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Article

Complex Periodic Mixed-Mode Oscillation Patterns in a
Filippov System

Chun Zhang * and Qiaoxia Tang

School of Mathematical Science, Huaiyin Normal University, Huaian 223300, China; qxtang@hytc.edu.cn
* Correspondence: czhang@hytc.edu.cn

Abstract: The main task of this article is to study the patterns of mixed-mode oscillations and
non-smooth behaviors in a Filippov system with external excitation. Different types of periodic
spiral crossing mixed-mode oscillation patterns, i.e., “cusp-F−/fold-F−” oscillation, “cusp-F−/two-
fold/two-fold/fold-F−” oscillation and “two-fold/fold-F−” oscillation, are explored. Based on
the analysis of the equilibrium and tangential singularities of the fast subsystem, spiral crossing
oscillation around the tangential singularities is investigated. Meanwhile, by combining the fast and
slow analysis methods, we can observe that the cusp, two-fold and fold-cusp singularities play an
important role in generating all kinds of complex mixed-mode oscillations.

Keywords: mixed-mode oscillations; tangential singularity; spiral crossing oscillations; external
excitation

MSC: 34C15; 34C05; 37G10; 37G18

1. Introduction

As a typical non-smooth dynamic system, the Filippov system reflected in the mathe-
matical model can be expressed as discontinuous differential equations whose right-hand
side is discontinuous [1]. The main motivation for studying the Filippov system comes from
the fact that non-smooth factors in many practical engineering systems can be described
by this kind of model, such as mechanical systems with friction [2], switched electronic
systems [3], discontinuous control systems [4] and others [5,6]. Generally, a Filippov system
always has a switching surface which connects two types of flows. When the trajectory
touches the switching surface, the system is redefined, which can cause the qualitative
changes in the system’s dynamics, such as boundary equilibrium bifurcations, multiple
collision and non-smooth periodic orbit bifurcations [7–10]. Especially, the system may
exhibit various types of special phenomena on the switching surface, such as sliding motion
and fold, cusp, two-fold, fold-cusp tangential singularities [11,12].

On the other hand, many important practical engineering problems also involve
coupling of different time scales [13–16]. This type of system may cause mixed-mode
oscillations, which are formed by a relatively large excursion and nearly harmonic small
amplitude oscillation during every evolution period. For example, Abdelouahab et al. [17]
studied the existence of mixed-mode oscillations and canard oscillations in the neighbor-
hoods of Hopf-like bifurcation points based on the global and local canard explosion search
algorithm. Liu et al. [18] found that the folded surface and critical manifold both play an
important role in the existence of mixed-mode oscillations at the folded saddle in the per-
turbed system. Ma et al. [19] explored the evolution mechanism of different mixed-mode
oscillation patterns caused by the pitchfork bifurcation and related delay behaviors in a
van der Pol–Duffing system with parameter excitation. Yu et al. [20] studied the singular
Hopf bifurcation conditions and MMO behaviors in the parametric perturbed BVP system
and investigated the mechanisms of two different types of MMOs using a generalized
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fast-slow analysis method. Chen et al. [21] explored multiple fast-slow motions, including
“periodic bursts with quasi-periodic spiking”, “torus/short transient” mixed mode oscilla-
tions, “pitchfork/long transient” periodic mixed mode oscillations, amplitude-modulated
and irregular oscillations from numerical method. It can be seen that the behaviors of the
mixed-mode oscillation can be produced by many factors, such as different kinds of bifur-
cation structures [22,23], delay behaviors [24,25], and hysteresis loops [26,27]. However,
most of the results about mixed-mode oscillations are made for smooth systems. When the
non-smooth vector field contains multiple time scale couplings, mixed-mode oscillations
may also observed. For example, Simprson et al. [28] investigated a piecewise-smooth
linear FitzHugh–Nagumo system and showed that the piecewise-smooth linear model
may exhibit MMO more easier than the classical FitzHugh–Nagumo model which contains
a cubic polynomial as the only nonlinear term. Wang et al. [29] found that the delayed
C-bifurcation leads to different types of transitions between multiple attractors, and ex-
plained the mechanism of mixed-mode oscillations in a typical Chua’s system with external
excitation and a piecewise resistor. Even so, up to now, the influences of a non-smooth
vector field on the vibration of mixed modes are rarely studied.

This paper investigates the mixed-mode oscillations and non-smooth dynamical
behaviors in a piecewise nonlinear system with external excitation, focusing on the effects of
the tangential singularities on the mixed-mode oscillations. For this purpose, we continue
to analyze a realistic model in the literature [30], focusing on the effect of the external
excitation. The basic circuit model with the external excitation is presented in Figure 1,
where E > 0 stands for the voltage source and R represents a resistive load. The voltage
νout across R is the system output.

Figure 1. The basic circuit with a periodic excitation.

The structure of the paper is set up as follows. The differential equation model of
the circuit is established and the stabilities of the equilibrium and tangential singularities
conditions of the fast subsystem are given in Section 2. Then, three new mixed-mode oscil-
lation patterns, i.e., “cusp-F−/fold-F−” oscillation, “cusp-F−/two-fold/two-fold/fold-F−”
oscillation and “two-fold/fold-F−” oscillation are reported and the associated evolution
mechanism are presented in Section 3. In Section 4, we present a brief conclusion of
the paper.
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2. Hybrid Model

2.1. Mathematical Model

Considering the inductor current iL and the voltage νC as state variables, the circuit
described in Figure 1 can be written as

L
diL
dτ

= (E − iLrL)(q1 + q2)− iLrDSq1 − (VD0 +
iLrC + νC

rC + R
R)q2 + iGcos(Ωτ),

C
dνC
dτ

=
R

rC + R
iLq2 − 1

rC + R
νC,

(1)

where q1 and q2 are either 0 or 1 and not simultaneously equal to 0 or 1, iG > 0 is the
excitation amplitude and Ω = o(ε) is the excitation frequency. The voltage output νout is
given by νC, i.e.,

νout =
rCR

rC + R
iLq2 +

R
rC + R

iLνC. (2)

Considering that rL �= 0 and rDS = 0, VD0 = 0, rC = 0, thus νout = νC and the above
model can be simplified as follows

L
diL
dτ

= (E − iLrL)(q1 + q2)− νCq2 + iGcos(
ω√
LC

τ),

C
dνC
dτ

= iLq2 − νC
R

,
(3)

By using the dimensionless transformation

x =
iL
E

√
L
C

, y =
νC
E

, t =
τ√
LC

, α =
1
R

√
L
C

, β = rL

√
C
L

, ω =
√

LCΩ, A = iG,

the model (3) can be expressed in the form

ẋ = (1 − βx)(q1 + q2)− yq2 + Acos(ωt),

ẏ = xq2 − αy,
(4)

where the new parameters are α > 0, β > 0, w > 0. According to Ponce and Pagano [30], a
new differential equation ż = w(x − z) was introduced, and the sliding control scheme can
be defined as

q2 = 1 − q1 =

{
0, i f h(x) > 0,
1, i f h(x) < 0,

(5)

where x = (x, y, z), h(x) = y − yr + k(x − z), and yr > 1 is the normalized voltage and
k > 0. It can be seen that the system with the above sliding mode scheme is obtained by
connecting two vector fields

F+(x) =

⎡
⎣ 1 − βx − y + δ

x − αy
w(x − z)

⎤
⎦, F−(x) =

⎡
⎣ 1 − βx + δ

−αy
w(x − z)

⎤
⎦, (6)

according to the sign of h(x), where δ = Acos(ωt). h defines the discontinuity manifold
∑ = {x ∈ R3 : h(x) = 0}, and dividing the whole state space into two regions: one is
S+ = {x ∈ R3 : h(x) > 0}, and the other is S− = {x ∈ R3 : h(x) < 0}.

Since the excitation frequency ω = O(ε) is much less than the natural frequency, the
extraneous excitation term evolves very slowly with the change of time, which indicates that
the whole system has two time scales. Thus, the system can be thought of as the coupling of
two subsystems, one is a slow subsystem, which is a piecewise-smooth dynamical system
(6), and the other is a fast subsystem written as δ = Acos(ωt). Furthermore, the main
characteristics of the whole system is determined by the fast subsystem, while the slow

3
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subsystem plays a moderating role in the behaviors of the whole system. Therefore, we
first study the stability and bifurcation dynamics of the fast subsystem, by considering δ as
a modulation parameter.

The equilibrium points for the vector fields F+ and F− are

E+ =
(α(δ + 1)

β α + 1
,

δ + 1
β α + 1

,
α(δ + 1)
β α + 1

)
, E− = (

1 + δ

β
, 0,

1 + δ

β
),

respectively. E+ is a stable node (for β > α + 2 or β < α − 2) or stable focus (for α − 2 <
β < α + 2) since the associated eigenvalues have a negative real part, namely

(
− 1

2
(α + β)− 1

2

√
(α − β)2 − 4,−1

2
(α + β) +

1
2

√
(α − β)2 − 4,−w

)
.

Because h(E+) =
1 + δ

αβ + 1
− yr, E+ is an admissible stable equilibrium if

1 + δ

αβ + 1
> yr,

while if
1 + δ

αβ + 1
= yr, E+ is a boundary equilibrium, else E+ is a virtual stable equilibrium.

E− is always a admissible stable node since the associated eigenvalues are real and negative,
namely (−β,−α,−w), and h(E−) = −yr < 0.

2.2. Tangential Singularities

Since the fast subsystem in Equation (6) is a piecewise-smooth dynamical system,
the type of contact between the smooth vector fields F± and the switching surface ∑ can
be explained by the Lie derivatives LF±h(x) = 〈∇h, F±〉 where 〈·, ·〉 and ∇h denote the
canonical inner product and the gradient of switching boundary function h, respectively.
The m-order Lie derivatives are defined as Lm

F±h = 〈∇Lm−1
F± h, F〉, m = 2, 3, · · ·.

The point x ∈ ∑ is called tangential singularity (i.e., the orbit from x is tangent to ∑) if
LF+h(x) · LF−h(x) = 0. A point x ∈ ∑ is called double tangency point (i.e., the trajectory
of the smooth vector fields F± from x is both tangent to ∑) if LF+h(x) = LF−h(x) = 0. The
tangential sets corresponding to F± are given by the space lines:

T+
δ =

{
x : h(x) = 0,LF+h(x) = 0

}
=
{
(x, y, z) : x = − (−w + k + α)y

−1 + kβ
− −kδ + wr − k

−1 + kβ
, y = y,

z = −
(
k2 + kα − kβ + 1 − kw

)
y

k(−1 + kβ)
− −k2 + kβ r − k2δ + kwr − r

k(−1 + kβ)

}
T−

δ =
{

x : h(x) = 0,LF−h(x) = 0
}

=
{

x : x =
(w − α)y

kβ
+

−wr + k + kδ

kβ
, y = y, z =

(−α + β + w)y
kβ

+
k + kδ − wr − β r

kβ

}
.

It is well known that tangential singularities are important for the understanding of
dynamical behaviors at a switching boundary and they form the boundaries dividing the
switching surface ∑ into a crossing region and a sliding/escaping region:

Crossing regions are defined by ∑c+ =
{

x ∈ ∑ : LF+h(x) > 0,LF−h(x) > 0
}

and

∑c− =
{

x ∈ ∑ : LF+h(x) < 0,LF−h(x) < 0
}

;

The sliding region is defined by ∑s =
{

x ∈ ∑ : LF+h(x) < 0,LF−h(x) > 0
}

;

The escaping region is defined by ∑e =
{

x ∈ ∑ : LF+h(x) > 0,LF−h(x) < 0
}

.

4



Mathematics 2022, 10, 673

In the 3-dimensional dynamical system, two important types of generic tangential
singularities that are encountered on smooth portions of ∑ are as follows:

A point x is a fold point about the smooth vector field F+ if x ∈ ∑,LF+h(x) = 0,
while L2

F+h(x) �= 0, and the gradient vectors of h(x) and LF+h(x) are linearly independent.
Moreover, x is a cusp point with respect to the vector field F+ if x ∈ ∑,LF+h(x) =
L2

F+h(x) = 0, while L3
F+h(x) �= 0, and the gradient vectors of h(x), LF+h(x) and L2

F+h(x)
are linearly independent [31].

With the same method, fold and cusp point related to the smooth vector field F− can
also be defined. Moreover, it is possible for a point x ∈ ∑ to be a double tangency point.
When x ∈ ∑ is a fold point, the cusp point with respect to the vector fields F±, x is called a
two fold, two-cusp singularity, respectively. If x ∈ ∑ is a fold singularity with respect to
one vector field and a cusp singularity with respect to the other one, we call x as a fold-cusp
singularity [32].

The next result summarizes the conditions of the tangential singularities which will be
covered in this paper according to the parameter β, w, δ and fixing yr = 2.0, k = 1.0, α = 1.0.

The double tangency point xD is given by T+
δ

⋂
T−

δ , i.e.,

xD =

{−δ + 2 w − 1
−β − 1 + w

,
−δ + 2 w − 1
−β − 1 + w

,
2(−δ + w + β)

−β − 1 + w

}
. (7)

The point xD is a two-cusp singularity if β = −w + 1 and δ = 3 − 2w or a fold-cusp

singularity if β �= −w + 1 and δ = −2 w2 − 3 w − 2 β2w + β w − β + 1
β w + 1 − β − w

(fold for F+, cusp

for F−) or δ = 1+ 2β (cusp for F+, fold for F− ). In the other case, the point xD is a two-fold
singularity.

A straightforward calculation shows that the point xCF+ = (xCF+ , yCF+ , zCF+) with

xCF+ =
3 − 4 w − β + β wδ − β δ − β w − 2 wδ + 2 w2 + 3 δ

3 − β2 + 2 β − 3 w − 2 β w + β2w + w2 ,

yCF+ =
3 + 2 β2w − 5 w − β + 2 w2 − β δ − 2 β w − wδ + 3 δ

3 − β2 + 2 β − 3 w − 2 β w + β2w + w2 ,

zCF+ =
2 β2 − 2 β δ + β wδ − 6 β + β w − 3 w − 3 wδ + 2 w2 + 6 δ

3 − β2 + 2 β − 3 w − 2 β w + β2w + w2 ,

(8)

and the point xCF− = (xCF− , yCF− , zCF−) with

xCF− =
2 w − 1 + β δ + β − δ

(β − 1)β
,

yCF− =
2β w

β w + 1 − β − w
,

zCF− =
3 β w + 1 − 3 β − 3 w + 2 β2 + β wδ + δ − β δ − wδ + 2 w2

β (β w + 1 − β − w)
,

(9)

are cusp points related to F+ and F−, respectively, due to the fact that L2
F+h(xCF+) =

0,L3
F+h(xCF+) = −(2β − δ + 1)w �= 0 and L2

F−h(xCF−) = 0,L3
F−h(xCF−) = −2βw �= 0.

3. Mixed-Mode Oscillation and Its Mechanism

Based on the results of the analysis of the equilibria and the tangential singularities of
Equation (6), we find that mixed-mode oscillations are obtained when the whole system
undergoes a transformation between the fast system and slow system connected by the
different types of tangential points on the switched surface.

In the following discussion, the parameters α = 1.0, w = 0.01, β = 0.32, yr = 2.0, k =
1.0 are always fixed and the excited frequency is fixed at ω = 0.01. We study the evolution

5



Mathematics 2022, 10, 673

of the mixed-mode oscillation dynamics and the associated mechanism of the non-smooth
behaviors at the switching boundary when the amplitude A is changed.

Note that E+ is an admissible stable focus if δ > 1.64, a boundary stable focus if
δ = 1.64 or a virtual stable focus if δ < 1.64, while E− is always a admissible stable node
for the fixed parameters. A typical trajectory of the fast system is shown in Figure 2 for
δ = 0.54. The trajectory locally wraps around the singularity until the trajectory in the open
region S− meets with or is near to the tangential sets T−

0.54 and then moves to the admissible
stable node E−.

Figure 2. E+ is a virtual stable focus; E− is an admissible stable note. A typical orbit of the fast
subsystem is shown: trajectories locally wrap around the tangential sets for δ = 0.54.

3.1. Cusp-F−/Fold-F− Periodic Spiral Crossing Oscillation

As shown in Figure 3a, a periodic mixed-mode oscillation can be obtained when the
amplitude is fixed at A = 0.92. It is seen that the periodic mixed-mode oscillation can
be divided into two parts (seen in Figure 3b), i.e., the spiral crossing oscillation and the
periodic oscillation which are connected by the tangential singularities.

Figure 3. A typical mixed-mode oscillation pattern for A = 0.92. (a) Phase portrait; (b) time series of
the mixed-mode oscillation.

To explain the mechanism of this mixed-mode oscillation, Figure 4a shows the overlap
of the phase portraits of different amplitudes, while Figure 4b shows the transformed phase
portrait and tangential singularities with the variation of the parameter δ. The green line in
Figure 4b refers to the two-fold singularities, the black line denotes the cusp singularities
with respect to the vector field F−, while the black point corresponds to the fold-cusp
singularity.

6
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As is shown in Figure 4a, the limit cycle (the gray orbit) with A = 0.91 is completely in
the open region S− and does not meet the switching boundary ∑ when it oscillates around
the admissible stable node E− in counter-clockwise direction. When A = 0.92, the limit
cycle (the blue orbit) contact with the switching surface ∑ at P = (4.7357, 0.0079, 2.7357)
with δ = 0.53925. Based on Equation (9), the point P is the cusp singularity with respect to
F−(seen in Figure 4b), which means that the trajectory in the open region S− is tangent to
the switching boundary ∑ at P and then crosses through the switching surface ∑ to the
open region S+ governed by the vector field F+. Since E+ is the virtual stable focus under
the parameter conditions, the trajectory inevitably contacts with the switching surface ∑ at
the point P1 in ∑c− when it scrolls down to the stable focus E+, then returns to the open
region S− governed by the the admissible stable node E−.

In the process of moving from the the point P1 to the stable E−, the trajectory may
contact with the switching boundary again at P2 in the crossing region ∑c−, which may
cause the trajectory to scroll down to the virtual stable focus. In this way, the trajectory
may spiral around the switching surface ∑ from the cusp singularity P until the trajectory
in the open region S− meets with or is near to the tangential sets T−

δ , causing the trajectory
to return back to the point P along the limit cycle in open region S−. We can refer to such
mixed-oscillation formation as the cusp-F−/fold-F− periodic spiral crossing oscillation.

Figure 4. (a) Stable limit cycles with A = 0.91 (the gray orbit) and A = 0.92 (the blue orbit);
(b) overlap of the tangential singularities branches and transformed phase portrait on the (δ, x, z).

3.2. Cusp-F−/Two-Fold/Two-Fold/Fold F− Periodic Spiral Crossing Oscillation

When A increases from 0.92, the mixed-mode oscillation obtained in Equation (6) may
exhibit some interesting behaviors. For example, Figure 5 shows a group of mixed-mode
oscillation patterns in Equation (6) with increasing values of A for fixed A = 1.35 and
A = 1.7. It can be seen that the spiral crossing oscillation in the mixed-mode oscillation (see
Figure 5a) may be divided into two parts, i.e., the left and right spiral crossing oscillation
parts (see Figure 5b) with the increase of the parameter A. The corresponding phase
portraits are shown in Figure 5c,d. We may find that the left trajectories may spiral around
the boundary ∑s, while the right trajectories may spiral around the boundary ∑e.

The phenomenon can be also understood by the analysis of the contact between
the orbit and the tangential singularities. As shown in Figure 6, when the parameter A
increases from 0.92 to 1.437, the trajectories of the cusp-F−/fold-F− periodic spiral crossing
oscillation may get to the two-fold singularity at δ = 1.437, which imply that spiral crossing
trajectories may split into two parts, i.e., the left trajectories spiraled around the boundary
∑s, and the right trajectories spiraled around the boundary ∑e, connected by two two-
fold points (see in Figure 6b). We can refer to such mixed oscillation formation as the
cusp-F−/two-fold/two-fold/fold F− periodic spiral crossing oscillation.

7
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Figure 5. Tangential singularities-induced mixed-mode oscillation patterns in Equation (6), where
Acos(ωt) (the dashed line) is overlayed to give a clear view that the frequency of the periodic
mixed-mode oscillation is equal to ω. (a,c) A = 1.35; (b,d) A = 1.7.
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Figure 6. Overlap of the tangential singularities branches and transformed phase portrait on the
(δ, x, z). (a) A = 1.35; (b) A = 1.7.

3.3. Two-Fold/Fold-F− Periodic Spiral Crossing Oscillation

By a further increase of parameter A, the left spiral crossing oscillation around the
boundary ∑s may gradually disappear, and only the right spiral crossing oscillation is
left, which still wraps around the boundary ∑e, as shown in Figure 7a for A = 2.80. The
corresponding phase portrait is presented in Figure 7b.

The mechanism analysis is obtained by the overlap of the phase diagram on the space
of (δ, x, z) with the tangential singularities with the change of the parameter δ, as presented
in Figure 7c. The mechanism can be explained simply. When A increases through 2.25, the
point P where the limit cycle of the vector F− intersects the boundary Σ may pass through
the fold-cusp singularity (fold respect to F+ and cusp respect to F−, shown in Figure 7c)
along the cusp F− singularity at δ = −0.8737, causing the trajectory to pass through the
boundary Σ and experience a sharp turn down to the two-fold point. The trajectories of
the cusp-F−/two-fold/two-fold/fold F− periodic spiral crossing oscillation may become
unstable at A = 2.25, causing the left spiral crossing oscillation part to disappear (shown in
Figure 5d) and evolve to a new mixed-mode oscillation pattern seen in Figure 7b. We can
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refer to such mixed oscillation formation as the two-fold/fold-F− periodic spiral crossing
oscillation.

Figure 7. A typical mixed-mode oscillation pattern for A = 2.80. (a) Time history; (b) phase portrait;
(c) transformed phase portrait.

4. Conclusions

This article studies mixed-mode oscillation dynamics in a Filippov system with exter-
nal excitation. When the amplitude of the excitation is changed, three new mixed-mode
oscillation patterns, i.e., “cusp-F−/fold-F−” oscillation, “cusp-F−/two-fold/two-fold/fold-
F−” oscillation and “two-fold/fold-F−” oscillation are first reported. By regarding the
excitation term as a bifurcation parameter, the stabilities of the (admissible and bound-
ary) equilibrium and the conditions of different types of tangential points, such as cusp,
two-fold and fold-cusp singularity, are explored. With the decrease of the excitation am-
plitude, when the excitation term passes through the two-fold point, the periodic spiral
crossing oscillation may become unstable and a periodic oscillation with two (left and
right) spiral crossing trajectories is created. When the excitation term passes through the
fold-cusp point, the left spiral crossing trajectory of the periodic oscillation may suddenly
disappear and only the right spiral crossing trajectory is left. Besides, the results proposed
in this paper are advantageous to understand the mixed-mode oscillation in non-smooth
dynamical systems. Our further work will focus on the effect of the different behaviors of
mixed-mode oscillation caused by various switched scheme and the potential applications
on Filippov system.
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Abstract: This paper deals with the multi-pulse chaotic dynamics of a sandwich plate with truss core
under transverse and in-plane excitations. In order to analyze the complicated nonlinear behaviors of
the sandwich plate model by means of the improved extended Melnikov technique, the two-degrees
non-autonomous system is transformed into an appropriate form. Through theoretical analysis,
the sufficient conditions for the existence of multi-pulse homoclinic orbits and the criterion for
the occurrence of chaotic motion are obtained. The damping coefficients and transverse excitation
parameters are considered as the control parameters to discuss chaotic behaviors of the sandwich
plate system. Numerical results and the maximal Lyapunov exponents are performed to further test
the existence of the multi-pulse jumping orbits. The theoretical predictions and numerical results
demonstrate that the chaos phenomena may exist in the parametrical excited sandwich plate.

Keywords: chaos; multi-pulse orbit; extended Melnikov method; Lyapunov exponent
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1. Introduction

The truss core sandwich materials belong to a new type of lightweight structure and
are widely used in mechanical engineering and other various areas. Different types of
sandwich structures have attracted the attention of many researchers. Analytical and
numerical techniques can be applied to investigate the resonant response, bifurcation and
chaotic dynamics for these sandwich materials.

For instance, Chen et al. [1,2] discussed the stability and nonlinear response of the
harmonic-excited plate with tetrahedral core under influence of thermal loads. Boorle and
Mallick [3] studied the global response of composite sandwich plates to the effect of some
geometric parameters. In 2014, Zhang et al. [4] studied the periodic and chaotic motions
of the sandwich plate with truss core. The influence of different excitation parameters on
nonlinear dynamic behaviors were investigated by numerical methods. By introducing
the nonlinear wave equation, Zhang et al. [5] applied the Menikov method to confirm
the chaotic motions for this sandwich plate. Furthermore, based on the model given
in [4], Chen et al. [6] discussed the local bifurcations and slow-fast motions for this four-
dimensional nonlinear system under slow parametric and fast external excitation. However,
the multi-pulse chaotic dynamics of this system have not been studied analytically. Based on
the dimensionless governing equation, we conduct further research to obtain the conditions
for the occurrence of chaotic motion by theoretical methods.

The bifurcation problems [7,8], single-pulse orbits and multi-pulse orbits [9] have
been the top issue in dynamic research. Many researchers have developed analytical
methods to study chaotic motions for the high-dimensional nonlinear systems. The Mel-
nikov method is a classical approach to detect chaotic dynamics which was developed
by Wiggins, Kovacic and Yagasaki. In 1998, Camassa et al. [10] proposed an extended
Melnikov method which may be employed to deal with the multi-pulse jumping orbits
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for a class of Hamiltonian systems with perturbation. Subsequently, Yagasaki [11,12] de-
veloped the Melnikov method to investigate the chaotic dynamics of high-dimensional
non-autonomous systems. The paper [13] demonstrates how to employ the extended Mel-
nikov method to analyze the multi-pulse chaotic dynamics for the parametrically excited
viscoelastic moving belt. Afterwards, Zhang et al. [14] investigated the chaotic dynamics of
the rotating ring truss antenna. The double parameter homoclinic orbits were detected by
means of the extended Melnikov function. In [15], Zhang and Chen proved the existence of
single-pulse jumping homoclinic orbits of the sandwich plate with truss core on a certain
parameter range. Ahmadi et al. [16] investigated a new five-dimensional chaotic system.
The phenomenon of extreme multi-stability are considered for the variety of conditions.
In [17], many complex dynamic behaviors of another 5D chaotic system with equilibrium
were discovered.

These analytical techniques can deal with autonomous systems. In most instances, we
need to discuss the dynamical problems of non-autonomous systems. The literature [18]
used the improved Melnikov method to detect the chaotic behaviors of the buckled thin
plate model. In 2012, Zhang et al. [19] studied the chaotic dynamics of another type of sand-
wich plate. Based on the non-autonomous nonlinear governing equations, Wu et al. [20]
investigated the global bifurcations for the circular mesh antenna model. It is worth men-
tioning that the Melnikov method is improved to handle six-dimensional nonlinear systems
by Zhang and Hao in papers [21].

The paper handles the global bifurcation and chaotic motion of a simply supported
sandwich plate with truss core subjected to parametrical excitations. From the explicit
formulas of normal form, the improved extended Melnikov method [10,18] is used to
study the chaotic dynamics for this non-autonomous system. The damping coefficients
and transverse excitation parameters are chosen as the control parameters to discuss the
influence on the dynamic behaviors of the sandwich plate system with truss core. The
numerical results also show that the chaotic motions may occur for the sandwich plate
with truss core subject to parametrical excitations which demonstrates the validation of the
theoretical prediction.

The paper is outlined as follows. In Section 2, the main theory of the extended
Melnikov method for the non-autonomous system is exhibited. In Section 3, the dynamical
model is described for the sandwich plate with truss core under transverse and in-plane
excitations. The chaotic motions of the four dimensional non-autonomous systems are
analyzed based on the improved extended Melnikov method. In Section 4, based on the
phase portraits, waveforms and Lyapunov exponents, numerical simulations are utilized
to study the dynamic behaviors of the sandwich plate. Finally, we give the conclusions in
Section 5.

2. Formulation

The main theory of the improved Melnikov method [10,18] for the non-automonous
nonlinear system will be listed in this section. Consider a general Hamilton system:

ẋ = JDx H(x, v1) + εgx(x, v, φ, μ, ε),

v̇1 = εgv1(x, v, φ, μ, ε),

v̇2 = Ω(x, v1) + εgv2(x, v, φ, μ, ε),

φ̇ = ω,

(1)

where x = (x1, x2) ∈ R2, 0 < ε << 1, μ ∈ Rp represents the parameters in the perturbed
system. Dx indicates the partial derivatives about x, g = (gx, gv1 , gv2) denotes a periodic
function of t. When ε = 0, the unperturbed system can be given by

ẋ = JDx H(x, v1),

v̇1 = 0,

v̇2 = Ω(x, v1),

(2)
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which is an uncoupled nonlinear dynamical system. The following two assumptions are
required according to the results of [10].

Assumption 1. For every v1 ∈ [R1, R2], there exist a hyperbolic equilibrium x = x0(v1) and a
homoclinic orbit xh(t, v1) connected to x0(v1).

Assumption 2. For some v1 = v10 ∈ [R1, R2], the function Ω satisfies the following conditions

Ω(x0(v10), v10) = 0,
dΩ(x0(v1), v1)

dv1
(v10) �= 0.

From Assumption 2, we may find simple zeros about v1 which can be called the
resonance bands. A partial manifold is defined as

M = {(x, v)|x = x0(v1), R1 ≤ v1 ≤ R2,−L < v2 < L},

which is normally hyperbolic and possesses three-dimensional stable manifolds Ws(M)
and unstable manifolds Wu(M). The existence of the homoclinic orbit of system (2) in-
dicates that the stable manifolds Ws(M) and unstable manifolds Wu(M) intersect non-
transversally along Γ, which can be given

Γ = {(x, v)|x = xh±(t, v1), R1 ≤ v1 ≤ R2, v2 =
∫ t

−∞
Dv1 H(xh, v1)ds + v20}.

The perturbed system (1) is a five-dimensional system. In order to investigate the
dynamics of non-autonomous systems, a cross-section is introduced in the phase space.
The expression of cross section is defined as

Σφ0 = {(x, v1, v2, φ)|φ = φ0}. (3)

The variable φ is first fixed on Σφ0 and then vary throughout the circle S1. In the full
five-dimensional phase space R4 × S1, the invariant manifold M(t) can be written by

M(t) = {(x, v, φ)|x = x0(v1), R1 ≤ v1 ≤ R2,−L < v2 < L, φ = ωt + φ0}. (4)

Based on the analysis in [10], it can be known that M(t) is a three-dimensional normally
hyperbolic invariant manifold and the expression of the manifold Mε(t) is written as

Mε(t) = {(x, v, φ)|x = x0(v1) + O(ε), R1 ≤ v1 ≤ R2,−L < v2 < L, φ = ωt + φ0}. (5)

The manifolds Mε(t), Ws
ε(M(t)) and Wu

ε (M(t)) are Cr ε-close to the manifolds M(t),
Ws(M(t)) and Wu(M(t)), respectively. The 1-pulse Melnikov function and k-pulse Mel-
nikov function [10] in the Cartesian coordinate are shown by

M(v0, φ0, μ) =
∫ +∞

−∞
〈n(ph(t)), g(ph(t), ωt + φ0, μ, 0)〉dt,

Mk(v0, φ0, μ) =
k−1

∑
j=0

M(v10, v20 + jΔv2(v10), φ0, μ),
(6)

where symbol〈, 〉 denotes the Euclidean inner product of two functions,

n = (Dx H(x, v1), (Dv1 H(x, v1)− (Dv1 H(x(v10), v1), 0),

g = (gx(x, v, ωt, μ, 0), gv1(x, v, ωt, μ, 0), gv2(x, v, ωt, μ, 0)),

ph(t) = (xh(t, v1), v1, vh
2(t, v1) + v20).

(7)
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and
Δv2(v10) =

∫ +∞

−∞
Ω(xh(τ, v1), v10)dτ. (8)

The term Δv2 denotes the distance between two equilibrium points. From Assumption 2,
we may find that the vector x is located on a fast manifold. No manifold is on the manifold
M. This means the nonfolding condition in [10] is satisfied naturally. Thus, there exist some
integer k, v20 = v̄20, φ = φ̄0, and μ = μ̄, so that the k-pulse Melnikov function Mk(v0, φ0, μ)
has a simple zero point, namely

Mk(v10, v̄20, φ̄0, μ̄) = 0, Dv2 Mk(v10, v̄20, φ̄0, μ̄) �= 0. (9)

The stable manifold Ws(Mφ0
ε ) and unstable manifold Wu(Mφ0

ε ) intersect transversely
along surface Σ(v̄20). This means that the perturbed system has multi-pulse homoclinic orbits.

3. Chaotic Analysis of Perturbed System

The model of the sandwich plate with truss core considered in this paper is exhibited
in Figure 1 [4]. A Cartesian coordinate oxy system is established in the middle surface of
the sandwich plate. It can be supposed that the displacements of a point in the middle
surface are represented by u, v and w in the x, y and z directions, respectively. Moreover,
a, b and h denote the length, width and thickness of the sandwich plate, respectively.
The transverse excitation of the sandwich plate is denoted by f = F(x, y) cos Ω1t and the
in-plane excitation is represented by p = p0 − p1 cos Ω2t.

According to [4], the nonlinear partial differential equations of the sandwich plate are
given as follows

∂2u0

∂x2 + a1
∂w0

∂x
∂2w0
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∂w0

∂y
∂2w0

∂x∂y
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∂y2
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where
u = u0 + zφx − z3 4

3h2 (φx +
∂w0

∂x
),

v = v0 + zφy − z3 4
3h2 (φy +

∂w0

∂y
),

w = w0.

(11)

(a) (b)

Figure 1. The model of the sandwich plate with truss core: (a) schematic with the coordinate system;
(b) the 3D-Kagome truss core sandwich structure.

Here, we mainly consider the first two modes of the sandwich plate. Applying the
Galerkin technique, the two-degrees of freedom nonlinear equations of the sandwich plate
with truss core were given as [4]

ẅ1 + μ1ẇ1 + β11w1 + β16(p0 − p1 cos(Ω2t))w1 + β12w1w2
2 + β13w2w2

1 + β14w3
1

+ β15w3
2 = β17F1 cos Ω1t,

ẅ2 + μ2ẇ2 + β21w2 + β26(p0 − p1 cos(Ω2t))w2 + β22w2w2
1 + β23w1w2

2 + β24w3
2

+ β25w3
1 = β27F2 cos Ω1t,

(12)

where all the coefficients in (12) can be found in [4], w1 and w2 are the amplitudes of two
modes, and Ω1 and Ω2 denote the frequencies of the transverse and in-plane excitations.
Further, F1 and F2 represent the amplitudes of the transverse excitation corresponding to
w1 and w2, respectively, and μ1 and μ2 are the damping coefficients.

Introducing the following transformations for Equation (12)

x1 = w1, x2 = ẇ1, x3 = w2, x4 = ẇ2,

this system can be given by

ẋ1 =x2,

ẋ2 =− β11x1 − β12x1x2
3 − β13x3x2

1 − β14x3
1 − β15x3

3 − μ1x2 + F1 cos Ω1t

− f1x1 cos Ω2t,

ẋ3 =x4,

ẋ4 =− β21x3 − β22x2
1x3 − β23x1x2

3 − β24x3
3 − β25x3

1 − μ2x4 + F2 cos Ω1t

− f2x3 cos Ω2t,

(13)
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where β11 → β11 + β16 p0, β12 → β21 + β26 p0, F1 → β17F1, F2 → β27F2, f1 → β16 p1,
f2 → β26 p1. If μ, f1, f2, F1 and F2 are considered as perturbation parameters, the system (13)
can rewritten as

ẋ1 = x2,

ẋ2 = −β11x1 − β12x1x2
3 − β13x3x2

1 − β14x3
1 − β15x3

3,

ẋ3 = x4,

ẋ4 = −β21x3 − β22x2
1x3 − β23x1x2

3 − β24x3
3 − β25x3

1.

(14)

The Maple program is applied to obtain the normal form without the perturbation
parameters up to 3-order, namely

ẋ1 = x2,

ẋ2 = −1
2

β12x1(x2
3 + x2

4)− β14x3
1,

ẋ3 = x4 +
1
2

β22x2
1x4 + β24(x2

3 + x2
4),

ẋ4 = −β21x3 − β24(x2
3 + x2

4)−
1
2

β22x2
1x3.

(15)

It can be seen that the four terms β13x2
1x3, β15x3

3, β23x2
3x1, β25x3

1 in (14) can only have
influence on higher order terms. Thus, the damping coefficients, the forces coefficients and
the aforementioned four terms are considered as perturbation terms which can be added
small positive parameter ε. Then, we have

ẋ1 =x2,

ẋ2 =− β11x1 − β12x1x2
3 − β14x3

1 − εβ15x3
3 − εβ13x3x2

1 − εμ1x2 + εF1 cos Ω1t

− ε f1x1 cos Ω2t,

ẋ3 =x4,

ẋ4 =− β21x3 − β22x2
1x3 − β24x3

3 − εβ23x1x2
3 − εβ25x3

1 − εμ2x4 + εF2 cos Ω1t

− ε f2x3 cos Ω2t.

(16)

The frequencies Ω1 and Ω2 satisfy the relations Z1φ = Ω1t, Z2φ = Ω2t, where Z1 and
Z2 are non-negative integers. The transformations are introduced for Equation (16)

x1 =

√
β12

β̄22
u1, x2 =

√
β12

β̄22
u2, x3 = v1, x4 = μ2v2

We may obtain the Hamilton form with the perturbation

u̇1 =u2,

u̇2 =− β11u1 − β12u1v2
1 − β̄14u3

1 − εμ1u2 − εβ̄13u2
1v1 − εβ̄15v3

1 + εF̄1 cos Z1φ

− ε f1u1 cos Z2φ,

v̇1 =− εμ2v2,

v̇2 =− β̄21v1 − β12u2
1v1 − β̄24v3

1 − εμ2v2 − εβ̄23u2
1v1 − εβ̄25v3

1 + εF̄2 cos Z1φ

− ε f̄2v1 cos Z2φ,

φ̇ =1,

(17)

where β̄14 = β14
β12
β̄22

, β̄13 = β13

√
β12
β̄22

, β̄15 = β15

√
β12
β̄22

, β̄21 = β21
μ2

, β̄22 = β22
μ2

, β̄23 = β13
μ2

√
β12
β̄22

,

β̄24 = β24
μ2

, F̄1 = F1

√
β̄22
β12

, f̄2 = f2
μ2

, F̄2 = F2
μ2

.

17
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According to the previous theoretical results, a cross-section Σφ0 is introduced in the
full five-dimensional phase space. When ε = 0, the expression of the unperturbed system is

u̇1 = u2,

u̇2 = −β11u1 − β12u1v2
1 − β̄14u3

1,

v̇1 = 0,

v̇2 = −β̄21v1 − β12u2
1v1 − β̄24v3

1.

(18)

The Hamiltonian of (18) can be given as

H =
1
2

u2
2 +

1
2

β11u2
1 +

1
4

β12u2
1v2

1 +
1
4

β̄14u4
1 +

1
4

β̄24v4
1 +

1
2
− β̄21v2

1

It can be seen that the system (18) is an uncoupled system. Considering the first two
equations of (18)

u̇1 = u2,

u̇2 = −β11u1 − β12u1v2
1 − β̄14u3

1.
(19)

The Hamiltonian is given as

H0(u1, u2) =
1
2

u2
2 +

1
2

Ru2
1 +

1
4

β̄14u4
1, (20)

where R = β11 + β12v2
1.

Here, we consider the stability of the equilibrium solution within a certain range of
parameters, that is β12 < 0, β̄14 > 0, R = β11 + β12v2

1 < 0. Let R̄ = −R. According to the

condition β11 + β12v2
1 < 0, the domain of v1 is that v1 >

√
2β11
−β12

.
The system (19) has three trivial solutions. The singular point (u1, u2) = (0, 0) is

a saddle point. The singular points (u1, u2) = (±
√

R̄
β̄14

, 0) are two centers. In this case,
system (19) can exhibit the homoclinic bifurcations. We may obtain the expression of the
homoclinic orbits

u1(t) = ±
√

2R̄
β̄14

sech
√

R̄t,

u2(t) = ±R̄

√
2

β̄14
sech

√
R̄t tanh

√
R̄t.

(21)

According to system (18), the resonant value can be obtained as v10 =

√
β̄21
−β̄24

. At

the same time, the condition
√

β̄21
−β̄24

>
√

2β11
−β12

, namely β̄21β12 < 2β̄24β11 need to be

satisfied. Thus, the correlation coefficients of system (18) also need to satisfy β̄24 < 0,
β12 β̄21 < 2β11 β̄24. Then the phase shift can be calculated as

Δv2 =
∫ +∞

−∞
(−β̄21v1 − β12u2

1v1 − β̄24v3
1)dt = −4β12

β̄14

√
β̄21

β̄24
R̄. (22)

In light of Equation (18), the 1-pulse Melnikov function can be calculated as

18
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M =
∫ +∞

−∞
μ2[β̄13u2

1v1 + β̄15v3
1 − μ1u2 + F1 cos(Ω1t + Z1φ0)− μ1 f1 cos(Ω2t + Z2φ0)]dt

−
∫ +∞

−∞
μ2v2[−β̄21v1 − β12u2

1v1 − β̄24v3
1]dt

=− 4μ1R̄
3
2

3β̄14
− π f2Ω2

2
β̄14

sin(Z2φ0) csch
πω

2
√

R̄
− πΩ1F1

√
2

β̄14
sin(Z1φ0) sech

πΩ1

2
√

R̄
− μ2Δv2v20.

(23)

Further, we can calculate the k-pulse Melnikov function

Mk =− 4μ1R̄
3
2

3β̄14
k − k

π f2Ω2
2

β̄14
sin(Z2φ0) csch

πω

2
√

R̄

− kπΩ1F1

√
2

β̄14
sin(Z1φ0) sech

πΩ1

2
√

R̄
− μ2Δv2v20k − k(k − 1)

2
μ2Δv2

2.

(24)

For the k-pulse Melnikov function Mk has simple zeros, the relevant parameters
should satisfy

− 4μ1R̄
3
2

3β̄14
− π f2Ω2

2
β̄14

sin(Z2φ0) csch
πω

2
√

R̄
− πΩ1F1

√
2

β̄14
sin(Z1φ0) sech

πΩ1

2
√

R̄

− μ2Δv2v20 − (k − 1)
2

μ2Δv2
2 = 0.

(25)

Equation (25) can be reformulated as

k =− 8μ1R̄
3
2

3β̄14μ2Δv2
2
− 2π f2Ω2

2
β̄14μ2Δv2

2
sin(Z2φ0) csch

πω

2
√

R̄

− 2πΩ1F1

μ2Δv2
2

√
2

β̄14
sin(Z1φ0) sech

πΩ1

2
√

R̄
− 2v20

Δv2
2
+ 1.

(26)

Then, the suitable parameters are chosen to satisfy the following condition

Dv20 Mk = −μ2Δv2k =
4β12μ2k

β̄14

√
β̄21

β̄24
R̄ �= 0. (27)

At the same time, the following expression should be a non-negative integer by
selecting suitable parameters in Equation (26).

N =− 8μ1R̄
3
2

3β̄14μ2Δv2
2
− 2π f2Ω2

2
β̄14μ2Δv2

2
sin(Z2φ0) csch

πω

2
√

R̄

− 2πΩ1F1

μ2Δv2
2

√
2

β̄14
sin(Z1φ0) sech

πΩ1

2
√

R̄
− 2v20

Δv2
2

.

(28)

If the stable manifold Ws(Mφ0
ε ) and unstable manifold Wu(Mφ0

ε ) of system (17) inter-
sect transversely, there exist chaotic motions for the sandwich plate with truss core under
parametricaly excitations.
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4. Numerical Simulations

In order to test the analytical predictions, we choose the original system (12) to perform
numerical simulations. The Runge–Kutta algorithm through the software Matlab is utilized
to explore the existence of chaotic motions in the sandwich plate. This part mainly discusses
the influence of the damping coefficient and in-plane excitation on chaotic motions of the
sandwich plate model. So μ1 and f are selected as the controlling parameters to discover
the law for the complicated behaviors.

Considering the conditions β12 < 0, β14 > 0, β21 < 0 and β24 > 0, the parameters of
system (12) are chosen as follows: μ1 = μ2 = μ = 0.4, β11 = 27.8, β16 p0 = 0.05, β12 = −0.1,
β16 p1 = 0.05, β13 = −1.5, β14 = 32, β15 = −0.51, β17F1 = 85.8, β21 = −1.08, β26 p0 = 0.057,
β25 = −5, β22 = −23.2, β26 p1 = 0.057, β23 = −15.1, β24 = 31.6, f = β27F2 = 13.3.
Initial conditions are selected as (w1, ẇ1, w2, ẇ2) = (0.02, 0.01, 0.04, 0.01). Figure 2 exhibits
the phase portraits and waveforms in plane or space. Moreover, the maximal Lyapunov
exponent of system (12) is 0.585523 > 0. It can be shown that there exist chaotic motions for
the nonlinear system. It is demonstrated again the existence of Shilnikov-type multi-pulse
orbits in the sense of Smale horseshoes of the truss core sandwich plate.
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Figure 2. The phase portraits and waveforms of the sandwich plate with truss core when μ = 0.4
and f = 13.3: (a) the phase portrait on plane (w1, dw1

dt ); (b) the waveform on plane (t, w1); (c) the
phase portrait on plane (w2, dw2

dt ); (d) the waveform on plane (t, w2); (e) the phase portraits in
the three-dimensional space (w1, dw1

dt , w2); (f) the phase portraits in the three-dimensional space
( dw1

dt , w2, dw2
dt ).
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According to the aforementioned analysis, the excitation coefficient and damping
coefficient parameters play an important role on chaos of the sandwich plate with truss
core. So we select the excitation coefficients f and damping coefficients μ as the controlling
parameters to detect the chaotic dynamics for the sandwich plate. Figure 3 demonstrates the
existence of the multi-pulse jumping chaotic motion when μ = 0.1, f = 50. Do not change
other parameters and initial conditions. The maximal Lyapunov exponent of system (12) is
also calculated as 0.427282. It is easy to find that parameter conditions are also satisfied,
which demonstrates the existence of the multi-pulse chaotic motion in Figure 3. Figure 4
represents the existence of the multi-pulse jumping chaotic motions when μ = 0.06, f = 100.
The maximal Lyapunov exponent of system (12) in this case is 0.450072. It is found that
from Figure 4 that the phase portraits and waveforms are different from those given in
Figures 2 and 3.This indicates that different μ and f have important impact on the chaotic
motions of the sandwich plate with truss core. Finally, the Lyapunov exponent spectrum of
system (12) for f = 13.3 and f = 50 are also given in Figure 5.
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Figure 3. The phase portraits and waveforms of the sandwich plate with truss core when μ = 0.1
and f = 50: (a) the phase portrait on plane (w1, dw1

dt ); (b) the waveform on plane (t, w1); (c) the
phase portrait on plane (w2, dw2

dt ); (d) the waveform on plane (t, w2); (e) the phase portraits in
the three-dimensional space (w1, dw1

dt , w2); (f) the phase portraits in the three-dimensional space
( dw1

dt , w2, dw2
dt ).
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Figure 4. The phase portraits and waveforms of the sandwich plate with truss core when μ = 0.06
and f = 100: (a) the phase portrait on plane (w1, dw1

dt ); (b) the waveform on plane (t, w1); (c) the
phase portrait on plane (w2, dw2

dt ); (d) the waveform on plane (t, w2); (e) the phase portraits in
the three-dimensional space (w1, dw1

dt , w2); (f) the phase portraits in the three-dimensional space
( dw1

dt , w2, dw2
dt ).
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Figure 5. The Lyapunov exponent spectrum system (12): (a) when μ = 0.4 and f = 13.3; (b) when
μ = 0.1 and f = 50.
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5. Conclusions

The chaotic dynamics are investigated for a simply supported sandwich plate by using
rigorous analytical approaches. The improved extended Melnikov method in [10,18] is
applied to detect chaotic motions of the non-autonomous nonlinear system. By introducing
Σφ0 , the four-dimensional non-autonomous system is transformed into a five-dimensional
autonomous system, by which the chaotic motions can be investigated by directly em-
ploying this analytical method. The k-pulse Melnikov function Mk has simple zeros.
Furthermore, we obtain the parameter conditions for the occurrence of chaotic motion.

Numerical simulations are also used to detect the complicated chaotic motions of the
truss core sandwich plate model. Moreovecr, the numerical results verify the possibility
of chaotic behaviors when the structural parameters satisfy specific conditions given by
theoretical analysis. The chaotic motions of the sandwich plate with truss core can be
exhibited by the phase portraits, the waveforms and the maximum Lyapunov exponents
for different control parameters. Based on the theoretical analysis and numerical results,
it is observed that the chaotic motions of the sandwich plate with truss core can be affected
by the excitation coefficients and damping coefficients. Thus, the nonlinear dynamical
behaviors of the sandwich plate model can be controlled by varying the structural damp-
ing and transverse excitations parameters, respectively. The analytic results bear certain
guiding significance for the design and control of the system.

The extended Melnikov method is an effective theoretical technique in detecting the
chaotic motions of the high-dimensional nonlinear system. However, a limitation of several
analytical methods is that we must follow the special form of the high-dimensional system
when detecting chaotic motions. Therefore, future work should focus on how to improve
the analytical methods to adapt research of more general forms for a high-dimensional
nonlinear system.
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Abstract: By the extended (G′
G ) method and the improved tanh function method, the exact solutions

of the (2+1) dimensional Boussinesq equation are studied. Firstly, with the help of the solutions of
the nonlinear ordinary differential equation, we obtain the new traveling wave exact solutions of the
equation by the homogeneous equilibrium principle and the extended (G′

G ) method. Secondly, by
constructing the new ansatz solutions and applying the improved tanh function method, many non-
traveling wave exact solutions of the equation are given. The solutions mainly include hyperbolic,
trigonometric and rational functions, which reflect different types of solutions for nonlinear waves.
Finally, we discuss the effects of these solutions on the formation of rogue waves according to the
numerical simulation.

