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Fractal Parameters as Independent Biomarkers in the Early Diagnosis of Pediatric Onset
Inflammatory Bowel Disease
Reprinted from: Fractal Fract. 2023, 7, 619, https://doi.org/10.3390/fractalfract7080619 . . . . . 22

Carlos Acuña, Maria Kokornaczyk, Stephan Baumgartner and Mario Castelán

Unsupervised Deep Learning Approach for Characterizing Fractality in Dried Drop Patterns of
Differently Mixed Viscum album Preparations
Reprinted from: Fractal Fract. 2023, , 733, https://doi.org/10.3390/fractalfract7100733 . . . . . . 38

Waseem, Asad Ullah, Fuad A. Awwad and Emad A. A. Ismail

Analysis of the Corneal Geometry of the Human Eye with an Artificial Neural Network
Reprinted from: Fractal Fract. 2023, 7, 764, https://doi.org/10.3390/fractalfract7100764 . . . . . 50

Eman Abdullah Aldakheel, Doaa Sami Khafaga, Islam S. Fathi, Khalid M. Hosny and Gaber

Hassan

Efficient Analysis of Large-Size Bio-Signals Based on Orthogonal Generalized Laguerre
Moments of Fractional Orders and Schwarz–Rutishauser Algorithm
Reprinted from: Fractal Fract. 2023, 7, 826, https://doi.org/10.3390/fractalfract7110826 . . . . . 68
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Preface

The ten original studies presented in this Special Issue Reprint explore innovative ways of

using fractal and fractional models in the life sciences, with the aim of better understanding and

quantitatively describing the structure and behavior of the modeled specimens and systems. The

subject and scope of the Special Issue were defined in such a way as to allow prospective authors to

choose a research topic of their current interest, as long as it concerns the complexity in biological

systems. Therefore, the subject considers application of fractal and fractional analysis in any basic or

applied scientific investigation in life sciences. The wide scope of this Special Issue resulted in the

collection of very interesting studies on diverse research topics, all of which were connected by the

methodology employed in the studies. Another factor connecting the authors of these studies is their

motivation to apply fractal methodology towards the improvement of objective specimen evaluation,

data classification, and understanding of the underlying mechanisms in the studied processes, as

well as improvements in diagnostics where the topic is linked to the field of medicine. In summary,

the presented works seem to have the potential to contribute to future improvements in science and

technology. On the other hand, the studies also have the potential to make students in life science

majors more interested in applied mathematics and in discovering how it can help elucidate the

causes and developments governing the behavior of biological systems. This Reprint is prepared

with the confidence that it will be of interest to researchers, students, and practitioners in the fields of

applied mathematics, life sciences, and medicine.

Andjelija Ž. Ilić

Guest Editor
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Editorial

Fractal and Fractional Analysis in Biomedical Sciences
and Engineering

Andjelija Ž. Ilić

Institute of Physics Belgrade, University of Belgrade, Pregrevica 118, 11080 Belgrade-Zemun, Serbia;
andjelijailic@ieee.org

The visual appearance of fractal patterns in biology has been noted from the early
days of research in this field and, henceforth, has been studied for a long time. The typical
examples that first come to mind include the branching of the airways in the lungs, the
vasculature in the liver, and the shape of cauliflower and broccoli. Then, there are signals
—heart signals, brain signals, measured gait patterns, and DNA sequences. The more
the research in fractal and fractional phenomena progresses, the more the pronounced
fractal behavior of biological systems at every level of organization is noticed. This Special
Issue illustrates the breadth of problems, which are being investigated today using the
mathematical apparatus of fractal and fractional calculus, by presenting ten papers on very
diverse topics in bioscience.

Contribution No. 1 employs fractional calculus in a study of honeybee population
dynamics, which is becoming a problem of increasing importance, with honeybee losses
being reported in many countries nowadays. The disruption of pollination causes serious
additional problems in economics, agriculture, and ecology.

Contribution No. 2 explores the potential of the fractal analysis of intestinal cell
nuclei, to serve as an observer-independent histological tool for pediatric ulcerative colitis
diagnosis. The investigation was motivated by the noted unfolding of chromatin in the cell
nuclei in some diseases, being reflected macroscopically in the altered textures of the nuclei.

A novel unsupervised deep learning approach for characterizing the degree of fractal-
ity of dried drop patterns of plant-based homeopathic remedies is proposed in Contribution
No. 3. The self- assembled structures formed in evaporating droplets differed for the three
mixing procedures that were applied (turbulent, laminar, and diffusion-based mixing).

The corneal geometry of the human eye is studied in Contribution No. 4. The non-
integer behavior of the corneal-shaped model is studied using several machine learning
models, with the best results achieved through the use of artificial neural network based
on the hybrid biogeography-based heterogeneous cuckoo search optimization technique.

The Contribution No. 5 proposes the use of a novel orthogonal matrix decomposition
method in combination with the orthogonal generalized Laguerre moments of fractional
orders for the analysis of large bio-signals. Due to the highly accurate and stable calculations
of higher-order moments, the analysis tested on the arrhythmia dataset is very efficient.

The fractal analysis of immunohistochemical images of invasive cutaneous squamous
cell carcinoma is proposed in Contribution No. 6 as the method to potentially inform the
development of new diagnostic and therapeutic strategies targeting the tumor microenvi-
ronment. Quantitative analysis of the spatial distribution patterns of immune and vascular
markers is used for the classification of pre-invasive and invasive lesions.

In Contribution No. 7, fractional electrodamage induced by the electrical stimulation
of A549 human lung cancer cells is investigated. Experimentally obtained data is fitted and

Fractal Fract. 2025, 9, 474 https://doi.org/10.3390/fractalfract9070474
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the order of the fractional derivative is selected to provide the best model of cell elongation
during the electrochemical changes. Significant electrocapacitive effects were exhibited by
the cells.

The scale-free dynamics of the resting state fMRI is considered in Contributiom No. 8
as a possible multimodal biomarker to study both spatial (brain tissue type and functional
networks) and temporal (activation and cognition) brain dynamics. The microstate seg-
mentation method served to obtain topological maps, and the EEG and fMRI data were
used simultaneously.

The simulation-based investigation of the tumor growth and chemical diffusion in
biological tissues is described in Contribution No. 9, contributing to a deeper understanding
of the chemical diffusion mechanisms within tissues and tumor growth under different
conditions. Fractional stochastic calculus was used to model these processes.

Finally, in Contribution No. 10, the fractional Fourier transform is combined with
the error back-propagation neural network, with an aim of performing advanced image
feature extraction and model generalization in tumor diagnostics. The main focus of the
prediction model was distinguishing between the benign and malignant cases.

In conclusion, most of the presented articles rely on empirical, real-world data and ad-
vanced non-integer models to achieve good agreement between experimental observations
and the models aiming to provide deeper insights into the studied phenomena. Numerical
models, developed and trained on real-world data, can be valuable tools for the prediction
of process progression and, in some cases, treatment monitoring in biomedical sciences.
All of the selected papers have the potential to contribute to addressing practical problems.
The proposed new methods can be applied in future to diverse sets of problems.

Funding: This research received no external funding.
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Belgrade, University of Belgrade, through the grants from the Ministry of Science, Technological
Development, and Innovations of the Republic of Serbia.
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Fractional Model of Honeybee Population Dynamics †
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Abstract: In order to investigate the honeybee population dynamics, many differential equation
models were proposed. Fractional derivatives incorporate the history of the honeybee population
dynamics. We numerically study the inverse problem of parameter identification in models with
Caputo and Caputo–Fabrizio differential operators. We use a gradient method of minimizing a
quadratic cost functional. We analyze and compare results for the integer (classic) and fractional
models. The present work also contains discussion on the efficiency of the numerical methods used.
Computational tests with realistic data were performed and are discussed.

Keywords: honeybee population dynamics; fractional derivative; parameter estimation; cost function
minimization

MSC: 26A33; 34A08; 34A55; 65L09; 92D25

1. Introduction

In recent years, honeybee losses were reported in many countries such as the USA,
China, Israel, Turkey, and in European countries, especially, Bulgaria [1]. The disruption of
pollination causes serious problems in economics, agriculture and ecology.

The honey bees Apis mellifera are the main contributors to pollination, and the global
loss of honeybees leads to disruption of pollination, which, thus, causes serious difficulties
in economics, agriculture and ecology [2,3]. The leading factor for the loss of honeybees
has not yet been discovered, but it has been found that an ensemble of stressors cause a
colony to collapse. Some of the main reasons are infections by viruses, such as Nosema
ceranae, Varroa mite [4], the use of pesticides [5], food shortages [6] and severe weather
conditions [7].

Colonies of honeybees have been declining for over a decade [8]. Colony losses are
due to a combination of stressors [8,9], but the presence of Varroa mites is considered one
of the most important factors [10].

Mathematical models have been widely used to examine and predict the dynamics of
honeybee population. The paper [11] presents a review of recent progress in mathemat-
ical modeling of honeybee colony population dynamics, since the review in [12]. In the
latter, models, studying different stress factors which lead to further colony collapse were
reviewed. In a recent paper [11], though, the models were divided on the basis of age
structure, nutritional effects, pathogens, etc. The common trait between the existing models
is that they were derived on the base of the classical (integer) derivative. Their potential to
identify different factors causing colony losses are discussed.

Fractal Fract. 2023, 7, 311. https://doi.org/10.3390/fractalfract7040311 https://www.mdpi.com/journal/fractalfract4
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On the other hand, fractional-order models have been recognized as a powerful
mathematical tool to study anomalous behavior observed in many physical processes
with prominent memory and hereditary properties. Thanks to the memory effect, which
represents an advantage of the fractional derivative compared to the ordinary derivative,
the theory and the application of fractional calculus have been widely used to model
dynamic processes in the fields of science, engineering and many others. The last decades,
especially, have seen a rapid development, both in theory and applications, of fractional
ordinary differential equations, as in, for example, [13–17], and the application of fractional-
order derivatives in biological phenomena [18,19]. However, to our knowledge, literature
dedicated to modeling honeybee population dynamics via fractional-order derivatives is
quite scarce. For instance, to investigate the causes of colony collapse, the author of [20]
proposed a fractional honeybee colony population model. We adopted this model to
demonstrate the solution approach to the inverse parameter reconstruction problem.

The rest of this paper is structured as follows. In the next section, the necessary
fractional calculus background is mentioned. In Section 3, the direct and inverse problems
are formulated and interpreted. The numerical methods used to solve the direct problems
are described in Section 4, while the adjoint equation optimization method, for solving the
inverse problems, is presented in detail in Section 5, which is the main novelty of the study.
The simulation results are discussed in Section 6 and the paper is concluded in Section 7.

This work is an extended version of the LSSC’21 conference paper [21]. There, the Ca-
puto derivative model in the special case was studied when the identified parameters
were ppp = {m, n, α, σ, ω} and they were raised to the power of one at the right hand-side
of the system (3). Obviously, the current study extends the latter in two ways. Firstly,
the coefficients at the right hand-side of the model system are raised to the poser of the frac-
tional derivation, which is more meaningful, due to the preservation of the physical unit.
Secondly, an investigation with the Caputo–Fabrizio fractional derivative is performed.

The main advantages of the application of the Caputo–Fabrizio derivative in the
present context are two. To begin with, the smooth, non-singular kernel makes the numeri-
cal treatment easier. The mathematical expressions, derived from the Caputo derivative,
are often cumbersome and tedious to derive. The Caputo–Fabrizio derivative is suitable
for both temporal and spatial variables. The consequent formulae exhibit simplifications,
which also make the analytical treatment lighter as well. What is more, the application
of the Caputo derivative is more appropriate when the model is related to “plasticity,
fatigue, damage and with electromagnetic hysteresis”. Otherwise, it is useful to employ
the Caputo–Fabrizio derivative [22].

2. Fractional Calculus Background

In this section some basic definitions and results from fractional calculus are intro-
duced.

2.1. Caputo Derivative

For any function ν ∈ AC[0, T], i.e., ν is absolutely continuous on [0, T], we define the
left (forward) Riemann–Liouville integral for p ∈ [0, 1] [15]:

(
Jp
0+ν

)
(t) :=

⎧⎨⎩
ν(t), p = 0,

1
Γ(p)

∫ t

0

ν(s)
(t − s)1−p ds, 0 < p ≤ 1, t ∈ [0, T).

Then, the left (forward) Caputo derivative, as defined above, could be expressed in
this way:

CDp
0 ν(t) =

(
J1−p
0+

dν

dt

)
(t) =

1
Γ(1 − p)

∫ t

0

1
(t − s)p

dν

dt
(s)ds.

The left (forward) Riemann–Liouville derivative is defined as

5
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RDp
0 ν(t) =

d
dt

(
J1−p
0+ ν

)
(t) =

1
Γ(1 − p)

d
dt

∫ t

0

ν(s)
(t − s)p ds.

The right (backward) integral is defined as

(
Jp
T−ν

)
(t) :=

⎧⎨⎩
ν(t), p = 0,

1
Γ(p)

∫ T

t

ν(s)
(s − t)1−p ds, 0 < p ≤ 1,

t ∈ (0, T],

and, further, we define the right (backward) Caputo derivative as

CDp
Tν(t) = −

(
J1−p
T−

dν

dt

)
(t) = − 1

Γ(1 − p)

∫ T

t

1
(s − t)p

dν

dt
(s)ds.

RDp
Tν(t) =

(
− d

dt

)(
J1−p
T− ν

)
(t) = − 1

Γ(1 − p)
d
dt

∫ T

t

1
(s − t)p ν(s)ds.

There exists a relationship between the Caputo and Riemann–Liouville forward and
backward derivatives

CDp
0 f (t) = RDp

0 f (t)− f (0)
Γ(1 − p)

t−p, t ∈ (0, T],

CDp
T f (t) = RDp

T f (t)− f (T)
Γ(1 − p)

(T − t)−p, t ∈ (0, T].

For later use, we recall the following version of integration by parts, see e.g., [15].

Lemma 1. Let ν1(t), ν2(t) ∈ C1[0, T]. Then∫ T

0

(
CDp

0 ν1

)
ν2dt + ν1(0)

(
J1−p
T− ν2

)
(0) =

∫ T

0
ν1

(
CDp

Tν2

)
dt +

(
J1−p
T− ν1

)
(T)ν2(T). (1)

We use the generalized mean value formula (GMF) in the following form [15]. Suppose
f (t) ∈ C[a, b] and Dp

0 f (t) ∈ C[a, b] for 0 < p ≤ 1, then we have

f (t) = f (0) +
1

Γ(p)
Dp

0 f (ξ)tp with 0 ≤ ξ ≤ t, ∀t ∈ [a, b].

It is clear from this formula that if Dp
0 f (t) ≥ 0 ∀t ∈ (a, b), then the function f (t) is

nondecreasing for each t ∈ [a, b], and if Dp
0 f (t) ≤ 0 ∀t ∈ (a, b), then the function f (t) is

nonincreasing ∀t ∈ [a, b].

2.2. Caputo–Fabrizio Derivative

In recent years, the results of many papers have demonstrated that fractional models
describe natural phenomena in an accurate and systematic way, which is better than
the classic integer-order counterparts ordinary time derivatives; see, for example, [23,24].
However, in some cases, a satisfactory duration may not be achieved in whole time duration
due to the singularity in the traditional (namely, Caputo’s) kernel; see, for example, [22].
This is one of the reasons the Caputo–Fabrizio derivative was used in [20].

Similarly to the Caputo case, if ν ∈ AC[0, T], then for p ∈ [0, 1] we define the left
(forward) Caputo–Fabrizio derivative in the Caputo and Riemann senses, respectively, as
follows [22]:

CFCDp
0 ν(t) =

M(p)
1 − p

∫ t

0
exp

(
− p

1 − p
(t − s)

)
dν

dt
(s)ds,

CFRDp
0 ν(t) =

M(p)
1 − p

d
dt

∫ t

0
exp

(
− p

1 − p
(t − s)

)
ν(s)ds,

6
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where M(p) is a normalization function such that M(0) = M(1) = 1.
Analogously, the right (backward) Caputo–Fabrizio derivative is defined as

CFCDp
Tν(t) = −M(p)

1 − p

∫ T

t
exp

(
− p

1 − p
(s − t)

)
dν

dt
(s)ds,

CFRDp
Tν(t) = −M(p)

1 − p
d
dt

∫ T

t
exp

(
− p

1 − p
(s − t)

)
ν(s)ds.

The relationship between the Caputo and Riemann senses of the Caputo–Fabrizio
forward and backward derivatives is

CFCDp
0 f (t) = CFRDp

0 f (t)− M(p)
1 − p

exp
(
− p

1 − p
t
)

, t ∈ (0, T],

CFCDp
Tν(t) = CFRDp

Tν(t)− M(p)
1 − p

exp
(
− p

1 − p
(T − t)

)
, t ∈ (0, T].

In order to derive the integration by parts for the Caputo–Fabrizio derivative, we
introduce the Caputo–Fabrizio fractional integrals [25]:(

CF
Jp
0+ν

)
(t) :=

1 − p
M(p)

ν(t) +
p

M(p)

∫ t

0
ν(s)ds,(

CF
Jp
T−ν

)
(t) :=

1 − p
M(p)

ν(t) +
p

M(p)

∫ T

t
ν(s)d s.

Now, we state the Caputo–Fabrizio integration by parts:

Lemma 2. Let ν1(t), ν2(t) ∈ C1[0, T]. Then

∫ T

0

(
CFCDp

0 ν1

)
ν2dt +

M(p)
1 − p

ν1(0)
∫ T

0
exp

(
− p

1 − p
t
)

ν2dt =∫ T

0
ν1

(
CFCDp

Tν2

)
dt +

M(p)
1 − p

ν2(T)
∫ T

0
exp

(
− p

1 − p
(T − t)

)
ν1dt. (2)

The generalized mean value formula (GMF) for the Caputo–Fabrizio fractional derivative
is as follows [26]. Suppose f (t) ∈ C[a, b] and CFDp

0 f (t) ∈ C[a, b] for 0 < p ≤ 1, then
we have

f (t) = f (0) +
1

M(p)
CFCDp

0 f (ξ)
(
(1 − α) + tα

)
with 0 ≤ ξ ≤ t, ∀t ∈ [a, b].

For further detailed studies on the fractional calculus of the derivatives with the
nonsingular kernel and its applications, the interested reader could refer to [22,25].

3. Models’ Interpretations

In this section we introduce and discuss the two models with Caputo and Caputo–
Fabrizio derivatives, respectively. Then we formulate the corresponding point-observation
inverse problems and solve them by minimizing a least-square functional using the adjoint
equation optimization approach.

3.1. Direct Problems
3.1.1. Model with Caputo Derivative

In [20] the following two-order fractional derivatives population model is proposed:

7
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CDr
0H = Lr H + F

ωr + H + F
− H

(
αr − σr F

H + F

)
− nr H ≡ h(H, F; ppp), (3a)

CDq
0F = H

(
αr − σr F

H + F

)
− mqF ≡ g(H, F; ppp), (3b)

H(0) = H0, F(0) = F0, t > 0, (3c)

where Dp
0 f (p = r, q) denotes the fractional derivative of f of order 0 < p ≤ 1. Here, H is

the number of hive bees and the ones working outside the hive are the foragers F. The total
number of bees in the colony is assumed to be N = H + F, since bees in compartments
other than H and F do not contribute to the work in the hive. The workers are recruited
to the forager class from the hive bee class and die with rate m. It is assumed that the
maximal rate of eclosion is equivalent to the queen’s laying rate L and it approaches
the maximum as N increases. The constant parameter ω determines the rate at which
E(H, F) = Lr(H + F)/(ωr + H + F) approaches L as N becomes large.

In the recruitment function R(H, F) = αr − σrF/(H + F), the parameter α represents
the maximal rate at which hive bees become foragers when there are no foragers present in
the colony, and σ is the rate of social inhibition. Following [20], the model (3a)–(3c) does
not neglect the death rate n of the hive bees.

Theorem 1. There exists a unique solution (H, F)� ∈ C1[0, T] to the initial-value problem (3a)–
(3c) and it remains positive for t ∈ [0, T] provided that the initial data is positive.

Proof. The existence and uniqueness of the solution to the system (3a)–(3c) could be
obtained on the base of the theory in [27], and some results in [28]. We need to show
the positivity. On the contrary, let us assume that H0 > 0, F0 > 0 and let t1 be the
first time moment in which H(t1) = 0, F(t1) > 0. Then, from (3a), we have Dr

0H(t1) =

Lr F(t1)

ωr + F(t1)
> 0. However, from GMF the function H(t) is non-decreasing for each

t ∈ [0, t1] which contradicts the assumption.

3.1.2. Model with Caputo–Fabrizio Derivative

Again in [20] the fractional population model with Caputo–Fabrizio derivatives follows:

CFCDr
0H = Lr H + F

ωr + H + F
− H

(
αr − σr F

H + F

)
− nr H ≡ h(H, F; ppp), (4a)

CFCDq
0F = H

(
αr − σr F

H + F

)
− mqF ≡ g(H, F; ppp), (4b)

H(0) = H0, F(0) = F0, t > 0, (4c)

The results for the existence and positivity of the solution, similar to Theorem 1, could
be analogously proved. For results concerning uniqueness please refer to [20].

3.2. Inverse Problems

The functions H(t), F(t) satisfy the direct problem (3a)–(3c) if the coefficients p1 = m,
p2 = n, p3 = α, p4 = σ, p5 = ω are known. In practice, the parameters m, n, α, σ, ω are
not known, in general, and have to be identified. After their “fair” values are obtained,
the model could be used for further robust analysis.

The main question is how to find the coefficients ppp ≡ {m, n, α, σ, ω} if we know the
population size at certain times:

H(tk; ppp) = Xk, k = 1, . . . , KH , F(tk; ppp) = Yk, k = 1, . . . , KF. (5)

The estimation of the parameter ppp is referred to as an inverse modeling problem. This
means adjusting the parameter values of a mathematical model in such a way as to repro-
duce measured data.

8
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4. Numerical Solution to the Direct and Inverse Problems

The models (3a)–(3c) and (4), being nonlinear, do not suggest an analytical solution. In
this section, we present the numerical schemes for solving the direct and inverse problems.

4.1. Model with Caputo Derivative

Firstly, we briefly recall the Adams–Bashford–Moulton method for forward fractional
derivatives. We follow [29].

It is well known that a fractional initial value problem

CDp
0 y(t) = f p(t, y(t)

)
, y(0) = y0

for 0 < p ≤ 1 is equivalent to the Volterra integral equation

y(t) = y0 +
1

Γ(p)

∫ t

0
(t − s)p−1 f p(s, y(s)

)
ds (6)

for t ≤ T.
Introducing a uniform temporal mesh ω̄ = {tj = j�t : j = 0, 1, . . . , N}, where

�t = T/N is the time step and yj ≈ y(tj), the approximate solution to (6) is:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
yP

i+1 = y0 +
1

Γ(p)

i

∑
j=0

bj,i+1 f p(tj, yj),

yi+1 = y0 +
1

Γ(p)

(
i

∑
j=0

aj,i+1 f p(tj, yj) + ai+1,i+1 f p(ti+1, yP
i+1)

) for i = 0, 1, . . . , N − 1, (7)

where

aj,i+1 =
�tp

p(p + 1)

⎧⎨⎩
ip+1 − (i − p)(i + 1)p, j = 0,
(i − j + 2)p+1 − 2(i − j + 1)p+1 + (i − j)p+1, 1 ≤ j ≤ i,
1, j = i + 1

and
bj,i+1 =

�tp

p
(
(i − j + 1)p − (i − j)p) for j = 0, 1, . . . , i.

In order to compute (3a)–(3c), we use (7) with y := (H, F)� and f p := (h, g)�.
As discussed in detail later, in order to solve the inverse problem, we need to solve

the system of adjoint equations, which is backward. Therefore, we introduce the Adams–
Bashford–Moulton formulae for backward fractional derivatives. They are derived analo-
gously to the forward counterparts.

The fractional final value problem

CDp
Ty(t) = f p(t, y(t)

)
, y(T) = yT

for 0 < p ≤ 1 is equivalent to the Volterra integral equation

y(t) = yT +
1

Γ(p)

∫ T

t
(s − t)p−1 f p(s, y(s)

)
ds (8)

for t ≤ T.
Using the mesh ω̄, the numerical solution to (8) follows:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

yP
i−1 = yT +

1
Γ(p)

j=N

∑
i

bj,i−1 f p(tj, yj),

yi−1 = yT +
1

Γ(p)

(
j=N

∑
i

aj,i−1 f p(tj, yj) + ai−1,i−1 f p(ti−1, yP
i1)

) for i = N, N − 1, . . . , 1, (9)

9
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where

aj,i−1 =
�tp

p(p + 1)

⎧⎨⎩
(N − i)p+1 − (N − i − p)(N − i + 1)p, j = N,
(j − i + 2)p+1 − 2(j − i + 1)p+1 + (j − u)p+1, ≤ j ≤ N − 1,
1, j = i − 1

and
bj,i−1 =

�tp

p
(
(j − i + 1)p − (j − i)p) for j = 0, 1, . . . , i.

Analogously, to solve (15), we use (9) and set y := (ϕH , ϕF)
�.

4.2. Model with Caputo–Fabrizio Derivative

Similarly to the Caputo case, numerical approaches are developed for the Caputo–
Fabrizio fractional derivative; see, for example, [14]. Here we employ a simple PECE
(predict–evaluate–correct–evaluate) Adams-type method.

The fractional initial value problem

CFCDp
0 y(t) = f p(t, y(t)

)
, y(0) = y0

for 0 < p ≤ 1 is equivalent to the integral equation

y(t) = y0 + (1 − p) f p(t, y(t)
)
+ p

∫ t

0
f p(s, y(s)

)
ds (10)

for t ≤ T.
Using the same uniform temporal mesh ω̄, we write the approximate solution to (10):⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

yP
i+1 = y0 + (1 − p) f p(ti, yi) + p�t

i

∑
j=0

f p(tj, yj),

yi+1 = y0 + (1 − p) f p(ti+1, yP
i+1) +

p�t
2

(
f p(t0, y0) + 2

i

∑
j=1

f p(tj, yj) + f p(ti+1, yP
i+1)

) (11)

for i = 0, 1, . . . , N − 1.
Similarly, to compute (4), we apply (11) with y := (H, F)� and f p := (h, g)�.
The formulae for the backward system are as follows:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

yP
i−1 = yT + (1 − p) f p(ti, yi) + p�t

j=N

∑
i

f p(tj, yj),

yi−1 = yT + (1 − p) f p(ti−1, yP
i−1) +

p�t
2

(
f p(tT , yT) + 2

j=N−1

∑
i

f p(tj, yj) + f p(ti−1, yP
i−1)

) (12)

for i = N, N − 1, . . . , 1.
To solve (15), we use (12) and set y := (ϕH , ϕF)

�.

5. Adjoint Optimization Method

We solve the point observation problem (3a)–(3c) and (5) via minimization of the
appropriate functional [28,30]. We minimize the least-square functional

J(ppp) = J(m, n, α, σ, ω) = JH(ppp) + JF(ppp) =
KH

∑
k=1

(H(tk; ppp)− Xk)
2 +

KF

∑
k=1

(F(tk; ppp)− Yk)
2. (13)

5.1. Caputo Fractional Derivative Case

Theorem 2. The gradient J′ppp ≡ (J′m, J′n, J′α, J′σ, J′ω) of the functional J(ppp) is given by

10



Fractal Fract. 2023, 7, 311

J′m(ppp) = qmq−1
∫ T

0
ϕFFdt, J′n(ppp) = rnr−1

∫ T

0
ϕH Hdt, J′α(ppp) = rαr−1

∫ T

0
(ϕH − ϕF)Hdt,

J′σ(ppp) = rσr−1
∫ T

0
(ϕF − ϕH)

HF
H + F

dt, J′ω(ppp) = rωr−1Lr
∫ T

0
ϕH

H + F
(ω + H + F)2 dt,

(14)

where the functions {ϕH = ϕH(t), ϕF = ϕF(t)} are the unique solution to the adjoint final-value
problem

CDr
T ϕH = a11(H, F)ϕH + a12(H, F)ϕF − 2

KH

∑
k=1

(
H(t; p)− X(t)

)
δ(t − tk),

CDq
T ϕF = a21(H, F)ϕH + a22(H, F)ϕF − 2

KF

∑
k=1

(
F(t; p)− Y(t)

)
δ(t − tk),

ϕH(T) = 0, ϕF(T) = 0,

(15)

a11(H, F; ppp) = − ∂ f
∂H

= Lr ωr

(ωr + H + F)2 + σr F
H + F

− σr HF
(H + F)2 − (αr + nr),

a21(H, F; ppp) = − ∂ f
∂F

= Lr ωr

(ωr + H + F)2 + σr H2

(H + F)2 ,

a12(H, F; ppp) = − ∂g
∂H

= αr − σr F
H + F

+ σr HF
(H + F)2 ,

a22(H, F; ppp) = − ∂g
∂F

= −σr H2

(H + F)2 − mq,

and X(t), Y(t) are interpolants of the discrete functions, taking values Xk at t = tk, k = 1, . . . , KH
and Yk at t = tk, k = 1, . . . , KF, respectively.

Proof. We denote δppp = (δm, δn, δα, δσ, δω), δm = εh1, δn = εh2, δα = εh3, δσ = εh4,
δω = εh5 and δH(t; ppp) = H(t; ppp+ δppp)− H(t; ppp), δF(t; ppp) = F(t; ppp+ δppp)− F(t; ppp). Then, we
write the system (3a) and (3b) at ppp := ppp + δppp for the pair {H(t; ppp + δppp), F(t; ppp + δppp)} with
initial {H0, F0}. Next, we perform the differences between the corresponding equations to
obtain a system for the pair {δH(t; ppp), δF(t; ppp)} with zero initial conditions. After a little
algebraic manipulation, we obtain:

CDr
0δH = a11δH + a21δF + O(δH) + O(δF)− rαr−1Hδα + rσr−1 HF

H + F
δσ

− rωr−1Lr H + F
(ωr + H + F)2 δω − qnq−1Hδn + O(δppp), δH(0) = 0, (16a)

CDq
0δF = a12δH + a22δF + O(δH) + O(δF)

− qnq−1Fδm + rαr−1Hδα − rσr−1 HF
H + F

δσ + O(δppp), δF(0) = 0. (16b)

For the increment of the functional J(ppp) we find:

J(ppp + δp)− J(ppp) =
KH

∑
k=1

(δH(tk; ppp) + H(tk; ppp)− Xk)
2 −

KH

∑
k=1

(H(tk; ppp)− Xk)
2

+
KF

∑
k=1

(δF(tk; ppp) + F(tk; ppp)− Yk)
2 −

KF

∑
k=1

(F(tk; ppp)− Yk)
2 =

2
KH

∑
k=1

∫ T

0
δH(t; ppp)

(
H(t; ppp)− X(t)

)
δ(t − tk)dt

+ 2
KF

∑
k=1

∫ T

0
δF(t; ppp)

(
F(t; ppp)− Y(t)

)
δ(t − tk)dt + O(ε). (17)

11
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Following the main idea of the adjoint equation method [28], we multiply Equa-
tion (16a) by a smooth function ϕH(t), such that ϕH(T) = 0, and Equation (16b) by a
function ϕF(t), such that ϕF(T) = 0 (later these functions are completely reconstructed).
We integrate both sides of the results from 0 to T and add them together:

∫ T

0
(ϕH

CDr
0δH + ϕF

CDq
0δF)dt =

∫ T

0
ϕH(a11δH + a21δF)dt +

∫ T

0
ϕF(a12δH + a22δF)dt

− rαr−1δα
∫ T

0
ϕH Hdt + rσr−1δσ

∫ T

0
ϕH

HF
H + F

dt − rωr−1Lrδω
∫ T

0
ϕH

H + F
(ωr + H + F)2 dt

− rnr−1δn
∫ T

0
ϕH Hdt − rmr−1δm

∫ T

0
ϕFFdt + rαr−1δα

∫ T

0
ϕF Hdt

− rσr−1δσ
∫ T

0
ϕF

HF
H + F

dt + O(ε). (18)

Integrating, by parts, the left-hand side using formula (1) and using the facts that
ϕH(T) = 0, δH(0) = 0 and ϕF(T) = 0, δF(0) = 0, we obtain∫ T

0
(ϕH

CDr
0δH + ϕF

CDq
0δF)dt =

∫ T

0
δH CDr

T ϕHdt +
∫ T

0
δF CDq

T ϕFdt. (19)

Then, placing the expressions for CDr
T ϕH and CDq

T ϕF from (15) in (19) and using (17)
and (18), after some lengthy manipulations we find

J(ppp + δppp)− J(ppp) ≡ J(m + εh1, n + εh2, α + εh3, σ + εh4, ω + εh5)− J(m, n, α, σ, ω)

= qmq−1δm
∫ T

0
ϕFFdt + rnr−1δn

∫ T

0
ϕH Hdt + rαr−1δα

∫ T

0
(ϕH − ϕF)Hdt

+ rσr−1δσ
∫ T

0
(ϕF − ϕH)

HF
H + F

dt + rωr−1Lrδω
∫ T

0
ϕH

H + F
(ωr + H + F)2 dt. (20)

Now, taking ε2 = ε3 = ε4 = ε5 = 0, dividing the both sides of (20) by εh1 and passing
to the limit ε → 0, we obtain the formula for J′m in (14). In the same manner one can check
the validity of the other formulae in (14).

5.2. Caputo–Fabrizio Fractional Derivative Case

To solve the point observation problem (4) and (5), we minimize the same cost func-
tional J(ppp) (13):

Theorem 3. The gradient J′ppp ≡ (J′m, J′n, J′α, J′σ, J′ω) of the functional J(ppp) is given by (14), where
the functions {ϕH = ϕH(t), ϕF = ϕF(t)} are the unique solution to the adjoint final-value
problem

CFCDr
T ϕH = a11(H, F)ϕH + a12(H, F)ϕF − 2

KH

∑
k=1

(
H(t; p)− X(t)

)
δ(t − tk),

CFCDq
T ϕF = a21(H, F)ϕH + a22(H, F)ϕF − 2

KF

∑
k=1

(
F(t; p)− Y(t)

)
δ(t − tk),

ϕH(T) = 0, ϕF(T) = 0,

and X(t), Y(t) are, again, interpolants of the discrete functions, taking values Xk at t = tk,
k = 1, . . . , KH and Yk at t = tk, k = 1, . . . , KF, respectively.

The proof of Theorem 3 is analogous to that of Theorem 2.

12
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6. Numerical Algorithm

Since the focus was to provide an adequate parameter identification study and simula-
tion of the fractional-order model, we simply adopted the Volterra integral representation
of the solution to obtain the numerical results.

In this section, we briefly comment on the numerical solution to the direct
problem (3a)–(3c) and inverse problem (14) and (15). In general, such complex models do
not posses a closed-form or an analytic solution at all, so one has to stick to a numerical
approach. What is more, in our quasi-real framework, a solution to the direct problem is
required in order to take measurements to test the algorithmic performance in solving the
inverse problem.

Let us introduce the following piecewise–uniform mesh:

ωτ = {t0, ti = ti−1 + τi Ji, tK = T} for i = 1, . . . , K − 1, (21)

for K ≡ KN and K ≡ KF, and the respective subinterval division tj
i = ti−1 + jτi, j = 1, . . . , Ji,

where ∀i = 1, . . . , K − 1, ti are the time instances at which observations are taken; tj
i ,

j = 1, . . . , Ji and τi are the time nodes and the time steps corresponding to (ti−1, ti].
In the case of an integer–order model, there are many ways to solve it, and the issue

has been extensively studied; see, for example, [31]. We followed the method described
in [20], where the Volterra integral representation of (3a) and (3b) are discretized over the
mesh (21) and approximated via the trapezoidal rule to obtain the respective numerical
schemes. In an analogous manner, the backward system (15) is solved. In turn, the solution
to the inverse problem (3a)–(3c) and (5) is sketched with the aid of Algorithm 1.

Algorithm 1 Adjoint Equation Optimization Method

Initialize ppp0 ∈ Sadm and l = −1.
repeat

l := l + 1
Solve the direct problem (3a)–(3c) at the current value pppl . Then, define

H(tk; pppl) = Xk, k = 1, . . . , KH ; F(tk; pppl) = Yk, k = 1, . . . , KF

Solve the adjoint problem (15) via the method described in Section 5.1 (or Section 5.2)
Compute J′(pppl) by means of the formulae (14)
Define the optimization parameter rrr > 0 and compute the new parameter value pppl+1

by
pppl+1 = pppl − rrrJ′(pppl), rrr > 0, rrr ∈ R+

5 (22)

until ‖�pppl‖ := ‖pppl+1 − pppl‖ < εppp
Set p̌pp := pppl+1

The numerical approximation of the sought parameter ppp is p̌pp. In case there is no con-
vergence, one should choose another ppp0 and start the iterations again. The user-prescribed
tolerance εppp is chosen according to the practical needs, and the value of the descent param-
eter rrr (22) is chosen empirically, as can be seen in the following aection.

7. Model Simulations

In this section, computational results are presented, which confirm the efficiency and
robustness of the proposed approach. In our quasi-real test framework, we first solve the
direct problem to demonstrate the model. Then, we use the result for measurements to
solve the inverse problem.

7.1. Direct Problem

Let us solve the direct problem (3a)–(3c) with data from [20]. We set the number of
eggs laid by the queen per day L = 2000 and the half-saturation constant ω = 27,000. What

13
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is more, the maximal recruitment rate is α = 0.25 and the social inhibition coefficient is
σ = 0.75. We assume relatively low forager mortality rate m = 0.154 and the hive mortality
rate is n = m/18. We conduct experiments with two types of colonies, where the number
of foragers is F0 = 0 or F0 = 4500, while, in both cases, H0 = 4500. The considered time
interval is the maximal foraging season from the end of the winter to the end of the summer,
which equals T = 250 days. Finally, we use high values r = q = 0.9. The results are shown
in Figure 1.
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Figure 1. The colony population size for H0 = 4500: F0 = 0 (left), F0 = 4500 (right), modeled by the
Caputo derivative (3a)–(3c).

The colony survives well and is approaching a disease-free equilibrium state.
Now, we use the same setting, but we solve the problem (4). The results are plotted in

Figure 2.
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Figure 2. The colony population size for H0 = 4500: F0 = 0 (left), F0 = 4500 (right), modeled by the
Caputo–Fabrizio derivative (4).

They do not differ significantly from the results, obtained from the Caputo fractional
derivative model.

To conclude the experiments, regarding the direct problem, we simulate the population
dynamics with both models, when r = q = 0.95, as can be seen in Figure 3.

The difference between the two models is now more pronounced.
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Figure 3. The colony population size for H0 = 4500, F0 = 0 and r = q = 0.95, modeled by the Caputo
(3a)–(3c) (left) and Caputo–Fabrizio derivatives (4) (right).

7.2. Inverse Problem

Now, we solve the inverse problem. We follow the direct problem setting with
H0 = 4500 and F0 = 0 and r = q = 0.9. We seek the unknown parameter ppp, while provided
with observations of type (5). Let us set KN = KF = 11, while the observation times are
equidistantly distributed in the interval [t0, T]. The true values of the unknown parameters
are ppp = (m, n, α, σ, ω)� = (0.154, 0.0086, 0.25, 0.75, 27,000)�. We test Algorithm 1 with
initial approximation ppp0 = (0.2, 0.01, 0.3, 0.7, 30,000)�. The results are given in Table 1.

Table 1. Test with Caputo model (3a)–(3c).

Parameter pi
0 pi p̌i

∣∣pi − p̌i
∣∣ ∣∣pi − p̌i

∣∣
pi ri

m 0.20 0.1540 0.1538 2.2148 × 10−4 0.0014 3.40 × 10−13

n 0.01 0.0086 0.0086 1.0541 × 10−5 0.0012 3.25 × 10−15

α 0.30 0.2500 0.2501 1.1786 × 10−4 4.7145 × 10−4 4.50 × 10−13

σ 0.70 0.7500 0.7499 5.5183 × 10−5 7.3578 × 10−5 1.55 × 10−12

ω 30,000 27,000 26,995 5.1638 1.9125 × 10−4 2.55 × 10−3

The values of ppp were accurately recovered. The relative errors were of magnitude
1 × 10−4, which is acceptable. The gradient method required 52 iterations to converge.
The differences (13) between the observed values {Xk, Yk} and the implied ones {Hobs(tk; p̌pp),
Fobs(tk; p̌pp)} are as follows: JH(p̌pp) = 16.7854, JF(p̌pp) = 42.5513. The root mean squared errors
were, respectively, RMSEH(p̌pp) = 1.2353 and RMSEF(p̌pp) = 1.9668, which again imply the
accuracy of the results.

The convergence of the implied parameters ppp can be viewed of Figure 4. The last
graph shows the implied population dynamics, i.e., simulation with the implied parameters.
The difference is unnoticeable, as expected from the smallness of J(p̌pp).

Now, we test Algorithm 1 on the model (4), with other settings staying the same.
The results are presented in Table 2.

Table 2. Test with Caputo–Fabrizio model (4).

Parameter pi
0 pi p̌i

∣∣pi − p̌i
∣∣ ∣∣pi − p̌i

∣∣
pi ri

m 0.20 0.1540 0.1536 3.5212 × 10−4 0.0023 3.40 × 10−13

n 0.01 0.0086 0.0086 1.4920 × 10−5 0.0017 3.25 × 10−15

α 0.30 0.2500 0.2502 2.4980 × 10−4 9.9920 × 10−4 4.60 × 10−13

σ 0.70 0.7500 0.7503 3.0453 × 10−4 4.0604 × 10−4 1.60 × 10−12

ω 30,000 27,000 27,023 22.9362 8.4949 × 10−4 2.54 × 10−3
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Figure 4. The convergence of ppp = (m, n, α, σ, ω)� and the implied population dynamics (bottom

right).

