while exposure
to the baby food and breastfed infants were not associated with adverse outcomes [33–35].
These studies suggest that perchlorate may have effects on reproductive health, but the
specific association remains unclear. Additionally, the extent to which obesity mediates this
association remains largely unexplored, requiring further investigation into the associations
between EDCs and obesity and infertility.

This cross-sectional study used data from the National Health and Nutrition Exami-
nation Survey (NHANES). We explored the association between perchlorate, nitrate, and
thiocyanate and obesity and infertility among women of reproductive age in the United
States. Additionally, we performed stratified analyses based on age, marital status, alcohol
consumption, and obesity to further investigate the relationship between exposure to these
endocrine disruptors and infertility. Finally, we performed mediation analysis to assess
the indicator effect of obesity in these associations, providing valuable epidemiological
insights for future mechanistic research.

2. Materials and Methods

2.1. Study Design

This cross-sectional study used data combined from three cycles of NHANES:
2013–2014, 2015–2016, and 2017–2018. Conducted by the National Center for Health
Statistics (NCHS) of the Centers for Disease Control and Prevention, NHANES employed
a complex multistage probability sampling design to select a representative sample of
the U.S. civilian, non-institutionalized population for assessing the health and nutritional
status of American children and adults. Participants provided multiple biological samples
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during physical examinations, including blood and urine, which were used to analyze
the associations between environmental exposures and health outcomes. The NHANES
protocol was reviewed and approved by the NCHS Research Ethics Review Board, all
participants signed informed written consent.

A total of 29,400 participants were included. Participants were excluded based on the
following criteria: (1) males (N = 14,452); (2) age under 20 or over 45 years (N = 11,093);
(3) participants who completed only the interview portion (N = 155); (4) pregnant or breast-
feeding women (N = 318); (5) history of hysterectomy (N = 140); (6) bilateral oophorectomy
(N = 1); (7) missing urinary perchlorate, nitrate, or thiocyanate measurements (N = 2197);
and (8) incomplete covariate or outcome data (N = 232). Finally, 813 participants were
included. Details are presented in Figure 1.

Figure 1. Flowchart for this study. NHANES, National Health and Nutrition Examination Survey;
PNT, perchlorate, nitrate, and thiocyanate.

2.2. Exposure Ascertainment

Trained survey personnel collected 250 mL random urine samples from participants
following standardized procedures outlined in the NHANES laboratory procedures man-
ual. The urine samples were initially processed and preserved under suitable conditions
(−20 ◦C or −30 ◦C). Perchlorate, nitrate, and thiocyanate concentrations in the urine
samples were quantified using ion chromatography and electrospray tandem mass spec-
trometry. Chromatographic separation was conducted with an IonPac AS16 column using
sodium hydroxide as the eluent. The detection limits (LOD) were 0.05 ng/mL for urinary
perchlorate, 700 ng/mL for urinary nitrate, and 20 ng/mL for urinary thiocyanate. Analyte
concentrations below the LOD were assigned a value of the square root of LOD/2. Further
methodological details are provided in the NHANES laboratory methods manual.

87



Toxics 2025, 13, 15

2.3. Outcome Ascertainment

Infertility was assessed using responses from two questions in reproductive health
questionnaire: (1) “Have you ever tried to get pregnant for at least a year without becoming
pregnant?” and (2) “Have you ever seen a doctor or other healthcare provider because you
were unable to get pregnant?” Individuals who answered “yes” to either question were
classified as having infertility, while those who answered “no” were assigned to the control
group. To ensure the accuracy and completeness of the data, participants who refused to
answer or were unsure were excluded from the analysis.

2.4. Mediator Ascertainment

Obesity may serve as a mediator in the association between perchlorate, nitrate,
thiocyanate, and infertility, and was therefore treated as a mediator variable in this study.
BMI data were collected through physical examinations, and calculated by dividing weight
(kg) by height squared (m2). According to WHO standards, participants with a BMI of
≥30 kg/m2 were classified as obese.

2.5. Covariates

The covariates included in the analysis included age (continuous variable), race/ethnicity
(non-Hispanic White, non-Hispanic Black, and Others), education level (less than high
school, high school or equivalent, and above high school), economic status (low, middle,
and high income), alcohol consumption (yes and no), smoking status (yes and no), marital
status (living alone and cohabitating), physical activity (sedentary, insufficient, moderate,
and high), diabetes (yes and no), hypertension (yes and no), regularity of menstrual cycles
(yes and no), use of contraceptive pills (yes and no), and use of female hormone medication
(yes and no).

Covariate information was gathered through interviews or questionnaires. Economic
status was categorized by the poverty–income ratio (PIR), PIR < 1.3 was considered poverty,
PIR 1.3–3.5 was considered normal, and PIR > 3.5 was considered wealthy. Consuming
more than 12 alcoholic drinks in the past year was considered alcohol consumption. Smok-
ing was characterized as having smoked more than 100 cigarettes. Marital status was
classified based on whether the participant lived with a partner; those who were married
or cohabitating were classified as cohabitating [36]. According to weekly leisure-time
metabolic equivalent (MET) minutes, physical activity was divided into four groups by 500
and 1000 min [37].

2.6. Statistical Analysis

General characteristics were presented as mean (standard deviation, SD), median
(interquartile range, IQR) or number (percentage) where appropriate. Continuous vari-
ables between groups were compared using the Student’s t-test and the Mann–Whitney
U test. Categorical variables were compared between the infertility and non-infertility
groups using Chi-square or Fisher’s exact tests. To adjust for differences in urine dilu-
tion, perchlorate, nitrate, and thiocyanate were adjusted for urinary creatinine prior to
analysis (urinary perchlorate: μg/g creatinine; urinary nitrate and thiocyanate: mg/g
creatinine) [23]. Creatinine-adjusted urinary perchlorate, nitrate, and thiocyanate were
log-transformed to normalize their distribution. We used Spearman correlation analysis to
assess the correlation between the three anions. The associations between three anions and
outcomes, as well as the odds ratios (OR) and corresponding 95% confidence intervals (95%
CI) were examined using multivariable logistic regression models. Several models were
established: In Model 1, we adjusted for age and race, we further adjusted demographic
factors such as education level and economic status in Model 2, and Model 3 additionally
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adjusted for diabetes, hypertension, menstrual cycle regularity, contraceptive use, and
use of female hormone medications. The analysis accounted for the complex, multistage
probability design of NHANES by incorporating appropriate sample weights, in accor-
dance with NHANES analytic guidelines. Stratified analyses were also performed based
on age (20–35, 36–45), marital status (living alone, cohabitating), alcohol consumption (yes
and no), and obesity (yes and no). Finally, we used the R package “lavaan” to perform
mediation analysis.

Additionally, we performed some sensitivity analyses to validate our findings. First,
we conducted multivariable logistic regression without applying NHANES weights (sensi-
tivity analysis i). Second, based on Model 3, we further adjusted for perchlorate, nitrate,
and thiocyanate simultaneously, in addition to the covariates already included in Model 3
(sensitivity analysis ii). Third, instead of adjusting analyte concentrations for creatinine,
we adjusted it as a covariate in Model 3 (sensitivity analysis iii). Fourth, participants
with missing covariate data were not excluded; instead, multiple imputation was used to
account for missing values (sensitivity analysis iv). Finally, we repeated the analysis after
excluding extreme values from the top and bottom 1% (sensitivity analysis v).

All data analyses were used R version 4.3.3, and a bilateral p-value of <0.05 was
regarded as indicative of statistical significance.

3. Results

3.1. Characteristics of Participants

Table 1 shows the baseline characteristics of the participants. A total of 813 reproductive-
aged women from the United States were included in this study, with 105 participants
(12.9%) diagnosed with infertility. Participants in the infertility group were older (p = 0.001),
with a higher proportion living alone (74.3%). The prevalence of obesity (60.0%), diabetes
(7.6%), and hypertension (24.8%) was similarly higher in infertility group. The three anions
were detected above the detection limit in more than 99% of participants. After adjusted
by urine creatine, perchlorate levels showed a statistically significant difference between
the infertility and control groups (p = 0.008). The three anions were significantly correlated
(p < 0.001); details are shown in Figure S1.

Table 1. Baseline characteristics of the participants.

Characteristics All Participants
Infertility Status p Value

Non Infertility Infertility
(N = 813) (N = 708) (N = 105)

Age [years, Mean (SD)] 33.0 (7.4) 32.7 (7.5) 35.1 (6.9) 0.001 a

Race/ethnicity [No. (%)] 0.417 c

White 281 (34.6) 248 (35.0) 33 (31.4)
Black 170 (20.9) 143 (20.2) 27 (25.7)
Others 362 (44.5) 317 (44.8) 45 (42.9)

Education level [No. (%)] 0.313 c

Less than high school 113 (13.9) 100 (14.1) 13 (12.4)
High school graduate or equivalent 163 (20.0) 147 (20.8) 16 (15.2)
Above high school 537 (66.1) 461 (65.1) 76 (72.4)

Marital status [No. (%)] <0.001 c

Living without partner 466 (57.3) 388 (54.8) 78 (74.3)
Married/living with partner 347 (42.7) 320 (45.2) 27 (25.7)

Economic status [No. (%)] 0.700 c

Poverty 285 (35.1) 247 (34.9) 38 (36.2)
Normal 300 (36.9) 265 (37.4) 35 (33.3)
Wealthy 228 (28.0) 196 (27.7) 32 (30.5)
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Table 1. Cont.

Characteristics All Participants
Infertility Status p Value

Non Infertility Infertility
(N = 813) (N = 708) (N = 105)

Alcohol consumption [No. (%)] 0.669 c

No 306 (37.6) 264 (37.3) 42 (40.0)
Yes 507 (62.4) 444 (62.7) 63 (60.0)

Smoke status [No. (%)] 0.467 c

No 563 (69.2) 494 (69.8) 69 (65.7)
Yes 250 (30.8) 214 (30.2) 36 (34.3)

Physical activity [No. (%)] 0.686 c

Sedentary 348 (42.8) 299 (42.2) 49 (46.7)
Insufficient 119 (14.6) 102 (14.4) 17 (16.2)
Moderate 93 (11.4) 82 (11.6) 11 (10.5)
High 253 (31.1) 225 (31.8) 28 (26.7)

Obesity [No. (%)] <0.001 c

No 471 (57.9) 429 (60.6) 42 (40.0)
Yes 342 (42.1) 279 (39.4) 63 (60.0)

Diabetes [No. (%)] 0.045 c

No 783 (96.3) 686 (96.9) 97 (92.4)
Yes 30 (3.7) 22 (3.1) 8 (7.6)

Hypertension [No. (%)] 0.002 c

No 697 (85.7) 618 (87.3) 79 (75.2)
Yes 116 (14.3) 90 (12.7) 26 (24.8)

Menstrual cycle regularity [No. (%)] 0.197 c

No 743 (91.4) 651 (91.9) 92 (87.6)
Yes 70 (8.6) 57 (8.1) 13 (12.4)

Contraceptive pills [No. (%)] 0.330 c

No 238 (29.3) 212 (29.9) 26 (24.8)
Yes 575 (70.7) 496 (70.1) 79 (75.2)

Female hormones [No. (%)] 0.378 c

No 786 (96.7) 686 (96.9) 100 (95.2)
Yes 27 (3.3) 22 (3.1) 5 (4.8)

Urine Perchlorate [ug/g Cr, median
(IQR)] 2.45 (1.54, 4.09) 2.52 (1.56, 4.32) 2.07 (1.30, 3.52) 0.008 b

Urine Nitrate [mg/g Cr, median (IQR)] 45.77 (34.43, 67.56) 46.08 (34.24, 67.36) 45.51 (35.90, 72.44) 0.918 b

Urine Thiocyanate [mg/g Cr, median
(IQR)] 1.18 (0.63, 2.42) 1.19 (0.62, 2.43) 1.10 (0.65, 2.40) 0.988 b

Abbreviation: Cr: creatinine. a: Student’s t-test was used for normally distributed continuous variables. b: Mann–
Whitney U test was used for the skewed variables. c: Chi-square test was used for categorical variables.

3.2. Associations Between Perchlorate, Nitrate, and Thiocyanate Exposures and Obesity

The association between the three anions and obesity are summarized in Table 2. In
Model 1, both urinary perchlorate (OR = 0.70; 95% CI: 0.53, 0.93; p = 0.017) and urinary
nitrate (OR = 0.60; 95% CI: 0.40, 0.90; p = 0.018) were negatively associated with obesity for
each unit increase in ln-transformed concentrations. Participants in the highest quartile
of perchlorate and nitrate had a lower risk of obesity than the lowest quartile (perchlorate
OR = 0.50; 95% CI: 0.27, 0.91; p = 0.028; nitrate OR = 0.45; 95% CI: 0.24, 0.84; p = 0.018).
After adjusting for covariates in Models 2 and 3, the associations of perchlorate and nitrate
with a reduced risk of obesity remained statistically significant. However, we did not find
any significant association between thiocyanate and obesity in this study.
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Table 2. Associations between perchlorate, nitrate, and thiocyanate exposures and obesity.

Exposures
Ln-Transformed Q1 OR (95% CI) Q2 OR (95% CI) Q3 OR (95% CI) Q4 OR (95% CI) p Trend
OR (95% CI), p Value p Value p Value p Value p Value

Perchlorate Model 1 0.70 (0.53–0.93) 1 [Reference] 0.87 (0.50–1.51) 0.66 (0.38–1.15) 0.50 (0.27–0.91) 0.016
0.017 Ref. 0.620 0.152 0.028

Model 2 0.73 (0.55–0.96) 1 [Reference] 0.88 (0.51–1.54) 0.72 (0.41–1.27) 0.53 (0.30–0.96) 0.032
0.031 Ref. 0.660 0.266 0.045

Model 3 0.73 (0.55–0.96) 1 [Reference] 0.86 (0.50–1.48) 0.74 (0.42–1.29) 0.54 (0.30–0.96) 0.037
0.032 Ref. 0.598 0.295 0.045

Nitrate Model 1 0.60 (0.40–0.90) 1 [Reference] 0.83 (0.48–1.47) 0.85 (0.48–1.52) 0.45 (0.24–0.84) 0.016
0.018 Ref. 0.533 0.597 0.018

Model 2 0.61 (0.40–0.92) 1 [Reference] 0.85 (0.51–1.40) 0.93 (0.55–1.56) 0.46 (0.24–0.86) 0.023
0.024 Ref. 0.525 0.775 0.020

Model 3 0.59 (0.40–0.87) 1 [Reference] 0.88 (0.55–1.42) 1.00 (0.58–1.71) 0.45 (0.24–0.83) 0.029
0.013 Ref. 0.610 0.999 0.016

Thiocyanate Model 1 1.01 (0.86–1.20) 1 [Reference] 0.84 (0.55–1.30) 0.74 (0.42–1.29) 1.10 (0.67–1.80) 0.799
0.880 Ref. 0.445 0.296 0.716

Model 2 0.91 (0.77–1.07) 1 [Reference] 0.87 (0.57–1.34) 0.82 (0.47–1.42) 0.88 (0.55–1.39) 0.526
0.268 Ref. 0.539 0.478 0.582

Model 3 0.92 (0.77–1.11) 1 [Reference] 0.90 (0.59–1.37) 0.82 (0.46–1.46) 0.92 (0.56–1.51) 0.646
0.398 Ref. 0.630 0.515 0.741

Abbreviation: OR: odds ratio, CI: confidence intervals; Q: quartile. Model 1 was adjusted for age and race. Model
2 further controlled for education level, marital status, economic status, alcohol consumption, smoke status, and
physical activity. Model 3 further controlled for diabetes, hypertension, menstrual cycle regularity, contraceptive
pills, and female hormones.

3.3. Associations Between Perchlorate, Nitrate, and Thiocyanate Exposures and Infertility

Table 3 presents the association between the three anions and infertility. In Model 1,
each unit increase in urinary perchlorate (ln-transformed) was negatively associated with
infertility (OR = 0.66; 95% CI: 0.50, 0.88; p = 0.007). Participants in the highest quartile of
perchlorate had a significantly lower risk of infertility than the lowest quartile (OR = 0.46;
95% CI: 0.23, 0.94; p = 0.040). After adjusting for demographic factors, perchlorate remained
negatively associated with infertility, both for each unit increase and for the highest quartile
concentration. In the Model 3, each unit increase in log-transformed urinary perchlorate
remained significantly associated with infertility (OR = 0.68; 95% CI: 0.51, 0.91; p = 0.016),
and the highest quartile had a lower risk of infertility (OR = 0.45; 95% CI: 0.23, 0.90;
p = 0.034), with a linear trend observed (p = 0.013). Results were largely consistent with the
main analysis in sensitivity analyses (Table S1).

Figure 2 shows the results of subgroup analysis. Higher levels of perchlorate were
negatively associated with infertility in most subgroups, consistent with the primary
findings. Specifically, each unit increase in perchlorate was associated with a lower risk of
infertility in the 36–45 age group (OR = 0.51; 95% CI: 0.31, 0.82; p = 0.012), the cohabitating
group (OR = 0.60; 95% CI: 0.41, 0.87; p = 0.013), the middle-income group (OR = 0.61; 95%
CI: 0.39, 0.95; p = 0.039), the alcohol consumption group (OR = 0.60; 95% CI: 0.43, 0.85;
p = 0.008), the smoking group (OR = 0.63; 95% CI: 0.41, 0.96; p = 0.043), and the non-obese
group (OR = 0.50; 95% CI: 0.33, 0.75; p = 0.003).

Table 3. Associations between perchlorate, nitrate, and thiocyanate exposures and infertility.

Exposure
Ln-Transformed Q1 OR (95% CI) Q2 OR (95% CI) Q3 OR (95% CI) Q4 OR (95% CI) p Trend
OR (95% CI), p Value p Value p Value p Value p Value

Perchlorate Model 1 0.66 (0.50–0.88) 1 [Reference] 1.23 (0.61–2.47) 0.86 (0.43–1.72) 0.46 (0.23–0.94) 0.015
0.007 Ref. 0.571 0.678 0.040

Model 2 0.65 (0.48–0.86) 1 [Reference] 1.34 (0.67–2.69) 0.85 (0.42–1.73) 0.46 (0.22–0.94) 0.015
0.006 Ref. 0.420 0.655 0.042

Model 3 0.68 (0.51–0.91) 1 [Reference] 1.32 (0.64–2.72) 0.85 (0.42–1.72) 0.45 (0.23–0.90) 0.013
0.016 Ref. 0.453 0.653 0.034
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Table 3. Cont.

Exposure
Ln-Transformed Q1 OR (95% CI) Q2 OR (95% CI) Q3 OR (95% CI) Q4 OR (95% CI) p Trend
OR (95% CI), p Value p Value p Value p Value p Value

Nitrate Model 1 0.97 (0.67–1.39) 1 [Reference] 1.31 (0.63–2.69) 0.80 (0.40–1.59) 1.03 (0.48–2.20) 0.763
0.858 Ref. 0.476 0.526 0.944

Model 2 0.91 (0.63–1.32) 1 [Reference] 1.21 (0.59–2.47) 0.72 (0.36–1.43) 0.86 (0.40–1.85) 0.455
0.627 Ref. 0.606 0.350 0.699

Model 3 1.02 (0.68–1.53) 1 [Reference] 1.26 (0.62–2.56) 0.78 (0.40–1.53) 1.02 (0.43–2.41) 0.796
0.930 Ref. 0.534 0.471 0.973

Thiocyanate Model 1 0.95 (0.77–1.17) 1 [Reference] 1.48 (0.68–3.21) 0.98 (0.49–1.97) 0.91 (0.46–1.79) 0.410
0.610 Ref. 0.330 0.954 0.784

Model 2 0.85 (0.67–1.07) 1 [Reference] 1.32 (0.62–2.82) 0.84 (0.42–1.68) 0.62 (0.31–1.22) 0.089
0.177 Ref. 0.484 0.624 0.174

Model 3 0.88 (0.67–1.16) 1 [Reference] 1.54 (0.69–3.46) 0.89 (0.42–1.89) 0.70 (0.33–1.47) 0.188
0.372 Ref. 0.301 0.765 0.353

Abbreviation: OR: odds ratio, CI: confidence intervals; Q: quartile. Model 1 was adjusted for age and race. Model
2 further controlled for education level, marital status, economic status, alcohol consumption, smoke status, and
physical activity. Model 3 further controlled for diabetes, hypertension, menstrual cycle regularity, contraceptive
pills, and female hormones.

Figure 2. Subgroup analysis of three anions and infertility. Models were adjusted for age (con-
tinuous variable), education level, marital status, economic status, alcohol consumption, smoke
status, physical activity, diabetes, hypertension, menstrual cycle regularity, contraceptive pills, and
female hormones.

3.4. Mediation Analysis for Association of Perchlorate with Infertility

Figure 3 presents the results of mediation analyses. As shown in Figure 3, perchlorate
was negatively associated with infertility (total effect: −0.042; 95% CI: −0.057, −0.027;
p = 0.004). Obesity was identified as a significant mediator in this association, accounting
for 19.28% of the mediating effect (mediation effect: −0.008; 95% CI: −0.011, −0.005;
p = 0.005).
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Figure 3. Mediation analysis for associations between perchlorate and infertility. Model was adjusted
for age (continuous variable), education level, marital status, economic status, alcohol consumption,
smoke status, physical activity, diabetes, hypertension, menstrual cycle regularity, contraceptive pills,
and female hormones.

4. Discussion

This study investigated the associations of perchlorate, nitrate, and thiocyanate with
obesity and infertility in women of reproductive age, as well as the role of obesity as
a mediator in the association between perchlorate and infertility. Our results suggest
that perchlorate and nitrate were negatively associated with obesity, and perchlorate
was also negatively associated with infertility. Mediation analysis further showed that
obesity mediated the association between perchlorate and infertility, with a mediation
effect of 19.28%.

We found that exposure to perchlorate and nitrate was negatively associated with
obesity in women of reproductive age, consistent with findings from previous studies
conducted in US adults and children [34,38]. Similarly, other research has reported that
perchlorate, nitrate, and thiocyanate was associated with lower waist circumference and
BMI in girls [39]. One study found an interesting result that perchlorate was negatively
associated with LDL-C elevation [40]. Another study found that perchlorate and thio-
cyanate were associated with metabolic syndrome, which is contrary to the results of this
study [13]. However, the causal relationship between these anions and obesity in women
remains unclear, with thyroid function being a possible underlying mechanism. Thyroid
hormones regulate many cellular processes involved in resting energy expenditure and
basal metabolism [41], and can influence both the total amount and distribution of adipose
tissue [42]. Current evidence indicates that higher exposures to perchlorate and nitrate
are associated with elevated serum thyroid-stimulating hormone (TSH) levels and lower
serum thyroid hormone (TH) levels [23,43]. Additionally, elevated perchlorate levels have
been associated with increased sensitivity to central thyroid hormones [44]. Nevertheless,
it remains uncertain whether changes in TSH or other thyroid hormones are a cause or
consequence of obesity.

We also found that perchlorate was negatively associated with infertility in reproductive-
aged women, an effect that may be mediated though thyroid function. Thyroid disease is a
common endocrine disorder for reproductive-aged women [45], and affects female repro-
ductive health in several ways, including modulating the HPO axis, regulating the effects
of prolactin and leptin on gonadotropin-releasing hormone (GnRH), and altering binding
proteins that affect the bioavailability of sex steroids [24,46–49]. In the 1950s, perchlorate
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was widely used as a treatment for thyroid dysfunction [50–52]. Perchlorate can inhibit the
thyroid gland’s ability to take up iodine, which is used to normalize thyroid function in
patients with hypothyroidism [53], and has also been used to treat hyperthyroidism [54].
Thus, perchlorate exposure may reduce the risk of infertility by improving thyroid function.
The mechanisms by which perchlorate influences infertility are likely to be complex, with
obesity potentially playing a critical role in reducing infertility risk. Obesity can adversely
affect female reproductive health by disrupting the HPO axis and promoting ovarian an-
drogen production [35,55]. Our study identified a significant mediating effect of obesity
in the relationship between perchlorate exposure and infertility, suggesting that obesity
management may be a key pathway through which perchlorate exposure helps to reduce
the risk of infertility.

Our study has several strengths. First, to our knowledge, this is the first study to
investigate the association between exposure to perchlorate, nitrate, and thiocyanate and
obesity among reproductive-aged women. Second, it is also the first to investigate the
association between these three anions and female infertility. Third, by considering obesity
as a mediating variable in the association between these anions and infertility, we offer
a novel perspective on infertility treatment strategies. However, this study has some
limitations. First, the cross-sectional design of the NHANES data limits our ability to
establish causal relationships between the three anions, obesity, and infertility. Second,
exposures were assessed using a single urine sample, which may not fully capture the
participants’ true exposure levels over time. However, the single-spot urine samples of these
anions have shown considerable temporal reliability, making their urine concentrations
reliable biomarkers [56,57]. Finally, although we adjusted for several infertility-related risk
factors, residual confounding by unmeasured variables may still be present.

5. Conclusions

In conclusion, our study found negative associations between perchlorate and nitrate
and obesity in women of reproductive age in the US, as well as a negative association
between perchlorate and infertility. The inverse association between perchlorate and
infertility appears to be mediated by obesity. These findings provide new insights into the
health risk assessment of perchlorate, nitrate, and thiocyanate exposure, while offering a
novel perspective on strategies for managing female infertility. Further research is needed
to confirm these findings and to elucidate the underlying mechanisms.
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Abstract: Background: Folate is critical for many physiological processes, and low fo-
late levels have been associated with a wide range of health outcomes, including chronic
diseases and developmental outcomes. Many environmental chemicals are suspected
to contribute to the etiology of health outcomes related to folate deficiency. However,
little is known about how these pollutants influence folate levels as potential mechanistic
pathways. Objective: To investigate the individual and joint associations between a mix-
ture of 39 pollutants and red blood cell (RBC) folate concentrations in the U.S. population.
Methods: We used available data on 27,938 participants, aged 18–80 from the U.S. National
Health and Nutrition Examination survey (2007–2016), with available RBC folate concen-
trations and 39 environmental pollutants’ concentrations. We estimated covariate-adjusted
independent and joint associations between environmental pollutants and RBC folate,
and compared evidence from two complimentary mixture approaches: exposome-wide
association study (ExWAS) and quantile-based g computation (Q-gcomp). Results: In the
ExWAS analysis, 12 environmental chemicals, including metals (cadmium, arsenic, lead,
and mercury), perfluoroalkyl substances, phthalates, phenols and parabens, and polycyclic
aromatic hydrocarbons, were inversely associated with RBC folate, whereas four environ-
mental pollutants, including metals (manganese and selenium) and two phthalate metabo-
lites, were positively associated with RBC folate. Q-gcomp showed convergent results
with the ExWAS analysis; a quartile increase in the metal and PFAS mixtures was signifi-
cantly associated with a decrease of −38.4 ng/mL (95%CI: −52.3, −24.4) and −48.9 ng/mL
(95%CI: −57.6, −39.6) in RBC folate concentrations, respectively. Conclusion: The present
study shows that higher exposure to PFASs, metals, and PAHs are associated with lower
RBC folate concentrations. However, given the cross-sectional design, we cannot make
inferences about the directionality of the observed associations.

