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Preface to ”Decomposability of Tensors”

The Special Issue “tensor decomposition” is devoted to collecting papers on a subject that

is rapidly developing in recent years, with (unexpected) connections between different areas of

mathematics. Though tensor analysis is a topic that, for a long time, has been considered a

chapter of multilinear algebra with a view towards numerical analysis, it turned out recently

that methods of projective geometry, often arising from a classical point of view, have a strong

connection with the theory of tensors and can produce advances that are also valuable in applicative

domains. In particular, the study of tensor rank, i.e., the complexity of a tensor, was invigorated

by the introduction of techniques based on the background of projective geometry. If one considers

elementary tensors as a tensor product of vectors, then the computation of the rank corresponds

to finding the minimum k, such that a tensor belongs to the k-secant variety of a product variety.

In projective terms, the main notions of tensor analysis can be defined modulo scalar products, so

most problems can be translated in terms of points in projective spaces, and product varieties become

Segre embeddings of products of projective spaces (or Veronese embeddings of projective spaces,

in the symmetric setting). In this circle of ideas, a decomposition of a tensor T corresponds to a

set Z of projective points, such that T belongs to the linear span of Z. Thus, the geometry of secant

varieties to Segre and Veronese varieties provides basic tools for understanding the decomposition

of a given tensor. Notions like the uniqueness and minimality of a given decomposition found a

natural formulation in terms of projective geometry. Also, special decompositions can be described

in terms of proprieties of secant spaces. Altogether, the initial features of these new perspectives were

described in a series of books and papers. Yet, as the theory develops quickly, it is useful to make

frequent reports on the status of the art.

This book collects papers that contain both surveys on the actual main achievements on some

classical problems on the decomposition of tensors, like the best-known bounds on the rank of

symmetric tensors, together with results on special decompositions and extensions to the generalized

study of decompositions with respect to any subvarieties.

We hope that the content of this book will provide a helpful collection of geometric perspectives

on tensor analysis and tensor decomposition, which are necessary both to create a solid starting point

for future developments and to establish a background of geometric methods for people who arrived

to work in the subject coming from different points of view.

Luca Chiantini

Special Issue Editor
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Abstract: This note is a short survey of nonnegative tensors, primarily from the geometric point of
view. In addition to basic definitions, we discuss properties of and questions about nonnegative
tensors, which may be of interest to geometers.

Keywords: nonnegative tensors; low-rank approximations; uniqueness and identifiability; spectral
theory; EM algorithm; semialgebraic geometry

1. Introduction

Tensors are ubiquitous in mathematics and sciences. In the study of complex and real tensors,
algebraic geometry has demonstrated its power [1,2]. On the other hand, tensor computations also
help people understand classical algebraic varieties, such as the secant varieties of Segre varieties
and Veronese varieties, and raise interesting and challenging questions in algebraic geometry [3,4].
Traditionally, geometers tend to study tensors in a coordinate-free way. However, in applications,
practitioners must work with coordinates. Among those tensors widely used in practice, a large number
of them are nonnegative tensors, i.e., tensors with nonnegative entries. In this case, most powerful
geometric tools developed for complex tensors can not be applied directly due to the fact that the
Euclidean closure of tensors with rank no greater than a fixed integer is no longer a variety, but a
semialgebraic set. This forces us to investigate the semialgebraic geometry of nonnegative tensors.
In this note, we will review some important properties of nonnegative tensors obtained by studying
the semialgebraic geometry, and propose several open problems which are pivotal in understanding
nonnegative tensors and also may be interesting to geometers.

2. Definitions

Nonnegative tensors arise naturally in many areas, such as hyperspectral imaging, statistics,
spectroscopy, computer vision, phylogenetics, and so on. See [5–8] and the references therein.
Before further investigations, let us recall basic definitions of tensors.

Definition 1. Let V1, . . . , Vd be vector spaces over a field K. The tensor product V = V1 ⊗ · · · ⊗Vd is the free
linear space spanned by V1 × · · · ×Vd quotient by the equivalence relation:

(v1, . . . , αvi + βv′i, . . . , vd) ∼ α(v1, . . . , vi, . . . , vd) + β(v1, . . . , v′i, . . . , vd) (1)

for every vi, v′i ∈ Vi, αi, βi ∈ K, and i = 1, . . . , d. An element of V1 ⊗ · · · ⊗Vd is called a tensor.

Equivalently, V1 ⊗ · · · ⊗Vd is the vector space of multilinear functions:

V∗1 × · · · ×V∗d → K,

Mathematics 2018, 6, 230; doi:10.3390/math6110230 www.mdpi.com/journal/mathematics1
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where V∗i is the dual space of Vi for i = 1, . . . , d. A representative of the equivalence class of (v1, . . . , vd)

is called a decomposable tensor and denoted by v1 ⊗ · · · ⊗ vd.
The rank of a given tensor T ∈ V1 ⊗ · · · ⊗Vd is the minimum integer r such that T is a sum of r

decomposable tensors, i.e.,

T =
r

∑
i=1

v1,i ⊗ · · · ⊗ vd,i, (2)

where vj,i ∈ Vj for j = 1, . . . , d and i = 1, . . . , r. Such a decomposition is called a rank decomposition (or
canonical polyadic decomposition or CP decomposition).

Now we focus on the case K = R, and for each Vi we fix a basis, which enables us to work
with coordinates. Let R+ be the semiring of nonnegative real numbers. A nonnegative tensor in
V1 ⊗ · · · ⊗ Vd is a tensor whose coordinates are nonnegative. Let V+

i denote the set of nonnegative
vectors in Vi for each i = 1, . . . , d, and V+ denote the set of nonnegative tensors in V.

Definition 2. For T ∈ V+, the nonnegative rank of T is the minimum integer r so that there exist nonnegative
vectors vi,j ∈ V+

i for i = 1, . . . , d and j = 1, . . . , r making Equation (2) holds.

It is clear that rank+(T) ≥ rank(T) for every T ∈ V+. Besides, there exists some T ∈ V+ such
that rank+(T) > rank(T). For example, let

T = e1 ⊗ e1 ⊗ e1 + e1 ⊗ e2 ⊗ e2 + e2 ⊗ e2 ⊗ e1 + e2 ⊗ e1 ⊗ e2 ∈ R2 ⊗R2 ⊗R2, (3)

where e1 = [1, 0]
 and e2 = [0, 1]
, then rank+(T) = 4 > 2 = rankR(T).

3. Applications

One reason that nonnegative tensors are popular is due to the statistical interpretation behind—a
Bayesian network [9–11]. More precisely, assume a joint distribution of several random variables xi is
given by:

p(x1, . . . , xd) =
∫ d

∏
i=1

p(xi | θ) dμθ (4)

where θ is a latent variable. When x1, . . . , xd and θ are discrete, (4) becomes:

ti1,...,id =
r

∑
p=1

λrui1,p · · · uid ,p, (5)

i.e., a nonnegative rank decomposition [5,12]. Such a model, for instance, has been applied in
clustering [13].

As another application, nonnegative tensors have shown their powers in image processing.
Usually hyperspectral images are processed as nonnegative matrices M ∈ Rn×m

+ , where n is the
number of pixels and m denotes the number of spectral bands. By the sensor developments, it is
possible to collect time series of hyperspectral data, which can be understood as nonnegative tensors,
namely A ∈ Rn×m×d

+ , where d is the dimensionality of the time or multiangle ways [14]. A nonnegative
rank decomposition of A gives a blind spectral unmixing of hyperspectral data.

Recently, tensor methods have also used in isogeometric analysis (IGA) [15–17]. A Galerkin-based
approach of IGA studies tensor-product B-splines. To obtain Galerkin matrices effectively, low rank
approximations of integral kernels are employed [16]. In many cases, the constructed mass tensor is a
positive tensor.

4. Algorithms

Due to the broad and important applications, nonnegative tensor decomposition (NTD) and
nonnegative matrix factorization (NMF) have received vast research on their algorithms. Perhaps the
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most popular algorithm for NMF is the multiplicative updating rule [18], and since then, numerous
more efficient algorithms have been proposed, such as the algorithms using the alternating nonnegative
least squares [19–21], the algorithms using the hierarchical alternating least squares [22], the algorithms
using deflation [23], and many more algorithms based on other methods, for example [24,25], etc.
The main ideas of some algorithms have been naturally generalized to decompose nonnegative tensors,
for example [23,26–28]. Since the main purpose of this note is to introduce the geometric properties of
nonnegative tensors, we invite those readers who are interested in algorithms to read comprehensive
surveys on algorithms of NTD, for example [29–31].

5. Nonnegative Rank Decompositions

It is known that when d > 2, rank decompositions (2) are often unique over C and R, which is
very important in applications. For nonnegative tensors, it is also an important issue to investigate
the identifiability property. Before studying the identifiability of nonnegative tensors, let us recall
fundamental definitions and known results of complex and real tensors.

For any tuple of positive integers (n1, . . . , nd), there is a unique integer rg(n1, . . . , nd), which
only depends on n1, . . . , nd such that the set of complex rank-rg(n1, . . . , nd) tensors in Cn1 ⊗ · · · ⊗Cnd

contains a Zariski open subset of Cn1 ⊗ · · · ⊗Cnd . In fact, rg(n1, . . . , nd) is the minimum integer r such
that the rth secant variety of the Segre variety Seg(Pn1−1 × · · · × Pnd−1) is the ambient space Pn1···nd−1.
rg(n1, . . . , nd) is called the generic rank of Cn1 ⊗ · · · ⊗Cnd . It is not always the case that the generic rank
rg(n1, . . . , nd) equals

⌈ n1···nd
n1+···+nd−d+1

⌉
, which leads us to the following definition.

Definition 3. If theK-dimension of the set of rank-r tensors inKn1 ⊗· · ·⊗Knd is strictly less than min{r(n1 +

· · ·+ nd − d + 1), n1 · · · nd}, then Kn1 ⊗ · · · ⊗Knd is called r-defective.

When K is algebraically closed, Kn1 ⊗ · · · ⊗ Knd is not r-defective, which implies a general
rank-r tensor T has finitely many rank decompositions. If we require further that T has a unique
decomposition, we will arrive at the following definition.

Definition 4. If a general rank-r tensor in Kn1 ⊗ · · · ⊗ Knd has a unique rank-r decomposition over K,
then Kn1 ⊗ · · · ⊗Knd is called r-identifiable.

There has been a large amount of research on defectivity [32–34] and identifiability [1,35–41].
Here, we highlight three notable results.

Theorem 1 (Kruskal). Let V1, . . . , Vd be finite dimensional vector spaces over a field K [35], and

T =
r

∑
i=1

v1,i ⊗ · · · ⊗ vd,i ∈ V1 ⊗ · · · ⊗Vd. (6)

If κ1 + · · ·+ κd ≥ 2r + d− 1, then rank(T) = r and T has a unique rank-r decomposition (6), where κi is
the maximum integer such that every subset of {vi,1, . . . , vi,r} with κi elements is linearly independent for
i = 1, . . . , d.

Theorem 2 (Bocci–Chiantini–Ottaviani [1]). Assume n1 ≤ · · · ≤ nd. Then Cn1 ⊗ · · · ⊗ Cnd is
r-identifiable when:

r ≤ ∏d
j=1 nj − (n1 + n2 + n3 − 2)∏d

j=3 nj

1 + ∑d
j=1(nj − 1)

.

3
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Theorem 3 (Chiantini–Ottaviani–Vannieuwenhoven). Cn1 ⊗ · · · ⊗Cnd is r-identifiable when [40]:

r <

⌈
∏d

j=1 nj

1 + ∑d
j=1(nj − 1)

⌉

and ∏d
j=1 nj ≤ 15000, except the following cases:

(n1, . . . , nd) r Type
(4, 4, 3) 5 defective
(4, 4, 4) 6 sporadic
(6, 6, 3) 8 sporadic

(n, n, 2, 2) 2n− 1 defective
(2, 2, 2, 2, 2) 5 sporadic

n1 > ∏d
i=2 ni −∑d

i=2(ni − 1) r ≥ ∏d
i=2 ni −∑d

i=2(ni − 1) unbalanced

Note that Theorems 2 and 3 focus on complex tensors; however, with the help of the following
lemma, we are able to extend these results to real tensors.

Lemma 1. If Cn1 ⊗ · · · ⊗Cnd is r-identifiable, then Rn1 ⊗ · · · ⊗Rnd is r-identifiable when r < rg(n1, . . . , nd) [42].

As an example, we have the following corollary.

Corollary 1. Rn1×···×nd is r-identifiable if:

r <
⌈

∏d
i=1 ni

1 + ∑d
i=1(ni − 1)

⌉
,

∏d
i=1 ni ≤ 15000, and (n1, . . . , nd, r) is not one of the following cases:

(n1, . . . , nd) r
(4, 4, 3) 5
(4, 4, 4) 6
(6, 6, 3) 8

(n, n, 2, 2) 2n− 1
(2, 2, 2, 2, 2) 5

n1 > ∏d
i=2 ni −∑d

i=2(ni − 1) r ≥ ∏d
i=2 ni −∑d

i=2(ni − 1)

In fact, for the above exceptional cases, we can derive more information from Theorem 3.

Corollary 2.

• R4×4×3 is 5-defective.
• For any n ≥ 2, Rn×n×2×2 is (2n− 1)-defective.
• For n1 ≥ · · · ≥ nd ≥ 2, Rn1×···×nd is r-defective if

n1 > ∏d
i=2 ni −∑d

i=2(ni − 1) and r ≥ ∏d
i=2 ni −∑d

i=2(ni − 1).

Recall that for a symmetric tensor T ∈ Sd(V) over K, the symmetric rank of T is the minimum
integer r such that

T =
r

∑
i=1

λiv⊗d
i ,

where λi ∈ K, vi ∈ V for i = 1, . . . , r. For symmetric tensors, we can also have the definitions of
generic rank, r-defectivity, and r-identifiability. More precisely, the generic symmetric rank, rg(n; d),

4
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is defined to be the minimum integer r such that the rth secant variety of the Veronese variety νd(Pn−1)

fills in the ambient space over C. If the K-dimension of the set of symmetric rank-r tensors in Sd(Kn)

is strictly less than min{rn, (n+d−1
d )}, then Sd(Kn) is called r-defective. If a general symmetric rank-r

tensor has a unique decomposition over K, Sd(Kn) is called r-identifiable. The defectivity problem has
been completely solved in [43].

Theorem 4 (Alexander–Hirschowitz). The generic rank [43]:

rg(n; d) =
⌈
(n+d−1

d )

n

⌉
except the following case:

• When d = 2, rg(n; d) = n.

• When (d, n) = (3, 5), (4, 3), (4, 4), (4, 5), rg(n; d) =
⌈ (n+d−1

d )
n

⌉
+ 1.