Keywords: (2+1)-dimensional Boussinesq equation; homogeneous equilibrium principle; extended
(G′

G ) method; improved tanh function method
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1. Introduction

As is well known, many nonlinear phenomena can finally be described by nonlinear
partial differential equations. With the wide application of nonlinear partial differential
equations in practical problems, the research on solutions of high-dimensional nonlinear
partial differential equations has gradually become a hot topic. There are many methods
to solve the exact solution, such as Hirota’s bilinear form [1], conformable triple Sumudu
decomposition method [2], Painlevé analysis [3], Exp-function method, ansatz method [4],
etc. Most explicit exact solutions of equations are obtained through transformation and
operation, but in fact, there is no unified solution method. Therefore, many scientists are
committed to finding a universally applicable method.

A few years ago, Wang et al. in [5] used the (G′
G )-expansion method to deal with

nonlinear evolution equations. The idea of this method is that the traveling wave solutions
of nonlinear evolution equations can be expressed by a polynomial of (G′

G ), where G = G(ξ)
satisfies a linear ordinary differential equation. The degree of the polynomial can be
determined by the homogeneous balance between the highest derivative term and the
nonlinear term in nonlinear evolution equations, and the coefficients of the polynomial
can be obtained by solving algebraic equations. Solitary waves can be derived from
traveling waves, and traveling wave solutions will be expressed by hyperbolic functions,
trigonometric functions and rational functions.

Furthermore, in order to find the non-traveling wave solutions of nonlinear evolution
equations, Xie et al. in [6] introduced the generalized Riccati equation and then improved
the tanh function method; that is, various ansatz solutions were proposed on the basis of the
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generalized Riccati equation. In order to show that abundant non-traveling wave solutions
can be obtained by this method, they chose the (3+1)-dimensional Kadomtsev–Petviashvili
equation, which can describe water waves, and finally obtained abundant soliton-like
solutions, periodic solutions and rational solutions.

These two methods are concise and effective, and they can be widely used in many
nonlinear evolution equations. The Boussinesq equation is a wave equation introduced
by Joseph Boussinesq, which describes the dispersive and nonlinear properties of shallow
water. This equation is widely applied in the research on changes in wave-induced set-up
and current [7], and it is an important nonlinear partial differential equation. Many scholars
have studied the exact solutions of such equations in different ways.

Song et al. in [8] gave the solitary wave number of the generalized (2+1)-dimensional
Boussinesq equation, and they obtained the exact solitary wave solutions by using the
bifurcation method of dynamic systems under different parameter conditions.

utt − αuxx − βuyy − γ(u2)xx − δuxxxx = 0, (1)

where α, β, γ and δ are arbitrary constants. Zhao et al. in [9] applied the improved
(G′

G )-expansion method with a second-order linear ordinary differential equation, assuming
that the form of the solution has positive and negative power terms, and they obtained
the exact solutions of this equation expressed by the hyperbolic function, trigonometric
function and rational function. Yang et al. in [10] used the Riccati equation to obtain
abundant solutions for this equation.

When α = β = γ = δ = 1, the generalized (2+1)-dimensional Boussinesq equation is
simplified as

utt − uxx − uyy − (u2)xx − uxxxx = 0. (2)

Zeng et al. in [11] have obtained the exact solutions of this equation by using Bäcklund
transformation and performing mathematical calculations. Wang in [12] employed Hirota’s
bilinear method and Riemann-theta functions to construct the explicit triple periodic wave
solutions for this equation under the Bäcklund transformation. Liu et al. in [13] constructed
a general higher-order breather solution by using Hirota’s bilinear method combined with
perturbation expansion. Taking a long-wave limit for the obtained breather solution, and
then making further parameter constraints, general smooth rational solutions would be
succinctly constructed.

When α = β = δ = 1, γ = −3, Wang et al. in [14] used the (G′
G )-expansion method to

construct a new exact solution of the (2+1)-dimensional Boussinesq equation

utt − uxx − uyy + 3(u2)xx − uxxxx = 0. (3)

Li et al. in [15] further improved the (G′
G )-expansion method and constructed the

solutions in the forms of ( G′
G+G′ ) and ( G′

G2 ), respectively, and they obtained and discussed
the existence of the extended solution of the (2+1)-dimensional Boussinesq equation and
its solution process. Jiao in [16] used the step-by-step procedure to obtain Jacobian elliptic
function solutions of similarity equations, thus generating truncated series solutions of the
original perturbed Boussinesq equation.

Many phenomena in nature can be simulated by functions, such as bell-shaped sech
functions and kink-shaped tanh functions, which can model wave phenomena such as
plasma, elastic medium, fluids, etc. [6]. In order to obtain more abundant new solutions
that can explain the corresponding nonlinear phenomena, we employ the extended (G′

G )
method in [17,18] and improved the tanh function method in [19,20] to study Equation (3).
In Section 2, using the solutions of nonlinear ordinary differential equation, adding the con-
stant d, as well as positive and negative power terms, many exact solutions are constructed
by the extended (G′

G ) method. Moreover, we discuss the structure and properties of the
exact solutions under the same and different undetermined coefficients, and we analyze
the effects of these solutions on the formation of rogue waves. In Section 3, by using the
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improved tanh function method, constructing new ansatz solutions of the generalized
Riccati equation, and assuming that the solution has a positive power term and negative
power term, we obtain three groups of non-traveling wave solutions composed of arbitrary
functions μ(y, t) and c(y, t). Furthermore, we discuss the different trajectories of the image
in a certain direction for different differentiable functions. In Section 4, some conclusions
are given.

2. Extended (G′
G ) Method

2.1. Preliminary

The extended (G′
G ) method is based on the general method, changing the auxiliary non-

linear ordinary differential equations and undetermined functions. For a given nonlinear
partial differential equation

P(u, ut, ux, utt, uxt, uxx, ...) = 0, (4)

the main steps of the extended (G′
G ) method are as follows.

Step 1 Making the traveling wave transformation on Equation (4), we suppose that u(ξ) =
u(x, y, ..., t), ξ = a1x + a2y + ... − bt, in which aj(j = 1, 2, ...) and b are undetermined
real constants. Then, we integrate and simplify it to an ordinary differential equation

P(e, u, u′, u′′, ...) = 0, (5)

where e is a integral constant, and u′ = du
dξ , u′′ = d2u

dξ2 , ...

Step 2 Supposing that the solution of Equation (5) has the following form

u(ξ) =
N

∑
i=−N

ei(d + H(ξ))i, (6)

where ei(i = 0,±1,±2, ...,±N) are undetermined constants and ei �= 0, N is de-
termined by the homogeneous balance principle, and H(ξ) = G′(ξ)

G(ξ)
satisfies an

auxiliary nonlinear partial differential equation of G.
Step 3 Substituting (6) into Equation (5), we use the auxiliary equation to convert the left-

hand side of Equation (5) into a polynomial of (d + H(ξ)). Equating each coefficient
of the same power term of (d+ H(ξ)) to zero, then we obtain the algebraic equations
about undetermined coefficients.

Step 4 Solving the algebraic equations of ei(i = 0,±1,±2, ...,±N) and e, we finally substi-
tute the solutions of the auxiliary equation to determine the specific form of (6).

The choice of auxiliary equations determines the structure and properties of solutions
of nonlinear partial differential equation. Generally speaking, the (G′

G )-expansion method
in [14] is to use a second-order linear ordinary differential equation G′′ + λG′ + μG = 0,
which includes three types of solutions.

In Ref. [21], the author mentioned a nonlinear auxiliary ordinary differential equation

AGG′′ − BGG′ − C(G′)2 − EG2 = 0, (7)

where A, B, C and E are undermined coefficients. Taking M = A − C, ω = B2 + 4EM, and
Δ = ME, the solutions of this equation are as follows.

When B �= 0 and ω > 0,

H(ξ) = (
G′

G
) =

B
2M

+

√
ω

2M
C1 sinh(

√
ω

2A ξ)− C2 cosh(
√

ω
2A ξ)

C2 sinh(
√

ω
2A ξ) + C1 cosh(

√
ω

2A ξ)
. (8)
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When B �= 0 and ω < 0,

H(ξ) = (
G′

G
) =

B
2M

+

√−ω

2M
−C1 sin(

√−ω
2A ξ) + C2 cos(

√−ω
2A ξ)

C2 sin(
√−ω

2A ξ) + C1 cos(
√−ω

2A ξ)
. (9)

When B �= 0 and ω = 0,

H(ξ) = (
G′

G
) =

B
2M

+
C2

C1 + C2ξ
. (10)

When B = 0 and Δ > 0,

H(ξ) = (
G′

G
) =

√
Δ

M
C1 sinh(

√
Δ

A ξ) + C2 cosh(
√

Δ
A ξ)

C2 sinh(
√

Δ
A ξ)− C1 cosh(

√
Δ

A ξ)
. (11)

When B = 0 and Δ < 0,

H(ξ) = (
G′

G
) =

√−Δ
M

−C1 sin(
√−Δ

A ξ) + C2 cos(
√−Δ

A ξ)

C2 sin(
√−Δ

A ξ) + C1 cos(
√−Δ

A ξ)
. (12)

In the subsequent sections, we will use the extended (G′
G ) method to solve the exact

solutions of (2+1)-dimensional Boussinesq equation with AGG′′ − BGG′ −C(G′)2 − EG2 =
0 as an auxiliary equation.

2.2. Expression Form of Traveling Wave Solution

Considering the following (2+1)-dimensional Boussinesq equation

utt − uxx − uyy + 3(u2)xx − uxxxx = 0,

through traveling wave transformation u(ξ) = u(x, y, t), ξ = x + ay − bt, where a, b are
two non-zero constants, Equation (3) becomes

(b2 − 1 − a2)u′′ + 3(u2)′′ − u′′′′ = 0.

Integrating it twice, we obtain

u′′ − 3u2 + cu + e = 0, (13)

where e is a real integral constant, c = a2 + 1 − b2. We suppose that Equation (13) has the
following solution

u(ξ) =
N

∑
i=−N

ei(d + H(ξ))i. (14)

When the power of the highest-order derivative term u′′ and the nonlinear term u2

are equal, then N = 2. Furthermore, (14) can be written as

u(ξ) = e−2(d + H)−2 + e−1(d + H)−1 + e0 + e1(d + H) + e2(d + H)2. (15)
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Substituting (15) into Equation (13), and taking Θ = Md2 + Bd − E, then we obtain
the following algebraic equations about undetermined coefficients.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−3A2e2(e2 − 2M2

A2 ) = 0,

−6A2(e2 − 2M2

A2 )((e1 +
2M(2dM + B)

A2 ))− 10M2(e1 +
2M(2dM + B)

A2 ) = 0,

3A2(
M(B + 2dM)

A2 − e1)(e1 +
2M(B + 2dM)

A2 )− 12M2(e0 − 12MΘ + A2c + ω

6A2 )

+ 6A2(e2 − 2M2

A2 )((
12MΘ + A2c + ω

6A2 − e0) +
(B + 2dM)2

2A2 ) = 0,

−6A2(e2 − 2M2

A2 )(e−1 +
Θ(B + 2dM)

A2 )− 6MΘ(e1 +
2M(B + 2dM)

A2 )

− 12M2e−1 = 0,
A2e0(c + 3e0 + e)− 6A2(e2e−2 + e1e−1) + 2M2e−2 + 2e2Θ2 − e1(B + 2dM)Θ

− e−1M(B + 2dM) = 0,

−6A2(e−2 − 2Θ2

A2 )(e1 +
M(B + 2dM)

A2 )− 6MΘ(e−1 +
2(B + 2dM)Θ

A2 )

− 12Θ2e1 = 0,

3A2(e−1 +
2(B + 2dM)Θ

A2 )(
(B + 2dM)Θ

A2 − e−1))− 12Θ(e0 − 12MΘ + A2c + ω

6A2 )

+ 6A2(e−2 − 2Θ2

A2 )((
12MΘ + A2c + ω

6A2 − e0) +
(B + 2dM)2

2A2 ) = 0,

−6A2(e−2 − 2Θ2

A2 )(e−1 +
5(B + 2dM)Θ

3A2 ) + 10Θ2(e−1 +
2(B + 2dM)Θ

A2 ) = 0,

−3A2e−2(e−2 − 2Θ2

A2 ) = 0.

By solving these equations with Maple, we obtain three groups of coefficient relations
about e−2, e−1, e0, e1, e2 and e.

Group 1

e =
ω2 − A4c2

12A4 , e−2 = 0, e−1 = 0,

e0 =
12M(Md2 + Bd − E) + A2c + ω

6A2 , e1 = −2M(2dM + B)
A2 , e2 =

2M2

A2 .

Group 2

e =
ω2 − A4c2

12A4 , e−2 =
2(Md2 + Bd − E)2

A2 , e−1 = −2(2dM + B)(Md2 + Bd − E)
A2 ,

e0 =
12M(Md2 + Bd − E) + A2c + ω

6A2 , e1 = 0, e2 = 0.

Group 3

e =
256M2(Md2 + E)2 − A4c2

12A4 , e−2 =
2(Md2 + E)2

A2 , e−1 = 0,

e0 =
A2c − 8M(Md2 + E)

6A2 , e1 = 0, e2 =
2M2

A2 , B = −2dM.

Considering the exact solutions of each group when the conditions (8)–(12) are satisfied,
for convenience, in (8) and (11), C2

1 − C2
2 = 1, C3 = arccoshC1 = arcsinhC2. In (10), C2 �= 0,

C3 = C1
C2

. In (9) and (12), C2
1 + C2

2 = 1, C3 =arccosC1 =arcsinC2.
The exact solutions of Group 1 are as follows.

u1,1(ξ) =
12M(Md2 + Bd − E) + A2c + ω

6A2
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− 2M(2dM + B)
A2 (d +

B
2M

+

√
ω

2M
tanh(

√
ω

2A
ξ − C3))

+
2M2

A2 (d +
B

2M
+

√
ω

2M
tanh(

√
ω

2A
ξ − C3))

2,

u1,2(ξ) =
12M(Md2 + Bd − E) + A2c + ω

6A2

− 2M(2dM + B)
A2 (d +

B
2M

+

√−ω

2M
tan(−

√−ω

2A
ξ + C3))

+
2M2

A2 (d +
B

2M
+

√−ω

2M
tan(−

√−ω

2A
ξ + C3))

2,

u1,3(ξ) =
12M(Md2 + Bd − E) + A2c + ω

6A2 − 2M(2dM + B)
A2 (d +

B
2M

+
1

ξ + C3
)

+
2M2

A2 (d +
B

2M
+

1
ξ + C3

)2,

u1,4(ξ) =
12M2d2 − 8ME + A2c

6A2 +
2M2

A2 (d +

√
Δ

M
tanh(

√
Δ

A
ξ + C3))

2

− 4M2d
A2 (d +

√
Δ

M
tanh(

√
Δ

A
ξ + C3)),

u1,5(ξ) =
12M2d2 − 8ME + A2c

6A2 +
2M2

A2 (d +

√−Δ
M

tan(−
√−Δ

A
ξ + C3))

2

− 4M2d
A2 (d +

√−Δ
M

tan(−
√−Δ

A
ξ + C3)).

The exact solutions of Group 2 are as follows.

u2,1(ξ) =
12M(Md2 + Bd − E) + A2c + ω

6A2

− 2(2dM + B)(Md2 + Bd − E)
A2 (d +

B
2M

+

√
ω

2M
tanh(

√
ω

2A
ξ − C3))

−1

+
2(Md2 + Bd − E)2

A2 (d +
B

2M
+

√
ω

2M
tanh(

√
ω

2A
ξ − C3))

−2,

u2,2(ξ) =
12M(Md2 + Bd − E) + A2c + ω

6A2

− 2(2dM + B)(Md2 + Bd − E)
A2 (d +

B
2M

+

√−ω

2M
tan(−

√−ω

2A
ξ + C3))

−1

+
2(Md2 + Bd − E)2

A2 (d +
B

2M
+

√−ω

2M
tan(−

√−ω

2A
ξ + C3))

−2,

u2,3(ξ) =
12M(Md2 + Bd − E) + A2c + ω

6A2

− 2(2dM + B)(Md2 + Bd − E)
A2 (d +

B
2M

+
1

ξ + C3
)−1

+
2(Md2 + Bd − E)2

A2 (d +
B

2M
+

1
ξ + C3

)−2,

u2,4(ξ) =
12M2d2 − 8ME + A2c

6A2 +
2(Md2 − E)2

A2 (d +

√
Δ

M
tanh(

√
Δ

A
ξ + C3))

−2

− 4dM(Md2 − E)
A2 (d +

√
Δ

M
tanh(

√
Δ

A
ξ + C3))

−1,

u2,5(ξ) =
12M2d2 − 8ME + A2c

6A2

− 4dM(Md2 − E)
A2 (d +

√−Δ
M

tan(−
√−Δ

A
ξ + C3))

−1

+
2(Md2 − E)2

A2 (d +

√−Δ
M

tan(−
√−Δ

A
ξ + C3))

−2.
The exact solutions of Group 3 are as follows.

u3,1(ξ) =
A2c − 8M(Md2 + E)

6A2 +
2M2

A2 (

√
ω

2M
tanh(

√
ω

2A
ξ − C3))

2

+
2(Md2 + E)2

A2 (

√
ω

2M
tanh(

√
ω

2A
ξ − C3))

−2,
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u3,2(ξ) =
A2c − 8M(Md2 + E)

6A2 +
2M2

A2 (

√−ω

2M
tan(−

√−ω

2A
ξ + C3))

2

+
2(Md2 + E)2

A2 (

√−ω

2M
tan(−

√−ω

2A
ξ + C3))

−2,

u3,3(ξ) =
A2c − 8M(Md2 + E)

6A2 +
2M2

A2 (
1

ξ + C3
)2 +

2(Md2 + E)2

A2 (
1

ξ + C3
)−2,

u3,4(ξ) =
A2c − 8ME

6A2 +
2M2

A2 (

√
Δ

M
tanh(

√
Δ

A
ξ + C3))

2

+
2E2

A2 (

√
Δ

M
tanh(

√
Δ

A
ξ + C3))

−2,

u3,5(ξ) =
A2c − 8ME

6A2 +
2M2

A2 (

√−Δ
M

tan(−
√−Δ

A
ξ + C3))

2

+
2E2

A2 (

√−Δ
M

tan(−
√−Δ

A
ξ + C3))

−2.

Next, we numerically simulate the solutions, and the images are shown in Figures 1–13,
where r = x − t

2 , w = y − t
2 .

2.3. Numerical Simulation of Solutions under Different Undetermined Coefficient Values

Firstly, we discuss the structure and properties of the exact solutions under different
undetermined coefficient values.

Figure 1. Hyperbolic function u1,1(ξ) as a = 1, c = 1, e = 3
64 , A = 2, B = 1, C3 =

√
5, E = 1,

M = 1, ω = 5, e0 = 13
24 , e1 = 3

2 , C = 1, e2 = 1
2 , d = −2.

Figure 2. Hyperbolic function u3,1(ξ) as a = 1, c = 1, e = 133
4 , A = 2, B = 4, C3 =

√
20, E = 1,

M = 1, ω = 20, e0 = − 11
6 , e−2 = 25

2 , C = 1, e2 = 1
2 , d = −2.
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Figure 3. Hyperbolic function u3,4(ξ) as a = 1, c = 1, e = 5
4 , A = 2, B = 0, C3 = 2, E = 1, M = 1,

Δ = 1, e0 = − 1
2 , e−2 = 1

2 , C = 1, e2 = 1
2 , d = 0.

When the exact solution has the form of hyperbolic function, such as u1,1, u1,4, u2,1,u2,4,
u3,1 and u3,4. If the solution does not contain the negative power term of (d + H(ξ)), such
as u1,1 and u1,4, it can be inferred from the properties of the hyperbolic tangent function
that the image of the solution is smooth. If the solution contains negative power terms
of (d + H(ξ)), when the denominator of the solution gradually approaches zero by ξ, the
image of the solution for u2,1, u2,4,u3,1 and u3,4 may reflect sharp points. However, there
must be sharp points in the image of solutions u3,1 and u3,4. For u3,4, due to the condition
of the auxiliary equation solution B = −2dM = 0, and Δ > 0, but M �= 0, d = 0. In this
case, the denominator of the negative power term of (d + H(ξ)) is

√
Δ

M tanh(
√

Δ
A ξ + C3),

and ξ can always obtain the value − AC3√
Δ

, so the blow-up phenomenon cannot be avoided
and rogue waves will appear in actual phenomena.

Figure 4. Trigonometric function u1,5(ξ) as a = 1, c = 1, A = 2, B = 0, E = −1, M = 1, Δ = −1,
C = 1, e0 = 13

6 , e1 = 2, e2 = 1
2 , e = 0, C3 = 2, d = −2.

Figure 5. Trigonometric function u2,2(ξ) as a = 1, c = 1, e = − 1
16 , B = 1, E = − 3

4 , M = 1,
ω = −2, C = 1, e0 = 9

8 , e−1 = 33
8 , e−2 = 121

32 , A = 2, C3 =
√

2, d = −2.
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Figure 6. Trigonometric function u2,5(ξ) as a = 1, c = 1, A = 2, B = 0, E = −1, M = 1,
Δ = −1, C = 1, e0 = 13

6 , e−2 = 25
2 , e−1 = 10, e = 0, C3 = 2, d = −2.

When the exact solution has the form of trigonometric function, such as u1,2,u1,5,u2,2,
u2,5,u3,2 and u3,5, from the properties of the tangent function, we deduce that whether the
solution contains negative power terms of (d + H(ξ)), the image of the solution will have
segmented periodic spikes.

Figure 7. Rational functionu1,3(ξ) as a = 1, c = 1, e = − 1
12 , B = 2, E = 1, M = −1, ω = 0,

C = 2, e0 = 11
6 , e1 = −4, e2 = 2, A = 1, C3 = 1, d = 2.

Figure 8. Rational function u2,3(ξ) as a = 1, c = 1, e = − 1
12 , B = 2, E = 1, M = −1, ω = 0,

C = 2, e−1 = −4, A = 1, e−2 = 2, e0 = 11
6 , C3 = 2, d = 2.
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Figure 9. Rational function u3,3(ξ) a = 1, c = 1, e = − 1
12 , B = 4, E = 4, M = −1, ω = 0, C = 2,

e0 = − 1
6 , A = 1, e2 = 2, e−2 = 0, C3 = 2, d = 2.

When the exact solution has the form of rational function, such as u1,3, u2,3 and u3,3,
since there is always a rational function of ξ in the denominator, there will be sharp points
in the image of the solution.

2.4. Numerical Simulation of Solutions under the Same Situation

Now, we discuss the influence of d on the structure and properties of the solution
under the same situation.

Figure 10. Hyperbolic function u2,4(ξ) as d = −2, a = 1, c = 1, A = 2, B = 0, C3 = 2, C = 1,
e = 0, E = 1, M = 1, Δ = 1, e0 = 3

2 , e−1 = 6, e−2 = 9
2 .

Figure 11. Hyperbolic function u2,4(ξ) as d = 0, a = 1, c = 1, A = 2, B = 0, C3 = 2, C = 1, e = 0,
E = 1, M = 1, Δ = 1, e0 = − 1

2 , e−1 = 0, e−2 = 1
2 .

Taking the solution u2,4 as an example, which denominator will be
√

Δ
M tanh(

√
Δ

2A ξ +C3)

when d = 0, that is a hyperbolic tangent function, but if ξ infinitely approaches − AC3√
Δ

,

the solution value tends to be infinity, and therefore, blow-up occurs. When |d| >
√

Δ
|M| ,
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the denominator d+
√

Δ
M tanh(

√
Δ

A ξ + C3) �= 0; then, the function image will be smooth at
this time.

Figure 12. Trigonometric function u3,2(ξ) as d = −1, a = 1, c = 1, A = 2, B = 2, E = −2, e = 5
4 ,

C = 1, M = 1, ω = −4, C3 = −2, e0 = 1
6 , e2 = 1

2 , e−2 = 1
2 .

Figure 13. Trigonometric function u3,2(ξ) as d = 0, a = 1, c = 1, A = 2, B = 0, E = −2, e = 21
4 ,

C = 1, M = 1, ω = −8, C3 = −2, e0 = 1
2 ,e2 = 1

2 , e−2 = 2.

For u3,2, it is known from the image properties of tangent function that there always
exists a ξ so that

√−ω
2M tan(−

√−ω
2A ξ + C3) is equal to zero no matter what the value d is;

then, the solution value is always infinite. These values are periodic, and periodic blow-up
will occur.

Comparing those methods mentioned in Refs. [14,15], we add a constant d and
negative power terms. Different properties of solutions are obtained by controlling the
variable d. The negative power term affects the solution to blow up.

3. Improved Tanh Function Method

3.1. Preliminary

The improved tanh function method makes full use of the generalized Riccati equation

ϕ′ = r + pϕ + qϕ2, (16)

on the basis of the tanh function method, where r, p and q are real constants. For the
nonlinear partial differential Equation (4), the steps of the improved tanh function method
are as follows.
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Step 1 Supposing that Equation (4) has the following form of solution

u(x, y, t) =
N′

∑
i=−N′

μi(y, t)ϕi(kx + η(y, t)), (17)

where μi(y, t)(i = 0, 1, 2, ..., N′)and η(y, t) are differentiable functions, and the value
N′ here is determined by the homogeneous balance principle.

Step 2 Substitute (17) into Equation (4), and repeatedly use Equation (16) to convert the
left-hand side of Equation (4) into a polynomial about ϕ(kx + η(y, t)). Equate each
coefficient of the same power term to zero, and then obtain the algebraic equations
about undetermined functions.

Step 3 Solve the algebraic equations to determine μi(y, t) and η(y, t), and finally substitute
the solution of the generalized Riccati equation into (17).

In the subsequent sections, with the help of the generalized Riccati equation, we will
apply the improved tanh function method to solve the non-traveling wave exact solutions
of the (2+1)-dimensional Boussinesq equation.

3.2. Expression of Non-Traveling Wave Exact Solution

For the (2+1) dimensional Boussinesq equation

utt − uxx − uyy + 3(u2)xx − uxxxx = 0,

in order to balance the highest derivative term uxxxx and nonlinear term (u2)xx, we suppose
that Equation (3) has the following form of solution.

u(x, y, t) =
a(y, t)

ϕ2 +
b(y, t)

ϕ
+ c(y, t) + d(y, t)ϕ + e(y, t)ϕ2, (18)

where ϕ = ϕ(kx + η(y, t)), k is a real number but k �= 0, a(y, t), b(y, t), c(y, t), d(y, t), e(y, t)
and η(y, t) are differentiable functions.

Substituting (18) into Equation (3), and taking c0 =
k4 p2+8k4qr+k2−(ηt

2−ηy
2)

6k2 , then we
obtain the coefficients of ϕ.
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60ek2q2(e − 2k2q2) = 0,
12kq(p(e − 2k2q2)(9e + 2k2q2) + q(d − 2k2 pq)(6e − 2k2q2)) = 0,
(e − 2k2q2)(6k2 p2(c − c0) + 4k4q2 p2) + 12k4q4(c − c0) + e(8k2 p2 + 16k2qr)

+ k2q(d − 2k2 pq)(21ep − 3dp − 4k2 pq2) = 0,
6k2(d − 2k2 pq)[q(20k2 p2q + 32k2q2r + 5dp) + 9(p2 + 2qr)(e − 2k2q2)]

+ 6k2[2rp(e − 2k2q2)(7e + 2k2q2) + 2q(beq − k2 p3(e − 2k2q2))]

+ 2eq(ηtt − ηyy) + 4q(etηt − eyηy) = 0,
6k2[(e − 2k2q2)(3pq(b − 2k2 pr) + 15pr(d − 2k2 pq) + 6er2) + 4k2 p2qr − 2k2 p4]

+ 2q(dtηt − dyηy) + 4p(etηt − eyηy) + (ett − eyy) + (2ep + dq)(ηtt − ηyy)
+ 2(d − 2k2 pq)((p2 + 2qr)(d − 2k2 pq) + k2 pq(3p2 + 20qr)) + 6k2 p2q2b = 0,

6k2[r(b − 2k2 pr)(4k2 p2q + 6er + 3dr) + (e − 2k2q2)(bp2 − 4k2 p3r + 2bqr)]
+ 12bk4q2(p2 + 2qr) + (2er + dq)(ηtt − ηyy) + 2p(dtηt − dyηy)

+ 4r(etηt − eyηy) + (dtt − dyy) = 0,
6k2[(b − 2k2 pr)(4k2 p2r + b + dr2(d − 2k2 pq) + ap(a − 2k2r2)(d − 2k2 pq)]

+ 6prk2(e − 2k2q2)) + (dr − bq)(ηtt − ηyy)− 2q(btηt − byηy)

+ 2r(dtηt − dyηy) + (ctt − cyy) = 0,
6k2[q(b − 2k2 pr)(4k2 p2r + 6aq + 3bq) + (a − 2k2r2)(dr2 − 4k2 p3q + 2bqr)]

+ 12dk4r2(p2 + 2pr)− (2aq + bp)(ηtt − ηyy)− 2p(btηt − byηy)

− 4q(atηt − ayηy) + (btt − byy) = 0,
6k2[(a − 2k2r2)(3pr(d − 2k2 pq) + 15pq(b − 2k2 pr) + 6aq2) + 4k2 p2qr − 2k2 p4]

− (2ap + br)(ηtt − ηyy) + 2r(btηt − byηy)− 4p(atηt − ayηy)− (att − ayy)

+ 2(b − 2k2 pr)((p2 + 2qr)(b − 2k2 pr) + k2 pr(3p2 + 20qr)) + 6k2 p2r2d = 0,
6k2(b − 2k2 pr)[r(20k2 p2r + 32k2q2q + 5bp) + 9(p2 + 2qr)(a − 2k2r2)]

+ 6k2[2ap(a − 2k2r2)(7a + 2k2r2) + 2r(adr − k2 p3(a − 2k2r2))]

− 2ar(ηtt − ηyy)− 4q(atηt − ayηy) = 0,
(a − 2k2r2)(6k2 p2(c − c0) + a(8k2 p2 + 16k2qr) + 4k4r2 p2) + 12k4r4(c − c0)

+ k2r(b − 2k2 pr)(21ap − 3br − 4k2 pr2) = 0,
12kr(p(a − 2k2r2)(9a + 2k2r2) + r(b − 2k2 pr)(6a − 2k2r2)) = 0,
60ak2q2(a − 2k2r2) = 0.

We can obtain the following results by solving those equations with Maple.
Case 1

a = 0, b = 0, d = 2k2 pq, e = 2k2q2, η(y, t) = f1(y) + f2(y)t + f3(t),

c =
1

6k2 (k
4 p2 + 8k4qr + k2 − (( f2(y) + f ′3(t))2 − ( f ′1(y) + f ′2(y)t)2)),

where f1(y), f2(y) and f3(t) are arbitrary differentiable functions, and η2
tt = η2

yy = η2
yt,

while the other two cases are the same.
Case 2

a = 2k2r2, b = 2k2 pr, d = 0, e = 0, η(y, t) = f1(y) + f2(y)t + f3(t),

c =
1

6k2 (k
4 p2 + 8k4qr + k2 − (( f2(y) + f ′3(t))2 − ( f ′1(y) + f ′2(y)t)2)).

Case 3

a = 2k2r2, b = 0, d = 0, e = 0, e = 2k2q2, η(y, t) = f1(y) + f2(y)t + f3(t),
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p = 0, c =
1

6k2 (8k4qr + k2 − (( f2(y) + f ′3(t))2 − ( f ′1(y) + f ′2(y)t)2)).

For simplicity, we take M =

√
p2−4qr

2 , N =

√
4qr−p2

2 , ζ = kx + η(y, t). Substituting the
solutions of the generalized Riccati equation into three cases, we obtain

Case 1
When p2 − 4qr > 0, pq �= 0(or qr �= 0),

u1 = c − k2

2
[p2 − 4M2tanh2(Mζ)],

u2 = c − k2

2
[p2 − 4M2coth2(Mζ)],

u3 = c − k2

2
[p2 − 4M2(tanh(2Mζ)± isech(2Mζ))2],

u4 = c − k2

2
[p2 − 4M2(coth(2Mζ)±csch(2Mζ))2],

u5 = c − k2

2
[p2 − M2(tanh(

Mζ

2
)+coth(

Mζ

2
))2],

u6 = c − k2 p2

2
+ 2k2M2 (

√
A2 + B2 − Acosh(2Mζ))2

(Asinh(2Mζ) + B)2 ,

u7 = c − k2 p2

2
+ 2k2M2 (

√
B2 − A2 + Asinh(2Mζ))2

(Acosh(2Mζ) + B)2 ,

u8 = c + 4k2qrcosh(Mζ)
2qrcosh(Mζ) + p(2Msinh(Mζ)− pcosh(Mζ))

(2Msinh(Mζ)− pcosh(Mζ))2 ,

u9 = c + 4k2qrsinh(Mζ)
2qrsinh(Mζ) + p(2Mcosh(Mζ)− psinh(Mζ))

(2Mcosh(Mζ)− psinh(Mζ))2 ,

u10 = c + 4k2qrcosh(2Mζ)
(2qr − p2)cosh(2Mζ) + p(2Msinh(2Mζ)± i2M)

(2Msinh(2Mζ)− pcosh(2Mζ)± i2M)2 ,

u11 = c + 4k2qrsinh(2Mζ)
(2qr − p2)sinh(2Mζ) + p(2Mcosh(2Mζ)± 2M)

(2Mcosh(2Mζ)− psinh(2Mζ)± 2M)2 ,

u12 = c + 8k2qrΦ1(ζ)
2(2qr − p2)Φ1(ζ) + p(4Mcosh2(

Mζ

2
)− 2M)

(4Mcosh2(
Mζ

2
)− 2pΦ1(ζ)− 2M)2

,

where Φ1(ζ) = sinh(
Mζ

2
)cosh(

Mζ

2
), A and B are two non-zero real constants and satisfy

B2 − A2 > 0.
When p2 − 4qr < 0, pq �= 0(or qr �= 0),

u13 = c − k2

2
[p2 − 4N2tan2(Nζ)],

u14 = c − k2

2
[p2 − 4N2cot2(Nζ)],

u15 = c − k2

2
[p2 − 4N2(tan(2Nζ)±sec(2Nζ))2],

u16 = c − k2

2
[p2 − 4N2(cot(2Nζ)±csc(2Nζ))2],

u17 = c − k2

2
[p2 − N2(tan(

Nζ

2
)−cot(

Nζ

2
))2],

u18 = c − k2 p2

2
+ 2k2N2 (

√
A2 − B2 ∓ Acos(2Nζ))2

(Asin(2Nζ) + B)2 ,

u19 = c − k2 p2

2
+ 2k2N2 (

√
A2 − B2 ∓ Asin(2Nζ))2

(Acos(2Nζ) + B)2 ,

u20 = c + 4k2qrcos(Nζ)
2qrcos(Nζ)− p(2Nsin(Nζ) + pcos(Nζ))

(2Nsin(Nζ) + pcos(Nζ))2 ,

u21 = c + 4k2qrsin(Nζ)
2qrsin(Nζ) + p(2Ncos(Nζ)− psin(Nζ))

(2Ncos(Nζ)− psin(Nζ))2 ,
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u22 = c + 4k2qrcos(2Nζ)
2qrcos(2Nζ)− p(2Nsin(2Nζ) + pcos(2Nζ)± 2N)

(2Nsin(2Nζ) + pcos(2Nζ)± 2N)2 ,

u23 = c + 4k2qrsin(2Nζ)
2qrsin(2Nζ) + p(2Ncos(2Nζ)− psin(2Nζ)± 2N)

(2Ncos(2Nζ)− psin(2Nζ)± 2N)2 ,

u24 = c + 8k2qrΦ2(ζ)
2(2qr − p2)Φ2(ζ) + p(4Ncos2(

Nζ

2
)− 2N)

(4Ncos2(
Nζ

2
)− 2pΦ2(ζ)− 2N)2

,

where Φ2(ζ) = sin(
Nζ

2
)cos(

Nζ

2
), A and B are two non-zero real constants and satisfy

A2 − B2 > 0.
When r = 0, pq �= 0,

u25 =
1

6k2 (k
4 p2 + k2 − (( f2(y) + f ′3(t))2 − ( f ′1(y) + f ′2(y)t)2))

− 2k2 p2c1
cosh(pζ)− sinh(pζ)

(c1 + cosh(pζ)− sinh(pζ))2 ,

u26 =
1

6k2 (k
4 p2 + k2 − (( f2(y) + f ′3(t))2 − ( f ′1(y) + f ′2(y)t)2))

− 2k2 p2c1
cosh(pζ) + sinh(pζ)

(c1 + cosh(pζ) + sinh(pζ))2 .

When q �= 0, r = p = 0,

u27 =
1

6k2 (k
2 − (( f2(y) + f ′3(t))2 − ( f ′1(y) + f ′2(y)t)2)) +

2k2q2

(c2 + qζ)2 .

Case 2
When p2 − 4qr > 0, pq �= 0(or qr �= 0),

u28 = c − 4k2qr
2Mptanh(Mζ) + p2 − 2qr

(2Mtanh(Mζ) + p)2 ,

u29 = c − 4k2qr
2MpcothMζ + p2 − 2qr
(2Mcoth(Mζ) + p)2 ,

u30 = c − 4k2qr
p(2Mtanh(2Mζ) + p ± iMsech(2Mζ))− 2qr

(2Mtanh(2Mζ) + p ± iMsech(2Mζ))2 ,

u31 = c − 4k2qr
p(2Mcoth(2Mζ) + p ± Mcsch(2Mζ))− 2qr

(2Mcoth(2Mζ) + p ± Mcsch(2Mζ))2 ,

u32 = c − 8k2qr
p(2Mtanh(

Mζ

2
) + 2Mcoth(

Mζ

2
) + 2p)− 4qr

(2Mtanh(
Mζ

2
) + 2Mcoth(

Mζ

2
) + 2p)2

,

u33 = c − 4k2qrF1(ζ)
p(2AMcosh(2Mζ) + pF1(ζ)− 2M

√
A2 + B2)− 2qrF1(ζ)

(2AMcosh(2Mζ) + pF1(ζ)− 2M
√

A2 + B2)2
,

u34 = c − 4k2qrF2(ζ)
p(2AMsinh(2Mζ) + pF2(ζ) + 2M

√
B2 − A2)− 2qrF2(ζ)

(2AMsinh(2Mζ) + pF2(ζ) + 2M
√

B2 − A2)2
,

u35 = c − k2

2
[p2 − M2csch2(

Mζ

2
)(2cosh(

Mζ

2
)− sech(

Mζ

2
))2],

where F1(ζ) = Asinh(2Mζ) + B, F2(ζ) = (Acosh(2Mζ) + B),
A and B are two non-zero real constants and satisfy B2 − A2 > 0.
When p2 − 4qr < 0, pq �= 0(or qr �= 0),

u36 = c + 4k2qr
2Nptan(Nζ)− p2 + 2qr

(2Ntan(Nζ)− p)2 ,

u37 = c − 4k2qr
2Npcot(Nζ) + p2 − 2qr

(2Ncot(Nζ) + p)2 ,

u38 = c + 4k2qr
p(2Ntan(2Nζ)− p ± Nsec(2Nζ)) + 2qr

(2Ntan(2Nζ)− p ± Nsec(2Nζ))2 ,

u39 = c − 4k2qr
p(2Ncot(2Nζ) + p ± Ncsc(2Nζ))− 2qr

(2Ncot(2Nζ) + p ± Ncsc(2Nζ))2 ,

39



Mathematics 2022, 10, 2522

u40 = c + 8k2qr
p(2Ntan(

Nζ

2
)− 2Ncot(

Nζ

2
)− 2p) + 4qr

(2Ntan(
Nζ

2
)− 2Ncot(

Nζ

2
)− 2p)2

,

u41 = c − 4k2qrG1(ζ)
p(2ANcos(2Nζ) + pG1(ζ)∓ 2N

√
A2 − B2)− 2qrG1(ζ)

(2ANcos(2Nζ) + pG1(ζ)± 2N
√

A2 − B2)2
,

u42 = c + 4k2qrG2(ζ)
p(2ANsin(2Nζ)− pG2(ζ)∓ 2N

√
A2 − B2) + 2qrG2(ζ)

(2ANsin(2Nζ)− pG2(ζ)± 2N
√

A2 − B2)2
,

u43 = c − k2

2
[p2 − N2csc(

Nζ

2
)(2cos(

Nζ

2
)− sec(

Nζ

2
))2],

where G1(ζ) = Asin(2Nζ) + B, G2(ζ) = Acos(2Nζ) + B, A and B are two non-zero real
constants and satisfy A2 − B2 > 0.

When r = 0, pq �= 0, the solution is independent of x.
When q �= 0, r = p = 0, the solution is independent of x.
Case 3 (p = 0)
When p2 − 4qr > 0, pq �= 0(or qr �= 0),

u44 = c + 2k2 M4tanh4(Mζ) + q2r2

M2tanh2(Mζ)
,

u45 = c + 2k2 M4coth4(Mζ) + q2r2

M2coth2(Mζ)
,

u46 = c + 2k2 M4(tanh(2Mζ)± isech(2Mζ))4 + q2r2

M2(tanh(2Mζ)± isech(2Mζ))2 ,

u47 = c + 2k2 M4(coth(2Mζ)± csch(2Mζ))4 + q2r2

M2(coth(2Mζ)± csch(2Mζ))2 ,

u48 = c + k2
M4(tanh(

Mζ

2
) + coth(

Mζ

2
))4 + 16q2r2

2M2(tanh(
Mζ

2
) + coth(

Mζ

2
))2

,

u49 = c +
k2(2M

√
A2 + B2 − 2AMcosh(2Mζ))2

2(Asinh(2Mζ) + B)2

+
8k2r2q2(Asinh(2Mζ) + B)2

(2M
√

A2 + B2 − 2AMcosh(2Mζ))2
,

u50 = c +
k2(2M

√
B2 − A2 + 2AMsinh(2Mζ))2

2(Acosh(2Mζ) + B)2

+
8k2r2q2(Acosh(2Mζ) + B)2

(2M
√

B2 − A2 + 2AMsinh(2Mζ))2
,

u51 = c + 2k2 M4sinh4(Mζ) + cosh4(Mζ)q2r2

M2sinh2(Mζ)cosh2(Mζ)
,

u52 = c + 2k2 M4cosh4(Mζ) + sinh4(Mζ)q2r2

M2sinh2(Mζ)cosh2(Mζ)
,

u53 = c +
k2(2Msinh(2Mζ)± i2M)2

2cosh2(2Mζ)
+

8k2q2r2cosh2(2Mζ)

(2Msinh(2Mζ)± i2M)2 ,

u54 = c +
k2(2Mcosh(2Mζ)± 2M)2

2sinh2(2Mζ)
+

8k2q2r2sinh2(2Mζ)

(2Mcosh(2Mζ)± 2M)2 ,

u55 = c +
k2(4Mcosh2(

Mζ

2
)− 2M)2

8sinh2(
Mζ

2
)cosh2(

Mζ

2
)

+
32k2qrsinh2(

Mζ

2
)cosh2(

Mζ

2
)

(4Mcosh2(
Mζ

2
)− 2M)2

,

where A and B are two non-zero real constants and satisfy B2 − A2 > 0.
When p2 − 4qr < 0, pq �= 0(or qr �= 0),

u56 = c + 2k2 N4tan4(Nζ) + q2r2

N2tan(Nζ)
,
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u57 = c + 2k2 N4cot4(Nζ) + q2r2

N2cot(Nζ)
,

u58 = c + 2k2 N4(tan(2Nζ)± sec(2Nζ))4 + q2r2

N2(tan(2Nζ)± sec(2Nζ))2 ,

u59 = c + 2k2 N4(cot(2Nζ)± csc(2Nζ))4 + q2r2

N2(cot(2Nζ)± csc(2Nζ))2 ,

u60 = c + k2
N4(tan(

Nζ

2
)− cot(

Nζ

2
))4 + 16q2r2

2N2(tan(
Nζ

2
)− cot(

Nζ

2
))2

,

u61 = c +
2k2(±N

√
A2 − B2 − ANcos(2Nζ))2

(Asin(2Nζ) + B)2 +
2k2r2q2(Asin(2Nζ) + B)2

(±N
√

A2 − B2 − ANcos(2Nζ))2
,

u62 = c +
2k2(±N

√
A2 − B2 + ANsin(2Nζ))2

(Acos(2Nζ) + B)2 +
2k2r2q2(Acos(2Nζ) + B)2

(±N
√

A2 − B2 + ANsin(2Nζ))2
,

u63 = c + 2k2 N4sin4(Nζ) + cos4(Nζ)q2r2

N2sin2(Nζ)cos2(Nζ)
,

u64 = c + 2k2 N4cos4(Nζ) + sin4(Nζ)q2r2

N2sin2(Nζ)cos2(Nζ)
,

u65 = c +
k2(2Nsin(2Nζ)± 2N)2

2cos2(2Nζ)
+

8k2q2r2cos2(2Nζ)

(2Nsin(2Nζ)± 2N)2 ,

u66 = c +
k2(2Ncos(2Nζ)± 2N)2

2sin2(2Nζ)
+

8k2q2r2sin2(2Nζ)

(2Ncos(2Nζ)± 2N)2 ,

u67 = c +
k2(4Ncos2(

Nζ

2
)− 2N)2

8sin2(
Nζ

2
)cos2(

Nζ

2
)

+
32k2qrsin2(

Nζ

2
)cos2(

Nζ

2
)

(4Ncos2(
Nζ

2
)− 2N)2

,

where A and B are two non-zero real constants and satisfy A2 − B2 > 0.
When r = 0, pq �= 0, but p = 0, the solution is independent of x.

3.3. Property Analysis of the Solution

The solutions obtained in this section all include arbitrary differentiable functions
f1(y), f2(y) and f3(t), which may give the prediction of physical phenomena with given
parameters. According to the expressions of solutions in Case 1, these non-traveling wave
solutions can be regarded as kink type, periodic type and singular solitary wave type.
Below, we take z = kx, v = y + t and give the numerical simulation for the solutions of
Case 1.

Figures 14 and 15, respectively, show that when f1(y) = y, f2(y) = 0, f3(t) = t,
ζ = kx + y + t =z +v, the image of u25 shows a linear trajectory in a certain direction;
when f1(y) = y2, f2(y) = 2y, f3(t) = t2, ζ = kx + (y + t)2 =z +v2, the image of u25
shows a parabolic trajectory in a certain direction. If c1 = 1, p = 1, the denominator
(1 + cosh(ζ)− sinh(ζ))2 of u25 is always not equal to zero; then, no blow-up occurs, so the
images are of all solitary wave. In Figures 16 and 17, u20 mainly includes sine functions
and cosine functions. If N = 1, p = 2, the denominator (2sin(ζ) + 2cos(ζ))2 of u20 can
be equal to zero, which leads to singularity. However, by comparing ζ =z +v with ζ =z
+v2 as an independent variable of trigonometric function, we can intuitively find that the
sharps in Figure 17 are multiplied more than those in Figure 16. From the properties of
trigonometric function, it can be seen that the images are periodic type. Moreover, each
trigonometric function solution in Case 1 is a periodic singular solitary wave solution.
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Figure 14. Linear solitary wave solution u25(ζ) as k = 1, p = 1,q = 1, r = 0, f1(y) = y,
f2(y) = 0, f3(t) = t, c1 = 1, c = 1

3 .

Figure 15. Parabolic solitary wave solution u25(ζ) as k = 1, p = 1,q = 1, r = 0, f1(y) = y2, f2(y) =
2y, f3(t) = t2, c1 = 1, c = 1

3 .

Figure 16. Parabolic and periodic singular wave solution u20(ζ) as k = 1, p = 2, q = 2, r = 2,
N = 1, f1(y) = y, f2(y) = 0, f3(t) = t, c = 7

2 .

Figure 17. Parabolic and periodic singular wave solution u20(ζ) as k = 1, p = 2, q = 2, r = 2,
N = 1, f1(y) = y2, f2(y) = 2y, f3(t) = t2, c = 7

2 .

4. Conclusions

In this paper, the exact solutions of the (2+1)-dimension Boussinesq equation are
obtained by using the extended (G′

G ) method. For hyperbolic function solutions, such
as u3,4, the denominator can always obtain zero if d = 0, and the blow-up phenomenon
cannot be avoided. For the trigonometric function solutions, periodic blow-up will occur
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because of the property and periodicity of the tangent function. For rational function
solutions, the solution u3,3 contains both positive and negative power terms (d + H(ξ)),
the image of solution u3,3 is therefore like a superposition of the image of solution u1,3 and
u2,3. Moreover, the rational function of ξ always appears as the denominator, which will
lead to blow-up. The formation of rogue waves is reflected by those solutions.

The extended (G′
G ) method is to add a coefficient d to each item in the (G′

G )-expansion,
so that the solution becomes the form of (d + H(ξ)). In the fourth hyperbolic function
solution of Group 2, it is observed that the smoothness of the image can be controlled by d.

The improved tanh function method is also applied to obtain many non-traveling
wave solutions, including kink solutions, periodic solitary wave solutions, and singular
solitary wave solutions. Numerical simulation and analysis enables us to better explain
the rogue wave phenomenon in natural phenomena. The image of the solution changes
greatly under the influence of differentiable function f1(y), f2(y) and f3(t). For example, if
f1(y) = y2, f2(y) = 2y, f3(t) = t2, the image of the solution shows a parabolic trajectory
in a certain direction. If we extend these arbitrary differentiable functions, considering
trigonometric functions, hyperbolic trigonometric functions, exponential functions, and so
on, the equation will have more abundant solutions.