Keywords: folate; pollutants; NHANES; mixtures; metals; PFAS; EDCs; PAHs
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1. Introduction

Folate is the generic term for naturally occurring folate forms in foods, and folic acid,
also known as vitamin B9 or Vitamin M, is the synthetic form of folate used for dietary
supplements and fortified foods. Folate is vital in humans for several metabolic reac-
tions involved in the formation and transfer of methyl groups. These metabolic reactions
in humans include the following: biosynthesis of purines and thymidine, amino acid
homeostasis of glycine, serine, and methionine, epigenetic maintenance, homocysteine
remethylation, hematopoiesis, and immune responses [1,2]. Folate deficiency has been
linked to anemia [1,2] and hyperhomocystinemia [3], which has been associated with
increased cardiovascular, cerebrovascular, and thromboembolic diseases. There is also
epidemiologic evidence to sμggest folate is inversely associated with various cancers in-
cluding lung, oropharynx, esophagus, stomach, colorectal, pancreas, cervix, ovary, prostate,
and breast cancers, as well as leukemia [4–6]. Additionally, low folate levels have been
associated with a range of developmental outcomes, including autism, neural tube defects,
neurodevelopment, still birth, preterm birth, and recurrent pregnancy loss [7–16]. A recent
NHANES biomonitoring study sμggested that, althoμgh blood folate concentrations in the
US population have not decreased recently, the prevalence of folate insufficiency is about
20% in the US population [7].

There are both modifiable and non-modifiable factors associated with low folate levels.
Established modifiable factors affecting folate levels include intake of certain medications,
alcohol use, smoking, and dietary intake of folic acid supplements [17–20]. On the other
hand, single nucleotide polymorphisms in certain genes are genetic, non-modifiable risk
factors that affect folate levels. These include SNPs in 5,10-methylenetertahydrofolate, and
other genes responsible for the metabolism of vitamins, as well as mutations in solute
carrier family 46 member 1 (SLC46A1), a gene responsible for folate transport [21].

Recently, exposure to environmental chemicals has been sμggested as a potential
modifiable risk factor for low folate levels. Environmental chemicals refer to chemicals that
are present in air, water, food, soil, dust, or other environmental media such as consumer
products [15]. These chemicals are often ubiquitous in the environment, and some may
persist for several years. Many of these chemicals had limited testing for their effects on
human health and even less is known about the combined exposure to many environmental
chemicals [22].

The objective of this study is to investigate the associations between individual chem-
icals, chemical mixtures, and red blood cell (RBC) folate levels among the U.S. adult
population using available data from the National Health and Nutrition Examination
Survey (NHANES; 2007–2016). We compared evidence from two complimentary statistical
approaches developed to examine chemical mixtures: exposome-wide association study
(ExWAS) and a quantile-based g computation (Q-gcomp).

2. Methods

2.1. Population and Data Collection

The National Health and Nutrition Examination Survey (NHANES) is a cross-sectional,
nationwide study designed for the assessment of the health and nutritional status of
noninstitutionalized adults and children in the United States, conducted by the Centers for
Disease Control and Prevention (CDC). Questionnaires were administered by study staff at
an in-home visit and biological specimens were collected at mobile examination centers
(MEC) [23].

This analysis included 27,938 NHANES participants aged 18 years and older. All
measures of environmental chemicals and RBC folate concentrations were conducted as
part of the NHANES program at the CDC, and laboratory methods for blood and urine
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samples have been described thoroμghly at: https://wwwn.cdc.gov/nchs/nhanes/search/
datapage.aspx?Component=Laboratory (accessed 1 December 2018). All the data used in
this analysis are available at the CDC website and were extracted from the following link:
https://wwwn.cdc.gov/nchs/nhanes/Default.aspx (accessed 1 December 2018).

2.2. RBC Folate Measurement

RBC folate was processed, stored, and shipped to the Division of Laboratory Sciences,
National Center for Environmental Health, and Centers for Disease Control and Prevention
for analysis. RBC folate concentrations were measured using a microbiological assay, which
was described in detail elsewhere [24].

2.3. Assessment of Environmental Exposure Biomarkers

We included six environmental chemical families in this analysis: phthalates, heavy
metals, per- and polyfluoroalkyl substances (PFASs), phenols and parabens, polyaromatic
hydrocarbons (PAHs), and cotinine. These environmental chemical families included
39 environmental chemical biomarkers and metabolites. Phthalates, arsenic, phenols and
parabens, and PAHs were measured in urine samples collected at mobile examination
centers (MECs) [23]. PFASs and cotinine were measured in serum samples collected at
MECs, whereas metals were measured in whole blood samples.

2.4. Phthalates (ng/mL)

Measures of urinary phthalate metabolites were performed in a subsample com-
prising one-third of the participants in all the included cycles. There were 11 phthalate
metabolites included in this study: Mono (carboxyisoctyl) phthalate (MCOP), Mono-
2-ethyl-5-carboxypentyl phthalate (MECPP), Mono-n-butyl phthalate (MBP), Mono-
(3-carboxypropyl) phthalate (MCPP), Mono-ethyl phthalate (MEP), Mono-(2-ethyl-5-
hydroxyhexyl) phthalate (MEHHP), Mono-(2-ethyl)-hexyl phthalate (MEHP), Mono-
isobutyl phthalate (MiBP), Mono-isononyl phthalate (MNP), Mono-(2-ethyl-5-oxohexyl)
phthalate (MEOHP), and Mono-benzyl phthalate (MBzP). Urine samples for the quan-
tification of phthalate metabolites were stored at −20 ◦C until they arrived at the
National Center for Environmental Health for testing. They were quantified using
high performance liquid chromatography–electrospray ionization–tandem mass spec-
trometry (HPLC-ESI-MS/MS). The percentage coefficient of variation (CV) for phtha-
lates ranged from 1.5% to 18.9%. There was a range in limits of detection (MCOP:
0.2–0.7 ng/mL; MECPP: 0.2–0.5 ng/mL; MBP: 0.4–0.6 ng/mL; MCPP: 0.2–0.4 ng/mL; MEP:
0.462–1.2 ng/mL; MEHHP: 0.2–0.7 ng/mL; MEHP: 0.5–1.1 ng/mL; MiBP: 0.2–0.8 ng/mL;
MNP: 0.5–1.232 ng/mL; MEOHP: 0.2–0.6 ng/mL; MBzP: 0.2–0.3 ng/mL) based on the
NHANES cycle.

2.5. Heavy Metals

Blood metals were measured in all participants in all cycles, whereas urine metals
were determined only in subsamples of participants in all cycles. Heavy metals measured
in blood included cadmium (μg/L), lead (μg/dL), manganese (μg/L), mercury (μg/L),
and selenium (μg/L). Blood samples for the quantification of heavy metals were stored
at −30 ◦C until they arrived at the National Center for Environmental Health for testing.
Samples of total urinary arsenic samples (μg/L) were stored at −30 ◦C until they arrived
at the National Center for Environmental Health for testing. They were quantified using
inductively coupled plasma-mass spectrometry (ICP-MS). The percent CV for metals
ranged from 1.2% to 11.3%. There was a range in the limits of detection (cadmium: 0.10–
0.28 μg/L; lead: 0.07–0.37 μg/dL; manganese: 0.99–1.06 μg/dL; mercury: 0.16–0.325 μg/dL;
selenium: 24.48–30.0 μg/dL; arsenic: 0.26–1.25 μg/dL) based on the NHANES cycle.
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2.6. PFAS (ng/mL)

Measures of serum PFAS compounds were performed in a one third subsample of par-
ticipants in all the included cycles. There were 7 PFAS compounds included in this study:
Perfluorooctanoic acid (PFOA), Perfluorooctane sulfonic acid (PFOS), Perfluorononanoic
acid (PFNA), Perfluoroundecanoic acid (PFUA), Perfluorohexane sulfonic acid (PFHxS),
Perfluorodecanoic acid (PFDeA), and 2-(N-methylperfluoroctanesulfonamido)acetic acid
(Me-PFOSA-AcOH). Serum samples for the quantification of PFASs were stored at −30 ◦C
until they arrived at the National Center for Environmental Health for testing. They
were quantified using solid phase extraction coupled with high performance liquid
chromatography–turbo ion spray ionization–tandem mass spectrometry (on-line SPE-
HPLC-TIS-MS/MS). The percent CV for PFASs ranged from 8.6% to 12.8%. There was a
range of the limits of detection (PFDeA: 0.1–0.2 ng/mL; Me-PFOSA-AcOH: 0.09–0.2 ng/mL;
PFNA: 0.08–0.1 ng/mL; PFUA: 0.1–0.2 ng/mL; PFOS: 0.1–0.2 ng/mL) based on NHANES
cycle. The limit of detection for PFHxS and PFOA was 0.1 ng/mL for all NHANES cycles.

2.7. Phenols and Parabens (ng/mL)

Measures of urinary phenols and parabens were performed in a one third subsample
of participants in all the included cycles. There were two phenols and 3 parabens measured
in this study: bisphenol A (BPA), triclosan, methyl paraben (MBP), butyl paraben (BPB),
and propyl paraben (PBP). Urine samples for the quantification of phenols and parabens
were stored at −20 ◦C until they arrived at the National Center for Environmental Health
for testing. They were quantified using on-line solid phase extraction coupled with high
performance liquid chromatography and tandem mass spectrometry (on-line SPE-HPLC-
MS/MS). The percent CV for phenols and parabens ranged from 2.3% to 13.5%. There was
a range of the limits of detection (BPA: 0.2–0.4 ng/mL; Triclosan: 1.7–02.3 ng/mL; butyl
paraben: 0.1–0.2 ng/mL; propyl paraben: 0.1–0.2 ng/mL) based on NHANES cycle. The
limit of detection for methyl paraben was 1.0 ng/mL for all NHANES cycles.

2.8. PAH (ng/L)

Measures of urinary phthalate metabolites were performed in a subsample of one
third of the participants in four cycles (2007–2014) and were not performed in the last
cycle (2015–2016). There were 10 PAHs measured in this study: 1-hydroxynaphthalene,
2-hydroxynaphthalene, 3-hydroxyfluorene, 2-hydroxyfluorene, 3-hydroxyphenanthrene, 1-
hydroxyphenanthrene, 2-hydroxyphenanthrene, 1-hydroxypyrene, 9-hydroxyfluorene, and
4-phenanthrene. Urine samples for the quantification of PAH were stored at −20 ◦C un-
til they arrived at the National Center for Environmental Health for testing. They were
quantified using on-line SPE-HPLC-MS/MS. The percent CV for PAHs ranged from 2.1%
to 13%. There was a range of the limits of detection (1-hydroxynaphthalene: 44.0–60.0 ng/L;
2-hydroxynaphthalene: 42.0–90.0 ng/L; 3-hydroxyfluorene: 4.95–10.0 ng/L; 2-hydroxyfluorene:
8.0–10.041 ng/L; 3-hydroxyphenanthrene: 4.95–10.0 ng/L; 1-hydroxyphenanthrene:
7.778–10.0 ng/L; 2-hydroxyphenanthrene: 4.95–10.0 ng/L; 1-hydroxypyrene: 4.95–70.0 ng/L;
9-hydroxyfluorene: 10.0–18.243 ng/L) based on the NHANES cycle.

2.9. Cotinine (ng/mL)

Samples of serum cotinine were stored at −20 ◦C until they arrived at the National
Center for Environmental Health for testing. Cotinine was measured by isotope-dilution
high-performance liquid chromatography/atmospheric pressure chemical ionization tan-
dem mass spectrometric (ID HPLC-ACPI MS/MS) method. The percent CV for cotinine
ranged from 4% to 40.6%. The limit of detection for serum cotinine was 0.015 ng/mL for all
NHANES cycles.
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3. Covariates

All data on covariates was extracted from the CDC/NHANES website. We identified
potential confounders that were associated with environmental chemicals and RBC folate
from prior research. Questionnaire data were collected for participants’ sex, age, race,
education, and family poverty-to-income ratio (FPR: family’s income divided by the poverty
level threshold for the family size and the survey year; a FPR of 1 indicates a family income
at 100% of the federal poverty level) at the in-home visit. Urinary creatinine (mg/dL) was
assessed from laboratory data and log2-transformed for analyses to address skewness and
limit the influence of outliers. The healthy eating index (HEI) was also calculated from 24 h
dietary recall interviews at the MECs, and was included as a proxy for dietary patterns that
may influence both chemical concentrations and RBC folate. The HEI measures overall diet
quality based on adherence to the Dietary Guidelines for Americans and is validated in the
U.S. population. It consists of adequacy components (total fruits, whole fruits, vegetables,
greens/beans, whole grains, dairy, protein foods, seafood/plant proteins, fatty acids)
and moderation components (refined grains, sodium, added sμgars, saturated fats). The
100-point scale assigns a higher score for better quality of overall diet. Finally, NHANES
cycle was also included in all models to account for secular trends in both RBC folate levels
and environmental chemical concentrations. Final models therefore included the following
confounders: age, sex, race, education, FPR, urinary creatinine, HEI, and NHANES cycle.

4. Statistical Methods

We described distributions of adult sociodemographic characteristics using frequen-
cies and percentages for categorical variables and mean with an accompanying standard
deviation for continuous variables. The sample size, percent below the limit of detection
(LOD), geometric mean, geometric standard error, interquartile range, and maximum val-
ues for each chemical, as well as RBC folate were calculated and presented in descriptive
analyses. Environmental chemical concentrations were log2-transformed and the influence
of outliers was limited. Additionally, values below the limit of detection were replaced by
the limit of detection divided by the square root of 2.

We conducted descriptive analyses to compare RBC folate concentrations by adult
sociodemographic characteristics using Student’s t test or One-way Analysis of Variance
(ANOVA) (with Tukey’s test for each category) depending on the number of categories for
each sociodemographic characteristic. We calculated the Pearson correlation coefficients
for the correlations between different chemicals and between chemicals and RBC folate.

To investigate the individual and joint associations between chemicals and RBC folate,
we used two complimentary methods that can consider multiple correlated exposures in
the context of environmental health studies: exposome-wide association study (ExWAS)
and quantile-based g computation (Q-gcomp).

ExWAS addresses potential issues with type 1 error rate due to multiple comparisons;
this method corrects for multiplicity by performing traditional linear regression and apply-
ing a threshold for effective tests (TEF) for significance testing [25,26]. The TEF is calculated
based on the number of exposures and applies a Bonferroni correction based on the number
of exposures.

As a complementary analysis, we used Q-gcomp to investigate the joint associations
of multiple chemicals with RBC folate. This method does not assume linearity or additivity,
and it does not assume that all components of the mixture have the same direction of
effect [27]. We ran Q-gcomp analyses separately for the different families of pollutants,
metals, PFASs, phthalates, PAHs, and phenols and parabens.

Because each NHANES cycle contains different amounts of missing data for each
chemical, and not all chemicals were measured for all NHANES cycles, our dataset
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contained missing values for chemicals during the NHANES cycles, as they were not
collected or because some chemical families, such as phthalates, phenols and parabens,
PFASs, and PAHs were only measured in a subset of participants. To assess the impact
of missing values on our study, we conducted a sensitivity analysis using multivariable
imputation by chained equations (MICE). MICE is an imputation method that creates
multiple imputed datasets to generate more accurate standard error values when using
simulated datasets [28]. Based on previous research and imputation guidelines, we gen-
erated 70 imputed datasets [28]. We used the Rubin’s rule to combine the results from
the 70 imputed datasets for the ExWAS and Q-gcomp analyses [29]. All statistical analy-
ses were conducted using R version 3.5.2. (R Core Team, Vienna, Austria, 2018), and SAS
version 9.4 (SAS Institute, Inc, Cary, NC, USA).

5. Results

NHANES participants in our sample were predominantly male (48.7%), non-Hispanic
white (41.5%), had some college or an associate in arts degree (28.90%), and had not
smoked in the past 30 days (79.5%), (Table 1). The geometric mean urinary creatinine
concentration was 98.94 (GSD: 2.09) mg/dL, and the average FPR was 2.44 (SD: 1.63).
The geometric mean RBC folate concentration was 515.7 ng/mL (geometric standard
deviation (GSD) = 243.7 ng/mL). The mean age was 48 (SD: 18.48) years old. RBC folate
concentrations were higher among females, participants aged 65 years and older, non-
Hispanic whites, participants that had at least a college degree, those who have not smoked
in the past 30 days, participants in the highest family income-to-poverty ratio, participants
in the lowest quartile of urinary creatinine values, and in the highest quartile of the HEI
(Table 1). Geometric mean concentrations and the distribution of phthalates, metals, PFASs,
PAHs, and phenols and parabens, are displayed in Table 2.

Table 1. Mean concentrations of red blood cell (RBC) folate according to participants characteristics
(NHANES; 2007–2016). Abbreviations: standard deviation (SD); family income-to-poverty ratio (FPR);
healthy eating index (HEI). The p-Value calculation for Overall RBC Folate is not applicable (N/A).

N Mean SD p-Value

Overall RBC Folate 27,938 515.7 243.7 N/A
Sex <0.001

Male 13,599 500.1 232.5 -
Female 14,339 530.6 252.9 <0.001

Age <0.001
18 to 34 8022 439.1 172.1 -
35 to 64 13,650 506.3 220.4 <0.001
65 and Older 6266 634.4 315.0 <0.001

Race <0.001
Mexican American 4441 478.4 199.2 -
Other Hispanic 3012 483.1 200.7 0.918
Non-Hispanic White 11,605 584.4 273.4 <0.001
Non-Hispanic Black 5768 440.6 210.3 <0.001
Other 3112 483.9 211.4 0.861

Education <0.001
Less than 9th Grade 3107 489.8 236.0 -
9th to 11th Grade 4094 495.5 242.6 0.921
High School Graduate/GED 6309 514.4 255.4 <0.001
Some College or AA 8074 519.6 246.0 <0.001
College Graduate or Above 6254 539.0 229.1 <0.001
Missing 100 473.0 301.1 0.984

Smoking Status <0.001
Has not Smoked in Last 30 Days 22,200 533.6 250.6 -
Smoked in Last 30 Days 5729 446.7 200.6 0.540
Missing 9 448.5 134.0 0.999
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Table 1. Cont.

N Mean SD p-Value

FPR <0.001
Lowest Quartile 6335 475.5 223.7 -
2nd Quartile 6349 516.3 251.2 <0.001
3rd Quartile 6365 528.9 242.9 <0.001
Highest Quartile 6401 547.5 244.1 <0.001
Missing 2488 501.3 258.4 <0.001

Urinary Creatinine <0.001
Lowest Quartile 6376 548.9 258.1 -
2nd Quartile 6372 531.8 253.3 <0.001
3rd Quartile 6473 500.0 225.0 <0.001
Highest Quartile 6469 471.4 210.1 <0.001
Missing 2248 549.4 288.3 0.999

Cycle 0.251
2007–2008 5600 538.0 265.0 -
2009–2010 6019 496.2 232.8 <0.001
2011–2012 5269 486.0 224.5 <0.001
2013–2014 5636 533.7 247.4 0.88
2015–2016 5414 524.7 242.1 0.03

HEI <0.001
Lowest Quartile 6534 474.7 229.2 -
2nd Quartile 6533 498.7 237.6 <0.001
3rd Quartile 6534 528.8 251.1 <0.001
Highest Quartile 6534 565.4 249.5 <0.001
Missing 1803 499.0 232.5 <0.001

Table 2. Concentrations of environmental chemicals among adult NHANES participants from 2007
to 2016. Abbreviations: geometric mean (GM); geometric standard deviation (GSD); interquartile
range (IQR); limit of detection (LOD).

Exposure N % < LOD GM GSD IQR

Phthalates (ng/mL)
Mono(carboxyisoctyl) phthalate (MCOP) 9012 1.22% 11.34 4.17 23.98
Mono-2-ethyl-5-carboxypentyl phthalate
(MECPP) 9012 0.23% 15.19 3.25 22.90

Mono-n-butyl phthalate (MBP) 9012 2.24% 11.83 3.44 19.94
Mono-(3-carboxypropyl) phthalate (MCPP) 9012 9.55% 2.10 3.67 3.70
Mono-ethyl phthalate (MEP) (ng/mL) 9012 0.13% 61.78 4.94 153.48
Mono-(2-ethyl-5-hydroxyhexyl) phthalate
(MEHHP) 9012 0.67% 9.68 3.51 15.90

Mono-(2-ethyl)-hexyl phthalate (MEHP) 9012 33.60% 1.61 3.10 2.63
Mono-isobutyl phthalate (MiBP) 9012 2.00% 7.49 3.12 12.00
Mono-isononyl phthalate (MNP) 9012 67.63% 1.05 2.74 0.61
Mono-(2-ethyl-5-oxohexyl) phthalate
(MEOHP) 9012 0.95% 5.96 3.40 9.45

Mono-benzyl phthalate (MBzP) 9012 2.66% 4.88 3.72 9.80
Metals (μg/L)
Cadmium (μg/L) 22,401 15.71% 0.36 2.24 0.38
Lead 22,401 0.29% 12.0 20.1 11.4
Manganese 10,787 0.00% 9.38 1.43 4.31
Mercury 22,401 9.85% 0.90 2.69 1.22
Selenium 10,787 0.00% 192.83 1.14 29.97
Total arsenic 9170 0.87% 8.35 3.17 12.40
PFAS (ng/mL)
Perfluorodecanoic acid (PFDeA) 8963 16.82% 0.23 2.25 0.26
Perfluorohexane sulfonic acid (PFHxS) 8963 1.91% 1.39 2.61 1.79
2-(N-methylperfluoroctanesulfonamido)acetic
acid (Me-PFOSA-AcOH) 8963 53.33% 0.16 2.52 0.23

Perfluorononanoic acid (PFNA) 8963 1.53% 0.91 2.11 0.88
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Table 2. Cont.

Exposure N % < LOD GM GSD IQR

Perfluoroundecanoic acid (PFUA) 8963 59.88% 0.15 2.27 0.13
Perfluorooctanoic acid (PFOA) 8961 0.22% 2.34 2.14 2.40
Perfluorooctane sulfonic acid (PFOS) 8961 0.39% 7.49 2.61 9.59
Phenols and parabens (ng/mL)
Bisphenol A (BPA) 9013 0.65% 1.53 3.03 2.40
Triclosan 9013 7.51% 10.93 7.05 37.47
Butyl paraben 9013 0.18% 0.25 5.14 0.33
Methyl paraben 9013 2.49% 59.09 6.03 213.80
Propyl paraben (ng/mL) 9013 0.18% 7.33 9.78 43.70
PAHs (ng/L)
One hydroxynaphthalene 7194 0.06% 2235.54 4.68 5480.00
Two hydroxynaphthalene 7221 0.00% 4474.30 3.20 8318.10
Three hydroxyfluorene 7256 1.86% 104.31 3.97 208.15
Two hydroxyfluorene 7267 0.00% 261.61 3.43 470.50
Three hydroxyphenanthrene 5439 1.84% 79.04 2.80 118.80
One hydroxyphenanthrene 7280 0.38% 123.95 2.56 164.73
Two hydroxyphenanthrene 5417 1.14% 68.29 2.55 90.00
One hydroxypyrene 7253 7.33% 118.89 2.84 176.30
Nine hydroxyfluorene 5448 0.00% 304.70 3.00 490.23
Cotinine (ng/mL) 27,646 27.41% 0.31 47.50 8.72

Within and between family chemical correlations varied between 0.10 and 0.98 for
phthalates, −0.07 and 0.56 for metals, −0.19 and 0.78 for PFASs, 0.28 and 0.96 for PAHs,
and −0.11 and 0.82 for phenols and parabens (Figure 1).

Figure 1. Pearson correlation heat map of included environmental pollutants and folate. Red circles
indicate negative correlations and blue circles indicate positive correlations.
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5.1. ExWAS Analysis

For the overall ExWAS analysis, the corrected p value was 2.01 × 10−3. After adjusting
for sex, age, race, education, smoking status, FPR, urinary creatinine, HEI, and NHANES
cycle, 12 environmental chemicals, including metals, PFASs, and PAHs, were significantly
inversely associated with RBC folate, and four environmental chemicals, including metals
(manganese, selenium), and MBzP and MECPP phthalates, were significantly positively
associated with RBC folate (Figure 2). For instance, a doubling of PFNA (β = −48.3; 95%CI:
−57.4, −39.1), PFDeA (β = −46.7; 95%CI: −55.6, −37.8), PFOS (β = −43.7; 95%CI: −53.5,
−33.9), PFUA (β = −43.1; 95%CI: −52.4, −33.9), lead (β = −27.0; 95%CI: −33.4, −20.7),
cotinine (β = −22.1; 95%CI: −27.2, −17.1), mercury (β = −21.6; 95%CI: −27.2, −16.1), three
hydroxyfluorene (β = −17.4; 95%CI: −32.7, −2.1), arsenic (β = −16.3; 95%CI: −24.4, −8.1),
PFOA (β = −14.6; 95%CI: −24.4, −4.8), two hydroxy naphthalene (β = −14.1; 95%CI: −26.9,
−1.2), and cadmium (β = −7.3; 95%CI: −14.1, −0.5) were associated with a statistically
significant decrease in RBC folate after adjustment. A doubling of MBzP (β = 14.8; 95%CI:
3.9, 25.8), MECPP (β = 13.2; 95%CI: 2.2, 24.1), manganese (β = 12.9; 95%CI: 5.3, 20.4),
and selenium (β = 10.3; 95%CI: 3.0, 17.6) were associated with a statistically significant
increase in RBC folate after adjustment. No other chemicals were statistically significantly
associated with a change in RBC folate after adjustment.