The identifiability problem of Sd(Cn) has been addressed in [2,44–46], and the complete solution
was given in [2].

Theorem 5 (Chiantini–Ottaviani–Vannieuwenhoven). Sd(Cn+1) is r-identifiable when [2]

r <
⌈
(n+d

d )

n + 1

⌉
and d ≥ 3, except that (d, n, r) ∈ {(6, 2, 9), (4, 3, 8), (3, 5, 9)} where a general complex symmetric rank-r
tensor has exactly two symmetric rank decompositions.

Similar to Lemma 1, we have the following lemma for real symmetric tensors.

Lemma 2. Let r < rg(n; d). If Sd(Cn) is r-identifiable, then Sd(Rn) is r-identifiable [42].

As an example, we have

Corollary 3. Sd(Rn+1) is r-identifiable when:

r <
⌈
(n+d

d )

n + 1

⌉
and if (d, n, r) /∈ {(6, 2, 9), (4, 3, 8), (3, 5, 9)}.

Now, we are in a position to study the relations among complex, real, and nonnegative ranks.
Given real vector spaces V1, . . . , Vd of dimensions n1, . . . , nd, respectively, let V := V1 ⊗ · · · ⊗Vd and
VC be the complexification of V. For any positive integer r, let

D+
r = {X ∈ V+ | rank+(X) ≤ r}

denote the set of nonnegative tensors with nonnegative ranks not greater than r.

Theorem 6. Let r < rg(n1, . . . , nd). For a general T ∈ D+
r , its real rank and complex rank are also r. If VC is

r-identifiable, then T has a unique rank-r decomposition, which is nonnegative [42].

For nonnegative tensors, when r ≥ rg(n1, . . . , nd), the set of nonnegative rank-r tensors may
contain a nonempty open subset of V+ under the Euclidean topology. If so, r is called a nonnegative

5
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typical rank. A Similar phenomenon happens in the real case which motivates the definition of real
typical rank, i.e., r is a real typical rank if the set of real rank-r tensors contains a nonempty open subset
of V. We will illustrate the difference between nonnegative ranks and real ranks by the following
example, where Rn×n×n

+ denotes the set of nonnegative tensors in Rn×n×n.

Proposition 1. [42]

• The nonnegative typical ranks of R2×2×2
+ are 2, 3, 4.

• The nonnegative typical ranks of R3×3×3
+ are all integers m satisfying:

5 ≤ m ≤ 9.

• When n ≥ 4, the nonnegative typical ranks of Rn×n×n
+ consist of all integers m satisfying:⌈

n3

3n− 2

⌉
≤ m ≤ n2.

Theorem 6 and Proposition 1 reveal that for a general nonnegative rank-r tensor T, the true
difference among its complex, real, and nonnegative ranks appears when r ≥ rg(n1, . . . , nd), namely
when r < rg(n1, . . . , nd), the complex and real ranks of T are also r, but when r > rg(n1, . . . , nd), D+

r
contains a nonempty open subset U of V+ such that for each T ∈ U ,

rg(n1, . . . , nd) = rankC(T) ≤ rankR(T) < rank+(T) = r.

More concretely, let T be the tensor defined in (3). Then there exists a nonempty open neighborhood U
of T in R2×2×2

+ such that for any A ∈ U ,

rankC(A) = 2 < 4 = rank+(A).

6. Low Rank Approximations

Given T ∈ V+ with r ≤ rank+(T), let:

δ(T) = inf
X∈D+

r

‖T − X‖ ,

where ‖ · ‖ is the Hilbert–Schmidt norm.
It is known that the set Dr = {X ∈ V1⊗ · · · ⊗Vd | rank(X) ≤ r} is not closed under the Euclidean

topology over R or C when r > 1 [47]. However, for nonnegative tensors, we can show:

Proposition 2. D+
r is a closed semialgebraic set under the Euclidean topology [48].

Since D+
r is closed, for any T /∈ D+

r , there is always some T0 ∈ D+
r such that ‖T − T0‖ = δ(T),

i.e., the optimization problem:
min

rank+(X)≤r
‖T − X‖ (7)

makes sense. Furthermore, we can have the following result.

Proposition 3. A general T ∈ V+ has a unique best nonnegative low-rank approximation [48].

Before studying nonnegative rank approximations, let us recall the following useful lemma.

6
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Lemma 3. For T ∈ V over R, assume rank(T) > r and λ ∑r
l=1 Tl is a best rank-r approximation, where

Tl = v1,l ⊗ · · · ⊗ vd,l and
∥∥∑r

l=1 Tl
∥∥ = 1. Then:

〈T, v1,j ⊗ · · · ⊗ v̂i,j ⊗ · · · ⊗ vd,j〉 = λ
〈
∑r

l=1 Tl , v1,j ⊗ · · · ⊗ v̂i,j ⊗ · · · ⊗ vd,j

〉
, (8)

where i = 1, . . . , d, and j = 1, . . . , r, where λ = 〈T, ∑r
l=1 Tl〉, and 〈, 〉 denotes tensor contraction.

The support of a vector u ∈ V is defined to be:

supp(u) := {j = {1, . . . , dimR V} | the jth coordinate of u is nonzero}.

Then for a nonnegative tensor T, Lemma 3 becomes

Lemma 4. Let T ∈ V+ with rank+(T) > r and Y = ∑s
j=1 v1,j ⊗ · · · ⊗ vd,j be a solution of (7). Then:

〈T, v1,j ⊗ · · · ⊗ wi,j ⊗ · · · ⊗ vd,j〉 ≤
〈

Y, v1,j ⊗ · · · ⊗ wi,j ⊗ · · · ⊗ vd,j

〉
(9)

where wi,j ∈ V+
i , i = 1, . . . , d, and j = 1, . . . , s. For every pair (i, j), define:

Ṽi,j := {v ∈ Vi : supp(v) ⊆ supp(vi,j)}.

Then:
〈T, v1,j ⊗ · · · ⊗ wi,j ⊗ · · · ⊗ vd,j〉 =

〈
Y, v1,j ⊗ · · · ⊗ wi,j ⊗ · · · ⊗ vd,j

〉
(10)

for wi,j ∈ Ṽi,j.

Lemma 4 guarantees us the following result.

Proposition 4. Let T ∈ V+ with rank+(T) > r and X be a solution of (7). Then rank+(X) = r [48].

Proposition 4 shows that it is indeed appropriate to call a solution of (7) a best nonnegative rank-r
approximation.

By Proposition 3, we know a general nonnegative tensor has a unique best nonnegative rank-r
approximation. However, it is still unclear if this best approximation has a unique nonnegative rank-r
decomposition. Below is an example where we have the uniqueness. On the other hand, the general
case is not known yet.

Proposition 5. Let r = 2 or 3 and let n1, . . . , nd ≥ 3. Then for a general T ∈ Rn1×···×nd
+ , its unique best

nonnegative rank-r approximation has a unique nonnegative rank-r decomposition [42].

Question 1. Assume V is r-identifiable. Given a general T ∈ V+, is it true that the unique best nonnegative
rank-r approximation of T has a unique nonnegative decomposition?

7. Spectral Theory

In this section, we start with nonnegative rank-one approximations, which lead us to the spectral
theory of nonnegative tensors.

Proposition 6. Given T ∈ V+, let u1 ⊗ · · · ⊗ ud ∈ V be a best real rank-one approximation of T.
Then u1, . . . , ud can be chosen in the form u1 ∈ V+

1 , . . . , ud ∈ V+
d .

7
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By Proposition 6, for a nonnegative tensor T, we will not distinguish a best real rank-one
approximation and a best nonnegative rank-one approximation. By Lemma 3, a best real rank-one
approximation of a real tensor is a solution of (8), which motivates us the following definition.

Definition 5. Let V1, . . . , Vd be vector spaces over K of dimensions n1, . . . , nd. For T ∈ V1⊗ · · · ⊗Vd, we call
(λ, u1, . . . , ud) ∈ K×V1 × · · · ×Vd a normalized singular pair of T if:{

〈T, u1 ⊗ · · · ⊗ ûi ⊗ · · · ⊗ ud〉 = λui,

〈ui, ui〉 = 1,
(11)

where i = 1, . . . , d. Then, λ is called a normalized singular value and (u1, . . . , ud) is called a normalized
singular vector tuple. When K = R, λ ≥ 0, and ui ∈ V+

i , we call (λ, u1, . . . , ud) a nonnegative normalized
singular pair of T.

Similar definitions have been proposed by several authors; for example, the following projective
variant was introduced in [49].

Definition 6. Given vector spaces W1, . . . , Wd over K of dimensions n1, . . . , nd, for T ∈ W1 ⊗ · · · ⊗Wd,
([v1], . . . , [vd]) ∈ PW1 × · · · × PWd is called a projective singular vector tuple if [49]:

〈T, v1 ⊗ · · · ⊗ v̂i ⊗ · · · ⊗ vd〉 = λivi (12)

for some λi ∈ K, where 1 ≤ i ≤ d.

The number of projective singular vector tuples of a general complex tensor was calculated in [49],
which is the Euclidean Distance (ED) degree of PW1 × · · · × PWd by [50].

Theorem 7. Let T be a generic tensor in W1 ⊗ · · · ⊗Wd over C. Then T has exactly c(n1, . . . , nd) simple
projective singular vector tuples corresponding to nonzero singular values, where c(n1, . . . , nd) is the coefficient
of the monomial ∏d

i=1 tni−1
i in the polynomial [49]:

d

∏
i=1

t̂ni
i − tni

i

t̂i − ti
, where t̂i = ∑

j �=i
tj, i = 1, . . . , d.

Over R, there are several nonempty open subsets U1, . . . ,Uk of V1⊗ · · · ⊗Vd such that the number
of projective singular vector tuples is constant on each Ui, denoted by mi, for i = 1, . . . , k, but mi �= mj
if i �= j. One way to describe the number of projective singular vector tuples by using a single number
is to impose certain probability distribution on V1 ⊗ · · · ⊗Vd and compute the expected number of
projective singular vector tuples of T when T is randomly drawn under the given distribution.

Theorem 8. Let T ∈ Rn1×···×nd be a random tensor drawn under the Gaussian distribution. Then the expected
number of projective singular vector tuples of T is given by [51]:

(2π)d/2

2n/2
1

∏d
i=1 Γ( ni

2 )

∫
W
|det C| dμW ,

8
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where n = ∑i ni, Γ is Euler’s gamma function,

C =

⎡⎢⎢⎢⎢⎣
λ In1−1 A1,2 · · · A1,d

A
1,2 λ In2−1 · · · A2,d
...

...
. . .

...
A
1,d A
2,d · · · λ Ind−1

⎤⎥⎥⎥⎥⎦ ,

and W is the vector space formed by λ and Ai,j with i < j.

Coming back to nonnegative tensors, we may have more information about their singular pairs
than real tensors. Before studying singular pairs of nonnegative tensors, let us recall the following
well-known Perron–Frobenius Theorem. See for example [52] for more details.

Theorem 9. Given a nonnegative square matrix M,

• its spectral radius r(M) is an eigenvalue.
• there is some nonnegative vector v �= 0 such that Mv = r(M)v.
• r(M) > 0 if M is irreducible.
• there is some positive vector u > 0 such that Mu = r(M)u if M is irreducible.
• if M is irreducible, then λ is an eigenvalue of M with a nonnegative eigenvector if and only if λ = r(M).
• r(M) is simple if M is irreducible.
• every eigenvalue λ satisfies |λ| ≤ r(M) if M is irreducible.

The next three results, namely Lemmas 5–7, give an analogue of the tensorial Perron–Frobenius
Theorem [53–56] for nonnegative normalized singular pairs, which will help us learn more about best
rank-one approximations.

Lemma 5 (Existence). Any nonnegative tensor has (at least) a nonnegative normalized singular pair.

Definition 7. A tensor is called positive if all its entries are positive.

Lemma 6 (Positivity). A positive tensor has a positive normalized singular pair.

Recall that the spectral norm for a tensor, which is NP-hard to compute or approximate [57],
is defined as follows.

Definition 8. For T ∈ V1 ⊗ · · · ⊗ Vd over R, let ‖T‖σ := max{|〈T, u1 ⊗ · · · ⊗ ud〉| : ‖u1‖ = · · · =
‖ud‖ = 1} be the spectral norm of T.

Lemma 7 (Generic Uniqueness). Let T be a general real tensor. Then T has a unique normalized singular
pair (λ, u1, . . . , ud) such that λ = ‖T‖σ.

Lemma 7 motivates the following open question.

Question 2. Can we give a sufficient condition such that any nonnegative tensor satisfying this condition
has a unique normalized singular pair with λ = ‖T‖σ and this condition can be satisfied by a general
nonnegative tensor?

For matrices over R or C, by the Eckart–Young Theorem, best low-rank approximations can
be obtained from successive best rank-one approximations. However, for tensors, this ‘deflation
procedure’ does not work [48,58,59].

9
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Besides singular vector tuples, eigenvalues and eigenvectors of a tensor can be also defined.
Unlike matrices, there are several ways to define eigenvalues and eigenvectors of a tensor [60]. In this
note, we will use the following one which was firstly introduced in [55,61].

Definition 9. For T ∈ V⊗d over K, if:
〈T, u⊗(d−1)〉 = λu,

then λ ∈ K is called an eigenvalue of T, and u ∈ V is called an eigenvector. The pair (λ, u) is called an
eigenpair. Two eigenpairs (λ, u) and (μ, v) of T is said to be equivalent if td−2λ = μ and tu = v for some
t ∈ K.

When T is a real or complex symmetric tensor, a best rank-one approximation of T can be always
chosen to be symmetric [62,63], and thus is an eigenvector of T.

Theorem 10. Let T ∈ V⊗(d+1) be a real random tensor under the Gaussian distribution. Then the expected
number of equivalence classes of eigenpairs of T is given by [64]:

2n−1
√

d
n
Γ(n− 1

2 )√
π(d + 1)n− 1

2 Γ(n)

[
2(n− 1) 2F1

(
1, n− 1

2
;

3
2

;
d− 1
d + 1

)
+ 2F1

(
1, n− 1

2
;

n + 1
2

;
1

d + 1
)]

,

where 2F1 is the Gaussian hypergeometric function.

The number of equivalence classes of eigenpairs of a generic complex symmetric tensor has been
calculated in [65]. See [66] for another proof. This number is the ED degree of the Veronese variety [50].

Theorem 11. Let V be an n-dimensional complex vector space. Let T ∈ Sd(V) be a symmetric tensor whose
equivalence classes of eigenpairs are finitely many. Then, T has [65]:

(d− 1)n − 1
d− 2

equivalence classes of eigenpairs, counted with multiplicities.

