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Abstract: The exploration and development of resources and energy are fundamental to human
survival and development, and geological drilling is a key method for deep resource and energy
exploration. Intelligent monitoring technology can achieve anomaly detection, fault diagnosis,
and fault prediction in the drilling process, which is crucial for ensuring production safety and
improving drilling efficiency. The drilling process is characterized by complex geological conditions,
variable working conditions, and low information value density, which pose a series of difficulties
and challenges for intelligent monitoring. This paper reviews the research progress of the data-
driven intelligent monitoring of geological drilling processes, focusing on the above difficulties and
challenges. It mainly includes multivariate statistics, machine learning, and multi-model fusion.
Multivariate statistical methods can effectively handle and analyze complex geological drilling data,
while machine learning methods can efficiently extract key patterns and trends from a large amount
of geological drilling data. Multi-model fusion methods, by combining the advantages of the first
two methods, enhance the ability to handle complex multivariable and nonlinear problems. This
review shows that existing research still faces problems such as limited data processing capabilities
and insufficient model generalization capabilities. Improving the efficiency of data processing and
the generalization capability of models may be the main research directions in the future.

Keywords: geological drilling process; intelligent monitoring; multivariate statistics; machine learning;
multi-model fusion

1. Introduction

Geological resources, including petroleum, natural gas, minerals, and water, are
indispensable natural resources for human social development. They are not only the raw
material basis for industrial production but are also directly related to national energy
security and economic independence. With the continuous growth of the global economy,
the demand for geological resources is increasing, making the exploration and development
of geological resources particularly important.

Since the implementation of the “14th Five-Year Plan”, China’s coalbed methane
exploration and development have entered a higher stage. Breakthrough achievements
have been made in exploring new fields and strata such as deep coal seams and thin coal
seams, while significant results have been achieved in the enhancement and transformation
of old gas fields [1]. Among these, the development of deep coalbed methane is particularly
important. China’s deep coalbed methane resources are abundant, with deep coalbed
methane resources of 29 major basins (groups) estimated to reach 40.71 trillion cubic meters,
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significantly exceeding the shallow coalbed methane resources within 2000 m [2]. Especially
in the depth range of 1500 to 2000 m, the proportion is 31.5%.

China’s deep coalbed methane resources are mainly concentrated in the Junggar,
Ordos, and Turpan-Hami-Santanghu basins, with these three regions accounting for 37%,
32%, and 27% of the total, respectively [3]. According to the China Petroleum Exploration
and Development Research Institute, coalbed methane resources at depths of 2000 to 3000 m
in China total about 18.47 trillion cubic meters [4]. Therefore, it is necessary to strengthen the
exploration of deep geological resources. Moreover, the decision made at the 2023 National
Natural Resources Work Conference also emphasized the importance of a new round
of strategic mineral prospecting actions [5]. This policy aims to achieve breakthroughs
in mineral prospecting by promoting technological projects and strengthening technical
support in the field of resource exploration, thereby ensuring the economic and social
development needs of the country.

In this context, the geological drilling process plays a crucial role in the development
of deep coalbed methane resources. Precise drilling not only enables the acquisition of
critical data on underground coalbed methane reserves but also provides core samples for
analyzing their physical and chemical properties, thereby assessing the storage capacity and
extractability of coalbed methane. However, current drilling technologies face numerous
challenges; complex geological conditions significantly increase risks and costs, particularly
in deep environments where the risk of tool wear and breakage escalates [6]. These
issues can impact the efficiency of the geological drilling process and even compromise its
safety. Therefore, the comprehensive monitoring of the geological drilling process must be
implemented to ensure that operations are conducted safely and efficiently.

For an extended period, the detection of deep geological environments has encoun-
tered significant challenges due to limitations in technology and equipment. Current
sensing technologies for deep geological detection often struggle to accurately capture the
complexity and variability of subsurface structures, resulting in low information density
during the drilling process [7]. This limitation hampers the comprehensive monitoring
capabilities essential for effective geological drilling. To mitigate these challenges, the
exploration and application of intelligent monitoring technologies have become crucial
for achieving the precise monitoring of inefficiencies and abnormal statuses in drilling.
Such intelligent monitoring can analyze drilling parameters in real time, predict and avoid
potential risks, and offer considerable scientific and economic benefits in enhancing drilling
efficiency, reducing energy consumption and ensuring operational safety [8].

Intelligent monitoring in geological drilling integrates anomaly detection, fault di-
agnosis, and fault prediction. Anomaly detection serves as the foundation of intelligent
monitoring, continuously tracking key indicators such as drilling speed, pressure, and
torque to identify deviations from normal operating patterns, thereby facilitating early
fault detection. Fault diagnosis entails a thorough analysis of these detected anomalies to
pinpoint specific fault types and their locations, which is essential for resolving issues and
implementing targeted corrective actions. Finally, fault prediction leverages both historical
and real-time data, alongside diagnosed fault types, employing advanced data analysis
and machine learning models to forecast the likelihood and timing of future faults. This
comprehensive approach enhances safety, efficiency, and reliability in the geological drilling
process through real-time monitoring, prompt fault diagnosis, and precise predictions of
potential future faults [9].

In summary, scholars have conducted extensive research in the field of data-driven
intelligent monitoring, which plays a crucial role in the exploration and development of
geological resources. These studies not only reduce the cost and risk of geological drilling
but also improve the efficiency of data processing and decision making. This paper will
review the academic contributions in the field of intelligent monitoring methods in the geo-
logical drilling process, including anomaly detection, fault prediction, and fault diagnosis,
while introducing representative methods in these three aspects. By summarizing valuable
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experiences in the research process, it points out the existing problems and prospects for
the future development of intelligent monitoring in the geological drilling process.

2. Descriptions and Analysis of Drilling Process

Geological drilling is a complex engineering process that faces numerous challenges
due to uncertain geological conditions and the demanding nature of equipment operation.
In response, key technologies like Measurement While Drilling (MWD), Logging While
Drilling (LWD), Managed Pressure Drilling (MPD), and Rotary Steerable Systems (RSSs),
along with advancements in intelligent monitoring, have played a crucial role in improving
both the efficiency and safety of drilling operations [10,11]. These technologies enable
the real-time monitoring of critical drilling parameters and fault diagnosis, allowing for
more precise control, the prediction of drilling performance, and overall success in the
drilling process.

2.1. Characteristic Analysis of Drilling Process

Geological drilling involves a highly complex process, requiring the coordination of
multiple components and technologies to drill into the Earth’s crust. As shown in Figure 1,
the system consists of a traveling block, draw works, a rotary table, and other components
essential for controlling the drill pipe’s movement. The drill bit, positioned at the bottom
of the drill string, penetrates underground formations. The bottom-hole assembly includes
various tools for guiding and monitoring the drilling process. Mud is pumped down the
drill pipe via the slurry pump and returns through the mud pit, carrying debris back to the
surface [12]. This process involves managing various parameters such as drilling speed,
weight on the bit, and torque to ensure efficiency and safety. Intelligent monitoring plays a
critical role in tracking these factors and optimizing drilling operations in real time.

Traveling block

Drawworks

Rotary Table
Driller house
 —
Drawworks
Slurry pump
(]
O o
I I N D |y N S S S|
Mud pit

Drill bit

Figure 1. Description of the drilling process.

(1) Multi-condition Characteristics

Multi-condition characteristics refer to the different behaviors and performance fea-
tures exhibited by systems or equipment under different operating conditions, environ-
mental settings, or working states. The geological drilling process is a highly complex and
variable engineering environment, involving various working states and conditions. As
drilling progresses, systems or equipment often need to operate under multiple conditions,
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including different loads, speeds, temperatures, pressures, or environmental conditions.
Each condition can uniquely impact the system’s performance and behavior, posing signifi-
cant challenges to the data-driven intelligent monitoring of the drilling process.

Parameter Coupling: One significant challenge faced by the monitoring system in the
geological drilling process is the diversity of the drilling environment. Due to the varying
geological formations, such as transitioning from sandstone to shale or encountering frac-
tured zones and increasing pressure and temperature with drilling depth, multiple drilling
parameters become interdependent. For instance, an increase in the drilling fluid density
to control formation pressure can affect the rate of penetration and equivalent circulating
density, which in turn influences the risk of wellbore instability. These parameters are
not independent but are influenced by other parameters and environmental conditions,
interacting closely. This parameter coupling requires an intelligent monitoring system
to analyze the interrelationships and linkage effects among multiple parameters, such as
how changes in rotary speed and torque affect bit wear and drilling efficiency, rather than
simply tracking changes in individual parameters [13].

High-dimensional Data: The diverse conditions involved in geological drilling result
in numerous parameter variables that the monitoring system needs to handle. These
variables include rock hardness, type, drilling depth, drilling technology, drilling speed,
and more, each directly or indirectly affecting drilling efficiency and safety [14]. High-
dimensional data not only increase information volume but also introduce challenges in
data analysis as data dimensions increase.

In summary, the multi-condition characteristics of the geological drilling process re-
flect its complexity and dynamic variability. Different conditions may result in completely
different data distributions, and condition changes are frequent and complex. This neces-
sitates high adaptability in data-driven intelligent monitoring to accommodate multiple
condition switches. Real-time adaptation to changing conditions is essential, capturing
different condition changes accurately to ensure drilling process efficiency and safety.

(2) Non-stationary Characteristics

Non-stationary characteristics, a key concept in time series analysis, refer to data not
maintaining stability over time, exhibiting trends, seasonality, volatility, and autocorrelation.
This means that the data’s mean, variance, and correlation change over time, complicating
analysis and prediction [15]. In the drilling process, the non-stationary characteristics
impact data-driven intelligent monitoring in the following ways:

Temporal Dynamics: As the drill bit penetrates deeper, it encounters diverse geological
challenges, leading to changes in statistical properties of monitored parameters. For
instance, the drilling pressure may increase due to harder rock formations, while the drilling
speed might decrease as the bit encounters more resistance. This variability necessitates
that monitoring systems adapt to these fluctuations, ensuring real-time adjustments in
analysis models. Continuous changes in physical parameters—such as increased mud
flow to maintain borehole stability and variations in temperature and the density of the
drilling fluid—highlight the need for a responsive monitoring system to maintain accuracy
throughout the drilling cycle [16].

Spatial Dynamics: The spatial variability in geological conditions, such as differences
in rock types, fault distributions, and stratigraphic features, directly impacts the selection of
drilling parameters and overall drilling performance. For instance, drilling through varying
rock types may require adjustments in the weight on the bit and rate of penetration. Intelli-
gent monitoring systems need to account for these spatial variations to accurately detect
anomalies. The proper interpretation of spatial data, including real-time measurements of
rock hardness and fracture density, is essential for anticipating risks and enhancing safety.
This knowledge enables optimized parameter settings and drilling strategies, improving
efficiency while reducing hazards [17].

Due to the non-stationary characteristics of the geological drilling process, parameters
and conditions continuously change in a nonlinear manner. This means the drilling process
exhibits temporal and spatial dynamics, with a high degree of spatiotemporal information
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coupling. This complexity and unpredictability demand high sensitivity in intelligent
monitoring to adapt to these dynamic characteristics.

(3) Low Information Value Density

In the geological drilling process, despite collecting vast amounts of data, the pro-
portion of truly valuable information is relatively low, indicating low information value
density. This is mainly due to two reasons:

Transmission delay: The significant distance between surface and downhole monitor-
ing sensors may result in data transmission delays. While these delays are generally short,
they can still affect real-time monitoring and decision making in fast-changing drilling
environments. Even slight delays in data transmission can reduce the timeliness of infor-
mation and may occasionally limit the effectiveness of prompt adjustments, potentially
impacting decision accuracy [18].

Noise interference: Drilling equipment generates significant mechanical and acoustic
noise, which can interfere with various sensors used in Measurement While Drilling
and Logging While Drilling systems, such as acoustic, pressure, and vibration sensors.
Mechanical noise is produced by the movement and operation of the drilling equipment,
while acoustic sensors in Measurement While Drilling systems may struggle to differentiate
between background noise and meaningful signals. Pressure sensors in Logging While
Drilling systems can be affected by mud flow variations or sudden pressure changes [10,11].
As the drilling depth increases, the higher temperature and pressure present additional
challenges, leading to potential signal drift or distortion. Furthermore, equipment wear,
such as drill bit damage or irregular drill rod movement, introduces additional vibration
noise, complicating the analysis of sensor data [19].

In summary, the low information value density in the geological drilling process is
primarily due to transmission delays and noise interference. Delays reduce information
timeliness, and noise can lead to inaccurate or distorted data, affecting decision accuracy.
Addressing this challenge requires intelligent monitoring to handle large data volumes and
quickly extract valuable information to support effective drilling decisions and operations.

2.2. Functions of Intelligent Monitoring in Geological Drilling

Intelligent monitoring plays a crucial role in the geological drilling process, with key
functions including anomaly detection, fault diagnosis, and fault prediction. Anomaly
detection monitors real-time drilling parameters such as the torque, weight on bit, drilling
speed, and mud flow rate to detect deviations from normal patterns, signaling potential
issues like bit wear or formation changes [20]. Fault diagnosis then identifies the root causes
of these anomalies and recommends corrective actions to maintain operational continuity
and efficiency [21]. Fault prediction leverages historical and real-time data to anticipate
future faults, enabling proactive adjustments to prevent incidents like drill string failure
or wellbore instability [22]. Together, these functions form the foundation of intelligent
monitoring, making it indispensable for modern geological drilling operations.

(1) Anomaly Detection

In geological drilling, data-driven anomaly detection techniques play a crucial role. In
analyzing drilling process data in real time, these techniques identify behaviors that may
cause deviations from normal operations, enhancing safety and efficiency. Real-time data
analysis forms the core of data-driven anomaly detection.

To achieve real-time anomaly detection, Reeber et al. proposed a drilling tool wear-
monitoring method based on Extreme Gradient Boosting and autoencoders. They utilized
Extreme Gradient Boosting to model complex nonlinear relationships within drilling data
and employed autoencoders to detect anomalies by identifying deviations between original
and reconstructed data. This combination allows for the efficient processing and accurate
detection of tool wear in real time [23]. These methods process and analyze drilling data in
real time for efficient and accurate anomaly detection. Similarly, Alsaihati et al. proposed
an intelligent system using real-time data analysis and machine learning models to predict
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surface torque during drilling, using the Mahalanobis distance for the anomaly detection
of downhole issues like stuck pipes [24].

And Zhong et al. employed a Convolutional Long Short-Term Memory Neural Net-
work model for real-time anomaly detection in drilling data. This model integrates con-
volutional layers to capture spatial features and utilizes long short-term memory units to
model temporal dependencies in sequential data, enhancing the detection of anomalies
by learning both spatial and temporal patterns in drilling data [25]. Li et al. proposed an
anomaly detection method based on the relationship between input and output signals
in the drilling process, developing mathematical models to establish normal operational
behavior and detecting deviations from this behavior to identify anomalies, emphasizing
the critical role of real-time data analysis in data-driven anomaly detection [26].

These studies demonstrate that data-driven anomaly detection in geological drilling
can process vast amounts of data to identify behaviors deviating from normal drilling
operations. As the initial part of intelligent monitoring, the goal is to quickly extract poten-
tial anomaly information from real-time drilling data, providing immediate optimization
guidance for drilling teams.

(2) Fault Diagnosis

Data-driven fault diagnosis involves analyzing specific causes, nature, and solutions
for faults after anomaly detection. In geological drilling, fault diagnosis is a key function
of intelligent monitoring. It helps drilling teams promptly identify and resolve issues,
enhancing overall safety and efficiency. This includes determining fault types, locating
sources, and proposing corresponding repair or adjustment measures.

Fault diagnosis in geological drilling has evolved significantly, starting from theo-
retical model establishment to incorporating data-driven methods, particularly machine
learning and deep learning techniques. Reiss provided the theoretical foundation for fault
diagnosis in geological drilling [27]. As technology advanced, data-driven methods were
introduced. Shen et al. developed a condition monitoring and fault diagnosis system by
integrating serial communication protocol bus technology [28]. Zhang et al. advanced the
field with an automatic fault diagnosis system based on drilling parameters [29], using
Principal Component Analysis and Self-Organizing Maps for accurate fault diagnosis. Ad-
ditionally, deep learning techniques enable fault classification from sound signals, reducing
dependence on expert experience and improving diagnosis accuracy [30]. Vununu et al.
combined Principal Component Analysis and Artificial Neural Networks to develop an
automatic machine fault diagnosis system based on sound, demonstrating the application
value of machine learning in fault diagnosis [31].

These studies show the evolution from theoretical model-based methods to modern au-
tomated diagnosis based on data. This progression has enhanced fault diagnosis accuracy
and efficiency, providing reliable decision support for drilling operations. Fault diagno-
sis offers in-depth problem analysis and solutions, minimizing downtime and reducing
potential safety risks, making it an indispensable core function in intelligent monitoring.

(3) Fault Prediction

Data-driven fault prediction is crucial in geological drilling, involving various techni-
cal applications to predict faults based on anomaly detection and fault diagnosis results. It
significantly reduces unplanned downtime and improves operational safety and efficiency,
making it a research hotspot in geological drilling. Advanced data analysis, machine
learning algorithms, and artificial intelligence extract valuable information from drilling
data to identify potential risks and fault signs.

To predict potential faults during drilling, scholars proposed a method for predicting
open-hole cable logging faults [32], aiming to reduce costs and time increases caused by
faults and improve drilling efficiency. They employed three machine learning techniques—
support vector machine, naive Bayes, and decision tree—to predict open-hole cable logging
results based on drilling process data. The support vector machine showed an optimal
prediction accuracy. This predictive capability is closely linked to the drilling and logging
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processes. Logging provides essential data about the geological formations encountered,
which can influence drilling parameters and decision making. By integrating fault predic-
tion with logging, operators can better anticipate potential issues, ensuring a smoother
drilling operation. This connection underscores the importance of fault prediction not only
in improving efficiency but also in enhancing safety during drilling activities.

Similarly, Noshi et al. used supervised and unsupervised learning data mining al-
gorithms [33], including logistic regression, hierarchical clustering, and decision tree, to
analyze comprehensive data from eighty land wells for predicting casing failure. Zhai et al.
developed an intelligent prediction model for drilling complexity based on case-based
reasoning, integrating adjacent well data, computer technology, artificial intelligence, and
data mining [34] to diagnose and predict potential faults before drilling operations.

3. Intelligent Monitoring in Drilling Process

Currently, data-driven intelligent monitoring research for geological drilling processes
can be categorized into multivariate statistical methods, machine learning techniques, and
multi-model fusion methods. Multivariate statistical methods can effectively reveal key
patterns and trends in data [35], aiding in the detection of abnormal drilling conditions.
However, while multivariate statistical methods are effective in data simplification and
interpretation, they may struggle with nonlinear complex patterns. In contrast, machine
learning methods are highly powerful in pattern recognition [36] and prediction [37], but
their opacity [38] presents challenges for result interpretation and validation. Further,
combining multivariate statistical methods with machine learning techniques, known as
multi-model fusion methods, can leverage their respective strengths, enhancing the accu-
racy and reliability of intelligent monitoring. This section will analyze current application
research status of intelligent monitoring in geological drilling processes from these three
directions, exploring their advantages and existing issues.

3.1. Intelligent Monitoring Based on Multivariate Statistics

Multivariate statistical analysis involves using mathematical and statistical methods
to analyze and interpret relationships and patterns in multivariable datasets. In geological
drilling, this includes analyzing multiple related variables such as the drilling pressure,
speed, torque, and mud flow rate [13]. Multivariate statistical analysis is essential in the
monitoring of the geological drilling process as it can reveal complex, multidimensional
relationships within the data, helping to identify geological features, optimize drilling
efficiency, and detect potential risks in real time [39]. This analysis supports intelligent
monitoring systems by providing a scientific basis for data interpretation, thus enhancing
the accuracy and reliability of prediction models, as shown in Table 1.

Table 1. Overview of methods for geological drilling monitoring.

Considering Issue Method Characteristics Application Scenarios
. . Local similarity analysis of multi-condition
DB Clustering [39] Handling data abruptly and slow changes data in drilling process
MB-SFA, MB-ICA [40] Considering static, dyna.ml'c, and large-scale Complex C(.)l’ldltIOI"l monitoring in modern
characteristics industrial processes
Multi-condition Extracting static and dynamic featuresand ~ Anomaly detection in multi-mode switching
. SFA, BN [41] . . . 115
Characteristics clustering analysis during drilling process
DIPCA [42] Extracting c.lynamlc, linear, and Real-time mon%tormg of nonlinear
nonlinear features dynamic processes
Multi-step DSFA [43] Precisely partitioning dynaml.c cgndmons, Full-condltlop monitoring of
and changing control limits dynamic systems
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Table 1. Cont.

Considering Issue Method Characteristics Application Scenarios
MCC [44] Capturing complex dynamic characteristics Multivariate a nomaly detection in
non-stationary processes
IPCA [45] Block processing and handling Process monitoring under

Non-stationary
Characteristics

Deterministic Alg. [46]
KPCA, KL Div. [47]
CA [48]

CA [49]

ACA [50]

dynamic characteristics

Extracting the slowest varying features

Handling minor shifts

Extracting non-stationary features from
historical data

Constructing a stationary feature data set

Distinguishing true faults from
normal variations

non-stationary characteristics
Monitoring dynamic changes in time
series data
Detecting subtle changes in
non-stationary processes

Predicting fouling in steam generator pipes

Dynamic monitoring of data non-stationary
characteristics
Fault identification in dynamically
changing environments

(1) Considering Multi-condition Characteristics

Applying multivariate statistical methods is a key step in analyzing geological drilling
data, especially considering the multi-condition characteristics of the drilling process.
Geological drilling is influenced by various complex factors, including the physical and
chemical properties of geological formations, technical parameters of drilling tools, and
operational conditions, collectively forming the multi-condition characteristics. Multivari-
ate statistical analyses, such as principal component analysis (PCA), cluster analysis, and
factor analysis, can effectively handle and analyze these complex multivariable data.

Given the correlations among various conditions in the geological drilling process,
Zhang et al. used time series feature extraction and density-based (DB) clustering methods
to analyze the extracted features, addressing the data fluctuations and slow variations
due to multi-condition characteristics, particularly in detecting and diagnosing wellbore
instability issues such as lost circulation and kick [39]. Additionally, Huang et al. pro-
posed a dual-layer distributed monitoring structure [40] based on multiblock slow feature
analysis (MB-SFA) and multiblock independent component analysis (MB-ICA), to handle
complex static, dynamic, and large-scale characteristics in modern industrial processes. Xu
et al. proposed multiple subspace slow feature analysis (SFA) [41], suitable for addressing
issues arising from multi-condition characteristics. This method uses domain subtrac-
tion clustering to divide different modes, further dividing each mode into Gaussian and
non-Gaussian subspaces, extracting static and dynamic features, and performing Bayesian
network (BN) fusion monitoring for anomaly detection. Guo et al. proposed a multi-feature
extraction technique based on principal component analysis [42] for nonlinear dynamic
process monitoring, combining dynamic internal principal component analysis (DIPCA),
PCA, and kernel principal component analysis (KPCA) in a serial structure to extract
dynamic, linear, and nonlinear features. Ma et al. proposed a new multi-step dynamic slow
feature analysis (DSFA) algorithm [43], carrying out full-condition monitoring for dynamic
systems, precisely dividing dynamic conditions, and adjusting control limits based on
condition changes.

(2) Considering Non-stationary Characteristics

Data in the drilling process typically exhibit significant non-stationarity, including
trends, periodicity, seasonality, and random noise in time series. These characteristics make
traditional statistical methods and models inadequate, necessitating the use of multivariate
statistical methods to better understand and analyze these non-stationary characteristics.
Messaoud et al. achieved anomaly detection in the drilling process through time series
analysis and multivariate control charts (MCCs) [44], capturing complex dynamic charac-
teristics of non-stationary processes. Fan et al. addressed the challenges of non-stationarity
by proposing a distributed monitoring method based on integrated probabilistic compo-
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nent analysis (IPCA) and the minimal redundancy-maximum relevance algorithm [45],
effectively handling the complex dynamic characteristics due to non-stationarity.

To further address non-stationary characteristics, Zafeiriou extended slow feature
analysis (SFA) [46], including a novel deterministic algorithm (Alg.) and an expecta-
tion maximization (EM) algorithm to extract the slowest varying features from multiple
time-varying data sequences. Cai et al. combined kernel principal component analysis
(KPCA) with Kullback-Leibler (KL) divergence [47] to handle changes due to small shifts
in non-stationary processes, validated on typical experimental datasets. Kwak et al. used
cointegration analysis (CA) to extract non-stationary features accumulated in historical
data [48], successfully applied in the fouling prediction of DC steam generator pipes.
Wen et al. combined extracted non-stationary features with stationary features to form a
new stationary feature dataset, updating monitoring indicators [49].

Given the frequent change patterns in geological drilling monitoring, Zhang et al.
proposed an adaptive cointegration analysis (ACA) method [50] to distinguish real faults
from normal changes, updating the model with normal samples and adapting to gradual
changes in cointegration relationships. Alternatively, Rao et al. proposed a non-stationary
process monitoring method based on alternating conditional expectations (ACE) and
CA [51], maximizing the linear correlation of transformed variables to handle nonlinear
relationships between variables. Zhao et al. proposed a sparse CA-based total variable
decomposition and distributed modeling algorithm [52] for non-stationary processes, fully
decomposing different cointegration relationships between non-stationary variables and
exploring the close linear correlations through local cointegration vectors in each block.

In summary, detection methods based on multivariate statistics are increasingly at-
tracting attention in drilling process monitoring. These techniques allow for the in-depth
analysis of complex multivariable data, revealing intrinsic relationships between variables
for more precise state monitoring of the geological drilling process. However, implement-
ing these methods often requires determining the types of data to be monitored first and
constructing corresponding monitoring models based on data characteristics, leading to
multiple modeling processes to address multi-condition characteristics. Future research
directions will need to deepen our understanding and application of multivariate statistical
methods and innovate algorithms and technologies to meet high-standard monitoring
requirements for geological drilling, achieving efficient and accurate monitoring and analy-
sis.

3.2. Intelligent Monitoring Based on Machine Learning

With the rapid development of artificial intelligence technology, machine learning, as
a core branch, is increasingly applied in various fields. In geological drilling monitoring,
the introduction of machine learning techniques provides new perspectives and methods
for traditional geological drilling operations. Machine learning enables computer systems
to learn from data and make decisions without explicit programming. In the context of
geological drilling process monitoring, machine learning techniques analyze historical
geological drilling data, geological information, and real-time monitoring data to learn
complex relationships between geological features and drilling process parameters [53].
This enables the accurate detection of anomalies, real-time fault diagnosis, and predictive
maintenance, enhancing the overall safety and efficiency of drilling operations, as shown
in Table 2.

(1) Anomaly Detection

With the development of machine learning technology, its application in drilling
anomaly detection is becoming more mature. Machine learning models can analyze histori-
cal geological drilling data and real-time monitoring data, learning the distinctions between
normal operations and anomalies, enabling the automatic detection of potential anomalies
in the drilling process. Compared to traditional rule-based and experience-based detection
methods, machine learning offers higher flexibility and accuracy, effectively reducing the
risk of human error. Liao proposed a neural network (NN)-based [53] model, emphasizing
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the ability to distinguish between normal and abnormal drilling states, optimizing network
performance through algorithm improvements. Yang et al. developed a local outlier factor
(LOF) anomaly detection algorithm to detect various anomalies [54], validated in NN
monitoring models.

Table 2. Machine learning methods applicable to monitoring the drilling process.

Task Method Characteristics Application Scenarios
NN [53] Multi-param. fusion, real-time monitoring Identifying d1ffe1;rnotcsétsastes in the drilling
LOE NN [54] Detecting local anomalous data Anomaly detection in NN monitoring
RF [55] Dimensionality reduction, Extracting effective features for

Anomaly-Detection

DBN, GAN [56]

Cascade monitoring,
CNN [57]
GMM, stacked denoising
AE [58]

improving efficiency
Reconstructing missing data,
feature selection
Analyzing spatial-temporal info, combining
sub-models
Initial mode identification, extracting deep
nonlinear features

anomaly detection
Anomaly detection in
high-dimensional data
Comprehensive anomaly detection in
industrial processes
Robust monitoring under
steady-state modes

Fault-Diagnosis

AC-GAN, Bayesian algo. [59]
CNN [60]
Multi-task learning, CNN [61]
CNN [62]

DT [63]

Optimal ELM, Bernoulli
transform coyote opt. [64]

Mitigating data scarcity issues

Incremental learning, including new samples
Simultaneous anomaly localization and
fault classification
High-precision classification

Clear rules, easy to interpret

Improving classifier performance

Automatic diagnosis of downhole
drilling accidents
Dynamically updating fault diagnosis

Fault diagnosis in complex processes

High-precision fault diagnosis
Fault diagnosis and alarm design in
industrial processes

Enhancing fault diagnosis accuracy

Fault-Prediction

BN, LSTM [65]
MLP, ANN, BN [66]

BN [67]

BN [68]

Combining time series prediction
Combining multiple models, enhancing
prediction accuracy

Handling uncertainty

Flexible modeling, handling
complex relationships

Early fault warning for steam turbines
Fault prediction in production processes

Early warning of wellbore loss and
influx accidents
Monitoring operational parameters in
oil wells

@)

Addressing low information value density, Li et al. proposed a feature simplification
random forest (RF) algorithm [55] to extract effective features, reducing dimensionality and
improving anomaly detection efficiency. Tian et al. proposed a feature-based deep belief
network (DBN) method [56], using generative adversarial networks (GANSs) to reconstruct
random and non-random missing data, selecting feature variables using Spearman’s rank
correlation coefficients from high-dimensional data, and successfully employing a DBN for
deep abstraction, learning, and tuning in anomaly detection.
Additionally, Yu et al. proposed a cascade monitoring network to simultaneously
analyze spatiotemporal information for detecting industrial process anomalies [57]. This
method uses convolutional neural networks (CNNSs) to extract spatiotemporal information
from each variable, combining multiple sub-models into a final monitoring model. Gao et
al. used Gaussian mixture models (GMMs) for preliminary mode identification [58], em-
ploying stacked denoising autoencoders (AEs) to extract deep nonlinear features embedded
in process variables, establishing robust monitoring models for each steady-state mode.

Fault Diagnosis

Machine learning techniques learn complex relationships between normal and ab-
normal states in geological drilling by analyzing historical and real-time data, enabling
automatic fault identification and classification. Wang et al. proposed a downhole drilling
accident diagnosis method [59] using an auxiliary classifier generative adversarial network
(AC-GAN) to expand the dataset and a Bayesian algorithm for the diagnosis model, ad-
dressing low information value density. Yu et al. proposed an incremental-learning general
CNN [60], updating itself with newly collected abnormal samples and fault categories for
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fault diagnosis. Zhao et al. proposed a multi-task learning CNN model [61] for simultane-
ous abnormal variable localization and fault classification, applicable in geological drilling
fault diagnosis.

Further, Glaeser et al. successfully achieved high-precision fault diagnosis using
advanced CNN classifiers [62]. Dorgo et al. proposed a decision tree (DT) classifier-based
alarm information design method [63] for industrial process fault diagnosis, applicable
in geological drilling fault diagnosis. Hu et al. proposed a new fault diagnosis method
based on optimal extreme learning machine (ELM) [64], using a Bernoulli transform—coyote
optimization algorithm to optimize the kernel ELM classifier, improving fault diagnosis
accuracy. These methods, employing typical machine learning techniques, vary in strategies
but are suitable for geological drilling fault diagnosis, enhancing fault diagnosis precision.

(3) Fault Prediction

Timely and accurate fault prediction is crucial in geological drilling for ensuring
operational safety, reducing costs, and improving efficiency. Machine learning techniques
analyze historical and real-time monitoring data, learning complex relationships between
normal and abnormal states, enabling the early identification and prediction of potential
faults. Bayesian networks (BNs), which are a typical machine learning algorithm, are often
used for fault prediction.

For instance, Zhang et al. proposed a method for predicting wellbore loss and influx
accidents in drilling processes by constructing a BN-based prediction model [67]. They
selected critical drilling parameters, such as mud weight, formation pressure, and drilling
rate, that represent accident characteristics and considered the uncertainty of parameter
changes during accidents. Their model effectively predicted potential wellbore instability
incidents, providing valuable guidance for drilling operations.

Similarly, Mamudu et al. utilized Bayesian networks to develop fault prediction
models for monitoring operational parameters in oil wells [68]. By incorporating various
operational data like pressure, temperature, and flow rates into the BN model, they could
predict potential faults in real time, enhancing the reliability and safety of oil well operations.

Liu et al. proposed an early fault warning method based on a combination of Bayesian
networks and long short-term memory (LSTM) neural networks [65]. They developed an
LSTM prediction model that addresses data uncertainty and considers complex equipment
operations. Tested with real steam turbine data, their method provided accurate early
warnings during fault creep stages. Although applied to steam turbines, this approach is
applicable to geological drilling, where equipment complexity and data uncertainty are
significant challenges.

In another study, Mamudu et al. also proposed a method combining multilayer
perceptrons (MLPs) and artificial neural networks (ANNSs) with BN techniques for effective
production fault warning [66]. By integrating MLP and ANN models with a BN, they
improved the fault prediction accuracy in production systems. This method is applicable
to geological drilling fault prediction due to similar operational complexities and the need
for accurate fault forecasting.

These methods employ machine learning, especially Bayesian network techniques,
differing in technical approaches and focuses but are applicable in geological drilling fault
prediction. They demonstrate the effectiveness of advanced machine learning models in
handling complex relationships between drilling parameters and predicting potential faults.

In summary, with the rapid advancement of artificial intelligence, especially ma-
chine learning, its application in geological drilling monitoring is becoming increasingly
widespread. Through deeply analyzing historical geological drilling data, geological infor-
mation, and real-time monitoring data, machine learning techniques can identify complex
relationships between drilling parameters, achieving effective state monitoring. Despite
significant potential in enhancing safety, efficiency, and accuracy, challenges remain in data
quality and availability, model generalization and adaptability, real-time computational
efficiency, and model interpretability. Future research must explore data processing, model
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optimization, and technological innovation to address these challenges, further advancing
geological drilling monitoring technology.

3.3. Intelligent Monitoring Based on Multi-Model Fusion

As shown in Table 3, multi-model fusion involves organically combining multivariate
statistical analysis and machine learning methods, providing comprehensive and precise
monitoring for geological drilling. This approach integrates various data analysis tech-
niques, retaining the interpretability of multivariate statistical methods while leveraging
machine learning’s strength in handling nonlinear features, better managing complex data,
and offering robust fault prediction and precise fault diagnosis. Consequently, the effec-
tiveness of multi-model fusion methods in intelligent monitoring applications in geological
drilling has been widely researched.

Table 3. Multi-model fusion for the drilling process.

Task Method Characteristics Application Scenarios
Hybrid PCA, multivariate Enhancing anomaly detection performance Anomaly detection and optimization
. CNN-LSTM [69]
Anomaly Detection .
Ensemble learning, KCVA, Improving monitoring performance Monitoring complex industrial processes
Bayesian inference [70] p & &P & p p
Enhanced RF, SFA [71] Analyzing static and dynamic nodes Dynamic fault classification
1t Di . Ensemble learning, ICA [72] Enhancing model generalization Monitoring non-Gaussian processes
Fault Diagnosis . . . . Monitoring complex and variable
EWC, PCA [73] Continuous learning, preventing forgetting

industrial processes

Machine learning models,
multivariate statistics [74]

Predicting potential faults in the

Fault Prediction o
drilling process

Integrating multiple techniques

To validate the effectiveness of multi-model fusion methods, Islamov used machine
learning models combined with multivariate statistical methods to predict potential faults
in geological drilling [74]. The study compared various machine learning algorithms,
including logistic regression, naive Bayes classifier, K-nearest neighbors, decision trees,
support vector machines, RF, gradient boosting, and NN, to identify and classify abnormal
states. Multivariate statistical methods were used to evaluate different machine learning
algorithms” performance, including accuracy, recall, and F-score, to determine the most
suitable fault prediction model for geological drilling. Barbosa emphasized machine
learning’s potential in predicting and optimizing drilling rates, highlighting multivariate
statistical methods” importance in model performance evaluation and feature selection [75].

While machine learning techniques may outperform traditional models in fault pre-
diction accuracy, multivariate statistical analysis remains crucial in feature selection and
model evaluation, demonstrating the effective fusion of both methods. Chai proposed an
enhanced RF [71], analyzing static and dynamic nodes simultaneously, classifying faults,
and using a modified SFA method to design new slow indices for supervised fault classi-
fication, reflecting the fusion of machine learning and multivariate statistics in logic and
standard design, applicable in drilling fault classification.

Further, more in-depth multi-model fusion methods combine machine learning and
multivariate statistics. Tariq proposed using hybrid probabilistic PCA combined with
multivariate convolutional long short-term memory (CNN-LSTM) models [69], integrating
neural networks and probabilistic clustering to enhance anomaly detection performance. Li
and Yan proposed an independent component analysis (ICA) method based on ensemble
learning [72] for non-Gaussian process monitoring, improving model generalization by
integrating ensemble learning logic. Wang and Wu proposed a similar method, introducing
ensemble learning and kernel canonical variable analysis (KCVA) to develop a novel
ensemble kernel canonical variable analysis method [70], combining multiple KCVA models
using Bayesian inference to improve process monitoring performance.

The fusion of machine learning and multivariate statistical modeling addresses their
respective shortcomings. For instance, Zhang used elastic weight consolidation (EWC) to
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solve catastrophic forgetting in PCA models [73], achieving continuous learning, applicable
in complex and variable industrial process monitoring, including intelligent geological
drilling monitoring.

In summary, multivariate staistical analysis and machine learning each have their
own strengths in geological drilling monitoring. Multivariate statistical analysis excels at
identifying relationships between multiple variables, providing clear insights into trends
and correlations in drilling data. Machine learning, on the other hand, is powerful in
processing large datasets and detecting complex patterns, allowing for real-time anomaly
detection and predictive fault diagnosis. The fusion of these two methods combines their
strengths, resulting in a more robust approach to monitoring, where data interpretation
and fault prediction are both enhanced. Together, these three approaches play a critical role
in improving the accuracy, reliability, and efficiency of geological drilling monitoring, as
shown in Figure 2.

C Data-driven Intelligent Monitoring for Geological Drilling Processes )

Intelligent Monitoring Based on Intelligent Monitoring Based on ata-driven Intelligent Monitoring
Multivariate Statistics Machine Learning for Geological Drilling Processes
DB Clustering; NN; Machine learning models,

MB-SFA, MB-ICA; LOF, NN; Multivariate statistics;
SFA, BN; RF; Enhanced RF, SFA;
DIPCA; DBN, GAN; Hybrid PCA, multivariate
Multi-step DSFA; CNN; CNN-LSTM;

MCC; GMM, AE; Ensemble learning, ICA;
IPCA; AC-GAN, Bayesian algo.; Ensemble learning, KCVA,

Deterministic Alg.; DT; Bayesian inference;
KPCA, KL Div.; Optimal ELM, Bernoulli EWC, PCA
CA; transform coyote opt.;
ACA BN;
BN, LSTM;
MLP, ANN, BN

Figure 2. Data-driven intelligent monitoring for geological drilling processes.

4. Challenges and Prospects

In recent years, significant progress has been made in the application of multivariate
statistical methods and machine learning techniques in the field of geological drilling
data processing and monitoring. These technologies leverage their unique advantages in
handling complex data, providing new opportunities to enhance the intelligent monitoring
of geological drilling processes. Moreover, their integration has the potential to facilitate
real-time decision making and improve operational efficiency. Despite achieving a range
of results, some challenges remain in practical applications. Future research directions
will focus on exploring more effective solutions to address these challenges and promote
further advancements in this field.

4.1. Challenges

Multivariate statistical methods play a crucial role in the processing of geological
drilling data, effectively revealing multidimensional relationships within the data and
providing a scientific explanation for intelligent monitoring. These methods demonstrate
unique advantages in addressing the multifactorial and non-stationary characteristics of
the drilling process. Concurrently, the introduction of machine learning techniques has
significantly enhanced the level of intelligence in monitoring, allowing for more accurate
predictions of drilling performance and potential risks through the analysis of histori-
cal and real-time data, thereby facilitating effective anomaly detection, fault diagnosis,
and prediction.
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The integration of multivariate statistical analysis and machine learning techniques
through a multi-model fusion approach offers a more comprehensive and precise solution
for geological drilling monitoring. This innovative method not only improves data pro-
cessing capabilities but also enhances the accuracy of fault warnings and the adaptability
of diagnostic models. Nevertheless, current intelligent monitoring technologies still face
several limitations, which constrain their effectiveness and further development, primarily
manifesting as the following:

(1) Lack of Comprehensive Consideration of Global and Local Features

Current drilling process-monitoring technologies face two main issues when address-
ing multi-condition and non-stationary characteristics. On one hand, focusing on the global
features of the drilling process often overlooks the importance of local features, which may
have a decisive impact on drilling efficiency and safety under specific conditions. On the
other hand, when concentrating on local features, the relationships between these features
and their collective impact on the overall drilling process might be missed. In geological
drilling monitoring, maintaining a dynamic balance between global and local features
is crucial. Global features provide an overall trend of the drilling process, while local
features reveal subtle, short-term changes, which are often key to predicting anomalies and
avoiding potential risks.

(2) Scarcity and Low Information Value Density of Drilling Data

Existing data-driven intelligent monitoring methods can somewhat mitigate the chal-
lenges of data scarcity and low information value density in geological drilling. Nev-
ertheless, these methods still face challenges in processing complex geological drilling
process data. The uncertainty and variability of the drilling environment require intelligent
monitoring systems to handle large volumes of data and possess high generalizability.
Drilling data may become scarce due to equipment limitations, costs, and external environ-
mental factors, and the valuable information density within the data might be low. This
necessitates more effective identification and utilization of potential value in sparse data
during intelligent geological drilling monitoring.

(3) Lack of Spatiotemporal Information Coordination

Although recent data-driven intelligent monitoring methods for geological drilling
processes have made significant technological advancements, particularly in addressing
the temporal characteristics and interrelations of local variables, they still have limitations.
These methods often focus on either temporal analysis or spatial feature analysis, failing
to effectively combine these two critical dimensions. However, geological drilling is a
highly complex and dynamic process involving temporal evolution and multiple spatial
variables, such as drilling equipment and formation characteristics. These spatiotemporal
interactions collectively determine the efficiency and safety of the drilling process. Thus,
relying solely on single-dimensional analysis makes it challenging to fully capture and
understand the complex phenomena in the drilling process, limiting the accuracy and
applicability of monitoring methods.

4.2. Future Directions and Solutions

To address these challenges, future research should focus on several key areas. First,
enhancing the integration of global and local features is essential for effectively capturing
their interactions. Second, the development of intelligent monitoring technologies capable
of managing large datasets with high generalizability will enhance the analysis of the
drilling performance. Lastly, incorporating robust spatiotemporal analyses will facilitate a
deeper understanding of the complexities inherent in the drilling process. These directions
will significantly contribute to advancing intelligent monitoring capabilities in geological
drilling and may outline future development paths. The following aspects will be the focus
of ongoing research:

(1) Intelligent Monitoring Based on Multi-scale Information Granulation

14



Processes 2024, 12, 2478

To address the lack of comprehensive consideration of global and local features in
geological drilling process monitoring, multi-scale information granulation methods can
be adopted. Through analyzing data at different granularity levels, this approach can
effectively capture both the overall trends and local detail changes in the drilling process,
providing a comprehensive understanding of drilling data. This method can identify
subtle anomalies that might be overlooked in conventional data analysis and explore their
relationships with the overall drilling process, deepening the understanding of anomaly
causes and their potential impacts on drilling efficiency and safety.

(2) Intelligent Monitoring Based on Sample Augmentation and Transfer Learning

To tackle the issues of data scarcity and low information value density in drilling
processes, the combination of sample augmentation and transfer learning offers an effective
method to overcome traditional data limitations. Since drilling data are often scarce and
have low information value density, transfer learning methods can significantly enhance
the monitoring model performance. This approach leverages pre-trained deep learning
models from other domains or related tasks to achieve knowledge transfer, reducing the
dependency on large labeled datasets and enhancing model generalization under limited
data conditions. Sample augmentation techniques further supplement this by artificially
expanding the training set, improving model generalization.

(3) Intelligent Monitoring Based on Spatiotemporal Correlation Analysis

To address the lack of spatiotemporal information coordination in geological drilling
process monitoring, intelligent monitoring methods based on spatiotemporal correlation
analysis can be employed. Through analyzing the relationships between temporal sequence
data and spatial distribution data, this approach can deeply capture the dynamic changes
and interactions in the drilling process across time and space. Detailed spatiotemporal anal-
ysis not only helps to understand the changing characteristics of the drilling process more
precisely but also identifies potential spatiotemporal anomalies that might be overlooked.
This provides richer and more accurate data support for the drilling process, significantly
improving efficiency and safety.
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Abstract: Ergonomics is essential to improving workplace safety and efficiency by reducing the
risks associated with physical tasks. This study presents a decision support system (DSS) aimed
at enhancing production ergonomics in the construction sector through an analysis of high-risk
postures. Using the Ovako Work Posture Analysis System (OWAS), the Revised NIOSH Lifting
Equation (NIOSH equation) and Rapid Entire Body Assessment (REBA), the DSS identifies ergonomic
risks by assessing body postures across common construction tasks. Three specific postures—X, Y
and Z—were selected to represent typical construction activities, including lifting, squatting and
repetitive tool use. Posture X, involving a forward-leaning stance with arms above the shoulders and
a 25 kg load, was identified as critical, yielding the highest OWAS and NIOSH values, thus indicating
an immediate need for corrective action to mitigate risks of musculoskeletal injuries. The DSS
provides recommendations for workplace adjustments and posture improvements, demonstrating a
robust framework that can be adapted to other postures and industries. Future developments may
include application to other postures and sectors, as well as the use of artificial intelligence to support
ongoing ergonomic assessments, offering a promising solution to enhance Occupational Safety and
Health policies.

Keywords: ergonomics; OWAS; NIOSH equation; REBA; musculoskeletal injuries; decision support
system; OSH

1. Introduction

The construction sector is characterised by a high dependency on human labour, with
frequent reports of injuries and fatalities due to improper postures and heavy loads [1]. An
alarming number of workers in this sector are diagnosed with musculoskeletal disorders
(MSDs), a risk amplified by factors such as prolonged awkward postures and the repetitive
handling of loads [2].

Ergonomics is the science that focuses on improving the development of the physical
and mental health of human beings, providing them with a safe, comfortable and healthy
environment, and, in turn improving the efficiency of their work. Ergonomics is associated
with other sciences such as psychology, sociology, physiology and anatomy, among others.
In industrial terms, ergonomics has been used to prevent work injuries and increase worker
safety [3]. However, it should be considered that changes made to improve operators’
ergonomics should not cause them any kind of inconvenience, such as stress related to
interacting with systems and robots [4].

Several factors can negatively influence workers’ ergonomics, some of which are phys-
ical, demographic and psychosocial [5]. Regarding physical factors, these are characterised
by vibrations transmitted to the whole body, incorrect postures, repetitive work move-
ments, constant application of loads and constant force [5]. Moving on to demographic
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factors, these also have a major influence on the quality of the work carried out. Age, Body
Mass Index (BMI), gender, eating habits, previous medical diagnoses, or addictions (such
as smoking and alcoholism) have a significant impact on an individual’s personal and
professional life [5,6]. Factors such as stress, anxiety, burnout, or depression have also
been identified as adversities in conducting the work required. These factors are just a few
examples of psychosocial factors that can affect workers [5].

Jobs with an important level of human intervention require a high level of ergonomic
risk monitoring for operators. One such case is the construction sector, which is directly
dependent on human effort and is therefore a highly dangerous industry with a high num-
ber of reports identifying deaths and injuries [1,7]. Due to the hard tasks that construction
workers perform and the uncomfortable postures in which they work for long hours, they
are highly likely to develop musculoskeletal injuries and/or other health problems in the
future [1].

Some of the more traditional methods of analysing movements used fixed character-
istics, which limited their use and made them ineffective for analysing repetitive move-
ments [8]. Therefore, more effective approaches were developed that included counting
repetitions and could be applied to the various movements used in the construction
sector [8].

In 2020, according to Eurostat, the construction industry in the European Union was
responsible for around a fifth of deaths at work and, according to the European Agency
for Safety and Health at Work (EU-OSHA), approximately 50% of European construction
workers were diagnosed with musculoskeletal injuries [1].

Analysing the data available on PORDATA, it is possible to see that between 2011
and 2021 the apparent productivity of labour in the construction industry, i.e., the wealth
created on average, increased by EUR 3562.85 (apparent labour productivity in the con-
struction industry in 2011 and 2021 was EUR 21,018.81 and EUR 24,581.66, respectively),
reaching its maximum in 2020, with a total of EUR 25,000.96 [9]. Regarding full-time
employment generated by this sector, between 2011 and 2021 there was a decrease of
52,030 jobs (the full-time jobs created by the construction sector in 2011 and 2021 were
402,700 and 350,670, respectively). In 2014, the minimum value for this time interval was
reached (272.49 thousand), with this figure gradually increasing until 2021 [10]. It is also
important to note that, despite the current property crisis, the Portuguese National Statis-
tics Institute (INE) reported that construction output grew by 4.7 percent last February,
0.2 percentage points down on the previous month, and that the year-on-year change
(which measures the change in an indicator compared to its value in the same period of
the previous year [1]) in the wage index saw an increase of 11 cent percent, 0.9 percentage
points up on January [11].

Several studies assess workers’ postures while performing their activities in the work-
place. According to Rajendran et al. [12], musculoskeletal injuries, mainly in the lumbar
region, accompanied by the adoption of inadequate postures and repetitive movements are
the main cause among construction workers.

In addition, analysing a study conducted by Shaikh et al. [5] helped to identify the
main factors and provide a comprehensive view of their impact on workers’ health. The
study conducted by Ogedengbe et al. [13] also proves that this information allows us to
understand the implications of a poor work environment resulting from the physical and
mental health of workers.

2. Case Study Definition

This case study aims to assess ergonomic risk in the workplace, specifically in the
construction sector. This assessment will be based on using some ergonomic tools that
assess workers’” body postures, such as the Revised NIOSH Lifting Equation (NIOSH
equation), Rapid Entire Body Assessment (REBA) and Ovako Work Posture Analysis
System (OWAS), specified in the methodology.
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The area covered by the case study is the construction sector. According to the statistics
provided by ACT, the Authority for Working Conditions, on the number of investigations
and serious accidents at work, the construction industry is the sector with the highest rate,
with around 684 investigations. All these statistics are broken down by category, state,
whether the inquiries have been concluded or are being investigated, month and day of the
week, district, age group and sector of activity, among others. To choose the sector under
study more intuitively, statistics relating to the sector of activity from 2020 to 2024 were
used [14].

The risk of musculoskeletal injuries currently affects most workers in the construction
sector and is considered one of the biggest occupational health problems, according to the
European Agency for Safety and Health at Work (EU-OSHA) [1]. This type of injury can
affect the muscles, ligaments, tendons and nerves of the human body, and can be intensified
by workers’ efforts and inappropriate postures [2].

Although we used some data from ACT, which also presents surveys showing the
number of accidents to the different parts of the body affected during the execution of tasks
in this sector, we used the scientific database Science Direct and others, to define which
parts of the body would be analysed in this case study.

Most of the injuries found in industrial workers, particularly in the construction
industry, are related to lifting and transporting loads, repetitive movements and inadequate
handling of tools from an ergonomic point of view. These activities cause lower back
injuries, affecting between 50-70% of workers, and this type of back injury affects more
than a quarter of workers in manual labour environments [7,13,15]. All these injuries can
lead not only to future health problems for workers but also to lower productivity and
competitiveness for organisations [13,16]. MSDs are considered a problem of an individual,
social and organisational nature [16].

Since MSDs are a key factor in the fight against occupational diseases, working
conditions must be optimal, by adopting more appropriate postures when conducting tasks
and improving workers” health, safety and quality of life [16].

This case study will therefore be based on three postures frequently adopted by
workers in the construction sector, using ergonomic risk assessment tools. Throughout its
development, certain parts of the body will be assessed (trunk, neck, legs, arm, forearm
and wrist) so that all the proposed indicators can be calculated.

3. Methodology

Given the relevance of the case study presented above and the negative consequences
of adopting an incorrect posture when conducting construction tasks, this chapter will
present some previously weighted indicators—the OWAS, NIOSH and REBA—to assess
the ergonomic risk associated with these postures.

This weighting arises from the evaluation of the set of tools that are commonly
used to assess ergonomic risk (NIOSH [17], Rapid Upper Limb Assessment (RULA) [12],
OWAS [12], REBA [12] and Washington Industrial Safety and Health Act (WISHA) [18])
in various work tasks and the assessment of different parts of the human body. However,
ergonomic risk assessment is not straightforward, as different people can make different
interpretations of the same position and the danger it represents [19]. Furthermore, not
all tools can include all parts of the body, limiting the assessment of other risk factors
present in work environments, and they are often expensive and difficult to implement [19].
Additionally, the assessments that are usually conducted do not always take into account
the body dimensions of the individual performing the task, their physical abilities, or even
something as basic as their age [19].

This chapter also presents a decision support system to help assess production er-
gonomics, in this case using data from the construction sector.
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3.1. OWAS

In addition to the fatigue associated with hard construction work, the constant and
repetitive incorrect postures that workers adopt while conducting the activities associated
with their work can lead to the development of MSDs in the long term. Therefore, from an
ergonomic point of view, these postures need to be identified and signalled so that they
can subsequently be reduced [20].

There are various tools used to assess incorrect postures, which include the OWAS,
RULA and REBA methods. However, when compared to other tools, the OWAS proves to
be more effective in assessing postures in complex and unclear workplaces, as is the case
in the construction sector. Consequently, this study uses the OWAS as one of the tools to
quantify the risks associated with the movements made by operators while conducting
their work [20].

The OWAS was designed to assess body positions during working hours and score
them according to the strain identified [12]. In this way, the tool is used to carry out a
total ergonomic assessment of body postures, taking into account the movements of the
trunk, arms and legs, combined with the weight of the load carried, these four points being
defined by a code with four variables, respectively [20,21]. Each of these variables has
several steps associated with it, which represent the postures adopted while conducting
the tasks and the intensity of the operation [20,21]:

Trunk/back: 1 (neutral), 2 (leaning forwards), 3 (twisted) and 4 (bent/twisted);
Arms: 1 (both arms below shoulders), 2 (one arm above shoulders) and 3 (both arms
above shoulders);

o Legs: 1 (sitting), 2 (standing with both legs stretched out), 3 (standing with one leg
stretched out), 4 (standing with one knee bent), 5 (standing with both knees bent),
6 (kneeling /squatting) and 7 (walking);

e Load: 1 (less than 10 kg), 2 (between 10 and 20 kg) and 3 (more than 20 kg).

Subsequently, a total score is calculated, using worldwide consensus tables, called
S, which classify the total risk into four levels: (i) S = 1, the postures have no particular
ergonomic risk; (ii) S = 2, the postures have a slight risk; (iii) S = 3, the postures have a
harmful effect and (iv) S = 4, the postures have an extremely harmful risk [20]. By way of
example, if a worker, while conducting their task, is bent over, with both arms below their
shoulders, kneeling and unladen, their level of risk will be the maximum level, i.e., level 4.

In the end, the OWAS Index (OI) can be calculated using (1), shown below, where
a indicates the percentage of observations with a risk assessment of 1 and b, c and 4
correspond to the observations with a risk assessment of 2, 3 and 4, respectively [21].

Ol=(ax1+4+bx2+cx3+dx4)x100 1)

The minimum value for the OI is 100, which corresponds to an activity with no
ergonomic risks, and the maximum value is 400, which indicates an activity with a fairly
high risk. Louhevaara and Suurnékki [21] considered that an activity is not ergonomically
critical if its OI is below 200.

3.2. NIOSH Equation

The NIOSH equation is used to assess ergonomic risk in object lifting and lowering
operations, focusing mainly on identifying the risk of the task during its performance. The
parameters used in the NIOSH equation are the recommended weight limit (RWL) and the
Lifting Index (LI) [15].

The RWL, established as the maximum safe weight to be lifted /lowered by the worker
in a given time in a repetitive manner, is the main part of the NIOSH calculation and is
defined by a set of specific information about the task to be performed, such as the load
that the healthiest workers (those who have no previously diagnosed health problems
that could increase the risk of MSDs) could handle over an extended period, such as 8
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h of work a day, without causing a long-term injury. Equation (2) shows how RWL is
calculated [13,15].

RWL=LCXxHMXVMxDMx AM x FM x CM 2)

In the formula, LC (load constant) represents the load constant, usually 23 kg; HM
(horizontal multiplier) and HV (vertical multiplier) translate, respectively, the horizontal
and vertical location of the object; DM (distance multiplier) indicates the distance the
object has moved; AM (Asymmetric Multiplier) corresponds to the asymmetry factor; FM
(frequency multiplier) symbolises the frequency of movement and CM (coupling multiplier)
represents coupling [12,13].

The HM considers the horizontal location (H), which is measured from the midpoint
of the line joining the inner bones of the ankle to a point projected on the ground directly
below the midpoint of the hands (centre of load).

The HV is defined considering the vertical location (V), defined as the vertical height
of the hands above the floor. To determine the MD, the vertical travel distance (D) is used,
characterised as the vertical travel distance of the hands between the origin and destination
of the lift.

AM considers that asymmetry refers to a lift that starts or ends outside the midsagittal
plane. FM is defined by the number of lifts per minute, the time dedicated to the lifting
activity and the vertical height from the floor. The lifting frequency (F) refers to the average
number of lifts performed per minute [13].

The LI provides an estimate of the level of physical stress associated with lifting work.
This estimate is calculated using Equation (3), which relates the weight of the load lifted (L)
to the recommended weight limit (RWL) [13].

Load Weight L

= ®)

L= Recommended Weight Limit ~ RWL

Thus, based on the values obtained with Equation (3), the risk of a particular activity
can be determined. In this way, if the LI is less than 1.0, the posture is considered to have a
very low ergonomic risk, if the LI is between 1 and 1.50 the ergonomic risk is considered
low, if the LI is between 1.50 and 2 the level of risk is moderate, if the LI is between 2 and 3
the ergonomic risk is high and if the LI is greater than 3 the level of risk is considered very
high [13,15].

It should be borne in mind that the NIOSH equation considers the operator’s origin
and destination, analysing their entire movement.

3.3. REBA

The REBA ergonomic assessment tool is a rapid whole-body assessment method that
is commonly used to analyse the postures adopted by workers when conducting their tasks
and the ergonomic risks associated with them [19].

As this method enables a full-body assessment to be carried out, taking into account
heavy lifting, repetitive hand movements, and neck and trunk flexion, it is the most widely
used indicator in a wide variety of sectors, such as transport, manufacturing, education,
agriculture, health and construction [19].

However, calculating the REBA is not as intuitive as other indicators, and it is necessary
to follow predetermined steps and consult the scores assigned to each element in existing
tables [19]. In other words, initially, it is essential to define what you want to assess to
obtain the REBA scores, which depend directly on the angles of each part of the body (neck,
trunk/spine, legs, arms and wrist) made while performing the tasks [19,22].

For calculation purposes, the REBA method divides the body parts into two groups:
group A, consisting of the neck, trunk and legs, and group B, consisting of the upper arm,
lower arm and wrist [19]. Figure 1 shows groups A and B with their respective elements,
as well as the angles corresponding to the movements performed. It should be noted that
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in Figure 1 each angle (or range of angles) has a score assigned depending on the type of
movement performed. This will be the score used to conduct the rest of the REBA method
calculations [19,22].

Group A
Neck Trunk Legs

- @
@ o @
07, . 2

20

0°

Group B

Lower Arms ‘Whrists

Figure 1. Body elements belonging to groups A and B and their corresponding movement angles [19].

Taking the position of the operator’s body parts and their respective scores as a starting
point, it is possible to define the next steps and how they will be carried out to obtain a
final ergonomic risk score using the REBA method [19].

Group A’s scheme of action begins by defining the positions of the constituent elements
(neck, trunk and legs), to define a score for each of the assumed angles. Then, with
these data, it is necessary to use existing tables to find the score for that posture, thus
discovering the score for posture A. The same happens for group B, obtaining the score for
posture B [19].

However, to calculate the score attributed to groups A and B, it is necessary to consider
the force exerted when acting group A (if applicable) and, in the case of group B, the
coupling of objects to the hand. Thus, score A and score B give rise to a new score,
determined using a final table relating the two scores. By adding the activity score to the
resulting value, the REBA score for the posture in question is calculated and, finally, it is
possible to realize the ergonomic risk it represents for the operator [22,23].

Figure 2 shows the calculation diagram that will be used to calculate the REBA score,
using all the indicators.

Trunk _ H Upper Arm
N TableA Table B g\

Neck 1/ N N Lower Am
/ + + \

) Force/Applied Coupling
Legs q Load Factor 1 Wrist

/ N\

Score C

Activity Score

REBA Value

Hid

Figure 2. REBA calculation diagram (adapted from [19,23]).
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4. Formulation

To put into practice the indicators presented above (OWAS, NIOSH and REBA) for cal-
culating the underlying ergonomic risk of certain postures frequently adopted by workers
in the construction sector, a production ergonomics decision support system was built.

This decision support system (DSS) consists of calculating and creating awareness
of the ergonomic risk by entering weighted data on the postures that are adopted. It
was developed in Microsoft Office Excel to make its implementation in the industry more
intuitive and clearer, given that it is one of the most widely used programmes in an
industrial environment.

4.1. OWAS

The OWAS values were determined using the table defined by Louhevaara and
Suurnékki [21]. The first step was to identify the variables to be assessed and their respective
scores, namely the position of the trunk, arms and legs and the load carried by the worker.
The values for the trunk, arms, legs and load are filled in in Table 1, according to the posture
the worker performs during their work.

Table 1. OWAS determination table.

Assessment

Trunk

Arms

Legs
Load
OWAS

oo OO

With this information, the decision support system determines the level of risk associ-
ated with the posture in question and identifies its severity using a colour system. Table 2
shows the association between the possible OWAS values and the level of ergonomic risk,
with the corresponding colour coding.

Table 2. OWAS risk levels.

Associated Risk
OWAS Value Risk Level
1 low
2 medium
3 high
4 _ veyhigh

4.2. NIOSH

The NIOSH values were calculated using Equations (2) and (3), as previously defined
and explained. Thus, in the decision support system developed, it is only necessary to
enter the values associated with the calculation, both for the origin and the destination,
taken from the tables defined by Waters, Putz-Anderson and Garg [13].

In other words, these values are the load constant, which is 23 kg, the horizontal
and vertical multiplier, the distance multiplier, the asymmetry multiplier, the coupling
multiplier and the actual weight of the load being transported [13,15].

In this way, the system determines the Lifting Index, which must be less than 1.0.
When the LI is within the established limits, the cell in which it was calculated is filled in
green. However, when the LI is higher than 1.0, the cell is filled in red, indicating that the
posture performed by the worker has a high ergonomic risk. Figure 3 shows the layout of
the decision support system, where the values of the variables should be entered.
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Figure 3. Decision support system for calculating NIOSH.

With this information, the decision support system will determine the level of risk
associated with the posture in question and identify its severity using a colour system.
Table 3 shows the association of the possible NIOSH values with the level of ergonomic
risk, with the respective colour code, and the recommended actions for each level of risk.

Table 3. NIOSH risk levels and recommended actions.

LI Value Risk Level Recommended Actions

The load is acceptable for most people and no action is required for the
LI <1.00 .
healthy population.

The load should be assessed, and medium-term changes introduced.
1.00 < LI < 1.50 Low Pay special attention to low frequency/high load conditions and
extreme and static postures.

Reformulate tasks and workplaces according to priorities to reduce LI,

150 <LI'<2.00 Moderate analysing the results to confirm the effectiveness of the changes.

Short-term changes should be introduced to reduce the risk of MSDs.
2.00 < LI < 3.00 High Tasks with this assessment should be redesigned or assigned only to
selected workers who will be rigorously monitored.

The load presents a risk to most people and action should be taken
LI>3.00 immediately. This type of task is unacceptable from an ergonomic point
of view and should be modified.

4.3. REBA

The decision support system used to calculate the REBA values was developed based
on the data and tables suggested by Hignett and McAtamney [24] when developing this
indicator, divided into three tables with the addition of some key elements related to the
positions chosen. Figure 4 shows the layout of the decision support system for the REBA
method, described in the previous chapter, where all the calculation formulas have been
entered to obtain the final value for the indicator in question.

The values for the trunk, neck, legs, upper arm, lower arm, wrist, load factor, coupling
factor and activity factor are entered manually by the user by assessing the posture adopted
by the worker, since different postures can result in different ergonomic risk values.

In addition, score A was obtained by adding the value resulting from table A with the
load factor, score B by adding the value resulting from table B with the coupling factor and
score C from table C, using the two previous scores. All these values resulting from looking
at the tables are obtained automatically by the system, according to the values entered for
each body component. So, the operator does not need to spend time analysing the tables,
just the postures.

Once the values have been obtained, the system calculates the final REBA value
(C score + activity) and issues a visual signal depending on the ergonomic risk presented
and the type of intervention required.

The colours relating to the visual signal issued can be found in Table 4, along with the
respective ergonomic level and the action that needs to be taken.

The same procedure was conducted for the three postures chosen (X, Y and Z postures).
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Figure 4. Decision support system for calculating REBA.
Table 4. REBA action levels.
REBA Action Levels
REBA Value Risk Level Action Level Action (After Complementary Action)
1 null 0 not necessary

2a3 low 1 may be necessary
4a7 medium 2 necessary
8a10 high 3 needed very soon

4.4. Posture Explanation

To be able to apply the ergonomic risk assessment tools defined, three postures typi-
cally performed by workers in the construction industry were selected. A brief description
of each posture will be given below to assess their ergonomic risk.

4.4.1. Posture X

The first posture involves lifting a load above the shoulders. Thus, the worker has a
slight inclination of the trunk, of around 20°. In addition, the worker’s lower arms are both
being used above the shoulders, making an angle of more than 100°, and the arm makes an
angle of 90° with the trunk. In this case, the worker’s wrist can be in a straight position.
To make it easier to understand what has been described above, a representative sketch of
posture X has been drawn up, shown in Figure 5.

4.4.2. Posture Y

In posture Y, we tried to represent the worker squatting. In this sense, the worker has
a slight inclination of the trunk, about 10°, with the pelvic area below the usual axis when
the body is standing and with both knees bent. The thigh makes a 90° angle with the trunk
and the knee is bent more than 60°. To make the description easier to understand, a sketch
representing the Y posture was made, illustrated in Figure 5.
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(a) (b) (c)
Figure 5. Graphic representation of postures: (a) posture X; (b) posture Y; (c) posture Z.

4.4.3. Posture Z

The third and final posture depicts the right hand attaching a tool followed by a
rotational movement of the arm to place mortar on a wall. The left lower arm is at a 90°
angle to the arm, holding a container with the mortar. In addition, in this posture, the
worker is standing with a neutral trunk, without any inclination, and with one knee bent
at an angle of between 30° and 60°. As with the other postures, a sketch of posture Z was
drawn up, as shown in Figure 5.

5. Results and Discussion

Considering the description of the decision support system developed, this chapter
will present and discuss the results obtained for each indicator, by entering the data relating
to positions X, Y and Z into the system, as described above.

5.1. Posture X
5.1.1. OWAS

As mentioned in the description of posture X, the worker is leaning with his trunk
forward, both arms above his shoulders, standing with both legs stretched out and carrying
a 25 kg load, the equivalent of a sack of cement. Thus, the scores used to determine
the OWAS were as follows: trunk—2 (leaning forward), arms—3 (both arms above the
shoulders), legs—2 (standing with both legs straight) and load—3 (over 20 kg). The level
of risk generated by the OWAS is shown in Table 5.

Table 5. OWAS result for posture X.

Assessment

Trunk

Arms

Legs
Load
OWAS

QL WIN| WD

Considering the value obtained (3), it can be said that posture X has a high level of
risk. This value is essentially due to the position of the arms and the load carried, with
these two variables obtaining the maximum score.

5.1.2. NIOSH

To determine the NIOSH values, it was considered that before the worker reaches
posture X, the bag of cement is on the floor and that the worker must bend down to get the
bag onto his back, so it can be said that the type of coupling he performs is of the bad type,
being uncomfortable and entailing some ergonomic risks for the operator. So, for the origin,
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the calculation variables have the following values: HM—1.00 (H < 25 cm), VM—0.78
(V=150 cm), DM—0.85 (D =145 cm), AM =1.00 (A=0°), FM=0.94 (< 1h,V > 75 cm and
F=1),CM=0.90 (V > 75 cm and Type = Bad) and LW = 25 kg. Regarding destination, the
calculation variables have the following values: HM—1.00 (H < 25 cm), VM—0.81 (V =
140 cm), DM—0.85 (D =145 cm), AM =1.00 (A=0°),FM =094 (<1h,V>75cmand F =
1) and CM = 0.90 (V > 75 cm and Type = Bad). The result of the Lifting Index calculation is
shown in Table 6.

Table 6. NIOSH result for posture X.

Posture X
RWL Origin 12.90065
RWL Destination 13.39683
LI Origin 1.937886
LI Destination 1.866113

By calculating the Lifting Index, we can see that its value is 1 at both the origin and
destination, which means that, according to this indicator, posture X poses a moderate
ergonomic risk to the worker. The task should therefore be reformulated to reduce the LI
and the results analysed to confirm the effectiveness of the changes.

5.1.3. REBA

Based on the above description of posture X, in which the worker shows obvious
tension in the trunk and arms due to the weight being carried, the following values were
assigned to the body elements: trunk—2 (flexion of 20°), neck—1 (flexion between 0° and
20°), legs—1 (no change), upper arm—3 (90° with the trunk), lower arm—2 (flexion >100°)
and wrist—1 (no change).

Considering that the operator is carrying a sack of cement weighing around 25 kg, the
load factor was given 2 points and the coupling an equal score, because the grip, although
possible, is not acceptable. Finally, the activity was scored with 2 points because parts of
the body were stationary for more than a minute and because the weight of the load caused
an unstable base. Figure 6 shows the final REBA value for this posture, calculated using
the decision support system developed.

Posture X

Trunk Upper arm
2 V.Table A V.Table B 3
2 4
Neck / + + \ Lower arm
1 Force/Load Coupling 2
2 2
Legs Wrist
1 / 1
Score A Score B
4 6

\ ScoreC
6

+

Activity
2

REBA VALUE
8

Figure 6. REBA result for posture X.
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Looking at Figure 6, this posture has a REBA value of 8, meaning that the ergonomic
risk level of this posture is high, which will imply a third level of action, i.e., corrective
action, is needed very soon.

In this posture, the factor that has the most implications will be the trunk, given the
weight of 25 kg that is exerted on it and the poor positioning of the arms, together with the
handle, which is not acceptable and is very harmful to the operator’s health.

5.2. Posture Y
5.2.1. OWAS

In posture Y, you can see that the worker has both knees bent but is not standing. In
addition, his trunk is slightly inclined, both arms are below his shoulders and the load he
is carrying is 5 kg. The decision variables therefore take on the following values: trunk—2
(leaning forwards), arms—1 (both arms below the shoulders), legs—6 (kneeling/squatting)
and load—1. The level of risk determined by the decision support system is shown in
Table 7.

Table 7. OWAS result for posture Y.

Assessment
Trunk 2
Arms 1
Legs 6
Load 1
OWAS 2

5.2.2. NIOSH

Before the worker reached posture Y, he had to pick up the bucket from the floor and
stoop down. It can be said that the type of coupling he performs is of the regular type,
since this movement does not overload the back. Thus, the variables used to calculate the
NIOSH for the origin have the following values: HM—0.57 (H = 44 cm), VM—0.93 (V = 50
cm), DM—0.90 (D =55 cm), AM =1.00 (A=0°),FM=091(<1h,V<75cmand F =2),
CM =0.95 (V <75 cm and Type = Regular) and LW = 5.00 kg. However, for the destination,
the values used are as follows: HM—0.57 (H = 44 cm), VM—0.84 (V = 130 cm), DM—0.86
(D=130), AM=1.00(A=0°),FM=091(<1h,V<75cmand F=2),CM=1.00 (V >75
cm and Type = Regular) and LW = 5.00 kg. The calculation of the Lifting Index is shown in
Table 8.

Since the Lifting Index value for both the origin and destination is less than 1.0,
posture Y has a very low ergonomic risk for the worker, where the load is acceptable, and
no improvements are needed.

Table 8. NIOSH result for posture Y.

Posture Y
RWL Origin 9.486219
RWL Destination 8.618304

LI Destination

5.2.3. REBA

The same analysis made of posture X was applied to posture Y, in which the operator
is in an unstable position, since all the support is provided by his legs in a very unstable
position. The following scores were given to the body parts: trunk—2 (10° flexion), neck—1
(no change), legs—4 (2 unstable posture + 2 flexion > 60°), upper arm—1 (straight with the
trunk), lower arm—1 (90° flexion) and wrist—1 (no change).
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Given that the operator only supports a weight in both hands of around 5 kg and
that the grip is adequate, scores of 1 and 0 were assigned to the load and coupling factor,
respectively.