In this case, 39 iterations were performed to reach convergence. The relative errors of
the recovered parameters were a bit higher that those of the Caputo model, but the residuals
JH(p̌pp) = 16.1655, JF(p̌pp) = 32.9409 were a bit smaller, as were the root mean squared errors
RMSEH(p̌pp) = 1.2123 and RMSEF(p̌pp) = 1.7305, respectively. The two calibrations demon-
strated similar results, which indicated that both the Caputo and the Caputo–Fabrizio
derivatives are adequate for modeling the honeybee fractional population dynamics.

Now, we perform a computational experiment with different values of p = 0.9 and
q = 0.95 [20]. The first to be tested was the Caputo model (3a)–(3c). The results are given
in Table 3.
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Table 3. Test with Caputo model (3a)–(3c) with different values of r and q.

Parameter pi
0 pi p̌i

∣∣pi − p̌i
∣∣ ∣∣pi − p̌i

∣∣
pi ri

m 0.20 0.1540 0.1539 7.3542 × 10−5 4.7754 × 10−4 3.36 × 10−13

n 0.01 0.0086 0.0086 6.0311 × 10−6 7.0493 × 10−4 3.34 × 10−15

α 0.30 0.2500 0.2501 1.1972 × 10−4 4.7887 × 10−4 4.57 × 10−13

σ 0.70 0.7500 0.7499 9.9080 × 10−5 1.3211 × 10−4 1.53 × 10−12

ω 30,000 27,000 27,016 16.0889 5.9589 × 10−4 2.63 × 10−3

In total, 41 iterations were required for the algorithm to converge. The residuals
were JH(p̌pp) = 262.2052, JF(p̌pp) = 2.4509, and the respective root mean squared errors
were RMSEH(p̌pp) = 4.8823 and RMSEF(p̌pp) = 0.4720. The parameters were recovered in a
precise manner.

Then, a test with the Caputo–Fabrizio model (4) is performed. The results are summa-
rized in Table 4.

Table 4. Test with Caputo–Fabrizio model (4) with different values of r and q.

Parameter pi
0 pi p̌i

∣∣pi − p̌i
∣∣ ∣∣pi − p̌i

∣∣
pi ri

m 0.20 0.1540 0.1541 7.8712 × 10−5 5.1112 × 10−4 3.30 × 10−13

n 0.01 0.0086 0.0085 6.7634 × 10−6 7.9053 × 10−4 3.34 × 10−15

α 0.30 0.2500 0.2501 1.0681 × 10−4 4.2724 × 10−4 4.61 × 10−13

σ 0.70 0.7500 0.7504 4.1135 × 10−4 5.4847 × 10−4 1.56 × 10−12

ω 30,000 27,000 26,690 10.0159 3.7096 × 10−4 2.63 × 10−3

Now, 34 iterations were needed for convergence, and the residuals, JH(p̌pp) = 1.7525,
JF(p̌pp) = 0.0625, and the root mean squared errors, RMSEH(p̌pp) = 0.3991, RMSEF(p̌pp) =
0.0754, were very low. The parameters were accurately reconstructed as well. Simulations
with the implied dynamics are plotted on Figure 5.
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Figure 5. The implied population dynamics with r = 0.9 and q = 0.95, modeled by the Caputo
(3a)–(3c) (left) and Caputo–Fabrizio derivatives (4) (right).

At first glance, it might appear that there was no pronounced difference between the
Caputo and Caputo–Fabrizio operators. Sometimes, this was, indeed, the case, as can be
seen Figures 1 and 2 in [22], but, in other cases, there was a significant deviation, as can
be seen in Figures 3 and 4, again in [22]. It was found that when the fractional order was
closer to 1, the difference vanished. We visualized the Caputo–Fabrizio derivative against
the Caputo one in the case of r = q = 0.95, compare Figure 6 (left) with Figure 3, and,
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in the case of r = 0.9, q = 0.95, compare Figure 6 (right), with Figure 5. In the first case,
the difference was more pronounced, in contrast to the second case, where the difference
was insignificant. These results do not act as a recommendation for or against the Caputo–
Fabrizio derivative. They only show how the Caputo–Fabrizio derivative differs from the
Caputo model in the particular cases. The Caputo–Fabrizio model is advantageous in view
of prototyping and computational effort, since the Caputo–Fabrizio fractional integral is
easier to implement and easier to perform numerical simulations with.
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Figure 6. Differences between Caputo and Caputo–Fabrizio models with r = q = 0.95 (left) r = 0.9
and q = 0.95 (right).

In particular, when solving the direct problem with r = q = 0.95, the Caputo model
required 0.53 s to finish, while the Caputo–Fabrizio needed 0.42 s, which yielded approx-
imately 20% computational gain. When solving the inverse problem with r = 0.9 and
q = 0.95, the algorithm for the Caputo model required 41 iterations to converge, while the
Caputo–Fabrizio model required only 34 iterations, which again implies the computational
efficiency of the latter.

For the sake of completeness, we conducted a test with an integer-order derivative
model, meaning that r = q = 1 and the fractional derivatives in (3a)–(3c) and (4) are
effectively substituted by a «regular» derivative with respect to time. The results are given
in Table 5 and Figure 7. The residuals, JH(p̌pp) = 21.1709, JF(p̌pp) = 133.9541, and the root
mean squared errors, RMSEH(p̌pp) = 1.3873, RMSEF(p̌pp) = 3.4896, were low, although higher
than the simulations with fractional derivatives. This empirically confirmed the benefit of
the fractional-order modeling.
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Figure 7. The implied population dynamics with the integer-order derivative model (r = q = 1).
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Table 5. Test with the integer-order derivative model (r = q = 1).

Parameter pi
0 pi p̌i

∣∣pi − p̌i
∣∣ ∣∣pi − p̌i

∣∣
pi ri

m 0.20 0.1540 0.1539 1.4229 × 10−4 9.2398 × 10−4 3.40 × 10−13

n 0.01 0.0086 0.0086 1.4492 × 10−7 1.6939 × 10−5 3.15 × 10−15

α 0.30 0.2500 0.2496 3.7857 × 10−4 1.5143 × 10−3 4.54 × 10−13

σ 0.70 0.7500 0.7500 3.9556 × 10−6 5.2741 × 10−6 1.60 × 10−12

ω 30,000 27,000 27,055 54.8891 2.0329 × 10−3 2.66 × 10−3

We concluded the experiments with a test of perturbed observations. In practice, each
electronic device has a certain instrumental error, and sometimes this has a tremendous
impact on the identifiability of the unknown parameters. To simulate this, we added
Gaussian noise to the observations (5). It meant that, with 95% confidence, the bias in a
single measurement did not go beyond 20%. We tested with such a high level of noise to
validate the robustness of the algorithm. The results are shown on Table 6 and Figure 8.

Table 6. Test with Caputo model (3a)–(3c) and perturbed observations with 20% noise.

Parameter pi
0 pi p̌i

∣∣pi − p̌i
∣∣ ∣∣pi − p̌i

∣∣
pi ri

m 0.20 0.1540 0.1543 2.5642 × 10−4 0.0017 3.40 × 10−13

n 0.01 0.0086 0.0086 1.5084 × 10−5 0.0018 3.25 × 10−15

α 0.30 0.2500 0.2497 3.0945 × 10−4 0.0012 4.50 × 10−13

σ 0.70 0.7500 0.7504 3.6251 × 10−4 4.8335 × 10−4 1.55 × 10−12

ω 30,000 27,000 27,007 7.2513 2.6857 × 10−4 2.55 × 10−3
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Figure 8. The implied population dynamics with model (3a)–(3c) and perturbed observations with
20% noise.

The number of iterations to convergence was 50 and, as expected, the residuals,
JH(p̌pp) = 11.9358, JF(p̌pp) = 97.0402, were higher and so were the root mean squared errors
RMSEH(p̌pp) = 1.0417 and RMSEF(p̌pp) = 2.9702. The relative parametric errors were of the
order 1 × 10−3, but they were not much larger than their counterparts from the exact
observations cases. All of these facts imply that the approach is capable of working with
real noisy data.

8. Conclusions

We employed a fractional-order model for honeybee population dynamics that bal-
ances simplicity and reality. The proposed adjoint state optimization approach allows one
to find the unknown parameters in an accurate and robust way. This is achieved via solving

19



Fractal Fract. 2023, 7, 311

a linear system of adjoint equations and minimizing a cost functional. The numerical
simulations proved the sound foundations of the approach.

The implemented algorithm has several advantages. One is that it can work with
scarce data, i.e., observations are not taken often and/or equidistantly. Another beneficial
feature is the ability to cope with very noisy measurements. A limitation of the algorithm
is that the optimization parameters rrr need to be adjusted. Some, though, may be given to
develop a procedure for automatically tuning these parameters.

A possible continuation of the current work is to employ different fractional operators
or more sophisticated models; as in, for example, [32,33]. Another interesting problem is
obtaining reasonable values of the fractional orders. A way to achieve this is to use an
approach similar to the bisection method [34]. Nevertheless, it is an open field to discover
and might be a matter of further research. We believe the current and future algorithms
give insight into managing honeybee colonies and help solve contemporary ecological and
environmental issues.
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Abstract: Inflammatory bowel disease (IBD), which encompasses two different phenotypes—Crohn’s
disease (CD) and ulcerative colitis (UC)—consists of chronic, relapsing disorders of the gastrointesti-
nal tract. In 20–30% of cases, the disease begins in the pediatric age. There have been just a few
studies that used fractals for IBD investigation, but none of them analyzed intestinal cell chromatin.
The main aim of this study was to assess whether it is possible to differentiate between the two
phenotypes in pediatric patients, or either of the phenotypes versus control, using the fractal dimen-
sion and lacunarity of intestinal cell chromatin. We analyzed nuclei from at least seven different
intestinal segments from each group. In the majority of colon segments, both the fractal dimension
(FD) and the lacunarity significantly differed between the UC group and CD group, and the UC
group and control group. In addition, the ileocecal valve and rectum were the only segments in which
CD could be differentiated from the controls based on the FD. The potential of the fractal analysis
of intestinal cell nuclei to serve as an observer-independent histological tool for ulcerative colitis
diagnosis was identified for the first time in this study. Our results pave the way for the development
of computer-aided diagnosis systems that will assist the physicians in their clinical practice.

Keywords: fractal dimension; lacunarity; medical image analysis; nucleus chromatin architecture;
inflammatory bowel disease

1. Introduction

Over the past two decades, medical image analysis has become an invaluable tool in
the field of life sciences. Amongst other descriptors, fractal-based parameters have been
used with success. As pointed out in [1], many natural and man-made objects can be
characterized using the classical geometry and integer dimension; however, the random
growth and/or branching of natural objects, at different scales, can be described in a
sufficiently precise and concise way only by means of a non-integer fractal dimension.
Some of the representative examples include a fern leaf, the branching in human lungs, a
broccoli head, and the electric discharge in a storm [1]. In fractal objects, self-similarity at
varying scales can be observed. Applications of fractal analysis to biomedical problems
have been well established in ophthalmology, in exhibiting the fractal structure of vascular
networks, and in the study of branching patterns of nerve dendrites, as well as in the
studies of altered tissue and cell characteristics in cancers [1–6].
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The dependences of the structural or functioning-related parameters of interest on
the scale can be expressed by the power-law equations [1,7,8]. The fractal dimension (FD),
which corresponds to the first-order mass moment of probability of finding a certain fractal
measure amount at a certain scale [9,10], can be easily determined from the power-law
dependence. In medical image analysis, the FD provides a statistical index that quantifies
complexity and pattern reproducibility. As the biological specimens exhibit pronounced
self-similarity at different scales, the FD is being increasingly used for diagnostic purposes
in medicine [3]. Another parameter, which is often used alongside the FD, is the lacunarity
(also sometimes referred to as “gappiness” or inhomogeneity). The lacunarity is calculated
by taking into account the first-order and second-order mass moments of probability of
finding a certain fractal measure amount at a certain scale [9]. It is a measure of heterogene-
ity and translational and rotational invariance that describes the space-filling property of
fractals [9]. It is highly useful as an additional parameter to differentiate natural surfaces
and textures with the same or similar fractal dimension [6,11].

In the field of medical science, the concept of fractals has been used for both
image [1–6,12–14] and signal [15–18] analysis. The fractal feature-based image analysis
employed so far in gastroenterology has shown promising results in cancer research [19–23]
and has helped in the analysis of wireless capsule endoscopy [24] and colonoscopy im-
ages [25]. On the other hand, fractal-based signal analysis methods have been applied
in gastroenterology in the study of digestion [26], colonic pressure [27], and intestinal
sound analysis [28]. Although it produced very good results in the investigations of other
intestinal pathologies, fractal-based methodology has rarely been used in inflammatory
bowel disease (IBD) research [11,29,30].

The FD of nuclear chromatin [31,32] proved to be a sensitive parameter capable of the
early detection of fine structural and textural changes in the cell nucleus. Nuclear chromatin
FD changes have been found during the processes of cell differentiation, development,
mitosis, apoptosis, aging, and cancer development [33,34]. Lacunarity has also been em-
ployed for chromatin structure evaluation in, among others, studies of apoptosis, postnatal
development, and aging. In many of the studies, lacunarity has been inversely related to
the FD, i.e., there has been a negative correlation between the FD and lacunarity, although,
depending on the underlying processes, this association does not apply in general [33].

IBD, which encompasses two major phenotypes—Crohn’s disease (CD) and ulcerative
colitis (UC)—consists of chronic, relapsing disorders of the gastrointestinal tract [35,36].
Continuous mucosal inflammation that starts from the rectum and proceeds to more
proximal colon segments, with variability in extent, is typical for UC [37]. On the other
hand, discontinuous transmural granulomatous inflammation occurring at any part of
the gastrointestinal tract characterizes CD [38]. The disease etiology is still not fully
elucidated, but it has become clear that genetic factors, environment, diet, and changes
in the microbiome are implicated in the pathogenesis. CD can affect any part of the
gastrointestinal system, although it is most often evidenced in the terminal part of small
intestine (terminal ileum) and the colon. On the other hand, UC is a disease restricted to the
colon and rectum [35]. Both phenotypes sometimes display extraintestinal manifestations,
which might stem from factors such as chronic inflammation or nutrient malabsorption [36].
In 20–30% of cases the disease begins in the pediatric age. We are currently witnessing an
increase in incidence in the pediatric population [39]. Pediatric ulcerative colitis sometimes
has an atypical endoscopic presentation like rectal sparing or patchy disease, which makes
the differentiation between the two IBD phenotypes far more challenging [40]. The new
European Crohn’s and Colitis Organization (ECCO) guidelines [41] stress the importance
of novel and possibly noninvasive biomarkers in diagnostics. The only recommended
biomarker of intestinal inflammation so far is fecal calprotectin. Hence, there is a great
demand for the invention of new efficient biomarkers for IBD, which could be combined
with the standard medical procedures [42].

There have been just a few studies [11,29,30] which have employed fractals for IBD
investigation. To the best of our knowledge, the fractals have not yet been applied in the
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analysis of the chromatin structure in the intestinal cells. However, there are indications that
alterations in nuclear chromatin are very likely to occur in many functional gastrointestinal
and motility disorders [43]. It has been demonstrated that the gene regulation by the
microbiota is linked to DNA methylation and chromatin accessibility changes [44]. The
underlying epigenetic mechanisms have recently been recognized as highly important in
the pathogenesis of inflammatory bowel disease (IBD). Therefore, possible alterations of the
fractal parameters describing the intestinal cell chromatin structure need to be investigated.
The main aim of this study was to assess whether it is possible to differentiate between
children with one of the two IBD phenotypes and children in a control group and to
differentiate between the two phenotypes, based on the intestinal cell chromatin fractal
dimension and lacunarity. Also, we checked the potential and the methods of application
of fractal analysis as an observer-independent tool for IBD diagnosis.

2. Materials and Methods

2.1. Patients

The current study was conducted on children newly diagnosed with IBD (14 cases of
CD and 10 cases of UC). The control group (N = 16) comprised children with irritable bowel
syndrome (IBS) (without intestinal inflammation) or healthy controls. Seven tissue samples
per patient were obtained by colonoscopy, corresponding to seven intestinal segments.
Each sample contained one to four endoscopic biopsies. The samples belonged to the
terminal ileum, cecum, ascending, transversal, descending, and sigmoid colon, and rectum,
respectively. In cases when the ileocecal valve appeared affected, an additional 8th sample
from the valve was obtained.

2.2. Intestinal Tissue Preparation and Staining

Intestinal tissue was fixed in 4% neutral buffered formaldehyde. The tissues were
dehydrated in graded ethanol, according to the routine procedure, and then embedded in
paraffin blocks and sectioned. The paraffin tissue blocks were cut into 4 μm thick sections
and stained with hematoxylin and eosin.

2.3. Medical Image Preprocessing

The following image preprocessing procedure was employed for each intestinal seg-
ment. Four different micrographs containing at least one intestinal crypt each were acquired
using the Olympus DP70 camera (Olympus BX50, Tokyo, Japan) and Analysis 5.0 software
(SoftImaging System, Olympus, Tokyo, Japan). The total microscope magnification was
1000 times. All the micrographs were saved as TIFF files (dimensions 4080 × 3072 pixels,
resolution 200 DPI, bit depth 24). Using the polygon tool of the ImageJ software (NIH,
Bethesda, MD, USA), twenty crypt cell nuclei per segment were acquired for every pa-
tient and transferred to the white background images (500 × 500 pixels). Such newly
acquired micrographs of nuclei were converted to monochromatic images using the Colour
Deconvolution plugin of the ImageJ software [45,46], with an option denoted as H&E 2.
The hematoxylin component (R: 0.49015734, G: 0.76897085, B: 0.41040173) is dominant for
nuclei; it was recorded as an 8-bit grayscale image and used in further analyses.

2.4. Niblack Thresholding

Prior to fractal analysis, all the nuclei images underwent local Niblack thresholding
and conversion to binary images. The local threshold value at each pixel was calculated by
taking into account the neighborhood around that pixel and summing the neighborhood
mean value of the grayscale intensity with the weighted standard deviation of the grayscale
intensity. Both the window radius defining a neighborhood size and the weighting coef-
ficient have to be adjusted empirically. The default value of the weighting coefficient is
0.2 for bright objects on a dark background and −0.2 for dark objects on a light background.
In our case, the default coefficient provided very good results for all the images, and it was
not changed. A window of a radius of w = 6 px, chosen empirically, was centered around
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each considered pixel. The local threshold at each pixel was then calculated according to
the expression:

tNi = μ(w) − 0.2·σ(w) (1)

In (1), μ(w) and σ(w) correspond to the mean and standard deviation of the grayscale
intensities within a local neighborhood window of size w. Thus, a different threshold for
every pixel is based on the grayscale properties of the neighboring pixels [47]; this was
employed to better outline the spatial distribution of two types of chromatin—euchromatin
(lighter) and heterochromatin (darker in appearance) [33]. Specifically, the altered spatial
distribution of these regions seems to appear macroscopically mostly through altered
nuclei texture.

2.5. Fractal Analysis

Fractal analysis was carried out on binary images using the FracLac plugin
(A. Karperien, Charles Sturt University, Australia) for the ImageJ software [48]. The fractal
dimension (Db) was calculated using the box counting method as well as the cumulative
mass method, with agreement of the results for the same sets of grids. We applied a scaled
series 7/8, meaning that an enlargement of a consequent grid cell size was about 1/8.
By using a scaled series, a sufficient number of relatively dense data points for fitting
the regression lines was easily obtained. Here, a total of 18 grid cell sizes were used to
obtain data points for fitting the regression curves to describe the scale–count power law
dependence. Specifically, grid cells sized ε ∈ {5, 6, 7, 8, 9, 10, 12, 14, 16, 18, 20, 23, 27, 30,
35, 40, 46, 52} px were used in both the box counting method and the cumulative mass
method. Figure 1 shows an example binary image of a nucleus and also illustrates the
typical nucleus size and the look of the chromatin texture, covered by grid cells of different
sizes, ε. Typical grid cell arrangements are shown for four out of the eighteen utilized sizes,
as denoted above each of the four plots. Twelve random grid origin positions per nucleus,
per each grid cell size, were used.

Figure 1. Grids of different grid cell sizes, ε, used to cover a binary two-dimensional (2D) object while
obtaining data points for the scale–count dependence. The example nucleus shown corresponds to
the 2nd patient in the CD group.

A change in the number of non-empty grid cells, N(ε), with a change in the grid cell
size, ε, was modeled by a best-fit regression line, whose slope served to estimate Db.

Db = −lim
ε→0

ln N(ε)

ln ε
(2)

The cumulative mass method makes an assessment of the probability of finding m
pixels inside the cell of a size ε, P(m, ε), by counting the pixels inside the grid cells and
normalizing the obtained pixel count data for the total probability of one, ∑

m
P(m, ε) = 1.

The first-order mass moment, M(ε), and the second-order mass moment, M2(ε), were
obtained as:

M(ε) = ∑
m

mP(m, ε), M2(ε) = ∑
m

m2P(m, ε) (3)
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The FD was then estimated from the (ε, M(ε)) data, as:

Dm = lim
ε→0

ln M(ε)

ln ε
(4)

In both cases, the adequacy of the regression line fit was estimated based on the
correlation coefficient, r2, which was close to one in all cases, confirming almost linear
data and high FD estimate accuracy. The lacunarity is calculated from the first-order and
second-order mass moments as:

λ(ε) =

〈
M2(ε)

〉− 〈M(ε)〉2

〈M(ε)〉2 (5)

2.6. Statistical Analysis

The normality of distribution was tested with the Shapiro–Wilk test. Depending on
the type of variables and the normality of the distributions, the results are presented as
frequency (percent), mean (±SD), and median (range). Statistical hypotheses were tested
using the ANOVA, Kruskal–Wallis, and Mann–Whitney tests and the chi square test. The
statistical hypotheses were analyzed at the significance level of 0.05. Statistical data analysis
was performed using IBM SPSS Statistics 22 (IBM Corporation, Armonk, NY, USA).

3. Results

3.1. Demographic and Clinical Characteristics

The demographic and clinical characteristics of the study participants, i.e., the pediatric
patients used in this particular study, are shown in Table 1.

Table 1. Demographic and clinical characteristics of IBD groups and control patients.

Variable Control UC CD Overall p

Gender

Male 60.0% 60.0% 78.6%
0.498

Female 40.0% 40.0% 21.4%

Age 11.3 ± 5.1 14.4 ± 3.3 12.1 ± 4.8 0.271

PUCAI 32.5 ± 19.0

PCDAI 17.5 ± 6.3
Abbreviations: CD—Crohn’s disease; UC—ulcerative colitis; PUCAI—Pediatric Ulcerative Colitis Activity Index;
PCDAI—Pediatric Crohn’s Disease Activity Index.

3.2. Histological Activity

The histological activities of UC and CD are represented with the corresponding
regional histological activity score and are presented in Table 2 and Figure 2 (Nancy score
for UC) and Table 3 and Figure 3 (GHAS score for CD).

Table 2. Regional Nancy score in six different colon segments.

Segment Nancy 0, 1 Nancy 2 Nancy 3 Nancy 4

S2 1 (10.0%) 3 (30.0%) 5 (50.0%) 1 (10.0%)

S3 2 (20.0%) 4 (40.0%) 2 (20.0%) 2 (20.0%)

S4 2 (22.2%) 3 (33.3%) 4 (44.4%)

S5 2 (20.0%) 3 (30.0%) 5 (50.0%)

S6 1 (10.0%) 3 (30.0%) 5 (50.0%) 1 (10.0%)

S7 2 (20.0%) 2 (20.0%) 5 (50.0%) 1 (10.0%)
Segment notation: S2—cecum; S3—ascending colon; S4—transversal colon; S5—descending colon; S6—sigmoid
colon; S7—rectum.
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Figure 2. Regional Nancy score in six different colon segments.

Table 3. Regional GHAS score in seven different colon segments.

Segment GHAS 1,2,3,4 GHAS 5,6,7 GHAS 8,9,10 GHAS 11–16

S1 3 (21.43%) 6 (42.86%) 4 (28.57%) 1 (7.14%)

S2 6 (42.86%) 5 (35.71%) 1 (7.14%) 2 (14.29%)

S3 6 (42.86%) 4 (28.57%) 2 (14.29%) 2 (14.29%)

S4 4 (28.57%) 4 (28.57%) 5 (35.71%) 1 (7.14%)

S5 7 (50.00%) 2 (14.29%) 2 (14.29%) 3 (21.43%)

S6 5 (35.71%) 4 (28.57%) 3 (21.43%) 2 (14.29%)

S7 7 (50.00%) 3 (21.43%) 4 (28.57%)
Segment notation: S1—terminal ileum; S2—cecum; S3—ascending colon; S4—transversal colon; S5—descending
colon; S6—sigmoid colon; S7—rectum.

 
Figure 3. Regional GHAS score in seven different colon segments.

3.3. Fractal Dimension

We estimated the FD of the epithelial cell nuclei to assess potential differences in the
chromatin organizational complexity between the two major IBD subtypes in the pediatric
age. The same analysis was performed to assess differences in the intestinal cell chromatin
complexity between either of the IBD phenotypes and the control subjects. A comparison
was performed on seven different intestinal segments (terminal ileum, cecum, ascending,
transversal, descending and sigmoid colon and rectum). The differences in the FDs of the
investigated nuclei are shown in Figure 4 and Table 4. Figure 4 shows the mean ranks ac-
cording to the nonparametric Kruskal–Wallis H test, where the mean rank is the arithmetic
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average of the positions in the sorted FD list for a total of 780 analyzed epithelial cell nuclei.
The blue lines show the statistically significant mean rank differences. The children with
UC had a significantly higher FD of the cell nuclei chromatin texture than the controls in
all colonic segments except for the rectum (p ≤ 0.035). Similar differences were revealed
between the UC and CD children. Specifically, the UC patients had significantly higher FDs
in comparison with the CD patients in every colon part except for the transversal colon
(p ≤ 0.010). On the other hand, the children with Crohn’s disease had FDs that were statis-
tically different from those of the controls only in the ileocecal valve and rectum (p = 0.005,
p = 0.014; respectively), with lower median FD values in the CD patients. Interestingly, the
terminal ileum of the CD patients, which is one of the most frequent localizations affected
by the disease, had a statistically different nuclear FD only when compared with that of the
UC patients.

Figure 4. Fractal dimension mean rank comparison between CD, UC, and control group, for
7 different intestinal segments: (a) terminal ileum, (b) cecum, (c) ascending colon, (d) transver-
sal colon, (e) descending colon, (f) sigmoid colon, (g) rectum.
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Table 4. Fractal dimension comparison between CD, UC, and control group.

Intestinal
Segment

Fractal Dimension (FD) Statistical Signif.
(p Values)Crohn’s Disease (CD) Ulcerative Colitis (UC) Control Group

S1 1.728(1.586–1.831)
1.722

(1.593–1.802)
1.728

(1.531–1.819)

CD–UC (0.042)

CD–Control (1.000)

UC–Control (0.107)

S2
1.732

(1.523–1.842)
1.755

(1.559–1.834)
1.741

(1.599–1.818)

CD–UC (<0.0001)

CD–Control (0.097)

UC–Control (0.035)

S3
1.732

(1.529–1.829)
1.752

(1.135–1.840)
1.736

(1.547–1.835)

CD–UC (<0.0001)

CD–Control (0.814)

UC–Control (0.004)

S4
1.736

(1.566–1.831)
1.738

(1.048–1.843)
1.728

(1.538–1.812)

CD–UC (1.000)

CD–Control (0.106)

UC–Control (0.023)

S5
1.734

(1.593–1.816)
1.747

(1.118–1.948)
1.734

(1.555–1.810)

CD–UC (0.004)

CD–Control (1.000)

UC–Control (0.001)

S6
1.722

(1.521–1.940)
1.749

(1.601–1.947)
1.727

(1.585–1.826)

CD–UC (<0.0001)

CD–Control (1.000)

UC–Control (<0.0001)

S7
1.719

(1.524–1.944)
1.733

(1.511–1.824)
1.730

(1.536–1.818)

CD–UC (0.010)

CD–Control (0.014)

UC–Control (1.000)

S8
1.731

(1.617–1.788)
1.749

(1.605–1.834) CD–Control (0.005)

The results are presented as median (range). Segment notation: S1—terminal ileum; S2—cecum; S3—ascending
colon; S4—transversal colon; S5—descending colon; S6—sigmoid colon; S7—rectum; S8—ileocecal valve.

3.4. Lacunarity

The size and spatial distribution of the gaps in the cell nuclei textures, their spa-
tial diversity, and the level of the image deviation from the rotational and translational
invariance was measured by determining the texture lacunarity. Lacunarity analysis re-
vealed additional significant differences between the Crohn’s disease and ulcerative colitis
(p ≤ 0.001), as well as between the ulcerative colitis and the control (p ≤ 0.002) (Figure 5,
Table 5). In Figure 5, the blue lines show the statistically significant mean rank differences
for lacunarity. A statistically significant difference was present throughout the colon with
the exception of the same segments as those in the FD comparison (the transversal part for
the CD–UC and the rectum for the UC–control comparison). The difference in the terminal
ileum nuclear lacunarity was not statistically significant among the compared groups. The
colon enterocyte nuclear lacunarity was the lowest in the UC group.
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Figure 5. Lacunarity mean rank comparison between CD, UC, and control group for intestine
segments: (a) cecum, (b) ascending colon, (c) transversal colon, (d) descending colon, (e) sigmoid
colon, (f) rectum.

3.5. Intersegmental Comparison

Intersegmental comparisons of the fractal dimension and lacunarity of the cell nuclei
texture are presented in Tables 6 and 7, respectively. One of the prominent results is a
statistically lower rectal nuclear FD in comparison with the other segments (except for
the sigmoid colon) in Crohn’s disease patients. When the UC pediatric patients were
considered, the nuclear FD proved highly useful in differentiating the colon (except for the
rectum) and terminal ileum, the bowel part not affected by disease (p < 0.002). On the other
hand, the FD across the control intestinal segments tended to be more uniform. As for the
nuclear lacunarity, statistically significant differences were, with few exceptions, detected
between the same segments as those in the case of the FD segment intercomparison.
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Table 5. Lacunarity comparison between CD, UC, and control group.

Intestinal
Segment

Lacunarity (Lac) Statistical Signif.
(p Values)Crohn’s Disease (CD) Ulcerative Colitis (UC) Control Group

S1
0.279

(0.172–0.430)
0.285

(0.209–0.455)
0.279

(0.197–0.517) All groups (0.074)

S2
0.282

(0.163–0.470)
0.253

(0.167–0.422)
0.266

(0.178–0.407)

CD–UC (<0.0001)

CD–Control (0.087)

UC–Control (0.002)

S3
0.279

(0.174–0.460)
0.260

(0.175–0.404)
0.274

(0.192–0.481)

CD–UC (<0.0001)

CD–Control (1.000)

UC–Control (<0.0001)

S4
0.271

(0.184–0.442)
0.269

(0.181–0.554)
0.280

(0.198–0.482)

CD–UC (0.350)

CD–Control (0.039)

UC–Control (<0.0001)

S5
0.273

(0.273–0.430)
0.258

(0.037–0.365)
0.275

(0.191–0.475)

CD–UC (<0.0001)

CD–Control (1.000)

UC–Control (<0.0001)

S6
0.287

(0.042–0.510)
0.257

(0.038–0.378)
0.280

(0.190–0.467)

CD–UC (<0.0001)

CD–Control (1.000)

UC–Control (<0.0001)

S7
0.289

(0.040–0.480)
0.272

(0.183–0.450)
0.276

(0.182–0.504)

CD–UC (0.001)

CD–Control (0.015)

UC–Control (0.909)

S8
0.276

(0.221–0.396)
0.263

(0.199–0.418) CD–Control (0.126)

The results are presented as median (range). Segment notation: S1—terminal ileum; S2—cecum; S3—ascending
colon; S4—transversal colon; S5—descending colon; S6—sigmoid colon; S7—rectum; S8—ileocecal valve.

Table 6. Intersegmental comparison of nuclear fractal dimension.

Intestinal Segment
Fractal Dimension (FD)

Crohn’s Disease (CD) Ulcerative Colitis (UC) Control Group

S1 1.728 (1.586–1.832) 1.723 (1.593–1.802) 1.728 (1.531–1.819)
S2 1.732 (1.524–1.843) 1.755 (1.559–1.834) 1.741 (1.600–1.819)
S3 1.732 (1.529–1.829) 1.752 (1.135–1.840) 1.736 (1.547–1.835)
S4 1.736 (1.567–1.831) 1.738 (1.048–1.843) 1.728 (1.538–1.812)
S5 1.734 (1.593–1.816) 1.747 (1.118–1.948) 1.734 (1.555–1.811)
S6 1.722 (1.521–1.940) 1.749 (1.601–1.948) 1.727 (1.585–1.826)
S7 1.719 (1.524–1.944) 1.733 (1.511–1.824) 1.729 (1.536–1.818)

Stat.sign.
(p values)

S7-S1, S7-S3, S7-S2,
S7-S5, S7-S4 (p < 0.025)

S1-S4, S1-S6, S1-S5, S1-S3,
S1-S2 (p < 0.002)

S7-S6, S7-S5, S7-S3, S7-S2
(p < 0.013)

S1-S2, S4-S2, S7-S2 (p < 0.090)

The results are presented as median (range). Segment notation: S1—terminal ileum; S2—cecum; S3—ascending
colon; S4—transversal colon; S5—descending colon; S6—sigmoid colon; S7—rectum.
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Table 7. Intersegmental comparison of cell nuclei texture lacunarity.

Intestinal Segment
Lacunarity (Lac)

Crohn’s Disease (CD) Ulcerative Colitis (UC) Control Group

S1 0.279 (0.173–0.430) 0.285 (0.209–0.455) 0.279 (0.197–0.517)
S2 0.279 (0.163–0.470) 0.253 (0.167–0.422) 0.266 (0.178–0.407)
S3 0.279 (0.174–0.460) 0.259 (0.175–0.404) 0.274 (0.192–0.482)
S4 0.271 (0.184–0.442) 0.269 (0.181–0.555) 0.280 (0.198–0.482)
S5 0.273 (0.184–0.430) 0.258 (0.037–0.365) 0.275 (0.191–0.475)
S6 0.287 (.0420–0.510) 0.257 (0.038–0.378) 0.280 (0.190–0.467)
S7 0.289 (0.040–0.480) 0.272 (0.183–0.450) 0.276 (0.182–0.504)

Stat.sign.
(p values)

S2-S7, S3-S7, S4-S7, S5-S7
(p < 0.022)

S2-S1, S3-S1, S4-S1, S6-S1
(p < 0.0001), S2-S7, S3-S7,

S6-S7 (p < 0.011) S2-S4
(p < 0.025)

S2-S1, S2-S4, S2-S6
(p < 0.040)

The results are presented as median (range). Segment notation: S1—terminal ileum; S2—cecum; S3—ascending
colon; S4—transversal colon; S5—descending colon; S6—sigmoid colon; S7—rectum.

4. Discussion

Our results indicate that pediatric UC patients have a significantly increased nuclear
structure and texture complexity, as measured with the FD, and decreased lacunarity
compared to the children suffering from CD and the controls. This is a very important
finding, given that the two IBD phenotypes are sometimes hard to distinguish. A significant
difference was confirmed in most of the colon parts. In addition, the only intestinal segment
with a significantly different nuclear fractal dimension and lacunarity between the CD
patients and the controls was the rectum. However, the ileocecal valve of the CD children
had a significantly decreased nuclear FD while the colon transversum had a statistically
decreased lacunarity compared to the controls.

To the best of our knowledge, our study is the first which employed the calculations
of the fractal dimension and lacunarity of intestinal cell nuclear chromatin in the IBD
investigation. However, fractal analysis has previously been applied in the study of other
intestinal pathologies. This methodology proved to be a promising aid in diagnosis [19,20]
and therapy response [22,23] in intestinal carcinomas. Furthermore, a methodology based
on fractal analysis was very accurate in abnormality detection in wireless capsule endoscopy
(WCE) images [24]. Moreover, the differentiation between healthy and pathologic rectal
mucosal vasculature can be accomplished with the fractal analysis of endoscopy images.
The same analysis also proved to be useful for distinguishing between different rectal
pathologies, e.g., colitis and vascular malformations [25]. Regarding IBD, fractals have been
successful in ulcer identification from WCE images (caused by CD and UC, among other
causes) [11] and bowel sounds detection in different intestinal pathologies, e.g., UC [30].
Finally, promising results were obtained in estimating the severity of intestinal fibrosis in a
study conducted on histological slides stained with Masson’s trichrome stain, which were
derived from surgical specimens of CD patients. Specifically, an extracellular matrix (ECM)
FD showed a significant correlation with a histological fibrosis score, and sections with
different histological fibrosis scores had significantly different FDs. Thus, this investigation
indicates that fibrosis progression in CD is more than a pure ECM accumulation and that it
also includes structural ECM changes [29].

It should be mentioned, however, that our FD results, although they were consistent
through the colon segments, still had some exceptions. Specifically, the nuclear chromatin
FD of the transversal colon epithelial cells was similar in the CD and UC patients. In the CD
patients, the median FD values were the highest in this segment. To better understand these
intersegmental differences, we calculated regional scores that represented the histological
disease activity for every segment. It appeared, in our group of patients with Crohn’s
disease, that in general its symptoms less often skipped the transversal segment than the
other segments (fewer patients had GHAS < 4, indicating remission). Furthermore, in this
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segment more Crohn’s disease patients had moderate active disease (GHAS 8–10) than in
the others. So, it appears that CD was more active in this part of colon. This finding strongly
suggests the possibility that differences in the pathophysiological disease activity might
have some influence on the FD results. However, this does not make fractal analysis less
attractive for future diagnostic applications since in routine pathohistological diagnostics
all seven different intestinal segments are being evaluated. Looking at the results of
all the segments comparatively, it was confirmed without any doubt that the UC fractal
dimension differed in a statistically significant way from the controls, as well as from the CD
patient group.

UC is known as a disease exclusive to the colon. Therefore, as expected, in these
patients the nuclear chromatin FDs in the terminal ileum were significantly lower than
those of the rest of the colon (the rectum was an exception). This finding proves once more
that the FD could serve as a very good discriminator of the UC-affected tissue.

In our study, the nuclear FD in the rectum was higher in the UC patients than in
the other groups; however, in this case the difference was not sufficiently pronounced to
provide a statistically significant result. Furthermore, in the UC patients, the nuclear FD in
this segment was statistically different from those of the other colon segments (apart from
the transversal colon). In general, the rectum is affected in a large majority of UC patients,
but in the pediatric population, rectal sparing is not unusual. Histological rectal sparing
absolute (normal rectum) or relative (less severe inflammation than in other colon parts)
rectal sparing is present in 30% of pediatric patients [49]. Among our patients, 20% had
absolute rectal sparing (Nancy 0 or 1), which probably mitigated the results. Therefore,
rectal biopsies, although the easiest to obtain, will not be sufficient for UC diagnostics
based on the FD, at least not in the pediatric population.

The rectum was also an interesting segment for the CD patients. This was the only
segment in which the nuclear FDs of these patients statistically differed from those of the
controls. The Crohn FDs generally tended to be lower than in the other groups, indicating
decreased complexity of textures for those nuclei. However, the FD in the rectum was
the lowest of all. In the intersegmental comparison among the CD patients, the rectal FD
was statistically lower than in any other segment except for the sigmoid colon (p < 0.025).
This makes the rectal nuclear chromatin FD a feature with a potential to be exploited in
CD diagnosis.

One possible explanation for the increased FD in most of the colon parts in the UC
patients might be an increase in euchromatin (“open” chromatin) versus the heterochro-
matin ratio. “Open” DNA is less densely packed, resulting in less intense staining and
lighter color. In a study exploring the effects of the chromatin physical structure on the tran-
scription of genes [31], both the mathematical predictions and the experimental evidence
pointed to a link between the increased heterogeneity of the chromatin structure (increased
fractal dimension) and the increased variation of the gene expression for most biological
processes. The chromatin heterogeneity is considered a ubiquitous hallmark of cancer
aggressiveness in tumor research [2,3,31,33]. However, changes in protein binding and
chromatin structure have also been shown to play a role in gastrointestinal diseases and
disorders, including the pathogenesis of inflammatory bowel disease (IBD) [44]. It might
be challenging to recognize the chromatin structural changes on standard HE-dyed tissue
slides [2]; this is of primary interest given that only such slides are available for diagnostic
purposes. On the other hand, open chromatin can be distinguished by applying fractal
analysis as it gives higher nuclear FD values [2,50]. The results of our study suggest that
UC patients have a predominantly increased euchromatin/heterochromatin ratio in entero-
cyte nuclei compared to the CD patients and controls. One of the epigenetic mechanisms
causing chromatin to be in a more open state is histone acetylation. In this process, the
enhanced unwrapping (“opening”) of DNA allows transcription [51]. On the other hand,
the opposite process, histone deacetylation, enables histone and DNA binding, limiting
access to DNA again [52]. It has been demonstrated that certain enzymes responsible
for histone deacetylation—Sirtuin (SIRT)1, SIRT6 and histone deacetylase (HDAC)9—are
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decreased in the inflamed colon tissue of UC patients compared to the same tissue of CD
patients [53]. Decreased HDAC activity in UC patients might lead to enhanced histone
acetylation and an increased amount of euchromatin, which in turn leads to a significantly
higher FD compared to that of the CD patient group. Interestingly, HDAC inhibitors are
seen as possible new drugs for UC considering their ability to decrease inflammation in
colonic epithelial cells and dextran sulfate sodium-induced colitis [54].