For the real case, again, we may impose a probability distribution on Sd(V) and compute the
expected number of equivalence classes of eigenvalues of a random symmetric tensor.

Theorem 12. Let V be an n-dimensional real vector space of dimension n and T ∈ Sd(V) be drawn under the
Gaussian distribution. Then, the expected number of equivalence classes of eigenpairs of T is [51]:

1
2(n2+3n−2)/4 ∏n

j=1 Γ(j/2)

∫
μ2≤···≤μn

+∞∫
−∞

(
n

∏
j=2
|
√

dλ−√d− 1μj |)

(
∏
i<j

(μi − μj)
)
e−λ2/2−∑n

j=2 μ2
j /4 dλ dμ2 · · · dμd.

A closed formula of the above integral was given in [67]. Other variants of eigenvalues and
eigenvectors can be found in [60,61]. For our purpose, we will focus on the following definition
introduced in [48].

Definition 10. For T ∈ Sd(V) over K, (λ, v) ∈ K×V is called a normalized eigenpair of T if the following
equations hold:

10
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Cases 1.

〈T, v⊗(d−1)〉 = λv, 〈v, v〉 = 1.

In particular, λ is called a normalized eigenvalue. We say two normalized eigenpairs (α, u) and (β, v) of T
are equivalent if:

(α, u) = (β, v)

or if
(−1)d−2α = β and u = −v.

In the following, we would like to investigate sufficient conditions to ensure a tensor to have a
unique rank-one approximation. First we recall the definition of the multipolynomial resultant [68,69].
For any given n + 1 homogeneous polynomials F0, . . . , Fn ∈ C[x0, . . . , xn] with positive total degrees
d0, . . . , dn, let Fi = ∑|α|=di

ci,αxα0
0 · · · xαn

n , where α = (α0, . . . , αn) and |α| = α0 + · · ·+ αn. Associate
every pair (i, α) with a variable ui,α. For a polynomial P in the variables ui,α, denote by P(F0, . . . , Fn)

the result obtained by letting ui,α = ci,α. Then we have the following classical result [68,69].

Theorem 13. There is a unique polynomial, denoted by Res, in ui,α’s with integer coefficients, where i =

0, . . . , n, and |α| ∈ {d0, . . . , dn}, that has the following properties:

• F0 = · · · = Fn = 0 has a nonzero solution over C if and only if Res (F0, . . . , Fn) = 0.
• Res (xd0

0 , . . . , xdn
n ) = 1.

• Res is irreducible over C.

Definition 11. Res (F0, . . . , Fn) ∈ C is called the resultant of F0, . . . , Fn.

Definition 12. For a symmetric tensor T, the resultant ψT(λ) of the following polynomials is called the
characteristic polynomial of T [70].

• For T ∈ S2d−1(V),
〈T, v⊗(d−1)〉 − λxd−2v = 0 and x2 − 〈v, v〉 = 0.

• For T ∈ S2d(V),
〈T, v⊗(2d−1)〉 − λ〈v, v〉d−1v = 0.

Note the resultant ψT(λ) is a (univariate) polynomial in λ. We call the resultant of ψT(λ) and its
derivative ψ′T(λ), denoted by Deig(T), the eigen discriminant.

Proposition 7. Let V be a real vector space, and ρ = ‖T‖σ [48]. Define

Hρ := {T ∈ Sd(V) | ρ is not a simple eigenvalue of T}.

Then, Hρ is a real hypersurface in Sd(V).

Let W = V ⊗R C be the complexification of V. Then we have:

Theorem 14. Deig(T) = 0 is a defining equation of the complex hypersurface [48]

Hdisc := {T ∈ Sd(W) | T has a non-simple normalized eigenvalue}.

In fact Hρ consists of some components of the real points of Hdisc. In the sense of [50], Theorem 14
shows the ED discriminant of the Veronese variety is a hypersurface.

Corollary 4. For T ∈ Sd(V), if Deig(T) �= 0, then T has a unique best rank-one approximation.

11
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Corollary 5. Let T ∈ Sd(V) be a nonnegative tensor. If Deig(T) �= 0, then T has a unique best rank-one
approximation, which is nonnegative and symmetric.

Example 1. Let T = [Tijk] ∈ S3(R2). Then ψT(λ) is the resultant of the polynomials:

Cases 2.

F0 = T111x2 + 2T112xy + T122y2 − λxz, F1 = T112x2 + 2T122xy + T222y2 − λyz, F2 = x2 + y2 − z2.

In fact, ψT(λ) =
1

512 det(G), where G is defined by:

G =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

T111 T122 0 2T112 −λ 0
T112 T222 0 2T122 0 −λ

1 1 −1 0 0 0
12T122 4T111λ− 8T122λ 4T111λ + 4T122λ 8T222λ− 16T112λ 16T2

112 − 4λ2 − 16T111T122 8T112T122 − 8T111T222

4T222λ− 8T112λ 12T112λ 4T112λ + 4T222λ 8T111λ− 16T122λ 8T112T122 − 8T111T222 16T2
122 − 4λ2 − 16T112T222

8T2
112 − 8T111T122 − 2λ2 8T2

122 − 8T222T112 − 2λ2 −6λ2 8T112T122 − 8T111T222 8T122λ + 8T111λ 8T112λ + 8T222λ

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

Thus, ψT(λ) = p2λ6 + p4λ4 + p6λ2 + p8, where each pm is a homogeneous polynomial of degree m in
Tijk. See also [65,71].

For a general T ∈ S3(R2), ψT(λ) = α(λ2 − γ1)(λ
2 − γ2)(λ

2 − γ3) for some α ∈ C, where γ1, γ2, γ3

are distinct. So Deig(T) �= 0.
For T ∈ Hdisc, ψT(λ) has multiple roots. For example, let A ∈ S3(R2) be defined by A111 = A222 = 1

and set other Aijk = 0. Then Deig(A) = 0, which implies that A has a nonsimple eigenpair. Here ψA(λ) =

(λ+ 1)2(λ− 1)2(2λ2− 1). So A has two eigenvectors (1, 0) and (0, 1) with eigenvalue 1, and two eigenvectors
(−1, 0) and (0,−1) with eigenvalue −1. This computation coincides with the fact that A = a⊗3 + b⊗3 has two
best rank-one approximations, namely a⊗3 and b⊗3, where a and b are two orthonormal vectors in R2.

Similarly, we can define characteristic polynomials for non-symmetric tensors. Let W1, . . . , Wd be
complex vector spaces. For T ∈ W1 ⊗ · · · ⊗Wd, ui ∈ Wi, and αi ∈ C, we denote the resultant of the
following equations by ϕT(λ).{

αi〈T, u1 ⊗ · · · ⊗ ûi ⊗ · · · ⊗ ud〉 = λ(∏j �=i αj)ui,

〈ui, ui〉 = α2
i ,

(13)

where i = 1, . . . , d. Then, ϕT(λ) vanishes if and only if (13) has a nontrivial solution.

Definition 13. ϕT(λ) is called the singular characteristic polynomial of T.

The following is an analogue of Definition 10.

Definition 14. Let T ∈ W1 ⊗ · · · ⊗Wd. Two normalized singular pairs (λ, u1, . . . , ud) and (μ, v1, . . . , vd) of
T are called equivalent if (λ, u1, . . . , ud) = (μ, v1, . . . , vd), or (−1)d−2λ = μ and ui = −vi for i = 1, . . . , d.

It follows from [72] that the subset X ⊆ V1 ⊗ · · · ⊗ Vd consisting of tensors which do not have
unique best rank-one approximations is contained in some hypersurface. In fact we can strengthen the
result by showing that X is a hypersurface.

Theorem 15. The following subset is an algebraic hypersurface in V1 ⊗ · · · ⊗Vd [48],

X := {T ∈ V1 ⊗ · · · ⊗Vd : T has non-unique best rank-one approximations}.

Besides, we have the following property.

12
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Proposition 8. Let W1, . . . , Wd be complex vector spaces. Then for a general T ∈ W1 ⊗ · · · ⊗ Wd,
the equivalence classes of normalized singular pairs of T are distinct [48].

Definition 15. The resultant of ϕT and its derivative ϕ′T is called the singular discriminant and denoted
by Dsing(T).

Theorem 16. Dsing(T) = 0 is a defining equation of the hypersurface [48]

Xdisc := {T ∈ W1 ⊗ · · · ⊗Wd | T has a non-simple normalized singular value},

and X consists of some components of the real points of Xdisc.

Corollary 6. For a real tensor T, if Dsing(T) �= 0, then T has a unique best rank-one approximation.

Corollary 7. For a nonnegative tensor T, if Dsing(T) �= 0, then T has a unique best rank-one approximation,
which is nonnegative.

Theorem 16 shows that the ED discriminant Xdisc of Seg(PW1 × · · · × PWd) is a complex
hypersurface when d ≥ 3, and the set of real points of Xdisc is a real hypersurface. It is worth noting
that when d = 2, the set of real points of the ED discriminant of Seg(PW1 × PW2) has codimension
2 ([50], Example 7.6).

8. EM Algorithm

Expectation–Maximization (EM) algorithm, as a classical technique, has been used in nonnegative
matrix factorizations, and its performance and geometry has been carefully studied. See [73] and the
references therein. However, to the best of our knowledge, such an analysis for nonnegative tensors
has not been written down. In this section, we routinely apply the EM algorithm to nonnegative tensor
decompositions and give a description of the EM fixed points.

Given a real function:

f (p1, . . . , pn) =
n

∑
i=1

ui log pi

of p1, . . . , pn with parameters u1, . . . , un, where p1, . . . , pn, u1, . . . , un satisfy

0 ≤ ui, pi ≤ 1 for i = 1, . . . , n, and
n

∑
i=1

ui =
n

∑
i=1

pi = 1.

Then, the maximum of f is obtained when pi = ui for i = 1, . . . , n. In fact (p1 = u1, . . . , pn = un)

is a critical point of the Lagrangian:

n

∑
i=1

ui log pi − λ(1−
n

∑
i=1

pi).

Hence, for a given nonnegative rank-r tensor u = (ui1,...,id) with:

u+ = ∑
i1,...,id

ui1,...,id = 1,

a nonnegative rank decomposition:

u =
r

∑
l=1

λlv
(l)
1 ⊗ · · · ⊗ v(l)d ,

13
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in coordinates:

ui1,...,id =
r

∑
l=1

λlv
(l)
1,i1
· · · v(l)d,id

where v(l)j,ij
is the ijth entry of the vector v(l)j , gives a maximum of the likelihood function:

L(λ, v(l)i ) = ∑
i1,...,id

ui1,...,id log(
r

∑
l=1

λlv
(l)
1,i1
· · · v(l)d,id

). (14)

This is a hidden model in statistics, and a classical way to optimize (14) is that we first use the EM
algorithm to maximize the following likelihood function

L(λ, v(l)i ) = ∑
i1,...,id

r

∑
l=1

w(l)
i1,...,id

log(λlv
(l)
1,i1
· · · v(l)d,id

), (15)

where:

ui1,...,id =
r

∑
l=1

w(l)
i1,...,id

.

By ([74], Theorem 1.15), the value of the likelihood function (15) weakly increases during every
iteration of the EM algorithm, and the local maxima of L are among the EM fixed points (final outputs)
of L [73,74].

Remark 1. EM algorithm and its analogues have been widely used in nonnegative matrix factorizations,
by maximizing different likelihood functions, i.e., finding critical points of different divergences, for example
Kullback-Leibler divergence, β-divergence and so on. Similarly we can obtain other algorithms for nonnegative
tensor decompositions as well by using different divergences. Usually the fixed points of these algorithms contain
critical points, and the local maxima are among the critical points.

A fixed point of EM algorithm need satisfy the following equations:

λk =
1

u+
∑

i1,...,id

λkv(k)1,i1
· · · v(k)d,id

r
∑

l=1
λlv

(l)
1,i1
· · · v(l)d,id

ui1,...,id (16)

v(k)j,ij
=

1
λku+

∑
i1,...,ij−1,ij+1,...,id

λkv(k)1,i1
· · · v(k)d,id

r
∑

l=1
λlv

(l)
1,i1
· · · v(l)d,id

ui1,...,id (17)

Since ∑
ij

v(l)j,ij
= 1, λk > 0. By canceling λk in (16) and (17), we have:

1 =
1

u+
∑

i1,...,id

v(k)1,i1
· · · v(k)d,id

r
∑

l=1
λlv

(l)
1,i1
· · · v(l)d,id

ui1,...,id , (18)

v(k)j,ij
=

1
u+

∑
i1,...,ij−1,ij+1,...,id

v(k)1,i1
· · · v(k)d,id

r
∑

l=1
λlv

(l)
1,i1
· · · v(l)d,id

ui1,...,id , (19)

14
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and (18) can be obtained from (19). By (19) we have:

v(k)j,ij
( ∑

i1,...,ij−1,ij+1,...,id

(u+ −
ui1,...,id
pi1,...,id

)v(k)1,i1
· · · v̂(k)j,ij

· · · v(k)d,id
) = 0, (20)

where pi1,...,id is the output in Algorithm 1. Let:

Ri1,...,id = u+ −
ui1,...,id
pi1,...,id

,

then (20) is equivalent to:

v(k)j ◦ 〈R, v(k)1 ⊗ · · · ⊗ v̂(k)j ⊗ · · · ⊗ v(k)d 〉 = 0, (21)

where ◦ denotes the Hadamard product. Since we require ∑
i1,...,id

pi1,...,id = 1, the likelihood function

L = ∑
i1,...,id

ui1,...,id log pi1,...,id − u+ log( ∑
i1,...,id

pi1,...,id),

then the gradient of L is R. Hence:

〈R, v(k)1 ⊗ · · · ⊗ v̂(k)j ⊗ · · · ⊗ v(k)d 〉 = 0

implies that R is orthogonal to the tangent space of σ̂r(Seg(Pn1−1 × · · · × Pnd−1)), i.e.,

∑
k

v(k)1 ⊗ · · · ⊗ v(k)d

is a critical point. Therefore, we arrive at the following description, which is a trivial generalization
of ([73], Theorem 3).

Algorithm 1 EM Algorithm

Step 0: Given ε > 0, select random v(l)i ∈ Δni−1, λ ∈ Δr−1;

E-Step: Define the expected hidden data tensor w = (w(k)
i1,...,id

) by

w(k)
i1,...,id

=
λkv(k)1,i1

· · · v(k)d,id

∑r
l=1 λlv

(l)
1,i1
· · · v(l)d,id

ui1,...,id ;

M-Step: Compute v(l)i , λ to maximize the likelihood function:

λ∗k =

∑
i1,...,id

w(k)
i1,...,id

u+
,

v(k)∗j,ij
=

∑
i1,...,ij−1,ij+1,...,id

w(k)
i1,...,id

λ∗k u+
;

Step 3: If |L(λ∗, v(l)∗i )− L(λ, v(l)i )| > ε then set (λ, v(l)i ) = (λ∗, v(l)∗i ) and go to the E-Step;

Step 4: Output pi1,...,id = ∑
k

λkv(k)1,i1
· · · v(k)d,id

.
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Proposition 9. The variety of EM fixed points is defined by:

v(k)j ◦ 〈R, v(k)1 ⊗ · · · ⊗ v̂(k)j ⊗ · · · ⊗ v(k)d 〉 = 0, j = 1, . . . , d.