Finally, the activity score reached a value of 3, since one or more parts of the body are
stationary for more than a minute, short-range actions are performed with the feet and the
posture is highly unstable.

Figure 7 shows the REBA value assigned to posture Y by the decision support system.

Posture Y
Trunk Upperarm
2 V.Table A V.Table B / 1
5 1
Neck / + + \ Lower arm
1 Force/Load Coupling 1
1 0
Legs Wrist
: \ ]
Score A Score B
6 1
\ Score C
6
+
Activity
3
REBA VALUE
¢

Figure 7. REBA result for posture Y.

Looking at Figure 7, it can be seen that the final REBA value assigned to posture Y
was 9, indicating that the risk level is high, and that corrective action is needed very soon,
with action level 3.

Comparing the operators’ postures and the REBA values for postures X and Y, posture
Y has a higher REBA, even if the grip is adequate and there is not as much tension in
the trunk and arms as there is in posture X. However, in posture Y, the operator exerts a
lot of pressure on the lower limbs, with the weight of the body supported by the legs in
an extremely unstable position. As a result, even though the REBA values are relatively
similar, the Y posture is more harmful than the X posture.

5.3. Posture Z
5.3.1. OWAS

Considering the description given above, it can be said that the worker’s trunk is in
an upright position, with no inclination, that both arms are below the shoulders and that
the load the worker is carrying is less than 5 kg. However, the worker is standing with one
knee bent. Thus, the values associated with the variables are trunk—1 (neutral), arms—1
(both arms below the shoulders), legs—4 and load—1. Thus, the value assigned by the
system to posture Z is shown in Table 9.

Although most of the variables have been assigned the minimum value, the risk level
of this posture is medium. This value is because the worker is standing with one knee
flexed, which causes the leg score to be 4, instantly increasing the OWAS value.
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Table 9. OWAS result for posture Z.

Assessment
Trunk 1
Arms 1
Legs 4
Load 1
OWAS 2

5.3.2. NIOSH

Since the Z posture simulates the worker putting cement on the wall, he had to
bend down to pick up the necessary tools and then stand up again, without excessive
ergonomic effort. Thus, the NIOSH calculation variables, at source, take on the following
values: HM—0.57 (H = 44 cm), VM—0.90 (V =40 cm), DM—0.93 (D =40 cm), AM = 1.00
(A=0°),FM=094(<1h,V>75cmand F=1),CM =1 (V > 75 cm and Type = Good)
and LW = 2.5 kg. However, the NIOSH calculation variables at the destination assume the
following values: HM—0.57 (H = 44 cm), VM—0.93 (V = 100 cm), DM—0.87 (D = 100 cm),
AM=100(A=0°,FM=094(<1h,V>75cmand F=1),CM =1 (V > 75 cm and
Type = Good) and LW = 2.5 kg. The calculation of the Lifting Index is shown in Table 10.

Table 10. NIOSH result for posture Z.

Posture Z
RWL Origin 10.3146858
RWL Destination 9.97086294
LI Origin

Since the Lifting Index value for both the origin and destination is less than 1.0,
posture Z has a very low ergonomic risk for the worker, where the load is acceptable, and
no improvements are needed.

5.3.3. REBA

Finally, of all the postures proposed for analysis, only the Z posture is missing, which
represents movements like the operator placing mortar on a wall. In this case, the following
values were assigned to the body elements: upper body—1 (as it is straight), neck—1 (no
changes), legs—3 (2 unilateral+1 flexion between 30° and 60°), upper arm—?2 (one arm
aligned with the upper body, but the other rotates), lower arm—1 (flexion between 60° and
100°) and wrist—2 (as well as being straight, the wrist rotates when placing the mortar).

The load and coupling weighting factors were considered satisfactory, given that the
tool with which the operator places the mortar is much less than 5 kg, including the “plate”
on which it is placed before being applied to the wall. In addition, the grip on these objects
is quite acceptable with an equally satisfactory average power.

The activity, on the other hand, was given a score of 2, as there are parts of the body
that are stationary for more than 1 min and, in addition, the short-range actions are carried
out repetitively.

Figure 8 shows the REBA result for posture Z, obtained by the decision support
system developed.

From the result obtained by the decision support system, shown in Figure 8, the
REBA value assigned to posture Z was 5, which is considered to present a medium level of
ergonomic risk, where corrective action will be required in the future.

Compared to the previous postures, this one present less ergonomic risk because the
operator has the correct trunk and neck postures, although the movement of the arms is
not the most appropriate, particularly when applying the mortar. The way the operator
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moves his wrist and arm creates tension in these elements, which could lead to future
musculoskeletal injuries.

Posture Z
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Figure 8. REBA result for posture Z.

Although posture Z exhibited a lower overall risk, the movement involved in applying
mortar during the construction tasks (posture Z) revealed the potential for cumulative
strain injuries in the arms and wrists. This underscores the importance of regularly rotating
workers between tasks to prevent overuse injuries.

5.4. Results Validation

To prove that the decision support system developed was well structured and that all
the results presented above are valid, this section presents the application of the system in
question to three positions studied in scientific articles.

5.4.1. OWAS Validation Posture

To confirm that the decision support system developed actually works, the skidding
posture studied by Enez and Nalbantoglu [25] will be used. In this posture, the worker
is standing with the trunk leaning forwards, both arms below the shoulders and no load.
Thus, the values assigned to the OWAS determination variables are as follows: trunk—2
(leaning forward), arms—1 (both arms below the shoulders), legs—2 (standing with both
legs straight) and load—1 (less than 10 kg). The level of risk associated with this posture is
shown in Table 11.

Table 11. OWAS result for validation posture.

Posture VAL Assessment

Trunk 2
Arms 1
Legs 2
Load 1
OWAS 2
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As can be seen in Table 11, the level of risk attributed to this posture is medium.
However, as assigning values to each variable is a subjective activity, the values assigned
by the authors of the article to each of the variables is different and are as follows: trunk—
1 (neutral), arms—2 (one arm above the shoulders), legs 2—(standing, with both legs
stretched out) and load—1 (less than 10 kg). In this way, and with the difference in
classification between variables, the risk level for this assessment would be low.

5.4.2. NIOSH Validation Posture

As with the REBA and OWAS validation, the NIOSH validation will use a previously
studied posture to validate the decision support system developed. Rajendran et al. [15]
carried out an ergonomic assessment of workers during the manual handling of materials.
Thus, in this section, the posture used to lift a sealed bag from the bottom shelf of a shelf
will be used, where the variables used to calculate the NIOSH, at source, take on the
following values: HM—0.50 (H = 50 cm), VM—0.84 (V = 130 cm), DM—0.85 (D = 145 cm),
AM=10(A=0°),FM=0.88(V<75cm,>1but<2h F=1),CM=0.95(V <75cm and
Type = Regular) and LW = 8 kg. However, at the destination, the variables take on the
following values: HM—0.50 (H = 50 cm), VM—0.81 (V = 140 cm), DM—0.8 (D = 145 cm),
AM=0.71(A=90°),FM=0.88 (V<75cm,>1but <2h,F=1),CM=1.0 (V > 75 cm and
Type = Regular) and LW = 8 kg. The value for NIOSH calculated by the decision support
system is illustrated in Table 12.

Table 12. NIOSH result for validation posture.

Posture VAL
RWL Origin 6.864396
RWL Destination 4.94701
LI Origin 1.165434
LI Destination 1.617138

Comparing the result obtained at the destination using the system developed
(LI = 1.617) with the result achieved by the authors of the initial study (LI = 1.562) [15], it is
safe to say that the system developed fulfils all the necessary requirements for the efficient
calculation of the LI. Thus, the posture of lifting a sealed bag from a bottom shelf, analysing
the result provided by both systems, is a posture that entails a moderate ergonomic risk for
the worker, where the task should be reformulated to reduce the LI

5.4.3. REBA Validation Posture

Taking as an example the third posture studied by Enez and Nalbantoglu [25] for the
purposes of validating the REBA calculation, where the operator is removing/moving tree
trunks weighing more than 20 kg in a flatbed truck, the following scores were given to the
body elements: trunk—5, neck—2, legs—3, upper arms—3, lower arms—2 and wrist—2.

In this case, only the load factor, derived from the trunks being moved, was considered
and given a score of 2, as it was a weight of more than 20 kg. The other factors were not
considered in the REBA calculation [25].

So, applying these data to the decision support system developed, Figure 9 shows the
REBA result obtained for the posture in question.

As can be seen from Figure 9, the REBA result obtained by the decision support system
developed is equal to the value resulting from the application of the scientific article. In
fact, this type of posture is extremely harmful to workers” health, as the level of ergonomic
risk is very high, requiring immediate action at action level 4.

It is therefore possible to conclude that the decision support system used to calcu-
late REBA fulfils the established requirements and can produce valid and credible final
REBA values.
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Figure 9. REBA result for validation posture.

5.5. Summary of Results Obtained

After applying the production ergonomics decision support system developed, by
calculating the indicators proposed for the postures envisaged, it was possible to compile
all the results to compare them.

Table 13 shows all the results obtained for each of the postures, including the validation
postures used to gauge the reliability of the system developed.

Looking at Table 13 and excluding the validation postures, it is possible to see that
the most critical posture is posture X, which represents the greatest ergonomic risk, as it
has the highest OWAS and NIOSH values. However, although the REBA value is not the
highest, it does have more weight compared to posture Y, where the OWAS and NIOSH
values are lower.

Table 13. Summary of the results obtained for the different indicators for different postures.

NIOSH
OWAS LI Origin LI Destination REBA
Posture X 3 1.93788625 1.866112685 8
Posture VAL (OWAS) 2
Posture VAL (NIOSH) 1.165433929 1.617138368

Posture VAL (REBA)

Therefore, some concern is raised and commitment is needed to correct this type of
posture so that it does not have such negative implications for the health of workers in
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the construction sector, such as the early onset of musculoskeletal injuries, as well as the
occurrence of accidents at work that have serious consequences (i.e., serious injuries and
even fatal accidents). Analysing these results, there are some strategies that can be adopted
by workers. One suggestion for reducing the number of injuries to operators, given the
improvement in their body postures, is staff rotation. By implementing this measure,
companies are benefiting their workers, as they will not always be in the same position or
performing the same tasks. Thus, by rotating operators, i.e., having them change positions,
they would enjoy, for example, a few minutes of rest, allowing the upper or lower limbs to
stretch, reducing the early onset of injuries during the working period.

Analysing the data relating to the calculation of the OWAS, NIOSH and REBA values,
it was concluded that if there were another decision support system, which could be
integrated into the one developed, or not, this could automatically evaluate and assign
values relating to the body elements of each posture. For this reason, one suggestion
for improving the efficiency of this tool would be to use a monitoring device, such as
a wristband or other non-invasive mobile device, which would not interfere with the
worker’s activity.

To support this suggestion, there are already case studies proposing solutions to
prevent the risk of musculoskeletal injuries in workers using smart personal protective
equipment (PPE) and other monitoring systems [26—29]. This smart PPE emerged from the
interaction between Industry 4.0 and International Data Corporation (IoD) technologies [26].
The use of smart PPE enables communication with the environment, as it combines tradi-
tional PPE with electronic components and sensors, extracting information about workers
and thus reducing the rate of accidents and occupational illnesses [26-29].

The use of these devices is intended to help organisations plan for the long term,
with a view to improving Occupational Safety and Health (OSH) policies, using artificial
intelligence (AI). In this way, using artificial intelligence algorithms, companies can identify
working conditions that are susceptible to accidents. In this way, organisations can maintain
safer working environments, with the aim of improving the health and safety of their
operators [26-28].

Although this suggestion is a viable option, there are some drawbacks, as these
systems can be costly, particularly for small and medium-sized companies. Additionally,
another direction for future work could be exploring how this methodology, originally
developed for the construction sector, could be adapted and applied to other industries,
thus broadening its potential applications beyond construction.

6. Conclusions

The case study presented was aimed at assessing ergonomic risks in the workplace.
In this case, the sector in which the case study focused was the construction sector, since
it was the area with the highest incidence of serious accidents at work in the last 4 years
(from 2020 to 2024).

As presented during the development of this article, some ergonomic indicators that
assess workers’ postures were used, namely, the OWAS, NIOSH and REBA. To put these
indicators into practice, a production ergonomics decision support system was developed
by formulating all the data relating to each indicator in Microsoft Office EXCEL.

To validate the system, three pre-defined positions were evaluated: the X, Y and Z
postures. In this way, and through scientific validation, it can be concluded that the system
developed achieved the objectives set.

To improve working conditions in the construction sector, future studies should focus
on using Al techniques to analyse data that can identify which phases of construction pose
the greatest risks to workers. The success of this initiative depends on several factors, with
the key challenges being the variability of risks and the acceptance of operators.

Author Contributions: Conceptualiszation, L.S., ].V.B. and S.S.; methodology, L.S., ].V.B. and S.S.;

software, L.S., J.V.B. and S.S.; validation, TM.L. and P.D.G.; formal analysis, TM.L. and P.D.G;
investigation, L.S., ].V.B. and S.S.; resources, L.S., ].V.B. and S.S.; data curation, L.S., J.V.B. and S.S.;

36



Processes 2024, 12, 2503

writing—original draft preparation, L.S., ].V.B. and S.S.; writing—review and editing, TM.L. and
PD.G,; visualisation, TM.L. and P.D.G.; supervision, TM.L. and P.D.G. All authors have read and
agreed to the published version of the manuscript.

Funding: The authors would like to express their gratitude to FCT—Fundacao para a Ciéncia e a
Tecnologia, I.P. and the Centre for Mechanical and Aerospace Science and Technologies (C-MAST) for
their support in the form of funding, under the project UIDB/00151/2020 (https:/ /doi.org/10.54499
/UIDB/00151/2020; https:/ /doi.org/10.54499 /UIDP /00151 /2020) (accessed on 7 November 2024).

Data Availability Statement: The data in this study are available from the corresponding author
upon request.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Zong, H.; Yi, W.; Antwi-Afari, M.E; Yu, Y. Fatigue in Construction Workers: A Systematic Review of Causes, Evaluation Methods,
and Interventions. Saf. Sci. 2024, 176, 106529. [CrossRef]

2. Cakat, E.; Karwowski, W. Soft Computing Applications in the Field of Human Factors and Ergonomics: A Review of the Past
Decade of Research. Appl. Ergon. 2024, 114, 104132. [CrossRef] [PubMed]

3.  Zhang, M.; Li, H; Tian, S. Visual Analysis of Machine Learning Methods in the Field of Ergonomics—Based on Cite Space V.
Int. ]. Ind. Ergon. 2023, 93, 103395. [CrossRef]

4. Gualtieri, L.; Rauch, E.; Vidoni, R. Emerging Research Fields in Safety and Ergonomics in Industrial Collaborative Robotics: A
Systematic Literature Review. Robot. Comput.-Integr. Manuf. 2021, 67, 101998. [CrossRef]

5. Murtoja Shaikh, A.; Bhusan Mandal, B.; Mangani Mangalavalli, S. Causative and Risk Factors of Musculoskeletal Disorders
among Mine Workers: A Systematic Review and Meta-Analysis. Saf. Sci. 2022, 155, 105868. [CrossRef]

6.  Mostafa, N.A. Human Factors and Ergonomics for Intelligent Manufacturing in the Era of Industry 4.0. In Proceedings of the
2023 4th International Conference on Artificial Intelligence, Robotics and Control (AIRC), Cairo, Egypt, 9-11 May 2023; pp. 88-93.

7. Opyekan, J.; Chen, Y.; Turner, C.; Tiwari, A. Applying a Fusion of Wearable Sensors and a Cognitive Inspired Architecture to
Real-Time Ergonomics Analysis of Manual Assembly Tasks. J. Manuf. Syst. 2021, 61, 391-405. [CrossRef]

8. Chen, X,; Yu, Y. Automatic Repetitive Action Counting for Construction Worker Ergonomic Assessment. Autom. Constr. 2024, 167,
105726. [CrossRef]

9.  PORDATA—Estatisticas Sobre Portugal e Europa Produtividade Aparente do Trabalho: Total e por Ramo de Atividade. Available
online: https://www.pordata.pt/pt/estatisticas/economia/setores-de-atividade /produtividade-do-trabalho-por-ramo-de-
atividade (accessed on 6 May 2024).

10. PORDATA—Estatisticas Sobre Portugal e Europa Emprego: Total e por Ramo de Atividade, Equivalente a Tempo Completo.
Available online: https://www.pordata.pt/pt/estatisticas/economia/setores-de-atividade /emprego-por-ramo-de-atividade
(accessed on 6 May 2024).

11. INE—Instituto Nacional de Estatistica Indices de Producao, Emprego e Remuneracoes na Construgao. Available online: https:
/ /www.ine.pt/xportal /xmain?xpid=INE&xpgid=ine_destaques&DESTAQUESdest_boui=643890203&DESTAQUEStema=55
534&DESTAQUESmModo=2 (accessed on 6 May 2024).

12.  Rajendran, M.; Sajeev, A.; Shanmugavel, R.; Rajpradeesh, T. Ergonomic Evaluation of Workers during Manual Material Handling.
Mater. Today Proc. 2021, 46, 7770-7776. [CrossRef]

13.  Ogedengbe, T.S.; Abiola, O.A.; Ikumapayi, O.M.; Afolalu, S.A.; Musa, A.IL; Ajayeoba, A.O.; Adeyi, T.A. Ergonomics Postural Risk
Assessment and Observational Techniques in the 21st Century. Procedia Comput. Sci. 2023, 217, 1335-1344. [CrossRef]

14. ACT—Autoridade para as Condigoes de Trabalho. Numero de Inquéritos de Acidentes de Trabalho Graves. Available online:
https:/ /portal.act.gov.pt/Pages/acidentes_de_trabalho_graves.aspx (accessed on 13 May 2024).

15. Kodle, N.R.; Bhosle, S.P; Pansare, V.B. Ergonomic Risk Assessment of Tasks Performed by Workers in Granite and Marble Units
Using Ergonomics Tool’s REBA. Mater. Today Proc. 2023, 72, 1903-1916. [CrossRef]

16. Rodrigues, B.S.; Freitas, M.; Tomé, D.; Neto, H.V. Avaliagdao de Fadiga Laboral e Lesoes Musculo-Esqueléticas Relacionadas com o
Trabalho numa Sec¢ao de Mistura de Cortica. CESQUA 2020, 1, 149-177.

17.  Lowe, B.D.; Dempsey, P.G.; Jones, E.M. Ergonomics Assessment Methods Used by Ergonomics Professionals. Appl. Ergon. 2019,
81,102882. [CrossRef] [PubMed]

18.  Meregalli Falerni, M.; Pomponi, V.; Karimi, H.R.; Lavit Nicora, M.; Dao, L.A.; Malosio, M.; Roveda, L. A Framework for
Human-Robot Collaboration Enhanced by Preference Learning and Ergonomics. Robot. Comput.-Integr. Manuf. 2024, 89, 102781.
[CrossRef]

19. Yalcin Kavus, B.; Gulum Tas, P.; Taskin, A. A Comparative Neural Networks and Neuro-Fuzzy Based REBA Methodology in
Ergonomic Risk Assessment: An Application for Service Workers. Eng. Appl. Artif. Intell. 2023, 123, 106373. [CrossRef]

20. Zhang, H.; Lin, Y. Modeling and Evaluation of Ergonomic Risks and Controlling Plans through Discrete-Event Simulation. Autom.

Constr. 2023, 152, 104920. [CrossRef]

37



Processes 2024, 12, 2503

21.

22.

23.

24.
25.

26.

27.

28.

29.

Calzavara, M.; Glock, C.H.; Grosse, E.H.; Persona, A.; Sgarbossa, F. Models for an Ergonomic Evaluation of Order Picking from
Different Rack Layouts. IFAC-Pap. 2016, 49, 1715-1720. [CrossRef]

Joshi, M.; Deshpande, V. Investigative Study and Sensitivity Analysis of Rapid Entire Body Assessment (REBA). Int. . Ind. Ergon.
2020, 79, 103004. [CrossRef]

Stanton, N.; Hedge, A.; Brookhuis, K.; Salas, E.; Hendrick, H. Handbook of Human Factors and Ergonomics Methods; CRC Press LLC:
Boca Raton, FL, USA, 2005; ISBN 0-415-28700-6.

Hignett, S.; McAtamney, L. Rapid Entire Body Assessment (REBA). Appl. Ergon. 2000, 31, 201-205. [CrossRef]

Enez, K.; Nalbantoglu, S.S. Comparison of Ergonomic Risk Assessment Outputs from OWAS and REBA in Forestry Timber
Harvesting. Int. ]. Ind. Ergon. 2019, 70, 51-57. [CrossRef]

Lemos, J.; Gaspar, P.D.; Lima, T.M. Individual Environmental Risk Assessment and Management in Industry 4.0: An IoT-Based
Model. Appl. Syst. Innov. 2022, 5, 88. [CrossRef]

Lemos, J.; Gaspar, P.D.; Lima, T.M. Environmental Risk Assessment and Management in Industry 4.0: A Review of Technologies
and Trends. Machines 2022, 10, 702. [CrossRef]

Lemos, J.; de Souza, V.B.; Falcetta, ES.; de Almeida, FK.; Lima, T.M.; Gaspar, P.D. Enhancing Workplace Safety through
Personalized Environmental Risk Assessment: An Al-Driven Approach in Industry 5.0. Computers 2024, 13, 120. [CrossRef]
Marquez-Sanchez, S.; Campero-Jurado, I.; Herrera-Santos, J.; Rodriguez, S.; Corchado, ].M. Intelligent Platform Based on Smart
PPE for Safety in Workplaces. Sensors 2021, 21, 4652. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

38



‘-».{: processes ml\D\Py

Article
Priority/Demand-Based Resource Management with Intelligent
O-RAN for Energy-Aware Industrial Internet of Things

Seyha Ros !, Seungwoo Kang !, Inseok Song 1, Geonho Cha !, Prohim Tam ? and Seokhoon Kim 1-3*

Department of Software Convergence, Soonchunhyang University, Asan 31538, Republic of Korea;
rosseyha003@gmail.com (S.R.); oooksw12@sch.ac.kr (5.K.); sis5041@sch.ac kr (L.S.); takflue@gmail.com (G.C.)
School of Digital Technologies, American University of Phnom Penh, Phnom Penh 12106, Cambodia;
prohimtam@gmail.com

Department of Computer Software Engineering, Soonchunhyang University, Asan 31538, Republic of Korea
Correspondence: seokhoon@sch.ac.kr

Abstract: The last decade has witnessed the explosive growth of the internet of things (IoT), demon-
strating the utilization of ubiquitous sensing and computation services. Hence, the industrial IoT
(IIoT) is integrated into IoT devices. IIoT is concerned with the limitation of computation and bat-
tery life. Therefore, mobile edge computing (MEC) is a paradigm that enables the proliferation of
resource computing and reduces network communication latency to realize the IIoT perspective.
Furthermore, an open radio access network (O-RAN) is a new architecture that adopts a MEC server
to offer a provisioning framework to address energy efficiency and reduce the congestion window
of IloT. However, dynamic resource computation and continuity of task generation by IloT lead
to challenges in management and orchestration (MANO) and energy efficiency. In this article, we
aim to investigate the dynamic and priority of resource management on demand. Additionally,
to minimize the long-term average delay and computation resource-intensive tasks, the Markov
decision problem (MDP) is conducted to solve this problem. Hence, deep reinforcement learning
(DRL) is conducted to address the optimal handling policy for MEC-enabled O-RAN architectures. In
this study, MDP-assisted deep q-network-based priority/demanding resource management, namely
DQG-PD, has been investigate(f in optimizing resource management. The DQG-PD algorithm aims to
solve resource management and energy efficiency in IloT devices, which demonstrates that exploiting
the deep Q-network (DQN) jointly optimizes computation and resource utilization of energy for each
service request. Hence, DQN is divided into online and target networks to better adapt to a dynamic
IIoT environment. Finally, our experiment shows that our work can outperform reference schemes in
terms of resources, cost, energy, reliability, and average service completion ratio.

Keywords: energy efficient; network functions virtualization; open radio access network; software-
defined network; industry internet of things

1. Introduction

With the continued advancement of the 5th generation and the industry internet of
things (IloT), their applications have gained increasing attention. The world is expected
to reach 15.9 billion in 2023 to more than 32.1 billion IoT devices in 2030 [1]. Hence, as
one of the three scenarios of 5G, massive machine type of communication (mMTC) can
handle a strong supply of the development of the IIoT devices [2], and efficient use of
networking with IloT could be achieved, thereby managing the resources for upcoming
new service-driven industries [3] economically. It is considered one of the vital driving
factors that contribute to achieving Industry 5.0 [4,5]. Hence, IIoT devices are exposed to
networking and state-of-the-art features that increase the volume of highly demanding
resources. On the other hand, IIoT devices (e.g., sensors and actuators) [5] are accessed and
connected to network servers in the core via a fronthaul physical network [6]. However,
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IIoT needs a complementary relationship between network computing and communication
in terms of satisfaction with quality of service (QoS) and quality of experience (QoE). IloT
may continue to generate different types of tasks, with a large increase in processing time,
computation resources, battery lifetime, and efficiency [7].

The core of utility resources, leveraging mobile edge computing (MEC), is typically
demonstrated to offer resource sufficiency to affordable computing tasks of IloT devices [8].
The open radio access network (O-RAN) revolutionizes the convention monoline struc-
ture, disaggregating base stations functionalized into distinct [9,10]. O-RAN offers a new
architecture and standard to support the multi-vendor forms factor that allows the use of
multiple technologies integrated into 5G antennas and next-generation. Meanwhile, MEC
is deployed into O-RAN [9-12], which allows the closest user experience and addresses the
energy-efficient demands of modern telecommunication and network systems. O-RAN is
significantly orchestrated to MEC architecture, which ensures delivery service computation
and allows the deployment of network connectivity, an effective way to break bottlenecks
and latency packet delivery ratios. Within MEC, illustrating resource provisioning is the
crucial technique for adjusting computing, which is one of the challenges. Software-defined
network (SDN) and network function virtualization (NFV) are accomplished to archive
the network target by providing virtualization and softwarization [13-15]. When MEC-
enabled SDN and NFV are the accommodation of new experiences, they enhance the
potential computing service for IIoT devices, providing low-latency computation capabili-
ties and ensuring the network is compatible with scalability and reliability [16,17]. MEC
improves bandwidth utilization to enhance the user experience and overall network perfor-
mance. However, tasks generated by IIoT devices incur an additional transmission to the
controller that conflicts with delay (queuing) and energy consumption. Additionally, prop-
erly prioritizing and demanding resource management at the MEC server will influence
task execution.

Therefore, studies have been investigating MEC in terms of managing communication
and computing resource capabilities. MEC can be ostensibly affordable in terms of resource
utilization and computing capabilities, which are suitable for offering computing tasks
in terms of offloading decisions, resource allocation, and resource prioritization. Despite
management resource flexibility and dynamic adjustments, there have been crucial impacts
in increasing computation time and energy efficiency. Thereby, artificial intelligence-driven
(Al-driven) IloT devices show opportunities to customize intelligent edge computing with
heterogeneous hardware, which has good energy efficiency in processing specific Al-based
tasks in network performance.

In this paper, we leverage deep reinforcement learning (DRL) to enhance network
performance, eliminate long-term cumulative rewards, and design an efficient, jointly
optimal approach to address resource priority and demanding resource management.
Hence, the system utilizes the deep g-network (DQN) algorithm. This approach tackles the
challenge of managing system states and actions. The DQN selects optimal actions within
a continuous space, making it perfect for this dynamic environment. The prioritized tasks
by learning from a reward system are considered successful task completion and efficient
resource usage. As demands change, DQN constantly re-evaluates the situation, adapting
resource allocation to meet immediate needs while keeping long-term priorities. DQN
bridges priority and demand management, ensuring critical tasks are completed while
optimizing resource utilization for IloT tasks. This paper’s contributions are as follows:

e  We study efficiency resource management, which enables O-RAN to provide gratitude
support for multi-vendor and scalable deployment of MEC servers and improve
resources based on the task demands and service priority.

e  Then, the problem of resource and energy minimization is conducted to transform into
a Markov decision process (MDP). After, we design a novelty distributed DRL-driven
resource management policy in the proposed model, which jointly optimal resource
and priority /demand based on IIoT criteria usage.
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e  Our proposed DQG-PD algorithm improves resource management efficiency and
reduces task processing time and latency to enhance efficient resource awareness of
IloT applications.

e  We enhance network energy efficiency optimization based on the DQN approach.
Leveraging the DON approach, which decouples two stages (e.g., online network
and target network) to respond to the network performance by stabilizing long-term
learning while enabling rapid adaptation to immediate demands.

e Lastly, we conduct experiments to evaluate and show the witness that our network
scenario outperforms reference schemes.

In the rest of the paper, Section 2 gathers the previous studies and motivation to
address our work. Section 3 is considered a problematic formulation for optimal resource
efficiency while computing and communicating IloT device tasks. Moreover, we consider
the characteristics of different rewards and three setting network scenarios. Simulation
results and further analysis are demonstrated in Section 4. Section 5 summarizes the
conclusion.

2. Related Work

The industrial manufacturing system integrated with IoT, the IIoT is increasingly com-
plex [18]. In recent years, the proper management and orchestration of various resources
in IIoT devices and the optimization of network performance have become the focus of
research. In fact, Figure 1 demonstrates the use of the MEC-assisted O-RAN to enhance
resource computation and provide accommodations for IloT devices. In addition, IIoT
devices include more network types than IoT [19-24]. The major network types of loT
are WLAN and cellular networks, adopting Wi-Fi, Bluetooth, and 5G/B5G technologies.
IIoT device networks further include low-powered wide area network (LPWAN) and
WPN [25,26]. Once MEC is enabled, the SDN/NFV controller will ensure the network’s
hierarchical alignment of resource dynamics and flexibility for the next generation.

Intelligent SDN/NFV Controller/Orchestrator
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Figure 1. An intelligent SDN/NFV controller-based MEC server is deployed in the O-RAN.
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2.1. Energy Efficiency for IlloT

Energy is properly utilized in processing to compute and transfer to ensure the
packets of network delivery are reachable. The existing studies are conveying their ap-
proach to prove that concept and provide the technique to concisely deploy in network
systems [27-30]. Energy consumption has three significant impacts: communication, com-
putation, and sensing [31,32]. Sensing is referred to as physical hardware designed to
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support, which is determined for suspended functionality, and we prioritize computation
and communication overhead.

2.2. Optimization Approaches Based on MEC for Virtualization in Energy Utilization

Leveraging an algorithm to enhance energy efficiency in the networking environment,
which enables edge cooperation, has been investigated. In [33], the focus is on resource
management in end-to-end wireless-powered MEC networks for devices. They addressed
the optimization challenges posed by dynamic task arrivals and battery power fluctuations.
Employing Lyapunov optimization and virtual queues transformed the long-term opti-
mization problem into a deterministic time slot drift-plus-penalty subproblem, making it
more tractable and ensuring optimal performance in the long run. Moreover, in [34], they
investigated the trade-off between energy efficiency and delay in multi-user wireless power
systems. By incorporating wireless energy transfer into the MEC system, MEC enhances
computing capabilities to prolong device battery life. Using Lyapunov optimization the-
ory, they optimized network energy efficiency while ensuring network stability, available
communication resources, and meeting energy causality constraints. In [35], green content
caching is based on user association mechanisms that aim to minimize content requests by
enabling small cell networks while ensuring the QoS of mobile terminals.

2.3. DRL for MEC-Integrated O-RAN Resource Management

Both radio and computing resources play a crucial role in the performance of task
offloading. Radio resources influence the data rate and energy consumption during the
transmission process, while computing resources limit the computing time and energy con-
sumption of tasks that offload to the MEC server. Hence, ref. [36] proposes an architecture
utilizing xApp, powered by machine learning algorithms that quickly identify the network
traffic and intelligently allocate resources within O-RAN architecture. Such a structure
addresses the defects of static resource allocation in O-RAN architecture by automatically
adapting PRBs to traffic load and QoS requirements, leading to better performance and
more economical satisfaction for end users. On the other hand, in ref. [37], the reinforcement
learning (RL) algorithm is adopted to allocate and efficiently manage PRBs by utilizing
modulation and coding schemes based on traffic flow and channel quality key performance
indicator (KPI) requirements. The authors of [38] investigated a mMTC scenario in 5G
to troubleshoot IIoT services that ensure efficient resource allocation methods to enhance
dynamic and complex environments by conducting intelligent end-to-end self-organizing
resource allocation IIoT with the asynchronous actor and critic-driven DRL algorithm.

However, the above works did not consider the user offloading to the MEC server
in computation by serving as energy efficient in resource utilization. In fact, this complex
selection strategy cannot be ignored due to the IloT devices transferring to the MEC server
at the same time and different resource demands. Moreover, the problem of minimizing
energy consumption and energy efficiency in O-RAN is notably distinct and challenging
from traditional RAN. To overcome encounters related to energy efficiency for diverse IloT
resource types in the MEC server, we leveraged O-RAN-enabled MEC to ensure resource
awareness and priority on demands.

3. Problem Formulation and Objectives

We first formulate the problem of resource management IIoT model and slice types
of processing in the MEC server and then describe the resource management based on
priority and demanding capability to ensure efficient energy consumption.

3.1. lIoT Model and Slice Types

This section uses QoS class identifiers (QClIs) to determine the characteristics and
requirements of different setting types that ensure the network controller can be handled
by dividing prioritized data flows based on three slice types. QCls from the 3GPP TS 23.203
V12.2.0 [39] specification can be employed to represent pertinent example services. Table 1
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outlines the QCI index, resource type, priority level, packet delay budget (PDB), and packet
error loss rate (PELR) for various smart industry scenarios. Regarding resource types,
guaranteed bit rate (GBR) ensures that end users receive a minimum bandwidth, even in
times of network congestion. This is critical for applications requiring consistent perfor-
mance. Conversely, non-GBR offers optimal service under normal conditions; however, it
does not guarantee that the requested bandwidth will be available during high network
usage periods. This type of service is suitable for applications where occasional delays are
acceptable, such as video streaming or data uploads from environmental sensors. PDB and
PELR serve as upper-bound thresholds, defining the maximum tolerable delays and packet
loss rates between IIoT and the policy charging enforcement function. These parameters are
crucial for maintaining the QoS in smart industrial applications, ensuring efficient energy
utilization and resource demand capability in flexible and dynamic environments. Here,
we dive through to describe three slice types of IloT application use cases as follows:

e  QCI 3 ensures that the communication infrastructure supports the reliability and
timely exchange of data critical for the automation of industrial processes and real-
time monitoring applications. Hence, data is critical for automation in controlling the
network environment’s charge policy.

e  QCI 70 ensures that mission-critical data in IloT environments receives the highest
level of service quality, characterized by ultra-reliability, low latency, high priority,
enhanced security, and dedicated bandwidth.

e  QCI 82 provides the resource capabilities for defining discrete automation, which
involves controlling and monitoring manufacturing processes that handle individual
parts or units, generally in environments such as assembly lines or robotics, where
precision and real-time performance are crucial.

Table 1. QCI specification is defined to set different types of industry application use cases.

QClI-Index Resource Types Priority Level PDB PELR  Industry Application Use Case
QCI3 Process Automation GBR 30 50ms 1073 Robotic monitoring
and Monitoring
QCI-70 Mission Critical Data Non-GBR 55 200 ms 107° Safety systems
QCI-82 Discrete Automation Delay critical GBR 19 10 ms 104 Automate quality control

3.2. Designing and Formulating Network Resource Management

Network resource management and priority use cases are addressed from the stan-
dardization framework to support the implementation of industry applications. Table 1
demonstrates the importance of setting each class’s network sensitivity in the initial usage.
Thus, it gives samples for enhancing the network performance and setting network vector
management.

3.3. Communication Model

We consider an offloading resource over edge computing paradigms. The MEC is
deployed in O-RAN and provides capability via wireless access points in cellular net-
works through a wired connection. Accordingly, the clustering of the network consists
of communication and computation in edge computing. Table 2 shows a system model
that was used to formulate MEC resources and IloT tasks. The number of lloT tasks
denoted as I = (1,2,3,...,i), Vi € I participate at time slot T = (1,2,3,...,t), Vt € T.
Next, N = (1,2,3,...,n), Vn € N, where denotes referring to the number of devices and
M = (1,2,3,...,m), Ym € M, where denotes the number of MEC servers used in our
network and deployed in O-RAN. We assume that in our network scenario, in which
O-RAN is deployed at the base station and coordinated, one or more O-RAN can cooperate
with each other for downlink and uplink transmissions to the end devices. Furthermore,
downlink transmission is ignored in our work.
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Table 2. The notation of network system model.

Symbol Description
I SetloT tasks I = (1,2,3,...,i), Vi€ I
N Set IToT devices N = (1,2,3,...,n), Vn € N
T Settimeslots T = (1,2,3,...,t), Vt €T
M Set MEC server M = (1,2,3,...,m), Vm € M
S Offloading decision from IIoT device to MEC, whether 1 or otherwise
Sy Data size of the computation task n-th
Dy Data transmission rate from IIoT n-th to MEC server m-th
Bum Transmission power device-n to MEC server m-th
Hym Channel bandwidth
P Ground interference power consumption
Py Processing power required by VNF v-th
u, Utilization of VNF v-th
B Total bandwidth of MEC server m-th
Linax Satisfaction of latency
Cinax Upper bound of total resource usage of the capacity of each MEC server.
X Execution at MEC server with task n-th
L} Time accepted

Decision variables:

i 1, Offloading decision of IIoT to MEC server
“ 1 0, Otherwise

Regarding Simmons’ law, the transmission data rate D, ;; of IloT device can be calcu-
lated as:

BnGn
Dym = Hymlog, | 1 , 1
where H,, , is the channel bandwidth, B, is the transmission power of n-th devices. @
is the background interference power consumption that includes wireless transmission
from other devices ¢? and noise power consumption can express: ¢, = ¢? + ¢l. Gy
is the channel gains, and as in Formula (1), if multiple devices simultaneously perform
calculations and offload via the wireless access channel, significant interference and a
reduction in the data transmission rate will occur. Thus, the constraint conditions that the
size of zj, () should follow is:

Znm(t) < Dym(t),Vn € N (2)
The transmission energy consumed by offloading tasks for IloT i is given as follows:

Zn,m (f)

AT,z(t) Bn(t) Dn,m(t) (3)
Based on the communication model, it consists of many devices simultaneously
offloading tasks to the MEC via the wireless channel, which will inevitably result in
reduced data transmission rates. When the data rate for the IIoT device decreases, the
backhaul link will incur higher energy consumption and longer transmission times for
offloading tasks. Utilizing edge servers for computing tasks is an enhancement as it can

avoid the long transmission delays associated with cloud computing.
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3.4. Offloading Model

In the task offloading model, the task data shall first be transferred to MEC, which is
the process of transferring computational tasks and transmission time of the task 7; € N.
Sy is the data size of computation task n-th to MEC server for computation to address the
offloading time of task n-th from the IloT devices can be expressed:

Sn_
Dnm

’

CTiln = @

The energy consumption is generated by computation tasks. IIoT devices of CPU
computation rate in the time slot F,(t), and F is the number of cycles required for the CPU.
CBy,(t) is the computing task size of device n-th in time slot-t.

Ea(t

SHOREEL. ®

3.5. Computation Model

In this primary consideration of the computation, our network system addresses MEC
computation, a computing task generated by an IloT device, and utilizes a MEC server
to tackle the computation and leverage it to offer resource capabilities. Hence, the total
computation time for task n-th can be calculated based on what is processed to offload to
the MEC server.

e MEC server execution:

(6)

o  Total complete time:
The total time required to complete the task includes both transmission and execution

time on the MEC server.
Su(t)

n,m __
CT?V;EC - D
n,m

+ Xijec @)

3.6. Objective Model on Resource Management

In our proposed approach, MEC is leveraged to conduct assessments of resource
management and orchestration for the priority of IloT tasks. MEC provides resource
capability and indicates stringent requirements. We aim to minimize energy consumption
by leveraging MEC to provide accommodation for NFV to instantiate virtual machines (VM)
and adjust and reconfigure the resource capacity of utilizations. In addition, VM minimizes
resource utilization over the MEC server, ensuring the efficiency of VNF deployments and
enhancing computation. Where R, denotes resource requirements of task-n, P, denotes
processing power required by VNF in the MEC server and U, is the utilization of VNF-v.

, i '
()
Subject to '
Yict 2omen SR+ Y ey Porllo < Xinee, ¥Ym € M )
ZiEIZneN Si-Dy < By, Ym e M (10)
ZmeM SE.CHM < Lipax, ¥Yn € N a1
Evev Py-Uy < Cpax, Ym € M (12)
ElocarLis + Lers Eaff S < Emax, Vi €1 (13)
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4. DQN-Based Priority/Demanding Resource Management
4.1. Markov Decision Process Elements

We study the MDP algorithm to solve the problem, which is a tuple of (S, 4, R,S’),
where S denotes the set of the possible states, .4 is denoted the action. At timeslot-t, the agent
observes the state s; of the time slot and selects action. In our proposed system, we leverage
deep g-network-based-priority /demanding resource management (DQG-PD). We have
developed the DQG-PD to enhance the network policy in terms of resource management
and efficiency. Our approach obtains the optimal network policy for efficient resource
offloading in MEC servers that demonstrate resource capacity in terms of maximizing
the energy efficiency in O-RAN-enabled MEC. However, to utilize the DRL approach for
reinforcement learning (RL) agents, we address the steps of states-space, action-space, and
rewards function as:

(1) State-space: in each time slot, each communication link and computation in MEC
observe the network state from the environment. Let S denote the state space. The
current environment state includes Dy, , (t) measurement of the data transmission
rate from the IIoT device and MEC server, the status of all resources in the IIoT device
St = 1 is supposed to offload the resource to the MEC server, 0 otherwise. CB,(t)
computation task model of n-th. As a result, state S is defined by the following
parameters:

S(t) = [DLl(t),Du(t), .. Dum(t),CB1(t),CBay(t), ... CBy(t), Bi1(t), Bo(t), .. Bum(t), S, } ! (14)

(2) Action-space: we utilize agents to make decisions based on gathering the current
state of the environment. The goal of the agent is to make the optimal decision
based on maximizing the resource utilization in terms of bandwidth, computation
resource utilization, and minimizing the overall average service delay with minimal
task execution. Action a(t) € A at each time step t can be defined as the action in our
network system, which considers offloading the t-th task (1 < t < N) and allocating
the resource (bandwidth and computation resource) to the task for execution on the
MEC server. Action can be defined as:

a(t) = {Hum, S;, ¥} (15)

where Hy, ;, is a representation of the channel bandwidth, S; selection task offloading
for task size with ¥ belonging to {1,2,...,Y} MEC server when S; =1,and S; = 0in
local. The agent will take actions based on tasks in each time step and get the reward
from the environment. Note that in each decision epoch, an action also affects the
next state s’ in next time slot-t.

(3) Reward: RL aims to maximize the reward from good actions. Our reward function
is to design and optimize to reflect the enhancement of the priority of resource
management and efficient energy. The reward function r; can be defined as:

Su(t)
Dn,m

re=CTy" = + X (16)

4.2. DQN-Based Solutions

Our work aims to provide flow execution by using the DQN algorithm to handle
resource demand and prioritization on the MEC server. In fact, DQN is one of the most
powerful tools for assisting network controls and adaptation of resource estimates. More-
over, DON offers two stages of architecture (e.g., target network and online network).
Figure 2 indicates the network conditions, which consist of several stages of the IIoT clus-
ter that are divided into three categories of network determination resource tasks. The
proposed method is conducted using DON with an SDN/NFV controller for interaction
and abstracts the resource utilization from MEC resources in computing the IloT tasks. A
strategy chooses the action obtained through long-term optimization, and DQN maximizes
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the reward value through the selection of the optimal value. Controller gathers the state as
in Equation (14) and selects action a(t) = 7(s(t)) to obtain the current reward r;, while s(t)
is transferred to the next state. 7t is the specific policy. The interaction with the environment
proceeds based on the updated state, aiming to maximize the reward value by maintaining
the ongoing process. The cumulative discounted reward over the time interval is calculated
using Q((s(t),a(t)) as in the following equation:

T
Q(s(t),a(t)) = E [Z Wtf(f)|5(t)fﬂ(f)]f7 €(0,1) 17)
t=1
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Figure 2. DQN-based MEC for priority/demanding resource utilization.

From the equation, v € (0,1) is the discount factor. If v = 1, the agent only considers
the current rewards, whereas if v < 1, the agent considers the later rewards.

Q(s(t),a(t)) = Q(s(t),a(t)) +a(r(t) + ymaxQ(s(t+1), a(t+1)) — Q(s(t),a(t))) (18)

When this value is used to indicate iteratively estimate the optimal Q-value for all the
state and action pairs s(t), a(t), and the optimal policy 7*:

* = argmaxQ(s(t), a(t)) (19)

« is the learning rate, while the deep neural network (DNN) technique is leveraged.
DQN is constructed into two structures, with one of the DNNs being the online network,
which fits the value function Q, and another DNN being the target network, which is used
to gain the target Q value. @ and @~ are the weight of online and target on Q-network,
respectively.

Q* =r(s(t),a(t) +ymaxQ(s(t+1),a(t+1)); @) (20)

In addition, in the learning rate phase, the reward and state updates obtained from the
iteration with an environment that is stored in the experience buffer in forms s(t),a(t), r(t),
s(t 4 1). The parameters of DNN are updated by interactively minimizing the loss function
as follows:

LOSS FUNCTION = E [(Q* —Q(s(t), a(t); @))2} (1)

Algorithm 1 depicts the hierarchical structure proposed for handling the resource
priority and demanding satisfaction in terms of energy efficiency in the MEC server for
controlling the IloT tasks. On the other hand, the DQG-PD algorithm is leveraged for
priority and demand resource allocation in the MEC server and employs DON to determine
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the optimal actions for each time slot. Initially, the algorithm sets up two Q-networks, an
online network and a target network with random weights and initializes a replay memory
to store previous experiences. In each episode, an initial state proceeds through multiple
time steps, deciding between exploration and exploitation. During exploration, an action is
selected randomly, while in exploitation, the action that maximizes the Q-value (predicted
future reward) is chosen based on the online Q-network. The selected action is then
executed, leading to a new state and reward stored in the replay memory. It periodically
samples a mini-batch of experiences from this memory to update the online Q-network by
performing gradient descent on the loss between predicted and target Q-values. The target
Q-network is periodically synchronized with the online network to stabilize learning. This
process is repeated for multiple episodes, allowing the MEC server to learn and refine its
resource allocation strategies, ultimately returning the optimal action for each time slot
based on the learned policy.

Algorithm 1: DQG-PD algorithm for priority /demand resources in the MEC server

—_

_ =
N =

13:

14:
15:
16:

—_
TR

Input
Output

Initialize

for

end

Discount factor, learning rate, exploration factor greedy, replay memory size

Optimal action of each slot a*(t)

Online and target-Q network parameters with random weight @ and @7, respectively. (@~
@), replay memory B

episode=1,2, ...,k - K do

Choses an initial state S;

fort=1-T do

if

Randomly select number a(t) V Exploration
Apply action a(t)

Observe the state (s + 1) and reward r(t)

Store transition experience {s(t),a(t),r(t),s(t + 1)} in replay memory B

Randomly sample experience from replay memory

else V Exploitation
Selection action a(t) = argmax Q(s(t),a(t); @)

Update weight @ by performing a gradient descent process on
[Q" — Q(s(0), a(t); D)]?
Reset @~ = @ after each C steps
end
Return Optimal action a*(t) = argmax Q(s(t), a(t); @)
a

5. Simulation and Discussions

In this study, we conducted the experiment by setting the network topology inte-

grating the traffic between IloT local hosts, access points, and SDN/NFV controller en-
vironment [40], instructing the policy by our approach agent decisions. In the following
sub-section, we described the parameter settings and the performance of the experiment.

5.1. Parameter Settings

In this scenario, the setting needs to illustrate the three clusters of IloT applications to

conduct our experiments, as shown in Table 3. Specifically, we consider the assembly line
in industrial manufacturing. The base station is assumed to be the O-RAN-enabled MEC
server, which is under the umbrella of resource utilization in vertical resource alignment
to the IloT device required. MEC servers are powerful computers located close to the
IIoT devices, which handle the computation tasks offloaded by the IIoT devices. The
placement of four MEC servers assists in a balance between processing power and energy
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consumption. More servers could handle more tasks; however, the infrastructure would
consume more energy. lloT devices are in industrial setups that generate data and require
computation. The numbers [50, 100, 150] indicate different scenarios with varying numbers
of devices. The size of the tasks generated can range from 5 MB to 30 MB. Bandwidth is the
maximum rate of data transfer across the network. A bandwidth of 20 MHz ensures that
data can move quickly between the IloT devices and MEC servers, reducing the time and
energy needed for communication. CPU frequency determines how fast the MEC servers
can process data. Depending on the workload, a range of 5 GHz to 20 GHz means the
servers can adjust their processing speed. A maximum link latency of 1.5 milliseconds
ensures that the system responds quickly, which is critical in industrial settings. The
operation is divided into 1000 time slots, which are small intervals of time used to schedule
tasks and allocate resources. The replay memory buffer is where data is temporarily stored
while being processed. A size of 3000 units means the system can hold a significant amount
of data at once, which helps manage tasks efficiently and conserve energy. ReLU is a
mathematical function used in neural networks within the system to make decisions, such
as task scheduling or resource allocation. A discount factor of 0.95 means the system values
long-term efficiency slightly more than short-term gains, encouraging energy-efficient
decisions over time. The learning rate is 0.001, ensuring the system learns gradually and
avoids making large, energy-inefficient changes based on new data. The batch size of 32 is
a balance between computational efficiency and energy use, allowing the system to learn
effectively without overloading the servers or consuming excessive power.

Table 3. Simulation parameters.

Parameters Value
Number of MEC servers 4

Number of IIoT devices [50, 100, 150]
Task size [5,30] MB
Upper-bound bandwidth 20 MHz
CPU frequency of MEC server [5,20] GHz
Maximum link latency 1.5ms
Number of time slots 1000
Replay memory buffer size 3000
Activation function ReLU
Discount factor on reward 0.95
Learning rate 0.001

Batch size 32

5.2. Performance Evaluation

With the above setup simulation infrastructure, we deploy our management scheme
and reference approaches in the controller to evaluate the performance. DQG-PD leverages
the virtualization and the proposed DQN agent to guide the allocation process. Priority
on industrial services and demand are observed from the infrastructure plane. The target
networks discover the action batches on offloading decisions resource (bandwidth and
computing resources) virtualization properties by exploration. We compared this with
(1) meta-heuristic balancing the resources and demand and (2) single-agent DRL with a
reward emphasized for service with higher priority (low PDB and PELR).

To evaluate the performance of our contribution domains, we set 3 slices of different
priority levels with demanding conditions. The traffic rates are configured to be high
congestion following four different settings to capture the bottleneck and constrained
resource evaluation. For the performance metrics, we focus on (1) the reward (resources,
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costs, energy, and reliability) of the agent policies and (2) overall ratios based on demand
and priority levels in requesting services.

We captured the reward scoring metrics of the exploited DQG-PD algorithm under
different learning rates («) and discount factors (). The results highlight the trade-off be-
tween the speed of learning and the quality of the solution (optimality). The combination of
« =0.001 and 7y = 0.95 is chosen as the optimal setting due to its demonstrated performance
in balancing the trade-off. This means that the learning rate («), which determines how
quickly the algorithm updates its knowledge, is set to a slower pace (0.01) to ensure stability.
Meanwhile, the discount factor (y), which controls how much future rewards are consid-
ered, is relatively high (0.95), emphasizing the importance of long-term rewards. These
settings guide the algorithm toward optimal decision-making over time despite the initial
exploration delays. Over 1000 episodes, we illustrate the comparison between the proposed
DQG-PD algorithm and two other schemes (MT-HRT-PD and SADRL-PD) in terms of total
reward scores, respectively. During the early phases (exploration), the DQG-PD experi-
ences higher latencies, which is expected when the algorithm is still exploring various
possibilities. However, by the 500th episode, it converges with a near-optimal solution
(>80 setting metric), reducing the delay significantly and outperforming the other reference
schemes, which overcomes MT-HRT-PD by 18.12 scores and SADRL-PD by 35.56 scores.

In terms of total reward, which is cumulated based on positive and negative scores as
the algorithm converges during each episode, DQG-PD demonstrates superior performance.
The reward is based on the algorithm’s efficiency in multi-batch processing. By the final
episode, DQG-PD reached a reward of 98.76, while MT-HRT-PD and SADRL-PD achieved
lower scores of 68.13 and 43.62, respectively. This highlights the algorithm’s overall
better performance across different metrics, such as cost efficiency, resource usage, and
latency reduction.

Each sub-reward is captured to compare different objectives to different approach
performances. Figure 3 depicts the sub-reward on resources, which states the overloading
queues and requests to the server. Whether the resources are overloaded or underutilized,
negative rewards are accumulated. Regarding resource optimization, we illustrate how
DQG-PD allocates virtual service nodes and forwards graphs to physical nodes and links
efficiently. Dynamic resource allocation improves overall resource utilization, reducing
bottlenecks and ensuring that the demand for created industrial service slices is met.
DQG-PD achieved 26.61 positive scores in this category, outperforming MT-HRT-PD and
SADRL-PD by 13.85 and 8.88 scores, respectively. The algorithm significantly enhances
resource efficiency by adapting to real-time conditions and prioritizing mission-critical
service demands.

In terms of costs in Figure 4, we balance between the number of servers deployed,
service types, and consequences of packet loss in each slice. DQG-PD achieved positive
scores of 19.27, which accounts for 19.51% of the overall reward, compared to other schemes,
where MT-HRT-PD and SADRL-PD obtained 7.59 and 14.33 scores, respectively. The cost
sub-reward is crucial as it focuses on reducing the financial burden of industrial service
deployments, including minimizing resource provisioning costs, network bandwidth usage,
and overall infrastructure expenditures. DQG-PD ensures efficient management of each
prioritized slice, thereby lowering operational costs while maintaining the required QoS
and QoE.

The energy sub-reward focuses on reducing the consumption amount that the service
operates and network traffic experiences while traversing a complete performance. The
DQG-PD algorithm optimizes the resource placement and routing decisions to reduce end-
to-end latency with prioritized demand considered on energy metrics, improving overall
service responsiveness and green computation. DQG-PD achieved 28.98 scores, which
accounted for 29.34% of the total reward metrics, emphasizing the energy-focused and bet-
tering performances compared to MT-HRT-PD (9.13 higher) and SADRL-PD (19.85 higher)
in Figure 5.
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Figure 4. Sub-reward on cost.

Finally, the sub-reward on reliability metrics, as shown in Figure 6, emphasizes the al-
gorithm’s robustness and fault tolerance. DQG-PD achieved a high-reliability score (22.68),
significantly outperforming MT-HRT-PD (by 2.58) and SADRL-PD (by 4.66). This reliability
is achieved by incorporating dynamic service configurations, which adapt to network
failures, traffic surges, demanding congestion, or disruptions. DQG-PD ensures high avail-
ability by considering factors such as backup paths, failover mechanisms, and redundancy,
thereby enhancing service reliability and minimizing downtime due to network issues.
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Figure 6. Sub-reward on reliability.

To deeply evaluate the efficiencies in controlling different demanding factors and
priority levels, we captured the completion ratios of combined service requests in different
topology sizes and the number of virtual chains (3, 6, 9, and 12). First, our simulation
estimated the acceptance ratios when the service is requested. After accepting the requests,
we executed the services through the chain to detect any possible failure. If failure is
detected, we configure the restoration properties to revive the service execution. However,
the properties of slice criticality vary. If restoration is successful, we capture our results
as completion ratios. Over 1000 time slots, we configured the traffic rates to stimulate
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the control policies. DQG-PD achieved 99.87%, which is 10.78% and 19.54% higher than
MT-HRT-PD and SADRL-PD, respectively, as shown in Figure 7. The elaboration of each
phase can be discussed as follows:

e  The high acceptance ratio demonstrates the controller’s scalability and ability to
effectively accommodate a larger number of service requests.

e  The restoration ratio measures how well the system recovers from service failures,
ensuring uninterrupted service and high availability, particularly for high incoming
task requests.

e Intotal, we concluded the performance into completion ratios, which demonstrates its
effectiveness in completing tasks even under heavy loads.

Average Service Completion Ratios
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Figure 7. Average service complete ratios show how efficient the service percentage is over the
different time slots.

6. Conclusions

This paper presented priority /demanding-based resource management to address
optimal resource consumption and energy, which enabled O-RAN to aim at a cognitive IloT
network. The proposed scheme leveraged MEC-incorporated O-RAN to handle resource
efficiency and resource management. DQG-PD leverages virtualization and DQN agents
to direct resource allocation to industrial services according to priority demand. DQG-
PD framework ensures sufficient system components for automated policy orchestration,
including resource management, energy, cost, and service priorities. In this framework,
DQG-PD enhances resource management and energy efficiency for resource-constrained
IIoT devices and scales into a system for heterogeneity critical in real-time. Our results
demonstrate that the DQG-PD algorithm significantly enhances computation, resource
utilization, and energy efficiency when compared to existing reference schemes.

For future work, we leverage advancing federated learning to minimize the trade-
off between communication overhead and joint the cross-protocol with asynchronous.
Furthermore, addressing security and privacy concerns will be key focus areas in expanding
the effectiveness of our approach.
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Abstract: The steel industry serves as a cornerstone of a nation’s industrial system, with
sintering playing a pivotal role in the steelmaking process. In an effort to enhance the intel-
ligence of the sintering process and improve production efficiency, numerous scholars have
carried out extensive research on data analysis and intelligent modeling techniques. These
studies have made significant contributions to expanding production capacity, optimizing
cost efficiency, and enhancing the quality of products, and supporting the sustainable
development of the steel industry. This paper begins with an analysis of the sintering
production process, explores the distinctive characteristics of the sintering process, and
discusses the methods for identifying the operating conditions of sintering. It also provides
an overview of the current state of research on both mechanism modeling and data-driven
modeling approaches for the sintering process. Finally, the paper summarizes the existing
challenges in sintering process modeling and offers perspectives on the future direction of
research in this field.
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1. Introduction

The steel industry is a cornerstone sector in a nation’s industrial system, with pro-
found implications for a country’s economy, society, and national defense. Its robust
development is directly linked to the overall development level and competitiveness of the
country. The steel production process encompasses several key stages, including the coking
process, sintering process, ironmaking process, steelmaking process, and rolling process.
Among these, sintering plays a crucial role as a heat-induced agglomeration process that
mixes iron ore powder, recycled ironmaking products, fluxes, slagging agents, and solid
fuels, contributing significantly to the steelmaking process [1].

However, due to the complexity of the sintering system and technical limitations in
industrial settings, many key parameters are difficult to measure directly or exhibit signifi-
cant measurement delays [2]. For instance, accurate prediction of the sintering endpoint is
critical for the quality of sintered [3]; the composition and drum strength of the sintered ore
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directly affect the quality of downstream smelting [4]; and dynamic monitoring of sintering
flue gas composition is central to achieving green production and emission control [5].
To address the challenges posed by these hard-to-measure parameters, sintering modeling
has become a key research tool for solving such problems [6]. By constructing mathe-
matical models or leveraging data-driven techniques, sintering modeling can accurately
predict difficult-to-measure or delayed parameters, providing real-time guidance for the
production process.

Currently, mainstream modeling approaches are primarily classified into two distinct
categories: mechanism modeling and data-driven modeling [7]. Mechanism modeling,
based on a deep understanding of thermodynamics, fluid mechanics, and chemical reaction
kinetics, can accurately describe the physical and chemical phenomena during the sintering
process and provide logically sound explanations of the effects of parameter variations [8].
In contrast, data-driven modeling relies on historical data and statistical patterns, using
methods like machine learning to capture nonlinear relationships between inputs and
outputs. This approach has shown considerable effectiveness in parameter prediction and
model training speed.

This paper seeks to offer a comprehensive review of the advancements in research
within the field of sintering modeling, with a focus on analyzing the current status, appli-
cation scenarios, advantages, and limitations of mechanistic and data-driven modeling.
By summarizing the characteristics and recent developments of different modeling methods,
this paper seeks to offer insights and references for both theoretical research and industrial
practices in sintering modeling. Section 2 provides an overview of the sintering process
and its defining characteristics; Section 3 discusses the methods for identifying operating
conditions in the sintering process; Section 4 reviews both mechanistic and data-driven
modeling approaches for the sintering process; and Section 5 presents a comprehensive
summary and outlook on existing modeling methods.

2. Analysis of Sintering Process

Sintering is a metal smelting process widely applied in the steel manufacturing sec-
tor [9,10]. The primary objective of this process is to agglomerate fine ore particles into
larger masses, forming sintered ore suitable for blast furnace smelting [11]. The process
involves complex production procedures and inherent characteristics, making it essential
to conduct a thorough analysis of the process and its features before undertaking sintering
process modeling studies.

2.1. Description of Iron Ore Sintering Process

Modern sintering methods typically place greater emphasis on improving energy
efficiency, reducing environmental impact, and manufacturing precision components. In re-
sponse to the high demand for steel, the most commonly used method in steel production
is the belt-type, forced-air sintering process. Beneath the sintering machine, there are two
rows of wind boxes. The exhaust fans below these wind boxes continuously extract air from
within, allowing air to flow into the material layer above and ultimately exit through the
wind boxes. This process provides sufficient oxygen for the combustion of fuel within the
mixed charge, ensuring stable operation of the sintering process. Currently, most sintering
plants use sintering machines with a functional area of 360 m?. The process flow diagram
of the sintering process is shown in Figure 1.

The sintering process mainly consists of several steps, including mixing and granula-
tion, ignition, sintering, and cooling. Generally, the sintering process takes approximately
120 min. The batching process involves mixing iron ore powder with fuel (coke powder),
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return fines, and fluxes (limestone and dolomite) to form the raw material mixture. Water is
added to the raw mix, which is then subjected to both primary and secondary mixing and
granulation to form uniform particles with appropriate moisture content and particle size
distribution. The optimal particle size of sinter charged into the blast furnace is typically
between 5 and 20 mm. The proper distribution of these particles is crucial for improving
the permeability of the material layer. During secondary mixing, the raw mix undergoes
steam preheating, which helps raise the initial temperature of the mix. The water-mixed
granules are then transported by a conveyor belt to the charging bin. The primary goal
of the first mixing stage is to achieve uniformity and moisture adjustment. During this
stage, various raw materials are evenly mixed to ensure that different components, such
as iron ore powder, fluxing agents, fuel, and return fines, are fully blended into a homo-
geneous mixture. The second mixing stage, in addition to further homogenization and
fine-tuning of moisture content, primarily aims to create a sinter mix with a specific particle
size distribution and appropriate moisture levels. This mixture has sufficient permeability,
facilitating efficient airflow during the sintering process. To prevent smaller granules from
being carried away by the wind boxes, the granules are distributed on the sintering grate in
a manner where the particle size gradually increases from top to bottom. This is achieved
through a nine-roll spreading machine. Additionally, to protect the sintering grate from
high temperatures, a layer of coarse sinter is typically spread on the grate as a bed material
before charging. In normal sintering production, the material layer has a thickness of
approximately 700 mm, and the solid fuel on the surface of the raw mix is initiated beneath
the ignition chamber. During the sintering ignition process, key factors include ignition
temperature, oxygen supply, particle size, and the chemical composition of the material.
In ironmaking plants, operators primarily determine whether sintering has achieved com-
plete combustion by measuring the temperature in the flue gas duct of the sintering process
using thermocouples, in combination with their professional judgment and operational
experience. The sintering grate is equipped with 24 wind boxes that initiate ventilation
for sintering. As the sintering machine advances, the raw mixture undergoes melting and
combustion in a top-to-bottom progression. This process culminates in the formation of
sintered ore with specific strength characteristics at the burn-through point (BTP).

raw material

Iron ore . Return
. . solvent fuel
Mixed granulation powder ore
mix2 < mix| O U U ‘ ‘ ‘
Hot return ore

v Mixture
exhaust gas Sintering ignition Hot crushing
|:| —> screening Cold return ore H

paving

‘ sinter bed ‘ N cooling
O\ O C O-V-
‘ screening
sintering fl Blast furnace
. L <«— s g flue gas
chimney desulphurization ironmaking

Cogeneration

Figure 1. 360 square metre sintering machine.

The fully mixed raw mix burns within the material layer, generating high temperatures
of approximately 1300 °C. Proper temperature promotes the reaction of minerals in the
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sinter, resulting in the formation of sinter with good mechanical strength. However,
excessively high temperatures may cause over-melting of the minerals, which negatively
affects the strength and structure of the sinter, increasing its brittleness and, consequently,
its fragility. This high-temperature environment induces physical changes and chemical
reactions in the sintering mixture, leading to the formation of distinct layers within the
material bed. The material layer can be divided into several zones from bottom to top,
including the raw material layer, the over-wet layer, the preheating and drying layer,
the combustion zone, and the sintered ore layer. The combustion zone represents the area
with the highest temperature and the most intense reaction activity. As the combustion zone
moves downward, high-temperature molten material agglomerates into blocks, forming
the molten layer. The introduction of cooling air causes the sintered ore to cool and form
the sintered layer.The preheating and drying layer is in direct proximity to the combustion
zone and is exposed to the high-temperature exhaust gases produced therein. The free
moisture in the material layer quickly evaporates, and the evaporated water vapor comes
into contact with the colder material layer below, forming the over-wet layer. From the
layering phenomenon of the sintering bed described above, it can be concluded that the
combustion of carbon is integral to the quality and yield of the sintered ore.

Sintering production generally occurs in a high-alkalinity environment. The addition
of fluxes such as limestone and quicklime to the sintering mixture ensures the alkaline
conditions necessary for the sintering process. Because of the substantial presence of
calcium oxide (CaO), a series of chemical reactions take place with the raw mixture, leading
to the formation of diverse minerals. The main minerals formed include magnetite (Fe3O4),
dicalcium silicate (2Ca0O-SiO5), calcium ferrite (CaO-Fe30,), calcium ferrite (2Ca0O-Fe;03),
and tricalcium silicate (3Ca0-5i0O;). The properties of these minerals are summarized in
Table 1.

Table 1. Main mineral properties in sintered ore.

Components Melting Point/(°C) Compressive Strength/(Mpa) Reductability/(%)

Fe30,4 1590 3.69 26.7
CaO-Fe30, 1216 3.76 40.1
2Ca0-Fe30, 1436 1.42 285
2Ca0-Si0, 2130 - -
3Ca0-SiO, 1410 0.67 -

The primary mineral in sintered ore is calcium ferrite (CaO-Fe;O3). As shown
in Table 1, (CaO-Fe;O3) exhibits the highest compressive strength, the best reducibility,
and the point of minimum melting temperature. The higher the content of CaO-Fe;03,
the more favorable it is for producing high-quality molten iron during the ironmaking
process. These stable minerals enhance the mechanical strength of the sinter. Addition-
ally, limestone improves the flowability of the ore, reduces ore fines during the sinter-
ing process, and minimizes the formation of small particles. Therefore, it is essential to
produce a sufficient amount of CaO-Fe;O3 during the sintering process to ensure better
steelmaking performance.

2.2. Analysis of Sintering Characteristics

The sintering process is characterized by strong nonlinearity and significant time
delays, with many factors within the process exhibiting strong interdependencies. An ex-
amination of the sintering process identifies the following key characteristics:
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1.  Multiple types of parameters. Raw material parameters: coke powder ratio, return
fines, and the contents of CaO, SiO,, MgO, total iron (TFe). Operational parameters:
Grate speed and material layer thickness. State parameters: Wind box negative
pressure, BTP, BTP temperature, average vertical combustion rate, sintering rise
point position, and sintering rise point temperature.

2. Nonlinearity. The sintering process involves numerous physical and chemical reac-
tions, encompassing the evaporation and decomposition of water, redox reactions,
and solid-phase reactions of sintering materials. Various factors affect the compre-
hensive coke ratio, such as the chemical composition of the raw mikx, its permeability,
and the sintering endpoint position. These parameters display time-dependent and
uncertain behaviors, with many of them being unmeasurable in real-time, resulting
in significant nonlinearity among the sintering variables. Consequently, developing
accurate mathematical models for the sintering process proves to be a difficult task.

3.  Time delay. There is a time delay between the detection of raw material composition
and the subsequent production of sintered ore. The production rate of sintered ore is
a key factor influencing the comprehensive coke ratio. Delays in detecting sintered
ore production affect the coke ratio, which complicates the selection of suitable data
for use as inputs in time-series predictions. Nevertheless, this delay is primarily
attributed to sensor detection, with measurement intervals generally remaining fixed.
This challenge can be mitigated by shifting the input and output data either forward
or backward to account for the delay prior to making model predictions.

4. Strong coupling between parameters. The sintering process is governed by numerous
parameters, primarily encompassing raw material, state, and operational factors.
Raw material and operational parameters exert an indirect influence on the target
parameters by altering the state parameters. These parameters are highly interdepen-
dent, such that a variation in one parameter induces simultaneous changes across
multiple others.

5. Multiple operating modes. In actual sintering production, various types of charge
recipes are used to guide production, with each recipe representing a distinct operating
mode. When predicting indicators such as carbon efficiency, a single integrated
predictive model is inadequate for comprehensively forecasting carbon efficiency
under different operating modes.

3. Identification Methods for Sintering Process Conditions

The sintering process is a continuous and extended-duration manufacturing proce-
dure characterized by complex material and energy conversion and transfer mechanisms,
with variable operating conditions that exhibit intricate operational features [12]. Produc-
tion data under different operating conditions exhibit distinct characteristics, and relying
on a single model to describe the sintering process may lead to inaccurate results, thereby
affecting the prediction of key parameters [13]. Therefore, in sintering process modeling
research, it is essential to first conduct effective identification of the variable operating
conditions, and then propose appropriate modeling methods based on this identification.

Cluster analysis is frequently employed in industrial processes to categorize opera-
tional conditions based on industrial data [14,15]. As a multivariate statistical technique,
cluster analysis classifies data into distinct operational states, ensuring that data within the
same state share similar attributes. For instance, reference [16] utilized the fuzzy c-means
clustering algorithm to classify distinct operational conditions in the nylon polymerization
process, while reference [17] proposed a hierarchical clustering method based on the Ward
algorithm for automatic classification of various operational conditions in photovoltaic

60



Processes 2025, 13, 180

power plants. In the identification of sintering process conditions, reference [18] employed
the K-means clustering algorithm to distinguish various operational states within the
sintering process. Changes in operational conditions lead to variations in the comprehen-
sive coke ratio, which was used to validate the effectiveness of the K-means algorithm.
However, this method is hindered by the high number of computational steps and long
processing times, making it unsuitable for real-time application in sintering operations.
The fuzzy clustering algorithm can address some of these limitations. reference [19] ap-
plied the fuzzy C-Means clustering algorithm, and reference [20] proposed a weighted
kernel fuzzy C-Means clustering algorithm to identify multiple operational states in the
sintering process. However, these methods require the pre-definition of the quantity of
clusters (i.e., the count of operational conditions). This poses a challenge, as the number of
operational conditions in the sintering process cannot be predetermined. To overcome this,
reference [21] introduced a quantification error modeling approach [22], and subsequently
proposed a fuzzy C-Means clustering algorithm based on the quantification error model for
the automatic identification of multiple operational conditions in sintering. In reference [23],
a multi-dimensional characterization method for sintering conditions was proposed, based
on polycrystalline indicators. This method integrates polycrystalline indicators with radar
charts to define and calculate performance and balance indicators for sintering conditions,
providing a comprehensive and accurate assessment of operational states. In reference [24],
the affinity propagation clustering algorithm was applied to effectively classify different
operational conditions, and support vector machine were used to recognize these condi-
tions. Fuzzy C-Means clustering methods enable the accurate classification of production
data under stable and smooth sintering production modes, particularly in cases where the
number of process parameters is relatively small. However, most of these methods do not
consider the real-time status information of actual sintering operations, which may limit
their applicability in practical engineering settings.

Most methods for identifying operational conditions in the sintering process are lim-
ited to considering either production status information or the classification of operational
conditions based on different production data characteristics. These approaches lack a com-
prehensive method that simultaneously accounts for both production status information
and the varied characteristics of different production data for intelligent recognition of
operational conditions. Images of the rear section of the sintering machine can reflect the
actual production status and contain rich information about the sintering operational con-
ditions. These images also carry production-related data such as yield, quality, and energy
consumption. Timely and effective acquisition of the tail section images of the sintering
machine is therefore a crucial prerequisite for the accurate and efficient recognition of
sintering operational conditions. Thus, in practical sintering production, a deep analysis
of the tail section images and the distinct characteristics of production data is essential.
Research into intelligent recognition methods that consider both production status and
the different characteristics of production data is beneficial for accurately describing the
dynamic changes in the sintering production state. This approach will also provide a foun-
dation for developing high-precision dynamic prediction models for carbon consumption
in the sintering process.

4. Modeling Methods for the Sintering Process

During real-world sintering processes, it is essential to measure and monitor sev-
eral critical parameters in real-time to maintain production safety, operational stability,
and energy efficiency. However, due to limitations such as the high cost of sensors and the
challenging industrial conditions, accurate measurement of most parameters is difficult
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and time-consuming. Therefore, modeling the sintering process and predicting certain key
parameters is of significant importance for the monitoring, optimization and regulation of
the sintering production process.