According to the literature, the increase in chromatin lacunarity is often followed by
the decrease in chromatin FD [33]. In this regard, our study is in line with the others. In
colon tissue, nuclear lacunarity revealed the same statistically significant differences as the
FD. However, lacunarity proved to be an even better colon CD discriminator than the FD
since it was able to differentiate CD from the controls in more intestinal segments than
the FD.

5. Conclusions

We conducted a detailed study of the fractal parameters corresponding to the altered
textures of intestinal cell nuclei in pediatric patients as the prospective biomarkers for IBD.
Although the changes in cell nuclei chromatin structure have been observed in cancers and
have been observed to also coincide with the altered nuclei textures seen in histological
samples [2,4,33], here, for the first time, a similar methodology was applied to IBD. The
changes occurring in the protein binding and chromatin structure in gastrointestinal dis-
eases motivated us to investigate the cell nuclei textures in IBD. We demonstrated that
the intestinal nuclei of children suffering from UC compared with children with CD and
a control group statistically increased the nuclear FD and decreased nuclear lacunarity.
Furthermore, the current study provided evidence that in CD pediatric patients the rectum
had a decreased nuclear FD and an increased lacunarity compared to the control group.
Additionally, in the comparison between the segments, the rectum was different from
almost all the other segments in terms of the nuclear FD and lacunarity. Therefore, the
fractal analysis of intestinal cell nuclei was proven to have the potential to be an observer-
independent histological tool for ulcerative colitis diagnosis. In addition, the rectum of
CD pediatric patients also seems to be a very good candidate for the development of
fractal-based diagnostics. Further studies are necessary to confirm our findings and to
check on the consistency of the results in repeated trials. Furthermore, the inconsistency of
the nuclear FD and lacunarity between the rectum and rest of the colon in children with
CD is interesting, and it should be more thoroughly investigated. Our results pave the way
for the development of computer-aided diagnosis systems that will assist in the clinical
practice in gastroenterology.
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Abstract: This paper presents a novel unsupervised deep learning methodology for the analysis of
self-assembled structures formed in evaporating droplets. The proposed approach focuses on cluster-
ing these structures based on their texture similarity to characterize three different mixing procedures
(turbulent, laminar, and diffusion-based) applied to produce Viscum album Quercus 10−3 according
to the European Pharmacopoeia guidelines for the production of homeopathic remedies. Texture
clustering departs from obtaining a comprehensive texture representation of the full texture patch
database using a convolutional neural network. This representation is then dimensionally reduced to
facilitate clustering through advanced machine learning techniques. Following this methodology,
13 clusters were found and their degree of fractality determined by means of Local Connected Fractal
Dimension histograms, which allowed for characterization of the different production modalities.
As a consequence, each image was represented as a vector in R13, enabling classification of mixing
procedures via support vectors. As a main result, our study highlights the clear differences between
turbulent and laminar mixing procedures based on their fractal characteristics, while also revealing
the nuanced nature of the diffusion process, which incorporates aspects from both mixing types.
Furthermore, our unsupervised clustering approach offers a scalable and automated solution for
analyzing the databases of evaporated droplets.

Keywords: unsupervised clustering; patterns from evaporated droplets; plant extract; mixing proce-
dures

1. Introduction

Computerized microscopy image analysis is crucial in various fields, including mate-
rials science, pathology, drug discovery, and biomedical research [1]. However, this field
faces challenges due to data complexity, as microscopic images contain intricate struc-
tures that require advanced analysis methods [2]. Traditional approaches, such as manual
annotation [3], morphological operations [4], segmentation techniques [5], and feature
extraction using descriptors [6], heavily rely on human intervention, leading to subjectivity
and limited adaptability [7–9]. Nevertheless, recent advances in computer vision and deep
learning have significantly impacted microscopic image analysis, providing more auto-
mated and accurate approaches for processing and interpretation [1,10]. In pharmaceutical
research, microscopic image analysis is essential for examining pharmaceutical extracts and
understanding their properties and quality [11]. The Droplet Evaporation Method (DEM)
is a notable method used for this purpose, involving the deposition of a liquid sample
onto a surface and studying patterns formed in the droplet residues dried under controlled
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conditions [12,13]. Recent work [14] revealed significant differences in DEM patterns of
pharmaceutical preparations with varying mixing procedures, emphasizing the importance
of precise mixing control to ensure product quality and stability [15]. In many studies,
DEM images were analyzed exclusively through visual evaluation [16]. To improve this,
researchers have introduced the use of fractal descriptors [17–20], GLCM properties [21],
Gabor filters [22], and Fourier transform (FT) [23] for texture feature extraction. Notably,
deep learning models, especially convolutional neural networks (CNNs), have shown
remarkable capabilities in capturing and learning complex patterns and features from
microscopic images, including textures [24].

In a previous study [25], we proposed a semi-supervised deep learning-based method-
ology for analyzing three different mixing procedures (turbulent, laminar, and diffusion-
based) used to produce Viscum album Quercus 10−3 according to the European Pharma-
copoeia guidelines for homeopathic remedies [26]. This approach was based on the clus-
tering of full texture patches with a texture similarity criterion. The mixing procedure
characterization was restricted to three clusters since each procedure was used as an input
to the Dense Convolutional Neural Network (DenseNet) architecture. An approach to
overcome this restriction is unsupervised deep learning clustering [27], one of which im-
plements clustering algorithms on coded texture representations obtained as a result of the
hierarchical processing of a CNN model [28]. To create these deep texture representations,
a pre-trained CNN model, such as VGGNet, ResNet, or InceptionNet, is trained on a
large-scale dataset (e.g., ImageNet). Although the CNN model is initially trained for a
classification task, it can be reused for other purposes, such as texture representation [29].

In this paper, we propose a novel unsupervised deep learning methodology for cluster-
ing DEM patterns obtained from differently produced Viscum album Quercus 10−3 dilution
variants [14]. With the aim of characterizing the mixing modalities used to produce phar-
maceutical extracts, we propose a method based on Regions of Interest (ROI) analysis
through four stages. The first stage consists of the automatic selection of patches that
present a rich texture along the database. In the second stage, a Deep Texture Representa-
tion (DTR) of each patch is obtained through the processing of the convolutional neural
network architecture VGG-19. During the third stage, the deep texture representations
undergo dimensionality reduction through Principal Component Analysis (PCA) to cluster
similar textures using hierarchical clustering. Finally, outliers are re-clustered by the Dense
Convolutional Neural Network (DenseNet) in the fourth stage. This scheme allowed us
to automatically identify and discriminate thirteen clusters of patches that share texture
similarity in the DEM image database. Once the patches were clustered, we verified their
fractal degree using Local Connected Fractal Dimension (LCFD) histograms. In addition,
with this clustering methodology we were able to determine image patch composition for
the purposes of classifying the three mixing procedures via support vector machines.

2. Materials and Methods

The utilization of plants in this study adheres to international institutional guide-
lines. The Viscum album Quercus extract used for DEM experimentation was obtained
from ISCADOR AG in Arlesheim, Switzerland. Viscum album L. was collected from Quer-
cus robur plants growing in their natural habitats in Switzerland, which belonged to
ISCADOR AG; hence, no harvesting permission was required. The plants were identified
by Mirio Grazi from the Society for Cancer Research in Arlesheim, Switzerland. A voucher
specimen (C.H. Quaresma 18.329) was deposited at the Herbarium of the Faculdade de
Formação de Professores, Universidade Estadual do Rio de Janeiro, Brazil. Viscum album
preparations are used in medicine, including as supportive treatment for cancer [30–32].

The DEM image database analyzed here was generously provided by the Society
for Cancer Research, Arlesheim, Switzerland under a data-sharing agreement. This
valuable database, as detailed in reference [25], consists of 606 images in resolution of
960 × 720 pixels. These images were obtained using the droplet evaporation method ap-

39



Fractal Fract. 2023, 7, 733

plied to analyze three Viscum album Quercus 10−3 (VAQ) dilution variants produced using
the following different mixing procedures:

1 Turbulent Flow (Variant T): The mixing process involves using a machine to apply
vertical strokes. This set comprises a total of 206 images.

2 Laminar Flow (Variant L): The mixing process is carried out manually, inducing a
sequence of vortex-like flows. This set comprises a total of 196 images.

3 Diffusion Control (Variant D): This set, consisting of 204 images, represents the control
variant where the mixture remains as undisturbed as possible, relying on diffusion
processes for dilution.

The Rolling Ball and Sliding Paraboloid technique was employed for background
removal in all the images. This involved calculating a local background value for each
pixel by averaging it over a large surrounding ball. Subsequently, this calculated value was
subtracted from the original image, effectively eliminating significant spatial variations in
background intensities [33]. This approach successfully reduced glare effects commonly ob-
served in microscopic images due to their physical characteristics. It is worth noting that the
database used for this process did not include images with saturated or blurred conditions,
as these conditions could potentially reduce the model’s ability to distinguish textures.

The proposed DEM image texture analysis method is shown in the flowchart of
Figure 1. The next Sections of this paper are organized in accordance with the flowchart
as follows: first, we explain our method for automatic full texture patch selection; the
codified texture information obtained by CNN is described later; then, the clustering
process is detailed in the last two stages; in the last sections, we provide characterization
and classification results, as well as a discussion and concluding remarks.

Figure 1. Flowchart of the proposed unsupervised learning approach for DEM image texture

clustering. The texture analysis is based on four stages: (1) automatic selection of patches that
observe rich texture along the database; (2) texture encoding through a VGG-19; (3) clustering of
patches that share texture similarity; and (4) refinement of the clustering using DenseNet.

2.1. Automatic Full Texture Patch Selection

When encoding texture information through a CNN for a specific dataset, such as the
VAQ database, it is important to consider regions of interest that exhibit full texture. This
ensures that the network learns from all relevant image information and prevents biased
learning, resulting in a more balanced and complete understanding of the data. To this
end, we use the full texture patch selection method previously developed in [25], which
consists of selecting patches of size 128 × 128 pixels that correspond to 108.4 × 108.4 μm
to then undergo skewness analysis and PCA outlier removal to define patches observing
full texture. Automatic selection of full texture patches (Stage 1) led to the formation of the
patch database, containing 705 patches from each mixing procedure (D, diffusion control;
T, turbulent flow; L, laminar flow), being used as inputs for the proposed unsupervised
methodology in this paper. It is important to mention that our technique is not restricted to
128 × 128 size patches. Depending on hardware capabilities, larger sizes such as 256 × 256
and 512 × 512 could also be used.
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2.2. Deep Texture Representation Using Convolutional Neural Network

The deep texture representation (DTR) used in this paper borrows ideas from [34],
in which the texture encoding of the patch database was obtained through the sequential
processing of the VGG-19 architecture, exhibiting advantages over other architectures. As
VGG-19 was previously trained on large-scale Imagenet datasets for object recognition,
it provides a wide variety of convolutional primitives for generalizing texture patterns.
It is important to note that we did not train or fine-tune VGG-19 using the Viscum album
dataset, as our aim was to obtain DTR from every image patch using the already-computed
parameters and weights of VGG-19.

A linearly rectified convolution, with filters of size 3 × 3 and a maximum pooling
in non-overlapping regions of 2 × 2, was used for the two fundamental computations of
the used architecture. The deep texture representation was obtained by applying these
computations in an alternating manner throughout five convolutions. Since the number of
feature maps is doubled after the third pooling layer, the dimension of the DRT is 512 × 512.
A schematic overview of the network process for obtaining the DRT is provided in Figure
2.

Figure 2. Deep texture representation process. The deep texture representation (DTR) is computed
as the feature response of five convolutional layers of the VGG-19 architecture.

As the deep texture representation is obtained using the VGG-19 CNN architecture,
the generated model provides a stationary description that fully specifies the texture of the
input patches. This DTR matrix is the representation used for texture clustering purposes.

2.3. Dimensionality Reduction of the Deep Texture Representation

Since the dimension of the deep texture representation (512 × 512) is not tractable for
clustering algorithms, dimensionality reduction is required. To this end, we performed
a principal component analysis (PCA) of the DTR matrices database. Subsequently, we
used DTR matrices to construct the training set data matrix, Tk×n = [tk,1 | tk,2 | · · · | tk,n],
where n = 2115 (705 patches for each mixing procedure) is the number of patches and
k = 512 × 512 = 262, 144 is the number of texture values encoded in each DTR matrix.
The differences from the average t̄ are used to build the centered training data matrix
T̄k×n = [(t1 − t̄) | (t2 − t̄) | · · · | (tn − t̄)]. The covariance matrix is calculated as
Σn×n = T̄

T
T̄. Given that Σ is symmetric, there always exists an orthogonal basis Un×n

and a diagonal matrix Λn×n that satisfies the relationship Σ = UΛUT , where Un×n is the
eigenvector matrix and the eigenvalues of Σ are the diagonal elements of matrix Λ.

Figure 3a shows that, with 35 components, the PCA model constructed from the DRT
matrices achieves 95.96% variability. In contrast, Figure 3b shows that the PCA constructed
directly from the pixel information of the patches (i.e., k = 128 × 128 = 16,384) requires
1723 components to achieve 95.95% of the variability. This indicates that the variables in the
DTR matrices are highly correlated and, therefore, can be effectively represented by a few
principal components. We selected l = 35 principal components based on the variability
achieved by the DTR model (see Figure 3a). The texture encoded information of the DTR
matrices in the column space of U is given by Ak×l = Tk×nÛn×lΛ

−1
l×l . The dimensionality
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reduction is defined by the orthogonal projection of the centered matrix T̄ in the column
space of A by the expression T̂l×n = AT

k×lT̄k×n. This expression allows movement from
a dimension k = 262,144 (512 × 512) to a reduced-dimension space l = 35, which will
facilitate, in the context of computational efficiency, the grouping of textures by means of
hierarchical clustering.

(a) (b)
Figure 3. Percentage of variability reached by the models of two different pattern representations.

(a) Accumulated eigenvalues percentage of DTR. (b) Accumulated eigenvalues percentage from pixel
information.

Figure 4 shows the DTR matrices from representative patches of DEM images from
differently mixed VAQ variants, as well as their respective reconstructions through the
35-dimensional PCA model.

(a)

(b)

(c)
Figure 4. Representative patches of DEM images of differently mixed VAQ variants with their

respective DTR matrices, projection vectors in R35, and PCA reconstructions. (a) DTR matrix and
its reconstruction with 35 projection coefficient values from a representative D patch. (b) DTR matrix
and its reconstruction with 35 projection coefficient values from a representative T patch. (c) DTR
matrix and its reconstruction with 35 projection coefficient values from a representative L patch.
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It is possible to notice that the coded information is denser in patch L (see Figure 4c)
compared to patch T (see Figure 4b), which is in agreement with the visual information of
each patch.

2.4. DTR Clusterization in the Reduced-Dimension Space

In order to cluster projections of DTR matrices on the reduced space, we used the
hierarchical clustering algorithm [35] since it provides reproducible results and is not
limited to the spheroidal shape of the data [36]. However, because the algorithm is sensitive
to outliers [37], PCA outlier removal was performed before clustering.

By analyzing the first 35 principal components, 369 outliers were extracted considering
a standard deviation of 2, and the remaining 1746 patches (textures) were clustered. In
other words, we used the matrix T̂l×n−m as input to the hierarchical clustering, where m
corresponds to the 369 outliers and l = 35 is the encoded texture information represented
in the reduced-dimension space.

The number of clusters was determined through the elbow method [38] which iterates
over the number of clusters and obtains the intra-cluster variance of each iteration. The
optimal number of clusters for our database was 13, i.e., beyond that point (see Figure 5a),
increasing the number of clusters did not lead to a significant reduction in the distortion
score. Clustering results are presented in Figure 5b as a distribution of patches along
the 13 clusters. The orange portion of the bars indicates the number of patches that are
considered outliers based on the analysis of their principal components. In total, 925 outliers
were extracted, 369 before hierarchical clustering and 556 after; the latter can be attributed
to the inherent limitations of the hierarchical clustering algorithm, primarily due to its
reliance on the Euclidean distance metric and its proximity-based clustering approach. In
certain cases, if an outlier is in close proximity to a cluster, it may be merged with that
cluster, even if it does not exhibit significant similarity with the majority of data points [39].

(a) (b)
Figure 5. Graphs of the elbow method and hierarchical clustering results. (a) The optimal number
of clusters as a function of the distortion score is shown. (b) Patch distributions among clusters and
their outliers are shown.

2.5. Clustering Refinement

To finally determine the cluster each outlier belonged to, we proposed a clustering
refinement stage based on a Dense Convolutional Network architecture DenseNet121 [40].
The training dataset consisted of patches of the 13 outlier-free clusters (black bars in
Figure 5b). With the aim of reducing learning bias, we trained DenseNet121 with the same
number of samples per cluster by increasing the training database through 5 rotations: 30°,
60°, 90°, 120°, and 150°. Since cluster 7 was the one with the lowest number of patches, it
limited data augmentation for the rest of clusters, which were randomly selected until the
same number of patches as (augmented) cluster 7 was achieved.

Testing data consisted of the outliers, which were reorganized into the 13 clusters
using the DenseNet121 architecture. The results presented in Figure 6 show that, after
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clustering refinement, there was a significant reduction in the number of final outliers,
having only 31, representing 1.46% of the total patch database, revealing increased cluster
cohesiveness after clustering refinement.

Figure 6. Patch distribution among the 13 classes. Noticeable reduction in outliers after clustering
refinement.

To assess the fractality of each cluster, we calculated the weighted area under the curve
(WAUC) of the average LCFD histogram for each cluster, as illustrated in Figure 7. In other
words, WAUC was obtained as a result of the inner product of the frequency and the Local
Connected Fractal Dimension for each of the 13 average LCFD histograms. This enabled us
to arrange the clusters in ascending order based on their fractality degree.

Figure 7. Average LCFD histograms of clusters. The average LCFD histograms are shown in
ascending order, i.e., cluster 13 exhibits the highest fractality degree and cluster 1 exhibits the lowest
fractality degree.

In Figure 8 we present patch samples of each cluster, in ascending order according to
their degree of fractality. It is noteworthy that each cluster can be visually differentiated. In
the samples of cluster 1, there is a great dispersion of the particles; in clusters 6 and 7, the
particles are joining to generate structures that determine a greater fractality; and in the
last clusters, complex patterns with intricate details are observed.
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Figure 8. Samples of the thirteen clusters defined through the proposed unsupervised framework.

The samples of the clusters are ordered according to their fractal degree, i.e., cluster 1 being the least
fractal and cluster 13 the most fractal. The size of the patches is 128 × 128 pixels which corresponds
to 108.4 × 108.4 μm.

3. Results at the Image Level

Figure 9 exhibits the distribution of patches with respect to the DEM image of each
mixing procedure. The x-axis corresponds to the image number, while the y-axis corre-
sponds to the number of clusters, ordered from least to most fractal. The cells, represented
in grayscale, refer to the number of patches in each cluster, where white pixels indicate
the highest number of patches and black pixels the absence of patches. Note how the
distribution of patches in the turbulent mixing procedure shows a bias toward the bottom
part (Figure 9b), revealing that this procedure tends to simplify fractal composition, re-
ducing the complexity and intricacy that are often associated with fractal patterns. This
may be attributed to the turbulent nature of the mixing process, which may lead to a more
chaotic and disordered distribution of elements within the image. On the other hand,
Figure 9c shows that the patches of the laminar mixing procedure accumulate towards
the top, revealing that inducing a vortex-like flow results in a higher degree of fractality.
Finally, the distribution of patches in the diffusion mixing procedure (Figure 9a), presents
a uniform behavior, that is, the images of this mixing procedure tend to exhibit patches
along the whole fractal spectrum.
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(a)(a)

(b)(b)

(c)

Figure 9. Patch distribution at image level. (a) Distribution of patches in the images of D mixing
procedure. (b) Distribution of patches in the images of T mixing procedure. (c) Distribution of patches
in the images of L mixing procedure.

As a result of clustering refinement, each image can be represented as a vector in
R13, which characterizes the patch composition of the image. These vectors were used for
classification purposes by means of a support vector machine (SVM). To this end, 60% of
the vectors were considered for training and the remaining 40% for testing. Results are
shown as a confusion matrix in Figure 10, where it is revealed that the best classification
was obtained in turbulent flow with 72% accuracy, followed by 60% for laminar flow, and
the lowest accuracy corresponded to the diffusion mixing procedure with 33%. These
results are congruent with the patch distribution shown in Figure 9 since the distributions
of mixing procedures T and L exhibit a particular footprint that allows for separability.
However, mixing procedure D presents a uniform distribution, resulting in 43% confusion
regarding turbulent flow and 24% regarding laminar flow. These results suggest that
mixing procedure D holds the base fractal footprint of the pharmaceutical extract, with a
greater similarity to procedure T than to procedure L.

Figure 10. Confusion matrix. Results of the classification task between mixing procedures using a
support vector machine are shown.

46



Fractal Fract. 2023, 7, 733

4. Discussion

The analysis of DEM patterns obtained from differently mixed variants of Viscum album
Quercus 10−3 (turbulent, laminar, and diffusion-based mixing) present several challenges
due to the complexity and variability of the micrographs. As the DEM patterns of the three
VAQ variants originate from the same plant extract, a diverse range of textures is observed,
making their differentiation a challenging task. Traditional techniques applied directly such
as Gabor filters, Gray Level Co-occurrence Matrix (GLCM), and fractal-based measures do
not succeed in determining the imprint of each mixing procedure. In a previous study [25],
we introduced an analysis using a semi-supervised deep learning framework, leveraging a
Dense Convolutional Network architecture to characterize the mixing procedures. Through
this approach, we successfully identified three distinct groups of textures. However, one
area of improvement worth considering is the restriction of categorizing the patterns only
using three texture groups. This constraint restricts missing subtle variations or additional
patterns that could be relevant to understand and differentiate plant extract’s behavior
under different mixing conditions.

Motivated by this, the present study explores an unsupervised learning solution. By
employing the proposed methodology, we successfully identified and defined thirteen dis-
tinct texture groups found within the VAQ database. These texture groups were organized
based on their fractality degree, determined by calculating the weighted area under the
curve of the average Local Connected Fractal Dimension histograms. The results obtained
through this approach provided a much more detailed characterization of the patterns,
enabling us to gain valuable insights into the fractal distribution across the DEM images
of VAQ variants obtained by different mixing procedures. This deeper understanding of
the fractal composition sheds light on the underlying structures and variations present in
the microscopic textures of dried droplets. Moreover, we leveraged the R13 vectors, which
describe the fractal composition of each image, to perform classification using a support
vector machine (SVM). By adopting an unsupervised learning strategy, we overcame the
limitations of relying on predefined labels and allowed the data to reveal the inherent
structures naturally. This data-driven approach not only provided a more comprehensive
characterization, but also facilitated the discovery of previously unnoticed patterns and
relationships within the VAQ database.

5. Conclusions

Through this paper we have shown that it is possible to characterize the DEM images of
the VAQ dataset as vectors of 13 values, thus assessing classification attributes, per image, at
the level of mixing procedures. We found that turbulent and laminar mixing modalities are
more separable between them than they are with diffusion, i.e., diffusion exhibits features
that are characteristic of both laminar and turbulence motions. These findings provide
more detailed evidence that there may be an original DEM imprint in the diffusion state,
which either becomes stronger (more fractal) with laminar motion or debilitates its fractality
(is destructed—becomes less fractal) with turbulent motion. Our study suggests that the
proposed unsupervised methodology for texture clustering provides a systematic and
efficient approach to identify distinct DEM texture patterns within a set of pharmaceutical
extract micrographs. This approach improves how succussions can be understood and
interpreted in the context of solution preparations, which is relevant for homeopathy basic
research as well as the manufacturing and distribution of pharmaceutical preparations.

Finally, we must note that clustering through deep learning techniques has gained
much attention in the community. An example of a major clustering work is [41], which ap-
plies generative adversarial networks to generate deep representations. Compared to ours,
such representations would demand a higher computational cost and more specialized
hardware. Additionally, our work is the first to consider a refinement module such as the
one based on DenseNet proposed in this paper. For a recent review in clustering methods
see [42].
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The following abbreviations are used in this manuscript:

VAQ Viscum album Quercus
CNN Convolutional Neural Network
DTR Deep Texture Representation
DEM Droplet Evaporation Method
PCA Principal Component Analysis
DenseNet Dense Convolutional Neural Network
WAUC Weighted Area Under the Curve
LCFD Local Connected Fractal Dimension
SVM Support Vector Machine
GLCM Gray Level Co-occurrence Matrix
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Abstract: In this paper, a hybrid cuckoo search technique is combined with a single-layer neural
network (BHCS-ANN) to approximate the solution to a differential equation describing the curvature
shape of the cornea of the human eye. The proposed problem is transformed into an optimization
problem such that the L2−error remains minimal. A single hidden layer is chosen to reduce the
sink of the local minimum values. The weights in the neural network are trained with a hybrid
cuckoo search algorithm to refine them so that we obtain a better approximate solution for the
given problem. To show the efficacy of our method, we considered six different corneal models.
For validation, the solution with Adam’s method is taken as a reference solution. The results are
presented in the form of figures and tables. The obtained results are compared with the fractional
order Darwinian particle swarm optimization (FO-DPSO). We determined that results obtained with
BHCS-ANN outperformed the ones acquired with other numerical routines. Our findings suggest
that BHCS-ANN is a better methodology for solving real-world problems.

Keywords: nonlinear biosystem; corneal geometry; neural network; artificial intelligence; cuckoo
search; medical image; human eye

1. Introduction

Eyesight is an indispensable sense for every organism that does not only connect with
their surrounding but also keeps them safe and regulate mental sharpness. In the eye,
the cornea is the outer transparent layer tissue which help us to see clearly and serves as
a barrier against various infections. Corneal disorders lead to severe eyesight problems
including keratitis, myopia, corneal dystrophy, dry eye, astigmatism, etc. To understand the
underlying topography of corneal mechanisms, mathematical models can provide value
insight for ophthalmologists. The basic mechanism of the eye is well known to everyone.
The main functions and working procedures of the eye are explained at the high-school
level. We all know that the cornea works like a window for the eye. When a light beam is
focused on an eye, it directly passes through the cornea, which has a diameter of 0.5 inches.
The geometry of the human eye is described in Figure 1. The mathematical form of the
n-dimensional equation for the mean curvature is given as follows:

div
(

∇ψ(t)√
1+|∇ψ(t)|2

)
= cψ − d√

1+|∇ψ(t)|2 in Ω

ψ(t) = 0 on ∂Ω.
(1)
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Here, c, d > 0, and Ω ⊂ Rn, n ≥ 2 is the bounded Lipschitz domain. Recently,
Corsato et al. [1] studied Equation (1) for describing regularity, existence, and unique-
ness. They described the mean anisotropic curvature considering the Dirichlet condi-
tions. The one-dimensional analysis of Equation (1) was carried out by Okrasiński and
Płociniczak [2]. They used the linearization technique on the divergence control operator
by considering [0, 1] as a bounded domain. Their relationship to the cornea is described
as follows: (

ψ′(t)√
1+ψ′2(t)

)′
− cψ(t) + d√

1+ψ′2(t)
= 0, t ∈[0, 1]

ψ′(0) = ψ(1) = 0
. (2)

A more detailed analysis related to Equation (2) can be found in Coelho et al. [3].
In the early 1990s, Komai and Ushiki [4] analyzed the three-dimensional collagen fibrils
in the human eye. Later on, this work was extended by Peh et al. [5] and Almubrad and
Akhtar [6]. They discussed the various impacts and briefly described the expansion of the
cornea and its effects on tree shrews.

The exact solution to nonlinear problems is always a point of interest for researchers;
however, due to nonlinearity and complexity including high dimensionality, closed-form
solutions are very rare to find. One of the best attempts to explain the closed-form solution
is made by Okrasiński and Płociniczak [2]. In addition to their unique analysis, they showed
that their results are quite impressive, up to 1% absolute error. In this work, they approxi-
mated nonlinearity through a hyperbolic cosine function. The work of Płociniczak et al. [7]
opened the door to the application of semianalytical methods. He [8] introduced a new idea
to these methods by adding Taylor’s series. This suggestion has made great improvements
in the solution as well as in the reduction of the absolute error. Methods like Adomian
decomposition [9], spline interpolation [10], variational iteration [11], Green’s function
approach [12], and differential transformation [9] are normally considered very effective for
boundary value problems (BVPs). Płociniczak et al. [13] further explained the formulation
of the corneal curvature with the help of pseudo-time derivatives. The transformed partial
differential equations (PDEs) are further solved numerically, and the results are compared
with the available literature. Griffiths et al. [14] analyzed the radial basis function by
considering the mesh-free approach. A brief survey can be found in the references [15–17].
Researchers frequently use Green’s function-based approaches to solve BVPs. For instance,
Zur [18–20] provided a series of works employing Green’s and quasi-Green’s functions to
investigate the vibration of thin circular plates, thin circular plates with variable thickness,
and elastically supported functionally graded annular plates. The exact Green’s function for
each given rectangular potential was determined by Andrade [21]. The Ahyoune et al. [22]
method of solving quasi-static partial element equivalent circuits made use of a weighted
combination of 2D and 3D analytical Green’s functions. The BVPs arise in heat transfer,
strong nonlinear oscillation, electroanalytical chemistry, and Bratu problems, and are solved
using linked Green’s function with a fixed-point iteration approach [16,23].

In recent years, artificial-intelligence-based methods have been introduced in the
literature for solving various complex problems [24]. The applications of artificial neural
networks (ANNs) can be seen in circuit and electromagnetic theory [25,26], the fuel ignition
model [27], motor induction models [28], the Thomas–Fermi model [29], doubly singular
nonlinear systems [28], nanotechnology [30], nanofluidics [31], nonlinear prey–predator
models [32], nonlinear equations [33], Troesch’s problem [34], optimal control [35], signal
processing [36], and the modeling and control of particle accelerators [37]. Pinsky and
Datye [38] used the finite element method for the analysis of the incised cornea of the
human eye. Pandolfi and Manganiello [39] analyzed the corneal shape model (CSM) by
using a numerical procedure. Płociniczak et al. [7] studied the nonlinear CSM and presented
a detailed description of the CSM-based boundary value problem (BVP). Ahmad et al. [40]
studied the nonlinear CSM by using the neuroevolution-based approach. Płociniczak
and Okrasiński [41] presented a detailed overview of the CSM model and explained the
physical impact of each parameter encountered in the study. Recently, Erturk et al. [42]
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used the concept of fractional derivatives to analyze the noninteger behavior of the CSM.
Sáez-Gutiérrez et al. [43] investigated the surface geometry of the cornea by using the
evolutionary algorithm. The use of machine learning is increasing day by day and has
covered a substantial area of research [44]. Aziz et al. [45] used the cuckoo search (CS)
algorithm for the analysis of the fish image. A more recent survey on CS can be found in
the references [46–48].

Figure 1. Geometryof human corneal model.

This evidence inspired the authors of this paper to design new computing standards
for solving the CSM based on the power of artificial intelligence (AI) using neural network
(NN) modeling, and hybrid cuckoo search (BHCS) as a global search algorithm.

2. Our Contribution

In view of the above literature, we propose a new methodology known as BHCS-ANN,
which has the following features.

• To the best of our knowledge, this is the first study to tackle the curvature model of
the eye by using the hybrid cuckoo search with the neural network.

• The proposed BHCS-ANN is applied to six different corneal geometries to show the
accuracy of the method.

• The proposed BHCS-ANN is more accurate as compared to other state-of-the-art.
• Based on statistical analysis performed, BHCS-ANN outperformed other techniques.

Section 3 of this article explains the model proposed and the corresponding method-
ology that we chose for solution purposes. The results are described through statistical
parameters presented in Section 5. The results achieved are displayed through graphs and
tables in Section 6. Finally, the conclusion is provided in Section 7.

3. Mathematical Model

The description of a physical problem always asks for a mathematical relation that best
describes certain parameters describing the problem. These problems are normally complex
in nature, describing the nonlinear phenomenon, as shown in Figure 1. Researchers are
well interested in the solution of these problems. The literature presented above shows that
various semianalytical and numerical techniques are adopted for the solution of such types
of problems. The proposed problem in this study is given by Equation (1). In our research,
we separated our methodology into two distinct parts. First, we transformed the CSM
differential equation into an optimization problem together with its boundary conditions.
In the second phase, BHCS is used to minimize the mean squared error that assists ANN in
determining the unknown weights in the network. This whole procedure is explained in
Figures 2 and 3, which depict the abstract and the architecture of ANN for CSM.
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Figure 2. Graphical abstract.

Figure 3. The neural network modeling.

Neural Network Modeling for Differential Equations

ANN is widely used for approximating the solution of differential equations [49].
The use of ANN is extended to fractional and some other nonlinear problems, as shown in
the references [50,51]. We take continuous mapping by addressing the derivatives in the
form of a series.

ψ̂(t) =
M

∑
i=1

α̃iσ(φit + βi), (3)

ψ̂(m)(t) =
M

∑
i=1

α̃iσ
(m)(φit + βi), (4)
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where ψ̂(t) is the approximate solution and φ, β, and α̃ are weights. Similarly, M is the
number of neurons and m is the order of the derivative. The radial basis function given by
σ(t) = 1

1+e−t is introduced into Equations (3) and (4), and we have

ψ̂(t) =
M

∑
i=1

α̃i(
1

1 + e−(φi t+βi)
), (5)

ψ̂(m)(t) =
M

∑
i=1

α̃i
dm

dtm (
1

1 + e−(φi t+βi)
), (6)

for m = 2, we have

ψ̂′′(t) =
M

∑
j=1

α̃jφ
2
j

⎡⎢⎣ 2e−2(φj t+β j)(
1 + e−(φj t+β j)

)3 − e−(φj t+β j)(
1 + e−(φj t+β j)

)2

⎤⎥⎦. (7)

We need to reduce the L2 error; therefore, using the above equations for constructing
the optimization function as given below,

ε = ε1 + ε2, (8)

where the L2 for the equations and the boundary conditions are given by ε1 and ε2, and are
defined as under

ε1 = 1
N ∑M

k=1

(√
1 + ψ′2(t)ψ̂′′

k (t)− c
√

1 + ψ′2(t)ψ̂(t) + d
)2

,

M = 1
h , ψ̂k = ψ̂(tk), tk = kh,

(9)

ε2 =
1
2

((
ψ̂′

0
)2

+
(
ψ̂M

)2
)

. (10)

4. Proposed Algorithm

4.1. Proposed BHCS Algorithm

In this work, we use the biogeography-based heterogeneous cuckoo search (BHCS)
technique that utilizes the Lévy flights’ approach in search by adopting the cuckoo search
(CS) algorithm. The biogeography-based approach utilizes the migration operator, which
is particularly adopted in the local area, to produce new solutions.

The heterogeneous cuckoo search algorithm uses the Lévy flights approach. This
technique was introduced by Ding et al. [52] and further extended by Cheung et al. [53]
and is explained under

tnew
i =

⎧⎨⎩
told
i + α̃ · (ti − tg

)⊕ Lévy (β) 2
3 < sr ≤ 1

t̄ + L · (t̄ − told
i

) 1
3 < sr ≤ 2

3
told
i + ε · (tg − told

i
)

else,

⎫⎬⎭ (11)

Here, the ε = δeη , L = δ ln(1/η), tg represents the best solution in the present version;
t = 1

MP ∑MP
i=1 ti symbolizes the mean of all options. As random numbers in the range

[0, 1], η, and sr, α̃ is a constant. Equation (11) shows that three distinct updating equations
with equal probabilities are used in heterogeneous BHCS. The Lévy flight serves as the
foundation for the first update equation in the original CS. The second and third updating
equations, on the other hand, are based on the quantum mechanism. Using inhomogeneous
updating limitations can generate multiple possibilities for expanding the flying and search
toward the actual global region in an optimistic manner.
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4.2. Biogeography-Based Revelation Operator

The second phase of BHCS shows an impact of changing the search operator for the
development of unique solutions.

A biogeography-based migration operator enables the host bird to recognize alien
eggs with a high degree of certainty, abandon old nests, and produce new nests. Following
that, the population is ranked from best to worst, and emigration rates are ascribed to each
response. Here, emigration rates μ are defined as

μi = E
Si

MP
. (12)

In the above equation, the maximum emigration rate is E = 1 and the number of
species in the solution is Si = MPI. The first algorithm describes the biogeography-based
operator for discovering the ith solution. Solutions with higher fitness might share more
characteristics with other solutions in the biogeography-based discovery operator, which is
beneficial for exploitation enhancement.

5. Statistical Evaluation

This section will introduce some statistical concepts and formulas for explaining the
performance and other graphical explanations. Some of the well-known concepts are the
mean absolute deviation (MAD), global mean absolute deviation (GMAD), GFIT, TIC, ENSE,
and GENSE. In this study, the TIC, ENSE, and MAD performance matrices are considered
for each CSM scenario. In addition, we conducted a statistical analysis of our findings by
employing minimum, mean, and standard deviation. To demonstrate the robustness of
our methodology, 100 separate runs are conducted to estimate the performance of GFIT ,
GMAD , GTIC , and GENSE .

MAD =
1
l

l

∑
m=1

∣∣ψ(tm)− ψ̂(tm)
∣∣ (13)

TIC =

√
1
l ∑l

m=1
(
ψ(tm)− ψ̂(tm)

)2√
1
l ∑l

m=1(ψ̂(tm))2 +
√

1
l ∑l

m=1(ψ̂(tm))2
(14)

NSE =

{
1 − ∑l

m=1
(
ψ(tm)− ψ̂(tm)

)2

∑l
m=1(ψ(tm)− ψ̄(tm))

2 , (15)

ψ̄(tm) =
1
l

l

∑
m=1

ψ(tm)

ENSE = 1 − NSE (16)

GMAD =
1
R

R

∑
r=1

(
1
m

m

∑
i=1

(∣∣ψ(ti)− ψ̂(ti)
∣∣)) (17)

GFIT =
1
R

R

∑
r=1

er (18)

GENSE =
1
R

R

∑
r=1

(√
1
m

m

∑
i=1

(
ψ(ti)− ψ̂(ti)

)2
)

(19)

TIC, MAD, and ENSE values approach zero for the best approximation solution that
is close to the exact answer.
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6. Results and Discussions

The section is devoted to the analysis of the results obtained for varying parameters c
and d in Equation (2). We present this analysis by considering six different cases:

Case 1: Taking c = d = 0.1, we have, from Equation (2),

ψ′′(t)− 0.1ψ(t) +
0.1√

1 + ψ′2(t)
= 0,

ψ′(0) = ψ(1) = 0, t ∈ [0, 1].
(20)

The corresponding objective function takes the form

ζ = 1
M ∑M

k=1(
√

1 + ψ′2(tk)ψ̂
′′(tk)− 0.1

√
1 + ψ′2(tk)

ˆψ(tk) + 0.1)2

+ 1
2

((
ψ̂′

0
)2

+
(
ψ̂M

)2
)

.
(21)

Similarly, the remaining cases are given below:
Case 2: d = 0.1, c = 0.2.
Case 3: d = 0.1, c = 0.3.
Case 4: d = 0.2, c = 0.1.
Case 5: d = 0.3, c = 0.1.
Case 6: d = 0.4, c = 0.1.
The results for each case considered above are presented in Figure 4 for the state

variable ψ. The solution in each case is compared with the exact. The approximate solution
and the exact solution comparison show that the proposed methodology has a high level of
accuracy. In case 1, the solution curve drops down from 0.05 to 0 on the unit time interval.
A quite similar trend can be observed in cases 2 and 3. The remaining cases 4, 5, and 6
are starting from different points of the state variables 0.099, 0.14, and 0.189, respectively.
The trend of the approximate and the exact solution remains the same. From the analysis
shown in case 5, we see that the radius of the cornea, and intramuscular pressure of the eye
(c = 0.1, and d = 0.3) have the global minimal value 0.14 at t = 0 of the corneal curvature.
The numerical results for all these cases are presented in the form of Tables 1 and 2. In the
tables, the minimum values of the objective functions are compared with the standard
deviation and the mean values for each scenario. The standard deviation shows a deviation
of 10−9, 10−10, and 10−10 for cases 1, 2, and 3, respectively. The remaining cases 4, 5, and 6
have the same standard deviations up 10−7. The minimum values of the state variable vary
from 10−9 to 10−15, which is a very small quantity. This reduction is possible only due to
the applied BHCS that minimizes the L2−error.

In Figure 5, the weight plots of the neural network are presented. In case 1, there
are 9 neurons and 3 weight functions that range up to 4 in the third weight. In case 2,
the number of neurons is 10, with the same number of weight functions that range up to
2. In cases 3 and 4 there are 7 neurons and three weight functions that are up to 4 and
2, respectively. Also, cases 5 and 6 have the same scenario but their ranges are different.
These weights are chosen directly by the neural network for searching the best possible
outcome for the objective function.

The absolute error in each case has been provided in Figure 6. The absolute errors
in all six cases are very small and even vary up to 10−10; for example, see case 4. In all
six cases, the absolute error is computed at the grid points. The error in each case shows
the accuracy of our implemented technique and its convergence.
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[Case - 1] [Case - 2]

[Case - 3] [Case - 4]

[Case - 5] [Case - 6]

Figure 4. Solution plots for various cases.