We also find that u1,1 and u1 can be expressed as k1 + k2tanh2(k3φ + k4) when B =
−2dM and φ(x, y, t) = ϕ(kx + η(y, t)) is a linear transformation satisfing η2

yy = η2
tt = η2

yt.
Observing the solutions obtained by those two methods, we find that in the extended
( G′

G ) method, the B = −2dM is satisfied. In the improved tanh function method, if ϕ(kx +
η(y, t)) is a linear transformation of x, y and t, that satisfies the condition η2

yy = η2
tt = η2

yt,

which is recorded as φ(x, y, t). u1,1 and u1 can be simply expressed as k1 + k2tanh2(k3φ +
k4), where ki(i = 1, 2, 3, 4) are constants. Moreover, u1,2 and u13 can be simply expressed as
k5 + k6tan2(k7φ + k8), u1,3 and u27 can be expressed as k9 +

k10
(k11φ+k12)2 . Here, we only list

the solutions of Group 1 and Case 1 obtained by those two methods. These phenomena
suggest that there may be some relationships between solutions obtained by different
methods for the same equation.
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Abstract: In this paper, we introduce a generalized complex discrete fractional-order cosine map.
Dynamical analysis of the proposed complex fractional order map is examined. The existence and
stability characteristics of the map’s fixed points are explored. The existence of fractal Mandelbrot sets
and Julia sets, as well as their fractal properties, are examined in detail. Several detailed simulations
illustrate the effects of the fractional-order parameter, as well as the values of the map constant and
exponent. In addition, complex domain controllers are constructed to control Julia sets produced
by the proposed map or to achieve synchronization of two Julia sets in master/slave configurations.
We identify the more realistic synchronization scenario in which the master map’s parameter values
are unknown. Finally, numerical simulations are employed to confirm theoretical results obtained
throughout the work.

Keywords: complex cosine map; discrete fractional; fractal sets; Julia set control; Julia sets
synchronization
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1. Introduction

Explaining the behavior of complex fractional-order maps is a huge challenge [1–3].
The complex maps that have been discovered to have fascinating and insightful constructs
in geometry are familiar as Julia and Mandelbrot fractal sets [4–10]. Dimensions of these
sets are known to be fractal and have a variety of intriguing applications, including electric
fields, electromagnetic fields, and secure communication [11–15]. The fractional generalized
Hénon map’s chaotic behavior was looked at in [16], whereas the presence of chaotic
behaviour in the fractional discrete memristor system was shown in [17].

In order to understand the dynamics of spatiotemporal systems in the presence of
memory, coupled fractional maps can be explored. Power-law memory systems can
be found in a variety of branches of physics, from electromagnetic waves in dielectric
media to adaptation through biological systems [18,19]. Discrete-time systems exhibiting
unusual complexity characteristics, such as hidden attractors [20], coexisting multiple
attractors [21], and hyperchaotic behavior, are also of great interest. In [22], the chaos,
0–1 test, C0 complexity, entropy, and control of discrete fractional Duffing systems are
examined. In [23], it is addressed how fractional-order discrete-time chaotic systems can be
synchronized and used for secure communication. In [24], a strategy for utilizing chaotic
behavior in fractional maps to be applied for image encryption was demonstrated as a recent
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example of fractional systems being applied to encryption. Researchers used fractional-
order maps to investigate image encryption in [25,26]. Scholars used a pseudo-random
number generator [27] to help them investigate the links between multiple fractional
chaotic systems.

A fractal is a geometric pattern that is self-similar at all scales and has a non-integer
constant Hausdorff dimension [28]. Since porous media, aquifers, turbulence, and other
media commonly display fractal properties, fractal theory, a compact part of nonlinear
physics, has considerable applicability in these areas [29,30]. In contrast, a fractional
operator is an expression of a fractional differentiation, since it describes the memory
and hereditary aspects of the phenomenon [31]. Complex systems are better modeled by
fractional-order equations than by integer order equations. Fractional-order systems are
used in various fields of engineering and science, including electromagnetics, viscoelasticity,
fluid mechanics, electrochemistry, biological population models, optics, and signal pro-
cessing [32–35]. Memory is a key characteristic of fractional-order differential and discrete
equations. Fractional-order differentiation of fractal geometry sets has limited results [36].
Fractional-order Mandelbrot sets and Julia sets have rarely been discussed [37,38]. There
are several complicated iterative equations that are related to the complex maps and the
related Julia set phenomena. Julia set control is one method for controlling and synchroniz-
ing the fractal properties of a complicated system. Thus, applying fractional calculus to
deterministic non-linear fractals such as Julia and Mandelbrot sets formed by fractional
maps yields an appealing and novel theory with applications in image and data compres-
sion, computer graphics, and encrypted communication. Consequently, the purpose of
this paper is to investigate this challenging task involving fractals and fractional calculus,
including theoretical and numerical features, as well as control and synchronization based
on the complex dynamics of a proposed fractional complex cosine map.

The purpose of this research is to investigate nonlinear dynamics and fractal features
of discrete fractional complex cosine maps that have not yet been examined in the literature.
According to the knowledge of the authors, this is the first attempt to introduce this complex
discrete fractional cosine map. The control and synchronization of fractal sets in integer
order complex maps is a very recent topic of research in the science of nonlinear dynamics.
In this paper, we investigate the problem of controlling and synchronizing discrete-time
fractional complex maps-based fractal sets. This paper’s primary purpose is an extensive
study into the complexity and dynamics of the discrete fractional complex cosine map. The
existence of several periodic and chaotic attractors is highlighted by means of bifurcation
diagrams, maximal Lyapunov exponents, and the 0–1 test.

The structure of this paper is as follows: in Section 2, mathematical basics are explained;
in Section 3, the proposed discrete fractional complex cosine map’s mathematical model is
shown; Section 4 looks at how the proposed map controls and synchronizes Julia sets; and
Section 5 contains the conclusion and final discussion.

2. Mathematical Basics

In this section, we introduce some preliminaries about fractional-order difference
calculus, as follows.

Definition 1 (See [28]). Let the order α > 0, α /∈ N, the start point k ∈ R, t ∈ Nk+m−α,
and m = [α] + 1. Then the following α-order Caputo-like left delta difference of F(t) is written
as follows:

CΔα
k F(t) :=

1
Γ(m − α)

t−(m−α)

∑
s=k

(t − σ(s))(m−α−1)Δm
s F(s), (1)

where σ(s) = s + 1 and t(α) = Γ(t+1)
Γ(t+1−α)

.

From Refs. [39–41], we can directly obtain the following Theorem 1.
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Theorem 1. For the following nonlinear system with the α-order Caputo-like left delta difference
calculus: {CΔα

k X(t) = F(t + α − 1, X(t + α − 1)),

ΔjX(k) = Xj, j = 0, . . . , n − 1, n = [α] + 1.
(2)

The equivalent system of system (2) is:

X(t) = X0(t) +
1

Γ(α)

t−α

∑
s=k+n−α

(t − σ(s))(α−1)F(s + α − 1, X(s + α − 1)), t ∈ Nk+n, (3)

where

X0(t) =
n−1

∑
j=0

(t − k)(j)

Γ(j + 1)
ΔjX(k).

From Theorem 1, we can directly obtain the following theorem.

Theorem 2. If the start point k = 0, we can simplify system (2) as

X(n) = X(0) +
1

Γ(α)

n

∑
j=1

Γ(n − j + α)

Γ(n − j + 1)
F(X(j − 1)), n ∈ N. (4)

For an N dimensional nonlinear system (2) with fractional-order α ∈ (0, 1) and fixed
point X, if X(t) = (X1(t), X2(t), · · · , XN(t))T and F(t) = (F1(t), F2(t), · · · , FN(t))T are
continuously differentiable at X, and its Jacobian matrix has the following form:

J(X) =
∂ f (X)

∂X

∣∣∣∣
X=X

=

⎛
⎜⎜⎜⎜⎜⎝

∂F1(X)
∂X1

∂F1(X)
∂X2

· · · ∂F1(X)
∂Xn

∂F2(X)
∂X1

∂F2(X)
∂X2

· · · ∂F2(X)
∂Xn

...
...

. . .
...

∂Fn(X)
∂X1

∂Fn(X)
∂X2

· · · ∂Fn(X)
∂Xn

⎞
⎟⎟⎟⎟⎟⎠,

then we can obtain the following theorem by using the linearization theorem.

Theorem 3 (See [39,40]). The N-dimensional system (2) is locally asymptotically stable if all
eigenvalues λi, i = 1, 2, · · · N of J(X) satisfy

λi ∈
{

z ∈ C : |z| <
(

2 cos
| Argz| − π

2 − α

)α

and | Argz| > απ

2

}
, (5)

where the symbol Argz means the argument of the complex value z.

3. The Discrete Fractional-Order Complex Cosine Map

We propose a new discrete fractional cosine map which appears as this:

CΔα
a z(t) = cos[z(t + α − 1)p + q], (6)

where z and q ∈ C, whereas q takes positive real values greater than or equal to one. The
fixed points of the discrete fractional map (6) can be obtained by solving

cos[z∗
p
+ q] = 0,

which results in different scenarios for fixed points depending on the value of p as follows:

(1) For p = 1, the fixed point is z∗ = (2m + 1)
π

2
− q, where m ∈ Z.
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(2) For p = 2, the fixed point is z∗ = [((2m + 1)
π

2
− qr)2 + qi

2]
1
4 [cos( θ∗

2 ) + i sin( θ∗
2 )],

[((2m + 1)
π

2
− qr)2 + qi

2]
1
4 [cos( θ∗+2π

2 ) + i sin( θ∗+2π
2 )], where q is assumed in the form

q = qr + iqi and θ∗ is the principal argument of (2m + 1)
π

2
− qr − iqi.

(3) For p = 3, the fixed point is z∗ = [((2m + 1)
π

2
− qr)2 + qi

2]
1
6 [cos( θ∗

3 ) + i sin( θ∗
3 )],

[((2m + 1)
π

2
− qr)2 + qi

2]
1
6 [cos( θ∗+2π

3 ) + i sin( θ∗+2π
3 )] and [((2m + 1)

π

2
− qr)2 + qi

2]
1
4

[cos( θ∗+4π
3 ) + i sin( θ∗+4π

3 )].

(4) In a general case for any value of p, the fixed point is z∗ = η
1
p [cos( θ∗+2kπ

p ) +

i sin( θ∗+2kπ
p )], η = [((2m + 1)

π

2
− qr)2 + qi

2]
1
2 , k ∈ Z.

Next, certain analytical results on the asymptotic stability of complex fractional map
fixed points (6) are provided.

3.1. Stability Analysis of Fixed Points

Theorem 4. The fractional complex cosine map (6) has a locally asymptotically stable fixed point
z∗ if and only if:∣∣∣(−1)m+1 pz∗

p−1
∣∣∣ < (2 cos

Arg((−1)m+1 pz∗p−1
)− π

2 − α
)α,

∣∣∣Arg((−1)m+1 pz∗
p−1

)
∣∣∣ > απ

2
. (7)

Proof. Let δ(t) = z(t) − z∗ and consider the following linearized map derived from
Equation (6):

CΔα
a δ(t) = −pz∗

p−1
sin[z∗

p
+ q]δ(t + α − 1),

= (−1)m+1 pz∗
p−1

δ(t + α − 1),

= λδ(t + α − 1). (8)

The real and imaginary parts of (8) are separated as follows

CΔα
a δr(t) + iCΔα

a δi(t) = (λr + iλi)(δr(t + α − 1) + iδi(t + α − 1)),

and hence the following two dimensional discrete fractional system is obtained

CΔα
a δr(t) = λrδr(t + α − 1)− λiδi(t + α − 1),

CΔα
a δi(t) = λiδr(t + α − 1) + λrδi(t + α − 1).

The above system can be expressed in the form

( CΔα
a δr(t)

CΔα
a δi(t)

)
=

(
λr −λi
λi λr

)(
δr(t + α − 1)
δi(t + α − 1)

)
, (9)

where the eigenvalues of the 2 × 2 coefficients matrix is found to be Λ = λr ± iλi = λ, λ̄.
Let

B =

(
λr −λi
λi λr

)
,

with tr(B) = 2λr and det(B) = λ2
r + λ2

i > 0, then the origin of (9) satisfies the following
conditions for asymptotic stability:

√
λ2

r + λ2
i < (2 cos

∣∣∣cot−1( λr
λi
)
∣∣∣− π

2 − α
)α,

∣∣∣∣cot−1(
λr

λi
)

∣∣∣∣ > απ

2
.

Equivalently,
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∣∣∣(−1)m+1 pz∗
p−1
∣∣∣ < (2 cos

∣∣∣Arg((−1)m+1 pz∗p−1
)
∣∣∣− π

2 − α
)α,

∣∣∣Arg((−1)m+1 pz∗
p−1

)
∣∣∣ > απ

2
.

In particular, satisfying the above conditions implies that ‖δ(t)‖ = O(t−α) as t →
∞, i.e., the solutions δr and δi algebraically decay to zero in the way that z∗ is locally
asymptotically stable for the fractional complex map (6).

Corollary 1. For p = 1 and m = 0, the fixed point z∗ = π
2 − q is locally asymptotically stable

when 0 < α ≤ 1.

Proof. For p = 1 and m = 0, weobtain (−1)m+1 pz∗p−1
= −1, andso

∣∣∣Arg((−1)m+1 pz∗p−1
)
∣∣∣ =

π. Thus the conditions (7) reduce to

1 < 2α, π >
απ

2
,

which are satisfied at 0 < α ≤ 1.

Corollary 2. For p = 2 and m = 0, the fixed points z∗ =
∣∣π

2 − q
∣∣ 1

2 ei θ∗
2 and

∣∣π
2 − q

∣∣ 1
2 ei θ∗+2π

2 are
locally asymptotically stable when

∣∣∣π
2
− q

∣∣∣ 1
2
< 2α−1(cos

∣∣∣∣ θ∗2 + π

∣∣∣∣− π

2 − α
)α,

∣∣∣∣ θ∗2 + π

∣∣∣∣ > απ

2
,

and

∣∣∣π
2
− q

∣∣∣ 1
2
< 2α−1(cos

∣∣∣∣ θ∗2 + 2π

∣∣∣∣− π

2 − α
)α,

∣∣∣∣ θ∗2 + 2π

∣∣∣∣ > απ

2
.

Proof. For p = 2 and m = 0, weobtain (−1)m+1 pz∗p−1
= 2

∣∣π
2 − q

∣∣ 1
2 ei( θ∗

2 +π), 2
∣∣π

2 − q
∣∣ 1

2 ei( θ∗
2 +2π)

and hence
∣∣∣Arg((−1)m+1 pz∗p−1

)
∣∣∣ = ∣∣∣∣ θ∗2 + π

∣∣∣∣,
∣∣∣∣ θ∗2 + 2π

∣∣∣∣, for the two fixed points, respec-

tively. Thus the conditions (7) reduce to

2
∣∣∣π

2
− q

∣∣∣ 1
2
< (2 cos

∣∣∣∣ θ∗2 + π

∣∣∣∣− π

2 − α
)α,

∣∣∣∣ θ∗2 + π

∣∣∣∣ > απ

2
,

for the first fixed point and for the second fixed point it follows that

2
∣∣∣π

2
− q

∣∣∣ 1
2
< (2 cos

∣∣∣∣ θ∗2 + 2π

∣∣∣∣− π

2 − α
)α,

∣∣∣∣ θ∗2 + 2π

∣∣∣∣ > απ

2
.

The previous theoretical results are validated using numerical simulations. In the first
case, let p = 1, α = 0.95, q = 2− 1.5i and m = 0. Then the fixed point z∗ = −0.429204+ 1.5i
is locally asymptotically stable according to Corollary 2, see Figure 1a,b. Now, consider
the second case where p = 2, α = 0.85, q = 1.2 − 0.2i and m = 0, and the fixed points are
0.629322 + 0.158901i and −0.629322 − 0.158901i. The conditions for asymptotic stability
indicate that the first fixed point 0.629322 + 0.158901i is asymptotically stable whereas the
second one is unstable, as shown in Figure 1c,d. In the third case, taking p = 2, α = 0.7,
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q = 1 + 0.3i and m = 0, the fixed points are found to be 0.7796 − 0.1924i and −0.779624 +
0.1924i. Stability conditions reveal that the first fixed point is asymptotically stable while
the second one is unstable. Numerical simulations in Figure 1e,f verify these predictions.

Figure 1. The time series solutions of the generalized fractional complex cosine map at (a,b) p = 1,
α = 0.95, q = 2 − 1.5i, (c,d) p = 2, α = 0.85, q = 1.2 − 0.2i, and (e,f) p = 2, α = 0.7, q = 1 + 0.3i.

3.2. The Fractional Cosine Map Generates Fractal Sets

We extend the ideas of Julia and Mandelbrot fractal sets to the more general case of
discrete fractional-order complex-valued maps. Consider the following fractional-order
map

CΔα
a z(t) = f (z(t + α − 1), q), (10)

where f : C → C and q ∈ C, then the Julia set induced by (10) is defined as follows [9–11]:

Definition 2. The filled-in Julia set of discrete fractional map (10) is the set Ψ of initial points
z ∈ C whose evolutions under (10) are limited. The boundary of Ψ, i.e., ∂Ψ, is referred to as the
Julia set of discrete fractional map (10) and it is denoted by Jα

f .
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The key properties of Julia set Jα
f are listed below [9–11]:

(1) Jα
f �= ∅, i.e., it is a non-empty set.

(2) Jα
f is fully invariant with respect to (10) in both forward and backward directions

of iterations.
(3) Assume that the fractional map (10) has an attractive fixed point of period p at

some specific values of α, then Jα
f contains the basin of attraction for this fixed point, namely,

∂βα
p. The same is true for infinity fixed point.

The Mandelbrot set, introduced by Benoit Mandelbrot in 1979 [9,10], is generalized to
our fractional case in the way that the Mandelbrot set Φα

f is composed of the set of points in
the plane of complex-valued parameter q at which the evolution from initial point z(0) = 0
is bounded at the specified fixed value of α.

The quantification of fractal properties of Julia and Mandelbrot sets can be carried
out by calculating the associated space filling capacity or dimension. The well-known
box-counting dimension is the most accessible among scientists and it can be defined
as follows:

Definition 3. For non-empty bounded subset Ω of Rn, consider the collections of boxes with side
lengths ε required to cover Ω. The Minkowski–Bouligand dimension or the box-counting dimension
is defined as

dimΩ = lim
ε→0

log(Nε)

log(1/ε)
,

where Nε is the number of boxes to cover Ω. In addition, the lower box dimension (lower Minkowski
dimension) and the upper box dimension (Kolmogorov dimension) of Ω are also defined by

dimΩ = lim
ε→0

log(Nε)

log(1/ε)
, dimΩ = lim

ε→0

log(Nε)

log(1/ε)
,

respectively.

Numerical simulations are carried out to explore the generation of Mandelbrot and
Julia sets from the dynamics of the proposed generalized fractional cosine map. The results
for different values of the fractional order α, the constant q, and the exponent p are shown
in the next table. In addition, Table 1 provides the box-counting dimensions for the various
simulation scenarios investigated.

Table 1. Summary of cases considered in numerical simulations and the associated fractal dimensions.

Figure Fractal Set Parameters Fractal Dimension

Figure 2 Mandelbrot sets α = 1, different values of p. 1.5244, 1.582, 1.6148, 1.6594, 1.5615, 1.5442

Figure 3 Mandelbrot sets α = 0.9, different values of p. 1.8838, 1.8836, 1.8994, 1.8893

Figure 4 Mandelbrot sets α = 0.75, different values of p. 1.8643, 1.8828, 1.8748, 1.909, 1.8762, 1.8967

Figure 5 Mandelbrot sets α = 0.5, different values of p. 1.633, 1.6722, 1.6782, 1.6838, 1.6857, 1.6337, 1.5536

Figure 6 Mandelbrot sets α = 0.3, different values of p. 1.8572, 1.8908, 1.8904, 1.5768

Figure 7 Julia sets α = 1, different values of p and q. 1.8426, 1.8665, 1.4931, 1.5469

Figure 8 Julia sets α = 0.8, different values of p and q. 1.8765, 1.489, 1.8525, 1.8503

Figure 9 Julia sets α = 0.5, different values of p and q. 1.5016, 1.8864, 1.5078, 1.4836, 1.8021, 1.8034
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Figure 2. The Mandelbrot sets generated by the generalized fractional cosine map at α = 1, where
(a) p = 2, (b) p = 2.5, (c) p = 3, (d) p = 4.3, (e) p = 5, and (f) p = 7.7.
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Figure 3. The Mandelbrot sets generated by the generalized fractional cosine map at α = 0.9, where
(a) p = 2, (b) p = 2.5, (c) p = 3, and (d) p = 4.3.

Figure 4. Cont.
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Figure 4. The Mandelbrot sets generated by the generalized fractional cosine map at α = 0.75, where
(a) p = 2, (b) p = 2.5, (c) p = 3, (d) p = 4.3, (e) p = 5, and (f) p = 7.7.

Figure 5. Cont.

54



Mathematics 2023, 11, 727

Figure 5. The Mandelbrot sets generated by the generalized fractional cosine map at α = 0.5, where
(a) p = 2, (b) p = 2.5, (c) p = 3, (d) p = 4.3, (e) p = 5 and (f) p = 7.7.

Figure 6. Cont.
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Figure 6. The Mandelbrot sets generated by the generalized fractional cosine map at α = 0.3, where
(a) p = 2, (b) p = 2.5, (c) p = 7.7, and (d) p = 11.3.

Figure 7. The Julia sets generated by the generalized fractional cosine map at α = 1 and q = 0.5+ 0.52i,
where (a) p = 2, (b) p = 2.5, (c) p = 4.3, and (d) p = 7.7.
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Figure 8. The Julia sets generated by the generalized fractional cosine map at α = 0.8 and
q = 1.9 − 0.25i, where (a) p = 2, (b) p = 3.5, (c) p = 5, and (d) p = 11.5.

Figure 9. Cont.
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Figure 9. (a–c) The Julia sets generated by the generalized fractional cosine map at α = 0.5 and
q = 0.41+ 0.65i, where (a) p = 1, (b) p = 2, (c) p = 3.8. (d–f) The values of the parameters are α = 0.5
and q = −0.1 − 0.7i, where (d) p = 5.3, (e) p = 7, (f) p = 11.5.

4. The Control and Synchronization of Julia Sets

This section examines the regulation and synchronization of Julia sets generated by
the fractional-order cosine map. This section begins with a brief mathematical overall view.

Consider two different fractional-order cosine maps The first is called the master
(driving) map and has the output z1(t) whereas the second map is referred to as the slave
(response) map and it gives the output z2(t).

Definition 4. The synchronization is said to be achieved between z1(t) and z2(t) if z2 → z1 as
t → ∞. Equivalently, it can be written as [11–13]

lim
t→∞

|z2(t)− z1(t)| = 0.

The synchronization of two solution trajectories indicates that their convergence and
divergence characteristics are identical. Let Jα

f1
and Jα

f2
denote the Julia sets of fractional

master and fractional slave maps, respectively, where they have fractional order α. The
definition of synchronization between two Julia sets is as follows [11–14].
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Definition 5. The asymptotic synchronization of two Julia sets Jα
f1

and Jα
f2

is achieved if

lim
t→∞

(Jα
f1
∪ Jα

f2
− Jα

f1
∩ Jα

f2
) = ∅.

4.1. Control of Julia Sets Generated by the Fractional Cosine Map

The Julia sets created by the fractional cosine map are controlled by varying the type
of stability of a particular fixed point on the map. The proposed form of the feedback
controller is

υ(t) = −κ(z(t)− z̄)− cos[z(t + α − 1)p + q], (11)

where z̄ is the target fixed point and the complex-valued controller gain κ = κr + iκi is
calculated as follows:

Theorem 5. Suppose that the feedback controller (11) satisfies the following conditions

κr > 0,
√

κ2
r + κ2

i < 2α,

subsequently, the unstable fixed point z̄ of controlled fractional-order cosine map

CΔα
a z(t) = cos[z(t + α − 1)p + q] + υ(t + α − 1),

is stabilized by changing the Julia set in its neighborhood.

Proof. Using control signal (11), the controlled fractional cosine map can be written as:

CΔα
a z(t) = −κ(z(t + α − 1)− z̄). (12)

Let u(t) = z(t)− z̄, then (12) represents a structure

CΔα
a u(t) = −κu(t + α − 1),

and the associated real-valued two dimensional fractional map is obtained as

CΔα
a ur(t) = −κrur(t + α − 1) + κiui(t + α − 1),

CΔα
a ui(t) = −κiur(t + α − 1)− κrui(t + α − 1).

Define matrix J by

J =
( −κr κi

−κi −κr

)
,

and hence the eigenvalues of J are given by −κr ± iκi. The sufficient conditions for local

asymptotic stability of κr > 0 and
√

κ2
r + κ2

i < 2α.

4.2. Synchronization of Julia Sets

Assume the driving system has the following configuration:

CΔα
a z1(t) = cos[z1(t + α − 1)p + q1], (13)

and take into account the following response system

CΔα
a z2(t) = cos[z2(t + α − 1)p + q2] + ρ(z1, z2, t + α − 1), (14)

where ρ(z1, z2, t + α − 1) is an appropriate controller to be designed.
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Now, two different scenarios will be investigated in the following two theorems. The
first one involves the case where the values of the constants q1 and q2 are known a priori.

Theorem 6. Suppose that the values of constants q1 and q2 in the two fractional maps (13) and (14),
respectively, are known. Then, the following controller

ρ(z1, z2, t + α − 1) = cos[z1(t + α − 1)p + q1]− cos[z2(t + α − 1)p + q2]− γ(z2(t + α − 1)− z1(t + α − 1)), (15)

with gain γ = γr + iγi satisfying |γ| < 2α and γr > 0, can realize Julia set synchronization
between the driving system (13) and the response system (14) for any initial condition.

Proof. One can obtain the fractional error map by subtracting (13) from (14) which can be
written as

CΔα
a e(t) = cos[z2(t + α − 1)p + q2]− cos[z1(t + α − 1)p + q1] + ρ(z1, z2, t + α − 1),

e(t) = z2(t)− z1(t).

By substituting from (15) into the above error map, we get

CΔα
a e(t) = −γe(t + α − 1),

or
CΔα

a (er(t) + ei(t)) = (−γr − iγi)(er(t + α − 1) + iei(t + α − 1)),

which can be changed into the 2D system

CΔα
a er(t) = −γrer(t + α − 1) + γiei(t + α − 1),

CΔα
a ei(t) = −γier(t + α − 1)− γrei(t + α − 1).

The eigenvalues of the above system are found as −γr ± iγi which imply that the
asymptotic stability conditions are achieved if |γ| < 2α and γr > 0.

The second scenario involves the case where the value of constant q1 is unknown and,
therefore, an adaptive controller is to be designed along with complex-valued update laws
to realize the synchronization.

Theorem 7. Suppose that the value of constants q1 in the fractional map (13) is unknown. Then,
the following controller

ρ(z1, z2, t + α − 1) = β̂1(t + α − 1) cos(z1(t + α − 1)p) + β̂2(t + α − 1) sin(z1(t + α − 1)p)

− cos[z2(t + α − 1)p + q2]− γe(t + α − 1), (16)

along with the following update laws

Δβ̂1(n) = −η1(e(n + 1) cos(z1(n)p)− e(n) cos(z1(n + 1)p))

cos(z1(n + 1)p) cos(z1(n)p)
, (17)

Δβ̂2(n) = −η2(e(n + 1) sin(z1(n)p)− e(n) sin(z1(n + 1)p))

sin(z1(n + 1)p) sin(z1(n)p)
(18)

where β̂1, β̂2 are the estimates of cos(q1) and − sin(q1), respectively, and the complex-valued gains
γ, η1 and η2 satisfying |γ + η1 + η2| < 2α and γr + η1r + η2r > 0 can achieve Julia set synchro-
nization between the driving system (13) and the response system (14) for any initial condition.

60



Mathematics 2023, 11, 727

Proof. The proof is arranged in the following steps. First, the drive map is simplified to
the following form:

CΔα
a z1(t) = cos(q1) cos(z1(t + α − 1)p)− sin(q1) sin(z1(t + α − 1)p)

= β1 cos(z1(t + α − 1)p) + β2 sin(z1(t + α − 1)p),

β1 = cos(q1), β2 = − sin(q1).

The fractional error map is then expressed as
CΔα

a e(t) = cos[z2(t + α − 1)p + q2]− β1 cos(z1(t + α − 1)p)− β2 sin(z1(t + α − 1)p) + ρ(z1, z2, t + α − 1).

Second, by substituting (16) into the fractional error map, we obtain

CΔα
a e(t) = (β̂1(t + α − 1)− β1) cos(z1(t + α − 1)p) + (β̂2(t + α − 1)− β2) sin(z1(t + α − 1)p)− γe(t + α − 1),

= β̃1(t + α − 1) cos(z1(t + α − 1)p) + β̃2(t + α − 1) sin(z1(t + α − 1)p)− γe(t + α − 1).

In addition, note that

Δβ̂1(n) = Δβ̃1(n), Δβ̂2(n) = Δβ̃2(n),

and hence the update laws (17)–(18) can be solve to give

β̃1(n) = − η1e(n)
cos(z1(n)p)

, β̃2(n) = − η2e(n)
sin(z1(n)p)

.

Third, the error map is, therefore, reduced to

CΔα
a e(t) = −(γ + η1 + η2)e(t + α − 1),

which implies that the corresponding 2D fractional error map in R2 has the eigenvalues
−(γr + η1r + η2r) ± i(γi + η1i + η2i) at the zero fixed point. Therefore, the following
conditions are sufficient to confirm the fixed point stability

|γ + η1 + η2| < 2α, γr + η1r + η2r > 0.

To validate the theoretical results obtained in this section, numerical simulations
are now used. For p = 2, q = 1.2 − 0.2i and α = 0.8, it can be found that the fixed
point −0.62932 − 0.1589012i is an unstable fixed point for the fractional cosine map (6).
Applying the controller (11) with z̄ = −0.62932 − 0.1589i and κ = 1, the fixed point is
stabilized, as shown in Figure 10a,b. In a second example, consider a master system with
p = 2, q1 = 1.2 − 0.2i and α = 0.9 while the slave system is supposed to have p = 2,
q2 = 0.433 − 0.55i and α = 0.9. Using the adaptive controller (15) with γ = 1 + 0.3i,
the synchronization conditions are satisfied and the synchronization between the two
systems are achieved. The evolution of the synchronization error with time is illustrated in
Figure 10c,d for its real and imaginary parts. The third example involves the more realistic
case where the value of q1 is unknown in the master system. The value of q2 in the slave
system is set to 0.433 − 0.55i and the other shared values of parameters are p = 2 and
α = 0.85. The adaptive controller (16) along with update laws (17)–(18) are employed to
achieve the synchronization between the two systems and estimate the unknown values of
cos(q1) and − sin(q1). In the simulations shown in Figure 11, the assigned values to cos(q1)
and sin(q1) are 0.369629 + 0.18765i and 0.950742 − 0.072956i, respectively. Figure 11a–f
shows the real and imaginary parts of the synchronization error, β̂1 and β̂2. The Julia set
generated by the controlled map is affected by the stabilization of specific fixed points in
the fractional cosine map or the induced synchronization between master/slave systems.
For example, Figure 12 depicts the Julia sets generated by the slave fractional cosine map
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before and after attaining the synchronization state where it is clear that significant changes
in its structure are introduced.

Figure 10. (a,b) Stabilization of fixed point z̄ = −0.62932− 0.1589i of the generalized fractional cosine
map under the influence of the proposed controller (11) with κ = 1. (c,d) The real and imaginary parts
of the synchronization error between a master system with p = 2, q1 = 1.2− 0.2i, α = 0.9 and a slave
system with p = 2, q2 = 0.433− 0.55i and α = 0.9 when the adaptive controller (15) is employed and
γ = 1+ 0.3i.

Figure 11. Cont.
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Figure 11. The real and imaginary parts of the synchronization error, β̂1 and β̂2 where the value of
q1 is unknown in the master system, the value of q2 in the slave system is set to 0.433 − 0.55i and
the other values of parameters are p = 2, α = 0.85, γ = 0.3 + 0.3i, η1 = 0.2 and η2 = 0.2 (a,b). The
assigned values to cos(q1) and sin(q1) are 0.369629 + 0.18765i (c,d) and 0.950742 − 0.072956i (e,f).

Figure 12. The effects of synchronization on the Julia sets generated by the slave fractional cosine
map described in Figure 11 (a) before and (b) after attaining synchronization state.

5. Conclusions

This research introduces a framework for investigating the fractal and dynamic prop-
erties of an extended discrete fractional cosine map with complex values. The Mandelbrot
and Julia sets of the proposed map are investigated for a variety of parameters. Julia sets in
complex domains: control and synchronization issues discussed. In particular, an efficient
adaptive controller is constructed to achieve synchronization when there is an unknown
value of the parameter in driving (master system). The proposed map has promising
applications in the field of image encryption which can be conducted in future work.
Our findings can be used to create a reliable and efficient chaotic color/grayscale image
encrypting system. The next step in our future work is to apply the present discrete frac-
tional complex cosine map and examine/compare the performance of the corresponding
encryption schemes.
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Abstract: As a kind of dynamical system with a particular nonlinear structure, a multi-time scale
nonlinear system is one of the essential directions of the current development of nonlinear dynamics
theory. Multi-time scale nonlinear systems in practical applications are often complex forms of
coupling of high-dimensional and high codimension characteristics, leading to various complex
bursting oscillation behaviors and bifurcation characteristics in the system. For exploring the complex
bursting dynamics caused by high codimension bifurcation, this paper considers the normal form of
the vector field with triple zero bifurcation. Two kinds of codimension-2 bifurcation that may lead
to complex bursting oscillations are discussed in the two-parameter plane. Based on the fast–slow
analysis method, by introducing the slow variable W = A sin(ωt), the evolution process of the motion
trajectory of the system changing with W was investigated, and the dynamical mechanism of several
types of bursting oscillations was revealed. Finally, by varying the frequency of the slow variable, a
class of chaotic bursting phenomena caused by the period-doubling cascade is deduced. Developing
related work has played a positive role in deeply understanding the nature of various complex
bursting phenomena and strengthening the application of basic disciplines such as mechanics and
mathematics in engineering practice.

Keywords: bifurcation and chaos; multiple time scales; triple zero bifurcation; bursting oscillation
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1. Introduction

Multi-time scale nonlinear systems have a broad engineering background. The cou-
pling of different scales involving the interaction of dynamic behavior at multiple scales
will lead to many extraordinary nonlinear phenomena. Their complexity and mechanism
research has become one of the essential directions for the development of current non-
linear dynamics theory [1]. Most nonlinear systems encountered in natural science and
practical engineering applications are coupled by several subsystems [2]. The evolution
process from the dynamic behavior at the subsystem level to the dynamic behavior at
the fundamental system level will involve different time and space scales, resulting in
scale differences between the dynamical characteristics of these subsystems in different
environments so that the whole system presents various multi-scale effects [3]. For exam-
ple, large-scale rotating machinery must consider the large-scale motion of components
and the deformation of the members themselves [4], electronic circuit systems with high
nonlinear electronic coupling [5–7], and the transition metal-catalyzed gas-phase chemical
reaction, where adsorption, desorption, and the response between adsorbents are much
faster than the oxidation process under the metal surface [8,9]. Such systems cannot be
superimposed but exhibit more complex dynamic properties. The process behaves as a
typical nonlinear feature, with complex motions such as harmonic oscillations, periodic
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jumps, quasi-periodic motions, and period-doubling cascades to chaos [10,11]. These non-
linear phenomena can lead to the instability of the entire system in the actual engineering
problem, which may be detrimental to industrial applications [12,13]. Therefore, it is urgent
to study the dynamic mechanism of such phenomena.

So far, although specific results have been achieved in the complexity of multi-time
scale nonlinear systems, due to the particularity of such systems, their related research
is still preliminary, and many problems need to be further studied. High codimension
bifurcation not only has a variety of bifurcation characteristics but also has a high sensitivity
to parameter perturbation, which will not only lead to the diversity of quiescent states
and spiking states but, in some circumstances, under the influence of appropriate slow
subsystems, it will even lead to the simultaneous existence of different bifurcation char-
acteristics in the same burster. Consequently, in the case of high codimension bifurcation,
the fast–slow system has various complex bifurcation characteristics, which leads to the
diversification of the motion trajectory of the system. It is necessary to explore the bursting
oscillations under high codimension bifurcation and their mechanism.

The qualitative geometry of the flow in each bifurcation form can be obtained by
analyzing the dynamic characteristics of the normal form, thereby simplifying the process
of analyzing the existing system. Therefore, studying the bursting oscillation behavior of
normal form in a singular vector field with high codimension bifurcation has become one of
the hot topics [14,15]. The normal form is derived from a simple set of differential equations
that study the stability and bifurcation properties of a dynamic system near the equilibria.
In addition to the apparent reduction of high-dimensional systems, normal form theory can
also classify nonlinear dynamic systems based on the singularity in the unfolding. In recent
years, scholars have conducted in-depth research on the complex dynamic behavior of
vector fields under high codimension bifurcation. In studying the dynamics of the double
pendulum model, Mandadi and Huseyin proposed possible double zero bifurcation, zero-
Hopf bifurcation, and double Hopf bifurcation in the system [16]. Yu and Huseyin [17,18]
then derived the explicit expression of a singularity normal form with triple zero and
zero-zero-Hopf eigenvalues. They explored static and dynamic bifurcation properties
of singularity systems near the equilibria, but these results were limited to first-order
approximations. Yu and Bi [19] constructed a homogeneous polynomial for calculating the
coefficient of normal form using the Lie derivative as an operator for the singular vector
field with a Jordan block form in the linear part. They developed the MAPLE program of the
corresponding recursive algorithm and studied the dynamic characteristics of a triple zero
eigenvalue singularity perturbation model of the double pendulum system on its central
manifold. Then, the evolution of the limit cycle near the equilibria of a normal form under
the singularity condition is analyzed, and based on that, the complex dynamic behavior,
such as chaos induced by the period-doubling cascade, is discussed. Algaba et al. [20,21]
discovered similar movements while studying double-zero and triple-zero eigenvalue
singularity systems and found a class of global dynamic behavior between homoclinic and
heteroclinic orbits. Next, based on the NTT (nonlinear time transformation) method, they
derived a recursive algorithm for calculating the analytic formula of the global connection
curve of the high-order approximation symmetric Bogdanov–Takens normal form. The
theoretically derived phase trajectories can be well matched with the results of numerical
simulations [22].

The complex bifurcation characteristics under high codimension bifurcation will lead
to the more sophisticated dynamic behavior of fast–slow systems, so scholars at home
and abroad have carried out a lot of work studying the mechanism of high codimension
bifurcation in the occurrence of complex dynamics of singular systems. Duan et al. [23]
classified the burster pattern of the Chay neuron model and divided the bifurcation region
within the parametric plane to reveal the dynamical mechanism of bursting oscillations.
Next, based on a two-parameter bifurcation analysis, they also found that the codimension-
1 and codimension-2 bifurcations of the fast subsystem are essential for the transition
mechanisms between different firing activities. The bifurcation curves of the fast subsystem
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can provide crucial information about the possible types of bursting in the neuronal model
under given parameter conditions [24]. Braun and Mereu [25] analyze the zero-Hopf
bifurcation occurring in a 3D jerk system after persuading a quadratic perturbation of
the coefficients. The second-order averaging theory proves that up to three periodic
orbits are born as the perturbation parameter tends to zero. Bao et al. [26] presented
a new 5D two-memristor-based jerk (TMJ) system and emphatically studied complex
dynamical effects induced by the initial conditions of memristors and non-memristors
therein. Consequently, the dynamical effects of the initial conditions on the 5D TMJ system
are disclosed comprehensively. Golubitsky et al. [1] proposed a classification method of
bursting oscillation, which defined the codimension as the smallest codimension of the
first occurrence of singularity in the unfolding by changing the slow-varying unfolding
parameter and systematically classifying the currently known busting oscillators induced
by the bifurcation of codimension-1 and codimension-2. Saggio [27] conducted a similar
study, and they comprehensively classified the burster mode of the fast two-dimensional
subsystem on the spherical surface of the unfolding parameter.

This paper studies the bursting oscillation near the codimension-3 triple-zero bifurca-
tion point in the normal form of a singular vector with low-frequency excitation. The rest
of this paper is organized as follows: In Section 2, the specific version of the second-order
truncated normal form with triple zero eigenvalues singularity in the case of universal
folding is introduced. In Section 3, we consider the stabilities and bifurcations of the system
by regarding W = Asin(ωt) as the bifurcation parameter. In Section 4, the evolution of
system dynamics with the change of W = Asin(ωt) is analyzed by regarding W as a slow-
varying parameter, and the dynamical mechanism of bursting oscillations is investigated by
overlapping the transformed phase portrait and the equilibrium branch. Section 5 discusses
the chaos evolution caused by the period-doubling cascade. Finally, Section 6 concludes
the paper.

2. Mathematical Model

The normal form theory of vector fields provides an effective analytical method for
the in-depth study of the stability and bifurcation of high-dimensional nonlinear systems.
In addition to the apparent reduction of high-dimensional systems, normal form theory
can classify nonlinear dynamic systems according to the singularity in the unfolding. To
reveal the complex dynamics of high codimension systems under the effects of fast–slow
coupling, this paper analyzes the normal form of a singular vector field with triple zero
eigenvalues, the basic idea of which follows.

Consider the following general ODE (ordinary differential equation) system

ẋ = Lx + f(x), f ∈ Ck(Rn), (1)

where x ∈ Rn and k is a large number. Without losing the generality, let x = 0 be the
equilibrium point of the system, namely f(0) = 0.

Suppose that the Jordan form of the Jacobian matrix of the system (1) at the equilibrium
point is non-semisimple, i.e., it can be expressed as the following block matrix

L =

[
L0 0
0 L1

]
=

⎡
⎢⎢⎣

0 1 0 0
0 0 1 0
0 0 0 0
0 0 0 L1

⎤
⎥⎥⎦, (2)

where L1 has eigenvalues with nonzero real parts, which are given in Jordan canonical form.
Considering the normal form of the singular vector field under high codimension

bifurcation, the calculation of the normal form is complicated because the basis of the
corresponding nonlinear transformation is coupled during the calculation process. For
a system with the singularity of non-semisimple double zero eigenvalues, Kuznetsov
YA [28] analyzed the bifurcation characteristics of its critical normal form in detail. The
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results have been extended to the study of global bifurcation and chaos [29–32]. Based
on that, Baider and Sanders [33] give a complete formal classification of such systems.
For the normal form with the singularity of non-semisimple triple zero eigenvalues, this
paper refers to the calculation process proposed by Bi QS and Yu P [19] and introduces a
nonlinear transformation

w = u + ∑
k≥2

Pk(u) = u + P(u), (3)

where w is a variable on the central manifold, and the form of a homogeneous polynomial
constructed by a set of near-identity transformations is

DuH̄(u)L0u − LH̄(u) = f(u) − DuH̄(u)C(u) − C̄(u), (4)

calculating Equation (4) can explicitly express the singularity vector field and its corre-
sponding nonlinear transformation.

When the Jacobian matrix of system (1) has a zero real part of a non-semisimple, i.e., L0
is a non-semisimple form, then L0 can be decomposed into

L0 = S + N, (5)

where S = diag(λ1, λ2, . . . , λn0), and N has the form

Nij =

{
1 or 0, if i + 1 = j;

0, otherwise.
(6)

By sorting out the coefficients of the nonlinear term u1
m1 u2

m2 . . . un0
mn0 , Equation (6)

can be rewritten as

(λ0I − L)Hm̃ +
n0−1

∑
j=1

(L0)j(j+1)(mj + 1)Hm1m2...(mj+1−1)...(mn0 )
= f̃m̃ − C̄m̃, (7)

Equation (7) can be used to construct algebraic equations which decide the coefficients of
normal form with the singularity of triple zero eigenvalues. Then, by performing a series of
recursive operations, the explicit expression of the normal form will finally be obtained as

u̇1 = u2,
u̇2 = u3,

u̇3 =
∞
∑

j≥2

(C3,00(j−1)u3
j−1 + (

j
∑
l<j

C3,(j−i)0iu1
(j−l)u3

l

+
j

∑
l<(j−1)

(C3,(j−l−1)1iu1
j−l−1u2u3

l + C3,(j−l−2)2iu1
j−l−2u2

2u3
l)))

,
(8)

where j = 0, 1, 2, . . ..
Executing the recursive procedure with MAPLE yields the normal form of a singular

vector field truncated to the second order as

u̇1 = u2,
u̇2 = u3,
u̇3 = C3200u1

2 + C3020u2
2 + C3101u1u3,

(9)

where Ci, jkl are the coefficients of normal form.
Inspired by Murdock’s classical unfolding theory [34], the parameter perturbations

on constant and linear terms are introduced. Then, the first-order perturbation form of a
singular vector field with triple zero eigenvalues is obtained as

ẇ = Jw + F(w) + Q0ε + εTQ1w, (10)
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where ε = (ε1, ε2, ε3)
T . F(w) is the vector of nonlinear terms in the canonical form and

Q0 =

⎡
⎣ 0 0 0

0 0 0
1 0 0

⎤
⎦, Q1 =

⎡
⎣ 0 0 0

0 1 0
0 0 1

⎤
⎦, (11)

then Equation (9) can be rewritten as

ẋ = y,
ẏ = z,
ż = ε1 + ε2y + ε3z + C3200x2 + C3020y2 + C3101xz.

(12)

Introducing a parametric excitation to the system (12), the following non-autonomous
singular vector field is established as

ẋ = y,
ẏ = z,
ż = μ0 + (μ1 + W)x + μ2y + μ3z + αx2 + βy2 + γxz,
W = A sin(ωt),

(13)

where ω � 1, and the parametric excitation W can be expressed as
{

Ẇ = ωW1,
Ẇ1 = −ωW,

(14)

where W(0) = 0, W1(0) = A.
The system (13) can be treated as a fast–slow system, and W represents the slow

variable. Thus, according to the fast–slow analysis method [35], regarding W as a control
parameter, the bursting dynamics, especially the transition mechanisms, can be explored.

3. Bifurcation Analyses

Based on the fast–slow analysis method, the system (13) includes fast subsystems
that regard W as a control parameter. It can be seen that the equilibrium point of the fast
subsystem is in the form xE = (±x0, 0, 0), and its solution equation is

μ0 + (μ1 + W)xE + αxE
2 = 0, (15)

and the characteristic equation at the equilibrium point is

P = λ3 + D1λ2 + D2λ + D3, (16)

where D1 = −γxE − μ1, D2 = −μ1, and D3 = −2αxE − W − μ1.
Selecting the system parameter at μ1 = −0.1, μ2 = −0.16, μ3 = −0.16, α = −0.3,

γ = −15. According to the Hurwitz stability criterion, the stability condition of system
(14) is D3 > 0 and D1D2 − D3 > 0. At this point, the characteristics of the equilibrium
point of the system may change through two types of codimension-1 bifurcation. When
D3 = 0, the fold bifurcation may occur, and it will cause the transition between equilibria.
The nonhyperbolic condition is

fold : − 2αxfold − Wfold − μ1 = 0. (17)

Combining Equations (15) and (17) can obtain bifurcation sets

Wfold+ = 0.1 + 2
√−0.3μ0,

Wfold− = 0.1 − 2
√−0.3μ0,

(18)
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Wfold± represents the critical values of W corresponding to the fold bifurcation of the
positive and negative half-axis equilibrium point E±, respectively.

It should be noted that by substituting Wfold− and xfold− into Equation (15), the equilib-
rium of the negative half-axis of x is always unstable, so only the stability of the equilibrium
point E+ is analyzed below.

When D1D2 − D3 = 0, the Hopf bifurcation may occur at the equilibrium point.
The nonhyperbolic condition is

Hopf : (γμ2+2α)xHopf + μ2μ3 + μ1 + WHopf = 0. (19)

The Hopf bifurcation set can be obtained by solving Equations (15) and (19) simulta-
neously

μ0 − 0.004645866667 + 0.1106666667WHopf − 0.6481481482WHopf
2 = 0, (20)

and bursting oscillation occurs when the trajectory on the bifurcation parameters plane
crosses it.

When the parameter trajectories meet at the intersection of two codimension-1 bi-
furcations, fold-Hopf bifurcation may occur, and Hopf bifurcation conditions may also
degenerate, resulting in Bautin bifurcation. Here, we use the numerical simulation tool
MATCONT to perform codimension-2 bifurcation analysis.

Figure 1 shows a two-parameter bifurcation diagram of the system (13) in the (W, β)
plane. Due to the previous analysis, only the bifurcation behavior of equilibrium point
E+ is analyzed here. According to the numerical simulation, it can be obtained that at the
point (−0.13005, 7.6881)−(W, β), the first Lyapunov coefficient l1 shrinks to zero, which
means the Hopf bifurcation of E+ degenerates, and Bautin bifurcation occurs. Regard-
ing the formula for calculating the second Lyapunov coefficient proposed by Kuznetsov,
l2 = −63.89666 < 0 is obtained by numerical simulation. That is, the Bautin bifurcation
point GH+ = (−0.13005, 7.6881) in the (W, β) plane divides the Hopf bifurcation set H+

into two parts: supercritical Hopf bifurcation (β > 7.6881) and subcritical Hopf bifurcation
(β < 7.6881). To further reveal the mechanism of complex bursting oscillations caused by
the codimension-2 Bautin bifurcation, we consider the other dynamics of the system with
respect to parameter W = A sin(ωt) when β = 12 and β = 7.5, respectively.