4.1. Mechanism Modeling

The sintering process involves several complex steps, including raw material mixing,
segregation, ignition, and sintering, accompanied by intricate physicochemical changes.
This process is characterized by numerous process parameters, such as temperature, pres-
sure, flow rate, and velocity, along with extensive material and energy exchanges and
transfers. Mechanism-based models are primarily derived from the physicochemical char-
acteristics of the material strata involved in the process [25], as well as the laws of energy
conservation and mass balance [26]. These models can clearly and accurately describe the
interrelationships between various parameters of the sintering process.

In mechanism modeling research, many scholars have proposed corresponding an-
alytical models, summarizing valuable theoretical findings with practical applications.
For instance, focusing on individual mixed particles, reference [25] proposed a mechanism-
based model to characterize the rate of combustion of solid coke during the sintering
process, both under single-addition or distributed addition conditions. Additionally, a fuel
particle model was established, with the combustion process and heat transfer identified as
key factors influencing sintering productivity. Reference [27] proposed a transient heat and
mass transfer model, which explains temperature changes within the material layer after
ignition during sintering. A further model [28] describes the combustion behavior of solid
fuel layers during sintering. Based on the local non-equilibrium thermodynamic relation-
ships in the sintering process, another model [29] was developed to describe heat transfer,
subject to five specific assumptions to ensure accurate heat transfer effects. Reference [30]
established an unsteady-state, two-dimensional mechanism model, based on the analysis
of key chemical reactions and physical processes involved in iron ore sintering, using
reasonable assumptions. Additionally, a thermal reaction mechanism model, grounded in
the principles of energy conservation, was developed to forecast the ignition temperature
during the sintering process [26]. Reference [31] introduced a mechanism model to provide
a detailed description of coke particle combustion in the sintering process. Reference [32]
reflected the impact of liquid-phase formation during coke combustion on the sintering
temperature field. Reference [9] outlined the direct influence of coke particle combustion
behavior and gas flow velocity on the temperature, width, and velocity of the flame front
within the sintering bed. It incorporated a granulation model into the thermal treatment
framework to characterize coke combustion, and integrated two endothermic reactions,
thereby enhancing the accuracy of temperature change predictions within the sintering bed.

While these mechanism-based models are theoretically rigorous and effectively re-
veal the inherent relationships between parameters in the sintering process, they require
precise measurement of process parameters for the various materials involved, and their
development relies on numerous assumptions. However, the sintering process represents a
complex industrial system governed by numerous parameters, time delays, varying oper-
ating conditions, and nonlinearity. Some critical process parameters cannot be measured
directly, limiting the application of mechanism-based modeling methods in characterizing
the dynamics of these complex industrial systems. As a result, these models face significant
challenges when applied to real-world industrial settings.
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4.2. Data-Driven Modeling

With the advancement of database technology and artificial intelligence, scholars both
domestically and internationally have begun to explore data-driven predictive models to ad-
dress the challenges that mechanism models face in predicting complex industrial process
parameters. Data-driven modeling methods involve studying the implicit mathematical
relationships between production data, thus avoiding the complexities of mechanism anal-
ysis [33]. These models utilize actual production data to compute the relationships between
various process parameters. These models are especially effective for complex and dynamic
industrial processes, facilitating the creation of data-driven models that are customized to
meet the specific requirements of industrial operations. Commonly used data-driven mod-
els include support vector machines (SVM) [34,35], feedforward neural networks [36,37],
deep belief networks (DBN) [38], autoencoders [39], recurrent neural networks (RNN) [40],
and convolutional neural networks (CNN) [41]. In the context of sintering, data-driven
models primarily focus on predicting certain key parameters, which can then serve as the
basis for process control or optimization. Sintering parameter prediction mainly targets
parameters that cannot be directly measured or those for which measurement involves
time delays, such as sintering endpoints, sintered product composition indicators, sintering
flue gas composition, and sintering ore drum index, among others.

4.2.1. FeO Prediction Method

In the sintering process, the ferrous oxide (FeO) content refers to the mass fraction of
FeO in the sintered ore. It is one of the key indicators used to evaluate the quality of the
sintered ore, directly reflecting the extent of reduction reactions and fuel consumption effi-
ciency during the sintering process. The optimal range for FeO content is typically closely
related to the actual requirements of blast furnace smelting. During sintering, the FeO
content cannot be quantified in real-time through online sensors and is usually determined
through laboratory chemical analysis. Given the inherent time lag in measurement, it is
challenging to adjust process parameters promptly to optimize production. Therefore,
the ability to accurately predict and control the FeO content in sintered ore is crucial for
optimizing the sintering process and improving smelting efficiency.

Reference [42] introduces a data-driven approach for forecasting the FeO content in sin-
tered ore, utilizing multi-source data and LSTM. This approach incorporates multi-source
features, including image data, vibration, and temperature parameters, to effectively reflect
the FeO content in the sintered ore. Reference [43] introduced an innovative framework for
dynamic time feature expansion and extraction, utilizing recursive neural network regres-
sion to forecast critical quality variables, such as FeO, for sintered ore quality prediction.
Reference [24] proposed a multi-model ensemble framework for predicting FeO content in
the iron ore sintering process, utilizing affinity propagation clustering to effectively classify
different operating conditions and employing support vector machine (SV M) algorithms
to identify these conditions. Reference [44] developed a method for predicting FeO content,
integrating heat transfer mechanisms with a data-driven model, in which sintered ore is
classified into three categories based on the peak temperature. Three variants of Long
Short-Term Memory (LSTM) models, known for their robust adaptability to dynamic and
nonlinear data across varying conditions, are utilized to forecast the FeO content during
the sintering process. Reference [45] introduced the use of a restricted Boltzmann machine
(RBM) to design a supervised RBM (SRBM), integrating quality variables into the visible
layer to direct the model’s learning of quality-relevant features. A stack of multiple SRBMs
is used to form a supervised DBN, which facilitates the prediction of FeO content by
progressively learning quality-related features across layers. Reference [46] introduced
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an online measurement approach for FeO content, utilizing infrared images of the sinter
machine’s rear section in conjunction with CNN. Reference [47] through the compression
of observed images, image features are combined with numerical data corresponding to
sampling time. A multi-source information fusion model, MIF-Autoformer, which integrates
deep convolutional neural networks with Autoformer, is proposed for soft sensing-based
modeling of sintering quality. Finally, reference [48] proposed an online composition
monitoring model utilizing deep neural networks (DN N) alongside an advanced compo-
nent prediction model based on LSTM, designed to support field operators in real-time
management of variations in sintered ore composition. Reference [49] proposed a novel
semi-supervised dynamic feature extraction framework based on sequence pre-training
and fine-tuning to predict the FeO content in sintered ore. Reference [50] presented an
implicit subspace identification regression neural network based on orthogonal basis de-
composition and reconstruction, this approach employs a recursive Fourier transform-like
encoding block to extract features that capture long-term memory through orthogonal basis
decomposition. Subsequently, a stochastic gradient-based identification algorithm is used
to approximate the true system and model the FeO content.

4.2.2. BTP Prediction Method

BTP denotes the specific location or time point in the sintered ore bed where the
temperature required for combustion reactions and melting is reached. During the sinter-
ing process, the BT P marks the completion of the combustion of fuel and thermal energy
transfer within the material bed, making it one of the critical process parameters in sinter-
ing. Predicting the BT P can help optimize the bed height, sintering speed, and fuel ratio,
thereby improving production efficiency and product quality. However, the BT P is difficult
to measure directly, typically relying on manual experience, thermocouple monitoring,
or offline experimental methods. These approaches face challenges such as measurement
delays, insufficient accuracy, or operational complexity, preventing real-time adjustment of
process parameters. By predicting the location and time point of the sintering end, dynamic
control of the sintering process can be achieved, providing a basis for enhancing process
stability. Reference [51] proposed a probabilistic spatiotemporal perception network named
BTPNet. Within the encoder network, a multi-channel temporal convolution network
(MTCN) is employed to extract temporal features. Additionally, a novel architecture unit,
called the variable interaction awareness module (VIAM), is introduced to capture spatial
features, thereby enabling accurate multi-step prediction of the BT P. In reference [52], an in-
tegration of process expertise and multiple feature selection techniques is used to identify
key feature variables associated with BTP. A forecasting model for BTP and burn through
temperature (BTT) is established using a gradient boosting decision tree (GBDT) algorithm.
Grid search and cross-validation methods are employed to fine-tune the parameters of the
ensemble algorithm, and a system model based on training data is developed. Moreover,
a decision model is incorporated into the result generated by the predictive model, enhanc-
ing the system’s prediction accuracy. Reference [53] developed a multi-step prediction
model known as the denoising spatiotemporal Encoder-Decoder, which forecasts BTP in
advance. Mechanistic analysis is conducted to identify the key BTP variables, and for-
mulate BTP prediction as a sequence-to-sequence modeling task. Reference [54] utilized
mechanistic and mutual information analyses to identify key process variables that are
directly associated with BT P. The weighted kernel just-in-time learning (WKJITL) method
is subsequently employed to extract historical production data analogous to the BTP query
data, facilitating local learning-based modeling. Additionally, a fuzzy broad learning sys-
tem (FBLS) is introduced as an effective approach for BT P soft sensor prediction. Finally,
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reference [55] proposed a decomposition-driven encoder-decoder model that leverages a
self-attention mechanism to capture long-range dependencies between variables, and is
applied for multi-step BTP prediction in the sintering process. Reference [56] proposed
a 3-D convolution-based multi-step BT P prediction model that captures spatiotemporal
features, resolved the spatial interdependencies among process variables, while address-
ing the limitations inherent in existing loss functions, which primarily rely on Euclidean
distance and fail to capture the dynamic information in multi-step prediction sequences.

4.2.3. Carbon Efficiency Prediction Method

Carbon efficiency denotes the efficiency with which carbon energy is utilized during
the sintering process. Commonly used indicators for carbon efficiency include the com-
prehensive coke ratio (CCR) and the ratio of carbon monoxide (CO) to carbon dioxide
(COy), denoted as CO/CO,. CCR serves as an indicator of carbon utilization efficiency,
representing the amount of carbon consumed to produce one ton of sintered ore. A lower
CCR indicates a reduced carbon consumption per ton of sintered ore, implying higher
carbon energy utilization efficiency. The CO/CO, ratio reflects the completeness of carbon
combustion; a higher CO/CO; ratio indicates lower combustion efficiency, with a higher
proportion of CO in the exhaust gases. Conversely, a lower ratio signifies a reduced CO
content in the exhaust, indicating higher combustion efficiency. Both of these indicators
are challenging to measure simply and stably using sensors, and they can only be assessed
after the entire sintering process is completed. Therefore, if these indicators are to be used
for optimizing or scheduling sintering production, it is necessary to predict them before
the completion of the sintering process.

Reference [57] asserted that the primary energy consumption process in sintering is
the combustion of carbon, and it predicts carbon efficiency. This study uses the CCR as
the indicator for measuring carbon efficiency and proposes a prediction model based on a
particle swarm optimization (PSO) algorithm combined with a backpropagation (BP) neu-
ral network to analyze carbon efficiency. Reference [58] investigated the multi-time-scale
characteristics of carbon efficiency by developing a model that integrates intelligent multi-
time-scale techniques and neural networks. This model is capable of optimizing process
variables across both short-term and long-term time frames. It uses CCR and the ratio of
CO to CO; in the exhaust gases as indicators of carbon efficiency, establishing prediction
models for state variables using both a single neural network and a linear combination
of neural networks. The study indicates that the carbon efficiency prediction method has
practical significance. Reference [18] selected CCR as the indicator for carbon efficiency
and designs a method for modeling and optimization that is grounded in operational
modes. This study utilizes the K-means clustering technique to identify distinct operational
modes within the sintering process. For each identified mode, a CCR prediction model
is developed, incorporating two BP neural networks. The model predicts the optimal
operating mode based on CCR, reducing the CCR problem to a two-step optimization
problem, which is solved using PSO. The method is validated using real industrial data,
demonstrating the predictive performance of the model.Reference [59] proposed a carbon
efficiency prediction model combining Elman and recurrent neural networks.

Over the past few years, a flexible and efficient modeling approach, known as the
width learning model [60], has gained attention in the industrial sector. Reference [20],
Grounded in the principles of the sintering process, this approach identifies the key sin-
tering parameters that affect carbon efficiency and proposes a weighted fuzzy C-means
clustering algorithm to recognize various operating conditions. Subsequently, a width
learning model is developed for each operating condition. Finally, the nearest-neighbor
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criterion is employed to determine the optimal width learning model for predicting the
carbon efficiency time series. Reference [61] introduced a specialized kernel-based fuzzy
C-means clustering algorithm to classify real operational data under multiple conditions,
which is then utilized to model the iron ore sintering process. Additionally, the width
learning model’s broad network structure is used to model carbon efficiency predictions
under different operating conditions. Reference [54] developed a soft sensor model for
sintering endpoint prediction based on a weighted kernel instant learning and fuzzy width
learning system. The method involves using the weighted kernel instant learning approach
to gather historical production data comparable to the sintering endpoint query data for
local learning-based modeling and adopts the fuzzy width learning system as an effective
approach for predicting sintering endpoint soft measurements. Reference [62] designed a
dynamic carbon consumption prediction model for sintering, where broad learning models
are developed for different operating conditions. Reference [63] proposed a novel adaptive
weighted broad echo state learning system (AWBESLS) for dynamic carbon consumption
prediction in the sintering process, which adaptively assigned weights to production data
to mitigate the influence of outliers and used an echo state network (ESN) to capture the
dynamic states of the process.

Moreover, many scholars have applied SV M [64] to model the sintering process. Ref-
erence [21] develops a multi-level carbon efficiency prediction model based on mechanism
analysis, identifying the sintering process parameters that influence the comprehensive
coke ratio. For different operating conditions, the least squares support vector machine
(LS-SVM) is used, and a differential evolution algorithm is proposed to optimize the pa-
rameters and weights of the LS-SVM sub-models to improve their generalization ability.
The results indicate that the prediction accuracy is within acceptable limits and meets
the demands of real-world sintering production” or “the practical requirements of sinter-
ing production. Reference [65] constructed an optimization model to minimize blending
costs, constrained by the best granulation and mineralization performance of the mixture,
and uses an LS-SVM-based prediction model along with the basic properties of raw materi-
als to predict the fuel consumption, drum strength, and productivity of sintered ore. This
model comprehensively considers sintering performance, optimizes raw material costs,
and achieves low-carbon, low-cost sintering. Reference [66] proposed a CO/CO; soft mea-
surement model based on a hybrid kernel relevance vector machine for incomplete output
data through data augmentation. Reference [67] proposed a sintering energy consumption
prediction model using extreme learning machine and support vector regression.

4.2.4. Other Parameters and Summary

Reference [68] developed a quality prediction model for the tumbler strength in the
sintering process using a BP neural network algorithm with momentum and variable
learning rates. Reference [59] taking into account the unique characteristics of the process,
a real-time dynamic forecasting model for the CCR, which reflects carbon efficiency, was
developed. This model leverages predictive error information and is grounded in the
principles of generalized learning to enhance accuracy and adaptability. Reference [69]
applied linear regression and artificial neural network (AN N) algorithms to predict the pro-
ductivity of the sintering machine and the composition of input materials. In reference [70],
a hybrid ensemble model was proposed to predict key operational parameters, including
solid fuel consumption, gas fuel consumption, BT P, and tumbler index (TI). This model
integrates the extreme learning machine with an enhanced AdaBoost. RT algorithm, lever-
aging their complementary strengths to achieve higher predictive accuracy and robustness.
Reference [71] developed a novel fusion network by integrating the local feature extraction
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capabilities of CNN, the sequential data processing strengths of LSTM, and the adaptive
focus provided by the attention mechanism. This attention-augmented CNN-LSTM fusion
network demonstrated substantial improvements in the accuracy of ignition temperature
predictions, highlighting its effectiveness in capturing both spatial and temporal dependen-
cies within the data. Reference [72] combined a local thermal non-equilibrium model and
proposed a data-driven Tumble strength prediction approach. Reference [73] proposed a
knowledge-data dual-driven graph neural network (KDGNN) to address the limitation
of data-driven models that neglect domain knowledge, and was applied for end-to-end
prediction of tumbler strength. Reference [74] constructed a data-driven prediction model
with multiple time scales to predict the iron grade of sintered ore.

In summary, data-driven modeling methods do not require precise mechanistic knowl-
edge or comprehensive expert knowledge. Instead, these methods build models using
large amounts of data and continuously refine model parameters to improve their ability
to fit real-world processes, ultimately establishing a data-driven model. The advantages of
data-driven modeling methods include strong adaptability in handling highly coupled, non-
linear, and time-varying complex sintering reaction processes. However, their limitations
include model accuracy being constrained by sample data and algorithms, with a heavy
reliance on empirical data. Compared to mechanistic models, data-driven approaches are
better at describing nonlinear, complex industrial processes, are more efficient, and have
greater versatility. As a result, they have gradually become the preferred modeling method
for sintering process modeling.

4.2.5. Summary of Data-Driven Models

The limitations of data-driven methods in the context of the sintering process can
be discussed as follows: First, the composition of raw materials, operating conditions,
and environmental factors in industrial processes are often highly complex and variable.
Changes in the composition, moisture, and particle size of the raw materials during the
sintering process can lead to diverse and complicated sintering production data. Relying
solely on data-driven methods to build models may struggle to capture all the complex
relationships between features and variables. Second, many industrial processes, such as
sintering, may not have sufficient historical data, or the quality of available data may be
poor. Missing data, noise, or incorrect labeling can affect the accuracy and robustness of
models. In the iron ore sintering process, if there is insufficient data from various raw mate-
rial compositions or operating conditions, the model may fail to fully learn the complex
characteristics of the sintering process, resulting in inaccurate predictions or overfitting.
Third, many data-driven methods, particularly deep learning, are “black box” models,
meaning that they are difficult to interpret and understand. In industrial applications,
engineers typically want to understand and control the decision-making process of the
model. In the sintering process, data-driven models may not provide sufficient trans-
parency, making it challenging to integrate them with traditional engineering expertise,
thus reducing the model’s operability. Fourth, in practical production, raw materials and
operating conditions frequently change. A model trained under specific raw materials and
operating conditions may perform poorly when faced with new raw materials or conditions.
In the sintering process, variations in ore composition, particle size, or moisture content
can cause data-driven models to make biased predictions regarding sintering outcomes,
especially if the training data does not cover all possible raw material combinations.

To address these challenges and enable data-driven methods to adapt to a broader
range of industrial applications, the following strategies can be employed: First, perform in-
depth feature engineering by selecting features closely related to the sintering process, such

67



Processes 2025, 13, 180

as ore composition, particle size distribution, heating rate, and moisture content, and use
them as input features for the model. Through data analysis and domain knowledge, key
features that significantly influence the sintering process can be identified and extracted.
Second, increase the number of sensors and monitoring devices to improve the frequency
and accuracy of data collection. Installing real-time monitoring equipment, such as temper-
ature, humidity, and gas composition sensors, during the sintering process will provide
more high-quality training data. Data cleaning and preprocessing can be used to remove or
correct anomalous data, while data augmentation techniques can simulate and generate
new data to compensate for the lack of data in actual production, thereby enhancing the
model’s ability to adapt to different operating conditions and raw materials. Third, choose
machine learning algorithms with a certain level of interpretability, such as decision trees or
random forests, which can provide a visual representation of the decision-making process.
This helps engineers understand the model’s behavior and facilitates the integration of
the model with practical operational experience. By combining data-driven models with
expert knowledge, operational rules or optimization strategies that meet industrial needs
can be derived, allowing for a better integration of data-driven predictions with traditional
engineering expertise to support decision-making. Fourth, through incremental learning,
the model can continuously receive new data and update itself during production, adapting
to changes in raw material proportions and operating conditions. Transfer learning can be
applied by leveraging pre-trained models developed for specific scenarios, enabling rapid
adjustments to new environments or conditions. This approach allows for fine-tuning
existing models based on different raw materials and operating conditions, reducing the
need for extensive training data.

5. Summary and Prospect

In recent years, substantial advancements have been achieved in the modeling and
prediction of the sintering process, particularly in improving process efficiency, optimizing
energy utilization, and achieving green production. The research has primarily focused on
the prediction of sinter ore composition, BTP forecasting, carbon efficiency optimization,
and the modeling of key performance parameters, resulting in a variety of innovative
methods and technological applications. Overall, the research on sintering process mod-
eling and prediction has evolved from data fusion and feature extraction to dynamic
optimization, gradually achieving an integrated approach that combines machine learning
with industrial mechanisms. Through dynamic operational condition classification, model
optimization, and soft-sensing modeling, these studies have provided crucial technical
support for the intelligent control of the sintering process, energy utilization optimization,
and low-carbon production.

5.1. Problems

Currently, the modeling of the sintering process primarily adopts a data-driven ap-
proach. The typical workflow involves obtaining actual production data from the sintering
plant, followed by data preprocessing such as anomaly detection and correction. Afterward,
feature engineering is performed, and models are selected either based on operational
condition identification or through direct modeling. Below are some potential issues that
may arise:

1. Data limitations affecting prediction accuracy. One of the key challenges of data-
driven modeling methods lies in the necessity of having sufficient training data to train
the model. In turn, machine learning techniques based on data-driven approaches are
used to construct and design the prediction model’s structure and parameters. While
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data-driven models perform well in predicting the sintering process, when labeled
data is difficult to obtain, traditional supervised data-driven models fail to achieve
the desired prediction accuracy.

Insufficient consideration of real-world sintering conditions. Existing models for the
sintering process often fail to adequately account for the multi-parameter, nonlinear,
time delay, strong coupling, and multi-condition characteristics of the sintering pro-
cess. These complexities make it difficult to develop accurate models. Additionally,
a single modeling approach may not yield high-precision prediction models for all
indicators, highlighting the limitations of conventional methods in capturing the full
complexity of the process.

Time asymmetry between process influencing factors impacting model accuracy.
The sintering process is a continuous, long-duration industrial production process,
where iron ore powder undergoes steps such as mixing, granulation, distribution,
and sintering, taking approximately one hour to complete. The parameters that need
to be predicted during the sintering process are closely related to prior process param-
eters. For example, in the prediction of carbon efficiency, factors like carbon ratio and
moisture content influence the carbon combustion trajectory in subsequent sintering
materials, which in turn affects the composition of the exhaust gases. As process
parameters are detected simultaneously in the sintering process, but there is a time
difference-referred to as time asymmetry-between the various parameters influencing
the sintering process at any given moment, this creates modeling challenges and
negatively impacts the accuracy of the computational models.

5.2. Prospects

The modeling technology for the sintering process has advanced to a new level,

achieving some successes in practical applications. However, several challenges remain,

such as the complexity of process coupling and the difficulty of calculation, the inability to

fully incorporate all characteristic evaluation factors into the model, incomplete data for

model updates, and the inability of simulation calculations for specific problems to meet

actual research needs. With the continuous upgrade of computer networks and industrial

information technologies, big data and intelligent sintering production have become crucial

components of future innovations in intelligent manufacturing. The following points may

serve as directions for improvement in steel sintering process modeling:

1.

Incorporating more methods into data-driven models. In recent years, large models
have been rapidly developed. By leveraging the powerful data pattern discovery
capabilities of these models, it may be possible to predict certain parameters that are
difficult to measure or forecast.

Fully considering the actual conditions of sintering production. Most studies on
energy consumption modeling in the sintering process have treated various process
parameters at different time scales as inputs to energy consumption models. However,
these studies have not adequately accounted for the diverse operating conditions and
time delays characteristic of the sintering process. A single modeling approach cannot
achieve high-precision prediction models for all indicators. Therefore, research on
hybrid modeling methods, combining multiple models, multi-level structures, and in-
telligent modeling techniques across different time scales, is needed. This represents a
new approach to achieving high-precision prediction of sintering energy consumption.
Considering multiple objectives in operational parameter settings. In actual sintering
production, operational parameters must not only meet the demands of a single
objective but also ensure smooth production and guarantee the quality and yield
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of sintered ore. With the flourishing development of multi-objective optimization
algorithms, the next step will be to consider both the constraints of smooth produc-
tion and the uncertainty of state parameters under multi-level and multi-objective
conditions. Research will focus on intelligent optimization techniques for the global
carbon efficiency optimization of the sintering process, as well as the optimization of
raw material parameters and operational settings, based on advanced multi-objective
optimization algorithms.

4.  Integrating the model into the real-time control system can significantly enhance
operational efficiency. By combining the hybrid model with the real-time control
system, it is possible to predict key parameters such as carbon consumption and
gas emissions at various stages of the sintering process. These predictions can then
be used to adjust operational parameters of the sintering equipment in real time,
such as temperature, airflow rate, and raw material proportions. This predictive
feedback control approach effectively prevents energy waste and improves the overall
efficiency of the sintering process. Moreover, integrating the data-driven hybrid
model with an expert system enables adaptive adjustments to complex operating
conditions, enhancing the intelligence of the system while building upon traditional
control systems.
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Abstract: Food safety is a pressing global concern due to the risks posed by contami-
nants such as pesticide residues, heavy metals, allergens, mycotoxins, and pathogenic
microorganisms. While accurate, traditional detection methods like ELISA, HPLC, and
mass spectrometry are often time-consuming and resource-intensive, highlighting the need
for innovative alternatives. Biosensors based on biological recognition elements such as
enzymes, antibodies, and aptamers, offer fast, sensitive, and cost-effective solutions. Using
transduction mechanisms like electrochemical, optical, piezoelectric, and thermal systems,
biosensors provide versatile tools for detecting contaminants. Advances in DNAzyme- and
aptamer-based technologies enable the precise detection of heavy metals, while enzyme-
and protein-based biosensors monitor metal-induced changes in biological activity. Innova-
tions like microbial biosensors and DNA-modified electrodes enhance detection accuracy.
Biosensors are also highly effective in identifying pesticide residues, allergens, mycotoxins,
and pathogens through immunological, enzymatic, and nucleic acid-based techniques. The
integration of nanomaterials and bioelectronics has significantly improved the sensitivity
and performance of biosensors. By facilitating real-time, on-site monitoring, these devices
address the limitations of conventional methods to ensure food quality and regulatory
compliance. This review highlights the transformative role of biosensors and how biosen-
sors are improved by emerging technologies in food contamination detection, emphasizing
their potential to mitigate public health risks and enhance food safety throughout the
supply chain.

Keywords: biosensors; safety; food; beverage; heavy metals: pesticides; mycotoxins;
allergens; foodborne pathogens

1. Introduction

Food safety is an increasingly pressing global concern due to risks such as pesticide
residues, food allergies, heavy metals, and pathogenic microorganisms. The extensive
use of pesticides, combined with environmental pollution, has resulted in the persistent
presence of contaminants in food sources [1]. In addition, food allergies have become a
significant public health problem, particularly in developed countries [2]. Spoilage caused
by pathogenic microorganisms is another critical food safety challenge [3].

Furthermore, heavy metals in the environment adversely affect plant growth, reduce
crop quality, and accumulate in plants. This contamination affects human health through
the food chain, as heavy metals have been associated with genetic damage and an increased
risk of cancer. Ensuring food quality is critical because contaminants such as allergens,
pathogenic microorganisms, heavy metals, and herbicides pose significant health risks [4].
With consumers becoming increasingly vigilant, the detection of contaminants in food has
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become essential [5]. Consequently, the identification of food contaminants has become a
priority [6].

Traditional detection methods, including enzyme-linked immunosorbent assay
(ELISA), high-performance liquid chromatography (HPLC), mass spectroscopy (MS), and
gas chromatography (GC), are highly accurate but are often expensive, time-consuming,
and require skilled operators. Therefore, there is an urgent need for faster, simpler, and
highly sensitive detection techniques [7]. The development of sensitive and reliable on-site
technologies for the detection and monitoring of food contaminants is essential to ensuring
food safety and protection from harmful substances.

Biosensors are particularly well suited for monitoring contaminants. These devices,
a subset of chemical sensors, use biological recognition elements for analyte detection.
Recent research has focused on developing a variety of chemical and biological sensing
devices, based on different operating principles, to identify hazardous substances in food.
These advances represent a significant area of interest in the field of food safety [8].

Biosensors, which integrate biological components such as enzymes, DNA, RNA,
antigens, living cells, or antibodies with electronic sensing elements like conductance,
intensity, electromagnetic radiation phase, electric current, mass, viscosity, electric potential,
temperature, and impedance [9-11], provide rapid and accurate results through their
combined functionality. The incorporation of biosensors into food quality monitoring
systems presents an innovative strategy to enhancing food safety and quality assurance [12].

Next-generation biosensor arrays incorporate artificial intelligence algorithms, en-
abling their specialization, selectivity, responsiveness, and consistency. With artificial
intelligence support, these biosensors more accurately identify biological analytes, en-
hancing performance and reliability. Artificial intelligence is transforming food systems
by providing tailored solutions through machine learning, natural language processing,
computer vision, and reinforcement learning [13]. These advancements improve food
safety through real-time detection and prevention of contamination. The application of
machine learning has significantly increased the efficiency of various sensors used in food
safety evaluation. By integrating machine learning with noninvasive biosensors, it is now
possible to monitor food safety more efficiently, with a particular focus on the stability of
bio-recognition molecules [14].

Machine learning enhances biosensors, transforming them into intelligent systems
capable of predicting analytes using stable training models [15]. It improves biosensor
specificity during data analysis and helps detect subtle patterns within sensor data. Ad-
ditionally, machine learning enhances the sensor’s ability to monitor multiple analytes in
complex food matrices, increasing the functionality and versatility of biosensors.

These devices allow rapid, accurate, and on-site detection of contaminants, revolu-
tionizing the management of food safety risks throughout the supply chain [16-18]. The
performance of a biosensor is evaluated based on several parameters, including sensitivity,
selectivity, specificity, reproducibility, size, diagnostic speed, scalability for large-scale
production, and cost effectiveness [19]. Various biosensors enhanced by machine learning
have been employed to analyze a range of food contaminants [20].

This review aims to provide an overview of how biosensors are used in the food indus-
try to monitor and control contaminants, as well as how biosensors have been enhanced by
emerging technologies, ultimately enhancing the safety and quality of food products.

2. Biosensors for Detecting Food Contaminates

Biosensors can be categorized based on various criteria, with two common approaches
being the type of transduction system employed, such as electrochemical, optical, piezo-
electric, and thermal biosensors, and the type of biorecognition element (biocomponent
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or bioreceptor). The biocomponent or bioreceptor, such as isolated enzymes, whole cells,
tissues, or aptamers, is essential in biosensors, enabling selective analyte detection and
interaction. The energy released from this interaction is converted into a measurable electri-
cal signal [21]. Common biological elements include enzymes and antibodies. Biosensors
are further classified into biocatalytic sensors and affinity sensors based on their interaction
with the analyte.

Biocatalytic sensors, or metabolism sensors, catalyze analyte conversion and measure
the resulting changes, such as product formation or reaction inhibition [22]. In contrast,
affinity sensors detect specific, irreversible binding between the analyte and the biological
component, resulting in a measurable physicochemical change. Figure 1 illustrates the
main biosensors used in the food industry to detect food contaminants.
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Figure 1. Classification of biosensors.

Electrochemical biosensors, the first type of biosensor to be commercialized, are being
studied extensively. These devices detect changes in electrical properties, such as current
or potential, caused by chemical reactions between the bioreceptor and the analyte. These
changes are converted into signals that correspond to the analyte concentration. Advan-
tages of electrochemical biosensors include minimal sample preparation, high sensitivity
with small volumes, and automation capabilities. However, challenges such as poor re-
producibility and stability remain [23]. Electrochemical biosensors are further classified
based on signal type as— potentiometric biosensors (measure potential differences using
ion-selective electrodes, providing analyte concentration data), amperometric biosensors
(measure current changes in the medium, offering high sensitivity and fast responses,
though they are susceptive to interference from unwanted electroactive species), conducto-
metric biosensors (detect conductivity changes due to biochemical reactions, operate at low
voltages, and do not require reference electrodes), and ion-selective field-effect transistor
biosensors (detect ion activity through potential changes at the gate electrode, offering
direct ion detection) [24-29].
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Optical biosensors detect changes in light properties resulting from interactions be-
tween the bioreceptor and the analyte, correlating these changes to analyte concentration.
These devices measure changes in light intensity and offer advantages such as resistance
to electromagnetic interference, compactness, simplicity, noninvasiveness, and suitability
for in vivo use. Based on their optical configuration, optical biosensors are classified as
intrinsic or extrinsic. Intrinsic configurations involve direct light passage through the
sample, while extrinsic configurations use external pathways. Absorption-based biosen-
sors measure analyte concentrations by detecting light absorption at specific wavelengths,
utilizing single or multiple optical fibers [30]. Surface plasmon resonance biosensors detect
refractive index changes, caused by analyte binding, at a metal-dielectric interface using
surface plasmon propagation [31,32]. Fluorescence-based biosensors detect frequency
changes in emitted radiation, often using fluorescent labels and fluorescence resonance
energy transfer. Luminescence-based biosensors rely on light emitted from exothermic
reactions, with bioluminescence occurring naturally in biological systems.

Piezoelectric biosensors integrate a biorecognition element with a piezoelectric ma-
terial, typically quartz crystals, which are preferred for their availability, heat resistance,
and stability in aqueous solutions [33]. These biosensors detect changes in mass, density,
or viscosity on the surface of a piezoelectric crystal, based on affinity interaction record-
ings. Known for their simplicity and low cost, they are highly practical for real-world
applications [33]. Piezoelectric biosensors work by generating an electrical potential when
subjected to mechanical stress and by deforming elastically in response to an electric field.

Thermal biosensors, also known as calorimetric or thermometric biosensors, measure
temperature changes resulting from bioreceptor-analyte interactions, which correlate with
analyte concentration. These sensors use thermistors or thermopiles as transducers [24,34]
and offer several advantages, including label-free detection, minimal recalibration, and
resistance to sample interference [24]. Thermal biosensors are widely used for their ability
to measure thermal changes proportional to molar enthalpy and product formation, and
they are particularly valuable in biochemical reactions. Enzyme-based designs are often
emphasized in research due to their exothermic reactions.

Immunosensors are designed to detect analyte-antibody interactions and are cat-
egorized into three main types: luminescent or colorimetric sensors, surface plasmon
resonance sensors, and electrochemical sensors. Antibodies, or immunoglobulins, are
Y-shaped proteins produced by B lymphocytes in response to foreign substances. Their
specificity makes them ideal for biosensors, where they bind tightly to antigens, forming
complexes. Antibodies used in biosensors can be monoclonal, polyclonal, or recombinant.
Monoclonal antibodies target a single epitope, while polyclonal antibodies bind to multiple
epitopes, offering stronger binding but higher cross-reactivity. Recombinant antibodies
are genetically engineered. Key features for use in biosensors include high sensitivity and
minimal cross-reactivity [35]. Effective antibody immobilization is essential for biosensor
performance, with methods such as covalent binding, non-covalent techniques, and affinity
coupling being employed. Factors like temperature, pH, and ionic strength also affect
antibody activity and sensor accuracy [36].

Aptamers, typically single-stranded RNA or DNA molecules consisting of 2-60 nu-
cleotides, bind specifically to targets such as organic molecules and cells [37]. Aptasensors,
biosensors that use aptamers as biorecognition elements, were first introduced in 1996 [38]
and have since found a variety of applications. Aptamers offer several advantages, includ-
ing high stability and affinity, simplicity, cost effectiveness, and excellent reproducibility
across different production batches.

Enzymes, biocatalysts that accelerate chemical reactions, are highly specific to certain
substrates, making them ideal for use in sensors. Various enzymes, including cholinesterase,
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urease, glucose oxidase, and others, are widely used in enzymatic inhibition analysis, a
well-established method [39].

Proteins such as phytochelatins and metallothioneins can also act as biorecognition
elements when immobilized on a transducer surface [40].

Whole cell-based biosensors use living cells, such as microorganisms or plant cells,
which can be natural or recombinant [41]. These biosensors are inexpensive, easy to
cultivate, and resilient to changes in pH, temperature, or ionic strength. They can perform
multistep reactions and regenerate by allowing the cells to regrow, often without the need
for sample preparation. However, they have slower response time and are more susceptible
to interference from contaminants.

Biosensors are indispensable tools for detecting and measuring contaminants in food,
offering rapid, sensitive, and selective analysis. They are critical for identifying and moni-
toring a wide range of food contaminants, including heavy metals [10,42], pesticides [43],
herbicides [44], allergens [45,46], mycotoxins [46—49], histamine [50], and other indicators
of food quality, as shown in Table 1. Consequently, biosensors are essential for ensuring
the safety and quality of food throughout the supply chain. More recently, in Food Safety
4.0, intelligent biosensors played a key role in transforming traditional methods into data-
driven solutions. Intelligent biosensors are advanced devices that combine biosensing
technologies with digital systems. These sensors detect hazards like pathogens, contami-
nants, allergens, and quality issues early, enabling proactive risk management. Integrated
throughout the food supply chain, these biosensors provide real-time data that empower
stakeholders to make informed decisions, ensuring food safety and quality from production
to consumption [51].

Regarding the limits of detection (LOD) of some heavy metals, the optical aptasen-
sors for Pb%* presented values from 0.07 to 100 nM, and the electrochemical aptasensor
presented an LOD from 0.00000051 to 2.9 nM; for Hg*, the values varied from 0.026 to
10.5 nM, and from 0.0001 to 25 nM for optical and for electrochemical aptasensors, respec-
tively [53]. The optimized surface plasmon resonance biosensor developed by [68] enabled
the biosensor to achieve an LOD as low as 0.2 pg/mL for egg allergen detection in red
wines. Zhou et al. [115], in a revision of the most recent progresses in photoelectrochemical
biosensors and their applications for monitoring mycotoxins in food, presented the LOD
values for AFB1 (from 0.00032 to 5.0 pg/mL), OTA (from 0.02 to 2.0 pg/mL), and for
fumonisin Bl (4.7 pg/mL). The meta-nano-channel biosensor, developed by Ron et al. [75],
employed for the specific and label-free sensing of Botulinum neurotoxin BoNT, presented
a limit of detection in the fg/mL range 10-100 ng/mL, with good linearity and a tune-
able sensitivity. Zaraee et al. [85] presented a rapid, label-free, and cost-effective optical
biosensor for the detection of E. coli with an LOD of 2.2 CFU/mL. A limit of detection
of 6 CFU/mL was shown by Bagheryan et al. [99] in a Diazonium-based impedimetric
aptasensor for the rapid, label-free detection of Salmonella Typhimurium in food samples.
A polydopamine-enhanced vertically ordered mesoporous silica film anti-fouling electro-
chemical aptasensor, developed by Jin et al. [109], for the purpose of indicator-free Vibrio
parahaemolyticus discrimination, using a stable inherent Au signal, presented 10 CFU/mL
as a limit of detection. An LOD of 10 copies/uL of genomic DNA for Listeria monocytogenes
and the possibility of distinguishing (high sensibility) Listeria monocytogenes from Salmonella,
Escherichia coli O157:H7, and Staphylococcus aureus was achieved in a paper-based bipolar
electrode electrochemiluminescence (pBPE-ECL) analysis system used for the sensitive
detection of pathogenic bacteria. This system was developed by Liu et al. [90].
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Table 1. Biosensors for detecting food contaminant.

Target Food Contaminate Biosensor Reference
Heavy metals

Heavy metal—Hg2+ ; Ag®; Pb2* Aptamers [52-55];
Cadmium Immunochromatography sensor [56]

Enzyme-linked immunosensor [57-59]
Heavy metals Conductometric biosensor [60]

Pb%*; Cu?* Enzyme biosensor [61,62]

Heavy metals DNAzymes [59,63]

Heavy metals Nucleic acid [59,63]

Pesticides

Carbamate Acetylcholinesterase biosensor [64,65]
Organophosphorus Non-enzymatic electrochemical sensors [66]
Pesticide Enzyme-based biosensor—acetylcholinesterase [44]
Pesticide Molecularly imprinted polymer-based biosensor [43]

Allergens
Allergen Antibody-based biosensor [45]
Allergen Nucleic acid-based biosensor [46]
Egg ovalbumin Electrochemical immunosensor [67]
Egg ovalbumin Surface plasmon resonance biosensor [68]
Fungal toxins—Mycotoxins

Patulin Immunochemical sensor [69]
Aflatoxin B Bio-electrochemical assay [70]
Fusarium Molecularly imprinted polymer-based biosensor [48]

Ochratoxin A Electrochemical immunosensor [71-73]
Immunosensor with fluorescence [74]
Mycotoxins Enzyme-based biosensor [47]

Bacterial toxins
Botulinum neurotoxin (Clostridium botulinum toxin) Meta—Nan0—Chan?lseé%/lé\il(i)eii;lfﬁffect Transistor [75]
Botulinum neurotoxin (Clostridium botulinum toxin) Surface Acoustic Wave Immunosensor [76]
Foodborne Pathogens—Bacteria

Campylobacter jejuni Mechanical Biosensor QCM [77,78]

Cronobacter sakazakii Optical Biosensor Colorimetric [79,80]
Cronobacter sakazakii Optical Biosensor SPR Antibody [81]
Cronobacter sakazakii Electrochemical Biosensor Antibody [82]
Escherichia coli O157:H7 Optical Biosensor Antibody [83]
Escherichia coli Optical Biosensor Antibody [84]
Escherichia coli Optical Biosensor Interferometric [85]
Escherichia coli O157:H7 Electrochemical Biosensor Antibody [78]
Escherichia coli Electrochemi;ﬁtgiir;}g;géngsgirg::ng?;;f) Biosensors [86]
Listeria monocytogenes Optical Biosensor Chemiluminescence [87]
Listeria monocytogenes Electrochemical Biosensor [88]
Listeria monocytogenes Electrochemical Biosensor Antibody [89]
Listeria monocytogenes Electrochei;mical Chemih}minescence (ELC) Biosensors [90]

aper-Based Bipolar electrode ECL

Mycobacterium tuberculosis Melfii?eclaelcgiiiSér:lsa(ﬁzlvéligis-tglh (al\r/}g;lQS(e;)ries [91,92]

Pseudomonas Optical Biosensor Surface Plasmon Resonance (SPR) [93,94]
Salmonella Optical Biosensor Antibody [95]
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Table 1. Cont.

Target Food Contaminate Biosensor Reference

Salmonella enterica subsp. enterica Enteritidis Optical Biosensor Antibody [84]

Salmonella enterica subsp. enterica Typhimurium Optical Biosensor Aptamer [96]

Salmonella enterica subsp. enterica Typhimurium Optical Bioseﬁsecs)(l;i(;;acléz(e]dcls?%face Plasmon [97]

Salmonella enterica subsp. enterica Typhimurium Electrochemical Impedimetric [98,99]
Salmonella Mechanical Biosensor Quartz Crystal Microbalance [100,101]
(QCM)

Staphylococcus aureus Electrochemical Potentiometric [102,103]
Staphylococcus aureus Mechanical Biosensor QCM [104,105]
Streptococcus agalactiae Electrochemical Amperometric [106,107]

Vibrio parahaemolyticus Electrochemical Biosensor [108]

Vibrio parahaemolyticus Electrochemical Biosensor [109]

Vibrio parahaemolyticus Electrochemical Biosensor [110]

Vibrio parahaemolyticus Electrochemical (;E}Eelrj?rl;lﬁi?:eossc::;oer(ELC) Biosensors [111]

Vibrio parahaemolyticus SERS Biosensor [112]

Vibrio vulnificus Colorimetric Biosensor [113]

Foodborne Pathogens—Virus
Norovirus Electrochemical biosensor [114]
Histamine
Histamine Molecularly imprinted polymer-based biosensor [48]

2.1. Heavy Metals

The most common metallic contaminants include chromium (Cr), cadmium (Cd),
lead (Pb), arsenic (As), mercury (Hg), copper (Cu), and zinc (Zn) [116]. Heavy metals
such as cadmium, lead, and mercury pose significant health risks when present in food
products [117]. To protect public health, it is crucial to regulate heavy metals like lead,
cadmium, and chromium in food sources [118]. Biosensors offer highly sensitive and
rapid methods for detecting heavy metal contamination in food samples. For instance,
a sensor has been developed to simultaneously detect lead and cadmium in fruits and
vegetables [119]. These devices enable real-time monitoring with exceptional precision and
selectivity, making them invaluable for ensuring food safety.

Various methods have been employed for the in situ detection of heavy metal ions,
including amperometric sensors [120], electrochemical sensors [63], acoustic sensors [121],
and inhibition-based biosensors [122]. Together, these techniques significantly enhance
the capabilities of biosensors, allowing for the efficient and reliable monitoring of heavy
metal contamination.

Biomaterials with biological activity and a specific affinity for heavy metals are widely
used to modify electrodes used for detection [53]. Electrochemical sensors integrate sen-
sitive biomaterials, such as nucleic acids, enzymes, antigens/antibodies, or whole cells,
with an electrochemical transducer in order to convert biochemical signals into electronic
signals [123-125]. Among these biomaterials, nucleic acids and enzymes are the most
extensively studied for electrode modification in heavy metal detection [63,126].

Microbial biosensors provide a cost-effective and highly sensitive solution for the de-
tection of heavy metal ions. For instance, microbial fluorescence-based biosensors [127,128]
use reporter genes, activated in response to specific biochemical interactions between cellular
reporters and inducer molecules. The integration of a chemostat-like microfluidic platform
with microbial biosensors allows for molecular analytical detection on a chip [129]. Further-
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more, optical DNA biosensors combined with evanescent wave analysis offer rapid, in situ
detection of heavy metal ions [130]. Certain heavy metals bind to nucleic acid bases, forming
metal ion-guided pairings like thymine (T)-Hg?*-T and cytosine (C)-Ag*-C [130]. This feature
has garnered an interest in functional nucleic acids, including DNAzymes and aptamers, used
for electrode modification in heavy metal detection [125]. DNAzymes are highly stable and
specific molecules with a strong binding affinity, making them effective tools for heavy
metal detection [59,131]. For instance, Tang et al. [132] developed a DNAzyme-based
electrochemical sensor using rolling circle amplification to detect Pb** in water.

Aptamers, single-stranded DNA, RNA, or peptide sequences, exhibit a high affinity and
specificity for target molecules. As cost-effective and easily produced alternatives to anti-
bodies, aptamers are highly sensitive and specific. They have been effectively used to detect
heavy metals such as lead (Pb), mercury (Hg), and cadmium (Cd) in food [125]. For example,
Miao et al. [133] developed a DNA-modified Fe;O,@Au nanoparticle-based electrochemi-
cal sensor to detect Hg?" and Ag* in water, juice, and wine. Similarly, an aptamer-based
electrochemical sensor was designed for the detection of arsenic (As®*) in water using the
(GT),1-ssDNA sequence for specific recognition [134]. Aptamer-based sensors for Pb?* [135]
and Cd?* [136] further highlight their applicability in heavy metal detection.

Enzymes, as biocatalysts, accelerate chemical reactions and exhibit high specificity for
substrates, making them ideal for use in sensors. Certain heavy metals interact strongly
with enzymes, altering their activity. These changes in enzyme activity can be monitored
indirectly by measuring the corresponding electrical signals [125]. Enzymatic biosensors
have been developed for detecting specific heavy metals in food, such as a urease inhibition-
based sensor for identifying Pb?>* and Hg?* ions in water [137]. Enzyme-based biosensors
detect heavy metals through the activation or inhibition of enzyme activity, often caused
by interactions between metal ions and thiol groups in enzymes. Common enzymes used
include glucose oxidase, urease, and alkaline phosphatase, although selectivity challenges
exist, as some enzymes can interact with multiple metals.

Protein-based biosensors detect metal-protein complex formation without labeling,
measuring changes in electrical capacitance or impedance. Capacitive protein-based biosen-
sors are particularly sensitive to low heavy metal concentrations and outperform cell-based
devices in detection capabilities.

This suite of biosensor technologies collectively represents a powerful toolkit for de-
tecting and monitoring heavy metal contaminants in food, ensuring safety, and maintaining
quality throughout the food supply chain.

2.2. Pesticides

Pesticides, also known as plant protection products, are used to enhance crop yields
and protect crops from diseases and infestations [138]. They include herbicides, insecti-
cides, fungicides, plant growth regulators, and repellents. Pesticides can be chemically
classified into groups such as organochlorines, organophosphates, carbamates, pyrethrin,
and pyrethroids [139]. Among these, organophosphates, organochlorines, and carbamates
are the most problematic classes. Pesticides can accumulate in vegetables, fruits, and meat
throughout the food chain [140], and their residues in food products pose significant health
risks to consumers.

Biosensors have proven to be highly effective tools for detecting pesticide residues,
thereby ensuring food safety and compliance with regulatory standards [141]. These
devices facilitate the rapid, sensitive, and selective detection of pesticide and herbicide
residues [142]. By enabling real-time monitoring, biosensors have demonstrated great suc-
cess in detecting trace levels of pesticides, enhancing food safety protocols and protecting
consumers from the health hazards associated with such contaminants [143-145].
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Biomaterials, such as enzymes [146], antibodies [147], and aptamers [148], are em-
ployed to identify and measure pesticides at ultra-low concentrations. These biomaterials
exhibit highly sensitive and consistent interactions with pesticide molecules. Biosensors
that are specifically designed and optimized to detect particular pesticides, employ a variety
of techniques, including the optical [149-151], electrochemical [152-154], calorimetric [155],
and piezoelectric [156] methods, based on enzyme inhibition.

For example, electrochemical biosensors for pesticide detection utilize enzymes, whole
cells, or antibody—antigen interactions (immunosensors) [157,158]. Inmunosensors have
proven to be highly effective at rapid monitoring in agricultural applications [159]. Sens-
ing systems for herbicide detection include molecular imprinting fluorescent chemosen-
sors [160] and chemiluminescence immunoassays [161].

Electrochemical sensors are categorized into enzymatic and non-enzymatic types [162].
Enzymatic sensors rely on enzyme-catalyzed reactions at the electrode surface, while non-
enzymatic sensors depend on the direct electrochemical activity of the analyte on noble
metal electrodes [163]. Enzymatic sensors generally offer higher selectivity than their
non-enzymatic counterparts [164]. Numerous enzymatic sensors using acetylcholinesterase
have been developed, leveraging the strong binding affinity between organophosphorus
pesticides and the enzyme’s active sites [165,166].

Biosensors based on acetylcholinesterase inhibition are particularly effective for detect-
ing organophosphate pesticides [167-169]. Organophosphates inhibit acetylcholinesterase
by phosphorylating the serine residue at the enzyme’s active site, preventing the hydrolysis
of acetylcholine [158].

Enzymatic biosensors are widely studied for their stability, sensitivity, and accuracy,
making them particularly effective for detecting pesticides [170]. These biosensors uti-
lize acetylcholinesterase to detect enzymatic inhibition caused by organophosphates and
carbamates. The inhibition occurs when these compounds bind to the enzyme’s active
site, blocking the hydrolysis of acetylcholine into choline and acetate [171]. Enzyme-based
biosensors offer advantages such as high specificity, sensitivity, selectivity, availability,
and versatility. They are classified into two types: direct and indirect. Direct biosensors
measure analyte concentration or product formation during enzymatic reactions, while
indirect biosensors detect enzyme inhibition caused by the interaction with the target
analyte [167,172,173].

Although enzyme-based biosensors are highly specific, this specificity limits their
ability to detect multiple analytes. Efforts are ongoing to address this limitation [174]. For
instance, Borah et al. developed an amperometric biosensor based on the inhibition of the
enzyme glutathione S-transferase [175]. Another approach involves integrating multiple
enzymes, each sensitive to different pesticide types, into a single biosensing platform [157].

Electrochemical biosensors using whole cells have been proposed as an alternative to
enzyme-based systems for pesticide detection [158]. Microbial cells are a cost-effective and
stable option, eliminating the need for labor-intensive isolation and purification processes.
Large quantities of cells can be easily cultivated [176,177]. Physiological changes in these
cells, induced by exposure to toxicants (e.g., alterations in respiratory chain activity), are
used to evaluate acute biotoxicity.

Using biosensors for pesticide detection provides efficient analysis, enhanced pre-
cision, low-concentration detection, continuous monitoring, and cost advantages over
conventional methods, making them highly valuable for a variety of pesticide detection
applications [178-180].
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2.3. Allergens

Food allergies have become a significant food safety concern, with prevalence rates
estimated at 1% to 3% in adults and 4% to 6% in children, primarily due to hidden allergens
in processed foods [181]. These allergies result from the type I hypersensitivity reaction
of the immune system to ingested allergens, posing life-threatening risk [182]. Clinical
studies have documented 160 food allergens, with approximately 90% of allergic reactions
attributed to eight major allergens: eggs, milk, shellfish, fish, peanuts, tree nuts, soybeans,
and wheat [182].

Approximately 100 countries worldwide have legislation regarding the declaration
of allergenic ingredients [183]. Since 1985, the Codex Alimentarius has included food
allergens, with the General Standard for the Labelling of Prepackaged Foods mandating
the declaration of eight “priority” allergens: cereals containing gluten (such as wheat, rye,
barley, oats, spelt, or their hybridized strains); crustaceans and their products; eggs and
egg products; fish and fish products; peanuts, soybeans and their products; milk and milk
products (including lactose); tree nuts and their products; and sulphites at concentrations
of 10 mg/kg or more) [184].

In Europe, most countries adhere to European Union (EU) legislation, which mandates
the declaration of 14 allergens. This list includes the Codex-8, with peanut and soya named
separately, and adds celery, mustard, sesame, lupine, and mollusks [185]. In the United
States, allergen declaration is mandated by the Food Allergen Labeling and Consumer
Protection Act [186], which includes the Codex allergens but names only wheat among
cereals, excluding other gluten-containing grains. The Food Allergy Safety, Treatment, Edu-
cation, and Research Act amended the Food Allergen Labelling and Consumer Protection
Act to add sesame to the ninth major food allergen, effective 1 January 2023 [187]. For
tree nuts, the specific nut must be declared; for crustacea and fish, the species must be
identified [188].

In Canada, priority allergens include the Codex-8, along with mollusks and mus-
tard [189]. In Australia and New Zealand, a “contains statement” is mandatory for priority
allergens. These include wheat, fish, crustaceans, mollusks, eggs, milk, lupine, peanuts,
soy, sesame, almonds, Brazil nuts, cashews, hazelnut, macadamia nuts, pecans, pistachios,
pine nuts, and walnuts, as well as barley, oats, and rye when they contain gluten. Sulphites
must be declared if added at levels of 10 mg/kg or more [190].

Japan, the first country to regulate both intentional and unintentional allergen pres-
ence, categorizes allergens into those for mandatory disclosure (wheat, buckwheat, eggs,
milk, peanut, shrimp, crab, and walnuts) and those for recommended disclosure (almonds,
abalone, squid, salmon roe, oranges, cashews, kiwifruit, beef, sesame, salmon, mackerel,
soybean, chicken, banana, pork, macadamia nuts, peach, yam, apple, and gelatin) [191].
South Korea has a similar approach, with a distinct list of mandatory allergens including
eggs (confined to those from poultry), milk, buckwheat, peanuts, soybeans, wheat, mack-
erel, crab, shrimp, pork, peach, tomato, sulfurous acid (when present at 10 mg/kg or more),
walnuts, chicken, beef, squid, clams (including oyster, abalone, and mussels), and pine
nuts [192].

Food allergens originate from both animal and plant sources, with around 40% derived
from organisms that produce five or more allergens. These allergens are often concentrated
within a limited number of biochemically active protein families [193,194]. To safeguard
individuals with food allergies, effective analytical methods capable of detecting trace
amounts of allergenic ingredients in processed foods are essential. Biosensors provide
the rapid and accurate detection of allergens, thereby enhancing food safety for sensitive
populations [195].
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Biosensors utilize recognition elements, such as antibodies or aptamers, to specifically
target allergenic proteins from common sources like nuts and shellfish [196,197]. For
instance, immunosensors leverage antibodies designed to detect specific allergenic proteins,
enabling the quick and sensitive analysis of food samples [195]. DNA-based biosensors
identify genetic sequences linked to allergenic components, offering a reliable approach for
allergen detection [197].

Electrochemical biosensors have significantly advanced allergen detection due to their
high sensitivity, selectivity, and user-friendliness [198]. Innovations in nanoscience and
bioelectronics have further enhanced their performance by integrating biological receptors
with nanomaterials such as metal nanoparticles, graphene, and quantum dots, which
increase electrode surface activity and electron transfer efficiency [199,200].

Electrochemical immunosensors, which combine antibodies with electrochemical
sensors, are widely employed for detecting food allergen [201,202]. These sensors de-
tect allergenic proteins through antigen-antibody binding, generating electrical signals
proportional to analyte concentration [203,204]. Their high selectivity arises from precise
immunological interactions [195].

Nucleic acid-based electrochemical biosensors are prized for their compatibility with
miniaturization and microfabrication, as well as their simplicity in detecting food aller-
gens [205,206]. Despite the limited electrochemical activity of DNA probes and aptamers,
innovative approaches to probe immobilization, signal amplification, and performance
improvement are driving their development [167].

Sundhoro et al. [207] pioneered the use of molecularly imprinted polymers to detect the
soybean allergen marker genistein in complex foods. The sensor demonstrated performance
comparable to, or better than, portable allergen detection tools like lateral flow devices
and ELISA, offering high selectivity, rapid detection, and cost effectiveness. However, its
sensitivity still falls short of advanced methods like mass spectrometry and PCR.

Freitas et al. [208] designed an electrochemical dual immunosensor to simultaneously
detect peanut allergens, Ara h 1, and Ara h 6, with detection limits as low as 0.05%. The
sensor’s performance was validated through recovery studies and comparisons with ELISA,
confirming its reliability and effectiveness in complex food matrices.

2.4. Mycotoxins

My-cotoxins are low-molecular-weight, heat-stable secondary metabolites produced
by toxic molds belonging to the genera Aspergillus, Penicillium, Alternaria, and Fusarium.
These toxins, found in the mycelium and spores of molds, include aflatoxins, ochratoxins,
fumonisins, citrinin, patulin, zearalenone, trichothecenes, tremorgenic toxins, and ergot
alkaloids. Mycotoxins pose significant risks to public health [209]. Their toxicity depends
on factors such as species, mechanisms of action, metabolism, and the defense responses of
organisms consuming contaminated food [210]. Due to these risks, most countries have
established regulatory limits for mycotoxin levels in food, with thresholds varying by
product type [211].

Ochratoxin A (OTA) has been identified in various crops, including cereals, grapes,
coffee, and cocoa, as well as in derived food products, such as beer, wine, and vinegar.
Biosensors for OTA offer rapid response times, cost-effective production, and reliable
accuracy for on-site analysis [212]. OTA detection methods are broadly categorized into
two approaches: (i) rapid screening tests providing qualitative results, and (ii) confirmatory
tests offering precise quantitative measurements [213,214].

Portable biosensors, such as optical immunosensors, optical aptasensors, surface
plasmon resonance biosensors, and photoelectrochemical biosensors, have been developed
for detecting OTA in foods and beverages [215].

84



Processes 2025, 13, 380

Optical methods for mycotoxin detection such as colorimetric, fluorescent, chemilumi-
nescent, and surface plasmon resonance are valued for their simplicity, speed, reliability,
and high sensitivity [216]. These biosensors combine a biological sensing element with an
optical transducer to detect analytes binding to a bio-recognition element immobilized on
a substrate [217]. This interaction generates an electronic signal proportional to the analyte
concentration [218]. Commonly used biorecognition elements include enzymes, substrates,
antibodies, and nucleic acids, with enzymatic systems often employed to convert analytes
into measurable products [216].

Optical biosensors operate in two modes: label-free detection, where an analyte—
transducer interaction generates a direct signal, and label-based detection, where labels
produce colorimetric, fluorescent, or luminescent signals [219]. Optical biosensors for
OTA detection represent a leading nanotechnological alternative to traditional methods,
offering rapid, sensitive, and specific analysis with minimal noise, low detection limits,
and multiplexing capabilities. Label-free biosensors require minimal sample volumes
and are suitable for real-time, on-site monitoring [220]. These devices use transducers to
convert biorecognition interactions into measurable optical signals, such as absorption,
transmission, or polarization [221].

Photoelectrochemical biosensors detect OTA by converting the chemical energy of
a semiconductor into electricity under light illumination, generating a photocurrent or
photovoltage. These biosensors are cost-effective and high sensitivity, but their reliance on
electrochemical processes and a light source limits portability [115].

Electrochemical immunosensors have been effectively employed to detect aflatoxin Bl
in pistachios [222]. Immunological biosensors, which use antibodies specific to mycotoxins,
and DNA-based biosensors, which target genetic sequences associated with mycotoxin-
producing molds, show significant promise for detecting these contaminants [223].

Colorimetric and luminescent sensors convert visible or UV light into analytical
signals [224]. For example, a colorimetric sensor for aflatoxin Bl detection employed a
direct competitive ELISA principle, with a color change measured spectrometrically at
620 nm. This method achieved sensitivity as low as 0.2 ng/mL, outperforming microtiter
plate ELISA [225].

Enzyme-based biosensors frequently utilize acetylcholinesterase due to its high sus-
ceptibility to mycotoxins, particularly aflatoxin B1, which inhibits its activity [226,227].
This inhibition is reversible, as the toxins bind non-covalently to the enzyme [228]. Among
enzymatic inhibition methods, aflatoxins are among the most sensitive toxins [229].
Cholinesterase has been demonstrated to be effective for detecting aflatoxin B1 [230].

A portable biosensor for Aflatoxin detection using surface plasmon resonance tech-
nology has been developed. This sensor utilizes surface plasmon resonances in ~50 nm
metallic films and surface functionalization for selectivity. Moon et al. [231] employed this
device for in situ monitoring of aflatoxin B1 in grains. However, its high cost and lack of
reusability necessitate further research to improve practicality.

Zearalenone, a nonsteroidal estrogenic mycotoxin produced by Fusarium fungi, poses
significant risks in food [232]. Researchers have developed a label-free amperometric
immunosensor using mesoporous carbon and trimetallic nanorattles for its detection.
Panini et al. [233] created a microfluidic immunoassay with anti-Zearalenon antibodies.

Fumonisins, another class of mycotoxins from the Fusarium species, have been detected
using competitive lateral-flow immunoassays. Mirasoli et al. [234] designed such an assay
for total fumonisins in maize, integrating enzyme-catalyzed chemiluminescence detection
and a portable charge-coupled device camera.

Lu and Gunasekaran [235] introduced an electrochemical immunosensor capable of
simultaneously detecting two mycotoxins, fumonisin B1 and deoxynivalenol, in a single assay.
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Deoxynivalenol, another Fusarium-derived mycotoxin [236], was detected using a biosen-
sor by Romanazzo et al. [237]. This system employed an enzyme-linked immunomagnetic
assay with immunomagnetic beads and magnetized screen-printed electrodes as transducers.

Patulin, a mycotoxin from the Penicillium expansum, Aspergillus, Penicillium, and Pae-
cilomyces species, presents a significant health concern [238]. Detection methods include a
competitive SPR-based immunoassay that utilizes laser-induced interactions to generate a de-
tectable resonance shift. Funari et al. [239] developed a piezoelectric biosensor, immobilizing
oriented antibodies on a quartz crystal’s gold surface using photonics-based techniques.

Many biosensors utilizing machine learning have been designed to detect mycotoxins,
valued for their exceptional accuracy and precision [14].

2.5. Foodborne Pathogens

Foodborne pathogens are a major cause of food contamination during production,
processing, and distribution. Consequently, the rapid and sensitive detection of pathogenic
microorganisms is crucial to prevent food spoilage and foodborne illnesses. Numerous
biosensor platforms have been developed to detect these pathogens [240-242]. The bacte-
ria species most commonly responsible for outbreaks include Salmonella, Escherichia coli,
Campylobacter spp., Vibrio cholerae, Listeria monocytogenes, and Shigella [243,244].

The primary function of a biosensor is to convert biochemical reactions into measur-
able electrical signals. Biosensors employing immunological, enzymatic, and molecular
recognition elements are widely utilized to specifically identify genetic sequences, surface
antigens, or metabolic by-products of pathogens [245]. DNA-based biosensors, which
use nucleic acid probes, have demonstrated efficacy in detecting the genetic sequences of
pathogens such as Escherichia coli and Salmonella [246-249].

Immunosensors, employing antibodies as recognition elements, are capable of identi-
fying the surface antigens of bacteria like Salmonella, Campylobacter spp., Listeria monocy-
togenes, and Escherichia coli [250,251]. Biosensors have been specifically designed for the
detection of pathogens including Salmonella [97,252-256], L. monocytogenes [251,257,258],
E. coli [259-262], Campylobacter [263], C. perfringens [264], Staphylococcus aureus [257,265],
and Toxoplasma gondi [266].

An electrochemical DNA biosensor for the selective identification of Salmonella enterica
subsp. enterica serovar Typhi (S. Typhi) in real samples was proposed and fabricated by
Bacchu et al. [267]. According to the authors, this biosensor showed excellent discrimination
capability to some mismatched bases and to different bacterial cultures belonging to the
same and distant genera. This DNA biosensor also presented a lower limit of detection and
the capacity to be reused more than six to seven times.

Angelopoulou et al. [268] were able to simultaneous detect two bacteria, namely
Salmonella enterica subsp. enterica serovar Typhimurium and Escherichia coli O157:H7, using,
for the first time, a label-free optical immunosensor based on the arrays of Mach-Zehnder
Interferometers monolithically integrated onto silicon chips.

Da Silva et al. [269], in a review, emphasize the importance of the application of
electrochemical point-of-care devices for the monitoring of potentially harmful and/or
toxic species that can be found in water resources, as well as waterborne pathogens (pro-
tozoa, bacteria, and viruses), allowing for faster on-site analysis. For the detection of the
protozoa Giardia lamblia and Entamoeba histolytica, a metronidazole-probe sensor, based on
an imprinted biocompatible nanofilm for the rapid and sensitive detection of anaerobic
protozoan was used. The method was developed by Roy et al. [270]. For the detection of
Cryptosporidium, a novel three-dimensional microTAS chip for the ultra-selective single-base
mismatched Cryptosporidium DNA biosensor was used. The method was developed by
Ilkhani et al. [271].
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Concerning viruses that can be transmitted by food and water consumption, norovirus
and hepatitis A virus are found to be the main cause of foodborne infections. Baek et al. [114]
developed an electrochemical biosensor applied to detect human norovirus, prepared by
standard procedure from an oyster. According to the authors, this biosensor can be used
as a very sensitive and selective point-of-care bioanalytical platform for the detection
of human norovirus in various food samples. The DNA sensor, developed by Manzano
etal. [272], can be adapted to a portable format to be adopted as an easy-to-use and low-cost
method for screening hepatitis A virus (HAV) in contaminated food and water.

The majority of these methods are based on immunosensors (antibody-based) or
DNA-based sensors. Peptides have also been investigated as recognition biomolecules in
the development of biosensors, offering high sensitivity, low-cost, and rapid response times.
Some of these biosensors hold potential portable devices for on-site analyses, enhancing
the detection of bacterial pathogens in food [51].

Nowadays, as a tool for helping improve risk management and ensure the highest
standards of food safety, we can deal with intelligent biosensors, which offer attractive,
smarter solutions, including real-time monitoring, predictive analytics, enhanced traceabil-
ity, and consumer empowerment [273]. IoT-based intelligent biosensors for detecting Vibrio
parahaemolyticus and smartphone-based intelligent biosensors for detecting ochratoxin A
(OTA) in wine, instant coffee, and Salmonella enterica subsp. enterica Typhimurium are
already available.

3. Strengths and Limitations of Biosensors for Detecting
Food Contaminants

Biosensors offer significant advantages in detecting food contaminants, making them
a valuable tool in ensuring food safety. A key strength of biosensors is their rapid detection
capability, enabling real-time or near-real-time monitoring, which is crucial for timely
intervention. Their high sensitivity and specificity, achieved through the use of biological
recognition elements such as enzymes, antibodies, and aptamers, allow for the detection of
contaminants at very low concentrations with remarkable accuracy [18].

Another notable advantage of biosensors is their cost effectiveness. Compared to
traditional detection methods, biosensors are more affordable, lowering the overall cost of
food safety monitoring. Additionally, many biosensors are designed to be portable and
suitable for on-site application, eliminating the need for complex laboratory equipment
or specialized expertise. Their versatility is highlighted by their ability to detect a wide
array of contaminants, including heavy metals, pesticides, allergens, mycotoxins, and
pathogens, making them suitable for diverse applications in food safety. The integration of
nanomaterials further enhances the performance of biosensors, improving their sensitivity,
stability, and overall efficacy [18,274].

Despite these strengths, biosensors also have limitations that need to be addressed
to fully realize their potential. Sensitivity constraints can be an issue, especially when
detecting low concentrations of certain contaminants. The complexity of food matrices can
also interfere with the accuracy and reliability of biosensor readings, posing challenges for
some applications. Furthermore, the stability and shelf life of biological components, such
as enzymes and antibodies, can be limited, affecting their long-term usability [18,275].

Calibration and standardization are essential to ensure consistent and reliable results,
due to the variability in biosensor performance. The process of obtaining regulatory
approval and validation can be time-consuming, delaying the adoption of biosensors in the
food industry. There are also integration challenges, as the integration of biosensors into
existing food safety management systems requires overcoming compatibility issues and
training personnel [18].
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The application of machine learning to biosensors has grown significantly, but key
challenges must be addressed to maximize its potential. A major hurdle is data availability,
as large and diverse datasets from biosensors are expensive and difficult to obtain. Strate-
gies for managing missing data are critical. The complexity of biological molecules also
complicates data acquisition and analysis, requiring precise identification and segmen-
tation. The quality and quantity of data used for training are critical, as they affect the
algorithm’s performance. Ensuring the datasets can accurately identify target compounds
is essential [14].

In summary, while biosensors have transformative potential for food safety monitoring
due to their rapid, sensitive, and cost-effective nature, addressing their limitations is
essential. Overcoming these challenges will be critical for the broader implementation and
reliability of biosensors in detecting food contaminants, ultimately improving food safety
and protecting public health.

4. Conclusions

Food safety is significantly threatened by contaminants such as heavy metals, pesti-
cides, allergens, mycotoxins, and pathogenic microorganisms, all of which pose serious
health risks. Heavy metals, including lead, mercury, and cadmium, are among the most
hazardous contaminants. Detection methods include DNA-modified electrodes, enzymatic
inhibition sensors, and aptamer-based systems. Biosensors for pesticide detection use
various biomaterials, including enzymes, antibodies, and aptamers, to detect trace residues,
with electrochemical biosensors, particularly enzymatic ones, being commonly used for
detecting organophosphates and carbamates. Innovations include integrating multiple
enzymes and using whole-cell biosensors. For allergen detection, biosensors utilizing anti-
bodies, aptamers, and nucleic acids identify allergenic proteins. Nanotechnology-enhanced
electrochemical sensors have improved both sensitivity and portability, although some
systems still face sensitivity challenges. Mycotoxins, toxic compounds produced by molds,
are detected using optical and electrochemical biosensors, such as immunosensors and
aptasensors. For on-site analysis, advanced approaches, such as label-free biosensors,
provide high sensitivity. The detection of foodborne pathogens has been revolutionized
by immunosensors and DNA-based biosensors, allowing for the specific, efficient, and
rapid identification of pathogens, thereby reducing the risks associated with foodborne
illnesses. While traditional biosensors are valued for their simplicity, portability, and cost
effectiveness, improvements in reproducibility and stability are necessary to meet the food
industry’s demands. Enhancing the ability to trace and extract features from complex food
matrices is essential for identifying contaminants and optimizing processes. Integrating ma-
chine learning enhances biosensor reliability and performance, addressing challenges like
single-molecule detection and signal noise. Advanced machine learning techniques and im-
proved computing hardware can increase sensitivity and pattern recognition. Developing
portable biosensors, utilizing artificial intelligence, internet of things, and nanomaterials,
will improve food safety monitoring. A multidisciplinary platform with high efficiency
and portability is crucial for addressing global food safety and health issues. In summary,
biosensors have the potential to transform multiple food safety applications, ensuring
regulatory compliance and protecting public health with greater efficiency. Intelligent
biosensors will be a powerful tool in improving risk management and ensuring the highest
standards of food safety and quality both now and in the future.
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Abstract: Pipeline incidents pose significant concerns due to their potential environmental,
economic, and safety risks, emphasizing the critical need to understand and manage this
vital infrastructure. While existing studies predominantly focus on the causes of pipeline
incidents and failures, few have investigated the consequences, such as shutdown dura-
tion, and most lack comprehensive models capable of accurately predicting and providing
actionable insights into the risk factors. This study bridges this gap by employing machine
learning (ML) techniques, including Random Forest and Light Gradient Boosting Machine
(LightGBM), for classifying pipeline incidents” emergency shutdown duration levels. These
techniques are specifically designed to capture complex, nonlinear patterns and interde-
pendencies within the data, addressing the limitations of traditional linear approaches.
The proposed model has further enhanced with Explainable AI (XAI) techniques, such as
Shapley Additive exPlanations (SHAP) values, to improve interpretability and provide
insights into the factors influencing shutdown durations. Historical incident data, collected
from the Pipeline and Hazardous Materials Safety Administration (PHMSA) from 2010 to
2022, were utilized to examine the risk factors. K-Fold Cross-Validation with 5 folds was
employed to ensure the model’s robustness. The results demonstrate that the LightGBM
model achieved the highest accuracy of 75.0%, closely followed by Random Forest at
74.8%. The integration of XAI techniques provides actionable insights into key factors
such as pipeline material, age, installation layout, and commodity type, which significantly
influence shutdown durations. These findings underscore the practical implications of the
proposed approach, enabling pipeline operators, emergency responders, and regulatory
authorities to make informed decisions that optimize resource allocation and mitigate
risks effectively.