Figure 2. Estimates and 95% CIs for the associations between environmental chemical biomarkers and
RBC folate using exposome-wide association study (ExWAS) analysis from the NHANES database
from 2007 to 2016 (TEF = 2.01 × 10−3). Models were adjusted for age, race, sex, family income-to-
poverty ratio, education, NHANES cycle, and HEI. Additional adjustments for urinary creatinine
were made for models with chemicals collected in urine. Estimates represent the change in RBC folate
concentrations for each doubling in chemical concentrations. Blue illustrates a positive estimate and
red illustrates a negative estimate.

5.2. Q-Gcomp Analysis

One quartile increases in the metal (β = −38.36; 95%CI −52.31, −24.42) and PFAS
(β = −48.86; 95%CI: −57.56, −39.61) mixtures were significantly associated with a decrease
in RBC folate after adjustment. No other chemical families were statistically significantly
associated with a change in RBC folate after adjustment (Figure 3).
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Figure 3. Estimates and 95% CIs for the associations between mixtures of environmental chemical
biomarkers and RBC folate using quantile g computation (Q-gcomp) analysis from the NHANES
database from 2007 to 2016. Models were adjusted for age, race, family income-to-poverty ratio,
education, NHANES cycle, smoking status, and HEI. Additional adjustments for urinary creatinine
were made for models with chemicals collected in urine. Estimates represent the associations between
one quartile increases in an exposure family and changes in RBC folate concentrations.

The ExWAS sensitivity analysis using imputed datasets revealed 21 chemicals that
were statistically significantly negatively associated with RBC folate and one chemical
that was statistically significantly positively associated with RBC folate (Figure 4). For
instance, a doubling of cotinine (β = −31.1; 95%CI: −34.0, −28.2) was associated with a
statistically significant decrease in RBC folate, and manganese (β = 4.8; 95%CI: 1.2, 8.4)
was associated with a statistically significant increase in RBC folate after adjustment. The
Q-gcomp sensitivity analysis using imputed datasets revealed that one quartile increases in
PFAS (β = −29.9; 95%CI: −34.8, −24.9), metal (β = −49.8; 95%CI: −56.2, −43.4), and PAH
(β = −10.4; 95%CI: −16.6, −4.3) mixtures were statistically significantly associated with
decreases in RBC folate after adjustment (Figure 5). No other chemicals or chemical families
were statistically significantly associated with changes in RBC folate after adjustment.

Figure 4. Pooled estimates and 95% CIs for the associations between environmental chemical
biomarkers and RBC folate using exposome-wide association study (ExWAS) analysis from the
NHANES database from 2007 to 2016 using 70 imputed datasets (TEF = 2.01 × 10−3). Models were
adjusted for age, race, sex, family to income poverty ratio, education, NHANES cycle, and HEI.
Additional adjustments for urinary creatinine were made for models with chemicals collected in
urine. Estimates represent the change in RBC folate concentrations for each doubling in chemical
concentrations. Blue illustrates a positive estimate and red illustrates a negative estimate.

107



Toxics 2025, 13, 200

Figure 5. Pooled estimates and 95% CIs for the associations between environmental chemical mixtures
and RBC folate using quantile g computation (Q-gcomp) analysis of adults from the NHANES
database from 2007 to 2016 using 70 imputed datasets. Adjusted for age, race, family income-to-
poverty ratio, education, NHANES cycle, smoking status, and diet. Additional adjustments for
urinary creatinine were made for models with chemicals collected in urine. Estimates represent the
association between a one quantile increase in the exposure family and a ng/mL change in RBC
folate. Blue illustrates a positive estimate and red illustrates a negative estimate.

6. Discussion

In the present study, we used two statistical approaches, ExWAS and Q-gcomp, to
evaluate the associations of 39 individual chemicals and 6 chemical mixtures with RBC
folate concentrations in a sample of U.S. adults from NHANES (2007–2016). We found
that several chemicals, including cadmium, lead, mercury, arsenic, PFDA, PFNA, PFUA,
PFOA, PFOS, two hydroxynapthalene, three hydroxyfluorene, and cotinine were associated
with lower RBC folate levels and MECPP, MBzP, manganese and selenium were associated
with higher RBC folate levels. The ExWAS and complimentary Q-gcomp analysis yielded
convergent results.

Althoμgh there are limited studies examining the associations between environmental
chemicals and RBC folate concentrations, our findings are consistent with previous findings
sμggesting an inverse association between lead and folate among lead-exposed workers
and smoking and folate among Inuit women of childbearing age [30,31]. Additionally, one
cross-sectional study has examined the associations among PFASs, and a PFAS mixture
and red blood cell folate using Bayesian kernel machine regression (BKMR) and Q-gcomp,
and found comparable results using data from NHANES 2007–2010 [32].

The potential pathways by which chemicals may affect folate levels are unclear;
however, a few experimental studies sμggest possible biological mechanisms for the in-
verse associations between these environmental chemicals and RBC folate. For instance,
PFASs have been shown to impact thyroid hormone levels [33,34] and thyroid stimulating
hormones stimulate folate-dependent bioprocesses [35]. On the other hand, vitamin B
complexes with folate have been shown to reduce cadmium and lead levels in rats, possi-
bly by preventing absorption or facilitating increased excretion [36]. Also, mercury and
PAHs are detoxified throμgh the glutathione detoxification system which requires folate
for the metabolic processing of cysteine, a precursor of glutathione [37–39]. Finally, PAHs,
PFASs, lead, and cadmium, have all been associated with increased homocysteine (Hcy)
concentrations [40–42]. Hcy is inversely associated with bioavailable folate due to folate’s
use in converting Hcy into either methionine or cysteine during one-carbon metabolism,
and folate deficiency can cause Hcy buildup [43].

Regarding the observed positive associations, selenium has been shown to enhance
concentrations of glutathione and would help to explain the positive associations between
selenium and RBC folate observed in our study [39].

This study has several key limitations. First, the design of the study is cross-sectional
with only one measurement representing exposure status available. This precludes making
any causal claims, as the temporality of the relationship between environmental chemicals
and folate is unclear. Given the use of biomarkers for measurements of environmental
chemicals, we cannot exclude the potential for reverse causation, whereas folate levels
impact measured biomarkers of exposure, and their metabolism. For instance, we cannot
state whether these chemicals decrease the levels of folate or whether folate helps decrease
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the body’s chemical burden, or impacts how folate is transported or metabolized in target
tissues. The relationship may also be due to unmeasured confounders that may impact
both exposure and RBC folate. For example, previous studies have shown that folate and
PFASs share transport carriers [44]. Second, because there were NHANES cycles that did
not include certain chemicals, there were periods where some chemicals were missing from
the analysis, especially for PAHs in the last included NHANES cycle (2015–2016). These
gap may introduce selection bias; however, results from analyses run with an imputed
dataset were similar to the results in our main analysis. Also, the gaps in the data are largely
due to the NHANES cycles and the subset of the participants that was representative of
NHANES participants as a whole, and most likely were not related to the other variables
in our analysis.

The strengths of this study include the breadth of environmental chemicals available
throμgh the NHANES dataset and the adoption of modern statistical approaches to analyze
both mixtures and individual associations between environmental chemicals and RBC
folate. Additionally, the large sample size and representativeness for the United States
population provide increased generalization to non-institutionalized United States citizens,
and adequate power for sensitivity analyses. Also, red blood cell folate is a long-term
biomarker of folate status and is more resistant to acute changes in folate status and
supplementation. Finally, we also adjusted for the HEI which is a good indicator of
potential confounding by dietary patterns.

7. Conclusions

Our results sμggest significant relationships between exposures to some environmental
chemicals and RBC folate, and these findings may have implications for public health.
First, a ubiquitous and continuous source of chemical exposures that has a modest inverse
association with folate can have important implications for public health given the role of
folate in many biological processes. Second, vulnerable populations with insufficient folate
levels are further burdened by preventable modifiable environmental factors that reduce
folate levels.

This study, to our knowledge, is the first to examine the associations between mixtures
of metals, PAHs, phenols and parabens, and phthalates with RBC folate levels. Our
study’s results should be interpreted cautiously given the cross-sectional design. Future
prospective studies can expand these preliminary findings by investigating temporally
aligned exposures to environmental chemicals, folate levels, and potential health outcomes
at later time points.
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Abstract: α-Klotho is an anti-aging protein linked to various age-related diseases. Environ-
mental metal exposure has been associated with oxidative stress and aging, but its effect on
α-Klotho levels remains unclear. This study investigated the relationship between urinary
metal concentrations and serum α-Klotho levels using data from the National Health and
Nutrition Examination Survey (NHANES) 2007–2016 cycles. A total of 4071 adults aged
40 to 79 years were included in the analysis. After adjusting for potential confounders,
positive associations were found between serum α-Klotho levels and barium (Ba), cesium
(Cs), and molybdenum (Mo), while tungsten (W) and uranium (U) were negatively corre-
lated with α-Klotho levels. The combined effects of multiple metals were further analyzed
using the qgcomp model, which demonstrated a negative correlation between increased
metal mixtures and serum α-Klotho levels. Specifically, U, total arsenic (t-As), W, cadmium
(Cd), antimony (Sb), and lead (Pb) contributed to the reduction of α-Klotho levels, while
Ba, Cs, dimethylarsinic acid (DMA), Mo, thallium (Tl), and cobalt (Co) were positively
associated with α-Klotho levels. These findings suggest that exposure to certain metals,
particularly in combination, may reduce serum α-Klotho levels, potentially accelerating
aging processes. Further studies should investigate the underlying mechanisms responsible
for these associations.

Keywords: α-Klotho; urinary metals; NHANES; metal mixtures; aging biomarkers

1. Introduction

The Klotho protein family, including α-Klotho and β-Klotho, plays a central role in
regulating aging and longevity. Of particular interest is α-Klotho, a soluble form of the
protein that has been shown to exert protective effects on various organ systems, such as
the cardiovascular, renal, and nervous systems [1,2]. Animal studies have demonstrated
that α-Klotho contributes to an extended lifespan and delayed onset of age-related diseases,
such as kidney disease and neurodegeneration [1,3–5]. In humans, higher α-Klotho levels
have been linked to reduced all-cause mortality, highlighting its potential as a therapeutic
target for age-related conditions [6]. Recent research has further linked α-Klotho to the
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pathophysiology of chronic diseases, such as cardiovascular disease [7], cancer [8], and
diabetes [9], highlighting its potential as both a biomarker for aging and a therapeutic
target for various age-related diseases.

Environmental exposure to heavy metals is a widespread global health concern. These
metals can enter the human body through inhalation, ingestion, and dermal absorption,
leading to various adverse health outcomes, including neurodevelopmental disorders,
cardiovascular diseases, and cancer [10]. Arsenic (As), lead (Pb), and cadmium (Cd) are
well-documented toxic metals [11,12], while antimony (Sb), tungsten (W), and molyb-
denum (Mo) also pose potential health risks. Sb exposure has been associated with ox-
idative stress and immunotoxicity [13], W has been implicated in carcinogenesis and
systemic toxicity [14], and Mo can be toxic at high levels, impairing enzymatic functions
and metabolism [15]. Environmental metal exposure has also been linked to accelerated ag-
ing processes, indicating that metals contribute to increased oxidative stress, DNA damage,
and impaired cellular function, all of which are hallmarks of aging [16]. Therefore, examin-
ing the relationship between metal exposure and aging biomarkers, such as α-Klotho, is
critical for understanding how environmental pollutants influence aging and contribute to
age-related diseases.

A growing body of research has explored the relationship between α-Klotho levels
and environmental pollutants, including organic contaminants such as polycyclic aromatic
hydrocarbons [17], perchlorates, nitrates, thiocyanates [18], and dichlorobenzene [19].
Emerging studies have elucidated the impact of heavy metal exposure on α-Klotho levels.
A study using NHANES data found that higher Pb levels are associated with lower serum
α-Klotho, further supporting the link between heavy metal exposure and aging-related
processes [20]. Additionally, exposure to Cd and Pb has been linked to oxidative stress, with
evidence indicating that α-Klotho homeostasis may be disrupted in individuals with kidney
dysfunction, especially at more severe stages [21]. Another investigation demonstrated
that α-Klotho partially mediated the association between blood Pb levels and estimated
glomerular filtration rate (eGFR), suggesting a potential role of α-Klotho in Pb-induced
renal dysfunction [22]. Furthermore, studies on three essential elements identified a
negative correlation between serum α-Klotho and blood copper (Cu) levels [23]. These
findings underscore the importance of investigating the effects of heavy metal exposure
on serum α-Klotho levels, especially the potential synergistic effects of multiple metal
exposures on health. Given the ubiquity and persistence of metal pollutants, it is essential
to explore how combined metal exposure influences α-Klotho levels, particularly in the
general population.

The goal of this study was to investigate the association between urinary metal con-
centrations and serum α-Klotho levels using data from the National Health and Nutrition
Examination Survey (NHANES), which is a nationally representative survey that provides
comprehensive health data on the U.S. population, making it an invaluable resource for
environmental health studies [24,25]. We used multiple linear regression and quantile
g-computation (qgcomp) models to evaluate the independent and combined effects of
urinary metals on serum α-Klotho levels. By examining a wide range of urinary metals
and their mixtures, this study aims to provide new insights into the relationship between
environmental metal exposure and aging biomarkers.

2. Materials and Methods

2.1. Study Design and Participants

This study analyzed data from five cycles of the NHANES conducted between 2007
and 2016 (2007–2008, 2009–2010, 2011–2012, 2013–2014, 2015–2016). NHANES emphasizes
environmental exposures and their impacts on health outcomes. Participants were selected
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based on the availability of data on urinary metals and serum α-Klotho levels, as shown in
Figure 1. Initially, 17,389 adults aged 40–79 years were included in the analysis, as serum
α-Klotho levels were only assessed in individuals within this age group. After excluding
participants with incomplete data on serum α-Klotho (n = 3625), urinary metals (n = 9420),
or covariates (n = 273), the final study population consisted of 4071 participants. The
NHANES study protocol was reviewed and approved by the Institutional Review Board
of the National Center for Health Statistics (NCHS), and informed consent was obtained
from all participants. No additional ethical approval was required for this secondary
data analysis.

Figure 1. Flow diagram of selection of study participants from NHANES 2007–2016.

2.2. Measurement of Urinary Metal Levels

Urine samples were collected, stored at −30 ◦C, and subsequently shipped to the
National Center for Environmental Health (NCEH) for analysis. Urinary concentrations
of total arsenic (t-As), barium (Ba), cobalt (Co), Mo, cesium (Cs), Cd, Pb, Sb, thallium
(Tl), W, and uranium (U) were quantified using inductively coupled plasma mass spec-
trometry (ICP-MS). For As species, including dimethylarsinic acid (DMA), arsenobetaine,
monomethylarsonic acid, arsenocholine, arsenous (III) acid, and arsenic (V) acid, high-
performance liquid chromatography (HPLC) was used. However, only DMA had a detec-
tion rate exceeding 70%, while other arsenic species exhibited lower detection rates. For
elements measured by ICP-MS and other techniques, values below the limit of detection
(LOD) were imputed as LOD divided by the square root of two, following NHANES
protocols. Detailed information on laboratory procedures for measuring urinary metals
and arsenic species can be found on the NHANES website.

2.3. Measurement of Serum α-Klotho Levels

Serum samples were stored at −80 ◦C until further analysis. α-Klotho levels were
measured using an ELISA kit from IBL International (Gunma, Japan). The assay was
validated prior to the study, demonstrating excellent sensitivity (4.33 pg/mL, compared to
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the manufacturer’s claim of 6.15 pg/mL) and linearity (R2 = 0.998 and 0.997 for high and
low α-Klotho concentrations). Intra-assay precision was 3.2–3.9% for recombinant samples
and 2.3–3.3% for human samples, while inter-assay precision was 2.8–3.5% for recombinant
samples and 3.4–3.8% for human samples. All samples were analyzed in duplicate, and
results met the laboratory’s acceptance criteria. Additional methodological details can be
found on the NHANES website (https://wwwn.cdc.gov/Nchs/Data/Nhanes/Public/20
15/DataFiles/SSKL_I.htm) (accessed on 5 December 2024).

2.4. Covariates

Several covariates were selected based on their known associations with α-Klotho
levels, as reported in previous literature [19,20,26,27], including age, sex, smoking status,
physical activity, body mass index (BMI), diabetes mellitus, hypertension, race/ethnicity,
education level, annual family income, marital status, serum cotinine, and NHANES cycle.
Urinary creatinine levels were included to adjust for variability in urine concentration.

2.5. Statistical Analysis

Statistical analyses were performed using R software (version 4.2.1). Group differences
in α-Klotho levels were evaluated using the Mann–Whitney U test for two-group compar-
isons and the Kruskal–Wallis test for multiple-group analyses. Urinary metal concentrations
were analyzed both as continuous variables (after natural logarithmic transformation) and
in quartiles. Multiple linear regression models were used to evaluate the association be-
tween serum α-Klotho levels and urinary metal concentrations, with results presented
as the estimated percent changes in serum α-Klotho levels and their corresponding 95%
confidence intervals (CIs) according to previous studies [28]. The p-value for trend was
calculated by fitting urinary metal quartiles into linear models to assess dose–response
relationships. All regression models were adjusted for age, sex, race/ethnicity, BMI, annual
family income, smoking, education, marital status, hypertension, diabetes, NHANES cycle,
physical activity, serum cotinine, and urinary creatinine.

In addition to analyzing single metal effects, the combined effects of multiple urinary
metals on serum α-Klotho levels were assessed by adjusting for other metals. Finally,
to investigate the impact of metal mixtures, the qgcomp model was implemented in the
“qgcomp” R package. This model assigns positive or negative weights to urinary metals,
estimating their combined exposure effect. The “qgcomp boot” function was used to assess
the linearity of the exposure–response relationship and estimate the overall marginal effect.

3. Results

3.1. Characteristics of Study Participants and Serum α-Klotho Levels

A total of 4071 adults aged 40 to 79 years were included (Table 1), comprising
1999 males (49.1%) and 2072 females (50.9%). Serum α-Klotho levels varied signifi-
cantly by age, sex, and race/ethnicity. Participants aged 40–49 years had the high-
est α-Klotho levels (883.5 ± 338.5 pg/mL), while those aged ≥ 70 years had the
lowest levels (796.8 ± 264.3 pg/mL) (p < 0.001). Females had higher α-Klotho levels
(882.4 ± 340.6 pg/mL) compared to males (819.5 ± 269.5 pg/mL) (p < 0.001), and non-
Hispanic Black participants had the highest levels (905.5 ± 358.3 pg/mL) (p < 0.001).
Serum α-Klotho levels were significantly higher in participants with hypertension
(861.9 ± 309.9 pg/mL) compared to those without hypertension (839.3 ± 308.3 pg/mL)
(p = 0.002). Underweight participants also had significantly higher α-Klotho
(919.7 ± 331.3 pg/mL) than those in other BMI categories (p = 0.002). Significant vari-
ations in α-Klotho levels were also observed across NHANES cycles (p < 0.001), with
the highest levels in the 2011–2012 cycle (897.5 ± 330.9 pg/mL) and the lowest in the
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2015–2016 cycle (817.7 ± 329.3 pg/mL). Regarding marital status, participants who were
never married had significantly higher serum α-Klotho levels (890.6 ± 405.3 pg/mL) com-
pared to those who were married/cohabiting (849.1 ± 288.1 pg/mL) (p = 0.040). However,
no significant differences were observed across education levels, family income, serum
cotinine levels, physical activity, smoking status, or diabetes status.

Table 1. Distribution of serum α-Klotho levels based on the characteristics of study participants in
the NHANES 2007–2016.

Characteristic N (%)
Serum α-Klotho Levels
(Mean ± SD in pg/mL)

p Value

Age, years <0.001
40–49 1144 28.10 883.5 ± 338.5
50–59 1059 26.01 870.1 ± 306.9
60–69 1142 28.05 837.0 ± 302.2
≥70 726 17.83 796.8 ± 264.3
Sex <0.001

Male 1999 49.10 819.5 ± 269.5
Female 2072 50.90 882.4 ± 340.6

Race/ethnicity <0.001
Mexican American 632 15.52 857.8 ± 297.9

Non-Hispanic White 1775 43.60 817.0 ± 282.6
Non-Hispanic Black 788 19.36 905.5 ± 358.3

Others 876 21.52 868.2 ± 313.4
Education 0.088

<High school 1119 27.49 854.3 ± 337.6
High school 871 21.40 829.7 ± 275.1

>High school 2081 51.12 859.1 ± 306.7
Annual family income 0.970

<USD 25,000 1279 31.42 855.0 ± 323.2
USD 25,000–64,999 1406 34.54 845.6 ± 293.9

≥USD 65,000 1386 34.05 854.2 ± 311.6
Marital status 0.040

Married/cohabiting 2645 64.97 849.1 ± 288.1
Widowed/divorced/separated 1083 26.60 844.9 ± 323.4

Never married 343 8.43 890.6 ± 405.3
Smoking status <0.001

Never 2081 51.12 872.9 ± 304.6
Current 768 18.87 833.6 ± 314.8
Former 1222 30.02 826.4 ± 311.3

BMI, kg/m2 0.002
Underweight (<18.5) 40 0.98 919.7 ± 331.3

Normal weight (18.5–24.9) 953 23.41 875.9 ± 315.3
Overweight (25–29.9) 1415 34.76 836.9 ± 294.2

Obese (≥30) 1663 40.85 848.3 ± 317.0
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Table 1. Cont.

Characteristic N (%)
Serum α-Klotho Levels
(Mean ± SD in pg/mL)

p Value

Physical activity 0.879
Sedentary 1197 29.40 860.5 ± 331.0

Insufficient 596 14.64 846.3 ± 300.6
Moderate 556 13.66 839.9 ± 285.4

High 1722 42.30 850.8 ± 304.1
Diabetes 0.123

No 3356 82.44 839.6 ± 326.9
Yes 715 17.56 854.0 ± 305.4

Hypertension 0.002
No 2189 53.77 839.3 ± 308.3
Yes 1882 46.23 861.9 ± 309.9

Serum cotinine 0.421
<LOD 1184 29.08 854.3 ± 294.3
≥LOD 2887 70.92 850.4 ± 315.3

NHANES cycle <0.001
2007–2008 910 22.35 851.4 ± 330.0
2009–2010 835 20.51 845.4 ± 290.7
2011–2012 733 18.01 897.5 ± 330.9
2013–2014 807 19.82 849.1 ± 254.3
2015–2016 786 19.31 817.7 ± 329.3

3.2. Distribution of Urinary Metal Concentrations

The distribution of urinary metal concentrations among the study participants is
presented in Table 2. The detection rates for the 12 urinary metals ranged from 70.4% (for
Sb) to 100% (for Cs and Mo). The highest mean urinary concentrations were observed for
Mo at 51.28 μg/L, followed by t-As at 19.86 μg/L and DMA at 5.72 μg/L. The lowest mean
concentrations were found for uranium (U) at 0.0121 μg/L and Sb at 0.074 μg/L. The 95th
percentile concentrations ranged from 0.0351 μg/L for U to 139.40 μg/L for Mo, indicating
considerable variability in exposure levels across participants. Additionally, positive
correlations were observed among the urinary metal concentrations, as shown in Figure S1,
suggesting that participants with higher levels of one metal often had elevated levels of
others. These inter-metal correlations highlighted the complexity of metal exposures in
this population.

Table 2. The distributions of urinary metals among study participants in the NHANES 2007–2016.

Elements
Detection
Rates (%)

Mean
(μg/L)

Percentile (μg/L)

5th 25th Median 75th 95th

t-As 99.2 19.86 1.56 3.76 7.66 16.60 63.87
DMA 78.5 5.72 1.20 2.00 3.59 6.38 17.20

Ba 99.2 1.85 0.21 0.53 1.07 2.15 5.40
Cd 96.5 0.441 0.049 0.145 0.281 0.547 1.368
Co 99.7 0.499 0.090 0.202 0.336 0.535 1.271
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Table 2. Cont.

Elements
Detection
Rates (%)

Mean
(μg/L)

Percentile (μg/L)

5th 25th Median 75th 95th

Cs 100 5.11 1.23 2.70 4.39 6.58 11.11
Mo 100 51.28 7.42 20.10 38.10 66.04 139.40
Pb 98.7 0.71 0.10 0.27 0.48 0.83 1.89
Sb 70.4 0.074 0.016 0.028 0.046 0.078 0.192
Tl 99.5 0.178 0.038 0.087 0.149 0.233 0.407
W 82.9 0.110 0.013 0.027 0.060 0.121 0.336
U 84.1 0.0121 0.0014 0.0028 0.0055 0.0113 0.0351

3.3. Relationships Between Urinary Metals and Serum α-Klotho Levels

The relationships between individual urinary metal concentrations and serum α-
Klotho levels were assessed after adjusting for potential confounders (Table S1). After
adjusting for age, sex, race/ethnicity, BMI, annual family income, education, marital status,
hypertension, diabetes, NHANES cycle, physical activity, serum cotinine, and urinary crea-
tinine, significant positive associations were observed for Ba (percent change = 1.96, 95%
CI: 1.19–2.74), Cs (percent change = 2.67, 95% CI: 1.21–4.14), and Mo (percent change = 1.05,
95% CI: 0.05–2.05). Quartile-based analyses revealed that participants in higher quartiles
(Q2–Q4) of urinary Ba, Q3–Q4 of Cs, and Q4 of Mo exhibited significantly elevated serum
α-Klotho levels compared to the reference quartile (Q1). Conversely, inverse associations
were identified for W (percent change = −0.90, 95% CI: −1.69 to −0.10) and U (percent
change = −1.65, 95% CI: −2.43 to −0.86). Participants in Q4 of W and Q3–Q4 of U demon-
strated significantly lower serum α-Klotho levels relative to Q1.

Subsequently, using mutually adjusted models, the combined effects of multiple
urinary metals on serum α-Klotho levels were examined (Table 3). After adjusting for other
covariates and metals, Ba, Cs, and Mo remained positively associated with serum α-Klotho
levels, with percent change values of 2.10 (95% CI: 1.24, 2.96), 2.81 (95% CI: 0.86, 4.80), and
1.40 (95% CI: 0.22, 2.59), respectively. In contrast, W and U were negatively associated
with serum α-Klotho levels (W: percent change = −0.97, 95% CI: −1.88, −0.05; U: percent
change = −1.58, 95% CI: −2.42, −0.74). Participants with higher urinary levels of Ba and
Cs (Q2, Q3, Q4) had significantly higher serum α-Klotho levels, while those with elevated
levels of Sb and U (Q2, Q3, Q4) exhibited significantly lower serum α-Klotho levels.