The subset that are critical is defined by:

〈R, v(k)1 ⊗ · · · ⊗ v̂(k)j ⊗ · · · ⊗ v(k)d 〉 = 0, j = 1, . . . , d.

A semialgebraic characterization of the set of nonnegative matrices with nonnegative ranks no
greater than 3 was given in [73]. A semialgebraic characterization of the set of nonnegative tensors
with nonnegative ranks no greater than 2 was given in [75].

Question 3. Give a semialgebraic characterization of the set of nonnegative tensors with nonnegative ranks no
greater than 3.

9. Conclusions

In this short note, we give a very brief introduction to nonnegative tensors, mainly from the
geometric perspective. More precisely, we review the generic uniqueness of rank decompositions of
subgeneric nonnegative tensors and nonnegative typical ranks, and thus see the difference among the
nonnegative, real, and complex settings. We review the generic uniqueness of nonnegative low-rank
approximations. In particular, the rank-one approximation problem leads us to the spectral theory of
nonnegative tensors. Finally, we describe the semialgebraic geometry of EM algorithm. Most of the
results we present are obtained by studying the corresponding geometric properties of nonnegative
tensors, and we have seen there are many open problems and unknown properties in this direction,
which we hope would be understood better when more geometries are unveiled.
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Abstract: Let X ⊂ Pr be an integral and non-degenerate variety. We study when a finite set S ⊂ X
evinces the X-rank of the general point of the linear span of S. We give a criterion when X is the
order d Veronese embedding Xn,d of Pn and |S| ≤ (n+�d/2�

n ). For the tensor rank, we describe the
cases with |S| ≤ 3. For Xn,d, we raise some questions of the maximum rank for d � 0 (for a fixed
n) and for n � 0 (for a fixed d).

Keywords: X-rank; symmetric tensor rank; tensor rank; veronese variety; segre variety

1. Introduction

Let X ⊂ Pr be an integral and non-degenerate variety. For any q ∈ Pr, the X-rank rX(q) of q is
the minimal cardinality of a finite set S ⊂ X such that q ∈ 〈S〉, where 〈 〉 denotes the linear span.
The definition of X-ranks captures the notion of tensor rank (take as X the Segre embedding of a
multiprojective space) of rank decomposition of a homogeneous polynomial (take as X a Veronese
embedding of a projective space) of partially symmetric tensor rank (take a complete linear system
of a multiprojective space) and small variations of it may be adapted to cover other applications.
See [1] for many applications and [2] for many algebraic insights. For the pioneering works on
the applied side, see, for instance, [3–7]. The paper [7] proved that X-rank is not continuous and
showed why this has practical importance. The dimensions of the secant varieties (i.e., the closure
of the set of all q ∈ Pr with a prescribed rank) has a huge theoretical and practical importance.
The Alexander–Hirschowitz theorem computes in all cases the dimensions of the secant varieties
of the Veronese embeddings of a projective space ([8–14]). For the dimensions of secant varieties,
see [15–17] for tensors and [18–27] for partially symmetric tensors (i.e., Segre–Veronese embeddings
of multiprojective spaces). For the important problem of the uniqueness of the set evincing a rank
(in particular for the important case of tensors) after the classical [28], see [29–38]. See [39–47] for
other theoretical works.

Let S ⊂ X be a finite set and q ∈ Pr. We say that S evinces the X-rank of q if q ∈ 〈S〉 and
|S| = rX(q). We say that S evinces an X-rank if there is q ∈ Pr such that S evinces the X-rank
of q. Obviously, S may evince an X-rank only if it is linearly independent, but this condition is
not a sufficient one, except in very trivial cases, like when rX(q) ≤ 2 for all q ∈ Pr. Call rX,max

the maximum of all integers rX(q). An obvious necessary condition is that |S| ≤ rX,max and this
is in very special cases a sufficient condition (see Propositions 1 for the rational normal curve).
If S evinces the X-rank of q ∈ Pr, then q ∈ 〈S〉 and q /∈ 〈S′〉 for any S′ � S. For any finite set
S ⊂ Pr, set 〈S〉′ := 〈S〉 \ (∪S′�S〈S′〉). Note that 〈S〉′ = ∅ if and only if either S = ∅ or S is linearly
dependent (when |S| = 1, 〈S〉′ = S and S evinces itself). In some cases, it is possible to show that
some finite S ⊂ X evinces the X-rank of all points of 〈S〉′. We say that S evinces generically the
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X-ranks if there is a non-empty Zariski open subset U of 〈S〉 such that S evinces the X-ranks of all
q ∈ U. We say that S totally evinces the X-ranks if S evinces the X-ranks of all q ∈ 〈S〉′. We first need
an elementary and well-known bound to compare it with our results.

Let ρ(X) be the maximal integer such that each subset of X with cardinality ρ(X) is linearly
independent. See ([43] Lemma 2.6, Theorem 1.18) and ([42] Proposition 2.5) for some uses of the
integer ρ(X). Obviously, ρ(X) ≤ r + 1 and it is easy to check and well known that equality holds if
and only if X is a Veronese embedding of P1 (Remark 1). If |S| ≤ �(ρ(X) + 1)/2�, then S totally
evinces the X-ranks (as in [43] Theorem 1.18) while, for each integer t > �(ρ(X) + 1)/2� with
t ≤ r + 1, there is a linearly independent subset of X with cardinality t and not totally evincing
the X-ranks ( Lemma 3). Thus, to say something more, we need to make some assumptions on S
and these assumptions must be related to the geometry of X or the reasons for the interest of the
X-ranks. We do this in Section 3 for the Veronese embeddings and in Section 4 for the tensor rank.
For tensors, we only have results for |S| ≤ 3 (Propositions 3 and 4).

For all positive integers n, d let νd,n : Pn → Pr, r = (n+d
n )− 1, denote the Veronese embedding

of Pn, i.e., the embedding of Pn induced by the complete linear system |OPn(d)|. Set Xn,d :=
νd,n(Pn). At least over an algebraically closed base field of characteristic 0 (i.e., in the set-up of this
paper), for any q ∈ Pr, the integer rXn,d(q) is the minimal number of d-powers of linear forms in
n + 1 variables whose sum is the homogeneous polynomial associated to q.

We prove the following result, whose proof is elementary (see Section 3 for the proof). In its
statement, the assumption “h1(IA(�d/2�)) = 0” just means that the vector space of all degree
�d/2� homogeneous polynomials in n + 1 variables vanishing on A has dimension (n+�d/2�

n )− |A|,
i.e., A imposes |A| independent conditions to the homogeneous polynomials of degree �d/2� in
n + 1 variables.

Theorem 1. Fix integers n ≥ 2, d > k > 2 and a finite set A ⊂ Pn such that h1(IA(�d/2�)) = 0.
Set S := νd,n(A). Then, S totally evinces the ranks for Xn,d.

A general A ⊂ Pn satisfies the assumption of Theorem 1 if and only if |A| ≤ (n+�d/2�
n ).

For much smaller |A|, one can check the condition h1(IA(�d/2�)) = 0 if A satisfies some geometric
conditions (e.g., if A is in linearly general position, it is sufficient to assume |A| ≤ n�d/2�+ 1).

We conclude the paper with some questions related to the maximum of the X-ranks when X
is a Veronese embedding of Pn.

2. Preliminary Lemmas

Remark 1. Let X ⊂ Pr be an integral and non-degenerate variety. Since any r + 2 points of Pr are linearly
dependent, we have ρ(X) ≤ r + 1. If X is a rational normal curve, then ρ(X) = r + 1 because any r + 1
points of X spans Pr. Now, we check that, if ρ(X) = r + 1, then X is a rational normal curve. This is well
known, but usually stated in the set-up of Veronese embeddings or the X-ranks of curves. Set n := dim X
and d := deg(X). Assume ρ(X) = r + 1. Let H ⊂ Pr be a general hyperplane. If n > 1, then X ∩ H has
dimension n− 1 > 0 and in particular it has infinitely many points. Any r + 1 points of X ∩ H are linearly
dependent. Now, assume n = 1. Since X is non-degenerate, we have d ≥ n. By Bertini’s theorem, X ∩ H
contains d points of X. Since ρ(X) = r + 1, dim H = r − 1 and H ∩ X ⊂ H, we have d ≤ r. Hence,
d = r, i.e., X is a rational normal curve.

The following example shows, that in many cases, there are are sets evincing X-ranks, but not
totally evincing X-ranks or even generically evincing X-ranks.

Example 1. Let X ⊂ Pr, r ≥ 3, be a rational normal curve. Take q ∈ Pr with rX(q) = r, i.e., take
q ∈ τ(X) \ X, where τ(X) is the tangential variety of X ([48]). Take S ⊂ X evincing the X-rank of q.
Thus, |S| = r and S spans a hyperplane 〈S〉. Since dim τ(X) = 2 and τ(X) spans Pr, 〈S〉 ∩ τ(X) is a
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proper closed algebraic subset of 〈S〉. Thus, for a general p ∈ 〈S〉, we have rX(p) < |S| and hence S does
not generically evinces X-ranks.

Lemma 1. If S ⊂ X is a finite set evincing the rank of some q ∈ Pr, then each S′ ⊂ S, S′ �= ∅, evinces the
X-rank of some q′ ∈ Pr.

Proof. We may assume S′ �= S. Write S′′ := S \ S′. Since S evinces the rank of q, S is linearly
independent, but S ∪ {q} is not linearly independent. Since S′ �= ∅ and S′′ �= ∅, there are unique
q′ ∈ 〈S′〉 and q′′ ∈ 〈S′′〉 such that q ∈ 〈{q′, q′′}〉. Since S evinces the rank of q, S′ evinces the rank
of q′.

Lemma 2. Every non-empty subset of a set evincing generically (resp. totally) X-ranks evinces generically
(resp. totally) the X-ranks.

Proof. Assume that S evinces generically the X-ranks and call U a non-empty open subset of 〈S〉′
such that rX(q) = |S| for all q ∈ U; if S evinces totally the X-ranks, take U := 〈S〉′. Fix S′ � S,
S′ �= 0 and set S′′ := S \ S′. Let E be the set of all q ∈ 〈S〉′ such that 〈{q} ∪ S′′〉 ∩U �= ∅. If q ∈ E,
then rX(q) = |S′| because rX(q′) = |S| for each q′ ∈ 〈{q} ∪ S′′〉 ∩ U. Since S′ ∩ S′′ = ∅ and
S′ ∪ S′′ = S is linearly independent, E is a non-empty open subset of 〈S〉′ (a general element of 〈S〉
is contained in the linear span of a general element of 〈S′〉 and a general element of 〈S′〉). Now,
assume U = 〈S〉′. Every element of 〈S〉′ is in the linear span of an element of 〈S′〉′ and an element
of 〈S′′〉′.

Lemma 3. Take a finite set S ⊂ X, S �= ∅.

(a) If |S| ≤ �(ρ(X) + 1)/2�, then S totally evinces the X-ranks.
(b) For each integer t > �(ρ(X) + 1)/2�, there is A ⊂ X such that |A| = t and A does not totally evince

the X-ranks.

Proof. Take q ∈ 〈S〉′ and assume rX(q) < |S|. Take B ⊂ X evincing the X-rank of q. Since |B| < |S|,
we have B �= S. Since q ∈ 〈S〉 ∩ 〈B〉, but no proper subset of either B or S spans q, S ∪ B is linearly
dependent. Since |B| ≤ |S| − 1, we have |B ∪ S| ≤ ρ(X), contradicting the definition of ρ(X).

Now, we prove part (b). By Lemma 1, it is sufficient to do the case t = �(ρ(X) + 1)/2�+ 1.
By the definition of the integer ρ(X), there is a subset D ⊂ X with |D| = ρ(X) + 1 and D linearly
dependent. Write D = A � E with |A| = �(ρ(X) + 1)/2�+ 1 and |E| = ρ(X) + 1− |A|. Note that
|A| > |E|. Since |A| ≤ ρ(X) (remember that ρ(X) ≥ 2), both A and E are linearly independent.
Since A ∪ E is linearly dependent, there is q ∈ 〈A〉 ∩ 〈E〉. Since |D| = ρ(X) + 1, every proper
subset of D is linearly independent. Hence, 〈A′〉 ∩ 〈E〉 = ∅ for all A′ � A. Thus, q ∈ 〈A〉′.
Since |E| < |A|, A does not evince the X-rank of q.

Remark 2. Take X ⊂ Pr such that rX(q) ≤ 2 for all q ∈ Pr (e.g., by [49], we may take most space curves).
Any set S ⊂ X with |S| = 2 evinces its X-ranks if and only if X contains no line.

3. The Veronese Embeddings of Projective Spaces

Let νd,n : Pn → Pr, r := −1 + (n+d
n ), denote the Veronese embedding of Pn. Set Xn,d :=

νd,n(Pn).

Proposition 1. Let X ⊂ Pd, d ≥ 2, be the rational normal curve.

(a) A non-empty finite set S ⊂ X evinces some rank of Pd if and only if |S| ≤ d.
(b) A non-empty finite set A ⊂ X totally evinces the X-ranks if and only if |A| ≤ �(d + 2)/2�.
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Proof. By a theorem of Sylvester’s ([48]), every q ∈ Pd has X-rank at most d. Thus, the condition
|S| ≤ d is a necessary condition for evincing some rank. By Lemma 1 to prove part (a), it is
sufficient to prove it when |S| = d. Take any connected zero-dimensional scheme Z ⊂ X with
deg(Z) = 2 and S ∩ Z = ∅. Thus, deg(Z ∪ S) = d + 2. Since X ∼= P1, deg(OX(1)) = d and X is
projectively normal, we have h1(IS∪Z(1)) = 1 and h1(IW(1)) = 0 for each W ′ � S ∪ Z. This is
equivalent to say that the line 〈Z〉 meets 〈S〉 at a unique point, q and q �= Zred. By Sylvester’s
theorem, rX(q) = d ([48]). Since q ∈ 〈S〉 and |S| = d, S evinces the X-rank of q.