The fitness function, MAD, TIC, and ENSE are all displayed in Figure 7 for all the cases.
The fitness function minimum values in all the cases approach 10−11, while the worst of all
the cases approach 10−4. The mean of all the values for the fitness function is also displayed
through bar graphs. The mean is also observed to approach 10−6. The statistical analysis
of the present results is also presented through bar graphs. The minimal results for the
MAD remain below 10−6, while the mean values almost approach these points. In MAD,
the worst cases are not too far from the mean and remain very near it. The bars of TIC and
ENSE approach 10−6 and 10−7 in some cases, respectively. In the case of 4, these variations
are very large, where the minimal values for ENSE approach 10−9. All this analysis shows
that the fitness function, MAD, TIC, and ENSE are stable at various iterations and the range
in each case shows the total performance of the computational process.

The fitness function is plotted with a bar graph by using the normal distribution, as
shown in Figure 8 for each case. The number of independent runs is plotted on the y−axis,
while the fitness is shown on the x−axis. In case 1, the values remain greater than zero
and below 0.25 × 10−5. A maximum of the values remain inside the middle of the bill
shape. A quite similar trend can be seen in the case of 5. In case 2, the fitness function has
variations up to 10−6, and the data remain inside the uniform distribution. In cases 3 and 4
again, the date remains inside the uniform bill and the variation extends up to 10−4 and
10−5, respectively. In the last case 6, all the values are contained in the uniform bill, while
the fitness function varies up to 10−4.
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[Case - 1] [Case - 2]

[Case - 3] [Case - 4]

[Case - 5] [Case - 6]

Figure 5. Weights plot for various cases.

The normal plots for MAD, TIC, and ENSE are presented in Figures 9–11. All six cases
are comprehensively discussed against the number of runs. The results for MAD vary up
to 10−5 for cases 1, 2, 4, and 5, respectively. The results for MAD remain inside the uniform
distribution for all the cases and approach the midpoint. The results for cases 3 and 6
remain inside the range 10−4. The TIC and ENSE plots are shown in Figures 10 and 11.
The results for TIC remain inside the unit bill and approach 10−5 in cases 2, 4, and 5
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respectively. Similarly, the results for cases 1 and 6 are bounded in 10−4, while for the
remaining case 3, it lies in 10−3. The normal plots describing the bill shape distribution of
the data for the ENSE show a variation up to 10−5 for cases 1, 2, 4, and 6. In case 3, this
variation is 10−3, while in case 5 it is 10−6.

[Case - 1] [Case - 2]

[Case - 3] [Case - 4]

[Case - 5] [Case - 6]

Figure 6. Absolute error obtained for various case studies.

Table 1. The statistical findings for every instance of the corneal shape model.

Case 1 Case 2 Case 3
t Min Mean STD Min Mean STD Min Mean STD

0.0 4.04 × 10−12 1.79 × 10−9 1.08 × 10−8 3.88 × 10−13 1.29 × 10−9 1.22 × 10−9 2.09 × 10−14 5.21 × 10−10 1.11 × 10−9

0.1 1.03 × 10−11 6.19 × 10−10 1.59 × 10−9 1.09 × 10−12 5.10 × 10−10 1.19 × 10−9 5.51 × 10−14 6.79 × 10−10 5.58 × 10−9

0.2 1.18 × 10−13 1.19 × 10−9 6.11 × 10−9 1.28 × 10−13 5.89 × 10−10 1.09 × 10−9 2.09 × 10−14 5.79 × 10−10 1.81 × 10−9

0.3 2.08 × 10−12 1.78 × 10−9 1.67 × 10−8 3.91 × 10−13 6.11 × 10−11 1.32 × 10−10 1.10 × 10−14 2.49 × 10−10 1.67 × 10−9

0.4 7.19 × 10−13 2.78 × 10−9 2.51 × 10−8 6.67 × 10−13 2.79 × 10−10 6.31 × 10−10 7.49 × 10−14 2.31 × 10−10 4.38 × 10−10

0.5 1.44 × 10−13 3.14 × 10−9 2.36 × 10−8 2.91 × 10−14 5.73 × 10−10 1.11 × 10−9 1.41 × 10−14 5.92 × 10−10 2.52 × 10−9

0.6 4.93 × 10−13 1.84 × 10−9 1.38 × 10−8 4.71 × 10−13 2.48 × 10−10 3.85 × 10−10 3.81 × 10−14 2.82 × 10−10 1.08 × 10−9

0.7 4.19 × 10−14 3.68 × 10−10 2.73 × 10−9 7.29 × 10−13 7.17 × 10−11 1.37 × 10−10 1.21 × 10−13 1.61 × 10−10 8.11 × 10−10

0.8 3.17 × 10−14 1.21 × 10−9 3.10 × 10−9 5.00 × 10−15 6.72 × 10−10 1.19 × 10−9 8.68 × 10−15 7.10 × 10−10 3.38 × 10−9

0.9 5.76 × 10−15 5.29 × 10−9 4.73 × 10−8 1.52 × 10−12 5.67 × 10−10 8.68 × 10−10 1.30 × 10−13 4.87 × 10−10 1.78 × 10−9

1 2.10 × 10−15 1.87 × 10−8 1.77 × 10−7 3.48 × 10−13 7.11 × 10−10 1.42 × 10−9 1.26 × 10−14 1.13 × 10−9 4.52 × 10−9
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[Case - 1] [Case - 2]

[Case - 3] [Case - 4]

[Case - 5] [Case - 6]

Figure 7. Various cases for best, worst, and mean.

Table 2. The statistical findings for every instance of the corneal shape model.

Case 4 Case 5 Case 6
t Min Mean STD Min Mean STD Min Mean STD

0.0 4.38 × 10−10 2.31 × 10−7 5.42 × 10−7 1.18 × 10−10 2.76 × 10−7 2.51 × 10−6 7.58 × 10−10 1.10 × 10−7 4.87 × 10−7

0.1 1.11 × 10−9 2.43 × 10−7 4.17 × 10−7 7.68 × 10−11 6.28 × 10−10 7.52 × 10−7 8.78 × 10−10 1.41 × 10−7 3.69 × 10−7

0.2 8.43 × 10−11 1.59 × 10−7 3.37 × 10−7 9.67 × 10−11 3.68 × 10−7 3.47 × 10−7 6.58 × 10−10 1.09 × 10−7 2.58 × 10−7

0.3 1.99 × 10−9 1.12 × 10−7 2.25 × 10−7 7.71 × 10−13 1.08 × 10−7 3.35 × 10−7 1.34 × 10−12 1.11 × 10−7 2.67 × 10−7

0.4 2.36 × 10−9 1.64 × 10−7 2.75 × 10−7 7.18 × 10−11 9.23 × 10−8 5.77 × 10−7 3.53 × 10−10 1.00 × 10−7 2.37 × 10−7

0.5 4.59 × 10−10 1.52 × 10−7 2.53 × 10−7 1.72 × 10−10 2.81 × 10−7 7.58 × 10−7 5.12 × 10−10 1.00 × 10−7 2.41 × 10−7

0.6 4.69 × 10−10 9.18 × 10−8 1.72 × 10−7 1.62 × 10−10 1.98 × 10−7 7.18 × 10−7 1.32 × 10−7 7.34 × 10−8 1.81 × 10−7

0.7 3.34 × 10−9 1.38 × 10−7 2.88 × 10−7 1.09 × 10−10 3.84 × 10−7 6.41 × 10−7 3.19 × 10−11 1.41 × 10−7 2.10 × 10−7

0.8 4.12 × 10−9 3.04 × 10−7 4.13 × 10−7 7.11 × 10−11 3.00 × 10−7 5.69 × 10−7 2.87 × 10−10 2.32 × 10−7 5.06 × 10−7

0.9 6.45 × 10−10 1.59 × 10−7 2.09 × 10−7 1.41 × 10−12 4.91 × 10−7 2.39 × 10−7 1.62 × 10−10 7.31 × 10−8 1.69 × 10−7

1 4.57 × 10−9 4.79 × 10−7 7.69 × 10−7 7.09 × 10−10 4.38 × 10−7 2.08 × 10−6 1.43 × 10−10 4.81 × 10−7 1.11 × 10−6
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[Case - 1] [Case - 2]

[Case - 3] [Case - 4]

[Case - 5] [Case - 6]

Figure 8. Normal plot of fitness function for different cases.

The fitness function minimum, mean, and standard deviation values for each are
presented in Table 1. All these variations are shown for a step size of 0.1. In case 1, the mini-
mum value for the fitness function is 2.10 × 10−15, while the standard deviation remains up
to 1.59 × 10−9. In case 2, the minimum value is 5.00 × 10−15, while the standard deviation
touches 1.32 × 10−10. Similarly, in cases 3–6, the minimum values of the fitness functions
are 8.68 × 10−15, 8.43 × 10−11, 7.71 × 10−13, and 1.34 × 10−12, respectively. The standard
deviations for all these cases touch 10−10 and 10−7.

The global performances of TIC, MAD, FIT, and ENSE are shown in Table 3. The mini-
mum value of GTIC exists in the case of 6, which is 2.38 × 10−5, These values for GMAD,
GFIT, and GENSE are 3.19 × 10−6, 2.38 × 10−5, 7.69 × 10−8, and 6.71 × 10−7. All these
show the mean of the minimum values. The corresponding standard deviation for each
case is plotted to check the stability.

61



Fractal Fract. 2023, 7, 764

[Case - 1] [Case - 2]

[Case - 3] [Case - 4]

[Case - 5] [Case - 6]

Figure 9. Normal plots of MAD for different cases.

Table 3. Corneal shape model’s global performance indices and their respective results.

GTIC GMAD GFIT GENSE
Case Mean STD Mean STD Mean STD Mean STD

1 2.63 × 10−5 2.00 × 10−5 3.19 × 10−6 2.92 × 10−5 3.68 × 10−7 1.45 × 10−5 1.17 × 10−6 3.71 × 10−5

2 4.59 × 10−5 1.58 × 10−5 3.19 × 10−6 2.21 × 10−5 7.69 × 10−8 7.19 × 10−6 2.30 × 10−6 2.31 × 10−5

3 1.20 × 10−4 2.09 × 10−4 1.39 × 10−5 2.58 × 10−5 1.88 × 10−6 3.37 × 10−6 1.31 × 10−4 3.48 × 10−4

4 2.24 × 10−5 1.48 × 10−4 5.68 × 10−6 4.11 × 10−5 2.02 × 10−6 9.41 × 10−6 6.71 × 10−7 1.84 × 10−5

5 1.81 × 10−4 2.59 × 10−4 9.16 × 10−5 1.29 × 10−4 3.62 × 10−7 1.73 × 10−5 2.39 × 10−5 5.38 × 10−5

6 2.38 × 10−5 5.39 × 10−5 9.18 × 10−5 1.29 × 10−4 5.68 × 10−6 9.60 × 10−5 1.81 × 10−4 2.59 × 10−4

The execution time and the number of executed functions are presented in Table 4.
For validity, the standard deviation is also presented. A total of 200,010 functions for each
case were computed with a minimal mean time of 17.7791 for case 1. The generation means
remains 2000 in all the cases.
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[Case - 1] [Case - 2]

[Case - 3] [Case - 4]

[Case - 5] [Case - 6]

Figure 10. Normal plots of TIC for different cases .

Table 4. Complexity analysis for each corneal shape model case.

Execution Time Generation Function Counts
Case Mean STD Mean STD Mean STD

1 17.7791 3.0599 2000 0 200,010 0
2 27.5776 2.9333 2000 0 200,010 0
3 27.1637 2.448 2000 0 200,010 0
4 27.421 3.0261 2000 0 200,010 0
5 26.8823 3.2615 2000 0 200,010 0
6 27.0509 3.888 2000 0 200,010 0

The proposed BHCS-ANN has better performance as compared to the available results
of FO-DPSO presented by Waseem et al. [54]. In their work, they compared their results
with the PSO-ASA. In this study, the BHCS-ASA results are compared with FO-DPSO in
Tables 5 and 6. In each case, our results are better than the available literature that proves
the performance of our implemented method.
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[Case - 1] [Case - 2]

[Case - 3] [Case - 4]

[Case - 5] [Case - 6]

Figure 11. Normal plots of ENSE for different cases.

Table 5. Comparison of the min. values for the approximate function in different cases.

Min Case 1 Min Case 2 Min Case 3
t BHCS-ANN FO-DPSO [54] BHCS-ANN FO-DPSO [54] BHCS-ANN FO-DPSO [54]

0 4.04 × 10−12 1.04 × 10−11 3.88 × 10−13 1.74 × 10−11 2.09 × 10−14 7.26 × 10−11

0.1 1.03 × 10−11 1.03 × 10−11 1.09 × 10−12 1.21 × 10−10 5.51 × 10−14 6.02 × 10−11

0.2 1.18 × 10−13 8.26 × 10−12 1.28 × 10−13 3.58 × 10−12 2.09 × 10−14 5.55 × 10−11

0.3 2.08 × 10−12 9.73 × 10−14 3.91 × 10−13 7.32 × 10−11 1.10 × 10−14 5.75 × 10−12

0.4 7.19 × 10−13 3.18 × 10−12 6.67 × 10−13 1.52 × 10−11 7.49 × 10−14 6.87 × 10−13

0.5 1.44 × 10−13 5.28 × 10−12 2.91 × 10−14 1.65 × 10−11 1.41 × 10−14 3.81 × 10−13

0.6 4.93 × 10−13 1.62 × 10−12 4.71 × 10−13 4.76 × 10−11 3.81 × 10−14 6.81 × 10−13

0.7 4.19 × 10−14 2.66 × 10−13 7.29 × 10−13 6.16 × 10−12 1.21 × 10−13 6.60 × 10−14

0.8 3.17 × 10−14 3.68 × 10−12 5.00 × 10−15 1.96 × 10−11 8.68 × 10−15 3.00 × 10−11

0.9 5.76 × 10−15 7.29 × 10−13 1.52 × 10−12 3.33 × 10−11 1.30 × 10−13 8.11 × 10−11

1 2.10 × 10−15 2.84 × 10−12 3.48 × 10−13 1.94 × 10−11 1.26 × 10−14 8.89 × 10−11
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Table 6. Comparison of the min. values for the approximate function in different cases.

Min Case 4 Min Case 5 Min Case 6

t BHCS-ANN FO-DPSO [54] BHCS-ANN FO-DPSO [54] BHCS-ANN FO-DPSO [54]

0 4.38 × 10−10 7.61 × 10−10 1.18 × 10−10 1.21 × 10−10 7.58 × 10−10 4.40 × 10−10

0.1 1.11 × 10−9 8.83 × 10−10 7.68 × 10−11 7.74 × 10−11 8.78 × 10−10 1.06 × 10−9

0.2 8.43 × 10−11 6.64 × 10−10 9.67 × 10−11 9.70 × 10−11 6.58 × 10−10 8.38 × 10−11

0.3 1.99 × 10−9 1.26 × 10−12 7.71 × 10−13 7.66 × 10−13 1.34 × 10−12 2.00 × 10−9

0.4 2.36 × 10−9 3.49 × 10−10 7.18 × 10−11 7.23 × 10−11 3.53 × 10−10 2.40 × 10−9

0.5 4.59 × 10−10 5.09 × 10−10 1.72 × 10−10 1.68 × 10−10 5.12 × 10−10 4.62 × 10−10

0.6 4.69 × 10−10 1.32 × 10−10 1.62 × 10−10 1.59 × 10−10 1.32 × 10−7 4.72 × 10−10

0.7 3.34 × 10−9 3.23 × 10−11 1.09 × 10−10 1.12 × 10−10 3.19 × 10−11 3.35 × 10−9

0.8 4.12 × 10−9 2.94 × 10−10 7.11 × 10−11 7.08 × 10−11 2.87 × 10−10 4.18 × 10−9

0.9 6.45 × 10−10 1.64 × 10−10 1.41 × 10−12 1.36 × 10−12 1.62 × 10−10 6.54 × 10−10

1 4.57 × 10−9 1.45 × 10−10 7.09 × 10−10 7.11 × 10−10 1.43 × 10−10 4.60 × 10−9

7. Conclusions

In this work, the BHCS-based neural network is applied for the first time to the CS
model. The results are presented in the form of figures and tables, where Adam’s method
is taken as a reference method. We observed the following on the basis of our analysis.

• This approach effectively minimized the fitness function and provided the best ap-
proximation of the solution to the problem.

• The proposed approach demonstrated efficacy in all CSM scenarios and identified the
optimum approximation for the CSM geometry in all scenarios.

• In figures, the results were compared with Adam’s numerical solution, where the
BHCS-ANN showed a better trend.

• The statistical evaluations such as MAD, TIC, and ENSE were evaluated in 100 dif-
ferent runs, and the results showed that the proposed approach outperformed the
current state of the art.

• The obtained results for the minimum approximated functions were compared with
the FO-DPSO algorithm, where BHCS-ANN performed better in all the cases.
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19. Żur, K.K. Free vibration analysis of elastically supported functionally graded annular plates via quasi-Green’s function method.
Compos. Part B Eng. 2018, 144, 37–55. [CrossRef]
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Abstract: Orthogonal generalized Laguerre moments of fractional orders (FrGLMs) are signal and
image descriptors. The utilization of the FrGLMs in the analysis of big-size signals encounters three
challenges. First, calculating the high-order moments is a time-consuming process. Second, accumu-
lating numerical errors leads to numerical instability and degrades the reconstructed signals’ quality.
Third, the QR decomposition technique is needed to preserve the orthogonality of the higher-order
moments. In this paper, the authors derived a new recurrence formula for calculating the FrGLMs,
significantly reducing the computational CPU times. We used the Schwarz–Rutishauser algorithm as
an alternative to the QR decomposition technique. The proposed method for computing FrGLMs
for big-size signals is accurate, simple, and fast. The proposed algorithm has been tested using the
MIT-BIH arrhythmia benchmark dataset. The results show the proposed method’s superiority over
existing methods in terms of processing time and reconstruction capability. Concerning the recon-
structed capability, it has achieved superiority with average values of 25.3233 and 15.6507 with the
two metrics PSNR and MSE, respectively. Concerning the elapsed reconstruction time, it also achieved
high superiority with an efficiency gain of 0.8. The proposed method is suitable for utilization in the
Internet of Healthcare Things.

Keywords: bio-medical signals; signal reconstruction; fractional Laguerre moments; Schwarz–Rutishauser;
internet of healthcare things; EEG; ECG; EMG

1. Introduction

The study of moments as a mathematical tool for describing 1-D, 2-D, and 3-D objects
has become the focus of attention of many researchers since the middle of the previous
century. Mathematically, the moments represent the projection of the object function onto
certain functions called basis functions. This projection results in some statistical quantities
representing significant features of the object [1]. One important type of moment is the
Orthogonal Moments (OMs) set, where the basis functions are orthogonal. According to
the object’s coordinate space type, OMs exist in Continuous Orthogonal Moments (COMs)
and Discrete Orthogonal Moments (DOMs) moments.

The first set of DOMs was discrete Tchebichef moments, which were introduced
in 2001 by Mukundan et al. [2]. Later, many sets of DOMs were introduced, such as
Krawtchouk moments, Hahn moments, Dual Hahn moments, Charlier moments, and
Racah moments [3–7]. The different sets of DOMs are widely used in many signal and
image processing applications, such as image reconstruction [8], image retrieval [9,10],
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image compression [11,12], image steganography [13], and image watermarking [14].
DOMs reveal high-efficiency concerns representing different bio-medical signals: ECG,
EEG, and EMG. Hosny et al. [15] suggested an efficient Algorithm for the compression
of different types of bio-medical signals based on discrete Tchebichef moments and the
Artificial Bee Colony (ABC). Fathi et al. [16–18] introduced different algorithms based
on different types of DOMs for the efficient energy compression of bio-medical signals:
ECG and FPCG. Such algorithms reveal high superiority concerning remote healthcare
monitoring systems. In Cardiovascular Diseases (CVDs), continuous patient monitoring is
very important for better diagnosis; healthcare systems that use ECG signals need long-
term monitoring. As such, the size of the ECG signal collected by sensors to use in heart
diagnosis is large. Concerning large-size bio-signals, Daoui et al. [19,20] suggested different
approaches for reconstructing and compressing such signals. The presented approaches
are based on Tchebichef moments and Meixner moments, respectively.

The successful utilization of DOMs with 2-D objects (i.e., images) motivates researchers
to use these DOMs with 1-D objects (i.e., signals). Many studies used the DOMs as a
feature descriptor for signals such as signal reconstruction and compression [15–17,21] and
signal watermarking [22,23]. Other sets of moments are called complex moments. It is
used basically in solving eigenvalue problems and has been used in image reconstruction
applications. In the image reconstruction application, a formulation is shown to obtain an
estimated original image from the degraded image moments and the blur parameter [24,25].
Complex Moments (CMs) were initially proposed as a straightforward and uncomplicated
approach to reconstruction images. Still, the kernel functions of CMs lack orthogonality,
which complicates reconstructing an image from its CMs.

Previous studies show that orthogonal moments of fractional orders outperformed
their corresponding integer orthogonal moments of integer orders [26,27]. Orthogonal
Moments of fractional orders are used to analyze medical signals, especially those char-
acterized by their large size [19,20,28,29]. Despite the superiority of fractional versions of
DOMs in many applications, some common problems occur when deriving the polynomial
values: first, numerical instability results from the large increase (i.e., fluctuation) of the
basis function values that occurs while increasing the moments’ order. Secondly, a high
computational time is required when calculating the polynomial values with the classical
form of the polynomial equation. Thirdly, there is the propagation and accumulation of
numerical errors, especially at higher orders, with large signals. These drawbacks cause
the loss of the polynomial’s orthogonality.

To overcome the previous problems, researchers used the weighted form of the frac-
tional Chebychev polynomials, resulting in more numerical stability during calculations
of polynomial values. Also, to overcome the highly time-consuming problem, they used
a recurrence formula based on a normalization factor. The third problem vanished us-
ing the most common QR decomposition algorithms: the Gram–Schmidt Method (GSM),
Householder Method (HM), and Given Rotations Method (GRM) [18].

In the current study, we introduced an efficient algorithm for large-size bio-signal
signal reconstruction and analysis. The importance of this proposed algorithm lies in its
high ability to compress the electrocardiogram (ECG) biomedical signals and transmit them
over long distances in a short time. Also, due to this compression, the IoHT can transmit
the ECG signals through a small bandwidth; hence, there is low energy consumption. The
proposed algorithm depends on the set fractional-order generalized Laguerre moments
(FrGLMs) and the Schwarz–Rutishauser approach. Through the current study, we derived
three three-term second-order recurrence formulas for the normalized form of the FrGLMs.
An important term when computing the normalized form of FrGLMs is the squared norm
h(∝,λ)

k . By using the simple recursive formula of the gamma function, we deduced a recur-

sive formula for evaluating the squared norm h(∝,λ)
k . The derived three-term recurrence

formula with the recursive formula of the squared norm h(∝,λ)
k has great benefits in saving

computation time.
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The utilization of the Schwarz–Rutishauser algorithm [30,31] is another contribution of
this study, where the Schwarz–Rutishauser algorithm is used to preserve the orthogonality
property when analyzing the large-sized bio-signals using high-order moments. The re-
searchers are accustomed to using classical QR decomposition methods: the Gram–Schmidt
Method (GSM), Householder Method (HM), and Given Rotations Method (GRM), but the
empirical experiments reveal that the use of these leads to a significant increase in signal
processing time, which leads to a lack of efficiency in both IoHT devices and real-time
applications with the use of Schwarz–Rutishauser, which is an adaptation of the classical
Gram–Schmidt. The complexity of the Schwarz–Rutishauser algorithm is (mn2), which is
(n)-times less than the complexity of the classical QR decomposition methods: GSM, HM,
and GRM, which motivated us to use it in the proposed algorithm, which obtains better
results concerning complexity and numerical stability. Uwe et al. [32] proved the efficiency
of the Schwarz–Rutishauser algorithm concerning real-time fetal ECG monitoring systems,
and it helped in raising the efficiency of the proposed system in terms of improving the
system performance and energy consumption rate. To confirm the robustness of the Fr-
GLMs with Schwarz–Rutishauser, samples of ECG bio-medical signal are used. These
samples have been obtained from a benchmark dataset called MIT-BIH arrhythmia. An
empirical experiment was carried out with the ECG bio-medical signals and revealed
high superiority.

The contributions of this study are:

• A three-term second-order recurrence formula for the normalized form of FrGLMs
has been derived.

• A recursive formula for the squared norm h(∝,λ)
k has been derived.

• A novel QR-decomposition approach called Schwarz–Rutishauser gives more numeri-
cal stability and less processing time than the classical approaches.

The rest of this paper is: Section 2 briefly reviews the FrGLMs. Section 3 presents
the proposed computations of the fractional generalized Laguerre polynomial (FrGLP). In
Section 4, we introduce the proposed Schwarz–Rutishauser. The proposed algorithm of
the FrGLMs based on the three-term second-order recurrence formula of the normalized
FrGLP and the Schwarz–Rutishauser is discussed in detail in Section 5. The results are
figured out and discussed in Sections 6 and 7, Respectively. The conclusions of this study
are presented in Section 8.

2. Fractional-Order Generalized Laguerre Orthogonal Moments

The one-dimensional (1D) fractional-order generalized Laguerre orthogonal moments.
ˆFrLMi with the order, i can be defined by the fractional-order generalized Laguerre polyno-

mials
∼

FrL
(∝,λ)

i as follows:

ˆFrLMi =
N−1

∑
x=0

∼
FrL

(∝,λ)

i s(x), i = 0, 1, 2, . . . , N − 1. (1)

where s(x) is a (1 × N ) signal.
From the inverse transformation of fractional Laguerre moments, the original signal

S(x) is reconstructed as follows:

S(x) =
imax

∑
i=0

ˆFrLMi
∼

FrL
(∝,λ)

i , x = 0, 1, 2, . . . , N − 1. (2)

where ˆFrLMi and
∼

FrL
(∝,λ)

i are the fractional-order Laguerre moments and polynomials,
respectively.
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3. Proposed Computation of Fractional Laguerre Orthogonal Polynomials

The fractional-order generalized Laguerre polynomials (FGLPs) can be generated
rapidly according to the following three-term recurrence formula [31]:

FrL(∝,λ)
i+1 (x) =

1
i + 1

[(
2i+ ∝ +1 − xλ

)
FrL(∝,λ)

i (x)− (i+ ∝)FrL(∝,λ)
i−1 (x)

]
, i = 1, 2, . . . , N (3)

with the two initial conditions:

FrL(∝,λ)
0 (x) = 1 and FrL(∝,λ)

1 (x) = 1+ ∝ −xλ.

Also, the analytical form of FrL(∝,λ)
i (x) of the fractional degree iλ can be obtained as:

FrL(∝,λ)
i (x) =

i

∑
k=0

(−1)k Γ(i+ ∝ +1)
Γ(k+ ∝ +1)(i − k)!k!

xλk, i = 0, 1, . . .

The orthogonality property for FGLPs is also satisfied according to the following:∫ ∞

0
FrL(∝,λ)

j (x)FrL(∝,λ)
k (x)w(∝,λ)(x)dx = hk,

where w(∝,λ)(x) is the weight function, defined as follows:

w(∝,λ)(x) = λx(∝+1)λ−1e−xλ
,

Also, the squared norm hk is defined as follows:

h(∝,λ)
k =

{
Γ(i+∝+1)

k! j = k,
0, j �= k.

(4)

The normalized form of fractional-order generalized Laguerre polynomials (FGLPs)
can obtained in terms of the weight and squared norm functions as follows:

∼
FrL

(∝,λ)

i (x) =

√
w(∝,λ)(x)

hk
FrL(∝,λ)

i (x), (5)

Figure 1a,b illustrate the values of polynomials for normalized fractional Laguerre
and the values of polynomials for fractional Laguerre for N = 100 and n = 0, 1, 2, 3, 4, and 5.

α = 1, λ = 1.1.

The three-term recurrence relation of the normalized FGLPs (
∼

FrL
(∝,λ)

i (x)) can be de-
duced as follows.

At first, the two initial conditions can be obtained as the follows.
From Equations (3) and (5), one can deduce the following:

∼
FrL

(∝,λ)

0 (x) =

√
w(∝,λ)(x)

h0
FrL(∝,λ)

0 (x) =

√
w(∝,λ)(x)0!

Γ(0+ ∝ +1)
FrL(∝,λ)

0 (x) =

√
w(∝,λ)(x)
Γ(∝ +1)

, (6)

and

∼
FrL

(∝,λ)

1 (x) =

√
w(∝,λ)(x)

h1
FrL(∝,λ)

1 (x) =

√
w(∝,λ)(x)1!

Γ(1+ ∝ +1)
FrL(∝,λ)

1 (x) =
(

1+ ∝ −xλ
)√w(∝,λ)(x)

Γ(∝ +2)
. (7)
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(a) 

(b) 

Figure 1. Plots of (a)
∼

FrL
(∝,λ)

i (x) and (b) FrL(∝,λ)
i+1 (x) for the first even orders with parameter values.

Secondly, the recurrence formula can be obtained as follows.
Based on the three-term recurrence relation of Equations (5) and (6), we can deduce

the following:

√
hi+1

w(∝,λ)(x)

∼
FrL

(∝,λ)

i+1 (x) = 1
i+1

[(
2i+ ∝ +1 − xλ

)√ h1
w(∝,λ)(x)

∼
FrL

(∝,λ)

i (x)− (i+ ∝)
√

hi−1
w(∝,λ)(x)

∼
FrL

(∝,λ)

i−1 (x)

]
, i = 1, 2, . . .

√
hi+1

∼
FrL

(∝,λ)

i+1 (x) = 1
i+1

[(
2i+ ∝ +1 − xλ

)√
hi

∼
FrL

(∝,λ)

i (x)− (i+ ∝)
√

hi−1
∼

FrL
(∝,λ)

i−1 (x)

]
.

(8)

By using the recursive formula of the gamma function, one can deduce the following:

Γ(k+ ∝ +1) = (k+ ∝)Γ(k+ ∝), (9)

by substituting from Equation (9) into Equation (4):

h(∝,λ)
k = Γ(∝+k+1)

k! = (k+∝)Γ(k+∝)
k(k−1)! = (k+∝)

k
Γ(k+∝)
(k−1)! = (k+∝)

k h(∝,λ)
k−1 ,

h(∝,λ)
k = (k+∝)

k h(∝,λ)
k−1 .

(10)
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Equation (10) represents a recursive formula for evaluating the squared norm h(∝,λ)
k .

This formula has great benefits in saving computation time.
From Equation (10), we can deduce the following:

h(∝,λ)
k =

(k+ ∝)
k

h(∝,λ)
k−1 =

(k+ ∝)
k

(k+ ∝ −1)
k − 1

h(∝,λ)
k−2 , (11)

h(∝,λ)
k+1 =

(k+ ∝ +1)
k + 1

h(∝,λ)
k =

(k+ ∝ +1)
k + 1

(k+ ∝)
k

(k+ ∝ −1)
k − 1

h(∝,λ)
k−2 , (12)

h(∝,λ)
k−1 =

(k+ ∝ −1)
k − 1

h(∝,λ)
k−2 . (13)

Equation (8) can be rewritten as follows:

∼
FrL

(∝,λ)

i+1 (x) =
1

i + 1

[(
2i+ ∝ +1 − xλ

) √
hi√

hi+1

∼
FrL

(∝,λ)

i (x)− (i+ ∝)

√
hi−1√
hi+1

∼
FrL

(∝,λ)

i−1 (x)

]
, (14)

from Equations (11)–(13): √
hk√

hk+1
=

√
(k + 1)

(∝ +k + 1)
, (15)

√
hk−1√
hk+1

=

√
k(k + 1)

(∝ +k + 1)(∝ +k)
. (16)

By substituting from Equations (15) and (16) into Equation (14):

∼
FrL

(∝,λ)

i+1 (x) =
(
2i+ ∝ +1 − xλ

)
(i + 1)

√
(i + 1)

(∝ +i + 1)

∼
FrL

(∝,λ)

i (x)− (i+ ∝)
(i + 1)

√
i(i + 1)

(∝ +i + 1)(∝ +i)

∼
FrL

(∝,λ)

i−1 (x), (17)

4. Schwarz–Rutishauser Algorithm

The Schwarz–Rutishauser algorithm adapts the classical Gram–Schmidt methods [30,33–35].
The Gram–Schmidt is a decomposition of matrix A as:

A = QR (18)

where Q is an orthogonal matrix and R is an upper triangular matrix. The orthogonal
matrix Q is produced based on the orthogonal projection. An orthogonal projection of
a onto q is:

proj⇀
q
⇀
a=

〈
⇀
q ,

⇀
a
〉

〈
⇀
q ,

⇀
q
〉 ×⇀

q=

〈
⇀
q ,

⇀
a
〉

∥∥∥⇀q ∥∥∥2 ×⇀
q (19)

Each orthogonal vector q ∈ Q is determined by calculating the sum of projections
and subtracting it from the corresponding vector a ∈ A. The entire Gram–Schmidt process
yields an orthogonal matrix Q and can be expressed as:

⇀
q k =

⇀
a k −

k−1

∑
i=1

proj⇀
qi

⇀
ak, (20)

⇀
q k =

⇀
q k∥∥∥⇀q k

∥∥∥ . (21)

The Gram–Schmidt method exhibits several drawbacks, including numerical instabil-
ity and a significant increase in computational complexity for orthogonalizing matrices of a
considerable size. The motivation behind the development of the Schwarz–Rutishauser
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algorithm stemmed from the objective of minimizing the computational complexity associ-
ated with the prevailing Gram–Schmidt projection-based approaches and improving their
numerical stability.

Equation (21) can be simplified by removing the division by the squared norm from
the sum of projections as follows:

⇀
q k =

⇀
a k −

k−1

∑
i=1

〈
⇀
q

T
i ,

⇀
a k

〉
×⇀

q i (22)

We can easily find the i-th element of each column vector r by using the formula:

⇀
e kri,k =

〈
⇀
q

T
i ,

⇀
a k

〉
⇀
e k (23)

By substituting the Equation (23) in (22):

⇀
q k =

⇀
a k −

k−1

∑
i=1

rk−1,k ×⇀
q k−1 (24)

Based on Equations (23) and (24) above, this can be done recursively:

ri,k =

〈
⇀
q

T
i ,

⇀
q k

〉
(25)

⇀
q k =

⇀
a k − rk−1,k × ⇀

q k−1 (26)

We subtract the product of the vector qi ∈ (k) and ri from the vector q, which is the
vector rejection of a. That is why the sum operator can be removed from Equation (24).

Besides the q, we compute the r kth diagonal element in R, as the norm |q|:

rk,k=

∥∥∥⇀q k

∥∥∥ (27)

5. Proposed Computation of Fractional Laguerre Orthogonal Moments Based on the
Schwarz–Rutishauser Algorithm

Generally, the proposed signal analysis algorithm has two main methods: FrGLMs and
Schwarz–Rutishauser. FrGLMs extract features from the signals and Schwarz–Rutishauser
to preserve numerical stability with less complexity. The proposed algorithm is described
as six steps. In step 1, set the maximum value (L) and (Lmax) as the order of polynomials.

Step 2 illustrates calculating the two initial conditions,
∼

FrL
(∝,λ)

0 (x) and
∼

FrL
(∝,λ)

1 (x), using
the following equations:

∼
FrL

(∝,λ)

0 (x) =
√

w(∝,λ)(x)
Γ(∝+1) ,

∼
FrL

(∝,λ)

1 (x) =
(
1+ ∝ −xλ

)√w(∝,λ)(x)
Γ(∝+2)

In step 3, calculate the polynomials of order i depending on the initial conditions by
the below equation:

∼
FrL

(∝,λ)

i+1 (x) =
(
2i+ ∝ +1 − xλ

)
(i + 1)

√
(i + 1)

(∝ +i + 1)

∼
FrL

(∝,λ)

i (x)− (i+ ∝)
(i + 1)

√
i(i + 1)

(∝ +i + 1)(∝ +i)

∼
FrL

(∝,λ)

i−1 (x)
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After computing Laguerre polynomials of orders i, in step 4, we use the Schwarz–
Rutishauser to obtain the orthogonal matrix Q and normalize Q by dividing it by its norm
using the following equations:

rn,m =

〈
⇀
Q

T

1:L,n,
⇀
Q1:L,m

〉
,

Q1:L,m = Q1:L,m − rn,m × Q1:L,n,
Q1:L,m = Q1:L,m/‖Q1:L,m‖.

In step 5, the fractional-order generalized Laguerre moments are applied on matrix Q
to get the features from the signal using the following equation:

ˆFrLMi =
N−1

∑
x=0

∼
FrL

(∝,λ)

i s(x), i = 0, 1, 2, . . . , N − 1

Then, apply the inverse of the fractional Laguerre moments to get the reconstructed
signal S(x) based on the below equation:

S(x) =
imax

∑
i=0

ˆFrLMi
∼

FrL
(∝,λ)

i , x = 0, 1, 2, . . . , N − 1.

An Algorithm of the Proposed Method

The algorithm’s pseudo code is presented in Algorithm 1.

Algorithm 1. The algorithm’s pseudo-code

{—— Step 1: Determine the value L and Lmax——}
Input the original signal s(x)
Set the highest value (L) of variable x.
Set a polynomial’s order (Lmax).
{——Step 2: Calculate the initial conditions of the polynomials——}
for x←0 to L-1 do

Calculate
∼

FrL
(∝,λ)

0 (x) using Equation (6).

Calculate
∼

FrL
(∝,λ)

1 (x) using Equation (7).
{—— Step 3: Calculate the polynomials of order i ——}
for i ← 2 to Lmax − 1 do

Calculate
∼

FrL
(∝,λ)

i (x) using Equation (17).
end for
{—— Step 4: Obtain the orthogonal matrix Q using the Schwarz-Rutishauser ——}

FL =
∼

FrL
(∝,λ)

i (x)
For n← 1 to L do
Q1:N,n = FL1:N,n
for m ← 0 to n − 1 do

rn,m =

〈
⇀
Q

T

1:L,n,
⇀
Q1:L,m

〉
Q1:L,m = Q1:L,m − rn,m × Q1:L,n
end for
Q1:L,m = Q1:L,m/

∥∥Q1:L,m
∥∥

end for
end for
{— —Step 5: Get the features of the input signal using Fractional Laguerre moments ——}
Apply fractional Laguerre moments ˆ(FrLM i) using Equation (1).
{—— Step 6: return the reconstructed signal ——}
Apply the inverse of fractional Laguerre moments to get the reconstructed signal S(x) using
Equation (2).
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6. Experiments and Discussion

We utilized some ECG signals from the MIT-BIH Arrhythmia Dataset in the experi-
ments. The Mean Squared Error (MSE) and Peak Signal-to-Noise Ratio (PSNR) are utilized
to evaluate the efficacy of the introduced algorithm [36].

• Relative error (RelErr (%))

The relative error is calculated by dividing the absolute error of the measurement by
the value of the measurement itself:

RelErr =
(

stdev( f (x)− F(x))
| f (x)|

)
× 100% (28)

• Mean Squared Error (MSE)

The Mean Squared Error (MSE) measures the average of the squares of the errors, that
is, the average squared difference between the reconstructed signal F(x) and the original
signal f(x):

MSE =
1
N

N−1

∑
x=0

(
f(x)− F(x))2 (29)

• Peak Signal-to-Noise Ratio (PSNR)

PSNR is a metric that quantifies the relationship between the maximum achievable
signal power and the power of the noise that distorts it:

SNR = 20 × log10
max| f (x)|√

MSE
(30)

where f (x) is the original signal, and F(x) is a reconstructed signal.

Results

In this section, an experimental examination of the proposed algorithm is carried out
to investigate and assess its performance in reconstructing the signals utilizing various
scenarios. Table 1 presents the proposed algorithm’s and FrGLMs’ comparative results on
some signals from the MIT-BIH Arrhythmia Dataset. The results illustrate the superiority
of the proposed algorithm in reconstruction metrics (PSNR = 143.21, MSE = 0.01096, and
RelErr (%) = 0.027) over using FrGLMs; this can also be seen in Figure 2.

 

Figure 2. The average values of quality metrics (PSNR and RelErr (%)) for the introduced algorithm
and FrGLMs.
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Table 1. Empirical results of the introduced algorithm compared with FrGLMs.

Signal
FrGLMs Proposed Algorithm

PSNR MSE RelErr (%) PSNR MSE RelErr (%)

Rec. 101 84.61 0.23005 0.57 141.05 0.00992 0.025
Rec. 108 70.06 0.967 2.398 119.92 0.01496 0.037
Rec. 115 110.88 0.037 0.092 155.46 0.00328 0.008
Rec. 209 66.65 0.83865 2.079 135.82 0.00728 0.018
Rec. 214 80.83 0.60155 1.492 139.8 0.0304 0.075
Rec. 219 112.49 0.05465 0.136 163.2 0.00808 0.02
Rec. 230 78.05 0.722 1.79 151.41 0.00456 0.011
Rec. 234 74.11 0.49475 1.227 139.05 0.00936 0.023
Average 89.21 0.4932 1.223 143.21 0.01096 0.027

Table 2 shows the numerical results of the proposed algorithm against the algorithms
that use GSM, HM, and GRM. The results in Table 1 demonstrate the advantage of the
proposed algorithm over the other methods (GSM, HM, and GRM). The proposed algorithm
achieves the best PSNR (143.21), MSE (0.01096), and RelErr (0.027%). Figure 3 depicts the
average PSNR and RelErr of the proposed algorithm and other signal reconstruction
algorithms employing GSM, HM, and GRM. It demonstrates that the introduced algorithm
is superior in the reconstructed signal quality.