Table 3. Associations of multiple urinary metals with serum α-Klotho levels in the NHANES
2007–2016.

Metals
Percent Change of Serum α-Klotho (95% CI) a

p for
TrendContinuous Q1 Q2 Q3 Q4

tAs −0.62 (−1.66, 0.42) Ref. −0.83 (−3.28, 1.68) −2.40 (−5.14, 0.43) −2.06 (−5.10, 1.08) 0.159

DMA −0.35 (−1.92, 1.25) Ref. −1.17 (−3.61, 1.33) 0.70 (−2.28, 3.76) 0.21 (−3.20, 3.74) 0.646

Ba 2.10 (1.24, 2.96) *** Ref. 4.46 (2.36, 6.61) *** 4.32 (2.05, 6.64) *** 5.12 (2.65, 7.65) *** <0.001

Cd −0.69 (−1.75, 0.38) Ref. −0.55 (−3.22, 2.19) −0.62 (−2.89, 1.70) −0.14 (−2.23, 2.00) 0.586

Co −0.28 (−1.49, 0.95) Ref. −0.42 (−2.61, 1.83) 0.28 (−2.26, 2.89) 1.12 (−1.68, 3.99) 0.290

Cs 2.81 (0.86, 4.80) ** Ref. 1.75 (−0.66, 4.21) 4.46 (1.54, 7.47) ** 4.32 (1.03, 7.72) * 0.005

Mo 1.40 (0.22, 2.59) * Ref. −0.39 (−2.54, 1.82) 0.70 (−1.78, 3.23) 0.35 (−2.42, 3.20) 0.641

Pb −0.48 (−1.65, 0.70) Ref. 0.35 (−1.81, 2.55) −0.48 (−2.90, 1.99) −0.35 (−3.10, 2.48) 0.206
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Table 3. Cont.

Metals
Percent Change of Serum α-Klotho (95% CI) a

p for
TrendContinuous Q1 Q2 Q3 Q4

Sb −0.69 (−1.86, 0.49) Ref. −2.33 (−4.47, −0.14) * −2.53 (−4.81, −0.20) * −1.99 (−4.53, 0.61) 0.206

Tl −0.62 (−2.18, 0.96) Ref. −0.83(−3.07, 1.46) 0.63 (−2.01, 3.33) −0.55 (−3.47, 2.45) 0.794

W −0.97 (−1.88, −0.05) * Ref. −0.69 (−2.75, 1.41) 0.91 (−1.39, 3.25) −1.72 (−4.20, 0.82) 0.342

U −1.58 (−2.42, −0.74) ** Ref. −2.19 (−4.19, −0.15) * −2.46 (−4.61, −0.27) * −3.74 (−6.03, −1.40) ** 0.002
a Adjusted for age, sex, race/ethnicity, BMI, annual family income, smoking, education, marital status, hyperten-
sion, diabetes, NHANES cycle, physical activity, serum cotinine, and urinary creatinine as well as other metals.
* p < 0.05; ** p < 0.01; *** p < 0.001.

3.4. Association Between Metal Mixtures and Serum α-Klotho by the Qgcomp Model

To investigate the combined effects of multiple urinary metals on serum α-Klotho
levels, the qgcomp model was employed (Figure 2). The regression index weights revealed
that U, t-As, W, Cd, Sb, and Pb contributed negatively to serum α-Klotho levels, with U
being the primary contributor to the overall negative association. In contrast, Ba, Cs, DMA,
Mo, Tl, and Co showed positive associations with serum α-Klotho levels, with Ba having
the greatest positive effect. Furthermore, the combined effect of the metal mixture was
analyzed based on the quantile range (Figure 2B). The results demonstrated a negative
correlation between the mixture of twelve urinary metals and serum α-Klotho levels. A
linear decrease in serum α-Klotho levels was observed across increasing quartiles of the
metal mixture, with a percent change of −0.61 (95% CI: −1.07, −0.14) (p = 0.002), suggesting
that higher exposure to multiple metals is associated with reduced serum α-Klotho levels.

Figure 2. Associations between metal mixtures and serum α-Klotho by the qgcomp model. (A) Di-
rection and magnitude of the assigned weights for each metal in association with serum α-Klotho.
(B) Combined effects of twelve urinary metals levels on serum α-Klotho (95% CI). The model was
adjusted for age, sex, race/ethnicity, BMI, annual family income, smoking, education, marital status,
hypertension, diabetes, NHANES cycle, physical activity, serum cotinine, and urinary creatinine.

4. Discussion

This study comprehensively analyzed the relationship between urinary metal expo-
sures and serum α-Klotho levels using data from the NHANES 2007–2016 cycles [20,29].
While previous studies have explored the associations between α-Klotho and environ-
mental pollutants, especially organic chemicals, the effects of mixed metal exposure on
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α-Klotho levels remain largely unexplored. Our study is the first to systematically examine
both individual and combined metal exposures and their effects on α-Klotho levels in a
large, nationally representative sample. This research filled a critical gap in the literature
by addressing the previously unexplored relationship between mixed metal exposure and
α-Klotho levels.

Although the relationship between metal exposure and α-Klotho remains under inves-
tigation, prior studies have demonstrated that heavy metals could impact α-Klotho levels,
primarily through oxidative stress and kidney function impairment [10,30]. Previous re-
search has shown that Pb exposure negatively correlates with α-Klotho levels and mediates
its effect on kidney function, while Cd and Pb have been linked to oxidative-stress-related
Klotho dysregulation, particularly in individuals with renal impairment [21,22]. Addi-
tionally, studies on trace elements found that a combined effect of selenium (Se), Cu, and
zinc (Zn) decreased α-Klotho concentrations [23]. Our study extends these findings by
assessing the effects of multiple metals on α-Klotho simultaneously, rather than focusing
on single-metal exposures. We observed that urinary W and U were negatively associated
with α-Klotho levels, and our quantile g-computation model revealed a dose-dependent
decrease in α-Klotho with increasing metal mixture exposure. These findings suggest that
exposure to multiple metals may have a cumulative or synergistic effect, amplifying their
negative impact on aging biomarkers. Unlike previous studies that reported significant
associations between Cd and Pb with α-Klotho [20], we did not observe statistically signif-
icant effects for these metals. This discrepancy may be attributed to differences in study
design, population characteristics, or the influence of co-exposures in our multi-metal
analysis, which could obscure individual metal effects.

Given the central role of α-Klotho in aging and disease prevention, it is important to
consider what constitutes a normal reference range for this biomarker. Currently, there is
no universally established reference range for serum α-Klotho protein levels. Most studies
on α-Klotho concentrations are based on data from the NHANES [19,20,31–34]. In our
study, the quartile-based analysis of α-Klotho levels provides insight into how varying
degrees of metal exposure may affect this anti-aging protein. While the specific health
effects of small fluctuations in α-Klotho levels remain unclear, previous research suggests
that reduced α-Klotho levels are associated with aging-related diseases. In this context,
the observed associations between metal exposure and α-Klotho variations may have
long-term implications for health and aging processes.

Our study also compared metal-associated effects on α-Klotho between different de-
mographic groups. Notably, our analysis revealed that individuals who were never married
exhibited higher serum α-Klotho levels than those who were married or cohabiting. This
observation might reflect differences in psychosocial stress or lifestyle behaviors, which
can influence oxidative stress [35] and, in turn, α-Klotho expression. Similarly, individuals
with hypertension had significantly higher α-Klotho levels than those without hyperten-
sion. Previous studies have suggested that lower α-Klotho levels are associated with an
increased risk of hypertension, identifying it as a potential risk factor for elevated blood
pressure [4,36]. This discrepancy between our findings and prior research may be due
to differences in study populations, measurement methods, or unmeasured confounders.
The higher α-Klotho levels observed in hypertensive individuals in our study could repre-
sent a compensatory response to vascular stress or endothelial dysfunction. Additionally,
potential residual confounding from factors such as medication use, kidney function, or
inflammatory status may have influenced the observed association [6,37]. Moreover, α-
Klotho levels varied significantly across NHANES cycles. This variation might reflect
underlying population-level differences in environmental exposures, dietary patterns, or
methodological factors related to sample collection and processing. Future studies should
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explore whether these variations are linked to temporal trends in metal exposure or other
environmental stressors that may impact aging and disease susceptibility.

Interestingly, while most non-essential metals were associated with lower α-Klotho
levels, we found that Ba and Mo were positively correlated with α-Klotho. Both metals
are considered essential trace elements with antioxidative properties that may counter-
act oxidative-stress-induced α-Klotho depletion [15,38]. These metals may support the
maintenance of α-Klotho levels, counteracting the oxidative damage caused by other envi-
ronmental stressors. Furthermore, the potential therapeutic implications of these metals in
maintaining α-Klotho levels could warrant further investigation into their possible use in
anti-aging interventions. This contrasts with the negative effects observed for heavy metals,
underscoring the complexity of metal interactions in biological systems. In addition to these
compounding effects, it is plausible that antagonistic interactions may also occur between
certain metals, either through functional interference or competition at receptor sites [39],
which could modify the overall impact on α-Klotho levels. Further research is needed to
determine the specific biological roles of different metals in modulating aging processes.

Moreover, our study emphasized the significance of considering metal mixtures rather
than focusing solely on individual metal exposures. Using the quantile qgcomp model,
we observed a clear dose–response relationship between increasing quartiles of metal
mixtures and decreasing serum α-Klotho levels. This suggested that exposure to multiple
metals in combination might have compounded or synergistic effects, amplifying their
negative impact on aging biomarkers. This finding highlighted the necessity of studying
metal mixtures, as they more accurately reflected real-world environmental exposures [40].
Previous research had predominantly focused on individual metal exposures [20,34], but
our study demonstrated that the combined effect of multiple metals was likely stronger
and more significant in influencing health outcomes, particularly in the context of aging.

The biological mechanisms through which metals influenced α-Klotho levels remain to
be fully understood. However, oxidative stress appeared to be a central pathway. α-Klotho
is a potent antioxidant and anti-inflammatory protein, and its deficiency is associated
with increased ROS production and exacerbated oxidative stress [32]. Previous studies
suggested that metals like Cd and Pb, known for their ability to induce oxidative damage,
might reduce α-Klotho production, thereby promoting aging [20]. On the other hand,
metals like Ba and Mo, which possess antioxidative properties [41,42], might mitigate
oxidative damage and protected against age-related cellular dysfunction. These findings
underscore the complexity of metal toxicity, as certain metals might have dual effects
depending on exposure levels, the presence of other metals, and individual susceptibility.

Despite the valuable insights provided by our study, several limitations must be ac-
knowledged. First, while urinary metals are widely used as biomarkers of exposure, they
do not fully capture the total body burden of metals. Additionally, urinary metal concen-
trations might not reflect long-term accumulation, particularly for metals that accumulate
in tissues over time [43]. Second, due to the nature of our cross-sectional study, establish-
ing cause-and-effect relationships was not feasible. Longitudinal studies are needed to
validate these associations and better understand the long-term effects of metal exposure
on α-Klotho levels and aging. Furthermore, while we adjusted for several confounders,
unmeasured factors, such as genetic predisposition, diet, and lifestyle, might also affect
the relationship between metal exposure and α-Klotho levels. Moreover, we primarily
examined the effects of individual metals and overall metal mixtures but did not explore
specific interactions between chemically similar metals, such as Sb + As or Cd + Pb, which
may exert unique combined effects. Future research should employ interaction models or
machine learning algorithms to investigate whether certain metal pairs have synergistic or
antagonistic effects on α-Klotho levels. Lastly, the potential impact of repeated freezing
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and thawing cycles on serum α-Klotho measurements cannot be ruled out, which might
have introduced some variability in the results.

5. Conclusions

This study was the first to investigate the effects of twelve urinary metals on serum α-
Klotho levels using the NHANES database. Our findings indicated that exposure to metals,
especially in combination, was associated with decreased serum α-Klotho levels, potentially
influencing aging processes. The identification of both positive and negative correlations
underscored the complex biological effects of metals on aging. Further research is needed
to clarify the mechanisms through which metals, individually and in mixtures, regulate α-
Klotho and impact health. Longitudinal studies should explore causal relationships, while
mechanistic investigations can elucidate metal-induced effects on α-Klotho regulation.
Additionally, assessing the combined toxicity or protective effects of metal mixtures and the
therapeutic potential of metals positively linked to α-Klotho may provide valuable insights
into aging-related interventions. Despite its limitations, this study provided a foundation
for future research on environmental metal exposure and its impact on aging biomarkers.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/toxics13040237/s1, Figure S1: Pairwise Pearson correlation matrix
among ln-transformed urinary metals among study population in the NHANES 2007–2016; Table S1:
Associations of single urinary metals with serum α-Klotho levels in the NHANES 2007–2016.
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Abstract: Benzene, toluene, and xylene (BTX) co-exist in human environments, yet their individual
and combined effects on genetic damage at low exposure levels are not fully understood. Additionally,
single nucleotide polymorphisms in microRNAs (mirSNPs) might be involved in cancer etiology by
affecting the related early health damage. To investigate the influence of BTX exposure, mirSNPs,
and their interactions on genetic damage, we conducted a cross-sectional study in 1083 Chinese
petrochemical workers, quantifying the BTX cumulative exposure levels and multiple genetic damage
biomarkers. Additionally, we genotyped multiple common mirSNPs. Benzene and a BTX mixture
were positive associated with the olive tail moment (OTM) and tail DNA% (p < 0.05). Higher levels
of toluene and xylene enhanced the association of benzene with genetic damage levels. Genotypes
and/or mutant allele counts of miR-4482-related rs11191980, miR-4433-related rs136547, miR-27a-
related rs2594716, miR-3130-related rs725980, and miR-3928-related rs878718 might significantly
influence genetic damage levels. Stronger effect estimates of benzene/BTX exposure were found
in carriers of miR-196a-2-related rs11614913 heterozygotes and of wild homozygotes of miR-1269b-
related rs12451747, miR-612-related rs12803915, and miR-4804-related rs266437. Our findings provide
further support of the involvement of BTX co-exposure, mirSNPs, and their gene–environment
interactions in determining the severity of DNA strand break in a complex manner.

Keywords: BTX co-exposure; microRNA; genetic polymorphisms; genetic damage; gene–environment
interaction; petrochemical workers

1. Introduction

Benzene, toluene, and xylene (BTX), characterized by a single benzene ring, are vital
petrochemical materials which are commonly used in the production of a large number of
petrochemicals, ranging from various solvents to drugs. Due to their growing significance
in producing everyday products, BTX have a vast and steadily growing market. According
to “BTX Market Size & Share Analysis-Growth Trends & Forecasts (2024–2029)” [1], the
global annual demand for BTX is nearly 108 million metric tons, with a demand growth rate
of approximately 5%, and the global BTX market is estimated to register a compound annual
growth rate (CAGR) of more than 3.5% by 2028. Owing to the dramatic increase in the
production and usage of BTX and their related downstream products, volatile BTX that are
consequently released are ubiquitously distributed in various human living and working
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environments. As a major player in the Asia-Pacific region’s BTX market, China’s growing
petrochemical industry has led to rising BTX pollution levels, posing significant health
risks to populations exposed to these chemicals both at work and in the environment [2].

After entering into the body, mainly through inhalation, BTX compounds can be me-
tabolized by cytochrome P450 (CYP) and other enzymes to generate reactive metabolites to
cause multiple adverse health effects, ranging from neurological impairment to cancers [3–5].
Thus, BTX are one of the focuses of great concern in view of their deleterious health effects
associated with chronic or acute exposure [3–5]. Benzene has received more attention than
the other BTX components, as there is conclusive evidence to support the assertion that it
has strong genotoxicity and can cause cancers such as leukemia and lymphohematopoietic
malignancies in chronically exposed humans, even at relatively low levels of exposure [5].
Thus, benzene has been classified as a known human carcinogen (Group 1) by the Inter-
national Agency for Research on Cancer (IARC) [6,7]. Toluene and xylene, on the other
hand, have been the subject of relatively limited and not fully conclusive research [3,4].
Even so, their effects on genetic damage, the most critical early biologic event for cancer
development, have attracted more and more attention in recent years. Furthermore, since
toluene and xylene frequently co-exist with benzene in various human environments and
share similar enzyme-mediated biotransformation, their simultaneous exposure might alter
benzene metabolism and then affect its toxic effects [8]. Previous research in humans and
mice suggests that simultaneous exposure to high levels of benzene and toluene (≥50 ppm)
can impact benzene metabolism and increase benzene-related genetic damage [9]. However,
different co-exposure dose ranges demonstrate disparate effects, which might be caused
by the dose-dependency of benzene metabolism [9]. With more effective control actions
having been implemented to reduce airborne BTX (especially benzene) levels to close to or
below the occupational and community air standards, their health effects and underlying
mechanisms at lower co-exposure levels have attracted significant attention [10–12]. We
previously evaluated the effects of BTX co-exposure on pulmonary function [13] and de-
clines in hematologic parameters [10] in Chinese petrochemical workers with long-term
low-dose exposure. Research on genetic damages utilizing low co-exposure levels would
further characterize the benzene/toluene/xylene dose–response relations and their interac-
tions and provide more important data for risk assessment and management in relation to
the public [12].

In addition to environmental hazards, genetic damage levels are also determined by
individual genetic predisposition [14]. Studying genetic determinants of environmental
health effects can provide a scientific basis for identifying high-risk groups within exposed
populations. However, data on genetic factors conferring susceptibility or resistance to BTX-
related genotoxicity is relatively limited, with most research focused on polymorphisms in
metabolic enzyme genes and DNA damage repair genes [15]. Thus, exploring additional
genetic factors linked to BTX-related genotoxicity is essential. MicroRNAs (miRNAs) are
highly conserved endogenous noncoding RNAs that post-transcriptionally regulate gene
expressions through translational inhibition or mRNA degradation [16]. MiRNA-mediated
gene expression regulations are important for the cellular response to environmental stress
and genetic damage, and therefore are extensively implicated in various human diseases
like cancers [17]. The miRNA biogenesis process begins with pri-miRNA transcripts, which
are cut to form pre-miRNAs and then mature into miRNA duplexes after cytoplasmic ex-
port. The mature miRNA duplex’s 5p or 3p strands pair with argonaute proteins to create
an RNA-induced silencing complex that targets mRNA for expression suppression, with
targeting specificity determined by the miRNA seed sequence’s complementarity to the
mRNA’s ‘seed-match’ region [16]. It has been demonstrated that any sequence alteration in
miRNA genes (including pri-miRNAs, pre-miRNAs, mature miRNAs, and seed regions),
especially single nucleotide polymorphisms (SNPs, i.e., mirSNPs), can alter the biogenesis,
activity, or bioavailability of the corresponding miRNAs, and eventually exert significant
impacts on the expression and/or functions of numerous targets [18]. Thus, mirSNPs
are important genetic determinants for individual variations in the cellular response to
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environmental hazards, phenotypes, and disease susceptibility [19]. A large number of epi-
demiological studies have demonstrated that mirSNPs are associated with cancer risk [20].
Our previous study in Chinese coke oven workers elucidated that rs11614913, located in
the mature sequence of miR-196a2, and its interactions with environmental factors might
affect oxidative damage levels, a type of cancer-related early health damage [21]. This
preliminarily suggested that mirSNPs might be involved in cancer etiology by affecting the
related early health damage. However, most genetic variations known to be located within
miRNA genes according to the databases for miRNA-related SNPs (i.e., miRNASNP) have
yet to be tested for their links to cancer-related early health damage, especially genetic
damage, in the contexts of BTX exposure.

Given that understanding the effects of low-dose BTX co-exposure, mirSNPs, and their
interactions on genetic damage levels is important for the development of early prevention
strategies for exposed populations, we conducted a preliminary cross-sectional study in
Chinese petrochemical workers with long-term occupational exposure primarily to low-
dose BTX components. We previously conducted a follow-up study in these workers to
evaluate the hematological effects of low-dose BTX co-exposure [10]. In the present study,
we quantified their occupational BTX exposure levels by calculating cumulative exposure
(CE), measured many genetic damage indices, and genotyped multiple common mirSNPs
which were screened out from the miRNASNP database in the baseline stage. We separately
evaluated the individual effects of BTX components and SNPs on genetic damage levels,
as well as the BTX interactions and the gene–environment interactions. The present study
may further enhance our knowledge about the environmental and genetic determinants of
the severity of genetic damage and provide further theoretical underpinning for the health
surveillance and early screening of BTX-exposed populations.

2. Materials and Methods

2.1. Study Subjects

As described previously [10], we recruited a total of 1443 BTX-exposed workers from
two large state-owned petrochemical plants located in Guangzhou and Maoming, re-
spectively, in southern China. Participants were selected based on the following criteria:
(1) workers who had been employed in workplaces where BTX were the primary occupa-
tional hazards for at least one year; (2) workers without a history of serious diseases, such
as tumors, cardiopulmonary diseases, or chronic immune diseases; (3) workers who had
not taken medicine or undergone X-ray examinations in the week before the survey; and
(4) workers who had completed the occupational questionnaire and physical examinations
and had provided some biological sample materials.

In the present study, we further excluded non-Han subjects and those without suf-
ficient heparin-anticoagulated peripheral venous blood samples for the measurement of
genetic damage biomarkers. Finally, a total of 1083 workers were selected in this study.
All participants understood the purpose and significance of this study and signed written
informed consent forms. They were then interviewed by trained personnel using a pre-
tested occupational questionnaire and provided information including their demographic
characteristics, lifestyle habits (such as smoking and alcohol consumption), personal and
family history of serious diseases, and occupational experience (such as workplaces, type
of work, and duration of exposure). Individuals who smoked ≥1 cigarette/day for ≥1 year
were defined as smokers, and those who consumed alcohol at least once a week for ≥1 year
were defined as alcohol drinkers. After the interview, we collected from each subject
~5 mL of heparin sodium-anticoagulated fasting elbow venous blood for single-cell gel
electrophoresis (SCGE) and the cytokinesis-block micronucleus (CBMN) assay. We also
collected ~2 mL of ethylenediaminetetraacetic acid (EDTA)-anticoagulated venous blood
from each subject. However, after the detection of hematologic parameters [10] and other
indicators (such as blood biochemical parameters), only 667 subjects had sufficient EDTA-
anticoagulated blood samples for DNA extraction. Thus, there were only 667 subjects in
the mirSNP analysis.
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2.2. Individual BTX Exposure Assessment

To assess long-term occupational BTX exposure, we calculated BTX CE levels for all
participants in the present study as mentioned in our previous study [10]. In brief, we
monitored ambient BTX concentrations in the workplaces over the three years preceding
the study. BTX concentrations were measured using thermal desorption and capillary gas
chromatography coupled with hydrogen flame ionization detector following the protocols
and quality control methods recommended by the National Institute for Occupational
Safety and Health (NIOSH) method 1501. The concentrations below the limits of detection
(LOD) were replaced by LOD/2. We calculated 8 h-TWA concentrations for BTX compo-
nents and then calculated CE levels (mg/m3 × year) by multiplying the three-year mean 8
h-TWA concentrations in workplaces by work years.

2.3. CBMN Cytometry Assay

We performed the CBMN cytometry assay to evaluate chromosome damage levels
using the standard method described by Fenech [22] with minor modifications. We added
0.5 mL of heparin sodium-anticoagulated blood to the prepared 1640 culture medium
which contained bovine serum and phytohemagglutinin, and incubated the cultures at
37 ◦C with a carbon dioxide concentration of 5% for 44 h. Then, we added cytochalasin
B (6 μg/L) into the cell culture medium and continued to incubate for another 28 h. Cell
cultures were centrifuged at 1500 rpm for 10 min in a low-temperature centrifuge at 4 ◦C
to remove the supernatant culture medium. We treated cells with 5 mL of 0.075 mol/L
KCl to lyse red blood cells, and then removed the supernatant. We repeatedly added
5 mL of fixative consisting of methanol/acetic acid (3:1) into the culture tube, centrifuged
the mixture at 1200 rpm for 10 min, and then discarded the supernatant. After the last
centrifugation, we retained about 150 μL of liquid and resuspended the cell pellet. The
suspension was dropped onto a clean glass slide, stained with a 10% Giemsa staining
solution, and finally observed under a microscope. The frequency of micronuclei (MN),
nucleoplasmic bridges (NPBs), and nuclear buds (NBUDs) were evaluated according to
Fenech’s criteria [23].

2.4. SCGE Assay

We performed the SCGE assay to evaluate DNA strand breakage levels using the
standard method described by Singh [24] with some modifications. We centrifugated
3 mL of heparin sodium-anticoagulated blood to separate white blood cells, and then
used a lymphocyte separation solution to separate lymphocytes, which were washed with
phosphate-buffered saline (PBS) to adjust the cell concentrations to 106–107 cells/mL. The
slides were immersed in 75% alcohol for a whole night. After being air-dried, the frosted
glass slides were washed twice with double distilled water (ddH2O). When the glass slides
were dry, the first layer was covered with melted typical-melting-point agarose (NMPA)
and kept at 4 ◦C to be solidified. Then, 100 μL of the lymphocyte suspension was mixed
thoroughly with 100 μL of 0.5% low-melting-point agarose (LMPA) at 37 ◦C, which was
then used to quickly cover the first agarose layer. The slides were then immersed in a lysing
solution (2.5 M NaCl, 100 mM Na2-EDTA, 10 mM Tris-base, 5 g sodium sarcosinate, pH 10,
and 1% TritonX-100, 10% DMSO added fresh) at 4 ◦C for overnight to lyse the cells and
permit DNA unfolding. Afterward, the slides were washed twice with PBS and put in a
0.3 mol/L NaOH buffer at 4 ◦C for 20 min to allow DNA unwinding. Electrophoresis was
conducted for the next 20 min at 300 mA and 25 V using a horizontal electrophoresis tank
at 4 ◦C. After electrophoresis, the slides were immersed in the Tris-HCL neutralization
buffer for 10 min and washed gently. Then, the slides were stained by 50 μL of 2 μg/mL PI
staining solution for 25 min in the dark. After staining, slides were rinsed in distilled water
and observed (within 24 h) under a fluorescence microscope equipped with an emission
wavelength of 590 nm and an excitation wavelength of 549 nm. We used the comet assay
software project 1.2.3beta1(CASP), (https://casp-uk.net/, accessed on 1 December 2013)
to analyze randomly photographed pictures and calculated the olive tail moment (OTM),
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the percentage of tail DNA (Tail DNA%), and tail moment of the comet after observing
50 cells in each slide. All of these steps were performed in the dark to avoid additional
DNA damage [24].