If A �= ∅ and |A| ≤ �(d + 2)/2�, then A totally evinces the X-ranks by part (a) of Lemma 3
and the fact that ρ(X) = d + 1. Now, assume d ≥ |A| > �(d + 2)/2�. Fix a set E ⊂ X \ A with
|E| = d + 2− |A|. Adapt the proof of part (b) of Lemma 3.

Proposition 2. Fix a set S ⊂ Xn,d, n ≥ 2, with |S| = d + 1. The following conditions are equivalent:

1. there is a line L ⊂ Pn such that |S ∩ L| > �(d + 2)/2�;
2. S evinces no Xn,d-rank;
3. there is q ∈ 〈S〉′ such that S does not evince the Xn,d-rank of q.

Proof. Obviously, (2) implies (3). If X′ ⊂ X is a subvariety and q ∈ 〈X′〉, we have rX′(q) ≥ rX(q).
Thus, Sylvester’s theorem ([48]) and Lemma 2 show that (1) implies (2).

Now, assume the existence of q ∈ 〈S〉′ such that S does not evince the X-rank of q, i.e.,
rX(q) ≤ d. Take A ⊂ Pn such that ν(A) = S and take B ⊂ Pn such that νd(B) evinces the X-rank of
q. Since q ∈ 〈S〉′, (Ref. [50] Lemma 1) gives h1(Pn, IA∪B(d)) > 0. Since |A ∪ B| ≤ 2d + 1, (Ref. [51]
Lemma 34) gives the existence of a line L ⊂ Pn such that |L ∩ (A ∪ B)| ≥ d + 2. Let H ⊂ Pn

be a general hyperplane containing L. Since H is general and A ∪ B is a finite set, we have
H ∩ (A∪ B) = L∩ (A∪ B). Since |L∩ (A∪ B)| ≥ d+ 2, we have |A∪ B \H ∩ (A∪ B)| ≤ d− 1 and
hence h1(Pn, IA∪B\H∩(A∪B)(d− 1)) = 0. By ([52] Lemma 5.2), we have A \ A∩H = B \ B∩H.

See [53,54] for some results on the geometry of sets S ⊂ Xn,d with controlled Hilbert function
and that may be useful to extend Proposition 2.

Proof of Theorem 1: Set k := �d/2�. Note that h1(IA(x)) = 0 for all x ≥ k and in particular
h1(IA(d− k)) = 0. Fix q ∈ 〈νd,n(A)〉′ and assume rXn,d(q) < |A|. Fix B ⊂ Pn such that νd,n(B)
evinces the Xn,d-rank of q. Since h1(IA(k)) = 0 and |A| > |B|, we have h0(IB(k)) > h0(IA(k)).
Thus, there is M ∈ |OPn(k)| containing B, but with A � M, i.e., A \ A∩M �= ∅, while B \ B∩M =

∅. Since h1(IA(d− k)) = 0, we have h1(IA\A∩M(d− k)) = 0. Since h1(IA(d)) = 0, νd,n(A) is
linearly independent. Since νd,n(B) evinces a rank, it is linearly independent. Grassmann’s formula
gives dim〈νd,k(A)〉 ∩ 〈νd,b(B)〉 = |A ∩ B|+ h1(IA∪B(d))− 1. We have A ∪ B = ((A ∪ B) ∩ M) ∪
(A \ A∩M). Since A \ A∩ B is a finite set, we have h2(IA\A∩B(d− k)) = h2(OPn(d− k)) = 0. Since
h1(IA\A∩M(d− k)) = 0, the residual exact sequence (also known as the Castelnuovo’s sequence)

0 → IA\A∩B(d− k)→ IA∪B(d)→ IM∩(A∪B),M(d)→ 0

gives h1(IA∪B(d)) = h1(M, IM∩(A∪B)(d)). Since M is projectively normal, h1(M, IM∩(A∪B)(d)) =
h1(IA∪B(d)). Thus, the Grassmann’s formula gives dim〈νd,n(A ∩M)〉 ∩ 〈νd,n(B ∩M)〉 = |A ∩ B ∩
M|+ h1(IA∪B(d))− 1. Since B ⊂ M, we get 〈νd,n(A∩M)〉 ∩ 〈νd,n(B∩M)〉 = 〈νd,k(A)〉 ∩ 〈νd,b(B)〉.
Since A ∩M � A, we get q /∈ 〈νd,n(A)〉′, a contradiction.

4. Tensors, i.e., the Segre Varieties

Fix an integer k ≥ 2 and positive integers n1, . . . , nk. Set Y := ∏k
i=1 P

ni (the Segre variety) and
N := −1+ ∏k

i=1(ni + 1). Let ν : Y → PN denote the Segre embedding. Let πi : Y → Pni denote the
projection on the i-th factor. For any i ∈ {1, . . . , k}, set Y[i] := ∏h �=i P

nh and call ηi : Y → Y[i] the
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projection which forgets the i-th component. Let ν[i] : Y[i]→ PNi , Ni := −1+ ∏h �=i(nh + 1) denote
the Segre embedding of Y[i]. A key difficulty is that ρ(ν(Y)) = 2 because ν(Y) contains lines.

Lemma 4. Let S ⊂ Y be any finite set such that there is i ∈ {1, . . . k} with ηi|S not injective. Then, ν(S)
evinces no rank.

Proof. By Lemma 1, we reduce to the case |S| = 2, say S = {a, b} with a = (a1, . . . , ak),
b = (b1, . . . , bk) with ai = bi if and only if i > 1. Since all lines of Y are contained in one of
the factors of Y and all lines of ν(Y) are images of lines of Y, we get S ⊂ ν(Y). Thus, each element
of 〈ν(S)〉 is contained in ν(Y) and hence it has rank 1. Since |S| > 1, ν(S) evinces no rank.

Lemma 5. Let S ⊂ Y such that there are S′ ⊆ S and i ∈ {1, . . . , k} with |S′| = 3, νi(ηi(S′)) linearly
dependent and πi(S′) ⊂ Pni linearly dependent. Then, ν(S) evinces no rank.

Proof. Let Q ⊂ P3 be a smooth quadric surface. Q is projectively equivalent to the Segre
embedding of P1 × P1 and each point of P3 has at most Q-rank 2 by [47] (Proposition 5.1).
By Lemma 1, we may assume S′ = S. By Lemma 4, we may assume that ηi|S is injective. Thus,
|ηi|S| = 3. Since νi(ηi(S)) is not linearly independent and it has cardinality 3, it is contained in a
line of νi(Y[i]). Thus, ηi(S) is contained in a line of one of the factors of Y[i]. By assumption, πi(S)
is contained in a line of Pni . Thus, S is contained in a subscheme of Y isomorphic to P1 × P1. Since
each point of P3 has Q-rank ≤ 2 and |S| = 3, ν(S) evinces no rank.

Remark 3. Fix a finite set A ⊂ Y such that S := ν(A) is linearly independent. S evinces no tensor rank if
there is a multiprojective subspace Y′ ⊂ Y such that A ⊂ Y′ and |S| is larger than the maximum tensor
rank of ν(Y′).

Note that Lemmas 4 and 5 may be restated as a way to check for very low |S| if there is some
Y′ as in Lemma 3 exists.

Proposition 3. Take S ⊂ ν(Y) with |S| = 2. Let Y′ be the minimal multiprojective subspace of Y
containing S. The following conditions are equivalent:

1. S evinces no rank;
2. S does not generically evince ranks;
3. S does not totally evince ranks;
4. Y′ ∼= P1.

Proof. Since any two distinct points of PN are linearly independent (i.e., 〈S〉 is a line) and ν(Y)
is the set of all points with ν(Y)-rank 1, S evinces no rank if and only if 〈S〉 ⊂ ν(Y). Use the fact
that the lines of ν(Y) are contained in one of the factors of ν(Y). Since ν(Y) is cut out by quadrics,
if 〈S〉 � ν(Y), then |〈S〉 ∩ ν(Y)| ≤ 2. Since S ⊂ 〈S〉 ∩ ν(Y), we see that all points of 〈S〉 \ S have
rank 2

Proposition 4. Take S ⊂ ν(Y) with |S| = 3 and ν(S) linearly independent. Write S = ν(A) with
A ⊂ Y′. Let Y′ be the minimal multiprojective subspace of Y containing A. Write Y′ = Pm1 × · · ·Pms

with s ≥ 1 and m1 ≥ · · · ≥ ms > 0. We have m1 ≤ 2.
If ηi|A is injective for all i and either m2 = 2 or s ≥ 4 or m1 = 2 and s = 3, then S totally evinces its

ranks. In all other cases for a general E ∈ Y′ with |E| = 3, ν(E) does not generically evince its ranks.

Proof. If ηi|A is not injective for some i, then S evinces no rank by Lemma 4. Thus, we may assume
that each ηi|A is injective for all i. Each factor of Y′ is the linear span of πi(A) in Pni . Hence, m1 ≤ 2.
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Omitting all factors which are points, we get the form of Y′ we use. If Y′ = P1 (resp. P2, resp.
P1 × P1), then each point of 〈S〉 has rank 1 (resp. 1, resp. ≤ 2). Thus, in these cases, S evinces no
rank. If either Y′ = P2 × P1 or Y′ = (P1)3, then σ2(P2 × P1) = P5 and σ2((P1)3) = P7 ([23,26]).
Thus, the last assertion of the proposition is completed.

(a) Assume s ≥ 2 and m2 = 2. Taking a projection onto the first two factors, we
reduce to the case s = 2 (this reduction step is used only to simplify the notation). Take a
H ∈ |OY′(1, 0)| containing B (this is possible because h0(OP2(1)) = 3 > |B|). Since Y′ is the
minimal multiprojective subspace of Y containing A, we have A \ A∩H �= ∅. Since B \ B∩H = ∅,
(Ref. [52] Lemma 5.1) gives h1(IA\A∩H(0, 1)) > 0. Thus, either there is A′ ⊂ A with |A′| = 2
and η1|A′ not injective (we excluded this possibility) or |A \ A ∩ H| = 3 (i.e., A ∩ H = ∅) and
η1(A) ⊂ P2 is contained in a line R. Set M := P2 × R. We get A ⊂ M and hence A is a contained
in a proper multiprojective subspace, contradicting the definition of Y′.

(b) Assume s ≥ 3 and m1 = 2. By part (a), we may assume m2 = 1. Taking a projection,
we reduce to the case s = 3, i.e., Y′ = P2 × P1 × P1. Take H as in step (a). As in step (a), we get
A ∩ H = ∅ and η1(A) contained in a line R of the Segre embedding of P1 × P1, contradicting the
definition of Y′.

(c) Assume s ≥ 4. By step (b), we may assume m1 = 1. Taking a projection onto the first
four factors of Y′, we reduce to the case Y′ = (P1)4. Fix any H ∈ |OY′(1, 1, 0, 0)| containing B.
Assume for the moment A � H. By ([52] Lemma 5.1), we have h1(IA\A∩H(0, 0, 1, 1)) > 0, i.e.,
either there are a = (a1, a2, a3, a4) ∈ A, b = (b1, b2, b3, b4) ∈ A with a �= b and (a3, a4) = (b3, b4)

of A ∩ H = ∅ and the projection of A onto the last 2 factors of Y′ is contained in a line. The last
possibility is excluded by the minimality of Y′. Thus, a, b ∈ A exists. Set A := {a, b, c} and write
c = (c1, c2, c3, c4). Permuting the factors of Y′, we see that, for each E ⊂ {1, 2, 3, 4}, there is AE ⊂ A
with |AE| = 2 and πE(AE) is a singleton, where πE : Y′ → P1 × P1 denote the projection onto the
factors of Y′ corresponding to E. Since the cardinality of the set S of all subset of {1, 2, 3, 4} with
cardinality 2 is larger than the cardinality of the set of all subsets of A with cardinality 3, there are
E, F ∈ S such that E �= F and AE = AF. If E ∩ F �= ∅, say E ∩ F = {i}, then ηi|A is not injective,
contradicting our assumption. If E ∩ F = ∅, we have E ∪ F = {1, 2, 3, 4}. Since AE = AF, we get
|AE| = 1, a contradiction.

Remark 4. Take a finite S ⊂ ν(Y) and fix q ∈ 〈ν(S)〉′. Let A ⊂ Y be the subset with ν(A) = S. It is
easier to prove that S evinces the rank of q if we know that the minimal multiprojective subspace of Y
containing A is the minimal multiprojective subspace Y′′ of Y with q ∈ 〈ν(Y′′)〉. Note that this is always
true if Y′′ = Y, i.e., if the tensor q is concise.

5. Questions on the Case of Veronese Varieties

Let rmax(n, d) denote the maximum of all Xn,d-ranks (in [55,56] it is denoted with rmax(n +

1, d)). The integer rmax(n, d) depends on two variables, n and d. In this section, we ask some
question on the asymptotic behavior of rmax(n, d) when we fix one variable, while the other one
goes to +∞.

Let rgen(n, d) denote the Xn,d-rank of a general q ∈ Pr. These integers do not depend on
the choice of the algebraically closed base field K with characteristic 0. The diagonalization
of quadratic forms gives rmax(n, 2) = rgen(n, 2) = n + 1. The integers rgen(n, d), d > 2, are
known by an important theorem of Alexander and Hirschowitz ([8–13]); with four exceptional
cases, we have rgen(n, d) = �(n+d

n )/(n + 1)�. An important theorem of Blekherman and
Teitler gives rmax(n, d) ≤ 2rgen(n, d) (and even rmax(n, d) ≤ 2rgen(n, d)− 1 with a few obvious
exceptions) ([57,58]). In particular, for a fixed n, we have

1
(n + 1)!

≤ lim inf
d→+∞

rmax(n, d)/dn ≤ lim sup
d→+∞

rmax(n, d)/dn ≤ 2
(n + 1)!

.
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It is reasonable to ask if lim infd→+∞ rmax(n, d)/dn exists and its value. Of course, it is tempting
also to ask a more precise information about rmax(n, d) for d � 0. In the case n = 2, De Paris
proved in [55,56] that rmax(2, d) ≥ �(d2 + 2d + 5)/4� ([56] Theorem 3), which equality holds if d
is even ([56] (Proposition 2.4)) and suggested that equality holds for all d. Since rmax(2, d + 1) ≥
rmax(2, d) even for odd d, the integer rmax(2, d) grows like d2/4. Thus, there is an interesting interval
between the general upper bound of [57] (which, in this case, has order d2/3) and rmax(2, d). There
are very interesting upper bounds for the dimensions of the set of all points with rank bigger than
the generic one ([59]).

What are

lim sup
n→+∞

(n + 1)!rmax(n, d)
dn and lim inf

n→+∞

(n + 1)!rmax(n, d)
dn ?