Figure 1. Two-parameter bifurcation diagram in the (W, β) plane.

3.1. Bifurcation Analysis on (W, μ0) Plane for β = 12

Figure 2 divides the unfolding parameter plane into three regions by the Hopf and
fold bifurcation sets. The system dynamics will change accordingly when the unfolding
parameter trajectory crosses different areas.
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Figure 2. Two-parameter bifurcation diagram in the (W, μ0) plane for β = 12. (a) The framework of
the bifurcation diagram. (b) Local enlargement of the bifurcation diagram.

As shown in Figure 2, the system dynamics appear as a stable equilibrium point
in region 2©. When the unfolding parameter crosses through the Hopf bifurcation set
into region 1©, the supercritical Hopf bifurcation occurs, and the motion trajectory be-
haves as a stable limit cycle. It should be pointed out that when the parameter changes
to (0.0936, μ̃0)−(W, μ0), the bifurcation sets H+ and F+ intersect at the point ZH where
the fold-Hopf bifurcation occurs. Regarding the numerical simulation results, the corre-
sponding fold-Hopf bifurcation coefficients of critical normal form are s = −1, σ = 1.5.
In area 3© of Figure 2, the motion trajectory appears as a stable limit cycle LCZH in the
(x, y) plane. Further numerical simulation shows that LCZH will have the period-doubling
bifurcation of the limit cycle with the change of slow-varying parameters. Referring to
the bifurcation diagram on fold-Hopf bifurcation in the unfolding parametric plane in-
troduced by Kuznetsov, the system will exhibit more rich dynamics when slow-varying
parameter W crosses through different regions leading to more complex structures of
bursting oscillations.

Figure 3 shows the bifurcation diagram of the system (13) with the variation of slow-
varying parameters. The simultaneous Equations (15) and (20) obtain the coordinates
HB+ = (−0.130049, 0.113583) of the Hopf bifurcation point of equilibrium point E+ in the
(W, x) plane. The trajectory behaves as a stable limit cycle LC+ when the equilibrium
branch passes the bifurcation point HB+. It is worth noting that the numerical simulation
results show that LC+ will bifurcate at LCPD(W = −1.784), which will cause the motion
trajectory to evolve toward chaos through the period-doubling cascade.

Figure 3. Single-parameter bifurcation diagram on the (W, x) plane for β = 12.

3.2. Bifurcation Analysis on (W, μ0) Plane for β = 7.5

At β = 7.5, Figure 4 is almost close to Figure 2, but subtle differences remain. Figure 4b
shows that a subcritical Hopf bifurcation occurs when the trajectory of W crosses through
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the Hopf bifurcation set from region 2© to region 1©. The system behaves as an unstable
limit cycle LC1. According to the previous analysis, due to the first Lyapunov coefficient
failure, the Bautin bifurcation will occur at point GH+, resulting in a stable limit cycle LC2,
at which time the second Lyapunov coefficient is l2 < 0. During the movement of trajectory,
LC1 and LC2 disappear after colliding at LPC+ (W = −0.1295), creating a new stable limit
cycle LC3. This process is called FLC (fold bifurcation of the limit cycle).

Figure 4. Two-parameter bifurcation diagram on the (W, μ0) plane for β = 7.5. (a) The framework of
the bifurcation diagram. (b) Local enlargement of the bifurcation diagram.

Figure 5 also shows the bifurcation diagram of the system (13) when μ0 = 0.03. The
coordinates of the Hopf bifurcation point are HB+ = (−0.130049, 0.113583). It can be seen
that the fold bifurcation of the limit cycle will cause the structure of the spiking state of the
burster to be utterly different from that in the case of β = 12.

Figure 5. Single-parameter bifurcation diagram on the (W, x) plane for β = 7.5.

4. Evolution of Bursting Oscillations as Well as Their Mechanism

Based on the results of the above analysis, this section will further explore the influence
of bifurcation behavior in different regions on the fast–slow effect of the system (13). Here,
we also consider the evolution of dynamics in the case of β = 12 and β = 7.5 with the
change of the amplitude of the slow-varying parameter W, respectively.

In Figure 6, as the control parameters W = Asin(ωt) change, the vertical axis is
divided into three areas: red, green, and blue, corresponding to different access modes.
Considering the excitation frequency ω � 1, the equilibrium branch will slowly cross the
corresponding region differently with the excitation amplitude A change, showing various
dynamic characteristics.
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Figure 6. The trace path of the equilibrium branch as it changes with W. (a) The case for β = 7.5.
(b) The case for β = 12.

When A < |WZH |, the slow-varying excitation W = Asin(ωt) will periodically visit
the blue area in Figure 6, where the motion trajectory is presented as a stable focus, and no
bursting oscillation occurs.

When A > |WZH |, the red line in Figure 6 represents the curve of W for A = 0.1, and it
can be seen that the control parameter W will visit the blue and green regions over time.
Since the bifurcation sets H+ and F+ intersect at a point in the green area, the codimension-2
fold-Hopf bifurcation will occur. With the perturbance of the high-order term of the system,
the trajectory near the equilibria will periodically cross the fold-Hopf bifurcation point,
resulting in the motion trajectory near the equilibria appearing as a limit cycle in the (x, y)
plane and a stable focus in the (y, z) plane, respectively. The phase portraits of the motion
trajectory in different planes and the corresponding time history are performed in Figure 7.
In this case, no bursting oscillation occurs.

Figure 7. The phase portrait of system trajectory and its time history for A = 0.1. (a) The phase
portrait on the (x, y) plane. (b) The phase portrait on the (y, z) plane. (c) The time history of x(t).
(d) The time history of y(t).

When A >
∣∣∣WHop f

∣∣∣, the blue line in Figure 6 represents the curve of slow-varying
excitation for A = 0.3, at which time the control parameters will visit the blue, green,
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and red regions periodically so that the system dynamics behavior is affected by three areas
and bursting oscillations will occur at the single equilibrium point E+.

Here, the TPP (transformed phase portrait) is used to reveal the dynamical mechanism
of the bursting oscillation behavior of the system. TPP can be defined as

∏
G

= [X(t), W] = [x(t), y(t), z(t), A sin(ωt)], ∀t = R (21)

Equation (21) yields the trajectory of the slow-changing parameters associated with each
variable of the system (13) in each subplane projection, such as (W, x)−plane, (W, y)−plane,
and (W, z)−plane. Therefore, the TPP is believed to present the evolution process of
bursting oscillation and reveals the corresponding induction mechanism. Furthermore,
here, we overlap the TPP and the equilibrium branch on the (W, x)−plane to demonstrate
the characteristics of the equilibrium point and its bifurcation mechanism when bursting
oscillation occurs.

4.1. Bursting Oscillation for β = 7.5 as Well as the Mechanism

Let A = 0.3, and as the slow-variable parameter W changes, the movement trajectory
will periodically visit the blue, green, and red regions in Figure 6a. Combined with the
bifurcation diagram shown in Figure 4 in the previous section, we can find that in the
region 1©, the equilibrium branch of the system will cross the Hopf bifurcation point with
the change of W, at which point the trajectory behaves as an unstable limit cycle LC1.
As the parameters change, the Hopf bifurcation will degenerate, and a stable limit cycle
LC2 will be generated at the degenerate Hopf bifurcation point GH+. In Figure 6a, when
W > |WLPC|, as W changes further, the two limit cycles will collide, and the limit cycle will
bifurcate at position LPC, resulting in a stable limit cycle LC3.

As can be seen from Figure 8, the fast–slow effect occurs between the limit cycle
generated by the bifurcation of Hopf and the fold-Hopf bifurcation, resulting in bursting
oscillations, and each oscillation period can be divided into the spiking state and the quies-
cent state. To reveal the essential characteristics of the spiking state, here, the Stroboscopic
method is used to obtain the trajectory of the Poincaré mapping

∑= [(x, y, z)|t = t0 + 2Nπ/ω, N = 1, 2, . . .]. (22)

Figure 9 shows the cross-section of the motion trajectory for one period, and it can be
found that the spiking state behaves as a quasi-periodic characteristic. Further numerical
calculations show that the corresponding two oscillation frequencies approximate the
frequency of the stable limit cycle generated by the subcritical Hopf in the red region
and the frequency of the limit cycle caused by the fold-Hopf bifurcation in the green area.
Therefore, from the structural point of view of bursting oscillation, the burster can be
classified as a quasi-periodic Point–Cycle–Cycle type.

As performed in Figure 10, overlapping the TPP and the equilibrium branch in the
(W, x) plane, the dynamical mechanism of bursting oscillation can be revealed. Suppose
that the motion of the system (13) starts from region 2©, and the trajectory moves to the
left along the stable equilibrium branch EB+2, which appears as a quiescent state. When
the trajectory moves to the subcritical Hopf bifurcation point at HB+, the trajectory will
cross this bifurcation point and move along EB+1 for a while, which is due to the fact that
the slow passage effect affects the bifurcation. Some studies in the literature believe that
this is in terms of the action of motion inertia, which is affected by factors such as initial
value, excitation frequency, and amplitude, which are not discussed here. The effect of
Hopf bifurcation occurs after the trajectory passes through the bifurcation delay region in
Figure 10, causing the trajectory to jump to the unstable limit cycle LC1 and move to the
right. When W changes to W = WLPC, FLC will occur, causing the unstable limit cycle LC1
to disappear after colliding with the stable limit cycle LC2 and, at the same time, generating
a stable limit cycle LC3 in the direction of the left, and the motion trajectory will oscillate
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according to the stable limit cycle LC3, showing a spiking state. When the slow-varying
parameter W changes to the minimum value at W = −0.3, the trajectory turns, and the slow
passage effect of the Hopf bifurcation at point HB+ makes the amplitude of the trajectory
oscillation gradually decreases with the change of W. As W changes, the trajectory will
pass through region 2©, enter region 3©, transition to the limit cycle generated by the
codimension-2 fold-Hopf bifurcation, and continue oscillating according to the limit cycle,
at which point the motion of system still behaves as a spiking state. When the slow-varying
parameter W changes to the maximum value W = 0.3, the trajectory will gradually settle
down to the stable equilibrium branch EB+2 after turning. The trajectory of the system
completes a period of bursting oscillations.

Figure 8. The bursting oscillation for A = 0.3. (a) The phase portrait on the (x, y) plane. (b) The
phase portrait on the (y, z) plane. (c) The time history of x(t). (d) The time history of y(t).

Figure 9. The trajectory of Poincaré mapping corresponding to the bursting oscillations for A = 0.3.
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Figure 10. TPP on the (W, x) plane for A = 0.3. (a) The framework of the TPP. (b) Local enlargement
of the TPP.

In general, the trajectory of bursting oscillation is divided into three parts. Firstly,
the trajectory moves along the stable equilibrium branch EB+2 in region 2©. Secondly,
the trajectory oscillates according to the stable limit cycle after passing through the subcriti-
cal Hopf bifurcation and FLC in the region 1©. Finally, the trajectory oscillates in the region
3© by the limit cycle generated by the codimension-2 fold-Hopf bifurcation.

According to the classification method on bursting oscillation proposed by Izhike-
vich, the oscillation can be called subHopf/FLC/fold-Hopf bursting from the bifurcation
mechanism. Meanwhile, from the geometric structure, it can be called a quasi-periodic
Point–Cycle–Cycle burster.

The TPP will expand to the left and right as the excitation amplitude increases. Like-
wise, the trajectory near the equilibria will periodically visit the blue, green, and red regions
in Figure 6a. Figure 11 shows the trajectory structure of the system in the (x, y) plane
when A = 2.0 and the corresponding time history. As the slow-varying parameter W
changed, the trajectory behaved as a spiking state at all times in the oscillation period.
The burster on the spiking state SP− presents a period-doubling characteristic. This is
caused by the interaction between the limit cycle induced by the fold-Hopf bifurcation of
the codimension-2 and the limit cycle generated by the Hopf bifurcation.

Figure 11. The bursting oscillation for A = 2.0. (a) The phase portrait on the (x, y) plane. (b) The
time history of z(t).

Similarly, Figure 12 shows the superposition of the TPP and equilibrium branch in
the (W, x) plane when the amplitude of the slow-varying excitation changes to A = 2.0.
It can be seen in the figure that the trajectory of the system motion is almost the same
as when A = 0.3. When the trajectory moves to region 3© with the change of W, it
oscillates according to the limit cycle generated by the fold-Hopf bifurcation, and the
system behaves as a spiking state. The trajectory turns and begins to converge toward
the stable equilibrium branch EB+2 when W increases to the maximum value. Before
converging to EB+2, the trajectory moves to a stable limit cycle LC3 after it crosses through
the Hopf bifurcation point HB+ and bifurcation delay region, and it oscillates according
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to the limit cycle LC3, at which point the system continues to exhibit a spiking state. This
buster can be called a subHopf/FLC/fold-Hopf burster of Cycle–Cycle type.

Figure 12. TPP on the (W, x) plane for A = 2.0. (a) Framework of the TPP. (b) Local enlargement of
the TPP.

4.2. Bursting Oscillation for β = 12 as Well as the Mechanism

In this case, set A = 0.3. As shown in Figure 6b, with the changing of the W = Asin(ωt),
the equilibrium branch of the system will periodically visit regions blue, green, and red
sequentially. Figure 13 shows the structure of the trajectory of the system motion in the
(x, y) plane and the (y, z) plane, respectively, and the corresponding time history has
also been given. It can be seen from Figure 13c,d that when A = 0.3, with the change
of β, the mode of the spiking state of bursting oscillation due to codimension-2 Bautin
bifurcation will change qualitatively, where the red curve represents β = 7.5, and the blue
curve represents β = 12.

Figure 13. The bursting oscillation for A = 0.3. (a) The phase portrait on the (x, y) plane. (b) The
phase portrait on the (y, z) plane. (c) Overlap of the time history of x(t). (d) Overlap of the time
history of y(t).
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Figure 14 shows Poincaré mapping (22) of the oscillation trajectory of one period,
in which it can be found that the spiking state behaves as a quasi-periodic characteristic.
Therefore, the structure of the bursting oscillation is the Point–Cycle–Cycle type in this case.

Figure 15 shows the superposition of the TPP and the equilibrium branch on the
(W, x) plane. At A = 0.3, as W changes, the motion trajectory will periodically traverse
regions 2©, 1©, and 3© in Figure 15. Assuming that the starting point of the movement of the
system (13) is in region 2©, the trajectory will move to the left along the stable equilibrium
branch EB+2. The system will be quiescent, which can also be confirmed by the x(t) time
history in Figure 13c. By changing W, the supercritical Hopf bifurcation occurs at the
bifurcation point HB+. Due to the delayed effect of the bifurcation, the trajectory will
continue to move in the region 1© along the unstable equilibrium branch EB+1. When the
trajectory crosses the bifurcation delay region in Figure 15b, it will jump to the limit cycle
LC+, causing the trajectory to transition between the spiking state and the quiescent state,
and the trajectory will oscillate along LC+. At the minimum value of W, the trajectory
turns the right and oscillates along LC+. As the slow-varying parameter W changes in
the region 3©, the codimension-2 fold-Hopf bifurcation will cause the trajectory to jump
toward a stable limit cycle, behaving as a spiking state. When W arrives at the maximum,
the trajectory shifts to the left and gradually converges to a stable equilibrium branch,
completing one period of bursting oscillation.

Figure 14. Poincaré mapping (22) for A = 0.3.

Figure 15. TPP on the for (W, x) plane. (a) The framework of the TPP. (b) Local enlargement of
the TPP.

The trajectory of bursting oscillation is generally divided into three parts. Firstly,
the trajectory moves along the stable equilibrium branch EB+1 in region 2©. Secondly, it
oscillates according to the stable limit cycle after passing through the supercritical Hopf
bifurcation in region 1© and finally oscillates in region 3© around the limit cycle generated
by the codimension-2 fold-Hopf bifurcation.
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Due to the interaction between the limit cycle induced by the fold-Hopf bifurcation
and the limit cycle generated by the Hopf bifurcation, the spiking state presents a quasi-
period characteristic. In this case, the burster can be classified as supHopf/fold-Hopf
bursting of Point–Cycle–Cycle type.

As the excitation amplitude A increases, the region the trajectory visits no longer
changes. Still, its motion pattern changes, and Figure 16 shows the bursting oscillation
when A = 2.0. From the time history of x(t) in Figure 16, unlike the case of A = 0.3, it can
be seen that the motion trajectory of the system has been excited at all times. Meanwhile,
the trajectory exhibits period-doubling characteristics due to the interaction between the
limit cycle generated by the Hopf bifurcation and the limit cycle caused by the fold-Hopf
bifurcation. This can also be verified from the time history of the spiking state of bursting
oscillation in Figure 16b. The period-doubling characteristic can also be verified by the
Poincaré mapping of the oscillation trajectory of the burster, which is shown in Figure 17.
Consequently, it can be considered that the motion of the system at this time is quasi-period
bursting with period-doubling characteristics.

Figure 16. The bursting oscillation for A = 2.0. (a) The phase portrait on the (x, y) plane. (b) The time
history of x(t).

Figure 17. Poincaré mapping (22) for A = 2.0.

To reveal the mechanism of bursting behavior, as performed in Figure 18, we overlap
the TPP and the equilibrium branch. It can be seen that the trajectory of the system motion
is almost the same as when A = 0.3. We assume that the starting point of the trajectory
is in region 2©. When the slow-varying parameter W changes to W = −1.784, the period-
doubling bifurcation of the limit cycle will occur, causing the trajectory to present as Torus.
It should be noted that since the inertia of the movement of the system increases with the
increase of the excitation amplitude, the trajectory jumps to a stable limit cycle LC+ before
converging to the equilibrium branch and oscillates according to the limit cycle LC+. At
that time, the system continues to exhibit a spiking state. As W changes, the trajectory
returns to region 2©, completing one period of bursting oscillation.
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Figure 18. TPP for the (W, x) plane for A = 2.0. (a) The framework of the TPP. (b) Local enlargement
of the TPP.

5. Evolution of Chaos

This section discusses the evolution of the dynamical behavior when the fast–slow
effects change. According to geometric singular perturbation theory, slow manifolds
determine the trajectory of the entire fast–slow system, while fast manifolds can be seen
as minor perturbations of slow systems. Therefore, in this section, the evolution of the
dynamics of the whole system is analyzed by increasing the frequency ω of the slow
variable W. A set of chaotic bursting phenomena induced by the period-doubling cascade
of the limit cycle is also deduced.

Let β = 12 and set the excitation amplitude at A = 1.0. Figure 19 shows the trajectory
of bursting oscillation with different ω values in the (x, y) plane. The corresponding
Poincaré cross-section is given in Figure 20.

When ω = 0.005, from Figure 19a,b, it can be found that the trajectory of the system
(13) behaves as a bursting oscillation of a quasi-periodic Cycle–Cycle type. As shown in
Figure 19c, when ω increases to ω = 0.006, the trajectory of the bursting presented in the
(x, y) plane appears as a doubling period, which is verified by the Poincaré mapping of
the trajectory corresponding to the bursting oscillation in Figure 19d. Combined with the
analysis of Section 3, with the change of unfolding parameters, the limit cycle generated
by the codimension-2 fold-Hopf bifurcation evolves to the Torus, resulting in the bursting
oscillation present as Torus–Torus type.

As W increases, the trajectory of motion of the system (13) will evolve toward periodic
oscillation. Figure 20 shows that the scale difference between the frequency of the spiking
state SP+ and SP− of the burster is gradually disappearing. From the time history of x(t) in
Figure 20b,d, the difference in time scale between the two spiking states still exists, so it can
be considered that the motion trajectory of the system at this time is a bursting oscillation.
Figure 20a,c show that the trajectory of the burster is period-4 for ω = 0.024 and period-8
for ω = 0.026, respectively. When ω increases to ω = 0.037, the trajectory of bursting in
the (x, y) plane appears irregular, which can be verified in Figure 20f. At this point, it can
be considered that the motion of the system evolved from the period-doubling cascade to
chaotic bursting.

As ω increases further, the scale differences between the fast and slow subsystems
will disappear completely, and Figure 21 also deduces a set of chaotic motions induced by
the period-doubling cascade. The corresponding ω are ω = 0.109 (period-2), ω = 0.111
(period-4), ω = 0.112 (period-8) and ω = 0.113 (chaos), respectively.
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Figure 19. Evolution of bursting oscillations with period-doubling. (a) Quasi-period bursting for
ω = 0.005. (b) Poincaré mapping (22) for ω = 0.005. (c) Quasi-period bursting for ω = 0.006.
(d) Poincaré mapping (22) for ω = 0.006 as well as the time history of x(t).

Figure 20. Cont.
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Figure 20. The evolution of a period-doubling cascade to chaotic bursting. (a) Bursting with period
doubling for ω = 0.024. (b) Poincaré mapping (22) for ω = 0.024 as well as the time history of x(t).
(c) Bursting with period doubling for ω = 0.026; (d) Poincaré mapping (22) for ω = 0.026 as well as
the time history of x(t). (e) Chaotic bursting; (f) Poincaré mapping (22) for ω = 0.037 as well as the
time history of x(t).

Figure 21. The evolution of a period-doubling cascade to chaos. (a) PD-2 for ω = 0.109. (b) PD-4 for
ω = 0.111. (c) PD-8 for ω = 0.112. (d) Chaos for ω = 0.113.

6. Conculusions

This paper mainly studies the bursting oscillations and their dynamical mechanism
of the second-order truncated triple zero eigenvalues singularity normal form under the
unfolding form. Based on the fast–slow analysis method, considering the order gap between
excitation and natural frequency, the singular system with parametric excitation can be
viewed as a generalized autonomous system. The evolution of system dynamics and the
mechanism are analyzed regarding periodic parameter excitation W = Asin(ωt) as a slow-
varying bifurcation parameter. The system exhibits various bursting oscillation patterns
when the slow-varying parameters visit different dynamical regions in the two-parameter
plane. In particular, due to the singularity of the triple zero eigenvalues, two types of
degeneration will occur in the Hopf bifurcation at the equilibrium point of the system,
namely the codimension-2 fold-Hopf bifurcation and the Bautin bifurcation, which makes
the dynamic behavior change from simple to complex. More diverse structures of the
spiking state of bursting oscillation will occur at the single equilibria due to the complexity
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of the singularity of high codimension bifurcation, such as Cycle–Cycle burster, Torus–
Torus burster, and chaotic bursting. With the increase of the approximate order of normal
form, the number of equilibrium points of the system will increase, and the difficulty
of bifurcation analysis will also increase, so the dynamical mechanism corresponding to
bursting oscillations will also become complex, and related research needs to be further
carried out.
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13. Boussaada, I.; Morărescu, I.-C.; Niculescu, S. Inverted pendulum stabilization: Characterization of codimension-three triple zero

bifurcation via multiple delayed proportional gains. Syst. Control Lett. 2015, 82, 1–9. [CrossRef]
14. Xue, M.; Gou, J.; Xia, Y.; Bi, Q. Computation of the normal form as well as the unfolding of the vector field with zero-zero-Hopf

bifurcation at the origin. Math. Comput. Simul. 2021, 190, 377–397. [CrossRef]
15. Zhang, M.; Zhang, X.; Bi, Q. Slow–Fast Behaviors and Their Mechanism in a Periodically Excited Dynamical System with Double

Hopf Bifurcations. Int. J. Bifurc. Chaos 2021, 31, 2130022. [CrossRef]
16. Mandadi, V.; Huseyin, K. Non-linear bifurcation analysis of non-gradient systems. Int. J. Non-Linear Mech. 1980, 15, 159–172.

[CrossRef]
17. Yu, P.; Huseyin, K. Bifurcations associated with a three-fold zero eigenvalue. Q. Appl. Math. 1988, 46, 193–216. [CrossRef]

84



Mathematics 2023, 11, 2486

18. Yu, P.; Huseyin, K. Bifurcations associated with a double zero of index two and a pair of purely imaginary eigenvalues. Int. J.
Syst. Sci. 1988, 19, 1–21. [CrossRef]

19. Bi, Q.; Yu, P. Computation of normal forms of differential equations associated with non-semisimple zero eigenvalues. Int. J.
Bifurc. Chaos 1998, 8, 2279–2319. [CrossRef]

20. Freire, E.; Gamero, E.; Rodríguez-Luis, A.J.; Algaba, A. A note on the triple-zero linear degeneracy: Normal forms, dynamical
and bifurcation behaviors of an unfolding. Int. J. Bifurc. Chaos 2002, 12, 2799–2820. [CrossRef]

21. Algaba, A.; Domínguez-Moreno, M.C.; Merino, M.; Rodríguez-Luis, A.J. Takens–Bogdanov bifurcations of equilibria and periodic
orbits in the Lorenz system. Commun. Nonlinear Sci. Numer. Simul. 2016, 30, 328–343. [CrossRef]

22. Algaba, A.; Chung, K.-W.; Qin, B.-W.; Rodríguez-Luis, A.J. Computation of all the coefficients for the global connections in the
Z2-symmetric Takens-Bogdanov normal forms. Commun. Nonlinear Sci. Numer. Simul. 2020, 81, 105012. [CrossRef]

23. Duan, L.; Lu, Q.; Wang, Q. Two-parameter bifurcation analysis of firing activities in the Chay neuronal model. Neurocomputing
2008, 72, 341–351. [CrossRef]

24. Duan, L.; Lu, Q.; Cheng, D. Bursting of Morris-Lecar neuronal model with current-feedback control. Sci. China Ser. E Technol. Sci.
2009, 52, 771–781. [CrossRef]

25. Braun, F.; Mereu, A.C. Zero-Hopf bifurcation in a 3D jerk system. Nonlinear Anal. Real World Appl. 2021, 59, 103245. [CrossRef]
26. Bao, H.; Ding, R.; Hua, M.; Wu, H.; Chen, B. Initial-condition effects on a two-memristor-based Jerk system. Mathematics 2022,

10, 411. [CrossRef]
27. Saggio, M.L.; Spiegler, A.; Bernard, C.; Jirsa, V.K. Fast–slow bursters in the unfolding of a high codimension singularity and the

ultra-slow transitions of classes. J. Math. Neurosci. 2017, 7, 7. [CrossRef]
28. Kuznetsov, Y.A. Elements of Applied Bifurcation Theory, 2nd ed.; Springer: New York, NY, USA, 2011.
29. Sen, D.; Ghorai, S.; Banerjee, M.; Morozov, A. Bifurcation analysis of the predator–prey model with the Allee effect in the predator.

J. Math. Biol. 2022, 84, 7. [CrossRef]
30. Yang, R. Turing–Hopf bifurcation co-induced by cross-diffusion and delay in Schnakenberg system. Chaos Solitons Fractals 2022,

164, 112659. [CrossRef]
31. Maleki, F.; Beheshti, B.; Hajihosseini, A.; Lamooki, G.R.R. The Bogdanov–Takens bifurcation analysis on a three dimensional

recurrent neural network. Neurocomputing 2010, 73, 3066–3078. [CrossRef]
32. Perko, L.M. A global analysis of the Bogdanov–Takens system. SIAM J. Appl. Math. 1992, 52, 1172–1192. [CrossRef]
33. Baider, A.; Sanders, J.A. Further reduction of the Takens-Bogdanov normal form. J. Differ. Equ. 1992, 99, 205–244. [CrossRef]
34. Murdock, J. Asymptotic unfoldings of dynamical systems by normalizing beyond the normal form. J. Differ. Equ. 1998, 143,

151–190. [CrossRef]
35. Rinzel, J. Formal classification of bursting mechanisms in excitable systems. In Lecture Notes in Biomathematics; Teramoto, E.,

Yamaguti, M., Eds.; Springer: Berlin, Germany, 1987; pp. 267–281.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

85



mathematics

Article

Investigating Symmetric Soliton Solutions for the Fractional
Coupled Konno–Onno System Using Improved Versions of a
Novel Analytical Technique

Humaira Yasmin 1,*, Noufe H. Aljahdaly 2, Abdulkafi Mohammed Saeed 3 and Rasool Shah 4

1 Department of Basic Sciences, Preparatory Year Deanship, King Faisal University,
Al-Ahsa 31982, Saudi Arabia

2 Department of Mathematics, Faculty of Sciences and Arts, King Abdulaziz University,
Rabigh 21911, Saudi Arabia; nhaljahdaly@kau.edu.sa

3 Department of Mathematics, College of Science, Qassim University, Buraydah 51452, Saudi Arabia;
abdulkafi.ahmed@qu.edu.sa

4 Department of Mathematics, Abdul Wali Khan University, Mardan 23200, Pakistan;
rasoolshah@awkum.edu.pk

* Correspondence: hhassain@kfu.edu.sa

Abstract: The present research investigates symmetric soliton solutions for the Fractional Coupled
Konno–Onno System (FCKOS) by using two improved versions of an Extended Direct Algebraic
Method (EDAM) i.e., modified EDAM (mEDAM) and r+mEDAM. By obtaining precise analytical
solutions, this research explores the characteristics and behaviours of symmetric solitons in FCKOS.
Further, the amplitude, shape and propagation behaviour of some solitons are visualized by means
of a 3D graph. This investigation fosters a more thorough comprehension of non-linear wave
phenomena in considered systems and offers helpful insights towards soliton behavior in it. The
outcomes reveal that the recommended techniques are successful in constructing symmetric soliton
solutions for complex models like the FCKOS.
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1. Introduction

Fractional Partial Differential Equations (FPDEs) have attracted a great deal of interest
due to their capacity to explain different complicated phenomena that display memory
effects, long-range interactions, and anomalous diffusion [1–6]. The importance of FPDEs
lies in their capacity to offer more precise and realistic models for a variety of natural and
artificial systems [7–12]. In view of such applications, researchers have taken an active
interest to address FPDEs with the help of two different approaches called numerical and
analytical methods [13–19]. Researchers are more interested in examining analytic solutions
to FPDEs than numerical ones as analytical solutions provide more thorough understand-
ings of the characteristics and behaviour of the system, enabling a better comprehension
of the underlying mechanisms [20–22]. Secondly, analytical solutions offer computational
efficiency, making it possible to do calculations and computations more quickly than with
numerical approaches, particularly for FPDEs that are more straightforward or idealised.
Therefore, many analytical methodologies like the (G’/G)-expansion method [23], method
of homotopy perturbation [24], variational iteration method [25], exp-function method [26],
He’s semi-inverse method [27], tan-expansion method [28], EDAM [29] etc. were developed
to solve FPDEs analytically [30–35].
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The coupled integrable dispersion-less system known as the Coupled Konno–Oono
System (CKOS) was developed by Konno and Oono [36]. The behaviour of a current-fed
string interacting with an external magnetic field and the parallel transport of a curve’s
points along the direction of time with a magnetic-valued connection are two examples
where it has been researched. The importance of the CKOS may be attributed to both
its integrability characteristics and its applicability to certain physical phenomena. Inte-
grability’s property of the system means that the system has conserved quantities and
symmetries. This knowledge may find applications in electromagnetism, materials science,
or solid-state physics depending on the particular system being modelled. The CKOS is
presented as [37]:

uxt(x, t)− 2u(x, t)v(x, t) = 0,

vt(x, t) + 2u(x, t)ux(x, t) = 0.
(1)

Due to its benefits in mathematical modelling, memory effects, generalisation and
flexibility, accuracy and precision, as well as control and optimisation, the fractional form
of the CKOS, i.e., FCKOS is favoured in this study. Fractional derivatives offer a more
precise illustration of intricate physical processes and more truly portray the behaviour
of the system. Memory effects, which are common in real-world systems, are also taken
into account by fractional derivatives, allowing the system to preserve knowledge from
the past. In comparison to integer-order models, fractional models are more accurate and
precise and better fit experimental data. Additionally, using a fractional form allows for the
use of cutting-edge control and optimisation methods for improved system performance
and stability. The mathematical form of FCKOS is presented as below [38]:

uαβ
xt (x, t)− 2u(x, t)v(x, t) = 0,

vβ
t (x, t) + 2u(x, t)uα

x(x, t) = 0,
(2)

where 0 < α, β ≤ 1. The functions u(x,t) and v(x,t) present the displacements of two par-
ticles that interact in a medium with fractional derivatives. Before this research work,
many researchers have tackled both CKOS and FCKOS with the help of different analytical
methods; in [39] Kocak et al. have utilized modified exp-function method to obtain travel-
ling wave solution for the CKOS. The exact solutions to the CKOS have been developed
via the tanh-function and extended tanh-function approaches in [40]. By employing He’s
variational technique, Elbrolosy and Elmandouh have studied dynamical behaviour of
conformable time-fractional coupled Konno–Oono equation in magnetic field in [38]. Aliza-
mini et al. in [37] have utilized simple EDAM to address CKOS in integer order and have
obtained only one set of solution for CKOS by supposing U(ϕ) = ∑n

l=0 al(G(ϕ))l series
form solution. It was found by comparison that their all obtained closed form solutions
can be obtained from our employed mEDAM version second case’s solution for letting
α = β = 1 thus, their study is the special subcase of our work.

The aim of this study is to construct symmetric soliton solutions for FCKOS via two
improved variants of EDAM called mEDAM and r + mEDAM. EDAM is a novel analytical
method for solving FPDEs. It applies variable transformations to turn FPDEs into nonlinear
Ordinary Differential Equations (NODEs) and then assumes a series form solution to
turn these NODEs into a system of algebraic equations. The obtained system of algebraic
equations is then solved to obtain families of soliton (also called solitary waves) solutions for
FPDEs.A soliton represents a self-sustaining wave that does not dissipate or spread out and
keeps its shape and speed. It engages in interaction with other solitons while maintaining
its uniqueness and displaying stability. Solitons have special features because of the precise
balance between nonlinearity and dispersion. They are investigated in several domains to
improve our knowledge of wave behaviour, nonlinear dynamics, and integrable systems.
They have practical uses in communication networks, water channels, and biological
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modelling. Solutions from soliton offer perceptions into the underlying physical operations
and system operation.

The derivative operator proposed by Caputo is used to define the fractional derivatives
found in (2). This derivative operator is shown as below [41]:

Dσ
s z(s, t) =

⎧⎨
⎩

1
Γ(1−σ)

∫ s
0

∂
∂ρ z(t,ρ)
(s−ρ)σ dρ, σ ∈ (0, 1)

∂z(s,t)
∂s , σ = 1

(3)

where the function z(x, t) is suitably smooth. To transform FPDEs present in (2) into
NODEs, we use the following two properties of this operator:

Dσ
ϕ ϕk =

Γ(1 + k)
Γ(1 + k − σ)

ϕk−σ, (4)

Dσ
ϕy[x(ϕ)] = y′x(x(ϕ))Dσ

ϕx(ϕ) = Dσ
x y(x(ϕ))[x′(ϕ)]σ, (5)

where k ∈ R and y(ϕ) and x(ϕ) are differentiable functions.

2. Method and Materials

In this section, the working methodology of EDAM is outlined. Consider the following
general FPDE [42]:

Q(Φ, ∂α
t Φ, ∂

β
x1 Φ, ∂

γ
x2 Φ, Φ∂

β
x1 Φ, . . .) = 0, 0 < α, β, γ ≤ 1, (6)

where Φ is a function of t and x1, x2, x3, . . . , xm.
To solve (6), we take the following steps:

1. Firstly, a variable transformation of the form Φ(t, x1, x2, x3, . . . , xm) = U(ϕ),
ϕ = ϕ(t, x1, x2, x3, . . . , xm), (where ϕ can be described in different ways) is carried out
to transform (6) into a NODE of the form:

T(U, U′, U′U, . . . ) = 0, (7)

where derivatives of U in (7) are with regard to ϕ. Equation (7) can be integrated one
or more times occasionally to acquire integration’s constant.

2. According to the version of EDAM, we assume one of the following solution for (7):

1. mEDAM suggests the following series form solution:

U(ϕ) =
n

∑
l=−n

al(G(ϕ))l , (8)

2. r + mEDAM suggests the following series form solution:

U(ϕ) =
n

∑
l=−n

al(r + G(ϕ))l , (9)

where al(l = n, . . . ,−1, 0, 1, . . . , n) are unknown constants to be determined later,
and G(ϕ) is the general solution of the following ODE:

G′(ϕ) = Ln(μ)(A + BG(ϕ) + C(G(ϕ))2), (10)

where μ �= 0, 1 and A, B and C are in variables.

3. Taking the homogeneous balance between the highest order derivative and the great-
est nonlinear term in (7) gives the positive integer n presented in (8) and (9).

4. After that, we put (8) or (9) into (7) or in equation generated by integrating (7)
and then we collect all the terms of (G(ϕ)) of the same order which turn out an
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expression in (G(ϕ)). By the principle of comparing the coefficient, we equate all the
coefficients in the expression to zero, which yields a system of algebraic equations in
al(l = −n, . . . − 1, 0, 1, . . . , n) and other parameters.

5. We employ Maple software to solve this system of algebraic equations.
6. The symmetric soliton solutions to (6) are then investigated by calculating the un-

known coefficients and other parameters and putting them in (8) or (9) along with the
U(ϕ)(general solution of (10)). By this general solution of (10), the following families
of soliton solutions can be generated:

Family. 1: When R < 0 C �= 0 then we obtain the subsequent family of soliton solutions:

U1(ϕ) = − B
2C

+

√−R tanμ

(
1/2

√−Rϕ
)

2C
,

U2(ϕ) = − B
2C

−
√−R cotμ

(
1/2

√−Rϕ
)

2C
,

U3(ϕ) = − B
2C

+

√−R
(
tanμ

(√−Rϕ
)± (√pq secμ

(√−Rϕ
)))

2C
,

U4(ϕ) = − B
2C

−
√−R

(
cotμ

(√−Rϕ
)± (√pq cscμ

(√−Rϕ
)))

2C
,

and

U5(ϕ) = − B
2C

+

√−R
(
tanμ

(
1/4

√−Rϕ
)− cotμ

(
1/4

√−Rϕ
))

4C
.

Family. 2: When R > 0 C �= 0 then we obtain the subsequent family of soliton solutions:

U6(ϕ) = − B
2C

−
√

R tanhμ

(
1/2

√
Rϕ
)

2C
,

U7(ϕ) = − B
2C

−
√

R cothμ

(
1/2

√
Rϕ
)

2C
,

U8(ϕ) = − B
2C

−
√

R
(

tanhμ

(√
Rϕ
)
±
(√

pqsechμ

(√
Rϕ
)))

2C
,

U9(ϕ) = − B
2C

−
√

R
(

cothμ

(√
Rϕ
)
±
(√

pqcschμ

(√
Rϕ
)))

2C
,

and

U10(ϕ) = − B
2C

−
√

R
(

tanhμ

(
1/4

√
Rϕ
)
− cothμ

(
1/4

√
Rϕ
))

4C
.

Family. 3: When AC > 0 and B = 0 then we obtain the subsequent family of soliton solutions:

U11(ϕ) =

√
A
C

tanμ

(√
ACϕ

)
,

U12(ϕ) = −
√

A
C

cotμ

(√
ACϕ

)
,

U13(ϕ) =

√
A
C

(
tanμ

(
2
√

ACϕ
)
±
(√

pq secμ

(
2
√

ACϕ
)))

,

U14(ϕ) = −
√

A
C

(
cotμ

(
2
√

ACϕ
)
±
(√

pq cscμ

(
2
√

ACϕ
)))

,
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and

U15(ϕ) =
1
2

√
A
C

(
tanμ

(
1/2

√
ACϕ

)
− cotμ

(
1/2

√
ACϕ

))
.

Family. 4: When AC > 0 and B = 0 then we obtain the subsequent family of soliton solutions:

U16(ϕ) = −
√
− A

C
tanhμ

(√−ACϕ
)

,

U17(ϕ) = −
√
− A

C
cothμ

(√−ACϕ
)

,

U18(Φ) = −
√
− A

C

(
tanhμ

(
2
√−ACϕ

)
±
(

i
√

pqsechA

(
2
√−ACϕ

)))
,

U19(ϕ) = −
√
− A

C

(
cothμ

(
2
√−ACϕ

)
±
(√

pqcschμ

(
2
√−ACϕ

)))
,

and

U20(ϕ) = −1
2

√
− A

C

(
tanhμ

(
1/2

√−ACϕ
)
+ cothμ

(
1/2

√−ACϕ
))

.

Family. 5: When C = A and B = 0 then we obtain the subsequent family of soliton solutions:

U21(ϕ) = tanμ(Aϕ),

U22(ϕ) = − cotμ(Aϕ),

U23(ϕ) = tanμ(2 Aϕ)± (√pq secμ(2 Aϕ)
)
,

U24(ϕ) = − cotμ(2 Aϕ)± (√pq cscμ(2 Aϕ)
)
,

and
U25(ϕ) =

1
2

tanμ(1/2 Aϕ)− 1/2 cotμ(1/2 Aϕ).

Family. 6: When C = −A and B = 0 then we obtain the subsequent family of soliton solutions:

U26(ϕ) = − tanhμ(Aϕ),

U27(ϕ) = − cothμ(Aϕ),

U28(ϕ) = − tanhμ(2 Aϕ)± (i√pqsechμ(2 Aϕ)
)
,

U29(ϕ) = − cothμ(2 Aϕ)± (√pqcschμ(2 Aϕ)
)
,

and
U30(ϕ) = −1

2
tanhμ(1/2 Aϕ)− 1/2 cothμ(1/2 Aϕ).

Family. 7: When R = 0 then we obtain the subsequent family of soliton solutions:

U31(ϕ) = −2
A(BΦ Lnμ + 2)

B2 ϕ Lnμ
.

Family. 8: When B = ν, A = Nλ(N �= 0) and C = 0 then we obtain the subsequent family
of soliton solutions:

U32(ϕ) = μν ϕ − N.

Family. 9: When B = C = 0 then we obtain the subsequent family of soliton solutions:

U33(ϕ) = Aϕ Lnμ.
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Family. 10: When B = A = 0 then we obtain the subsequent family of soliton solutions:

U34(ϕ) = − 1
Cϕ Lnμ

.

Family. 11: When A = 0, B �= 0 and C �= 0 then we obtain the subsequent family of
soliton solutions:

U35(ϕ) = − pb
C
(
coshμ(Bϕ)− sinhμ(Bϕ) + p

) ,

and

U36(ϕ) = − B
(
coshμ(Bϕ) + sinhμ(Bϕ)

)
C
(
coshμ(Bϕ) + sinhμ(Bϕ) + q

) ,

Family. 12: When B = ν, C = Nν(N �= 0) and A = 0 we obtain the subsequent family of
soliton solutions:

U37(ϕ) =
pμν ϕ

p − Nqμν ϕ .

When R = B2 − 4AC, p, q > 0 and are referred to as deformation parameters. The gen-
eralised trigonometric and hyperbolic functions are expressed as below:

sinμ(ϕ) =
pμiϕ − qμ−iϕ

2i
, cosμ(ϕ) =

pμiϕ + qμ−iϕ

2
,

secμ(ϕ) =
1

cosμ(ϕ)
, cscμ(ϕ) =

1
sinμ(ϕ)

,

tanμ(ϕ) =
sinμ(ϕ)

cosμ(ϕ)
, cotμ(ϕ) =

cosμ(ϕ)

sinμ(ϕ)
.

Similarly,

sinhμ(ϕ) =
pμϕ − qμ−ϕ

2
, coshμ(ϕ) =

pμϕ + qμ−ϕ

2
,

sechμ(ϕ) =
1

coshμ(ϕ)
, cschμ(ϕ) =

1
sinhμ(ϕ)

,

tanhμ(ϕ) =
sinhμ(ϕ)

coshμ(ϕ)
, cothμ(ϕ) =

coshμ(ϕ)

sinhμ(ϕ)
.

3. Results

In this section we implement two proposed versions of EDAM to the targeted model.
We start with the following variable transformation:

u(t, x) = U(ϕ), ϕ = k1(
xβ

Γ(β + 1)
− k2tα

Γ(α + 1)
),

v(t, x) = V(ϕ), ϕ = k1(
xβ

Γ(β + 1)
− k2tα

Γ(α + 1)
),

(11)

which transform (2) to the following set of NODEs:

− k2k2
1U′′ − 2VU = 0,

− k2k1V′ + 2k1U′U = 0.
(12)

By integrating second part in (12) with respect to ϕ yields:

V =
H + U2

k2
, (13)
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where H is constant of integration. Putting (13) in first part of (12) implies:

(k1k2)
2U′′ + 2HU + 2U3 = 0. (14)

To estimate balance number n in (8), we consider homogenous balance between
highest order derivative U′′ and nonlinear term U3 in (14) which results that n = 1.

3.1. Implementation of mEDAM

First we solve NODE in (14) with the help of mEDAM. Putting n = 1 in (8) implies
the following series form solution for (14):

U(ϕ) =
1

∑
l=−1

al(G(ϕ))l = a−1(G(ϕ))−1 + a0 + a1(G(ϕ))1, (15)

where a−1, a0 and a1 are constants to be calculated, and G(ϕ) is the general solution of ODE
in (10). By putting (15) in (14) and collecting all terms with the same powers of G(ϕ), we
get an expression in G(ϕ). By equating the coefficients to zero yields a system of algebraic
equations in a−1, a0, a1, k1, k2, H, μ, A, B and C. Upon solving this system for a−1, a0, a1, k1
and k2 using Maple, we reach at the following two cases of solutions:
Case. 1

a1 = 0, a−1 = 2
HA√

H(−B2 + 4 CA)
, a0 =

√
H

−B2 + 4 CA
B,

k1 =
2

ln(μ)k2

√
− H
−B2 + 4 CA

, k2 = k2.

(16)

Case. 2

a1 = 2
HC√

H(−B2 + 4 CA)
, a−1 = 0, a0 =

√
H

−B2 + 4 CA
B,

k1 =
2

ln(μ)k2

√
− H
−B2 + 4 CA

, k2 = k2.

(17)

Assuming case. 1, we get the following families of symmetric soliton solutions for (2):

Family. 1: When R < 0 A, B, C �= 0 then (11), (13) and corresponding general solutions of
(10) imply the following family of symmetric soliton solutions:

u1(x, t) =

2 HA√
H(−B2+4 AC)(

− B
2C +

√−R tanμ(1/2
√−Rϕ)

2C

) +

√
H
−R

B,

v1(x, t) =
1
k2
((

2 HA√
H(−B2+4 AC)(

− B
2C +

√−R tanμ(1/2
√−Rϕ)

2C

) +

√
H
−R

B)2 + H),

(18)

u2(x, t) =

2 HA√
H(−B2+4 AC)(

− B
2C −

√−R cotμ(1/2
√−Rϕ)

2C

) +

√
H
−R

B,

v2(x, t) =
1
k2
((

2 HA√
H(−B2+4 AC)(

− B
2C −

√−R cotμ(1/2
√−Rϕ)

2C

) +

√
H
−R

B)2 + H),

(19)
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u3(x, t) =

2 HA√
H(−B2+4 AC)(

− B
2C +

√−R(tanμ(
√−Rϕ)±(√pq secμ(

√−Rϕ)))
2C

) +

√
H
−R

B,

v3(x, t) =
1
k2
((

2 HA√
H(−B2+4 AC)(

− B
2C +

√−R(tanμ(
√−Rϕ)±(√pq secμ(

√−Rϕ)))
2C

) +

√
H
−R

B)2 + H),

(20)

u4(x, t) =

2 HA√
H(−B2+4 AC)(

− B
2C −

√−R(cotμ(
√−Rϕ)±(√pq cscμ(

√−Rϕ)))
2C

) +

√
H
−R

B,

v4(x, t) =
1
k2
((

2 HA√
H(−B2+4 AC)(

− B
2C −

√−R(cotμ(
√−Rϕ)±(√pq cscμ(

√−Rϕ)))
2C

) +

√
H
−R

B)2 + H),

(21)

and

u5(x, t) =

2 HA√
H(−B2+4 AC)(

− B
2C +

√−R(tanμ(1/4
√−Rϕ)−cotμ(1/4

√−Rϕ))
4C

) +

√
H
−R

B,

v5(x, t) =
1
k2
((

2 HA√
H(−B2+4 AC)(

− B
2C +

√−R(tanμ(1/4
√−Rϕ)−cotμ(1/4

√−Rϕ))
4C

) +

√
H
−R

B)2 + H).

(22)

Family. 2: When R > 0 A, B, C �= 0 then (11), (13) and corresponding general solutions of
(10) imply the following family of symmetric soliton solutions:

u6(x, t) =

2 HA√
H(−B2+4 AC)(

− B
2C −

√
R tanhμ(1/2

√
Rϕ)

2C

) +

√
H
−R

B,

v6(x, t) =
1
k2
((

2 HA√
H(−B2+4 AC)(

− B
2C −

√
R tanhμ(1/2

√
Rϕ)

2C

) +

√
H
−R

B)2 + H),

(23)

u7(x, t) =

2 HA√
H(−B2+4 AC)(

− B
2C −

√
R cothμ(1/2

√
Rϕ)

2C

) +

√
H
−R

B,

v7(x, t) =
1
k2
((

2 HA√
H(−B2+4 AC)(

− B
2C −

√
R cothμ(1/2

√
Rϕ)

2C

) +

√
H
−R

B)2 + H),

(24)

u8(x, t) =

2 HA√
H(−B2+4 AC)(

− B
2C −

√
R(tanhμ(

√
Rϕ)±(√pqsechμ(

√
Rϕ)))

2C

) +

√
H
−R

B,

v8(x, t) =
1
k2
((

2 HA√
H(−B2+4 AC)(

− B
2C −

√
R(tanhμ(

√
Rϕ)±(√pqsechμ(

√
Rϕ)))

2C

) +

√
H
−R

B)2 + H),

(25)
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u9(x, t) =

2 HA√
H(−B2+4 AC)(

− B
2C −

√
R(cothμ(

√
Rϕ)±(√pqcschμ(

√
Rϕ)))

2C

) +

√
H
−R

B,

v9(x, t) =
1
k2
((

2 HA√
H(−B2+4 AC)(

− B
2C −

√
R(cothμ(

√
Rϕ)±(√pqcschμ(

√
Rϕ)))

2C

) +

√
H
−R

B)2 + H),

(26)

and

u10(x, t) =

2 HA√
H(−B2+4 AC)(

− B
2C −

√
R(tanhμ(1/4

√
Rϕ)−cothμ(1/4

√
Rϕ))

4C

) +

√
H
−R

B,

v10(x, t) =
1
k2
((

2 HA√
H(−B2+4 AC)(

− B
2C −

√
R(tanhμ(1/4

√
Rϕ)−cothμ(1/4

√
Rϕ))

4C

) +

√
H
−R

B)2 + H).