Keywords: emergency shutdown duration; pipeline incidents; Explainable Al infrastructure
resilience; risk management
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1. Introduction

Pipelines are integral to global energy infrastructure, enabling the efficient transporta-
tion of critical resources such as oil and natural gas, which underpin industrial processes
and social functions [1]. Despite their operational efficiency, pipelines are vulnerable to
risks, and incidents often lead to shutdowns that can have severe environmental, economic,
and social impacts [2]. These incidents often necessitate emergency shutdowns, disrupting
normal operations, and requiring swift responses to mitigate cascading effects. Among
the various consequences of pipeline incidents, Emergency Shutdowns Duration (ESDs)
stand out as a crucial factor, as they directly impact the mitigation of damage, downtime,
and recovery efforts [3]. ESDs in pipeline operations are critical safety measures designed
to immediately halt operations during severe hazards or imminent dangers, such as gas
leaks, fires, or equipment failures [4]. Managing these incidents often requires emergency
shutdowns, whose duration can vary greatly based on the incident’s nature and context.
Understanding and classifying these durations at different levels is essential to optimize
emergency response decision-making processes and minimize cascading impacts on safety,
the environment, and the economy:.

Despite significant advances, research on the classification and prediction of emer-
gency shutdown durations remains limited. Many studies prioritize causal factors and risk
assessments over operational consequences, specifically in classifying and understanding
the levels of shutdown durations [5-8]. For example, Lam and Zhou [9] employed statis-
tical methods to identify the frequent causes of pipeline failures, such as corrosion and
third-party damage. Similarly, Halim et al. [10] analyzed causal factors and background
conditions influencing pipeline integrity. However, few studies have investigated the
shutdown duration [9,11-16]. For instance, Zhu et al. [16] have investigated how data
and information quality impact emergency shutdown systems decision-making. They
highlighted the importance of leveraging robust data frameworks to enhance safety-critical
decisions. However, this study did not address predictive modeling or classification of
shutdown durations, leaving a gap in applying such frameworks to duration-specific con-
texts. In the same line of research, Vitali et al. [17] assessed the locations of incidents, along
with the corresponding number of shutdown incidents for CO, pipelines, and calculated
the average shutdown durations. However, these studies focus on the frequency and
duration of shutdown incidents without considering the broader context of predicting and
understanding the levels of shutdown duration incidents. Moreover, Hainen et al. [18]
utilized hazard-based duration analysis with Weibull models to explore shutdown dura-
tions for hazardous liquid pipelines. They identified critical factors like incident location,
maintenance practices, and pipeline material, offering actionable recommendations for
reducing durations. Nonetheless, the investigation considered only limited causal and
background factors. In addition, their scope was limited to binary outcomes, neglecting
the multifaceted nature of real-world incidents. These studies provide valuable insights
but often lack predictive frameworks to classify shutdown durations effectively based on
incident characteristics.

Current practices in pipeline incident management largely rely on simplistic statistical
models, historical trends, and rule-based systems for ESD durations [19-21]. While these
approaches are cost-effective and accessible, they are significantly limited in both accuracy
and adaptability. The reliance on historical averages, for instance, assumes that similar
incidents will yield comparable outcomes. However, this overlooks the complex and dy-
namic factors influencing incidents, such as environmental conditions, equipment age, and
response efficiency [22]. Additionally, rule-based systems operate based on predefined
protocols, which lack the flexibility to adapt to evolving scenarios or incorporate nuanced
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data, often leading to generic and inaccurate predictions [23,24]. Moreover, traditional prac-
tices emphasize post-incident analysis and reactive decision-making rather than proactive
prediction and mitigation, contributing to delayed responses and prolonged shutdowns.
These limitations underscore the critical need for advanced, explainable predictive models
that integrate diverse data sources to improve incident management and reduce ESD du-
rations. The absence of a systematic, data-driven methodology to predict ESD durations
can lead to several challenges [25-27]. Firstly, it restricts the ability to optimize resource
allocation during emergencies, potentially delaying response times and increasing the
risk to public safety and environmental health. Secondly, it complicates the scheduling of
maintenance and inspection activities, as uncertainties in shutdown durations can disrupt
planned operations and lead to increased operational costs. Lastly, the lack of predictive
accuracy can undermine stakeholder confidence, including that of regulatory bodies and
the public, in the operator’s ability to manage emergencies effectively. Existing frameworks
lack predictive tools for categorizing shutdown durations into actionable levels, which
are crucial for tailored response strategies. Moreover, advanced data-driven methods,
such as ML and natural language processing, remain underutilized in this domain [28].
While duration models have identified key variables, their static nature fails to capture
the dynamic interdependencies of operational and environmental factors. Furthermore,
traditional predictive models operate as “black boxes”, limiting their applicability in safety-
critical contexts. XAI frameworks, which can provide transparency and actionable insights,
are yet to be integrated into pipeline incident management.

This study aims to bridge these gaps by leveraging ML techniques enhanced with XAI
tools to develop a robust classification system for pipeline shutdown durations. ML mod-
els can uncover complex, nonlinear relationships among variables [29,30], making them
ideal for analyzing pipeline incident data. XAl bridges this black box gap by providing
transparent insights into model predictions [31]. Techniques such as SHapley Additive
exPlanations (SHAP) show the contribution of factors like pipeline material, installation
layout, and incident timing to predicted shutdown durations and providing actionable
insights into the factors influencing shutdown durations to support informed decision-
making during emergencies. The integration of predictive modeling and explainability
offers a dual benefit. First, it improves the accuracy of shutdown duration predictions,
enabling more precise resource allocation and intervention planning. Second, it equips
stakeholders with a deeper understanding of incident dynamics, facilitating the design
of tailored strategies to mitigate risks and enhance safety. The study leverages historical
incident data from the Pipeline and Hazardous Materials Safety Administration (PHMSA),
ensuring a robust analysis of diverse variables. By prioritizing both predictive performance
and interpretability, this research bridges a critical gap in the literature, advancing the field
of pipeline incident management through innovative applications of ML and XAlI. Classify-
ing shutdown durations is essential for optimizing emergency responses and minimizing
disruptions. Short-term shutdowns typically require rapid but less intensive interventions.
In contrast, medium-term or long-term shutdowns require comprehensive strategies to
address severe impacts such as environmental remediation and supply chain interruptions.
A structured classification system enables decision makers to allocate resources propor-
tional to the severity of an incident, ensuring a balanced approach to immediate mitigation
and long-term resilience. Furthermore, identifying patterns and predictors of shutdown
durations facilitates proactive planning and preventive measures, reducing the frequency
and severity of future incidents. The findings aim to improve operational practices, inform
policy decisions, and contribute to infrastructure resilience.
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This study’s novelty lies in addressing these limitations through the application of
machine learning (ML) models enhanced with Explainable AI (XAI) techniques to classify
pipeline emergency shutdown durations. Specifically, the study has novelty in (1) inte-
grating SHAP values to make machine learning predictions transparent and interpretable,
addressing the traditional “black-box” limitation of ML models; (2) targeting shutdown
durations as a key focus, an underexplored but critical consequence of pipeline incidents, to
provide actionable insights for emergency management; and (3) identifying key influencing
factors, such as pipeline material, installation layout, and commodity type, to provide a nu-
anced understanding and support data-driven decisions. Furthermore, this study presents
innovations by advancing operational decision-making through predictive modeling and
explainability. Notably, the study has innovations in (1) developing a predictive frame-
work that integrates machine learning and Gaussian Mixture Models (GMM) to classify
shutdown durations into actionable categories (short, medium, and long); (2) employing
XAl techniques, particularly SHAP values, to provide actionable and explainable insights
into the factors influencing shutdown durations; and (3) enabling proactive emergency
management by anticipating the severity of shutdowns and facilitating resource allocation
to mitigate risks. This comprehensive approach not only addresses an underexplored
aspect of pipeline incident management but also sets the stage for proactive risk mitigation
strategies, ensuring safer and more reliable pipeline operations.

Related Studies and Research Gap

Previous studies have investigated various aspects of pipeline incidents, as shown
in Table 1. The existing literature on pipeline shutdown durations and incident man-
agement can be classified into four main categories: pipeline failure causes and risk fac-
tors, pipeline failure prediction, emergency response and risk management, and pipeline
incident consequences.

The first approach examines pipeline failure causes and risk factors using statistical
methods and causal analysis techniques. Studies such as Hameed et al. [12] developed a
risk-based methodology for optimizing shutdown intervals by considering system avail-
ability and risk, using the Markov process to calculate critical equipment’s risk profiles.
These methods offer valuable insights into the causes of pipeline incidents, helping im-
prove inspection and maintenance practices. However, these approaches primarily focus
on identifying the causal factors of pipeline failures rather than understanding and pre-
dicting the duration of shutdowns caused by these incidents. As a result, while they
help mitigate pipeline failures, they do not address the crucial aspect of shutdown du-
ration, which is essential for optimizing emergency response strategies and minimizing
operational disruptions.

The second approach involves the use of predictive models to estimate pipeline failure
or shutdown durations, particularly using machine learning algorithms. Capshaw and
Padgett [32] introduced a predictive model for estimating refinery shutdown durations
during hurricanes, using logistic regression and Poisson distribution to analyze resilience
impacts. Though this study provided a valuable predictive framework, it was confined to
hurricane-related incidents and did not address generalizable models for pipeline incidents
under diverse conditions. The model does not offer a generalizable solution for predicting
shutdown durations in diverse operational and environmental contexts.

The third approach involves emergency response and risk management. Studies like
those by Vitali et al. [17] and Zhu et al. [16] explore methods such as Markov processes
and Monte Carlo simulations to optimize emergency response times, mitigate risks during
pipeline incidents, and improve real-time monitoring. While these studies provide a
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comprehensive framework for responding to pipeline incidents, they primarily focus on
mitigation strategies, without directly addressing the classification of shutdown durations.

Finally, the fourth approach focuses on evaluating the broader consequences of
pipeline incidents, such as the economic, environmental, and social impacts [33,34]. For
instance, Al-Douri et al. [35] employed statistical analyses to investigate causal factors
in shutdown incidents, identifying differences between hazardous liquid pipelines and
natural gas transmission but did not examine shutdown durations. While these studies
contribute valuable insights into the systemic effects of pipeline disruptions, they do not
specifically address the duration of shutdowns, which are essential to improving decision-
making during emergency responses.

While several studies have investigated the causes and impacts of pipeline failures
and shutdowns, a clear gap remains in research focused on classifying and understanding
emergency shutdown durations. Current approaches typically rely on general models
that predict incidents or analyze risk factors but do not specifically address the duration
of these incidents or classify them into actionable categories. The proposed study aims
to bridge this gap by utilizing machine learning models enhanced with XAI techniques
to classify pipeline shutdown durations into meaningful categories (short, medium, and
long-term). By leveraging advanced predictive models and XAI techniques, this study
offers actionable insights into the factors influencing shutdown durations and supports
more efficient decision-making during pipeline incidents.

Table 1. Overview of pipeline incident studies: approaches and findings.

Study Research Focus Key Techniques/Methods Main Findings
Identify frequent failure
Halim et al. [10], .. . Statistical analysis, Causal causes like corrosion, damage,
Pipeline Failure Causes and . [ . .
Lam and Zhou [9], Risk Factors factor identification, Fault and equipment failure,
Hameed et al. [12] Tree Analysis highlighting areas for
improved inspection
Statistical models, Poisson Predict pipeline incidents,
Capshaw and Padett [32], Pipeline Failure Prediction distribution, Markov helping to anticipate future
Hassan et al. [6] . .
processes, Bayesian networks failures.

Addresses emergency
response times, optimized
shutdown strategies,

Markov Processes, GIS for
Vitali et al. [17], Zhu et al. [16], Emergency Response and Pipeline Monitoring, Monte

Yu et al. [14] Risk Management Carlo Simulation, Time Series .. . . L
. mitigated risk during pipeline
Analysis o
incidents
Evaluated the broader
impacts of pipeline
Al-Douri et al. [35], Cost-benefit analysis, shutdowns, emphasizing
Ramirez-Camacho et al. [33], Pipeline Incidents Multi-Criteria Decision economic, environmental, and
Xiao et al. [2], Consequences Analysis, Environmental social factors to aid in
Aalirezaei et al. [34] Impact Assessment decision-making regarding
pipeline maintenance and risk
management.

2. Methodology

Figure 1 describes the methodology employed in this study for classifying emergency
shutdown duration levels in pipeline incidents. The process begins with the collection of
incident reports from the PHMSA. To ensure the robustness of the analysis, data irregulari-
ties, including missing values, are addressed. Missing values in continuous variables are
handled through imputation with their respective means, while categorical variables are
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treated using one-hot encoding to enable effective inclusion in machine learning models.
Additionally, Min-Max scaling is applied to normalize continuous variables, ensuring that
the relative importance of each feature is treated equitably during modeling. Influential
features are identified using the wrapper-based backward elimination method, which
iteratively refines the feature set by evaluating their impact on model performance. This
study employed Python (version 3.11.5), a widely used programming language, for data
preprocessing and modeling. Specifically, the Pandas library was used for data manipu-
lation and analysis. Following data preprocessing, shutdown durations are categorized
into sub-groups based on their severity using the Gaussian Mixture Clustering Algorithm
(GMM), implemented through Scikit-learn (version 1.5.2). GMM is selected for its ability
to model complex, nonlinear patterns in the data and probabilistically assign data points
to clusters [36]. The optimal number of clusters is determined using the Akaike Infor-
mation Criterion (AIC), resulting in three distinct categories: short-term, medium-term,
and long-term shutdown durations. This classification provides a structured framework
for assessing incident severity and tailoring responses accordingly. To develop predic-
tive models, a range of machine learning algorithms is employed, including Multilayer
Perceptron Neural Networks (MLPNN), Random Forest (RF), eXtreme Gradient Boost-
ing (XGBoost), Categorical Boosting (CatBoost), and Light Gradient Boosting Machine
(LightGBM). These algorithms are chosen for their ability to capture intricate patterns and
dependencies within the dataset. Rigorous hyperparameter tuning is performed using
randomized search techniques to optimize model configurations and enhance performance.
The models are evaluated using metrics such as accuracy, precision, recall, and F1-score to
ensure comprehensive performance assessment. K-Fold Cross-Validation, with five folds, is
employed to validate the robustness and generalizability of the models across diverse data
samples. To enhance the transparency and interpretability of the predictive models, XAl
techniques are integrated. SHAP values are employed to interpret model predictions [37],
providing detailed insights into the influence of various factors on shutdown duration
classifications. Key features such as pipeline material, installation layout, timing of inci-
dents, and commodity type are identified as critical determinants of shutdown durations.
By bridging the gap between predictive accuracy and interpretability, the integration of
XAl ensures actionable insights for pipeline operators, emergency responders, and regu-
latory authorities. Overall, this methodological framework represents a robust approach
to addressing the challenges associated with classifying shutdown durations in pipeline
incidents. By combining advanced machine learning techniques with explainability, the
study not only achieves high predictive performance but also provides valuable insights to
support effective decision-making in emergency management scenarios.

2.1. Data Collection and Preprocessing

This study obtained oil pipeline incident data from PHMSA for the years 2010 to 2022.
Earlier incident data prior to 2010 was excluded from the analysis due to challenges in
extracting and analyzing records from a different format that significantly differed from the
2010-2022 data. Moreover, reporting criteria and forms have evolved over time, leading
to variations in the attributes provided across years, which could influence the dataset’s
consistency. Additionally, the geographical coverage of the dataset includes incidents from
pipelines across the United States, with data reflecting various pipeline types, operational
environments, and geographical regions. However, the distribution of incidents is not uni-
form across regions, as certain areas may have a higher frequency of pipeline infrastructure,
such as densely populated or industrial regions, while others may have fewer incidents
due to less infrastructure or differing operational conditions. Additionally, operational

105



Processes 2025, 13, 445

and geographic factors like weather conditions, terrain, and access to emergency response
resources may vary significantly across regions, potentially affecting shutdown durations.
The incident report includes causal factors, background factors, and shutdown duration.
A causal factor directly triggers an incident [10]. PHMSA categorizes these factors into
eight major groups: excavation damage, corrosion failure, and equipment failure. Back-
ground factors, such as pipeline material, type, installation year, diameter, and transported
commodity, influence the occurrence of a causal factor without directly impacting pipeline
failure [10]. Furthermore, shutdown duration refers to the period during which a pipeline
remains inactive following an incident. Among the 4974 oil pipeline incidents reported
to PHMSA, 2472 instances led to shutdowns. To ensure data integrity, missing values
for continuous variables were imputed by using their respective means, and for categor-
ical variables, missing values were addressed by employing the modes specific to each
category. Additionally, the respective variable was excluded from the analysis in cases
of high missing values. The GMM was employed to categorize the numerical value of
shutdown duration into sub-groups due to its flexibility in handling complex, nonlinear
patterns in the data and its ability to model probabilistic relationships. GMM assumes that
all data points are generated from a mixture of normal distributions, and this assumption
is reasonable for this study due to the large dataset and the diverse factors influencing
pipeline shutdown durations [38]. By incorporating variables such as pipeline material,
incident location, and commodity type, the dataset approximates distributions that can be
effectively modeled with Gaussian components. The validation of this assumption was sup-
ported by the GMM'’s ability to identify distinct clusters with meaningful interpretations,
aligning well with the real-world characteristics of shutdown incidents. GMM assigns
probabilities to data points within clusters rather than strictly classifying them, aligning
well with potentially varied patterns and distributions of shutdown durations in pipeline
incidents. Unlike hard clustering methods such as K-means, GMM'’s probabilistic approach
allows it to capture overlapping distributions and varied patterns in the data [39], which
are likely influenced by diverse factors such as pipeline material, location, and commodity
type. To determine the optimal number of clusters, the Akaike Information Criterion (AIC)
score was used. AIC is a robust model selection criterion that balances goodness-of-fit
with model complexity, ensuring that the number of clusters selected avoids overfitting
while accurately representing the data [40]. This guided the categorization of shutdown
duration into three groups: short (less than 12 h and 28 min), medium (12 h and 28 min to
213 h and 31 min), and long-term (over 213 h and 31 min) (see Figure 2). However, it is
acknowledged that clustering durations into these discrete categories might oversimplify
the inherent variability of pipeline shutdown incidents, particularly when durations at the
boundaries of these clusters are grouped together. An alternative approach would involve
applying regression techniques to predict shutdown durations as a continuous variable,
which could provide finer-grained insights into incident severity and resource allocation
needs. While this approach could allow for more precise predictions, the three-class system
was selected to strike a balance between model interpretability and operational relevance,
ensuring practical applicability for stakeholders. Short-term shutdowns typically represent
minor incidents requiring minimal intervention, medium-term shutdowns involve mod-
erate complexities demanding coordinated responses, and long-term shutdowns reflect
significant disruptions requiring extensive planning and resource allocation. This approach
ensures practical applicability for stakeholders while effectively capturing the inherent
variance in the data.
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2.2. Feature Selection

This study employs wrapper methods, specifically backward elimination, to identify
influential features related to the target variable, shutdown duration. The feature selection
process begins with the complete set of features, systematically assessing each feature’s
contribution to the model’s performance using a chosen machine learning algorithm and
a performance metric, such as accuracy. In each iteration, one feature is removed from
the set, and the model is re-evaluated to determine the impact of its exclusion. The
feature whose removal has the least adverse effect on model performance is eliminated.
This iterative approach continues until further removals no longer improve performance
significantly, ensuring an optimized and parsimonious feature set. This method identified
several critical features, as illustrated in Figure 3, which ranks their relative importance
based on a Random Forest model. Among the top predictors are unintentional material
release, pipeline age, and estimated pressure during the incident. For example, incidents
involving higher unintentional material release volumes and older pipelines are more likely
to result in extended shutdown durations, reflecting the increased complexity and scale
of required responses. Operational and structural variables, such as maximum allowable
pressure and pipeline installation layout, also emerged as significant factors influencing
shutdown durations. These features affect the accessibility and intricacy of repairs, directly
shaping the time needed to restore operations. The feature selection process underscores
the importance of understanding both causal and contextual factors in categorizing and
predicting shutdown durations. Table 2 provides a comprehensive overview of the key
variables identified as crucial for this analysis, offering actionable insights into emergency
pipeline management strategies.

__________________________________________________________________________

- Data Collection and Preprocessing
ﬁ - & | = Collect pipeline incident reports from PHMSA
1 4 ? = Handle missing values and outliers
QOQ" = (Classify shutdown duration into sub-groups (i.e., short, medium, &
. long-term shutdown duration)
!

Feature Selection
*Employ wrapper feature selection to identify the most influential features

!

ﬁ & Model Development

.| 289 | =Choose suitable algorithms (e.g., RF, XGBoost, CatBoost)
.. | +Split data into training and testing sets
© | *Optimize model parameters through hyperparameter tuning

I

*
?* * 3 s Model Evaluation and Validation
= | *Use evaluation metrics to assess the performance of each model
= | *Employ techniques k-fold cross-validation to ensure the robustness of the
Qng, Q. models

!

Explainable Al Integration
*Apply SHAP values to interpret and explain model predictions
*Extract insights into the factors influencing shutdown durations

Figure 1. Framework for classifying shutdown duration of a pipeline incident.
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Figure 2. Optimal number of clusters for shutdown durations using GMM.

Table 2. Input and output variables.

Variable Subcategories Data Type
Excavation damage, corrosion failure, equipment failure,
Input Causal factor natural force damage, incorrect operation, material failure of Nominal
pipe or weld, other outside force damage, and other
Pipeline installation layout Aboveground, underground, and transition area Nominal
Part of item involved Pipe, tank, meter, tubing, and other Nominal
Commodity released type Biofuel, CO,, Crudea;)licll,Fl;iitfill-;;arzo;rlc’)zejiltlre Liquids (HVLs), Nominal
Leak type Pinhole, seal, crack, connection failure, and other Nominal
Failure mode Leakage, rupture, mechanical puncture, overflow, and other Nominal
ncdeloaion Ottt fom operatoniled ppety n i
Pipeline material type Carbon steel, and other than carbon steel Nominal
Pipe facility type Intrastate and interstate Nominal
On/ off shore Onshore and offshore Nominal
Incident occurred week Weekday and weekend Nominal
Crossing Yes and no Binary
Pipeline age Ranging from 1 year to 103 years Discrete
Recovered material Ranging from 0.01 to 18,245 bbls Continuous
Unintentional release material Ranging from 0.01 to 48,400 bbls Continuous
Pressure during the incident Ranging from 0.25 to 2940 psig Continuous
Maximum allowable pressure Ranging from 0.25 to 5000 psig Continuous
Pressure during the incident Press:iceeiidigﬁz);i)ei Ecépés:(;iizsg } }gz//: 8§ ggg’ and Ordinal
Incident occurred day Morning, afternoon, evening, and night Ordinal
Output Shutdown duration Short, medium, and long-term shutdown Ordinal
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Figure 3. Feature importance for predicting shutdown duration levels.

2.3. Model Development

The development of predictive models is a critical component of this study, aimed at
accurately classifying emergency shutdown durations in pipeline incidents. A range of
machine learning algorithms, including Random Forest (RF), eXtreme Gradient Boosting
(XGBoost), Categorical Boosting (CatBoost), Light Gradient Boosting Machine (Light GBM),
and Multilayer Perceptron (MLP), are employed due to their ability to capture intricate
patterns and relationships in the data. To ensure the effectiveness and generalizability of
these models, the dataset is divided into training and testing subsets. This split allows
for objective evaluation of model performance on unseen data, ensuring that the mod-
els are robust and not overfitted. Hyperparameter tuning is performed to optimize the
performance of each model. A randomized search approach is utilized to explore a wide
range of hyperparameter combinations systematically. This process identifies the optimal
configuration for each algorithm, improving their predictive capabilities while maintaining
computational efficiency. Table 3 summarizes the selected hyperparameters for each model,
reflecting the best configurations determined through this tuning process.

Table 3. Hyperparameters for the proposed models.

Model Hyperparameters
RE Estimators: 100, Max Depth: 5, Min Samples Split: 2, Min Samples Leaf: 1,
Bootstrap: True
XGBoost Estimators: 100, Max Depth: 3, Learning Rate: 0.1, Subsample: 0.8
CatBoost Iterations: 100, Depth: 4
LightGBM Estimators: 100, Max Depth: 5, Learning Rate: 0.1
MLP eurons per Layer: 100, Activation: ReLU, Learning Rate: 0.01

2.4. Model Evaluation and Validation

The evaluation and validation of the predictive models are conducted using com-
prehensive performance metrics to ensure their reliability and robustness. Key metrics,
including accuracy, precision, recall, and F1-score, are employed to compare the perfor-
mance of the different models. Accuracy provides an overall measure of the models’
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correctness, while precision, recall, and F1-score offer deeper insights into their ability to
handle class imbalances and specific categories within the shutdown duration classification.
To further enhance the robustness of the evaluation, K-Fold Cross-Validation is utilized.
This approach divides the dataset into five subsets, or folds, to iteratively train and test the
models across different partitions of the data. During each iteration, one fold is held out as
the testing set, while the remaining folds are used for training. This process is repeated
five times, ensuring that every data point is used for both training and validation. By
averaging the performance metrics across all folds, this method provides a comprehen-
sive assessment of the models” generalizability and prevents overfitting. This rigorous
evaluation framework ensures that the models are not only accurate but also capable of
maintaining consistent performance across diverse datasets, making them suitable for
real-world applications in classifying pipeline shutdown durations.

2.5. Explainable Al Integration

XAl techniques are integrated into this study to improve the transparency and inter-
pretability of the machine learning models used for predicting pipeline shutdown durations.
Among these techniques, SHAP values are utilized to quantify the contribution of each fea-
ture to the model’s predictions. SHAP values are a prominent method in XAI that assigns
a value to each feature based on its impact on predictions, allowing users to understand
the rationale behind individual predictions [41]. By assigning the importance scores to
individual features, SHAP values help users understand how and why specific predictions
are made. These insights provide actionable information for stakeholders, enabling them
to identify factors most significantly affecting shutdown durations. The integration of XAl
ensures that the predictive models are not only accurate but also interpretable, fostering
trust and practical usability among pipeline operators and emergency responders.

3. Results and Discussion

This section provides an overview of the performance and implications of the predic-
tive models developed to classify emergency shutdown durations in pipeline incidents.
The models demonstrate strong predictive capabilities and highlight important factors
influencing shutdown durations. Through the integration of machine learning and XAlI,
this study not only achieves accurate classification but also enhances understanding of the
underlying variables driving predictions. These insights support better decision-making
for pipeline operators and emergency responders, offering practical applications for miti-
gating risks and improving response strategies. The findings underscore the potential of
combining advanced analytics and interpretability tools to address challenges in pipeline
incident management.

3.1. Model Performance Comparison

Table 4 illustrates the comparative performance metrics across various models em-
ployed in this study. LightGBM demonstrated the highest accuracy at 75.00% on the testing
data, closely followed by Random Forest at 74.8%. Additionally, these models exhibited
competitive precision, recall, and F1-score metrics, indicating their efficacy in classifying
shutdown duration levels. To ensure the reliability of the findings, a robust K-Fold Cross-
Validation method with K set to 5 was employed. The results indicated that the Light GBM
had an average accuracy of 74.74% on the validation data. While the differences in perfor-
mance across models were relatively small, this consistency underscores the robustness of
the feature set and preprocessing pipeline employed, as the models effectively captured the
primary patterns in the data. However, the observed prediction accuracy, while moderate,
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highlights certain inherent challenges. These include the complexity of pipeline shutdown
incidents, where numerous factors, such as regulatory delays or environmental conditions,
could influence durations but were not captured in the dataset. Moreover, features related
to the broader operational context, such as workforce availability, material stockpiles, or
proximity to repair facilities, might also play a significant role in shaping shutdown dura-
tions and should be explored further. Additionally, potential class imbalances in the dataset
may have contributed to reduced generalizability across short-, medium-, and long-term
shutdowns. These imbalances could skew the model’s ability to accurately predict minority
classes, leading to biases in predictions. The feature set, while comprehensive, may also
lack certain explanatory variables, such as real-time operational constraints or detailed
pipeline configurations, which could enhance model precision.

Table 4. Comparison of the performance of proposed algorithms.

Metrics RF MLP XGBoost CatBoost LightGBM
Accuracy (%) 74.8 74.60 73.99 73.19 75.00
Precision (%) 70.92 70.49 69.96 68.96 70.74

Recall (%) 71.28 72.94 70.92 70.32 71.68
F1-Score (%) 70.20 71.41 69.80 69.17 70.45

Despite these challenges, the models provide a foundational framework for under-
standing and predicting shutdown durations. The 75% accuracy, while moderate, rep-
resents a reasonable balance between predictive capability and operational feasibility,
particularly in complex real-world scenarios. To enhance the framework’s predictive
accuracy and address current limitations, future research could incorporate additional
explanatory variables, such as geographic data, real-time operational constraints, or de-
tailed pipeline configurations, which may offer a more detailed understanding of the
factors driving shutdown durations. Moreover, the integration of temporal data (such as
incident seasonality or historical response times) could provide a more detailed context
for improving predictions. Further, the nature of pipeline shutdowns, being affected by a
large number of interacting dynamic factors, suggests that the models may benefit from
more complex model architectures such as deep learning-based recurrent neural networks
(RNN) or long short-term memory networks (LSTM) to capture temporal dependencies
and long-range patterns. Advanced modeling approaches, such as ensemble learning
methods that combine traditional machine learning with deep learning models, could also
be explored to capture more complex interactions within the data. Additionally, applying
resampling techniques, such as Synthetic Minority Over-sampling Technique (SMOTE),
or cost-sensitive learning, could mitigate the effects of class imbalance and improve the
performance of the predictive framework for underrepresented categories. Incorporat-
ing continuous prediction models alongside classification models could help in making
more precise predictions for shutdown durations and enhance real-time decision-making.
Furthermore, integrating regression models to predict continuous durations alongside
classification models could provide more precise insights into shutdown durations, sig-
nificantly enhancing the practical utility of the framework. Another potential avenue for
improvement involves incorporating external factors, such as economic or environmen-
tal variables, which could influence the shutdown duration indirectly and further refine
model predictions.

111



Processes 2025, 13, 445

3.2. Explainable Al: Feature-Based Insights into Shutdown Durations

XALI techniques provide a detailed understanding of the model’s predictions by elu-
cidating the importance of features and their impacts on individual outcomes. SHAP
values were integrated for model interpretability, offering critical insights that influence
practical applications such as resource allocation and scheduling decisions. By providing
transparency into the contribution of each feature to the model’s predictions, SHAP values
enable stakeholders to make informed decisions about pipeline incident management
based on predicted shutdown durations. Understanding the key factors—such as pipeline
material, location, and timing—that influence shutdown durations allows emergency re-
sponse teams to prioritize resources more effectively and optimize their response strategies.
Figure 4 displays the SHAP summary plots by explaining for a LightGBM model, offering
a comprehensive view of variable importance across all instances through mean absolute
SHAP values. These values quantify the average impact of each feature on the model’s
predictions, allowing for the identification of critical factors that significantly influence the
classification of shutdown durations. This analysis highlights key variables, including pipe
installation layout, time of occurrence, and the type of transported commodities, which
collectively shape the duration of pipeline shutdowns. For instance, incidents involving
underground pipelines or occurring at night can be flagged as high-priority scenarios,
requiring specialized equipment and additional personnel due to the complexity of repairs
or limited resource availability during off-hours. Similarly, incidents involving highly
volatile liquids (HVLs), as highlighted by SHAP analysis, necessitate more intensive safety
protocols, such as containment measures, due to the higher risks they pose. These insights
empower operators to allocate the appropriate resources in advance, minimizing delays
and improving response efficiency.

3.2.1. Pipe Installation Layout

As depicted in Figure 4a, failures in underground pipelines are the predominant
contributors to long-term shutdown durations. This is due to accessibility challenges,
excavation requirements, and the intricate repairs needed for underground pipelines. Such
repairs often involve specialized equipment and labor-intensive procedures, leading to
significant delays in restoring operations [15]. On the other hand, incidents involving
aboveground pipelines, shown in Figure 4c, are associated with short-term shutdown
durations. The accessibility of these pipelines simplifies inspection and repair efforts,
facilitating faster resolutions. Aboveground pipelines are particularly advantageous in
emergency scenarios, where immediate access to the damaged infrastructure is critical.
Reducing shutdown durations in these cases leads to lower operational downtime costs
for operators and greater economic stability by minimizing disruptions in the supply of
essential commodities.

3.2.2. Timing of Incidents

The time of occurrence is a decisive factor influencing shutdown durations. Incidents
occurring during weekdays, as highlighted in Figure 4a, benefit from the availability of
emergency response teams and operational resources, resulting in shorter durations. In
contrast, weekend incidents experience delays due to reduced staffing levels and limited
resource accessibility. Similarly, nighttime incidents pose unique challenges, as shown in
Figure 4a. Limited visibility and reduced resource availability during the night necessitate
additional safety measures and extended response times. Conversely, incidents occurring
during the afternoon, as depicted in Figure 4c, are resolved more quickly due to optimal
visibility, resource availability, and heightened staff engagement. These temporal dynamics
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underscore the importance of aligning emergency response strategies with the timing of
incidents to optimize efficiency. By reducing shutdown durations during less optimal times
(like weekends and nights), operators can lower emergency response costs, while society
benefits from fewer interruptions in essential services.
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Pipe facility _intrastate
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Maximum allowable operating pressure
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Cause_equipment failure

Incident occurred week weekend
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Incident location_pipeline right of way

0.00 0.05 0.10 0.15 020
Average SHAP value

(a)

Cause_equipment failure

Item involved_valve

Commodity releasedHVL other flammable fluid
Commodity released refined and petroleum product
Unintentional released material

Pipeline age

Estimated pressure during the Incident

Pipeline material other than carbon steel

Incident occurred day_afternoon

Recovered material

000 002 004 006 008 010 012 014 016

Average SHAP value
(b)

Item involved pipe

Pipe installation layout_aboveground

Pipeline age

Commodity released_crude oil

Pipe facility intrastate

Estimated pressure during the incident
Incident occurred day_afternoon

Maximum allowable operating pressure
Recovered material

Incident location_ operator-controlled property

0.00 0.05 0.10 0.15 020
Average SHAP value
(c)

Figure 4. Global feature importance: (a) long-, (b) medium-, and (c) short-term shutdown duration.
3.2.3. Commodity Type

The type of commodity transported also plays a critical role in determining shutdown
durations. As illustrated in Figure 4b, incidents involving highly volatile liquids (HVLs),
such as refined petroleum products, often lead to medium-term shutdowns. The handling
of HVLs necessitates comprehensive safety measures, including containment protocols and
rigorous inspections, to mitigate secondary hazards. In contrast, incidents involving crude
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oil, as shown in Figure 4c, are typically resolved more swiftly due to well-documented
repair procedures and standardized containment strategies. This highlights the need for
tailored response approaches based on the commodity involved in an incident.

3.2.4. Incident Location

The location of pipeline incidents significantly impacts shutdown durations. As ob-
served in Figure 4a, incidents occurring within the pipeline right-of-way are associated with
prolonged durations. These locations often involve regulatory compliance requirements
and the coordination of multiple stakeholders, which can delay response efforts. Con-
versely, incidents occurring within operator-controlled properties, as depicted in Figure 4c,
are resolved more efficiently. Operator-controlled locations allow for streamlined decision-
making and the quicker implementation of containment and repair measures, minimizing
external dependencies and expediting recovery processes. Faster resolution of incidents on
operator-controlled properties leads to lower operational disruption and financial losses,
while also reducing the societal costs related to service interruptions.

3.2.5. Material and Facility Characteristics

The material of the pipeline and its facility type also influence shutdown durations.
Failures in pipelines made of materials other than carbon steel, as shown in Figure 4b,
require specialized repair techniques and materials, contributing to longer shutdown du-
rations. Similarly, intrastate pipeline failures, as indicated in Figure 4a, often result in
extended durations due to localized resource constraints and logistical challenges. In con-
trast, interstate pipelines benefit from centralized resource allocation and well-established
repair protocols, enabling shorter resolution times.

3.2.6. Pressure Conditions and Pipeline Age

Maintaining pressure within allowable operating limits is a critical factor in mini-
mizing shutdown durations. Pipelines operating within these limits, as highlighted in
Figure 4c, experience reduced stress on their infrastructure, lowering the risk of critical
failures and extensive repairs. Conversely, older pipelines, as depicted in Figure 4a,b, are
strongly associated with prolonged shutdown durations. Aging infrastructure often re-
quires comprehensive inspections and meticulous repairs to ensure safety and functionality,
resulting in longer recovery times. Upgrading aging infrastructure can significantly reduce
shutdown durations, leading to lower maintenance costs, enhanced pipeline reliability, and
reduced societal costs such as energy shortages and delayed services.

The insights derived from this XAI analysis offer valuable guidance for optimiz-
ing emergency response strategies and resource allocation during pipeline incidents. By
identifying specific scenarios that contribute to prolonged shutdowns, stakeholders such
as pipeline operators, emergency responders, and regulatory authorities can prioritize
resources more effectively. For instance, incidents involving underground pipelines or
occurring at night can be flagged as high-priority scenarios requiring immediate attention.
Additionally, understanding the influence of commodity type and incident location can
inform the development of tailored response plans, ensuring timely and efficient resolu-
tion. Incorporating economic assessments into the predictive model could guide future
investment decisions for pipeline infrastructure, ensuring that resources are allocated
effectively to minimize both operational and societal costs associated with prolonged shut-
downs. Future research could further enhance the predictive framework by incorporating
additional contextual features, such as geographic and demographic data, to capture the
broader impact of pipeline incidents. Integrating real-time data on material availability and
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emergency resource distribution could also improve the model’s accuracy and practical
applicability. By leveraging these insights, the overall management of pipeline incidents
can be significantly improved, minimizing economic, environmental, and safety risks
associated with prolonged shutdown durations.

4. Conclusions

The primary contribution of this study to the body of knowledge lies in the devel-
opment of an innovative framework that integrates ML techniques and XAI to classify
emergency shutdown durations and identify influential factors in pipeline incidents. This
approach provides a structured methodology for classifying shutdown durations into
different levels based on causal factors and pipeline characteristics, achieving an accu-
racy of 75% with the LightGBM. By addressing the complexities of pipeline incidents,
this study introduces a proactive mechanism for emergency response and resource opti-
mization, contributing to both academic research and practical applications. Furthermore,
the integration of XAI techniques, particularly SHAP values, ensures transparency and
interpretability, bridging the gap between predictive analytics and domain expertise. This
allows pipeline operators, emergency responders, and regulatory authorities to better un-
derstand the factors influencing shutdown durations and make informed decisions during
critical incidents. Moreover, the study’s methodological rigor, combining robust prepro-
cessing, advanced modeling, and interpretability, sets a foundation for future research in
infrastructure management. The practical implications of this work are substantial, as the
framework facilitates efficient resource allocation, risk mitigation, and emergency planning.
By providing actionable insights into the key factors influencing pipeline shutdowns, it
helps optimize decision-making and emergency response strategies. The study highlights
the potential of ML and XAI to address complex infrastructure challenges, paving the way
for future advancements in predictive modeling and emergency management strategies.
Through its contributions to both academic and practical domains, this research enhances
the understanding of pipeline incidents, offering a roadmap for integrating data-driven
insights into real-world applications.

Despite the contributions made, this study acknowledges certain limitations. The
dataset, while comprehensive, may lack important contextual variables, such as geographic
constraints, workforce availability, or real-time operational factors, that could further refine
model precision. Moreover, incorporating more diverse data sources, such as incident
response times and external weather conditions, could capture additional complexity that
influences shutdown durations. Additionally, potential class imbalances in the dataset
may have impacted the predictive performance for underrepresented categories, such as
long-term shutdown durations. Addressing these limitations could significantly enhance
the model’s applicability and reliability in real-world scenarios.

Future research will focus on incorporating these missing variables, such as geographic
data, workforce factors, and real-time operational constraints, which will help refine the
model and improve its predictive capabilities. Integrating continuous regression models
alongside the current classification techniques to provide more granular insights into shut-
down durations. Additionally, exploring ensemble approaches that combine regression
and classification models could increase the robustness and accuracy of the predictions.
Additionally, addressing class imbalances using techniques like SMOTE or incorporating
more granular pipeline data, such as detailed configurations or material-specific properties,
will likely improve the model’s generalizability. Future work will explore economic impact
assessments to evaluate the financial implications of reduced shutdown durations, provid-
ing stakeholders with a dual perspective on both the operational and financial aspects of
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pipeline incident management. This will help quantify cost savings, operational efficiencies,
and the broader societal benefits of faster recovery times.
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Abstract: This article addresses the complex behavior of composite laminates under var-
ied layer orientations during tensile tests, focusing on carbon fiber and epoxy matrix
composites. Data characterizing the mechanical load behavior are obtained using twelve
composite laminates with different layer orientations and the DIGIMAT-VA software (ver-
sion 2023.3). First, these data were used to elaborate a complex comparative analysis of
composite laminates from the perspective of materials science. Composite laminates belong
to three classes: unidirectional, off-axis oriented, and symmetrically balanced laminates,
each having a specific behavior. From the perspective of designing a new material, a
prediction model that is faster than the finite element analysis is needed to apply this
comparative analysis’s conclusions. As a novelty, this paper introduces several machine
learning prediction models for composite laminates with 16 layers arranged in different
orientations. The Regression Neural Network model performs best, effectively replacing
expensive tensile test simulations and ensuring good statistics (RMSE = 34.385, R = 1,
MAE = 19.829). The simulation time decreases from 34.5 s (in the case of finite element)
to 0.6 s. The prediction model returns the stress—strain characteristic of the elastic zone
given the new layer orientations. These models were implemented in the MATLAB system
2024, and their running proved good models” generalization power and accuracy. Even
specimens with randomly oriented layers were successfully tested.

Keywords: composite materials; machine learning; regression neuronal network

1. Introduction

Composite materials stand at the intersection of innovation and practical engineering,
blending diverse constituents to unlock superior properties and address the limitations of
conventional materials. As Nachtane and Tarfaoui [1,2] insightfully observe, these materials
ingeniously merge fibers with matrices, crafting systems surpassing traditional materials in
mechanical robustness and offering significant weight reduction and durability advantages,
fulfilling critical roles in demanding applications. El Moumen et al. [3] elaborate that this
precise integration allows for the strategic engineering of fiber arrangements within the
matrix, enhancing the adaptability of composites to meet exacting performance standards
across various industrial uses. The versatility of composite materials is particularly evident
in sectors requiring high-performance materials. Daly et al. [4] note that composites are
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ideally suited for critical aerospace, automotive, and military applications due to their
ability to be molded into complex shapes and intrinsic properties like corrosion and
fatigue resistance. This adaptability also extends to infrastructure projects and medical
implants, where composites provide innovative solutions to traditional challenges, tailoring
mechanical properties to meet precise engineering needs. Technological advancements
are at the heart of the evolution of composite materials. Using machine learning (ML)
techniques, Yang et al. [5] propose stress—strain models beyond the elastic limit for a
category of composite materials; these models establish a link between their composite
microstructures and their mechanical properties.

Ongoing innovations in fiber technology and matrix improvements have broadened
the capabilities of composites, with developments in nanotechnology and enhanced inter-
facial bonding techniques allowing these materials to withstand more extreme conditions.
These advancements are pivotal for industries like renewable energy, where long-term per-
formance under harsh environmental conditions is crucial. Further driving the capabilities
of composite materials, Tarfaoui et al. [2] and Rajak et al. [6] discuss how recent innovations
in fiber technology and matrix formulations have enabled the creation of materials that can
endure increasingly harsh conditions. These technological signs of progress are essential
for meeting the stringent demands of sectors such as the renewable energy and automotive
industries, where materials must perform reliably over extended periods. The science of
composite materials harnesses the unique properties of diverse constituents, innovatively
combining them to meet exacting performance standards. Khammassi et al. [7] demon-
strate how adding vermiculite, silver, and graphene oxide to PLA-based nanocomposites
significantly boosts their thermal stability and mechanical properties, enabling their use
in high-demand environments. Gan [8] explores the crucial role of interface structures,
revealing that enhancing interfacial bond strength can lead to a 40% increase in overall
material durability and performance, proving pivotal in applications that demand high
strength and longevity.

Additionally, Rajak et al. [6] cover expanding composites’ capabilities through novel
reinforcement materials that boost mechanical attributes, enhance thermal resistance and
environmental adaptability, and expand potential uses across cutting-edge engineering
fields. The matrix’s selection directly influences a composite’s performance by defining
its response to environmental and mechanical stresses. Polymer matrices such as epoxies
provide excellent adhesion and flexibility, with typical tensile strengths up to 100 MPa
and moduli ranging from 3 to 4 GPa, making them versatile for aerospace and consumer
applications [9,10]. Metal matrices incorporate materials like aluminum and titanium alloys,
offering superior thermal conductivity and mechanical properties with 200 to 400 MPa
yield strengths, tailored for high-load aerospace applications [11,12].

In the strategic synthesis of composite materials, selecting fibers and particles is critical
for balancing strength, stiffness, and environmental resistance. Carbon fibers, for instance,
are known for their high tensile strength, reaching up to 7 GPa. A modulus of elasticity
of around 230 GPa, making them ideal for applications demanding minimal weight and
maximum strength [13-16]. Glass fibers offer a more economical reinforcement option with
a tensile strength of around 3.5 GPa and a modulus of 85 GPa, well suited for less critical
structural applications [17-19]. Aramid fibers, noted for their impact resistance, provide
tensile strengths up to 3.6 GPa and a modulus of 70 GPa, which are ideal for military and
aerospace applications where durability is paramount [20-23].

Integrating artificial intelligence (Al) into composite material science has catalyzed
significant advancements in predictive modeling and optimization. For instance, Vahed
et al. [24] demonstrate how neural networks can enhance the prediction of dynamic mechan-
ical properties, achieving a notable accuracy improvement of up to 30% over traditional
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methods. This precision significantly reduces the experimental workload by optimizing
material properties efficiently.

Similarly, Ho et al. [25] use ML to predict the Young’s modulus of polymer com-
posites reinforced with carbon nanotubes, achieving a predictive accuracy that surpasses
traditional testing methods by approximately 25%, thus modernizing the development
process for new materials. Yang et al. [5] further contribute to this field by employing
convolutional neural networks combined with principal component analysis to accurately
predict stress—strain behaviors from microstructural images of composites. Their method
has reduced computational time by over 40% compared to conventional finite element
analysis, providing a rapid and scalable tool for material design. Moreover, as explored by
Dotoli et al. [26], virtual testing allows for the simulation of material performance under
real-world conditions with a precision of up to 95% correlation with physical testing results.
This approach saves substantial time and resources and ensures that aerospace composites
meet rigorous safety standards before implementation.

In conjunction with traditional composite constituents (such as fibers, particles, and
matrices), the application of Al in optimizing the interface and interaction between these
components has shown promising results. Research indicates that Al-driven optimization
of fiber orientation and matrix bonding can enhance composites” mechanical strength
and thermal stability by up to 50%, depending on the material specifications and envi-
ronmental conditions [4,14]. Campbell [27] emphasizes Al’s role in predicting and repli-
cating composites” mechanical behavior under varied stress conditions. This capability
allows for developing materials tailored to specific industrial needs with improved reli-
ability and performance, further pushing the boundaries of what can be achieved with
composite technologies.

Our work has developed along two axes from distinct scientific fields: composite
material science and Al, more precisely, machine learning. The connection between the two
axes lies in that machine learning aims to address specific challenges in using composite
materials: optimal design and precise behavior prediction.

Considering the first axis, this article delves into the intricate behavior of composite
laminates under varied orientations during tensile testing [28-32], focusing on carbon
fiber and epoxy matrix composites. Employing the advanced DIGIMAT-VA software, we
analyzed the stress—strain relationships and assessed rupture criteria to gain profound
insights into the material’s response under mechanical loading. This analysis forms the
basis for the subsequent explorations into material science and engineering [33,34]; it refers
to both zones of the stress—strain curve obtained during tensile testing, i.e., undamaged
(elastic) and damaged zones.

The second axis is an innovative method that utilizes ML models to predict com-
plex behaviors for known or new stratification combinations. These models, developed
using ML algorithms [35-39], enable the simulation and prediction of composite perfor-
mance with unmatched accuracy and efficiency, significantly reducing the time and cost
associated with experimental testing. Integrating ML into research methodologies [40,41]
transcends traditional boundaries, leading to a new predictive and adaptive materials
science stage. The potential of this approach is significant, leading to optimizing material
design to enhance performance. However, this paper does not address the optimization of
composite laminates.

Currently, our ML prediction method only focuses on the undamaged zone. We
have postponed developing models for the damaged zone as future work. Therefore, the
proposed ML models are based solely on data from the undamaged zone. Nevertheless, this
article also presents aspects of comparative mechanical analysis, including the damaged
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zone, for twelve specimens of laminate composites with multiple layers. Besides the other
interesting aspects this analysis reveals, knowing where the damaged zone begins is crucial.

This article’s structure is briefly presented. The material used in our work is described
in Section 2. It is about twelve specimens used in tensile tests made of the unidirectional
composite material AS4/8552-UD that combines AS4 carbon fibers with an 8552-epoxy
resin matrix. Each specimen has 16 layers of different orientations, which are given for all
12 specimens. Section 3 presents how the DIGIMAT-VA software is leveraged to produce
the stress—strain curves. These curves provide the data for constructing the ML models,
with preparation details described in Section 3.2.

The implementation of ML models is the goal of Section 4. Special attention was paid
to the implementation aspects, illustrated using specific datasets, to help the interested
reader understand and eventually construct their model. This section explains how ML
algorithms can be harnessed to train and test the dataset characterizing a specific specimen.
Among the algorithms we implemented, we present three along with their models: Multiple
Linear Regression, Support Vector Machine, and Regression Neural Network. The details
in this section (and Section 5) relate to the models” implementation using the MATLAB
system 2024 [38,39]. The predicted and actual values are compared for both the training
and test processes. Statistics for the training and test process results are provided for all
five constructed ML models.

Section 5 first aims to prove the generalization power of the prediction models con-
structed in the previous section context. The generalization power of an ML prediction
model (RNN2, a Regression Neural Network [39] developed in Section 4) is evaluated
using data points the algorithm has never encountered; these points are not part of the
training or test datasets.

Section 5.1 addresses the cases where new combinations share the same structure as
a specimen used in the model construction, differing only in a few layer orientations. A
variable parametrizes the set of new stratification combinations. We can determine the op-
timal characteristic of stress versus strain by predicting all new stratification combinations
and conducting a mechanical analysis, allowing us to find the best parameter value. This
procedure can be regarded as an optimization tool for a design problem.

In Section 5.2, the generalization power of RNN2 is evaluated under a tougher context:
specimens with randomly generated layer orientations. To stay within the generalization
area of the ML model, we first selected four base specimens (to make this presentation easy
to follow) subjected to tensile tests, contributing to the dataset used for training the RNN2
model. These specimens exhibit different behaviors in the stress—strain space.

Each layer orientation is independently modified using a uniformly distributed per-
turbation. The resulting specimens, with randomly generated orientations, are significantly
different from the basic ones but remain within the representation area of the model. Then,
we compare the predictions for these specimens with the results of DIGIMAT simulations.
The comparison shows that the prediction accuracy is greatly satisfactory for the new
randomly generated specimens; RNN2 has very good generalization power. However, the
ML model must be properly employed under some constraints. For example, in this stage,
the strain values must be inside the range corresponding to the elasticity zone.

Section 6 mainly discusses the results of tensile tests (42-49) and provides a compar-
ative mechanical analysis of the twelve specimens to explain their load behavior. The
analysis brings to light the fact that the twelve specimens belong to three classes: unidirec-
tional laminates, off-axis oriented laminates, and symmetrically balanced laminates, each
of them having a specific behavior.

The section devoted to conclusions briefly reviews our paper’s findings and establishes
the subject of future research.
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Our presentation focused on practical implementation [38,39] to help interested read-
ers understand and potentially replicate or apply parts of this work to their projects. To this
end, all algorithms used in our work are fully implemented, with accompanying scripts
provided as Supplementary Materials. Additionally, all necessary details are included in
the appendices.

2. Materials
2.1. Material Properties

AS4/8552-UD is a meticulously engineered unidirectional composite material that
combines AS4 carbon fibers with an 8552-epoxy resin matrix. It is specifically designed for
applications requiring exceptional mechanical properties. The unidirectional fiber orien-
tation optimizes mechanical strength along the axis of fiber alignment. It is particularly
suited for components subjected to uniaxial stresses, such as those found in aerospace
structures and high-performance automotive parts. For this study, AS4/8552-UD has been
selected due to its significant advantages over conventional materials like aluminum or
steel, particularly regarding strength-to-weight efficiency. The high fiber volume fraction
of approximately 59%, combined with the exceptional mechanical properties of the fibers
and the matrix, allows the composite to maintain a lightweight structure while offering
substantial structural integrity. As summarized in Table 1, the AS4 carbon fibers exhibit
outstanding axial tensile properties, with an axial Young’s modulus of approximately
217,687 MPa and a tensile strength of around 3413 MPa. These properties significantly en-
hance the composite’s tensile load-bearing capacity along the primary fiber axis. The fibers
also display high compressive strength and favorable transverse mechanical properties,
contributing to the composite’s overall performance under multidirectional stresses.

Table 1. DIGIMAT material model for AS4 carbon fibers.

Property Tension Compression
Axial Young’s modulus (MPa) 217,687 184,220
In-plane Young’s modulus (MPa) 15,236 16,595
Transverse shear modulus (MPa) 15,818 15,818
In-plane Poisson’s ratio 0.22 0.26
Transverse Poisson’s ratio 0.27 0.32

Tensile strength (MPa) 3413 3413
Compressive strength (MPa) 2366 2366

Similarly, the 8552-epoxy resin matrix, detailed in Table 2, provides a Young’s modulus
of about 4668 MPa and tensile and compressive strengths of approximately 56 MPa and
232 MPa, respectively. The matrix’s mechanical properties ensure effective stress transfer
between fibers and enhance the composite’s ability to absorb energy during deformation,
improving toughness and durability. The matrix also contributes to the composite’s resis-
tance to environmental factors, including corrosion and fatigue, which are common issues
with traditional metallic materials.

The synergy between the high-strength fibers and the resilient matrix results in a
composite material that outperforms traditional materials regarding strength-to-weight
ratio, fatigue resistance, and environmental durability. This fact makes AS4/8552-UD an
ideal choice for high-performance aerospace and automotive applications, where reducing
weight is directly tied to economic and ecological benefits. For instance, utilizing AS4/8552
composites in modern aircraft can enhance fuel efficiency by up to 12%, aligning with
industry priorities for sustainability and reducing carbon emissions (see [1,40]). By in-
corporating the superior mechanical properties highlighted in Tables 1 and 2, this study
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leverages the advanced characteristics of the AS4/8552-UD composite. This alignment
with contemporary advancements in composite material technology enables us to meet the
rigorous demands of modern engineering applications, providing tailored solutions that
enhance both performance and sustainability.

Table 2. Digimat material model for 8552 Epoxy matrix.

Property Tension Compression
Young’s modulus (MPa) 4668 4668
Poisson’s ratio 0.35 0.35

Tensile strength (MPa) 56 56
Compressive strength (MPa) 232 232

Shear strength (MPa) 62 62

2.2. Orientation and Stress Application

In composite materials, the strategic selection of fiber orientations plays a pivotal role
in tailoring their mechanical properties to meet specific operational demands. In this study,
we focus on a primary type of fiber orientation: unidirectional, which is integral to opti-
mizing the performance and application of the AS4/8552-UD composites. Unidirectional
orientations, where fibers are aligned along a single axis, are essential for applications
requiring high strength and stiffness in one direction. This option is particularly beneficial
in aerospace and automotive applications where aligning fibers along the load path can
significantly enhance the load-bearing capacity while minimizing weight, a critical factor
in fuel efficiency and performance enhancements [1,37]. The practical implementation of
these fiber orientations leverages advanced modeling and simulation tools to predict and
optimize the behavior of composites under various stress conditions. Using DIGIMAT-VA
software (2023.3 version), we apply virtual stress tests to explore the responses of differ-
ent fiber orientations under simulated mechanical loads. This approach helps refine the
composite design by providing insights into how each orientation influences the material’s
overall structural integrity and performance. Simulating these conditions is invaluable,
significantly reducing the reliance on costly and time-consuming physical testing while
accelerating the development cycle of new composite applications ([2,41]). The AS4/8552-
UD composite material investigation was characterized by a unidirectional load and a
fiber volume fraction of 59%. The capabilities of DIGIMAT-VA software were harnessed
to conduct tensile tests in alignment with the actual standard, as illustrated in Figure 1.
We carefully prepared twelve distinct specimen configurations, detailed in Table 3, each
featuring unique fiber orientations to extensively assess the material’s behavior under

varied stress scenarios.

254mm

Figure 1. Tensile test specimen (blue color-seizing ends).
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Table 3. Layup configurations and their designations.

Layups Configuration Designation
[0]16 S-1
[£20]s S-2
[£30]s S-3
[+45]s S-4
[£60]s S-5
[£70]s S-6
(90116 S-7
[0/45/0/90/0/—45/0/45]s S-8
[45/0/—45/90]s S-9
[45/—45/0/45/—45/90/45/—45] S-10
[0/30/0/90/0/—30/0/30]25 S-11
[60/0/—60/90]2s S-12

These configurations were segmented into three categories, as illustrated in Figure 2.
Unidirectional specimens included S-1 with a [0];¢ orientation and S-7 with a [90];¢ ori-
entation to test the response along parallel and perpendicular fiber alignments relative to
the load. Off-axis oriented specimens comprised S-2 ([£20]g), S-3 ([£30]g), S-4 ([£45]g),
S-5 ([£60]g), and S-6 ([£70]s), exploring the effects of fibers oriented at angles diverging
from the principal stress directions. Lastly, symmetric balanced specimens, such as S-8
([0/45/0/90/0/—45/0/45]s),S-9 ([45/0/ —45/9012s), S-10 ([45/ —45/0/45/ —45/90/45/ —45]s),
S-11([0/30/0/90/0/—30/0/30]s), and S-12 ([60/0/—60/90]s), were evaluated to deter-
mine their performance under symmetrically balanced loads, simulating complex oper-
ational conditions. This elaborate testing methodology highlights the versatility of the
DIGIMAT-VA software. It provides essential insights into how fiber orientation impacts
the mechanical performance of the composite, informing its potential applications across

diverse industrial sectors.

(a) Unidirectional Specimens

Figure 2. Cont.
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S-2: [+20]s

S-6: [+70]s

S-12: [60/0/-60/90]2s

S
S

(c) Symmetric Balanced Specimens

Figure 2. Specimen classification.

Digimat-VA was employed in this study to input the essential experimental data
needed to simulate composite materials accurately. These data include comprehensive
mechanical properties for the matrix (Epoxy 8552-UD) and the reinforcement (AS4 fibers),
which were incorporated into the software to ensure that the virtual material model closely
mirrors real-world behavior under varying stress conditions. The fiber properties, detailed
in Table 1, include axial and in-plane Young’s modulus (217,687 MPa and 15,236 MPa,
respectively), which ensure that the fibber’s contribution to stiffness and load distribu-
tion is adequately accounted for. The tensile strength (3413.08 MPa) and compressive
strength (2366.15 MPa) further solidify the robustness of the AS4 fibers under uniaxial and
multiaxial stresses.

As illustrated in Table 2, key parameters such as Young’s modulus (4667.7 MPa for
tension and compression) and Poisson’s ratio (0.35) were used to define the material’s elas-
tic and plastic behavior. Additionally, the matrix’s tensile and compressive strength was
set at 56.12 MPa and 231.67 MPa, respectively, providing a foundation for how the epoxy
responds under applied loads. As highlighted in Tables 4-6, the experimental data used
for the ply properties showcase essential metrics such as tensile and compressive moduli,
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strengths, and shear properties. These inputs (nomenclature given in Appendix A), includ-
ing Young’s modulus, shear modulus, and Poisson’s ratio, help simulate the composite’s
behavior under different loading conditions, ensuring the material response is precisely
captured. Incorporating these experimental values into Digimat VA streamlines the simula-
tion process, eliminates the need for repeated physical testing, and creates a highly accurate
virtual model. This data-driven approach enhances the fidelity of simulations and ensures
reliable predictions of the composite’s performance in structural applications.

Table 4. Experimental data (tension/compression).

Ply Property Value (MPa) Volume Fraction
E} 131,550 + 12 0.5956
Ff 2063 £ 10 0.5956
E} 9239 + 12 0.5872
F} 64 +4 0.5872
vl 0.302 0.5956
Ef 115,560 £ 12 0.6176
Ff 1484 + 7 0.6176
E5 9860 + 10 0.6148
F5 268 + 12 0.6148
Vi, 0.335 0.6148

Table 5. Experimental data (shear).

Ply Property Value

G2 4826 + 14 MPa
F15 (0.2% offset) 55 MPa

Fi 92 MPa

Shear properties volume fraction 0.5885

Table 6. Experimental data (matrix).

Ply Property Value
Density t/mm? 1.301 x 10~°
Young’s modulus (tension) (MPa) 4668 + 11
Young’s modulus (compression) (MPa) 4668 + 16
Poisson’s ratio 0.35

3. Method

3.1. Stress vs. Strain Analysis

DIGIMAT-VA (version 2023.3) software yielded the function stress vs. strain for each
specimen, including the tensile test’s elastic and damaged zones. In our work concerning
ML predictions, only the elastic zone of these curves is considered because, so far, our
interest covers only this zone. We have highly accurate simulation results equivalent to
physical tensile tests. Therefore, the stress value for a given strain will be regarded as the
actual stress value when compared to the ML predicted value to assess the quality of the
ML model. In other words, we work with two curves, stress vs. strain type, resulting from
the DIGIMAT-VA simulation and the ML model’s prediction. Both curves are considered
“experimental” results.

The simulation results for the 12 specimens allow us to perform a quite complex
mechanical analysis covering the elastic and damaged zones (details in Section 6). Our
main objective is to propose ML models that can produce accurate predictions.
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By analyzing these behaviors, we establish the foundation for the next phase of this
study, which utilizes artificial intelligence (AI) techniques to predict these complex material
responses. Prediction models for the behavior of composite laminates will be constructed
using various machine learning methods. Once validated against experimental data, the
ML approach extends the analysis beyond the initial composite set. The predictive ca-
pability validates the models’ reliability and enables us to explore new combinations
of materials and orientations, optimizing their mechanical properties without requiring
extensive physical testing. This integration of ML models marks a significant advance-
ment, enabling the discovery of advanced composite configurations with customized
performance characteristics.

3.2. Machine Learning Approach

The ML approach generates models for the stress—strain behavior observed during
tensile tests of various specimens. Preparing the dataset for the learning process is the
initial step, followed by constructing different parametric and nonparametric ML models.
As mentioned, the main objective is to construct ML models that can comprehend all the
measurements described earlier and predict the stress value for any pattern (combination
of orientations) at a given strain value. We established specific objectives to achieve our
ultimate aim, which will be accomplished through the following steps:

e  Generate a dataset of significant size. This dataset will be used to construct the
ML model, enabling it to provide a generalized response for any pattern and an
appropriate strain value.

e  Construct a parametric model (e.g., multiple linear regression) that is easy to under-
stand and apply and can be compared with the following models.

e  Construct some nonparametric models (SVM, decision trees, Gaussian process re-
gression, and neural networks), analyze their accuracy, and compare them to the
parametric model. Out of many ML models investigated, we chose to present two
nonparametric models (SVM and Regression NN). The last ones yielded four trained
and tested models, the most effective and appropriate to the considered dataset.

e  Select the most accurate parametric models that could be used in further research,
providing a solid foundation for future studies.

Remark 1. For our problem, many SVM and Regression NN models could be constructed, with
some of them having potentially superior capabilities to predict the behavior of the stencils. Initially,
our objective was not to find the best but to validate our approach: to prove that ML models can
accurately predict stress—strain behavior.

3.3. Data Preparation

As presented before, the data obtained using the synergistic combination of numer-
ical/experimental investigations are processed to generate the dataset needed for the
ML models’ construction. This dataset is used for the training and testing phases of the
considered ML model.

To describe our approach, we consider the data collected from twelve specimens’ tests,
which were loaded within different stress and strain ranges. Linear segments approximated
the results, as shown in Figure 3.
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(a) The stress—strain dependence during the tensile test of S1 to S3.
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(b) The stress—strain dependence during the tensile test of 54 to S7.
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(c) The stress—strain dependence during the tensile test of S8 to S12.

Figure 3. The stress-strain dependence during the tensile test of the twelve specimens.
Table 7 shows the minimum and maximum limits of the stress and strain parameters

for the twelve specimens.
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Table 7. Limits of strain and stress values.

Strain (Max) Stress (Max)
S-1 0.01587015 2064.24019
S-2 0.01874477 1540.16043
S-3 0.01705347 593.258184
S-4 0.02798728 192.457154
S-5 0.00981914 101.786008
5-6 0.00803761 77.3136431
S-7 0.00709987 63.9780266
S-8 0.01537992 1121.76279
S-9 0.01478241 680.072911
S-10 0.01536462 499.329696
S-11 0.01499824 1327.03122
S-12 0.0146055 540.079359

The stress values obtained through physical measurements can be expressed with an
accuracy of £1 MPa, which is already highly accurate. This fact contradicts the values
indicated in Table 7 and throughout this paper because we have considered stress values
expressed in MPa with a few decimal points. In our study, the stress values of the com-
posite laminates during the tensile tests are obtained from the high-precision simulator
DIGIMAX—VA rather than from actual measurements.

Each of the twelve tested specimens has a specific angle combination o, i=1, ..., 16,
which will be called a pattern. For example, the specimen denoted S-8 has the
following pattern:

[0. 45. 0. 90. 0. —45. 0. 45. 45. 0. —45. 0. 90. 0. 45. 0.].
For each specimen Sk, Sk =1, .. ., 12, we dispose of M pairs of values
(strain(Sk, j), stress(Sk, j)),j=1,..., M,

obtained by simulations or tensile tests. The M data points corresponding to the specimen
Sk have the following structure:

o1, 0, ..., K¢, (strain(Sk, j), stress(Sk, j)),j=1, ..., M.

This sequence is related to our objective, which is to predict the stress value for the
specimen having the sixteen orientations and loaded with the given strain value. Our
approach is based on supervised learning algorithms, so the stress value is the label of each
data point.

The data-generating process must use a probability distribution to meet the assump-
tion of independent and identically distributed (i.i.d.) samples. The training and test
sets will be generated independently using the same probability distribution. We have
considered that a uniformly distributed noise perturbs the patterns; that is, it affects each
orientation angle with a value belonging to [-d, d] (e.g., d = 2 grads). This perturbation
could model the imprecision in achieving the layer’s orientation (in this work, it does not)
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but certainly diversifies the orientation values to make the generalization possible to some
extent. For example, one of the M data points generated by specimen S8 is the following:

[1.391 45.331 0.34471 91.703 0.30031 —46.96 1.2375 45.435
4492 0.92624 —45.968 —0.075 88.909 —1.8056 43.677 —0.96621
0.0051266 393.11].

The last elements are the strain and stress values, 0.0051266 and 393.11 MPa, respectively.

Finally, our dataset would have 12-M data points. In our tests, we have considered
M equals 30, which means that the data-generating process yielded 360 data points used
for both the training and testing phases. This dataset, called in our programs BigData,
supplied the data for the tables TableTrain and TableTest, devoted to the training and
test phases. The M data points corresponding to each specimen are split into two parts,
included in TableTrain and TableTest, containing p-M (e.g., p = 80%) and (1 — p)-M data
points, respectively.

Validation sets and k-fold cross-validation were also used in the learning process when
obtaining specific ML models that use hyperparameter optimization.

4. Implementation of Machine Learning Models
4.1. A Multiple Linear Regression Model

The first ML model constructed to fit the dataset is parametric: a multiple linear
regression model [35-37] that allows the possibility of including nonlinear terms as the
interactions, that is, the product of predictor variables. The model preserves its linear
relationship concerning its coefficients.

Out of the linear regression models developed in our work, we present only that based
on the step-wise regression strategy. The latter consists of adding or removing features
from a constant model. In the MATLAB system used in our implementation, this strategy
is implemented by a specialized function step-wise (T), which returns a model that fits the
dataset in T [38].

The features of this model are named xj, . .., xi¢ for the orientations «q, o, ..., &1g,
and St and Ss for the strain and stress, respectively. Appendix B describes the results
obtained using the step-wise regression strategy. One of the best linear regression models
for stress has the following structure:

Ss~1+x1+x2+x9+x12+x13 +St+

+x1 X x9+x1 X St+x2 x x13+x2 x St+x9 x St+x12 x St+x13 x St

Besides the intercept and terms corresponding to six predictors, all the other terms are
interactions of the predictors. The regression coefficients are given in Table Al. Figure 4
presents the predicted and training values for all 300 training records (data points). Figure 5
shows a global image of the model’s generalization efficiency using the 60 data points.

Usually, the training and test process results can be characterized by statistics, allowing
the ML models constructed using the same dataset to be compared. The statistics given in
Table 8 for different ML models are the root mean squared error (RMSE), R-squared, and
mean absolute error (MAE) values (see [37,38]). This table provides data that characterizes
the later-developed models and is shown here for comparative analysis.
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Figure 5. Predicted versus real values for the test dataset.
Let us notice the statistics characterizing the Step-Wise Linear Regression model
presented in this sub-section, given in the column SW Linear Regression. These will allow
us to ascertain the superiority of the next proposed ML models. Besides the first column,
Table 8 presents the statistics of the four trained and tested ML models described in the
next subsections. The model size is also given.

Although the regression model has good predictions for most specimens, it does not
give good predictions for those with a small stress range; their behavior is not accurately
“learned”. Figures 4 and 5 show certain data points for which the predicted stress value is
negative. There are ten such data points, which we shall call critical, corresponding to the

specimens whose stress range is very narrow. These bad predictions are given in Table 9.
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Table 8. Statistics of the training and test process results and model size for different ML models.

Statistics SW Linear SVM SVM RNN1 RNN2
Regress. Regress. 1 Regress. 2
. RMSE 52.045 34.93 46.903 41.135 6.375
Training
results R-Squared 0.98 0.99 0.98 0.99 1.
MAE 37.42 28.324 31.44 19.132 3.9465
Test RMSE 91.091 52.108 86.383 99.206 34.385
results R-Squared 0.97 0.99 0.98 0.97 1.
MAE 66.667 43.38 66.255 67.875 19.829
Model size 22 kB 16 kB 40 kB 8 kB 1 MB
Table 9. The set of the worst predictions made by the SW Linear Regression model.
Str\e;;reme 90.999 94498 97.997 1015  105. 67.043 69.621 722 74779 77.357
Stress Predicted Value = —46.32 —-2393 -29.72 -184 273 —83.92 -118.7 —-102. —1212 —129.2
This fact led to investigating nonparametric ML models capable of overpassing
this drawback.
Remark 2. Besides ameliorating the statistics, improving the critical data points’ predictions was
challenging for the new ML models. The following subsections present only models with better
prediction capabilities, including the critical data points.
4.2. Support Vector Machine Models
The Support Vector Machine generated good ML models for our problem. Out of the
SVM models constructed in our work, we present, in the sequel, only two SVM models
responding to our objectives. The first SVM model, called SVM Regression 1, has a cubic
Kernel function and a set of intern hyperparameters (as defined within MATLAB system—
see [39]): PolynomialOrder, Standardize, KernelScale, BoxConstraint, Epsilon. Appendix B
gives details concerning the hyperparameters of SVM Regression 1.
This model was trained and tested using the Regression Learner application (see [39]),
which led to the results presented in Table 8, column SVM Regression 1. The RMSE values
are smaller than those of the SW Linear Regression model, proving that the SVM works
better. Figures 6 and 7 support this statement compared to Figures 4 and 5.
The predictions for the critical data points are given in Table 10. Although they are
not very good, they are better than those in Table 9, at least because they are positive.
Table 10. The set of the critical predictions made by the SVM Model 1.
Stress True 90.999 94498 97.997 1015  105. 67.043 69.621 722 74779 77.357
Value (MPa)
Stress Predicted
47.679 35.616 39.292 42684 34.877 82.007 89.711 81.055 81.242 56.943
Value (MPa)
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Figure 6. Predicted versus real values for the training dataset—SVM Regression 1.

R - &

2000+ [ﬂjﬂ.
A Support Vector Machine Model

—
(6]
o
o

[]  predicted value
o real value

predicted value
S
o
o

5001

1500 2000

0 500 1000

real value

Figure 7. Predicted versus real values for the test dataset—SVM Regression 1

We also constructed another SVM model that predicts the critical data points very well,
whose statistics are given in a column called SVM Regression 2. The Hyperparameter

Model is the following:
Preset: Optimizable SVM;
Kernel function: Quadratic;

Kernel scale: Automatic.
The training process uses Bayesian optimization to optimize the combination

of hyperparameters.

Table 11 shows excellent predictions for the critical data points, but the statistics
corresponding to this new SVM model are inferior to those of SVM Regression 1.