 

Figure 3. The average values of quality metrics (PSNR and RelErr (%)) for the introduced algorithm
and FrGLMs—GSM, FrGLMs—HM, and FrGLMs—GRM.

Table 2. Comparative results of the introduced algorithm with FrGLMs—GSM, FrGLMs—HM, and
FrGLMs—GRM.

Signal
FrGLMs—GSM FrGLMs—HM FrGLMs—GRM Proposed Algorithm

PSNR MSE
RelErr

(%)
PSNR MSE

RelErr
(%)

PSNR MSE
RelErr

(%)
PSNR MSE

RelErr
(%)

Rec. 101 109.60 0.0359 0.089 128.22 0.01743 0.043 111.91 0.02548 0.063 141.05 0.00992 0.025

Rec. 108 93.022 0.2066 0.512 108.39 0.1064 0.264 88.38 0.2723 0.675 119.92 0.01496 0.037

Rec. 115 124.20 0.0203 0.050 139.72 0.01358 0.034 118.55 0.029792 0.074 155.46 0.00328 0.008
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Table 2. Cont.

Signal
FrGLMs—GSM FrGLMs—HM FrGLMs—GRM Proposed Algorithm

PSNR MSE
RelErr

(%)
PSNR MSE

RelErr
(%)

PSNR MSE
RelErr

(%)
PSNR MSE

RelErr
(%)

Rec. 209 109.06 0.0210 0.052 120.78 0.01967 0.049 104.73 0.029792 0.074 135.82 0.00728 0.018

Rec. 214 112.64 0.0508 0.126 124.86 0.04214 0.104 109.09 0.05985 0.148 139.80 0.0304 0.075

Rec. 219 129.54 0.0195 0.048 144.22 0.01491 0.037 128.10 0.02044 0.051 163.20 0.0080 0.020

Rec. 230 123.72 0.0142 0.035 135.56 0.01351 0.033 120.46 0.01631 0.040 151.41 0.00456 0.011

Rec. 234 112.09 0.0219 0.054 125.26 0.01652 0.041 107.287 0.02947 0.073 139.05 0.00936 0.023

Average 114.23 0.0487 0.121 128.37 0.03052 0.076 111.06 0.06041 0.150 143.21 0.01096 0.027

To confirm the superiority of the proposed algorithm in reconstruction quality, Figure 3
presents a set of reconstructed “Rec. 101” signal in terms of PSNR and RelErr for the
introduced algorithm and FrGLMs—GSM, FrGLMs—HM, and FrGLMs—GRM. The results
in Table 2 and Figures 3 and 4 demonstrate that the proposed algorithm has the best PSNR,
MSE, and RelErr corresponding to all the used signals and the total average of PSNR, MSE,
and RelErr.

 
Figure 4. Set of reconstructed “Rec. 101” signal employing the introduced algorithm and
FrGLMs—GSM, FrGLMs—HM, and FrGLMs—GRM.
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A comparison is conducted between the proposed algorithm and FrGLMs—HM in
reconstruction with orders from 50 and 500 to make the results more accurate. Table 3
presents the comparative results of the proposed algorithm and FrGLMs—HM in PSNR,
MSE, and RelErr (%). The PSNR and MSE curves for the reconstructed signals (Rec. 101
and Rec. 219) at various orders from 50 to 500 are shown in Figures 5 and 6, respectively. As
shown in Table 3 and Figure 5, the PSNR values increase proportionally as the number of
moment orders increases, indicating an enhancement in the reconstructed signal quality. As
shown in Table 3 and Figure 6, the best value of MSE is likewise obtained as the number of
moment orders increases. The results also outperform the introduced algorithm compared
to FrGLMs—HM at each order in terms of PSNR and MSE.

Table 3. Performance of introduced algorithm compared to FrGLMs—HM in various orders.

Signal Order
FrGLMs—HM Proposed Algorithm

PSNR MSE PSNR MSE

Rec. 101

50 85.104 0.8541 88.104 0.3479
100 90.658 0.3140 93.487 0.2011
200 110.847 0.0220 119.639 0.0194
300 116.014 0.0200 132.541 0.0148
400 121.583 0.1984 137.965 0.0117
500 128.22 0.01743 141.05 0.0099

Rec. 219

50 89.417 0.3851 105.487 0.1961
100 101.541 0.2604 116.541 0.1358
200 114.981 0.0833 129.574 0.0504
300 125.635 0.0293 145.654 0.0117
400 136.992 0.0199 157.541 0.0098
500 144.22 0.0149 163.20 0.0080

Figure 5. Values of PSNR for the reconstructed signal “Rec. 219” based on the proposed algorithm
and FrGLMs—HM at different orders.

Figure 6. Values of MSE for the reconstructed signal “Rec. 219” based on the proposed algorithm
and FrGLMs—HM at different orders.
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A comparative investigation of other existing algorithms [8,18,20,36] in reconstruction
quality is summarized in Table 4. Figures 7 and 8 display a graphic comparison of the in-
troduced algorithm and other existing algorithms concerning PSNR and MSE, respectively.
As shown in Table 4 and Figures 7 and 8, the proposed algorithm outperforms the existing
algorithms, which have very high PSNR and the lowest MSE values.

Table 4. Comparative results of the introduced algorithm with other existing algorithms.

Techniques MSE PSNR

Charlier Moment—GSOP [8] 0.883 95.741
Krawtchouk—Householder [18] 0.0771 105.015
Meixner- MGS [20] 0.0948 85.654
Tchebichef–Householder [18] 0.0436 107.085
Hahn Moment Invariants (HMIs) [36] 0.0805 97.548
Proposed algorithm 0.0109 143.21

Figure 7. The average values of PSNR for the introduced algorithm compared with other existing
algorithms.

 

Figure 8. The average values of MSE for the introduced algorithm compared with other existing
algorithms.
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A comparative analysis is performed between the proposed algorithm and other
existing algorithms in the context of reconstruction to ensure the accuracy of the proposed
method. The analysis includes orders ranging from 50 to 500. Table 5 illustrates the
comparison outcomes of the introduced and existing algorithms in terms of PSNR and MSE.
Figures 9 and 10 display the PSNR and MSE curves corresponding to the reconstructed
signal “Rec. 101” over different orders ranging from 50 to 500. The obtained results
demonstrate the superior performance of the proposed method over the existing algorithms
at every order, determined by PSNR and MSE.

Table 5. Performance of introduced algorithm compared to other existing algorithms in various orders.

Signal Order
Tchebichef–Householder [18] Krawtchouk—Householder [18] Proposed Algorithm

PSNR MSE PSNR MSE PSNR MSE

Rec. 101

50 75.232 0.949 73.048 1.2201 88.104 0.3479
100 80.335 0.5273 77.213 0.7554 93.487 0.2011
200 106.854 0.0249 104.067 0.0343 119.639 0.0194
300 122.548 0.0201 118.474 0.03 132.541 0.0148
400 129.198 0.0197 125.985 0.0284 137.965 0.0117
500 132.017 0.0158 128.811 0.0203 141.05 0.0099

Figure 9. Values of PSNR of the reconstructed signal “Rec. 101” for the proposed algorithm and other
existing algorithms at different orders.

Figure 10. Values of MSE of the reconstructed signal “Rec. 101” for the proposed algorithm and other
existing algorithms at different orders.

To investigate the complexity of the introduced algorithm, we compare the elapsed
reconstruction time of the proposed algorithm and FrGLMs—GSM, FrGLMs—HM, and
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FrGLMs—GRM. As shown in Figure 11, the proposed algorithm outperforms other algo-
rithms in the elapsed reconstruction time at different orders. The visual inspection in Figure 11
shows that the introduced algorithm has less reconstruction time than FrGLMs—HM,
FrGLMs—GRM, and FrGLMs—GSM. Table 6 and Figure 12 compare the introduced al-
gorithm and the FrGLMs—HM algorithm in the elapsed reconstruction time and efficiency
gain. The numerical results in Table 6 show that the elapsed reconstruction time of the
proposed algorithm for the Rec. 101 signal is 0.7 s in contrast to 1.5 s for FrGLMs—HM.
Also, concerning the Rec. 219 signal, the proposed algorithm elapses 0.9 s compared to
1.7 for FrGLMs—HM.

Figure 11. Elapsed reconstruction time for the proposed algorithm, FrGLMs—GSM, FrGLMs—HM,
and FrGLMs—GRM at different orders.

Table 6. Elapsed reconstruction time of the proposed algorithm and FrGLMs—HM.

Elapsed Reconstruction Time (s)

Rec. 101 Rec. 219

FrGLMs—HM 1.5 1.7
Proposed algorithm 0.7 0.9

Efficiency Gain 0.8 0.8

 

Figure 12. Comparison of elapsed reconstruction time between the proposed algorithm and
FrGLMs—HM for “Rec. 101” and “Rec. 219” signals.
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7. Discussion

This paper introduces a reconstruction algorithm based on FrGLMs and the Schwarz–
Rutishauser algorithm. As seen previously and from the results of the comparative experi-
ments, the proposed algorithm outperforms the algorithm that uses FrGLMs with GSM,
HM, and GRM methods. The proposed algorithm was evaluated by assessing the quality
of the reconstructed signal in terms of the elapsed time of reconstruction. The proposed
method excelled in both aspects. The good results in quality reconstruction and elapsed
reconstruction time go back to two main reasons. The first uses set fractional-order general-
ized Laguerre moments (FrGLMs), in which the term second-order recurrence formula is
derived for the normalized form of the FrGLMs. Also, using the simple recursive formula
of the gamma function, we deduced a recursive formula for evaluating the squared norm
h(∝,λ)

k . It has great benefits in saving computation time. The second reason is using the
Schwarz–Rutishauser algorithm to preserve the orthogonality property. The empirical
experiments reveal that using the Schwarz–Rutishauser algorithm with FrGLMs takes
less elapse time in reconstruction. In contrast to using the GSM, HM, and GRM methods
with FrGLMs, due to its complexity, the Schwarz–Rutishauser algorithm is (mn2), which is
(n)-times less than GSM.

8. Conclusions

In conclusion, we would like to point out that we have provided an ideal approach
for large-size bio-signals. The proposed approach is based on an ultramodern set of
DOMs called FrGLMs. For more fast and accurate calculations, we derived a term second-
order recurrence formula for the normalized form of FrGLMs. Also, we used a novel QR
decomposition method called Schwarz–Rutishauser, which gives more accurate and stable
calculations, especially at higher orders of FrGLMs. The MIT-BIH Arrhythmia Dataset
analyzed the proposed algorithm’s performance concerning MSE, PSNR, and elapsed
reconstruction time. The empirical results reveal superiority in favor of the proposed
algorithm (i.e., FrGLMs with the Schwarz–Rutishauser algorithm) when compared with
FrGLMs with the classical QR decomposition techniques (i.e., GSM, HM, and GRM).
Regarding the PSNR metric, the proposed algorithm gives average efficiency gain with
values of 28.98, 14.84, and 32.15 when compared with FrGLMs—MGSM, FrGLMs—HM,
and FrGLMs—GRM, respectively. The MSE metric gives average efficiency gain with
values of 0.03784, 14.84, and 32.15 when compared with FrGLMs—MGSM, FrGLMs—HM,
and FrGLMs—GRM, respectively. The proposed approach also achieves high superiority
concerning the elapsed reconstruction time.
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Abstract: The global incidence of cutaneous squamous cell carcinoma (cSCC), a prevalent and
aggressive skin cancer, has risen significantly, posing a substantial public health challenge. This study
investigates the tumor microenvironment (TME) of cSCC by focusing on the spatial distribution
patterns of immune and vascular markers (CD31, CD20, CD4, and CD8) using fractal dimension (FD)
analysis. Our analysis encompassed 141 cases, including 100 invasive cSCCs and 41 specimens with
pre-invasive lesions exclusively, and the rest were peripheral pre-invasive lesions from the invasive
cSCC class. The FD values for each marker were computed and compared between pre-invasive
and invasive lesion classes. The results revealed significant differences in FD values between the
two classes for CD20 and CD31 markers, suggesting distinct alterations in B cell distribution and
angiogenic activity during cSCC progression. However, CD4 and CD8 markers did not exhibit
significant changes individually. Still, the CD4/CD8 ratio showed a significant difference, suggesting
a potential shift in the balance between T helper and cytotoxic T cell responses, impacting the immune
landscape as lesions progressed from pre-invasive to invasive stages. These findings underscore the
complexity and heterogeneity of the TME in cSCC and highlight the potential of FD analysis as a
quantitative tool for characterizing tumor progression. Further research is needed to elucidate the
implications of these differences in the clinical management of cSCC.

Keywords: fractal dimension; cutaneous squamous cell carcinoma; digital image analysis; tumor
microenvironment; angiogenesis; immune cells

1. Introduction

The incidence rate of cutaneous squamous cell carcinoma (cSCC), a malignant epithe-
lial tumor originating from keratinocytes [1], has increased globally by approximately 36%
between 1990 and 2019 [2]. This alarming rise in cSCC, the second most common type of
skin cancer, represents a significant public health concern, with over 2.4 million new cases
and more than 356,000 deaths attributed to it worldwide annually [2,3].

cSCC progresses through distinct stages, beginning with abnormal cell growth (dys-
plasia), as observed in actinic keratosis. It then develops into a pre-cancerous stage confined
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to the epidermis (carcinoma in situ or Bowen’s disease), before ultimately transforming
into invasive cancer that penetrates through the basement membrane into the dermis or
deeper tissues [1].

The most common sites of cSCC development are sun-exposed areas, predominantly
the head and neck, with the ears, lips, scalp, and face being the most frequently affected
sites [1,4]. However, cSCC can also develop on the trunk and lower extremities, with the
legs being a frequent site in women [4,5]. Risk factors associated with cSCC development,
in addition to chronic sun exposure, include advanced age, with an increased incidence
observed in individuals over 50 years, peaking over 70 [2]. Furthermore, immunosuppres-
sion, fair skin, chronic irritation, trauma (e.g., burn scars, chronic ulcers), and radiation
exposure also contribute to an elevated risk of cSCC [1].

Histologically, cSCC is characterized by pleomorphic polygonal cells, exhibiting a
degree of differentiation dependent on tumor grade [1]. These cells adhere together,
forming nests or islands surrounded by tumor stroma, and may demonstrate variable
keratin production [1]. The tumor stroma is a complex environment surrounding and
interacting with the tumor cells [6]. It contains various cellular components, including
immune cells [7,8], cancer-associated fibroblasts [9], and extracellular matrix components
such as collagen [10] and blood vessels [11]. This composition of the tumor stroma can
influence tumor progression, invasion, and metastasis [12].

Immune cells play a critical role in the tumor microenvironment (TME) [13]. CD8+
cytotoxic T cells can directly kill tumor cells, and their presence is associated with a better
prognosis [14,15]. Tregs (CD4+ regulatory T cells), on the other hand, suppress the immune
response [16] and their abundance is linked to poorer outcomes. The ratio of these two
cell types within the TME can vary depending on factors like tumor stage and genetics [7].
Blood vessels are another vital component of the TME, supplying nutrients and oxygen
to the tumor. Compared to basal cell carcinoma (BCC), in which the blood vessels are
arranged at the periphery, cSCC lesions show a bigger vessel density with two vascular
pedicles [17], indicating a possible involvement in the more aggressive tumor behavior.

Many natural objects have complex structures that stay complex across magnifications,
and patterns repeat at different scales. This complexity and variation makes traditional
measurements tricky, so fractal geometry can be used instead [18]. Fractal dimension
measures how much space an object fills and can be estimated using image analysis [18]. It
has been a helpful tool in biology for analyzing DNA, tumors, and understanding growth
processes [18].

Benoît Mandelbrot, the visionary behind fractals, introduced fractal dimension, a tool
to quantify the intricate patterns found in nature’s seemingly irregular forms. From aiding
in the diagnosis of tumors [19] and the analysis of brain scans [20] to providing insights into
the intricacies of the circulatory system, the application of fractal dimension has emerged
as a potent instrument in the ongoing exploration and comprehension of the human body’s
complexities [21].

In the realm of dermatology, fractal analysis has proven to be a valuable tool for
characterizing various aspects of skin lesions. Notably, it was employed to evaluate the
extent of field cancerization activity [22], a critical factor in understanding the progression of
skin cancers. Additionally, fractal analysis aided in the investigation of melanoma and other
pigmented lesions [23,24]. This investigation involved the analysis of both histopathological
slides and dermatoscopic images [25], providing insights into the structural complexities
of these lesions. Furthermore, researchers have utilized fractal dimensions to examine the
vascularity of melanomas and their micrometastases [26], potentially contributing to the
development of improved diagnostic and prognostic tools.

Our investigation centers on the TME of cutaneous squamous cell carcinoma (cSCC),
with particular attention directed towards the spatial arrangement of CD20, CD31, CD4, and
CD8 markers. By employing fractal dimension analysis, we seek to provide a quantitative
characterization of the distributional patterns of these markers, stratified into two distinct
categories (classes): pre-invasive and invasive lesions.
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2. Materials and Methods

2.1. Material

The present research encompassed a total sample of 141 cases, comprising 100 con-
secutive cases of invasive cutaneous squamous cell carcinoma and an additional 41 cases
characterized exclusively by the presence of pre-invasive lesions. In order to achieve a
total number of 100 analyzed pre-invasive lesions, the sample was supplemented with
pre-invasive lesions identified at the periphery within the class of 100 cSCC cases. The
inclusion of pre-invasive lesions from the periphery of invasive cSCC cases was moti-
vated by the recognition that invasive tumors frequently exhibit surrounding areas of
pre-invasive changes, reflecting the stepwise progression of cSCC from pre-malignant to
malignant stages. This approach aimed to enhance the representation of the pre-invasive
spectrum within the study cohort, enabling a more comprehensive comparison between
pre-invasive and invasive lesions, in terms of their tumor microenvironment characteristics
and addressing the class imbalance at the same time. Ethical approval for this research was
obtained from the Research Ethics Committee of the Emergency Clinical County Hospital,
Cluj-Napoca, Romania (Approval No. 38789/13.09.2021), and the University of Medicine
and Pharmacy “Iuliu Hatieganu” Cluj-Napoca (AVZ2/8.11.2021). In this study, lesions con-
fined to the epidermis were classified as pre-invasive, while those infiltrating underlying
structures were considered invasive.

Following standard histological processing and Hematoxylin-eosin (H&E) staining,
additional sections were prepared from paraffin-embedded tissue blocks for immuno-
histochemical (IHC) analysis. IHC staining was performed using the BOND-MAX Fully
Automated IHC and ISH Staining System (LEICA). The following antibodies and epitope
retrieval solutions were utilized:

• CD4: Clone 4B12, mouse, ready-to-use (RTU), Leica. Antigen retrieval was achieved
using Bond ER2 solution at an alkaline pH for 20 min.

• CD8: Clone 4B11, mouse, RTU, Leica. Antigen retrieval was conducted using Bond
ER2 solution at an alkaline pH for 30 min.

• CD20: Clone L26, mouse, RTU, Leica. Antigen retrieval was performed using Bond
ER1 solution at an alkaline pH for 20 min.

• CD31: Clone 1A10, mouse, RTU, Leica. Antigen retrieval was accomplished using
Bond ER2 solution at an alkaline pH for 10 min.

The BOND-PRIME Polymer DAB Detection System kit was employed for signal
detection, incorporating peroxide block, post-primary, polymer reagent, DAB chromogen,
and hematoxylin counterstain. The staining protocol included a 5 min peroxide block,
followed by three washes, 15 min of primary antibody incubation, three washes, 8 min
of post-primary incubation, three washes, 8 min of polymer incubation, two washes,
and a distilled water wash. Subsequently, slides were immersed in DAB Refine for 5
min (repeated twice), washed three times with distilled water, and counterstained with
hematoxylin for 5 min. Finally, all slides (H&E and IHC) were digitally scanned using a
Pannoramic SCAN II slide scanner (3DHISTECH, Budapest, Hungary) equipped with a
40× objective. Figure 1 shows the control stains for each antibody used on a sample of
lingual tonsil tissue.

 

Figure 1. Internal stain control for CD31 (A), CD20 (B), CD 4 (C), and CD8 (D) was performed on a
sample of lingual tonsil tissue.
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2.2. Image Selection

Trained dermatopathologists selected and cropped five images for each case. Hema-
toxylin and eosin (H&E) staining was used as the reference standard to identify and outline
squamous cell carcinoma (SCC) and pre-invasive lesions. The other immunohistochemical
stainings (CD31, CD20, CD4, and CD8) were manually aligned to match the corresponding
H&E images. Figure 2 shows a sample of images from both pre-invasive and invasive
classes. The images were cropped to a resolution of 1024 × 1024 pixels, captured at a
magnification equivalent to a 20× objective, with a spatial resolution of 5 microns per pixel.

 

Figure 2. Dataset sample: pre-invasive CD31 (A), CD20 (B), CD 4 (C), and CD8 (D), and invasive
CD31 (E), CD20 (F), CD 4 (G), and CD8 (H).

2.3. Algorithm

The images underwent preprocessing to correct variations in staining, as the staining
process could not be performed simultaneously due to the large number of slides. To
standardize the stainings, a color transfer method was applied. For each staining type, an
image with a well-balanced color distribution was empirically selected as the reference
(target). All other images of the same staining type were adjusted to match the color profile
of this target image. This normalization was performed in the LAB color space using an
algorithm proposed by Reinhard et al. [27], which adjusts the mean and standard deviation
of each color channel to align with those of the target image. While a hardware-based
marker could have provided more consistent results [28], this action was not feasible at the
current stage.

Next, each immunohistochemical stained image was segmented into three distinct
masks using a channel-splitting algorithm suggested by Reyes-Aldasoro C.C. The mask for
marked structures encompasses regions stained positively with the specific antibody used
for immunohistochemistry. It represents the cellular structures expressing the target protein,
such as the cytoplasm and membrane of immune cells or endothelial cells, depending on
the marker being investigated. The mask for unmarked structures comprises areas that
remain unstained by the specific antibody but exhibit basophilic staining. These regions
typically correspond to cellular structures rich in nucleic acids, such as the nuclei of tumor
cells or other cells that were not targeted by IHC within the tumor microenvironment. The
mask for the background encompasses the remaining areas of the image, excluding both
marked and unmarked structures. It theoretically represents the stromal compartment and
non-cellular spaces within the tumor microenvironment. Figure 3 shows examples of these
segmented masks for both pre-invasive and invasive lesions.
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Figure 3. IHC channel split. First column—IHC image, second column—marked structures, third
column—unmarked structures, and fourth column—background. Rows, from top to bottom: pre-
invasive CD31, CD20, CD4, CD8, and invasive CD31, CD20, CD4, CD8.

Following segmentation, a box-counting algorithm was employed to estimate the
fractal dimension of each mask, quantifying its complexity by analyzing how detail in
the pattern changes with scale. The algorithm involves covering the object with grids of
boxes (squares) of varying sizes, in powers of 2, and counting how many of these boxes
contain part of the object. The fractal dimension is estimated by plotting the logarithm of
the number of occupied boxes against the logarithm of the inverse box size and calculating
the slope of the resulting line. The exact implementation of this algorithm is described in a
previous paper [29]. For other applications, we proposed a faster box-counting method
based on integral images [30], but this action was not necessary here due to the relatively
small number of images.

For each of the four immunohistochemical stained images, of each case, we computed
three fractal dimension component values: one for the marked structures, one for the
unmarked structures, and one for the remaining background.
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We compared the mean FD values of each component between the classes. Further-
more, we compared different component ratios between the classes, like CD4/CD8 and
(CD4 + CD8)/CD20.

2.4. Statistical Assessment

All fractal dimension (FD) values were logged, and for each staining and component,
values between the first and third quartiles were retained, resulting in a sample of 50 for
each component, staining, and class. Data normality within each class was evaluated
using the Shapiro–Wilk and Kolmogorov–Smirnov tests. Since all variables followed a
normal distribution, comparisons between different values were made using the parametric
Student’s t-test. A p-value <0.05 was considered significant.

3. Results

The results, presented as the mean ± standard deviation (SD) of the computed FD
for the marked structures for each of the four stainings and each class, are shown in
Table 1. Similarly, the results for the unmarked structures are shown in Table 2, while the
background results are presented in Table 3. Visual representations of these values are
presented as boxplots in Figures 4–6.

Table 1. FD on the marked structures. Mean and SD of the computed FD.

CD31 CD20 CD4 CD8

Pre-invasive
n = 100 1.645 ± 0.024 1.321 ± 0.104 1.623 ± 0.041 1.530 ± 0.041

Invasive
n = 100 1.661 ± 0.035 1.220 ± 0.102 1.610 ± 0.046 1.527 ± 0.053

p, t-test 0.010 <0.001 0.133 0.738

Table 2. FD on the unmarked structures. Mean and SD of the computed FD.

CD31 CD20 CD4 CD8

Pre-invasive
n = 100 1.827 ± 0.019 1.827 ± 0.006 1.835 ± 0.020 1.774 ± 0.019

Invasive
n = 100 1.876 ± 0.012 1.827 ± 0.009 1.875 ± 0.021 1.783 ± 0.014

p, t-test <0.001 0.619 <0.001 0.007

Table 3. FD on the background. Mean and SD of the computed FD.

CD31 CD20 CD4 CD8

Pre-invasive
n = 100 1.926 ± 0.011 1.966 ± 0.002 1.934 ± 0.015 1.967 ± 0.004

Invasive
n = 100 1.906 ± 0.011 1.973 ± 0.001 1.922 ± 0.017 1.969 ± 0.004

p, t-test <0.001 <0.001 <0.001 0.019

The individual levels of CD4 and CD8 did not differ significantly between the
two classes. However, CD20 levels did show a significant difference. When we calcu-
lated the CD4/CD8 ratio, we observed a statistically significant difference between the
classes, as shown in Table 4. A similar significant difference was also found when analyzing
the ratio of CD4 + CD8 to CD20.
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Figure 4. FD on the marked structures. CD31 and CD20 show statistically different values, while
CD4 and CD8 do not. P (n = 100) stands for pre-invasive, while I (n = 100) stands for invasive. Red
line marking the median, a blue box representing the range between the first quartile (Q1) and third
quartile (Q3), and black lines (whiskers) indicating the minimum and maximum values.

 

Figure 5. FD on the unmarked structures. CD31, CD4, and CD8 show statistically different values,
while CD20 does not. P (n = 100) stands for pre-invasive, while I (n = 100) stands for invasive. Red
line marking the median, a blue box representing the range between the first quartile (Q1) and third
quartile (Q3), and black lines (whiskers) indicating the minimum and maximum values.
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Figure 6. FD on the background. All immunohistochemical staining exhibit statistically different FD
values. P (n = 100) stands for pre-invasive, while I (n = 100) stands for invasive. Red line marking the
median, a blue box representing the range between the first quartile (Q1) and third quartile (Q3), and
black lines (whiskers) indicating the minimum and maximum values.

Table 4. FD on the marked structures. Mean and SD of the computed FD ratios.

CD4/CD8 CD4 + CD8 (CD4 + CD8)/CD20

Pre-invasive
n = 100 1.061 ± 0.006 3.153 ± 0.082 2.397 ± 0.132

Invasive
n = 100 1.055 ± 0.009 3.136 ± 0.099 2.581 ± 0.136

p, t-test 0.010 0.368 <0.001

4. Discussion

The present study employed an innovative approach to investigate the TME in cSCC
by utilizing FD analysis on several IHC stains (specifically CD31, CD20, CD4, and CD8).
The findings revealed intriguing insights into the complexity and heterogeneity of the TME,
particularly highlighting differences between two important classes of tumors: pre-invasive
and invasive cSCC lesions.

Our previous research concentrated on characterizing the TME across various tumor
types. Specifically, in the context of prostate adenocarcinoma, we investigated correlations
between the intratumoral interstitial fibrillary network and tumor architecture [31], as
well as between the intratumoral vascular network and tumor architecture [32]. We also
explored the relationships between the intratumoral interstitial fibrillary and vascular
network [33]. This line of inquiry was further advanced by employing FD analysis to study
the components of tumor architecture in prostate adenocarcinoma [29]. In colorectal cancer
research, we identified predictive markers for primary tumors [34] and evaluated potential
markers of colorectal cancer stem cells [35]. Moving closer to cutaneous pathology, we
demonstrated that nodular and micronodular subtypes of basal cell carcinoma are distinct
entities, based not only on their morphological architecture but also on their TME [36].
Additionally, in the study of palate squamous cell carcinomas, we described the distribution
and expression of certain tumor invasiveness markers [37], providing a foundation for our
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current work on squamous cell carcinoma at a different site. This body of previous research,
including direct studies on squamous cell carcinoma at varying sites, laid the groundwork
for the findings presented in our current study.

CD31, also known as Platelet Endothelial Cell Adhesion Molecule-1 (PECAM-1) [38],
is a protein primarily expressed on the surface of endothelial cells [38], which line blood
vessels, as well as on platelets, certain leukocytes, and a subset of macrophages [39].
CD31 plays a critical role in several physiological processes of the vascular and immune
systems. Particularly, CD31 has numerous functions in the formation and maintenance
of the endothelial barrier [40], angiogenesis [41], transmigration of leukocytes across the
endothelial layer [42], and platelet activation and aggregation [43]. Having all these
functions, one could suspect that, as part of the TME, the CD31 pattern evolves with the
tumors. This idea is also reinforced by our previous studies on other tumor types. The
current study shows that CD31 marking has significantly different FD values between
pre-invasive and invasive classes, with a lower value in the former, as seen in Table 1
and Figure 4. This difference indicates a possible differentiation between the two classes
and could lead to further investigations as the vessels are subjected to analysis with non-
invasive imaging techniques, and in turn, this action could bring useful information in the
clinical decision.

CD20 is a protein found on the surface of B cells, which are a type of white blood cell
involved in the immune system. The CD20 molecule plays a key role in B cell development,
differentiation, and activation [44]. It is not present on early B cells or plasma cells, but it
is expressed on mature B cells. B cells exhibiting CD20, are present in different diseases
like leukemia, lymphoma [45], and autoimmune diseases [46] and are used for targeted
therapy, showing their role in the immune intervention. The current study shows that
CD20 marking has significantly different FD values between pre-invasive invasive classes,
with a lower value in the latest, as seen in Table 1 and Figure 4. This difference indicates a
possible differentiation between the two classes and could lead to further investigations.

CD4 is a glycoprotein expressed on the surface of certain immune cells, including
T helper cells [47], monocytes, macrophages [48], and dendritic cells [49]. CD4 is a co-
receptor that plays a crucial role in the immune system by aiding in the activation and
coordination of the immune response [47]. Particularly, CD4 has numerous functions like
orchestrating the immune response by helping to activate other immune cells, including
B cells (which produce antibodies) [47], cytotoxic T cells (which kill infected cells) [50],
and macrophages [48] (which engulf and destroy pathogens). It also has a role in immune
regulation, where CD4+ T cells are involved in regulating the immune response, ensuring
that it is appropriately robust to fight infections but also controlled to prevent excessive
inflammation or autoimmune reactions [47]. CD4+ T cells can play a role in both pro-
inflammatory and anti-inflammatory responses. The type of response depends on the
specific subtype of CD4+ T cell involved and the signals it receives [51]. When these CD4+
T cells recognize a foreign antigen presented by other immune cells, they can initiate a
variety of immune responses, including pro-inflammatory ones [52]. The current study
shows that CD4 marking has no significantly different FD values between pre-invasive
and invasive classes, as seen in Table 1 and Figure 4. This observation could indicate that
CD4-expressing cells are highly involved in both pre-invasive and invasive lesions.

CD8 is a glycoprotein found on the surface of certain immune cells, primarily cytotoxic
T cells (also known as CD8+ T cells) [53]. It serves as a co-receptor that is crucial in the
immune system, particularly in the identification and elimination of infected or cancerous
cells [54]. CD8+ T cells have the ability to directly kill cells that are infected with viruses or
other intracellular pathogens, as well as cells that are cancerous or otherwise abnormal [55].
They accomplish this action by releasing cytotoxic molecules like perforin and granzymes,
which induce apoptosis (programmed cell death) in the target cell [55]. CD8+ T cells interact
with MHC class I molecules, which are present on almost all nucleated cells [55]. This
interaction allows them to survey cells for signs of infection or transformation. The current
study shows that CD8 expression (as measured by FD values) does not differ significantly
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between pre-invasive and invasive classes, as seen in Table 1 and Figure 4. Similar with the
CD4 expression, this lack of significant difference could indicate that CD8 expressing cells
are highly involved in both pre-invasive and invasive lesions.

Following Table 1 and Figure 4, we found that CD4 and CD8 do not exhibit significant
changes in the FD within the pre-invasive and invasive classes. However, when we
computed the CD4 to CD8 ratio of the obtained FD ratio, we found it shows a significant
difference, as seen in Table 4. The invasive class has a lower overall FD ratio. Since the
individual values of CD4 and CD8 showed no statistical difference, we were forced to take
into consideration both the influence of the denominator and numerator without being
able to point out the one that changes.

Following a similar approach when aiming to see the T to B FD ratio, we computed
(CD4 + C8)/CD20 and found out that the FD ratio is statistically different between the two
classes, as pointed out in Table 4. With CD20 itself showing statistically different values
between classes, and with the CD4 + CD8 showing no statistical difference, it is unclear if
the CD4 + CD8 has a contribution in this matter.

We focused on marked structures for three reasons: (1) they directly represent the
spatial distribution of the specific immune cells that we are interested in (CD4+, CD8+,
and CD20+ cells), allowing us to analyze their arrangement; (2) the CD4/CD8 and (CD4
+ CD8)/CD20 ratios are relevant in other cancers, like breast cancer [56], and using FD
values helps quantify the spatial distribution of these cells; and (3) unmarked structures
and the background are different from the marked immune cells and could confuse our
interpretation of the results.

The analysis of FD values in unmarked structures—areas not stained for specific
markers but showing high basophilic staining—revealed significant differences between
pre-invasive and invasive cSCC in the CD31, CD4, and CD8 images. Invasive cSCC showed
higher FD values in unmarked structures across all three markers, as illustrated in Table 2
and Figure 5. However, FD values for unmarked structures in CD20 images did not differ
between the two classes. The underlying causes for these insignificant FD differences in the
T line cells, as well as the significant differences in unmarked structures, remain unclear.
The phenomena are opposite in the B cell line. This observation is particularly intriguing
because it suggests a mirroring effect: when marked structures show significant differences,
the unmarked structures do not, and vice versa.

The background mask was created by excluding both marked and unmarked struc-
tures, theoretically representing the stroma and non-cellular spaces. For the average FD,
all components showed statistically significant differences between the classes, as detailed
in Table 3 and Figure 6. Higher FD values were observed in the non-invasive class for
CD31 and CD4, while CD8 and CD20 showed higher values in the invasive class. Given
that at least one statistically significant difference was found in the combination of marked
and unmarked structures for all four stainings—CD31 showing differences in both—it is
challenging to interpret these findings at this stage. However, this observation may be
useful for future studies aimed at identifying correlations.

The presence of CD4+ and CD8+ T cells is generally associated with anti-tumor
immune responses [57], and their increased complexity in invasive cSCC could reflect
an ongoing immune response against the tumor or a more complex interplay between
different T cell subsets. It should be noted that, in other studies, a decrease in T reg CD4+,
also evaluated by digital image analysis, was observed in invasive cSCC lesions compared
to premalignant lesions [7]. On the other hand, the same study [7] stated that there is a
progressive increase in CD8 T cells in cSCC carcinogenesis.

Furthermore, the analysis of FD values on background regions, representing areas not
occupied by cells, also showed significant differences between pre-invasive and invasive
cSCC for all four IHC markers. The decrease in FD values for CD31 observed in invasive
cSCC suggests a reduction in background complexity, potentially indicating alterations in
the extracellular matrix or stromal components surrounding the tumor cells (such as blood
vessels). These changes in the background could impact cell–cell interactions, signaling
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pathways, and overall TME dynamics, potentially contributing to tumor progression and
invasion [58].

While individual levels of CD4 and CD8 T cells did not show significant differences
between pre-invasive and invasive classes, the ratio of CD4 to CD8 was significantly lower
in the invasive class. This lower ratio suggests a potential shift in the balance of T cell
subsets during progression to invasive disease. Additionally, CD20 levels were significantly
different between classes, and the ratio of combined CD4 and CD8 T cells to CD20 was
also significantly lower in the invasive classes. This ratio may indicate alterations in the
interplay between T cells and B cells (CD20+) in the TME as the disease advances. These
findings highlight the potential importance of T cell and B cell ratios as biomarkers or
therapeutic targets in cSCC.

The observed shift in the CD4/CD8 ratio, indicative of a potential recalibration be-
tween T helper and cytotoxic T cell populations, may hold significant implications for
the clinical management of cSCC. As highlighted in a previous review article [58], the
TME exerts a profound influence on cancer progression and therapeutic response. The
intricate interplay between immune cells, stromal elements, and angiogenic factors within
the TME significantly shapes tumor behavior and its susceptibility to various treatment
modalities. Our findings, revealing a significant alteration in the CD4/CD8 ratio during
cSCC progression, suggest a potential shift in the balance of immune responses within the
TME. This could impact the efficacy of immunotherapeutic strategies, such as immune
checkpoint inhibitors, which hinge on a robust T cell response for effective tumor targeting
and elimination.

Moreover, the observed changes in CD31 expression, a well-established marker of
angiogenesis, underscore the dynamic nature of the tumor vasculature during cSCC pro-
gression. This observation reinforces the potential of anti-angiogenic therapies, designed to
disrupt neovascularization, as a viable therapeutic strategy in cSCC [59]. Furthermore, our
results align with the growing recognition of inter-patient variability in TME composition,
even among individuals presenting with similar disease stages [58]. This heterogeneity
underscores the necessity for personalized therapeutic approaches in cSCC, as the specific
TME profile, including immune cell composition and angiogenic patterns, can significantly
influence treatment responses [60]. By characterizing the unique TME of each patient’s
tumor, clinicians could potentially tailor treatment strategies to optimize efficacy and mini-
mize adverse events [58]. Our study not only deepens our understanding of the dynamic
TME in cSCC but also lays the foundation for future investigations into the clinical implica-
tions of these findings. The integration of FD analysis with other imaging and molecular
techniques could further refine our ability to characterize the TME, paving the way for the
development of personalized therapeutic strategies that target both the malignant cells and
their supportive microenvironment.

So far, the literature about the use of fractal dimension in cutaneous squamous cell
carcinoma is limited. The only study that we found applied nuclear FD to describe and
compare morphometric aspects and the expression of factors related to apoptosis and
cell proliferation in actinic keratosis (AK), in both photoexposed and photoprotected
epidermis [22].

However, the FD was used in the study of the tumor stroma of oral squamous cell
carcinoma by assessing the nuclear FD of lymphocytes present in the stroma, showing
that high nuclear FDs are associated with an increased number of lymphocytes in the
tumor stroma [61]. In our study, unlike Bose et al.’s approach [61], which employed
H&E staining, we opted for the enhanced specificity of IHC markers to more precisely
identify and quantify the lymphocytes within the tumor microenvironment. Specifically,
we utilized CD20 to identify B lymphocytes, CD4 for helper T lymphocytes (TCD4+), and
CD8 for cytotoxic T lymphocytes (TCD8+). In a separate investigation pertaining to oral
carcinomas, Goutzanis et al. [62] proposed that the FD can serve as a dependable indicator
for assessing angiogenic activity within oral squamous cell carcinoma. A distinct study
from Margaritescu et al. [63] shows that fractal analysis demonstrated a rise in lymphatic
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network complexity as oral mucosal lesions progressed from normal to premalignant,
offering supplementary prognostic insights into oral malignancies.

In the context of non-melanoma skin cancer (NMSC), the fractal dimension (FD) was
also butilized by Capasso et al. [64] to analyze the stroma of basal cell carcinoma (BCC) in
patients with kidney transplants. They employed WSIs with H&E and Trichrome staining.
Their findings indicated that the microenvironment of BCC in kidney transplant patients
exhibited a higher density of inflammatory cells in comparison to the control group [64].
Similarly, in our research, using immunohistochemical markers for B cells and T cells, we
observed a tendency towards decreased structural complexity and irregularities in invasive
lesions when compared to pre-invasive ones.

It would be valuable to further investigate how these immune cell aggregates differ
in complexity between invasive cutaneous squamous cell carcinoma and premalignant
lesions in comparison to BCC. Additionally, examining the complexity of blood vessels
in cSCC and BCC is warranted, as previous research showed that, unlike BCC, where
blood vessels are located at the periphery, cSCC lesions display a higher vessel density
with two vascular pedicles [17], potentially contributing to their more aggressive tumor
behavior. Our current findings, which demonstrate significantly different CD31 marking
FD values between pre-invasive and invasive classes—with lower values observed in
the former—further emphasize the need for future investigations. These studies should
aim to establish a direct link between our observations regarding CD31 expression, a
marker of angiogenesis, and the more aggressive clinical behavior of cSCC in comparison
to BCC. Such a connection could offer a deeper understanding of the role of angiogenesis in
cSCC progression and potentially pave the way for the development of novel therapeutic
strategies targeting tumor vascularization. As we show in previous studies researching the
vascular network architecture with the help of FD, we have observed that the complexity
of the vascular architecture tends to get lower in poorly differentiated patterns of prostatic
adenocarcinoma, with a more linear type arrangement [29].