For all d ≥ 3, study rmax(n, d)− rmax(n, d− 1) and compare for d � 0 rmax(n, d)− rmax(n, d− 1)
with rmax(n − 1, d) and rgen(n − 1, d). Of course, this is almost exactly known when n = 2 by
Sylvester’s theorem ([48]) and De Paris ([55,56]), but rmax(2, d)− rmax(2, d− 1) for d � 0 is both
∼rgen(1, d) and ∼rmax(1, d)/2 and so we do not have any suggestion for the case n > 2.
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Abstract: Comon’s conjecture on the equality of the rank and the symmetric rank of a symmetric
tensor, and Strassen’s conjecture on the additivity of the rank of tensors are two of the most challenging
and guiding problems in the area of tensor decomposition. We survey the main known results on
these conjectures, and, under suitable bounds on the rank, we prove them, building on classical
techniques used in the case of symmetric tensors, for mixed tensors. Finally, we improve the bound
for Comon’s conjecture given by flattenings by producing new equations for secant varieties of
Veronese and Segre varieties.

Keywords: Strassen’s conjecture; Comon’s conjecture; tensor decomposition; Waring decomposition

MSC: Primary 15A69, 15A72, 11P05; Secondary 14N05, 15A69

1. Introduction

Let X Ă PN be an irreducible and reduced non-degenerate variety. The rank rankXppq with respect
to X of a point p P PN is the minimal integer h such that p lies in the linear span of h distinct points of
X. In particular, if Y Ď X we have that rankXppq ď rankYppq.

Since the h-secant variety SechpXq of X is the subvariety of PN obtained as the closure of the
union of all ph ´ 1q-planes spanned by h general points of X, for a general point p P SechpXq we have
rankXppq “ h.

When the ambient projective space is a space parametrizing tensors we enter the area of tensor
decomposition. A tensor rank decomposition expresses a tensor as a linear combination of simpler
tensors. More precisely, given a tensor T, lying in a given tensor space over a field k, a tensor rank-1
decomposition of T is an expression of the form

T “ λ1U1 ` ... ` λhUh (1)

where the Ui’s are linearly independent rank one tensors, and λi P k˚. The rank of T is the minimal
positive integer h such that T admits such a decomposition.

Tensor decomposition problems come out naturally in many areas of mathematics and applied
sciences. For instance, in signal processing, numerical linear algebra, computer vision, numerical
analysis, neuroscience, graph analysis, control theory and electrical networks [1–7]. In pure
mathematics tensor decomposition issues arise while studying the additive decompositions of a
general tensor [8–14].

Comon’s conjecture [3], which states the equality of the rank and symmetric rank of a symmetric
tensor, and Strassen’s conjecture on the additivity of the rank of tensors [15] are two of the most
important and guiding problems in the area of tensor decomposition.
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More precisely, Comon’s conjecture predicts that the rank of a homogeneous polynomial
F P krx0, . . . , xnsd with respect to the Veronese variety Vn

d is equal to its rank with respect to the
Segre variety Sn – pPnqd into which Vn

d is diagonally embedded, that is rankVn
d

pFq “ rankSn pFq.
Strassen’s conjecture was originally stated for triple tensors and then generalized to several

different contexts. For instance, for homogeneous polynomials it says that if F P krx0, . . . , xnsd and
G P kry0, . . . , ymsd are homogeneous polynomials in distinct sets of variables then rankVn`m`1

d
pF ` Gq “

rankVn
d

pFq ` rankVm
d

pGq.
In Sections 3 and 4, while surveying the state of the art on Comon’s and Strassen’s conjectures,

we push a bit forward some standard techniques, based on catalecticant matrices and more generally
on flattenings, to extend some results on these conjectures, known in the setting of Veronese and Segre
varieties, for Segre-Veronese and Segre-Grassmann varieties that is to the context of mixed tensors.

In Section 5 we introduce a method to improve a classical result on Comon’s conjecture.
By standard arguments involving catalecticant matrices it is not hard to prove that Comon’s conjecture

holds for the general polynomial in krx0, . . . , xnsd of symmetric rank h as soon as h ă `n`t d
2 u

n
˘
, see

Proposition 1. We manage to improve this bound looking for equations for the ph ´ 1q-secant variety
Sech´1pVn

d q, not coming from catalecticant matrices, that are restrictions to the space of symmetric
tensors of equations of the ph ´ 1q-secant variety Sech´1pSnq. We will do so by embedding the space
of degree d polynomials into the space of degree d ` 1 polynomials by mapping F to x0F and then
considering suitable catalecticant matrices of x0F rather than those of F itself.

Implementing this method in Macaulay2 we are able to prove for instance that Comon’s conjecture
holds for the general cubic polynomial in n ` 1 variables of rank h “ n ` 1 as long as n ď 30. Please
note that for cubics the usual flattenings work for h ď n.

2. Notation

Let n “ pn1, . . . , npq and d “ pd1, . . . , dpq be two p-uples of positive integers. Set

d “ d1 ` ¨ ¨ ¨ ` dp, n “ n1 ` ¨ ¨ ¨ ` np, and Npn, dq “
pź

i“1

ˆ
ni ` di

ni

˙

Let V1, . . . , Vp be vector spaces of dimensions n1 ` 1 ď n2 ` 1 ď ¨ ¨ ¨ ď np ` 1, and consider
the product

Pn “ PpV1̊ q ˆ ¨ ¨ ¨ ˆ PpVp̊ q.

The line bundle
OPn pd1, . . . , dpq “ OPpV˚

1 qpd1q b ¨ ¨ ¨ bOPpV˚
1 qpdpq

induces an embedding

σνn
d : PpV1̊ q ˆ ¨ ¨ ¨ ˆ PpVp̊ q ÝÑ PpSymd1 V1̊ b ¨ ¨ ¨ b Symdp Vp̊ q “ PNpn,dq´1,

prv1s, . . . , rvpsq ÞÝÑ rvd1
1 b ¨ ¨ ¨ b v

dp
p s

where vi P Vi. We call the image
SVn

d “ σνn
d pPnq Ă PNpn,dq´1

a Segre-Veronese variety. It is a smooth variety of dimension n and degree pn1`¨¨¨`npq!
n1!...np ! dn1

1 . . . d
np
p

in PNpn,dq´1.
When p “ 1, SVn

d is a Veronese variety. In this case, we write Vn
d for SVn

d , and νn
d for the Veronese

embedding. When d1 “ ¨ ¨ ¨ “ dp “ 1, SVn
1,...,1 is a Segre variety. In this case, we write Sn for SVn

1,...,1,
and σn for the Segre embedding. Please note that

σνn
d “ σn1 ˝

´
νn1

d1
ˆ ¨ ¨ ¨ ˆ ν

np
dp

¯
,
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where n1 “ pNpn1, d1q ´ 1, . . . , Npnp, dpq ´ 1q.
Similarly, given a p-uple of k-vector spaces pVn1

1 , ..., V
np
p q and p-uple of positive integers d “

pd1, ..., dpq we may consider the Segre-Plücker embedding

σπn
d : Grpd1, n1q ˆ ¨ ¨ ¨ ˆ Grpdp, npq ÝÑ PpŹd1 Vn1

1 b ¨ ¨ ¨ b Źdp V
np
p q “ PNpn,dq´1,

prH1s, . . . , rHpsq ÞÝÑ rH1 b ¨ ¨ ¨ b Hps

where Npn, dq “ śp
i“1

`ni
di

˘
. We call the image

SGn
d “ σπn

d pGrpd1, n1q ˆ ¨ ¨ ¨ ˆ Grpdp, npqq Ă PNpn,dq

a Segre-Grassmann variety.

2.1. Flattenings

Let V1, ..., Vp be k-vector spaces of finite dimension, and consider the tensor product V1 b ... b
Vp “ pVa1 b ... b Vas q b pVb1 b ... b Vbp´s q “ VA b VB with A Y B “ t1, ..., pu, B “ Ac. Then we may
interpret a tensor

T P V1 b ... b Vp “ VA b VB

as a linear map rT : VÅ Ñ VAc . Clearly, if the rank of T is at most r then the rank of rT is at most r as well.
Indeed, a decomposition of T as a linear combination of r rank one tensors yields a linear subspace of
VAc , generated by the corresponding rank one tensors, containing rTpVÅq Ď VAc . The matrix associated
with the linear map rT is called an pA, Bq-flattening of T.

In the case of mixed tensors we can consider the embedding

Symd1 V1 b ... b Symdp Vp ãÑ VA b VB

where VA “ Syma1 V1 b ... b Symap Vp, VB “ Symb1 V1 b ... b Symbp Vp, with di “ ai ` bi for any
i “ 1, ..., p. In particular, if n “ 1 we may interpret a tensor F P Symd1 V1 as a degree d1 homogeneous
polynomial on PpV1̊ q. In this case, the matrix associated with the linear map rF : VÅ Ñ VB is nothing
but the a1-th catalecticant matrix of F, that is the matrix whose rows are the coefficient of the partial
derivatives of order a1 of F.

Similarly, by considering the inclusion

d1ľ
V1 b ... b

dpľ
Vp ãÑ VA b VB

where VA “ Źa1 V1 b ... b Źap Vp, VB “ Źb1 V1 b ... b Źbp Vp, with di “ ai ` bi for any i “ 1, ..., p, we
get the so called skew-flattenings. We refer to [16] for details on the subject.

Remark 1. The partial derivatives of an homogeneous polynomials are particular flattenings. The partial
derivatives of a polynomial F P krx0, ..., xnsd are

`n`s
n

˘
homogeneous polynomials of degree d ´ s spanning a

linear space HBs F Ď Ppkrx0, ..., xnsd´sq.
If F P krx0, ..., xnsd admits a decomposition as in (1) then F P SechpVn

d q, and conversely a general
F P SechpVn

d q can be written as in (1). If F “ λ1Ld
1 ` ... ` λhLd

h is a decomposition then the partial derivatives
of order s of F can be decomposed as linear combinations of Ld´s

1 , ..., Ld´s
h as well. Therefore, the linear spaceA

Ld´s
1 , . . . , Ld´s

h

E
contains HBs F.
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2.2. Rank and Border Rank

Let X Ă PN be an irreducible and reduced non-degenerate variety. We define the rank rankXppq
with respect to X of a point p P PN as the minimal integer h such that there exist h points in linear
general position x1, . . . , xh P X with p P xx1, . . . , xhy. Clearly, if Y Ď X we have that

rankXppq ď rankYppq (2)

The border rank rankXppq of p P PN with respect to X is the smallest integer r ą 0 such
that p is in the Zariski closure of the set of points q P PN such that rankXpqq “ r. In particular
rankXppq ď rankXppq.

Recall that given an irreducible and reduced non-degenerate variety X Ă PN , and a positive
integer h ď N the h-secant variety SechpXq of X is the subvariety of PN obtained as the Zariski closure
of the union of all ph ´ 1q-planes spanned by h general points of X.

In other words rankXppq is computed by the smallest secant variety SechpXq containing p P PN .
Now, let Y, Z be subvarieties of an irreducible projective variety X Ă PN , spanning two linear

subspaces PNY :“ xYy ,PNZ :“ xZy Ď PN . Fix two points pY P PNY , pZ P PNZ , and consider a point
p P xpY, pZy. Clearly

rankXppq ď rankYppYq ` rankZppZq (3)

3. Comon’s Conjecture

It is natural to ask under which assumptions (2) is indeed an equality. Consider the Segre-Veronese
embedding σνn

d : PpV1̊ q ˆ ¨ ¨ ¨ ˆ PpVp̊ q Ñ PpSymd1 V1̊ b ¨ ¨ ¨ b Symdp Vp̊ q “ PNpn,dq´1 with
V1 – ¨ ¨ ¨ – Vp – V k-vector spaces of dimension n ` 1. Its composition with the diagonal embedding
i : PpV˚q Ñ PpV1̊ q ˆ ¨ ¨ ¨ ˆ PpVp̊ q is the Veronese embedding of νn

d of degree d “ d1 ` ¨ ¨ ¨ ` dp.
Let Vn

d Ď SVn
d be the corresponding Veronese variety. We will denote by Πn,d the linear span of Vn

d

in PNpn,dq´1.
In the notations of Section 2.2 set X “ SVn

d and Y “ Vn
d . For any symmetric tensor T P Πn,d

we may consider its symmetric rank srkpTq :“ rankVn
d

pTq and its rank rankpTq :“ rankSVn
d
pTq as a

mixed tensor. Comon’s conjecture predicts that in this particular setting the inequality (2) is indeed an
equality [3].

Conjecture 1 (Comon’s). Let T be a symmetric tensor. Then rankpTq “ srkpTq.

Conjecture 1 has been generalized in several directions for complex border rank, real rank and
real border rank, see Section 5.7.2 in [16] for a full overview.

Please note that when d “ 2 Comon’s conjecture is true. Indeed, SechpSnq is cut out by the size
ph ` 1q ˆ ph ` 1q minors of a general square matrix and SechpVn

2 q is cut out by the size ph ` 1q ˆ ph ` 1q
minors of a general symmetric matrix, that is SechpVn

2 q “ SechpSnq X Πn,2.
Conjecture 1 has been proved in several special cases. For instance, when the symmetric rank

is at most two [3], when the rank is less than or equal to the order [17], for tensors belonging to
tangential varieties to Veronese varieties [18], for tensors in C2 b Cn b Cn [19], when the rank is
at most the flattening rank plus one [20], for the so called Coppersmith–Winograd tensors [21],
for symmetric tensors in C4 bC4 bC4 and also for symmetric tensors of symmetric rank at most seven
in Cn b Cn b Cn [22].

On the other hand, a counter-example to Comon’s conjecture has recently been found by
Y. Shitov [23]. The counter-example consists of a symmetric tensor T in C800 ˆ C800 ˆ C800 which can
be written as a sum of 903 rank one tensors but not as a sum of 903 symmetric rank one tensors. It is
important to stress that for this tensor T rank and border rank are quite different. Comon’s conjecture
for border ranks is still completely open (Problem 25 in [23]).
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Even though it has been recently proven false in full generality, we believe that Comon’s conjecture
is true for a general symmetric tensor, perhaps it is even true for those tensor for which rank T “ rank T.

In what follows we use simple arguments based on flattenings to give sufficient conditions for
Comon’s conjecture, recovering a known result, and its skew-symmetric analogue.

Lemma 1. The tensors T P SechpSVn
dq such that dimprTpVÅqq ď h ´ 1 for a given flattening rT form a proper

closed subset of SechpSVn
dq. Furthermore, the same result holds if we replace the Segre-Veronese variety SVn

d
with the Segre-Grassmann variety SGn

d .

Proof. Let T P SechpSVn
dq be a general point. Assume that dimprTpVÅqq ď h ´ 1. This condition forces

the pA, Bq-flattening matrix to have rank at most h ´ 1. On the other hand, by Proposition 4.1 in [24]
these minors do not vanish on SechpSVn

dq, and therefore define a proper closed subset of SechpSVn
dq.