2.5. Selection and Genotyping of mirSNPs

Based on the miRNASNP v2.0 (https://ngdc.cncb.ac.cn/databasecommons/database/
id/1681, accessed on 1 December 2013) a solid public database providing miRNA-related
SNPs, we performed an integrative bioinformatic analysis to screen out SNPs on the seed
sequences, mature sequences, and precursor sequences for all human miRNAs in the
miRBase19.0 database (http://www.mirbase.org/, accessed on 1 December 2013). We
selected the most promisingly functional SNPs based on a series of criteria: (1) common
SNPs with a minor allele frequency (MAF) ≥ 0.05 in the Chinese Han population (CHB)
were chosen; (2) SNPs located on the miRNA seed sequences or mature miRNA sequences
were prioritized; and (3) for SNPs located on miRNA precursor sequences, we performed
an extensive literature review and only selected the SNPs who or whose corresponding
miRNAs were reported to be associated with leukemia pathogenesis, toxic metabolism,
genetic damage, and/or related mechanisms. Finally, a total of 61 mirSNPs were selected.

We used the iPLEX system (Sequenom) (https://www.cd-genomics.com/sequenom-
massarray-iplex-gold.html, accessed on 1 December 2013) for SNP genotyping. Before
the Sequenom experiments, we used Sequenom’s primer design software Assay design
3.1 (Laboratory Corporation of America Holdings, Burlington, NC, USA) to design the
PCR reaction and single-base extension primers for the selected mirSNPs according to their
sequence information. The primers for 46 mirSNPs were successfully designed (success rate
was 75.41%) (Table S1), while the primer design for the other 15 mirSNPs failed (Table S2).
Then, we replaced the 15 mirSNPs (called original mirSNPs) with other SNPs (Table S2)
according to the following criteria: (a) the SNPs were located in the regions from 1000 kb
upstream to 1000 kb downstream of the original mirSNPs; (b) the SNPs were in high linkage
disequilibrium (LD) (i.e., r2 ≥ 0.8) with the original mirSNPs; (c) the primers for SNPs can
be successfully designed; and (d) when multiple SNPs met the above three criteria, the
strongest LD SNP was prioritized.

A total of 667 subjects with sufficient EDTA-anticoagulated blood samples were
included in the mirSNP analysis. Genomic DNA was extracted from 400 μL of EDTA-
anticoagulated blood samples using DNA extraction kit (Tiangen, Beijing, China) according
to the manufacturer’s protocol. The selected 61 SNPs were genotyped using Sequenom
MassArray system (Beijing Bomiao Biological Co., Ltd., Beijing, China). For each selected
SNP, 10% of samples were further randomly selected for repeated genotyping, and the
results were 100% concordant.

2.6. Statistical Analyses

BTX CE levels, OTM, tail DNA%, and tail moments were natural logarithm (ln)-
transformed to obtain a normal distribution. All these ln-transformed biomarkers were
standardized before statistical analyses to improve the comparability of the effect estimates.
Unless otherwise stated, we adjusted for several primary variables in the statistical analyses,
including age (continuous), gender (male/female), smoking status (smokers/non-smokers),
pack-years of smoking (continuous), drinking status (drinkers/non-drinkers), factory
location (Guangzhou/Maoming), and body mass index (BMI, calculated as weight in
kilograms divided by height in meters squared) (continuous).

We divided the participants according to their general characteristics, including age
(≤40 vs. >40, which was the median age), gender (female vs. male), smoking status (non-
smokers vs. smokers), drinking status (non-drinkers vs. drinkers), and BMI (<24 kg/m2

vs. ≥24 kg/m2). We evaluated the between-characteristic differences in genetic damage
levels via multivariable covariance analysis. In addition, we used covariate-adjusted
generalized linear models to evaluate the associations of individual BTX (as independent
variables) with genetic damage indicators (as dependent variables) in the total population.
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For benzene, which was observed to be associated with genetic damage biomarkers, we
further assessed the between-characteristic differences in its association by adding an
interaction term of benzene CE levels (continuous) and general characteristics (categorical)
into covariate-adjusted generalized linear models.

Then, we used generalized weighted quantile sum (gWQS) models and interaction
analysis to assess the impact of BTX co-exposure on genetic damage indices. The weighted
quartile sum (wqs) index for the three BTX components was divided into four quartiles,
and the dataset was randomly split into training (40%) and validation sets (60%), with sig-
nificance testing for β based on independent data, and we used 10,000 bootstrap iterations
to enhance prediction sensitivity and stability. The contribution of each BTX component
was evaluated by its weight in the models. For components that were not found to be
associated with genetic damage, we further evaluate their modifying effects on benzene’s
genetic damage effects. We divided the subjects into three exposure groups according to
the tertile CE levels of toluene and xylene, respectively. Then, we assessed their modifying
effects on the associations of benzene with genetic damage by adding an interaction term
of benzene CE levels (continuous) and exposure groups (continuous and categorical) into
covariate-adjusted generalized linear models.

All SNPs were tested for the Hardy–Weinberg equilibrium (HWE) in the total popu-
lation by a goodness-of-fit Chi-square test. The between-genotype differences in genetic
damage levels were examined by means of multivariate analysis of covariance. We as-
sessed the associations of the number of variant alleles of SNPs (as the independent vari-
able) and genetic damage levels (as the dependent variable) in the total population using
covariate-adjusted multivariate linear regression models. To explore the gene–environment
interactions of benzene and the BTX mixture with SNPs, we evaluated their mutual effect
modification on each other’s associations with genetic damage by adding their interaction
terms (including those of environment factors (continuous) and genotypes (categorical) and
those of the number of SNP variant alleles (continuous) and exposure groups (categorical))
into covariate-adjusted generalized linear models.

All data analyses were carried out in RStudio software (version 4.1.2) and SPSS 26.0
(SPSS, Chicago, IL, USA). Two-sided p < 0.05 was considered statistically significant.

3. Results

3.1. Subject Characteristics

Table 1 shows the general characteristics, BTX CE levels, and genetic damage indices
in the 1083 participants in the present study. Subjects had a mean age of 40.01 years, the
majority of them were male (73.68%), and most workers were non-smokers (68.79%). About
half of the subjects consumed alcohol (45.43%). More than half of the subjects were working
in Maoming (65. 28%) and had a relatively long occupational BTX exposure history (mean
work years: 19.21). Their average BMI was 23.20 kg/m2. Their median CE levels of benzene,
toluene, and xylene were 0.66, 0.78, and 1.46 mg/m3 × year, respectively. The median
frequencies of MN, NPB, and NBUD were 9, 1, and 2 per 1000 cells, respectively. The
median levels of OTM, tail DNA%, and tail moments were 0.35, 1.50, and 0.13, respectively.
We then compared the genetic damage levels between subjects with different general
characteristics, and found that females had higher MN frequency, OTM, and tail moments
after adjusting for other primary covariates (p < 0.05) (Table S3).

Since 416 subjects in the total population were not tested for SNPs due to their limited
EDTA-anticoagulated blood samples, we also compared their general characteristics, BTX
CE levels, and genetic damage indices with those who were included in subsequent mirSNP
analysis (Table S4). We found that there were significant differences in terms of most of the
general characteristics between these two populations (p < 0.05). However, BTX CE levels
and genetic damage levels were not significantly different after adjusting for these primary
covariables (all p > 0.05) (Table S4).
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Table 1. General characteristics, BTX exposure levels, and genetic damage levels in petrochemical
workers (n = 1083).

Variables
Mean ± SD, n (%), or Median

(25th Percentile, 75th Percentile)

General characteristics
Age (years) 40.0 ± 7.0

Gender [male/female (%male)] 798/285 (73.68)
Smoking status [smoker/nonsmoker

(%smoker)] 338/745 (31.21)

Pack-years of smoking 2.8 ± 6.2
Drinking status [drinker/nondrinker

(%drinker)] 492/591 (45.43)

Factory location [Maoming/Guangzhou
(%Maoming)] 707/376 (65.28)

Working years (years) 19.2 ± 7.8
BMI (kg/m2) 23.2 ± 3.0

BTX CE levels (mg/m3 × year)
Benzene 0.66 (0.37, 1.00)
Toluene 0.78 (0.50, 1.21)
Xylene 1.46 (0.61, 2.50)

Genetic damage indices
MN frequency (per 1000 cells) 9 (6, 13)
NPB frequency (per 1000 cells) 1 (0, 2)

NBUD frequency (per 1000 cells) 2 (1, 3)
OTM 0.35 (0.20, 1.18)

Tail DNA% 1. 50 (0.86, 4.83)
Tail moment 0.13 (0.05, 0.69)

Abbreviations: BTX, benzene, toluene, and xylene; BMI, body mass index; CE, cumulative exposure; MN,
micronucleus; NPB, nucleoplasmic bridge; NBUD, nuclear bud; OTM, olive tail moment; Tail DNA%, percentage
of DNA in the comet tail.

3.2. Individual and Combined Effects of BTX Components with Genetic Damage

We first divided BTX into two groups based on the mean values and compared the lev-
els of genetic damage between the high-exposure and low-exposure groups (Table 2). In the
high-benzene and high-xylene groups, tail DNA% was significantly higher than in the low
exposure groups (p < 0.05). We further estimated the associations of single BTX components
with genetic damage indices. We found that a 1-SD increase in ln-transformed benzene
CE levels was associated with a 0.048-SD increase in ln-transformed OTM (95% CI: 0.007,
0.090) and a 0.073-SD increase in ln-transformed tail DNA% (95% CI: 0.027, 0.119) in the
total population (Table 2). These associations of ln-transformed benzene with genetic
damage indices were more pronounced in subjects older than 40 years (all Pinteraction < 0.05)
(Table S5). Consistently, benzene was also significantly positively correlated with OTM and
tail DNA% (p < 0.05) in subjects included in the mirSNP analysis (Figure S1). However, we
did not find any significant associations of BTX components with tail moments and the
indicators of chromosomal damage (all p > 0.05) (Table 2), thus we did not consider these
indicators in the subsequent analyses.

The combined effects of BTX components with OTM and tail DNA% in gWQS models
are shown in Figure 1. A quartile increase in the wqs index of ln-transformed BTX was
associated with a 0.054 increase in OTM (95% CI: 0.005, 0.103) and a 0.075 increase in
tail DNA% (95% CI: 0.020, 0.130), respectively. The main contributor with the highest
weight was benzene, with its weighted percentage being 0.809 in OTM and 0.766 in tail
DNA%. Although the individual effects of toluene and xylene on genetic damage levels
and their contributions to BTX’s combined effects were limited, we further investigated
their modifying effects on the associations of benzene. As shown in Figure 2, we observed
that in comparison to the low-exposure groups, the associations of benzene CE levels with
OTM and tail DNA% were significantly stronger in subjects with medium toluene exposure
levels and in workers with medium and higher xylene exposure levels (Pinteraction < 0.05).
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Interestingly, the magnitude of these associations was significantly increased with the
increase in xylene exposure levels (Ptrend < 0.05) (Figure 2).

Table 2. Associations of single BTX CE levels with genetic damage indices.

BTX Components
MN

Frequency
NPB

Frequency
NBUD

Frequency
OTM Tail DNA% Tail Moment

Benzene
High group a 10.26 ± 5.87 1.39 ± 1.76 2.63 ± 2.87 1.31 ± 1.00 4.98 ± 3.42 0.91 ± 1.12
Low group a 9.20 ± 5.29 1.38 ± 1.48 1.85 ± 1.77 0.50 ± 0.76 2.02 ± 2.57 * 0.29 ± 0.83

βstd (95% CI) b −0.057
(−0.142, 0.029)

−0.032
(−0.122, 0.057)

−0.015
(−0.102, 0.073)

0.048
(0.007, 0.090)

0.073
(0.027, 0.119)

0.041
(−0.001, 0.084)

Ptrend
b 0.193 0.480 0.742 0.022 0.002 0.057

Toluene
High group a 9.71 ± 5.66 1.38 ± 1.60 1.39 ± 1.66 0.79 ± 0.97 3.07 ± 3.29 0.52 ± 1.07
Low group a 9.71 ± 5.55 1.39 ± 1.66 2.31 ± 2.71 0.75 ± 0.89 2.96 ± 3.12 * 0.47 ± 0.89

βstd (95% CI) b 0.051
(−0.132, 0.030)

−0.053
(−0.136, 0.030)

0.020
(−0.062, 0.102)

0.023
(−0.019, 0.066)

0.034
(−0.012, 0.081)

0.014
(−0.029, 0.057)

Ptrend
b 0.219 0.211 0.634 0.276 0.150 0.533

Xylene
High group a 9.22 ± 5.68 1.33 ± 1.40 1.63 ± 1.75 0.42 ± 0.69 1.72 ± 2.25 0.23 ± 0.79
Low group a 10.06 ± 5.53 1.42 ± 1.76 2.64 ± 2.70 1.22 ± 1.00 4.68 ± 3.47 0.84 ± 1.09

βstd (95% CI) b −0.072
(−0.170, 0.025)

−0.050
(−0.152, 0.051)

−0.019
(−0.118, 0.080)

−0.004
(−0.054, 0.045)

0.001
(−0.054, 0.056)

−0.020
(−0.071, 0.031)

Ptrend
b 0.144 0.331 0.704 0.864 0.962 0.435

Abbreviations: BTX, benzene, toluene, and xylene; CE, cumulative exposure; MN, micronucleus; NPB, nucle-
oplasmic bridge; NBUD, nuclear bud; OTM, olive tail moment; Tail DNA%, percentage of DNA in the comet
tail. a: The mean ± SD for each genetic damage indicator. b: Generalized linear models (GLM) with adjustment
for age, gender, smoking status, pack-years of smoking, drinking status, factory location, and BMI. BTX CE
were included as a continuous variable in the GLM. *: p < 0.05 for the between-group differences which were
determined by multivariable covariance analysis with adjustment for age, gender, smoking status, pack-years of
smoking, drinking status, factory location, and BMI.

3.3. Influences of SNPs on Genetic Damage Levels

The basic information for 46 mirSNPs and 15 replaced SNPs are presented in
Tables S1 and S2, respectively. The genotype distributions for 11 SNPs did not conform
to the Hardy–Weinberg equilibrium (all PHWE < 0.05), and thus were excluded from
the following analysis. Rs73112689 were also excluded because all the subjects were
of the same genotype (CC). The other 49 SNPs were distributed as expected under the
Hardy–Weinberg equilibrium (all PHWE > 0.05) (Tables S1 and S2), and were included in
the following analysis.

We first compared the levels of OTM and tail DNA% in workers carrying different
genotypes, and then investigated the associations of the number of variant alleles with
OTM and tail DNA% (Table S6 and Figure 3). We found that after adjusting for multiple
confounding factors, the genotypes and/or the numbers of mutant alleles of rs11191980,
rs1365477, rs2594716, rs725980, and rs878718 significantly influenced OTM and/or tail
DNA% (Table S6 and Figure 3). Specifically, for rs11191980, when compared with carriers
of wild homozygotes (TT) and heterozygotes (TC), workers with mutant homozygotes
(CC) had significantly lower mean OTM (TT: −0.82; TC: −0.65; CC: −1.40; p < 0.015)
and tail DNA% (TT: 0.58; TC: 0.73; CC: −0.07; p = 0.004). For rs1365477, carriers of wild
homozygotes (CC) had significant higher OTM (CC: −0.77; CT: −1.05; CT + TT: −1.02;
p < 0.045) and tail DNA% (CC: 0.63; CT: 0.31; CT + TT: 0.34; p < 0.025) when compared
with the carriers of CT or T alleles (i.e., CT + TT), and the number of mutant T alleles
was negatively associated with both OTM (β = −0.185, Ptrend = 0.019) and tail DNA%
(β = −0.227, Ptrend = 0.009). For rs2594716, when compared with carriers of wild ho-
mozygotes (CC) and/or C allele (i.e., CT + CC), subjects with mutant homozygotes (TT)
had significantly lower mean OTM (CC: −0.80; CT + CC: −0.78; TT: −0.99; p < 0.025)
and tail DNA% (CT + CC: 0.62; TT: 0.42; p = 0.026), and the number of mutant T alle-
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les was significantly negatively associated with OTM (β = −0.084, Ptrend = 0.029). For
rs725980, when compared with carriers of wild homozygotes (GG), workers with GC
or mutant C alleles (i.e., GC + CC) had significant higher OTM (GG: −0.87; GC: −0.70;
GC + CC: −0.71; p < 0.020) and tail DNA% (GG: 0.53; GC: 0.70; GC + CC: 0.69; p < 0.035).
Furthermore, the number of rs725980 C alleles was positively associated with OTM
(β = 0.085, Ptrend = 0.034) and tail DNA% (β = 0.092, Ptrend = 0.038). For rs878718, when
compared with the carriers of wild homozygotes (AA), workers with an AG genotype
and mutant G alleles (i.e., AG + GG) had significant higher tail DNA% (AA: 0.55; AG:
0.63; AG + GG: 0.62; p < 0.045). However, we did not observe any statistically signifi-
cant between-genotype differences (all p > 0.05) or associations (all Ptrend > 0.05) in the
two genetic damage indicators for other SNPs (Table S6).

Figure 1. The dose–effect relationship of co-exposure to the BTX mixture (a1,b1) with (A) OTM and
(B) tail DNA%, as well as the contribution of individual BTX components (a2,b2). Abbreviations:
wqs, weighted quartile sum index for BTX mixture; Coef. (95% CIs), coefficients and 95% confidence
intervals; OTM, olive tail moment; Tail DNA%, percentage of DNA in the comet tail. The gWQS
models were adjusted by age, gender, smoking status, pack-years of smoking, drinking status, factory
location, and BMI.
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Figure 2. Modifying effects of (A) toluene and (B) xylene on the associations [β (95% CI)] of benzene
with OTM and tail DNA%. Abbreviations: OTM, olive tail moment; Tail DNA%, percentage of DNA
in the comet tail. The lines represent the associations of benzene CE levels with genetic damage
indices which were analyzed by generalized linear models adjusted for age, gender, smoking status,
pack-years of smoking, drinking status, factory location, and BMI. The red dashed line represents the
baseline (no association, β = 0). Significant levels are annotated as *** Pinteraction < 0.001 in comparison
to the low-exposure group and * Pinteraction < 0.05 in comparison to the low-exposure group.

134



Toxics 2024, 12, 821

Figure 3. Significant effects of SNPs and/or their genotypes on (A) OTM and (B) tail DNA%.
Abbreviations: OTM, olive tail moment; tail DNA%, percentage of DNA in the comet tail. The lines
represent the levels of ln-transformed OTM or tail DNA% (error bars absent for condition where only
two available samples). The between-genotype differences were evaluated by means of multivariate
analysis of covariance, and the associations of the number of variant alleles with OTM and tail DNA%
were evaluated by means of multivariate linear regression models with adjustment for age, gender,
smoking status, pack-years of smoking, drinking status, factory location, and BMI. Bolded p-values
indicate statistical significance.

3.4. Effect of Gene–Environment Interactions on Genetic Damage Levels

To explore the effect of gene–environment interactions of exposure to benzene and the
BTX mixture with SNPs on genetic damage biomarkers, we evaluated their mutual effect
modification on each other’s associations with OTM and tail DNA%. We observed that the
positive associations of benzene and/or the BTX mixture with OTM and tail DNA% were
significantly different among different genotypes of rs11614913, rs12451747, rs12803915,
and/or rs266437, with more pronounced effect estimates (βstd ≥ 0.080, Ptrend < 0.05) in
carriers of rs11614913 TC heterozygotes and of wild homozygotes of rs12451747 (i.e., CC),
rs12803915 (i.e., GG), and rs266437 (i.e., CC) (Pinteraction ≤ 0.05) (Figure 4 and Table S7).
However, SNPs which were found to be associated with genetic damage levels (including
rs11191980, rs1365477, rs2594716, rs725980, and rs878718) had no modifying effects on the
effect estimates of exposure to benzene and the BTX mixture (Table S7).
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Figure 4. Significant modifying effects of (A) SNPs and (B) benzene/BTX exposure on each other’s
associations with OTM and tail DNA%, with Pinteraction < 0.05. Abbreviations: OTM, olive tail
moment; Tail DNA%, percentage of DNA in the comet tail. The lines represent the associations
[βstd (95% CI)] evaluated by multivariate linear regression models with adjustment for age, gender,
smoking status, pack-years of smoking, drinking status, factory location, and BMI. * Ptrend < 0.05,
and ** Ptrend < 0.01.

We then investigated the modifying effects of benzene and the BTX mixture on the asso-
ciations of SNPs with genetic damage levels. We stratified the subjects included in mirSNP
analysis into two exposure groups based on the median benzene CE levels and BTX wqs in-
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dex. We observed that the effect estimates of rs11614913, rs12220909, rs12451747, rs266437,
and/or rs35770269 on OTM and/or tail DNA% were significantly different in work-
ers with different exposure levels of benzene and/or the BTX mixture (Pinteraction < 0.05)
(Figure 4 and Table S8). Interestingly, the positive associations of rs12220909 with OTM
and/or tail DNA% were more pronounced (βstd > 0.130, Ptrend ≤ 0.030) in workers with
lower exposure levels of benzene and BTX mixture, while they were weaker in workers
with higher exposure levels (βstd < −0.040, Ptrend > 0.05). However, exposure to benzene
and the BTX mixture had no modifying effects on the effect estimates of SNPs that were
associated with genetic damage levels (Table S8).

4. Discussion

To the best of our knowledge, the present study was the first exploration into the
effects of BTX exposure, along with polymorphisms in miRNA genes, and the gene–
environment interactions on genetic damage in Chinese petrochemical workers. We found
that exposure to benzene and the BTX mixture might induce a significant increase in DNA
strand break levels. Interestingly, the effects of benzene were significantly enhanced by
higher exposure levels of toluene and xylene. Furthermore, these effects of benzene and
BTX mixture were more pronounced in carriers of rs11614913 heterozygotes and of wild
homozygotes of rs12451747, rs12803915, and rs26643. In addition, there were significant
negative associations of rs1365477 and rs2594716, and positive associations of rs725980,
with DNA strand break levels in the total population. Furthermore, the positive associations
of rs12220909 with DNA strand break levels were more pronounced in workers with lower
exposure levels to benzene and the BTX mixture. Our findings provide further support for
the involvement of BTX co-exposure, mirSNPs, and their gene–environment interactions in
determining the severity of genetic damage in a complex manner.

In epidemiological studies of BTX components, especially at low exposure levels,
quality of exposure assessment is closely related to the ability to detect their health risks.
Internal exposure biomarkers have a short biological resident time and are very susceptible
to confounding factors such as smoking and diet [25], making them less suitable for long-
term low-dose exposure assessment. Given that inhalation is the most common exposure
route for volatile BTX components, and that the TWA concentrations of BTX components
in our participants’ workplaces were relatively stable and considerably lower than their
commonly recommended occupational exposure limit [10], we used long-term environment
monitoring data and work years to derive individual cumulative exposure estimates.

Our findings are consistent with previous studies showing that low-dose benzene
exposure is associated with genetic damage. Several recent comprehensive meta-studies
have indicated that compared to the control group, benzene exposure, even lower than
3.25 mg/m3, might induce significant increases in various genetic damage indictors in
blood lymphocytes [12,15]. A study involving workers with benzene cumulative doses
ranging from 1.19 to 20.87 mg/m3 × year showed a significant association between benzene
exposure dose and PIG-A mutant frequencies and MN frequencies [26]. Li et al. suggested
that low occupational benzene exposure ranging from 0.33 mg/m3 to 1.08 mg/m3 could
induce a significantly increased MN frequency in lymphocytes [27]. The median CE levels
and 8 h-TWA concentrations of benzene for our subjects were 0.66 mg/m3 × year and
0.036 mg/m3, respectively, which were lower than the levels in the above-mentioned
studies. Even at such low exposure levels, the present study still observed significant asso-
ciations of benzene CE levels with OTM and tail DNA%, further proving that long-term
exposure to even lower benzene levels could still induce a significant increase in DNA
strand break levels. We further found that the effect of a low dose of benzene on DNA
strand break was more pronounced in subjects older than 40 years. Age is an important
biological factor influencing susceptibility to the toxic effects of environmental hazards
by affecting the efficiency of the pathways involved in metabolism and cytotoxic out-
comes [28]. Gaikwad et al. [29] found that compared to younger subjects, older ones were
more susceptible to oxidative DNA damage caused by exposure to genotoxic substances.
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Furthermore, older workers were exposed to BTX for extended periods, which may lead to
the accumulation of more genetic damage.

BTX components frequently co-exist in various human environments. Recent studies
suggest caution in interpreting the health effects of mixed environmental exposures due
to complex interactions among multiple components [30]. To address the complexities of
mixed BTX exposures in real-world settings, we employed both single-pollutant models
and combined exposure models to better understand each compound’s toxicological role.
We adopted both gWQS models and interaction analysis in the present study to explore
the combined effects of three BTX components on genetic damage indices. Although
the individual effects of toluene and xylene were not significant and their contributions
to the combined BTX effects were limited, interaction analysis revealed that benzene’s
genotoxicity was more pronounced in individuals with moderate to high toluene and xylene
exposure levels and was significantly increased with higher xylene exposure. Simultaneous
exposure to BTX compounds may alter the metabolism mechanisms and further influence
the toxicity of each component [8]. Earlier studies addressing co-exposure to benzene and
toluene at high concentrations demonstrated a reduction in benzene-induced genotoxicity,
which may be related to the dose-dependent competitive inhibition of metabolism [31].
Conversely, another study indicated that at lower exposure levels (benzene at 50 ppm
and toluene at 100 ppm), the induction of CYP2E1 by toluene could lead to the increased
metabolism of benzene into its genotoxic metabolite hydroquinone, potentially causing
greater genetic damage [9]. In the context of the frequent low-dose co-existence of BTX
compounds in human environments, our findings, along with those of previous studies,
suggest that the genetic damage induced by benzene at low doses may be influenced by
concurrent exposure to toluene and xylene. However, it is important to note that these
interactions at low doses may involve distinct metabolic pathways compared to those at
higher doses. Therefore, our study highlights the need for comprehensive management
strategies that consider not only the levels of individual compounds like benzene but also
the potential interactions at low doses of toluene and xylene.