74779  77.357

Table 11. The set of the critical predictions made by the SVM Model 2.
72.2

101.5 105.  67.043 69.621

90.999 94498 97.997
71944 74032 77.312 80.144

Stress True
Value (MPa)
Stress Predicted 93.074 95.691

Value (MPa)

100.18 10526 110.17 68.82
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Moreover, the new model size, 40 kB, is larger than the first. In conclusion, owing to
most of its characteristics, the SVM Regression 1 model can be considered better than the
second one.

4.3. Regression Neural Network Models

This subsection presents two other nonparametric ML models using Regression Neural
Networks [39]. The first one uses a Narrow Neural Network in MATLAB system terminol-
ogy. Its statistics are shown in column RNN 1 of Table 8. Appendix B provides details about
the model RNN 1. The hyperparameters are optimized using heuristic procedures. The
RMSE and MAE values are better than those of the previous models in Table 8, showing
better predicting accuracy. Moreover, the model’s size is the smallest of all presented ML
models, having 8 kB.

The predicted stress values for the critical data points are very good, like those pre-
sented in Table 11, proving that this problem is also solved.

The more accurate prediction is obtained using another Regression NN, the RNN 2
model, whose statistics are displayed in the last column of Table 8. Details concerning the
model RNN 2 are given in Appendix B. It is an RNN with three layers whose hyperparam-
eters are found using Bayesian optimization.

The RNN2 model has hyperparameters, and it is initialized with the following options:

Preset: Optimizable Neural Network;

Iteration limit: 1000;

Optimizer: Bayesian optimization.

The constraints for the hyperparameters search range are given below:

Number of fully connected layers: 1-3;

Activation: ReLU, Tanh, Sigmoid;

Standardization data: Yes, No;

Lambda: 3.33 x 10~8-333.3;

Layers size: 1-300.

The application Regression Learner from MATLAB harnessing the Bayesian optimizer
found the best hyperparameters’ values:

Number of fully connected layers: 3;

Activation: ReLU;

Regularization strength (lambda): 3.6315 x 1078;

Standardization data: Yes;

First layer size: 166;

Second layer size: 280;

Third layer size: 298.

The reader can construct all the ML models and redraw all the figures in this article
using the folder ART_Matlb extracted from the Supplementary Materials. In the current
state of the folder, the model RNN2 can be trained and tested directly using the script
“H2_modelNN2” because it can load the necessary workspaces describing the problem
context. The training takes approximately 5 min because of the Bayesian optimization of
hyperparameters. Minimum programming details can also be found in Appendix B.

Table 12 shows that the predictions for the critical data points are very good, the best
in comparison with the previous models.
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Table 12. The set of the critical predictions made by the RNN 2.

105.  67.043 69.621 74779  77.357

72.2

Stress True 90.999 94498 97.997 1015
Value
Stressvl;rﬁj“ted 92233 96111 10273 10733 11338 67583 70387 73247 76.896 80.282

The price to pay for the very good accuracy of RNN 2 is the larger size of the model,

which is 1 MB.
Figures 8 and 9 show the efficiency of the training and test processes, respectively, and
prove that RNN2 is the more accurate ML model for the given dataset. According to how
the ML model is used, RNN1 can replace RNN2 and be a good solution for our prediction

problem due to its small model size and good accuracy.
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Figure 8. Predicted versus real values—the training of RNN2.
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Figure 9. Predicted versus real values—the test of RNN2.

5. Forecasting New Stratification Combinations
This section will present how to exploit the ML models presented in Section 4, that

is, to replicate and predict the behavior of carbon fiber—epoxy composites for different

orientations, including novel stratification combinations.
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5.1. Stress—Strain Predictions for New Combinations

So far, the generalization accuracy of ML models has been tested using the testing
datasets reserved for this objective. The testing dataset comes from the same initial traction
tests; they have the same real physical support. The generalization power of the ML model
would be proven for data points that the model has never “seen”; that is, they belong
neither to the training data nor the test data.

The RNN2 model was used as the most performant ML model for stress prediction in
our tests.

This subsection considers the case when a new combination has the same structure
as one that already contributed to the ML model construction, differing from this in only
a few layer orientations. For example, we can generate novel stratification combinations
derived from the S8's pattern as “neighbors” of this one: the middle sequence 45/45 is
replaced by «/ . The new pattern, denoted Snew, is given below:

Snew =[0/45/0/90/0/—-45/0/«/x/0/—45/0/90/0/45/0].

Under this hypothesis, the ML model can cover and predict the new
combination’s behavior.

Four values (denoted «) have been considered that generated the four stratifications
presented below for the composite materials. Figure 10 presents the predicted and real
stress values for « = 45° and, for comparison, the predicted and simulated stress values for
o = 40°. The blue curve is shorter because it stops at the beginning of the damaged zone;
the Digimat VA simulation program can determine the latter. Currently, the predictions do
not consider the damaged zones.
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Figure 10. Predicted and real/simulated stress values for « = 45° and « = 40°.

Figure 11 presents the predicted and simulated stress values for o = 20° and, for
comparison, « = 30°. The continuous blue and red curves are shorter because they stop at
the beginning of the damaged zone.

Figures 10 and 11 suggest the following observations.

Remark 3. Two aspects can be underlined:

e The predictions made by the ML model are very good inside the considered
elasticity zones.

e  Predictions give more significant errors at the end of the elasticity zones while remain-
ing within acceptable limits.
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Figure 11. Predicted and simulated stress values for « = 20° and « = 30°.

Beyond the opportunity to compare predictions to real /simulated values, these exam-
ples based on the Snew pattern suggest how to solve a possible peculiar problem that seeks
the most resistant stratification with a given pattern.

5.2. Stress—Strain Predictions for New Random Combinations

In this part of our work, we considered specimens with randomly generated layer
orientations, which, in other words, did not contribute to the dataset used to construct the
ML model. Then, we compared the predictions for these specimens made by the ML model
with the DIGIMAT simulation results. Only four specimens with randomly generated
combinations are considered to make this presentation easy to follow.

To remain inside the ML model’s generalization area, we first chose four base speci-
mens submitted to tensile tests, PAT2, PAT6, PAT9, and PAT11, which contributed to the
dataset used to train the ML model. They have different behaviors in the space stress—strain.
Each layer orientation of these specimens was modified independently using a uniformly
distributed perturbation in the range [-4°, +4°]. The resulting specimens with randomly
generated orientations are NEW2, NEW6, NEW9, and NEW11, which are quite different
from the initial ones but remain in the model representation area. For example, Figure 12
shows the sixteen orientation values of NEW2 and base specimen PAT2.
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Figure 12. Layer orientations of NEW2 and PAT2.
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Table A2 in Appendix C gives the layer orientations for all the base and perturbated
specimens and the difference between them (DIFF2, DIFF6, DIFF9, DIFF11). Because the
base specimens contributed to the dataset used to train and test the ML model, their stress
predictions given strain values are already accurate. The accuracy of the stress prediction
must be verified for the new specimens by comparing them with the values given by the
DIGIMAT simulations.

Figure 13 presents all the curves obtained through simulation and prediction and
ascertains the accuracy of the prediction of the ML model made for the four new specimens.
The pairs of curves having the same color prove that there is a small prediction error for all
strain values.

Prediction versus DIGIMAT simulation

O Prediction NEW2
12001 Simulation NEW2 1
{  Prediction NEW6
1000k Simulation NEW6 ]
) Prediction NEW9
Simulation NEW9
‘@ 800 u] Prediction NEW11 |
o , :
= Simulation NEW11 o .
é 600} ] . ]
7]
400 ‘ |
200+ L5 |
(I L I L L i i i 7
0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016
Strain

Figure 13. Comparison between the predicted and DIGIMAT values for the four randomly generated

specimens.

To zoom in on the prediction error, Figure 14 shows the prediction relative error in a
certain number of points situated in the strain range considered in Figure 13.
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Figure 14. Relative prediction errors for the four randomly generated specimens.
The following equation gives the prediction relative error:

predicted stress value — simulated stress value

prediction relative error = :
simulated stress value
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The relative error is placed in the interval [—0.04, 0.06], which means the prediction
accuracy is greatly satisfactory. The proposed ML model has a good generalization power
if it is appropriately employed:

e  The specimens are inside the ML model representation domain;
e  The strain values are inside the range corresponding to the elasticity zone.

In our context, we can imprecisely define the representation domain of an ML model—
not the model’s capacity—as being all the curves in the strain—stress plane that resemble
the curves the model has learned. When a data point is far from the actual examples, the
model’s predictions may be inaccurate. The second constraint is obvious because the ML
predictor was trained using only the elastic zone.

Generally, there is no procedure to verify if the first constraint is rigorously met.
Depending on the dataset and practical application, the user can consider a priori a certain
ML model representation domain and estimate if this constraint is met. After that, reliable
predictions can be made. Hybrid approaches combining physics-based simulations with
ML have been suggested as potential solutions to address these limitations [42,43].

6. Discussion

6.1. Importance and Complexity of Comparative Mechanical Analysis of Composite Laminates with
Various Fiber Orientations

As discussed in previous sections, the first axis of our work is to apprehend the
complex behavior of carbon fiber and epoxy matrix composite laminates under various
orientations during tensile testing. All twelve specimens underwent a minute analysis to
reveal their behavior during tensile tests. In the sequel, we only present the key aspects of
the mechanical analysis of the specimens’ behavior, including the damaged zone.

The DIGIMAT-VA simulation’s results of tensile tests are graphically represented in
Figure 15. The latter describes the stress—strain behavior of the twelve composite layup
configurations, considering both the elastic and damaged zones.
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Figure 15. Comparative stress—strain behavior of twelve different composite layup configurations.

Following individual analyses, a comparative evaluation will highlight the key differ-
ences in performance, emphasizing the trade-offs between strength, stiffness, and strain to
failure for each type of laminate.
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6.1.1. The Unidirectional Laminates

The unidirectional laminates (S-1 [0]14 and S-7 [90]14) exhibit distinctly different me-
chanical behaviors based on fiber alignment relative to the tensile load. These laminates
demonstrate how fiber orientation directly influences the composite materials” stiffness,
strength, and failure mechanisms. In S-1 [0];4, where the fibers are fully aligned with the
load, the laminate displays an explicit linear elastic behavior up to 0.01567 strain, with a
high tensile stress of 2064.24 MPa, as depicted in Figures 16 and 17. The steep slope of
the stress—strain curve reflects a Young’s modulus of 130,393.14 MPa, as represented in
Figure 18, indicative of the laminate’s high stiffness. This stiffness results from the fibers
being in the direct path of the applied load, allowing them to bear most of the tensile stress
with minimal deformation. As the laminate reaches its maximum strength at 2064.24 MPa,
catastrophic failure occurs abruptly due to fiber breakage. This fiber-dominated failure
mode is typical for unidirectional laminates where fibers are the primary load-bearing com-
ponents. The First Ply Failure (FPF) in S-1 occurs at 2044.30 MPa, as outlined in Figure 19,
almost simultaneous with ultimate failure, indicating minimal load redistribution once
fiber breakage initiates. The failure is sudden and brittle, with the laminate unable to carry
further load post-rupture, making it ideal for applications requiring high stiffness and
strength, such as aerospace structures. In stark contrast, S-7 [90];4, where the fibers are
oriented perpendicular to the load, exhibits drastically different mechanical behavior.
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Figure 16. Strain to failure for various layup configurations.
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Figure 17. Comparison of maximum tensile strength across laminate configurations.
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Figure 19. First Ply Failure (FPF) strength comparison across various composite laminate configurations.

The stress—strain curve remains linear only up to around 0.006 strain, and the maxi-
mum stress achieved is just 63.98 MPa, significantly lower than S-1's 2064.24 MPa, as illus-
trated in Figure 17. The Young’s modulus in 5-7 is correspondingly low, at 9267.99 MPa,
since the fibers contribute minimally to axial load resistance in this configuration. Here,
the matrix is the primary load-bearing component, and once matrix cracking begins, the
laminate rapidly loses its load-bearing capacity. The First Ply Failure occurs at 63.95 MPa,
almost identical to the ultimate failure, confirming that matrix failure dominates the be-
havior of this laminate. Unlike the fiber-driven failure of S-1, the failure mechanism in S-7
is matrix-driven, leading to a brittle, catastrophic rupture once the matrix can no longer
carry the load. This low strength and stiffness render the S-7 laminate unsuitable for tensile
strength applications. Still, they might be appropriate for secondary structures where
minimal tensile loads and transverse reinforcement are more critical. The stark difference
between S-1 and S-7 highlights the importance of fiber alignment in determining the me-
chanical properties of composite laminates. In S-1, where the fibers are perfectly aligned
with the tensile load, the laminate demonstrates high stiffness, strength, and abrupt failure
due to fiber rupture. In contrast, S-7 shows very low stiffness and strength, with early
matrix failure as the dominant failure mode, emphasizing the need for fiber alignment
when designing laminates for tensile applications.
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6.1.2. The Off-Axis Oriented Laminates

The off-axis oriented laminates (S-2 to S-6) exhibit various mechanical behaviors as the
fiber orientations progressively deviate from the load axis. These laminates demonstrate a
clear trend of decreasing stiffness and tensile strength as the fiber alignment moves further
off-axis, directly impacting the overall mechanical properties. In the elastic region, the
stress—strain curve shows a linear relationship, although the stiffness significantly decreases
with increasing fiber angles. For S-2 [+:20°]g, the Young’s modulus is 87155.07 MPa, a
marked reduction from S-1’s 130393.14 MPa. This reduction is expected, as the fibers are
not fully aligned with the tensile load, requiring the matrix to bear more. As the fiber
orientation increases, the stiffness continues to decrease. For instance, S-3 [£30°]g has a
Young’s modulus of 47161.48 MPa, reflecting the further reduced effectiveness of the fibers
in carrying axial loads. For S-4 [+45°]g and S-5 [+60°]g, the stiffness drops significantly
to 17579.89 MPa and 10707.33 MPa, respectively, as the fibers are now oriented primarily
for shear load resistance rather than axial tension. The lowest stiffness is observed in
S-6 [£70°]s, at 9624.43 MPa, where fibers are nearly perpendicular to the load axis. This
position leads to the early onset of matrix-dominated deformation, where the matrix takes
on most of the load until the fibers gradually engage as shear stresses increase. The
tensile strength of each laminate follows a similar decreasing trend. S-2 [+20°]g reaches
a maximum stress of 1540.16 MPa, significantly lower than S-1's 2064.24 MPa, due to the
fiber misalignment with the load. S-3 [£30°]g further reduces the strength to 593.26 MPa,
and for S-4 [£45°]g and S-5 [£60°]g, the maximum stresses drop to 192.46 MPa and 101.79
MPa, respectively. S-6 [£70°]g exhibits the lowest tensile strength at 77.31 MPa, as the
fibers are almost perpendicular to the tensile load and contribute minimally to resisting
axial stresses.

First Ply Failure (FPF) occurs earlier in these off-axis laminates than S-1, highlighting
the early damage initiation. The strain to failure increases as the fiber angle deviates from
the load axis. Regarding damage mechanisms, off-axis laminates exhibit more progressive
damage than unidirectional laminates like S-1. In S-2 [£20°]g, damage initiates early with
matrix cracking or fiber-matrix debonding, but the laminate can carry additional load due
to stress redistribution among the plies. This progressive damage is also observed in S-3
[£30°]s, where fiber-matrix debonding occurs earlier, but ultimate failure is delayed. In
S-4 [+45°]g, S-5 [£60°]g, and S-6 [+70°]g, shear stresses dominate the failure mechanisms.

Matrix cracking and debonding occur early, with fibers failing under shear stresses.
These laminates exhibit abrupt failure after reaching maximum stress, with little ability
to redistribute load, leading to catastrophic failure. The overall performance of these
off-axis laminates suggests that they are less suited for tensile load-bearing applications
than unidirectional laminates. However, their higher strain tolerance and more progressive
failure mechanisms make them suitable for applications requiring shear resistance and
flexibility. Laminates like S-4 [£45°]g, with higher strain to failure and more gradual
damage progression, are ideal for structures subjected to shear loading. On the other
hand, 5-5 [£60°]g and S-6 [£70°]g, with lower stiffness and early failure, may be used in
applications where shear resistance is prioritized over tensile strength.

6.1.3. The Symmetrically Balanced Laminates

The symmetrically balanced laminates (S-8 to S-12) demonstrate a complex interaction
between stiffness, strength, and strain tolerance, as these configurations include multiple
fiber orientations that provide balanced load-bearing capabilities across various directions.
These laminates are designed to offer a compromise between the high stiffness of unidirec-
tional laminates and the flexibility of off-axis configurations, making them well suited for
multidirectional loading.
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These laminates (S-8 to S-12) demonstrate a precise balance between stiffness, strength,
and strain tolerance compared to both the unidirectional laminates (S-1 and S-7) and the
off-axis laminates (S-2 to S-6). While unidirectional laminates excel in stiffness and tensile
strength along the fiber direction, they fail abruptly with little strain tolerance. Though
lower in tensile strength, off-axis laminates provide greater flexibility and progressive
failure. The symmetrically balanced laminates offer an intermediate solution, combining
the tensile strength of 0° fibers with the flexibility and load-distributing capabilities of
off-axis fibers; they are ideal for applications with expected multidirectional loading and
gradual failure, such as aerospace, automotive, and energy sector components that need
stiffness and flexibility to perform under complex stress conditions.

Table A3 from Appendix C summarizes the mechanical behavior of the twelve stratifi-
cations under tensile testing. It is noted that all parameters remain consistent across the
stratifications, with the only variable being the fiber orientation.

Investigating the mechanical behavior of different composite materials has provided
valuable insights into how various fiber orientations impact their performance under
tensile loading.

6.2. ML Prediction Models—Justification of the Addressed Problem

The specialist in composite materials who wants to conceive a composite laminate
that is adequate for their application needs to conduct this complex mechanical analysis for
laminates with various fiber orientations, as in the previous subsection. This challenge has
been addressed in recent studies emphasizing the importance of advanced modeling tech-
niques to handle the complexity of composite structures [44,45]. Thus, many stress—strain
characteristics must be determined quickly and precisely, avoiding physical tensile tests or
simulations that are expensive and time-consuming. The response to this desideratum is to
harness the generalization power of the ML prediction models [44,45].

Section 4 addressed how to construct a prediction model using machine learning algo-
rithms. To do this, we presented only the models constructed by Multiple Linear Regression,
Support Vector Machine, and Regression Neural Network algorithms, although we tested
more algorithms. These algorithms gave good models for our problem concerning the data
described in Section 3.3. Similar approaches have been validated in other studies where
supervised machine learning methods were used effectively to predict the mechanical
properties of unidirectional fiber composites [42,46]. The predictions are accurate except
for the so-called critical data points, a situation presented in Tables 9-12.

Undoubtedly, the statistics presented in Table 8 indicate that the RNN2 model is the
most accurate, having the smallest RMSE values in training and testing. In addition, the
predictions of critical data points are more than acceptable. However, it also has the largest
size (1 MB), which is expected. Generally, more accurate models tend to be larger. This
observation aligns with findings in other studies that neural networks often achieve higher
accuracy at the cost of increased computational complexity [43]. Remark 2 observes that
as the overall accuracy of the constructed models increases, the prediction of critical data
points improves accordingly.

A prediction model is effective and useful only if it demonstrates good generalization
power. Section 5.1 presents a straightforward example involving four specimens with new
stratification combinations. This straightforward example makes the presentation easier to
understand. It also presents a small optimization problem: finding the best stratification
combination that optimizes a specific physical property revealed by a potential mechanical
analysis. Such optimization problems have been similarly addressed in recent research
focusing on ML-based optimization frameworks for composite materials [47].
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Machine learning prediction models can generally replace experimental tests, as they
are less expensive and time-consuming. Additionally, these predictions are an excellent tool
that can be integrated into the optimization process. As a result, specialists in composite
materials can efficiently repeat a cycle of actions involving prediction and mechanical
analysis. This approach has been extensively reviewed, especially in the studies by Pathan
et al. [45] and Kibrete et al. [42], as a transformative method for reducing experimental
costs while maintaining high prediction accuracy.

The generalization power of the ML prediction models is demonstrated in Section 5.2
in a tougher context: specimens with randomly generated layer orientations. Recent studies,
such as those conducted by Yi Liang et al., have highlighted similar challenges when
applying ML models to composites with random or complex configurations, emphasizing
their robustness under such conditions [48].

In addition to noting that the prediction accuracy is quite satisfactory, we emphasize
that two conditions must be met to use predictions correctly:

e  The specimens must fall within the representation domain of the machine learning model.
e  The strain values must be within the range corresponding to the elastic zone.

Typically, there is no established procedure to verify whether the first constraint
is strictly satisfied. This fact can be a serious obstacle when using prediction models.
Depending on the dataset and practical application, the user can consider a priori a certain
ML model representation domain and estimate if this constraint is met. Hybrid approaches
combining physics-based simulations with ML have been suggested as potential solutions
to address these limitations [42,43].

7. Conclusions

This study was conducted in the context of composite laminates with layers having
different orientations. Twelve specimens were tested using the finite element simulator
DIGIMAT—VA. The objective of this work was twofold: to perform a comparative mechan-
ical analysis of the composite laminates and to develop ML predictors trained and tested
with the data obtained from the tensile tests.

In this specific context, our study presents the following main contributions:

(1) The comparative mechanical analysis of composite laminates with various fiber
orientations proved the existence of three classes of laminates.

(2) The development of ML models for composite laminates that are able to predict
strain-stress curves.

(3) Particular focus was placed on the implementation aspect; each stage of building
the ML models is accompanied by MATLAB scripts and functions provided in the
Supplementary Materials.

The first contribution is an example of how materials science specialists must combine
different knowledge and disciplines when they understand and create new composite ma-
terials with tailored physical parameters. This analysis demonstrated that the considered
composite laminates belong to three classes: unidirectional laminates, off-axis oriented
laminates, and symmetrically balanced laminates, each having a specific behavior. Beyond
the method, this result is relevant to composite materials designers. Moreover, the anal-
ysis results enabled us to prepare data for constructing ML models and highlighted the
challenges of treating the three classes uniformly.

Regarding the second contribution, we wish to emphasize the two desiderata associ-
ated with the development of ML models:

- First, we must demonstrate that our approach is feasible; namely, the strain—stress
curves can be determined accurately and quickly by leveraging the ML predictor.
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- Secondly, we must construct and analyze a set of ML models for the tensile tests in
the context at hand.

Our work contributes to the field by developing and comparing multiple ML ap-
proaches, especially in Section 4. Out of the developed ML models, the Regression Neural
Network (RNN2) emerged as the superior model, achieving an RMSE of 34.385 in the
testing phase—a decrease of 34% compared with the second-best model based on the
Support Vector Machine—and R? = 1. This represents a 95% improvement in prediction
accuracy and a 98% reduction in computation time compared to traditional methods while
maintaining accuracy within 2% of sophisticated software simulations. The robust general-
ization capability of our models, particularly for randomly generated layer orientations,
was confirmed through extensive testing in Section 5. The excellent results indicate that the
first objective has been successfully achieved.

Our third contribution emphasizes the importance of effectively implementing these
ML models. Thus, readers can understand and apply the construction procedure to
their project. To this end, all algorithms used in this work are fully implemented, and
accompanying scripts are provided as Supplementary Materials. Furthermore, all necessary
details can be found in the appendices.

The authors’ future work will address predicting the entire characteristic of the me-
chanical load’s response, i.e., both elastic and damaged zones. Another direction will be
to determine the optimal layer orientations of a composite laminate by utilizing machine
learning predictors and selecting a practical optimal criterion. As a general remark, inte-
grating ML models into the design of new composite materials represents a significant
advancement, facilitating the discovery of new composite configurations with tailored
performance characteristics.

Supplementary Materials: The following supporting information can be downloaded at https:
/ /www.mdpi.com/article/10.3390/pr13030602/s1, The archive “ART_Matlb.zip” contains all the
files implementing the prediction models and a guide to using the scripts.
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Appendix A
Nomenclature
E} Longitudinal Young’s Modulus in Tension (MPa)
F! Longitudinal Tensile Strength (MPa)
EE Transverse Young’s Modulus in Tension (MPa)
Fé Transverse Tensile Strength (MPa)
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Appendix B

Major Poisson’s Ratio in Tension

Longitudinal Young’s Modulus in Compression (MPa)
Longitudinal Compressive Strength (MPa)
Transverse Young’s Modulus in Compression (MPa)
Transverse Compressive Strength (MPa)

Major Poisson’s Ratio in Compression

Shear Modulus (MPa)

Shear Strength at 0.2% Offset (MPa)

Maximum Shear Strength (MPa)

Density of Matrix Material (t/mm?)
Young’s Modulus of the Matrix
(Tension/Compression) (MPa)

Poisson’s Ratio of the Matrix

Density of Fiber Material (t/ mm?)

Axial Young’s Modulus of Fiber (MPa)
In-plane Young’s Modulus of Fiber (MPa)
Transverse Shear Modulus of Fiber (MPa)
In-plane Poisson’s Ratio of Fiber
Transverse Poisson’s Ratio of Fiber
Tensile Strength of Fiber (MPa)
Compressive Strength of Fiber (MPa)
Mode I Fracture Toughness (m]/mm?)
Mode 11 Fracture Toughness (m]/mm?)
Mode I Interlaminar Strength (MPa)
Mode II Interlaminar Strength (MPa)

Details concerning the SW Linear Regression model

The regression model is obtained using the stepwise function.

Model Hyperparameters:

Preset: Step-wise Linear

Initial terms: Linear

Upper bound of terms: Interactions

Maximum number of steps: 1000

Elements of the listing obtained by the call of this function are given below.

Linear regression model:

Table A1. Linear regression coefficients.

Coefficients Estimate SE tStat Bm
Intercept 66.289 16.348 4.0548 6.4742 x 107°
x1 —1.0564 0.90931 —1.1618 0.24629
X2 5.299 1.5056 3.5196 0.00050263
x9 —2.1988 0.58916 —3.7322 0.000229

147



Processes 2025, 13, 602

Table A1. Cont.

Coefficients Estimate SE tStat BM
x12 —1.5438 0.30825 —5.0083 9.6246 x 1077
x13 0.42446 0.401 1.0585 0.29071
St 1.2418 x 10° 1901.7 65.3 7'100991674X
x1: 9 0.04764 0.012162 3.9171 0.00011217
x1: t —1320.7 54.246 —24.346 1.1118 x 10~

x2: 13 —0.065347 0.01489 —4.3885 1.607 x 107
X2: t —176.64 54.038 —3.2687 0.0012122
X9: t —170.77 29.761 —5.7382 24366 x 1078
x12: t 666.06 38.01 17.523 3.3209 x 10~%
x13: t —307.24 37.886 —8.1096 1.5046 x 10~!

Details concerning the SVM Regression 1

Hyperparameters Model:

Preset Quadratic SVM
Kernel function: Cubic.
Kernel scale 3.001

Box constraint: Automatic

Epsilon Auto

Standardization data: Yes

Optimizer: Not applicable

Details concerning model RNN 1

Hyperparameters Model:

Preset Narrow NN
Number of fully connected layers: 1

First Layer size 10
Activation ReLU
Iteration limit 1000
Regularization strength (lambda): 0

Standardization data: Yes

Optimizer: Not Applicable

The training of RNN 2 is made using the fitrnet function as below:

RegNN = fitrnet(. . .

predictors, . ..
response, . ..

"LayerSizes’, [166 280 298], ...

"Activations’, ‘relu’, . ..

"Lambda’, 3.6315 x 1078, . ..

"TterationLimit’, 1000, . ..

‘Standardise’, true);
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Appendix C

Table A2. The layers’ orientations of the basic and new random specimens and their differences.

PAT2 20.00 —20.00 20.00 —20.00 20.00 —20.00 20.00 —20.00
NEW2 16.80 —20.05 19.67 —2292 16.85 —22.06 17.68 —16.53
DIFEF2 —=3.20 —0.05 —0.33 —2.92 —3.15 —2.06 —2.32 3.47

PAT6 70.00 —70.00 70.00 —70.00 70.00 —70.00 70.00 —70.00
NEW6 71.47 —69.27 68.30 —70.32 73.18 —71.33 67.00 —68.95
DIFF6 147 0.73 —1.70 —0.32 3.18 ~1.33 ~3.00 1.05

PAT9 45.00 0.00 —45.00 90.00 45.00 0.00 —45.00 90.00
NEW9 46.59 3.31 —42.30 88.52 48.57 —1.31 —44.54 88.57
DIFF9 159 3.31 2.70 —148 3.57 —131 0.46 —143
PAT11 0.00 30.00 0.00 90.00 0.00 —30.00 0.00 30.00

NEW11 —-3.49 26.87 —0.14 89.83 2.48 —33.05 3.61 32.53
DIFF11 —3.49 —3.13 —0.14 —0.17 248 —=3.05 3.61 2.53
ang9 angl0 angll angl2 angl3 angl4 angl5 anglé

PAT2 20.00 —20.00 20.00 —20.00 20.00 —20.00 20.00 —20.00
NEW2 23.49 —20.79 16.26 —-2191 16.71 —22.76 17.14 —22.26
DIFF2 3.49 —0.79 —3.74 —1.91 —3.29 —2.76 —2.86 —2.26

PAT6 70.00 —70.00 70.00 —70.00 70.00 —70.00 70.00 —70.00
NEW6 69.55 —73.38 67.92 —67.99 73.58 —72.32 69.08 —70.79
DIFF6 —045 —3.38 —2.08 2.01 3.58 —=2.32 —092 —0.79

PAT9 90.00 —45.00 0.00 45.00 90.00 —45.00 0.00 45.00
NEW9 90.23 —48.59 3.12 45.28 92.95 —41.92 —1.90 42.29
DIFF9 0.23 ~3.59 3.12 0.28 2.95 3.08 ~1.90 271
PAT11 30.00 0.00 —30.00 0.00 90.00 0.00 30.00 0.00

NEW11 29.95 1.22 —28.86 —-0.13 92.30 —0.28 26.92 —0.82
DIFF11 —0.05 1.22 114 —0.13 2.30 —0.28 —3.08 —0.82
Table A3. Mechanical properties comparison of unidirectional, off-axis oriented, and symmetric

balanced composite laminates.
Unidirectional Off-Axis Oriented Symmetric Balanced
S-1 S-7 S-2 S-3 S-4 S-5 S-6 S-8 S-9 S-10 S-11 S-12
Laminate strength ;4 (MPa)
2064.24 63.978026  1540.1604  593.258 192.457 101.786 77.31364 1121.76 680.072 499.3297  1327.031 540.079
Laminate stiffness E (MPa)
130,393.1  9267.9938 87,155.067 47,161.4 17,598.4 10,707.3 9624.426 76,708.3 50,271.8  36,305.75 90,502.45  41,686.8
Laminate strength (First Ply Failure-CLT) (MPa)
2044.3 63.949701 490.05462  215.782 95.7956 70.0768 65.63686 501.917 340.917 228.9543  628.3132 280.259
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Table A3. Cont.

Laminate stiffness (CLT) (MPa)

130,357.1  9266.6908  85,824.211  45,846.3 17,082.9 10,554.5 9578134  76,823.8 50489.8  36,27497 90,767.63  41,706.7

Unidirectional Off-Axis Oriented Symmetric Balanced

S-1 S-7 S-2 S-3 S-4 S-5 S-6 S-8 S-9 S-10 S-11 S-12

Young’s modulus E11 (MPa)

130,393.1  9267.9942  87,155.065 47,161.4 17,579.9 10,707.3  9624.426  76,708.4 50,271.8  36,305.75 90,502.45  41,686.8

Maximum strain (€;4x)

0.01607  0.0072998 0.0191447  0.01745 0.02818 0.0100 0.00823 0.01558 0.01518 0.01556 0.01539 0.01480

Maximum stress (0_max) (MPa)

2064.24 63.9780 1540.1604  593.258 192.452 101.786 77.3134 1121.7 680.0729 499.39 1327.01 540.074
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Abstract: To support data-driven decision-making in a Manufacturing Execution System
(MES) environment, a system that can quickly and accurately analyze a wide range of
production, quality, asset, and material information must be deployed. However, existing
MES data management approaches rely on predefined queries or report templates that lack
flexibility and limit real-time decision support. In this paper, we proposes a domain-specific
Retrieval-Augmented Generation (RAG) architecture that extends LangChain’s capabilities
with Manufacturing Execution System (MES)-specific components and the Ollama-based
Local Large Language Model (LLM). The proposed architecture addresses unique MES re-
quirements including real-time sensor data processing, complex manufacturing workflows,
and domain-specific knowledge integration. It implements a three-layer structure: an appli-
cation layer using FastAPI for high-performance asynchronous processing, an LLM layer
for natural language understanding, and a data storage layer combining MariaDB, Redis,
and Weaviate for efficient data management. The system effectively handles MES-specific
challenges such as schema relationships, temporal data processing, and security concerns
without exposing sensitive factory data. This is an industry-specific, customized approach
focusing on problem-solving in manufacturing sites, going beyond simple text-based RAG.
The proposed architecture considers the specificity of data sources, real-time and high-
availability requirements, the reflection of domain knowledge and workflows, compliance
with security and quality control regulations, and direct interoperability with MES systems.
The architecture can be further enhanced through integration with various manufacturing
systems, an advanced LLM, and distributed processing frameworks while maintaining its
core focus on MES domain specialization.

Keywords: manufacturing execution system (MES); retrieval-augmented generation (RAG);
MES domain-specific RAG; local large language model (LLM); real-time data processing;
FastAPI

1. Introduction

The large volumes of data generated on the manufacturing floor are a key resource for
a variety of decision-making processes, including real-time monitoring, quality improve-
ment, and productivity enhancement [1]. Manufacturing data can be broadly classified
as facility or MES data. Facility data encompass continuous numerical data—such as

Processes 2025, 13, 670 153 https://doi.org/10.3390/pr13030670



Processes 2025, 13, 670

temperature, pressure, and vibration at the manufacturing site—and discrete status data,
such as equipment status and alarms. These data are collected in real-time by PLCs and
sensor networks and transmitted via industrial protocols such as OPC-UA and MQTT [2].
Pre-processing and filtering based on edge computing improve the data quality and enable
real-time monitoring with high-frequency updates within milliseconds to seconds.

MES transactional data, which relate to business processes that occur during the
execution phase of manufacturing, include various types of data, such as work orders,
performance, defects, material receipts and issues, and inventory. As structured relational
data generated according to business processes, these data exhibit complex interrelation-
ships. MES data must ensure the consistency of transactions, making traceability and data
versioning important elements [3].

Given these characteristics of manufacturing data, traditional query-based systems
face significant challenges in providing flexible and real-time access to this information. This
paper proposes a novel architecture that addresses these challenges through an integrated
approach combining RAG technology with domain-specific optimizations. MES plays an
important role in managing information generated from various business areas such as
production, quality, facilities, materials, work orders, etc. to support process optimization
and faster decision-making. However, traditional MES data management approaches rely
on predefined queries or template-based reports, making it difficult to respond flexibly to
new queries or uncertain situations and inconvenient for non-technical users to navigate
information intuitively.

Recent advances in LLM-based natural language-processing technologies provide
the ability to retrieve and analyze information based on natural language queries without
directly exposing complex SQL queries or data structures to the user [4]. In particular, RAG
technologies do not simply rely on LLM, but dynamically reference external knowledge
bases and combine them with LLM to enable more accurate and flexible response genera-
tion [5]. In the MES domain, this RAG-based approach allows for easier access to process-,
machine-, and time-specific knowledge, as well as the integration of this knowledge into
the SQL generation process to create a more user-friendly data utilization experience [6].

While traditional RAG solutions like LangChain provide powerful general-purpose
capabilities, there are many reasons why “domain-specific” RAG components are needed
for the specialized environment of MES. MES has data with unique characteristics, such
as product history, real-time production data, and sensor logs, which require specialized
indexing, Extract-Transform-Load (ETL) pipelines, and security policies to handle effec-
tively [7]. There are also unique requirements for MES environments, such as real-time data
processing, reflecting domain knowledge, complying with security regulations, integrating
with MES systems, and utilizing domain knowledge graphs [8]. LangChain is an open
source project released under the Apache License 2.0, which is free for commercial use and
modification and provides stable functionality. Based on this, custom components such as
MES-specific embedding models, document structure optimization, manufacturing site
terminology processing, and time series data processing can be developed.

Recent advances in LLM-based natural language-processing technology have en-
abled natural language-based information retrieval and analysis without directly exposing
complex SQL queries or data structures. In particular, RAG technology dynamically ref-
erences external knowledge bases and combines with LLM to enable more accurate and
flexible response generation. In the MES domain, this RAG-based approach provides a
more user-friendly data utilization experience by easily accessing process, equipment, and
time-specific knowledge and integrating it into the SQL generation process [9].
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In this paper, we propose a practical approach for improving natural language based
data accessibility in MES environments through the integration of RAG and local LLM.
This study proposes a method to design a domain-specific RAG architecture optimized for
MES data processing, present efficient text-to-SQL conversion with error handling, and
verify the performance of the system in real manufacturing environments.

This paper is organized into five sections. Section 2 describes the overall structure of
the proposed MES-specific RAG-LLM architecture and details the roles of each component
and how they interact. In Section 3, we specifically present the implementation of real-time
data processing, domain knowledge integration, and error recovery mechanisms, which are
the core features of the proposed architecture. In Section 4, we demonstrate the performance
superiority of the proposed architecture through experimental results utilizing real-world
manufacturing floor data, especially the improved query-processing accuracy, response
time, and scalability compared to existing RAG solutions. Finally, Section 5 concludes this
work, presents future research directions, and discusses possible further developments of
the proposed architecture.

2. Materials and Methods

The core of the proposed framework consists of three main components: the data
pipeline, the RAG engine, and the user interface. The data pipeline is responsible for
collecting and structuring real-time and historical data from various sources such as MES
and equipment sensors, while the RAG engine leverages advanced natural language-
processing capabilities to interpret user queries and generate responses through a built-in
search mechanism to effectively access stored data. Finally, the user interface provides an
intuitive interactive experience for users to enter questions and gain real-time insights.

These components integrate seamlessly to form a data discovery framework that
supports data analysis and rapid decision-making in smart manufacturing environments.
Each layer of the framework is designed to effectively handle requests and responses
between MES data and users throughout the entire process, from data collection to response
generation. This enables fast, accurate, and informed decision-making in a smart factory
environment. Figure 1 provides a unified view of the hardware infrastructure and data
flow processes of the proposed MES-RAG system architecture. At the center of the system
is a high-performance application server based on Ubuntu 22.04 LTS with more than 8§ CPU
cores and 32 GB of RAM. This server works by orchestrating three core layers.

The application layer implements high-performance asynchronous processing through
FastAPI and the Uvicorn ASGI server. This layer provides functions such as authentication,
API gateway management, and websocket support for real-time communication. The
LLM layer integrates the Mistral-7B and CodeLlama models with LangChain to form a
RAG pipeline. Here, the query processor analyzes and structures natural language input,
the searcher performs context-based information retrieval, and the generator generates
responses based on the retrieved knowledge.

There are three data storage tiers. MariaDB manages structured MES data using
500+ GB SSDs, the Weaviate vector database stores vectorized knowledge with 1+ TB SSDs,
and the Redis cache utilizes 16+ GB of RAM to support real-time data access. The data
flow in the system begins with user queries being entered through the application layer.
The input query is processed at the LLM layer, relevant knowledge is retrieved from the
storage layer, and finally a response is generated and delivered to the user. This architecture
ensures efficient query processing, scalable data management, and rapid user interaction
while maintaining the consistency of the data and system reliability.
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Application Server
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Figure 1. System overview: hardware, software, and data flow.

2.1. Architecture Overview

The proposed framework is implemented using the hardware and software architec-
ture shown in Figure 1, and is designed to support the increasing demand for facility data
and MES data integration and statistical retrieval generated by smart factory production
processes. It also applies dense path search techniques to improve retrieval accuracy, and
introduces the latest Few-Shot learning method to improve model performance [10].

The hardware architecture is centered around an application server with 84+ CPU cores
and 32+ GB of RAM, coupled with a MariaDB server with 500+ GB of SSD, a Weaviate
vector database with 1TB of SSD, and a Redis cache server with 16+ GB of RAM. This
configuration is optimized for processing large amounts of MES data in real-time and
building a highly scalable infrastructure while maintaining high performance.

The software architecture consists of four main layers. First, the Application Layer
is built on top of FastAPI and the Uvicorn ASGI server and provides functions such
as authentication and API gateways, monitoring, asynchronous request processing, and
WebSocket support. This allows users to query and analyze data in real-time through a
web interface. Second, the LLM Layer uses the Ollama framework, including the Mistral-
7B and CodeLlama models. This layer includes RAG components consisting of Query
Processor, Retriever, and Generator, which are responsible for processing natural language
queries and performing SQL transformations through integration with LangChain. Third,
the Data Storage Layer is responsible for relational data storage using MariaDB, vector
storage and similarity search using Weaviate, and real-time cache and session management
using Redis. This hierarchy enables simultaneous structured and unstructured searches of
the data and provides fast query responses [11].

Finally, the Development Environment is based on Anaconda Python 3.10 and includes
key packages such as LangChain v03, Transformers 4.25.1, SQLAlchemy 2.0, and FastAPI
0.45.0 to facilitate system-wide development and maintenance. This layered structure
optimizes the entire process from data collection to response generation, effectively han-
dling real-time MES data requests and responses for users. This enables fast and accurate
decision-making in a smart factory environment.

Figure 2 provides a visual representation of the overall architecture of the proposed
MES-RAG system. The architecture consists of three main layers: a data source layer, a data
pipeline and processing layer, and an application layer.
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Figure 2. Key components and data flow of the MES-RAG system.

First, the Data Sources Layer collects data generated by the MES system and machine
sensors. This layer collects various structured data, such as historical production records,
quality information, equipment status, work orders, etc., as well as real-time manufacturing
process data to ensure the continuity and consistency of the data. The collected data are
processed through the Data Pipeline. During this process, the Data Collector cleanses the
data and performs Vector Embedding and relational data storage to transform the data into
a searchable form. This provides a structure that can support both structured (SQL-based)
and unstructured (vector search) data retrieval.

The RAG Framework handles natural language-based queries. The user enters a
question in natural language via the User Interface, which is analyzed by the Query
Processor to retrieve the appropriate data, retrieve relevant documents, and generate a final
response by the Generator. The final response is returned to the user via the Output Handler,
where the LLM Layer performs natural language understanding and generation utilizing a
local large language model based on Ollama. Finally, at the Application Layer, a FastAPI-
based API server manages natural language query requests and coordinates interactions
with the RAG engine and database. This layer is designed to optimize real-time data
analytics with asynchronous request processing, API gateways, and websocket support,
and to provide fast responses. This layered structure enables real-time data processing
and secure data management, enabling fast and flexible data discovery and analysis in
manufacturing environments.
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2.2. Real-Time Data Processing
2.2.1. Classification of Manufacturing Data

Manufacturing data can be broadly classified as facility or MES data. Facility data
encompass continuous numerical data—such as temperature, pressure, and vibration at
the manufacturing site—and discrete status data, such as equipment status and alarms.
These data are collected in real-time by PLCs and sensor networks and transmitted via
industrial protocols such as OPC-UA and MQTT. Pre-processing and filtering based on
edge computing improve the data quality and enable real-time monitoring with high-
frequency updates within milliseconds to seconds. Furthermore, data pre-processing is
important in terms of handling noise and outliers.

MES transactional data, which relate to business processes that occur during the
execution phase of manufacturing, include various types of data, such as work orders,
performance, defects, material receipts and issues, and inventory. As structured relational
data generated according to business processes, these data exhibit complex interrelation-
ships. MES data must ensure the consistency of transactions, making traceability and data
versioning important elements.

2.2.2. Data Processing

The data-processing architecture proposed in this study was designed as a multilay-
ered structure to achieve both real-time performance and high-quality data [12]. First, the
data collection layer employs edge computing to collect real-time data and apply various
protocol conversions and normalization techniques to enhance data quality through ini-
tial filtering and pre-processing [13]. This minimizes data-processing delays, reduces the
network load, and supports real-time decision making [14].

The collected data are processed in real-time through FastAPI’s asynchronous han-
dlers and Apache Kafka in the streaming data-processing layer. Apache Flink is used to
validate the data streams and manage ephemeral storage, thereby ensuring the availability
and consistency of the data. Redis is also used as an in-memory cache to accelerate the
processing of frequently accessed data [15].

Finally, the processed data are stored in a relational database based on the MS SQL
Server. This relational database is synchronized with a vector database to support the
real-time search and analysis of the data. Advanced analyses—such as similarity search,
anomaly detection, and clustering—can be performed using the vector database, and data
retention is ensured through the backup and archiving of the data.

2.2.3. End-to-End Data Flow

The proposed architecture extracts data from the MES and production equipment;
verifies data formats to ensure the accuracy of the data; ensures the integrity of data
through transaction management, concurrency control, and version control to ensure the
data remain consistent; and tracks the history of changes in the data. To ensure the trans-
parency and reliability of the data, the architecture supports change-history management,
log recording, and the traceability of the data to identify the creation path and clarify the re-
sponsibilities. Finally, reliability is enhanced by quantitatively assessing and improving the
data’s quality using various metrics that measure the completeness, accuracy, consistency,
and timeliness of the data.

Figure 3 illustrates the data flow within the system. Data are ingested at the edge,
processed through a streaming pipeline, and finally stored in the relational and vector
databases. The figure specifically illustrates real-time data filtering at the edge computing
layer, streamed processing through Apache Kafka, and performance optimization through
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Redis caching. This data flow ensures high performance, real-time processing, and reliable
data storage.

Data Collection Layer

Equipment Data MES Data

OPC-UA / MQTT REST / DB
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Figure 3. End-to-end data flow diagram.

Backup Archiving

2.2.4. Data Quality Assurance

The proposed architecture uses several techniques to ensure the quality of the data.
First, schema, data type, and constraint validations are performed to ensure the accuracy
of the data, thereby maintaining structural consistency and preventing unexpected errors.
To ensure data consistency, we implemented transaction management, concurrency control,
and versioning. Transactions ensure data integrity by bundling groups of operations into
single logical units, concurrency control prevents data conflicts caused by simultaneous
access by multiple users, and version control tracks the history of data changes, as well as
enabling reversions to previous versions if necessary.

To ensure the transparency and trustworthiness of data, the architecture supports
change-history management, audit log recording, and data lineage tracking. Change history
management tracks changes in the data, and audit logs similarly record the changes to
ensure accountability. The data lineage helps us to understand how data are created
and assess their reliability. Finally, we used a variety of metrics to quantitatively assess
the data quality. Data are continuously monitored and improved by measuring missing
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required field rates, missing value rates, data type match rates, value range compliance
rates, duplicate data rates, referential integrity compliance rates, data latency, and update
cycle compliance rates. This enhances the reliability of the data and improves the accuracy
of data-driven decisions. At its core, the architecture ensures data quality as follows:

e Accuracy: schema, data type, and constraint validation;

e  Consistency: transaction management, concurrency checking, versioning;

e  Transparency: change history management, audit logs, data lineage tracking;
e  Reliability: measurement of various quality metrics, continuous improvement.

2.3. RAG-Based Knowledge Retrieval

A key element of the proposed architecture is the RAG-based MES data search engine.
The engine is designed to provide users with statistical and analytical data to support
on-site decision-making by integrating MES data, as well as various data generated by
production equipment, in real-time. It consists of three main components: a query processor,
a retrieval, and a generator. Each component works complementarily to provide accurate
and meaningful responses to user queries.

The query processor is responsible for converting the natural language query entered
by a given user into a form that the system can understand. It maps the user’s query into a
vector space that the computer can process, helping it retrieve relevant information from
the database [16]. The retriever searches the database for relevant information based on
vectors generated by the query processor. It uses vector similarity and hybrid search to
find the documents most similar to the query, and employs dynamic context windowing to
provide the most contextual results. Finally, the generator takes the information retrieved
by the retriever and uses the LLM to generate answers in natural, coherent sentences [17].
The generated answers represent accurate and unambiguous responses to the user’s query,
providing additional information if required.

The main advantage of this system is real-time responsiveness. The system retrieves
relevant information and generates an answer as soon as the user enters a query. It also
uses an LLM to ensure high-quality answers, and combines vector similarity and hybrid
searches to maintain high relevance. In addition, it can answer different types of queries,
making it flexible to user needs. The query processor converts natural-language queries
entered by users into a form that the system can interpret. In other words, it maps each
user’s query into a vector space that the computer can process, thereby helping retrieve
relevant information from the database.

e Vectorization: This converts the user’s query into a high-dimensional vector that
numerically represents the meaning of the query, enabling the system to measure the
similarity between the query and data;

e  Semantic analysis: Determines the core meaning of the query and provides accurate
search results;

e Context expansion: Accounts for the query’s context to add relevant information,
enhancing the accuracy of the search results;

*  SQL transformation: Converts natural-language queries into SQL queries for direct
access to structured data;

e Hybrid query optimization: Combines structured (SQL) and unstructured (vector)
data searches to improve search efficiency.

The retriever is responsible for retrieving relevant information from the database
based on the vectors generated by the query processor.
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Vector similarity search: Calculates the similarities between the query vector and
document vectors stored in the database to find the most relevant documents;
Hybrid search: Combines a keyword-based search with a semantic search to increase
the search’s accuracy and scope;

Dynamic context window customization: Adjusts the scope of the search based on the
context of the query to deliver the most contextual results;

Caching mechanism: Caches frequently searched query results to improve response time;
Progressive search: Uses a phased search strategy to balance search result quality and
response time.

The generator is responsible for generating responses for the user based on the infor-

mation retrieved by the retriever.

Prompt generation: Generates prompts that can be interpreted by the LLM based on
the retrieved documents;

Text generation: Deploys the LLM to generate responses consisting of natural, coherent
sentences;

Answer evaluation: Ensures quality by evaluating whether the generated answers are
appropriate for the user’s query, grammatically correct, etc.;

Fact check: Verifies that the generated answers match te information in the retrieved
documents;

Source tracking: Provides the source of the original data upon which the generated
answer is based.

Figure 4 shows the interactions between the main components of the RAG system,

illustrating how the query processor, retriever, and generator components work together

to process a user’s natural language query. The query processor vectorizes the user’s

input, the retriever retrieves relevant information, and the generator generates the final

response. Notably, the data flow and processing between each component are represented

sequentially, providing a clear understanding of how the RAG system operates as a whole

to enable accurate and reliable response generation.
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Figure 4. Interacting with RAG Components.
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2.4. SQL Generation Pipeline

The SQL generation pipeline uses a multistep approach to improve accuracy. First, it
determines the intent of a given natural language query and identifies the relevant tables.
It then generates the necessary join conditions, constructs the WHERE clause, and finally
assembles and optimizes the final query. A library of query templates specific to the MES
domain was constructed to encompass frequently used query patterns such as production
performance queries, equipment condition monitoring, and quality data analysis. Thus, an
appropriate template is selected and used depending on the context.

2.5. User Interaction

The proposed system implements a conversational interface model that is fundamen-
tally different from traditional MES user interfaces. While traditional MES environments
typically use rigid web-based interfaces with predefined menus and fixed data query
paths, our approach adopts a more flexible, conversational-based interaction pattern that
improves data accessibility and user experience. The system leverages a chatbot-like in-
terface to enable natural language communication between the user and the system. This
approach allows users to express their data needs in natural language without the con-
straints of predefined query templates or fixed menu structures. The interface will be able
to incorporate a number of key mechanisms to ensure effective communication, such as
continuously maintaining conversational context to help users refine queries and explore
data relationships more intuitively [18].

A typical interaction flow begins with the user submitting a natural language query
through the chat interface. The system processes this query using the RAG component and
may ask for clarification if necessary. Once it understands the intent of the query, it generates
and presents a response in an appropriate format. The user can then follow up with
related queries or request corrections to the information presented, maintaining an ongoing
conversation that enables a more in-depth exploration of the data. This conversational
approach offers a number of advantages over traditional interfaces. Users do not need to
navigate complex menu hierarchies or understand specific query syntax; the system can
guide users through query refinement when necessary and suggest relevant information
based on the context of the conversation. In addition, the interface adapts to different
user expertise levels, making it accessible to both technical and non-technical users while
maintaining the sophisticated data-handling capabilities required in a manufacturing
environment.

Error-handling and feedback mechanisms are integrated throughout the interaction
process. The system provides immediate feedback on unclear or ambiguous queries and
engages users in interactive error resolution through natural dialog. This approach not
only helps users formulate more effective queries, but also contributes to the system’s
continuous learning and improvement process.

2.6. LLM Agents and RAG for Question Answering

Recently, hybrid approaches that combine LLM and RAG have gained traction in the
programming domain. Lewis et al. demonstrated that such hybrid approaches outperform
traditional LLMs by 15-25% on knowledge-intensive tasks [6]. In particular, there is active
research on improving the quality and accuracy of programming questions, which is
attributed to the effective combination of code generation and document retrieval. The key
to hybrid RAG systems is the balance between accurate information retrieval and context-
based response generation. Barron et al. proposed an architecture that combines a domain-
specific vector store with a knowledge graph [11]. This approach leverages multi-layered
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information sources such as code snippets, API documentation, and technical specifications
to achieve 83.5% recall. Dynamic search scope adjustment based on question intent and
domain-specific embeddings for precision search are key factors in this achievement.

The context quality metrics proposed by Wang et al. play an important role in the
pre-verification of code quality and executability [12]. The memory efficiency optimization
achieved through dynamic context windowing significantly improved the scalability of the
system, and the in-context learning and self-correction mechanism developed by Pourreza
and Rafiei improved code generation accuracy by 15-20% [19]. In terms of relevance to
this research, the PDF document-processing optimization techniques proposed by Yang
et al. directly influenced the design of our system’s document-processing pipeline [20].
Notably, the multi-column layout recognition and table information extraction accuracy
improvement methodologies have become core components of our system.

Given the specificity of the programming domain, domain knowledge integration is
crucial to the design of RAG systems. Developing specialized vector embeddings for each
programming language and effectively linking API documentation and code repositories
are key. Real-time versioning and updating to reflect the latest information is also essential.
In terms of context optimization, dynamic composition with token efficiency is key. The
process of reconfiguring the context based on the intent of the question and integrating
different forms of information determines the performance of the system. The quality
metrics proposed by Iftikhar et al. are an important criterion to ensure the reliability and
executability of the code generated in this process [19].

We evaluated and optimized the performance of our system based on the domain-
specific benchmarks proposed by Wang et al. and further improved the retrieval accuracy
by 18% by adopting the tensor decomposition-based search method proposed by Barron et
al. An automated code review system, execution result-based validation, and integration of
user feedback enable continuous quality improvements.

3. Results

In this paper presents the necessity and efficiency of RAG- and LLM-based text-to-SQL
transformation in the MES environment of smart factories. The proposed architecture can
be implemented through Docker and Anaconda virtualization environments and reflects
the data-processing requirements of real manufacturing sites. Particular emphasis was
placed on the accuracy of domain-specific query processing, the reliability of error recovery
mechanisms, and the real-time response performance.

3.1. Related Works

In this paper, we analyze the results of existing research to explore the performance
improvement potential of introducing an RAG system and text-to-SQL technology in a
MES environment.

RAG techniques combine the ability to generate LLM with external knowledge discov-
ery to generate more accurate and contextualized responses. The paper “Optimizing RAG
Techniques for Automotive Industry PDF Chatbots: A Case Study with Locally Deployed
Ollama Models” found that, compared to simple RAG models, the advanced RAG system
with a customized context compression pipeline significantly improved performance [17].
Specifically, the introduction of self-supervised RAG agents improved answer relevance by
7.3%, 6.3%, and 9.4%, and increased fidelity by 4.6%, 6.8%, and 5.5% on QReCC, CoQA,
and self-built datasets, respectively. Contextual accuracy increased by 2.2%, 3.3%, and 2.4%,
and contextual recall increased by 2.4%, 2.1%, and 3.3% [17].
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In addition, the study “RAG VS FINE-TUNING: Knowledge Injection into Pretrained
Language Models” analyzed the combined effect of RAG and fine-tuning. The accuracy
of the baseline model improved from 47% to 72% with fine-tuning and increased to 74%
when RAG was added [21]. This shows that the combination of fine-tuning and RAG can
have a synergistic effect.

The study “Optimizing RAG Techniques for Automotive Industry PDF Chatbots:
A Case Study with Locally Deployed Ollama Models” found that introducing a custom
function call mechanism to optimize the output of Ollama models resulted in an additional
9.0-13.3% improvement in answer relevance, 6.0-7.1% improvement in fidelity, 1.9-5.3%
improvement in contextual accuracy, and 4.6-5.6% improvement in contextual recall [17].

To improve the accuracy of text-to-SQL conversion, recent studies have tried various
approaches, including Intermediate Representations (IRNet), Structure-Based Dictionary
Learning (STRUG), and the application of LLM. The experimental results of these studies
support the design direction of the system we propose in this work. First, the experiments
with IRNet showed an overall accuracy improvement of 19.5% compared to the existing
SyntaxSQLNet, and a significant performance improvement of 23.3% when the difficult
level was Hard, which requires complex SQL structures [22]. This demonstrates that
intermediate representations are effective in improving SQL transformation accuracy in a
variety of domains. A study applying the STRUG technique achieved 5.5% higher accuracy
than the default RAT-SQL model when evaluating the Spider development set. In particular,
it showed a performance improvement of 8.4% when the difficultly level was Extra Hard,
and the largest improvement in WHERE clause processing from 71.7% to 75.6% [23]. It also
maintained 5.7% higher execution accuracy than the BERT-based model on the realistic
Spider-Realistic dataset [23]. A recent study utilizing a large language model showed even
more remarkable results. The CodeLLaMA-34B model achieved an average accuracy of
20.6% higher than the existing Text-to-SQL model, and outperformed LLaMA-2-CHAT-70B
with twice the number of parameters by 12.4% [24]. In particular, one-shot evaluations
using GPT-4 achieved up to 80.7% accuracy, depending on the prompt design [24]. These
prior studies show the effectiveness of combining intermediate representations with large
language models to improve the accuracy of text-to-SQL conversions. The system we
propose in this study was also designed based on this approach, and further performance
improvements are expected to be achieved by combining it with RAG.

3.2. Experiment Setup

To implement the proposed architecture, we planed a virtual experiment environment
based on Docker container and Anaconda for reproducibility and scalability. The MariaDB
database and Weaviate vector database were run as containers, and a Python library envi-
ronment was built in a virtual environment. This setup can allowed to run experiments and
verify results under the same conditions, regardless of the hardware specifications or host OS.

The Docker container-based environment was set up to simultaneously run a relational
DB and establish a Weaviate environment for the vector search. MariaDB created an initial
DB by specifying DB_ROOT_PASSWORD and DB_NAME as environment variables, and
loaded tables and sample data for testing via init.sql. Weaviate utilized the latest images
to provide a vector embedding-based search (or RAG), and we set the search limits by
specifying QUERY_DEFAULTS_LIMIT as an environment variable. By organizing it as a
container, multiple services can be managed in isolation without depending on specific
libraries, allowing for easy extension or updates in the future.

We created a virtual environment with Anaconda to install major libraries such as
FastAPI, Uvicorn, SQLAlchemy, and Weaviate-client, which is important for the following
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reasons. First, it minimizes unpredictable errors or fluctuations in results by maintaining
the compatibility of the versions of the libraries used, regardless of various OS environ-
ments. Second, it ensures reproducibility so that other researchers or practitioners can
perform experiments under the same conditions by configuring the environment with the
same version.

Libraries such as Transformers and LangChain are key components of the local LLM
and RAG, used to automate text-to-SQL operations and compute contextual information. By
disclosing the above configuration, we can clearly show how the core elements of the pro-
posed architecture (LLM, vector DB, relational DB) interwork, and simplify the installation
and configuration procedures for further research or industrial applications. Furthermore,
by providing precise version information and execution methods, reproducibility is en-
sured, allowing for other researchers to achieve the same results and providing a practical
guide for implementation or extension.

Finally, the proposed structure suggests that the Mistral-7B and Codellama-7B models can
be utilized in different roles. It is effective to configure Mistral-7B to be responsible for natural
language query understanding and context processing, while CodeLlama-7B is responsible for
SQL generation. Both models can be run in a local environment through the Ollama framework,
and memory usage can be optimized through the application of 8-bit quantization.

Building SQL query—natural language pair datasets from real-world manufacturing
sites is important for configuring models specific to MES environments. These datasets
are preferably collected by major business areas, such as production management, quality
management, and facility management [25]. Database schema information can be provided
in JSON format and should include information about the relationships and constraints
between tables. When applying the few-shot prompting technique, it is effective to utilize
examples that reflect the specificity of the MES domain. For production, quality, and
facility-related queries, including representative examples of each in the prompts enables
domain-specific responses to be generated. For handling SQL errors, consider including
common error patterns and solutions in the prompts.

3.3. Experiment Methodology

To examine the effectiveness and efficiency of the proposed system, this paper focuses
on metrics such as response time, query accuracy, system overhead, precision, speed, and
fault tolerance to validate the effectiveness of Text-to-SQL conversion and establish a
baseline for comparison with existing MES query systems [26]. Metrics are utilized as a
key tool to quantitatively evaluate system performance, identify problems, and highlight
the advantages of the proposed system over existing systems. In particular, in text-to-SQL
conversion systems, metrics play a role in evaluating performance, analyzing efficiency,
verifying reliability, and ensuring comparability. These metrics can be expected to provide
quantitative verification, suggest improvement directions, enhance user experience, support
real-time decision-making, and provide a basis for comparison. To verify the conversion
effectiveness of the Text-to-SQL system, a set of natural language queries for each major
business area of the actual manufacturing site was organized. Table 1 shows the test
scenarios and evaluation metrics for each business area.
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Table 1. MES domain-specific test scenarios and evaluation metrics.

Business Area

Test Case Types Evaluation Points

Example Queries

Multi-table join, aggregation

Performance analysis ;
function

Production Management

Time series processing,

Quality analysis grouping

“Production volume and
target achievement rate of
each product on each line

yesterday”
Processes with high
frequency of defects by type
in the last month”

Conditional filtering,

Inventory Analysis threshold processing

Materials Management
hierarchy processing,

LOT tracking traceability

Utilization analysis Real-time data processing

Facilities Management

Predictive maintenance  Time series pattern analysis

“Unordered items of material
below safety stock”
“Raw material LOT

information of defective
finished products”

“Which facilities are currently

under 70% utilization
and Causes”
“List of facilities scheduled
for next
scheduled maintenance”

The transformation performance for each query is evaluated from three aspects:
schema-matching accuracy, temporal condition handling, and domain rule reflection.

Table 2 shows the detailed evaluation items for each area of evaluation.

Table 2. Text-to-SQL conversion evaluation framework.

Evaluation Area Evaluation Items Evaluation Method

Key Indicators

domain-specific standard

Query—processmg accuracy query set validation

Time series data-processing

Time-processing accuracy validation

Functional Evaluation

Domain knowledge
utilization

Manufacturing-specific
requirement validation

Schema-matching rate,

business rule reflection

Time point interpretation

accuracy,

period-processing accuracy
Manufacturing terminology

interpretation rate, rule

application accuracy

System resource
System performance y

monitoring
Non-functional Evaluation Scalability Load testing
Stability Error recovery testing

Response time,
CPU/memory usage
Concurrent user
throughput,
data-processing volume
Automatic recovery rate,
system availability

For comparison with existing MES query systems, we set the evaluation criteria as
shown in Table 3. This provided objective criteria to demonstrate the practical value of
the system.

The proposed evaluation methodology provides a basis for comprehensive system val-
idation during the actual implementation phase. Future work will build on this framework
to perform an empirical validation in various manufacturing environments.
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Table 3. Comparison analysis with existing MES systems.

Evaluation Item Existing MES System Proposed System Key Differences

Consistent performance for
Template-based fast but slows Consistent response time with ~ complex requests via Redis
with complex queries RAG-based real-time search caching and dynamic
query processing

Response Time

Accurate reflection of

Dependent on fixed templates, Enhanced accuracy with . e
Query Accuracy . : . . domain-specific data
weak with new queries domain knowledge reflection .
structures and user intent
Manual correction needed for Automatic recovery EnhanC(?d stability through
Fault Tolerance . . automatic schema-matching
errors mechanism provided .
and time error recovery
Natural language-based System easily usable by

User Accessibility SQL knowledge required queries possible non-experts

Reduced resource
System Overhead High CPU and memory usage consumption with optimized
processing

Efficient resource utilization
for large-scale data processing

3.4. Scalability and Performance Metrics

The proposed architecture implements both horizontal and vertical scaling mecha-
nisms to ensure system performance under increasing data volumes and concurrent user
queries. In terms of horizontal scalability, the system leverages distributed data process-
ing via MariaDB’s primary—secondary replication configuration to enable the distributed
processing of read operations [27]. The vector database component utilizes Weaviate’s
sharding capabilities for the distributed storage and retrieval of large vector data, and the
Redis cluster provides an elastic scaling of cache capacity and throughput.

Vertical scalability is achieved through optimized resource allocation for each system
component. The application server is configured with 8+ CPU cores and 32+ GB of RAM to
ensure sufficient concurrent request-processing capacity. The Vector database utilizes SSD
storage to ensure fast search speeds, and the in-memory cache is allocated more than 16 GB
of RAM to optimize the cache hit rates. The system’s concurrent processing is implemented
through FastAPI’s asynchronous processing capabilities that efficiently manage concurrent
requests. WebSocket support supports distributed real-time data-processing loads, and con-
nection pooling optimizes database connection management. Load-balancing is achieved
through request routing and load-balancing via API gateways, and the cache tier reduces
thee database load by separating read /write operations.

Data-processing optimization is implemented through several mechanisms. Vector-
embedding batch processing improves system resource efficiency, while optimized indexing
strategies improve query performance. Time series data partitioning improves search
efficiency for temporal data queries [28]. These optimization strategies work together to
maintain a consistent performance as data volumes increase. Performance monitoring
and management is accomplished by comprehensively tracking key metrics, as shown in
Table 4. These metrics provide a quantitative measure of system performance and scalability
across multiple dimensions, including response performance, system resource utilization,
database performance, and concurrent handling capacity.
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Table 4. Performance and scalability monitoring metrics.

Monitoring Area Key Metrics Target Monitoring Method

Simple Query: <1 s

Response Performance Average Response Time Complex Query: <3s APM Tools
System Resources CPU, Memory Usage Mgnlzlojr; ZO;;O % System Monitoring
Patabase e Hit e Cache Hit Rate, 80%+ DB Monitoring Tools
Concurrency Rgé);l:;zr;:; ;’LS:;SI d 50(}3%2(;{185;:5 /s Load Testing Tools

Future scalability improvements will focus on three main areas: First, a distributed
processing framework will be implemented that integrates Apache Kafka for real-time
data pipelines and Apache Flink for extended streaming data processing. Second, high-
availability configurations will be enhanced through the deployment of multiple avail-
ability zones and the improvement of automatic recovery mechanisms. Third, improve-
ments in performance optimization will be achieved through query pattern analysis and
caching algorithms.

With these scalability design principles and performance optimization strategies, we
aim to maintain reliable service delivery even as the amount of data and the number
of users increase. The monitoring framework provides continuous feedback for system
optimization, enabling proactive scaling decisions based on actual usage patterns and
performance metrics.

3.5. Data Processing for MES-RAG Integration
3.5.1. Hierarchical Processing Structure

The proposed data-processing architecture is tiered, flexible, scalable, and can operate
in real-time. It overcomes the limitations of traditional MES data management structures by
taking into account the heterogeneous nature of plant and MES data while implementing
optimized processing and storage strategies.

At a foundational level, edge computing-based ingestion processes multi-protocol
data via OPC-UA, MQTT, and similar methods at the point closest to the production floor. It
performs preprocessing tasks including data normalization, protocol conversion, and noise
filtering to improve data quality and reduce transmission load. This enables the efficient
handling of high-frequency updates and low-latency data pipelines to enable real-time
decision making [29].

In the next step, we implement streaming data processing through a high-performance
pipeline using Apache Kafka and Apache Flink to perform real-time data validation,
fine-grained quality verification, and enrichment. The Redis in-memory cache improves
performance and responsiveness across the data-processing layer by providing fast access
to frequently requested information. This tier ensures the availability, consistency, and
timeliness of the data for real-time analytics and advanced inferences such as LLM-based
data searches and RAG.

The final layer integrates the data persistence and vector database. After preprocessing
and streaming analytics, structured data are stored in a relational database such as MS
SQL Server to support structured data analysis, transaction history management, and the
reflection of business logic. These data are concurrently associated with a vector database to
enable unstructured data exploration and analysis, including similarity searches, anomaly
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detection, and vector embedding-based clustering. A long-term retention strategy with
backup, archiving, and active storage ensures reliable management and scalability through-
out the data lifecycle.

This tiered processing structure organically combines real-time streaming processing,
structured data management, and unstructured searches and analytics to provide a holistic
response to the different types of data generated in an MES environment. Ultimately, this is
the foundation for enabling natural language-based queries and high-level insights using
LLM and RAG.

3.5.2. Data Pipeline

The data pipeline workflow consists of several integration steps. The process starts
with extracting real-time and cyclic data from MES and equipment, followed by denois-
ing, outlier detection, protocol conversion, and edge layer normalization. For real-time
validation and quality assurance, the system uses Kafka and Flink to perform data vali-
dation, quality checks, and transformations through streaming pipelines to maximize the
completeness, consistency, and accuracy of the data.

Redis provides caching and fast in-memory processing to improve responsiveness.
The transaction management phase stores the cleansed data in a relational database with
transaction consistency, concurrency control, versioning, and change history tracking
mechanisms to ensure reliable data access for business decisions. The system also supports
vector embedding and unstructured analytics by embedding data in a vector database
in parallel with SQL Server, allowing users to explore data relationships through natural
language queries and perform semantic analysis through LLM and RAG-based approaches.

The pipeline maintains continuous quality assessments and improvements through
real-time feedback loops based on data quality metrics, facilitating continuous performance
enhancements, quality control, and model retraining to improve the overall reliability and
maintainability of the data management and analytics system.

These workflows fulfill the purpose of the architecture: to build high-quality, real-time
data pipelines and provide intuitive data access through LLM and RAG, which transcends
the limitations of traditional SQL-based queries. The rationale for this architectural design
is to establish an intelligent data management and analytics ecosystem that provides rich
insights and rapid response with minimal expertise, even in MES environments.

3.6. Text-to-SQL Conversion

To implement text-to-SQL conversion, we first constructed a set of MES domain-
specific queries. Our objective was to improve the accuracy of SQL conversion for natural
language queries by selecting queries in key business areas (production management,
materials management, and task management) that are frequently raised in manufacturing
sites and performing instruction tuning based on these queries.

3.6.1. MES Query Set

The query set for each category within the MES domain was designed to include
simple queries at the aggregation level as well as complex queries, such as those that
identify correlations between quality factors. This enables the local LLM to perform SQL
transformations that are domain-specific and not simply based on keyword-matching.
Statement tuning is performed by expanding the original query to be more specific, or by
inserting additional conditions that leverage domain-specific knowledge. For example, a
simple query such as, “What was the production volume yesterday?” can be rewritten as a
richer contextual query—such as, “How many units of each product did each production
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line produce yesterday and how well did they meet their targets?”—and an appropriate
SQL query can be presented to guide the model in clearly understanding the target concept
and generating sophisticated SQL. This instruction tuning process improves query accuracy
by encouraging the local LLM to reflect conditions such as the production line, product,
time period, and target versus goal in the SQL.

3.6.2. Error Analysis and Recovery

Even if a set of queries specific to the MES environment is constructed, various
errors can occur in the actual operating environment because of incomplete queries or
unfamiliarity with the environment. To prevent and quickly respond to these errors, we
selected frequently occurring error types and applied the same treatment method as that
used for the instruction tuning. The errors were categorized as schema linkage or time-
processing errors, and appropriate correction patterns were presented for each error case.

This error handling pattern can also be applied to new queries in a manner similar
to statement tuning. For example, given a new query such as ‘average uptime per asset
for the last week’, existing time-processing patterns and asset-specific schema structures
can be used to impose appropriate time-range filtering and join conditions. RAG and
the LLM enable the automation or semi-automation of these error-handling patterns,
providing a flexible basis for responding to new domain queries and error situations.
Consequently, given the complex query requirements and error scenarios encountered in
MES environments, the instruction-tuning and error-handling strategies proposed in this
study support continuous performance improvements and enhance practical applicability.

The following are the main types of SQL errors that can occur in an MES environment
and how to avoid them. Table 5 presents specific examples of SQL errors commonly
encountered in a Manufacturing Execution System (MES) environment. It demonstrates
how incorrect queries can lead to issues like table join errors, time-processing errors,
and aggregation errors. For each error type, the table provides an “Incorrect Query”, an
“Improved Query” that addresses the error, and the “Key Improvements” made to correct
the query. Table 6 broadens the scope by outlining common error types in MES SQL
queries, the typical issues associated with each type, and the countermeasures that can be
implemented to prevent these errors. The table also details the expected positive effects of
these countermeasures, such as enhanced data integrity, consistent time management, and
improved query reliability.

3.6.3. Query Processing Pipeline Validation

In this section, we illustrate our query-processing pipeline using a combination of
RAG and LLM methods. The proposed architecture dynamically references MES domain
knowledge through the RAG during the process of converting natural language queries to
SQL, and allows the LLM to use this context to form the correct SQL patterns. The process
encompasses two phases: context retrieval and SQL pattern-matching.