(27)

Family. 3: When AC > 0 and B = 0 then (11), (13) and corresponding general solutions of
(10) imply the following family of symmetric soliton solutions:

u11(x, t) =
√

H
(

tanμ

(√
ACϕ

))−1

v11(x, t) =
1
k2
((
√

H
(

tanμ

(√
ACϕ

))−1
)2 + H),

(28)

u12(x, t) = −
√

H
(

cotμ

(√
ACϕ

))−1

v12(x, t) =
1
k2
((−

√
H
(

cotμ

(√
ACϕ

))−1
)2 + H),

(29)

u13(x, t) =
√

H
(

tanμ

(
2
√

ACϕ
)
±
(√

pq secμ

(
2
√

ACϕ
)))−1

,

v13(x, t) =
((
√

H
(

tanμ

(
2
√

ACϕ
)
±
(√

pq secμ

(
2
√

ACϕ
)))−1

)2 + H)

k2
,

(30)

u14(x, t) = −
√

H
(

cotμ

(
2
√

ACϕ
)
±
(√

pq cscμ

(
2
√

ACϕ
)))−1

,

v14(x, t) =
((
√

H
(

cotμ

(
2
√

ACϕ
)
±
(√

pq cscμ

(
2
√

ACϕ
)))−1

)2 + H)

k2
,

(31)

and

u15(x, t) = 2
√

H
(

tanμ

(
1/2

√
ACϕ

)
− cotμ

(
1/2

√
ACϕ

))−1
,

v15(x, t) =
1
k2
((2

√
H
(

tanμ

(
1/2

√
ACϕ

)
− cotμ

(
1/2

√
ACϕ

))−1
)2 + H).

(32)

Family. 4: When AC > 0 and B = 0 then (11), (13) and corresponding general solutions of
(10) imply the following family of symmetric soliton solutions:

u16(x, t) = −√−H
(

tanhμ

(√−ACϕ
))−1

,

v16(x, t) =
1
k2
((−√−H

(
tanhμ

(√−ACϕ
))−1

)2 + H),
(33)
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u17(x, t) = −√−H
(

cothμ

(√−ACϕ
))−1

,

v17(x, t) =
1
k2
((−√−H

(
cothμ

(√−ACϕ
))−1

)2 + H),
(34)

u18(x, t) = −√−H
(

tanhμ

(
2
√−ACϕ

)
±
(

i
√

pqsechμ

(
2
√−ACϕ

)))−1
,

v18(x, t) =
1
k2
((
√−H(tanhμ

(
2
√−ACϕ

)
±
(

i
√

pqsechμ

(
2
√−ACϕ

))
)−1)2 + H),

(35)

u19(x, t) = −√−H
(

cothμ

(
2
√−ACϕ

)
±
(√

pqcschμ

(
2
√−ACϕ

)))−1
,

v19(x, t) =
1
k2
((−√−H(cothμ

(
2
√−ACϕ

)
±
(√

pqcschμ

(
2
√−ACϕ

))
)−1)2 + H),

(36)

and

u20(x, t) = −2
√−H

(
tanhμ

(
1/2

√−ACϕ
)
+ cothμ

(
1/2

√−ACϕ
))−1

v20(x, t) =
1
k2
((−2

√−H(tanhμ

(
1/2

√−ACϕ
)

,+ cothμ

(
1/2

√−ACϕ
)
)−1)2 + H).

(37)

Family. 5: When C = A and B = 0 then (11), (13) and corresponding general solutions of
(10) imply the following family of symmetric soliton solutions:

u21(x, t) = −
√

H
cotμ(Aϕ)

,

v21(x, t) =
1
k2
((−

√
H

cotμ(Aϕ)
)2 + H),

(38)

u22(x, t) =
√

H(
tanμ(2 Aϕ)± (√pq secμ(2 Aϕ)

)) ,

v22(x, t) =
1
k2
((

√
H(

tanμ(2 Aϕ)± (√pq secμ(2 Aϕ)
)) )2 + H),

(39)

u23(x, t) =
√

H(− cotμ(2 Aϕ)∓ (√pq cscμ(2 Aϕ)
)) ,

v23(x, t) =
1
k2
((

√
H(− cotμ(2 Aϕ)∓ (√pq cscμ(2 Aϕ)

)) )2 + H),

(40)

u24(x, t) =
√

H(
1/2 tanμ(1/2 Aϕ)− 1/2 cotμ(1/2 Aϕ)

) ,

v24(x, t) =
1
k2
((

√
H(

1/2 tanμ(1/2 Aϕ)− 1/2 cotμ(1/2 Aϕ)
) )2 + H),

(41)

and

u25(x, t) = −
√

H
tanhμ(Aϕ)

,

v25(x, t) =
1
k2
((−

√
H

tanhμ(Aϕ)
)2 + H).

(42)

95



Mathematics 2023, 11, 2686

Family. 6: When C = −A and B = 0 then (11), (13) and corresponding general solutions of
(10) imply the following family of symmetric soliton solutions:

u26(x, t) = −
√−H

tanhμ(Aϕ)
,

v26(x, t) =
1
k2
((−

√−H
tanhμ(Aϕ)

)2 + H),

(43)

u27(x, t) = −
√−H

cothμ(Aϕ)
,

v27(x, t) =
1
k2
((−

√−H
cothμ(Aϕ)

)2 + H),

(44)

u28(x, t) =
√−H(− tanhμ(2 Aϕ)∓ (i√pqsechμ(2 Aϕ)

)) ,

v28(x, t) =
1
k2
((

√−H(− tanhμ(2 Aϕ)∓ (i√pqsechμ(2 Aϕ)
)) )2 + H),

(45)

u29(x, t) =
√−H(− cothμ(2 Aϕ)∓ (√pqcschμ(2 Aϕ)

)) ,

v29(x, t) =
1
k2
((

√−H(− cothμ(2 Aϕ)∓ (√pqcschμ(2 Aϕ)
)) )2 + H),

(46)

and

u30(x, t) =
√−H(−1/2 tanhμ(1/2 Aϕ)− 1/2 cothμ(1/2 Aϕ)

) ,

v30(x, t) =
1
k2
((

√−H(−1/2 tanhμ(1/2 Aϕ)− 1/2 cothμ(1/2 Aϕ)
) )2 + H).

(47)

Family. 7: When B = ν, A = Nν(N �= 0) and C = 0 then (11), (13) and corresponding
general solutions of (10) imply the following family of symmetric soliton solutions:

u31(x, t) =
2
√−HN

(μν ϕ − N)
+
√

H

v31(x, t) =
1
k2
((

2
√−HN

(μν ϕ − N)
+
√

H)2 + H).

(48)

where ϕ = 2
ln(μ)k2

√
− H

−B2+4 CA (
xβ

Γ(β+1) − k2tα

Γ(α+1) ).
Now, assuming case. 2, we get the following families of symmetric soliton solutions

for (2):
Family. 8: When R < 0 A, B, C �= 0 then (11), (13) and corresponding general solutions of
(10) imply the following family of symmetric soliton solutions:

u32(x, t) =
√

H
−R

(B + 2C

(
− B

2C
+

√−R tanμ

(
1/2

√−Rϕ
)

2C

)
),

v32(x, t) =
1
k2
((

√
H
−R

(B + 2C

(
− B

2C
+

√−R tanμ

(
1/2

√−Rϕ
)

2C

)
))2 + H),

(49)
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u33(x, t) =
√

H
−R

(B + 2C

(
− B

2C
−

√−R cotμ

(
1/2

√−Rϕ
)

2C

)
),

v33(x, t) =
1
k2
((

√
H
−R

(B + 2C

(
− B

2C
−

√−R cotμ

(
1/2

√−Rϕ
)

2C

)
))2 + H),

(50)

u34(x, t) =
√

H
−R

(B + 2C

(
− B

2C
+

√−R
(
tanμ

(√−Rϕ
)± (√pq secμ

(√−Rϕ
)))

2C

)
),

v34(x, t) =
1
k2
((

√
H
−R

(B + 2C

(
− B

2C
+

√−R
(
tanμ

(√−Rϕ
)± (√pq secμ

(√−Rϕ
)))

2C

)
))2 + H),

(51)

u35(x, t) =
√

H
−R

(B + 2C

(
− B

2C
−

√−R
(
cotμ

(√−Rϕ
)± (√pq cscμ

(√−Rϕ
)))

2C

)
),

v35(x, t) =
1
k2
((

√
H
−R

(B + 2C

(
− B

2C
−

√−R
(
cotμ

(√−Rϕ
)± (√pq cscμ

(√−Rϕ
)))

2C

)
))2 + H),

(52)

and

u36(x, t) =
√

H
−R

(B + 2C

(
− B

2C
+

√−R
(
tanμ

(
1/4

√−Rϕ
)− cotμ

(
1/4

√−Rϕ
))

4C

)
,

v36(x, t) =
1
k2
((

√
H
−R

(B + 2C

(
− B

2C
+

√−R
(
tanμ

(
1/4

√−Rϕ
)− cotμ

(
1/4

√−Rϕ
))

4C

)
)2 + H).

(53)

Family. 9: When R > 0 A, B, C �= 0 then (11), (13) and corresponding general solutions of
(10) imply the following family of symmetric soliton solutions:

u37(x, t) =
√

H
−R

(B + 2C

⎛
⎝− B

2C
−

√
R tanhμ

(
1/2

√
Rϕ
)

2C

⎞
⎠),

v37(x, t) =
1
k2
((

√
H
−R

(B + 2C

⎛
⎝− B

2C
−

√
R tanhμ

(
1/2

√
Rϕ
)

2C

⎞
⎠))2 + H),

(54)

u38(x, t) =
√

H
−R

(B + 2C

⎛
⎝− B

2C
−

√
R cothμ

(
1/2

√
Rϕ
)

2C

⎞
⎠),

v38(x, t) =
1
k2
((

√
H
−R

(B + 2C

⎛
⎝− B

2C
−

√
R cothμ

(
1/2

√
Rϕ
)

2C

⎞
⎠))2 + H),

(55)

u39(x, t) =
√

H
−R

(B + 2C

⎛
⎝− B

2C
−

√
R
(

tanhμ

(√
Rϕ
)
±
(√

pqsechμ

(√
Rϕ
)))

2C

⎞
⎠),

v39(x, t) =
1
k2
((

√
H
−R

(B + 2C

⎛
⎝− B

2C
−

√
R
(

tanhμ

(√
Rϕ
)
±
(√

pqsechμ

(√
Rϕ
)))

2C

⎞
⎠))2 + H),

(56)
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u40(x, t) =
√

H
−R

(B + 2C

⎛
⎝− B

2C
−

√
R
(

cothμ

(√
Rϕ
)
±
(√

pqcschμ

(√
Rϕ
)))

2C

⎞
⎠),

v40(x, t) =
1
k2
((

√
H

−B2 + 4 AC
(B + 2C ×

⎛
⎝− B

2C
−

√
R
(

cothμ

(√
Rϕ
)
±
(√

pqcschμ

(√
Rϕ
)))

2C

⎞
⎠))2

+ H),

(57)

and

u41(x, t) =
√

H
−R

(B + 2C

⎛
⎝− B

2C
−

√
R
(

tanhμ

(
1/4

√
Rϕ
)
− cothμ

(
1/4

√
Rϕ
))

4C

⎞
⎠),

v41(x, t) =
1
k2
((

√
H
−R

(B + 2C

⎛
⎝− B

2C
−

√
R
(

tanhμ

(
1/4

√
Rϕ
)
− cothμ

(
1/4

√
Rϕ
))

4C

⎞
⎠))2 + H).

(58)

Family. 10: When AC > 0 and B = 0 then (11), (13) and corresponding general solutions
of (10) imply the following family of symmetric soliton solutions:

u42(x, t) =
√

H tanμ

(√
ACϕ

)
,

v42(x, t) =
1
k2
((
√

H tanμ

(√
ACϕ

)
)2 + H),

(59)

u43(x, t) = − cotμ

(√
ACϕ

)
,

v43(x, t) =
1
k2
((− cotμ

(√
ACϕ

)
)2 + H),

(60)

u44(x, t) =
√

H
(

tanμ

(
2
√

ACϕ
)
±
(√

pq secμ

(
2
√

ACϕ
)))

,

v44(x, t) =
1
k2
((
√

H
(

tanμ

(
2
√

ACϕ
)
±
(√

pq secμ

(
2
√

ACϕ
)))

)2 + H),
(61)

u45(x, t) = −
√

H
(

cotμ

(
2
√

ACϕ
)
±
(√

pq cscμ

(
2
√

ACϕ
)))

,

v45(x, t) =
1
k2
((−

√
H
(

cotμ

(
2
√

ACϕ
)
±
(√

pq cscμ

(
2
√

ACϕ
)))

)2 + H),
(62)

and

u46(x, t) =
√

H
(

tanμ

(
1/2

√
ACϕ

)
− cotμ

(
1/2

√
ACϕ

))
,

v46(x, t) =
1
k2
((
√

H
(

tanμ

(
1/2

√
ACϕ

)
− cotμ

(
1/2

√
ACϕ

))
)2 + H).

(63)

Family. 11: When AC > 0 and B = 0 then (11), (13) and corresponding general solutions
of (10) imply the following family of symmetric soliton solutions:

u47(x, t) = −√−H tanhμ

(√−ACϕ
)

,

v47(x, t) =
1
k2
((−√−H tanhμ

(√−ACϕ
)
)2 + H),

(64)

u48(x, t) = −√−H cothμ

(√−ACϕ
) 1√

H(−B2 + 4 AC)
,

v48(x, t) =
1
k2
((−√−H cothμ

(√−ACϕ
) 1√

H(−B2 + 4 AC)
)2 + H),

(65)
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u49(x, t) = −√−H
(

tanhμ

(
2
√−ACϕ

)
±
(

i
√

pqsechμ

(
2
√−ACϕ

)))
,

v49(x, t) =
1
k2
((−√−H(tanhμ

(
2
√−ACϕ

)
±
(

i
√

pqsechμ

(
2
√−ACϕ

))
))2 + H),

(66)

u50(x, t) = −√−H
(

cothμ

(
2
√−ACϕ

)
±
(√

pqcschμ

(
2
√−ACϕ

)))
,

v50(x, t) =
1
k2
((−√−H(cothμ

(
2
√−ACϕ

)
±
(√

pqcschμ

(
2
√−ACϕ

))
))2 + H),

(67)

and

u51(x, t) = −√−H
(

tanhμ

(
1/2

√−ACϕ
)
+ cothμ

(
1/2

√−ACϕ
))

,

v51(x, t) =
1
k2
((−√−H(tanhμ

(
1/2

√−ACϕ
)
+ cothμ

(
1/2

√−ACϕ
)
))2 + H).

(68)

Family. 12: When C = A and B = 0 then (11), (13) and corresponding general solutions of
(10) imply the following family of symmetric soliton solutions:

u52(x, t) =
√

H tanμ(Aϕ),

v52(x, t) =
1
k2
((
√

H tanμ(Aϕ))2 + H),
(69)

u53(x, t) = −
√

H cotμ(Aϕ),

v53(x, t) =
1
k2
((−

√
H cotμ(Aϕ))2 + H),

(70)

u54(x, t) =
√

H
(
tanμ(2 Aϕ)± (√pq secμ(2 Aϕ)

))
,

v54(x, t) =
1
k2
((
√

H
(
tanμ(2 Aϕ)± (√pq secμ(2 Aϕ)

))
)2 + H),

(71)

u55(x, t) =
√

H
(− cotμ(2 Aϕ)∓ (√pq cscμ(2 Aϕ)

))
,

v55(x, t) =
1
k2
((
√

H
(− cotμ(2 Aϕ)∓ (√pq cscμ(2 Aϕ)

))
)2 + H),

(72)

and

u56(x, t) =
√

H
(
1/2 tanμ(1/2 Aϕ)− 1/2 cotμ(1/2 Aϕ)

)
,

v56(x, t) =
1
k2
((
√

H
(
1/2 tanμ(1/2 Aϕ)− 1/2 cotμ(1/2 Aϕ)

)
)2 + H).

(73)

Family. 13: When C = −A and B = 0 then (11), (13) and corresponding general solutions
of (10) imply the following family of symmetric soliton solutions:

u57(x, t) = −√−H tanhμ(Aϕ),

v57(x, t) =
1
k2
((−√−H tanhμ(Aϕ))2 + H),

(74)

u58(x, t) = −√−H cothμ(Aϕ),

v58(x, t) =
1
k2
((−√−H cothμ(Aϕ))2 + H),

(75)

u59(x, t) =
√−H

(− tanhμ(2 Aϕ)∓ (i√pqsechμ(2 Aϕ)
))

,

v59(x, t) =
1
k2
((
√−H

(− tanhμ(2 Aϕ)∓ (i√pqsechμ(2 Aϕ)
))
)2 + H),

(76)

u60(x, t) =
√−H

(− cothμ(2 Aϕ)∓ (√pqcschμ(2 Aϕ)
))

,

v60(x, t) =
1
k2
((
√−H

(− cothμ(2 Aϕ)∓ (√pqcschμ(2 Aϕ)
))
)2 + H),

(77)
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and

u61(x, t) =
√−H

(−1/2 tanhμ(1/2 Aϕ)− 1/2 cothμ(1/2 Aϕ)
)
,

v61(x, t) =
1
k2
((
√−H

(
−1

2
tanhμ(1/2 Aϕ)− 1

2
cothμ(1/2 Aϕ)

)
)2 + H).

(78)

Family. 14: When A = 0, B �= 0 and C �= 0 then (11), (13) and corresponding general
solutions of (10) imply the following family of symmetric soliton solutions:

u62(x, t) =
√−H − 2

√−Hp(
coshμ(Bϕ)− sinhμ(Bϕ) + p

) ,

v62(x, t) =
1
k2
((
√−H − 2

√−Hp(
coshμ(Bϕ)− sinhμ(Bϕ) + p

) )2 + H),

(79)

and

u63(x, t) =
√−H − 2

√−H
(
coshμ(Bϕ) + sinhμ(Bϕ)

)
(cosh(Bϕ) + sinh(Bϕ) + q)

v63(x, t) =
1
k2
((
√−H − 2

√−H
(
coshμ(Bϕ) + sinhμ(Bϕ)

)
(cosh(Bϕ) + sinh(Bϕ) + q)

)2 + H).

(80)

Family. 15: When B = ν, C = Nν(N �= 0) and A = 0 then (11), (13) and corresponding
general solutions of (10) imply the following family of symmetric soliton solutions:

u64(x, t) =
√−H + 2

√−HNpμν ϕ

(p − Nqμν ϕ)
,

v64(x, t) =
1
k2
((
√−H + 2

√−HNpμν ϕ

(p − Nqμν ϕ)
)2 + H).

(81)

where ϕ = 2
ln(μ)k2

√
− H

−B2+4 CA (
xβ

Γ(β+1) − k2tα

Γ(α+1) ).

3.2. Implementation of r + mEDAM

To construct more symmetric soliton solutions for (2), we now solve NODE in () with
the help of r + mEDAM. Putting n = 1 in (9) implies the following series form solution
for (14):

U(ϕ) =
1

∑
l=−1

al(r + G(ϕ))l = a−1(r + G(ϕ))−1 + a0 + a1(r + G(ϕ))1, (82)

where a−1, a0 and a1 are constants to be calculated, and G(ϕ) is the general solution of ODE
in (10). By putting (82) in (14) and collecting all terms with the same powers of G(ϕ) , we
get an expression in G(ϕ). By equating the coefficients to zero yields a system of algebraic
equations in a−1, a0, a1, k1, k2, H, r ,μ, A, B and C. Upon solving this system for a−1, a0, a1,
k1 and k2 using Maple, we reach at the following two cases of solutions:
Case. 1

a1 = 0, a−1 = 2

(
A − rB + Cr2)√H√

4 AC − B2
, a0 =

√
H(−2 Cr + B)√

4 AC − B2
,

k1 =
2

ln(μ)k2

√
− H

4 AC − B2 , k2 = k2.

(83)
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Case. 2

a1 = 2

√
H

4 AC − B2 C, a−1 = 0, a0 =
H(−2 Cr + B)√

H(4 AC − B2)
,

k1 =
2

ln(μ)k2

√
− H

4 AC − B2 , k2 = k2.

(84)

Assuming case. 1, we get the following families of symmetric soliton solutions for (2):

Family. 16: When R < 0 A, B, C �= 0 then (11), (13) and corresponding general solutions
of (10) imply the following family of symmetric soliton solutions:

u65(x, t) =

2 (A−rB+Cr2)
√

H√−R(
− B

2C +
√−R tanμ(1/2

√−Rϕ)
2C

) +

√
H(−2 Cr + B)√

R
,

v65(x, t) =
1
k2
((

2 (A−rB+Cr2)
√

H√−R(
− B

2C +
√−R tanμ(1/2

√−Rϕ)
2C

) +

√
H(−2 Cr + B)√

R
)2 + H),

(85)

u66(x, t) =

2 (A−rB+Cr2)
√

H√−R(
− B

2C −
√−R cotμ(1/2

√−Rϕ)
2C

) +

√
H(−2 Cr + B)√−R

,

v66(x, t) =
1
k2
((

2 (A−rB+Cr2)
√

H√−R(
− B

2C −
√−R cotμ(1/2

√−Rϕ)
2C

) +

√
H(−2 Cr + B)√−R

)2 + H),

(86)

u67(x, t) =

2 (A−rB+Cr2)
√

H√−R(
− B

2C +
√−R(tanμ(

√−Rϕ)±(√pq secμ(
√−Rϕ)))

2C

) +

√
H(−2 Cr + B)√−R

,

v67(x, t) =
1
k2
((

2 (A−rB+Cr2)
√

H√−R(
− B

2C +
√−R(tanμ(

√−Rϕ)±(√pq secμ(
√−Rϕ)))

2C

) +

√
H(−2 Cr + B)√−R

)2 + H),

(87)

u68(x, t) =

2 (A−rB+Cr2)
√

H√−R(
− B

2C −
√−R(cotμ(

√−Rϕ)±(√pq cscμ(
√−Rϕ)))

2C

) +

√
H(−2 Cr + B)√−R

,

v68(x, t) =
1
k2
((

2 (A−rB+Cr2)
√

H√−R(
− B

2C −
√−R(cotμ(

√−Rϕ)±(√pq cscμ(
√−Rϕ)))

2C

) +

√
H(−2 Cr + B)√−R

)2 + H),

(88)

and
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u69(x, t) =

2 (A−rB+Cr2)
√

H√−R(
− B

2C +
√−R(tanμ(1/4

√−Rϕ)−cotμ(1/4
√−Rϕ))

4C

) +

√
H(−2 Cr + B)√−R

,

v69(x, t) =
1
k2
((

2 (A−rB+Cr2)
√

H√−R(
− B

2C +
√−R(tanμ(1/4

√−Rϕ)−cotμ(1/4
√−Rϕ))

4C

) +

√
H(−2 Cr + B)√−R

)2 + H).

(89)

Family. 17: When R > 0 C �= 0 then (11), (13) and corresponding general solutions of (10)
imply the following family of symmetric soliton solutions:

u70(x, t) =

2 (A−rB+Cr2)
√

H√−R(
− B

2C −
√

R tanhμ(1/2
√

Rϕ)
2C

) +

√
H(−2 Cr + B)√−R

,

v70(x, t) =
1
k2
((

2 (A−rB+Cr2)
√

H√−R(
− B

2C −
√

R tanhμ(1/2
√

Rϕ)
2C

) +

√
H(−2 Cr + B)√−R

)2 + H),

(90)

u71(x, t) =

2 (A−rB+Cr2)
√

H√−R(
− B

2C −
√

R cothμ(1/2
√

Rϕ)
2C

) +

√
H(−2 Cr + B)√

4 AC − B2
,

v71(x, t) =
1
k2
((

2 (A−rB+Cr2)
√

H√−R(
− B

2C −
√

R cothμ(1/2
√

Rϕ)
2C

) +

√
H(−2 Cr + B)√

4 AC − B2
)2 + H),

(91)

u72(x, t) =

2 (A−rB+Cr2)
√

H√−R(
− B

2C −
√

R(tanhμ(
√

Rϕ)±(√pqsechμ(
√

Rϕ)))
2C

) +

√
H(−2 Cr + B)√−R

,

v72(x, t) =
1
k2
((

2 (A−rB+Cr2)
√

H√−R(
− B

2C −
√

R(tanhμ(
√

Rϕ)±(√pqsechμ(
√

Rϕ)))
2C

) +

√
H(−2 Cr + B)√−R

)2 + H),

(92)

u73(x, t) =

2 (A−rB+Cr2)
√

H√−R(
− B

2C −
√

R(cothμ(
√

Rϕ)±(√pqcschμ(
√

Rϕ)))
2C

) +

√
H(−2 Cr + B)√−R

,

v73(x, t) =
1
k2
((

2 (A−rB+Cr2)
√

H√−R(
− B

2C −
√

R(cothμ(
√

Rϕ)±(√pqcschμ(
√

Rϕ)))
2C

) +

√
H(−2 Cr + B)√−R

)2 + H),

(93)

and

102
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u74(x, t) =

2 (A−rB+Cr2)
√

H√−R(
− B

2C −
√

R(tanhμ(1/4
√

Rϕ)−cothμ(1/4
√

Rϕ))
4C

) +

√
H(−2 Cr + B)√−R

,

v74(x, t) =
1
k2
((

2 (A−rB+Cr2)
√

H√−R(
− B

2C −
√

R(tanhμ(1/4
√

Rϕ)−cothμ(1/4
√

Rϕ))
4C

) +

√
H(−2 Cr + B)√−R

)2 + H).

(94)

Family. 18: When AC > 0 and B = 0 then (11), (13) and corresponding general solutions
of (10) imply the following family of symmetric soliton solutions:

u75(x, t) = (1 +
r2C
A

)
√

H
(

tanμ

(√
ACϕ

))−1 −
√

HC
A

r,

v75(x, t) =
1
k2
(((1 +

r2C
A

)
√

H
(

tanμ

(√
ACϕ

))−1 −
√

HC
A

r)2 + H),

(95)

u76(x, t) = −(1 +
r2C
A

)
√

H
(

cotμ

(√
ACϕ

))−1 −
√

HC
A

r,

v76(x, t) =
1
k2
((−(1 +

r2C
A

)
√

H
(

cotμ

(√
ACϕ

))−1 −
√

HC
A

r)2 + H),

(96)

u77(x, t) = (1 +
r2C
A

)
√

H(tanμ

(
2
√

ACϕ
)
±
(√

pq secμ

(
2
√

ACϕ
))

)−1 −
√

HC
A

r,

v77(x, t) =
1
k2
(((1 +

r2C
A

)
√

H(tanμ

(
2
√

ACϕ
)
±
(√

pq secμ

(
2
√

ACϕ
))

)−1 −
√

HC
A

r)2 + H),

(97)

u78(x, t) = −(1 +
r2C
A

)
√

H(cotμ

(
2
√

ACϕ
)
±
(√

pq cscμ

(
2
√

ACϕ
))

)−1 −
√

HC
A

r,

v78(x, t) =
1
k2
((−(1 +

r2C
A

)
√

H(cotμ

(
2
√

ACϕ
)
±
(√

pq cscμ

(
2
√

ACϕ
))

)−1 −
√

HC
A

r

(98)

and

u79(x, t) = 2(1 +
r2C
A

)
√

H(tanμ

(
1/2

√
ACϕ

)
− cotμ

(
1/2

√
ACϕ

)
)−1 −

√
HC
A

r,

v79(x, t) =
1
k2
((2(1 +

r2C
A

)
√

H(tanμ

(
1/2

√
ACϕ

)
− cotμ

(
1/2

√
ACϕ

)
)−1 −

√
HC
A

r)2 + H).

(99)

Family. 19: When AC > 0 and B = 0 then (11), (13) and corresponding general solutions
of (10) imply the following family of symmetric soliton solutions:

u80(x, t) = −(1 +
r2C
A

)
√−H

(
tanhμ

(√−ACϕ
))−1 −

√
HC
A

r,

v80(x, t) =
1
k2
((−(1 +

r2C
A

)
√−H

(
tanhμ

(√−ACϕ
))−1 −

√
HC
A

r)2 + H),

(100)

u81(x, t) = −(1 +
r2C
A

)
√−H

(
cothμ

(√−ACϕ
))−1 −

√
HC
A

r,

v81(x, t) =
1
k2
((−(1 +

r2C
A

)
√−H

(
cothμ

(√−ACϕ
))−1 −

√
HC
A

r)2 + H))2 + H),

(101)
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u82(x, t) = −(1 +
r2C
A

)
√−H(tanhμ

(
2
√−ACϕ

)
±
(

i
√

pqsechμ

(
2
√−ACϕ

))
)−1 −

√
HC
A

r,

v82(x, t) =
1
k2
((

−(1 + r2C
A )

√−H

(tanhμ

(
2
√−ACϕ

)
±
(

i
√

pqsechμ

(
2
√−ACϕ

))
)
−
√

HC
A

r)2 + H),
(102)

u83(x, t) = −(1 +
r2C
A

)
√−H(cothμ

(
2
√−ACϕ

)
±
(√

pqcschμ

(
2
√−ACϕ

))
)−1 −

√
HC
A

r,

v83(x, t) =
1
k2
((

−(1 + r2C
A )

√−H

(cothμ

(
2
√−ACϕ

)
±
(√

pqcschμ

(
2
√−ACϕ

))
)
−
√

HC
A

r)2 + H),
(103)

and

u84(x, t) = −2(1 +
r2C
A

)
√−H(tanhμ

(
1/2

√−ACϕ
)
+ cothμ

(
1/2

√−ACϕ
)
)−1 −

√
HC
A

r,

v84(x, t) =
1
k2
((

−2(1 + r2C
A )

√−H

(tanhμ

(
1/2

√−ACϕ
)
+ cothμ

(
1/2

√−ACϕ
)
)
−
√

HC
A

r)2 + H).
(104)

Family. 20: When C = A and B = 0 then (11), (13) and corresponding general solutions of
(10) imply the following family of symmetric soliton solutions:

u85(x, t) = (1 + r2)
√

H
1

tanμ(Aϕ)
−
√

Hr,

v85(x, t) =
1
k2
(((1 + r2)

√
H

1
tanμ(Aϕ)

−
√

Hr)2 + H),
(105)

u86(x, t) = −(1 + r2)
√

H
1

cotμ(Aϕ)
−
√

Hr,

v86(x, t) =
1
k2
((−(1 + r2)

√
H

1
cotμ(Aϕ)

−
√

Hr)2 + H),
(106)

u87(x, t) =
(1 + r2)

√
H(

tanμ(2 Aϕ)± (√pq secμ(2 Aϕ)
)) −√

Hr,

v87(x, t) =
1
k2
((

(1 + r2)
√

H(
tanμ(2 Aϕ)± (√pq secμ(2 Aϕ)

)) −√
Hr)2 + H),

(107)

u88(x, t) =
(1 + r2)

√
H(− cotμ(2 Aϕ)∓ (√pq cscμ(2 Aϕ)

)) −√
Hr,

v88(x, t) =
1
k2
((

(1 + r2)
√

H(− cotμ(2 Aϕ)∓ (√pq cscμ(2 Aϕ)
)) −√

Hr)2 + H),

(108)

and

u89(x, t) =
(1 + r2)

√
H(

1/2 tanμ(1/2 Aϕ)− 1/2 cotμ(1/2 Aϕ)
) −√

Hr,

v89(x, t) =
1
k2
((

(1 + r2)
√

H(
1/2 tanμ(1/2 Aϕ)− 1/2 cotμ(1/2 Aϕ)

) −√
Hr)2 + H).

(109)

104



Mathematics 2023, 11, 2686

Family. 21: When C = −A and B = 0 then Equations (19) and (10) imply the following
solitary wave solutions:

u90(x, t) = −(1 − r2)
√−H

1
tanhμ(Aϕ)

+
√−Hr,

v90(x, t) =
1
k2
((−(1 − r2)

√−H
1

tanhμ(Aϕ)
+
√−Hr)2 + H),

(110)

u91(x, t) = −(1 − r2)
√−H

1
cothμ(Aϕ)

+
√−Hr,

v91(x, t) =
1
k2
((−(1 − r2)

√−H
1

cothμ(Aϕ)
+
√−Hr)2 + H),

(111)

u92(x, t) =
(1 − r2)

√−H(− tanhμ(2 Aϕ)∓ (i√pqsechμ(2 Aϕ)
)) +√−Hr,

v92(x, t) =
1
k2
((

(1 − r2)
√−H(− tanhμ(2 Aϕ)∓ (i√pqsechμ(2 Aϕ)

)) +√−Hr)2 + H),
(112)

u93(x, t) =
(1 − r2)

√−H(− cothμ(2 Aϕ)∓ (√pqcschμ(2 Aϕ)
)) +√−Hr,

v93(x, t) =
1
k2
((

(1 − r2)
√−H(− cothμ(2 Aϕ)∓ (√pqcschμ(2 Aϕ)

)) +√−Hr)2 + H),

(113)

and

u94(x, t) =
(1 − r2)

√−H(−1/2 tanhμ(1/2 Aϕ)− 1/2 cothμ(1/2 Aϕ)
) +√−Hr,

v94(x, t) =
(( (1−r2)

√−H
(−1/2 tanhμ(1/2 Aϕ)−1/2 cothμ(1/2 Aϕ))

+
√−Hr)2 + H)

k2
.

(114)

Family. 22: When B = ν, a = Nν(N �= 0) and C = 0 then (11), (13) and corresponding
general solutions of (10) imply the following family of symmetric soliton solutions:

u95(x, t) = 2
(N − r)

√−H
(μν ϕ − N)

+

√
H(−2 Cr + B)√

4 AC − B2
,

v95(x, t) =
1
k2
((2

(N − r)
√−H

(μν ϕ − N)
+

√
H(−2 Cr + B)√

4 AC − B2
)2 + H).

(115)

Family. 23: When A = 0, B �= 0 and C �= 0 then (11), (13) and corresponding general
solutions of (10) imply the following family of symmetric soliton solutions:

u96(x, t) = −2

(−rB + Cr2)√HC
(
coshμ(Bϕ)− sinhμ(Bϕ) + p

)
pB2i

+

√
H(−2 Cr + B)

Bi
,

v96(x, t) =
1
k2
((−2

(−rB + Cr2)√HC
(
coshμ(Bϕ)− sinhμ(Bϕ) + p

)
pB2i

+

√
H(−2 Cr + B)

Bi
)2 + H),

(116)

and
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u97(x, t) = −2

(−rB + Cr2)√HC
(
coshμ(Bϕ) + sinhμ(Bϕ) + q

)
Bi
(
coshμ(Bϕ) + sinhμ(Bϕ)

) +

√
H(−2 Cr + B)

Bi
,

v97(x, t) =
1
k2
((−2

(−rB + Cr2)√HC
(
coshμ(Bϕ) + sinhμ(Bϕ) + q

)
Bi
(
coshμ(Bϕ) + sinhμ(Bϕ)

) +

√
H(−2 Cr + B)

Bi
)2 + H).

(117)

Family. 24: When B = ν, C = Nν(N �= 0) and A = 0 then (11), (13) and corresponding
general solutions of (10) imply the following family of symmetric soliton solutions:

u98(x, t) = 2
(Nr2 − r)

√
H(p − Nqμν ϕ)

piμν ϕ +

√
H(−2Nr + 1)

i
,

v98(x, t) =
1
k2
((2

(Nr2 − r)
√

H(p − Nqμν ϕ)

piμν ϕ +

√
H(−2Nr + 1)

i
)2 + H),

(118)

where ϕ = 2
ln(μ)k2

√
− H

−B2+4 CA (
xβ

Γ(β+1) − k2tα

Γ(α+1) ).
Now assuming case. 2, we get the following families of symmetric soliton solutions

for (2):

Family. 25: When R < 0 A, B, C �= 0 then (11), (13) and corresponding general solutions
of (10) imply the following family of symmetric soliton solutions:

u99(x, t) =
H(−2 Cr + B)√−RH

+

√
H
−R

(
−B +

√−R tanμ

(
1/2

√−Rϕ
))

,

v99(x, t) =
1
k2
((

H(−2 Cr + B)√−RH
+

√
H
−R

(
−B +

√−R tanμ

(
1/2

√−Rϕ
))

)2 + H),

(119)

u100(x, t) =
H(−2 Cr + B)√−RH

+

√
H
−R

(
−B −√−R cotμ

(
1/2

√−Rϕ
))

,

v100(x, t) =
1
k2
((

H(−2 Cr + B)√−RH
+

√
H
−R

(
−B −√−R cotμ

(
1/2

√−Rϕ
))

)2 + H),

(120)

u101(x, t) =
H(−2 Cr + B)√−RH

+

√
H
−R

(
−B +

√−R
(

tanμ

(√−Rϕ
)
±
(√

pq secμ

(√−Rϕ
))))

,

v101(x, t) =
1
k2
((

H(−2 Cr + B)√−RH
+

√
H
−R

(
−B +

√−R
(

tanμ

(√−Rϕ
)
±
(√

pq secμ

(√−Rϕ
))))

)2 + H),

(121)

u102(x, t) =
H(−2 Cr + B)√−RH

+

√
H
−R

(
−B −√−R

(
cotμ

(√−Rϕ
)(√

pq cscμ

(√−Rϕ
))))

,

v102(x, t) =
1
k2
((

H(−2 Cr + B)√−RH
+

√
H
−R

(
−B −√−R

(
cotμ

(√−Rϕ
)(√

pq cscμ

(√−Rϕ
))))

)2 + H),

(122)

and

u103(x, t) =
H(−2 Cr + B)√−RH

+

√
H
−R

(
−B +

√−R
(
tanμ

(
1/4

√−Rϕ
)− cotμ

(
1/4

√−Rϕ
))

2

)
,

v103(x, t) =
1
k2
((

H(−2 Cr + B)√−RH
+

√
H
−R

(
−B +

√−R
(
tanμ

(
1/4

√−Rϕ
)− cotμ

(
1/4

√−Rϕ
))

2

)
)2 + H).

(123)

106



Mathematics 2023, 11, 2686

Family. 26: When R > 0 A, B, C �= 0 then (11), (13) and corresponding general solutions
of (10) imply the following family of symmetric soliton solutions:

u104(x, t) =
H(−2 Cr + B)√−RH

+

√
H
−R

(
−B −

√
R tanhμ

(
1/2

√
Rϕ
))

,

v104(x, t) =
1
k2
((

H(−2 Cr + B)√−RH
+

√
H
−R

(
−B −

√
R tanhμ

(
1/2

√
Rϕ
))

)2 + H),

(124)

u105(x, t) =
H(−2 Cr + B)√−RH

+

√
H
−R

(
−B −

√
R cothμ

(
1/2

√
Rϕ
))

,

v105(x, t) =
1
k2
((

H(−2 Cr + B)√−RH
+

√
H
−R

(
−B −

√
R cothμ

(
1/2

√
Rϕ
))

)2 + H),

(125)

u106(x, t) =
H(−2 Cr + B)√−RH

+

√
H
−R

(
−B −

√
R
(

tanhμ

(√
Rϕ
)
±
(√

pqsechμ

(√
Rϕ
))))

,

v106(x, t) =
1
k2
((

H(−2 Cr + B)√−RH
+

√
H
−R

(
−B −

√
R
(

tanhμ

(√
Rϕ
)
±
(√

pqsechμ

(√
Rϕ
))))

)2 + H),

(126)

u107(x, t) =
H(−2 Cr + B)√−RH

+

√
H
−R

(
−B −

√
R
(

cothμ

(√
Rϕ
)
±
(√

pqcschμ

(√
Rϕ
))))

,

v107(x, t) =
1
k2
((

H(−2 Cr + B)√−RH
+

√
H
−R

(
−B −

√
R
(

cothμ

(√
Rϕ
)
±
(√

pqcschμ

(√
Rϕ
))))

)2 + H),

(127)

and

u108(x, t) =
H(−2 Cr + B)√−RH

+

√
H
−R

⎛
⎝−B −

√
R
(

tanhμ

(
1/4

√
Rϕ
)
− cothμ

(
1/4

√
Rϕ
))

2

⎞
⎠,

v108(x, t) =
1
k2
((

H(−2 Cr + B)√−RH
+

√
H
−R

⎛
⎝−B −

√
R
(

tanhμ

(
1/4

√
Rϕ
)
− cothμ

(
1/4

√
Rϕ
))

2

⎞
⎠)2 + H).

(128)

Family. 27: When AC > 0 and B = 0 then (11), (13) and corresponding general solutions
of (10) imply the following family of symmetric soliton solutions:

u109(x, t) = −r

√
HC
A

+
√

H tanμ

(√
ACϕ

)
,

v109(x, t) =
1
k2
((−r

√
HC
A

+
√

H tanμ

(√
ACϕ

)
)2 + H),

(129)

u110(x, t) = −r

√
HC
A

−
√

H cotμ

(√
ACϕ

)
,

v110(x, t) =
1
k2
((−r

√
HC
A

−
√

H cotμ

(√
ACϕ

)
)2 + H),

(130)

u111(x, t) = −r

√
HC
A

+
√

H(tanμ

(
2
√

ACϕ
)
±
(√

pq secμ

(
2
√

ACϕ
))

),

v111(x, t) =
1
k2
((−r

√
HC
A

+
√

H(tanμ

(
2
√

ACϕ
)
±
(√

pq secμ

(
2
√

ACϕ
))

))2 + H),

(131)
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u112(x, t) = −r

√
HC
A

− 2
√

H(cotμ

(
2
√

ACϕ
)
±
(√

pq cscμ

(
2
√

ACϕ
))

),

v112(x, t) =
1
k2
((−r

√
HC
A

− 2
√

H(cotμ

(
2
√

ACϕ
)
±
(√

pq cscμ

(
2
√

ACϕ
))

))2 + H),

(132)

and

u113(x, t) = −r

√
HC
A

+
√

H(tanμ

(
1/2

√
ACϕ

)
− cotμ

(
1/2

√
ACϕ

)
),

v113(x, t) =
1
k2
((−r

√
HC
A

+
√

H(tanμ

(
1/2

√
ACϕ

)
− cotμ

(
1/2

√
ACϕ

)
))2 + H).

(133)

Family. 28: When AC < 0 and B = 0 then (11), (13) and corresponding general solutions
of (10) imply the following family of symmetric soliton solutions:

u114(x, t) = −r

√
−HC

A
−√−H tanhμ

(√−ACϕ
)

,

v114(x, t) =
1
k2
((−r

√
−HC

A
−√−H tanhμ

(√−ACϕ
)
)2 + H),

(134)

u115(x, t) = −r

√
−HC

A
−√−H cothμ

(√−ACϕ
)

,

v115(x, t) =
1
k2
((−r

√
−HC

A
−√−H cothμ

(√−ACϕ
)
)2 + H),

(135)

u116(x, t) = −r

√
−HC

A
−√−H(tanhμ

(
2
√−ACϕ

)
±
(

i
√

pqsechμ

(
2
√−ACϕ

))
),

v116(x, t) =
1
k2
((−r

√
−HC

A
−√−H(tanhμ

(
2
√−ACϕ

)
±
(

i
√

pqsechμ

(
2
√−ACϕ

))
))2 + H),

(136)

u117(x, t) = −r

√
−HC

A
−√−H(cothμ

(
2
√−ACϕ

)
±
(√

pqcschμ

(
2
√−ACϕ

))
),

v117(x, t) =
1
k2
((−r

√
−HC

A
−√−H(cothμ

(
2
√−ACϕ

)
±
(√

pqcschμ

(
2
√−ACϕ

))
))2 + H),

(137)

and

u118(x, t) = −r

√
−HC

A
−√−H(tanhμ

(
1/2

√−ACϕ
)
+ cothμ

(
1/2

√−ACϕ
)
),

v118(x, t) =
1
k2
((−r

√
−HC

A
−√−H(tanhμ

(
1/2

√−ACϕ
)
+ cothμ

(
1/2

√−ACϕ
)
))2 + H).

(138)

Family. 29: When C = A and B = 0 then (11), (13) and corresponding general solutions of
(10) imply the following family of symmetric soliton solutions:

u119(x, t) =
√

H(1 − r) tanμ(Aϕ),

v119(x, t) =
1
k2
((
√

H(1 − r) tanμ(Aϕ))2 + H),
(139)

u120(x, t) = −
√

H(1 + r) cotμ(Aϕ),

v120(x, t) =
1
k2
((−

√
H(1 + r) cotμ(Aϕ))2 + H),

(140)
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u121(x, t) =
√

H(1 − r)
(
tanμ(2 Aϕ)± (√pq secμ(2 Aϕ)

))
,

v121(x, t) =
1
k2
((
√

H(1 − r)
(
tanμ(2 Aϕ)± (√pq secμ(2 Aϕ)

))
)2 + H),

(141)

u122(x, t) = −
√

H(1 + r)
(− cotμ(2 Aϕ)∓ (√pq cscμ(2 Aϕ)

))
,

v122(x, t) =
1
k2
((−

√
H(1 + r)

(− cotμ(2 Aϕ)∓ (√pq cscμ(2 Aϕ)
))
)2 + H),

(142)

and

u123(x, t) =
√

H(1 − r)
(
1/2 tanμ(1/2 Aϕ)− 1/2 cotμ(1/2 Aϕ)

)
,

v123(x, t) =
((
√

H(1 − r)
(
1/2 tanμ(1/2 Aϕ)− 1/2 cotμ(1/2 Aϕ)

)
)2 + H)

k2
.

(143)

Family. 30: When C = −A and B = 0 then (11), (13) and corresponding general solutions
of (10) imply the following family of symmetric soliton solutions:

u124(x, t) =
√−H(r − 1) tanhμ(Aϕ),

v124(x, t) =
1
k2
((
√−H(r − 1) tanhμ(Aϕ))2 + H),

(144)

u125(x, t) =
√−H(r − 1) cothμ(Aϕ),

v125(x, t) =
1
k2
((
√−H(r − 1) cothμ(Aϕ))2 + H),

(145)

u126(x, t) =
√−H(r + 1)

(− tanhμ(2 Aϕ)∓ (i√pqsechμ(2 Aϕ)
))

,

v126(x, t) =
((
√−H(r + 1)

(− tanhμ(2 Aϕ)∓ (i√pqsechμ(2 Aϕ)
))
)2 + H)

k2
, (146)

u127(x, t) =
√−H(r + 1)

(− cothμ(2 Aϕ)∓ (√pqcschμ(2 Aϕ)
))

,

v127(x, t) =
((
√−H(r + 1)

(− cothμ(2 Aϕ)∓ (√pqcschμ(2 Aϕ)
))
)2 + H)

k2
,

(147)

and

u128(x, t) =
√−H(r + 1)

(
1
2

tanhμ

(
1
2

Aϕ

)
− 1

2
cothμ

(
1
2

Aϕ

))
,

v128(x, t) =
((
√−H(r + 1)

(
− 1

2 tanhμ

(
1
2 Aϕ

)
− 1

2 cothμ

(
1
2 Aϕ

))
)2 + H)

k2
.

(148)

Family. 31: When A = 0, B �= 0 and C �= 0 then (11), (13) and corresponding general
solutions of (10) imply the following family of symmetric soliton solutions:

u129(x, t) =
H(−2 Cr + B)√−HB2

− 2
√−Hp

(
coshμ(Bϕ)− sinhμ(Bϕ) + p

)−1,

v129(x, t) =
1
k2
((

H(−2 Cr + B)√−HB2
− 2

√−Hp(coshμ(Bϕ)− sinhμ(Bϕ) + p)−1)2 + H),
(149)

and

u130(x, t) =
H(−2 Cr + B)√−HB2

− 2
√−H

coshμ(Bϕ) + sinhμ(Bϕ)

coshμ(Bϕ) + sinhμ(Bϕ) + q
,

v130(x, t) =
((H(−2 Cr+B)√−HB2 − 2

√−H coshμ(Bϕ)+sinhμ(Bϕ)
coshμ(Bϕ)+sinhμ(Bϕ)+q )

2 + H)

k2
.

(150)
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Family. 32: When B = ν, C = Nν(N �= 0) and A = 0 then (11), (13) and corresponding
general solutions of (10) imply the following family of symmetric soliton solutions:

u131(x, t) =
√−H(−2Nr + 1) + 2

√−HNpμν ϕ(p − Nqμν ϕ)−1,

v131(x, t) =
((
√−H(−2Nr + 1) + 2

√−HNpμν ϕ(p − Nqμν ϕ)−1)2 + H)

k2
.

(151)

where ϕ = 2
ln(μ)k2

√
− H

−B2+4 CA (
xβ

Γ(β+1) − k2tα

Γ(α+1) ).

4. Discussion and Graphs

We successfully constructed families of symmetric soliton solutions for FCKOS by
employing two adapted versions of EDAM i.e., mEDAM and r+EDAM in this study.
By supposing series form solutions, we were capable to apply these approaches to translate the
given system of NODEs formed from the model into a system of algebraic equations. We were
capable to obtain the model’s symmetric soliton solutions by solving this algebraic system.