In addition to the influence of BTX components, individually and in various combina-
tions, on genetic damage, we also evaluated the involvement of genetic polymorphisms on
miRNA genes. We observed the significant effects of the genotypes and/or the numbers
of mutant alleles of rs11191980, rs1365477, rs2594716, rs725980, and rs878718 on DNA
strand break levels. Rs11191980 is in high linkage disequilibrium with rs45596840 situated
within the seed sequence of miR-4482. Mumtaz et al. found that the expression of mir-4482
was decreased in prostate cancer tissues when compared with the adjacent normal tissues
and could inhibit the progression of prostate cancer cells by suppressing the expression
of ETS-related gene [32]. Rs7259810 is in high linkage disequilibrium with rs2241347 in
the mature miR-3130 sequence. Mir-3130 has been found to inhibit the expression of
NDUFS1 to promote the invasiveness of lung adenocarcinoma in vivo and in vitro [33]
and could also regulate the miR-3130-3p/NFYA/SATB1 axis to promote the occurrence
and development of endometrial cancer cells [34]. Rs1365477 is in high linkage disequi-
librium with rs12473206 located in the mature region of miR-4433. Wu et al. identified
that mir-4433 could induce apoptosis through targeting Bcr-Abl genes and suppress the
growth of leukemia cells [35]. Rs2594716 is closely linked to rs895819, which is positioned
within the loop of the pre-miR-27a sequence. Previous studies have indicated a signifi-
cant association between rs895819 and tumor susceptibility, with carriers of the mutant
allele demonstrating a notably reduced risk of diffuse large B-cell lymphoma compared
with individuals possessing the wild-type genotype [36]. Our findings also suggest that
the population carrying the mutant allele at this specific locus exhibited lower genetic
damage levels, suggesting that the mutant allele of rs2594716 (or rs895819) might exhibit
a protective effect against cancer risk by reducing genetic damage. Rs878718 is tightly
linked to rs5997893 located in the pre-miR-3928 sequence. Mir-3928 has been identified as a
tumor-suppressive miRNA in both in vivo and in vitro, and is capable of downregulating
oncogenes and upregulating p53, thereby inhibiting the progression of glioblastoma [37].
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Collectively, our findings suggest potential roles for these SNPs in genetic damage, which
could lead to differential cancer susceptibility. However, the mechanisms by which these
SNPs influence miRNA biogenesis, activity, and/or bioavailability remain to be elucidated
by further investigations.

In order to explore the gene–environment interactions, we further assessed the mutual
modifying influence of SNPs and environment factors (including benzene and the BTX
mixture) on each other’s associations with genetic damage. The effects of benzene and the
BTX mixture were found to be more pronounced among carriers of rs11614913 heterozy-
gotes and wild-type homozygotes of rs12451747, rs12803915, and rs266437. Rs11614913 is a
well-studied SNP located within the mature miRNA-196a2 sequence. Its mutant allele has
been implicated in elevating the miRNA expression levels and enhancing the regulatory
capacity of multiple target genes [38], eventually increasing the risk of cancers like acute
lymphoblastic leukemia (ALL) in Chinese children [39]. The present study also found
that individuals with the rs11614913 mutant allele might experience more severe DNA
strand breaks as a result of exposure to benzene and the BTX mixture. However, our
previous research observed that the rs11614913 mutant allele might attenuate the effects
of lead, naphthalene, and benzo[a]pyrene on increased oxidative DNA damage among
coke oven workers [21]. These seemingly contradictory results might be explained by
the different balance of the functions of miR-196a2-targeting genes (including oncogenes
or tumor suppression genes) in specific exposure conditions [40]. However, the regula-
tion mechanisms of rs11614913 warrant further investigation. Rs12803915 is located in
the mir-612 precursor coding region and has been shown to be significantly associated
with ALL risk in a case–control study, with the mutant allele being protective [41]. It has
been shown that rs12803915 could significantly influence the expression levels of mature
miR-612 [42], which may further regulate the downstream targets and thereby affect the
susceptibility to toxic effects of environmental hazards like benzene. Rs12451747 is located
in the mature sequence of miR-1296b, which has been documented to be highly expressed
in various cancers [43] and may be involved in the activation of the PI3K/AKT signaling
pathway [44]. Rs266437 is linked to rs266435 in the hsa-mir-4804 precursor coding region,
yet reports on the links of these loci and the associated miRNA with cancers are scarce.
Overall, the present study might extend these findings by revealing the interactive effects
of these SNPs with benzene/BTX exposure and suggesting that individuals with specific
alleles at these loci may experience increased genetic damage subsequent to benzene/BTX
exposure, potentially heightening the cancer risk. Furthermore, our study also observed a
significant association of rs12220909 with higher genetic damage levels in the low-exposure
group of benzene and/or the BTX mixture, which became weaker and insignificant in the
high-exposure group. Rs12220909, situated in the seed sequence of mir-4293, has been
implicated in tumorigenesis, with its heterozygotes often being regarded as a protective
factor against cancers [45]. Our findings further suggest that the protective capacity of
rs12220909 against tumorigenesis may be dose-dependent: the mutant allele might confer
a protective advantage at higher exposures to benzene and BTX mixture, and may not
provide the same levels of protection at lower exposures, potentially leading to increased
genetic damage susceptibility.

The present study has several strengths. Firstly, we calculated individual BTX CE
levels based on long-term average TWA concentrations and working years, thus providing
a representation of environmental exposure profiles of petrochemical workers subjected to
low BTX concentrations. Additionally, we performed an integrative bioinformatics analysis
based on a solid public database and an extensive literature review to screen out multiple
functional miRNA-related SNPs, which might help to systematically evaluate the effects of
miRNA-related SNPs. However, there also existed some limitations in our study. First, our
study is an exploratory cross-sectional study, and thus the findings could not demonstrate
the causal associations. Additionally, although we selected petrochemical workers from
workshops where BTX were the primary occupational hazards, they may still be exposed
to other genotoxic hazards in their working and living environment, causing challenges
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in describing the genotoxicity of BTX in environments exposed to complex contaminants.
Although we adjusted for general characteristics and factory location in our statistical
analysis to minimize their confounding effects, further studies are needed to evaluate their
influences on our results. Furthermore, the present study was limited to an ethnic Chinese
occupational population, and it is uncertain whether our findings can be extrapolated to
other populations. Additionally, in the subsequent studies, some research subjects were not
included in the mir-SNP analysis due to limited biological samples, necessitating further
examination of the representativeness of the results.

5. Conclusions

Conclusively, our study reveals that low-dose benzene exposure, particularly within
BTX mixtures, significantly contributes to DNA strand breaks. The genotoxic effects of
benzene are amplified by higher levels of toluene and xylene co-exposure. Furthermore,
individuals harboring rs11614913 heterozygotes and wild homozygotes of rs12451747,
rs12803915, and rs266437 appeared to be more vulnerable to the genotoxic effects of benzene
and the BTX mixture. Moreover, the genotypes and/or the number of mutant alleles of
rs11191980, rs1365477, rs2594716, rs725980, and rs878718 might influence DNA strand
break levels. We also observed more pronounced positive associations of rs12220909 with
DNA strand break levels only in workers with lower exposure levels of benzene and BTX
mixture. These findings highlight the complex interactions between benzene exposure,
mirSNPs, and genetic damage, emphasizing the need for further research to inform targeted
interventions and refine risk assessment strategies for BTX-exposed workers. The present
study contributes some novel insights into the individual and interactive effects of BTX
and miRNA-related SNP on genetic damage, further shedding light on the risk assessment
of genetic damage in BTX-exposed occupational populations.
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Abstract: Arsenic exposure can induce liver insulin resistance (IR) and diabetes (DM), but the
underlying mechanisms are not yet clear. Circular RNAs (circRNAs) are involved in the regulation
of the onset of diabetes, especially in the progression of IR. This study aimed to investigate the role
of circRNAs in arsenic-induced hepatic IR and its underlying mechanism. Male C57BL/6J mice
were given drinking water containing sodium arsenite (0, 0.5, 5, or 50 ppm) for 12 months. The
results show that sodium arsenite increased circ_0000284 expression, decreased insulin-like growth
factor 2 mRNA binding protein 2 (IGF2BP2) and peroxisome proliferator-activated receptor-γ (PPAR-
γ), and inhibited cell membrane protein levels of insulin-responsive glucose transporter protein 4
(GLUT4) in the mouse livers, indicating that arsenic exposure causes liver damage and disruptions
to glucose metabolism. Furthermore, sodium arsenite reduced glucose consumption and glycogen
levels, increased the expression of circ_0000284, reduced the protein levels of IGF2BP2 and PPAR-γ,
and inhibited GLUT4 protein levels in the cell membranes of insulin-treated HepG2 cells. However,
a circ_0000284 inhibitor reversed arsenic exposure-induced reductions in IGF2BP2, PPAR-γ, and
GLUT4 levels in the plasma membrane. These results indicate that circ_0000284 is involved in
arsenite-induced hepatic insulin resistance through blocking the plasma membrane translocation of
GLUT4 in hepatocytes via IGF2BP2/PPAR-γ. This study provides a scientific basis for finding early
biomarkers for the control of arsenic exposure and type 2 diabetes mellitus (T2DM), and discovering
new prevention and control measures.

Keywords: arsenic exposure; diabetes mellitus; insulin resistance; circ_0000284; hepatotoxicity

1. Introduction

Diabetes mellitus (DM) can be influenced by genetic or environmental factors and is
often characterised by hyperglycaemia and insulin abnormalities. The increasing preva-
lence of DM, particularly type 2 diabetes mellitus (T2DM), has put enormous pressure on
healthcare resources, leading to a significant global public health problem [1,2]. Insulin
resistance (IR) is the main aetiology and pathogenesis of T2DM. IR occurs due to the
reduced sensitivity of the liver, fat, and other tissues to insulin. Notably, the liver is crucial
for the maintenance of normal glucose homeostasis [3].

Arsenic is a toxic element found extensively in the environment, with an average
concentration of about 5 mg/kg [4]. Although the World Health Organization (WHO)
recommends a maximum arsenic concentration of 10 μg/L in drinking water, the recom-
mendations for the maximum arsenic concentration in drinking water in over 40 countries
exceed 10 μg/L [5]. About 200 million individuals globally are potentially exposed to ele-
vated levels of arsenic in their drinking water [6]. Arsenic exposure is strongly associated
with many human diseases, such as metabolic diseases, neurological diseases, skin diseases,
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and various cancers. In addition, arsenic exposure can lead to the occurrence of risk factors
for cerebrovascular diseases, such as hypertension and T2DM [7].

Chronic arsenic exposure in humans can cause arsenic accumulation in the liver,
affecting glucose metabolism, thus leading to IR and increasing the risk of T2DM [8]. A
study showed that arsenic impairs glucose tolerance in mice after eight weeks of exposure to
50 mg/L inorganic arsenite in drinking water [9]. Another study showed that mice exposed
to 20 ppm arsenite in drinking water for 12 months could develop IR [10]. Furthermore, the
internal levels of arsenic in mice exposed to 50 ppm arsenite are comparable to the levels in
highly exposed populations. Moreover, glucose tolerance is impaired in mice exposed to
50 ppm arsenite [9,11]. Therefore, a minimum of three doses should be selected to assess
the dose–response correlation, adhering to established protocols for hazard identification
and risk assessment [12]. In this study, 50 ppm, 5 ppm, and 0.5 ppm were selected as the
maximum dose, medium dose, and low dose of sodium arsenite, respectively, to assess the
effects of chronic sodium arsenite exposure on hepatic insulin resistance and its mechanism
of action in mice.

Circular RNAs (circRNAs) are single-stranded non-coding RNAs with a covalent
closed-loop structure. CircRNAs are involved in insulin resistance as microRNAs sponges
or RNA-binding protein (RBP) sponges [13]. Circ_0000284 originates from the HIPK3
gene and has a length of 1099 nucleotides [14]. Circ_0000284 can cause hyperglycaemia
and hepatic IR by sponging miR-192-5p [15]. Therefore, circ_0000284 may be involved in
hepatic IR related to arsenic exposure.

The insulin-like growth factor 2 mRNA binding protein 2 (IGF2BP2) is an RBP involved
in RNA localisation, stabilisation, and translation [16]. IGF2BP2 can participate in the
development of liver cancer by binding to circRNAs [17]. Furthermore, IGF2BP2 was
recognised as a T2DM-related gene as early as 2007, consistent with the findings of a
meta-analysis of populations [18]. The liver-specific deletion of IGF2BP2 increases hepatic
triglyceride accumulation and the risk of obesity, which are associated with IR-mediated
T2DM [19,20]. However, it is unclear whether circ_0000284 promotes arsenic-induced
hepatic IR by binding to IGF2BP2 and its downstream pathways.

Triglycerides accumulate in the liver when the transport rate of triglycerides from the
liver to extrahepatic tissues is slowed down. This transport process may be related to the
peroxisome proliferator-activated receptor-γ (PPAR-γ) [21]. In addition, hepatic PPAR-γ-
deficient mice have a reduced glucose tolerance and insulin sensitivity [22]. The PPAR-γ
activator ameliorates hepatic IR in arsenic-treated mice and HepG2 cells [23]. Glucose
transporters (GLUTs) play a key role in insulin-stimulated glucose utilisation [24]. Although
the insulin-responsive glucose transporter protein 2 (GLUT2) is the major GLUT isoform
in the liver and is expressed at higher levels than insulin-responsive glucose transporter
protein 4 (GLUT4), GLUT4 is a key regulator of systemic glucose homeostasis. GLUT4
is mainly expressed in adipose tissue, skeletal, and cardiac muscle cells [25]. However,
it has been shown that GLUT4 is also involved in glucose metabolism in the liver, with
IR significantly upregulating the expression of GLUT4 mRNA and protein in the liver,
rather than GLUT2 expression [26]. The upregulating of GLUT4 can alleviate insulin
resistance in the liver of mice [27]. In their study on the effects of metformin on hepatic
glucose metabolism, Zhu et al. showed that the expression of GLUT4 in the liver is also
significantly affected by metformin [28]. Furthermore, the downregulation of GLUT4 is
the main pathological mechanism of hyperglycaemia induced by insulin resistance [29].
Therefore, we mainly investigated the expression of GLUT4 in hepatic IR induced by
sodium arsenite. PPAR-γ and GLUT4 are elevated in diabetic rats. Notably, PPAR-γ
regulates GLUT4 expression [30]. Although a specific GLUT4 knockdown leads to systemic
glucose intolerance and IR in mouse muscle and liver tissues [31], the specific mechanism
of action is unclear.

Herein, the role of circ_0000284 in arsenic exposure-induced hepatic IR is evaluated.
The results reveal a novel molecular mechanism underlying hepatic IR and arsenic-induced
T2DM. Therefore, this study provides a scientific basis for identifying the early biomarkers
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for controlling arsenic exposure and T2DM, and for discovering new preventive and
curative measures for arsenic-induced T2DM.

2. Materials and Methods

2.1. Mouse Model for Arsenite Exposure

Eight-week-old male C57BL/6J mice were sourced from SPF Biotechnology Co., Ltd.
(Beijing, China) (license No. 1100987757). All the animal experiments and housing con-
ditions were approved by the Laboratory Animal Ethics Committee of Baotou Medical
College (approval number No. 002, Baotou Medical College, 2021). The mice were stochas-
tically divided into four groups (n = 12). Sodium arsenite (Sigma, Darmstadt, Germany)
was diluted in drinking water to concentrations of 0, 0.5, 5, and 50 ppm, and the mice were
allowed to drink the water freely for 12 months. Each mouse was fed with maintenance
feed for rats and mice (SPEFO Biotechnology Co., Ltd., Beijing, China), which did not
contain arsenic. The water consumption, food intake, and body weight of the mice were
recorded weekly. After 12 months of sodium arsenite exposure, the mice were anaesthetised
by an intraperitoneal injection of 1% pentobarbital sodium and then euthanised by cervical
dislocation, and their livers were collected for further analysis.

2.2. Intraperitoneal Glucose Tolerance Tests (IPGTTs) and Insulin Tolerance Tests (ITTs)

The mice were fasted overnight after 12 months of arsenic exposure. The fasting blood
glucose in the tail vein was measured using a blood glucose meter (Roche Diagnostics
GmbH, Mannheim, Germany). The blood glucose levels were assessed at 15, 30, 60, and
120 min following the administration of a glucose solution (2 g/kg body weight dissolved
in saline) via an intraperitoneal injection. The mice were given one day to recover after
the IPGTTs. The mice were fasted for 4–6 h before the measurement of the ITTs. Insulin
(0.5 IU/kg) was administered via an intraperitoneal injection, followed by blood glucose
monitoring at 15, 30, and 60 min post-injection.

2.3. Liver Periodic Acid–Schiff (PAS) Staining

The fresh liver tissues were fixed in 4% paraformaldehyde, embedded in paraffin, and
cut into 5 μm sections. The sections were dewaxed, rinsed with tap water for 2~3 min, then
rinsed twice with distilled water, and placed in an oxidising agent at room temperature
(25–30 ◦C) for 5~10 min. The samples were rinsed twice with distilled water, then put
into a PAS staining solution (Solarbio Life Science, Beijing, China) in a dark place at
room temperature (25–30 ◦C) for 10–20 min. The samples were put in a haematoxylin
staining solution for 2 min to stain the nucleus. The sections were differentiated with acidic
differentiation solution and dehydrated, made transparent, and sealed before visualisation
using a microscope.

2.4. HE Staining

The fixed tissue samples were washed with running water, dehydrated with gradient
alcohol, and embedded. The samples were cut into 3 μm thick paraffin slices and incubated
at 65 ◦C for 4.5 h. The sections were deparaffinised and rehydrated through graded alcohols
to water. The sections were then placed in a haematoxylin solution for 3 min, rinsed with
running tap water for 5 min, and differentiated in 1% acid alcohol (1% HCl in 70% ethanol)
for 10 s. After rinsing with running tap water for 1 min, the sections were placed in a
blueing solution for 30 s to 1 min, and then rinsed again with running tap water for 5 min.
Next, the sections were stained in an eosin dye solution for 5 min, dehydrated through
graded alcohols, and cleared in xylene. Finally, the slides were sealed with a coverslip
using a mounting medium, observed under a microscope, and photographed for analysis.

2.5. Cell Culture and Treatment

The human hepatocellular carcinoma cell line HepG2 was sourced from Pricella Life
Science and Technology Co., Ltd. (Wuhan, China). The cell culture medium was DMEM
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(Gibco, Gaithersburg, MD, USA). The complete medium was supplemented with 10% foetal
bovine serum (Gibco, Gaithersburg, MD, USA) and 1% antibiotics (100 IU/mL penicillin
and 100 μg/mL streptomycin, Beyotime, Shanghai, China). The cells were cultured in a
humidified incubator (Thermo Scientific, Waltham, MA, USA) at 37 ◦C with 5% carbon
dioxide. The HepG2 cells were digested with trypsin when they grew to 80–90%, were
re-laid evenly in well plates or cell culture dishes, and treated with different concentrations
of the sodium arsenite culture solution for 24 h, followed by the addition of 100 nM insulin
for 30 min. The cells were collected for subsequent experiments.

2.6. Cell Viability Assay

The cell viability was assessed using Cell Counting Kit 8 (CCK-8) reagent (Biosharp,
Anhui, China). The cell concentration was determined using a cell counter. The cells
(5000 per well) were inoculated into 96-well culture plates. The original medium was
discarded after the cells attached to the wall. The cells were then treated with the medium
containing different concentrations of sodium arsenite (0, 1, 2, 4, 6, 8, 10, 20, or 30 μM)
for 24 h. The CCK-8 reagent (10 μL) was added to each well, and the absorbance was
recorded at 450 nm. The cell viability was calculated as a percentage of the absorbance in
the control wells.

2.7. Cell Transfection

The circ_0000284 inhibitors (si-circ_0000284) and si-circ_NC (si-circ_0000284 nega-
tive control) were sourced from IGEBio (Guangzhou, China). The cell transfection was
completed using Liposome 2000 reagent (Invitrogen). The cells were inoculated into six-
well plates, followed by the addition of the MEM solution containing si-circ_0000284 and
the MEM solution with si-NC, mixed with the MEM solution containing the Liposome
2000 reagent, for transfection for 6 h. The cells were then incubated with the sodium
arsenite solution for 24 h, and collected for further experiments.

2.8. Membrane Protein Extraction and GLUT4 Analysis

A Membrane Protein and Cytoplasmic Protein Extraction Kit (Beyotime, Shanghai,
China) was used to extract the membrane proteins and plasma proteins. The HepG2 cells
were collected via cell scraping, then centrifuged at 4 ◦C and 1200 rpm for 5 min. The
supernatant was discarded, and the precipitate was retained. Moreover, the liver tissues
were cut into pieces. Benzenesulfonyl fluoride (PMSF, Beyotime, Shanghai, China) was
added to the cell and tissue samples, then homogenised with a homogeniser, centrifuged
at 4 ◦C and 14,000× g for 30 min. The plasma protein was collected as the supernatant.
Membrane Protein Extraction Reagent B was added to the precipitate and centrifuged at
14,000× g and 4 ◦C for 5 min to collect the membrane protein solution.

The total protein was obtained using a Total Protein extraction kit (Solarbio Life
Science, Beijing, China). Protein lysate containing PMSF was added to the petri dish and
scraped with a cell scraper after treating the cells according to each experimental protocol.
Also, the liver tissue was ground, followed by the addition of protein lysate containing
PMSF to prepare the tissue protein lysate. The protein lysates were lysed on ice for 30 min,
then centrifuged at 4 ◦C and 12,000 rpm for 30 min. The supernatant was absorbed into a
new centrifuge tube (total protein).

2.9. Western Blots

The protein concentration was measured using a BCA kit (APPLYGEN, Beijing, China)
after protein extraction. Separation and concentration gels were prepared using an SDS-
PAGE gel preparation kit (Solarbio Life Science, Beijing, China), up-sampled for elec-
trophoresis, then transferred to a PVDF membrane. The membrane was blocked with 5%
skimmed milk for 2 h and incubated with a primary antibody at 4 ◦C overnight. The mem-
brane was also incubated with a secondary antibody for 1 h. Finally, the membrane was
imaged after treatment with ECL reagent (APPLYGEN, Beijing, China). The primary anti-
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bodies for IGF2BP2, GLUT4, PPAR-γ, β-actin, Na/K-ATPase were obtained from Affinity,
Abcam, Proteintech, SAB, and Bioss, respectively.

2.10. RNA Extraction and Quantitative Real-Time PCR (qRT-PCR) Analyses

The total RNA was extracted by adding 1 mL of TransZol Up reagent (TransGen
Biotech, Beijing, China) to each petri dish. The total RNA extracts were reverse transcribed
with GoScriptTMReverse Transcription System (Promega, Madison, WI, USA). The levels
of circ_0000284 were detected using a PCR kit (Promega, Madison, WI, USA) on a LightCy-
cler96 instrument (Roche, Basel, Switzerland). The data were normalised to β-actin via the
2−ΔΔCt method [32]. The sequences of the specific primers are shown in Table 1.

Table 1. Sequences of qRT-PCR primers and siRNAs.

Genes F (5′→3′) R (5′→3′)

hsa-circ_0000284 CGGCAGCCTTACAGGGTTAA GACCAAGACTTGTGAGGCCA
mmu-circ_0000284 TGTTGGIGGATCCTGTTCGC GACCAAGACTTGTGAGGCCA

IGF2BP2 GTCCTACTCAAGTCCGGCTAC CATATTCAGCCAACAGCCCAT
hsa-β-actin CAGATGIGGATCAGCAAGCAGGAG GTCAAGAAAGGGTGTAACGCAACTAAG

mmu-β-actin GGCTGTATTCCCCTCCATCG CCAGTTGGTAACAATGCCATGT
Si-circ_0000284 GUACUACAGGUAUGGCCUGdTdT GAGGCCAUACCLGUAGUACdTdT

Si-circ_NC UUCUCCGAACGUGUCACGUTT ACGUGACACGUUCGGAGAATT

2.11. Glycogen and Glucose Consumption Levels

For the glycogen, the cells were collected, followed by a cell count analysis (5–1 million
cells). Glycogen extract (0.75 mL) was added to the collected cells and tissues, centrifuged,
and the supernatant was discarded. The glycogen was assessed using a Glycogen Assay
Kit (Solarbio, Beijing, China). For the glucose, the cells were collected, followed by a cell
count analysis (5–1 million cells). The supernatant (1 mL) was added into boiling water for
10 min, followed by glucose analysis using a glucose assay kit (Solarbio, Beijing, China).

2.12. Statistical Analysis

SPSS 26.0 (IBM, Armonk, NY, USA) was used for the statistical analysis of the data,
and GraphPad Prism 9.0 (GraphPad Software, San Diego, CA, USA) was used to plot the
experimental results. One-way analyses of variance (one-way ANOVAs) were conducted
to analyse the variations in the indicators across multiple groups, followed by pairwise
comparisons between multiple groups using a Bonferroni correction. Each experiment
was performed in at least three biological replicates and the results were expressed as the
mean ± SD. Statistical significance was considered for a p-value < 0.05.

3. Results

3.1. Chronic Sodium Arsenite Exposure Causes Liver Injury and Hepatic IR in Mice

The mice were given drinking water containing 0, 0.5, 5, and 50 ppm sodium arsenite
for 12 months and subjected to IPGTTs and ITTs. The results show that 5 and 50 ppm sodium
arsenite reduced glucose tolerance in mice compared with the control mice, especially in
the 50 ppm group (Figure 1A). Moreover, 5 and 50 ppm sodium arsenite significantly
increased the glucose levels in the mice after an insulin injection compared with the control
mice, thus reducing insulin sensitivity (Figure 1B). The glycogen levels decreased in the
liver with increasing doses of sodium arsenite (Figure 1C,D). In addition, the HE staining
showed significant liver damage in the high-dose group (Figure 1E). These results suggest
that sodium arsenite causes liver injury and hepatic IR in mice.
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Figure 1. Chronic exposure to sodium arsenite causes liver injury and hepatic IR in mice. C57BL/6J
mice were allowed to drink water containing 0, 0.5, 5, or 50 ppm sodium arsenite for 12 months.
(A) IPGTTs showing the blood glucose concentrations at 0, 15, 30, 60, and 120 min in the mice.
The area under the curve (AUC) was calculated based on the IPGTTs results. (B) ITT assays were
performed to determine the blood glucose concentrations of the mice at 0, 15, 30, and 60 min. The AUC
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of the ITTs was calculated. (C) A glycogen assay kit was used to determine the glycogen concentration
in each mouse’s liver. (D) The detection of hepatic glycogen changes by PAS staining. (E) The HE
staining images of livers indicating the liver injury level. The data are presented as the mean ± SD,
n = 3. a: p < 0.05, compared with the 0 ppm NaAsO2 group; b: p < 0.05, compared with the 0.5 ppm
NaAsO2 group; c: p < 0.05, compared with the 5 ppm NaAsO2 group; d: p < 0.05, compared with the
50 ppm NaAsO2 group.