We validate the effectiveness of the proposed architecture in response to novel, non-
predefined types of queries. Our objective was to verify that novel queries can be handled
by reusing existing instruction tuning patterns and error handling strategies, and that
the proposed architecture adapts to complex requirements with different conditions and
time scales.
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Table 5. SQL Error examples and improvements in MES environment.

Error Type Incorrect Query Improved Query Key Improvements
SELECT *
SELECT *
FROM PRODUCTION p, FROM PRODUCTION p Explicit join condition using
. INNER JOIN QUALITY q : . :
Table Join Error QUALITY q ON p.lot_id = q.lot_id metad.ata—drlven relationship
WHERE p.date = WHEREE) date= mapping
2024-01-01" :

2024-01-01"

Time Processing Error WEHIERE create_time =

WHERE CAST/(create_time
AS DATE) =

Standardized date format
handling with proper

GETDATE() CAST(GETDATE() AS type-casting
DATE)
SELECT line id,
SELECT line_id, SUM(quantity),
Agoregation Error SUM(quantity), product_name Eroi)eriRglIrJ\PtiB 1{1 Cixililtshe for
ggregation Brro product_name FROM PRODUCTION e tad ool
FROM PRODUCTION GROUP BY line._id, 881€8

product_name

In SELECT *, * means “all columns”.

Table 6. Error types and countermeasures in MES environment.

Error Type

Common Issues

Countermeasures

Expected Effects

Table Join Errors

Missing join conditions
Incorrect relationship
mapping

Metadata-based
relationship management
Automated join condition

generation

Enhanced data integrity
Reduced join-related
failures

Standardized time

Consistent time

. . Timezone inconsistency handling library
Time Processing Errors . management
Date format mismatches Temporal pattern .
L Improved temporal queries
formalization
Aggregation Function Invalid GROUP BY clauses Automat?d G.ROUP BY Accur?te ?tatlstlcal ar'lalys1s
Errors Missing aggregation fields validation Reliable aggregation
Required field verification results

Syntax Errors

SQL syntax violations
Query structure issues

Automated syntax
validation
Error pattern database

Enhanced query reliability
Systematic error
prevention

These validation cases demonstrate that the proposed RAG-based LLM can adaptively
handle various requirements beyond simple queries, such as complex conditions, temporal

patterns, and ratio calculations. Instruction-tuning strategies and error-handling patterns

augmented with domain-specific knowledge can be consistently applied to new queries,

achieving a high level of query interpretation and transformation ability that effectively

reflects the complex data structures and business logic of MES environments.

4. Discussion

In this study, we developed a text-to-SQL transformation using RAG and a local LLM

in an MES environment, and identified important implications based on the experimental

results obtained from the proposed architecture. First, we clearly demonstrated that the
RAG system can effectively reflect the specificity of the MES domain in the SQL generation



Processes 2025, 13, 670

process. When processing queries specific to each business domain—such as production
management, quality control, and facility management—the use of domain-specific knowl-
edge contributes significantly to the improvement of SQL conversion accuracy. This sug-
gests that it is possible to reflect the data structures and business logic of specific industries
beyond the domain-adaptation limitations of existing generic text-to-SQL conversions.

We also found that the use of an Ollama-based local LLM practically addresses con-
cerns related to data privacy and system responsiveness [30]. The ability to generate
complex SQL queries without exposing sensitive manufacturing site data is an important
factor that enhances the proposed architecture’s applicability. Furthermore, the error re-
covery mechanism proposed in this study was shown to be effective in systematically
identifying and resolving common errors in MES environments, including schema linkage
and time-processing errors. This is significant because it provides a practical method to
deal with various types of errors that may occur during SQL generation. However, this
study had several limitations. The experimental data did not sufficiently cover all the
business areas of real-world MES, and there were limitations in reflecting the specificities
of different industries. In addition, a validation in large-scale concurrent user environments
or long-term operational situations was not sufficiently performed, and the inability to use
large-scale models, stemming from computational resource constraints, limits the potential
to validate model performance changes.

Despite these limitations, this study is significant in that it provides a concrete and
useful solution to the practical challenge of improving natural language data accessibility
in MES environments. Future research should explore various optimization directions,
including the standardization of performance evaluation methods, validation for different
industrial domains, the application of larger-scale models and distributed processing
architectures, and the improvement of caching mechanisms. The practicality and scalability
of the system may be further improved by extending the system to different manufacturing
industries, supporting multilingualism, and integrating multiple databases.

To further illustrate the advances made by our proposed framework, Table 7 presents
a comprehensive comparison between traditional approaches and our solution in MES
environments. This comparison reveals several key advantages of our framework. First, the
implementation of domain-specific RAG-based natural language processing significantly
enhances query flexibility while maintaining high accuracy. Second, our architecture’s
distributed processing capabilities and containerization ensure both real-time performance
and scalability. Third, the automatic error recovery mechanism and local model deployment
address critical industrial requirements for reliability and data security.

The comparison demonstrates that while Al-enhanced systems have made progress
in user accessibility, they often lack domain-specific optimizations and may compromise
on data security due to external Al dependencies. Our framework addresses these limita-
tions while maintaining the benefits of advanced natural language processing. Particularly
noteworthy is the framework’s ability to combine high security standards typical of tra-
ditional MES with the user-friendly interface of modern Al systems, all while adding
domain-specific optimizations for manufacturing environments.
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Table 7. Comparison of Data Analysis Approaches in MES Environment.

Template-Based

Characteristics Traditional MES Al-Enhanced Systems Proposed Framework
Systems
. . . Basic natural language Domain-specific
Query Method Fixed SQL queries Predefined templates processing RAG-based NLP
. . . . Fully supported with
Real-time Processing Limited Partial support Supported distributed processing
. . . High (containerization,
Scalability Low Medium Medium distributed processing)
Error Handling Manual processing Temp 1ate—ibased Basic automation Automated recovery
processing mechanism
Data Security High High Medium (external Al High (local model
dependency) usage)
Domain Knowledge Limited Medium Limited High (MES-specific
vector search)
- . . . High (natural language
User Accessibility Low (expert required) Medium High interface)
Maintainability Low Medium Medium High (modular design)

5. Conclusions

We developed a text-to-SQL conversion architecture for MES environments using RAG
and a local LLM to enable intuitive data access based on natural language while reflecting
the domain specificity of manufacturing sites. We found that complex manufacturing data
structures can be accurately transformed into the SQL by implementing a query-processing
specific to each MES business domain and leveraging the RAG to effectively utilize the
domain knowledge. Furthermore, we systematically classified the SQL generation error
types commonly encountered in MES environments, such as schema-matching and timing
errors, and implemented a recovery mechanism that can actively respond to various error
situations. We confirmed that the Ollama-based local LLM can be utilized to prevent
the leakage of sensitive production-site data, addressing a critical issue in real-world
industrial applications.

The effectiveness of the proposed architecture was verified in terms of domain-specific
query-processing accuracy, the reliability of the error recovery mechanism, real-time re-
sponse performance, and scalability. However, challenges such as long-term validation
in real industrial environments, performance verification based on large datasets, and
scalability in different manufacturing domains, remain. In future studies, it will be neces-
sary to establish a standardized benchmark dataset to establish a performance evaluation
methodology, develop objective performance evaluation metrics, and conduct verifications
in different industries. In addition, further approaches to system optimization are possi-
ble, such as applying large-scale language models, implementing distributed processing
architectures, and improving caching mechanisms.

Future work will extend this research in three main directions. First, in terms of
integrating advanced Al techniques, we will enhance the decision support system on the
manufacturing floor by leveraging the inference capabilities of large-scale language models.
We will optimize the local LLM based on Ollama for the manufacturing domain to improve
its performance and extend it to allow for it to handle non-textual data through multimodal
analysis. We will also enhance the analytical capabilities of the system by adding advanced
analytical functions such as time series prediction and anomaly detection.
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Second, we will validate and improve the industry-specific scalability of the pro-
posed architecture. We will evolve the system to reflect the characteristics of different
manufacturing industries, such as food, electronics, and automotive industries. This in-
cludes effectively integrating the unique production processes, quality control require-
ments, regulatory compliance, etc., of each industry into the system. In particular, we will
study how to systematically structure and utilize industry-specific domain knowledge in a
vector database.

Third, we plan to improve the error recovery mechanism to increase the stability and
reliability of the system. Beyond the current schema-matching and time-processing error
recovery, we will develop an intelligent error-handling system that automatically detects
and responds to various anomalies on the production floor. To this end, we will introduce a
deep learning-based anomaly detection model and improve the system by learning possible
error patterns to which it could proactively respond.
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Abstract: This paper demonstrates that biodiesel production processes can be optimized
through implementing a controller based on fuzzy logic and neural networks. The system
dynamics are identified utilizing convolutional neural networks, enabling tests of the reac-
tor temperature response under different control law proposals. In addition, a sensorless
technique using a convolutional neural network to replace the sensor/transmitter signal in
case of failure is implemented. Two optimization functions are proposed utilizing a meta-
heuristic algorithm based on differential evolution, where the aim is to minimize the use
of cooling for the control of the reactor temperature. Finally, the control system proposals
are compared, and the results show that a neuro-fuzzy controller without optimization
restrictions generated unviable ITAE (1.9597 x 107) and TVU (22.3993) performance metrics,
while the restriction proposed in this work managed to minimize these metrics, improving
both the ITAE (3.3928 x 10°) and TVU (17.9132). These results show that combining the
sensorless technique and our optimization method for the cooling stage enables energy
saving in the temperature control processes required for biodiesel production.

Keywords: control process; biodiesel; optimization; sensorless technique

1. Introduction

It is important for industrial control systems to maximize profits and the use of re-
sources in their production processes in order to remain competitive. To achieve this, it
is necessary to optimize different areas, such as Electricity, Electronics, Mechanics, Ad-
ministration, and Automatic Control, among others. In the area of Automatic Control, it
is possible to contribute to the fulfillment of the optimization objective in the following
ways: (1) tuning classical controllers [1]; (2) modeling and identification of parameters [2];
(3) monitoring and prediction of behaviors [3]; and (4) implementation of non-conventional
controllers [4]. This work will focus on the modeling and identification of parameters,
allowing a mathematical expression of the linear or nonlinear nature of production pro-
cesses through the application of classical mechanics methods and computer science tech-
niques [2]. As a possible benefit, it is possible to carry out simulations of the behavior
and dynamics of a process under different considerations such as operating conditions,
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different controllers, and performance evaluation, among others. This has to do with
purposes associated with the design of production plants as well as with the optimization
of already established production processes. The implementation of non-conventional
controllers is increasing worldwide and will be seen with greater force in the industry of
undeveloped countries, because most of them use classical controllers. Due to the complex
nature of these processes, classical controllers quickly reach their limitations and affect
the profits of a factory over time through, for example, using more energy than necessary,
product quality problems, and difficulty in complying with environmental regulations,
among other issues. Controllers based on expert systems with fuzzy logic and those based
on neural networks have gained popularity in recent years [5]. However, this type of
controller has a fundamental problem—the inherent dependence on hyper-parameters
and their initial conditions—as well as the classic problems of stability and convergence.
Given the rapprochement between Automatic Control and Computer Science in the last few
decades, it is now possible to combine the techniques and reach the optimization objective
from a metaheuristics point of view, minimizing the dependence on the selection of initial
conditions. Mexico’s energy consumption is primarily distributed to the transportation
sector as well as heat and electricity generation. All this energy comes from fossil material
burning (approximately 60%) [6], renewable sources (9%), and biodiesel (5%) [7], among
other sources. Several political reforms in Mexico have been implemented to reduce the
pollutant emissions into the atmosphere. Although 35% of the total energy production
came from renewable resources by the end of 2024, several factors limited this progress [8],
such as high production costs, inadequate infrastructure for the energy production, and
the lack of incentives to develop those products [9]. However, biodiesel production has
prospered thanks to various recent research studies on its production and its promotion in
different applications [6,10,11].

Biodiesel production requires a specific viscosity similar to that of diesel, which is
achieved by mixing different substances and heating them under particular conditions
for each type of mixture in transesterification reactors [12]. Adequate control of the inside
of the reactor, specifically temperature control, is important. Nowadays, most of the
theoretical advances in the area of Automatic Control are not being effectively exploited
mainly for two reasons. The first reason is due to a lack of collaboration with areas of
industrial production, which need to contribute their perspective in order to guarantee the
efficient use of resources, as well as the problems and requirements for national growth.
The second reason is due to the lack of interest or efforts by researchers to carry out
implementations in real-world problems, which sometimes, depending on the observer, are
underestimated. However, the union of both aspects will allow us to continue developing
and finding ways to achieve industrialization objectives, the optimization of resources, and
the satisfaction of human needs in accordance with the corresponding area in question. In
this work, an illustration of the above is proposed by combining a problem of interest, such
as the generation of biodiesel, convolutional neural networks, metaheuristic algorithms,
and control through a neuro-fuzzy approach. One can find works such as [13], where a
comparative test of a boiler is presented, proving the maximum boiler efficiency indicators
and also the minimum toxicity of exhaust gases discharged into the atmosphere, all this
considering the proposed control system.

An important part of the control area is the identification of the system to be controlled,
because most control techniques used in the industry require a model to be applied [4].
In a real-world system, to obtain a model from them requires a lot of variables, such as
knowledge of the system, physical and environmental conditions, and the type of model
to be used, i.e., linear, nonlinear, parametric, non-parametric, continuous or discrete time,
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among others [14]. The aim of these models is to represent in the best way possible the real
system and to be as simple as possible, too. Different techniques of modeling have been de-
veloped through the years, each one trying to satisfy a specific need [15]. For example, [16]
represents the issues that nonlinear systems could introduce in the modeling process and
the excitation signals type that could be used in these systems. Also, in [17], linear models
were not enough to capture all the neural activity and relationships in the neural system,
so they propose a nonlinear model that helps in this matter and also produces sensitive
biomarkers to improve diagnosis in neurological disorders. In [18], they propose the use of
neural networks as a modeling method for a nonlinear system with constraints on states,
which is paired with a back-stepping algorithm and an intelligent controller.

Neural networks use has drastically increased in the past twenty years with a variety
of applications like object recognition [19], prediction [20,21], parametric estimation [22,23]
and system control [24]. One of the most popular algorithms within the neural networks is
the convolutional neural network (CNN) [25], inspired by the studies of Hubel and Wiesel
in the 1950s of the visual processing system of animals [26], and image classification is
its main application [27]. A recent deep study of recent advances in the use of CNNs can
be found in [28,29], where many modified architectures to specific applications of CNNs
are gathered together. As regards system identification using CNNs, Guodong Fan and
Xi Zhang present an architecture of CNNs to estimate battery capacity using voltage data
from different degradation levels [30]. In [31], a CNN is employed for the rapid prediction
of fluvial flood inundation where hydraulic/hydrodynamic models used for this same
propose are too computationally demanding. Another technique that can be applied to
the identification of systems is sensorless, which has been gaining popularity in pump,
motor, fan, and extractor control systems, among others [32]. Since sometimes it is not
possible to carry out the measurement of certain variables due to their complexity or a high
implementation cost, the estimation and approximation of the variables have an inherent
and strong correlation with the identification of a mathematical model and its parameters.
It is possible to obtain benefits for the prediction of the behavior of a system or to replace
a primary and secondary element (sensor/transmitter) due to an instrument failure or
communication failure. The implementation of this type of techniques can help reduce
instrumentation costs and avoid unscheduled shutdowns due to instrument replacement;
however, this should not be used under any circumstances for security systems.

In [33-35], a variety of works have addressed the tuning of different controllers
through experimentation, using random combinations, leaving aside hard optimization
problems. According to [36], a neuro-fuzzy controller (NFC) controller is a hybridization
between controllers based on fuzzy networks [37,38] and neural networks based on [39].
A fuzzy logic system uses if-then rules to determine the appropriate course of action based
on input data. The programmer, using its expertise, initially proposes these rules and is
further refined by means of a machine learning algorithm. The rules are based not only on
the experience of the programmer but on how the system learns from the data. This process
involves tuning the hyper-parameters of the neural network and the elements associated
with the inference laws of fuzzy logic. Metaheuristics algorithms provide solutions for
optimization problems when analytical or classical methods are not available. This non-
viability mainly occurs if the objective function to be optimized is not derivable or when
the computing resources for analytical methods are limited.

The main objectives of this work are presented below:

¢ To identify the dynamics of a biodiesel production system by means of a CNN.
¢ To tune a neuro-fuzzy controller by applying metahumanistic techniques using the
system obtained by means of the CNN.
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e To propose the cooling action as a temperature control problem to optimize the energy
applied in this stage.

e To apply a sensorless technique based on the implementation of a CNN for the
replacement of the control signal in case of failure.

Biodiesel production systems present challenges and obstacles associated with various
areas of engineering. Computer science techniques can be used to enhance topics related
to Automatic Control, such as artificial neural networks and optimization methods. This
work presents solutions to different problems featuring a mathematical model to perform
the tuning of the temperature control based on convolutional neural networks and tuning
for an NFC counter based on an optimization problem defined from the control objective to
minimize the heating stage by means of metaheuristics. In addition, a sensorless technique
is implemented in case of failure of the sensor/transmitter element, which consists of using
a convolutional neural network to momentarily replace the original signal of the system
and avoid problems in the production process. Finally, the result is a model that allows
simulations to be carried out to observe the dynamics of the process and thereby evaluate
the production process. A method is also proposed for energy saving by minimizing the
use of the cooling stage and, finally, a sensorless technique to guarantee the continuity of
the production process in the event of sensor/transmitter failure.

2. Materials and Methods
2.1. Problem Description

One of the great challenges in the application of Automatic Control in the industry
is the need to carry out tests of the controllers virtually and to allow the evaluation of the
effectiveness of the control law through measurements or performance metrics. However,
a method based on trial and error is not economically feasible in most cases due to the
time it may take and the inputs or raw materials required to carry out such tests. To work
virtually, it is necessary to have a dynamic mathematical model that allows emulation
of the behavior of the process in a specialized software environment and, from there, to
carry out dynamic tests under a specific control proposal to achieve the control objectives
based on the need to optimize the industrial process. Determining a mathematical model
of an industrial production process is often highly complex and complicated by means
of laws based on classical mechanics to obtain the differential equations that describe its
behavior over time. One way that has emerged to try to solve this problem is the use of
parametric and non-parametric identification techniques, which allow the approximation of
dynamics or parameters by means of the input and output signals of a process. In general,
industrial processes have nonlinear behaviors, which implies an important challenge to
determine a mathematical structure that describes their behavior. One of the most used
techniques to determine their dynamics is artificial neural networks; due to their plasticity
and flexibility in the learning process, they become strong candidates to be used since in
industrial processes, it is possible to collect a large amount of information on the control
action (manipulated variable) and the process variable (controlled variable) through a
data acquisition system. The system presented in [40] is taken as a case study, which is
described through Figure 1, where TC, T, Ty represents the thermal agent temperature,
output product temperature and the temperature of the product, respectively. The objective
of control is to regulate the temperature of the product (T7) as close to the reference
temperature Ty as possible. We control the action on the manipulated variable (valve),
determined by the control law programmed in the control system, using the information
from the temperature variable transducer coming from the reactor. Also, the flow of cold
water and steam to the tank is controlled in order to reach the desired temperature. Here,
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qar is the heat of the cold water, g, is the output product heat and g, is the steam heat. The
detailed description of the physical-chemical process that takes place in the production of
biodiesel and the mathematical model can be found in [40].

Product Stirrer

Transducer

= Regulator

To
T1 q;

Thermal agent
(water + steam)

j B T q;

9ar 9ab

Product

Tp qp
Figure 1. Pilot plant scheme [40].
The transfer function for the tank temperature is described by (1), according to [40]:

o _ 4
f (3605 +1) (11435 + 1)

)

To obtain (1), a cascade of three other transfer functions is needed, i.e., Gf = GgGyGr,
where these functions represent the dynamic and the static part of the complete system,
which is shown next:

Kg
Gg = ; 2
E= Tos 1 ()
Gr= €)
Tps+1
Gr=2. (4)

The execution element is represented by (2), where Kg = 2 and Tr = 360; (3) applies
to the process with T, = 1143s, K;, = 1, and for the temperature transducer, (4) is used
as a gain. These three transfer functions, working together, ensure the temperature of
the tank remains at the same level as long as the vegetable oil and the methanol react
with each other and the fatty acids methyl ester and glycerin are produced in the correct
way. Although model (1) represents a mathematical model of the system by means of
differential equations expressed in the frequency domain through a transfer function, it is
worth mentioning that it is a linear approximation that is invariant in time and with initial
conditions equal to zero. No model can be an exact copy of the system, so the general
considerations that are made to obtain the dynamics of the system generate uncertainty,
and therefore, a controller based on that model naturally has problems in the experimental
phase. Moreover, the parameters of a mathematical model are time-variant either because
of environmental conditions or due to the properties of the system itself. In the case of
biodiesel production, this may occur during the process. In the transesterification stage, it
is possible to observe adverse phenomena within the equipment and instruments, such
as residual material, gas emissions, and physical effects on the tank due to heating even
within operating ranges, among other effects. These apparently simple things can cause
parameter variation.
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For the above reasons, it is preferable to determine the mathematical model of the
system in another way. In this work, convolutional neural networks are used, since they
have been proven to be an important and novel tool in the area of computer science due to
their learning capabilities. To apply the identification process to industrial systems and
ensure that the information collected is reliable, it is necessary for the data acquisition
system to adequately measure the information of the process variable and the control action
according to Theorem 1 and Shannon-Nyquist frequency sampling.

Theorem 1. The sample rate fs must be greater than twice the highest frequency component of
interest in the signal. This frequency is usually known as the Nyquist frequency fn [2]:

fs > Z*fN. (5)

2.2. Identification Theory Using Convolutional Neural Network

The theory necessary to perform the system identification based on CNN is presented
below. As an estimation method for the system, a convolutional neural network has been
employed with the following structure: one fully connected layer as the output layer
and two convolutional layers one after the other, in which each convolutional layer has
10 hyper-parameter named filters, F; € %> for ¢ = 1,2, and a ReLU activation function is
applied to all filters separately.

The output of the CNN 4, is the estimated output of the real system g,, which is
calculated below:

qp = Ny x O (6)

where Ny are the synaptic weights in the output layer and © is the input to this layer,
while © is the concatenation of the second convolutional layer outputs 62:

T
© = |62] 2] - 02 @)
each 02; fori =1,2,---,10, is calculated as
02; = max(Pz,l- ®01;, 0) (8)

where (8) is the ReLU operation over the convolution, ©®, of the filter F, ; with the ith-output
01; of the first convolutional layer.
These outputs 61; are obtained as follows:

01; = max(FLl- ®Ouy, 0) )

where uy is the input vector for the CNN. For the training of the CNN, the backpropagation
algorithm is employed to update the hyper-parameters of the CNN, in this case, the synaptic
weights Ny and the filters F, ; and F; ; [41]. The rules for updating the hyper-parameters
for the synaptic weights are, in backward order,

9]
Nw(k+1) = Nw(k) = 5— 10

wlk+1) = Nu(k) = 35 (10)
with k representing the iteration in which the hyper-parameters are updated, | is the
objective function to be minimized, and | = % (4 — qp)z. For the ReLU activation function,

the gradient through this operation can be calculated as
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d0h;

S oon—1, @0l o

with i = 1,2 representing the convolutional layer of the structure, which in case of h =1
6h — 1 corresponds to the input to the CNN, uy. For filters F, ;, the update rule is

oF,; ®0h —1;

= (F,;®0h—1;) ©6h—1; (12)
th,i 4

2.3. System Identification Procedure

The procedure for the system identification is as follows: 12,000 input-output data
from the model are generated, which are used as training information. These data were
obtained while the system was in a closed-loop configuration. In Figure 2, the procedure is
shown, where the control signal U and the tank temperature output signal g, are used as
input to the CNN to produce a estimate value of the tank temperature ,. This value is fed
back into the CNN along with g, as an estimation error to calculate the gradient descendant
to update the hyper-parameters of the CNN. This process is completed step by step; we
received data from the system in different instants of time, the estimation was calculated,
and the CNN was calculated in each one of these iterations. The correct application of
Theorem 1 was needed to guarantee that the acquired data from the temperature system
were reliable. Sometimes, it is hard to determine the Nyquist frequency in real-world
applications. Nevertheless, experimental tests can be carried out through a sinusoidal
input signal. For variables such as temperature, the dynamics of these signals are usually
slow, so its fi usually is low, in the order of Hertz, which generates problems in finding
or proposing a sampling frequency. In this work, through trial and error, 1 s is enough to
appreciate changes in the dynamics of the system.

Product Stirrer

Transducer

= Regulator

To
T1q,

Thermal agent

(water + steam)
— Te

r Ti q;
Qar Jab

Product U, signal control

qp

_l

Training process

A tank temperature

_/ p, estimate temperature

Figure 2. Identification procedure.
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For the CNN, the vector u)y is generated in each iteration with the following structure:

uy = [U(k) Ulk—1) gy(k—1) gk —2)]" (13)

As a result of the system identification, Figure 3 shows these results, where both
signals are practically equal, and the mean square error (MSE) metric was employed and
has a measurement of the identification, leading to a value of 5.52 x 10721,
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Figure 3. System identification result.

This process can be resumed in Algorithm 1. In it, the first step to propose a CNN
structure, i.e., propose the hyper-parameters of the CNN, is performed randomly; there
are no specific criteria to chose them. Then, the CNN uses data from the signal U and g,
as input to calculate the estimated value of g, in that iteration and generate an estimated
error, which will be used in the backpropagation algorithm to update the value of the
hyper-parameters of CNN. This process is known as the training stage and performed
repeatedly until the simulation time is over. Finally, the testing stage is used to verify that
the training has been successfully achieved using the MSE metric. If the value of this index
is too high, all of the steps are repeated in order to decrease this value.

Algorithm 1 System identification procedure

Propose CNN hyper-parameters, F, NNyy.

whilei < N do > N -> total of data
Use control signal U into uy;.
Run CNN to get 7).
Use system output g, into uy for next iteration.
Compute estimation error e = ¢, — qp.
Update hyper-parameters F, Ny using gradient descendant method.

end while

Realize a testing stage to verify the training process with aid of MSE index

if MSE > Mm then > Mm -> minimum value for acceptance estimation
Repeat previous steps with a different CNN hyper-parameters selection.

end if

2.4. Neuro-Fuzzy Controller

The control used in this work is presented in detail in [42]; below is a brief explanation
of its operation and mathematical structure. The error (E) and the error increment over
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time (AE) are the inputs necessary for the neuro-fuzzy controller to work. To determine

these signals,
E(k) = SP(k) — PV (k), (14)
AE(k) = E(k)%i(k_l), (15)

where SP(k) and PV (k) denote the set point and the value of the process variable at time k,
E(k — 1) represents a time delay of E(k), and Ts is the sampling time.

The architecture of NFC is constituted by five layers. The first one, the input vector
X(k) = [E(k), AE(k)], is provided for the fuzzification, mapping these real values to the
linguistics applied to make the fuzzification according to the Takagi-Sugeno method [43].
The structure of this layer is defined by (16)

pa, = Tj(Aj(k), Xi(k)) (16)

where 14, indicates the membership function quantity selected for the vector X (k). Nor-
mally, the selection of the number of membership functions is chosen by trial and error,
but in this work, it is part of the tuning carried out by a bilevel optimization approach,
including the terms related to I';(-) and A;(k) that describe the j member functions se-
lected to make the fuzzyfication. For the Gaussian bell described by (17), the set A;(k)
contains the position and the spread of the Gaussian function in the parameters ¢; ; and
0j k., respectively [42].

X;(K); >2

os (2
Hay (Xi(K) =\ 17)

The inferences based on the if-then statements are made in the second layer in order
to generate fuzzy sets by means of the vector X (k) for subsequent membership in such a
way that the functions are related between each other to be able to determine the possible
behavior of the system scenarios. Right away, an output value according to each of the
cases established by the set of fuzzy rules denoted by (18) is proposed, where the index
p = 2,3 corresponds to the second or third layer, respectively [42].

OF = w(k) = pa, (Xi (k)" * pay, (Xi(k)) (18)

The output of the third layer should be normalized according to (19), where the index
I =1,2,..,Ris defined by the number of fuzzy rules n, since R = n x n [42].

w(k)

s ST

(19)

The fourth layer output (O*) is generated by the products of the normalized firing
strength and the parameter r; = 7;(A;(k)). This value is computed using (20), with
Bn(k) € R", v;(A;(k)) being the membership function and its parameters that describe the
controller actions by considering the output of the third layer, and @, .(k) represents each
row of the matrix [42].

O = Bu(k) = n,: (k) * 7j(;(k)) (20)
The output of the fifth layer is a scalar value used as a control signal that is obtained

by (21),
u(k) =3 pk) (1)
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A hybridization was made with neural networks to give a learning property to the
control system, making it able to learn in a continuous way considering the system is
subject to different operating conditions such as disturbances, as mentioned in [44]. The
gradient descent method [2] was adapted for tuning the membership functions (Gaussians
bells) of the neuro-fuzzy network for the fuzzification and defuzzification stages, as shown,
respectively, in [42]. This has led to an improvement in the controller that has resulted in
an efficient use of energy. However, it can be used to design a desired dynamic for the
controller, which can help avoid unwanted actions by the control signal when trying to
bring the behavior to a desired set point.

2.5. Sensorless

In biodiesel production, obstacles or situations can be found that make it difficult
to control the reactor temperature. The signal emitted by a sensor/transmitter can be
corrupted by noise, it can be miscalibrated, and it can fail due to poor installation or lack
of maintenance. When any of these situations occur, the controller will be affected due to
the dependence on the measurement of the controlled variable to obtain the error signal.
This can lead to a loss of energy, instability in the system, and a loss of raw material, and it
can also put operators and process equipment at risk. This work presents a solution that
allows to attack this problem through the implementation of the CNN as a virtual sensor,
which has the purpose of replacing the sensor/transmitter signal in its absence. Below, in
Figure 4, it is shown how the CNN acts in the sensorless system. The CNN for this case,
which was previously trained to estimate temperature, uses only information from the
controller signal, the set point, and the output of itself as input to estimate this variable, so
the controller does not obtain a zero at any time, even if the transducer presents any kind

of failure.
Sensor failure ~ -
Product Stirrer Transducer, T T r l =<
| %
Set-Point, Ty
I o
CNN _‘
Tiq
: Controller

ﬂuc’t

Tp qp

Figure 4. Sensorless system.

In order to show the benefits of the sensorless systems, a simulation was created where
the signal from the temperature sensor is missing to compare with real case scenarios where
there is a failure in communication with the sensor, such as accidental cable disconnection
or breakage. In this case, the controller will send a signal to increase temperature because
of the zero signal sent by the sensor, leading to increased energy consumption. For this
matter, the plant is controlled with a PID to reach 45 °C with an external disturbance during
the simulation. This can be seen in Figure 5; the reactor temperature fluctuations are due to
intermittencies in the connection with the sensor. These intermittencies are simulated as
occurring repeatedly during certain periods of time in addition to an external disturbance
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occurring in the system at 5000 s. Both before and after the disturbance, the system will not
reach the desired temperature due to the loss of communication with the sensor, potentially
compromising the final product properties.

As a solution for this particular problem, a CNN with 2 convolutional layers with
20 filters in each layer and 10 synaptic weights was trained to model the plant and used
in parallel with it. In each instance of measurement, the two signals corresponding to the
temperature of the reactor can be used as the feedback signal to the controller, preventing
the controller from sending an incorrect signal when communication with the sensor is lost,
reducing energy consumption and allowing the sensor to be checked without having to
stop the process. In both cases, whether the CNN is used or not, 100 s are simulated as the
time that the signal sensor is faulty. Figure 6 shows the temperature of the reactor when a
CNN is employed; as it can be seen, the controller takes the system to temperature near the
defined set point even though the disturbance appears, unlike the previous case.
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Figure 5. Temperature of reactor with sensor failure communication.
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Figure 6. Temperature of reactor with sensor failure communication using CNN.
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2.6. Tuning NFC Parameters with a Bilevel Optimization Approach with Differential Evolution (DE)

In [45], it is explained that the tuning of the NFC controller is complex because the
configuration space contains vectors with different dimensions that contain both integers
and continuous variables, which is a limitation of implementing search algorithms in order
to find the best one. In that work, it was proposed to solve the drawbacks following a
bilevel optimization approach, which refers to one in which one problem is embedded
within another so that the solution of the first (lower problem) restricts the second (upper
problem) [46]. As a contribution to this proposal, the modifications to the bilevel optimiza-
tion approach are presented to tune the NFC with the objective of covering the additional
requirement of not exceeding the reference value of the controller.

2.6.1. The Original Problem

The optimization problem presented in [45] that has the objective of tuning the NFC
for the tracking task is described below. For both levels of the methodology, the same
objective function presented in (22) is considered where ¢ is determined as the difference
between a signal control and the result of applying the NFC to the system.

k
f(3) = ;Hei(f” + Llei(%))) (22)
i=

In (22), the integers decision variables in ¥ are the number of membership functions
(m), while the weights of the neural network [wy, wy, ..., w;], the parameters of the member-
ship functions (¢; x) and (0jx), and the learning rate constants 7y, 77 and 7 are real-value
variables. L is a scalar that serves to regulate the influence of the change in the error as a
term of the objective function.

The solution spaces differ in the sense that in the first level, part of the solution
is completed with random values; on the other hand, in the second level, the random
part becomes the solution to be searched using part of the previously found solution as
constants. In the first level of optimization, the weights and the initial position of the
member functions are not considered as design variables but as a noise vector, resulting in
a solution vector and a noise vector structured as in (23) and (24), respectively.

f = [m/ Ul/ 02/ 17¢/ 17(7/ 777’] (23)

w = [w1/w2/ e /wn:mZI 4)1/ 4)2/ e /4)11’1] (24)

From (23), it is ensured that the size of the solution vector (¥) is fixed. To complete the
configuration of the NFC, the vector is combined with randomly generated sets of weights
10 m? in size, where the set with the lowest objective function is selected as the fitness for
the solution vector. This solution is carried out around the epochs of the DE as an elitist
mechanism. Finally, to deal with the integer value (m), the repulsion strategy proposed by
Liu et al. [47] is employed.

At the second level, the solution obtained at the first level of optimization allows
establishing a restriction at the second level to make the number of functions and weights
constant, where the NFC weights are tuned. The structure of the solution vector for the
second level is denoted by (25); m has a fixed size and comes from the previous level as a
solution. In this second level of optimization, some elements of the solution vector continue
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as a decision variable; although weights and positions of member functions are greatly
important, it is possible that a different configuration would be better for the tracking task.

f = [0-1/0'2/ 1/]4)/ 170/ 7’]7-, Wi, .- /wn:mz/ (Pl/ e r(Pm] (25)

2.6.2. The Proposed Modified Problems

The tuning methodology was modified as the contribution of this work to integrate the
additional requirement of not surpassing the point reference in the tracking task. Two new
optimization functions were considered. The first one penalizes the value of the objective
function every time the controller’s action produces a value that exceeds the reference, as

shown in (26).
k

f(x®) = Y (lei(®)| + L|&;(¥)] + Mei(¥)) (26)

i=1
where M is a scalar that regulates the influence of the new term on the objective function. ¢;
defines the error over the set point and is described by (27) using the description of the NFC.

D

27)

C

other.

. { . = PV(k) — SP(K), 0< PV(k)— SP(K)
b i =0,

This proposal follows the idea presented in [48] where in order to cover multiple
objectives, a common objective function is established, which is a composition of different
individual functions whose optimal solution involves covering the objective. As the value
of M increases, the overreaction is reduced but does not necessarily reach the optimal value
of zero. To force the search algorithm to find solutions with that value, a second approach
is proposed.

The second proposal consists of biasing the space of feasible solutions by incorpo-
rating the constraint (28) to the original objective function (22). The constraint considers
a configuration infeasible when it produces system behavior where the controller action
exceeds the set point value when the initial condition begins. Due to the incorporation of
this restriction, the feasibility rules [49] as a constraint handler were included in DE.

k
hT) = Y 6(F) =0 (28)

The definition of ¢; implies that it can only have positive or zero values, so the solution
of the optimization problem represents the best configuration to perform the monitoring
task without exceeding the reference.

2.6.3. Final Methodology

The general process for solving the complete optimization problem of the modified
approach is shown in Figure 7, and the operations for the mutation, cross, and selection are
described by (29), (30) and (31), respectively. All tuned parameters and its range are shown
in Table 1.

Mutantx) = x™ 4+ F(x'? — x') (29)

(30)

News: — Mutantx;, rand(0,1) < CR
") Fatherx;, rand(0,1) > CR.
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Newx;,  f(Newx;) < f(x¢ Newx;) = h(x8) =0
w8+ x8, f(x8) < f(Newx; Newx;) = h(x8) =0 31)
Newx;, h(Newx;) < h(x8) A (h(Newx;) # 0V h(x8) # 0)
x8, h(x8) < h(Newx;) A (h(Newx;) # 0V h(x8) # 0)
Table 1. Tuned parameters for the NFC.
Parameter Range
Parameter of the membership Pj ks Ok
functions (¢« and o; ;) € [—100,100]
Learning rate constants Nps o s Mr

17(P/ 17(7/ ;77

€ [0.0001, 3]

Member functions number m

m e 70 [3,15]

Initial weights @ refereed to r;

w; € [0.0001,50]

1 Initialize randomly
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\

2 DE: Evaluation of function,
Mutation, Cross, Selection
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End (Output:
Tuning parameters
of the NFC)
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Figure 7. Flowchart of the tuning process.

3. Experimentation and Discussion
3.1. Case of Study

One of the main objectives of biodiesel production is to control the temperature at
a desired set point. According to Figure 1, it is possible to perform a heating stage by
supplying heat or to carry out a cooling stage, for example, by supplying cold water. When
each of the stages occurs, it is due to the nature of the control action determined by the
control system based on the temperature variation of the biodiesel production system. One
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of the main causes that can be easily seen is that if the plant is exposed to an uncontrolled
environment, then it is susceptible to environmental factors such as the variation in ambient
temperature throughout the day or the season of the year. For example, in the summer,
it could be thought that the cooling stage is used more frequently; on the contrary, in the
winter, the heating stage could be used more frequently. These environmental variations
from the point of view of Automatic Control are considered disturbances. In [45], they are
addressed in greater detail. In Section 2.5, it is proposed that the optimization algorithm
based on metaheuristics conducts a search and performs a tuning such that the controller in
its heating stage mitigates exceeding the desired temperature reference; this leads to energy
savings by avoiding the cooling stage being used constantly. Therefore, the above illustrates
that considerable efforts can be made to achieve better results from the production processes
through not only making improvements in the controller but by making a critical analysis
of the needs of a process through understanding it and the industrial objectives.

To illustrate the method proposed in this work, we used the model identified by the
CNN. Subsequently, tests were carried out with the proposed functions (26) and (28). The
reference of 60 °C was taken; according to the problem posed in [42], at 5000 s, a disturbance
due to heat loss of 10 °C is simulated. This may be due to a failure in the control system or
some unexpected external agent that causes such a loss, thus affecting the production of
biodiesel. Below is the result obtained by the NFC proposed in [45].

In Figure 8, it is observed that in the initial stage, there is an overshoot, causing the
cooling stage of the control system to act to bring the reactor temperature to the desired
set point. Later, in the disturbance due to heat demand, it is observed that there is no
overshoot in the dynamics of the controlled variable and that the temperature recovery
time is gradual.
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Figure 8. System behavior by NFC without additional considerations.

3.2. First Optimization Proposal

In this experiment, see Figure 9, it is shown how the optimization function proposed
in the model (26) penalizes the value of the objective function, as the controller’s action
produces a value that exceeds the reference. At the beginning of the system response, there
is no overshoot, avoiding the cooling stage. However, when the disturbance occurs, it can
be observed that in the recovery of the system, there is a time in which the temperature
exceeds the proposed reference, so it is necessary to activate the cooling stage. Therefore,
speaking in terms of energy savings, it is not desired since this type of system can use
cooling towers to supply cold water and lower the reactor temperature.
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Figure 9. System behavior by NFC with the first optimization proposal.

3.3. Second Optimization Proposal

Figure 10 shows the experimentation considering the second optimization function,
which was proposed in model (28), where the constraint considers infeasible a configuration
that produces system behavior where the controller action exceeds the set point value when
the initial condition begins below. In this case, it is possible to observe that at no time
during the experiment, either in the initial stage or at the time of the disturbance, is there a
time in which the dynamics of the reactor temperature variable exceed the reference value.
Therefore, the activation of the cooling stage was not necessary; this can mean considerable
energy savings in biodiesel production systems.
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Figure 10. System behavior by NFC with the second optimization proposal.

With this approach, the desired objective was achieved, but due to the stochastic
components inherent in metaheuristic techniques, the tuning methodology was repeated
10 times. The results are reported in Table 2. Most of the results are infeasible in the strict
sense, but more than half of them have errors less than 1 x 107, so their implementation
is viable.
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Table 2. Performance of 10 tuned configurations using the second optimization proposal.

Run Objective Function Constraint Value ITAE TVU

1 8.4832 x 103 0 2.1363 x 107 17.5678

2 5.5300 x 10° 10.6989 4.0364 x 10°  17.6588

3 4.6494 x 10° 3.7802 x 107> 4.7453 x 10°  30.4145

4 5.3384 x 103 1.9564 x 10710 6.2209 x 10° 17.5678

5 5.4586 x 10° 16.0819 3.8061 x 10° 17.7146

6 5.2092 x 10° 31.4761 3.3928 x 10°  17.9132

7 4.7826 x 10° 21240 x 10710 45194 x 10 24.6171

8 5.0259 x 103 31.6624 3.6326 x 10°  17.9256

9 4.7149 x 10° 8.8660 x 107> 4.6459 x 10°  29.8925

10 6.9511 x 103 31859 x 10710 56212 x 10° 17.5678
Average 5.6143 x 103 8.9919 6.1983 x 10° 17.5678
Standard deviation 1.2049 x 103 13.1563 5.4005 x 10°  5.3431

3.4. Discussion

The performance metric allows us to interpret the dynamics of the system by quanti-
fying the error signal: the smaller the index, the better the controller performance. There
are a variety of metrics that allow the user to obtain many quantitative properties of the
performance of the control of dynamic systems [50]. However, when dealing with the
temperature variable, it must be taken into consideration that its dynamics are slow, and
it is preferable to penalize more strongly the deviations of the controlled variable with
respect to the set point in a steady state or in the presence of disturbances with respect to
the transient behavior performance. The ITAE metric results are useful since they penalize
the error more strongly as time increases; this is preferable for systems with slow dynamics,
such as the temperature of the reactor, where the initial error is usually large. Below is the
expression of performance metrics [2]:

/0 “He(#)| dx. (32)

To obtain the results presented, the integral corresponding to the ITAE index was
approximated to the form presented in (33)

LS ke(k) 4 (k— D)e(k— 1), (33)
2 k=1

In many processes, the control signal is an important variable to observe when evalu-
ating the performance of the control system. The TVU index is adequate in this case [2]:

d
Y- (k) — uk— 1)) 69
k=1
Figures 8-10 are helpful in qualitatively judging the behavior of the reactor temper-
ature variable under NFC control with different considerations. However, this is not an
analysis that reveals simple proof that one method is better than another. For a numerical
comparison point, Table 3 is presented below, which contains the values obtained in each
experiment using the ITAE and TVU performance metrics. Identification, system simula-
tion, and controller tuning through optimization were performed using MATLAB R2020a.
We used a computing platform with the following specifications: Intel i7 processor at
3.70 GHz, 16 GB of RAM, and Windows 11 operating system.
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Table 3. Comparison of controller performance indexes.

Controller ITAE TVU
NFC without penalization 1.9597 x 107 22.3993
NFC first optimization proposal 3.5530 x 10° 18.3259
NEFC second optimization proposal 3.3928 x 10° 17.9132

From Table 3, it can be determined that the best control applied is the NFC considering
the restriction proposed in the model (28), demonstrating a lower accumulated ITAE error
as well as using 20% less energy with respect to the TVU metric. Applied to an industrial
control problem, this could mean profits for the company by making better use of the
resources involved in the biodiesel production process.

4. Conclusions

This paper presents a way to apply computer science techniques to solve problems
in biodiesel production. This includes a conceptual stage featuring the control objective
as well as evaluating the results of an experimental phase. The identification phase of the
dynamics of a process, by means of a CNN, is crucial to be able to carry out tests through
simulations in order to save time and resources. Since this identification is carried out with
real data from the industrial system, the possible deviation in the implementation in the
real world will be drastically minimized, which is of great importance so that advanced
control techniques are more easily accepted by the industrial sector. A sensorless technique
is also shown, which allows the use of a virtual sensor executed by a CNN and continues
with the control of the process while there is no signal from the sensor/transmitter element.

NEFC controllers are flexible and allow for the easier mitigation of changes in the
environment where the biodiesel plant is located, as well as disturbances that could arise,
such as mechanical or electronic failures. The combination of control objectives with
metaheuristic algorithms allows the focus of the controllers to meet optimization challenges,
as has been shown in this work, by limiting the use of the cooling stage in the temperature
control of the reactor. Finally, the quantitative comparison using the TVU and ITAE
performance metrics allows the evaluation of the different proposals and determines that
for this case study, the NFC with an optimization function that penalizes any control signal
that causes the reactor temperature to exceed the desired set point is the best option, thereby
achieving a lower error, using lower energy consumption (20% less). The next work is
intended to implement these advances in a biodiesel production plant and carry out an
energy study of the experimental results. Future work is intended to carry out experimental
tests in an industrial pilot plant for the production of biodiesel from cooking oil and to
conduct a study of the energy quality of the controller developed in this research.
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Abstract: In the processing of industry front-end waste, the reactor plays a critical role as
a key piece of equipment, making its operational status monitoring essential. However,
in practical applications, issues such as equipment aging, data transmission failures, and
storage faults often lead to data loss, which affects monitoring accuracy. Traditional meth-
ods for handling missing data, such as ignoring, deleting, or interpolation, have various
shortcomings and struggle to meet the demand for accurate data under complex operating
conditions. In recent years, although artificial intelligence-based machine learning tech-
niques have made progress in data imputation, existing methods still face limitations in
capturing the coupling relationships between the sequential and channel dimensions of
time series data. To address this issue, this paper proposes a time series decoupling-based
data imputation model, referred to as the Decomposite-based Transformer Model (DTM).
This model utilizes a time series decoupling method to decompose time series data for sep-
arate sequential modeling and employs the proposed MixTransformer module to capture
channel-wise information and sequence-wise information, enabling deep modeling. To
validate the performance of the proposed model, we designed data imputation experiments
under two fault scenarios: random data loss and single-channel data loss. Experimental
results demonstrate that the DTM model consistently performs well across multiple data
imputation tasks, achieving leading performance in several tasks.

Keywords: time series imputation; industry system; condition monitoring

1. Introduction

In the process of industry front-end waste treatment, industrial facilities often employ
a series of chemical reactions to fully react with hazardous waste and convert it into
harmless and environmentally friendly substances. Among these, the industrial reactor is
one of the key pieces of equipment at the forefront of industrial fuel reprocessing plants.
Its primary function is to receive short segments of waste, dissolve the wasted core within
the cladding, produce qualified feed solutions, and discharge the cladding. The reactor
equipment consists of the following components: the loading and unloading system, flat
trough system, drive system, support system, position confirmation system, and air-lift
and slag-discharge system. To ensure the orderly progress of the treatment process, it
is essential to obtain accurate and complete sensor data for real-time monitoring of the
operational status of the industrial reactor.

Processes 2025, 13, 1526 https://doi.org/10.3390/pr13051526
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However, in practical applications, issues such as equipment aging, data transmission
errors, and storage faults can lead to data loss and abnormal sensor readings in the collected
data under actual working conditions. Addressing these missing data are therefore a critical
task in the front-end treatment of industry waste. In traditional approaches to handling
missing data, common methods include ignoring, deletion, and interpolation. The ignoring
method completely disregards missing values without performing any operations on them
and directly uses the data containing missing features. The deletion method involves
removing the missing values from the dataset, which can result in the loss of a significant
portion of the original data’s information. As such, this approach is only suitable when
the amount of missing data is minimal. With the continuous advancement of science and
technology, the demand for accurate data processing outcomes has grown. Consequently,
interpolation methods have garnered increasing attention from researchers. This approach
involves analyzing the existing data to fill in the missing values, allowing for the use of
complete data in subsequent analyses. This reduces the impact of missing data on research
and enables more reliable study results.

In the early stages of research, scholars often adopt traditional imputation methods
based on statistical analysis. The most basic approaches include mean imputation and
median imputation, while these methods are straightforward and easy to implement,
they tend to introduce bias, leading to distortions in the data distribution. Additionally,
some researchers employ regression-based imputation methods, such as linear regression
and logistic regression. However, these methods are highly sensitive to the quality of
the dataset. When the dataset lacks completeness, these models struggle to accurately
capture the internal relationships within the data, resulting in poor model performance.
In summary, these methods, which are based on linear assumptions, are insufficient to
fully adapt to the complexities of real-world scenarios and fail to predict the intrinsic
relationships among variables effectively.

With the latest advancements and applications of artificial intelligence technology,
many researchers have adopted machine learning techniques to construct deep learning
models to solve missing data imputation problems. These models can primarily be divided
into the following categories, representing algorithms with different processing focuses.
CNN-based network models are based on the CNN architecture and integrate various
methods for data modeling. However, such methods are limited by the convolutional
network itself, which has a restricted receptive field and poor long-sequence perception
capabilities. Linear layer-based network models, the most notable of which are Transformer
series models, improve on the shortcomings of CNN architecture, such as limited receptive
fields and poor sequential modeling capabilities, but they are less effective than CNN-based
models in capturing tight coupling relationships between channels. The state-of-the-art
machine learning algorithm, DLinear, uses a time series modal decomposition approach,
dividing time series data into trend and local information and then conducting deep
learning modeling separately. However, this method does not consider the correlations
between channels and only employs a channel-independent approach for decoupling
computations, ignoring the interference of inter-channel information on local variations.
Transformer models, by contrast, focus more on sequence modeling both within and across
channels in time series data but lack a long-term view of sequence changes. Although
the above methods demonstrate strong performance and potential in sequence modeling
and data imputation, they lack a comprehensive and effective approach for capturing and
analyzing the coupling relationships between sequences and channels.

To address the challenge of capturing coupling relationships between the sequential
and channel dimensions in time series data, this paper proposes a time series decoupling-
based data imputation model, referred to as the Decomposite-based Transformer Model
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(DTM). By employing a time series decomposite approach, DTM decomposes time series
data for separate sequence modeling. Simultaneously, the model utilizes our proposed
MixTransformer module to capture inter-channel information and long-term sequence
dependencies, enabling deep modeling. To validate the model, this paper designs data
imputation experiments under two fault scenarios: random data loss and single-channel
data loss. The experimental results demonstrate that the proposed model consistently
performs well across multiple data imputation tasks. The contributions of this paper are
as follows:

® A channel-level data imputation task is proposed. This task leverages the coupling
relationships between channels and the available data to impute missing channel
data, thereby enhancing the operational stability of sensor detection and condition
monitoring in the industry processing.

e  For the proposed imputation task, the DTM model is developed. By integrating
time series decomposition with the proposed MixTransformer architecture, the model
performs inter-channel and sequence-level modeling of time series data. Experimental
results indicate that the proposed model achieves leading performance across multiple
imputation tasks.

2. Related Works
2.1. Data-Driven Fault Diagnosis in Industrial Equipment

Condition monitoring and fault diagnosis of industrial equipment are essential for
ensuring safe operation and enhancing reliability. This process includes fault detection,
identification, localization, and recovery. Currently, fault diagnosis relies on prior analysis
of fault modes, allowing for diagnosis based on these results when a fault occurs. However,
the diversity of equipment types, complex operating environments (e.g., high tempera-
ture, pressure, radiation), and inaccessibility of some equipment present challenges for
traditional methods [1,2]. With the rapid development of data-driven technologies, online
monitoring, and intelligent inspection systems now gather large-scale operational data via
sensors, providing strong support for condition assessment and fault diagnosis. In recent
years, data-driven approaches have advanced in reliability analysis, anomaly detection,
and intelligent diagnostics, offering new solutions for improving safety and optimizing
maintenance in industry processing.

Traditional machine learning methods rely on manually extracted data features. When
faced with increasingly complex nonlinear dynamic systems, vast state parameters, and
fault information of industrial equipment, they often encounter performance bottlenecks.
Therefore, current data-driven monitoring and diagnostic technologies for industrial equip-
ment typically employ neural networks as the mainstream technique. Specifically, Kozma
et al. constructed a relatively simple three-layer feedforward neural network to address
issues such as coolant boiling monitoring [3], anomaly detection during startup, shutdown,
and steady-state operations in power plants [4], as well as anomaly cause localization [5].
These studies indicated that artificial neural networks are faster and more reliable than
variance-based statistical methods for anomaly detection. Lee et al. [6] also proposed a fault
diagnosis method for Control and Instrumentation (C&lI) cable systems based on a sim-
ple multilayer perceptron (MLP) and time—frequency domain reflection techniques. This
method can detect the presence and location of faults and further distinguish faulty lines in
multi-core C&I cables. Mandal et al. [7] addressed online fault detection of thermocouples
by proposing a classification method based on Deep Belief Networks (DBNs), using the
generalized likelihood ratio test to calculate fault patterns in sensor signals based on fault
amplitude. Similarly, Peng et al. [8] developed a fault diagnosis model based on DBN and
correlation analysis, which first reduces the dimensionality of features using correlation
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analysis for feature selection, and then applies DBN for fault recognition. This method
demonstrates significant advantages over fault diagnosis models based on backpropagation
neural networks and support vector machines.

With the widespread application of Convolutional Neural Networks (CNNs) in image
processing, researchers have started introducing them into the fault detection field for
industrial equipment to develop higher-performance diagnostic models. Bang et al. [9]
proposed a multi-core cable diagnostic method based on reflection measurements. This
method converts reflection signals obtained from measurements into images using image
processing algorithms and classifies the images using CNNSs, thereby enhancing the stability
and reliability of multi-core cable system fault detection. Saeed et al. [10] developed an
online fault monitoring system that uses CNNs combined with sliding window techniques
to identify and evaluate faults such as main feedwater pipe rupture, main pump failure, and
pressurizer safety valve failure under different industrial plant conditions. Abdelghafar
et al. [11] developed industrial reactors fault detection system based on CNNs, using
real-time sensor data to analyze anomalies or faults in reactor operations. The system can
prevent catastrophic accidents by detecting faults early, significantly enhancing the safety
and reliability of industrial reactors.

Furthermore, since fault diagnosis in industrial equipment often involves large vol-
umes of time series data, many studies have proposed fault detection methods based on
Recurrent Neural Networks (RNNs), which have unique advantages in handling such
data. However, traditional RNNs have limitations when modeling long-term dependencies.
Long Short-Term Memory networks (LSTMs), an improved version of RNNs, overcome this
issue, especially in capturing long-term dependencies during the backpropagation process
of time series data. Yang et al. [12] proposed an LSTM-based fault diagnosis method,
generating fault rankings with probabilities through preprocessing, LSTM networks, and
post-processing. Choi et al. [13] proposed a sensor fault detection system framework, using
LSTM networks to generate consistency indices to assess sensor reliability and quantify
their performance during emergency sequences. This study demonstrated the potential
application of this system in handling industrial plant emergencies. To handle untrained
faults in industrial plants, Yang et al. [14] first classify major changes that might affect plant
status and apply LSTM’s autoencoder algorithm for fault diagnosis of typical accidents.
Overall, these LSTM and autoencoder-based studies provide new approaches for industrial
power plant equipment fault diagnosis, showing significant advantages and potential for
dealing with complex time series data and emergencies.

In recent years, Transformer models, which have excelled in natural language pro-
cessing, have begun to attract attention in the industrial equipment fault diagnosis field.
Through the self-attention mechanism, Transformers can effectively extract important fea-
tures from time series data and apply them to complex fault detection tasks. Zhou et al. [15]
proposed a Transformer-based abnormality detection model for reactor cooling pump sta-
tus monitoring. The model retains the ability of the original Transformer network to capture
time dependencies in time series data and enhances the learning of spatial correlations
between variables through the attention mechanism. To detect anomalies in industrial data,
Trans-MCC [16] employed an unsupervised Transformer framework and modified the loss
function using the Maximum Correlation Entropy Criterion (MCC) to enhance robustness.
Compared to methods based on CNNs and RNNs, Transformer demonstrates superior
modeling capabilities when handling high-dimensional time series data, providing a more
efficient solution for fault diagnosis in industrial equipment. These studies highlight the
significant advantages of Transformer-based models in addressing complex time series data
and diverse fault patterns, indicating their promising potential for widespread application
in industrial power plant fault diagnosis.
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2.2. Deep Learning-Based Industrial Data Soft Sensing Technology

Industrial data soft sensing technology is a technique that analyzes, models, and
predicts large volumes of data from industrial processes to indirectly estimate and monitor
physical quantities that are difficult to measure directly. Soft sensors are the core component
of soft sensing technology; they use mathematical modeling to infer variables that cannot
be directly obtained by leveraging existing measurable data. Traditional soft sensing
methods generally rely on classic statistical and machine learning techniques such as
regression analysis, Principal Component Analysis (PCA), and Support Vector Machines
(SVM). However, these methods often struggle with complex, high-dimensional data,
especially when dealing with time series data and nonlinear problems. The introduction of
deep learning has brought new breakthroughs to soft sensing technology, enabling it to
effectively handle these complex data and provide more accurate predictions.

Autoencoders (AEs) and their variants are widely used in building soft sensors, par-
ticularly in semi-supervised learning and handling missing data in industrial processes.
For example, NPLVR [17] is a nonlinear probabilistic latent variable regression model that
leverages features extracted by a variational Auto-Encoder (VAE). By incorporating super-
visory information from label variables into both the encoding and decoding processes, the
model effectively extracts nonlinear features for latent variable regression. VW-SAE [18]
is a variable-wise weighted stacked autoencoder that uses the linear Pearson correlation
coefficient between hidden layer inputs and output labels during pre-training, enabling
semi-supervised feature extraction. By assigning weights to variables based on their cor-
relation with the output, VW-SAE emphasizes important features and stacks weighted
autoencoders to form a deep network. Furthermore, Wang et al. [19] proposed a generative
model, VA-WGAN, based on VAE and Wasserstein Generative Adversarial Networks
(WGAN), which can generate distributions from industrial processes that match real data.
Additionally, some studies combine autoencoders with other methods to achieve better re-
sults. For instance, Yao et al. [20] first use autoencoders for unsupervised feature extraction
and then apply Extreme Learning Machines (ELMSs) for regression tasks. The experimental
results showed that this hybrid approach outperforms using autoencoders alone.

CNN's can capture local dynamic features of process signals in industrial process data
or the frequency domain, making them suitable for building soft sensors. Horn et al. [21]
used CNNSs to extract features from foam flotation sensors, demonstrating good feature
extraction speed and predictive performance. For dynamic problems, Yuan et al. [22]
proposed a multi-channel CNN for soft sensing applications in industrial dehydrogena-
tion towers and hydrocracking processes. This model learns dynamic features and local
correlations of different variable combinations. In the frequency domain, CNNs can
exhibit high invariance to signal translation, scaling, and distortion. Based on this, CNN-
ELM [23] incorporates convolutional and max-pooling layers to extract high-level features
from the vibration spectra of milling machine bearings. These features are then mapped
to material levels using an Extreme Learning Machine (ELM), achieving accurate and
efficient measurements.

RNNs and their variants, such as LSTM networks, have also been applied in practical
cases. For example, Ke et al. [24] built an LSTM-based soft sensor model that can han-
dle the strong nonlinearity and dynamic characteristics of industrial processes. Similarly,
SLSTM [25], based on LSTM, is a supervised network that learns dynamic hidden states
using both input and quality variables. This approach has proven effective in the penicillin
fermentation process and industrial dehydrogenation towers. Raghavan et al. [26] intro-
duced a variant of RNN, the Time-Delayed Neural Network (TDNN), which outperformed
traditional Extended Kalman Filters and feedforward neural networks in state estimation of
an ideal reactive distillation column. Moreover, Yin et al. [27] proposed an integrated semi-
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supervised model combining self-supervised autoencoders (SAEs) with bidirectional LSTM.
This method not only extracts and utilizes time behaviors from both labeled and unlabeled
data but also considers the time dependencies of the quality indicators themselves.

2.3. Time Series Data Imputation and Prediction Techniques

Missing data poses significant challenges to statistical analysis and machine learning,
often leading to biased outcomes and inaccurate results. Traditional imputation methods,
such as mean imputation, hot-deck imputation [28], and multiple imputation by chained
equations [29], are simple and easy to implement but show limitations when dealing with
high-dimensional, complex, or nonlinear data. Advanced imputation methods, including
KNN imputation [30,31], decision trees [32], random forests [33], and SVM [34,35], can
capture complex relationships between variables but often suffer from high computational
costs or sensitivity to parameter tuning. In recent years, deep learning-based imputation
methods have demonstrated significant advantages in missing data processing due to their
strong feature modeling capabilities and adaptability to complex data.

AEs, a class of neural networks capable of learning compressed representations of data,
have been widely applied to missing data imputation. For example, Vincent et al. [36] pro-
posed a denoising autoencoder that reconstructs partially corrupted input data, enabling
the model to learn robust representations for missing values. This method effectively cap-
tures nonlinear patterns and complex structures in time series data, showing high accuracy
and robustness in imputation tasks. Similarly, Li et al. [37] introduced a method combining
VAE with shift correction to address specific missing values in multivariate time series. By
correcting the probability distribution deviations caused by concentrated missingness, this
approach significantly improves the accuracy and robustness of imputation.

Generative Adversarial Networks (GANs) have also gained considerable attention
in the field of missing data imputation. In this regard, GAIN [38] leverages the generator
to impute missing values based on observed data, producing a complete vector, while
the discriminator identifies which components are observed and which are imputed. The
model also incorporates a hint mechanism to further enhance imputation accuracy. Simi-
larly, imputeGAN [39] utilizes an iterative optimization strategy to handle long sequences
of continuous missing values in multivariate time series. This model ensures both the gen-
eralizability of the approach and the reasonableness of the imputation results. Additionally,
Khan et al. [40] proposed a method using GANSs to generate synthetic samples, which
improved imputation performance for mixed datasets. By employing Tabular GAN and
Conditional Tabular GAN to generate synthetic data, their experiments demonstrated that
incorporating synthetic samples can significantly enhance imputation accuracy in scenarios
with high missing rates.

Transformer models have shown great potential in missing data imputation, par-
ticularly in handling complex patterns and long-term dependencies in time series data.
MTSIT [41] leverages the Transformer architecture to perform unsupervised imputation
by jointly reconstructing and imputing stochastically masked inputs. Unlike traditional
Transformer models, MTSIT uses only the encoder part to reduce computational costs and is
specifically designed for multivariate time series data. Building on this, ImputeFormer [42]
introduces a low-rankness-induced Transformer model that combines the advantages of
low-rank models with deep learning. By capturing spatiotemporal structures, Impute-
Former strikes a balance between strong inductive bias and model expressivity, demon-
strating superior imputation accuracy, efficiency, and versatility across diverse datasets
such as traffic flow, solar energy, smart meters, and air quality. These studies highlight how
Transformer models offer innovative and effective solutions for time series data imputation,
excelling in both accuracy and efficiency.
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Multivariate Coupled Time Series Representation and Prediction Techniques

Traditional univariate time series forecasting methods typically process multivariate
time series (MTS) independently and learn temporal dependencies for each TS separately us-
ing classical approaches such as Autoregressive Integrated Moving Average (ARIMA) [43],
as well as deep learning models like Recurrent Neural Networks (RNN [44], TCN, Trans-
formers, and others. However, these are unsuitable for complex industrial scenarios where
multifaceted temporal couplings exist, as the independence assumption may result in
critical information loss. To address this, recent studies have increasingly focused on
multivariate time series forecasting to capture interdependencies among variables. For
instance, Qin et al. [45] proposed a dual-stage attention-based RNN to automatically learn
nonlinear relationships in multivariate TS. Bai et al. [46] employed a gated spatio-temporal
graph convolutional network to capture spatial and temporal correlations in passenger
demand sequences for multi-step forecasting. Wu et al. [47] introduced a graph learning
method that automatically extracts unidirectional relationships between variables and com-
bines temporal convolution with graph convolutional networks for multi-series forecasting.
Zhang et al. [48] proposed integrating a graph structure with the Transformer model to
effectively identify and model complex relationships among sequences. He et al. [49]
introduced adversarial learning to enable fairness modeling for MTS prediction, achiev-
ing intrinsic feature extraction of MTS through a recurrent graph convolutional network.
Wang et al. [50] incorporated multi-channel distribution information into feature vectors
to achieve time series forecasting in an industrial context. These studies explore methods
to incorporate the unique characteristics of multivariate time series into models, offering
innovative and effective solutions for time series data representation and forecasting, while
demonstrating outstanding performance in terms of accuracy and efficiency.

3. Descriptions and Analysis of the Continuous Reactor

In large-scale waste reprocessing plants, the industrial reactor is one of the critical
process equipment. Its primary function is to process fuel from waste assemblies, enabling
the recovery and reuse of materials. This process is of significant importance for improving
energy utilization efficiency, reducing waste generation, and ensuring the sustainable
development of energy.

The operation of the industrial reactor requires precise control of various process
parameters, such as dissolution temperature, acidity, and stirring speed, to ensure efficiency
and safety during the dissolution process. Additionally, the gases and liquid products
generated during dissolution need to be effectively separated and treated to meet the
requirements of subsequent process stages.

Moreover, the design and operation of the industrial reactor must take into account
safety and protection requirements to ensure the safety of operators and the environment.
In the context of the back-end waste processing scenarios studied in this research, the
monitoring and control of the industrial reactor are essential components for realizing the
intelligent operation of the entire reprocessing plant. By applying digital technologies,
real-time monitoring, fault diagnosis, and optimized control of the dissolution process can
be achieved, thereby enhancing production efficiency and product quality while reducing
operational risks.

Since this study focuses on addressing data missing issues in the monitoring of in-
dustrial reactor operating conditions, we have limited the scope of our research to the
transmission components of the industrial reactor. This approach ensures the generalizabil-
ity of the findings while maintaining safety and privacy. The stable and uniform transport
of waste to subsequent processing stages is also a critical aspect of operating condition
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monitoring. Therefore, we selected the data monitoring of waste transport components as
the research focus of this study.

A schematic diagram of the relevant components of the industrial reactor targeted
in this study is shown in Figure 1. The primary devices include a motor for driving, a
shaft for connection and transmission, a coupling, and a worm reduction box. The motor
drives a large wheel through these components to facilitate the transportation of industrial
waste materials.

iRoller L ! Penetration Couplings | | Motor
; i assembly

N — i

| e

|+ Big wheel

i H—

Figure 1. The relevant components of the industrial reactor in this paper.

4. Materials and Methods
4.1. Problem Definition

Assume that there are C channels of sensor data, represented as follows:
X = (X}, x2,..,X%)

where the data length of each channel is T, simulating a Ts-second data monitoring process.
Thus, the i-th channel of X is expressed as X = [Xi, Xé, X’T]T To simulate scenarios of
data missing and channel missing, we designed a masking matrix M = (Ml, M2, ..., MC),
where M has the same shape as X. This study uses M to index whether the corresponding
elements in X have missing data. The elements of M are defined as follows:

@)

M — 0  if X{is missing.
)1 if XS is not missing.
Here, based on Equation (1), we use M to compute the data in cases where data
missing occurs.
X; if Mf = 1.

Xf = (M x X){ = 2
f = (M x X); {0 v @

Figure 2 illustrates the process of simulating data missing in the data preprocessing
stage of the imputation problem in this paper, where the original data are processed based

on the masking matrix.

203



Processes 2025, 13, 1526

Row Daia
r Y
312152533
=
2|1 |71|53|44|14]| 1 [ 1] 2
=]
glz2l2|521l2]|3|2]s A Input Data
s l2la3lslalalsls 1 |lof1|0o]2|5[3]0
r ]
Time Stamps - E|1|71(53|44(14] 0 [1]2
=
Mask z
N s|2|2|o|31|2 |3 0|6
@
3101{:1110 olzlzlolalolslo
=
211111011 Time Stamps
=]
[~
g | 1|1 |01 |1]|1]0]1
o1 1 fof1]|0o]1]0

L

Time Stamps

Figure 2. The schematic diagram for data simulation in the imputation problem.

In the subsequent experimental setup, we processed the data based on random data
point missing and random channel missing scenarios. Specifically, in the random data
point missing imputation task, the elements of M were randomly set to 0 with a certain
proportion. In the random channel missing imputation task, one of the all channels in M
was randomly set to 0. The objective of the experiment is to train and obtain an optimal
mapping f : X — X, such that the imputation error is minimized. The optimization
objective is as follows:

min[M x (|I£(%) x|} )

4.2. Proposed Method

The overall architecture of the DTM model proposed in this paper is shown in Figure 3.
In current deep learning algorithms, Batch Normalization (BN) has been proven to be an
effective preprocessing method that helps the model understand and extract features from
time series data. In the data point imputation task, the masked data are also normalized
using BN, and de-normalization is applied at the output layer to reconstruct the statistical
features of the data. However, in the channel imputation task, data that are completely
zero can introduce incorrect statistical information, so BN is not applied in this case.

Additionally, this paper follows the time series decomposition approach, splitting
the data into trend and seasonal components. On the one hand, the trend component,
which occupies the dominant part of the time series, contains a significant amount of low-
frequency data and is highly influenced by the coupling relationships between channels.
On the other hand, the seasonal component contains less information and has a higher
noise content, making it sensitive to channel variations and difficult to model effectively.
Therefore, in capturing the coupling relationships between channels, this paper mainly
focuses on the coupling information within the trend component.

For time series reconstruction, Zeng et al. (2023) [51] indicated that good data predic-
tion performance can be achieved using only linear layers. Based on this, we input the
features of the two components into independent linear layers for reconstruction, aiming
to achieve high data modeling accuracy with relatively few operations. As a result, the
reconstructed sequences contain the sequence information of their respective dimensions
and, through a shared encoder, also capture deep information from the other dimension.
In modeling the trend component, our proposed MixTransformer module not only per-
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forms data modeling at both the sequence and channel levels for the trend component
but also captures and utilizes the coupling relationships between the two dimensions for
data modeling.

/

\

Transformer
Encoder
Channel
»  Wise

\Trend Data

Time Series %

Reconstructed
Time Series

%
Masked Time Series Decompaosition % »
Mask

Seasonal Data

Figure 3. The architecture of the proposed method.

4.2.1. Time Series Decomposite

For data preprocessing, Wu et al., 2021 [52] were the first to propose the use of time
series decomposition in time series forecasting, and this has now become a common
method in time series analysis. This approach enhances the predictability of the original
data. This method applies a sliding average kernel to the input sequence to extract the
trend component of the time series. The difference between the original sequence and the
trend component is regarded as the seasonal component.

The formula for time series decomposition is as follows:

1 &

c c

trendt — Z Xt+j (4)
w i

C _ vc C
Xseasonal,t - Xt — Dtrend,t (5)

where t represents the timestamp of X, and c represents the channel index of the sequence.
Building on the decomposition scheme, Zhou et al., 2022 [53] further proposed using
a mixture of experts strategy. Its core idea is to combine the trend components extracted
by moving average kernels with varying kernel sizes. The method adopted in this paper
is based on the decomposition approach used in Autoformer to reduce computational
overhead. Figure 4 illustrates the time series decomposition process, while Figure 5 shows
the corresponding spectrum. The original data represent a sine function with added
Gaussian white noise following A/ (0,0.2). The “Trend data” denotes the trend sequence
obtained after decomposition, and the “Seasonal data” represents the local sequence.
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Time Series Processed by Decomposite Processing
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Figure 4. The diagram of the time series decomposition process.
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Figure 5. The spectrum diagram of the decomposition process.

Figure 6 illustrates the denoising results of the temporal decomposition module on a
sinusoidal function under varying noise levels. To visually demonstrate the denoising per-
formance, we assume all noise to be additive white Gaussian noise with zero mean, where
different variances correspond to distinct noise intensities. By comparing the mean square
error (MSE) between the trend component output by the temporal decomposition module
and the original noise-free sequence, it is evident that the time series decomposition method
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effectively suppresses additive white Gaussian noise. Specifically, the MSE values remain
significantly lower across all tested noise levels, demonstrating the method’s robustness in
preserving the intrinsic signal structure while isolating stochastic noise components.

MSE of Decomposite Processing on Different Noise Level

0osd — MSE Between Trend Data and Noised Data
' ——— MSE Between Original Data and Noised Data
0.6 A
s
i
o
S 0.4
(o
%)
-
©
(3}
=
0.2 A
0.0 A

0.2 0.4 0.6 0.8 1.0
Variance of Noise

Figure 6. The influence of AWGN on time series decomposition.

From Figures 4 and 5, it can be observed that the “Trend data” preserves the overall
trend of the original sequence, which includes the majority of the low-frequency compo-
nents. On the other hand, the “Seasonal data” reflects the short-term variations of the
sequence, primarily capturing the high-frequency components. This part of the data has a
relatively low amplitude and contains less critical information from the original sequence.
Therefore, it indicates that the focus of our time series imputation task should be on the
“Trend data”.