In Figure 1, the 3D graph of the first equation in (28) is depicted in Figure 1 for
A = 3, B = 0, C = 1, μ = e, H = 3, k2 = 2, α = β = 1. This profile shows a symmetric
lump wave which is significant wave that can come into view in a range of physical systems.
Figure 2, the 3D graph of the second equation in (80) is plotted in Figure 2 for A = 0, B =
2, C = 1, μ = e, H = 2 = k2, α = 0.5, β = 0.9. This profile shows a symmetric kink wave
which descends or ascends from one asymptotic state to another and at infinity it attains
a constant velocity profile. Figure 3, the 3D graph of first equation in (95) is illustrated
in Figure 3 for A = 2, B = 0, C = 4, μ = 3, H = −5, k2 = 2, r = p = q = 1, α = β = 1.
This profile shows a symmetric solitary wave which has a fixed shape and constant speed
which is asymptotically zero at large distance. The 3D graph of the real part of the second
equation in (107) is illustrated in Figure 4 for A = 1, B = 0, C = 1, μ = e, H = −2, k2 =
109, r = 5, p = 2, q = 10, α = 0.9, β = 0.5. This profile shows a symmetric periodic
wave which are travelling waves that show periodicity while propagating. The constructed
symmetric soliton solutions include solitary waves, lump waves, periodic waves, kink
waves, etc. all of which show symmetries in their profiles. The existence of symmetries
improve the stability and robustness of solitons and it offer insight into conservation laws
and essential physical properties. The study of these symmetric solitons contributes to a
healthier understanding of the complicated dynamics concerning dispersion, nonlinearity
and supplementary influencing factors in targeted FCKOS. This investigation present
precious insights into intricate wave phenomena and their applications in various fields of
nonlinear physics (Figures 1–4).
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Figure 1. The 3D graph of the first equation in (28) is depicted in Figure 1 for A = 3, B = 0, C = 1,
μ = e, H = 3, k2 = 2, α = β = 1. This profile shows a symmetric lump wave which is significant
wave that can come into view in a range of physical systems. These waves are characterized by a
swift increase in amplitude and a sluggish decline reverse to their early level.

Figure 2. The 3D graph of the second equation in (80) is plotted in Figure 2 for A = 0, B = 2, C = 1,
μ = e, H = 2 = k2, α = 0.5, β = 0.9. This profile shows a symmetric kink wave which descends or
ascends from one asymptotic state to another and at infinity it attains a constant velocity profile.
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Figure 3. The 3D graph of first equation in (95) is illustrated in Figure 3 for A = 2, B = 0, C = 4,
μ = 3, H = −5, k2 = 2, r = p = q = 1, α = β = 1. This profile shows a symmetric solitary wave
which has a fixed shape and constant speed which is asymptotically zero at large distance.

Figure 4. The 3D graph of the real part of the second equation in (107) is illustrated in Figure 4
for A = 1, B = 0, C = 1, μ = e, H = −2, k2 = 109, r = 5, p = 2, q = 10, α = 0.9, β = 0.5.
This profile shows a symmetric periodic wave which are travelling waves that show periodicity
while propagating.

5. Conclusions

In this research work, FCKOS was addressed using two improved variants of EDAM.
For the offered system of NODEs, the mEDAM and r+mEDAM approaches were able to
discover a series form a solution, which was then distorted into a system of nonlinear
algebraic equations to get verities of symmetric soliton solutions that are significant to the
problem’s physical interpretation. The existence of different travelling waves including
kink waves, solitary waves, periodic waves, lump waves, etc., in soliton solutions were
shown by depicting some 3D graphs. The article highlights the implication for several
practical applications in different areas of science and demonstrate the potential of the
EDAM in constructing families of soliton solutions for complex problems.
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Abstract: In this paper, a new four-dimensional (4D) hyperchaotic biplane system is designed and
presented. The dynamical properties of this new system are studied by means of tools such as
bifurcation diagrams, Lyapunov exponents and phase diagrams. The Hopf bifurcation and periodic
solutions of this hyperchaotic system are solved analytically. In addition, a new hyperchaotic control
strategy is applied, and a comparative analysis of the controlled system is performed.
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1. Introduction

In 1979, Rössler discovered and studied the first hyperchaotic system—the Rössler
system [1]. It is known that the minimum dimension of the phase space in which the
hyperchaotic attractor is embedded should exceed three. It means that hyperchaos is a more
complex dynamical phenomenon than chaos. Later, many four-dimensional hyperchaotic
systems were discovered and studied [2,3], specifically four-dimensional hyperchaotic
Lorenz-type systems [4,5]. Jia [6] constructed a hyperchaotic Lorenz-type system using
state feedback control and studied its associated dynamics using Lyapunov exponents
and bifurcation diagrams. Wang et al. [7] characterized a-new-uniform-four-dimensional-
uniform-hyperchaotic-Lorenz-type system, employing a bifurcation method and Lyapunov
stability theory. Compared to ordinary chaotic systems, hyperchaotic systems have more
potential applications in information security [8–12], finance [13,14], lasers [15–17], and
circuits [18–21]. Due to their higher dimensionality, hyperchaotic systems are accompanied
by a vast amount of randomness and unpredictability. To the best of our knowledge, the
complexity of the dynamics of hyperchaotic systems is yet to be fully grasped. There are
only a few studies on the dynamics of hyperchaotic systems.

More effective methods must be used to analyze and study the complex dynam-
ics of high-dimensional hyperchaotic systems. Moreover, it is necessary to study new
high-dimensional hyperchaotic systems and investigate their hyperchaotic properties.
Pecora [22] proposed that high-dimensional hyperchaotic systems are safer than chaotic
systems because of their increased randomness and higher unpredictability. From a practi-
cal application and engineering point of view, hyperchaotic systems should have a higher
level of complexity [23]. Although analytical tools and techniques are available in the
literature for bifurcation and stability analysis [24,25], no such analytical tools are available
for attractors, so we must rely on some graphical tools. Mahmoud et al. [26] constructed a
new hyperchaotic complex Lorentz system by extending the idea of adding state feedback
control and introducing complex periodic forces.
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Similarly, a new 4D four-wing memristor hyperchaotic system was presented by
incorporating a magnetron memristor with a linear memristor in the four-wing Chen
system [27]. Moreover, a hyperchaotic system of a 4D generalized Lorenz first state
equation was proposed by introducing a linear state feedback control [28]. Mezatio et al.
proposed hyperchaos and the coexistence of infinite hidden attractors in a six-dimensional
system [29]. In one study, the dynamical richness of the hyperchaotic systems and their
increased complexity were recognized with the addition of nonlinear controllers [30].
Furthermore, some scholars succeeded in constructing hyperchaotic systems [31,32]. These
systems have significantly broadened the study of hyperchaos and provided some control
strategies and research methods.

It is difficult for mathematicians and engineers to fully understand the behavior of
hyperchaotic systems because the associated dynamics of hyperchaotic systems exist in
higher dimensions simultaneously. The main components of the hyperchaotic system are
two positive Lyapunov exponents, Hopf bifurcation and the attractor. Hopf bifurcation
and chaotic attractors are both richly developed on the basis of chaos theory [33–35]. Hopf
bifurcation is critical in analyzing the stability of equilibrium points of the hyperchaotic
system in high dimensions, and it is used to study the dynamical behavior of hyperchaotic
systems [36–38] and to control hyperchaos [39–41] for various applications.

This paper is structured as follows. The first part of this work describes the numerical
simulation results of the proposed new system. Then, the output of MATLAB codes is
presented that graphically represents the system. In this study, the Runge–Kutta algorithm
was mainly utilized for the numerical simulations. Moreover, the analysis of the system
characteristics, such as chaos and hyperchaos, is numerically verified using a bifurcation
diagram, Phase diagram, Lyapunov exponents spectrum, and Poincaré maps. The condi-
tions for the Hopf bifurcation of the new chaotic system are obtained in the second part of
this work. In the third part, the stability of the bifurcation period solution and the Hopf
bifurcation direction formula of the system are calculated using the normal form theory [42].
In addition, two examples were used to test and verify the theoretical results. In the fourth
part, hyperchaotic control is investigated [43]. The results show that the linear feedback
control method can control the system reasonably if appropriate feedback coefficients are
chosen. In Section 6, the outcomes of the study are summarized.

2. Description of the Model

In 1994, Sprott obtained 19 third-order quadratic systems that exhibit chaotic behavior
via a computational search method [44]. This assumption is of great theoretical and practical
significance for studying some systems. In 2010, Wei [45] obtained a new generalized Sprott
C system and proposed methods to improve a similar system proposed by Zhang et al. [46]
and Jafari et al. [47,48]. The new chaotic system proposed in this study is as follows:

⎧⎨
⎩

.
x = a(y − x),
.
y = cy − xz,
.
z = −bz + y2.

(1)

The following new four-dimensional hyperchaotic system is introduced by adding a
linear controller to the system of equations given in (1):

⎧⎪⎪⎨
⎪⎪⎩

.
x = a(y − x),
.
y = cy − xz + p,
.
z = −bz + y2,
.
p = −e(x + y).

(2)

where x, y, z and p are state variables, a, b, c and e are system parameters, and also e is the
main control parameter of System (2).

In this subsection, some characteristics of System (2) are discussed, and more simula-
tion results are present from the numerical methods. The dynamics of System (2) can be
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characterized by its Lyapunov exponents using the real constants a = 40, b = 2, c = 22.
The corresponding bifurcation diagram is given in Figure 1. We apply the Jacobi method
to calculate the Lyapunov exponent. The Lyapunov exponent spectrum of System (2) is
shown in Figure 2.

Figure 1. Bifurcation diagram of System (2) with a = 40, b = 2 and c = 22.

Figure 2. Lyapunov−exponent spectrum of System (2) with a = 40, b = 2 and c = 22.

According to the correspondence of Figures 1 and 2, when the parameter e = 0.5, the
Lyapunov exponent of the new 4D System (2) is L1 = 16.9402, L2 = −3.4133, L3 = 0, and
L4 = 6.9890. It can be seen that L1 > 0, L4 > 0 and L3 = 0. Thus, System (2) is hyperchaotic
at parameters a = 40, b = 2, c = 22 and e = 0.5. In this case, System (2) has a hyperchaotic
attractor, as shown in Figure 3. Moreover, the Poincaré maps in the x − y and z − p planes
are given in Figure 4.

In general, the above results show that System (2) has complex and interesting dynam-
ical behavior, including hyperchaos and chaos.
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Figure 3. Phase diagram of System (2) with a = 40, b = 2, c = 22 and e = 0.5.

 
(a) (b) 

Figure 4. Poincaré maps (a,b) for the x−y and z−p planes at a = 40, b = 2, c = 22 and e = 0.5.

3. Stability Analysis and the Existence of Hopf Bifurcation

3.1. Equilibrium Stability

The equilibria of System (2) can be found by solving the following equations simulta-
neously: ⎧⎪⎪⎨

⎪⎪⎩
a(y − x) = 0,

cy − xz + p = 0,
−bz + y2 = 0,
−e(x + y) = 0.

(3)

A simple analysis makes it easy to obtain the unique equilibrium at E0(0, 0, 0, 0) for
System (2).

The Jacobian matrix of System (2) at E0(0, 0, 0, 0) is given by the following matrix:

J(E0) =

⎛
⎜⎜⎝
−a a 0 0
0 c 0 1
0 0 −b 0
−e −e 0 0

⎞
⎟⎟⎠, (4)
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The following determinant can be obtained from the Jacobian matrix:

|λE − J(E0)| =

∣∣∣∣∣∣∣∣
λ + a −a 0 0

0 λ − c 0 −1
0 0 λ + b 0
e e 0 λ

∣∣∣∣∣∣∣∣
. (5)

The characteristic equation is therefore given below:

f (λ) = (λ + b)(λ3 + (a − c)λ2 + (e − ac)λ + 2ae)
= λ4 + (a + b − c)λ3 + (e − ac − bc + ab)λ2 + (2ae + be − abc)λ + 2abe = 0.

(6)

The following relation can be obtained using the Routh–Hurwitz discriminant condi-
tion [49]:

f (λ) = P0λ4 + P1λ3 + P2λ2 + P3λ + P4 = 0. (7)

A one-to-one correspondence between Equations (6) and (7) can be obtained by
considering the following coefficients:

P0 = 1, P1 = a + b − c, P2 = e − ac − bc + ab, P3 = 2ae + be − abc, P4 = 2abe.

The following determinant is obtained by substituting the P0, P1, P2, P3 and P4.

D =

∣∣∣∣∣∣∣∣
P1 P3 0 0
P0 P2 P4 0
0 P1 P3 0
0 P0 P2 P4

∣∣∣∣∣∣∣∣
. (8)

It can be seen that the necessary and sufficient conditions for the real parts to be
negative for all eigenvalues of the system are given in the following inequalities:

D1 = P1 = a + b − c > 0, (9)

D2 =

∣∣∣∣P1 P3
P0 P2

∣∣∣∣ = P1P2 − P0 P3 > 0, (10)

D3 = P3D2 − P4P2
1 > 0, (11)

D4 = D = P4D3 > 0. (12)

From Equations (9)–(12), we have the following conditions.

b > 0, e > ac, a > c, ae > 0, ac2 − a2c + ae − ce > 0

Therefore, the system will bifurcate when e = ac(c − a)
a + c . So, e is a critical value and is

referred to as e = e0.

3.2. Existence of a Hopf Bifurcation

Assume that System (2) of equations has a pure imaginary root λ = ωi (ω ∈ R+).
From Equation (6), the following relation can be obtained:

ω = ω0 =
√

e − ac, e = e0 =
ac(c − a)

a + c
.

Substituting e = e0 into Equation (6), the following relationships are derived:

λ1 = −b, λ2 = c − a, λ3 = iω0, λ4 = −iω0.
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Hence, System (2) satisfies the first condition of the Hopf bifurcation theorem. By
differentiating the characteristic equations of the equilibrium point E0 with respect to e, the
following differential equation is acquired:

3λ2 dλ

de
+ 2(a − c)λ

dλ

de
+ (e − ac)

dλ

de
+ 2a + λ = 0, (13)

and
λ′(e) = dλ

de
= − 2a + λ

3λ2 + 2(a − c)λ + e − ac
. (14)

Substituting the bifurcation value and eigenvalues into the above equation gives the
following results:

α′(0) = Re(λ′(e0))
∣∣
λ=

√
e−aci =

(a + c)2

4ac2 + 2(a − c)2(a + c)
> 0, (15)

ω′(0) = Im(λ′(e0))
∣∣
λ=

√
e−aci =

2a2 − ac − c2

8ac3 + 4c(a + c)(a − c)2

√
2a(a + c) �= 0. (16)

Hence, the second condition of the Hopf bifurcation theorem is satisfied.
The proposed chaotic system thus satisfies both conditions of the Hopf bifurcation

theorem [50]. When e = e0, the system shows Hopf bifurcations at the equilibrium point E0.

4. Direction and Stability of Bifurcating Periodic Solutions

The primary purpose of this section is to find the direction and stability of the periodic
solutions of the Hopf bifurcations in System (2). An approach based on the normal form
theory and center manifold theorem is used [42].

First, the eigenvectors of the matrix are solved by setting the following solution
equations: ⎧⎪⎪⎨

⎪⎪⎩
(λ + a)u1 − au2 = 0,
(λ − c)u2 − u4 = 0,

(λ + b)u3 = 0,
eu1 + eu2 + λu3 = 0.

(17)

Let v1, v2 and v3 represent the eigenvectors that correspond to the eigenvalues
λ1 = −b, λ2 = c − a and λ3 = iω0, respectively. It can be shown that the following
relations hold:

v1 =

⎛
⎜⎜⎝

0
0
1
0

⎞
⎟⎟⎠, v2 =

⎛
⎜⎜⎝

a
c
1
0
−a

⎞
⎟⎟⎠, v3 =

⎛
⎜⎜⎝
− ac

e + c
e
√

e − aci
1
0

−c +
√

e − aci

⎞
⎟⎟⎠.

A matrix Q can then be defined using the acquired expressions for the eigenvectors as
follows:

Q = (Rev3,−Imv3, v1, v2) =

⎛
⎜⎜⎝
− ac

e − c
e
√

e − ac 0 a
c

1 0 0 1
0 0 1 0
−c −√

e − ac 0 −a

⎞
⎟⎟⎠. (18)

Considering the following transformation,

⎛
⎜⎜⎝

x
y
z
p

⎞
⎟⎟⎠ = Q

⎛
⎜⎜⎝

x1
y1
z1
p1

⎞
⎟⎟⎠, (19)
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a relationship between x, y, z, p and x1, y1, z1, p1 can be obtained in the following manner:

⎛
⎜⎜⎝

x
y
z
p

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝
− ac

e x1 − c
e
√

e − acy1 +
a
c p1

x1 + p1
z1

−cx1 −
√

e − acy1 − ap1

⎞
⎟⎟⎠. (20)

By taking the derivative of Equation (20) and substituting the results into System (2), a
new system expression is obtained, which is given below:

⎧⎪⎪⎨
⎪⎪⎩

.
x1 = −√

e − acy1 + F1(x1, y1, z1, p1),.
y1 =

√
e − acx1 + F2(x1, y1, z1, p1),.

z1 = −bz1 + F3(x1, y1, z1, p1),.
p1 = (c − a)p1 + F4(x1, y1, z1, p1).

(21)

where,

F1(x1, y1, z1, p1) = −k( ac
e x1z1 +

c
e
√

e − acy1z1 − a
c z1 p1),

F2(x1, y1, z1, p1) = [(c − a)k − a]( ac
e x1z1 +

c
e
√

e − acy1z1 − a
c z1 p1),

F3(x1, y1, z1, p1) = x1
2 + p1

2 + 2x1 p1,
F4(x1, y1, z1, p1) = (k + 1)( ac

e x1z1 +
c
e
√

e − acy1z1 − a
c z1 p1),

k = ae+ac2

c3−ae−2ac2 .

Then, using formulas reported in the literature [42], the following expressions related
to the bifurcation at e = e0 and (x1, y1, z1, p1) = (0, 0, 0, 0) can be obtained:

g11 = 1
4 [

∂2F1
∂x2

1
+ ∂2F1

∂y2
1
+ i( ∂2F2

∂x2
1
+ ∂2F2

∂y2
1
)] = 0,

g02 = 1
4 [

∂2F1
∂x2

1
− ∂2F1

∂y2
1
− 2 ∂2F2

∂x1∂y1
+ i( ∂2F2

∂x2
1
− ∂2F2

∂y2
1
+ 2 ∂2F1

∂x1∂y1
)] = 0,

g20 = 1
4 [

∂2F1
∂2x2

1
− ∂2F1

∂2y2
1
+ 2 ∂2F2

∂x1∂y1
+ i( ∂2F2

∂2x2
1
− ∂2F2

∂2y2
1
− 2 ∂2F1

∂x1∂y1
)] = 0,

G21 = 1
8 [

∂3F1
∂x3

1
+ ∂3F1

∂x1∂y2
1
+ ∂3F2

∂x2
1∂y1

+ ∂3F2
∂y3

1
+ i( ∂3F2

∂x3
1
+ ∂3F2

∂x1∂y2
1
− ∂3F1

∂x2
1∂y1

− ∂3F1
∂y3

1
)] = 0.

From the dimension n = 4 > 2, we calculate the following variables:

h1
11 = 1

4 (
∂2F3
∂x2

1
+ ∂2F3

∂y2
1
) = 1

4 , h2
11 = 1

4 (
∂2F4
∂x2

1
+ ∂2F4

∂y2
1
) = 0,

h1
20 = 1

4 (
∂2F3
∂x2

1
− ∂2F3

∂y2
1
− 2i ∂2F3

∂x1∂y1
) = 1

4 , h2
20 = 1

4 (
∂2F4
∂x2

1
− ∂2F4

∂y2
1
− 2i ∂2F4

∂x1∂y1
) = 0.

By solving the following equations,

Dw11 = −h11, (D − 2iω0 I)w20 = −h20,

where

h11 =

(
h1

11
h2

11

)
, h20 =

(
h1

20
h2

20

)
,

We obtain the following relations:

w11 =

(
w1

11
w2

11

)
=

( b
4
0

)
, w20 =

(
w1

20
w2

20

)
=

(
c−a

4 −
√

e−ac
2 i

0

)
.
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Furthermore,

G1
110 = 1

2 [
∂2F1

∂x1∂z1
+ ∂2F2

∂y1∂z1
+ i( ∂2F2

∂x1∂z1
− ∂2F1

∂y1∂z1
)]

= ack
2e (i − 1) + c

√
e−ac
2e [k(c − a)− a](i + 1),

G2
110 = 0,

G2
101 = 0,

G1
101 = 1

2 [
∂2F1

∂x1∂z1
− ∂2F2

∂y1∂z1
+ i( ∂2F2

∂x1∂z1
+ ∂2F1

∂y1∂z1
)]

= ack
2e (−i − 1) + c

√
e−ac
2e [k(c − a)− a](i − 1),

g21 = G21 +
2
∑

n=1
(2Gn

110wn
11 + Gn

101wn
20)

= − 2abc+ac(c−a)+2ac
√

e−ac
8e k + 2bc−c2+ac+2c

8e
√

e − ac[k(c − a)− a]

+ (2bc+c2−ac)
√

e−ac+2c(e−ac)
8e [k(c − a)− a]i

+ 2abc−ac(c−a)+2ac
√

e−ac
8e ki.

Based on these calculations and analyses, we obtain the following results:

C1(0) =
i

2ω0
[g20g11 − 2|g11|2 − 1

3
|g02|2] + 1

2
g21 =

1
2

g21 (22)

μ2 = −ReC1(0)
α′(0) , (23)

β2 = 2ReC1(0), (24)

τ2 = − ImC1(0) + μ2ω′(0)
ω0

. (25)

The following conclusions can also be drawn:

(i) If μ2 > 0(< 0), the Hopf bifurcation is supercritical (subcritical), and for e > e0(< e0),
the bifurcation has a periodic solution;

(ii) If β2 < 0(> 0), the bifurcating periodic solutions are stable (unstable) on their orbits;
(iii) If τ2 > 0(< 0), the period of bifurcating periodic solutions increases or decreases.

For the verification of the above theoretical analysis, it is assumed that

a = 3, b = 2, c = −1

Then, e0 = 6, and the following values are calculated:

μ2 = 5.13, β2 = −0.54, τ2 ≈ 0.35147

Therefore, when the parameter e is at its critical value, the Hopf bifurcation of the
system at the equilibrium point E0(0, 0, 0, 0) is supercritical. Moreover, the bifurcation
direction is e < e0 = 6. The bifurcation period solution of the system is stable, as shown in
Figure 5. e > e0 = 6 as shown in Figure 6.
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Figure 5. Phase diagram of System (2) with a = 3, b = 2, c = −1 and e = 5.

 

 

Figure 6. Phase diagram of System (2) with a = 3, b = 2, c = −1 and e = 8.

5. Hyperchaos Control

In many cases, chaos is generally harmful and needs to be suppressed. Therefore,
scholars have paid extensive attention to controlling it. Scholars have developed many
valuable methods for chaos control, such as the hybrid control c-strategy [51] and the
ultimate boundedness [52]. The equation of the controlled system is as follows:

⎧⎪⎪⎨
⎪⎪⎩

.
x = a(y − x) + r1x,
.
y = cy − xz + p + r2y,
.
z = −bz + y2 + r3z,
.
p = −e(x + y) + r4 p,

(26)
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where r1, r2, r3 and r4 are feedback coefficients. The Jacobian matrix of System (26) at the
zero-equilibrium point is the following:

Jr =

∣∣∣∣∣∣∣∣
−a + r1 a 0 0

0 c + r2 0 1
0 0 −b + r3 0
−e −e 0 r4

∣∣∣∣∣∣∣∣
, (27)

The following determinant can be obtained from the Jacobian matrix:

|λE − Jr| =

∣∣∣∣∣∣∣∣
λ + a − r1 −a 0 0

0 λ − c − r2 0 −1
0 0 λ + b − r3 0
e e 0 λ − r4

∣∣∣∣∣∣∣∣
. (28)

The characteristic equation can be found in the following:

fr(λ) = R4λ4 + R3λ3 + R2λ2 + R1λ + R0, (29)

where,

R0 = 2abe + acr4 − 2aer3 − ber1 + er1r3 + abr2r4 − bcr1r4 − acr3r4
−ar2r3r4 + br1r2r4 + cr1r3r4 − r1r2r3r4,

R1 = 2ae − be − abc − er1 + er3 + bcr1 + bcr4 − abr2 − abr4 + acr3 + acr4 + ar2r4 + ar2r3
+ar3r4 + br1r2 ++br1r4 − cr1r3 − cr1r4 − cr3r4 + r1r2r4 ++r1r2r3 − r1r3r4 − r2r3r4,

R2 = ab − ac − bc − e − ar2 − ar3 − ar4 − br1 − br2 − br4
+cr1 + cr3 + cr4 + r1r2 + r1r3 + r1r4 + r2r3 + r2r4 + r3r4,

R3 = a + b − c − r1 − r2 − r3 − r4,
R4 = 1.

According to the Routh–Hurwitz discriminant condition [49], the real parts of eigen-
values are negative if and only if,

R3R2 − R1 > 0, R3(R1R2 − R3R0)− R2
1 > 0, R3 > 0, R0 > 0.

Case 1:
When a = 40, b = 2, c = 22 and e = 1, we assume r1,2,3,4 = −25. The corresponding

Lyapunov exponents for System (2) are as follows:

L1 = 18.2980, L2 = −4.0706, L3 = 0, L4 = 8.0878.

Then, the corresponding Lyapunov exponents for System (26) are as follows:

L1 = −3.2103, L2 = −13.5230, L3 = −23.3526, L4 = −22.5437.

So, the zero-equilibrium point is asymptotically stable.
Case 2:
When a = 40, b = 2, c = 22 and e = 3, we assume r1,2,3,4 = −30. The corresponding

Lyapunov exponents for System (2) are as follows:

L1 = 19.5457, L2 = −4.1972, L3 = 0, L4 = 8.9684.

Then, the corresponding Lyapunov exponents for System (26) are the following:

L1 = −8.3379, L2 = −16.6337, L3 = −29.2114, L4 = −27.8364.

Hence, the zero-equilibrium point is asymptotically stable.
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For the two cases above, the time-domain waveforms of the hyperchaotic System (2) and
the controlled System (26) are shown in Figures 7 and 8. By choosing appropriate feedback
coefficients, the controlled System (26) is asymptotically stable at the zero-equilibrium point.

 
(a) (b) 

 
(c) (d) 

Figure 7. The time−domain waveform diagram for Case 1 with respect to Systems (2) for (a–c), and
System (26) for (d).

 
(a) (b) 

 
(c) (d) 

Figure 8. The time−domain waveform diagram for Case 2 with respect to Systems (2) for (a–c), and
System (26) for (d).
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6. Conclusions

This paper obtains a novel four-dimensional hyperchaotic system based on the gen-
eralized Sprott C system. This system has two nonlinear terms and seven linear terms.
The system has Hopf bifurcation and can be solved to obtain explicit formulas for the
direction and stability of the bifurcation periodic solutions. Additionally, we show the
phase diagram of the bifurcation periodic solutions stability versus direction in Figures 5
and 6. We mainly use the Runge–Kutta algorithm for the numerical simulations in this
paper. The results show that the new 4D hyperchaotic system has complex dynamical
behavior.

In addition, we also performed linear feedback control on the new 4D hyperchaotic
system. This new control strategy is novel and effective regarding hyperchaotic phenomena
in control systems, as shown in Figures 7 and 8.

In the future, we will study more complex high-dimensional hyperchaotic systems
and apply different methods. Five- and even six-dimensional hyperchaotic systems have
rich and exciting properties and should be studied in depth.
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1. Introduction

A discrete map, also known as a discrete dynamical system, is a useful tool for the
analysis of the behavior of chemical reactions and the spread of diseases [1]. Discrete
maps can exhibit a variety of behaviors, including stability, periodicity, and chaos [2–5].
Fractional-order models and neural networks play a vital role in artificial intelligence and
signal processing [6,7]. Discrete chaotic maps are particularly interesting because they
exhibit complex and unpredictable behavior, even though they are deterministic and follow
precise rules. Chaotic maps have important applications in fields such as cryptography,
data encryption, and random number generation [8,9]. In this context, understanding
and implementing the dynamics of discrete chaotic maps has become a crucial research
topic [10,11].

The memristor is a fundamental electronic device that was proposed in 1971. How-
ever, it was not until 2008 that the first practical memristor was developed by a team of
researchers at HP Labs. The development of the memristor has provided a new type of non-
volatile memory that is faster, smaller, and requires less energy than existing technologies.
Furthermore, memristors could be used in artificial intelligence, neuromorphic computing,
and analog signal processing [12–14]. This has led to significant interest in the memristor
from both the academic and industrial communities, with many researchers working to
explore its full potential [15,16]

Memristors have been shown to be capable of generating chaotic behavior, and this
property can be exploited to create new discrete chaotic maps [17–21]. Generally, authors
explore 2D memristive maps due to their simplicity. However, recent research is also
shifting towards investigating topics related to high-dimensional memristive maps, as
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they offer distinct advantages [22–24]. For instance, high-dimensional chaotic maps can
store and process significantly more information compared to low-dimensional maps.
Wang et al. conducted a study on a 3D memristive Lozi map [22], while another research
group reported on a bi-memristor map in [23]. Additionally, a comprehensive list of 3D
maps with memristors was introduced [24]. Researchers remain highly intrigued by the
quest for an effective approach to designing high-dimensional maps.

This work considers another way to build high-dimensional maps with memristors
and sine terms. The following are the primary advancements of this study. This work
introduces a highly efficient method for the creation of high-dimensional memristive maps.
These maps exhibit two distinct types of special fixed points, a plane of fixed points and the
absence of any fixed points, categorizing them as unique maps with hidden dynamics [25].
By applying an extension of the suggested approach, the generation of even more intricate
higher-dimensional maps, including 4D and 5D maps, becomes conveniently achievable.
In Section 2, the general model and four example maps are introduced. Section 3 focuses
on the specific map (called TDMM1). Further examples of high-dimensional maps are
discussed in Section 4. Section 5 presents the conclusions.

2. Model of 3D Maps

Chaotic discrete maps have intrigued scientists for decades due to their unpredictable
and complex behaviors. These systems find application in various fields, from cryptography
and secure communications to chaotic circuit design. With the discovery of memristors, a
new dimension was introduced to the understanding and exploration of chaos in discrete
maps. Memristors, the fourth fundamental circuit element, possess unique properties that
offer novel possibilities in chaotic dynamics research. Recently, different 2D memristive
maps have been proposed [20,26,27]. However, a few higher memristive maps have also
been reported [22–24]. In this work, we develop a model of 3D maps, as shown in Figure 1.
The main parts of the model are a sine function sin(.), a memristor, amplifiers (a1, a2, a4, a5),
and a controller term a3. The sine function is a popular function that was first applied to
develop special discrete maps. Exploring further, additional functions could be employed
in constructing high-dimensional maps. The effect of the sine term is indicated by a1 and
a4. The memristor has an effect on the model through a factor a2, while a5 represents the
feedback from x(n) to z(n + 1). The term a3 can be used to change the number of the
model’s fixed points.

Figure 1. Diagram of 3D map using a sine function sin(.) and a memristor.

130



Mathematics 2023, 11, 3725

From Figure 1, the mathematical model is derived as⎧⎨
⎩

x(n + 1) = a1 sin(z(n)) + a2M(y(n))x(n) + a3
y(n + 1) = y(n) + x(n)
z(n + 1) = a4 sin(z(n)) + a5x(n)

(1)

with discrete memristance M(y(n)) and parameters ai, i = 1, · · · , 5. Here, x, y, and z are
state variables. It is noted that x and z can be considered as the outputs of the model, while
y is the internal state of the memristor.

The fixed point of (1) P(x∗, y∗, z∗) is found by solving Equation (2)
⎧⎨
⎩

x∗ = a1 sin(z∗) + a2M(y∗)x∗ + a3
y∗ = y∗ + x∗
z∗ = a4 sin(z∗) + a5x∗

(2)

We obtain ⎧⎪⎨
⎪⎩

x∗ = 0
sin(z∗) = − a3

a1
z∗ = − a3a4

a1

(3)

when a1 �= 0.
As shown in Equation (3), there is a plane of fixed points P(0, y∗, 0) when a3 = 0.

When a3 �= 0, the fixed points depend on a1, a3, and a4. In particular, the fixed points
disappear for

sin
(

a3a4

a1

)
�= a3

a1
(4)

By selecting M(y(n)) = (y(n))2 − 1, we obtain a three-dimensional memristive map
(TDMM1 map): ⎧⎪⎨

⎪⎩
x(n + 1) = a1 sin(z(n)) + a2

(
(y(n))2 − 1

)
x(n) + a3

y(n + 1) = y(n) + x(n)
z(n + 1) = a4 sin(z(n)) + a5x(n)

(5)

The TDMM1 map is chaotic for
⎧⎨
⎩

a1 = a3 = a4 = 0.1
a2 = 1.65
a5 = 1

(6)

and (x(0), y(0), z(0)) = (0.01, 0.01, 0.01) (see Figure 2a). The maximum Lyapunov expo-
nent (MLE) equals 0.2697.

Selecting different memristors, it is possible to obtain new 3D maps based on the
general model (1). In Table 1, we report new maps, while their chaotic dynamics are
illustrated in Figure 2. While we exclusively present a singular set of parameter values for
each map, it is important to note that there exist various parameter values leading to the
chaotic behavior of these maps.
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(a) (b)

(c) (d)
Figure 2. Iterative plots: (a) TDMM1 map, (b) TDMM2 map, (c) TDMM3 map, (d) TDMM4 map.

Table 1. List of new maps (x(0), y(0), z(0)) = (0.01, 0.01, 0.01).

Name Equations Parameters MLE

TDMM2 x(n + 1) = a1 sin(z(n)) + a2(|y(n)| − 1)x(n) + a3 a1 = a4 = 0.1 0.2046
y(n + 1) = y(n) + x(n) a2 = 2.3, a3 = 0.01

z(n + 1) = a4 sin(z(n)) + a5x(n) a5 = 1

TDMM3 x(n + 1) = a1 sin(z(n)) + a2 sin(πy(n))x(n) + a3 a1 = a4 = 0.1 0.2415
y(n + 1) = y(n) + x(n) a2 = 1.8, a3 = 0.01

z(n + 1) = a4 sin(z(n)) + a5x(n) a5 = 1

TDMM4 x(n + 1) = a1 sin(z(n)) + a2

(
e− cos(πy(n)) − 1

)
x(n) + a3 a1 = a4 = 0.1 0.214

y(n + 1) = y(n) + x(n) a2 = 2.5, a3 = 0.01
z(n + 1) = a4 sin(z(n)) + a5x(n) a5 = 1

3. Study of TDMM1 Map

The TDMM1 map (5) has no fixed point when a1 = a3 = a4 = 0.1 and a5 = 1. We
consider the effect of the memristor on the dynamics by changing a2 from 1.3 to 1.7 (see
Figure 3). Both chaotic and non-chaotic behaviors are observed in this range of a2. Figure 3a
shows a route from periodic dynamics to chaos.
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(a)

(b)

Figure 3. (a) Bifurcation diagram, (b) maximum Lyapunov exponents of the TDMM1 map for
a2 ∈ [1.3, 1.7].

The map is realized with a microcontroller via an Arduino Uno board. Signal x is
displayed in Figure 4. The chaos of signal x verifies the map’s feasibility with hardware.

The Internet of Things (IoT) has emerged as a groundbreaking technology that
promises to connect and automate various physical objects and devices, transforming
industries and enhancing our daily lives. However, along with its numerous benefits, the
IoT shows security challenges. The rapid proliferation of IoT devices, which are often
embedded with sensors, actuators, and other smart technologies, has created a complex and
interconnected network of devices that can be vulnerable to security threats. Lightweight
cryptography plays a crucial role in securing IoT environments, where resource-constrained
devices require efficient and effective cryptographic solutions [28,29]. Its ability to provide
strong security with minimal resource requirements makes it suitable for a wide range of
IoT applications, including secure communication, device authentication, data protection,
access control, and secure firmware updates. As the IoT ecosystem continues to grow, the
importance of lightweight cryptography in protecting IoT devices cannot be overstated. We
test a simple lightweight encryption proposed by Moysis et al. [8] using the TDMM1 map.
In this simple encryption, we generate random numbers from the TDMM1 map, which
are utilized to encrypt a small-sized image via XOR operation. The encryption algorithm
comprises the following steps.
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Step 1: Formation of a secret key through the utilization of initial values and map
parameters.

Step 2: Generation of a random bit sequence (K), with each bit (ki) being generated by
the map’s state variable, x

ki =

⎧⎨
⎩

1, if mod
(

105|x(i)|, 1
)
≥ 0.5

0, if mod
(

105|x(i)|, 1
)
< 0.5

(7)

Step 3: Conversion of the original image into a binary sequence (P).
Step 4: Application of the XOR operation to yield the encrypted data (C): C = P ⊕ K.
Step 5: Utilization of the XOR operation to derive the decrypted data (P′): P′ = C ⊕ K,

allowing for the reconstruction of the original image.
The original, encrypted, and decrypted images are displayed in Figure 5. A uniform

histogram of the encrypted image protects it against statistical attacks (see Figure 6). The
information entropy calculations of the encrypted and original images are 7.9974 and
7.4509, respectively. The information entropy closer to 8 protects encrypted data against
entropy attacks. The obtained results illustrate the possibility of the TDMM1 map for use
in lightweight encryption.

Figure 4. Experimental signal x captured by the Serial Plotter tool of Arduino.

Figure 5. Obtained results: original image (left), encrypted image (middle), and decrypted image
(right).
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(a)

(b)

Figure 6. Histogram results of (a) original image and (b) encrypted image.

4. Discussion

High-dimensional chaotic maps, also known as multi-dimensional chaotic maps,
are mathematical models that describe the dynamics of systems with many degrees of
freedom. High-dimensional chaotic maps exhibit more complex and diverse behaviors
than low-dimensional maps. By enlarging the model (1), higher-order dimensional maps
are constructed easily.

Including an additional state w(n) and sin(w(n)), a 4D map is derived

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x(n + 1) = a1 sin(z(n)) + a2 sin(w(n)) + a3

(
(y(n))2 − 1

)
x(n) + a4

y(n + 1) = y(n) + x(n)
z(n + 1) = a5 sin(z(n)) + a6x(n)
w(n + 1) = a7 sin(w(n)) + a8z(n)

(8)

with parameters ai, i = 1, · · · , 8. The chaos in the 4D map is shown in Figure 7 for

⎧⎪⎪⎨
⎪⎪⎩

a1 = a2 = a4 = a5 = a7 = 0.1
a3 = 1.7
a6 = 1
a8 = 0.2

(9)
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The value of MLE is 0.3003, confirming the presence of chaos.
Similarly, when introducing two states w(n), v(n) and terms sin(w(n)), sin(v(n)), a

5D map is proposed as

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x(n + 1) = a1 sin(z(n)) + a2 sin(w(n)) + a3 sin(v(n)) + a4

(
(y(n))2 − 1

)
x(n) + a5

y(n + 1) = y(n) + x(n)
z(n + 1) = a6 sin(z(n)) + a7x(n)
w(n + 1) = a8 sin(w(n)) + a9z(n)
v(n + 1) = a10 sin(v(n)) + a11w(n)

(10)
with parameters ai, i = 1, · · · , 11. Figure 8 displays the chaos in the 5D map for

⎧⎪⎪⎨
⎪⎪⎩

a1 = a2 = a3 = a5 = a6 = a8 = a10 = 0.1
a4 = 1.7
a7 = a9 = 1
a11 = 0.2

(11)

The value of MLE is 0.2849.

Figure 7. Iterative plots of the 4D map with (x(0), y(0), z(0), w(0)) = (0.01, 0.01, 0.01, 0.01).

Figure 8. Iterative plots of the 5D map with (x(0), y(0), z(0), w(0), v(0)) = (0.01, 0.01, 0.01, 0.01, 0.01).
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5. Conclusions

We have conducted a study focusing on high-dimensional memristive maps, moti-
vated by their potential application in various fields. In this research, we present a general
approach to constructing these maps using memristors and sine terms. The resulting 3D
model exhibits intriguing fixed points, making it particularly appealing. To illustrate the
dynamics and practical applications of these maps, we specifically developed the TDMM1
map, employing simulations and a microcontroller board. The TDMM1 map generates
chaotic signals, rendering it suitable for lightweight ciphers. Nevertheless, further inves-
tigations into the map’s potential applications are planned for future work. In particular,
the proposed approach is scalable and can be extended to create higher-dimensional maps,
such as 4D and 5D maps.
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Abstract: With the advancement in information and communication technologies (ICTs), the widespread
dissemination and sharing of digital images has raised concerns regarding privacy and security. Traditional
methods of encrypting images often suffer from limitations such as a small key space and vulnerability
to brute-force attacks. To address these issues, this paper proposes a novel eighth-order hyperchaotic
system. This hyperchaotic system exhibits various dynamic behaviors, including hyperchaos, sub-
hyperchaos, and chaos. The encryption scheme based on this system offers a key space larger
than 22338. Through a comprehensive analysis involving histogram analysis, key space analysis,
correlation analysis, entropy analysis, key sensitivity analysis, differential attack analysis, and
cropping attack analysis, it is demonstrated that the proposed system is capable of resisting statistical
attacks, brute force attacks, differential attacks, and cropping attacks, thereby providing excellent
security performance.
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1. Introduction

The increasing importance of digital images across various domains has been propelled
by the rapid progress of information and communication technologies (ICTs). However,
the widespread dissemination and sharing of digital images on a large scale have given
rise to apprehensions surrounding issues of privacy and security. In order to mitigate these
concerns, image encryption technology is widely employed to ensure the confidentiality
and integrity of images on diverse devices [1], such as medical, military, satellite, and Inter-
net of Things applications [2]. As a result, addressing these issues has become a critical and
urgent challenge in these fields [3].

In recent decades, numerous symmetric image encryption methods have been pro-
posed [4]. Specifically, image encryption techniques based on the Data Encryption Standard
(DES) and Advanced Encryption Standard (AES) have been extensively researched and
implemented in the field of symmetric encryption. Nevertheless, the security of traditional
symmetric encryption algorithms is increasingly being challenged due to the continuous
enhancement of computing power and the constant development of cryptanalysis tech-
nology. Research indicates that symmetric encryption suffers from drawbacks such as a
limited key space and vulnerability to brute force attacks [5].

To overcome these limitations, researchers have turned to chaotic systems that ex-
hibit desirable properties such as high ergodicity, aperiodicity, and sensitivity to initial
values [3]. Due to the fact that it is crucial to deliver messages with complete security and
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to execute them online [6], it is possible to employ chaotic systems to safeguard the security
of data transfer and advance the “industrial 4.0 revolution” being developed [7]. Chaotic
systems have also been found to be efficient and effective in image encryption. For instance,
the Lorenz chaotic system has been applied to image encryption [8], providing strong secu-
rity and high resistance against common attacks [9]. Another example is the 2D-SCL map,
which exhibits good ergodicity and hyperchaotic behavior [10]. However, most existing
chaotic systems are traditional chaotic systems that encounter issues such as a small key
space and a lack of capability to resist brute force attacks, statistical attacks, and differential
attacks. Particularly in light of the developing deep learning landscape [11–13], the capacity
to analyze complex issues has grown. Therefore, the pursuit of more secure and efficient
encryption schemes is an appealing research direction [14].

A hyperchaotic system is characterized by having at least two positive Lyapunov
exponents, indicating that its dynamics expand in more than one direction and give rise
to a more complex attractor [15]. By increasing the system dimension and incorporating
nonlinear terms, the dynamics of a hyperchaotic system become more complex and unpre-
dictable. Compared to traditional chaotic systems, hyperchaotic systems exhibit higher key
sensitivity, unpredictability, and pseudo-random properties [16].

In order to establish a more secure system, this work proposes an image encryption
algorithm based on a novel eighth-order hyperchaotic system. Dynamic analysis demon-
strates that the hyperchaostic system has extremely rich dynamical behaviors, including
hyperchaotic, sub-hyperchaotic, chaotic, and limit cycle attractors. On this basis, the im-
age encryption scheme based on this algorithm fully guarantees the confidentiality and
integrity of the image by utilizing two different states of the hyperchaotic system [1]. Addi-
tionally, it incorporates steps such as row scrambling, column scrambling, and diffusion to
enhance security at a higher level. Furthermore, through various analyses of the encryption
scheme, including key sensitivity, key space, image histogram, pixel correlation, and other
indicators, it has been demonstrated that the proposed algorithm possesses a high level of
security and robustness.

The rest of this paper is organized as follows: Section 2 introduces the novel eighth-
order hyperchaotic system and analyzes its dynamic characteristics. Section 3 provides an
overview of the encryption and decryption schemes based on this system. The experimental
results and detailed security analysis are presented in Section 4. Finally, Section 5 concludes
the paper.

2. A Novel Eighth-Order Hyperchaotic System and Its Basic Properties

2.1. Equations of a Novel Eighth-Order Hyperchaotic System

Nowadays, some researchers propose low-dimensional chaotic systems to gener-
ate pseudo-random sequences to encrypt the original image [17], which means that the
encrypted scheme has a small key space and is vulnerable to attacks. Therefore, a higher-
dimensional chaotic system is required. Ref. [18] proposed an nth-order chaotic system
with hyperbolic sine:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1 = x2 − x1

ẋ2 = x3 − x2

. . .

ẋn−3 = xn−2 − xn−3

ẋn−2 = xn−1

ẋn−1 = xn

ẋn = −xn − f (xn−1)− nxn−2 − nxn−3 − . . . − 1
2n

x1

(1)
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The nonlinear function in this system is f (xn−1), which is defined by f (xn−1) =
ρ sinh(φxn−1), where ρ = 1.2× 10−6 and φ = 1

0.026 . Based on Equation (1), the eighth-order
chaotic system with hyperbolic sine is described by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1 = x2 − x1

ẋ2 = x3 − x2

ẋ3 = x4 − x3

ẋ4 = x5 − x4

ẋ5 = x6 − x5

ẋ6 = x7

ẋ7 = x8

ẋ8 = −x8 − ρ sinh(φx7)− 8(x6 + x5 + x4 + x3 + x2)− x1

16

(2)

where ρ, φ are control parameters. When (ρ, φ) = (1.2× 10−6, 1
0.026 ) and the initial conditions

are (0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1), system (2) has a chaotic attractor, as shown in Figure 1
and the corresponding Lyapunov exponents of this chaotic attractor are (0.49, 0, − 0.60,
−0.74, −0.99, −1.16, −1.38, −1.63). Moreover, system (2) has a unique stable equilibrium
O(0, 0, 0, 0, 0, 0, 0, 0).

Figure 1. Chaotic attractor of system (2) with (ρ, φ) = (1.2 × 10−6, 1
0.026 ): (a) x1 − x2 − x3 phase

plane; (b) x2 − x3 − x4 phase plane; (c) x3 − x4 − x5 phase plane; (d) x4 − x5 − x6 phase plane;
(e) x5 − x6 − x7 phase plane; (f) x6 − x7 − x8 phase plane.

By coupling a few nonlinear terms, like trigonometric and exponential functions and
system (2) to increase the complexity, the following 8D chaotic system is derived:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1 = x2 − x1 − ε(exp(φx7)) + aρ tanh(x8)

ẋ2 = x3 − x2 + b sin(x1)

ẋ3 = dx4 − x3 + sin(x5)

ẋ4 = x5 − x4 + sin(e(x7 + x8))

ẋ5 = x6 − x5 − cos(x3) + sin(x1)− ε(exp(ρx7))

ẋ6 = x7

ẋ7 = x8 + f sin(x5)

ẋ8 = −cx8 − ρ sinh(φx7)− 8(x6 + x5 + x4 + x3 + x2)− x1

16

(3)

141



Mathematics 2023, 11, 4099

where c ∈ [0.65, 4]; d is the constant parameter; a, b, e, and f are the coupling parameters; c,
ρ, and φ are control parameters. When (a, b, c, d, e, f , ρ, φ) = ( 1

2 , 3, 1, 2, 1
2 , 2, 1.2 × 10−6, 1

0.026 ),
system (3) has a unique stable equilibrium O(−0.18, −0.18, −0.35, −0.01, −0.33, 0.43, 0,
0.65) and the corresponding eight Lyapunov exponents are (0.36, 0, −0.58, −0.93, −1.04,
−1.16, −1.26, 1.39). The chaotic attractor of system (3) is shown in Figure 2.

Figure 2. Chaotic attractor of system (3) with (a, b, c, d, e, f , ρ, φ) = ( 1
2 , 3, 1, 2, 1

2 , 2, 1.2 × 10−6, 1
0.026 ):

(a) x1 − x2 − x3 phase plane; (b) x2 − x3 − x4 phase plane; (c) x3 − x4 − x5 phase plane; (d) x4 − x5 − x6

phase plane; (e) x5 − x6 − x7 phase plane; (f) x6 − x7 − x8 phase plane.

By coupling a few linear terms and system (3) to control the scope of variables in the
system and further improve the complexity [19], a novel eighth-order hyperchaotic system
is proposed: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1 = x2 − x1 − ε(exp(φx7)) + aρ tanh(x8)

ẋ2 = x3 − x2 + b sin(x1)− gx1

ẋ3 = dx4 − x3 + sin(x5) + hx7

ẋ4 = x5 − x4 + sin(e(x7 + x8))

ẋ5 = x6 − x5 − cos(x3) + sin(x1)− ε(exp(ρx7)) + ix7

ẋ6 = x7 + ix8 + jx4

ẋ7 = x8 + f sin(x5) + kx5 + lx6

ẋ8 = −cx8 − ρ sinh(φx7)− 8(x6 + x5 + x4 + x3 + x2)

(4)

where c ∈ [0.65, 4]; d is the constant parameter; a, b, e, f , g, h, i, j, k, and l are the coupling
parameters; c, ρ, and φ are control parameters, determining the sub-hyperchaotic and
hyperchaotic behaviors of the system [20]. Therefore, controllers c, ρ, and φ and coupling
parameters a, b, e, f , g, h, i, j, k, and l cause the classical 8D chaotic system (2) to become a
novel eighth-order hyperchaotic system (4) with two positive Lyapunov exponents [21],
having eight Lyapunov exponents.