3.2. Sodium Arsenite Increases Levels of Circ_0000284 Levels and Decreases IGF2BP2 Levels in
Mouse Livers

The levels of circ_0000284 and IGF2BP2, as well as the protein expression level of
IGF2BP2, were evaluated to investigate whether circ_0000284 and IGF2BP2 play a role
in arsenite-induced hepatic IR. Furthermore, the circ_0000284 levels were higher in the
sodium arsenite-exposed mice than in the controls, especially in the 5 and 50 ppm groups
(Figure 2A). Also, the mRNA and protein levels of IGF2BP2 were reduced in the arsenic-
exposed mice in a dose–response manner compared with the controls (Figure 2B–D). These
findings indicate that sodium arsenite increases circ_0000284 levels and reduces IGF2BP2
levels in mouse livers.

Figure 2. Chronic exposure to sodium arsenite induces increased levels of circ_0000284 and decreased
levels of IGF2BP2 levels in livers of mice. C57BL/6J mice were allowed to drink water containing 0,
0.5, 5, or 50 ppm sodium arsenite for 12 months. Levels of circ_0000284 (A) and IGF2BP2 (B) in livers
of mice were determined using qRT-PCR assay. (C) Western blots of protein bands and (D) relative
protein levels of IGF2BP2 in livers of mice. Data are presented as mean ± SD, n = 3. a: p < 0.05,
compared with 0 ppm NaAsO2 group; b: p < 0.05, compared with 0.5 ppm NaAsO2 group; c: p < 0.05,
compared with 5 ppm NaAsO2 group; d: p < 0.05, compared with 50 ppm NaAsO2 group.

3.3. Arsenic Exposure Decreases PPAR-γ and Membrane GLUT4 Levels in Mice

The GLUT4 transporter protein is sequestered in specialised storage vesicles inside a
cell under basal conditions. Increased circulating insulin activates an intracellular signalling
cascade when glucose levels are elevated, ultimately leading to the translocation of GLUT4
from the storage region to the plasma membrane, thus promoting glucose uptake and
maintaining glucose homeostasis [33]. Insulin resistance limits the transportation of GLUT4
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transporter proteins to the cell membrane due to the lack of insulin stimulation [34]. The
activation of PPAR-γ promotes GLUT4 translocation to the plasma membrane, whereas
decreased PPAR-γ expression inhibits GLUT4 translocation to the plasma membrane,
affecting cellular glucose homeostasis [35]. Herein, the levels of PPAR-γ and GLUT4 in
the cytoplasm and membrane of the mouse livers after exposure to sodium arsenite (0,
0.5, 5, and 50 ppm) were assessed to investigate the roles of altered PPAR-γ expression
and GLUT4 translocation in arsenite-induced hepatic insulin resistance. Sodium arsenite
decreased the protein levels of PPAR-γ in the mouse livers (Figure 3A,B). Notably, sodium
arsenite decreased the membrane protein levels of GLUT4 in the livers in a dose-dependent
manner compared with the controls (Figure 3C,D). Moreover, sodium arsenite decreased
the ratio of GLUT4 levels in the membrane proteins to cytoplasmic proteins compared with
the controls, indicating the inhibition of GLUT4 translocation at the plasma membrane
(Figure 3E). These findings suggest that sodium arsenite reduces the level of PPAR-γ
expression and blocks the plasma membrane translocation of GLUT4 in hepatocytes.

Figure 3. Chronic arsenic exposure decreases levels of PPAR-γ and levels of membrane GLUT4 in
livers of mice. C57BL/6J mice were allowed to drink water containing 0, 0.5, 5, or 50 ppm sodium
arsenite for 12 months. (A) Western blots of protein bands and (B) relative protein levels of PPAR-γ
in livers of mice. (C) Western blots of protein bands and (D) relative protein levels of GLUT4 in
cytoplasm and membrane of mice livers; β-actin served as internal reference for cytoplasm proteins,
and Na and K-ATPase as internal references for membrane proteins. (E) Ratio of GLUT4 protein
levels in membrane to cytoplasm. Data are presented as mean ± SD, n = 3. a: p < 0.05, compared
with 0 ppm NaAsO2 group; b: p < 0.05, compared with 0.5 ppm NaAsO2 group; c: p < 0.05, compared
with 5 ppm NaAsO2 group; d: p < 0.05, compared with 50 ppm NaAsO2 group.

3.4. Sodium Arsenite Decreases Levels of Glucose Consumption and Glycogen in Insulin-Treated
HepG2 Cells

In this study, cellular experiments were used to further validate the effects of arsenic
exposure on hepatic IR. First, CCK8 experiments were performed to select the appropriate
poison dose for the HepG2 cells. Studies have shown that the viability of HepG2 cells
does not significantly change at sodium arsenite concentrations ≤ 4 μM, and when the
concentration of sodium arsenite is 8 μM, cell viability significantly decreases with statistical
significance [23]. The results of this experiment are consistent with those of previous ones.
Herein, the cells were treated with 0, 1, 2, 4, 6, 8, 10, 20, or 30 μM sodium arsenite, and
the CCK-8 assay showed that the cell viability gradually decreased with an increasing
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sodium arsenite concentration (Figure 4A). Sodium arsenite < 2 μM did not significantly
affect cell viability, while 4 μM sodium arsenite significantly decreased cell viability. The
cell viability for 8 μM sodium arsenite decreased to about 70%. It has been shown that the
ideal cell status and viability are >60–80% [36]. Therefore, the HepG2 cells were treated
with 0, 2, 4, and 8 μM of sodium arsenite in the subsequent experiments. The HepG2 cells
were treated with 0, 2, 4, or 8 μM sodium arsenite for 24 h, followed by a 100 nM insulin
treatment for 30 min. The results show that the glucose consumption and glycogen levels
of the HepG2 cells were lower in the arsenic-exposed cells than in the control cells in a
dose-dependent manner (Figure 4B,C). These results suggest that sodium arsenite reduces
insulin-dependent glucose consumption and glycogen levels in hepatocytes.

Figure 4. Sodium arsenite causes decreased levels of glucose consumption and glycogen in insulin-
treated HepG2 cells. HepG2 cells were treated with 0, 1, 2, 4, 8, 10, 20, or 30 μM sodium arsenite for
24 h. (A) Cell viability was detected by CCK-8 assay. After HepG2 cells were treated with 0, 2, 4,
or 8 μM sodium arsenite for 24 h, they were then treated for 30 min with 100 nM insulin. Glucose
consumption (B) and glycogen levels (C) in HepG2 cells were measured by glucose assay kits and
glycogen assay kits. Data are presented as mean ± SD, n = 3. a: p < 0.05, compared with 0 μM
NaAsO2 group; b: p < 0.05, compared with 2 μM NaAsO2 group; c: p < 0.05, compared with 4 μM
NaAsO2 group; d: p < 0.05, compared with 8 μM NaAsO2 group.

3.5. Sodium Arsenite Increases Levels of Circ_0000284 and Decreases Levels of IGF2BP2, PPAR-γ,
and Membrane GLUT4 in Insulin-Treated HepG2 Cells

Similarly, the HepG2 cells were treated with 0, 2, 4, or 8 μM sodium arsenite for
24 h, followed by a 100 nM insulin treatment for 30 min. The levels of circ_0000284 were
elevated in the sodium arsenite- and insulin-treated HepG2 cells (Figure 5A). In addition,
the protein levels of IGF2BP2 and PPAR-γ were lower in the arsenic-exposed HepG2 cells
than in the control cells in a concentration-dependent manner (Figure 5B–D). Compared
with the control cells, the membrane protein levels of GLUT4 and the ratio of GLUT4 levels
in the membrane proteins to cytoplasmic proteins were reduced, indicating the inhibition
of GLUT4 translocation at the plasma membrane (Figure 5E–G). These results suggest that
arsenic exposure increases circ_0000284 levels, decreases IGF2BP2 and PPAR-γ expression
levels, and blocks the plasma membrane translocation of GLUT4 in hepatocytes.
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Figure 5. Sodium arsenite increases levels of circ_0000284 levels and decreases levels of IGF2BP2,
PPAR-γ, and membrane GLUT4 in insulin-treated HepG2 cells. HepG2 cells were treated with 0,
2, 4, or 8 μM sodium arsenite for 24 h, and then treated for 30 min with 100 nM insulin. (A) Levels
of circ_0000284 were quantified by qRT-PCR. (B) Western blots of protein bands and (C,D) corre-
sponding relative protein levels of IGF2BP2 and PPAR-γ. (E) Western blots of protein bands and
(F) relative protein levels of GLUT4 in cytoplasm and membrane; β-actin served as internal reference
for cytoplasm proteins, and Na and K-ATPase as internal references for membrane proteins. (G) Ratio
of GLUT4 expression levels in membrane proteins to cytoplasm proteins. Data are presented as mean
± SD, n = 3. a: p < 0.05, compared with 0 μM NaAsO2 group; b: p < 0.05, compared with 2 μM
NaAsO2 group; c: p < 0.05, compared with 4 μM NaAsO2 group; d: p < 0.05, compared with 8 μM
NaAsO2 group.

3.6. Inhibition of Circ_0000284 Blocks Sodium Arsenite-Induced Increases in Circ_0000284 Levels
and Decreases in Glucose Consumption and Glycogen Levels in Insulin-Treated HepG2 Cells

The glucose consumption and glycogen levels were examined after the HepG2 cells
were transfected with 0 or 50 nM si-circ_0000284 or si-circ_NC for 6 h to determine the role
of circ_0000284 in hepatic IR in HepG2 cells exposed to arsenite. Notably, the cells were
treated with 0 or 8 μM sodium arsenite for 24 h, followed by a 100 nM insulin treatment for
30 min. The downregulation of circ_0000284 levels by si-circ_0000284 reversed the sodium
arsenite-induced effect on the circ_0000284 levels, glucose consumption, and glycogen
levels in the insulin-stimulated HepG2 cells (Figure 6), indicating that circ_0000284 is
involved in arsenite-induced IR in hepatocytes.

3.7. Inhibition of Circ_0000284 Blocks Sodium Arsenite-Induced Decreases in IGF2BP2, PPAR-γ,
and Membrane GLUT4 Levels in Insulin-Treated HepG2 Cells

The effects of circ_0000284 on sodium arsenite-induced decreases in the levels of
IGF2BP2, PPAR-γ, and membrane GLUT4 in insulin-treated HepG2 cells were examined to
further investigate the mechanisms of circ_0000284 in hepatic IR in HepG2 cells exposed
to sodium arsenite. HepG2 cells were cultured in a medium containing arsenite (0 or 8
μM) for 24 h after transfection with si-circ_0000284 or si-circ_NC, followed by an insulin
(100 nM) treatment for 30 min. The results show that circ_0000284 downregulation after
treatment with si-circ_0000284 alleviated the arsenite-induced decrease in the protein
levels of PPAR-γ and IGF2BP2 (Figure 7A–C). Furthermore, the circ_0000284 inhibition
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blocked the decrease in GLUT4 levels at the membrane in the arsenic-induced HepG2 cells
(Figure 7D–F). These findings suggest that circ_0000284 inhibitors can reverse the reduction
in IGF2BP2 and PPAR-γ expression levels and the blockade of the plasma membrane
translocation of GLUT4 in hepatocytes exposed to arsenic.

Figure 6. Inhibition of circ_0000284 blocks sodium arsenite-induced increases in circ_0000284 levels
and decreases in glucose consumption and glycogen levels in insulin-treated HepG2 cells. HepG2
cells were transfected with 0 or 50 nM si-circ_0000284 or si-circ_NC for 6 h, followed by treatment
with 0 or 8 μM sodium arsenite for 24 h, respectively, and then treated for 30 min with 100 nM insulin.
(A) Levels of circ_0000284 in HepG2 cells were detected by qRT-PCR assay. (B) Glucose consumption
and glycogen levels in HepG2 cells were measured by glucose assay kits and glycogen assay kits.
Data are presented as mean ± SD, n = 3. a: p <0.05, compared with HepG2 cells without arsenite
treatment; b: p <0.05, compared with si-circ_0000284-treated HepG2 cells.

Figure 7. Inhibition of circ_0000284 blocks sodium arsenite-induced decreases in IGF2BP2, PPAR-γ,
and membrane GLUT4 levels in insulin-treated HepG2 cells. After HepG2 cells were transfected with
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0 or 50 nM si-circ_0000284 or si-circ_NC for 6 h, and then with 0 or 8 μM sodium arsenite for 24 h,
respectively, they were then treated for 30 min with 100 nM insulin. (A) Western blots of protein
bands and (B,C) corresponding relative protein levels of IGF2BP2 and PPAR-γ. (D) Western blots of
protein bands and (E) corresponding relative protein levels of GLUT4 in cytoplasm and membrane;
β-actin served as internal reference for cytoplasm proteins, and Na and K-ATPase served as internal
references for membrane proteins. (F) Ratio of GLUT4 expression levels in membrane proteins to
cytoplasm proteins. Data are presented as mean ± SD, n = 3. a: p <0.05, compared with HepG2 cells
without arsenite treatment; b: p <0.05, compared with si-circ_0000284-treated HepG2 cells.

4. Discussion

Currently, several high-arsenic areas exist in all countries around the world, and
arsenic exposure from drinking water can cause severe health problems in humans. Long-
term arsenic exposure can induce liver fibrosis, nonalcoholic fatty liver disease, diabetes,
and other diseases [37–39]. Arsenic exposure has been linked to T2DM, and T2DM is
correlated with IR and insufficient insulin secretion [40–42]. The liver is the main target
organ of arsenic metabolism. In recent years, an increasing number of studies have demon-
strated that arsenic exposure may trigger hepatic IR, reduce the sensitivity of liver cells
to insulin, hinder the uptake of glucose by liver cells, affect liver glycogen synthesis, and
elevate blood sugar levels, which increase the risk of diabetes [43]. We found that arsenic
exposure decreased the glycogen content and reduced the glucose consumption in HepG2
cells, inducing liver damage in mice, as well as impaired glucose tolerance and insulin
sensitivity, leading to hepatic insulin resistance. However, the molecular mechanism lead-
ing to arsenic-induced hepatic IR is not well understood. In this study, arsenic exposure
models of mice and HepG2 cells were established to explore the epigenetic mechanism of
arsenic-induced hepatic IR.

In recent years, the role of ncRNA in the progression of diabetes following arsenic
exposure has been extensively investigated in vivo [44]. Arsenic exposure can alter the
expression of various proteins by affecting changes in ncRNA, causing IR [10]. However, the
role of circRNAs in IR induced by arsenic exposure is not fully understood. Circ_0000284
can regulate apoptosis, proliferation, migration, and angiogenesis, as well as influence
the development of cardiovascular diseases [45]. Circ_0000284 may also promote the
proliferation of hepatobiliary carcinoma and breast cancer cells [14,46]. In this study,
we showed that circ_0000284 expression was elevated in hepatic IR induced by arsenic
exposure. This is consistent with the results obtained from the clinical experiments of Su
et al. that, through a circRNA chip analysis of the peripheral blood of T2DM patients and
a control group, revealed that the expression level of circ_0000284 in the T2DM group
was significantly higher than that in the control group [47]. These results indicate that
circ_0000284 is involved in the occurrence of hepatic IR induced by arsenic exposure.

CircRNAs have been implicated in the regulation of β cell function, IR, adipocyte
function, inflammation, and oxidative stress by interacting with RBP [13]. IGF2BP2, as an
RBP regulating multiple biological processes, is a T2DM-related molecule that regulates
cellular metabolism in a variety of cell types. The expression of IGF2BP2 has been linked to
liver fibrosis, T2DM, and cancer [21,48]. Furthermore, Greenwald found that the reduced
activity of the IGF2BP2 homolog, Imp2, in mouse islets, impaired islet chromatin accessibil-
ity and glucose-stimulated insulin secretion [49]. Here, we show that IGF2BP2 serves as the
downstream target of circ_0000284 through gene prediction tools. The results of this study
show that with increasing levels of arsenic exposure, the expression level of circ_0000284 in
liver cells increases, while the expression level of IGF2BP2 decreases, leading to liver IR.
Furthermore, the silencing of circ_0000284 in hepatocytes results in the upregulation of the
expression of IGF2BP2.

PPAR-γ is a ligand-activated nuclear transcription factor associated with adipose
differentiation, obesity, and insulin resistance. PPAR-γ can affect glucose uptake in IR-
mediated tissues and maintain glucose homeostasis [50]. Increased PPAR-γ expression
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is associated with improved insulin sensitivity and reduced insulin resistance [51]. In
bone marrow-derived macrophages (BMDMs), IGF2BP2 can bind to fragments of PPAR-γ
mRNA, thereby enhancing its stability [52]. In the liver tissues of WT mice, PPAR-γ mRNA
is enriched in IGF2BP2 immunosuppression samples, and IGF2BP2 mediates the post-
transcriptional regulation of PPAR-γ in the liver [53]. The deletion of IGF2BP2 is linked
to a marked reduction in PPAR-γ mRNA levels [19]. In our study, as the level of arsenic
exposure increased, the expression level of IGF2BP2 in the liver cells decreased, and the
expression level of PPAR-γ also decreased. Consequently, we have established a correlation
between IGF2BP2 and PPAR-γ. And, after knocking down circ_0000284 in the hepatocytes,
the expression level of IGF2BP2 increased, and the level of PPAR-γ also increased. These
findings indicate that circ_0000284 regulates IGF2BP2/PPAR-γ expression, influencing
liver insulin resistance following exposure to arsenic.

GLUT4 serves as a pivotal regulator of the overall glucose balance within the body.
Insulin reduces blood glucose levels by inhibiting hepatic glucose production and stim-
ulating glucose uptake in tissues through GLUT4 [54]. Insulin binds to the receptors on
the cell membrane, triggering a cascade of intracellular signalling events that result in the
translocation of GLUT4 to the cell surface. This mechanism facilitates the absorption and
transport of glucose into cells, maintaining glucose homeostasis. The aberrant expression
of GLUT4 affects glucose homeostasis [55]. Research has demonstrated that the activation
of PPAR-γ by insulin modulates GLUT4 translocation and lowers cellular glucose lev-
els [56]. Furthermore, a diet high in sugar can trigger insulin resistance by decreasing the
protein expression of PPAR-γ and GLUT4 within liver tissue, thereby disrupting glucose
homeostasis [28]. While PPAR-γ’s role in arsenic-induced hepatic IR and its regulation of
GLUT4 expression requires further investigation, our study confirms a dose-dependent
decrease in PPAR-γ expression in hepatocytes exposed to arsenic. Simultaneously, the
presence of GLUT4 in the cell membrane is decreased, suggesting GLUT4 translocation.
The downregulation of circ_0000284 counteracts this effect. These findings suggest that
circ_0000284 inhibits the translocation of GLUT4 to the plasma membrane of hepatocytes by
modulating the IGF2BP2/PPAR-γ pathway, facilitating hepatic insulin resistance induced
by arsenic exposure.

This study still has the following limitations. Firstly, we only studied the role of
circ_0000284 in arsenic-induced insulin resistance in HepG2 cells, and there was a lack
of an inhibitor group in vivo, which is a flaw of our study. In our next study, we will
construct an animal model with the knockdown of circ_0000284 to further confirm its role
in arsenite-induced hepatic insulin resistance. Secondly, we did not initially test for arsenic
levels in the livers, which represents a lapse in our experimental design. Moving forward,
we will measure the arsenic content in the liver tissues of mice.

5. Conclusions

In summary, arsenic exposure increases circ_0000284 levels in mouse livers and insulin-
treated hepatocytes. Arsenic exposure affects insulin-dependent glucose consumption and
glycogen accumulation by altering the expression level of circ_0000284 in hepatocytes,
and affecting the expression of IGF2BP2, PPAR-γ, and GLUT4 in membrane proteins.
These results indicate that circ_0000284 is involved in arsenite-induced hepatic IR through
blocking the plasma membrane translocation of GLUT4 in hepatocytes via IGF2BP2/PPAR-
γ. This study provides a scientific basis for finding early biomarkers for the control of
arsenic exposure, offering insights into identifying the biomarkers for T2DM and for the
prevention and treatment of arsenic poisoning.
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arsenic on glucose homeostasis in cell culture and animal studies: Development of a mouse model for arsenic-induced diabetes.
Toxicol. Appl. Pharmacol. 2007, 222, 305–314. [CrossRef] [PubMed]

12. Waghe, P.; Sarath, T.S.; Gupta, P.; Kutty, H.S.; Kandasamy, K.; Mishra, S.K.; Sarkar, S.N. Subchronic arsenic exposure through
drinking water alters vascular redox homeostasis and affects physical health in rats. Biol. Trace Elem. Res. 2014, 162, 234–241.
[CrossRef] [PubMed]

13. Li, Z.; Ren, Y.; Lv, Z.; Li, M.; Li, Y.; Fan, X.; Xiong, Y.; Qian, L. Decrypting the circular RNAs does a favor for us: Understanding,
diagnosing and treating diabetes mellitus and its complications. Biomed. Pharmacother. 2023, 168, 115744. [CrossRef] [PubMed]

14. Sun, J.; Feng, M.; Zou, H.; Mao, Y.; Yu, W. Circ_0000284 facilitates the growth, metastasis and glycolysis of intrahepatic
cholangiocarcinoma through miR-152-3p-mediated PDK1 expression. Histol. Histopathol. 2023, 38, 1129–1143.

15. Cai, H.; Jiang, Z.; Yang, X.; Lin, J.; Cai, Q.; Li, X. Circular RNA HIPK3 contributes to hyperglycemia and insulin homeostasis by
sponging miR-192-5p and upregulating transcription factor forkhead box O1. Endocr. J. 2020, 67, 397–408. [CrossRef]

16. Christiansen, J.; Kolte, A.M.; Hansen Tv Nielsen, F.C. IGF2 mRNA-binding protein 2: Biological function and putative role in
type 2 diabetes. J. Mol. Endocrinol. 2009, 43, 187–195. [CrossRef]

17. Ji, J.; Li, C.; Wang, J.; Wang, L.; Huang, H.; Li, Y.; Fang, J. Hsa_circ_0001756 promotes ovarian cancer progression through
regulating IGF2BP2-mediated RAB5A expression and the EGFR/MAPK signaling pathway. Cell Cycle 2022, 21, 685–696.
[CrossRef]

156



Toxics 2024, 12, 883

18. Dai, N. The Diverse Functions of IMP2/IGF2BP2 in Metabolism. Trends Endocrinol. Metab. 2020, 31, 670–679. [CrossRef]
19. Regué, L.; Minichiello, L.; Avruch, J.; Dai, N. Liver-specific deletion of IGF2 mRNA binding protein-2/IMP2 reduces hepatic fatty

acid oxidation and increases hepatic triglyceride accumulation. J. Biol. Chem. 2019, 294, 11944–11951. [CrossRef]
20. Cao, J.; Yan, W.; Ma, X.; Huang, H.; Yan, H. Insulin-like Growth Factor 2 mRNA-Binding Protein 2—A Potential Link Between

Type 2 Diabetes Mellitus and Cancer. J. Clin. Endocrinol. Metab. 2021, 106, 2807–2818. [CrossRef]
21. Chen, H.; Tan, H.; Wan, J.; Zeng, Y.; Wang, J.; Wang, H.; Lu, X. PPAR-γ signaling in nonalcoholic fatty liver disease: Pathogenesis

and therapeutic targets. Pharmacol. Ther. 2023, 245, 108391. [CrossRef] [PubMed]
22. Ge, Z.; Zhang, P.; Hong, T.; Tang, S.; Meng, R.; Bi, Y.; Zhu, D. Erythropoietin alleviates hepatic insulin resistance via PPARγ-

dependent AKT activation. Sci. Rep. 2015, 5, 17878. [CrossRef] [PubMed]
23. Gao, N.; Yao, X.; Jiang, L.; Yang, L.; Qiu, T.; Wang, Z.; Pei, P.; Yang, G.; Liu, X.; Sun, X. Taurine improves low-level inorganic

arsenic-induced insulin resistance by activating PPARγ-mTORC2 signalling and inhibiting hepatic autophagy. J. Cell. Physiol.
2019, 234, 5143–5152. [CrossRef] [PubMed]

24. Swain, S.K.; Dash, U.C.; Kanhar, S.; Sahoo, A.K. Network pharmacology-based elucidation of bioactive compounds and
experimental exploration of antidiabetic mechanisms of Hydrolea zeylanica. Cell. Signal. 2024, 114, 110999. [CrossRef] [PubMed]

25. Odongo, K.; Abe, A.; Kawasaki, R.; Kawabata, K.; Ashida, H. Two Prenylated Chalcones, 4-Hydroxyderricin, and Xanthoangelol
Prevent Postprandial Hyperglycemia by Promoting GLUT4 Translocation via the LKB1/AMPK Signaling Pathway in Skeletal
Muscle Cells. Mol. Nutr. Food Res. 2024, 68, e2300538. [CrossRef] [PubMed]

26. Kurabayashi, A.; Furihata, K.; Iwashita, W.; Tanaka, C.; Fukuhara, H.; Inoue, K.; Furihata, M.; Kakinuma, Y. Murine remote
ischemic preconditioning upregulates preferentially hepatic glucose transporter-4 via its plasma membrane translocation, leading
to accumulating glycogen in the liver. Life Sci. 2022, 290, 120261. [CrossRef]

27. Miao, L.; Zhang, X.; Zhang, H.; Cheong, M.S.; Chen, X.; Farag, M.A.; Cheang, W.S.; Xiao, J. Baicalin ameliorates insulin resistance
and regulates hepatic glucose metabolism via activating insulin signaling pathway in obese pre-diabetic mice. Phytomedicine 2024,
124, 155296. [CrossRef] [PubMed]

28. Zhu, Y.; Engmann, M.; Medina, D.; Han, X.; Das, P.; Bartke, A.; Ellsworth, B.S.; Yuan, R. Metformin treatment of juvenile mice
alters aging-related developmental and metabolic phenotypes in sex-dependent and sex-independent manners. Geroscience 2024,
46, 3197–3218. [CrossRef] [PubMed] [PubMed Central]