In the Segre-Grassmann setting we argue in the same way by using skew-flattenings.

Proposition 1. [25] For any integer h ă `n`t d
2 u

n
˘

there exists an open subset Uh Ď SecpVd
nq such that for any

T P Uh the rank and the symmetric rank of T coincide, that is

rankpTq “ srkpTq

Proof. First of all, note that we always have rankpTq ď srkpTq. Furthermore, Section 2.1 yields that for
any pA, Bq-flattening rT : VÅ Ñ VB the inequality rankpTq ě dimprTpVÅqq holds. Since T is symmetric
and its catalecticant matrices are particular flattenings we get that rankpTq ě dimpHBsTq for any s ě 0.

Now, for a general T P SechpVn
d q we have srkpTq “ h, and if h ă `n`s

n
˘
, where s “ t d

2 u,
then Lemma 1 yields dimpHBsTq “ h. Therefore, under these conditions we have the following
chain of inequalities

dimpHBsTq ď rankpTq ď srkpTq “ dimpHBsTq
and hence rankpTq “ srkpTq.

Now, consider the Segre-Plücker embedding PpV1q ˆ . . . ˆ PpVpq Ñ PpŹd1 V1 b ¨ ¨ ¨ b Źdp Vpq “
PNpn,dq´1 with V1 – . . . – Vp – V k-vector spaces of dimension n ` 1. Its composition with the diagonal
embedding i : PpVq Ñ PpV1q ˆ ¨ ¨ ¨ ˆPpVpq is the Plücker embedding of Grpd, nq with d “ d1 ` . . . ` dp.
Let Grpd, nq Ď SGn

d be the corresponding Grassmannian and let us denote by Πn,d its linear span

in PNpn,dq´1.
For any skew-symmetric tensor T P Πn,d we may consider its skew rank skrkpTq that is its rank

with respect to the Grassmannian Grpd, nq Ď Πn,d, and its rank rankpTq as a mixed tensor. Playing the
same game as in Proposition 1 we have the following.

Proposition 2. For any integer h ă ` n
t d

2 u

˘
there exists an open subset Uh Ď SechpGrpd, nqq such that for any

T P Uh the rank and the skew rank of T coincide, that is

rankpTq “ skrkpTq

Proof. As before for any tensor T we have rankpTq ď skrkpTq. For any pA, Bq-skew-flattening rT :
VÅ Ñ VB we have skrkpTq ě dimprTpVÅqq. Furthermore, since rT is in particular a flattening also the
inequality rankpTq ě dimprTpVÅqq holds.

Now, for a general T P SechpGrpd, nqq we have skrkpTq “ h, and if h ă `n
s
˘
, where s “ t d

2 u,
Lemma 1 yields skrkpTq “ dimprTspVÅqq, where rTs is the skew-flattening corresponding to the partition
ps, d ´ sq of d. Therefore, we deduce that

dimprTspVÅqq ď rankpTq ď skrkpTq “ dimprTspVÅqq
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and hence rankpTq “ skrkpTq.

Remark 2. Propositions 1 and 2 suggest that whenever we are able to write determinantal equations for secant
varieties we are able to verify Comon’s conjecture. We conclude this section suggesting a possible way to
improve the range where the general Comon’s conjecture holds giving a conjectural way to produce determinantal
equations for some secant varieties.

Set n “ pn, . . . , nq, pd ` 1q-times, n1 “ pn, . . . , nq, d-times, and consider the corresponding Segre varieties
X :“ Sn, X1 :“ Sn1 and Veronese varieties Y “ Vn

d`1, Y1 :“ Vn
d . Fix the polynomial xd`1

0 P Y and let Π be
the linear space spanned by the polynomials of the form x0F, where F is a polynomial of degree d. This allow us
to see Y1 Ď Π. Please note that polynomials of the form x0Ld

1 lie in the tangent space of Y at Ld`1
1 , and therefore

rankYpx0Lbdq “ 2.
Hence for a polynomial F of degree d we have rankYpx0Fq ď 2 rankY1pFq. Our aim is to understand when

the equality holds.
We may mimic the same construction for the Segre varieties X and X1, and use determinantal equations

for the secant varieties of X1 to give determinantal equations of the secant varieties of X and henceforth conclude
Comon’s conjecture. In particular, as soon as d is odd and d ă n, this produces new determinantal equations for

SechpX1q and SechpY1q with 2h ă `n` d`1
2

n
˘
. Therefore, this would give new cases in which the general Comon’s

conjecture holds. Unfortunately, we are only able to successfully implement this procedure in very special cases,
see Section 5.

4. Strassen’s Conjecture

Another natural problem consists in giving hypotheses under which in Equation (3) equality
holds. Consider the triple Segre embedding σn : PpV1̊ q ˆ PpV2̊ q ˆ PpV3̊ q “ Pa ˆ Pb ˆ Pc Ñ PpV1̊ b
V2̊ b V1̊ q “ PNpn,dq´1, and let Sn be the corresponding Segre variety. Now, take complementary
subspaces Pa1 ,Pa2 Ă Pa, Pb1 ,Pb2 Ă Pb, Pc1 ,Pc2 Ă Pc, and let Spa1,b1,c1q,Spa2,b2,c2q be the Segre varieties
associated respectively to Pa1 ˆ Pb1 ˆ Pc1 and Pa2 ˆ Pb2 ˆ Pc2 .

In the notations of Section 2.2 set X “ Sn, Y “ Spa1,b1,c1q and Z “ Spa1,b1,c1q. Strassen’s conjecture
states that the additivity of the rank holds for triple tensors, or in onther words that in this setting the
inequality (3) is indeed an equality [15].

Conjecture 2 (Strassen’s). In the above notation let T1 P
A
Spa1,b1,c1qE

, T2 P
A
Spa2,b2,c2qE

be two tensors.
Then rankpT1 ‘ T2q “ rankpT1q ` rankpT2q.

Even though Conjecture 2 was originally stated in the context of triple tensors that is bilinear
forms, with particular attention to the complexity of matrix multiplication, several generalizations are
immediate. For instance, we could ask the same question for higher order tensors, symmetric tensors,
mixed tensors and skew-symmetric tensors. It is also natural to ask for the analogue of Conjecture 2
for border rank. This has been answered negatively [26].

Conjecture 2 and its analogues have been proven when either T1 or T2 has dimension at most two,
when rankpT1q can be determined by the so called substitution method [21], when dimpV1q “ 2 both
for the rank and the border rank [27], when T1, T2 are symmetric that is homogeneous polynomials in
disjoint sets of variables, either T1, T2 is a power, or both T1 and T2 have two variables, or either T1 or
T2 has small rank [28], and also for other classes of homogeneous polynomials [29,30].

As for Comon’s conjecture a counterexample to Strassen’s conjecture has recently been given by Y.
Shitov [31]. In this case Y. Shitov proved that over any infinite field there exist tensors T1, T2 such that
the inequality in Conjecture 2 is strict.

In what follows, we give sufficient conditions for Strassen’s conjecture, recovering a known result,
and for its mixed and skew-symmetric analogues.
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Proposition 3. [25] Let V1, V2 be k-vector spaces of dimensions n ` 1, m ` 1, and consider V “ V1 ‘ V2. Let
F P SymdpV1q Ă SymdpVq and G P SymdpV2q Ă SymdpVq be two homogeneous polynomials. If there exists
an integer s ą 0 such that

dimpHBs Fq “ srkpFq, dimpHBsGq “ srkpGq
then srkpF ` Gq “ srkpFq ` srkpGq.

Proof. Clearly, srkpF ` Gq ď srkpFq ` srkpGq holds in general. On the other hand, our hypothesis yields

srkpFq ` srkpGq “ dimpHBs Fq ` dimpHBs Fq “ dimpHBs F`Gq ď srkpF ` Gq

where the last inequality follows from Remark 1.

Remark 3. The argument used in the proof of Proposition 3 works for F P PNpn,dq general only if for the generic

rank we have t
`n`d

d
˘

n`1 u ď `n`t d
2 u

n
˘
. For instance, when n “ 3, d “ 6 the generic rank is 21 while the maximal

dimension of the spaces spanned by partial derivatives is 20.

Proposition 4. Let V1, . . . , Vp and W1, . . . , Wp be k-vector spaces of dimension n1 ` 1, . . . , np ` 1 and m1 `
1, . . . , mp ` 1 respectively. Consider Ui “ Vi ‘ Wi for every 1 ď i ď p. Let T1 P Symd1 V1 b ¨ ¨ ¨ b Symdp Vp Ă
Symd1 U1 b ¨ ¨ ¨ b Symdp Up and T2 P Symd1 W1 b ¨ ¨ ¨ b Symdp Wp Ă Symd1 U1 b ¨ ¨ ¨ b Symdp Up be two
mixed tensors.

If for any i P t1, ..., pu there exists a pair pai, biq with ai ` bi “ di and pA, Bq-flattenings rT1 : VÅ Ñ VB,rT2 : VÅ Ñ VB as in (Section 2.1) such that

dimprT1pVÅqq “ rankpT1q, dimprT2pVÅqq “ rankpT2q

then rankpT1 ` T2q “ rankpT1q ` rankpT2q.

Proof. Clearly, rankpT1 ` T2q ď rankpT1q ` rankpT2q. On the other hand, our hypothesis yields

rankpT1q ` rankpT2q “ dimprT1pVÅqq ` dimprT2pVÅqq “ dimp ČT1 ` T2pVÅqq ď rankpT1 ` T2q

where ČT1 ` T2 denotes the pA, Bq-flattening of the mixed tensor T1 ` T2.

Arguing as in the proof of Proposition 4 with skew-symmetric flattenings we have an analogous
statement in the Segre-Grassmann setting.

Proposition 5. Let V1, . . . , Vp and W1, . . . , Wp be k-vector spaces of dimension n1 ` 1, . . . , np ` 1 and m1 `
1, . . . , mp ` 1 respectively. Consider Ui “ Vi ‘ Wi for every 1 ď i ď p, and let T1 P Źd1 V1 b ¨ ¨ ¨ b Źdp Vp ĂŹd1 U1 b ¨ ¨ ¨ b Źdp Up and T2 P Źd1 W1 b ¨ ¨ ¨ b Źdp Wp Ă Źdp U1 b ¨ ¨ ¨ b Źdp Up be two skew-symmetric
tensors with di ď mintni ` 1, mi ` 1u.

If for any i P t1, . . . , pu there exists a pair pai, biq with ai ` bi “ di and pA, Bq-skew-flattenings rT1 :
VÅ Ñ VB, rT2 : VÅ Ñ VB as in (Section 2.1) such that

dimprT1pVÅqq “ rankpT1q, dimprT2pVÅqq “ rankpT2q

then rankpT1 ` T2q “ rankpT1q ` rankpT2q.

5. On the Rank of x0F

In this section, building on Remark 2, we present new cases in which Comon’s conjecture holds.
Recall, that for a smooth point x P X, the a-osculating space Ta

xX of X at x is roughly the smaller linear
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subspace locally approximating X up to order a at x, and the a-osculating variety TaX of X is defined as
the closure of the union of all the osculating spaces

TaX “
ď
xPX

Ta
xX

For any 1 ď a ď d ´ 1 the osculating space Ta
rLdsVn

d of order a at the point rLds P Vd can be written as

Ta
rLdsVn

d “
A

Ld´aF | F P krx0, . . . , xnsa

E
Ď PN

Equivalently, Ta
rLdsVn

d is the space of homogeneous polynomials whose derivatives of order less
than or equal to a in the direction given by the linear form L vanish. Please note that dimpTa

rLdsVn
d q “`n`a

n
˘ ´ 1 and Tb

rLdsVn
d Ď Ta

rLdsVn
d for any b ď a. Moreover, for any 1 ď a ď d and rLds P Vn

d we can
embed a copy of Vn

a into the osculating space Ta
rLdsVn

d by considering

Vn
a “ tLd´a Ma | M P krx0, . . . , xns1u Ď Ta

rLdsVn
d

Remark 4. Let us expand the ideas in Remark 2. We can embed

Vn
d “ tx0Ld | L P krx0, . . . , xns1u Ď Td

rxd
0sVn

d`1

and Remark 2 yields that
SechpVn

d q Ď Sec2hpVn
d`1q X Td

rLd`1sVn
d`1 (4)

This embedding extends to an embedding at the level of Segre varieties, and, in the notation of Remark 2,
we have that SechpSn1q Ď Sec2hpSnq.

Assume that for a polynomial F P SechpVn
d q we have F P Sech´1pSn1q. Then x0F P Sec2h´2pSnq. Now,

if we find a determinantal equation of Sec2h´2pVn
d`1q coming as the restriction to Π, the space of symmetric

tensors, of a determinantal equation of Sec2h´2pSnq, and not vanishing at x0F then x0F R Sec2h´2pSnq and
hence F R Sech´1pSn1q proving Comon’s conjecture for F.

This will be the leading idea to keep in mind in what follows. The determinantal equations involved will
always come from minors of suitable catalecticant matrices, that can be therefore seen as the restriction to Π of
determinantal equations for the secants of the Segre coming from non symmetric flattenings.

It is easy to give examples where the inequality (4) is strict. When n “ 1 the generic rank is
gd “ r d`1

2 s. Then for d odd we have gd “ gd´1 while for d even we have gd “ gd´1 ` 1. Hence
rankVd x0F ă 2 rankVd´1

F if 2 rankVd´1
F ą gd

2 , where Vd :“ V1
d is the rational normal curve. It is

natural to ask if the inequality is indeed an equality as long as the rank is subgeneric. In the case n “ 1
we have the following result.

Proposition 6. Let Vd :“ V1
d be the degree d rational normal curve. If 2h ă gd`1 then there does not exist

kh ą 0 such that SechpVdq Ď Sec2h´kh
pVd`1q X Td

rxd`1sVd`1.