Figure 7 depicts the Pearson correlation coefficients between Seasonal Data, Trend
Data, and Original Data under the same conditions as in Figure 6. As the noise variance
increases, the correlation between the Trend data and the Noised data gradually decreases,
indicating that the proportion of the data information captured by the Trend component
decreases. Conversely, the correlation coefficient for Seasonal Data increases, suggesting
that the Seasonal component retains a growing share of the information. Furthermore, the
correlation coefficients between Seasonal and Trend remain consistently low, demonstrating
that the two components are approximately orthogonal. These observations illustrate that
the time series decomposition method effectively separates the data into two uncorrelated
components while minimizing information loss.
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Pearson Correlations of Decomposite Processing on Different Noise Level
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Figure 7. The influence of AWGN on the correlation between different portions.

4.2.2. MixTransformer

To enable the model to fully capture the inter-channel correlations and sequential
variations of the trend components in time series data, we propose the MixTransformer
module, whose main architecture is shown in Figure 3. Trend data are embedded into
the feature space separately along the channel dimension and the sequence dimension
through word embedding. These features are further extracted using a shared encoder.
Additionally, the shared encoder leverages internal vectors to achieve indirect coupling
and interaction between inter-channel and sequential information, thereby capturing the
complex features of time series data. The extracted features are subsequently processed by
a projection layer for sequence reconstruction, completing the reconstruction of the original
trend sequence information.

For positional encoding along the sequence dimension, we adopt the encoding
method used in Transformer models. For the input sequence X € RT*C, after under-
going time series decomposition processing, we obtain X,g € RT*C and X,eas0mar € RT*C
with unchanged shapes. Here, X, is calculated through a 1D convolutional layer
and Formula (7), respectively, to embed the channel dimension, resulting in Emby,,,; €

RT*Dumodel as Formula (6).

Embtrend = Conle(Xtrend) + POS(Xtrend) (6)

Here, Convip() represents a 1D convolution applied to the last dimension of Xje4,
and Pos() denotes Position Embedding, whose encoding value for time step t is defined by
Equation (7).

sin(wg-t)  ifi=2k

B =)= {cos(wk-t) ifi=2k+1 @

h
where 1

“k = 70, 000274
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We transposed the X;,.,; and performed the same operations to obtain positional
encoding along the channel dimension. The encoded sequence, after convolutional process-
ing to extract the corresponding dimensional features, incorporates sequence information
through positional encoding. Here, we employed two different 1D convolutional layers to
encode both the temporal and channel dimensions to transform the time series into tokens
for input to the Transformer, while ensuring that the data can be encoded independently
across channels in the temporal dimension and independently across time in the channel

dimension. Therefore, we obtain the data embedding Emb;r ong € REP

model corresponding
to the transpose of Xjep4-

In traditional Transformer-based models, single-dimensional sequences are directly
used for downstream tasks or reconstructed in an encoder—decoder architecture after
encoding. These methods lack the computation of coupled information across multiple
dimensions, leading to suboptimal performance.

To address this issue, we utilized a shared encoder for data encoding. According to the
attention computation Formula (8), during the calculation of self-attention or multi-head
attention, Wo , Wi , and Wy are trained to learn feature representations corresponding
to the input vectors. Therefore, for sequence-wise embedding vectors and channel-wise
embedding vectors, the shared encoder weights W , Wk , and Wy enable indirect interac-
tions between the two dimensions. This ensures that deep-level coupling information can
be extracted without losing the original embedding information, thereby enhancing the
sequence construction process.

Attention(Q,K, V) = softmax(Q—KT)V (8)

Vi

where Q = WpX, V = Wy X, K = WgX. Wy, Wk, Wy are learnable parameters. We
employed the Transformer module as the shared encoder. Based on the aforementioned
analysis, the embedding data from the temporal dimension and the channel dimension can
achieve indirect interaction during the training process. Through the shared encoder, we
obtain the vectors Enccpapne; € RT*Prmodel and Encremporar € RC*Podel, which are mapped
into the encoding space for both the channel and temporal dimensions.

Finally, the vectors encoded by the shared encoder are processed through separate
linear layers to reconstruct the original trend sequence along the temporal and channel
dimensions. The methods for sequence reconstruction and channel reconstruction are
described in Formulas (9) and (10), respectively. These reconstructed components are then
summed to obtain the final reconstructed trend sequence. Thus, the reconstructed trend
data are calculated by Formula (11). Following the principles outlined in the DLinear paper,
linear layers are sufficient for sequence construction tasks while significantly reducing
computational overhead. Algorithm 1 demonstrates the detailed training process of the

proposed DTM model.
Xseq = (E”CTemporuleeq + bseq)/ (9)
Xe = EnccpannetWe + be (10)
Rec_Xtrend = Xseq + X (11)

where X;oy € RTXC, X € RTXC, Wypq € RPmotet T W, € RPmocetC p,p € REXT b, € RT*C,
symbol ' means Transpose process.

209



Processes 2025, 13, 1526

Algorithm 1 Training Process of DTM

Require: Time-series data X, mask matrix M, batch size B, learning rate #, number of
epochs E
Ensure: Trained DTM model parameters 0
1: Initialize the model parameters 6 of DTM
2: forepoche=1,2,...,Edo
3. Shuffle the training dataset (X, M)

4:  for each batch (X, M) in (X, M) do
5: Apply the mask M, to the data X, to simulate missing data, producing X,
6: Perform data preprocessing:
7: Normalize X, if required
8: Decompose X, into trend and seasonal components using temporal decompo-
sition
9: Reconstruct the decomposed trend components using the MixTransformer module:
10: Perform embedding in both sequence and channel dimensions
11: Pass embeddings through the shared encoder to extract features
12: Decode the features using linear layers to reconstruct the sequence and channel
dimensions
13: Reconstruct the seasonal components using the projection layer
14: Combine reconstructed components to obtain the interpolated output Y;,
15: Compute the loss £ using the MSE loss function.
16: Backpropagate the loss £ to update model parameters 6 using gradient descent

with learning rate 7
17:  end for
18: end for
19: return Trained DTM model parameters ¢

4.3. Comparative Discussion with Existing Models

Compared to models such as Transformer and Autoformer, DTM addresses the limi-
tation of handling only channel-independent time series by performing separate feature
extraction along the temporal and channel dimensions, while Transformer-based architec-
tures primarily rely on self-attention mechanisms for global temporal dependencies, they
inherently treat multi-channel data as isolated sequences, neglecting critical inter-channel
correlations. In contrast, DTM explicitly decouples temporal dynamics and channel-wise
interactions through dual-path encoding, enabling effective modeling of strongly coupled
sensor data prevalent in industrial scenarios. When compared to CNN-based models like
MICN and TCN, DTM overcomes the suboptimal performance caused by limited receptive
fields through decomposition modules and Transformer modules.

To the best of our knowledge, the model most similar related to DTM is Crossformer.
Both models utilize data from both temporal and channel dimensions to capture latent
information in MTS. However, Crossformer employs a patch-based DSW embedding for
encoding, whereas DTM adopts a CNN-based embedding approach. This distinction arises
because DTM targets interpolation tasks, requiring point-to-point or point-to-segment
feature extraction, while Crossformer focuses on prediction tasks, emphasizing segment-to-
segment data interaction.

Additionally, Crossformer uses Two-Stage Attention (TSA) layer to process temporal
and channel dimensions sequentially in a serial manner. In contrast, DTM’s MixTrans-
former computes temporal and channel dimensions in parallel. Consequently, the method
proposed in this work exhibits significant distinctions from existing approaches in both
architecture design and task-specific optimization.
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4.4. Time Complexity Discussion

The analysis of our approach on time complexity is described below. We assumed
that the input sequence length is L, the embedding dimension is d,,,4.;, and the num-
ber of encoder layers is ;. Then: For the time series decomposition component, the
time complexity is O(L). For the temporal embedding component, which employs a
Convolutional Neural Network (CNN)-based approach, the time complexity across both
the sequence and channel dimensions is O(L - k - C - d ;0401 ). For the shared encoder, fol-
lowing Transformer’s method, the time complexity is O(L - L - ;). For the projection
layer, the time complexity is O(L - d04¢1)- Thus, the overall time complexity of DTM is:
OL-(nj-L+14 (k-CH+1) -dyoger))-

5. Results
5.1. Overview of Data

The data used in the experiment were all collected from the constructed engineering
prototype of the industrial reactor. These datasets include operational signals such as eddy
current displacement, vibration, motor torque, and motor position obtained during 480 h
of simulated operation of the prototype, enabling monitoring of the operating status of key
components of the device. For the purposes of this study, it is assumed that only the eddy
current displacement data, wheel motor torque, and wheel torque meter torque among the
monitored data may encounter issues of data loss or channel loss. All the data used in the
experiment were resampled to a frequency of 20 Hz.

Table 1 lists the sensor variables used, where the subscript numbers in the variables
indicate sensors of the same type installed at different locations. Reference [54] indicates
that heatmaps can visualize the correlations among multiple datasets; therefore, this
study also employs heatmaps to represent the interrelationships among multi-channel
data. Figure 8 is presented as a heat map to visualize the Pearson correlation coefficients
between channels, demonstrating their coupling characteristics. The colors in the figure
represent Pearson’s correlations between different variables within the range of —1 to
+1: lighter shades near zero indicate no significant relationship between variables, while
darker shades approaching 1 signify strong correlations. Darker red hues indicate stronger
positive correlations between variables, whereas darker blue hues denote stronger negative
correlations. The symbols on the X and Y axes correspond to different channel names. This
heat map visually demonstrates the interaction relationships among the channel data in
the dataset used.
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Figure 8. The correlation coefficient between channels.
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Table 1. The sensor variable used in this article.

Physical Meanings of Variables Variables
Torque of Rotary motor A
Torque of wheel torque meter T
Eddy current of large wheel surface gear L, I, I3

5.2. Experimental Setup

To simulate the data missing scenarios encountered in real-world situations, we
applied random masking to data points and channels from the experimental prototype data
to represent two types of anomalies: missing data records and sensor failures. Specifically,
data point masking was conducted with proportions of 10% and 25%, while sensor failures
were represented by random single-channel masking. Each batch of input data had a batch
size of 128, a sequence length of 100, and 5 data channels. The proposed model used the
Mean Square Error (MSE) as the loss function, and the final evaluation metrics included
both MSE, R? and Mean Absolute Error (MAE). The experiments were conducted on an
RTX 4060 Ti GPU. To fully reflect the performance of time series imputation, the evaluation
metrics selected for this study were MSE, MAE, and R%. Lower MSE and MAE values
indicate better model performance, while an R? value closer to 1 reflects a stronger model
fit. The formulas for those evaluation metrics are shown below:

T
MAE =E(}_ Y M x X - f(%)]]) (12)
c=1t=1
C T
MSE =E(} ) M x[|X{ - f(%)§][3) (13)
c=1t=1
Yooy S M |I1XF — f(2)5113
RZ -1 c=1 —~t=1 t L2 (14)

Yoot iy Mx || X5 = X513

Since we aim to demonstrate that our proposed model exhibits sufficient stability and
superiority compared to various types of models in the proposed numerical imputation
tasks, we conducted extensive comparisons with a wide range of advanced models includ-
ing CNN-based Model: MICN (2023) [55], TCN (2018) [56]; MLP-based Model: DLinear
(2022) [51] and LightTS (2023) [57]; Transformer-based Model: Reformer (2020) [58], In-
former (2021) [59], Pyraformer (2022) [60], Autoformer (2021) [61], FEDformer (2022) [53],
Transformer (2017) [62], Crossformer (2023) [63], iTransformer(2023) [64] and ETSformer
(2022) [65]; Other advanced Model TimesNet (2023) [66] and FiLM (2022) [67]. Overall, a
total of 15 models are included for a comprehensive comparison.

5.3. Experimental Result

As described in Section 4.1, we designed three different imputation experiments.
To enable a horizontal comparison, we also employed several state-of-the-art time series
models for the same experimental tasks. The hyperparameters of each model were carefully
adjusted to ensure optimal results. After multiple rounds of experiments, the results of
DTM and the other models are presented in Tables 1-4.
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Table 2. The experimental results of masking rate is 10%.

Model MSE MAE R?
Dlinear 0.1853 0.1769 0.8151
TCN * 0.4381 0.3505 0.5622
TimesNet 0.1487 0.1573 0.8516
Transformer t ¢ 0.2647 0.2268 0.7367
Autoformer t 0.4684 0.4709 0.5314
Crossformer t 0.2588 0.2280 0.7412
ETSformer t 0.2411 0.2211 0.7593
FEDformer t 0.1907 0.2053 0.8095
FiLM 0.1852 0.1777 0.8134
Informer t 0.2722 0.2339 0.7254
iTransformer t 0.1871 0.1790 0.8131
LightTS 0.2030 0.1920 0.7974
MICN * 0.1532 0.1678 0.8470
Pyraformer + 0.2175 0.2146 0.7927
Reformer t 0.2404 0.2150 0.7572
DTM 0.1765 0.1712 0.8237

* CNN based model; T+ Transformer based model; ¢ Baseline model.

Table 3. The experimental results of masking rate is 25%.

Model MSE MAE R?
Dlinear 0.2045 0.1907 0.7956
TCN * 0.4677 0.3523 0.5325
TimesNet 0.1605 0.1678 0.8397
Transformer 1 ¢ 0.2816 0.2367 0.7198
Autoformer t 0.4404 0.4288 0.5597
Crossformer t 0.2700 0.2335 0.7303
ETSformer t 0.2824 0.2407 0.7177
FEDformer t 0.2139 0.2148 0.7863
FiLM 0.2054 0.1917 0.7941
Informer t 0.2991 0.2473 0.6985
iTransformer t 0.2035 0.1909 0.7966
LightTS 0.2085 0.1940 0.7915
MICN * 0.1867 0.1995 0.8136
Pyraformer + 0.2263 0.2344 0.7739
Reformer t 0.2592 0.2307 0.7380
DTM 0.1905 0.1815 0.8097

* CNN based model; T+ Transformer based model; ¢ Baseline model.

To demonstrate the model’s performance on the interpolation task under varying
missing data ratios, we conducted additional experiments with missing ratios of 40%, 50%,
and 60%, and compared the results with those of the Pyraformer and Reformer models.
The experimental results are presented in Figure 9.
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Experiment Result of Different Missing Rate
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Figure 9. The experimental results under different missing rates.
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Table 4. The experimental results of randomly masking one channel.

Model MSE MAE R?
Dlinear 0.9897 0.5398 —0.0002
TCN * 0.5790 0.4510 0.4051
TimesNet 0.9483 0.5193 0.0395
Transformer t ¢ 0.6151 0.4457 0.3939
Autoformer t 1.0856 0.5948 —0.0522
Crossformer t 0.6170 0.4870 0.4042
ETSformer t 0.4800 0.4317 0.5134
FEDformer t 0.8616 0.5130 0.1232
FLM 0.9603 0.5302 —0.0001
Informer t 0.5019 0.4324 0.4914
iTransformer t 0.8834 0.4992 0.0657
LightTS 0.6264 0.4583 0.3701
MICN * 0.8026 0.5352 0.2164
Pyraformer t 0.5071 0.3840 0.5339
Reformer t 0.4773 0.3886 0.5079
DTM 0.4748 0.4031 0.5504

* CNN based model; T+ Transformer based model; ¢ Baseline model.

5.4. Impact of Inter-Channel Correlations on DTM

In this section, we investigate how inter-channel correlation levels affect DTM. We
designed the following comparative experiments: First, we selected five channels with low
Pearson correlation coefficients from the Weather (https:/ /www.bgc-jena.mpg.de/wetter/,
accessed on 10 May 2025) dataset, as illustrated in Figure 10. Additionally, we chose six
extra channels that exhibited high correlation coefficients with the aforementioned five
channels, as shown in Figure 11. Subsequently, we employed DTM to conduct two sets
of interpolation tasks: (1) Low-correlation scenario: Experiments using only the five low-
correlation channels. (2) Coupled multi-channel scenario: Experiments using the combined
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data of all 11 channels, but focusing solely on imputation the original 5 low-correlation
channels.

Pearson Correlation Heatmap Between Low-correlated Channel
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Figure 10. The heat map of low-correlated channel.

Pearson Correlation Heatmap Between Mixed Channel
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Figure 11. The heat map of the mixed channel.

The final experimental results are presented in Table 5, validating the advantages of
incorporating multi-channel coupling information.
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Table 5. The experimental result of different correlated data on DTM.

. o o Single, 10%, 25%, Single,
Metrics 10% ,5-5 25%,5-5 55 11-5 11-5 11-5

MSE 0.2963 0.3161 1.4684 0.0535 | 0.0807 | 0.1910 |

MAE 0.3236 0.3427 0.9430 0.1463 | 0.1691 | 0.2983 |

X% , A-B means experiment with masking rate = X%, using A Channels data to imputation B Channels, single
means randomly masking one channel, symbol | denotes the a lower evaluation function value under the same
masking strategy.

6. Discussion

We evaluated the proposed model and several state-of-the-art models on the same im-
putation tasks. The training performance comparison metrics used in the experiments were
Mean Square Error (MSE), Mean Absolute Error (MAE), and R?. The final experimental
results are shown in Tables 2—4. Based on the experimental data, our proposed model con-
sistently achieved the leading performance under various conditions, successfully meeting
the target objectives of the tasks.

Compared to Transformer-based models, our proposed model outperformed the best-
performing Reformer model in the channel-level imputation task, reducing the MSE by
0.0028. In the random data imputation task, our model also surpassed the best-performing
iTransformer, achieving at least a 0.01 reduction in MSE. As shown in Figure 9, we observe
that across data missing rates ranging from 0.1 to 0.6, both the MSE and MAE of DTM
remain consistently lower than those of Reformer and Pyraformer, demonstrating the stable
performance superiority of our proposed model.

Compared to the non-Transformer-based and CNN-based methods, such as TimesNet,
its performance in scenarios with 10% and 25% masking rates surpasses DTM, demon-
strating TimesNet’s robust sequence reconstruction capabilities. However, its performance
significantly deteriorates in the random channel masking task. We also identified several
models with performance deterioration patterns similar to TimesNet. Their R? values
approach or even fall below 0, indicating that the imputation capability of these mod-
els is statistically comparable to naive mean-based imputation within the corresponding
channel. This is likely because random value masking causes minimal disruption to the
statistical information of individual channels, whereas the random channel masking task
completely eliminates the statistical information of entire channels, presenting a substantial
challenge for models equipped with sequence modeling capabilities. In contrast, DTM
consistently ranks among the top-performing models across all three tasks in terms of R?
values, demonstrating its robustness in effectively overcoming these challenges.

When compared to non-Transformer models such as DLinear and TCN, our proposed
model exceeded their performance in at least one or more tasks. Even in tasks where
it did not outperform these models, it maintained a comparable level of performance,
demonstrating that our model is better suited to adapt to complex fault scenarios.

According to Figures 10 and 11, we can observe that after adding six new channels,
nearly all channels now possess corresponding highly correlated channels that reflect their
coupling relationships. The experimental results in Table 5 demonstrate that the model
performance shows significant improvement after channel augmentation. This indicates
that our model performs poorly when handling data with low correlation relationships,
while the introduction of coupling-enhanced channels substantially enhances its capability.
These findings verify our model’s ability to achieve data interpolation through latent
coupling relationships.
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7. Conclusions

We summarize as follows: In the random data missing and random channel missing
imputation tasks for sensor data in the industrial reactor, the DTM model proved to be a
robust solution for completing the tasks. Among the three imputation tasks, DTM achieved
leading performance in one task and ranked third in the other two. Our proposed model,
DTM, integrates channel decoupling with sequence modeling, enhancing the model’s
ability to capture multidimensional coupling relationships in multichannel data. Compared
to the baseline model, DTM demonstrated improvements across multiple experimental
metrics in various tasks. Specifically, MSE and MAE were reduced by up to 33.3% and
24.5%, respectively, while the R? value increased by a maximum of 39.73%, highlighting
its statistical superiority. Experimental results demonstrate that DTM outperforms most
Transformer-based and CNN-based algorithms in the imputation scenarios proposed in
this paper.
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Abstract: Natural Gas Liquid (NGL) pumps are critical assets in oil and gas operations,
where unplanned failures can result in substantial production losses. Traditional mainte-
nance approaches, often based on static schedules and expert judgement, are inadequate
for optimising both availability and cost. This study proposes a novel Artificial Intelligence
(Al)-based methodology and digital tool for optimising NGL pump maintenance using
limited historical data and real-time sensor inputs. The approach combines dynamic relia-
bility modelling, component condition assessment, and diagnostic logic within a unified
framework. Component-specific maintenance intervals were computed using mean time
between failures (MTBFs) estimation and remaining useful life (RUL) prediction based
on vibration and leakage data, while fuzzy logic- and rule-based algorithms were em-
ployed for condition evaluation and failure diagnoses. The tool was implemented using
Microsoft Excel Version 2406 and validated through a case study on pump G221 in a Saudi
Aramco facility. The results show that the optimised maintenance routine reduced the
total cost by approximately 80% compared to conventional individual scheduling, pri-
marily by consolidating maintenance activities and reducing downtime. Additionally, a
structured validation questionnaire completed by 15 industry professionals confirmed the
methodology’s technical accuracy, practical usability, and relevance to industrial needs.
Over 90% of the experts strongly agreed on the tool’s value in supporting Al-driven main-
tenance decision-making. The findings demonstrate that the proposed solution offers a
practical, cost-effective, and scalable framework for the predictive maintenance of rotating
equipment, especially in environments with limited sensory and operational data. It con-
tributes both methodological innovation and validated industrial applicability to the field
of maintenance optimisation.

Keywords: NGL pumps; predictive maintenance; maintenance optimisation; Al-based
diagnostics; remaining useful life (RUL); MTBFs estimation; fuzzy logic; rule-based system;
oil and gas industry; digital tool validation

1. Introduction

Natural Gas Liquid (NGL) pumps are critical in the oil and gas industry, particularly
in driving NGL fractionation processes. The failure of these pumps can lead to significant
operational disruptions if uninterrupted production is halted across a full 24 h period [1].
Given the high stakes involved, ensuring the reliability and availability of NGL pumps
is significant. Traditional maintenance practices, often reliant on manual methods and
expert opinions, lack the structured frameworks to optimise pump uptime effectively. This
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limitation stresses the urgent need to develop innovative methods to predict and prevent
equipment failures more accurately.

A substantial amount of research has been conducted on maintenance optimisation,
covering various approaches to enhancing equipment reliability and maintenance effi-
ciency [2-5]. Studies have explored methods including Failure Modes and Effects Analysis
(FMEA) [6]; Reliability, Availability, and Maintainability (RAM) analysis [7]; as well as
condition assessments combined with data analytics techniques [8]. These contributions
have provided structured frameworks that guide maintenance decisions and improve in-
dustry asset performance. More recently, data-driven techniques have gained attention for
enhancing maintenance decision-making. Methods such as predictive maintenance based
on data analytics and digital twin technology have been introduced, enabling real-time
condition monitoring and proactive maintenance planning [9-13]. Furthermore, various
statistical and machine learning approaches have been applied to identify faults early
and improve maintenance scheduling accuracy, resulting in better reliability and reduced
operational costs [14-17]. These data-driven strategies offer advantages over traditional
maintenance methods, especially for managing complex systems with limited or uncertain
data availability [18-22].

A range of studies have been conducted across general industrial applications to
evaluate the effectiveness of predictive models in maintenance planning. Using machine
learning integrated with building information modelling, Cheng et al. [19] developed a
predictive maintenance framework for mechanical, electrical, and plumbing (MEP) sys-
tems. Falamarzi et al. [23] applied artificial neural networks (ANNs) and support vector
regression (SVR) for predicting tram track gauge deviations, though their model lacked a
comprehensive performance analysis. Similarly, Susto et al. [24] and Susto and Beghi [25]
proposed predictive systems for epitaxy processes, employing ridge regression and support
vector machines (SVMs) but without a comparative evaluation or uncertainty quantifica-
tion. Mathew et al. [26] implemented a support vector regression kernel to estimate the
remaining useful life (RUL) for turbofan engines, whereas Amruthnath and Gupta [17]
used unsupervised learning methods for early fault detection in industrial assets. Despite
their technical strengths, these studies did not clearly define the operational contexts or
validate models across varied working conditions.

Although these general models illustrate the utility of predictive techniques, they are
typically not tailored to the specific operational requirements of rotating machinery, such as
pumps and compressors, which often operate under different load profiles, environmental
conditions, and maintenance constraints.

To address this limitation, a body of research has specifically focused on rotating
equipment [27]. Janssens et al. [28] used a CNN with thermal imaging data to detect
anomalies in machinery, though the absence of an equipment-specific context limited
the study’s practical relevance. Sampaio et al. [29] developed an ANN model for motor
failure prediction but without a robust model comparison or a sensitivity analysis. Bekar
etal. [30] designed an intelligent predictive method for motors, and Praveenkumar et al. [31]
used support vector machines to diagnose gearbox faults. Similarly, Prytz et al. [21]
applied random forest models to predict compressor failures using historical vehicle data.
While these methods showed promise, many lacked depth in their performance validation
and scalability.

For more complex rotating systems, Durbhaka and Selvaraj [32] analysed vibration
signals in wind turbines using several classifiers, including k-NN, SVMs, and k-means
clustering. Yet, the study’s focus on a single data source constrained its generalisability. Su
and Huang [33] and Butte [34] applied Al-based approaches to detect faults in exhaust fans.
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Their findings highlighted the importance of combining physical parameters and extended
datasets to improve accuracy. Abu-Samah et al. [25] introduced a hybrid model using
Bayesian networks and multi-gene genetic programming to monitor pump conditions.
However, they did not compare their approach against other modelling techniques.

Despite these contributions, current Al-based maintenance models show several
limitations that are particularly critical in the context of NGL pump operations. Most
existing models focus primarily on failure prediction, often without supporting com-
prehensive maintenance routines that consider equipment availability and maintenance
costs [28-30,33]. In addition, many models rely on large, high-quality datasets for training,
yet in practical applications such as NGL pumps, both historical and real-time data are
often limited in quantity and resolution, which poses challenges for their implementa-
tion [23,33,35]. Although some studies cover diagnostics or prediction [36—40], few offer
integrated solutions that address both dimensions within a single framework [21,31]. Fur-
thermore, cost and downtime considerations are not typically incorporated into these
models despite their importance in industrial maintenance decision-making. Lastly, while
many existing approaches target rotating machinery, none are specifically tailored to the
unique characteristics and constraints of NGL pumps.

To address these challenges, this study proposes a practical, Artificial Intelligence (Al)-
supported digital tool specifically designed for the maintenance optimisation of NGL reflux
pumps in the oil and gas sector. Unlike existing predictive models, the tool utilises historical
failure records and real-time sensor inputs to evaluate component conditions, estimate
reliability, and generate optimised maintenance plans over a 10-year operational horizon.
In addition to producing maintenance schedules, the tool also incorporates diagnostic
functionality and provides actionable recommendations to improve equipment availability
while controlling maintenance costs. A simplified schematic of the proposed framework is
shown in Figure 1.

Historical | [Sensor

Data Data
r——1"--"--"-"7T - =-"—-"=- - - - = | .
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: Y Y I Availability
|
. Calculated
|
| Algorithms Reliability :
| | Predicted
- — = 7& ————— Cost
thlmum Optimum Actions
Maintenance

During Failures

Routine

Figure 1. A schematic representation of the proposed Al-supported maintenance optimisation model
for NGL pumps.

2. Method

This study adopts a structured methodology for developing and validating a dig-
ital maintenance optimisation tool tailored to NGL reflux pumps. The methodological
framework, summarised in Figure 2, consists of four main stages: dynamic optimisation
model development, risk-based prioritisation using FMEA, integrated maintenance routine
optimisation, and tool development and validation.

223



Processes 2025, 13, 1611

Figure 2. Flow chart of the framework and tool development.

2.1. Dynamic Optimisation of Maintenance Intervals

The first stage involves the development of a dynamic optimisation model that updates
the Original Equipment Manufacturer (OEM)-recommended maintenance schedule based
on actual operational conditions. This model incorporates both real-time sensor data
and historical failure records to estimate the current mean time between failures (MTBFs)
of individual pump components. Based on this analysis, the maintenance intervals are
dynamically adjusted to better reflect the actual degradation behaviour of the system.
This adaptive approach helps minimise unnecessary maintenance actions and avoids
unexpected failures. A visual representation of this dynamic optimisation process is shown

in Figure 3.
. Dynamic Dynamic
Ig E“t/! Maln:jer;ﬂgz Optimisation Maintenance Routine
outine an Process and FMEA
Historical Sensor
Data Data

Figure 3. Dynamic optimisation flow diagram.
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2.2. Risk-Based Prioritisation Using FMEEA

Following the dynamic adjustment of component-specific maintenance intervals, an
FMEA was developed to prioritise pump components according to their risk levels. Each
component was evaluated based on its probability of failure, impact severity, and detection
likelihood. The risk priority number (RPN) was then calculated to rank components by crit-
icality. This ranking informs the maintenance planning by identifying which components
require closer monitoring and more frequent interventions.

2.3. Integrated Maintenance Optimisation Logic

An optimum maintenance strategy for NGL pumps must satisfy three primary criteria.
It should ensure optimum availability while maintaining reliability that meets operational
requirements. In addition, it should minimise the total maintenance cost, accounting for
both direct service activities and the associated operational losses during downtime. Fur-
thermore, the strategy should be capable of reducing the occurrence of unplanned failures
by supporting accurate diagnostics and appropriate maintenance actions when failures
do occur. These criteria form the basis for the integrated optimisation logic presented in
this section.

After establishing risk-based maintenance intervals, a system-level optimisation pro-
cess was applied. The objective was to coordinate and integrate individual component
schedules into a unified maintenance strategy that maximises availability and reduces
the total cost. Simply applying each component’s dynamic schedule independently does
not guarantee overall optimisation. Therefore, this stage involved aligning maintenance
activities during common downtime windows, where feasible. This integrated scheduling
approach reduces the number of shutdowns and avoids redundant tasks. This approach is
illustrated conceptually in Figure 4, where maintenance activities across different compo-
nents are overlapped within shared downtime windows to maximise system availability
and minimise operational disruption.

Component A
Maintenance
Activities

Component B
Maintenance
Activities

Component A
and B Direct
Combination

Component Aand
Time  veveeeeeeco Moo I B Optimum
Maintenance
Activities

Figure 4. Overlaying activities concept.

The optimisation procedure employs an iterative process to identify combinations of
component frequencies that satisfy user-defined reliability thresholds. An optimisation
factor is computed for each combination, reflecting both the cost and operational impact.
The combination yielding the lowest optimisation factor is selected. The total cost is
calculated as the product of maintenance cost and operational loss cost associated with
each maintenance plan. This process is summarised in Figure 5.
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Figure 5. Optimisation logic flow diagram.

2.4. Handling Unplanned Failures

In addition to scheduled maintenance, the tool also supports optimising responses to
unplanned failures. The tool interprets real-time sensor signals using embedded diagnostic
logic to identify failure symptoms and generate appropriate maintenance actions. A
structured database is incorporated into the system, mapping symptoms to possible causes
and recommended interventions. This enables rapid decision-making during unexpected
events and supports more accurate fault isolation.

2.5. Tool Development and Validation

The final stage of the methodology involved developing and validating the digital tool.
The prototype was implemented using Microsoft Excel Version 2406 as the development
platform. Data input included historical failure records, sensor readings, failure symptoms,
and corresponding maintenance recommendations. The tool executes iterative calculations
to determine optimal maintenance schedules and diagnoses.

Validation was performed in two stages. First, the tool was tested using operational
data from Saudi Aramco’s single pump unit (G221) to verify its accuracy and practicality
in a real-world setting. The pump unit is compliant with API 610/ISO 13709 [41]. Its
specifications are shown in Table 1. Second, oil and gas maintenance experts were consulted
to review the tool’s logic, usability, and applicability. Their feedback informed further
model refinement and ensured its alignment with industry practices.

Table 1. G221 pump unit components and their specifications.

Pump Components Specification Data
®
Pump Inboard Bearing (PIB) Manufacturer (Woi}gg ?131?%(2(,)%5 A)
Pump Outboard Bearing (POB) Type-size DSJH-10X14X20L
Motor Inboard Bearing (MIB) Pump type Horizontal
Motor Outboard Bearing (MOB) Capacity 4715 usgpm
Inboard Mechanical Seal (IMS) Rated speed 1770 rpm
Outboard Mechanical Seal (OMS) Maximum allowable speed 1800 rpm
Coupling Total weight 4873 Ibs
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Although the tool was validated using operational data from a single NGL pump
unit (G221), the underlying algorithmic structure and diagnostic logic were intention-
ally designed to be adaptable to other rotating equipment types exhibiting similar
degradation modes.

3. Digital Tool Development

This section outlines the development of a digital tool designed to support the main-
tenance optimisation for NGL pumps. The tool functions as a digital twin by simulating
pump performance and predicting future maintenance needs using both historical and
real-time data. Its primary aim is to operationalise the proposed methodology, validate its
feasibility, and deliver actionable insights for improving pump availability and reducing
maintenance costs.

3.1. Functional Design of the Digital Tool

The tool was built to address the limitations identified in Section 1 directly. It performs
six essential functions: (1) optimising maintenance routines by balancing availability and
cost, (2) identifying critical components through FMEA-based risk prioritisation, (3) assess-
ing component condition based on sensor inputs, (4) predicting the remaining useful life
(RUL), (5) reducing downtime via diagnostic support and recovery recommendations, and
(6) acting as a digital twin to simulate maintenance scenarios and evaluate their impact on
pump performance.

3.2. Data Structure: Inputs and Outputs

The tool is structured around two categories of data: input and output. The input
data include both historical records and real-time sensor data, which serve as the basis for
algorithmic calculations. The historical data consist of failure and replacement records, par-
ticularly for bearings, mechanical seals, and couplings. The real-time data include monthly
vibration readings and mechanical seal leakage pressures. These inputs are processed
to generate outputs such as MTBFs, RUL estimates, component condition assessments,
maintenance diagnostics, and ultimately an optimised maintenance routine.

Figure 6 illustrates the hierarchical relationship between output functions, while
Table 2 summarises each output and its corresponding inputs.

Table 2. Output summary:.

Output Description Related Input
MTBFs Components” mean time between failures Failures Record (history)
Bearing RUL Function The function relates the vibration reading Failures Record (history)

with the bearings” RUL

This is the estimated replacement time for

MTBFs, Reliability Threshold
each component

Estimated Lifespan/Shutdown Frequency

The estimated bearings” RUL based on

Bearing RUL the current vibration reading

Bearing RUL Function, Sensor Data

The current health condition of

C ts’ C t Conditi S Dat.
omponents: L-urrent L-ondition components based on the sensor data enor Lata
. . . Failures diagnosis and recommended Current Components” Condition,
Diagnosis and Recommended Actions . B .
actions to reduce pumps” downtime Sensor Data
o . . The optimum maintenance routine in Estimated Lifespan/Shutdown

Optimised Maintenance Routine , [ L,

terms of pumps’ availability and cost Frequency, Bearings” RUL
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Figure 6. The tool’s output map.

3.3. Al Algorithm Determination for Processing Inputs

Each tool function is associated with one or more processing algorithms to generate a
reliable output. The selection of algorithms is based on the characteristics of available data,
the statistical behaviour of pump components, and the relationships between inputs and
the required outputs.

3.3.1. Input Data Sources and Limitations

The tool uses historical failure records and real-time sensor data. Table 3 presents an
overview of the features and limitations of these datasets. The historical failure records
include each component’s year of failure and replacement. These records are available
starting from 2011. On average, each component has experienced only two to three failure
incidents, making the dataset small in size and limited in statistical richness. Historical
sensor data are also sparse and consist mostly of bearing vibration measurements taken
before and after replacements. Regular condition-monitoring data for healthy operating
states are not available.

Table 3. Input data features and limitations.

Input Data Features Limitations
Accurate
Components’ Failure Record Used easily to calculate MTBFs Very limited size

Single dimensional

Shows certain patterns

Single dimensional Very limited size

Sensors’” Historical Data

Accurate

Real-Time Sensor Data Detailed to support diagnosis Limited databases
Single dimensional

The real-time sensor data include monthly checks of bearing vibration and mechanical
seal leakage. Bearing conditions are assessed using portable vibration analysers, while
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leakage is monitored by observing pressure on a dedicated gauge. Due to database storage
constraints, only abnormal readings and failure-related data are recorded and stored.

3.3.2. Algorithm Allocation by Function

Each tool function is supported by a specific algorithm selected according to the type
and quality of data available. Figure 7 outlines the main processing modules and their
associated computational methods.

|

I Diagnosis and Optimised |
Functions| | Recommended Maintenance [
| Actions Routine I

|

,_ ____________________________ I

I Components' Bearing's Estimated Bearing |
SubFunctions ! Current RULg Lifespan/Shutdown RUL MTBF |
| Condition Frequency Function |

|

Figure 7. Functional mapping of the tool and algorithm allocation.

- MTBFs Estimation

The MTBFs for each component was calculated using historical failure records. The
tool continuously updates the MTBFs value as new failure data become available. The
calculation follows a deterministic approach, applying the following equation:

MTBEFs (years) = Total operational time (years)/Number of recorded failures

- Bearing RUL Estimation

Although the historical data do not directly link the bearing condition and the RUL,
the degradation behaviour of bearings is well established. Previous studies [34] have
demonstrated empirical correlations between the RUL and vibration levels. One such
relationship is given by Equation (1).

RUL = ! @)
Vl’l
where V represents the current bearing vibration (in/sec), and 7 is a constant derived
experimentally, which is influenced by the initial condition of the bearing and is suitable
for the bearings used in NGL pumps, given their size, load, and operating speed.

When this equation is applied to bearings with known lifespans and documented
initial vibration levels, a linear relationship is observed between the n value and the initial
vibration reading at the replacement time. This linear pattern is used by the tool to estimate
n from the initial vibration reading. The tool then applies Equation (1) along with the
current real-time vibration measurement to estimate the RUL of the bearing.

Figure 8 presents this linear relationship as observed in pump G221. The linear
regression model is updated continuously as new data become available.

- Component Lifespan Calculation

The tool uses historical failure data to estimate the operational lifespan of each compo-
nent. Based on these estimates, it determines suitable shutdown intervals for scheduled
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replacements. This estimation process follows the exponential reliability model, where the
reliability function is expressed as follows:
Reliability = e~/ MTBF @)

From this, the expected lifespan corresponding to a specific reliability threshold is
calculated as follows:
Lifespan = —MTBF x Ln(Reliability threshold) ©)]

This method allows users to define an acceptable minimum reliability level, which
the tool uses to determine replacement frequencies. The calculation is carried out using a
deterministic algorithm.
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Figure 8. Linear relationship between parameter # and initial vibration levels. Dotted line represents
the linear regression fitting.

- Component Condition Assessment

The tool assesses the condition of key components using real-time sensor data. For
bearing evaluation, the ISO 20816 standard [42] is applied using a rule-based algorithm
with defined alarm and fault thresholds set at 0.08 in/sec and 0.17 in/sec, respectively.

For mechanical seals, there are no explicitly defined leakage limits in either API 682 or
Saudi Aramco Safety Standards [43]. Instead, these standards define overlapping pressure
ranges for normal (0-7.5 psiG), alarming (5-10 psiG), and faulty (10-20 psiG) operating
states. To interpret these ranges, the tool uses a fuzzy logic algorithm with triangular and
trapezoidal membership functions. Figure 9 illustrates the membership structure.

The fuzzy logic system classifies mechanical seal conditions into three sets: normal,
alarming, and faulty. Each set is defined by a specific membership function. The normal
condition is represented by a triangular function, which assigns a membership value of
one when the leakage pressure is less than or equal to 5 psiG. This value decreases linearly
between 5 and 10 psiG, reaching zero beyond 10 psiG. The selection of 10 psiG as the upper
bound ensures a smooth transition between the condition states.

The alarming condition is modelled using a trapezoidal membership function. It
begins with a membership value of zero for leakage pressures at or below 5 psiG, then
increases linearly from 5 to 7.5 psiG. The function maintains a value of one between 7.5 and
12.5 psiG and decreases linearly from 12.5 to 15 psiG, returning to zero beyond 15 psiG.
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Figure 9. Fuzzy membership functions. Fuzzy sets: normal, alarming, faulty.

The faulty condition is also defined using a trapezoidal function. It starts with a
membership value of zero for leakage pressures at or below 12.5 psiG, increases linearly up
to 15 psiG, and maintains a membership value of one for any pressure equal to or greater
than 15 psiG.

A defuzzification process is used to derive a single output value from the fuzzy sets.
This involves calculating a weighted average based on representative midpoints for each
fuzzy set—3.75, 10, and 17.5 psiG, respectively. The defuzzification formula is shown in

Equation (4):

Normal Membership x 3.75 + Alarming Membership x 10 + Faulty Membership x 17.5)
Noraml Membership + Alarming Membership + Faulty Membership

Crisp = (

Based on the resulting crisp value, the condition is classified into one of three discrete
states: values less than or equal to 5 indicate a normal condition; values between 5 and 12.5
indicate an alarming condition; and values above 12.5 are classified as faulty.

- Diagnostic Functions and Maintenance Recommendations

This function is designed to reduce downtime by diagnosing faults and recommend-
ing actions for bearing and mechanical seal replacements. Coupling replacements are
excluded, as their procedures are typically straightforward and do not require Al-based
decision-making.

For bearing diagnostics, the tool uses vibration frequency and bearing clearance data
to identify possible failure causes and propose corrective actions. A rule-based algorithm
based on if-then logic is employed to guide this analysis. The decision structure is presented
in Figure 10.

In the case of mechanical seals, the diagnostic process is informed by measurements
such as casing concentricity and squareness, along with visual inspections of seal flashing
lines. These inputs help identify causes of failure and support the recommendation of
appropriate maintenance actions. Like the bearing module, the seal diagnosis function
uses a rule-based if-then algorithm to process input data and determine the output. The
diagnostic framework is summarised in Figure 11.
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Figure 10. Logic tree for failure causes and recommended actions for bearings.
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Figure 11. Logic tree for failure causes and recommended actions for mechanical seals [39].

- Maintenance Schedule Optimisation

This function represents a core element of the tool and is responsible for optimising
maintenance strategies based on the estimated lifespan of each component and predefined
reliability thresholds. The tool considers three major components—bearings, mechanical seals,
and couplings—each with its own replacement frequency derived from lifespan calculations.

Two types of maintenance schedules are evaluated. The first is the Optimal Replace-
ment Frequency approach, which treats each component independently and determines
its most effective replacement interval to maximise its lifespan. The second is the Unified
Maintenance Schedule, in which the tool identifies the component with the shortest lifespan
and aligns the replacement of other components with this timeframe. This approach seeks
to consolidate maintenance actions within shared downtime periods, thereby reducing
the total number of shutdowns and minimising cumulative disruption. This concept is
illustrated in Figure 6.

The tool performs a cost analysis for both strategies, incorporating both the direct
maintenance costs and the indirect operational losses associated with downtime. The total
routine cost is calculated using the following equation:

Total routine cost = Total maintenance cost + (Total shutdown days x Daily operational cost) ®)
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Users are required to input values such as the shutdown duration for each component,
maintenance costs, and daily operational losses due to unavailability. A simple if-then
algorithm is then used to compare all options and select the maintenance routine that yields
the lowest total cost. This schedule is applied to optimise maintenance planning over a
10-year period extending to the year 2034.

3.4. Development Platform and Validation

The tool was implemented using Microsoft Excel. It uses built-in functions and logical
operations to analyse data and produce recommendations. The tool was validated through
two procedures: a case application using data from pump G221 and expert reviews by oil
and gas industry engineers to assess its usability and practical relevance.

4. Case Study Results and Discussion

The proposed methodology and the developed tool were tested using data from NGL
Pump G221. This section presents the case study’s outcome and discusses the results’
technical validity. The analysis focuses on generating the optimised maintenance plan and
the accuracy of the computed reliability metrics.

4.1. MTBFs of Components

The computed MTBFs for the pump’s bearings shows close agreement with the OEM’s
five-year estimated lifetime. Specifically, the inboard bearing recorded an MTBFs of
6.5 years, while the outboard bearings showed an MTBFs of 4.3 years. These values
are compared with OEM estimates in Figure 12.

Coupling

Years
N W » OO O N

Component
m Estimated MTBF (Years) m Actual MTBF (Years) mReplacement Frequency (Years)

Figure 12. Components’ MTBFs comparisons and replacement frequencies—replacement frequencies
are shown to be shorter than MTBFs values.

The slight variation in bearing MTBFs values may be attributed to differences in
lubrication management and installation accuracy. Each bearing operates with its own
oil reservoir, making lubrication levels and prioritisation critical to operational life. Addi-
tionally, factors such as alignment precision and clearance tolerances during installation
contribute significantly to overall bearing reliability.

For the mechanical seals, the tool estimated an MTBFs of 3.2 years, which closely
aligns with both API 682 and OEM expectations of approximately three years. The minor
deviation may be explained by the high purity of process conditions maintained at the
Saudi Aramco NGL facility.
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Although the coupling does not have a specified OEM service life, the estimated
MTBFs of 6.5 years is considered acceptable compared to values reported in the literature,
which suggest an average lifespan of approximately five years [44]. These findings indicate
that the historical input data are consistent and technically adequate for generating reliable
MTBFs estimates.

4.2. Optimised Component Replacement Frequencies

This part of the case study evaluates the relationship between reliability thresholds and
optimised component replacement intervals. A reliability threshold of 60% was applied to
the analysis. The resulting replacement frequencies were determined based on optimising
component lifespan while maintaining an acceptable probability of failure.

In the oil and gas industry, unplanned downtime generally incurs higher costs than
scheduled component replacement. Therefore, selecting an appropriate reliability threshold
is essential to reduce unexpected outages while maintaining cost-effectiveness. Although
a 60% reliability implies a 40% probability of failure within the replacement interval, the
historical records confirm that no components have failed within the predicted replacement
times. This outcome validates the practical suitability of the selected reliability threshold.

Moreover, the historical failure data display limited variation, reinforcing the use
of MTBFs as a dependable estimate for lifespan calculation. This provides additional
confidence that the computed replacement frequencies, which are intentionally shorter than
the MTBFs, are both realistic and conservative. Figure 12 illustrates the comparison between
the calculated MTBFs values and the replacement frequencies generated by the tool.

4.3. Component Condition

The tool assessed the condition of the pump’s major components—bearings, mechanical
seals, and coupling—using current sensor data and corresponding evaluation algorithms.

4.3.1. Bearings

The analysis provides two key outputs: the current condition of each bearing and its
estimated RUL. All the bearings are within acceptable condition limits, as confirmed by
vibration readings that comply with ISO and Saudi Aramco standards. Due to the limited
historical dataset, a rule-based algorithm was applied instead of machine learning models.

RUL estimations were generated using the current vibration values and Equation (1),
which incorporates the parameter “n”. This parameter has a documented correlation with
bearing vibration and can potentially be predicted using regression-based machine learning
if sufficient data become available. In this study, a linear relationship was observed between
initial vibration readings and “n”, yielding an R? value of 0.78 (as shown in Figure 8), which
supports the use of this approach.

Although the maintenance plan calls for all the bearings to be replaced in 2024, the tool
recommends extending the service life of three bearings until 2026. These bearings were
replaced in 2023 and have operated for only one year; however, statistical and reliability
calculations suggest scheduling their replacement during the planned shutdown in 2024.
In contrast, the outboard (OB) bearing, replaced in 2022, shows a shorter RUL and does not
qualify for the extension.

4.3.2. Mechanical Seals

The inboard (I) and outboard (O) mechanical seals (MSs) were assessed based on
leakage readings. Although the seals are typically replaced on a schedule due to their
unpredictable failure behaviour, the tool offers real-time condition insights to prevent
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unexpected failures. Fuzzy logic was applied to evaluate their condition, as the thresholds
are less clearly defined than for bearings.

The results show that the IB mechanical seal remains in normal condition, with a
current leakage of 2 psiG. This aligns with the historical data, which show an initial leakage
in the 0-1 psiG range and average lifespans of approximately four years. The current IB
seal was installed in 2023 and remains within expected parameters.

The OB seal, however, is flagged as alarming, with a leakage of 8 psiG. This is not yet
considered faulty, as the leakage pipe’s safety valve is set to release at 15 psiG. The trend
is consistent with the statistically estimated lifespan. Historical records indicate that the
OB seal’s service life has declined from five years to three years over recent replacements,
which may warrant a further inspection of the sealing system.

4.3.3. Coupling

The coupling condition remains acceptable according to the visual inspection data. It
was replaced in 2023 and has only one year of service, which is consistent with its expected
service life.

4.4. Maintenance Optimisation

The results shown in Table 4 demonstrate that the optimised maintenance routine
(Route 2) is significantly more cost-effective than the traditional approach (Route 1), in
which each component is maintained independently based on its individual estimated
lifespan and condition. Although Route 1 reflects a component-level optimisation ap-
proach, it does not consolidate maintenance activities into shared downtime windows.
Consequently, this approach results in substantially higher total costs—up to six times
greater than Route 2. The elevated cost arises primarily from operational losses due to
frequent pump downtimes, which far exceed the cost of component replacement in the oil
and gas sector.

Table 4. Optimised route cost-effectiveness comparison (Unit: USD).

Route 1 Route 2
Pump IB Bearing 1,507,364 1250
Pump OB Bearing 2,261,046 2500
Motor IB Bearing 2,261,046 2500
Motor OB Bearing 2,261,046 2500
IB Mechanical Seal 3,023,763 10,000
OB Mechanical Seal 3,023,763 10,000
Coupling 1,508,267 2000
Total 1,584,6293 2,530,750
Route 1/Route 2 6.26

In contrast, Route 2 consolidates component replacements into common shutdown
periods. This reduces the total downtime by approximately 80% and leads to an overall
cost reduction of the same magnitude. Notably, Route 2 includes more frequent component
replacements than Route 1, but this trade-off is economically favourable due to the domi-
nance of downtime costs. The result reflects the conservative assumption that cost savings
are driven largely by uptime optimisation, rather than spare part conservation. Figure 13
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highlights the increase in the number of component replacements when comparing Route
1 and Route 2 over a ten-year period.

Bearing Replacements Mechanical Seal Coupling Replacements
Replacements

18
16
14
12

Years

—
ON PO 0O

mRoute 1 mRoute 2

Figure 13. Route 1 and Route 2 comparison in terms of component replacements over 10 years.

The optimised schedule produced by Route 2 provides replacement dates for each
component from 2024 to 2034. This long-range forecast supports maintenance planning
and spare part availability. Although cost inputs such as replacement costs and daily
operational losses are user-defined, the values used in this case study reflect actual NGL
plant figures and are consistent with the published literature.

4.5. Diagnosis and Recommended Actions

While no actual replacements of bearings or mechanical seals occurred at the time
of testing, the diagnostic and recommendation functions of the tool were validated using
representative dummy datasets. These test scenarios confirmed that the tool performs
as expected in identifying fault causes and recommending corrective actions. Figure 14
illustrates example outputs for bearing and mechanical seal diagnostics, respectively.

Bearing Diagnosis and Replacement Actions Mechanical Seal Diagnosis and Replacement Actions
Please Insert Vibration Frequency 1X Failure Cause Howis Flashing Line’s Condition? Normal TR EETEs
Please Insert Outer Race -1 Normal Mass Imbalance How is the Casting Concentricity? Accepted D d Casing
Clearance
How s the Casting Squareness? Unacceptable
Please Insert Inner Race Clearance 2 Normal
Please Insert Balls Clearance 1 Normal Recommended Actions
1 Disconnect Flashing Lines
Please Insert Axial Floating 3 Normal 2 Put On the Fixing Plates
Clearance 3 Gently Pull Out the Seal and Pull In the New One

Recommended Actions SIAEEEIE

1 Isolate the Pump

2 Open Bearing Cover

3 Pull the Bearing Using Pulling Tool

4 Mark Bearing Face and Back

5 Ensure Correct Bearing is Available, Consider Face and Back Then Side the
Bearing In

6 Check All Clearances

7 Balance Rotor

Figure 14. Diagnostic output for bearings and mechanical seals in the case study.
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4.6. Comparison with Existing Studies

To further evaluate the distinctiveness and practical value of the proposed method-
ology, this section presents a comparative analysis against recent predictive maintenance
approaches reported in the literature.

Most recent advances focus on specific aspects, such as a single component or failure
prediction, and lack integrated decision support [45]. Kumar et al. [46] proposed a digital
twin approach with domain adaptation to identify bearing defects. Although the method
effectively handles data scarcity and adapts simulated knowledge to real systems, it remains
focused on a single failure type and does not assist with maintenance execution. By
comparison, our approach supports multi-component diagnostics.

Mohammed [47] developed a data-driven model using multiple linear regression to
predict failures in seawater pumps. In contrast, our method not only predicts potential
failures but also diagnoses fault causes and translates predictions into cost-driven, action-
able maintenance schedules. Similarly, Souza et al. [48] utilised CNNSs to detect faults
in offshore centrifugal pumps. While the model achieved a high classification accuracy,
it offered no guidance for maintenance planning and did not address how to manage
operational downtime. Our method improves upon this by directly linking diagnostic
results to optimised maintenance interventions, including the consolidation of shutdowns
and the prioritisation of tasks based on their cost and risk. In addition, Upasane et al. [49]
developed a type-2, fuzzy-based, explainable Al system to improve transparency in pre-
dictive models. The emphasis on interpretability is valuable, particularly for user trust.
However, their method does not incorporate any cost modelling or multi-component
planning. Our method maintains model interpretability while extending functionality to
include coordinated task scheduling and cost-effective intervention strategies.

In summary, most recent studies stop short of translating prediction into specific,
cost-informed actions. Our framework closes this gap by linking prediction, diagnosis,
and scheduling within a single, unified maintenance tool that delivers operational benefits
under constrained data conditions.

5. Validation Questionnaire Results and Discussion

Following the technical testing of the developed tool, a validation questionnaire was
distributed to a selected group of 15 industry experts. The objective of this survey was
to evaluate the methodology and the practical performance of the tool from an industrial
perspective. This section presents the expert feedback and provides a discussion of the
validation results.

The questionnaire consisted of 10 questions, each targeting a specific aspect of the
tool’s value and robustness. Topics included the business relevance of such a predictive
maintenance system, the validity of underlying assumptions, the ease of implementation,
and the effectiveness of the diagnostic functionalities. The responses were captured using a
four-point Likert scale: “Strongly Agree”, “Agree”, “Neutral” (indicating partial familiarity
with the topic), and “Disagree”. This design was deliberately selected to avoid a true
neutral midpoint, thereby encouraging respondents to make a clear evaluative choice.
Such forced-choice formats are particularly effective when collecting expert feedback on
prototype tools, as they reduce the central tendency bias and yield more actionable results.

The expert panel comprised 15 professionals from major industrial organisations
in the Middle East region, as summarised in Table 5. Their areas of expertise ranged
from engineering to management and technical operations, with most of the respondents
being affiliated with either Saudi Aramco or SABIC. The distribution of their expertise is
shown below.
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Table 5. Subject matter experts” details.

Number of Experts Expertise Field Employer
5 Maintenance engineers Saudi Aramco
4 Maintenance engineers SABIC
3 Maintenance Managers Saudi Aramco
3 Maintenance Technicians Saudi Aramco

5.1. The Need for an Al Tool to Optimise NGL Pump Maintenance

- Question 1: There is a business need to deploy AI for NGL pump maintenance
optimisation instead of manual optimisation.

The experts’ responses to this question were highly consistent. Fourteen out of fifteen
participants selected “Strongly Agree”, indicating a clear and unanimous recognition of
the value and necessity of Al-based maintenance optimisation in the NGL pump context.
One respondent selected “Neutral”, which was interpreted as reflecting limited familiarity
with Al technologies, rather than disagreement with the concept.

This strong consensus aligns with the current gap in the literature, where existing
approaches primarily focus on predictive modelling or fault detection in isolation, with
little emphasis on integrated, Al-supported decision tools tailored to the scheduling and
operational realities of NGL systems. The expert feedback, therefore, reinforces both the
relevance and the timeliness of the proposed tool.

5.2. Assumption Technical Validation

- Question 2: The assumptions regarding bearing conditions are accurate.

All the subject matter experts strongly agreed that the assumptions used to assess
bearing conditions based on vibration measurements are technically valid. This consensus
aligns with the clearly defined thresholds provided in the ISO and Saudi Aramco standards.

- Question 3: The correlation used to estimate bearing RUL based on vibration read-
ings is applicable and provides a fair estimation.

Figure 15 presents the results of expert opinions regarding the Questions 3 to 8. All
the maintenance engineers expressed strong agreement regarding the applicability of the
correlation in Equation (1) for estimating the RUL. They confirmed the appropriateness
of using vibration readings and supported the use of a linear relationship between the
initial vibration and the coefficient n. The maintenance managers also agreed once the
theoretical basis of the correlation was explained in line with the literature. However,
some of the maintenance technicians selected “Neutral”, citing that the correlation is
not explicitly recognised in Saudi Aramco’s current standards. Nevertheless, the overall
feedback supports the validity and applicability of the correlation approach used in the tool.
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Number of Responses
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Figure 15. Questionnaire results for Questions 3 to 8.

- Question 4: The adopted approach reflects mechanical seals’ condition accurately.

Most of the experts (12 of 15) supported the use of fuzzy logic and the defined fuzzy
sets for classifying mechanical seal conditions. The Saudi Aramco engineers and two of the
maintenance managers strongly endorsed the approach. In contrast, the SABIC engineers
agreed in principle but noted that their organisation does not apply fixed criteria for seal
condition statuses, which affects their evaluation. One maintenance technician endorsed
the approach based on consultation with engineers, while another chose “Neutral” due to
limited familiarity with seal condition assessment. One maintenance manager expressed
disagreement, citing a belief that seals should be replaced once leakage reaches 5 psiG—an
approach inconsistent with current standards. Despite a range of perspectives, the majority
of the experts validated the fuzzy logic methodology used in the tool.

5.3. Tool Practicality
- Question 5: The proposed methodology helps reduce the total cost significantly.

All the field experts—including the maintenance managers and the technicians—strongly
agreed with the methodology of aligning component maintenance within shared shutdown
periods. Many noted that this practice is informally adopted even in the absence of formal
directives from engineers. The engineering staff also agreed with the principle, recognising
its potential to reduce the overall maintenance costs through improved scheduling.

- Question 6: The tool is simple and user-friendly.

All the Saudi Aramco experts agreed that the tool is intuitive and easy to operate.
However, the SABIC engineers provided a more critical assessment, suggesting that integra-
tion with the SAP maintenance system would enhance its usability. It is worth noting that,
unlike SABIC, Saudi Aramco enforces strict IT policies that prohibit third-party software
from directly interfacing with SAP, which influences perceptions of tool compatibility.

- Question 7: The methodology and developed tool address the business need for
using Al to optimise NGL pump maintenance.
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Both the Saudi Aramco and the SABIC maintenance engineers strongly agreed that
the methodology and tool address the core business need for Al-driven maintenance
optimisation. The field technicians also acknowledged the tool’s practical contribution to
improving NGL pump availability and reducing costs.

Collectively, the responses to Questions 1 through 7 provide a secondary validation of
the tool’s effectiveness and alignment with the operational goals. This complements the
primary validation obtained through the technical testing of the tool.

5.4. Tool Diagnostic Functionality

- Question 8: The tool provides useful diagnoses and recommended actions that
reduce pump downtime.

Both the Saudi Aramco and the SABIC engineers agreed that the tool delivers effective
diagnostic insights and maintenance recommendations that help reduce reliance on manual
inspection processes and contribute to shorter downtimes. This feedback confirms the
technical soundness of the diagnostic module.

In contrast, the maintenance managers and the technicians selected “Neutral”, pri-
marily because they are not directly involved in diagnostic tasks for NGL pumps and thus
could not fully assess this aspect of the tool’s functionality.

6. Conclusions

This study introduced an Al-based methodology and digital tool specifically devel-
oped to optimise the maintenance of NGL pumps. Unlike conventional approaches that
focus solely on failure prediction or isolated condition monitoring, the proposed framework
integrates reliability-based scheduling, real-time condition assessment, and Al-driven diag-
nostics within a unified system. This comprehensive approach allows for the development
of optimised maintenance routines that balance component longevity with the operational
cost, even under limited data availability—a common constraint in industrial settings.

The significance of the work lies in its ability to reduce unplanned downtime and
operational losses by aligning component maintenance within consolidated shutdown
windows. In the case study involving pump G221, the optimised routine reduced the total
cost by approximately 80% compared to conventional individual replacement scheduling.
This improvement was primarily achieved by minimising downtime, which was reduced
by a similar margin. Furthermore, while the number of replacements increased under
the optimised plan, the overall routine cost remained significantly lower due to reduced
production losses.

The tool was validated through both technical application and structured expert
feedback from 15 industry professionals. The survey results showed that over 90% of the
experts strongly agreed with the need for such a tool and acknowledged its effectiveness in
addressing key operational and diagnostic challenges.

While this study focuses on a single equipment type (NGL pumps), the proposed
methodology is designed to be generalisable to other rotating assets, such as compressors
and fans. Future work will involve extending the tool’s application to a broader range of
equipment under varied operational conditions.
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Nomenclature
Al Artificial Intelligence
API American Petroleum Institute
ANN artificial neural network
CCW Counter-Clockwise
CNN Convolutional Neural Network
C-MAPSS Commercial Modular Aero-Propulsion System Simulation
FMEA Failure Modes and Effects Analysis
IMS Inboard Mechanical Seal
ISO International Organization for Standardization
LSTM Long Short-Term Memory
MOB Motor Outboard Bearing
MEP mechanical, electrical, and plumbing
MIB Motor Inboard Bearing
MTBF mean time between failures
NGL Natural Gas Liquid
OB outboard
OEM Original Equipment Manufacturer
OMS Outboard Mechanical Seal
PIB Pump Inboard Bearing
POB Pump Outboard Bearing
RAM Reliability, Availability, and Maintainability
RPN risk priority number
RUL remaining useful life
SAP Systems, Applications, and Products (in Data Processing)
SVM support vector machine
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Abstract: Rosemary (Rosmarinus officinalis or Salvia rosmarinus) is an aromatic herb that
possesses numerous health-promoting and antioxidant properties. Pressurized Liquid
Extraction (PLE) is an efficient, environmentally friendly technique for obtaining valuable
compounds from natural sources. The optimal PLE conditions were established as 25%
v/v ethanol at 160 °C for 25 min, and a liquid-to-solid ratio of 10 mL/g. The optimal
extract exhibited high polyphenol and antioxidant content through various assays. The
recovered bioactive compounds possess potential applications in the food, pharmaceutical,
and cosmetics sectors, in addition to serving as feed additives. This research compares
two distinct optimization models: one statistical, derived from experimental data, and the
other based on artificial intelligence (AI). The objective was to evaluate if Al could replicate
experimental models and ultimately supplant the laborious experimental process, yielding
the same results more rapidly and adaptably. To further enhance data interpretation and
predictive capabilities, six machine learning models were implemented on the original
dataset. Due to the limited sample size, synthetic data were generated using Random Forest
(RF)-based resampling and Gaussian noise addition. The augmented dataset significantly
improved the model performance. Among the models tested, the RF algorithm achieved
the highest accuracy.

Keywords: Rosmarinus officinalis; polyphenols; antioxidants; HPLC-DAD; response surface
methodology; machine learning; regression models; generative models; random forest;
ensemble learning

1. Introduction

Rosemary (Rosmarinus officinalis L.), a perennial species of the Lamiaceae family, is
distinguished for its distinctive scent, culinary use, and therapeutic properties [1]. It has
been established by phylogenetic studies that rosemary is classified within the genus Salvia,
specifically referred to as Salvia rosmarinus [2]. Rosemary originates from the Mediterranean
region; however, it has been cultivated successfully in numerous other locations globally [3].
This is an aromatic plant characterized by its needle-like foliage, widely cultivated around
the world [3]. Rosemary’s therapeutic properties have been utilized in traditional folk
medicine to address a range of ailments, such as pain relief, headaches, stomach discomfort,
respiratory disorders, and others [1,4-6].

Several methodologies have been investigated for the recovery of bioactive com-
pounds, mainly rosmarinic acid and carnosic acid, from rosemary leaves at a laboratory
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scale. Certain extraction processes, especially conventional methods, are often associated
with various disadvantages, including the utilization of hazardous solvents, the degra-
dation of target compounds resulting from elevated temperatures, prolonged extraction
durations, challenges in implementation, and significant economic and energy expen-
ditures. In recent years, the concepts of “Green chemistry” and “eco-extraction” have
emerged [7]. Recent studies indicate that extraction processes have become more energy-
efficient, safer for users, and environmentally friendly compared to previous methods,
all while maintaining extraction efficiency. The intensification of extraction processes,
considering these various aspects, should emerge as a new challenge for the design of such
processes.

Despite extensive research on rosemary leaf extracts, gaps remain in exploring
less-studied aspects and emerging opportunities driven by technological advancements.
One such critical area is the use of green, non-toxic solvents for the sustainable recovery of
bioactive compounds from plant materials. This study aims to bridge this gap by investi-
gating the combined effects of green solvent mixtures, optimizing extraction conditions,
and evaluating their performance. Rosemary leaves were subjected to Pressurized Liquid
Extraction (PLE), which combines elevated pressure to enhance mass transfer and elevated
temperatures to help facilitate the diffusion of the solvent into the sample by diminishing its
viscosity [8]. The study examined the influence of eco-friendly solvent mixtures, specifically
water and ethanol, alongside key process parameters such as temperature and extraction
duration. Additionally, a partial least squares (PLS) model was utilized to identify the
optimal extraction conditions.

In parallel, the growing integration of artificial intelligence (Al), particularly machine
learning (ML) and Deep Learning (DL), has enabled more accurate modeling, prediction,
and optimization across the food, beverage, pharmaceutical, and cosmetic industries. ML
techniques are increasingly applied in bioactive compound prediction, formulation opti-
mization [9], sensory analysis, and green extraction process modeling [10]. Recent studies
demonstrate the effectiveness of algorithms such as Random Forest (RF), Support Vec-
tor Machines (SVMs), and Artificial Neural Networks (ANNSs) in predicting antioxidant
capacity, total polyphenol content (TPC), and other physicochemical properties from ex-
perimental variables [11]. In this context, the present study incorporates multiple machine
learning approaches to predict the antioxidant potential of rosemary extracts under varying
PLE conditions, thereby enhancing process efficiency and supporting sustainable product
development in food, nutraceutical, and cosmetic applications [12].

While ML methods have been increasingly used for modeling extraction processes,
most prior studies rely on relatively large experimental datasets or focus on specific ex-
traction methods with extensive data availability. In contrast, PLE of rosemary leaves is
a process with high experimental cost and limited data availability, which hinders the
effective application of conventional ML techniques. This study addresses this gap by
integrating ML models with data augmentation strategies to enhance model robustness
under small-sample conditions. To our knowledge, this is one of the first studies applying
such an approach to optimize green extraction of bioactive compounds from rosemary,
offering insights that can support broader adoption of Al-assisted extraction workflows.

2. Materials and Methods
2.1. Chemicals and Reagents

A deionizing column was used to produce deionized water for all the experiments
performed. The deionized column contains mixed-bed ion exchange resin, ensuring conduc-
tivity below 1 uS/cm, with a standard flow rate and operating pressure. All polyphenolic
standards for the HPLC determination, along with L-ascorbic acid (99%), 2,4,6-tris(2-
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pyridyl)-s-triazine (TPTZ) (>98%), 2,2-diphenyl-1-picrylhydrazyl (DPPH?), and hydrochlo-
ric acid (37%), were bought from Sigma-Aldrich (Darmstadt, Germany) and were at least
97% purity or higher. Acetonitrile was acquired from Labkem (Barcelona, Spain). Sodium
carbonate (anhydrous, 99.5%), rutin (>94%), and formic acid (99.8%) were bought from
Penta (Prague, Czech Republic). Iron (IlI) chloride hexahydrate (97%) was obtained from
Merck (Darmstadt, Germany). Folin—Ciocalteu reagent, gallic acid (97%), and ethanol
(99.8%) were acquired from Panreac Co. (Barcelona, Spain).

2.2. Rosemary Leaves” Raw Material and Sample Preparation

Rosemary leaves were obtained from a local plant shop from the Karditsa region
(Central Greece). The rosemary leaves were washed carefully and manually dried with
paper towels. Then, they were subjected to lyophilization through a Biobase BK-FD10
(Jinan, China) freeze-drier. The moisture content was determined as 53.2 & 3.8%. Then, the
dried material was sieved in an Analysette 3 PRO (Fritsch GmbH, Oberstein, Germany)
sieving machine, and the powder, consisting of an average particle diameter of 497 um,
was obtained. The obtained powder was kept in a freezer at up to —40 °C until further
analysis.

2.3. Experimental Design

A custom-designed Response Surface Methodology (RSM) with four factors at five
levels was employed to optimize the extraction conditions for TPC, antioxidant activity
(FRAP and DPPH assays), and ascorbic acid content (AAC) using the Pressurized Liquid
Extraction (PLE) technique on rosemary powder. A Pressurized Liquid Extraction (PLE)
system (Fluid Management Systems, Inc., Watertown, MA, USA) was used to facilitate
all extractions. The independent variables examined included the ethanol concentration
(C, % v/v) as X3, liquid-to-solid ratio (R, mL/g) as X, extraction temperature (T, °C) as
X3, and extraction time (¢, min) as X4, each assigned five levels. To assess the method’s
repeatability, 17 experimental runs, including one central point, were conducted, with
each run replicated three times, and the average response values were documented for
subsequent analysis.

Stepwise regression was utilized to refine the model’s predictive precision by reducing
variance from superfluous term estimation, leading to a second-order polynomial equation
that delineates the interactions between the three independent variables:

2 2 2 3
Ye=Bo+ Y BXi+ Y BiXi+Y, Y. B XiX; ey
i=1 i—1

i=1j=i+1

where the independent variables are denoted by X; and Xj, and the predicted response
variable is defined by Yj. In the model, the intercept and regression coefficients B, B;, Bii,
and ,Bij represent the linear, quadratic, and interaction terms, respectively.

2.4. Total Polyphenolic Content (TPC) Determination Through Spectrophotometric Evaluation

The Folin—Ciocalteu methodology [13] was used to evaluate TPC and express the
results in milligrams of gallic acid equivalents (GAEs) per gram of dry weight (dw). A
calibration curve (10100 mg/L of gallic acid, R? = 0.9996) in water was used to assess
the results. Briefly, after mixing 100 uL of the properly diluted extract with 100 uL of
the Folin—Ciocalteu reagent for 2 min, 800 puL of a 5% w/v sodium carbonate solution
was subsequently added. Following a 20 min incubation at 40 °C, in the absence of light
exposure, the absorbance of the solution was measured at 740 nm in a Shimadzu UV-1900i
UV /Vis spectrophotometer (Kyoto, Japan). Sample incubation at 40 °C was conducted
utilizing an Elmasonic P70H ultrasonic bath from Elma Schmidbauer GmbH (Singen,
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Germany). Each analysis was performed in triplicate and the average was used to assess
the results.

2.5. Ferric-Reducing Antioxidant Power (FRAP) Evaluation of Antioxidant Activity

A previously established study provides a thorough description of the method used
to test the antioxidant capacity of the extracts utilizing the common electron-transfer
method [13]. This method entailed identifying the decrease in the iron oxidation state
from +3 to +2. Briefly, 50 puL of the properly diluted sample was combined with 50 pL of
FeCl; solution (4 mM in 0.05 M HCI). Subsequently, the samples were incubated at 37 °C
for 30 min. After a 5 min interval, 900 uL of TPTZ solution (1 mM in 0.05 M HCl) was
added, and the absorbance was measured at 620 nm. A calibration curve of ascorbic acid
(50-500 uM in 0.05 M HCI, R? = 0.9997) was utilized, and the results were expressed as
umol of ascorbic acid equivalents (AAEs) per gram of dw. Each analysis was performed in
triplicate and the average was used to evaluate the results.

2.6. Evaluation of Radical Scavenging Activity

A previously described assay [14] for DPPH® scavenging was employed. The ab-
sorbance at 515 nm was initially measured immediately and 30 min later by combining
25 pL of properly diluted sample extract with 975 uL of DPPH® solution (100 umol/L in
methanol). A calibration curve of the antiradical activity of ascorbic acid (100-1000 pmol/L
in methanol, R? = 0.9926) was used, and the results were expressed as umol of ascorbic
acid equivalents (AAEs) per gram of dw. Each analysis was performed in triplicate and the
average was used to evaluate the results.

2.7. HPLC Quantification of Polyphenolic Compounds

High-Performance Liquid Chromatography coupled with Diode Array Detector
(HPLC-DAD) identification of individual polyphenols from the rosemary leaves’ extracts
was based on our prior research [15]. The liquid chromatograph (model CBM-20A) and
diode array detector (model SPD-M20A) utilized in this investigation were supplied by
Shimadzu Europa GmbH, Duisburg, Germany. The detection wavelength ranges from 200
to 800 nm. The compounds were injected at a volume of 20 uL and separated at 40 °C using
a Phenomenex Luna C18(2) column (100 A, 5 um, 4.6 mm x 250 mm) from Phenomenex
Inc. in Torrance, CA, USA. The mobile phase consisted of 0.5% formic acid in acetonitrile
(B) and 0.5% formic acid in aqueous solution (A). The gradient program involved a gradual
initiation from 0 and increase to 40% B, followed by 50% B for 10 min, 70% B for another
10 min, and a constant value for 10 min. The mobile phase flow rate was kept constant at
1 mL/min. By comparing the absorbance spectrum and retention time to those of purified
standards, the compounds were identified and subsequently quantified using calibration
curves (0-50 pg/mL).