29. Oyebode, O.A.; Erukainure, O.L.; Chuturgoon, A.A.; Ghazi, T.; Naidoo, P.; Chukwuma, C.I.; Islam, M.S. Bridelia ferruginea Benth.
(Euphorbiaceae) mitigates oxidative imbalance and lipotoxicity, with concomitant modulation of insulin signaling pathways via
GLUT4 upregulation in hepatic tissues of diabetic rats. J. Ethnopharmacol. 2022, 284, 114816. [CrossRef]

30. Chadt, A.; Al-Hasani, H. Glucose transporters in adipose tissue, liver, and skeletal muscle in metabolic health and disease. Pflug.
Arch. 2020, 472, 1273–1298. [CrossRef]

31. Balakrishnan, B.B.; Krishnasamy, K.; Mayakrishnan, V.; Selvaraj, A. Moringa concanensis Nimmo extracts ameliorates
hyperglycemia-mediated oxidative stress and upregulates PPARγ and GLUT4 gene expression in liver and pancreas of
streptozotocin-nicotinamide induced diabetic rats. Biomed. Pharmacother. 2019, 112, 108688. [CrossRef] [PubMed]

32. Zhang, J.; Li, J.; Xiong, Y.; Li, R. Circ_0000284 upregulates RHPN2 to facilitate pancreatic cancer proliferation, metastasis, and
angiogenesis through sponging miR-1179. J. Biochem. Mol. Toxicol. 2023, 37, e23274. [CrossRef] [PubMed]

33. Watson, R.T.; Pessin, J.E. Intracellular organization of insulin signaling and GLUT4 translocation. Recent Prog. Horm. Res. 2001, 56,
175–193. [CrossRef] [PubMed]

34. Irudayaraj, S.S.; Stalin, A.; Sunil, C.; Duraipandiyan, V.; Al-Dhabi, N.A.; Ignacimuthu, S. Antioxidant, antilipidemic and
antidiabetic effects of ficusin with their effects on GLUT4 translocation and PPARγ expression in type 2 diabetic rats. Chem. Biol.
Interact. 2016, 256, 85–93. [CrossRef] [PubMed]

35. Giacoman-Martínez, A.; Alarcón-Aguilar, F.J.; Zamilpa, A.; Huang, F.; Romero-Nava, R.; Román-Ramos, R.; Almanza-Pérez, J.C.
α-Amyrin induces GLUT4 translocation mediated by AMPK and PPARδ/γ in C2C12 myoblasts. Can. J. Physiol. Pharmacol. 2021,
99, 935–942. [CrossRef]

36. Wang, P.; Yao, Q.; Zhu, D.; Yang, X.; Chen, Q.; Lu, Q.; Liu, A. Resveratrol protects against deoxynivalenol-induced ferroptosis in
HepG2 cells. Toxicology 2023, 494, 153589. [CrossRef] [PubMed]

37. Wu, M.; Sun, J.; Wang, L.; Wang, P.; Xiao, T.; Wang, S.; Liu, Q. The lncRNA HOTAIR via miR-17-5p is involved in arsenite-induced
hepatic fibrosis through regulation of Th17 cell differentiation. J. Hazard. Mater. 2023, 443 Pt B, 130276. [CrossRef] [PubMed]

38. Sun, J.; Wu, M.; Wang, L.; Wang, P.; Xiao, T.; Wang, S.; Liu, Q. miRNA-21, which disrupts metabolic reprogramming to facilitate
CD4+ T cell polarization toward the Th2 phenotype, accelerates arsenite-induced hepatic fibrosis. Ecotoxicol. Environ. Saf. 2022,
248, 114321. [CrossRef] [PubMed]

39. Lai, C.; Chen, L.; Zhong, X.; Tian, X.; Zhang, B.; Li, H.; Zhang, G.; Wang, L.; Sun, Y.; Guo, L. Long-term arsenic exposure decreases
mice body weight and liver lipid droplets. Environ. Int. 2024, 192, 109025. [CrossRef] [PubMed]

40. Spaur, M.; Galvez-Fernandez, M.; Chen, Q.; Lombard, M.A.; Bostick, B.C.; Factor-Litvak, P.; Fretts, A.M.; Shea, S.J.; Navas-Acien,
A.; Nigra, A.E. Association of Water Arsenic with Incident Diabetes in U.S. Adults: The Multi-Ethnic Study of Atherosclerosis
and the Strong Heart Study. Diabetes Care 2024, 47, 1143–1151. [CrossRef]

41. Ndisang, J.F.; Vannacci, A.; Rastogi, S. Insulin Resistance, Type 1 and Type 2 Diabetes, and Related Complications 2017. J. Diabetes
Res. 2017, 2017, 1478294. [CrossRef] [PubMed]

157



Toxics 2024, 12, 883

42. Fan, C.; Zhan, Z.; Zhang, X.; Lou, Q.; Guo, N.; Su, M.; Gao, Y.; Qin, M.; Wu, L.; Huang, W.; et al. Research for type 2 diabetes
mellitus in endemic arsenism areas in central China: Role of low level of arsenic exposure and KEAP1 rs11545829 polymorphism.
Arch. Toxicol. 2022, 96, 1673–1683. [CrossRef] [PubMed]

43. Gerich, J.E. Contributions of insulin-resistance and insulin-secretory defects to the pathogenesis of type 2 diabetes mellitus. Mayo
Clin. Proc. 2003, 78, 447–456. [CrossRef] [PubMed]

44. Sira, J.; Zhang, X.; Gao, L.; Wabo, T.M.; Li, J.; Akiti, C.; Zhang, W.; Sun, D. Effects of Inorganic Arsenic on Type 2 Diabetes Mellitus
In Vivo: The Roles and Mechanisms of miRNAs. Biol. Trace Elem. Res. 2024, 202, 111–121. [CrossRef]

45. Chen, M.; Cai, Y.; Guo, J.; Gong, Y.; Xu, X.; Lin, Y.; Hu, Y.; Wen, Y.; Yang, L.; Li, H.; et al. Circ_0000284: A risk factor and potential
biomarker for prehypertension and hypertension. Hypertens. Res. 2023, 46, 720–729. [CrossRef]

46. Qi, L.; Sun, B.; Yang, B.; Lu, S. circHIPK3 (hsa_circ_0000284) Promotes Proliferation, Migration and Invasion of Breast Cancer
Cells via miR-326. OncoTargets Ther. 2021, 14, 3671–3685. [CrossRef]

47. Su, M.; Yu, T.; Yu, Y.; Cheng, Q.; Zheng, Y.; Liao, R.; Zeng, Z. hsa-miR-607, lncRNA TUG1 and hsa_circ_0071106 can be combined
as biomarkers in type 2 diabetes mellitus. Exp. Biol. Med. 2022, 247, 1609–1618. [CrossRef] [PubMed] [PubMed Central]

48. Zhou, Y.; Yan, J.; Huang, H.; Liu, L.; Ren, L.; Hu, J.; Jiang, X.; Zheng, Y.; Xu, L.; Zhong, F.; et al. The m6A reader IGF2BP2 regulates
glycolytic metabolism and mediates histone lactylation to enhance hepatic stellate cell activation and liver fibrosis. Cell Death Dis.
2024, 15, 189. [CrossRef] [PubMed] [PubMed Central]

49. Greenwald, W.W.; Chiou, J.; Yan, J.; Qiu, Y.; Dai, N.; Wang, A.; Nariai, N.; Aylward, A.; Han, J.Y.; Kadakia, N.; et al. Pancreatic
islet chromatin accessibility and conformation reveals distal enhancer networks of type 2 diabetes risk. Nat. Commun. 2019, 10,
2078. [CrossRef]

50. Vasu, G.; Sundaram, R.; Muthu, K. Chebulagic acid attenuates HFD/streptozotocin induced impaired glucose metabolism and
insulin resistance via up regulations of PPAR γ and GLUT 4 in type 2 diabetic rats. Toxicol. Mech. Methods 2022, 32, 159–170.
[CrossRef]

51. Qu, X.; Guan, P.; Xu, L.; Liu, B.; Li, M.; Xu, Z.; Huang, X.; Han, L. Riligustilide alleviates hepatic insulin resistance and
gluconeogenesis in T2DM mice through multitarget actions. Phytother. Res. 2022, 36, 462–474. [CrossRef] [PubMed]

52. Wang, X.; Ji, Y.; Feng, P.; Liu, R.; Li, G.; Zheng, J.; Xue, Y.; Wei, Y.; Ji, C.; Chen, D.; et al. The m6A Reader IGF2BP2 Regulates
Macrophage Phenotypic Activation and Inflammatory Diseases by Stabilizing TSC1 and PPARγ. Adv. Sci. 2021, 8, 2100209.
[CrossRef] [PubMed]

53. Jiang, Y.; Peng, J.; Song, J.; He, J.; Jiang, M.; Wang, J.; Ma, L.; Wang, Y.; Lin, M.; Wu, H.; et al. Loss of Hilnc prevents diet-induced
hepatic steatosis through binding of IGF2BP2. Nat. Metab. 2021, 3, 1569–1584. [CrossRef] [PubMed]

54. Ramalingam, S.; Packirisamy, M.; Karuppiah, M.; Vasu, G.; Gopalakrishnan, R.; Gothandam, K.; Thiruppathi, M. Effect of
β-sitosterol on glucose homeostasis by sensitization of insulin resistance via enhanced protein expression of PPRγ and glucose
transporter 4 in high fat diet and streptozotocin-induced diabetic rats. Cytotechnology 2020, 72, 357–366. [CrossRef]

55. Wang, J.; Wu, T.; Fang, L.; Liu, C.; Liu, X.; Li, H.; Shi, J.; Li, M.; Min, W. Peptides from walnut (Juglans mandshurica Maxim.)
protect hepatic HepG2 cells from high glucose-induced insulin resistance and oxidative stress. Food Funct. 2020, 11, 8112–8121.
[CrossRef]

56. Armoni, M.; Harel, C.; Karnieli, E. Transcriptional regulation of the GLUT4 gene: From PPAR-gamma and FOXO1 to FFA and
inflammation. Trends Endocrinol. Metab. 2007, 18, 100–107. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

158



toxics

Communication

Uranium and Radium in Groundwater and Incidence of
Colorectal Cancer in Georgia Counties, USA: An Ecologic Study

Taylor Rooney 1,2, Lissa Soares 3, Tesleem Babalola 3, Alex Kensington 1, Jennie Williams 2,3 and Jaymie R. Meliker 3,*

1 Department of Undergraduate Biology, Stony Brook University, Stony Brook, NY 11794, USA
2 Increasing Diversity in Undergraduate Cancer Biology, Education, and Research (INDUCER) Program,

Stony Brook University, Stony Brook, NY 11794, USA
3 Program in Public Health, Department of Family, Population and Preventive Medicine, Stony Brook

University, HSC L3, Rm 071, Stony Brook, NY 11794, USA
* Correspondence: jaymie.meliker@stonybrook.edu

Abstract: Colorectal cancer (CRC) is the third most commonly occurring cancer in the United States,
with higher incidence rates among Black populations. Groundwater concentrations of natural
radionuclides uranium and radium have seldom been investigated in relation to CRC despite
their known carcinogenicity. We investigate spatial patterns of CRC by race, and in relation to
groundwater concentrations of uranium and radium, testing the hypothesis that uranium and radium
in groundwater might differentially contribute to incident CRC in Black and White populations
in counties of Georgia, USA. Black populations showed a higher incidence of CRC than White
populations; the median incident rate difference was 9.23 cases per 100,000 (95% CI: 2.14, 19.40).
Spatial cluster analysis showed high incidence clusters of CRC in similar regions for Black and White
populations. Linear regression indicated there are, on average, 1–2 additional cases of colorectal
cancer in counties with higher levels of radium in their groundwater, irrespective of race. Uranium
was not associated with CRC. This ecologic study suggests that radium in groundwater may be
linked with increased incidence of CRC, although it did not explain higher CRC incidence rates in
Black populations. Further studies are needed to verify this association given the inherent limitations
in the ecologic study design and the crude exposure assessment.

Keywords: radionuclides; colorectal cancer; radium; uranium; spatial analysis

1. Introduction

Colorectal cancer (CRC) is the third most commonly occurring cancer among men and
the second most commonly occurring cancer among women in the United States [1,2]. In
the state of Georgia, the age-adjusted incidence rate of CRC was 40.4 per 100,000 people in
2015–2019, with 41.9 new cases for every 100,000 Black individuals and 37.0 new cases for
every 100,000 White individuals [3].

After accounting for known risk factors, many cases of CRC remain unexplained.
Environmental carcinogens uranium and radium [4] can induce the promotion of cancer [5]
and might be linked with CRC, as has been observed with other drinking water contami-
nants [6]. Drinking water is an important source of exposure to uranium and radium [4,7].
The mean radium-226 contents of diets in 11 cities in the United States were estimated to be
0.52 to 0.73 pCi/kg of food consumed [8]; drinking water is considered a more pronounced
source of exposure in many regions of the US [7]. Uranium levels in drinking water vary
widely, with a mean population-weighted average of 0.8 pCi/L in the US [4]. Uranium
emits alpha particles that are absorbed by the human body to lead to harmful effects such
as DNA damage, genetic mutations, abnormalities in chromosomes, or abnormal activity
throughout the process of mitosis and cellular proliferation [5]. Uranium’s chemical prop-
erties, and not its radiological properties, however, are most relevant for disease risk at
concentrations of exposure relevant to the general population [7]. Radium emits gamma
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radiation that can be absorbed by the body [4]. Radium is a radioactive metal that occurs
naturally, similarly to uranium, and is produced from the degradation of uranium and
thorium [4].

Studies have begun to investigate the relationship between uranium and CRC. In an
ecologic epidemiologic study in South Carolina, census tracts with higher concentrations
of uranium showed higher rates of colorectal cancer comparing the highest quartile of
groundwater uranium concentrations (0.39–64.03 μg/L) to those in the lowest exposure
quartile (<0.05 μg/L) [9]. Trend tests also showed an increase in the standardized incidence
ratio (SIR) for uranium in census tracts with a high proportion (>38%) of Black residents
(β = 0.09, p = 0.06), suggesting that these radionuclides might explain some of the racial dis-
parities in CRC incidence. In another ecologic study in Germany, there was no association
reported between uranium in drinking water in men or women and CRC [10]. We could
not find any epidemiologic studies of radium and risk of CRC; however, one ecologic study
pointed to elevated risks associated with well water use, which was correlated with radon
and uranium in soil, among other factors [11]. Additional studies are needed to clarify the
relationship between exposure to radionuclides and CRC, and their role in racial disparities
of CRC.

Herein, we investigate the relationship between uranium and radium in groundwater
and CRC incidence at the county level in Georgia, USA, one of the few regions in the
USA with a large population of Black residents and elevated concentrations of uranium
and radium in the groundwater. We investigate spatial patterns of CRC by race, and in
relation to groundwater concentrations of uranium and radium, testing the hypothesis that
uranium and radium in groundwater might differentially contribute to incident CRC in
Black and White populations in Georgia.

2. Materials and Methods

This is an ecologic study of colorectal cancer and radionuclides in groundwater at the
county level in Georgia, USA.

2.1. Datasets

Datasets publicly available online and supplied by the Georgia Cancer Registry were
accessed for colorectal cancer incidence rates in Georgia, 1999–2008 (http://cancer-rates.
info/ga/, accessed on 1 January 2023). Incident cases by sex and race were downloaded
along with age-adjusted population for each sex and race group, using year 2000 as the
standard. Data were organized into nine different groupings: all cases; all males; all females;
all Black individuals; all White individuals; White males; White females; Black males; and
Black females.

Drinking water uranium and radium concentrations at the county level were reported
by the US Geological Survey (USGS) in 2003 [12]. Uranium concentrations were categorized
in two ways: as above or below 27 pCi/L, which is equivalent to the maximum contaminant
limit (MCL) in drinking water set by the US Environmental Protection Agency (EPA); and
above or below 270 pCi/L, a value 10 times the MCL. The combined radium-226 and
-228 isotopes were categorized as above or below 5 pCi/L, the USEPA drinking water
MCL. Counties were coded based on the presence of at least one sample that exceeds pre-
defined cutoff values. There were 628 uranium analytical results, including 192 resulting in
concentrations higher than 27 pCi/L and 7 counties with at least one sample of uranium
concentration higher than 270 pCi/L [12]. Of the 955 total results of combined radium-226
and -228, 476 had concentrations greater than 5 pCi/L [12].

Covariates at the county level were also downloaded from year 2000 US census
data [13]. These include: median household income (HHI), and rural or urban classi-
fication [14]. We also were able to download county risk factor rankings from county-
healthrankings.org; the earliest data available were from 2010. Each county receives a
score based on many factors including smoking, obesity, alcohol use, physical activity,
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community resources, access to care, among others; 2 counties were missing data. As a
sensitivity analysis, we also adjusted for this county risk factor ranking.

2.2. Spatial Clustering Analysis

Spatial cluster analyses were run in SaTScan version 10.1 (Calverton, MD, USA) to look
for areas of high or low rates of incident CRC. The nine different race–sex groupings of the
population were investigated separately. Cancer cases, population at risk, and geographic
coordinate centroids of each county were imported into SaTScan. Each Poisson cluster
model was set to display a maximum spatial search window of 10% of the population at
risk. We only report high-rate clusters with at least 2 cases and a relative risk value greater
than or equal to 1.5. Low-rate clusters were restricted to a relative risk value less than or
equal to 0.67. Spatial analysis was run using 999 replications to generate the statistical
distribution for calculating p-values. Circular clusters were allowed to overlap neighboring
circular clusters so long as cluster centers did not overlap. The resulting cluster maps were
exported using an HTML file for Google Maps.

2.3. Spatial Regression Analysis

In GeoDa 1.20.0.22 (Chicago, IL, USA), an ordinary least-squares regression was
calculated at the county level between the dependent variable, log of colorectal cancer
cases, and the independent variables radium or uranium and age-adjusted population
size. There were two different measures of elevated uranium, one measure of elevated
radium, and nine different sex–race groupings of the population resulting in 27 different
regression models. In addition, to control for potential confounding, we included HHI
and urban/rural classification as covariates in fully adjusted models. As a regression
diagnostic assessing independence of observations and potential heteroskedasticity, spatial
autocorrelation in the residuals was assessed by calculating a Moran’s I coefficient using
Queen’s contiguity of nearest neighbors with an order of one. If spatial autocorrelation was
present (p < 0.05), then Lagrange Multiplier spatial diagnostics were applied to determine
whether to run a spatial lag or spatial error regression model to account for the spatial
dependence in the observations [15].

3. Results

3.1. Descriptive Findings

Counties with uranium greater than 27 pCi/L were found in the northern third of
Georgia, with a sprinkling of counties with greater than 270 pCi/L throughout the state
(Figure 1). Counties with elevated radium-226 and -228 were distributed broadly across the
state of Georgia (Figure 1). Out of the different race–sex groupings, Black males showed
elevated incidence rates of CRC in the most counties (Figure 2). Males, in general, displayed
higher rates of CRC incidence than females and Black populations showed higher incidence
than White populations (Figure 2). The Black–White incident rate ratio has a median value
of 1.20 (95% CI:1.04, 1.40), while the Black–White incident rate difference has a median
value of 9.23 cases per 100,000 (95% CI: 2.14, 19.40) (Table 1).
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Figure 1. Georgia counties with at least one sample of uranium or radium-226 and -228 above
concentration indicated.
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Figure 2. Age-adjusted CRC incidence rate per 100,000 individuals across counties in Georgia, by
sex–race groupings of the population.
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Table 1. Characteristics of the population.

Med, IQR No. of Counties

No. of cases/county 122 (61–224) 159
Age-adjusted population at risk/county 227,000 (113,000–4,400,000) 159
Black–White incident rate ratio 1.20 (1.04–1.40) 159
Black: White–incident rate difference * 9.23 (2.14–19.40) 159
County HHI 31,950 (27,873–38,782)1 159
Water samples exceed uranium > 27 pCi/L 31
Water samples exceed uranium > 270 pCi/L 7
Water samples exceed radium > 5 pCi/L 66
Urban counties 51

* per 100,000 people; HHI = household income.

3.2. Spatial Clusters of CRC Incidence

Spatial cluster analysis showed high incidence clusters of CRC in the northeastern
and southwestern counties of Georgia, and between the cities of Atlanta and Augusta for
the total population and the White population (Figure 3A,B). The Black population showed
high incidence spatial clusters in the same areas, as well as between the cities of Columbus
and Augusta, Georgia. Clusters of lower incidence occurred only for the Black population,
near Atlanta and just south of Savannah, Georgia (Figure 3C).

Figure 3. Clusters of low and high incidence of CRC per 100,000 in Georgia.

3.3. Linear Regression between Radionuclides and CRC Incidence

Linear regression analyses at the county level revealed an association between radium
in groundwater and incident cases of colorectal cancer, adjusted for population, HHI, and
urban/rural classification (Table 2). This association was present in all the different race–sex
categories. After adjusting for the population size in each county, the beta coefficients across
the race–sex groupings, when exponentiated to account for the log transformation of the
dependent variable, indicate there are, on average, 1–2 additional cases of colorectal cancer
in counties with higher levels of radium in their groundwater. Uranium in groundwater was
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not associated with colorectal cancer. Spatial diagnostics indicated spatial autocorrelation
was present in some of the models, and we adjusted using spatial error models as indicated
by the diagnostics and results were not meaningfully different. Similarly, models only
adjusted for population size, but not HHI and urban/rural classification, produced similar
results, as did models adjusted for a 2010 county risk factor ranking.

Table 2. Association between uranium, radium, and incidence of colorectal cancer (CRC) at the
county level in Georgia, 1999–2008.

Radium > 5 pCi/L Uranium > 27 pCi/L Uranium > 270 pCi/L

β p-Value B p-Value β p-Value

All cases * 0.27 0.004 0.12 0.33 0.13 0.52
Black population * 0.18 0.006 0.08 0.49 −0.14 0.35
White population * 0.13 0.003 0.07 0.32 0.03 0.78
Males 0.12 0.004 0.06 0.34 0.06 0.59
Females 0.12 0.007 0.04 0.55 0.08 0.45
Black males * 0.20 0.005 0.14 0.23 −0.12 0.46
Black females * 0.15 0.002 0.07 0.42 0.03 0.80
White males * 0.18 0.02 0.01 0.96 −0.21 0.23
White females * 0.15 0.003 0.05 0.54 0.04 0.75

Adjusted for population size, HHI, and urban/rural classification; * Spatial error term was included, as indicated
by regression diagnostics in Geoda.

4. Discussion

We identified clusters of elevated rates of CRC in the northeastern and southwestern
counties of Georgia, and between the cities of Atlanta and Augusta. The areas of elevated
risk were generally similar for the total population, White population, and Black population,
with additional areas of heightened risks for Black populations between the cities of
Columbus and Augusta. Counties with elevated concentrations of uranium in groundwater
were mainly seen in the northern third of Georgia, and were not associated with elevated
CRC incidence rates in the total population nor any of the subpopulations considered. Areas
with elevated concentrations of radium-226 and -228 in groundwater were distributed
across the state and were associated with elevated CRC incidence in the total population
and all subpopulations of males, females, White populations, and Black populations. Even
though we observed higher rates of CRC among males and Black populations, as expected
in the US population [3], radium did not explain the racial and gender disparities as the
strength of the association with CRC was comparable in the different subpopulations
(Table 2).

Age-adjusted CRC incidence rates have been falling for White men and women
since the late 1970s, but the decreases began later and moved more slowly for Black men
and women [16]. Before 1980, CRC incidence and mortality rates were lower in Black
populations than in White populations [16], indicating it is unlikely that the disparity
in CRC incidence is the result of biological factors. Differences in socioeconomic status
and the resulting differential access to screening are likely important factors [17] but do
not explain all of the disparities [18], indicating the need to identify additional causes
of the CRC disparities. Gut microbiota and the lifestyle choice of the foods one eats can
contribute to disparities in CRC incidence [19]; we also hypothesized that differential
exposure to the radiologic drinking water contaminants uranium and radium could play
a role. Uranium was not associated with CRC, while radium was associated with CRC
in the total population, and among subpopulations of White and Black individuals. The
strength of the association between radium and CRC incidence was similar among all
groups studied, suggesting radium is not explaining racial disparities in CRC; the search
for additional explanatory factors continues.

Radiation has long been linked with CRC. Exposure to ionizing radiation in the
workplace [20,21] and among atomic bomb survivors [22] has been linked with excess
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incidence of CRC. Evidence linking radiologic groundwater contaminants to CRC is more
tenuous. One ecologic study linked uranium in groundwater to a higher incidence of
CRC [9], but another ecologic study reported no association [10], similar to our findings.
To the best of our knowledge, ours is the first study to investigate radium in groundwater
as a possible risk factor for CRC. In our ecologic study, we report a positive association, but
limitations inherent to ecologic studies must be considered.

This ecologic study is limited by the fact that we do not know whether cases of CRC
were due to drinking or were otherwise exposed to groundwater rich in radium or uranium.
While we have detailed data on colorectal cancer incidence over a decade with power to
assess racial disparities in CRC incidence, our assessment of county-level exposure to
uranium or radium relies on a sparsely sampled dataset provided by the USGS, which
does not include average levels of uranium or radium but rather only lists counties as
having measurements above or below a pre-defined value [12]. These data also do not
provide any information about changes in concentrations of radium or uranium over
the 1999–2008 period of case ascertainment, nor during earlier periods. Cancer incident
data and groundwater radionuclide data were not available at a smaller geographic unit
than the county. We do not know whether associations or clusters identified here would
have persisted had we relied on data in smaller geographic units. Furthermore, counties
reported to be rich in either of these groundwater contaminants may be associated with
another variable which could confound the associations studied here. We adjusted for
county-level census data from 2000 and for county health rankings available for 2010;
unfortunately, earlier county health data were not available and our adjustment for county-
level covariates may still leave the possibility of residual confounding. Therefore, this
ecologic epidemiologic study should be considered a first glance at the link between radium
and CRC incidence which needs to be verified with stronger epidemiologic studies that
address potential confounding variables, and better assess individual-level exposure.

5. Conclusions

This ecologic study shines a spotlight on radium in groundwater as a possible risk
factor for CRC incidence. Further studies are needed to verify this association given the
inherent limitations in the ecologic study design and the crude exposure assessment.
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