Integrating FD analysis with complementary imaging modalities (e.g., high-resolution
microscopy, multiphoton microscopy, optical coherence tomography, confocal microscopy,
and skin sonography [17]) could provide a more comprehensive understanding of the
tumor microenvironment, potentially revealing subtle alterations in tissue architecture,
cellular interactions, and vascular networks. Furthermore, combining FD analysis with
molecular profiling techniques (e.g., gene expression analysis and proteomics [65]) could
uncover correlations between spatial patterns and molecular aberrations, facilitating the
identification of novel biomarkers or therapeutic targets. Integrating FD values with clinical
and molecular data could also enable the development of predictive models for disease
progression and treatment response, aiding in personalized treatment strategies. Finally,
the real-time application of FD analysis during image-guided surgery or targeted drug
delivery could enhance precision and therapeutic efficacy.

Given the dynamic and intricate nature of the TME, it is imperative to extend the
application of FD analysis beyond the scope of immune and vascular markers. The TME
comprises a complex network of cellular and extracellular components, each playing an
essential role in tumor progression [58]. Therefore, future research should delve into the FD
analysis of other key players within the TME, such as fibroblasts, as well as extracellular
matrix components like collagen. By quantifying the structural complexity and spatial
organization of these elements, we can gain a more comprehensive understanding of their
interplay and contribution to cSCC development.

In light of the pivotal role of cancer-associated fibroblasts (CAFs) in tumor progression
and therapeutic resistance, future research should extend the application of FD analysis
to encompass these important stromal cells. By quantifying the complexity and spatial
distribution of CAFs, we can gain deeper insights into their dynamic interactions within
the tumor microenvironment. This benefit could potentially enable the identification of
distinct FD patterns associated with specific CAF subtypes, such as immunomodulatory
or matrix-remodeling CAFs [9] and their correlation with clinical outcomes. Furthermore,
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investigating the relationship between CAF FD and the FD of other TME components, such
as immune cells and blood vessels, could unveil intricate communication networks and
their impact on cSCC progression. Ultimately, integrating FD analysis of CAFs into future
studies holds promise for uncovering novel prognostic biomarkers and therapeutic targets,
thereby contributing to the development of more effective treatment strategies for cSCC.

CAFs exert a multifaceted inhibitory influence on both CD8+ and CD4+ T cell re-
sponses within the tumor microenvironment, significantly hindering anti-tumor immu-
nity [66]. CAFs not only create physical and chemical barriers that impede T cell infiltration
and access to cancer cells but also actively suppress T cell function through the secretion of
inhibitory factors [66] and the upregulation of co-inhibitory receptors, leading to T cell ex-
haustion and reduced cytotoxic activity [67,68]. Furthermore, the impact of CAFs on CD4+
T cell differentiation and function remains complex and context-dependent, with evidence
suggesting both the promotion of immunosuppressive regulatory T cell (Treg) differentia-
tion and the inhibition of effector and memory T cell development [66]. The multifaceted
suppressive mechanisms employed by CAFs contribute to an immunosuppressive tumor
microenvironment, ultimately promoting tumor growth and progression [66]. Understand-
ing the intricate interplay between CAFs and T cell responses is crucial for developing
effective therapeutic strategies aimed at overcoming CAF-mediated immunosuppression
and enhancing anti-tumor immunity.

The current investigation possesses certain limitations that merit acknowledgment.
First, the data originate from a single center and encompass a relatively restricted sample
size. This limitation potentially hinders the ability to fully capture the spectrum of variabil-
ity in immune cell and angiogenic patterns associated with cSCC and may also constrain
the statistical power and generalizability of the findings. Future research endeavors should
prioritize expanding this study to include a larger, multi-center cohort. Such an approach
would not only enhance the robustness of the results but also account for potential geo-
graphical and demographic influences on cSCC presentation and its microenvironment.
Second, the manual alignment of IHC images to the corresponding H&E images, although
performed meticulously, might introduce minor registration errors that could affect FD
calculations. Last, but maybe the most important, is that the invasive class lacks subclass
stratification; as one would expect, there are differences between poorly, moderated, and
high-grade subclasses. However, due to the sample size, this problem could not be resolved
within this iteration.

5. Conclusions

This study introduced a novel approach by applying FD analysis to IHC images to
investigate the tumor TME in cSCC. The results demonstrated significant differences in
structural complexity and heterogeneity between the two classes taken into considera-
tion: pre-invasive and invasive lesions, with notable changes observed in blood vessel
distribution, immune cell infiltration, and overall background complexity.

Specifically, the FD values of CD20 and CD31-marked structures differed significantly
between pre-invasive and invasive classes. Similarly, unmarked structures associated
with CD31, CD4, and CD8 showed statistically significant differences in FD values. Ad-
ditionally, the background, which was defined by excluding both marked and unmarked
structures, revealed statistically significant differences in the computed FD across all four
IHC stainings.

These findings enhance our understanding of the dynamic nature of the TME in cSCC
and could potentially inform the development of new diagnostic and therapeutic strategies
targeting the TME to improve patient outcomes. Further research with larger sample
sizes and more advanced image analysis techniques is needed to explore the complex
relationship between the TME and cSCC progression.
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Abstract: Fractional electrodamage in A549 human lung cancer cells was analyzed by in-
troducing a non-integer order parameter to model the influence of electrical stimulation on
cellular behavior. Numerical simulations were conducted to evaluate the conversion of elec-
trical energy to heat within A549 cancer cells, emphasizing the electrocapacitive effects and
electrical conductivity in modulating dielectric properties. Using the Riemann–Liouville
fractional calculus framework, experimental results were accurately fitted, demonstrating
the non-integer nature of electrodamage processes. The study identified a strong depen-
dency of electrical behavior on frequency, revealing a critical role of fractional dynamics in
the dielectric breakdown and susceptibility of A549 cells to voltage changes. These findings
advance our understanding of cellular responses to electrical fields and provide insights
into applications in cancer diagnostics, monitoring, and potential therapeutic treatments.

Keywords: A549 cells; fractional calculus; fractional electrodamage; biological cells
capacitance; electrical tolerance threshold

1. Introduction

Important applications in the treatment of cancer can be addressed through the study
of consequences of exceeding cancer cell membrane potentials [1]. The concept of electrical
power dissipation in biological cells, leading to heat generation, has been explored as an
alternative for cancer treatment.

Data from several studies suggest that at the beginning of this decade, lung, prostate,
and breast cancer were a globally leading cause of death [2]. Among the most-encountered
forms of lung cancer are non-small cell lung carcinomas [3]. Carcinoma human alveolar
basal epithelial cells (A549 cancer cells) have emerged as a prominent in vitro model for
studying cancer. The key characteristics of A549 cells that make them suitable for this study
include their established use as an in vitro model for non-small cell lung carcinoma and
their distinct electrochemical properties, such as membrane capacitance and resistance.
These properties allow analysis of the interactions in cells with electrical stimuli, making
them ideal for exploring electrocapacitive effects and fractional electrodamage mechanisms.

Apoptosis results when electrical pulses that are administered to cancer cells provoke
thermal damage to internal structures and cell membranes [4]; it is known as inhibition of
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proliferation on biological cells [5]. Healthy cells that are in the surrounding media are less
sensitive to applied electrical pulses, avoiding significant damage.

For the purpose of acquiring knowledge about the electrical properties and electro-
chemical behavior of A549 cancer cells, researchers have used electrochemical impedance
spectroscopy (EIS) [6]. As a method for observing and determining how cells react to vari-
ous stimuli in diverse disciplines, such as medicine [7] and biology [8], EIS is widely used
in these disciplines. In the context of cancer research, EIS represents a prominent option
for exploring electrical features of A549 cancer cells such as resistance [9] and membrane
capacitance [10]. Cyclic voltammetry (CV) is commonly considered as an essential instru-
ment in electrochemistry. This approach is often used to explore and evaluate electrode
performance while also offering insights into electron transport mechanisms. Electrical
impulse transmission over biological cells membranes is responsible for electrical signal
movement that comes from outside [11]. External stimulation and signal transduction in
cells are caused by electrical signal propagation over cells, resulting in a change in the elec-
trical potential in the cell membrane [12]. A capacitive effect can be observed in cells, due
to the existence of cell membranes, and they can be considered as natural capacitors [13],
due to their composition. Proteins and lipids are the main components in cell membranes,
and electrical charges on opposite sides are segregated by these membranes [14]. The cells
membranes work as a natural energy store of an electrical charge on cells surface when a
change on voltage exists. This dynamic electrical energy store is provoked by a capacitive
effect on cell membranes. These capacitive features have an important role in biological
processes such as cellular communication and neural excitability [15]. Cells response to an
external electrical signal depends on the nature of stimulation, for instance, the response
time of nervous cells is measured in the order of milliseconds [16], and it can be faster
than other cells. Parameters such as propagation distance synaptic cell connectivity and
ion channel density have an important relationship with the cellular response time and
bioelectrical reactions [16]. A frequency-dependent electrical signal changes biological
processes in cells and tissues in response to stimulation. Slow muscular contractions can
be registered at low frequencies, whereas faster contractions can be observed at higher
frequencies [17]. Signal transmission in neurons is influenced by frequency dependence
and neurotransmitter release. It is known that frequency dependence can influence and con-
tribute to biological functions but its ability to control cellular responses and physiological
systems based on the electrical signals properties is still limited [17].

In this direction, anomalous replication of cancer cells can be described by fractional
differential equations, since fractional modeling provides a more accurate description for
representation of dynamic processes. Fractional calculus can be used for modeling complex
interactions between cancer cells replication and the growth rate. Cellular proliferation can
be described by fractional calculus and modeling anomalous diffusion and movements
patterns in cancer cells. Localized damage due to light exposition in cancer cells can be
described by fractional photodamage as a technique for determining it. Deeper knowledge
about fractional photodamage in A549 cancer cells has prominent importance in several
areas of health such as cancer treatment optimization. On the other hand, fractional electro-
damage can be used as a therapeutic approach that uses electrical currents to selectively
eliminate cancer cells. Fractional electrodamage refers to the analysis of electrical damage
in biological cells using fractional calculus; it incorporates non-integer order parameters
to model accurately dynamic processes. In comparison with conventional electrodamage
approaches, fractional electrodamage considers the frequency-dependent and non-linear
electrical behavior of cells, providing a representation of electrocapacitive effects and
dielectric breakdown mechanisms.
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It is remarkable that the electrical response of cells can be regulated by electrical pulse
duration, repetition rate, and strength [18].

Figure 1 shows a roadmap of progress in the field of studies related to fractional
electrodamage in A549 cancer cells. From Figure 1 can be seen chronological progression
from the initial investigation of electric fields and cancer cell behavior to more refined
techniques for characterizing cancer cells, ultimately culminating in the specialized study
of cancerous cell differentiation based on their biophysical phenotype.

Figure 1. Roadmap describing the progress of the topic of study based on representative works.
Refs. [19–24] for 2015–2021, respectively.

Past research has highlighted the role of material properties in enhancing therapeutic
outcomes, particularly in targeting cancer cells while preserving healthy tissue [25]. These
studies align with the present research by emphasizing the importance of precision and
innovation in therapeutic approaches [26]. Incorporating these perspectives enriches
the understanding of fractional electrodamage as a non-invasive, targeted method for
cancer diagnostics and treatment, bridging materials science and biomedical applications.
The present research surpasses prior studies by leveraging fractional calculus to model
frequency-dependent dielectric breakdown mechanisms with unprecedented precision.
It integrates experimental validation with the Riemann–Liouville framework, offering a
significant advancement over conventional models in capturing the non-linear electrical
behavior of A549 cancer cells.

In view of all these considerations, the main purpose of this study is to analyze
physical mechanisms responsible for the fractional electrodamage exhibited by A549 cancer
cells. The primary objective of studying fractional electrodamage in A549 human lung
cancer cells is to analyze the physical mechanisms underlying the fractional dynamics of
electrodamage induced by electrical stimulation. This has the purpose of enhancing the
conception of the electrocapacitive properties of cancer cells and their susceptibility to
voltage changes.

This study applies fractional calculus to model electrodamage in A549 lung cancer cells,
emphasizing frequency-dependent dielectric breakdown. Using the Riemann–Liouville
theory, it highlights the cancer cells’ susceptibility to voltage changes and advances in
non-invasive diagnostic and therapeutic methods, such as electrochemical hyperthermia.

We considered A549 cancer cell activities in the setting of lung carcinoma, underlying
the response of these cells to electrical fields, enhancing the knowledge about electrocapaci-
tive changes that can be related to cancer progression. It is considered that studies related
to fractional electrodamage in cancer cells have prominent applications on biotechnology,
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drug delivery systems, and development of bioelectronic devices. It allows development of
new therapeutic strategies such as pulsed electric current applications for inducing damage
and inhibiting the growth of cancer cells. It highlighted the potential of monitoring cellular
changes induced by electrical influence for assessing cancer cells response and different
strategies in treatments.

2. Materials and Methods

2.1. Fractional Electrodamage in A549 Cancer Cells

With the purpose of calculating the impedance of the biological samples in a culture
medium, we used the following equations [27]:

Ri = ρi
li
A

. (1)

Ci =
ε0εri A

li
. (2)

where ρi is the resistivity of the material, εri is the relative permittivity, ε0 is the permittivity
of the vacuum, A is the cross sectional area of the used Metrohm DS 220 AT electrode (the
equipment was sourced from the Metrohm brand, Herisau, Switzerland), and the thickness
of the culture medium drop is represented by li.

Considering that Zi is the impedance of the drop and Ri is the resistance, we have [27]

Zi =
Ri(1 − jωCiRi)

1 + ω2C2
i R2

i
. (3)

where Ci is the capacitance in the system, j is the imaginary part, and ω is angular frequency.
On the other hand, with the purpose of modeling the numerical behavior of impedance

and capacitance as a function of applied frequency for different concentration of cells we
employed the Cole–Cole model. The total impedance can be expressed as follows [28]:

ZT = Rs +
Rp

1 +
(

jωRpCp
)n . (4)

where Rp represents the resistance in the cells, Cp is the total capacitance on them, Rs

denotes the total series resistance, and n represents the power order that most accurately
fits the model obtained.

The numerical capacitance was calculated employing the Giaver theory. It describes
the impedance between adherent cells and an electrode. The numerical capacitance can be
considered as follows [29]:

Cmem =
ε0εri
dmem

. (5)

where Cmem

[
Fm−2

]
represents the capacitance of the cancer cells membrane per unit area.

The permittivity of the vacuum is ε0, εmem is the relative permittivity of the surrounding
media, and dmem represents the thickness of the cell membrane [29].

The imaginary part of the impedance can be described as follows [30]:

lim
ω→0

[ωIm(Z)] =
1

Cmem
. (6)

On the other hand, the real part was numerically calculated considering [30]:

Re(Z) =
ρi(0)LBULK

ρi li
. (7)
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where ρi(0) denotes the resistivity at the center area of the cells, where the potential was
applied, while LBULK represents the distance half between two cancer cells [30].

With the intention of determining the electrodamage induced in A549 cancer cells,
we used fractional calculus. To evaluate fractional electrodamage in A549 cancer cells, we
introduce the concept of fractional calculus theory to effectively describe this phenomenon.

Fractional calculus and mathematical modeling techniques play a crucial role in this
research because it provides a framework to describe the dynamic and non-linear behavior
of A549 cancer cells under electrical stimulation. They enable simulations of electrical
impedance and capacitance as functions of frequency, allowing for a better understanding
of fractional electrodamage and its implications in cancer diagnostics and therapies.

Following the principles of the Riemann–Liouville fractional calculus operator theory,
the integral of a function f (t) of order α is defined as follows [31]:

d−α f (t)
dt−α

= t0D−α
t f (t) =

1
Γ(α)

t∫
α

(t − x)−α−1F(x)dx. (8)

here, D in this context represents the antiderivative of α order, which is derived from the
Cauchy formula. The parameter α signifies the order of the fractional derivative, and
x indicates the elongation during the electrochemical changes in the A549 cancer cells.
Additionally, t denotes the duration related to the experiment. For the purposes of this
study, α = 0.8 was selected as it provided the best fit to the experimental data.

In order to model interactions between historical and non-local properties in a process,
we have employed the Caputo derivative formula. All these mathematical expressions
are applied to calculate temperatures using a fractional approach, as explained in the
Supplementary Material S1.

2.2. Cell Culture

A549 epithelial cells grown in culture bottles were detached using 2 mL of 0.05 g/L
trypsin and 0.05 g/L EDTA solution (Sigma Aldrich, St. Louis, MO, USA). After, cell
suspension was transferred to 15 mL conical tube and centrifuged at 1500 rpm during
5 min. The cell pellet was resuspended with 1 mL fresh culture medium and viable cells
were quantified in a Neubauer chamber with 0.4% trypan blue solution. Then, the cell
suspension was diluted with fresh medium to analyze three different concentrations of
cells (125,000; 250,000; and 500,000 cells/60 μL). In order to observe the cells’ morphology,
the actin cytoskeleton was labeled with rhodamine-phalloidin, and nuclei were stained
with DAPI (4′,6-diamidino-2-phenylindole). A confocal system coupled to an inverted
microscope (LSM710 NLO Zeiss, Jena, Germany) was employed.

2.3. Electrochemical Impedance Analysis of A549 Cancer Cells: Frequency Response Study

Electrochemical investigations were carried out on biological samples of A549 cancer
cells at a constant room temperature of 25 ◦C by triplicate. The cells contained in a drop
of 60 μL were deposited in a Metrohm DS 220 AT electrode to measure their electrical
response in an AUTOLAB 302N PGSTAT potentiostat (Metrohm, Herisau, Switzerland).
An Ag/AgCl reference electrode and a platinum counter electrode were employed for
experimentation [32]. The supporting electrolyte used was a 0.5 M KOH solution, which
was pre-treated by degassing in an ultrasonic bath for 15 min and subsequent bubbling
with nitrogen gas for 10 min. Data analyses were performed by using MATLAB software
(R2023a) to extract meaningful information. From Figure 2a is possible to observe a
representative photo of the studied A549 cancer cells located in the electrode. From
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Figure 2b is possible to visualize the connections of the Metrohm DS 220 AT electrode:
A Metrohm electrode, specifically the DS 220 AT model, was used.

Figure 2. (a) A549 cancer cells measured and deposited in the Metrohm DS 220 AT electrode; cancer
cells were integrated into the drop using an electronic pipette, allowing precise control over the
placement of cells. (b) Scheme of the experimental setup.

2.4. Apoptosis and Cell Viability in A549 Cells Through Electrical Stimulation and Flow
Cytometry Analysis

Apoptosis and cell viability experiments were undertaken in order to guarantee
changes in the cellular structure as part of the experimental procedure in our model. A549
cells were cultured in F-12 medium supplemented with 8% fetal bovine serum (FBS), 1%
penicillin-streptomycin, and maintained at 37 ◦C in a humidified atmosphere containing 5%
CO2. Cells were subcultured every 3–4 days to maintain exponential growth. An electrical
circuit for inducing electrical current in a suspension of 2.5 × 105 A549 cells prepared in a
96-well plate with 50 μL of culture media. The electrodamage stimulus was maintained
for different time periods (0, 5, 10, 20, 30, 60, and 120 s). Following treatment, cells were
immediately analyzed for membrane integrity and cell viability. Membrane integrity was
evaluated using a trypan blue exclusion assay. Cells were mixed with an equal volume
of 0.3% trypan blue solution and incubated for 5 min at room temperature. Cells with
compromised membrane integrity were identified by their ability to uptake the trypan blue
stain, whereas viable cells remained unstained. Photographs of stained cells were taken to
document the results. Apoptosis and cell viability were assessed using flow cytometry with
annexin V-FITC and propidium iodide (PI) staining. Following electrodamage treatment,
cells were resuspended in annexin V binding buffer and stained with annexin V-FITC and
PI according to the manufacturer’s instructions (Cat. No. 640914, Biolegend, San Diego,
CA, USA). The stained cells were then analyzed using a flow cytometer (FACSAria II, BD
Bioscience, San Jose, CA, USA). Data were collected and analyzed using the FlowJo v.10
software to determine the percentage of live, early apoptotic, and necrotic cells. Live cells
were identified as annexin V and PI negative (Q4), early apoptotic cells as annexin V positive
and PI negative (Q1), and necrotic cells as annexin V and PI positive (Q2). The results are
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presented as the percentage of 10,000 cells collected. All experiments were performed in
duplicate, and data were expressed as mean ± standard deviation. Comparisons between
experimental conditions were performed using one-way ANOVA followed by Tukey’s
post hoc test. A p-value of <0.05 was considered statistically significant. GraphPad Prism
software v.8 was used for all statistical analyses and graph generation.

To ensure the observed effects were specifically attributable to electrodamage, ex-
periments were conducted with negative controls, including samples that did not receive
electrical stimuli. These controls allowed for a baseline comparison, verifying those changes
in cell viability, membrane integrity, and other parameters were a direct result of the applied
electrical stimulation.

Figure 3 illustrates the sample in contact with the electrodes.

Figure 3. A549 cancer cells with an electrical current induced by metallic electrodes located along a
diameter of the well.

3. Results

Figure 4 shows a confocal image of studied A549 cancer cells. From the images can be
seen A549 cells with actin filaments distributed longitudinally in the cytoplasm. In order
to contrast, the nuclei of cells were stained with DAPI (4′,6-diamidino-2-phenylindole)
and were detected in blue emission. The purpose of using fluorescence was to observe
the complex details and structure of the cellular components. Figure 5 combines red
fluorescence for the actin cytoskeleton and blue fluorescence for the cell nuclei, providing a
comprehensive and visually striking representation of the cellular morphology.

Figure 4. Confocal image of the representative A549 human lung epithelial cancer cells stud-
ied; (a) nuclei of individual cells in blue; (b) typical actin filaments were stained with rhodamine-
phalloidin (red), and its longitudinal distributions are show; (c) merge of two tracks (red and blue).
All figures at 40X.
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Figure 5. (a) Numerical and experimental results of electrical impedance as a function of frequency
for varying cell concentrations in a drop, with clear labels highlighting the trends. (b) Real part of
the measured electrical impedance with distinct legends emphasizing differences across frequencies.
(c) Imaginary part of the measured electrical impedance, with annotations to aid in interpreting the
observed variations.

For measuring the electrical response as a function of frequency in the A549 cancer
cells, they were prepared under controlled conditions in order to ensure a uniform cell
population. Later, the cells were exposed to electrical impulses. We induced a range of
electric frequency parameters that were known to provoke electrodamage with voltage
signals around 200 mV [33]. According to the literature it is sufficient to disrupt the cell
membrane, inducing changes without causing cell death [33].

Figure 5a, represents the experimental impedance of A549 cancer cells for different
cells concentrations. It must be mentioned that this measurement was conducted for three
different cell concentrations: 126,000 cells, 250,000 cells, and 480,000 cells. Figure 5b,c
presents the numerical and experimental calculation of the real and imaginary parts of
impedance as a function of frequency of the samples; a numerical simulation for the ideal
behavior is included. Using fractional calculus for the simulation of electrical impedance
seems to be necessary for accurate modeling, it is well known that cells exhibit non-linear
behavior that fractional models can solve effectively. On the other hand, fractional calculus
allows a precise characterization of the frequency-dependent development of impedance
and capacitance. Fractional calculus enables a better simulation of differences between
different concentrations of cells, due to its better accuracy and reliability.

The real and imaginary parts of the impedance of A549 cancer cells at different elec-
trical frequencies are plotted in Figure 5b,c, which suggests that the cells have capacitive
properties, primarily associated with their cell membranes. Different fractional calculus
theories, such as Riemann–Liouville, Caputo, and Grünwald–Letnikov, were considered
with the purpose of determining the best fit with the experimental results. We used the
Riemann–Liouville fractional-order derivative because it provides a precise framework
for modeling the dynamic, non-linear, and frequency-dependent behavior of A549 cancer
cells under electrical stimulation. It enables accurate fitting of experimental data, partic-
ularly in capturing the electrocapacitive effects and dielectric breakdown mechanisms,
outperforming other fractional calculus theories.

MATLAB was used to perform all numerical simulations presented in the document,
including those corresponding to Figure 5.

For further investigation of the electrochemical behavior of the cells, a sample was
heuristically diluted in order to easily visualize the capacitive effect in the samples.
Figure 6a shows electrical impedance measurements and Figure 6b shows the electrical
capacitance. In Figure 6a the experimental determination of the impedance is represented
by the black line. A numerical estimation was performed, depicted by the blue line. The
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fractional behavior was determined, and it is shown by the red dotted line at a value of
α = 0.60. We employed the Grünwald–Letnikov method, illustrated by the green dotted
line with ň = 0.75. Additionally, the Riemann–Liouville (R-L) parameter was used, indicated
by the yellow dot at � = 0.80, and the Caputo parameter is shown by the brown dotted
line. It was observed that the Riemann–Liouville fractional calculus theory provided the
best fit to the experimental results. This implies that, among the considered fractional
calculus approaches, the Riemann–Liouville theory most accurately describes the behavior
of capacitance of A549 cancer cells based on the experimental data.

Figure 6. Comparison of experimental and numerical data for: (a) electrical impedance of the studied
samples, and (b) capacitance of A549 cancer cells.

The changes in impedance and capacitance with varying cell concentrations are pri-
marily due to the increased number of cell membranes acting as capacitive elements and the
altered distribution for current flow in the suspension. A capacitance behavior is a measure
related to the ability of a system to store electrical charge, and its decrease with electrical
frequency. These effects are more pronounced as the concentration increases, showing a
clear trend that can be explained by the cumulative impact of the cell’s electrical properties
and their interactions within the culture medium. For example, when the concentration
of cancer cells was quadrupled to 500,000 cells, the close distribution of them reduced the
resistance path making easier the current flow.

Experimentation indicates that damage to A549 human lung cancer cells by modulated
voltage easily occurs at a higher frequency range since cells show an adverse response
or suffer damage under voltage modulated applications. Identification of this fractional
capacitive condition provides valuable information for understanding the frequency limits
that affect the viability or behavior of A549 cells in the context of electrical experimentation.

The error in the numerical fit relative to the fractional fit to describe the electrical
behavior of the sample refers to the discrepancies between the fractional model predictions
and the actual values measured during experiments.

The challenges encountered in the study included ensuring the accuracy of exper-
imental measurements and achieving reliable simulations of fractional electrodamage.
These were addressed by using validated experimental setups, such as electrochemical
impedance spectroscopy, and employing robust mathematical modeling techniques like the
Riemann–Liouville fractional calculus theory. Additionally, repeated trials and statistical
analyses ensured the reproducibility and reliability of the results.
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The calculated error bar was ±2.5%, this shows the extent of the deviation between
model predictions and experimental observations. As it can be considered, the percentage
error is low; this indicates a close correspondence between the fractional model and the
experimental data.

Figure 7 represents the heating induced by electrical signals in A549 cancer cells as a
function of electrical frequency and voltage change for different cancer cells concentrations.
The x-axis displays the electrical frequency ranging from 0 to 100 KHz, while the y-axis
shows the voltage change from 100 mV to 200 mV. The color intensity in the heat map
indicates the level of electrodamage, with darker colors representing higher damage levels
and lighter colors indicating lower damage levels. The distribution of the electrodamage is
linear, reflecting a proportional increase in damage with increasing frequency and voltage
change. This visualization helps to identify the conditions under which the cells experience
the most significant electrodamage.

Figure 7. Heat map showing the electrodamage in A549 cancer cells as a function of electrical
frequency (0–100 KHz) and voltage change (100–200 mV), for different cells concentration. The
color intensity represents the level of electrodamage, with darker colors indicating higher damage
levels. This linear distribution illustrates how electrodamage increases proportionally with higher
frequencies and greater voltage changes. (a) Shows electrodamage as a function of applied voltage and
electrical frequency, with a maximum electrodamage of 250 kHz/mV for 125,000 cells. (b) Displays a
maximum electrodamage of 500 kHz/mV for 250,000 cells. (c) Exhibits a maximum electrodamage of
1000 kHz/mV for 500,000 cells.

In Figure 7, each subplot represents the relationship between electrical frequency (x-
axis) and voltage change (y-axis) for a specific cell concentration. The z-axis represents the
electrical damage caused. The color intensity on the surface of each subplot indicates the
level of electrical damage. Each subplot is labeled with the corresponding cell concentration
in the title, and the axes are labeled with the respective units.
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Figure 8 provides a visual representation of how electrical frequency and voltage
change affect the electrodamage for different cell concentrations. As the frequency increases,
the membrane resistance decreases; it makes the cell more permeable to electrical currents.
Higher frequencies and voltages both increase the electrodamage in cells.

Figure 8. Variation in electrodamage as a function of electrical frequency and voltage change for
different concentrations of cancerous cells.

Figure 9a represents the conversion of electrical energy to heat within cancer cells. For
calculating the heat distribution within the A549 cancer cells and to evaluate processes
in which electrical energy is converted into heat inside A549 cancer cells, we used the
following formulas [34]:

Q =

pw∫
0

⎛⎝I0e
−t
RC

⎞⎠2

Rdt =
CR2 I2

0
2

⎛⎝1 − e
−2pw

RC

⎞⎠ =
CV2

0
2

⎛⎝1 − e
−2pw

RC

⎞⎠. (9)

Z = Z0(1 + ϕ(T − T0)). (10)

where Q represents the heat generated in joules (J), t is the time exposition in seconds, R
denotes the cancer cells’ resistance at the experimental stage, pw is the electrical signal
pulsed width, I0 and V0 are the peak current and voltage, C is the cancer cells capacitance,
Z represents the cancer cells impedance, Z0 denotes the cancer cells impedance at temper-
ature T0, ϕ is the temperature coefficient of resistivity in A549 cancer cells, and (T − T0)

represents the change in temperature at the experiment stage. We decided to modify
Equation (6), changing impedance instead of resistance, because electrical impedance was
in function of electrical frequency.

Figure 9b describes the relationship between voltage applied and heat that originates
inside cancer cells, which is governed by Joule law. The electrical resistance of the cells is
considered. Where the change in voltage, (T − T0), was from 100 mV to 200 mV, the time, t,
was considered from 0 to 30 s, the R resistance of A549 cells was 110 ohms, the capacitance
C was 10 nanofarads, the peak current, I0, was 3 mA, the pulsed width, pw, was considered
as 10 milliseconds, the peak voltage, V0, was 150 mV, and the temperature coefficient of
resistivity, ϕ, was 0.0040 ohms [34].

The error bar associated with the measurement of the change in temperature and
electrical conversion into heat in A549 cancer cells during the experimentation was cal-
culated at about ±5%. It is important to mention that all the experiments reported in
this article were performed 10 times, in order to guarantee repeatability and reliability in
the measurements.
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Figure 9. Change in temperature and electrical conversion into heat within A549 cancer cells.
(a) Change in temperature representation inside A549 cancer cells. (b) Voltage and converted heat
magnitude for electrical energy when it is converted into heat within biological cells.

In order to experimentally confirm the electrodamage effect on the membrane integrity
and cell viability of A549 cells, cells in suspension were exposed to electrical current. Trypan
blue staining allowed determination of the effect of stimulus on membrane integrity.

A significant reduction in membrane integrity was observed after 20 s of treatment,
which was evidenced by the increase in the number of cells that were capable of uptaking
the stain as can be observed in Figure 10.

Since a significant reduction in cell viability was noted after 30, 60, and 120 s of
treatment, the fate of these cells was analyzed through an apoptosis assay, which identified
apoptotic and necrotic cells.

The results are presented as the percentage of 10,000 cells collected in gate correspond-
ing to A549 cells (Supplementary Material S2). This assay revealed a significant increase in
apoptosis and cellular necrosis after 60 and 120 s, as can be observed in Figure 4, indicated
that cell death was in progress. These findings highlight the impact of electrodamage
on the viability and membrane integrity of A549 cells, with significant effects observed
at specific time points, showing the induction of early apoptosis and the cell death by a
necrosis process.

The observed effects of fractional electrodamage on A549 cells included significant
reductions in cell viability, alterations in membrane integrity, and morphological changes
indicative of apoptosis and necrosis. The experiments showed a strong dependence of
electrodamage on electrical frequency and voltage, with higher frequencies and voltages
causing more pronounced effects. These findings highlight the susceptibility of A549 cells
to fractional electrodamage, providing critical insights into their metabolic and structural
responses to electrical stimulation.
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Figure 10. Effect of electrodamage on membrane integrity and viability of A549 cells. Blue cells in
photographs represent the uptake of trypan blue staining by cells with compromised membrane
integrity. Dot blots show the results for the apoptosis assay. The results are presented as the per-
centage of 10,000 cells. Live cells are found in quadrant 4 (Q4; Annexin V and PI negative), early
apoptotic cells are indicated in Q1 (Annexin V positive and PI negative), dead cells by necrosis are
demonstrated in Q2 (Annexin V and PI positive). The colors represent the collection of cells with the
same intensity detected during flow cytometry, with blue representing low intensity (single cells) and
red representing high intensity. Statistical analysis was conducted, with graphs representing the mean
of two independent experiments with standard deviation. Comparisons between experimental condi-
tions were performed using one-way ANOVA followed by Tukey’s post hoc test (* indicates a p-value
of <0.05 vs. time 0 living cells condition; ** indicates a p-value of <0.001 vs. time 0 early apoptosis
condition; *** indicates a p-value of <0.001 vs. time 0 necrosis condition). Scale bars = 20 μm.

115



Fractal Fract. 2025, 9, 34

4. Discussion

Electrical behavior in suspended cells exhibits a clear frequency dependence, with
reported capacitance inversely proportional to the applied frequency [35]. The cells can in-
fluence the ability of a biological system to store electrical charge due to their electrical and
morphological properties [36]. The variation in capacitance at different frequencies reflects
dynamic interactions between cancer cells and electrodes, offering a valuable perspective
on their electrochemical behavior [37]. The culture medium influenced the electrical re-
sponse. It affected electrical conductivity, dielectric properties, ionic composition, and the
interaction between cells and the medium [38]. Changes in the medium due to cell growth,
ion concentrations, and cell viability impacted the electrical response [39]. The potential
impact of discovering the dominant fractional electrical response in cell measurements is
significant. It enhanced our ability to monitor and assess the effects of different treatments
or environmental conditions on cells [40]. The cells possess mechanisms to convert an
electrical stimulus into a cellular response, involving substantial changes in the cell mem-
brane. For example, allowing the entry of ions, such as sodium, which is responsible for
changing the electrical potential in the region where the stimulus is received [41]. Various
biological functions in cells are activated when the propagation of a voltage signal passes
through their membrane [42]. An example of this is cell communication, which occurs
when cells are able to transmit information through electrical signals to other cells that are
around; this is essential for the coordination of functions in tissues and organs [43]. The
permeability of cell membranes also facilitates ionic regulation, playing a crucial role in
neurotransmitter secretion and cellular excitability [44]. Another event that occurs when
an external voltage signal is applied to the cells is that it is responsible for using this signal
to regulate the internal balance between ions and nutrients, thus, helping the control, cell
survival, and adaptation of cells to their environment [45]. The maximum that a cell can
withstand depends on the type of cell it is, as well as its physiological state. There is no
single value that is applicable to all cells since they have different electrical properties
and tolerances depending on the cell type. However, cell membrane potentials are of the
order of 100 millivolts (mV), but if they exceed 200 mV, a dielectric breakdown within the
biological cell could be reported, thus, forming arcs inside the cell [33]. In brain neurons,
the resting membrane potential of these neurons usually registers in the range of −60 to
−70 mV [46]. Drastic changes in voltage inside the cells could cause irreparable damage,
such as undesirable cellular responses like apoptosis and cell lysis [47]. The electric current
used to produce a killing effect on a cancer cell can be described by controlled application
of electric current through electrodes placed near or within an affected tissue with cancer
cells [48]. Electrochemical damage or electroporation involves cell membrane disruption
caused by high voltage application [49]. It causes pores in the cell membrane and eventually
cell death when the voltage is sufficiently high [49]. However, the electroporation can be
reversible according to the magnitude and duration of the electrical stimulation in some
cases when the voltage is moderate and a short exposition the damage is reversible [50]. On
the other hand, prolonged exposures to high voltage cause an irreversible damage to cells,
generating apoptosis [51]. Furthermore, this can be achieved by a pulsed electric current
of low intensity and high frequency applied through the electrodes. The pulsed electric
current causes a phenomenon called electroporation in the cell membrane of the cancer
cell. During electroporation, pores in the cell membrane are temporarily opened, allowing
molecules to enter that would not normally be able to enter [47]. The combination of the
pulsed electric current and therapeutic agents inside the cancer cell can damage it and
cause its death or inhibition of growth, thus, contributing to the destruction of the cancer.
Electrical power dissipation in a cell occurs when an electrical current flows through the
cell due to an applied potential difference. For instance, biological cells convert electrical
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energy into other types of energy such as heat during power dissipation [52]. It can be
explained by the result of electrical resistance of structural components in cells such as ion
channels and cell membranes. Because of the intrinsic resistance of the cell, a part of the
electrical energy flowing through it is converted to heat [53]. Some other mechanisms for
generation of heat in cells occur in the electrical signals propagated in nerve cells [54]. The
voltage threshold for damage varies with frequency; at lower frequencies, higher voltage is
required to provoke damage due to greater membrane resistance [55]. At lower frequency
the cell membrane resists electrical current more, so it is necessary to have higher voltage
application to provoke damage [55]. A critical frequency was identified around 90,000 Hz;
here the membrane is susceptible to dielectric breakdown. In this study, the primary type
of cellular damage observed is dielectric breakdown, where the cell membrane loses its
integrity due to high voltage and frequency, leading to cell death [56,57]. Other potential
types of damage include plasmolysis, which would require specific staining techniques
and microscopy to identify [57]. To determine different types of damage, various assays
such as live staining, electron microscopy, and biochemical markers for cell integrity and
apoptosis would be needed [58]. In areas such as medicine, cells biology, and biotechnol-
ogy, information that we have described is crucial for developing therapeutic approaches,
diagnostics, and research.

This study advances existing work by focusing on the fractional electrodamage mecha-
nism, explaining its frequency-dependent nature and the relevance of fractional modeling in
predicting cellular responses to electrical stimulation. Different fractional calculus theories,
such as Riemann–Liouville, Caputo, and Grünwald–Letnikov, were considered with the
purpose of determining the best fit with the experimental results. It was observed that the
Riemann–Liouville fractional calculus theory provided the best fit to the experimental data,
suggesting a better fit in modeling the fractional electrodamage processes. This finding
contrasts with past published studies where alternative approaches and tests were applied.
Results did not achieve the same level of precision in capturing the frequency-dependent
electrocapacitive behavior of A549 cancer cells.

The proposed exploration method leverages fractional calculus to model the electro-
damage of A549 cancer cells, providing a better accuracy in capturing frequency-dependent
and non-linear electrical behaviors. This method enables more precise simulations of elec-
trocapacitive responses and dielectric breakdown, facilitating real-time monitoring.

The potential advantages of using fractional electrodamage over existing cancer treat-
ment modalities include its ability to precisely target cancer cells by leveraging frequency-
dependent electrical stimulation, minimizing damage to surrounding healthy tissue. The
fractional approach enables a more accurate modeling of cellular responses. It offers real-
time monitoring of cellular changes and provides a non-invasive platform for combining
with other anticancer therapies.

The experiments were conducted at a fixed temperature of 25 ◦C and within specific
voltage and frequency range to ensure controlled and reproducible conditions. While
these parameters optimize experimental accuracy, they limit the direct applicability of
findings to varied physiological or clinical environments where temperature and electrical
conditions may fluctuate. Future studies should explore a broader range of conditions to
enhance generalizability. In future research, nonlinearities in biological responses, such
as thresholds for apoptosis or necrosis, will be considered to enhance the analysis of
electrodamage. Although statistical tools like ANOVA were employed in this study to
analyze experimental data, incorporating more robust statistical methods, such as effect size
or regression analysis, could offer deeper insights into the relationships between voltage,
frequency, and cellular damage. These approaches would enhance the interpretation of
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the results by quantifying the strength and nature of these interactions, providing a more
comprehensive understanding of the underlying mechanisms.

To enhance its biological relevance, future analyses could explore how this heat
generation correlates with known thermal thresholds for cancer cell death. Establish-
ing these correlations would provide a clearer understanding of the role of heat in the
electrodamage process.

This will address the current simplification of linear damage trends and provide
a more accurate representation of the relationship between voltage, frequency, and
biological outcomes.