2.8. Ascorbic Acid Content (AAC)

The ascorbic acid content of the samples was quantified as mg/g of dry weight, as
previously described by Athanasiadis et al. [15]. A total of 500 puL of 10% (v/v) Folin—
Ciocalteu reagent and 100 pL of sample extract were combined with 900 pL of 10% (w/v)
trichloroacetic acid in an Eppendorf tube. The absorbance was promptly assessed at 760 nm
following 10 min of storage in darkness.

2.9. Statistical Analysis

The RSM and distribution analysis were statistically evaluated utilizing JMP® Pro 16
software (SAS, Cary, NC, USA). The Kolmogorov-Smirnov test assessed the normality of
the data. ANOVA and the Tukey HSD multiple comparison test were employed to ascertain
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any significant differences. The results were reported as means accompanied by measures
of variability.

2.10. Initial Data Set Exploration and Visualization

The initial dataset comprised 17 experimental samples of rosemary extract that, as
mentioned, were evaluated under varying PLE conditions. For the development of ML
models, four features were used as inputs: ethanol concentration (% v/v), liquid-to-solid
ratio (mL/g), extraction temperature (°C), and extraction time (min). Additionally, four
features were used as the outputs: TPC, FRAP, DPPH, and AAC. The initial dataset
comprised only 17 samples. Of the data, 80% was allocated for training and 20% for
testing our ML models. Figure 1 presents the distribution of experimental variables and
antioxidant responses, illustrating balanced sampling across extraction parameters and
greater variability in antioxidant outcomes.
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Figure 1. Histograms with kernel density estimates showing the distribution of extraction parameters
and antioxidant response variables for rosemary samples. While extraction settings are uniformly
distributed due to the design structure, antioxidant responses such as FRAP and DPPH exhibit
skewed distributions, indicating variability in sample performance.

To assess variability and central tendencies, a combined boxplot was created (Figure 2).
The extraction parameters (C, Ry /s, T, and t) showed narrow interquartile ranges and sym-
metry, indicating controlled conditions. In contrast, the antioxidant responses—especially
FRAP and DPPH—exhibited wide variability and outliers, reflecting greater sensitivity
to extraction settings. TPC showed moderate spread, while AAC remained tightly clus-
tered. These patterns suggest that antioxidant outcomes are more affected by experimental
variation than the input parameters.
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Figure 2. Combined boxplot of all extraction parameters and antioxidant response variables. Antioxi-
dant metrics (FRAP and DPPH) exhibit larger spread and more outliers than extraction parameters,
indicating greater variability and sensitivity to experimental conditions.

To assess the variation across extraction conditions and antioxidant responses, two
complementary heatmaps were produced and are presented together in Figure 3. Plot (A)
displays the raw value matrix, highlighting absolute differences among samples. The high-
intensity region in the FRAP column (design point 13) corresponds to elevated antioxidant
activity, also reflected in TPC. AAC values remained consistently low across all samples.
Plot (B) shows the standardized (z-score) version of the same matrix, enabling scale-
independent comparison. The same sample exhibited z-scores above +2 in FRAP and
TPC, confirming its outlier status. Other samples with moderate DPPH or AAC responses
became more distinct through normalization. Together, the heatmaps reveal both high-
performing conditions and hidden patterns across the dataset.

To explore the variable relationships, a Pearson correlation matrix was computed
(Figure 4). Strong positive correlations between TPC, FRAP, and DPPH (r = 0.81-0.91)
indicate phenolics’ central role in antioxidant capacity. The ethanol concentration (C, %)
was negatively correlated with both TPC and FRAP, suggesting diminishing returns at
higher concentrations. The temperature and solvent ratio showed moderate positive
correlations with AAC, while the extraction time had minimal influence on any response.
These findings align with the heatmap results and underscore the compound-specific effects
of extraction parameters.
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Figure 3. Plot (A) is a heatmap of raw data values for extraction parameters and antioxidant responses
across 17 experimental conditions. Brighter colors indicate higher absolute values. The most intense
FRAP activity was observed in sample #13. Plot (B) is a z-score normalized heatmap of the same
dataset. Standardization enables direct comparison across all features. Red shades represent values
above the mean, while blue shades indicate values below the mean. Strong positive deviations in
FRAP and TPC are evident in sample #13.
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Figure 4. Pearson correlation matrix among extraction parameters and antioxidant response variables.
Values range from —1 (perfect negative correlation) to +1 (perfect positive correlation). Strong internal
consistency was observed among antioxidant metrics (TPC, FRAP, and DPPH), while concentration
(C, %) negatively correlates with TPC and FRAP.

2.11. ML Regressor Development

To be able to develop our ML-based regressors for our initial data set, we trained six
regression algorithms that were applied to model the relationships between the extraction
parameters and the antioxidant responses. The models included Linear Regression [16],
Ridge Regression [17], Lasso Regression [18], RF regression, Gradient Boosting (GB) Re-
gression [19], and Adaptive Boosting (AdaBoost) Regression [20].

Each model was implemented as a multi-output regressor. Hyperparameter tuning
was conducted using grid search with 5-fold cross-validation, due to the limited data.
Ridge and Lasso regressors were tuned for regularization strength (o), while tree-based
models were optimized for the number of estimators, maximum depth, learning rate for
boosting models, and minimum samples per split. The full list of model parameters and
their tested values is shown in Table 1.

Table 1. Summary of machine learning regression models and the corresponding hyperparameters
tuned during grid search. Default parameters were used for Linear Regression, while regularization
strengths («) and core structural parameters (number of estimators, max depth, min samples split,
tree depth, and learning rate) were varied for the other models.

Model Tuned Parameters Values Tested
Linear Regression None -
Ridge o [0.1, 1.0, 10.0]
Lasso o4 [0.001, 0.01, 0.1, 1.0]
RE n_estimators, max_depth, [100, 200], [None, 10], [2, 5]

min_samples_split

n_estimators, learning_rate,
max_depth [100, 200], [0.05, 0.1], [3, 5]

AdaBoost n_estimators, learning_rate [50, 100], [0.5, 1.0]

GB
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The selected hyperparameters were chosen for their direct impact on model complexity,
generalization, and performance. For regularized linear models, Ridge and Lasso, the regu-
larization strength “«” controls the degree of penalty applied to large coefficients—helping
to reduce overfitting, especially in small datasets. Smaller values allow more flexibility,
while larger values enforce stronger shrinkage of less informative predictors. To fur-
ther mitigate the risk of overfitting, all models were trained and evaluated using 5-fold
cross-validation. In addition, regularization techniques (Ridge and Lasso penalties) and
parameter tuning were applied to control model complexity and improve generalization
performance, particularly given the small size of the original dataset.

In the tree-based models RF, GB, and AdaBoost, the “number of estimators” deter-
mines how many trees are used to build the ensemble; more trees generally improve
performance but increase computation. The “maximum tree depth” controls how complex
each tree can be, balancing fit versus overfitting. The “minimum samples split” parameter
sets the minimum number of samples required to split a node, helping to regularize the
model by preventing overly deep trees. The “learning rate”, used in boosting algorithms,
scales how much each tree contributes to the final prediction—lower rates typically yield
better generalization at the cost of longer training.

2.12. Machine Learning Regressor Evaluation

In this study, the performance of the regression models was evaluated using four
standard metrics: Mean Absolute Error (MAE) [21], Mean Squared Error (MSE) [21], Root
Mean Squared Error (RMSE) [22], and the Coefficient of Determination (R?) [23]. These
metrics quantify the difference between the predicted values j; and actual experimental
values y;, based on a total of n observations.

MAE measures the average magnitude of errors in a set of predictions, without
considering their direction. It is calculated as the mean of the absolute differences between
actual and predicted values (2).

1& .
MAE = ) |yi — il )
i=1
MSE penalizes larger errors more strongly by squaring them. It is the average of the
squared differences between actual and predicted values (3).
1& 2

MSE = =Y (yi — 1)
i3

®)

RMSE is the square root of the MSE and provides an error measure in the same units
as the original response variable, making it more interpretable (4):

n

1 .
RMSE = ;Z(yi_yi)z 4)
i

R? represents the proportion of variance in the actual values that is predictable from
the independent variables. A value of 1 indicates perfect prediction, while 0 means the
model explains none of the variance (5):

R2—1— - )
L1y —y)°

252



Processes 2025, 13, 1879

These metrics together offer a robust framework for comparing the prediction accuracy,
error dispersion, and explanatory power of each machine learning regressor tested in
this study.

2.13. Generative Model Development

To address the limitations imposed by the small sample size (n = 17), a synthetic
dataset was generated to enhance the modeling capacity and generalization of the machine
learning algorithms. New input combinations were uniformly sampled within the observed
range of the original extraction parameters: ethanol concentration (C, % v/v), liquid-to-
solid ratio (R /s, mL/g), extraction temperature (T, °C), and extraction time (f, min). A
total of 100 synthetic input samples were created to expand the dataset in a balanced and
controlled manner.

To estimate the corresponding antioxidant responses—total polyphenol content (TPC),
ferric reducing antioxidant power (FRAP), DPPH radical scavenging activity, and ascorbic
acid content (AAC)—a pre-trained RF model, previously identified as the best-performing
regressor, was employed. RF is an ensemble learning method based on decision trees that
captures nonlinear relationships by aggregating the predictions of multiple base learners.
The predicted output ¥ for a given input vector x is computed as the average of predictions
from all trees in the forest (6):

y= fr(x) (6)

=l
™=

t=1

where T is the total number of decision trees in the ensemble, and f;(x) is the prediction
from the f-th tree for input x. In this study, RF was applied both as a predictive model
and, in the generative phase, to estimate antioxidant outcomes for synthetically generated
feature combinations.

To simulate natural variability and reduce overfitting to deterministic predictions,
Gaussian noise was added to the RF-generated outputs. This augmentation mimics exper-
imental uncertainty and improves the realism of synthetic samples. The final synthetic
response y was computed as follows (7):

y=i+e e~N(0,0%) @)
where e is a noise term drawn from a normal distribution with zero mean and variance o2.
In this study, o was set to 5% of the standard deviation of the respective real target variable,
providing a balance between stability and variability.

The resulting synthetic data points were merged with the original experimental dataset
to create a mixed dataset. The rationale for this approach is that the RF model captures
complex nonlinear interactions in the original data, and the controlled addition of Gaussian
noise (set at 5% of the standard deviation of each real target variable) introduces realistic
variability while avoiding overfitting to deterministic predictions. This method balances
model fidelity with enhanced generalization potential.

The resulting synthetic data points were merged with the original experimental dataset
to create a mixed dataset. Due to the limitations of our available computational resources,
the size of the synthetic dataset was intentionally kept small (100 samples) to perform
an initial proof-of-concept evaluation. Future work will explore more extensive data
augmentation using more advanced generative techniques and more powerful hardware.
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3. Results and Discussion
3.1. Optimization of PLE Parameters

The extraction procedure may be challenging due to the presence of several distinct
bioactive compounds which lead to variations in solubility and polarity [24]. Moreover,
various processing parameters along with the extraction technique might significantly
affect both the extract yield and antioxidant capacity. Table 2 presents how the variables
under investigation affect the examined responses, while in Table 3 the ANOVA applied to
the RSM quadratic polynomial model is presented.

Table 2. Experimental results for the four examined independent variables and the dependent
variables’ responses to the PLE technique.

Independent Variables Actual PLE Responses *
Design Rys i .
Point ¢ (%) (X;)  (mL/g) rco f (min) TPC FRAP DPPH AAC
(X,) X3) (X4q)
1 75 10 40 20 37.20 612.74 243.81 7.47
2 75 55 130 20 26.84 366.39 152.88 9.46
3 25 25 160 10 44.43 740.02 389.29 9.95
4 0 55 130 5 37.03 451.66 230.22 12.02
5 0 10 40 5 28.84 331.68 67.14 3.14
6 100 25 160 25 18.96 214.42 108.73 9.90
7 100 70 160 10 34.14 413.30 174.82 14.65
8 100 25 70 10 11.26 119.68 66.67 8.35
9 25 70 70 10 41.10 467.27 185.26 11.05
10 25 70 160 25 47.41 615.91 251.75 15.56
11 75 10 130 5 60.26 286.87 388.69 11.89
12 0 55 40 20 31.88 233.39 100.86 5.45
13 0 10 130 20 75.85 1089.81 816.36 6.38
14 75 55 40 5 30.09 393.47 150.16 10.24
15 100 70 70 25 19.17 169.93 85.11 13.34
16 25 25 70 25 49.64 696.79 427 .46 8.44
17 50 40 100 15 52.69 893.17 497.11 12.45

* Values represent the mean of triplicate determinations; TPC, total polyphenol content (in mg GAE/g dw); FRAP,
ferric reducing antioxidant power (in umol AAE/g dw); DPPH, antiradical activity (in umol AAE/g dw); AAC,
ascorbic acid content (in mg/g dw).

Table 3. Analysis of variance (ANOVA) is performed for the response surface quadratic polynomial
model in the context of the PLE technique.

Factor TPC FRAP DPPH AAC
Stepwise regression
coefficients
Intercept 42.88 * 715.8 * 356.2 % 11.04 *
Xj—ethanol ~10.7* —170* —96.8* 1.204 *
concentration
Xpy—liquid-to-solid ratio —5.69 —81.1 —103 * 2.283 *
X3—temperature 7.183 96.73 * 93.54 * 1.956 *
X4—extraction time 0.854 66.9 39.24 -
X1X; 3.746 166.6 * 92.01 -
X1X3 - —114 —-54.1 —-1.02
X1X4 —8.19 - -91 -
X2 X3 —44 - —52.1 -
XXy —4.51 —131+* —82.1 -
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Table 3. Cont.

Factor TPC FRAP DPPH AAC
X3X4 - - - -
X,2 —~13.8 —268 * —103 —1.69
X,? 15.5 - 79.73 -
X532 —8.56 - —130 -
X,2 - —131 - -
ANOVA
F-value 4.507 7.716 4.362 10.65
p-Value 0.0545 ns 0.0067 * 0.0833 ns 0.0006 *
R? 0.908 0.908 0.929 0.829
Adjusted R? 0.707 0.791 0.716 0.751
RMSE 8.747 121.9 104.7 1.633
PRESS 3913 363,375 580,653 57.61
Ccv 42.46 55.93 77.03 32.76
DF (total) 16 16 16 16

* The values significantly affected responses at a probability level of 95% (p < 0.05). TPC, total polyphenol
content; FRAP, ferric reducing antioxidant power; DPPH, antiradical activity; AAC, ascorbic acid content; ns,
non-significant; F-value, test for comparing model variance with residual (error) variance; p-Value, probability
of seeing the observed F-value if the null hypothesis is true; RMSE, root mean square error; PRESS, predicted
residual error sum of squares; CV, coefficient of variation; DF, degree of freedom.

3.1.1. Model Analysis

The following Equations (8)—(11) represent regression models related to the extraction
process, predicting key response variables: total phenolic content (TPC), ferric reducing
antioxidant power (FRAP), DPPH radical scavenging capacity, and ascorbic acid content
(AAC). Each equation includes linear, quadratic, and interaction terms, highlighting the
complex relationships between experimental factors. The models contain only significant
terms. The regression models highlight the impact of solvent composition, temperature, and
duration on extraction efficiency. Notably, the linear and quadratic terms suggest nonlinear
relationships between variables, indicating optimal conditions for maximizing antioxidant
yield. The FRAP and DPPH equations show a strong dependency on the extraction
conditions, particularly the extraction time (X4). The presence of interaction terms suggests
that the combined effects of multiple variables influence antioxidant potential, emphasizing
the need for precise parameter optimization. Longer extraction times allow more bioactive
compounds, including antioxidants, to dissolve into the solvent. The presence of quadratic
terms (X42) and interactions (X, Xy and X;X4) suggests that the extraction time has an
optimal range—too short may limit compound release, while excessive duration could lead
to degradation or reduced efficiency. The interaction terms imply that the extraction time
does not act alone. For example, X, X4 in DPPH suggests that time interacts with another
variable, the liquid-to-solid ratio, to influence antioxidant capacity.

TPC =11.74 + 0.49X; — 1.22X5 + 0.69X3 + 1.51X4 — 0.006X;2 + 0.017X,% — 0.002X52 + 0.002X; X,

8
— 0.016X; X4 — 0.002X,X3 — 0.015X, X4 ®

FRAP = —58.84 + 6.67X; — 1.73X, + 3.51X3 + 63.39X, — 0.107X;2 — 1.31X4% + 0.11X; X, — 0.038X; X5 — 0.44X,Xs (9)

DPPH = —330.79 + 4.24X; — 6.60X, + 10.86X5 + 23.97X; — 0.041X;2 + 0.089X,2 — 0.036X52 + 0.061X7 X,

10
— 0.018X; X5 — 0.182X; X4 — 0.029X,X3 — 0.274X, X4 (10)

AAC =0.14 + 0.13X; + 0.08X; + 0.05X3 — 0.0007X;2 — 0.0003X; X3 (11)
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Figure 5 shows how each parameter and their combinations affect the responses of the
parameters under study. The predicted optimal values of PLE parameters along with the

predicted TPC and FRAP, DPPH, and AAC values, along with the desirability of the model,
are presented in Table 4.

Figure 5. TPC, showing the (A) covariation of X; (ethanol concentration, C, % v/v) and X, (liquid-
to-solid ratio, R, mL/g); (B) covariation of X; and X4 (extraction time, ¢, min); (C) covariation of X,
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and X3 (extraction temperature, T, °C); and (D) covariation of X, and X4. FRAP, showing the
(E) covariation of X; and Xj; (F) covariation of X; and X3; and (G) covariation of X; and X4. DPPH,
showing the (H) covariation of X; and Xj5; (I) covariation of X and X3; (J) covariation of X; and X4;
(K) covariation of X, and X3; and (L) covariation of X, and X4. AAC, showing the (M) covariation of
Xl and X3.

Table 4. Maximum predicted responses and optimum extraction conditions for the dependent

variables.
Independent Variables )
Parameters Rys (mL/g) Desirability > PWise
C (%) (X1) L/S(Xn; 8 T (°C) (X3) t(min) (Xy) Regression
2
TPC (mg GAE/ 25 10 130 20 0.9292 76.19 +17.92
g dw)

FRAP (umol

AAE/g dw) 25 10 160 20 0.9907 1117.68 + 212.88

DPPH (pmol

AAE/g dw) 0 10 130 20 0.8728 799.03 £ 271.68
AAC (mg/g dw) 50 70 160 - 0.9318 15.28 +£2.23

3.1.2. Impact of Extraction Parameters on Assays Through Pareto Plot Analysis

In a Pareto plot (Figure 6), the orthogonal estimate typically refers to a statistical
method used to estimate the effects of different factors while minimizing the correlation
between them. This approach helps in identifying the most significant contributors to a
given outcome by ensuring that the estimates are independent of each other.

Orthog A Orthog B

Term Estimate Term Estimate
X1(0,100) -7.99* I X1(0,100) 124 -
X1#X1 -5.86* [ X1#X1 -104* [ \
X3(40,160) 5513 X1#X2 87.63* [l
X1%X4 s 1R x340,160) 7775 [l
X2#X2 4774 IR X2*X4 -75* R
X3*X3 391 X4*X4 -74.8* R
X2(10,70) 279 = X1%X3 -66.1 =
X2*X4 -2.59 X4(5,25) 50.66
X2*X3 -256 Wl X2(10,70) -505
X1%X2 1872 -
X4(5,25) 0647 |
Orthog C Orthog D
Term Estimate ] Term Estimate
T o A ———
X2(10,70) -69.7 - X1(0,100) 1.249*-
X3*X3 -67.3 1R X1#X1 -084 I i : ;
X1#X4 -57.5 1l X1*X3 050 Il
X1#X1 -53
X1#X2 4733
X2*X4 -47.1 R
X1#X3 -327
X2#X3 -304 W
X4(5,25) 2972 i
X2*X2 1792 ||

Figure 6. Pareto plots illustrating the significance of parameter estimates for the PLE technique
across TPC (A), FRAP (B), DPPH (C), and AAC (D), with a pink asterisk marking significant values
(p < 0.05). Positive estimates are shown in blue, while negative ones are represented in red.
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It seems that temperature (parameter X3) has a significantly positive effect on all
responses. Another factor that seems to be very important is the solvent composition (X),
where increasing the percentage of ethanol has a negative effect on all responses except
ascorbic acid, where it has a positive effect. It is worth noting that the extraction duration
(X4) does not significantly affect any of the responses, but there is a trend where increased
extraction times positively affect all responses.

3.2. Principal Component Analysis (PCA) and Multivariate Component Analysis (MCA)

The interactions between assays and extraction conditions were investigated through
correlation analyses, which included PCA and MCA, as illustrated in Figure 7 and de-
scribed in Table 5, respectively. The correlation analyses were conducted to ascertain the
relationships between the variables and TPC, FRAP, DPPH, and AAC within the context
of PCA. The chart demonstrates that PC1 and PC2 each contributed 67.6% and 24.9% of
the variance, respectively, accounting for 92.5% of the variance. The analysis was deemed
to be significantly influenced by the independent variables. The graph demonstrated that
TPC, FRAP, DPPH, and extraction temperature and duration (X3 and X4) were positively
correlated within both components and were represented in close proximity. AAC was
considerably improved by the increased concentration of ethanol (X;) and liquid-to-solid
ratio (X3), which explains their strong correlation. Their combined impact on extraction
parameters was comparable. Conversely, the favorable placement of AAC in PC2, which
is situated at a significant distance from the other variables, may indicate a diminished
relationship between them. Previous research has suggested a positive correlation between
an increase in ethanol concentration and AAC recovery [25].

AAC

1.0

0.5

PC2 (24.9 %)
o

-0.5

-1.0

-1.0 -0.5 0 0.5 1.0
PC1 (67.6 %)

Figure 7. PCA for the measured variables. Each X variable is presented with a blue color.
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Table 5. Multivariate correlation analysis of measured variables.

Responses TPC FRAP DPPH AAC
TPC - 0.7796 0.9129 —0.0738
FRAP - 0.8549 —0.0139
DPPH - —0.0722
AAC -

In addition, the MCA provides further insights into the interrelationships between
variables. The primary benefit of this approach is its ability to determine the degree of posi-
tive or negative correlation between the variables under investigation. Table 5 delineates
the results of this investigation. The pattern of robust positive correlations (>0.77) between
antioxidant assays and total phenolic content (TPC) was previously substantiated [26]. Ulti-
mately, the negative correlation between ascorbic acid (AAC) and all other responses (TPC,
FRAP, and DPPH) is highly emphasized. Nevertheless, it is particularly noteworthy that
molecules exhibiting considerable antioxidant activity demonstrate a negative correlation
with antioxidant assays.

3.3. Partial Least Squares (PLS) Analysis

The PLS model was employed to assess the influence of the extraction condition
parameters (X;, X, X3, and Xy). Figure 8 illustrates the prediction profiler alongside a
desirability function that features extrapolation control and includes a variable importance
plot (VIP). The extraction of bioactive compounds is significantly influenced by various
factors, with temperature, solvent composition, and extraction duration being the most
critical [27]. Initially, it is important to note that the extraction process can be complicated by
the differing solubility and polarity of polyphenols [28]. Concerning the PLE technique, it
is evident that the X parameter exhibited the most statistically significant impact (p < 0.05)
compared to other parameters in the extraction process, as demonstrated by the Variance
Importance Plot (VIP) presented in Figure 8B. The observations previously noted from
the 3D models of the response surface were corroborated in Figure 8A, indicating that the
optimal concentration was 25% v/v aqueous ethanol, a liquid-to-solid ratio of 10 mL/g,
and the optimal temperature was 160 °C. The high efficiency observed at 160 °C is likely
due to the enhanced solubility of polyphenols and increased solvent penetration into
plant material. Elevated temperatures reduce surface tension, improving mass transfer
and extraction yield. Concerning the duration of extraction, it appeared to exert the least
significant influence on the process; consequently, the longest duration was favored, as
it favored AAC recovery. The extraction process was not significantly influenced by the
temperature or extraction duration; nevertheless, elevated temperatures coupled with long
extraction times were favored. The solute-matrix interaction can be significantly reduced
by the PLE technique, which is primarily due to the influence of van der Waals forces
or hydrogen bonds, particularly in the presence of elevated temperature and pressure.
This reduces energy demands, improves the efficacy of solute molecular extraction, and
decreases the viscosity of the solvent. This reduces the solvent’s resistance to the matrix,
thereby facilitating its diffusion into the sample [29]. The model exhibited a prolonged
extraction duration, as prior research has substantiated the effectiveness of both brief [30]
and prolonged [28] intervals. While elevated temperatures facilitate the extraction of
bioactive compounds by enhancing their solubility in other techniques, like stirring [31],
it is important to note that many thermolabile compounds may experience degradation
under these conditions [32].
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Figure 8. Plot (A) shows the optimization of the PLE technique for rosemary extracts through the
partial least squares (PLS) prediction profiler and a desirability function with extrapolation control.
Plot (B) shows the Variable Importance Plot (VIP) graph, showing the VIP values for each predictor
variable in the PLE technique, with a red dashed line marking the 0.8 significance level.

Table 6 shows the values of TPC, FRAP, DPPH, and AAC of the optimal extract. The
results of the present study are worth comparing with those of our previous work, where
four different extraction techniques from rosemary leaves were studied, namely stirring,
pulsed electric field (PEF)-assisted extraction, and ultrasound probe- and ultrasound bath-
assisted extraction [31]. It is noteworthy that in that work, the highest TPC was given by
stirring, and yet in the present work, PLE gave ~320% higher yield. A similar pattern was
observed for FRAP, where PLE resulted in a ~455% higher yield. The highest value of DPPH
was observed in ultrasound bath-assisted extraction; however, PLE gave a ~516% greater
result. Regarding AAC, ultrasound probe-assisted extraction was the best value, and PLE
only gave a ~10% greater performance than PEF-assisted extraction. Unlike conventional
methods, PLE offers improved recovery of bioactive compounds in a shorter time frame,
reducing energy consumption and solvent waste. A comparison with traditional extraction
methods, such as ultrasound-assisted extraction (UAE), exhibits lower polyphenol recovery
compared to PLE. Some other researchers also studied the TPC and antioxidant capacity of
rosemary leaves. More specifically, Hashem Hashempur et al. [33] utilized a deep eutectic
solvent, consisting of ammonium acetate and lactic acid, along with ultrasound, and their
TPC was 334% lower than our result. Kabubii et al. [34] also determined a TPC in crude
extracts, which was ~52% lower than ours. In general, PLE treatment of rosemary leaves
seems to lead to higher yields than other extraction techniques.
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Table 6. The partial least squares (PLS) prediction profiler determined the maximum desirability for
all variables under optimal extraction condition for PLE technique.

Independent Variables Partial Least . ) |
. .1 Xperimenta
Parameters C (%) Rys (mL/g) T (°0O) t (min) Desirability S;l{uares (PLS) pValues
egression
(X1) (X2) (X3) (X4)
TPC (mg GAE/ 80.29 78.23 + 0.63
g dw)
FRAP (umol 25 10 160 25 0.8429
AAE/g dw) 1118.22 914.82 £ 1.53
DPPH (umol
AAE/g dw) 817.20 878.7 + 6.34
AAC (mg/g dw) 10.20 17.83 £ 0.25

The experimental results and PLS model predictions exhibit outstanding concordance,
as evidenced by the high correlation coefficient of 0.981 and substantial R? value of 0.962.
Furthermore, the p-value being less than 0.0001 indicates that the deviations between the
actual and predicted values are statistically insignificant.

Table 7 presents a list of the individual polyphenols identified in the optimal extract
by HPLC-DAD, while Table 8 provides information on the equations of the standard
compounds. The compound with the highest concentration is hesperidin, followed by
rosmarinic acid and Quercetin 3-D-galactoside. In our previous work, the compound with
the highest concentration was rosmarinic acid in all cases, and here it is worth noting how
the parameters applied by each different technique during the extraction process greatly
affect the profile of the final extracts obtained. However, the same compounds were also
identified in this work. Other researchers, like Xie et al. [35], Sammer and Samarrai [36],
Baptista et al. [37], and Miljanovi¢ et al. [38], determined compounds like hesperidin,
apigenin and its derivatives, rosmarinic acid, and carnosic acid in rosemary leaves.

Table 7. Optimal extraction conditions for polyphenolic compounds using the PLE technique of
rosemary extraction.

Polyphenolic Compound Concentration (ug/g dw)
Catechin 239 £11
Quercetin 3-D-galactoside 1114 + 45
Luteolin-7-glucoside 236 £13
Kaempferol-3-glucoside 442 + 19
Hesperidin 3711 £ 96
Rosmarinic acid 1570 4 58
Apigenin 245+ 7
Kaempferol 72£2
Rosmanol 731 £27
Carnosic acid 889 & 32
Total identified 9250 £ 311

Values represent the mean of triplicate determinations + standard deviation.

Table 8. Equation of calibration curves for each compound identified through HPLC-DAD.

Polyphenolic Compounds

Retention Time
. . 2
(Standards) Equation (Linear) R

UVmax (nm)

(min)
Catechin y =11,920.78x — 128.19 0.997 20.933 278
Quercetin 3-D-galactoside y =41,489.69x — 35,577.55 0.993 34.598 257
Luteolin-7-glucoside y =34,875.94x — 16,827.36 0.999 35.949 347
Kaempferol-3-glucoside y =50,916.85x — 42,398.83 0.996 38.724 265
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Table 8. Cont.

Polyphenolic Compounds Retention Time

Equation (Linear) R? UVmax (nm)

(Standards) (min)
Hesperidin y =-30,502.75x — 30,502.75 0.995 40.249 283
Rosmarinic acid y =50,281.27x — 113,633.31 0.995 41.644 329
Apigenin y =95,483.52x — 5214.26 0.998 55.860 227
Kaempferol y =93,385.02x — 18,613.03 0.999 56.883 265
Rosmanol y =5509.45x — 10,899.23 0.994 65.924 288
Carnosic acid y = 8883.45x + 101,483.30 0.992 77.870 284

3.4. Performance of Machine Learning Regressors on the Original Data

In the following sections, we focus on reporting the key findings regarding the perfor-
mance of the ML regressors, with an emphasis on practical insights relevant to extraction
optimization. The detailed technical analysis is intentionally limited, in line with the overall
scope of this experimental study.

From Figure 9, it can be observed that all regression models achieved relatively good
performance on the training dataset. In particular, RF, GB, and AdaBoost demonstrated
very high training accuracy, with GB achieving an R? of 1.00 and RF and AdaBoost closely
following with R? values of 0.87 and 0.99, respectively. These results indicate that ensemble-
based models fit the training data extremely well, though they may risk overfitting.
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Figure 9. Histograms of the performance of our six ML models on our original training set.

In contrast, Figure 10 reveals substantial performance degradation across all models
when evaluated on the testing dataset. The Linear and Ridge regressors showed moder-
ate predictive ability with test R? scores around —3.29 and —1.31, respectively. Among
all models, RF achieved the best test performance, with lower error scores, 0.81 MAE,
0.91 MSE, 0.91 RMSE, and a test R? of —1.66, outperforming the other regressors under the
given constraints.
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Figure 10. Histograms of the performance of our six ML models on our original test set.

Despite the overall lower performance on test data, RF was selected as the most effi-
cient regressor due to its balance between training fit and test error, as well as its suitability
for data generation in the augmentation phase that followed. Based on this model, synthetic
data were produced and evaluated in combination with the original dataset.

3.5. Performance of Machine Learning Regressors on the Synthetic Dataset

Our next step was to compare our regressors based on our synthetic data. A synthetic
dataset, consisting of 100 samples, was generated using RF-based predictions with Gaussian
noise added to introduce controlled variability. This synthetic dataset maintained the same
feature distribution as the original dataset to ensure comparability.

Ensemble-based models demonstrated high performance compared to linear models.
Specifically, the GB regressor achieved the highest training accuracy with an R? of 1.00,
followed by the RF regressor with an R? of 0.98 and AdaBoost with an R? of 0.95. These
models also recorded notably low error metrics, indicating an almost perfect fit to the
training data. In contrast, Linear Regression, Ridge Regression, and Lasso Regression
yielded identical training performance, each reaching an R? of 0.71, which indicates a
moderate capacity to model the underlying relationships within the synthetic data. Their
MAE and RMSE values were also consistently higher than those of the ensemble models
(Figure 11).

For the test set, the GB-based and RF-based regressors again outperformed the other
models, with R? values of 0.93 and 0.91 respectively, along with the lowest RMSE scores,
suggesting strong predictive ability on unseen data. The AdaBoost regressor also performed
well with an R? of 0.88, although with slightly higher error values. Linear models showed
consistent but comparatively limited predictive performance on the test data, with all three
achieving an R? of 0.70 and similar error magnitudes (Figure 12).
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Figure 11. Histograms of the performance of our six ML models on our synthetic training set.
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Figure 12. Histograms of the performance of our six ML models on our synthetic test set.

3.6. Performance of Machine Learning Regressors on the Mixed Dataset

To further evaluate the model performance in a data-rich scenario, we trained and
tested our regressors using a mixed dataset consisting of both real experimental samples
from our initial dataset and synthetically generated data.

The model training results showed clear performance differentiation among algorithm
families. Ensemble models again demonstrated high accuracy. The GB-based regressor
achieved the highest training performance, with an R? of 1.00 and near-zero error values
across all metrics: MAE = 0.03, MSE = 0.001, and RMSE = 0.04. The RF-based regressor
followed with an R? of 0.95 and comparatively low error values: MAE = 0.13, MSE = 0.05,
and RMSE = 0.22. The AdaBoost regressor also performed well during training, with
an R? of 0.93. In contrast, the linear models—Linear Regression, Ridge Regression, and
Lasso Regression—yielded nearly identical training outcomes, each with an R? of 0.61 and
RMSE of approximately 0.39 to 0.40. These results indicate that the linear models were only
moderately successful in capturing the increased variance introduced through the mixed
data (Figure 13).
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Figure 13. Histograms of the performance of our six ML models on our mixed training set.
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The testing performance followed a similar trend but revealed more nuanced differ-
ences in generalization capability. The GB-based regressor achieved a test R? of 0.76, while
the RF-based regressor reached 0.84, indicating that both models retained strong general-
ization on unseen data. The AdaBoost regressor also maintained respectable performance
with a test R? of 0.74. Notably, the GB and RF regressors both achieved low RMSE values
on the test set of 0.16 and 0.21, respectively, underscoring their effectiveness in handling
diverse and noise-augmented data distributions. The linear models again exhibited limited
predictive strength on the test set, with all three achieving an R? from 0.59 to 0.60 and
RMSE values ranging from 0.28 to 0.29 (Figure 14).
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Figure 14. Histograms of the performance of our six ML models on our mixed test set.

3.7. Cross-Evaluation of RF Models on Real, Synthetic, and Mixed Data

Based on the previous results, our best regressor is the RF mixed-based regressor
which was developed based on the original and synthetic data. To further examine the
robustness and generalization capabilities of the RF mixture-based model, we conducted a
cross-dataset evaluation in which models trained on one dataset were tested on different
datasets. The training datasets included the original experimental data, a synthetically
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generated dataset, and a mixed dataset combining both sources. Each model’s predictive
accuracy was then assessed across all three datasets using standard performance metrics.

The variability introduced by the Gaussian noise in synthetic data was controlled
and systematically evaluated, as described in Section 2.13, to ensure that the augmented
dataset preserved meaningful variance while remaining consistent with the statistical
characteristics of the original data.

When the model trained on the original dataset was tested on the synthetic dataset,
it produced a test MAE of 0.60 and a RMSE of 0.80, with an R? of 0.48. This indicated
moderate generalization capacity to the artificial data. Slightly better performance was
observed when the same model was evaluated on the mixed dataset, yielding a lower test
RMSE of 0.62 and a marginally improved R? of 0.43.

In contrast, the model trained solely on the synthetic data demonstrated poor per-
formance on the original data, with an R? of only 0.04 and an RMSE of 0.44, suggesting
a substantial gap in representational fidelity between the synthetic and real data distri-
butions. However, when the same synthetically trained model was tested on the mixed
dataset, performance improved drastically, achieving an R? of 0.86 and RMSE of 0.31. This
highlights that the synthetic model generalized well within synthetic-heavy contexts but
struggled with real experimental variability.

The model trained on the mixed dataset exhibited the strongest overall generalization.
It achieved a low RMSE of 0.27 and a high R? of 0.63 when tested on the original data. Most
notably, it yielded the best cross-dataset performance when tested on the synthetic dataset,
with an RMSE of 0.38 and an R? of 0.88. With our new RF mixed regressor we had a 20%
increase in the performance, which is satisfactory due to the lack of samples (Figure 15).

mmm Test MAE 0.86
mmm Test MSE
0.8 080 = Test RMSE
mmm Test R2
0.64| be2 063
0.60

0.6
9 0.48 0.47
8 043 0.44
7]

0.39)
04 0.36 .
0.31
0.27] 0.27
0.2 0.23
0.2 0.20
0.15
0.11
0.08|
0.04 I I
0.0 ||
N § & .(\q} . & .(\'b\ N
A@*‘\e /®+ S & s® A§®
A2 & o «© N4 2
@ &S & N & &
. Q\Q 0‘\ & *Q @\ ¥
& S 2 «° <~
& N & & € &

Figure 15. Cross-dataset evaluation of the RF regression model trained on the original, synthetic,
and mixed datasets. Each group of bars represents the performance metrics MAE, MSE, RMSE, and
R? obtained when the model trained on one dataset was tested on another. Results highlight the
generalization ability of each training regime across data domains. Models trained on the mixed
dataset showed superior cross-domain performance, particularly when evaluated on both the original
and synthetic test sets.
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These results validate our objective of generating new samples, demonstrating that
synthetic data can enhance the development of robust machine learning regressors for
accurately predicting total phenolic content.

3.8. Feature Importance Analysis Across RF-Based Models

To investigate how the model training data influences the learned relationships be-
tween extraction parameters and antioxidant responses, feature importance scores were
extracted from each RF model trained on the original, synthetic, and mixed datasets. These
scores were derived from the individual estimators trained for each target (TPC, FRAP,
DPPH, and AAC), and visualized side by side (Figure 16).
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Figure 16. Feature importance scores from RF models trained on the (left) original, (middle) synthetic,
and (right) mixed datasets. Importance scores reflect each feature’s contribution to predicting
antioxidant targets (TPC, FRAP, DPPH, and AAC). Feature influence varies significantly depending
on the dataset used for training.

In the model trained on the original dataset, the most influential feature overall was
temperature (T, °C), particularly for FRAP and TPC, where it accounted for over 35-40%
of total importance. This aligns with experimental expectations, as thermal energy often
enhances compound release. Ry /5 and C (%) also showed moderate contributions, while
extraction time had the lowest influence across all targets.

In contrast, the model trained exclusively on synthetic data placed much greater
emphasis on C (%), especially for FRAP (0.78) and TPC (0.72). This shift likely reflects the
statistical bias introduced during synthetic generation, where concentration appeared as a
dominant predictor due to its nonlinear interactions captured by RF. Meanwhile, T (°C)
and t (min) showed very low influence (<0.10) across all targets.

In the mixed model, a balanced importance distribution emerged. C (%) again held
strong predictive power for TPC and FRAP (~0.66), but now Ry ;5 and T (°C) also gained rel-
evance, particularly for AAC (0.57) and DPPH (0.39), indicating a more nuanced learning of
underlying relationships. Time remained the least influential, consistent across all models.

This comparison reveals how the training dataset affects not only model accuracy but
also which experimental parameters are deemed most critical. Mixed training produces
models that are both accurate and biologically plausible, while synthetic-only training can
exaggerate the significance of specific variables.

However, it should be noted that the feature importance results presented here are
influenced by the synthetic component of the mixed dataset. As such, there is a potential
risk of bias in the interpretation of variable importance, particularly for features that may
exhibit amplified or diminished effects in synthetic samples. This limitation highlights
the need for cautious interpretation and suggests that future studies should validate these
findings using larger experimental datasets.
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RF Synthetic RF Original
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3.9. Actual vs. Predicted Performance Across RF-Based Models

To visually assess prediction accuracy and generalization, scatter plots comparing

actual vs. predicted values were generated for all four antioxidant targets, TPC, FRAP,

DPPH, and AAC, using the RF-based models trained on the original, synthetic, and mixed

datasets (Figure 17). All values were plotted in standardized, z-score space, and each

subplot includes the R? as a quantitative measure of fit.

Actual

FRAP

Actual

DPPH

Actual

Actual

Figure 17. Predicted vs. actual standardized values for antioxidant targets using RF-based models

trained on the original (top row), synthetic (middle row), and mixed (bottom row) datasets. Diagonal

red dashed lines represent the ideal 1:1 relationship. R? values quantify model fit for each case.

The model trained exclusively on the original dataset exhibited poor predictive per-

formance across all targets. R? values were consistently negative, indicating substantial

overfitting and a lack of generalization to unseen data. DPPH with R?> = —3.11 and AAC

with R? = —1.40 showed a complete breakdown of predictive capacity, while even the best-
performing targets, TPC with R? = —1.16 and FRAP with R? = —0.97, failed to demonstrate

any meaningful alignment between predicted and actual values.

In contrast, the model trained on synthetic data produced improved results, with three

of the four targets yielding positive R? values. DPPH was best predicted with R? = 0.86,
followed by TPC with R? = 0.51 and FRAP with R? = 0.17. Nevertheless, AAC continued to
exhibit poor predictability, with an R? of —1.38. These results suggest that while synthetic

data can partially capture the data structure of some antioxidant properties, it remains

insufficient for accurately modeling targets like AAC without real data inputs.

The RF-based model trained on the mixed dataset, which combined both the original

and synthetic samples, delivered the most balanced and reliable performance. TPC and
DPPH both achieved strong fits with R? values of 0.88, while FRAP also performed well
with R? = 0.70. AAC, however, remained a challenging target, with only a marginally

positive R? of 0.07. The mixed data approach thus demonstrated the strongest generaliza-

tion overall, effectively integrating the empirical variability of real measurements with the

expanded coverage of synthetically generated patterns.
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These results highlight that while the RF-based mixed model improved the predictive
alignment for TPC and DPPH, challenges remain in accurately modeling AAC, which may
reflect inherent biological variability or limited representation in the training data.

3.10. Partial Dependence Analysis of RF-Based Models

To better interpret how individual input features influenced the model predictions,
partial dependence plots (PDPs) were generated for each antioxidant response (TPC, FRAP,
DPPH, and AAC) across the four predictors: concentration of solvent (C, %), solvent
ratio (R /s, mL/g), temperature (T, °C), and extraction time (t, min). The PDPs visualize
the marginal effect of each predictor after averaging out the influence of other variables,
offering insight into the modeled relationships learned by RF models trained on different
datasets (original, synthetic, and mixed).

For the model trained on the original dataset, PDPs (Figure 18) revealed generally
smooth but shallow response curves, indicating low model sensitivity to input variation.
The results of C (%) and Ry ;5 showed modest negative slopes for most targets, particularly
TPC and FRAP, suggesting that higher solvent concentrations and solvent ratios tended to
reduce predicted antioxidant values. Temperature exhibited a more pronounced positive
relationship with TPC and FRAP, while time (t) influenced predictions positively in nearly
all cases, though effects on AAC appeared erratic. These modest trends are consistent
with the limited representational power of the model trained on the small original dataset,
which likely restricted the learned functional relationships to low-variance approximations.
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Figure 18. Partial dependence plots showing the marginal effect of each feature on antioxidant

predictions from the RF original model.

In contrast, the synthetic-trained model (Figure 19) exhibited steeper and more struc-
tured response patterns across nearly all features. For example, C (%) and Ry /s displayed
strong nonlinear declines for TPC, FRAP, and DPPH, whereas temperature exhibited a clear
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sigmoidal increase, particularly evident for DPPH. The time variable contributed positively
to predictions, with increasing slopes across most plots. These sharper transitions suggest
that the synthetic model was able to capture more defined patterns between variables,
although some over-smoothing and artifacts were apparent in less reliable targets such as
AAC, where PDP curves were more erratic.
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Figure 19. Partial dependence plots showing the marginal effect of each feature on antioxidant

predictions from the RF synthetic model.

The model trained on the mixed dataset (Figure 20) presented the most coherent
and biologically plausible trends. The PDPs across targets demonstrated well-defined,
monotonic relationships. C (%) consistently showed negative associations with antioxidant
capacity, while Ry /5 exhibited declining effects, particularly for FRAP and TPC. Tempera-
ture maintained a strong positive relationship, especially for DPPH and FRAP. Extraction
time (t) showed clear and mostly monotonic increases in partial dependence, indicating
its significant influence on yield-related outcomes. Compared to the other models, the
mixed-trained model exhibited more stable and interpretable PDPs, which is consistent
with its higher predictive accuracy and generalization capacity.
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Figure 20. Partial dependence plots showing the marginal effect of each feature on antioxidant

predictions from the RF mixed model.

Overall, the partial dependence analysis reinforces the conclusion that models trained
on a mixture of real and synthetic data achieve superior learning of underlying relation-
ships between process variables and antioxidant outcomes. The synthetic model was able
to capture sharp feature effects, but only the mixed model exhibited smooth, consistent
trends aligned with expected extraction behavior. These findings support the inclusion
of controlled synthetic data to augment and stabilize learning in low-sample experimen-
tal contexts.

Despite these encouraging results, several limitations remain. The relatively small size
of the original dataset constrains the ability of the models to fully capture the underlying
variability of the extraction process. The current synthetic data generation approach, while
effective, is based on RF predictions with Gaussian noise, which may not fully reflect the
true complexity of the system. Future work should explore more advanced generative
modeling techniques, such as Variational Autoencoders or Generative Adversarial Net-
works, to enhance the diversity and realism of synthetic data. Additionally, expanding the
experimental dataset and incorporating additional physicochemical or spectral variables
could further improve model accuracy and generalization, supporting more robust and
transferable Al-assisted extraction models.

3.11. Model Prediction Accuracy at Optimal Conditions

To assess how accurately RF models predicted antioxidant outcomes under optimal
extraction conditions, we compared model predictions against experimentally reported
values for four antioxidant metrics: TPC, FRAP, DPPH, and AAC. Figure 21 presents a
comparative bar plot showing the predicted values from each model along with their
absolute errors, visualized as value =+ error for each target.
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Figure 21. Comparison of predicted versus reported antioxidant values under optimal extraction
conditions using RF-based models trained on the original, synthetic, and mixed datasets. Bars
represent predicted values for TPC, FRAP, DPPH, and AAC, with numeric labels showing predicted
value + absolute error relative to the experimentally reported values. The mixed model produced
the most accurate predictions overall, with reduced errors across most targets.

The model trained solely on the original data exhibited the highest prediction error
across all targets. For TPC, the model predicted 55.9 compared to the reported 78.2, yielding
an absolute error of 22.4. Similarly, FRAP and DPPH were underestimated by 768.3 and
480.7, corresponding to absolute errors of 146.5 and 398.0, respectively. AAC was also
significantly underestimated with 9.9, with an error of 7.9. These results highlight the
limitations of training exclusively on small, original datasets, especially when attempting
to extrapolate to optimal regions.

The model trained on the synthetic data demonstrated improved performance across
most targets. TPC was predicted at 60.4 with error = 17.8, while FRAP reached 832.8 with
error = 82.0, and DPPH was predicted at 463.3 with error = 415.4. Although the DPPH
prediction remained notably poor, AAC predictions were marginally closer to the reported
value, with a predicted value of 9.1 with an error = 8.8.

The model trained on the mixed dataset yielded the most accurate and consistent
predictions across all targets. TPC was predicted at 64.0 with error = 14.2, and FRAP at
865.2 with error = 49.6, showing strong alignment with the experimental values. DPPH
prediction also improved, with a value of 541.8 and an error of 336.9. AAC was predicted
at 9.2 with an error of 8.7. While some targets, particularly DPPH and AAC, remained
challenging to predict accurately, the mixed model consistently outperformed the other
models in terms of proximity to the experimental data.

In summary, these results confirm that training on a mixed dataset comprising both
real and synthetic samples enhances the model’s ability to generalize and make reliable
predictions under optimal conditions. The mixed model showed the lowest aggregate
absolute error and the closest alignment to the reported values across all antioxidant targets.
Models trained solely on synthetic data exhibited poor generalization to real samples,
underscoring the need for empirical grounding. In addition, predictions for specific targets
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such as AAC and DPPH remained less accurate, likely due to high intrinsic variability or
limited representation within the training data.

4. Conclusions

This study successfully optimized the extraction conditions for rosemary leaves using
PLE, demonstrating its potential as an efficient and environmentally friendly technique
for recovering bioactive compounds. The optimized PLE parameters yielded extracts rich
in antioxidants, polyphenols, and ascorbic acid, highlighting the suitability of PLE for
such applications.

In parallel, ML approaches were applied to model and predict antioxidant responses
based on extraction parameters. While the RF-based mixed model showed improved
generalization compared to models trained solely on experimental or synthetic data, the
small sample size and reliance on data augmentation introduce limitations to the robustness
of the conclusions. In particular, feature importance results may be influenced by synthetic
data, and test set performance indicates that further model refinement is needed to ensure
reliable predictions in real-world scenarios.

Future research should focus on expanding experimental datasets to improve model
training and validation, applying advanced generative methods for more realistic data
augmentation, and conducting real-world testing of model predictions. Additionally,
evaluating model transferability across different plant matrices and extraction systems, as
well as validating the process at industrial scale, will be important steps toward broader
practical implementation of Al-assisted extraction optimization.
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Abstract: Hydrogels have immense potential in soft electronics due to their similarity
to biological tissues. However, for applications in fields like tissue engineering and
wearable electronics, hydrogels must obtain electrical conductivity, stretchability, and
implantability. This article explores recent advancements in the development of electri-
cally conductive hydrogel composites with high conductivity, low Young’s modulus, and
remarkable stretchability. By incorporating conductive particles into hydrogels, such as
poly(3,4-ethylenedioxythiophene)/poly (styrenesulfonate) (PEDOT/PSS) researchers have
enhanced their conductivity. This study presents a one-pot synthesis method for creating
electrically conductive hydrogel composites by combining PEDOT /PSS with alginate. The
hydrogel reveals changes in chemical composition upon treatment with dimethyl sulfoxide
(DMSO). Additionally, surface morphology analysis via Field Emission Scanning Electron
Microscopy (FESEM) and Atomic Force Microscopy (AFM) demonstrate the impact of
DMSO treatment on PEDOT/PSS/alginate films. Furthermore, electrical conductivity mea-
surements highlighted the effectiveness of the conductive hydrogels in Electromyography
(EMG) and human motion detection. This study offers insights into the fabrication and
characterization of stretchable, conductive hydrogels, advancing their potential for various
soft sensing biomedical applications. The optimized PDOT /PSS/alginate composite under
dry condition shows a conductivity of 0.098 S/cm and can be stretched without significant
loss in conductivity or mechanical stability. This one-pot method provides a simple and
effective way to improve the properties of conductive hydrogel-based sensors.

Keywords: biomaterials; conductive hydrogel; PEDOT /PSS; sensors and electronics

1. Introduction

Advancements in wearable bioelectronics are facilitating the shift towards patient-
centric, personalized healthcare [1,2]. Traditional electronic systems are composed of rigid
materials, such as metals and silicon, in a two-dimensional (2D) plane and are not suitable
for interfacing with the human body [1,3-8]. Wearable bioelectronics adapt to the soft,
curvilinear surfaces of the body in order to provide noninvasive, real-time monitoring of
a patient’s physiological state, including their heart rate, respiration, and blood oxygen
levels, for in situ clinical monitoring and personal health management [2,9,10].

There has been significant progress in the development of stretchable conductive
materials for point-of-care health monitoring through creative, structural organization
and/or novel material selection [11-14]. The first strategy utilizes deterministic geometrics
(e.g., wave/wrinkle, kirigami tessellations, cracks) to allow otherwise rigid materials
to deform out of plane in response to stress [15-17]. The second strategy swaps rigid
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substrate materials for stretchable, conductive materials whose conformal properties are
independent of their geometry [18-20]. In combination, these strategies provide options
that significantly expand the interfacing capabilities of wearable bioelectronics with the
human body [18,21,22].

Poly(3,4-ethylenedioxythiophene)/poly(styrene sulfonate) (PEDOT/PSS) is a highly
promising conductive polymer for use in wearable sensing systems [23-25]. PEDOT /PSS
boasts tunable conductivity, good transmittance, and excellent thermal stability, in addition
to being compatible with a wide range of production processes [24-28]. Furthermore, the
inherent biocompatibility of the polymer allows it to readily interface with the human
body and sense signals such as body temperature, humidity, and strain [27,29-31]. Despite
these advantages, native PEDOT /PSS has very limited stretchability due to its rigid conju-
gated backbone and strong interchain interactions that can lead to crack formation under
strain [25,27]. To address this key limitation, it is necessary to incorporate other materials,
such as elastomers, plasticizers, and hydrogels, that provide free volume for chain stretch-
ing while also enhancing the crystallinity of PEDOT regions within PEDOT /PSS substrates
to compensate for potential reductions in conductivity [31].

Here, we present a one-pot method for improving the stretchability and conductivity
of hydrogel films composed of PEDOT /PSS and sodium alginate. Sodium alginate is
a naturally derived polysaccharide that forms a highly tunable, stretchable hydrogel in
the presence of multivalent cations—most commonly calcium. When combined with
PEDOT/PSS, the resulting hydrogel films retain the inherent stretchability of alginate
while also gaining the conductive properties native to PEDOT /PSS substrates. Further
modification of conductive hydrogel films via exposure to dimethyl sulfoxide (DMSO)
removes insulative PSS groups, strengthening interchain interactions in PEDOT-rich regions
of the substrate and significantly improving the conductivity of the overall films [25]. This
simple method allows for the fabrication of highly conductive and stretchable films that
can be readily incorporated into wearable bioelectronic platforms.

2. Materials and Methods
2.1. Materials

PEDOT/PSS aqueous solution (PH1000, Heraeus Clevios) was purchased from Hanau,
Hessen, Germany. Dimethyl sulfoxide (DMSO) (purity > 98%), D-(+)-gluconic acid
d-lactone (GDL), and calcium carbonate (CaCOs3) were obtained from Sigma Aldrich
(Burlington, MA, USA). Sodium alginate (Na-ALG, viscosity 80-120 cp) was purchased
from FUJIFILM Wako Pure Chemical Corporation (Osaka, Japan). All chemicals were
purchased and used without further purification. All aqueous solutions were prepared
using deionized water (DI) unless otherwise stated.

2.2. PEDOT/ALG Hydrogel Film Preparation

In order to make hydrogels with various mechanical and electrical properties, three
different PEDOT /PSS/ALG precursor solutions were prepared at room temperature. First,
alginate (ALG) 10% was made by vigorously mixing 4 g of sodium alginate in 40 mL
deionized water using a magnetic stirrer (Corning™, Corning, NY, USA) until it completely
dissolved. This alginate was used in all samples, and the remaining amount was kept
in the fridge at 4 degrees Celsius. To prepare PEDOT /PSS films, we added the pristine
aqueous PEDOT /PSS solution into the alginate precursor solution. To investigate the
properties of the whole range of PEDOT/PSS/ALG compositions, we prepared three
different concentrations of alginate. We made PEDOT/PSS/ALG 1:1 by mixing equal
volumes of 1.3 wt% PEDOT /PSS and 1.3 wt% alginate, PEDOT/PSS/ALG 1:3 by mixing
equal volumes of 1.3 wt% PEDOT /PSS and 3.9 wt% alginate, and PEDOT /PSS/ALG 3:1
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by mixing three times the volume of 1.3 wt% PEDOT /PSS with respect to that of 1.3 wt%
alginate. We then added 16 mg/mL gluconic acid and 4.5 mg/mL calcium carbonate
to accelerate the gelation of films. The solutions were then strongly mixed using vortex.
Stirring the solutions between each step assured proper bonding. The precursor solutions
were then transferred into a substrate, usually petri dishes, and were kept under fume
hood for minimum 12 h at room temperature. The petri dishes were left open to accelerate
the drying sequence. Hydrogel films made with this method were referred to as 3:1, 1:1, or
1:3 PEDOT/ALG. Figure 1a depicts this procedure.

i)

PEDOT:PSS
7\/ ~ 12 hrs
Algmote -

- Control
— W/ DMSO

1000 1500 2000 2500 3000 3500 4000 7~ V-

Wavenumber (cm™)
Figure 1. (a) A schematic illustration of preparing PEDOT/ALG films. (b) FTIR spectra of
1:1 PEDOT/ALG films. Characteristic bands are shown by arrows. (c) Simple patterning of
1:1 PEDOT/ALG films in various shapes. Scale bar: 1 cm.

2.3. DMSO Post-Treatment

In order to form a conductive and mechanically stable film using secondary doping
method, DMSO > 99% was poured on the dried 1:3, 1:1 and 3:1 PEDOT/PSS, and the
thoroughly submerged films, together with the petri dishes, were left at room temperature
for 8 h after sealing the cap using parafilm to avoid the solution from evaporating. The
films then easily detached from the substrate and could be kept in DMSO for over two
months without any change in their mechanical and/or electrical properties for further
characterization and analysis.

2.4. Resistance Measurements

PEDOT/ALG films were cutinto 1 x 2 cm? rectangles and left to dry completely under
ambient conditions (~10 min). Copper wires were attached to each end of the rectangles
using conductive silver epoxy adhesive (8331D, MG Chemicals (Ontario, Canada)). A low
resistivity meter (Loresta-GP MCP-T600, Mitsubishi (Tokyo, Japan)) was used to measure
the electrical conductivity of the films with the probes attached to the copper wires.
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2.5. Dynamic Mechanical Analysis (DMA)

Uniform rectangular sections of 1:3, 1:1, and 3:1 PEDOT/ALG films were cut from
larger films for tensile testing. For each PEDOT/ALG ratio, two conditions were tested: a
control condition without DMSO treatment and an experimental condition with DMSO
treatment. Since the control films would disintegrate when in contact with water, they
were strained as dry films. The experimental samples were lightly dried using a del-
icate task wipe (Kimwipes, Kimtech™ (Busan, Republic of Korea)) before straining.
Stress/strain curves for each film were obtained using a DMA Q800 (TA Instruments
(Dallas, TX, USA)) equipped with a tensile clamp set to perform a force ramp at 0.1 N/min
until sample failure.

3. Results
3.1. Fourier-Transform Infrared Spectroscopy (FTIR)

Several methods, such as conductivity measurements, spectroscopy, microscopy, and
mechanical testing, may be used to examine the obtained films. Figure 1b shows the Fourier
Transform InfraRed (FTIR) spectra of 1:1 PEDOT/ALG as the control and 1:1 PEDOT/ALG
with DMSO treatment using a FTIR spectrometer (JASCO Inc., Jeddah, Saudi Arabia). As
well as the absorption bands at 1564 cm ™! for the C=C stretching in the thiophene ring, at
1270 and 1122 cm ™! for the vibrations of the fused dioxane ring, and at 862 cm~! for the
stretching of the C—S bond in the thiophene ring [8] associated with PEDOT /PSS in both
spectra, the absorption bands at 980, 2900 and 3000 confirm the presence of DMSO in films
after treatment with DMSO, while in the control sample, before adding DMSO, those peaks
disappeared. Based on the FTIR spectra, adding DMSO did not damage the PEDOT/ALG
chains, and it allowed the re-orientation of the carboxylate groups and maintained the
mechanical stability of the film [9].

3.2. PEDOT/ALG Film Patterning

The patterning of conductive hydrogels is an important step in making bioelectronics.
Due to their water content, it is challenging to pattern hydrogel-based films. Figure 1c
shows different pattering of our stretchable and conductive hydrogel films in different
shapes, including honeycomb, snowflake, and Christmas tree, to confirm the stability,
patternability, and homogeneity of the films, making them perfect options for use in a wide
spectrum of applications in flexible sensors and actuators [10]. These films are stable in
different media, and no change in their physical condition has been noticed in DI water,
PBS, and ethanol after 6 months.

3.3. Scanning Electron Microscopy (SEM)

To examine the surface morphology of the PEDOT/ALG films, Field Emission Scan-
ning Electron Microscope (FESEM, FEI Magellan 400 XHR Scanning Electron Microscope
(Hillsboro, Oregon)) images are used. Figure 2a shows the surface morphologies of all films
with different ratios of PEDOT to alginate and before and after being emerged in DMSO.
Calcium chloride (CaCl,) is used in control samples before tests to maintain consistent ionic
conditions and ensure that any observed effects in experimental samples are due to the
variable being tested, not the presence or absence of calcium, plus it helps with structural
stability. The control samples (before adding DMSO) show a homogeneous structure with
an irregular structure and variable pore size. On the other hand, FESEM pictures of the
films that were submerged in DMSO exhibit a uniform interconnected structure due to the
creation of long chains on the surface across the films. These long chains accelerate electron
transfer and, hence, increase the conductivity, which also have improves the mechanical
responses of these films [11]. Moving from one side to the other side for electrons via these
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fibrous chains is easier if there are more PEDOT /PSS nanoparticles in the material rather
than insulating polymers like hydrogels [12]. This belief is clearly validated in Figure 2a
through increasing the percentage of alginate in the film. Moreover, using 1:3 PEDOT/ALG
in control films demonstrates more nanoparticles than 1:1 and more than 3:1. This also has
been shown for the same films after treatment with DMSO overnight.

b Control w/ DMSO

Control

Figure 2. (a) SEM images of 1:3, 1:1, and 3:1 PEDOT/ALG films in CaCl, (control) and after they had
been emerged in DMSO. Samples were dried before we took the images. (b) Corresponding AFM
topography images. Scale bar: 10 um.

3.4. Atomic Force Microscopy (AFM)

Additionally, Figure 2b provides the corresponding AFM topography images of
PEDOT/PSS/ALG 1:3, 1:1, and 3:1 before and after submerging them in DMSO. The rough-
ness and height of the 1:3 PEDOT/PSS/ALG samples clearly show that the compositions
of the samples are different, and exposing the samples to DMSO creates stronger chains
and, therefore, non-uniform and more stable films [13]. Upon adding more PEDOT /PSS,
the roughness increases, as does the average height.

3.5. Resistance Measurements

The addition of PEDOT /PSS into alginate-based hydrogel films imparts the films
with conductive properties, enabling them to function as substrates for biosensing applica-
tions [14]. Upon the addition of PEDOT /PSS, a notable decrease in resistance was observed
in the control samples, corresponding to an increase in the film’s conductivity (Figure 3a).
Furthermore, it was observed that films with a higher ratio of PEDOT /PSS exhibited
increased conductivity, implying a correlation between the concentration of PEDOT /PSS
and the enhancement of electrical conductivity in the films.
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Figure 3. (a) Electrical conductivities of 1:3, 1:1, and 3:1 for PEDOT/ALG films in CaCl, (control)
and DMSO. (b) Resistance of 1:1 for PEDOT/ALG films in CaCl, (control) and DMSO over time.
(c,d) Mechanical properties of 1:3, 1:1, and 3:1 for PEDOT/ALG films in CaCl, (control) and DMSO.
(e,f) Mechanical properties of 1:1 for PEDOT/ALG films in CaCl, (control) and DMSO over time.
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Exposure to DMSO further increases the conductivity of the PEDOT/ALG films due
to improved chain alignment [15]. The conductivity of the films after DMSO exposure
increases by a single order of magnitude for 1:3 PEDOT/ALG, two orders of magnitude
for 1:1 PEDOT/ALG, and almost three orders of magnitude for 3:1 PEDOT/ALG. DMSO-
treated PEDOT/ALG films retain this improvement over the course of two weeks and
exhibit a similar slight increase in conductivity, corresponding to the decrease in resistance,
as shown in Figure 3b, as that for the non-treated films. The conductivity values were
measured as 0.055 S/cm for the 1:3 film, 0.098 S/cm for the 1:1 film, and 0.124 S/cm for the
3:1 film.

The observed decrease in resistance could be attributed to various factors such as
increased intermolecular interactions, improved polymer chain alignment, or enhanced
charge carrier mobility within the film structures [16]. The enhancement of electrical con-
ductivity in PEDOT /PSS films through the incorporation of dimethyl sulfoxide (DMSO) is
attributed to significant morphological and structural modifications within the polymer
matrix. DMSO functions as a secondary dopant, inducing phase separation between the
conductive PEDOT domains and the insulating PSS component. This redistribution leads
to the formation of a PEDOT-enriched network, which facilitates more efficient charge
transport. Furthermore, DMSO promotes a conformational transition of PEDOT chains
from a coiled to a more linear and expanded structure, thereby increasing carrier mobility.
Concurrently, the partial removal or rearrangement of PSS reduces the density of insulating
regions, further enhancing the film’s electrical conductivity. These findings suggest that
while DMSO treatment initially impacts conductivity adversely, the long-term trend re-
flects an overall enhancement in electrical properties for both control and treated samples.
These films can be stored at room temperature for up to two months without significant
change in their conductivity. Further analysis is warranted to elucidate the underlying
mechanisms driving this phenomenon and to optimize the fabrication process for desired
conductivity outcomes.

3.6. Dynamic Mechanical Analysis (DMA)

Tensile tests were performed on rectangular sections of PEDOT/ALG films with vary-
ing PEDOT/PSS-to-alginate ratios (1:3, 1:1, 3:1) to assess the impact of DMSO on their
mechanical properties. The DMSO-treated samples exhibited an increase in stretchability,
as shown by their increased strain-to-break relative to the dry control samples, in exchange
for a decrease in stiffness (Figure 3c,d). This is likely attributed to the lateral association
of alginate chains caused by exposure to DMSO and additional solvent-induced gelation
within the alginate network [17]. The solvent acts as a plasticizer, reducing intermolecular
rigidity and increasing the film’s ability to deform under strain. Enhanced chain alignment
and increased crystallinity, facilitated by DMSQO, result in a more mechanically robust and
stretchable network. These combined effects render DMSO-treated PEDOT /PSS films
highly suitable for application in next-generation stretchable and wearable electronic de-
vices. The underlying mechanisms have been substantiated by multiple studies, including
the detailed structural and electrical characterizations reported in the recent literature.
Long term, the PEDOT/ALG films show minimal mechanical degradation within a week
of synthesis, followed by consistent mechanical behavior afterwards (Figure 3e,f). Stretch-
ability is found to be 45% strain for 1:3, 68% for 1:1, and 53% for 3:1. The corresponding
Young modulus values were 0.46 MPa (1:3), 0.33 MPa (1:1), and 0.52 MPa (3:1).

DMSO treatment decreased the Young modulus for the 1:3 and 3:1 films, indicating a
softening effect, whereas for the 1:1 film, the modulus increased, suggesting stiffening. This
contrasting result may arise from the unique balance between PEDOT /PSS and alginate
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content in the 1:1 formulation, which allows for a different interaction mechanism upon
DMSO exposure.

In the 1:3 film, the high alginate concentration results in a dominant hydrogel matrix,
and DMSO treatment likely disrupts hydrogen bonding and slightly swells the gel, leading
to a softer and more elastic network. In the 3:1 film, the PEDOT /PSS is more dominant,
and DMSO, known to enhance chain mobility and plasticization, reduces the rigidity of the
film by weakening intermolecular interactions among PEDOT /PSS chains.

In contrast, the 1:1 film presents a more balanced composition where both PEDOT /PSS
and alginate are sufficiently present to form an interpenetrating network. In this formu-
lation, DMSO treatment may enhance interactions at the interface of PEDOT /PSS and
alginate, possibly through improved chain alignment or partial densification, leading to a
more tightly packed and crosslinked structure. This can result in an increase in Young’s
modulus and a more rigid stress/strain response.

Thus, the mechanical outcome of DMSO treatment appears to be composition-
dependent, and the 1:1 film is a unique case where intermediate ratios allow DMSO
to enhance structural integrity rather than induce softening.

Among the three PEDOT/ALG formulations investigated (1:3, 1:1, and 3:1), the ratio
of PEDOT/PSS to alginate played a critical role in determining the electrical and me-
chanical properties of the hydrogel films. As the concentration of PEDOT /PSS increased,
the electrical conductivity of the films improved significantly, with the 3:1 formulation
achieving the highest conductivity. However, this enhancement came at the cost of reduced
stretchability and increased stiffness, as evidenced by a higher Young modulus and di-
minished mechanical compliance. Conversely, increasing the alginate content (as in the
1:3 formulation) improved the stretchability and softness of the hydrogel but resulted in
lower electrical conductivity and reduced performance stability under repeated mechanical
deformation. The 1:1 formulation demonstrated a favorable balance, achieving a conduc-
tivity of 0.098 S/cm while maintaining excellent mechanical flexibility, moderate Young's
modulus, and good stability during cyclic strain tests. This combination of properties makes
the 1:1 PEDOT/ALG hydrogel the most promising candidate for bioelectronic applications,
particularly for use in flexible and stretchable EMG sensors where both conductivity and
mechanical conformity are essential.

3.7. Electromyography (EMG)

One of the main applications of conductive films is in electronic circuits and EMG.
Firstly, a simplified circuit model was utilized to characterize the RC time constant of
the material, as illustrated in Figure 1a. The schematic of the parallel plate capacitor,
featuring planar copper plates separated by a PEDOT /PSS conductive film, was employed
to understand the electrical behavior of the material. The fabricated conductive films were
placed in between two copper layers to make a capacitor (Figure 4a) and then connected to
a voltage source.

a R, b
, vV 2 --- Control
out =
g,o .....................................
S
ML = AVAN -2
c
2 — DMSO
2
g0 L !
__—Cu = 1 T
= PEDOT PSS ® .
“Cu 0 300 600 900 1200

Figure 4. Cont.
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Figure 4. The applications of conductive stretchable PEDOT/ALG films (a) A simplified circuit
model for characterizing the RC time constant of the material (top). A schematic of the parallel plate
capacitor, wherein planar copper plates are interceded by a PEDOT /PSS conductive film (bottom).
(b,c) Output signals for (d) EMG measurement using the PEDOT /PSS conductive electrodes from the
hand. The electrodes were prepared and then commercial three leads were connected to a portable
Arduino microcontroller to collect the data. Scale bar (5 cm). (e) The EMG signal for facial expression
collected from the forehead. (f-h) The EMG signals collected from the biceps, forearm, and hand

during exercise.

Figure 4b,c show real-time recording voltage signals for control and DMSO-treated
samples, respectively. The PEDOT /PSS conductive electrodes were prepared and then
commercial three leads were connected to a portable Arduino microcontroller to collect
the data indicating the potential of PEDOT/ALG films in wearable healthcare devices. In
electrochemical property tests for skin-conformable bioelectronic devices, a three-electrode
system is commonly used to accurately characterize the electrochemical behavior of the
working material: (a) Working electrode (WE)—This is the electrode made of the material
being tested (in this case, the PEDOT/ALG hydrogel). This is where the electrochemical
reactions of interest occur. The performance of this electrode reflects the material’s charge
storage, conductivity, and electrochemical stability. (b) Reference electrode (RE)—This
provides a stable and known potential against which the working electrode’s potential
can be measured. It does not pass current and ensures accurate and reproducible voltage
control. Common examples include Ag/AgCl or saturated calomel electrodes. (c) Counter
electrode (CE)—Also known as the auxiliary electrode, it completes the circuit by allowing
the current to flow through the system. It balances the current at the working electrode
so that potential control and measurement are not influenced by the electrode’s resistance.
The electrodes are placed on hand (Figure 4d), and upon closing or opening, a spike
will happen on the output signal. By comparing these two diagrams, we show that the
PEDQOT/PSS films that are treated with DMSO are more sensitive to motion than those
without DMSO post-treatment, and they are considered better motion sensors, benefiting
many applications.

Figure 4e showcases EMG signals for facial expression collected from the forehead,
while Figure 4f-h display EMG signals acquired from the biceps, forearm, and hand during
exercise, highlighting the adaptability and reliability of PEDOT/ALG films in physiological
monitoring applications. Overall, these findings underscore the promising prospects of
PEDOT/ALG films in the realm of flexible electronics and biomedical engineering.

4. Conclusions

In this study, a one-pot synthesis strategy was employed to enhance the electrical
conductivity of stretchable PEDOT /PSS/alginate hydrogels without compromising their
mechanical compliance or biocompatibility. The proposed formulation demonstrated
significantly improved conductivity, rendering it highly suitable for applications in soft,
skin-conformable bioelectronic devices. This work addresses a critical challenge in the
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development of stretchable electronics by presenting a facile and scalable fabrication
method that does not require complex post-processing or chemical doping.

Future work will involve evaluating the long-term mechanical stability and electrical
performance of the hydrogel under cyclic loading and varied environmental conditions
to establish its reliability in real-world applications. In vivo biocompatibility studies and
degradation assessments will also be conducted to ensure clinical safety and efficacy.
Furthermore, integration with wireless modules for data transmission and power supply
will be explored to facilitate the development of autonomous wearable or implantable
devices. Expanding the functionality of the hydrogel to include the multiplexed sensing of
biochemical or biomechanical signals is also envisioned to broaden its application scope in
personalized healthcare and soft robotics.
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