When (a, b, c, d, e, f , g, h, i, j, k, l, ρ, φ) = ( 1
2 , 3, 0.75, 2, 1

2 , 2, −1, 1, −0.01, −3, 1, 1
2 ,

1.2 × 10−6, 1
0.026 ) and the initial conditions are (0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1), sys-

tem (4) exhibits a hyperchaotic attractor in Figure 3, and the corresponding eight Lyapunov
exponents are (0.34, 0.05, 0, −0.77, −0.96, −1.14, −1.32, −1.96).
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Figure 3. Hyperchaotic attractor observed from system (4) with (a, b, c, d, e, f , g, h, i, j, k, l, ρ, φ) = ( 1
2 , 3,

0.75, 2, 1
2 , 2, −1, 1, −0.01, −3, 1, 1

2 , 1.2 × 10−6, 1
0.026 ): (a) x1 − x2 − x3 phase plane; (b) x2 − x3 − x4

phase plane; (c) x3 − x4 − x5 phase plane; (d) x4 − x5 − x6 phase plane; (e) x5 − x6 − x7 phase plane;
(f) x6 − x7 − x8 phase plane.

When (a, b, c, d, e, f , g, h, i, j, k, l, ρ, φ) = ( 1
2 , 3, 0.945, 2, 1

2 , 2, −1, 1, −0.01, −3, 1, 1
2 ,

1.2 × 10−6, 1
0.026 ) and the initial conditions are (0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1), system (4)

exhibits a sub-hyperchaotic attractor in Figure 4, and the corresponding eight Lyapunov
exponents are (0.25, 0, 0, −0.80, −0.96, −1.09, −1.36, −1.98).

When the novel eighth-order hyperchaotic system is applied to image encryption,
it is necessary to define the default values of the constant parameter and the coupling
parameters of the hyperchaotic system (a, b, d, e, f , g, h, i, j, k, l) as ( 1

2 , 3, 2, 1
2 , 2, −1, 1, −0.01,

−3, 1, 1
2 ). The hyperchaotic system is as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1 = x2 − x1 − ε(exp(φx7)) +
ρ

2
tanh(x8)

ẋ2 = x3 − x2 + 3 sin(x1)− x1

ẋ3 = 2x4 − x3 + sin(x5) + x7

ẋ4 = x5 − x4 + sin
(

x7 + x8

2

)

ẋ5 = x6 − x5 − cos(x3) + sin(x1)− ε(exp(ρx7)) +
x7

2
ẋ6 = x7 − x8 × 10−2 − 3x4

ẋ7 = x8 + 2 sin(x5) + x5 +
x6

2
ẋ8 = −cx8 − ρ sinh(φx7)− 8(x6 + x5 + x4 + x3 + x2)

(5)

where the control parameters are ρ = 1.2 × 10−6, φ = 1
0.026 , ε = 6 × 10−9, c ∈ [0.65, 4],

and the initial conditions are (0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1).
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Figure 4. Sub-hyperchaotic attractor observed from system (4) with (a, b, c, d, e, f , g, h, i, j, k, l, ρ, φ) = ( 1
2 ,

3, 0.75, 2, 1
2 , 2, −1, 1, −0.01, −3, 1, 1

2 , 1.2 × 10−6, 1
0.026 ): (a) x1 − x2 − x3 phase plane; (b) x2 − x3 − x4

phase plane; (c) x3 − x4 − x5 phase plane; (d) x4 − x5 − x6 phase plane; (e) x5 − x6 − x7 phase plane;
(f) x6 − x7 − x8 phase plane.

2.2. Observation of Hyperchaos and Complex Dynamics

The Lyapunov exponent of a dynamical system is a quantity that characterizes the
rate of separation of infinitesimally close trajectories. Over time, two sets of initially close
conditions will gradually separate due to the chaotic nature of the system. The Lyapunov
exponent quantifies this exponential separation [22]. By analyzing Lyapunov exponents,
valuable insights can be gained regarding a system’s sensitivity to its initial conditions,
thereby aiding in the understanding and prediction of the behavior of complex systems [23].

Table 1 shows the properties of the Lyapunov exponent for an ordinary differential
dynamical system.

The Lyapunov exponent spectrum of the system is shown in Figure 5 for c ∈ [0.65, 4].
Figure 5 shows a Lyapunov exponent spectrum, in which the eight colored lines represent
the eight Lyapunov exponents, the red line represents the first Lyapunov exponent, and
the green line represents the second Lyapunov exponent. When the first two Lyapunov
exponents are greater than 0 and the third Lyapunov exponent is equal to 0, the system
exhibits a hyperchaotic attractor. When the first Lyapunov exponent is greater than 0
and the second Lyapunov exponent is equal to 0, the system exhibits a chaotic attractor.
The system exhibits hyperchaotic behavior, with the Lyapunov exponents having the
signs (+, +, 0, − , −, −, −, −) when c ∈ [0.65, 1] [24]. In individual intervals, a few sub-
hyperchaotic regions such as c ∈ [0.69, 0.695] and c ∈ [0.94, 0.945] can be observed, which
have the sign of Lyapunov exponents as (+, 0, 0, −, −, −, −, −). In the region of c ∈ [1, 3.3],
the system exhibits chaotic behavior, with the Lyapunov exponents having the signs (+, 0,
−, −, −, −, −, −). In c ∈ [3.3, 4], the majority of regions exhibit periodic behavior.

The complexity of the attractor can be described by the Kaplan–Yorke dimension,
which can be calculated using the following formula:

DKY = D +
∑D

i=1 LEi

|LED| (6)
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In the hyperchaotic region, which is defined as c ∈ [0.65, 1], the Kaplan–Yorke dimen-
sion falls within the approximate range of [3.25, 4.5]. However, for c ∈ [1, 4], the Kaplan–
Yorke dimension is mostly found within the range of [1.75, 3.25].

Table 1. Properties of Lyapunov exponents for ordinary differential dynamical systems.

Dimension and Lyapunov
Exponents

Symbol State

1D (λ) + Divergent
1D (λ) − Stable fixed point

2D (λ1, λ2) (−, −) Stable fixed point
2D (λ1, λ2) (0, −) Limit cycle

3D (λ1, λ2, λ3) (−, −, −) Stable fixed point
3D (λ1, λ2, λ3) (0, −, −) Limit cycle
3D (λ1, λ2, λ3) (0, 0, −) 2D torus
3D (λ1, λ2, λ3) (+, +, 0) Unstable limit cycle
3D (λ1, λ2, λ3) (+, 0, 0) Unstable 2D torus
3D (λ1, λ2, λ3) (+, 0, −) Chaos, strange attractor

4D (λ1, λ2, λ3, λ4) (+, 0, −, −) Chaos, strange attractor
4D (λ1, λ2, λ3, λ4) (+, 0, 0, −) Sub-hyperchaos, strange attractor
4D (λ1, λ2, λ3, λ4) (+, +, 0, −) Hyperchaos, strange attractor

. . . . . . . . .
8D (λ1, λ2, λ3, λ4, λ5, λ6, λ7, λ8) (0, −, −, −, −, −, −, −) Limit cycle
8D (λ1, λ2, λ3, λ4, λ5, λ6, λ7, λ8) (0, 0, −, −, −, −, −, −) 2D torus
8D (λ1, λ2, λ3, λ4, λ5, λ6, λ7, λ8) (0, 0, 0, −, −, −, −, −) 3D torus
8D (λ1, λ2, λ3, λ4, λ5, λ6, λ7, λ8) (+, 0, −, −, −, −, −, −) Chaos, strange attractor
8D (λ1, λ2, λ3, λ4, λ5, λ6, λ7, λ8) (+, 0, 0, −, −, −, −, −) Sub-hyperchaos, strange attractor
8D (λ1, λ2, λ3, λ4, λ5, λ6, λ7, λ8) (+, +, 0,−, −, −, −, −) Hyperchaos, strange attractor

Obtaining the equilibrium points is a crucial step in evaluating a new chaotic system,
as it allows for the proper identification of the chaotic nature of the system [25].

Let ẋ1 = ẋ2 = ẋ3 = ẋ4 = ẋ5 = ẋ6 = ẋ7 = ẋ8 = 0, that is:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 = x2 − x1 − ε(exp(φx7)) +
ρ

2
tanh(x8)

0 = x3 − x2 + 3 sin(x1)− x1

0 = 2x4 − x3 + sin(x5) + x7

0 = x5 − x4 + sin
(

x7 + x8

2

)

0 = x6 − x5 − cos(x3) + sin(x1)− ε(exp(ρx7)) +
x7

2
0 = x7 − x8 × 10−2 − 3x4

0 = x8 + 2 sin(x5) + x5 +
x6

2
0 = −cx8 − ρ sinh(φx7)− 8(x6 + x5 + x4 + x3 + x2)

(7)

When ρ = 1.2 × 10−6, φ = 1
0.026 , ε = 6 × 10−9, c = 0.75, the given equilibrium point (0.14,

0.17, −0.11, 0.13, −0.87, −0.18, 0.40, 2.48) has been obtained, and the Jacobian matrix can be
computed at these equilibrium points. The Jacobian matrix, denoted as f ′(x) , represents
the derivative of the multidimensional mapping:
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f ′(x) =
∂ f
∂x

=

⎡
⎢⎢⎢⎢⎢⎣

∂ f1
∂x1

∂ f1
∂x2

· · · ∂ f1
∂x8

∂ f2
∂x1

∂ f2
∂x2

· · · ∂ f2
∂x8

...
...

. . .
...

∂ f8
∂x1

∂ f8
∂x2

· · · ∂ f8
∂x8

⎤
⎥⎥⎥⎥⎥⎦ (8)

Figure 5. Lyapunov exponent map and Kaplan–Yorke dimension for a novel eighth-order hyper-
chaotic system.

The eight eigenvalues calculated based on the Jacobian matrix are

λ1 = (−0.36 + 13.15i),

λ2 = (−0.36 − 13.15i),

λ3 = 0.52,

λ4 = (0.02 + 1.18i),

λ5 = (0.02 − 1.18i),

λ6 = (−2.39 + 0.23i),

λ7 = (−2.39 − 0.23i),

λ8 = −0.80.

(9)
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The eigenvalues corresponding to λ1 and λ2, λ4 and λ5, and λ6 and λ7 exhibit a
complex conjugate relationship, suggesting a characteristic oscillatory pattern. λ3 has a
positive real part, indicating divergence. λ8 has a negative real part, indicating convergence.

Among the eight eigenvalues under consideration, it is observed that three of them
exhibit instability due to the presence of eigenvalues with positive real parts. This implies
that any perturbation introduced into the system will amplify over time, leading to a loss
of stability at the equilibrium point. Conversely, the remaining five eigenvalues exhibit
negative real components, indicating that any disturbance introduced into the system will
gradually diminish, thereby preserving the stability of the equilibrium point [26].

The divergence formula for this system is as follows:

∇ · F =
∂ẋ1

∂x1
+

∂ẋ2

∂x2
+ · · ·+ ∂ẋ8

∂x8
(10)

The divergence in this system is −5.74. Generally, the divergence of the hyperchaotic
system is found to be negative, indicating that the system is a dissipative system.

3. Encryption and Decryption Scheme

The encryption scheme uses two chaotic sequences generated by the novel eighth-
order hyperchaotic system Equation (5) when c = 1.5 and c = 1.4, which is used to enhance
the security of images. The proposed scheme in this study involves row scrambling, column
scrambling, and diffusing using chaotic sequence A (c = 1.5), as well as diffusing, column
scrambling, and row scrambling using chaotic sequence B (c = 1.4). The encryption
algorithm and decryption algorithm are shown in Algorithms 1 and 2.
Encryption Algorithm:

1. Calculate the chaotic sequence A according to the novel eighth-order hyperchaotic
system when c = 1.5 and initial values are (0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1).

2. Calculate the Key by the average value of a matrix generated by original image.
3. Obtain the pixels of the original image and divide the original image into three

channels of R, G, B.
4. Calculate the index sA and cA from the chaotic sequence A with different keys, where⎧⎨

⎩
si = x8(i)× 108 − �x8(i)× 108�
ci = mod

(
x3(i)× 105 − �x3(i)× 105�+

∣∣∣x3(i)× 108 − round(x3(i)× 108)
∣∣∣, 256

) (11)

5. Utilize the index sA based on 2×Key to perform row scrambling on the output images
of the three channels from Step 3.

6. Utilize the index sA based on 3 × Key to perform column scrambling on the output
images of the three channels from Step 5.

7. Perform XOR operation on the index cA and the image pixel value from Step 6.
8. Calculate the chaotic sequence B according to the novel eighth-order hyperchaotic

system when c = 1.4 and initial values are (0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1).
9. Calculate the index sB and cB from the chaotic sequence B with the same formula

from Step 4.
10. Perform XOR operation on the index cB and the image pixel value from Step 7.
11. Utilize the index sB based on 3 × Key to perform column scrambling on the output

images of the three channels in Step 10.
12. Utilize the index sB based on 2× Key to perform row scrambling on the output images

of the three channels in Step 11.
13. Merge the encrypted images of the three channels to generate the final encrypted image.
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Algorithm 1 Encryption Algorithm
Input: Original Image (Org_Img), First initial conditions, Control parameters,
Output: Encrypted image (En_Img)

1: [m, n] ← size(Org_Img)
2: Avg_pixel_value ← mean2(Org_Img)× 10−9 � mean2 is a function that returns the

average value of a matrix
3: paraset(x1, x2, x3, x4, x5, x6, x7, x8) � First round of encryption
4: function SEQ(x1, x2, x3, x4, x5, x6, x7, x8, Runge − Kutta, Avg_pixel_value)
5: x1(1) ← x1(1) + Avg_pixel_value
6: for i = 1 to 10 × m × n do
7: [dx, dy, dz, du] ← Runge-Kutta(x(i), y(i), z(i), u(i))
8: x1(i + 1) ← x1(i) + dx1
9: x2(i + 1) ← x2(i) + dx2

10: x3(i + 1) ← x3(i) + dx3
11: x4(i + 1) ← x4(i) + dx4
12: x5(i + 1) ← x5(i) + dx5
13: x6(i + 1) ← x6(i) + dx6
14: x7(i + 1) ← x7(i) + dx7
15: x8(i + 1) ← x8(i) + dx8
16: if mod(i, 10) = 0 then
17: si = x8(i)× 108 − �x8(i)× 108�
18: t =

∣∣x3(i)× 108 − round(x3(i)× 108)
∣∣

19: ci = mod
(

x3(i)× 105 − �x3(i)× 105�+ t, 256
)

20: end if
21: end for
22: return s, c
23: end function
24: s1 ← SEQ(x1, x2, x3, x4, x5, x6, x7, x8, m, n, Runge-Kutta1, 2 × Avg_pixel_value) �

Using chaotic sequence A
25: s2 ← SEQ(x1, x2, x3, x4, x5, x6, x7, x8, m, n, Runge-Kutta1, 3 × Avg_pixel_value)
26: c ← SEQ(x1, x2, x3, x4, x5, x6, x7, x8, m, n, Runge-Kutta1, Avg_pixel_value)
27: S_index_1 ← Sort(s1)
28: S_index_2 ← Sort(s2)
29: Org_per_row ← confuse_row(Org_Img, S_index_1)
30: Org_per_col ← confuse_col(Org_per_row, S_index_2)
31: En_Img1 ← difuse(m, n, Org_per_col, c)
32:
33: paraset(x1, x2, x3, x4, x5, x6, x7, x8) � Second round of encryption
34: x1(1) ← x1(1) + Avg_pixel_value
35: s1 ← SEQ(x1, x2, x3, x4, x5, x6, x7, x8, m, n, Runge-Kutta2, 2 × Avg_pixel_value) �

Using chaotic sequence B
36: s2 ← SEQ(x1, x2, x3, x4, x5, x6, x7, x8, m, n, Runge-Kutta2, 3 × Avg_pixel_value)
37: c ← SEQ(x1, x2, x3, x4, x5, x6, x7, x8, m, n, Runge-Kutta2, Avg_pixel_value)
38: S_index_1 ← Sort(s1)
39: S_index_2 ← Sort(s2)
40: En_di f 1 ← difuse(m, n, En_Img1, c)
41: En_per_col1 ← confuse(n, m, En_dif1, S_index_2)
42: En_per_row1 ← confuse(m, n, En1_per_col1, S_index_1)
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Decryption Algorithm:

1. Calculate the chaotic sequence B according to the novel eighth-order hyperchaotic
system when c = 1.4 and initial values are (0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1).

2. Obtain the pixels of the original image and divide the original image into three
channels of R, G, B.

3. Calculate the index sB and cB from the chaotic sequence B with different keys.
4. Utilize the index sB based on 2 × Key to perform row recovery on the output images

of the three channels from Step 2.
5. Utilize the index sB based on 3 × Key to perform column recovery on the output

images of the three channels from Step 4.
6. Perform XOR operation on the index cA and the image pixel value from Step 5.
7. Calculate the chaotic sequence A according to the novel eighth-order hyperchaotic

system when c = 1.5 and initial values are (0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1).
8. Calculate the index sA and cA from the chaotic sequence A with different keys.
9. Perform XOR operation on the index cA and the image pixel value from Step 6.
10. Utilize the index sA based on 3 × Key to perform column recovery on the output

images of the three channels from Step 9.
11. Utilize the index sA based on 2 × Key to perform row recovery on the output images

of the three channels from Step 10.
12. Merge the decrypted images of the three channels to generate the final decrypted image.

Algorithm 2 Decryption Algorithm
Input: Encrypted Image (En_Img), First initial conditions, Control parameters,
Avg_pixel_value of (Org_Img)
Output: Original image (Org_Img)

1: [m, n] ← size(En_Img)
2: paraset(x1, x2, x3, x4, x5, x6, x7, x8) � First round of decryption
3: x1(1) ← x1(1) + Avg_pixel_value
4: s1 ← SEQ(x1, x2, x3, x4, x5, x6, x7, x8, m, n, Runge-Kutta2, 2 × Avg_pixel_value) �

Using chaotic sequence B
5: s2 ← SEQ(x1, x2, x3, x4, x5, x6, x7, x8, m, n, Runge-Kutta2, 3 × Avg_pixel_value)
6: c ← SEQ(x1, x2, x3, x4, x5, x6, x7, x8, m, n, Runge-Kutta2, Avg_pixel_value)
7: S_index_1 ← Sort(s1)
8: S_index_2 ← Sort(s2)
9: En_per_row ← confuse_row(En_Img, S_index_1)

10: En_per_col ← confuse_col(En_per_row, S_index_2)
11: En_Img1 ← difuse(m, n, En_per_col, c)
12:
13: paraset(x1, x2, x3, x4, x5, x6, x7, x8) � Second round of decryption
14: s1 ← SEQ(x1, x2, x3, x4, x5, x6, x7, x8, m, n, Runge-Kutta1, 2 × Avg_pixel_value) �

Using chaotic sequence A
15: s2 ← SEQ(x1, x2, x3, x4, x5, x6, x7, x8, m, n, Runge-Kutta1, 3 × Avg_pixel_value)
16: c ← SEQ(x1, x2, x3, x4, x5, x6, x7, x8, m, n, Runge-Kutta1, Avg_pixel_value)
17: S_index_1 ← Sort(s1)
18: S_index_2 ← Sort(s2)
19: En_di f 1 ← difuse(m, n, En_Img1, c)
20: En_per_col1 ← confuse_col(En_dif1, S_index_2)
21: Org_Img ← confuse_row(En1_per_col1, S_index_1)

The steps of the encryption and decryption scheme are shown in Figures 6 and 7.
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Figure 6. Scheme of image encryption.

Encryption time, particularly for chaos-based encryption algorithms, determines
whether they can be employed in practice [27]. On a computer running Matlab 2022 and
equipped with a 3.2 GHz Core R7-5800 U CPU, the speed of the proposed method is
evaluated. This test uses a 512 × 512-pixel Lena image. Scrambling and diffusion have
running times of 3.0608 and 3.1810 s, respectively. The chaotic sequence generation takes
3.0403 s to complete, while one round of encryption takes 9.5131 s. Since the proposed
encryption scheme employs a serial encryption method and has a large key space, which
takes longer than other references, a significant amount of effort is required to convert
a serial approach to a parallel one and fully utilize the enormous processing power of
GPUs [28]. The result of the experiment is that it is evident that there is still room for
improvement in the encryption algorithm.
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Figure 7. Scheme of image decryption.

4. Experiments with Related Security Analysis

4.1. Experimental Results

The following is an experimental analysis of the image encryption algorithm proposed
in this paper. The experiment involves the use of eight color images, each consisting of
512 × 512 pixels, as depicted in Figure 8. The original images are shown in (a). The en-
crypted images are shown in (b)–(e), and the decrypted images are shown in (f)–(i).

The result of encrypting a gray image (512 × 512 Lena) is shown in Figure 9, indicating
that the image encryption algorithm is also effective for gray images.

4.2. Histogram Analysis

A histogram is a visual representation that provides an estimation of the distribution
of numerical data. It involves plotting the number of pixels at each intensity level to
understand the distribution of pixels in an image [29]. To ensure resistance against statistical
attacks, the histograms of both the original images and encrypted images need to be
described [30].
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Figure 8. Image encryption and decryption results: (a) original image; (b–d) encrypted images of
three channels of R, G, B; (e) encrypted images of three channels combined; (f–h) decrypted images
of three channels of R, G, B; (i) decrypted images of three channels combined.

(a) (b) (c)

Figure 9. Gray image encryption and decryption results: (a) original image; (b) encrypted image;
(c) decrypted image.
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In order to quantitatively analyze histograms, the experiment uses variances of his-
tograms to assess the uniformity of the encrypted images. Lower variance values indicate a
higher level of uniformity in the encrypted images. The formula for calculating the variance
of the histograms is as follows [22]:

var(Z) =
1
n2

n

∑
i=1

n

∑
j=1

1
2
(zi − zj)

2 (12)

where Z is the variance of the histogram, and zi and zj are the number of pixels i and j in
a single channel. In the encryption experiment on the Lena image, the variance of the R
channel of the plain image is 770811 and the variance of the R channel of the encrypted
image is 262719; the variance of the G channel of the plain image is 490003 and the variance
of the G channel of the encrypted image is 262718; the variance of the B channel of the
plain image is 950821 and the variance of the B channel of the encrypted image is 262592,
the variance of the gray channel of the plain image is 578833 and the variance of the gray
channel of the encrypted image is 262698.

Figure 10 is the comparison of the original image and the encrypted image histogram.
Through the calculation of the variance and the analysis of the histogram, the his-

togram shows the distribution characteristics among the pixels. The encrypted image data
of an ideal encryption scheme should be uniformly distributed, which can effectively pre-
vent attackers from obtaining valid information from encrypted images [31], and effectively
resist statistical attacks.

4.3. Key Space Analysis

The utilization of a substantial key space has the capability to effectively thwart brute
force attacks, thereby mitigating the potential vulnerability of data decryption [32].

If the calculated resolution is 1015, for variable x1, the area of attraction domain
is x1 ∈ [−1.88,−0.98], there are 0.89 × 1015 = 0.89 × 1015 kinds of choices. There are
1.17 × 1015 choices for x2, 1.95 × 1015 choices for x3, 1.16 × 1015 choices for x4, 2.62 × 1015

choices for x5, 3.78 × 1015 choices for x6, 1.04 × 1015 choices for x7, and 1.41 × 1016 choices
for x8. The size of the key space formed by the control variables is 0.89 × 1015 × 1.17 ×
1015 × 1.95 × 1015 × 1.16 × 1015 × 2.62 × 1015 × 3.78 × 1015 × 1.04 × 1015 × 1.41 × 1016 =
3.45 × 10123. Consider only one control variable c in Equation (5), the key space of the
system is 3.45 × 10123 × 2.7 × 1015 = 9.32 × 10138. When only the first-order term with a
coefficient of 1 in the hyperchaotic equation is considered as the control variable, the key
space of the system is 8.2 × 10351. Additionally, the proposed encryption scheme involves
two rounds of encryption based on the hyperchaotic system with different control variables,
thus the key space is 8.2 × 10351 × 8.2 × 10351 = 6.72 × 10703 ≈ 22338. The actual key space
of this scheme will be extremely larger than that value.

4.4. Correlation Analysis

Correlation refers to a statistical association, regardless of causality, between two
random variables or sets of bivariate data. In the context of encryption algorithms, it is
desirable for encrypted images with low-pixel correlation to be resistant to cryptographic
attacks based on statistical analysis [33]. Therefore, a comprehensive understanding of
correlations is essential in order to enhance the robustness and effectiveness of image
encryption techniques [34].
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Figure 10. Comparison of the histograms of the original image and the encrypted image: (a,c,e,g) the
histogram of the R, G, B, gray channel of the original image; (b,d,f,h) the histogram of the R, G, B,
gray channel of the encrypted image.
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To calculate the correlation, the following formula is used [35]:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

E(u) =
1
N

N

∑
i=1

ui

D(u) =
1
N

N

∑
i=1

(ui − E(u))2

cov(u, v) =
1
N

N

∑
i=1

(xi − E(u))(yi − E(v))

rxy =
cov(u, v)√
D(u) · D(v)

(13)

In order to present the importance of correlation more intuitively, Table 2 below will
show the pixel value correlation analysis results of eight color images. Table 2 also displays
the correlation to a gray house image, indicating that the encryption algorithm still works
with gray images.

Table 2. Correlation coefficient of original images, the first round of encrypted images, and the
second round of encrypted images.

Image Original Image First Round of Encrypted Image Second Round of Encrypted Image

Horiz. Vert. Diag. Horiz. Vert. Diag. Horiz. Vert. Diag.

Mandrill R 0.9123 0.8625 0.8505 0.0097 0.0084 0.0085 0.0079 0.0113 0.0122
G 0.8628 0.7811 0.7496 0.0149 0.0108 0.0105 0.0097 0.0126 0.0126
B 0.8965 0.8712 0.8314 0.0100 0.0135 0.0129 0.0123 0.0131 0.0110

Lena R 0.9808 0.9898 0.9712 0.0093 0.0090 0.0140 0.0133 0.0103 0.0120
G 0.9695 0.9827 0.9561 0.0140 0.0095 0.0145 0.0109 0.0089 0.0091
B 0.9352 0.9591 0.9212 0.0109 0.0069 0.0153 0.0101 0.0107 0.0120

Peppers R 0.9650 0.9677 0.9582 0.0090 0.0115 0.0101 0.0132 0.0083 0.0117
G 0.9813 0.9819 0.9689 0.0106 0.0102 0.0098 0.0110 0.0127 0.0096
B 0.9668 0.9667 0.9483 0.0137 0.0017 0.0082 0.0105 0.0136 0.0091

House R 0.9552 0.9591 0.9252 0.0129 0.0098 0.0139 0.0118 0.0086 0.0136
G 0.9405 0.9445 0.8951 0.0135 0.0061 0.0102 0.0107 0.0059 0.0109
B 0.9728 0.9691 0.9456 0.0109 0.0090 0.0090 0.0136 0.0128 0.0112

Lake R 0.9574 0.9557 0.9440 0.0105 0.0120 0.0156 0.0131 0.0132 0.0121
G 0.9718 0.9666 0.9534 0.0140 0.0110 0.0129 0.0131 0.0119 0.0104
B 0.9713 0.9697 0.9534 0.0117 0.0097 0.0117 0.0118 0.0148 0.0080

Splash R 0.9938 0.9953 0.9898 0.0108 0.0077 0.0105 0.0103 0.0099 0.0090
G 0.9812 0.9872 0.9713 0.0105 0.0054 0.0137 0.0114 0.0110 0.0129
B 0.9826 0.9792 0.9653 0.0112 0.0029 0.0097 0.0137 0.0127 0.0115

San Diego R 0.8539 0.8395 0.7770 0.0108 0.0072 0.0113 0.0132 0.0139 0.0092
G 0.7933 0.7719 0.6943 0.0080 0.0098 0.0101 0.0108 0.0143 0.0086
B 0.7930 0.7728 0.7055 0.0094 0.0069 0.0121 0.0118 0.0140 0.0096

Jetplane R 0.9738 0.9593 0.9382 0.0132 0.0102 0.0112 0.0108 0.0126 0.0118
G 0.9596 0.9691 0.9356 0.0137 0.0135 0.0115 0.0104 0.0117 0.0105
B 0.9673 0.9431 0.9249 0.0121 0.0068 0.0139 0.0119 0.0110 0.0110

House (gray) 0.9503 0.9592 0.9172 0.0137 0.0086 0.0127 0.0100 0.0076 0.0104
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It is evident that the correlation value of the original image is close to 1, while the
horizontal, vertical, and diagonal correlations of the encrypted image are close to 0 [36].
These values indicate that the correlation between adjacent pixels of the encrypted image is
very weak.

Figure 11, Figure 12, and Figure 13, respectively, show the original image, the first
round of encrypted image, and the second round of encrypted image in the horizontal,
vertical, and diagonal directions of pixel correlation sex. It can be seen from Figure 11
that, since the pixels of the original image are highly correlated, most points in these three
directions align with the 45° line. Meanwhile, Figures 12 and 13 show that these points are
distributed in the whole area, reflecting the weak pixel correlation in the encrypted image.
Therefore, the algorithm proves that it is effective against attacks such as statistical attacks.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)
Figure 11. Correlation analysis of the original image: (a,d,g) correlation between pixels in the
horizontal direction of the R, G, B channel of the original image; (b,e,h) correlation between pixels in
the vertical direction of the R, G, B channel of the original image; (c,f,i) correlation between pixels in
the diagonal direction of the R, G, B channel of the original image.

(a) (b) (c)

Figure 12. Cont.
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(d) (e) (f)

(g) (h) (i)

Figure 12. Correlation analysis of the first round of encrypted image: (a,d,g) correlation between
pixels in the horizontal direction of the R, G, B channel of the first round of encrypted image;
(b,e,h) correlation between pixels in the vertical direction of the R, G, B channel of the first round of
encrypted image; (c,f,i) correlation between pixels in the diagonal direction of the R, G, B channel of
the first round of encrypted image.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)
Figure 13. Correlation analysis of the second round of encrypted image: (a,d,g) correlation between
pixels in the horizontal direction of the R, G, B channel of the second round of encrypted image;
(b,e,h) correlation between pixels in the vertical direction of the R, G, B channel of the second round
of encrypted image; (c,f,i) correlation between pixels in the diagonal direction of the R, G, B channel
of the second round of encrypted image.
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4.5. Entropy

To measure the expected value of a message and the unpredictability of informa-
tion content, information entropy (IE) is usually taken to test the strength of a designed
encryption algorithm [37], which is defined in Equation (14) for a received message m.
The theoretical value of the information entropy is 8 [38].

IE(m) =
2L−1

∑
j=0

p(mj) log2

(
1

p(mj)

)
(14)

where L is the length of pixel value in binary form (for images in this experiment, L = 9),
p(mj) denotes the probability of the occurrence of the symbol mj, and log2 represents the
base 2 algorithm. Table 3 is a comparison of the information entropy of the original image
and the encrypted image of the eight color images and a gray house image.

Table 3. Entropy of original image, the first round of encrypted image, and the second round of
encrypted image.

Image Result

Original Image First Round of Encrypted Image Second Round of Encrypted Image

Mandrill 7.1073 7.9998 7.9998
Lena 7.7502 7.9998 7.9998

Peppers 7.6698 7.9997 7.9998
House 7.4858 7.9998 7.9998
Lake 7.7622 7.9997 7.9998

Splash 7.2428 7.9997 7.9997
San Diego 7.3311 7.9998 7.9998
Jetplane 6.6639 7.9997 7.9997

House (gray) 7.2334 7.9993 7.7993

4.6. MSE and PSNR Analysis

The most common metric for evaluating the effectiveness of lossy image compression
codecs is PSNR. The correct determination of the spatial alignment and level offset between
the encrypted picture sequence and the original image sequence is crucial to the PSNR
calculation [39]. Given a noise-free m × n monochrome image I and its noisy approximation
K, MSE and PSNR are defined as [40]

MSE =
1

mn

m

∑
i=1

m

∑
j=1

[I(i, j)− K(i, j)]2 (15)

PSNR = 10 · log10

(
MAX2

I
MSE

)
(16)

where MAXI is the maximum possible pixel value of the image. When samples are
represented using linear PCM with B bits per sample, MAXI is 2B − 1. In this paper,
the pixels are represented using 8 bits per sample, and MAXI is 255.

Table 4 shows the comparison of MSE and PSNR. To reduce the probability of assaults,
a lower PSNR value and a higher MSE value are preferred [2]. As a result, it is clear that the
PSNR values computed for encrypted pictures using the proposed scheme are comparable
to or better than those obtained from other schemes in the literature [41].
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Table 4. MSE and PSNR comparison.

Image MSE PSNR

Mandrill 8773 8.6994
Lena 8923 8.6256

Peppers 10129 8.0751
House 9252 8.4686
Lake 10099 8.0880

Splash 11252 7.6183
San Diego 8480 8.8469
Jetplane 10360 7.9772

House (gray) 8955 8.6103
Ref. [41] 8353 8.9272
Ref. [42] 7274 9.55
Ref. [43] 8332 8.9331

4.7. Ablation Analysis

The ablation analysis shows the improvement in encryption due to two rounds of
encryption. The experiment can be divided into four cases and the result is demonstrated
in Table 5.

Table 5. Ablation analysis.

Method Key Space Entropy CC NPCR (%) UACI (%)

R G B Cipher R G B Cipher R G B Cipher

Case 1 > 21169 7.9997 0.0107 0.0118 0.0105 0.0079 99.6391 99.6391 99.6391 99.6391 33.4310 33.4089 33.4219 33.4206

Case 2 > 21169 7.4858 0.0368 0.0446 0.0195 0.0079 99.3141 99.1238 99.2275 99.2218 22.0984 20.2759 27.1392 23.1712

Case 3 > 21169 7.9998 0.0107 0.0111 0.0105 0.0069 99.5838 99.6136 99.6048 99.6007 33.4498 33.4860 33.4681 33.4680

Case 4 > 21169 7.9998 0.0122 0.0099 0.0096 0.0067 99.6098 99.6238 99.6055 99.6131 33.4417 33.3564 33.2640 33.3541

Proposed > 22338 7.9998 0.0113 0.0092 0.0125 0.0072 99.6162 99.6086 99.6048 99.6099 33.4552 33.4399 33.4081 33.4344

Case 1: Proposed method without scrambling.
Case 2: Proposed method without diffusion.
Case 3: Proposed method without the first round of encryption.
Case 4: Proposed method without the second round of encryption.
It can be seen from the table that, when encryption is performed without diffusion

operation, the pixel correlation of the scheme is substantially higher than the proposed
scheme, and the UACI is likewise far away from the theoretical value. Without scrambling
operations or without one of the rounds being used for encryption, these data are within
a respectable range, but the primary benefit of the proposed scheme with two rounds of
encryption is the extremely large key space.

4.8. Key Sensitivity Analysis

Key sensitivity analysis is a cryptographic evaluation method that assesses the signifi-
cance and security of an algorithm [35]. It ensures that even a slight modification to the key
will render the original flat image irrecoverable [2].

This encryption system demonstrates a high level of sensitivity to the key. By main-
taining constant control variables and initial conditions, a small increment of 10−14 is
added to the key within the scheme. Consequently, the encrypted image exhibits significant
differences between the two variables over time, displaying pseudo-random characteristics.
This observation suggests that the system’s key is highly sensitive to initial conditions.
To illustrate this sensitivity, two similar images are encrypted using keys with minute
differences. Figure 14 shows the waveform of x1 and x1 + Δx over time and their difference.
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After performing the subtraction of the encrypted images, it is clearly seen from Figure 15
that the resulting images exhibit significant dissimilarities.

(a) (b) (c)

Figure 14. (a) The difference waveform of x1 and x1 + Δx over time; (b) the values of x1 + Δx over
time; (c) the values of x1 over time.

Figure 15. Key sensitivity test: (a) the difference between the twice encrypted image of the R channel
of images; (b) the difference between the twice encrypted image of the G channel of images; (c) the
difference between the twice encrypted image of the R channel of images; (d) the difference between
the twice encrypted images of three channels of images.

Key sensitivity analysis is usually performed based on the following two indicators:
one is the number of pixels rate of change (NPCR), and the other is the uniform average
intensity of change (UACI). These two indicators are defined as [44]
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NPCR =
N

∑
i=1

M

∑
j=1

D(i, j)
M × N

× 100% (17)

UACI =
N

∑
i=1

M

∑
j=1

|C1(i, j)− C2(i, j)|
T × M × N

× 100% (18)

D(i, j) =

{
0, if C1(i, j) = C2(i, j)
1, if C1(i, j) �= C2(i, j)

(19)

where C1 and C2 are two encrypted images of size M× N, and T denotes the largest allowed
pixel intensity.

NPCR and UACI are theoretically 99.6043% and 33.4635% [45]. The data presented in
Tables 6 and 7 demonstrates that the test value of the algorithm exhibits a high degree of
proximity to the ideal value, indicating a strong level of key sensitivity. In summary, this
scheme has high key sensitivity.

Table 6. NPCR of three channels in key sensitivity analysis.

Image NPCR (%)

R G B

Mandrill 99.5930 99.6330 99.6113
Lena 99.5811 99.6162 99.6052

Peppers 99.6048 99.6021 99.6140
House 99.6162 99.6086 99.6048
Lake 99.6273 99.6307 99.6063

Splash 99.6078 99.5998 99.6201
San Diego 99.6117 99.6071 99.6025
Jetplane 99.6128 99.6227 99.6158

Lena (gray) 99.6017

Table 7. UACI of three channels in key sensitivity analysis.

Image UACI (%)

R G B

Mandrill 33.4605 33.4560 33.5050
Lena 33.3818 33.5105 33.4385

Peppers 33.4500 33.5263 33.5738
House 33.4552 33.4399 33.4081
Lake 33.5367 33.4740 33.3750

Splash 33.4298 33.4887 33.5137
San Diego 33.4646 33.4861 33.4083
Jetplane 33.5527 33.5670 33.5132

Lena (gray) 33.4496

4.9. Differential Attack

To avoid differential attacks, a secure cryptosystem should be sensitive to plaintext [46],
indicating that even minor alterations in the pixel values of a regular image can result in
significant modifications in the corresponding encrypted image [47]. Figure 16 shows the
results of differential attack experiments.

Tables 8 and 9 show the NPCR and UACI of the differential attack. The test results in-
dicate a strong correlation between the system’s value and the theoretical value, suggesting
that the system is capable of effectively defending against differential attacks.
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Table 8. NPCR of three channels in differential attack experiments.

Image NPCR (%)

R G B

Mandril 99.6174 99.6136 99.6025
Lena 99.6105 99.6212 99.6162

Peppers 99.6204 99.6208 99.6262
House 99.5785 99.6117 99.6040
Lake 99.5979 99.6178 99.6166

Splash 99.6227 99.6246 99.6002
San Diego 99.6059 99.6071 99.5972
Jetplane 99.6254 99.6002 99.6227

Lena (gray) 99.6249

Table 9. UACI of three channels in differential attack experiments.

Image UACI (%)

R G B

Mandrill 33.4335 33.4402 33.4821
Lena 33.4898 33.4291 33.4875

Peppers 33.4562 33.4732 33.5182
House 33.4944 33.4663 33.5236
Lake 33.4197 33.5304 33.4407

Splash 33.4215 33.5089 33.4760
San Diego 33.4363 33.4986 33.4557
Jetplane 33.5001 33.4588 33.5305

Lena (gray) 33.4892

Figure 16. Differential attack test: (a) the difference between the twice encrypted image of the R
channel of images; (b) the difference between the twice encrypted image of the G channel of images;
(c) the difference between the twice encrypted image of the R channel of images; (d) the difference
between the twice encrypted images of three channels of images.
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4.10. Cropping Attack

A robust cryptographic system should have the capability to resist potential data loss
during transmission and storage [48]. The receiver wants to recover the plain image as
much as possible from some of the information received in this case [33]. Thus, the anal-
ysis of cropping attacks is a valuable approach to assessing the robustness of encryption
schemes [49].

For evaluating and comparing the performance of different encryption algorithms
in the face of cropping attacks, a series of experiments is conducted, and the following
comparative illustrations are produced. As shown in Figure 17, the images decrypted from
the cipher images with data loss rates of 6.25, 12.5%, 23.44%, 25%, 43.75%, and 50% are
very similar to the original images and can still provide valuable information about the
input images’ visual information.

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Figure 17. Cropping attack test [50]: (a) cropped 6.25% of the encrypted image; (b) cropped 12.5%
of the encrypted image; (c) cropped 23.44% of the encrypted image; (d) cropped 25% of the en-
crypted image; (e) cropped 43.75% of the encrypted image; (f) cropped 50% of the encrypted image;
(g) decrypted image based on the cropped 6.25% of the encrypted image; (h) decrypted image based
on the cropped 12.5% of the encrypted image; (i) decrypted image based on the cropped 23.44%
of the encrypted image; (j) decrypted image based on the cropped 25% of the encrypted image;
(k) decrypted image based on the cropped 43.75% of the encrypted image; (l) decrypted image based
on the cropped 50% of the encrypted image.

4.11. Randomness Tests for the Encrypted Image

In order to guarantee the security of the encryption system, the image should contain
properties for further measurable investigation to distinguish between different designs [51].
For the DIEHARD test, which focuses on several types of potential randomness in the
sequence [52], the value of each pixel of the encrypted image is transformed into binary.
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The results of the DIEHARD test in Table 10 show that the proposed scheme exhibits highly
random behavior.

Table 10. Result of DIEHARD tests suite.

Image p-Value Assessment

Birthday spacing 0.4381 PASSED
Overlapping permutation 0.8404 PASSED

Binary rank 32× 32 0.4542 PASSED
Binary rank 6×8 0.5309 PASSED

Bitstream 0.6567 PASSED
OPSO 0.1355 PASSED
OQSO 0.4506 PASSED
DNA 0.7073 PASSED

Count the ones 01 0.9588 PASSED
Count the ones 02 0.7266 PASSED

Parking lot 0.6397 PASSED
2DS sphere 0.0297 PASSED
3DS spheres 0.6735 PASSED

Squeeze 0.9060 PASSED
Overlapping sum 0.1625 PASSED

Runs 0.7672 PASSED
Craps 0.1105 PASSED

4.12. Comparison with Existing Methods

This section compares the scheme with existing encryption schemes by comparing
the key space, entropy, CC, NPCR, and UACI. CC is the average value of the correlation
of adjacent pixels in the horizontal, vertical, and diagonal directions of the image, and
the formula is as follows:

CC =
|Ch|+ |Cv|+ |Cd|

3
(20)

where Ch, Cv, and Cd are correlations of horizontal, vertical, and diagonal of encrypted images.
Table 11 shows the comparison of encrypted Lena images.

Table 11. Key space, entropy, CC, NPCR, and UACI comparison.

Method Key Space Entropy CC NPCR (%) UACI (%)

R G B Cipher R G B Cipher R G B Cipher

Proposed > 22338 7.9998 0.0119 0.0096 0.0109 0.0070 99.5811 99.6162 99.6052 99.6062 33.3818 33.5105 33.4385 33.4623
Ref. [53] > 2160 7.9992 0.0320 0.0099 0.0221 - 100 100 100 100 33.6313 33.4737 33.6520 33.5857
Ref. [2] 2128 7.9998 0.0020 0.0007 0.0018 0.0015 100 100 100 100 33.4877 33.3697 33.4629 33.4400

Ref. [54] 2233 7.9967 0.0043 0.0035 0.0020 - 99.5865 99.2172 99.8480 - 33.4835 33.4640 33.2689 -
Ref. [55] 2626 7.9998 - - - 0.0026 99.6296 99.6174 99.6473 - 33.6027 33.4997 33.5516 -
Ref. [56] - 7.9956 0.0004 0.0004 0.0004 - 99.6420 99.5960 99.5290 99.5890 32.7630 30.0490 27.5670 30.1260
Ref. [57] 2170 7.9998 0.0021 0.0025 0.00040 0.0013 - - - 99.6166 - - - 33.4476
Ref. [58] 2170 7.9994 0.0034 0.0002 0.0028 0.0013 99.6099 99.6093 99.6101 - 33.4650 33.4637 33.4641 -
Ref. [59] 2711 7.9978 - - - 0.0042 - - - 99.6090 - - - 33.4500
Ref. [60] > 2183 7.9994 0.0021 0.0009 0.0005 - 99.6089 99.6089 99.6085 - 33.4589 33.4598 33.4624 -
Ref. [61] - 7.9998 - - - 0.0002 - - - 99.62 - - - 33.47
Ref. [62] - 7.9997 - - - 0.0006 - - - - - - - -
Ref. [41] 2554 7.9989 0.0030 0.0015 0.0031 0.0036 99.6246 99.6246 99.6246 99.6246 33.0716 30.7640 27.8720 30.5681
Ref. [63] 2418 7.9988 - - - 0.0022 - - - 99.6112 - - - 33.4254
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5. Conclusions

The image encryption algorithm based on the novel eighth-order hyperchaotic system
proposed in this paper performs a significant level of security in experiments. The algorithm
effectively improves the randomness and unpredictability of encrypted images through
multiple rounds of diffusion and scrambling operations. In contrast to the conventional
chaotic system, the novel hyperchaotic system exhibits superior performance in terms of
key space and resistance against attacks, while also demonstrating heightened sensitivity
to keys. By comparing the results of other encryption algorithms, it can be seen that the
key space of the proposed algorithm is significantly larger than those of other references;
NPCR and UACI are closer to the theoretical values; and the pixel correlation is also lower
than most references. Based on the aforementioned notable benefits, it is evident that the
algorithm demonstrates exceptional performance in the encryption of images.

Author Contributions: Conceptualization, H.Q. and J.L.; methodology, H.Q. and J.L.; software, H.Q.,
J.L. and X.Z.; validation, H.Q., J.L. and H.Y.; formal analysis, H.Y.; investigation, H.Q.; resources,
J.L.; data curation, H.Q.; writing—original draft preparation, H.Q.; writing—review and editing, J.L.;
visualization, J.L.; supervision, H.Q.; project administration, J.L.; funding acquisition, J.L. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Regional Project of the National Natural Science Founda-
tion of China grant number 82260364, Gansu Provincial Science and Technology Department Youth
Fund Project grant number 22JR5RA166, Gansu Higher Education Innovation Fund Project grant
number 2022B-084.

Data Availability Statement: All experimental pictures in this article come from standard data sets,
and all data are generated through algorithms.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Zheng, Q.; Wang, X.; Khurram Khan, M.; Zhang, W.; Gupta, B.B.; Guo, W. A Lightweight Authenticated Encryption Scheme
Based on Chaotic SCML for Railway Cloud Service. IEEE Access 2018, 6, 711–722. [CrossRef]

2. Elias, E.P. Multichannel image encryption using dynamic substitution and JSMP map. Optik 2023, 288, 171183. [CrossRef]
3. Zhou, Y.; Bao, L.; Chen, C.P. A new 1D chaotic system for image encryption. Signal Process. 2014, 97, 172–182. [CrossRef]
4. Yassein, M.B.; Aljawarneh, S.; Qawasmeh, E.; Mardini, W.; Khamayseh, Y. Comprehensive study of symmetric key and

asymmetric key encryption algorithms. In Proceedings of the 2017 International Conference on Engineering and Technology
(ICET), Antalya, Turkey, 21–23 August 2017; pp. 1–7. [CrossRef]

5. Zhang, Y.-P.; Liu, W.; Cao, S.-P.; Zhai, Z.-J.; Nie, X.; Dai, W.-D. Digital image encryption algorithm based on chaos and improved
DES. In Proceedings of the 2009 IEEE International Conference on Systems, Man and Cybernetics, San Antonio, TX, USA,
11–14 October 2009; pp. 474–479. [CrossRef]

6. Giap, V.N.; Nguyen, Q.D.; Pham, D.H.; Lin, C.M. Wireless Secure Communication of Chaotic Systems Based on Takagi–Sugeno
Fuzzy Optimal Time Varying Disturbance Observer and Sliding Mode Control. Int. J. Fuzzy Syst. 2023, 1–15. [CrossRef]

7. Giap, V.N. Text message secure communication based on fractional-order chaotic systems with Takagi–Sugeno fuzzy disturbance
observer and sliding mode control. Int. J. Dyn. Control 2023, 2023, 1–15. [CrossRef]

8. Yu, Y.; Li, H.X.; Wang, S.; Yu, J. Dynamic analysis of a fractional-order Lorenz chaotic system. Chaos Solitons Fractals 2009,
42, 1181–1189. [CrossRef]

9. Zou, C.; Zhang, Q.; Wei, X.; Liu, C. Image Encryption Based on Improved Lorenz System. IEEE Access 2020, 8, 75728–75740.
[CrossRef]

10. Chen, C.; Sun, K.; He, S. An improved image encryption algorithm with finite computing precision. Signal Process. 2020,
168, 107340. [CrossRef]

11. Dou, J.X.; Pan, A.Q.; Bao, R.; Mao, H.H.; Luo, L. Sampling through the lens of sequential decision making. arXiv 2022,
arXiv:2208.08056.

12. Dou, J.X.; Bao, R.; Song, S.; Yang, S.; Zhang, Y.; Liang, P.P.; Mao, H.H. Demystify the Gravity Well in the Optimization Landscape
(student abstract). In Proceedings of the AAAI Conference on Artificial Intelligence, Washington, DC, USA, 7–14 February 2023.

13. Dou, J.X.; Mao, H.; Bao, R.; Liang, P.P.; Tan, X.; Zhang, S.; Jia, M.; Zhou, P.; Mao, Z.H. The Measurement of Knowledge in
Knowledge Graphs.