5. Conclusions

This study demonstrates that fractional electrodamage effectively models the dynamic
electrical behavior of A549 cancer cells, highlighting the frequency-dependent nature of
dielectric breakdown. The use of the Riemann–Liouville fractional calculus theory offers
unparalleled precision in simulating electrocapacitive responses, enabling the identifica-
tion of key thresholds for cellular damage. These findings open new opportunities for
advancing cancer diagnostics and therapies, particularly through non-invasive, targeted
techniques such as electrochemical hyperthermia and electroporation. The integration of ex-
perimental data with robust mathematical modeling underscores the potential of fractional
approaches to revolutionize cancer treatment by minimizing harm to healthy tissues while
enhancing therapeutic efficacy. The novel aspects of this work include the application of
fractional calculus to model electrodamage in A549 lung cancer cells, revealing a frequency-
dependent dielectric breakdown mechanism. This study incorporates non-integer order
mathematical modeling with experimental validations, pointing out the superior accuracy
of the Riemann–Liouville theory compared to other fractional approaches. This work not
only advances our understanding of cell–electrical interactions but also sets the stage for
innovative applications in biotechnology and precision medicine.
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Abstract: The functional significance of RSNs is examined via simultaneous EEG-fMRI
studies on the basis of the relation of RSNs with different frequency bands of EEG and
EEG-based microstate analysis. In this study, we try to identify RSNs from microstates of
cortical surface maps of the BOLD signal. In addition, the scale-free dynamics of these map
sequences were also examined. The structural and resting state functional MRI images
were acquired on a 3T scanner with three different fMRI acquisition protocols from seven
subjects. Microstate segmentations from EEG, fMRI, and simulated data were evaluated.
Wavelet-based fractal analysis was performed on map sequence time series and the Hurst
exponent (H) was calculated. By using HRF-deconvolved fMRI time series, the effect of the
HRF (hemodynamic response function) on fMRI-derived microstates was tested. The fMRI
map sequence has a system with a memory system smaller than 16 s. When the HRF was
deconvolved, the duration of the memory of the system was reduced to 4 s. On the other
hand, the results of simulation data indicated that these systems are specific to the resting
state BOLD signal. Similar to EEG microstates, fMRI also has microstates and both of them
have scale-free dynamics. fMRI microstate dynamics have two different components, one
is related to the HRF and the other is independent of the HRF. The significance of fMRI
microstates and their relation with RSNs need to be further studied.

Keywords: resting-state networks; simultaneous EEG-fMRI; microstates; Hurst exponent;
fMRI microstates

1. Introduction

Resting-state networks (RSNs) in the human brain are defined as coherent fluctuations
in slow components (<0.1 Hz) of blood oxygenation level-dependent (BOLD) functional
magnetic resonance imaging (fMRI) signals [1,2]. Microstates are clusters of the scalp
electrical topography of EEGs (electroencephalograms) across time and are defined as
“atoms of thoughts” underlying spontaneous conscious cognitive activity [3–6]. It was
shown that rapidly changing EEG microstates are correlated with fMRI RSNs and have
scale-free dynamics over scales covering the 256 ms to 16 s range [7,8]. In another study,
the combined ICA of EEG and fMRI data was used in order to examine EEG microstates
and fMRI RSN networks [9]. It was shown that each RSN was characterized further by a
specific electrophysiological signature involving one to a combination of several microstates.
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While these studies have informed us a great deal about RSNs that might underlie EEG
microstates, they suffer from certain shortcomings that we enumerate below. First, very
little is known about the microstate dynamics of fMRI itself and how it compares with
that of EEG. Second, fMRI is a hemodynamically smoothed version of underlying neural
activity and hence the effect of the hemodynamic response on fMRI microstate dynamics is
not clearly understood. In this study, we address these issues by examining the existence
of fMRI microstates and testing for the scale-free dynamics of both EEG and fMRI by
using simultaneous EEG-fMRI data, as well as investigating the effect of hemodynamic
smoothing on fMRI microstates.

It was argued that scale-free dynamics arise only when neuronal systems reach a
critical point [10,11]. As a result, they became a focus of interest in the field of neuroscience.
The existence of scale-free dynamics was argued as an organizing mechanism that is capable
of processing continuously flowing information from multiple sources and producing
related responses [12]. The existence of scale-free dynamics of the BOLD time series has
been demonstrated previously [13–18]. Task-induced voxel-level fluctuations in fMRI
were also examined and it was found that in addition to stimulus-induced signal changes,
physiologically based anatomical differences in fMRI time series can be detected and
quantified by multifractal parameters [18], indicating scale-free dynamics.

The Hurst exponent (power law exponent), as a measure of long-range dependency,
is commonly used for the identification of the scale-invariant structure of a signal. In
another study using fMRI time series during task and rest conditions, it was shown that
the Hurst exponent was high during rest and reduced during the task, suggesting that
the signal contains more long-range memory during rest [9,16]. It is critical to note that
scale invariance in time and the scale-free dynamics of brain topology are different from
each other [19]. These authors investigated both RSN and non-RSN dynamics on the
basis of the Hurst exponent [19]. The group-level RSNs were segmented by a multivariate
decomposition approach. It was shown that long memory in functional networks decreased
during tasks. The researchers used a multifractal approach and concluded that it can be
used as a marker for distinguishing functional networks. The examination of fractal scaling
was performed for different groups and patients and it was suggested that fractal properties
might be a sensitive measure for the discrimination of conditions [20].

In another resting-state fMRI study, temporal switching of the occurrence of RSNs
as well as switching between RSNs across time were examined. It was stated that the
network transitions are non-random and hierarchically organized, i.e., the brain is cycling
within ‘metastates’ [21]. Different from our study, these networks were derived from
ICA-dependent methods and Hidden Markov Modeling.

The temporal complexity of the fMRI time series has been examined by using mul-
tiscale entropy and the Hurst exponent and it was concluded that both the monofractal
Hurst exponent and multiscale entropy can be used for analysis of temporal complexity of
task-based and resting-state fMRI signals [22].

Several reports have indicated that the monofractal Hurst exponent has been shown to
change in relation to both spatial (brain tissue type and functional networks) and temporal
(activation and cognition) dynamics [23].

The importance of the development of multimodal measures to be applied as biomark-
ers and the effect of using them were discussed previously [24,25]. In this study, we focused
on the brain topology-related dynamics of resting-state fMRI as a possible multimodal
biomarker candidate. We tested the existence of fMRI microstates and their scale-free prop-
erties, i.e., spatio-temporal dynamics of fMRI microstates [26,27]. We used the microstate
segmentation method to obtain topological maps and issued the same analysis used in the
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EEG time series [8]. We also examined the effect of the HRF by using HRF deconvolved
data and simulation data.

2. Materials and Methods

2.1. Data Acquisition

This simultaneous EEG-fMRI study was approved by the Institutional Review Board
of Auburn University and the study was carried out in agreement with the Code of Ethics
of The World Medicinal Association (Declaration of Helsinki). All subjects had no history
of neurological or psychiatric disorders and gave their written informed consents before the
experiments. Functional and structural magnetic resonance imaging data were acquired on
a 3T Siemens Verio scanner with a 12-channel matrix head coil. Simultaneous resting-state
EEG-fMRI data were acquired with three different fMRI acquisition protocols.

In the first protocol, functional images were acquired by using the echo-planar imaging
(EPI) sequence with 30 ms TE, 1000 ms TR, 90◦ flip angle, 5 mm slice thickness, and
64 × 64 × 18 acquisition matrix, for 1000 volumes (16.67 min) from 7 subjects (aged 21–28,
mean ± SD = 23 ± 2.4 years; 2 female, 5 male).

In the second and third protocols, a multiband gradient echo-planar imaging se-
quence [28] was used with the following parameters:

• MB_600: TR/TE = 600/30 ms, flip angle = 55 degrees, 5 mm slice thickness,
64 × 64 × 16 acquisition matrix for 1000 volumes (10 min);

• MB_200: TR/TE = 200/40 ms, flip angle = 50 degrees, 5 mm slice thickness,
64 × 64 × 16 acquisition matrix for 3000 volumes (10 min).

We acquired fMRI data using these three protocols in order to investigate the effect
of increasing temporal sampling resolution (i.e., decreasing TR). In the second and third
experiments, data were collected from 7 subjects (aged 24–36, mean ± SD = 26 ± 4.8 years;
2 female, 5 male). In all protocols, ‘eyes open’ and ‘eyes closed’ conditions were acquired
separately. In order to minimize the SAR (Specific Absorption Rate) during multiband
acquisition, flip angles were reduced. The details of simultaneous MB-EPI and EEG
acquisition were discussed in a previously published paper with the same data set [29]. In
all three experiments, T1-weighted structural images were acquired by using a 3D anatomic
(MPRAGE) sequence with the following parameters: 176 sagittal slices of 1 mm thickness
with 2.52 ms TE, 1900 ms TR, 9◦ flip angle, and 256 × 256 × 176 acquisition matrix.

Simultaneous EEG data were acquired by using an MR-compatible 64-channel EEG
amplifier (Brain Products, Gilching, Germany) and an MR-compatible EEG cap with
63 10–20 system-distributed scalp electrodes and an ECG electrode. The EEG data acquisi-
tion clock was synchronized with the MRI scanner clock using Brain Product’s SyncBox,
resulting in exactly 10,000 data points per TR interval. EEG data were digitized with a
sampling frequency of 5 kHz and 0.5 μV resolution, within a DC-250 Hz frequency range
and with reference to FCz. The impedance at all recording electrodes was less than 20 kΩ.

2.2. Data Pre-Processing

Image pre-processing analyses were performed using SPM12 software (Wellcome
Department of Imaging Neuroscience, London, UK). After slice-timing correction and
motion correction (including censoring), images were spatially realigned and normalized
to MNI space (Montreal Neurological Institute, resampled voxel size: 2 × 2 × 2 mm3).
Nuisance covariates (white matter and CSF signals and motion parameters) were regressed
out. In order to reduce dimensionality, mean time series were calculated for functional
regions defined in the CC200 parcellation atlas obtained from spectral clustering of resting-
state data [30]. This atlas provides functionally homogeneous regions of interest (ROIs)
determined in a data-driven way.
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BOLD time series are an indirect measure of neural activity, i.e., they are a convolution
of latent neural activity (which is not measured) and the hemodynamic response function
(HRF, which is the impulse response of the system representing neurovascular coupling). It
has been shown that the HRF varies across brain regions and individuals and this variability
is at least partly non-neural in origin [31,32]. The HRF variability has been shown to impact
inferences such as functional connectivity obtained from fMRI time series [33,34]. Therefore,
we deconvolved the HRF from the fMRI time series using the HRF Estimation MATLAB
R2011.a Toolbox [35] and used the resulting latent neural time series in further analyses.

2.2.1. Simulated Data

In order to obtain the simulation data, Gaussian noise (mean = 0, std = 1) matrices
were generated with CC200xtime dimensions identical to the experimental fMRI data,
using the same EEG sampling frequency (100 Hz). Resulting data were convolved with a
canonical hemodynamic response function (HRF) and downsampled according to each TR
separately to match each fMRI sampling resolution separately.

2.2.2. Microstate Analysis

Microstate segmentations for EEG, fMRI, and simulation data microstate segmenta-
tions were performed for each subject separately using Cartool software by Denis Brunet
(brainmapping.unige.ch/cartool). For mean ROI fMRI time series, data obtained from
the CC200 atlas mean time series as well as simulation data were recorded and converted
to EDF (European Data Format) files for further processing in the Cartool Toolbox. Four
template maps for each subject and modality were obtained (illustrated in Figures 1 and 2
for a representative subject).

Figure 1. EEG microstate maps of a representative subject for ‘eyes closed’ (a) and ‘eyes open’
(b) conditions.
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Figure 2. fMRI microstate maps of a representative subject for TR = 1 s, TR = 0.6 s, and TR = 0.2 s for
the ‘eyes open’ condition.

Microstate segmentation is based on both the time and the topographic maps. In the
case of EEG, in order to define these quasi-stable maps, the maxima of GFP (Global Field
Power), as the standard deviation of data across all electrodes, were determined. GFP is
defined as

GFP =

√
∑N

i=1 (v i − v)2

N
(1)

where N is the number of electrodes, vi is the voltage at the electrode i, and v is the average
voltage of all electrodes [5,36]. GFP is a one-number measure of the map at each moment
in time. It was shown that a limited number of scalp potential maps remain stable for a
certain period of time (60–120 ms) [4]. The maps related to the maxima of GFP are used
as templates and the microstate segmentation is performed by using modified k-means
cluster analysis [3,37]. The details related to microstate segmentation are given in the prior
literature [6,38,39].
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2.2.3. Fractal Analysis

The long-range dependency or scaling property represents the memory or self-
similarity of a system and is characterized by the Hurst exponent. This analysis concept
was introduced by Hurst in 1951 and expanded by Mandelbrot [40–43]. A Hurst exponent
(H) smaller than 0.5 means that the system has a short-range temporal dependency. H > 0.5
represents systems with a long-range dependency and H = 0.5 indicates an uncorrelated
system [44].

For fractal analysis, the microstates were bipartitioned by associating them with a
positive and a negative step, respectively (as described in [8,45]). The cumulative sum
of the resulting microstate sequence over time was used for random walk embedding
and analyzed using the continuous ‘Haar’ orthogonal wavelet (Equation (2)) transform
by dividing time series with length L into subseries of length 2n, where n = 1, . . ., and m
represents the maximum scale (Figure 3) [46].

Ψ(t) ≡

⎧⎪⎨⎪⎩
1 0 ≤ t ≤ 1

2
−1 1

2 ≤ t ≤ 1
0 otherwise

(2)

Figure 3. Random walk embedding curves of EEG (a) and fMRI (TR = 1) (b) microstate sequences of
a representative subject. X-axis represents time in seconds. Each colored line represents a different
bipartioning combination.

The slope of the scaling diagram is used for the calculation of H (Equation (3)),
(Figure 4) [47]. According to limits defined in Table 1, H was calculated for all possible,
that is, 3, bipartitionings of microstate sequences for each subject and modality [47].

logH_n = logc + Hlogn (3)

Table 1. Relation between the slope of the scaling factor and H [47].

Differenced
Gaussian

Gaussian Brownian
Summed
Brownian

Slope of scaling
diagram (−3, −1) (−1, 1) (1, 3) (3, 5)

Formula Used for H (H + 3)/2 (H + 1)/2 (H − 1)/2 (H − 3)/2
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Figure 4. The scaling diagram (scale versus wavelet coefficients in log scale) of EEG (a) and fMRI
(b) time series. The different lines represent different subjects. The red line represents the fitted line
representing the group. The slope of the red line represents the Hurst exponent of the corresponding
data set at the group level.

3. Results

3.1. Results from Simulated Data

A Hurst exponent value larger than 0.5 is interpreted to imply long-range dependency
in the system. The scales with both confidence limits higher than 0.5 are accepted within
the long-range dependency limits. Hurst exponents of simulated fMRI data (i.e., Gaussian
noise convolved with HRF) were greater than 0.5 for the scales shorter than 4 s for TR = 1 s,
19.2 s for TR = 0.6 s, and longer than 12.8 s for TR = 0.2 s. On the other hand, deconvolved
time series did not show the same behavior (Figure 5). H was greater than 0.5 for TR = 1 s,
1.2 s for TR = 0.6 s, and finally 3.2 s for TR = 0.2 s. Simulated data indicated a system with
long-duration memory for simulated fMRI, and the duration decreased appreciably for
deconvolved simulated fMRI data.

Figure 5. Scale (in seconds) versus H curves of Gaussian noise convolved and deconvolved with
HRF. Each point represents the median of H (calculated across subjects) at any given scale whereas
vertical lines (error bars) show the upper and the lower 5th percentiles for TR = 1 s (a), TR = 0.6 s (b)
and TR = 0.2 s (c).
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We have shown that long-range dependency, defined by an H of deconvolved time
series, was specific to fMRI and indicated the existence of scale-free dynamics in fMRI time
series. Gaussian noise convolved with HRF showed a longer duration memory system
compared to the BOLD signal. Another important result related to simulation data is that
TR = 0.6 s data have shown longer durations for scale-free dynamics.

3.2. Results from Experimental Data

By using Wilcoxon Signed Rank Tests, Hurst exponents (H) of ‘eyes open’ and ‘eyes
closed’ conditions were compared. There was no statistically significant difference between
calculated H values for deconvolved (p < 0.647), raw BOLD (p < 0.634) fMRI, and EEG
(p < 0.353) time series.

The scale-free dynamics range for EEG was around 40 ms. There is no statistically
significant difference for the scale-free dynamic range of EEG in relation to fMRI acquisition
protocol according to the Chi-square test (p > 0.339). For the fMRI time series, it can be seen
that deconvolved time series have their own dynamics that are different from the BOLD
time series (Figure 6). The scale-free dynamics range is around 4 s for deconvolved time
series, while it is larger than 16 s for fMRI time series. On the basis of these results, it can
be said that resting state fMRI data represent two different dynamics. The BOLD signal is
evidenced in a system with a longer duration memory system (<16 s). On the other hand,
the HRF deconvolved time series indicates a system with shorter duration repetition (<4 s).

Figure 6. Scale versus H curves of EEG (millisecond), deconvolved fMRI, and fMRI data (seconds).
The results shown were estimated by combining data from eyes open and closed conditions. Each
point represents the median of H (calculated across subjects) at any given scale, whereas vertical
lines (error bars) show the upper and the lower 5th percentiles for TR = 1 s (a), TR = 0.6 s (b), and
TR = 0.2 s (c).

4. Discussion

In this study, we have shown that fMRI map series obtained from ‘microstate seg-
mentation’ also have self-similar dynamics for longer durations (H > 0.5, p < 0.05), i.e., the
existence of scale-free behavior of both EEG and fMRI microstate sequences from simul-
taneous acquisitions (Figure 5). We applied the same method used for EEG and found
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that, similar to EEG, fMRI also has ‘microstates’ and the duration-based sequence of these
microstates indicated a long-range dependent dynamic system [8].

For EEG, as expected, independent from which TR was acquired, scale-free dynamics
contain two scales (<40 ms) for fMRI, and four, five, and six scales (<32 s) for each TR
(Figure 6), in accordance with the previous findings in the literature [8]. In addition, our
results indicated the existence of scale-free dynamics for fMRI microstate time series. On
the other hand, as far as the deconvolved time series are concerned, it can be seen that the
range of scale-free dynamics decreases to 9.6 s for TR = 1 s and TR = 0.6 s. As a result, it can
be concluded that hemodynamic response introduces longer duration scale-free dynamics.

On the basis of our HRF convolved Gaussian noise simulation results, we also showed
that scale-free dynamics of fMRI ‘microstates’ were specific to fMRI (Figure 6) and indepen-
dent from the TR used in the acquisition. We also tested the effect of the HRF by analyzing
HRF-deconvolved fMRI microstates. The duration of scale-free dynamics was decreased
to 4 s from 16 s. This result was also in accordance with our simulation data, indicat-
ing the existence of approximately 20 s long scale-free dynamics for the HRF convolved
Gaussian noise.

Ciuciu et al. focused on the examination of scale-free dynamics of RSNs during rest
and task conditions [19]. At that study group level, RSNs were segmented by a multivariate
decomposition approach and the time series of ICA-based segmented maps were analyzed.
It was shown that long memory in functional networks decreased during tasks, but it
was shown that change was not specific to activation areas. They also argued that as
far as the topological dynamics of fMRI were concerned, multifractality should be taken
into consideration since the HRF cannot be assumed as linear or time-invariant. We have
shown that HRF-deconvolved map change dynamics also have a long-memory system;
as a result, it can be hypothesized that in addition to the HRF, there were additional
systems showing scale-free dynamics. The relation of these fMRI microstates and RSNs
needs further investigation and is beyond the scope of this study. In addition, recent work
relating RSNs observed by magnetoencephalography (MEG) and BOLD fMRI suggested the
coexistence of nonstationary (MEG) and stationary (fMRI) processes on similar anatomical
substrates [48].

The results of our data acquired with TR = 200 ms had higher variance that became
more prominent after deconvolution. We used a 12-channel head coil. It was shown
that parallel imaging can help to increase the total SNR of 2D acquisitions by a factor√

MB (multiband) and that the amount of parallel noise amplification depends on the
employed MB factor and in-plane acceleration factor if relaxation effects and parallel noise
amplification are not taken into consideration [49]. It can be said that the resulting SNR
of parallel imaging in TR = 0.2 s was lower compared to other protocols for this coil.
On the other hand, it was shown that thermal noise dominated the EPI time series for
medium to large voxel sizes for single-channel and 12-channel head coil configurations, but
physiological noise dominated the 32-channel array acquisition [50]. The increased variance
in TR = 200 ms data set also might result from decreased SNR in relation to physiological
noise, which is nonlinear and also depends on the flip angle.

Another possible explanation for increased variance in the TR = 200 ms protocol
might be related to the length of step size used in Hurst exponent calculations. The scales
indicated by TR = 200 ms were the multiples of 0.2 s. Even though BOLD time series with
different TRs have shown similar durations for scale-free dynamics, deconvolved time
series were varied in relation to TR. According to the results of the TR = 200 ms protocol,
the duration of scale-free dynamics of HRF-deconvolved fMRI time series was shorter than
0.8 s. In this study, different TEs, flip angles, and voxel sizes were used in order to optimize
the sequence for a minimum TR. This discrepancy might be related to this difference. In
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a study using pICA for the analysis of RNSs on simultaneous EEG-fMRI acquisition, it
was shown that fast fMRI sampling represents better high-frequency electrical substrates
of RSNs [29]. The authors argued that ICA was robust to differences in SNR. But, the
differences in the step size and changes in the acquisition protocol might be the source of
the difference in the duration of scale-free dynamics indicated with different TRs.

In general, wavelet-based methods were recommended for Hurst exponent analysis
and in the literature, most of the studies used this method. In a study, it was shown that
for fMRI data sets, the poorest-performing measures were wavelet, detrended fluctuation
analysis, aggregated variance, and rescaled range [51]. In this study, we used map sequence
dynamics, not fMRI time series. As discussed by Van De Ville et al., wavelet transform
analyses are insensitive to low-frequency trends and appropriate for the microstate map
sequence analysis [8].

5. Conclusions

Similar to EEG microstates, fMRI also has microstates and both of them have scale-free
dynamics. fMRI microstate dynamics have two different components: one is related to the
HRF and the other is independent of the HRF. The significance of fMRI microstates and
their relation with RSNs needs to be further studied.

6. Limitations

One of the aims of this study is to examine the methods that can be used for the
determination of fMRI microstates and investigate whether their temporal dynamics have
a fractal structure similar to EEG microstates. However, it was not possible to determine
RSN microstates because the number of participants was insufficient [52,53]. In addition
to TR, different values of TE and the flip angle might affect the spatiotemporal properties
of resting-state fMRI microstates. İt was shown that lowering the flip angle can improve
the SNR related to the physiological artifacts and that the relation between the time series
SNR (tSNR) and physiological noise is nonlinear [50]. The effect of the differing TE and flip
angle on fMRI microstates should also be examined.
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Abstract: This paper presents an advanced simulation-based investigation of tumor growth
and chemical diffusion in biological tissues, using ϑ-fractional stochastic integral equations.
Based on the theoretical framework developed in [Fractal Fract. 2025, 9(1), 7], we develop
an innovative computational model to explore the practical applications of these equations
in the biological field. The model focuses on providing new insights into the dynamic
interaction between stochastic effects of a fractional nature and complex biological tissue
environments, contributing to a deeper understanding of the mechanisms of chemical
diffusion within tissues and tumor growth under different conditions. The paper details the
numerical techniques used to solve the ϑ-fractional stochastic integral equations, focusing
on the stability and accuracy of the solutions, while demonstrating their ability to accurately
and effectively capture key biological phenomena. Through extensive computational
experiments, the model demonstrates its ability to replicate realistic tumor growth patterns
and complex chemical transport dynamics, providing a powerful and flexible tool for
understanding tumor behavior and interaction with potential therapies. These results
represent an important step toward improving biological models and enhancing biomedical
applications, particularly in the areas of targeted drug design and analysis of tumor
dynamics under chemotherapeutic influence.

Keywords: ϑ-fractional stochastic integral equations; stochastic calculus; Ulam–Hyers
stability; tumor growth; chemical diffusion in biological tissues

1. Introduction

Fractional calculus, which deals with fractional-order differentiation and integration,
has emerged as a pivotal mathematical framework for modeling and analyzing complex
systems across various scientific and engineering disciplines. This advanced branch of
mathematics goes beyond the traditional limitations of integer-order calculus, providing
precise tools for understanding nonlinear, nonlocal, and memory-dependent phenomena
that are a fundamental feature of many natural and artificial systems. Applications of
fractional calculus extend to diverse fields including electrical engineering, where it is used
to improve the efficiency of power systems and filter design, control theory, with a focus
on improving the stability of dynamical systems, thermal systems, through the analysis
of complex heat conduction, signal processing, where it contributes to the analysis of
nonlinear and time-dependent signals, and biological systems, where it is employed to
model history-dependent physiological processes such as the transport of biomaterials
or cell dynamics. Fractional calculus enables scientists and engineers to address multiple
research and application challenges such as asymptotic stability analysis [1,2], which
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studies the long-term stability of systems, and finite-time stability [3,4], which focuses on
the stability of systems over a specific time. It also plays a fundamental role in controller
design, which helps improve the control of dynamical systems, and error estimation,
which enhances mathematical models’ accuracy in predicting complex systems’ behavior.
With these unique capabilities, fractional calculus provides a comprehensive and flexible
framework for modeling multidisciplinary systems, making it an indispensable tool in
addressing modern scientific and engineering challenges.

The introduction of fractional ϑ derivatives (ϑ-FDs) and fractional ϑ integrals (ϑ-FIs) is
a notable development in fractional calculus, providing additional flexibility in describing
systems exhibiting complex diffusion dynamics including subdiffusion and superdiffu-
sion [5]. These tools can reconcile the transitional properties of dynamical systems, allowing
for more accurate modeling of phenomena combining slow (constrained) and fast (un-
constrained) diffusion in various real applications. Recent studies have investigated the
theoretical properties of equations involving ϑ-FDs and ϑ-FIs, focusing on crucial aspects
such as the existence, uniqueness, and stability [6,7]. Furthermore, the researchers in [5]
proposed an innovative ϑ-subdiffusion equation formulation, specifically designed to
model complex transitions between classical subdiffusion and superdiffusion. This appli-
cation trend reflects the increasing importance of ϑ-fractional derivatives and integrals in
addressing the challenges of mathematical modeling of nonlinear and memory-dependent
phenomena, such as particle transport in porous media or chemical diffusion in biological
tissues. This development highlights the profound potential of ϑ-FDs and ϑ-FIs in achiev-
ing significant advances in both theory and application, enhancing the status of fractional
calculus as an essential mathematical tool in the study of complex systems.

In the field of stochastic processes, fractional stochastic integral equations (FSIEs)
have become a vital mathematical tool due to their unique ability to incorporate the
effects of randomness and long memory into mathematical models. These equations
provide a flexible framework for describing systems that are affected by stochastic factors
and exhibit memory-dependent dynamics, making them of particular interest in various
fields such as statistical physics, biological systems, and financial markets. One of the
fundamental concepts studied in this context is Ulam–Hayers stability (UHS), which
addresses the sensitivity of solutions to perturbations in initial conditions or parameters.
This type of stability is of particular importance in practical applications, where models are
susceptible to small perturbations due to experimental errors or numerical approximations.
UHS has been extensively studied for various types of fractional stochastic equations,
with studies [8–10] showing that robust stability can be achieved even in systems with
complex dynamical behavior. However, research on the Ulam–Hayer stability of ϑ-FSIEs
remains limited. This class of equations is a natural and important extension of conventional
FSIEs, offering an additional degree of flexibility in describing transitional phenomena
between subdiffusion and superdiffusion. The investigation of UHS for ϑ-FSIEs represents
an important step towards improving our understanding of complex multi-effect systems
and holds broad potential for practical applications in modeling stochastic phenomena
with memory-dependent dynamics, such as chemical diffusion in biological tissues or
particle motion in random media.

The theoretical basis of our study is based on the pioneering work of Alsharari et al. [11],
where the existence, uniqueness, and stability of UHS solutions of ϑ-FSIEs were analyzed
with high precision. In this work, the authors relied on advanced techniques of stochastic
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calculus and Banach Fixed Point Theory (BFPT) to prove their theoretical results. The equa-
tion studied takes the following form:

α(ω) = η +

ω∫
a

Ψ1(ς, α(ς))dς +
n

∑
i=2

ω∫
a

ϑ′
i(ς)(ϑi(ω)− ϑi(ς))

γi−1Ψi(ς, α(ς))dς

+

ω∫
a

F(ς, α(ς))dW(ς),

(1)

with η ∈ R, γi ∈ (0, 1) for 2 ≤ i ≤ n, ω ∈ [a, T] and specific conditions were imposed
on the functions F and Ψi to ensure Lipschitz continuity and bounds, which ensures the
stability and accuracy of the solutions [11]. Despite the theoretical power of this analy-
sis, the practical applications of these equations, especially ϑ-FSIEs, in modeling realistic
phenomena such as tumor growth and chemical diffusion in biological tissues remain
insufficiently explored. This study seeks to fill this gap by developing an integrated com-
putational framework that aims to test and apply ϑ-FSIEs in such biological contexts. This
framework is based on combining stochastic and fractional properties with biological
tissue dynamics, enabling more accurate simulation of complex phenomena involving cell–
chemical interactions. The numerical simulation involves the use of advanced numerical
techniques to solve ϑ-FSIEs, with an emphasis on the stability and accuracy of the solutions
to ensure that the behaviors of biological systems are reliably captured. Through this work,
we aim to provide new insights into the applicability of these equations in areas such as
the design of targeted therapies and the analysis of the diffusion of chemicals in injured
tissues, contributing to the development of more effective mathematical models for biomed-
ical research. Equation (1) was selected as a mathematical model for tumor growth and
chemical diffusion due to its ability to represent the complex dynamics of these biological
phenomena. This equation relies on three key components that reflect the multiscale nature
of the system under study: (1) the kernel-dependent integral terms ϑ, which incorporate the
historical effects of interactions between tumor cells and their environment, allowing for
the description of delayed chemical diffusion in biological tissues and memory-dependent
diffusion; (2) the stochastic terms dW(ς), which represent environmental fluctuations such
as random changes in nutrient supply and genetic mutations in cancer cells; (3) the γi,
which provides an accurate description of anomalous diffusion patterns, describing slow
diffusion (subdiffusion) in dense tumor environments and rapid diffusion in areas of high
vascular density. This mathematical structure enables the simulation of transitions between
different diffusion patterns documented in experimental studies and aids in analyzing
tumor responses to environmental changes. The proposed model is based on mathematical
principles designed to capture key aspects of tumor growth and diffusion processes. It
provides a robust theoretical framework for studying tumor dynamics and serves as a
foundation for future research. To strengthen the clinical relevance of this framework, our
next steps involve collaborating with oncologists and experimental biologists to integrate
tissue-specific data (e.g., MRI tumor measurements or in vitro diffusion rates). This col-
laboration will enable direct model calibration and validation, bridging the gap between
theoretical predictions and real-world biomedical challenges, and ultimately enhancing the
model’s predictive power and applicability to real-world tumor dynamics.

The main contribution of this paper is to present an advanced numerical simulation
of tumor growth and chemical diffusion using ϑ-FSIEs. Through this work, we highlight
the dual role of fractional and stochastic dynamics in shaping complex biological patterns,
providing a deeper understanding of the interaction of physical and biological factors
in biological tissue environments. These simulations provide a detailed insight into the
influence of fractional time and stochastic perturbations in controlling tumor growth
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dynamics and chemical diffusion. In particular, ϑ-FSIEs allow an accurate representation
of the transitions between subdiffusion and superdiffusion, reflecting the multi-scale
nature of these biological processes. By combining a robust theoretical framework with
accurate numerical simulations, this study opens up new avenues for employing ϑ-FSIEs
in modeling complex biological systems, further enhancing our contribution to the fields of
biomedicine and mathematical computation.

The rest of this paper is organized as follows: Section 2 reviews the main theoretical
results obtained. Section 3 presents the numerical results, focusing on the simulation of
tumor growth and the diffusion of chemicals in biological tissues. This section demonstrates
how ϑ-FSIEs can be applied to realistic models, reviewing the numerical strategies used
and their performance in terms of accuracy and stability. The results are analyzed in detail
to illustrate the influence of randomness and fractional dynamics on biological processes.
Section 4 concludes by providing basic insights into the significance of the study and the
results achieved, and discussing the future potential of ϑ-FSIEs in biological modeling.
New research directions are proposed, including improving the numerical models and
exploring other applications in biophysics and complex stochastic systems.

2. Existence, Uniqueness, and Stability Analysis of ϑ-FSIEs

The seminal work by Alsharari et al. (2025, [11]) focuses on establishing accurate
results for a class of ϑ-FSIEs, representing an important advance in analyzing complex sys-
tems that combine stochastic effects and fractional dynamics. The primary motivation for
this work stems from the need for more accurate and flexible mathematical models capable
of describing systems that exhibit memory-dependent behaviors and nonlinear diffusive
effects, properties that traditional methods often fail to capture adequately. By adopting
a robust mathematical framework that combines fractional calculus and stochastic analy-
sis, the authors address fundamental questions regarding the existence and uniqueness
of solutions to ϑ-FSIEs. These results are essential for understanding whether complex
systems can be accurately modeled using this class of equations. Furthermore, the work
focuses on the stability of solutions, including UHS, which ensures that systems respond to
small perturbations in the initial conditions, making the models more robust and applicable
in real-world contexts. These results provide a solid foundation for future research into
applying ϑ-FSIEs in new fields and more complex real-world problems. By providing this
in-depth analysis, Alsharari et al. contribute to the theoretical understanding of ϑ-FSIEs,
opening up broad prospects for their application in a variety of complex dynamical systems.

The paper [11] provides important theoretical progress expressed through three main
theories. Together, these theories represent an integrated framework for analyzing and
studying ϑ-FSIEs, opening new horizons for their application in various fields, which we
summarize and analyze below.

Lemma 1 (Operator definition). The following assumptions are made:

A1. Lipschitz condition:
The functions F, Ψl for 1 ≤ l ≤ n satisfy the Lipschitz condition:

|F(ω, u1)− F(ω, u2)| ∨ |Ψl(ω, u1)− Ψl(ω, u2)| ≤ K|u1 − u2|,

for all ω ∈ [a, T], u1, u2 ∈ R2, with K > 0.
A2. Boundedness condition:

The functions F, Ψl for 1 ≤ l ≤ n satisfy:

ess sup
ω∈[a,T]

|F(ω, 0)| ∨ ess sup
ω∈[a,T]

|Ψl(ω, 0)| ≤ d,
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for some d > 0, where 1 ≤ l ≤ n.

Then the operator Nη is well-defined for every η ∈ R, where the operator Nη is defined on the
space of stochastic processes Sm([a, T]), which represents the set of all measurable and M-adapted
processes satisfying

sup
ω∈[a,T]

‖ α(ω) ‖m < ∞.

More precisely, this space is a Banach space equipped with the norm:

‖ α ‖Sm([a,T]) = sup
ω∈[a,T]

‖ α(ω) ‖m.

The operator Nη is explicitly defined as

(
Nηα

)
(ω) = η +

∫ ω

a
Ψ1(ς, α(ς))dς

+
n

∑
i=2

∫ ω

a
ϑ′

i(ς)(ϑi(ω)− ϑi(ς))
γi−1Ψi(ς, α(ς))dς

+
∫ ω

a
F(ς, α(ς))dW(ς).

This preliminary lemma ensures the mathematical soundness of the operator central
to the analysis.

The first theorem ensures that the model is mathematically consistent and able to
predict accurately, a property essential for applications in engineering and science. This
consistency is an indication that the equations used in the model have unique, existing
solutions under the assumed conditions, removing any mathematical ambiguity that might
lead to unreliable results. On a practical level, this assurance enhances the reliability of
the model when used to simulate complex physical and biological systems. For example,
in the biological sciences, proving the existence and uniqueness of solutions is essential
for modeling biological processes such as tumor growth and the diffusion of chemicals in
tissues, where these applications require accurate decisions based on robust mathematical
models. Furthermore, this predictive consistency enhances the model’s ability to explore
unfamiliar scenarios, enabling it to be used as a tool for exploring nonlinear phenomena in
fields such as biophysics and environmental modeling. This theoretical foundation paves
the way for improving the model and extending it to other, more complex applications,
enhancing its value in scientific and engineering research.

Theorem 1 (Existence and uniqueness). Under the assumptions A1 and A2, the ϑ-FSIE (1) is
guaranteed to have a unique solution.

The second theorem proves that ϑ-FSIE (1) solutions exhibit a continuous dependence
on initial conditions, meaning that small changes in the initial conditions lead to small and
proportional changes in the solutions. This property is pivotal in mathematical modeling,
as it reflects the stability and predictability of the system. This property enhances the
stability and robustness of the solutions under small perturbations in the initial conditions.
In biological applications, such as modeling chemical diffusion or tumor dynamics, this
property means that model-based predictions are reliable even when there is a small
uncertainty in the initial values, such as the initial chemical concentration or the distribution
of cancer cells. Furthermore, this property is a fundamental step towards UHS analysis,
which provides deeper insights into the long-term dynamic behavior of the system, making
the model more suitable for practical applications that require accurate and consistent
responses under small environmental or cognitive changes.
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Theorem 2 (Continuous dependence on initial conditions [11]). For two initial values
η1, η2 ∈ R, the difference between their respective solutions α1(ς) and α2(ς) of (1) vanishes as
η1 −→ η2 :

lim
η1−→η2

sup
ς∈[a,T]

‖ α1(ς)− α2(ς) ‖ms = 0.

The latter theorem proves that the ϑ-FSIE (1) is stable according to the UHS criterion.
This property indicates that the approximate solutions, resulting from small disturbances
or errors in the initial data, remain close to the exact solutions. This stability is an important
indicator of the robustness and reliability of the model, especially in practical applications
where errors and approximations are inevitable. This property plays a crucial role in
ensuring that the model can tolerate small deviations without significantly affecting the
accuracy of its predictions. For example, in numerical simulations of biological or physical
processes, such as tumor growth or chemical diffusion, UHS stability ensures that errors
due to numerical slicing, computational approximations, or experimental measurements do
not lead to significant deviations in the results. Furthermore, UHS stability provides a solid
basis for the design of efficient numerical algorithms, as it ensures that the approximations
resulting from numerical solutions will not deviate significantly from the theoretical solu-
tions. This is of great importance in complex systems where fractional dynamics interact
with stochastic effects, posing a challenge for accurate modeling and reliable simulation.
The applications of UHS also extend to dynamical systems, optimal control problems,
and model-based decision-making, where this stability lends confidence in the reliability of
predictions and their relevance to real behaviors. Thus, the UHS stability of the ϑ-FSIE (1)
equation enhances the mathematical framework of the model and improves its practical
applicability in various scientific and engineering fields.

Theorem 3 (Ulam–Hyers stability). If A1 and A2 are satisfied, then the ϑ-FSIE (1) is UHS.

The results presented by Alsharari et al. [11] represent a major step forward in the
theory of fractional stochastic systems. By taking advantage of continuity conditions and
Lipschitz boundary, the authors provide a powerful mathematical framework for studying
ϑ-FSIEs. The theorems presented ensure that these equations not only have unique and
well-behaved solutions but also have desirable stability properties, such as UHS. These
results are pivotal for the practical application of fractional stochastic models, as they
provide accurate and reliable tools for analyzing complex systems that combine fractional
and stochastic effects. This is particularly evident in areas such as control theory, where
control of fine-grained dynamical systems is required, signal processing, where non-local
dynamics play a major role in signal optimization, and biological systems, where these
models enable a deeper understanding of biological interactions involving diffusion and
stochastic processes. Furthermore, these results provide insights into how to balance
accurate modeling and numerical considerations in practical applications. The ability to
prove the existence and uniqueness of solutions, along with stability properties, makes it
possible to build models that can deal with the actual challenges associated with volatility
and uncertainty in systems.

3. Numerical Simulation and Analysis of Tumor Growth Dynamics

Understanding tumor growth and the dynamics of chemical diffusion within biologi-
cal tissues requires advanced simulation techniques and powerful analytical frameworks.
In this context, simulations are built based on Equation (1). Through this complex model,
how the tumor evolves and how environmental and therapeutic factors affect this growth
are determined. This model uses numerical integration techniques to simulate the com-
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plex interactions between tumor cells and their surrounding chemicals, and the effects of
chemotherapies and radiation. The process begins by simulating tumor evolution using
this equation, and subsequently progresses to evaluate the different effects of treatments by
simulating chemical interactions with therapeutics and using neural networks to recognize
patterns and predict future tumor evolution. We also use predictive modeling techniques
to enhance our understanding of how the tumor responds to the environment and treat-
ment, which contributes to providing deeper insights into its behavior under multiple
conditions. These numerical simulations provide powerful tools to support therapeutic
decision-making and guide future research in oncology.

Figure 1 illustrates the natural growth trajectory of a tumor in the absence of any treat-
ment, revealing a typical exponential growth pattern characterized by a steady increase in
tumor size over time. This exponential growth reflects the process of accelerated tumor
cell proliferation, where the tumor continues to expand at an increasing rate when there
are no therapeutic interventions to stop it. This pattern is a critical parameter in studying
the behavior of untreated tumors, highlighting the aggressive nature of the tumor and its
ability to spread rapidly and widely into neighboring tissues. These data do not emphasize
the importance of early detection of tumors and initiating appropriate therapeutic interven-
tions as soon as possible to prevent this uncontrolled increase in tumor size. Although this
exponential growth indicates a relatively early stage of tumor development, tumor devel-
opment in the absence of treatment remains an essential starting point for understanding
tumor dynamics and how biological factors influence its response to treatment.
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Figure 1. Baseline tumor growth over time.

Figure 2 compares tumor growth under three different treatment conditions: no
treatment, chemotherapy, and placebo. The “no treatment” curve replicates the baseline
from Figure 1, reflecting the steady exponential growth pattern that characterizes an
untreated tumor. This pattern shows a continuous increase in tumor size over time without
intervention, reflecting the aggressive and rapid growth nature of malignant tumors in
the absence of treatment. This condition serves as an important reference for evaluating
the effectiveness of different treatments. In contrast, the “chemotherapy” curve shows
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a significant decrease in growth rate, indicating that chemotherapy has succeeded in
significantly slowing tumor growth. Although chemotherapy reduces tumor growth, this
decrease is not always sufficient to completely stop tumor progression, highlighting the
limitations of some chemotherapies in controlling growth in the long term. Nevertheless,
chemotherapy remains an effective treatment option in many cases requiring a rapid
response. The “placebo” curve shows a more pronounced suppression of tumor growth
than chemotherapy, suggesting that a placebo may provide superior benefits in managing
tumor dynamics. Alternative treatment may include the use of innovative therapeutic
techniques or therapeutic combinations specifically developed to attack the tumor in
different ways than conventional treatments. This treatment shows a strong effect in
reducing tumor size in the long term, which opens the door to research into its potential
as a more effective alternative to some chemotherapies, especially in cases that do not
respond to conventional drugs. This comparison contributes to shedding light on the
relative effectiveness of different interventions in managing tumor dynamics, providing
deeper insights into optimal treatment strategies. Through this analysis, the most effective
treatments can be identified based on their different effects in reducing tumor growth,
thus improving future treatment strategies. This comparison also provides a basis for
developing personalized therapeutic frameworks based on tumor type and response to
treatment, which could enhance the improvement of patient care.
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Figure 2. Comparative analysis of treatment strategies.

Figure 3 illustrates the ability of the neural network model to recognize and replicate
observed tumor growth patterns. By comparing the observed data with the model’s pre-
dictions, it is clear that the neural network accurately captures the underlying dynamics
of tumor growth, including exponential patterns and changes in tumor size over time.
The model has a high ability to predict tumor progression under different conditions,
whether untreated or multi-treatment, enhancing the accuracy of predictive understanding
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of tumor behavior. The strength of neural networks is their ability to learn from large and
complex data sets, making them an ideal tool for analyzing biological patterns that may
be hidden or complex to traditional methods. The network’s ability to adapt to observed
data and generate accurate results makes it a reliable tool for understanding tumor growth
processes and their interactions with different treatments. Validation of the model by
comparing predictions with actual data shows that the neural network captures not only
general trends in tumor growth but also subtle responses to changes in therapeutic param-
eters. This reliability strengthens the position of neural networks as powerful analytical
tools for understanding complex, multidimensional biological processes. Not only does
this analysis provide deeper insights into tumor behavior under different influences, it also
paves the way for the use of neural networks in predictive modeling, allowing researchers
and clinicians to predict future tumor evolution based on current data. These networks can
then be used to guide advanced treatment strategies, providing accurate predictions that
support better, scientifically informed treatment decisions.
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Figure 3. Neural network-based pattern recognition for tumor growth.

Figure 4 illustrates the ability of the neural network to predict future tumor growth,
expanding the focus to predict long-term tumor evolution dynamics. The neural network
allows growth trends to be extrapolated from observed data and accurately predicted
over extended periods. The predicted values generated by the network closely match the
actual data, highlighting the power of the model in simulating and identifying potential
tumor growth trajectories under a variety of conditions. The results show that the neural
network is not limited to processing current data, but can also provide accurate estimates
of the future based on past patterns, providing an invaluable tool in estimating future
tumor evolution. These predictive capabilities are invaluable in clinical decision-making,
as clinicians and researchers can use them to proactively identify potential tumor growth
trends. With this predictive ability, personalized treatment plans that take into account
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potential tumor evolution can be designed, contributing to more personalized and effective
treatments for each patient. In addition, this ability allows changes in tumor status to be
anticipated, enabling early therapeutic interventions to prevent progression or improve
treatment efficacy at different stages of growth. Overall, the importance of neural networks
lies in providing data-driven prediction solutions, which contribute to dynamically guiding
treatment based on a deep understanding of the biological behavior of tumors. The ability
of these networks to predict tumor growth opens a new horizon in data-driven medical
treatment, which enhances the effectiveness of clinical procedures and directs them toward
the most positive outcomes.
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Figure 4. Predictive modeling of tumor growth using neural networks.

Remark 1. In this paper, we performed numerical simulations using the following schemes: (1) a
fixed-time-step Euler forward method (Δt = 1) for the logistic tumor growth model, (2) adaptive
numerical integration using the integral() function in MATLAB (https://www.mathworks.com/
products/matlab.html) to model chemical diffusion, and (3) a prediction model using support vector
machines (SVMs) for long-term prediction. To ensure the accuracy of the results, we performed
a sensitivity analysis by varying the growth parameters (0.03–0.07) and diffusion parameters
(0.6–1.0), and verified the stability of the solutions as the grid resolution changed (n = 100 to
n = 1000). The results demonstrated numerical stability with a less than 5% relative change in the
main variables, while the prediction model achieved an accuracy with a mean squared error of 0.05.
This methodology strikes a balance between computational accuracy and computational efficiency
over the studied parameter range.

Remark 2. The ϑ-FSIEs-based model offers clear competitive advantages over traditional models
used to simulate tumor growth and chemical diffusion in biological tissues. First, the incorporation
of stochasticity and fractional effects allows for a more accurate representation of nonlinear biological
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phenomena, which is critical for the study of complex biological systems. Second, simulations
have shown that the model offers high numerical stability, with the relative error reduced to less
than 5%when varying growth and chemical diffusion parameters, enhancing the reliability of the
results. Furthermore, the model is flexible in incorporating different biological parameters and can
be easily adjusted to simulate multiple scenarios, including the effects of chemotherapy and tumor–
environment interactions. Finally, this approach offers improved computational efficiency. This
modeling framework not only contributes to a better theoretical understanding of tumor progression
mechanisms but can also serve as a practical tool for clinical decision-making by providing more
accurate predictions of tumor response to various treatments.

4. Conclusions

This paper presents an advanced framework for simulating tumor growth and chem-
ical diffusion in biological tissues using ϑ-FSIEs. By combining theoretical analysis and
numerical simulation, we explored the dynamic interactions between fractional and stochas-
tic effects in complex biological environments. The results highlight the importance of
fractional time and stochastic perturbations in shaping tumor growth dynamics and chemi-
cal transport processes, providing new insights into the applicability of ϑ-FSIEs in modeling
biological phenomena such as tumor progression and therapeutic interventions. Incorpo-
rating fractional effects into biological modeling provides an additional layer of accuracy in
simulating biological systems characterized by random and nonlinear behavior, a common
feature in tumor progression and chemical diffusion. This model allows the study of the
effects of small perturbations on the system, helping to understand how small changes in
parameters affect complex biological dynamics. Simulations demonstrated the ability of
the ϑ-FSIE model to replicate realistic tumor growth patterns and model the diffusion of
chemicals in biological tissues with high accuracy. This framework also provided valuable
insights into the effects of different treatment strategies, especially chemotherapy. Through
comparative analyses, we observed the potential of alternative therapies to suppress tumor
growth over long periods, opening new avenues for research into therapeutic strategies.
Furthermore, by incorporating neural network-based predictive modeling, we enhanced
our understanding of tumor growth under different conditions, demonstrating the power
of these networks to accurately predict tumor progression. The ability of neural networks
to recognize complex patterns and predict future growth trajectories adds a crucial layer to
the modeling framework, providing valuable support in decision-making about treatment
strategies. These networks may also provide support in evaluating the efficacy of future
therapies by simulating various treatment scenarios. Additionally, simulations of tumor
growth under various conditions, including untreated scenarios and treatment-based in-
terventions, provide an application case that validates the model’s predictive capabilities.
The primary tumor growth (Figure 1) is consistent with the observed exponential growth
patterns, supporting the model’s accuracy in simulating real-world tumor dynamics. Fur-
thermore, a comparative analysis of chemotherapy and alternative therapies (Figure 2)
highlights the model’s ability to assess treatment efficacy, making it a valuable tool for
evaluating therapeutic strategies. Predictive modeling using neural networks (Figures 3
and 4) enhances the model’s potential for clinical decision-making, demonstrating its ability
to predict tumor progression under various treatment regimens.

In conclusion, the combination of stochastic and fractional dynamics enables a more
comprehensive understanding of tumor behavior and chemokinesis, contributing to the
development of more effective mathematical models for biomedical applications. The use
of this model could enhance the accuracy of predictions about tumor progression and guide
research efforts toward personalized therapeutic approaches. Next steps will prioritize
improving numerical methods and exploring their potential in other areas of biophysics and
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complex systems, particularly in targeted therapy design and chemotherapy-driven tumor
dynamics. The model’s flexibility also allows extensions to scenarios like tumor–vascular
interactions or environmental–genetic effects.

To strengthen clinical relevance, we plan to collaborate with experimental biologists
for tissue-specific data (e.g., MRI tumor measurements or in vitro diffusion rates), enabling
direct model calibration and validation. This will bridge the gap between theoretical
predictions and real-world biomedical challenges.
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Abstract: To address the limitations of traditional tumor diagnostic methods in image feature
extraction and model generalization, this study innovatively proposes a synergistic diag-
nostic model that integrates fractional Fourier transform (FrFT) and error back-propagation
(BP) neural networks. The model leverages the time–frequency analysis capability of FrFT
and incorporates the fractal characteristics observed during tumor proliferation, effectively
enhancing multi-scale feature extraction and representation. Experimental results show that
the proposed model achieves an accuracy of 93.177% in classifying benign and malignant
tumors, outperforming the support vector machine (SVM) method. The integration of FrFT
improves feature distinguishability and reduces dependence on manual extraction. This
study not only represents a breakthrough in tumor diagnostic technology but also paves
new avenues for the application of fractional calculus and fractal geometry in medical image
analysis. The findings show great potential for clinical application and future development.

Keywords: tumor diagnosis; fractional calculus; fractal feature; fractional Fourier trans-
form; BP neural network

1. Introduction

1.1. Background

Tumors, especially malignant ones, remain among the major global health threats.
According to the World Health Organization, in 2022, approximately 19.96 million new
malignant tumor cases were reported worldwide, resulting in 9.73 million deaths [1]. Accu-
rate prediction of tumor benignity or malignancy plays a crucial role in early detection and
improving patient outcomes.

Conventional diagnostic methods such as medical imaging and biopsy are often
invasive, inefficient, and prone to false positives, limiting their suitability for early screening.
Computer-aided diagnosis (CAD) technologies have emerged as promising tools in medical
image analysis, enhancing diagnostic efficiency and objectivity through machine learning.
However, existing CAD systems still struggle to extract informative features and achieve
robust classification, especially when dealing with complex, non-stationary medical signals.

Tumor images often exhibit fractal-like patterns and complex time–frequency struc-
tures that are challenging to capture using traditional Fourier transforms. The fractional
Fourier transform (FrFT), by introducing a fractional-order parameter, extends classical
Fourier analysis and enables more flexible and effective multi-scale feature extraction.
Meanwhile, backpropagation (BP) neural networks are widely used for classification due
to their powerful nonlinear modeling capability, but they are sensitive to input features
and susceptible to overfitting.
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To address these challenges, this study proposes an FrFT-BP hybrid model. FrFT is
used to preprocess tumor images and extract fractional time–frequency features, which
are then fed into a BP neural network for classification, aiming to improve both feature
representation and classification performance.

1.2. Status of Research

FrFT breaks through the limitation of traditional Fourier transform in time–frequency
resolution by introducing the fractional-order parameter, which is especially suitable for
feature extraction of non-smooth signals. In 1980, Namias first proposed the mathematical
theory of FrFT, which laid the theoretical foundation for its use in the field of signal process-
ing [2]. In 1994, Almeida verified the advantages of FrFT in the time–frequency analysis
of biological signals [3]; in 2019, Zhan Hongfeng et al. extended the feature domain with
FrFT to extract as much valid information as possible from different dimensions, which
significantly improved the correct recognition rate of classification results [4]. However,
most of the existing studies focus on the processing of single-modal data and lack an efficient
synergy mechanism with deep learning models.

BP neural networks are widely used in medical classification tasks due to their power-
ful nonlinear fitting ability. In 1986, the backpropagation algorithm proposed by Rumelhart
et al. laid the foundation for the development of BP networks [5]. In 2023, Ge Mengfei
et al. combined a neural network with the Adaboost method to increase the accuracy of
predictive classification of breast cancer to 95.55% [6]. However, the high sensitivity of
traditional BP neural networks to input features and their reliance on manually designed
feature extraction methods limit their performance in complex medical imaging.

1.3. Research Objectives, Hypotheses, and Innovativeness

The rationale of this study lies in combining FrFT with BP neural networks for tumor
classification. FrFT enables the extraction of fine-grained, non-stationary features from
tumor images, improving the quality of inputs. The BP network enhances classification with
its nonlinear learning capability. The synergy reduces reliance on manual feature design,
enhances generalization, and improves accuracy [7].

The innovation of this study lies in the integration of the FrFT as a preprocessing tool
for input features into the BP neural network, thereby constructing a novel framework of
fractional neural networks. The FrFT possesses enhanced time–frequency resolution, en-
abling it to capture non-stationary and complex signal characteristics that traditional Fourier
transforms struggle to extract. This addresses key limitations of existing approaches, such as
low feature utilization and high dependency on manual feature engineering. In particular,
FrFT effectively enhances the representation of tumor-specific fractal features, leading to
higher-quality inputs for the neural network. When combined with the powerful nonlinear
fitting capabilities of the BP neural network, the model achieves improved generalization
and stability, especially in small-sample medical data scenarios where traditional networks
are prone to overfitting. This synergy not only reduces reliance on handcrafted features but
also paves the way for building accurate and low-invasive intelligent diagnostic tools for
tumor prediction, demonstrating both structural innovation and practical relevance.

Based on this, the research objective of this paper is to construct and validate a benign
and malignant tumor prediction model integrating FrFT and a BP neural network and to
improve its classification performance and generalization ability when dealing with com-
plex medical data. Considering that medical data are characterized by high dimensionality,
nonlinearity, and noise sensitivity, this paper further proposes the hypothesis that if the
input data have a high signal-to-noise ratio and feature integrity after FrFT preprocessing,
the constructed FrFT-BP model will significantly outperform the traditional methods in
terms of classification accuracy and robustness.
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1.4. Structure of the Paper

This paper adopts the research path of “theory construction–method design–experimental
verification” and is organized as follows:

Section 2 systematically elaborates on the theoretical foundation of FrFT and neural
networks. It includes the mathematical definition, basic properties, and unique advantages
of FrFT in signal processing and analyzes the core algorithm and architectural features of
BP neural networks.

Section 3 constructs the FrFT-BP collaborative diagnostic model. The composition
of the experimental dataset, the FrFT preprocessing process, and the network parameter
optimization strategy are explained in detail, and a hybrid training method based on the
L-M algorithm is proposed.

Section 4 conducts the analysis of benign and malignant tumor prediction results
and carries out comparative experimental research. Through multi-dimensional visual-
ization tools such as a performance chart, training status chart, and regression chart, the
model’s prediction performance on clinical data is analyzed and compared with traditional
SVM methods.

Section 5 summarizes the research results, argues for the theoretical contribution of
FrFT in enhancing feature differentiability, and explores the prospect of the application of
the fusion technique of fractional calculus and deep learning in the field of smart healthcare.

2. Theoretical Foundation

2.1. Fractional Fourier Transform
2.1.1. Definition of FrFT

The FrFT is a tool for transforming a signal from the time (or spatial) domain to the
frequency domain. Unlike the classical Fourier transform, the FrFT not only involves the
frequency domain, but also allows the “order” of the transform angle to be adjusted α

in order to realize different levels of signal transformation. This gives the FrFT a unique
advantage in signal processing applications, especially in non-local characterization, where
the FrFT is able to retain more information about the signal [8].

For a one-dimensional signal x(t), FrFT is defined as follows [9]:

Xp(μ) = Fp[X(t)] =
∫ +∞

−∞
Kp(μ, t)x(t) dt, (1)

where Kp(μ, t) = Apeiμ2 cot α−it2 csc2 α is called the kernel function of the fractional Fourier.
Ap =

√
1 − j cot α, α is the counterclockwise rotation angle of the fractional-order Fourier

domain with respect to the time domain, and the corresponding fractional order is
P = 2α/π. When p = 4n, Kp(μ, t) = δ(μ − t); when p = 4n + 2, Kp(μ, t) = δ(μ + t). The
fractional Fourier transform kernel is denoted as follows.

Kp(μ, t) =

⎧⎪⎪⎨⎪⎪⎩
√

1−j cot α
2π exp

(
j μ2+t2

2 cot α − j μt
sin α

)
, α �= nπ,

δ(μ − t), α = 2nπ,
δ(μ + t), α = (2n + 1)π.

(2)

The inverse of the fractional order Fourier is

x(t) =
∫ +∞

−∞
Kp(μ, t)Xp(μ)dμ. (3)

When the FrFT of the transform of p = 1 and when α = π/2, from Equation (1),

x1(u) =
∫ +∞

−∞
e−j2πutx(t)dt. (4)
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From Equation (4), the FrFT is the ordinary Fourier transform when p = 1. Therefore,
the FrFT can also be seen as an extension of the conventional Fourier transform [10].

2.1.2. Basic Properties

• Linear properties: FrFTs have the characteristics of linear transforms and can be
combined—that is,

Fp

[
∑
n

cn fn(u)

]
= ∑

n
cn[Fp fn(u)].

• Order additivity (rotational additivity):

Fp1 Fp2 = Fp1+p2 .

• Reversible nature

(Fp)−1 = F−p.

According to the rotational additivity, it is known that after performing an FrFT
with the transformed angle α = pπ/2, its inverse transformation is equivalent to
performing an FrFT with the angle −α. This property implies that if a signal’s time–
frequency domain has been rotated by a specific angle through the FrFT, the restoration
of the signal’s original state can be easily achieved by performing an FrFT with the
corresponding negative angle on the signal [11].

• Nature of exchange

Fp1 Fp2 = Fp2 Fp1 .

• Combining properties

(Fp1 Fp2)Fp3 = Fp1(Fp2 Fp3).

• Time shift characteristic

Fp[x(t − ν)] = Xp(μ − ν cos α) exp
(

j
ν2

2
sin α cos α − jνμ sin α

)
.

indicates the frequency shift of the signal.
• Frequency shift characteristics

Fp
[

x(t)ejσt
]
= Xp(μ − σ cos α) exp

(
−i

σ2

2
sin α cos α − iμσ sin α

)
,

σ indicates the frequency shift of the signal.

2.1.3. Application of FrFT in Data Processing

Fractional neural networks can be categorized into two types in terms of structural
form: the first type combines FrFT with feedforward neural networks, where the activation
function of the nodes in the hidden layer is replaced by the fractional-order kernel function,
and the weight from the input layer to the hidden layer is replaced by the fractional-order
parameter. This method searches for the optimal order parameter through network training
and gradient correction iterations, and performs data prediction at that optimal order. The
second category is the use of FrFT as a preprocessing tool for neural network inputs, which
is suitable for data characterized by Chirp-like signals. The Chirp-like signals are analyzed
by fractional Fourier Transform to extract their unique time–frequency features, and the
neural network performs prediction, function approximation, or classification identification
based on these feature parameters. The optimal fractional neural network proposed in
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this paper belongs to this category. In this paper, FrFT is used as a data preprocessing tool,
aiming to improve the non-local characteristics of the data and thus enhance the learning
ability of the neural network on the data. By adjusting the value of the order parameter α

of FrFT, the input features can be optimized so that the neural network can better extract
the key information from the data, and thus improve the accuracy of benign and malignant
tumor prediction [12].

2.2. Neural Network Theory
2.2.1. Overview of Neural Networks

Neural networks are a kind of machine learning model inspired by biological nervous
systems, which consist of a large number of artificial neurons, and realize complex function
approximation through multi-layer nonlinear transformations, which makes them show
their unique value in medical pattern recognition tasks, especially in the problem of tumor
benignity and malignancy discrimination, which is characterized by high dimensionality,
nonlinearities, and small samples.

2.2.2. The BP Neural Network

The BP neural network is a typical multilayer feedforward neural network composed
of input, hidden, and output layers, which is trained through four steps: forward prop-
agation, computation of error, back-propagation, and iterative training. The BP neural
network has a strong nonlinear fitting capability [13]. In this study, the BP neural network
is selected as the baseline model due to its adaptability to medical prediction problems,
particularly in capturing complex nonlinear relationships in structured, non-sequential
data and in offering stable gradient-based optimization [14].

Compared with other neural network architectures such as Convolutional Neural
Networks (CNNs) and Recurrent Neural Networks (RNNs), the BP network presents
several advantages in the context of this research. CNNs are primarily designed for image-
related tasks and rely on local spatial features for convolution operations. However, the
input features in this study are extracted numerical descriptors of tumors with no inherent
spatial correlation, making CNNs structurally mismatched. RNNs, on the other hand, are
designed for sequential or temporal data modeling, such as speech or text. Since the input
data in this study consist of independent samples without temporal dependency, RNNs
are not suitable for this scenario either.

In contrast, BP neural networks impose minimal assumptions on input data structure
and are capable of learning high-order nonlinear mappings through multilayer nonlin-
ear transformations in the hidden layers. Their universal approximation capability has
been theoretically validated by the Universal Approximation Theorem. Furthermore, BP
networks leverage the chain rule for efficient gradient computation and can be optimized
using second-order algorithms such as the Levenberg–Marquardt method, ensuring rapid
convergence. In this study, although the FrFT-based preprocessing significantly increases
the dimensionality of the input features, the BP network maintains efficient training and
convergence performance, with computational complexity remaining within clinically
acceptable limits. Therefore, considering structural compatibility, computational efficiency,
and generalization performance, the BP neural network is a rational and effective model
choice for this specific application.

3. Application of Fractional-Order Calculus Theory to Neural Networks

3.1. Experimental Data

The data for this study were obtained from a clinical dataset publicly released by
the Northwest University Mathematical Modeling Competiton Organizing Committee in
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2023, which consisted of data with nine characteristics, with each cancer case assigned one
tumor benign and malignant label provided by a hospital. The dataset contains a total
of 608 case samples, including 389 benign and 219 malignant cases, and the image data
are anonymized.

3.2. Experimental Methodology

In this paper, we propose a fusion prediction model based on FrFT and the BP neural
network, aiming to enhance the neural network’s ability to characterize the tumor data
through the non-local characteristics of fractional-order calculus [15]. The method uses
FrFT to preprocess the original tumor data with a time–frequency domain transform
and realizes multi-dimensional signal analysis by adjusting the order in the FrFT, which
effectively overcomes the problem of limited generalization performance of traditional
neural networks due to local feature extraction [16].

Specifically, we first preprocess the tumor data using FrFT, which effectively enhances
the non-local characteristics of the data and extracts unique time–frequency features by
adjusting the transform order. The preprocessed data are converted into real-valued
features, which are used as inputs to the BP neural network. The output layer of the BP
neural network is responsible for predicting the benignness or malignancy of the tumor.
During the training process, we use the Levenberg–Marquardt algorithm to optimize the
weights and biases of the network to minimize the prediction error. The L-M algorithm
is a second-order optimization method that improves the speed of convergence during
the learning process by combining the advantages of the gradient descent method and the
Newton method [17]. Its update formula is Δω =

(
JT J + μI

)−1 JTe, where J is the Jacobi
matrix of error pair weights, μ is the damping factor, and e is the error vector. The L-M
algorithm balances convergence speed and stability by dynamically adjusting μ.

In order to validate the prediction performance of the model, we used a comprehensive
assessment of the sum of squared errors (SSE), mean square error (MSE), and root mean
square error (RMSE).

The Figure 1 shows the structure of a fractional BP neural network, which is detailed
as follows:

Figure 1. Structure of fractional BP neural network.

(A) Input Layer: The annotation X represents medical instance data input, and the
annotation α represents the FrFT parameters.

(B) Hidden Layers: Multiple fully connected layers with node notation a[l]i (l: layer
index, i: node index).

(C) Output Layer: Binary classification (Malignant/Benign) with MSE optimization target.

3.3. Experimental Design

(1) Data processing and FrFT preprocessing

First, this paper uses a dataset in Excel table format containing nine features and a label
for tumor benignity and malignancy. The data are transformed by FrFT and the output is a
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complex-valued result, and we take its magnitude as the final feature data and keep it as a
real value. With this treatment, the non-local characteristics of the signal are preserved [18].

(2) Data normalization and training set and test set division

In order to eliminate the scale differences between features and ensure that the training
of the model is not affected by the data magnitude, the input data are normalized in [19].

In terms of dataset division, random assignment was used to divide the dataset into
training and test sets, where the training set accounted for 80% of the total data and the test
set accounted for 20%.

(3) Selection of optimal hidden layer nodes

Too few nodes in the hidden layer will limit the network’s ability to learn complex
nonlinear relationships, leading to underfitting, while too many nodes will easily trigger
the phenomenon of overfitting, reducing the model’s ability to generalize on new samples.
In order to ensure the training effect of a BP neural network, this study adopts the method
of cross-validation to select the optimal number of nodes in the hidden layer. The specific
steps are as follows:

Step 1: Set different number of implicit layer nodes (10, 20, 30, 40) for experimentation.
Step 2: Train the network 10 times for each hidden layer node and record the test set

mean square error (MSE), that is,

MSE =
1
N

N

∑
i=1

(yi − ŷi)
2,

where yi is the true value, ŷi is the predicted value, and N is the sample size.
Step 3: Select the number of hidden layer nodes with minimum MSE as the final

network structure.

(4) Network training and prediction

Network training is optimized using the Levenberg–Marquardt (L-M) algorithm. The
specific process is as follows:

Step 1: Initialize the weights ω and bias b, and set the initial damping factor μ = 0.01
and the maximum number of iterations T = 2000.

Step 2: Forward propagation calculates the output error e and constructs the Jacobian
matrix J.

Step 3: Solve the linear equation, that is,

Δω =
(

JT J + μI
)T

JTe,

and update the weights, that is,

ωk+1 = ωk + Δω.

Step 4: If the error decreases after the update, accept the update and set μ = μ/10;
otherwise, reject the update and order μ = μ × 10.

Termination condition: The maximum number of iterations is reached or the error is
less than the threshold ε = 10−7.

After the training is completed, predictions are made using the test set data and
compared with the actual labels to evaluate the performance of the model.

Remark 1. If μ is too small, the training MSE will converge fast but the test MSE will be elevated,
causing the algorithm to fall into local minima. If μ is too large, the training convergence speed
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will be significantly reduced and the test MSE will be elevated, leading to over-regularization and
damaging the model capacity. Therefore, it is important to calculate the appropriate initial μ value,
set the initial value of μ as [0.001, 0.01, 0.1, 1, 10], and record the training MSE convergence curve
with the test MSE (as shown in Figure 2). Based on the convergence curve analysis, taking into
account MSE and number of rounds, we chose μ = 0.01 as it presents the optimal balance between
training efficiency and stability, satisfying the dual constraints of medical AI models on training
efficiency and computing resources.

Figure 2. Convergence curves of MSE training with different μ values.

(5) Error analysis and performance evaluation

After the model prediction results are obtained, this paper provides a comprehensive
assessment of the model’s prediction performance using a variety of error metrics, including
the sum of squared errors (SSE), mean absolute error (MAE), mean square error (MSE),
root mean square error (RMSE), and mean absolute percentage error (MAPE).

SSE and MSE measure the sum of the squares of the deviations of the predicted values
from the true values, which can reflect the overall error level; MAE provides an average
assessment of the absolute values of the errors, which is a more intuitive description of
the average prediction bias; RMSE places more emphasis on the large error values based
on the MAE, which is more sensitive to the fluctuation of the errors; and MAPE is used to
assess the relative percentage of the errors, which facilitates the comparison of the data with
different scales.

Although the above metrics provide a multifaceted perspective for performance
evaluation, there are some limitations in each metric: SSE and MSE are extremely sensitive
to outliers, which may lead to underestimation of the overall performance due to a few
extreme error values; MAPE produces abnormally large values when the target value is
close to zero, which affects the interpretability; and RMSE magnifies the effect of large
errors, which may hide the fact that the model performs well in most of the samples.
Therefore, relying on a single metric may lead to a misjudgment of model performance.

To compensate for the limitations of these error metrics, this study further combines
graphical analysis tools, such as a Regression Chart and a Comparison Chart of Predicted
Results, to assess the model’s fitting ability and prediction stability. In addition, group
comparative analysis of the performance metrics of the training set, validation set, and test
set are conducted in this study (i.e., Performance Chart), so as to verify the generalization
ability and robustness of the model at different stages. The combination of multiple means
makes the model assessment more comprehensive and reliable, ensuring the objectivity
and credibility of the conclusions.

This flowchart (Figure 3) presents the key implementation steps of the FrFT-BP hybrid
model:
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(1) Perform multi-scale time–frequency decomposition on the original tumor features
using FrFT (α = 0.7) (Step 1).

(2) Using normalization to process the training set data (Step 2).
(3) Determine the optimal number of hidden layer nodes through cross validation (Step 3).
(4) Apply Levenberg–Marquardt second-order optimization algorithm for network train-

ing, including forward propagation → error backpropagation → Hessian matrix
update (Step 4).

(5) Evaluate the performance of the model based on seven indicators including SSE, MAE,
MAPE, etc. (Step 5).

Figure 3. Flowchart of experimental design.

4. Analysis of Outcomes of Tumor Benignity and Malignancy Prediction

4.1. Implementation Details

The experiments were implemented in MATLAB R2022b using a customized function
to perform the FrFT on the input data. The FrFT kernel was designed based on the time-
domain definition with adjustable fractional order α. Each sample’s real and imaginary
parts were extracted and concatenated to form the new input features.

The BP neural network was constructed using MATLAB’s newff function from the
Neural Network Toolbox. The input data were normalized to [0, 1], and the output labels
were normalized using mapminmax. The training was conducted using the Levenberg–
Marquardt algorithm (trainlm), with the following parameters:

• Learning rate: 0.001.
• Maximum epochs: 2000.
• Performance goal (MSE): 10−7.
• Transfer functions: tansig for hidden layer and purelin for output layer.

The optimal number of hidden neurons was determined through empirical testing,
starting from

√
n + m + 1 to

√
n + m + 10, where n and m denote the number of input and

output neurons, respectively. The best architecture was selected based on the lowest mean
squared error (MSE) on the training set.

All experiments were conducted on a personal computer with the following specifications:

• CPU: R7-5825U
• RAM: 16 GB
• Operating System: Windows 11

4.2. Evaluation of the Neural Network Training Outcomes

This paper uses three charts, the performance chart, the training state chart, and the
regression chart, to demonstrate the neural network’s training effect and prediction ability
while training. These figures thoroughly highlight the key indicators used during the
training process as well as the model’s effect after training.
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• Performance Chart

The performance chart (as shown in Figure 4) shows how the mean square error (MSE)
varies with the number of iterations during the BP neural network’s training process. The
chart shows how well the network fits the training data in each cycle. The performance
chart shows gradually decreasing inaccuracy, which often suggests that the network is
constantly improving its fit to the training data. As the training develops, the error stabilizes,
indicating that the network is close to optimal and the training process converges.

Figure 4. Performance chart.

The model’s training quality can be visualized by observing the chart, where the error
decreases faster and more smoothly, indicating better training results.

• Training Status Chart

The training status chart usually shows the network training state at various stages of
the training process. The figure (as shown in Figure 5) shows the training dynamics of the
neural network model in 10 rounds of iterations; the gradient continues to decrease, the μ

exponential level decreases, and the validation check reaches the early stopping condition
within a reasonable number of rounds, all of which indicate that the neural network
has effectively completed the learning of the data features and successfully avoided the
occurrence of the overfitting phenomenon.

Figure 5. Training status chart (left) and regression chart (right).

• Regression Chart

The regression graph shows the relationship between the predicted values and the true
values. The graph illustrates the relationship for the four processes: Training, Validation,
Testing, and All.

(1) Training set regression performance (Training: R = 0.9806)
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The blue fitted line in the figure is very close to the ideal line (Y = T), with a correlation
coefficient R of 0.9806. This indicates that the neural network has an extremely strong fit on
the training data. The regression equation is as follows:

Output ≈ 0.95 × target − 0.018

The slope is close to 1 and the intercept is close to 0, further indicating that the deviation
between the predicted values and the true values is small, and the fitting is excellent.

(2) Validation set regression performance (Validation: R = 0.86481)

The green fitted line deviates slightly from the ideal line, with an R value of 0.86481.
Although slightly lower than the training set, it still shows a strong correlation. The
regression equation is

Output ≈ 0.8 × Target − 0.07

This shows that the model still has some generalization ability on data not involved in
training and does not show serious overfitting.

(3) Regression performance on the test set (Testing: R = 0.91254)

The fitting performance in the test set is good, with an R value of 0.91254, a slope of
0.83, and an intercept of −0.14. This indicates that the model predicts unknown data more
accurately and has good robustness.

(4) Overall regression performance (All: R = 0.95612)

The regression plot of the integrated dataset shows an overall correlation coefficient R
of 0.95612, indicating strong overall prediction ability. The regression equation is

Output ≈ 0.92 × Target − 0.037

This is also close to the ideal line, further validating the model’s good learning ability across
the sample space.

All four regression plots demonstrate a high correlation between the predicted output
and the actual target. The R-values of the training and overall datasets are particularly
close to 1, indicating that the model accurately captures the nonlinear relationship between
inputs and targets, showing strong potential for practical application.

Further comparison of the prediction results is shown in Figure 6. The left figure
verifies the discriminative ability of the BP neural network in benign and malignant tumor
prediction. The network output is highly consistent with the real labels on the whole,
indicating that the model has good generalization ability and robustness in the binary
classification task. The right panel reveals the predictive stability and robustness of the BP
neural network in tumor benign and malignant classification. The model predicts the vast
majority of test samples accurately with high error concentration and no systematic bias in
the overall error.

With a prediction accuracy of 93.177%, the experimental results show that the model
based on the combination of the FrFT and BP neural network makes more accurate predic-
tions on the test set. The model accurately predicts whether a tumor is benign or malignant,
as evidenced by the small gap between the predicted and true values in the chart of true
and predicted values.
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Figure 6. Comparison chart of predicted results.

4.3. Prediction Accuracy Under Different Orders

The figure (as shown in Figure 7) shows the variation in prediction accuracy of the
neural network model under different orders α. The accuracy peaks at α = 0.7 (93.177%),
indicating the importance of selecting an appropriate order for optimal model performance.

Figure 7. Comparison of prediction accuracy under different FrFT orders.

4.4. Comparative Experimental Design

Since the support vector machine (SVM) method is suitable for processing high-
dimensional medical data and can classify nonlinear data through the kernel function, this
paper uses it as a comparison model and conducts comparative experiments based on the
same preprocessed dataset to evaluate the performance of the two methods under several
evaluation metrics such as accuracy, sum of squares of errors (SSE), mean absolute error
(MAE), mean square error (MSE), root mean square error (RMSE), mean percentage error
(MAPE) and correlation coefficient (R) under several evaluation indexes.

The following (Table 1) are the results:

Table 1. Comparison of the results of the indicators of the two models.

INDEX Acc SSE MAE MSE RMSE MAPE R

BP 93.177 83.789 0.193 0.178 0.421 6.823 0.901
SVM 64.130 132 0.717 1.435 1.198 17.935 −0.560

The experimental results show that the model based on FrFT combined with the BP
neural network proposed in this paper outperforms the SVM model in all the metrics in
the benign–malignant tumor prediction task.

Specifically, the model has smaller SSE and MSE, which indicates that it fits the sample
data better during the training process; the MAE and RMSE are also lower, which show
stronger predictive stability and robustness; the correlation coefficient R value is close to
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1, which further verifies that the model prediction results are highly consistent with the
real values.

In contrast, despite its good generalization ability, the performance of the SVM method
is highly dependent on the selection of the kernel function and the accurate tuning of pa-
rameters when facing the complex nonlinear structure of tumor data. If the kernel function
is not properly set, the model may not be able to fully explore the implicit associations
between higher-order features. In contrast, the BP neural network used in this paper con-
structs the higher-order feature interaction structure through multi-layer nested nonlinear
activation functions and combines with the frequency domain feature enhancement pro-
vided by FrFT, which enables the model to adaptively capture the multi-scale information,
thus improving the ability to recognize the benignness and malignancy of tumors.

In addition, under the premise of moderate sample size, high feature dimensions, and
complex nonlinear relationships among variables, BP neural networks have more modeling
flexibility and expressive ability than SVMs. Therefore, the method in this paper shows
better performance and adaptability in such medical prediction scenarios.

4.5. Discussion on Computational Complexity

In terms of computational complexity, the proposed FrFT-BP neural network includes
a preprocessing step where the fractional Fourier transform is applied to each input sample.
This step has a complexity of O(N·d) for N samples and d features. While this intro-
duces additional computation compared to traditional BP or SVM models, it significantly
enhances the feature representation, leading to improved learning efficiency and accuracy.

Compared with SVMs, especially those using nonlinear kernels, which typically require
solving quadratic programming problems with complexity ranging from O

(
N2) to O

(
N3),

our model is computationally more efficient and scalable. Additionally, SVMs often require
parameter tuning and kernel selection, which further adds to the computation burden.

Overall, the FrFT-BP method achieves a favorable balance between accuracy and
computational cost, making it a practical choice for large-scale classification problems.

4.6. Error Sources and Research Limitations

Although the FrFT-BP model proposed in this paper shows high classification accuracy
on the current dataset, there are still some non-negligible sources of error and research
limitations. First, the input data have certain fractal characteristics and non-stationarity,
and although the feature extraction stage improves the signal characterization ability with
the help of FrFT, the selection of fractional order is still dependent on experiments and
lacks the theoretical optimality guarantee; second, there is a certain category imbalance
and labeling subjectivity in the training data, which may lead to unstable prediction of
the model on the boundary samples. In addition, although the overall accuracy of SVM is
lower than that of the present method, it shows better generalization ability in the case of
high-dimensional features, which suggests that we should pay attention to the adaptability
of different models to the data structure in model selection.

From a system perspective, the model has not yet been validated cross-platform in
different imaging devices and clinical scenarios, and its ability to process high-resolution
images (e.g., 4K pathology slices) and computational efficiency still need to be further
optimized. Meanwhile, due to the sensitivity of medical data, the regulatory constraints on
data access and sharing are also a realistic bottleneck for future large-scale deployment.
Therefore, despite the superior performance of the model in experiments, its generalized
application still needs to be continuously improved in terms of model interpretability,
real-time reasoning capability, and system integration.
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5. Conclusions and Outlook

5.1. Conclusions

In this paper, a benign–malignant tumor prediction model combining FrFT and BP
neural networks is proposed. The experimental results show that the FrFT can effectively
enhance the non-local characteristics of the data and improve the prediction accuracy of
the BP neural network. The model not only has high prediction accuracy, but also performs
well in error analysis, proving its potential application in tumor prediction.

5.2. Impact on Field of Medical Image Analysis and Tumor Diagnosis

(1) Enhanced characterization of medical image features

The FrFT-BP neural network fusion model proposed in this study achieves the en-
hanced characterization of tumor morphological features through the time–frequency
rotational property of FrFT. Experiments show that the model improves the prediction
accuracy while improving its classification performance compared with the traditional
integer-order Fourier transform. This method provides a new mathematical tool for mining
the deep time–frequency features of tumors.

(2) Promoting real-time aided diagnosis

The FrFT-BP neural network fusion model proposed in this study effectively improves
the model efficiency by reducing the number of training iterations through the second-
order convergence property of the Levenberg–Marquardt algorithm. It provides a technical
prototype for outpatient real-time screening and helps the intelligent transformation of
domestic medical equipment.

(3) Optimization of clinical decision support system

The FrFT-BP neural network fusion model proposed in this study can be used to assist
doctors in diagnosis, and at the same time, doctors can be reminded to make follow-up
consultations in time for complicated cases, in order to prevent patients from missing the
golden stage of early cancer treatment.

5.3. Future Prospects

• Expand the application of medical data: Apply existing mathematical frameworks to
the analysis of pathological sections, genomic data, etc., and explore how to combine
different types of medical data through fractional-order methods. At the same time,
develop new mathematical tools to more accurately identify the features of tumor edges.

• Interdisciplinary research: Combining mathematics and artificial intelligence tech-
nology to predict the development trend of tumors is promising direction of research.
By using fractional time series analysis and recurrent neural networks, a model can
be constructed to predict the probability of tumor deterioration, which could help
with early detection and treatment. Meanwhile, studying the efficacy of drugs in
cancer treatment and exploring the relationship between tumor characteristics and
drug metabolism are important directions of study.

• Exploration of clinical application: It is important to conduct actual testing on a
certain type of tumor case to verify the stability of the model under different devices
and scanning methods, ensuring its wide applicability in clinical practice. Simultane-
ously optimizing the algorithm to meet the fast processing requirements of 4K medical
images should also be explored.

5.4. Potential Challenges in Clinical Application

While the proposed method shows promising results in classification accuracy and
generalization, several challenges remain for its clinical deployment. These include the
following:
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• Data Privacy: Medical data are sensitive and subject to strict regulations, making data
access and sharing a potential barrier.

• Model Interpretability: Deep learning models, including BP neural networks, are
often criticized for their “black box” nature, which limits clinicians’ trust.

• Scalability: Real-time application in clinical workflows requires integration with
hospital systems and optimization for inference speed.

• Patient Rights: The model is designed to assist physicians in decision-making or
prompt follow-up examinations, rather than replacing clinical diagnoses, thereby
potentially reducing the risk of misdiagnosis. Furthermore, the diagnostic report will
clearly indicate that it is an “AI-assisted result”, and patients can access the model
version and performance metrics through the hospital information system.

Future work will focus on addressing these issues through interpretable model designs,
federated learning frameworks, and collaborations with clinical institutions.
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