14. Mobayen, S.; Vaidyanathan, S.; Sambas, A.; Kacar, S.; Cavusoglu, U. A Novel Chaotic System With Boomerang-Shaped
Equilibrium, Its Circuit Implementation and Application to Sound Encryption. Iran. J. Sci. Technol. Trans. Electr. Eng. 2019,
43, 1–12. [CrossRef]

165



Mathematics 2023, 11, 4099

15. Sun, K.; Liu, X.; Zhu, C.; Sprott, J.C. Hyperchaos and hyperchaos control of the sinusoidally forced simplified Lorenz system.
Nonlinear Dyn. 2012, 69, 1383–1391. [CrossRef]

16. Xiong, Z.; Qu, S.; Luo, J. Adaptive Multi-Switching Synchronization of High-Order Memristor-Based Hyperchaotic System with
Unknown Parameters and Its Application in Secure Communication. Complexity 2019, 2019, 3827201. [CrossRef]

17. Li, Q.; Chen, L. An image encryption algorithm based on 6-dimensional hyper chaotic system and DNA encoding. Multimed.
Tools Appl. 2023, 1–18. [CrossRef]

18. Liu, J.; Ma, J.; Lian, J.; Chang, P.; Ma, Y. An Approach for the Generation of an Nth-Order Chaotic System with Hyperbolic Sine.
Entropy 2018, 20, 230. [CrossRef]

19. Chen, H.; Bai, E.; Jiang, X.; Wu, Y. A Fast Image Encryption Algorithm Based on Improved 6-D Hyper-Chaotic System. IEEE
Access 2022, 10, 116031–116044. [CrossRef]

20. Yang, Q.; Zhu, D.; Yang, L. A new 7D hyperchaotic system with five positive Lyapunov exponents coined. Int. J. Bifurc. Chaos
2018, 28, 1850057. [CrossRef]

21. Yang, Q.; Bai, M. A new 5D hyperchaotic system based on modified generalized Lorenz system. Nonlinear Dyn. 2017, 88, 189–221.
[CrossRef]

22. Liu, J.; Ma, Y.; Li, S.; Lian, J.; Zhang, X. A new simple chaotic system and its application in medical image encryption. Multimed.
Tools Appl. 2018, 77, 22787–22808. [CrossRef]

23. Koçak, H.; Palmer, K. Lyapunov Exponents and Sensitive Dependence. J. Dyn. Differ. Equ. 2010, 22, 381–398. [CrossRef]
24. Singh, J.P.; Roy, B. The nature of Lyapunov exponents is (+, +, -, -). Is it a hyperchaotic system? Chaos Solitons Fractals 2016,

92, 73–85. [CrossRef]
25. Yang, Y.; Gao, J.; Imani, H. Design, analysis, circuit implementation, and synchronization of a new chaotic system with application

to information encryption. AIP Publ. 2023, 13, 075116. [CrossRef]
26. Vaidyanathan, S.; Tlelo-Cuautle, E.; Benkouider, K.; Sambas, A.; Ovilla-Martínez, B. FPGA-Based Implementation of a New 3-D

Multistable Chaotic Jerk System with Two Unstable Balance Points. Technologies 2023, 11, 92. [CrossRef]
27. Lin, Z.; Liu, J.; Lian, J.; Ma, Y.; Zhang, X. A Novel Fast Image Encryption Algorithm for Embedded Systems. Multimed. Tools Appl.

2019, 78, 20511–20531. [CrossRef]
28. Lee, W.K.; Phan, R.C.W.; Yap, W.S.; Goi, B.M. SPRING: A Novel Parallel Chaos-Based Image Encryption Scheme. Nonlinear Dyn.

2018, 92, 575–593. [CrossRef]
29. Sankpal, P.R.; Vijaya, P.A. Image Encryption Using Chaotic Maps: A Survey. In Proceedings of the 2014 Fifth International Conference

on Signal and Image Processing, Bangalore, India, 8–10 January 2014; pp. 102–107. [CrossRef]
30. Souyah, A.; Faraoun, K.M. An image encryption scheme combining chaos-memory cellular automata and weighted histogram.

Nonlinear Dyn. 2016, 86, 639–653. [CrossRef]
31. Sang, Y.; Sang, J.; Alam, M.S. Image encryption based on logistic chaotic systems and deep autoencoder. Pattern Recognit. Lett.

2022, 153, 59–66. [CrossRef]
32. Mamlin, B.W.; Tierney, W.M. The Promise of Information and Communication Technology in Healthcare: Extracting Value from

the Chaos. Am. J. Med. Sci. 2016, 351, 59–68. [CrossRef]
33. Ye, G.; Jiao, K.; Huang, X. Quantum logistic image encryption algorithm based on SHA-3 and RSA. Nonlinear Dyn. 2021,

104, 2807–2827. [CrossRef]
34. Anishchenko, V.; Vadivasova, T.; Okrokvertskhov, G.; Strelkova, G. Correlation analysis of dynamical chaos. Phys. A Stat. Mech.

Its Appl. 2003, 325, 199–212. [CrossRef]
35. Liu, S.; Ye, G. Asymmetric image encryption algorithm using a new chaotic map and an improved radial diffusion. Optik 2023,

288, 171181. [CrossRef]
36. Pak, C.; Huang, L. A new color image encryption using combination of the 1D chaotic map. Signal Process. 2017, 138, 129–137.

[CrossRef]
37. Ye, G.; Zhao, H.; Chai, H. Chaotic image encryption algorithm using wave-line permutation and block diffusion. Nonlinear Dyn.

2016, 83, 2067–2077. [CrossRef]
38. Zhen, P.; Zhao, G.; Min, L.; Jin, X. Chaos-based image encryption scheme combining DNA coding and entropy. Multimed. Tools

Appl. 2016, 75, 6303–6319. [CrossRef]
39. Valandar, M.Y.; Ayubi, P.; Barani, M.J. A new transform domain steganography based on modified logistic chaotic map for color

images. J. Inf. Secur. Appl. 2017, 34, 142–151. [CrossRef]
40. Li, X.; Yu, H.; Zhang, H.; Jin, X.; Sun, H.; Liu, J. Video encryption based on hyperchaotic system. Multimed. Tools Appl. 2020,

79, 23995–24011. [CrossRef]
41. Elkandoz, M.T.; Alexan, W. Image encryption based on a combination of multiple chaotic maps. Multimed. Tools Appl. 2022,

81, 25497–25518. [CrossRef]
42. Harun, S.W.; Zhang, X.; Wang, L.; Wang, Y.; Niu, Y.; Li, Y. An Image Encryption Algorithm Based on Hyperchaotic System and

Variable-Step Josephus Problem. Int. J. Opt. 2020, 2020, 6102824. [CrossRef]
43. Alexan, W.; ElBeltagy, M.; Aboshousha, A. Lightweight Image Encryption: Cellular Automata and the Lorenz System. In

Proceedings of the 2021 International Conference on Microelectronics (ICM), Nis, Serbia, 12–14 September 2021; pp. 34–39.
[CrossRef]

166



Mathematics 2023, 11, 4099

44. Zhou, Y.; Hua, Z.; Pun, C.M.; Philip Chen, C.L. Cascade Chaotic System with Applications. IEEE Trans. Cybern. 2015,
45, 2001–2012. [CrossRef]

45. Wang, M.; Wang, X.; Zhang, Y.; Zhou, S.; Zhao, T.; Yao, N. A novel chaotic system and its application in a color image cryptosystem.
Opt. Lasers Eng. 2019, 121, 479–494. [CrossRef]

46. Zhu, C. A novel image encryption scheme based on improved hyperchaotic sequences. Opt. Commun. 2012, 285, 29–37. [CrossRef]
47. Song, C.Y.; Qiao, Y.L.; Zhang, X.Z. An image encryption scheme based on new spatiotemporal chaos. Opt. Int. J. Light Electron

Opt. 2013, 124, 3329–3334. [CrossRef]
48. Wang, L.; Song, H.; Liu, P. A novel hybrid color image encryption algorithm using two complex chaotic systems. Opt. Lasers Eng.

2016, 77, 118–125. [CrossRef]
49. Yan, X.; Wang, X.; Xian, Y. Chaotic image encryption algorithm based on arithmetic sequence scrambling model and DNA

encoding operation. Multimed. Tools Appl. 2021, 80, 10949–10983. [CrossRef]
50. Gao, X.; Mou, J.; Xiong, L.; Sha, Y.; Yan, H.; Cao, Y. A fast and efficient multiple images encryption based on single-channel

encryption and chaotic system. Nonlinear Dyn. 2022, 108, 613–636. [CrossRef]
51. Yasser, I.; Khalil, A.T.; Mohamed, M.A.; Samra, A.S.; Khalifa, F. A Robust Chaos-Based Technique for Medical Image Encryption.

IEEE Access 2022, 10, 244–257. [CrossRef]
52. Mohammad Seyedzadeh, S.; Mirzakuchaki, S. A fast color image encryption algorithm based on coupled two-dimensional

piecewise chaotic map. Signal Process. 2012, 92, 1202–1215. [CrossRef]
53. Basha, H.A.; Mohra, A.S.S.; Diab, T.O.M.; Sobky, W.I.E. Efficient Image Encryption Based on New Substitution Box Using DNA

Coding and Bent Function. IEEE Access 2022, 10, 66409–66429. [CrossRef]
54. Wei, X.; Guo, L.; Zhang, Q.; Zhang, J.; Lian, S. A novel color image encryption algorithm based on DNA sequence operation and

hyper-chaotic system. J. Syst. Softw. 2012, 85, 290–299. [CrossRef]
55. Kumar Patro, K.A.; Acharya, B. An efficient colour image encryption scheme based on 1-D chaotic maps. J. Inf. Secur. Appl. 2019,

46, 23–41. [CrossRef]
56. ul Haq, T.; Shah, T. 12×12 S-box Design and its Application to RGB Image Encryption. Optik 2020, 217, 164922. [CrossRef]
57. Huang, L.; Li, W.; Xiong, X.; Yu, R.; Wang, Q.; Cai, S. Designing a double-way spread permutation framework utilizing chaos and

S-box for symmetric image encryption. Opt. Commun. 2022, 517, 128365. [CrossRef]
58. Huang, L.; Cai, S.; Xiong, X.; Xiao, M. On symmetric color image encryption system with permutation-diffusion simultaneous

operation. Opt. Lasers Eng. 2019, 115, 7–20. [CrossRef]
59. Hamza, R.; Titouna, F. A novel sensitive image encryption algorithm based on the Zaslavsky chaotic map. Inf. Secur. J. A Glob.

Perspect. 2016, 25, 162–179. [CrossRef]
60. Huang, L.; Cai, S.; Xiao, M.; Xiong, X. A Simple Chaotic Map-Based Image Encryption System Using Both Plaintext Related

Permutation and Diffusion. Entropy 2018, 20, 535. [CrossRef] [PubMed]
61. Lin, C.M.; Pham, D.H.; Huynh, T.T. Synchronization of Chaotic System Using a Brain-Imitated Neural Network Controller and

Its Applications for Secure Communications. IEEE Access 2021, 9, 75923–75944. [CrossRef]
62. Lin, C.M.; Pham, D.H.; Huynh, T.T. Encryption and Decryption of Audio Signal and Image Secure Communications Using

Chaotic System Synchronization Control by TSK Fuzzy Brain Emotional Learning Controllers. IEEE Trans. Cybern. 2022,
52, 13684–13698. [CrossRef]

63. Wu, Y.; Zhang, L.; Berretti, S.; Wan, S. Medical Image Encryption by Content-Aware DNA Computing for Secure Healthcare.
IEEE Trans. Ind. Inform. 2023, 19, 2089–2098. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

167



mathematics

Article

Bifurcation, Hidden Chaos, Entropy and Control in
Hénon-Based Fractional Memristor Map with Commensurate
and Incommensurate Orders

Mayada Abualhomos 1, Abderrahmane Abbes 2,*, Gharib Mousa Gharib 3, Abdallah Shihadeh 4,

Maha S. Al Soudi 5, Ahmed Atallah Alsaraireh 6 and Adel Ouannas 7

1 Applied Science Research Center (ASRC), Applied Science Private University, Amman 11942, Jordan;
abuhomos@asu.edu.jo

2 Laboratory of Mathematics, Dynamics and Modelization, Badji Mokhtar-Annaba University,
Annaba 23000, Algeria

3 Department of Mathematics, Faculty of Science, Zarqa University, Zarqa 13110, Jordan
4 Department of Mathematics, Faculty of Science, The Hashemite University, P.O. Box 330127,

Zarqa 13133, Jordan; abdallaha_ka@hu.edu.jo
5 Department of Basic Scientific Sciences, Applied Science Private University, Amman 11931, Jordan
6 Department of computer information systems, The University of Jordan, Amman 11942, Jordan
7 Department of Mathematics and Computer Science, University of Larbi Ben M’hidi,

Oum El Bouaghi 04000, Algeria
* Correspondence: abderrahmane.abbes@univ-annaba.dz

Abstract: In this paper, we present an innovative 3D fractional Hénon-based memristor map and
conduct an extensive exploration and analysis of its dynamic behaviors under commensurate and
incommensurate orders. The study employs diverse numerical techniques, such as visualizing phase
portraits, analyzing Lyapunov exponents, plotting bifurcation diagrams, and applying the sample
entropy test to assess the complexity and validate the chaotic characteristics. However, since the
proposed fractional map has no fixed points, the outcomes reveal that the map can exhibit a wide
range of hidden dynamical behaviors. This phenomenon significantly augments the complexity of
the fractal structure inherent to the chaotic attractors. Moreover, we introduce nonlinear controllers
designed for stabilizing and synchronizing the proposed fractional Hénon-based memristor map.
The research emphasizes the system’s sensitivity to fractional-order parameters, resulting in the
emergence of distinct dynamic patterns. The memristor-based chaotic map exhibits rich and intricate
behavior, making it a captivating and significant area of investigation.
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1. Introduction

Discrete fractional calculus has emerged as a captivating research area that has grabbed
the interest of mathematicians and scholars in various disciplines over the last decade. Its
applications span diverse fields, including biology, ecology, and applied sciences, offering
valuable insights into real-world challenges. Fractional systems have demonstrated the
ability to describe complex nonlinear phenomena with greater accuracy compared to
traditional integer-order systems [1], showcasing their unique properties, including long-
term memory, viscosity, and flexibility. Recently, there has been a surge in published articles
addressing this intriguing topic. Researchers have been offering various discrete-time
fractional operators, conducting stability analyses, and presenting numerous theoretical
findings [2–6]. Notably, Wu and Baleanu presented the first study that delves into the
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modeling of fractional chaotic maps using the left Caputo-like operator and investigates
their chaotic characteristics [7]. As a result of these advances, this work paved the way for
the emergence of more commensurate- and non-commensurate-order chaotic maps [8–13],
in addition to exploring diverse control strategies and synchronization schemes that have
been developed to synchronize the interactions between different fractional discrete chaotic
systems [14–17]. These studies reflected that the system’s behavior is highly dependent on
the chosen fractional order, showcasing its non-linear and complex nature, which makes it
a fascinating subject of study in the field of fractional dynamics.

A memory resistor, commonly known as a “memristor”, has been widely recognized
as the fourth fundamental circuit element that serves as a link between charge and magnetic
flux. The theoretical concept of the memristor was initially forwarded by Chua in 1971 [18].
For an extended period, memristor research remained primarily theoretical until the first
physical implementation of a memristor was achieved by HP laboratories in 2008. They
successfully developed the first practical memristor using nanomaterials [19]. It has since
become an essential component in various applications due to its unique properties and
potential to revolutionize memory and computing technologies. Memristors have garnered
significant attention and research interest, contributing to the advancement of various fields,
including electronics [20], computing [21], nonvolatile memory [22], and neuromorphic
systems [23].

In general, memristor-based chaotic systems are commonly designed using differential
equations in the continuous-time domain [24]. However, until recent years, discrete-time
memristive maps had not been extensively explored or discussed. In practice, discrete
chaotic systems offer the advantage of avoiding parameter sensitivity issues present in
continuous systems, making them easier to implement using digital hardware circuits [25].
Consequently, there has been a growing realization among researchers of the significance
of exploring and understanding discrete memristive maps, leading to promising advance-
ments in understanding the behavior of discrete memristor-based systems and their implica-
tions for various applications [26–30]. These studies contribute to exploring the interactions
between memristive elements and mathematical functions, providing valuable insights
into the dynamics of memristive maps and their potential applications in various fields.

The majority of the previous discrete memristors research has been focused on integer-
order systems. Regrettably, the study of discrete fractional memristors remains inadequate,
with relatively few studies dedicated to exploring their behavior and characteristics. For
instance, Lu et al. [31] developed an innovative 2D discrete memristor map by incorporat-
ing a memristor into a 1D Rulkov neuron map. In [32], Peng et al. investigated the chaotic
behaviors in the Caputo fractional memristive map, while in [33], the authors conducted
an investigation into the multistability and synchronization of fractional maps resulting
from the coupling of Rulkov neurons with locally active discrete memristors. Furthermore,
Shatnawi et al. [34] recently explored the hidden attractors and multistability in a fractional
non-fixed-point discrete memristor-based map. Additionally, the study of the fractional
memristor-based discrete chaotic map based on the Grunwald–Letnikov operator and its
implementation in digital circuits is presented in [35]. The studies highlight the intricate
and rich behavior of the system, emphasizing the significance of fractional components in
contributing to the complexity and versatility of memristor-based maps. The aforemen-
tioned papers have primarily concentrated on models with commensurate orders within
discrete memristor-based maps. However, there appears to be a noticeable gap in the
literature concerning the effect of the incommensurate-order case on the dynamics of such
maps. This indicates an underexplored area in the field of discrete memristors, particularly
in the context of incommensurate fractional memristors. Understanding the behavior and
properties of incommensurate fractional memristors could lead to valuable insights and
potential applications in various domains. Therefore, further investigation and research
in this area are essential to uncovering the unique characteristics and potential benefits of
incommensurate fractional memristors.
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Inspired by the preceding discussion, the main innovations and contributions of this
paper are summarized as follows:

1. A new 3D fractional-order Hénon-based memristor map is presented by establishing
a connection between the 2D Hénon map and the discrete memristor.

2. The rich variety of complex nonlinear dynamical behavior is comprehensively ex-
plored, and some basic dynamical characteristics demonstrated by this map, such
as phase portraits, bifurcation diagrams, and the maximum Lyapunov exponent,
are investigated.

3. To measure the complexity and demonstrate the presence of chaos in the proposed
memristor map, we give its sample entropy (SampEn) test results using a range of
fractional values, encompassing both commensurate and incommensurate cases.

4. Chaos control and synchronization of the proposed 3D fractional Hénon-based mem-
ristor map are realized based on the stability theorem of fractional-order discrete-time
linear systems.

The rest of this article is outlined as follows: In Section 2, we introduce essential
preliminary concepts related to discrete fractional calculus and we introduce the mathe-
matical model of the 3D fractional Hénon-based memristor map. In Section 3, we delve
into an analysis of the dynamic characteristics of the fractional Hénon-based memristor
map, focusing on both commensurate and incommensurate scenarios. This exploration is
facilitated through phase portrait visualization, Lyapunov exponent analysis and bifurca-
tion diagram plots. Section 4 involves the utilization of the sample entropy test (SampEn)
to quantitatively measure the complexity and validate the presence of chaos within the
map. In Section 5, we propose adaptive nonlinear controllers aimed at stabilizing and
synchronizing the proposed 3D fractional Hénon-based memristor map. In conclusion,
we provide a concise summary of the most noteworthy findings that we obtained during
our study.

2. Preliminaries and Model Description

To elucidate our memristor framework, we first provide a specific overview within
the domain of discrete fractional calculus. Then, we proceed to introduce the mathematical
construct of the fractional Hénon-based memristor map, which incorporates the Caputo-left
difference operator.

2.1. Discrete Fractional Calculus

Definition 1 ([2]). The β-th fractional sum for a function Y can be expressed as

Δ−β
b Y(υ) =

1
Γ(β)

b−β

∑
l=b

(b − 1 − l)(β−1)Y(l), (1)

with υ ∈ Nb+β, β > 0.

Definition 2 ([4]). The Caputo-like difference operator for a function Y(υ) can be stated as

CΔβ
υY(b) = Δ−(m−β)

b ΔmX(υ) = 1
β(m−β) ∑

υ−(m−β)
l=b (υ − l − 1)(m−β−1)ΔmY(l), (2)

where υ ∈ Nb+m−β, β �∈ N and m = �β�+ 1. ΔmY(υ) and (υ − l − 1)(m−β−1) are the m-th
integer difference operator and the falling factorial function, respectively, which are written as

ΔmY(υ) = Δ(Δm−1Y(υ)) =
m

∑
k=0

(
m
k

)
(−1)m−kY(υ + k), υ ∈ Nb, (3)

and
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(υ − 1 − l)(m−β−1) =
β(υ − l)

β(υ + 1 − l − m + β)
, (4)

Remark 1. For m = 1, we can define the Caputo-like operator by

CΔβ
b Y(υ) = Δ−(1−β)

b ΔY(υ) = 1
β(1−β) ∑

υ−(1−β)
l=b (υ − 1 − l)(−β)ΔY(l), υ ∈ Nb−β+1 (5)

Theorem 1 ([7]). The solution of the following fractional difference system{
CΔβ

b Z(υ) = Y(υ + β − 1, Z(υ + β − 1))
ΔjZ(υ) = Zj, m = �β�+ 1,

(6)

is expressed by

Z(υ) = Z0(υ) +
1

Γ(β)

υ−β

∑
l=m−β

(υ + 1 − l)(β−1)Y(l − 1 + β, Z(l − 1 + β)), υ ∈ Nb+m, (7)

where

Z0(υ) =
m−1

∑
j=0

(υ − b)j

Γ(j + 1)
ΔjZ(0). (8)

2.2. Fractional-Order Hénon-Based Memristor Map

The original work of Hénon [36] introduced the 2D Hénon map, which is written as{
y1(r + 1) = 1 − ρ1(y1(r))

2 + y2(r),
y2(r + 1) = ρ2y1(r),

(9)

where ρ1 and ρ2 are adjustable parameters.
The memristor is a two-terminal nonlinear device that displays a pinched hysteresis in

response to the application of any periodic voltage or current stimulation. Diverse memris-
tors with discrete memristance values have been suggested through the use of differential
modeling theory [37]. As per the concept presented in reference [38], the discrete memristor
can be defined by {

vr = M(qr)ir,
qr+1 = qr + k ir,

(10)

where vr represents the output voltage, ir is the input current, and qr is the internal state
of the discrete memristor at step r. M(qr) denotes the value of the discrete memristance
function, which is equal, in this study, to

M(qr) = tanh qr.

Thus, the mathematical model for the discrete memristor (10) is formulated by{
vr = tanh (qr)ir,
qr+1 = qr + k ir.

(11)

Rong et al. [26] expanded the dimension of the Ikeda map by incorporating the
discrete memristor model (11) into the map (9), yielding the following 3D Hénon-based
memristor map:
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⎧⎪⎨
⎪⎩

y1(r + 1) = 1 − ρ1(y1(r))
2 + y2(r),

y2(r + 1) = ρ2y1(r) + μ tanh (y3(r))y2(r),
y3(r + 1) = y3(r) + y2(r).

(12)

where μ is the controller parameter. Figure 1 illustrates the bifurcation diagram and
Lyapunov exponent, as well as the phase attractor of the 3D Hénon-based memristor map,
while varying μ from 0 to 1. The evidence presented in Figure 1 provides that the model
demonstrates chaotic dynamics for a significant range of values, specifically within the
interval ρ ∈ (0.448, 0.531) ∪ (0.722, 0.986).

(a) (b)

(c)
Figure 1. (a) Bifurcation diagram for μ ranging from 0 to 1. (b) The corresponding Lyapunov
exponents. (c) Phase attractor of Hénon-based memristor map (12).

In this investigation, we extend the integer-order Hénon-based memristor map to
generate the fractional-order Hénon-based memristor map by employing the Caputo
difference operator. The formula representing the first-order difference of the Hénon-based
memristor map is as follows:

⎧⎪⎨
⎪⎩

Δy1(r) = 1 − ρ1(y1(r))
2 + y2(r)− y1(r),

Δy2(r) = ρ2y1(r) + (μ tanh (y3(r))− 1)y2(r),
Δy3(r) = y2(r),

(13)

where Δy(r) = y(r + 1) − y(r) is the standard difference operator. In the aforemen-
tioned system, if we substitute Δ with the Caputo-like operator cΔβ

b and replace r with
� = υ + β − 1, the resulting system becomes a fractional-order difference system:
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⎧⎪⎨
⎪⎩

cΔβ
b y1(υ) = 1 − ρ1(y1(�))

2 + y2(�)− y1(�),
cΔβ

b y2(υ) = ρ2y1(�) + (μ tanh (y3(�))− 1)y2(�),
cΔβ

b y3(υ) = y2(�),

(14)

where υ ∈ Nb+1−β, b is the initial point, and 0 < β ≤ 1 represents the fractional order.
The fixed points of the fractional-order Henon-based memristor map (14) are the

values of (y∗1, y∗2, y∗3) that fulfill the following set of equations:

⎧⎪⎨
⎪⎩

1 − ρ1
(
y∗1
)2

+ y∗2 − y∗1 = 0,
ρ2y∗1 + (μ tanh (y∗3)− 1)y∗2 = 0,
y∗2 = 0.

(15)

It is clear that, from the third equation of (15), y∗2 = 0. Substituting y∗2 in the second
equation, we obtain y∗1 = 0. Moreover, upon substituting y∗1 and y∗2 into the first equation
of (15), it becomes apparent that the system (15) does not have a solution. This signifies that
the fractional-order Henon-based memristor map (14) does not possess any fixed points.
Consequently, as indicated in reference [39], all attractors produced by the fractional-order
Henon-based memristor map (14) are hidden. This means that they are not visible in the
traditional plots of the map’s phase space.

3. Nonlinear Dynamics of the Fractional-Order Hénon-Based Memristor Map

In this section, we conduct an analysis of the behaviors of the 3D fractional-order
Hénon-based memristor map (14). The analysis is carried out across commensurate and in-
commensurate orders. We employ a range of numerical tools, such as visualizing phase por-
traits, illustrating bifurcations, and estimating the maximum Lyapunov exponent (LEmax).

3.1. Commensurate-Order Fractional Hénon-Based Memristor Map

In this part, our focus is on elaborating on the different characteristics of the commensurate-
order 3D fractional Hénon-based memristor map. It is important to recognize that a
commensurate-order fractional system is comprised of equations that possess identical
orders. To this end, we will now supply the numerical formula, which is presented in the
following manner and is derived from Theorem 1:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

y1(r) = y1(0) +
r−1
∑

j=0

Γ(r−j−1+β)
Γ(β)Γ(r−j)

(
1 − ρ1(y1(j))2 + y2(j)− y1(j)

)
,

y2(r) = y2(0) +
r−1
∑

j=0

Γ(r−j−1+β)
Γ(β)Γ(r−j)

(
ρ2y1(j) + (μ tanh (y3(j))− 1)y2(j)

)
,

y3(r) = y3(0) +
r−1
∑

j=0

Γ(r−j−1+β)
Γ(β)Γ(r−j)

(
y2(j)

)
,

(16)

Setting y1(0) = y2(0) = t3(0) = 0 and the parameters ρ1 = 0.15, ρ2 = −1.05 and
μ = 0.5, the bifurcation diagram is used to show the variations in the behaviors of the com-
mensurate 3D fractional Hénon-based memristor map (14), as the order β is varied from
0.8 to 1 with a step size of 0.0005. Figure 2 depicts the bifurcation and LEmax. By adjusting
the commensurate-order β, we are able to explore a rich set of dynamic characteristics
(hidden chaotic and regular) of the fractional map. In more detail, the system exhibits both
chaotic and periodic oscillations in distinct regions of its phase space. More specifically,
when β ∈ (0.804, 0.855), the trajectories of the commensurate 3D fractional Hénon-based
memristor map (14) exhibit hidden chaotic behavior, while as β transitions to the range
of β ∈ (0.855, 0.931), periodic windows with 7-period orbits appear, indicating the stabil-
ity of the states of the map. However, when the commensurate-order β falls within the
range of β ∈ (0.932, 0.984), we can observe oscillations between the chaotic and regular
trajectories in the states of the 3D fractional Hénon-based memristor map (14). During this
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range, the Lyapunov exponent (LE) also fluctuates between positive and negative values,
indicating transitions between chaotic and non-chaotic behaviors in the system. Sub-
sequently, for larger values of β, chaotic motions reappear, characterized by a positive
maximum Lyapunov exponent (LEmax), indicating chaotic dynamics in the trajectories
of the commensurate-order 3D Hénon-based memristor map. These described dynamic
features are further confirmed by the Lyapunov exponent shown in Figure 2, providing
additional evidence for the system’s complex and diverse behavior and confirming the
sensitivity of the map to changes in the commensurate-order parameter β. Furthermore,
based on the observation of the maximum Lyapunov exponent, it can be concluded that
when the maximum Lyapunov exponent is not positive, the commensurate 3D fractional
Hénon-based memristor map exhibits regular oscillations. Conversely, the presence of
chaotic oscillations is inferred when the exponent is positive.

(a) (b)
Figure 2. (a) Bifurcation of commensurate-order Hénon-based memristor map (14) for β ∈ (0.8, 1).
(b) The corresponding LEmax.

Now, considering μ as the critical parameter, we plot three bifurcations of (14) associ-
ated with μ ∈ [0, 1] as shown in Figure 3, which correspond to the commensurate orders
β = 0.85, β = 0.9 and β = 0.95. It is evident that both the parameter’s system μ and
the commensurate order β have an effect on the states of the commensurate fractional
Hénon-based memristor map (14). Indeed, as the commensurate fractional-order β and
parameter ρ increases, the commensurate 3D fractional Hénon-based memristor map (14)
displays a more extended hidden chaotic region. This leads to the emergence of more
complex oscillations and increased unpredictability in the system’s behavior. The interplay
between the fractional order and the system parameter has a significant impact on the
dynamical behavior, and these changes can result in a richer range of chaotic patterns
and intricate trajectories within the 3D Hénon-based memristor map (14). In order to
achieve a comprehensive understanding of these characteristics, Figure 4 displays the
discrete time evolution of the states y1, y2, and y3 in the suggested commensurate map.
We can observe that the trajectories are not regular or predictable. Instead, they display
irregular patterns, which is a hallmark of chaotic behavior, where small differences in the
initial conditions lead to vastly different trajectories. Additionally, Figure 5 illustrates the
phase portraits for various values of the commensurate-order β (β = 0.1, β = 0.4, β = 0.6,
β = 0.9, β = 0.98, and β = 1). From the figures, the observed trajectories in the proposed
commensurate map switch between hidden chaotic oscillations and periodic behaviors
as the commensurate-order β varies. This observation emphasizes the sensitivity of the
system to changes in β and demonstrates the richness and complexity of the dynamical
properties in the commensurate-order 3 D Hénon-based memristor map (14).
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(a) (b)

(c)
Figure 3. Three bifurcation diagrams of commensurate 3D fractional Hénon-based memristor map
and their LEmax associated with μ, for (a) β = 0.85, (b) β = 0.9, and (c) β = 0.95.

Figure 4. Time evolution of the commensurate 3D fractional Hénon-based memristor map (14) for
β = 0.98.
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(a) (b) (c)

(d) (e) (f)
Figure 5. Phase portraits of (14) for different values of β (a) β = 0.85, (b) β = 0.9, (c) β = 0.95,
(d) β = 0.965, (e) β = 0.98, (f) β = 1.

3.2. Incommensurate-Order Fractional Hénon-Based Memristor Map

In this section, we delve into the dynamics of the incommensurate-order fractional
Hénon-based memristor map. The concept of the incommensurate order entails utilizing
different fractional orders for each equation within the system. The representation of the
incommensurate-order fractional Hénon-based memristor map is as follows:

⎧⎪⎨
⎪⎩

cΔβ1
b y1(υ) = 1 − ρ1(y1(�))

2 + y2(�)− y1(�),
cΔβ2

b y2(υ) = ρ2y1(�) + (μ tanh (y3(�))− 1)y2(�),
cΔβ3

b y3(υ) = y2(�),

(17)

By utilizing Theorem 1, we can express the numerical representation of the incommen-
surate fractional 3D Hénon-based memristor map (17) as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

y1(r) = y1(0) +
r−1
∑

j=0

Γ(r−j−1+β1)
Γ(β1)Γ(r−j)

(
1 − ρ1(y1(j))2 + y2(j)− y1(j)

)
,

y2(r) = y2(0) +
r−1
∑

j=0

Γ(r−j−1+β2)
Γ(β2)Γ(r−j)

(
ρ2y1(j) + (μ tanh (y3(j))− 1)y2(j)

)
,

y3(r) = y3(0) +
r−1
∑

j=0

Γ(r−j−1+β3)
Γ(β3)Γ(r−j)

(
y2(j)

)
,

(18)

We analyze the dynamics and characteristics of this map to understand its unique be-
havior and explore the implications of employing distinct fractional orders in the system’s
equations. These investigations offer a deeper understanding of how the fractional orders
impact the system dynamics and underscore the importance of considering incommensu-
rate orders in the analysis of the model’s behavior. In Figure 6, we observe the variation
of the order β1 from 0.7 to 1 with a step size of Δβ1 = 0.0005. These figures illustrate the
bifurcation and its corresponding Lyapunov exponent of the incommensurate-order 3D
fractional Hénon-based memristor map (17) for β2 = 0.9 and β3 = 1, the parameters value
ρ1 = 0.15, ρ2 = −1.05, μ = 0.5, and the initial conditions (y1(0) = y2(0) = y3(0)) = 0.
From Figure 6a, it is evident that the state of the incommensurate Hénon-based memris-
tor map (17) exhibits periodic behavior for larger values of β1 as evidenced by negative
Lyapunov exponents as shown in Figure 6b. On the other hand, as β1 decreases, hidden
chaotic behaviors emerge with positive values of LEmax. As the incommensurate-order β1
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decreases further, the trajectories undergo a transition state, and as β1 drops below 0.745,
the states of the fractional Hénon-based memristor map (17) exhibit a divergence towards
infinity. In addition, the bifurcation chart and its corresponding largest Lyapunov exponent
(LEmax), where the parameter β3 is varied within the range (0, 1), are presented in Figure 7.
In this analysis, we maintain the incommensurate orders as β1 = β3 = 1. From Figure 7,
it is evident that, unlike the previous case, the trajectories of the incommensurate model
exhibit hidden chaotic behavior when the order β2 takes larger values as indicated by the
positive values of LEmax. When β2 decreases, the trajectories transition from chaotic to
regular motion, where the states of the incommensurate-order fractional Hénon-based
memristor map (17) become stable within the interval β2 ∈ (0.65, 0.78) ∪ (0.897, 0.97). The
Lyapunov exponent (LEmax) displayed in Figure 7b fluctuates between positive and nega-
tive values when β1 lies within the region β2 ∈ (0.87, 0.897). This outcome indicates the
presence of chaotic behavior with the emergence of periodic windows. Additionally, as β2
decreases even further, the maximum Lyapunov exponent values increase until they reach
their highest value, indicating that the fractional Hénon-based memristor map becomes
chaotic. We also see that when the incommensurate-order β3 continues to decrease, the
map shows transition states, and the trajectories go to infinity. The observed changes in the
largest Lyapunov exponent and the corresponding dynamic patterns illustrate the system’s
sensitivity to variations in the parameter β2, highlighting the complexity and versatility of
the incommensurate-order 3D fractional Hénon-based memristor map.

(a) (b)
Figure 6. (a) Bifurcation of (17). (b) Corresponding LEmax versus the incommensurate fractional-order
β1 for β2 = 0.9 and β3 = 1.

(a) (b)
Figure 7. (a) Bifurcation of (17). (b) Corresponding LEmax versus the incommensurate fractional-order
β2 for β1 = β3 = 1.

Now, to provide a more detailed illustration of the influence of incommensurate orders
on the behaviors of the Hénon-based memristor map, further investigation is carried out.
These investigations offer a deeper understanding of how the fractional orders impact
the system dynamics and underscore the importance of considering incommensurate or-
ders in the analysis of the model’s behavior. The three bifurcation diagrams presented
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in Figure 8 demonstrate the behaviors of the incommensurate Hénon-based memristor
map (17) as the parameter μ varies within the range [0, 1]. The simulations are con-
ducted with the value of parameters ρ1 = 0.15 and ρ2 = −1.05, and the initial conditions
(y1(0) = y2(0) = y3(0)) = 0. It is evident that these diagrams exhibit distinct patterns,
indicating that the change in fractional orders (β1, β2, β3) significantly impacts the states of
the incommensurate-order 3D fractional Hénon-based memristor map (17). For instance,
when (β1, β2, β3) = (0.85, 0.9, 1), the system’s states evolve from periodic to hidden chaotic
behavior as the parameter μ increases. On the other hand, when (β1, β2, β3) = (1, 0.7, 1),
oscillatory motion is observed, with trajectories remaining stable for small values of μ and
becoming chaotic for large values of μ. In the case of (β1, β2, β3) = (1, 1, 0.9), a hidden
chaotic region is evident throughout the interval, except for some periodic regions, where
the model exhibits regular oscillations, especially when μ ∈ (0.66, 0.81). These results
emphasize the sensitivity of the incommensurate 3D fractional Hénon-based memristor
map (17) to changes in the orders β1, β2 and β3, resulting in a diverse range of hidden
dynamic behaviors, including hidden chaotic and periodic motion. This highlights the
significance of incommensurate orders in shaping the system’s dynamics. Additionally,
the phase portraits of the state variables of the incommensurate fractional Hénon-based
memristor map (17) as shown in Figure 9 further support the notion that incommensurate
orders more accurately represent the system’s behaviors. Overall, the study emphasizes
the intricate and diverse nature of the incommensurate-order 3D fractional Hénon-based
memristor map and the significance of the choice of fractional orders in modeling and
characterizing its dynamics.

(a) (b)

(c)
Figure 8. Bifurcations of (17) versus the parameter system μ for (a) (β1, β2, β3) = (0.85, 0.9, 1)
(b) (β1, β2, β3) = (1, 0.7, 1) (c) (β1, β2, β3) = (1, 1, 0.9).
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(a) (b) (c)

(d) (e) (f)
Figure 9. Phase portraits of (17) for different values of incommensurate orders β1, β2 and β3

(a) (β1, β2, β3) = (0.85, 0.9, 1), (b) (β1, β2, β3) = (1, 0.6, 1), (c) (β1, β2, β3) = (1, 0.7, 1), (d) (β1, β2, β3) =

(1, 0.9, 1), (e) (β1, β2, β3) = (1, 1, 0.7), (f) (β1, β2, β3) = (1, 1, 0.9).

4. The Sample Entropy Test (SampEn)

In this study, we employ the sample entropy (SampEn) method to assess the complex-
ity of both the commensurate-order 3D fractional IHénon-based memristor map (14) and
the incommensurate-order 3D fractional Hénon-based memristor map (17). Unlike approxi-
mate entropy (ApEn), SampEn can effectively measure the irregularity of time series regard-
less of the embedding dimension (m) and the similarity coefficient (r). Consequently, SampEn
provides a more consistent and unbiased measure compared to ApEn [40]. The SampEn
values indicate the complexity level of the time series, with higher values corresponding to
higher complexity [41]. The calculation of SampEn is performed as follows:

SampEn = − log
Ψj+1(r)

Ψj(r)
, (19)

where Ψj(r) is expressed as

Ψj(r) =
1

m − j + 1

m−j+1

∑
i=1

log Cj
i (r). (20)

and r = 0.2std(C) is the tolerance defined, and std(C) represents the standard deviation.
The sample entropy results for the commensurate-order 3D fractional Hénon-based

memristor map (14) and the incommensurate-order 3D fractional Hénon-based memris-
tor map (17) are presented in Figure 10, with the initial conditions set as (y1(0), y2(0),
Y3(0)) = (0, 0.0) and parameter values ρ1 = 0.15 and ρ1 = −1.05. The obtained SampEn
values indicate the complexity levels of the time series, with larger values corresponding to
higher complexity. The results demonstrate that both the commensurate and incommen-
surate fractional Hénon-based memristor maps exhibit higher complexity as indicated by
their larger SampEn values. These findings align with the results obtained from the maxi-
mum Lyapunov exponent analysis, further confirming the chaotic nature of the dynamics
in the proposed fractional map. The higher complexity and chaotic behavior support the
significance of fractional orders in capturing the rich dynamics of the proposed fractional
Hénon-based memristor map.
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(a) (b)
Figure 10. The sample entropy results of the fractional Hénon-based memristor map versus the
parameter μ for (a) β = 0.9, (b) (β1, β2, β3) = (1, 0.7, 1).

5. Control of Fractional Hénon-Based Memristor Map

In many real-world applications, it is essential to ensure that the system behaves in a
stable and regulated manner. Control mechanisms are introduced to influence the system’s
dynamics, guiding it towards desired states or trajectories. This is particularly important
in applications where maintaining a specific behavior or avoiding chaotic outcomes is a
priority. Chaotic systems often undergo bifurcations, leading to unpredictable and undesirable
behavior. By incorporating control parameters into the map, we can exert influence over these
bifurcations, stabilizing the system or steering it towards specific regions of the phase space.
This is vital for controlling and mitigating chaotic behavior.

Control is frequently used in synchronization and communication systems to ensure
that different parts of a system remain coordinated. By introducing control into our map,
we can explore its utility in synchronization tasks, making it relevant to applications in
secure communications and information transfer. In this section, we introduce nonlinear
controllers designed for stabilizing and synchronizing the proposed fractional Hénon-based
memristor map’s behavior, making it applicable to a wide range of practical scenarios.

5.1. Stabilization of Fractional Hénon-Based Memristor Map

Here, a stabilization controller is proposed to stabilize the suggested fractional Hénon-
based memristor chaotic map. The main objective of the stabilization method is to design
an effective adaptive controller that drives all states of the map towards zero asymptotically.
To achieve this goal, we begin by revisiting the stability theorem for the fractional maps.

Theorem 2 ([42]). Let y(r) = (y1(r), . . . , yn(r))T and B ∈ Mn(R). The zero fixed point of the
linear fractional-order map

CΔβ
b y(r) = B y(�), (21)

∀ r ∈ Nb+1−β is asymptotically stable if

λι ∈
{

γ ∈ C : |γ| ≤
(

2 cos
|arg γ| − π

2 − β

)β

and |arg γ| ≥ β π

2

}
, (22)

where λι are the eigenvalues of the matrix B.

Now, the controlled fractional Hénon-based memristor map is given by

⎧⎪⎨
⎪⎩

cΔβ
b y1(υ) = 1 − ρ1(y1(�))

2 + y2(�)− y1(�) + C1(�),
cΔβ

b y2(υ) = ρ2y1(�) + (μ tanh (y3(�))− 1)y2(�) + C2(�),
cΔβ

b y3(υ) = y2(�) + C3(�),

(23)
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where � = υ+ β− 1 and C = (C1, C2, C3)
T is the adaptive controller. The following theorem

introduces control laws aimed at stabilizing the proposed novel fractional Hénon-based
memristor map.

Theorem 3. If suitable control laws are designed as follows,

⎧⎪⎨
⎪⎩

C1(�) = −1 + ρ1(y1(�))
2 − y2(�)− α1y1(�),

C2(�) = −ρ2y1(�)− μy2(�) tanh (y3(�))− α2y2(�),
C3(�) = −y2(�)− α3y3(�),

(24)

where −1 ≤ α1 ≤ 2β − 1, −1 ≤ α2 ≤ 2β − 1 and 0 ≤ α3 ≤ 2β, then the fractional Hénon-based
memristor map can be stabilized at its equilibrium point.

Proof. Substituting C1, C2 and C3 into (23) yields the following linear system:

CΔβ
b Y(r) = BY(�), (25)

where Y = (y1, y2, q)T and

B =

⎛
⎝−(1 + α1) 0 0

0 −(1 + α2) 0
0 0 −α3

⎞
⎠

Since −1 ≤ α1 ≤ 2β − 1, −1 ≤ α2 ≤ 2β − 1 and 0 ≤ α3 ≤ 2β, it is easy to see that the
eigenvalues of the matrix B satisfy

|λj| ≤
(

2 cos
|arg λj| − π

2 − β

)β

and |arg λj| = π ≤ β π

2
, j = 1, 2, 3.

So, by employing Theorem 2, the controlled fractional Hénon-based memristor map is
asymptotically stable.

To validate the findings of Theorem 3, numerical simulations were performed. Figures 11
and 12 present the time series of the controlled fractional Hénon-based memristor map (23)
for β = 0.7, α1 = −0.2, α2 = 0.1 and α3 = 0.8. It is evident from the figures that the system’s
states approach zero asymptotically, confirming the successful stabilization results.

Figure 11. Cont.
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Figure 11. Attractors of the controlled fractional Hénon-based memristor map (23) for β = 0.7 and
initial condition (y1(0), y2(0), y3(0) = (0.2,−0.5,−0.2).

Figure 12. The stabilized states of the controlled fractional Hénon-based memristor map (23) for
β = 0.7 and initial condition (y1(0), y2(0), y3(0) = (0.2,−0.5,−0.2).

5.2. Synchronization Scheme of Fractional Hénon-Based Memristor Map

In the following, nonlinear controllers for achieving synchronization of the fractional
Hénon-based memristor map are presented. The synchronization process aims to minimize
the error between the master map and the slave map, forcing it to converge toward zero.
The commensurate fractional Hénon-based memristor map, represented by Equation (14),
is considered the master map, while the slave Hénon-based memristor map is defined
as follows: ⎧⎪⎨

⎪⎩
cΔβ

b y1s(υ) = 1 − ρ1(y1s(�))
2 + y2s(�)− y1s(�) + U1(�),

cΔβ
b y2s(υ) = ρ2y1s(�) + (μ tanh (y3s(�))− 1)y2s(�) + U2(�),

cΔβ
b y3s(υ) = y2s(�) + U3(�).

(26)
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U1, U2 and U3 represent the synchronization controllers. The fractional error map is
defined as follows:⎧⎪⎪⎨

⎪⎪⎩
CΔβ

b e1(υ) =− e1(υ)(ρ1(y1s + y1) + 1) + e2(υ) + U1(�),
CΔβ

b e2(υ) =ρ2e1(υ) + μ(y2s tanh (y3s)− y2 tanh (y3))− e2(υ) + U2(�),
CΔβ

b e3(υ) =e2(�) + U3(�)

(27)

The control rule proposed to establish this synchronization scheme is outlined in the
theorem presented below.

Theorem 4. Subject to

⎧⎪⎨
⎪⎩

U1(�) = e1(υ)(ρ1(y1s + y1)− γ1)− e2(υ),
U2(�) = −ρ2e1(υ)− μ(y2s tanh (y3s)− y2 tanh (y3))− γ2e2(�),
U3(�) = −e2(�)− γ3e3(�)

(28)

where 0 ≤ 1 + γi ≤ 2β (i = 1, 2) and 0 ≤ γ3 ≤ 2β, the master Hénon-based memristor map (14)
and slave Hénon-based memristor map (26) are synchronized.

Proof. Substituting the control law (28) into the fractional error map (27), we obtain

CΔβ
d
(
e1(υ), e2(υ), e3(υ)

)T
= B × (e1(�), e2(�), e3(�)

)T , (29)

where

B =

⎛
⎝−(1 + γ1) 0 0

0 −(1 + γ2) 0
0 0 −γ3

⎞
⎠

The eigenvalues of the matrix B are λ1 = −(1 + γ1), λ2 = −(1 + γ2) and λ3 = −γ3.
It is easy to see that for 0 ≤ 1 + γi ≤ 2β (i = 1, 2) and 0 ≤ γ3 ≤ 2β, the eigenvalues satisfy
the stability condition stated in Theorem 2, demonstrating that the zero solution of the
fractional error map (27) is asymptotically stable, leading to the achieved synchronization
of the master Hénon-based memristor map (14) and the slave Hénon-based memristor
map (26).

To confirm the validity of this result, numerical simulations are conducted using
MATLAB. The values of the specific parameters chosen are β = 0.98, γ1 = 0.1, γ2 = −0.3,
γ3 = 1, and the initial values (e1(0), e2(0), e3(0)) = (−0.1, 0.1, 0.2). Figure 13 presents
the time evolution of the states of the fractional error map (27). The figure clearly illus-
trates that the errors tend to zero, validating the effectiveness of the earlier discussed
synchronization process.

Figure 13. Cont.
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Figure 13. Synchronization states of the fractional error map (27).

6. Conclusions

The presented article introduced a novel 3D fractional Hénon-based memristor map
and thoroughly investigated its behavior under commensurate and incommensurate frac-
tional orders. The analysis of the map revealed the absence of any fixed points, revealing
that the map can exhibit intricate and diverse complex hidden dynamical behaviors. By em-
ploying a range of analytical methods, such as Lyapunov exponent calculations, bifurcation
analysis, and phase portraits, the distinct behaviors of the proposed fractional Hénon-based
memristor map are thoroughly explored across various scenarios. Furthermore, the sample
entropy algorithm is utilized to quantitatively assess the model’s complexity. The results
highlight the substantial influence exerted by the system parameters and fractional-orders
on the states of the fractional Hénon-based memristor map. These parameters play a
crucial role in shaping the system’s hidden dynamics and behavior, causing variations in
trajectories within the map’s state space. Ultimately, the paper introduces effective control
laws that ensure the stabilization and synchronization of the proposed map, driving its
states towards asymptotic convergence to zero. Through the numerical simulations con-
ducted, this research offers an extensive understanding of the system’s dynamics, revealing
numerous intriguing and diverse hidden chaotic behaviors. These findings hold significant
value in elucidating the implications of fractional memristive maps, further enriching the
field of chaotic dynamics and nonlinear systems.
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