Proof. Clearly, it is enough to prove the statement for kh “ 1. Let p P SechpVdq be a general point.
Then p P

A
rx0Ld

1s, . . . , rx0Ld
hs

E
with Li general linear forms. In particular

p P H :“
A
TrLd`1

1 sVd`1, . . . ,TrLd`1
h sVd`1

E
Please note that dimpHq “ 2h ´ 1. Now, assume that p is contained also in Sec2h´1pVd`1q. Then

there exists a linear subspace H1 Ă Pd`1 of dimension 2h ´ 2 passing through p intersecting Vd`1 at
2h ´ 1 points q1, . . . , qr counted with multiplicity. Let qi1 , . . . , qir be the points among the qi coinciding
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with some of the rLd`1
i s and such that the intersection multiplicity of H1 and Vd`1 at qij is one, and

qj1 , . . . , qjr be the points among the qi coinciding with some of the rLd`1
i s and such that the intersection

multiplicity of H1 and Vd at qjk is greater that or equal to two.
Set Π :“ @

H, H1D, then dimpΠq “ 2h ´ 1 ` 2h ´ 2 ´ ir ´ 2jr and Π intersects Vd`1 at 2h ` p2h ´ 1 ´
ir ´ 2jrq points counted with multiplicity. Consider general points b1, . . . , bs P Vd`1 with s “ ir ` 2jr,
and the linear space Π1 “ xΠ, b1, . . . , bsy. Therefore, dimpΠ1q “ 4h ´ 3 and Π1 intersects Vd`1 at 4h ´ 1
points counted with multiplicity. Since 2h ď d`3

2 adding enough general points to Π1 we may construct
a hyperplane in Pd`1 intersecting Vd`1 at d ` 2 points counted with multiplicity, a contradiction.

Proposition 6 can be applied to get results on the rank of a special class of matrices called
Hankel matrices.

Let F “ Z0xd
0 ` . . . ` ` d

d´i
˘
Zixd´i

0 xi
1 ` . . . ` Zdxd

1 be a binary form and consider rZ0, . . . , Zds as
homogeneous coordinates on Ppkrx0, x1sdq. Furthermore, consider the matrices

M2n “
¨
˚̋ Z0 . . . Zn

...
. . .

...
Zn . . . Zd

˛
‹‚, M2n`1 “

¨
˚̋ Z0 . . . Zn

...
. . .

...
Zn`1 . . . Zd

˛
‹‚

It is well known that the ideal of SechpVdq is cut out by the minors of Md of size ph ` 1q ˆ ph ` 1q [4].
Now, consider a polynomial F P krx0, x1sd with homogeneous coordinates rZ0, . . . , Zds. Then

F1 :“ x0F P krx0, x1sd`1 has homogeneous coordinates rZ1
0, . . . , Z1

d`1s with

Z1
i “ d ` 1 ´ i

d ` 1
Zi

To determine the rank of F1 we have to relate the rank of the matrices

N2n “

¨
˚̊̊
˚̊̊
˝

Z0
d

d`1 Z1 . . . d`1´n
d`1 Zn

d
d`1 Z1 . . . . . . d´n

d`1 Zn`1
...

. . . . . .
...

d´n`2
d`1 Zn´1 . . . . . . 1

d`1 Zd
d´n`1

d`1 Zn . . . 1
d`1 Zd 0

˛
‹‹‹‹‹‹‚

N2n`1 “

¨
˚̊̊
˚̊̊
˝

Z0
d

d`1 Z1 . . . d´n
d`1 Zn

d
d`1 Z1 . . . . . . d´n´1

d`1 Zn`2
...

. . . . . .
...

d´n`2
d`1 Zn . . . . . . 1

d`1 Zd
d´n`1

d`1 Zn`1 . . . 1
d`1 Zd 0

˛
‹‹‹‹‹‹‚

with the rank of Md.

Definition 1. A matrix A “ pAi,jq P Mpa, bq such that Ai,j “ Ah,k whenever i ` j “ h ` k is called a
Hankel matrix.

In particular all the matrices of the form Md and Nd considered above are Hankel matrices.
Let Mpa, bq be the vector space of a ˆ b matrices with coefficients in the base field k. For any

h ď minta, bu let RankrpMpa, bqq Ď Mpa, bq be the subvariety consisting of all matrices of rank at most h.
Now, consider the map β : N ÝÑ N ˆ N given by βp2nq “ pn ` 1, n ` 1q and βp2n ` 1q “

pn ` 2, n ` 1q. For any d ě 1 we can view the subspace Hd Ď Mpβpdqq formed by matrices of the form
Md as the subspace of Hankel matrices. Now, given any linear morphism f : Mpa, bq Ñ Mpc, dq we
can ask if for some s ď mintc, du we have f pRankhpMpa, bqqq Ď RankspMpc, dqq.
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Corollary 1. Consider the linear morphism

αd : Mpβpdqq ÝÑ Mpβpd ` 1qq
pAi,jq ÞÝÑ

´
d´pi`j´3q

d`1 Ai,j

¯
Then αdpHdq Ď Hd`1 and αdpRankhpMpβpdqq X Mdqq Ď Rank2hpMpβpd ` 1qqq X Md`1.

Proof. Since αdpAi,jq “ αdpAh,kq when i ` j “ h ` k we have that αdpHdq Ď Hd`1. By Proposition 6
RankhpMpβpdqq X Hd “ SechpVdq, and by construction αdpMdq is the linear change of coordinates
mapping a binary form F P krx0, x1sd to F1 “ x0F P krx0, x1sd`1.

Since SechpVdq Ď Sec2hpVd`1q X Td
rxd`1sVd`1, if an h ˆ h minor of a general matrix B in Mpβpdqq

does not vanish, under the assumption that all the ph ` 1q ˆ ph ` 1q minors of B vanish, then there is a
2h ˆ 2h minor of αdpBq that does not vanish.

When n ě 2 we are able to determine, via Macaulay2 [32] aided methods, the rank of x0F in some
special cases.

i pn, dq “ p2, 2q. The variety Sec3pV2
3 q is the hypersurface in P9 cut out by the Aronhold invariant,

see for instance (Section 1.1 in [4]). With a Macaulay2 computation we prove that if F P Sec2pV2
2 q

is general then the Aronhold invariant does not vanish at x0F, hence rank x0F “ 2 rank F.
ii pn, dq “ p2, 3q. The varieties Sec5pV2

4 q and Sec3pV2
3 q are both hypersurfaces, given respectively

by the determinant of the catalecticant matrix of second partial derivatives and the Aronhold
invariant (Section 1.1 in [4]). With Macaulay2 we prove that the determinant of the second
catalecticant matrix does not vanish at x0F for F P Sec3pV2

3 q general, hence rank x0F “ 2 rank F.
iii pn, dq “ p3, 3q. The secant variety Sec9pV3

4 q is the hypersurface cut out by the second catalecticant
matrix (Section 1.1 in [4]) while Sec5pV3

3 q is the entire osculating space. A Macaulay2 computation
shows that T3

rx4
0sV3

4 Ď Sec9pV3
4 q. This proves that rank x0F ă 2 rank F, for F general.

iv pn, dq “ p4, 3q. In this case Sec8pV4
3 q “ T3

rx4
0sV4

4 and Sec14pV4
4 q is given by the determinant

of the second catalecticant matrix (Section 1.1 in [4]). Again using Macaulay2 we show that
T3

rx4
0sV4

4 Ď Sec14pV4
4 q. This proves that rank x0F ă 2 rank F, for F general.

Corollary 2. For the osculating varieties T3V3
4 and T3V4

4 we have

T3V3
4 Ď Sec9pV3

4 q, T3V4
4 Ď Sec14pV4

4 q

Proof. The action of PGLpn ` 1q on Pn extends naturally to an action on PNpn,dq stabilizing Vn
d and more

generally the secant varieties SechpVn
d q. Since this action is transitive on Vn

d we have Ta
rxd

0sVn
d Ď SechpVn

d q
if and only if Ta

rLdsVn
d Ď SechVn

d for any point rLds P Vn
d that is TaVn

d Ď SechVn
d . Finally, we conclude by

applying iii and iv in the list above.

Macaulay2 Implementation

In the Macaulay2 file Comon-1.0.m2 we provide a function called Comon which operates as follows:

- Comon takes in input three natural numbers n, d, h;

- if h ă `n`t d
2 u

n
˘

then the function returns that Comon’s conjecture holds for the general degree d
polynomial in n ` 1 variables of rank h by the usual flattenings method in Proposition 1. If not,
and d is even then it returns that the method does not apply;

- if d is odd and
`n`k

n
˘ ă 2

`n`k´1
n

˘
, where k “ t d`1

2 u, then again it returns that the method does
not apply;

- if d is odd,
`n`k

n
˘ ě 2

`n`k´1
n

˘
and 2h ´ 1 ą `n`k

n
˘

then it returns that the method does not apply
since 2h ´ 2 must be smaller than the number of order k partial derivatives;
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- if d is odd,
`n`k

n
˘ ě 2

`n`k´1
n

˘
and 2h ´ 1 ď `n`k

n
˘

then Comon, in the spirit of Remark 4, produces a
polynomial of the form

F “
hÿ

i“1

pai,0x0 ` ¨ ¨ ¨ ` ai,nxnqd

then substitutes random rational values to the ai,j, computes the polynomial G “ x0F, the
catalecticant matrix D of order k partial derivatives of G, extracts the most up left 2h ´ 1 ˆ 2h ´ 1
minor P of D, and compute the determinant detpPq of P;

- if detpPq “ 0 then Comon returns that the method does not apply, otherwise it returns that Comon’s
conjecture holds for the general degree d polynomial in n ` 1 variables of rank h.

Please note that since the function random is involved Comon may return that the method does not
apply even though it does. Clearly, this event is extremely unlikely. Thanks to this function we are
able to prove that Comon’s conjecture holds in some new cases that are not covered by Proposition 1.
Since the case n “ 1 is covered by Proposition 6 in the following we assume that n ě 2.

Theorem 1. Assume n ě 2 and set h “ `n`t d
2 u

n
˘
. Then Comon’s conjecture holds for the general degree d

homogeneous polynomial in n ` 1 variables of rank h in the following cases:

- d “ 3 and 2 ď n ď 30;
- d “ 5 and 3 ď n ď 8;
- d “ 7 and n “ 4.

Proof. The proof is based on Macaualy2 computations using the function Comon exactly as shown in
Example 1 below.

Example 1. We apply the function Comon in a few interesting cases:

Macaulay2, version 1.12

with packages: ConwayPolynomials, Elimination, IntegralClosure, InverseSystems,

LLLBases, PrimaryDecomposition, ReesAlgebra, TangentCone

i1 : loadPackage "Comon-1.0.m2";

i2 : Comon(5,3,4)

Lowest rank for which the usual flattenings method does not work = 6

o2 = Comon’s conjecture holds for the general degree 3 homogeneous polynomial

in 6 variables of rank 4 by the usual flattenings method

i3 : Comon(5,3,6)

Lowest rank for which the usual flattenings method does not work = 6

o3 = Comon’s conjecture holds for the general degree 3 homogeneous polynomial

in 6 variables of rank 6

i4 : Comon(5,3,7)

Lowest rank for which the usual flattenings method does not work = 6

o4 = The method does not apply --- The determinant vanishes

i5 : Comon(5,5,21)

Lowest rank for which the usual flattenings method does not work = 21

o5 = Comon’s conjecture holds for the general degree 5 homogeneous polynomial

in 6 variables of rank 21

i6 : Comon(4,7,35)

Lowest rank for which the usual flattenings method does not work = 35

o6 = Comon’s conjecture holds for the general degree 7 homogeneous polynomial

in 5 variables of rank 35
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1. Introduction

Until recently, if a scientist or an engineer were asked what tensors are good for, probably in many
cases they would have organized their answer around examples such as the Cauchy stress tensor or
the tensors that arise in general relativity. However, these are examples of a more complex concept:
that of a tensor field. To give a first explanation of the difference, let us point out that a scalar field is a
function defined on a portion of space (on which one can perform the various operations of Calculus,
e.g., take the partial derivatives), whereas a scalar is just a real (or complex) number. To refine the
explanation, one might discuss the difference between a vector field and a single vector. In the context
of the present survey article, tensors are considered as mathematical objects per se. Thus, we disregard
how tensors can vary in a portion of space, and look at them as single elements of a space of tensors,
i.e. just the set of all tensors of the same type. In the last decades, it has become clearer and clearer that
even this considerably simpler notion is of utmost applicative importance: a convincing account is
provided by Landsberg’s book [1], especially in Section 1.3 and the whole Part 3.

In most of the applications, vectors are either physical quantities which can be represented by
arrows, or arrays of numbers. Since spaces of these two kinds of objects reveal the same fundamental
structure, the twentieth century Mathematics has established the unifying concept of a vector space.
This abstract object turns out to be suitable for a much wider class of situations, including those in which
vectors can vary in real space. Vector spaces are a kind of algebraic structure, that is, they are formally
defined by means of the operations that can be performed on their elements. The multiplication of
numbers by vectors can be extended by allowing more general kinds of “numbers”, which can be
defined by means of another algebraic structure, named a field (not to be confused with a field of
varying objects in a portion of space). These are the building blocks of modern Linear Algebra, with
which even the multilinear algebra, hence the tensor theory, can be set up. The survey is written
using this language. Although not unknown, such an abstract mathematical approach might be a bit
demanding for some tensor practitioners (cf. [1], Subsection 0.3); therefore, it is likely they will prefer
to accompany the reading with some of the many good books on abstract algebra.

Based on the work in [1], Part 3, the importance of tensor decompositions can be appreciated.
The perhaps most basic kind of decomposition leads to the notion of tensor rank. It can be said that,
to date, tensor rank is not understood well, as no general algorithm for determining it is known.
The same is true for the symmetric rank of a symmetric tensor. Moreover, many of the techniques
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that have led to some success in tensor theory apply both to rank and to symmetric rank, and the
assertion that they coincide (for a symmetric tensor) is the content of the Comon’s conjecture (see [1],
Exercise 2.6.6.5 and references therein). This encourages us to believe that a better understanding of
the symmetric rank may shed some light on tensor rank.

When the base field is of characteristic zero, e.g., when dealing with real or complex numbers (as in
most of the applicative uses of tensors), symmetric tensors are naturally identified with homogeneous
polynomials. Even in positive characteristic, symmetric tensors and polynomials are “quite close”
since, as a matter of facts, symmetric tensors can always be naturally identified with the so-called
divided powers. From the polynomial viewpoint, the symmetric rank becomes the Waring rank, that is,
the minimum number of summands that are required to express a given homogeneous polynomial
as a sum of powers of linear forms. It follows that, in the characteristic zero case, to determine the
maximum symmetric rank for symmetric tensors of given dimension n and order d, is the same as to
determine the maximum Waring rank for degree d homogeneous polynomials in n variables. This is
one of the most natural variants of the classical Waring problem on natural numbers. Now, if the
symmetric rank was well understood, one probably would easily determine what is its maximum for
symmetric tensors of given order and dimension. This leads us to hope that the techniques invented
to find the maximum Waring rank for degree d forms in n variables might indicate some ways to
understand tensor rank.

Following Geramita [2], let us recall that, while the classical Waring problem was solved by
Hilbert, its main variant remains open, i.e. determining the minimum number G(d) of summands that
are needed to decompose every sufficiently large natural number into a sum of dth powers. From the
polynomial viewpoint, a naturally analogous problem is to determine the maximum Waring rank of a
generic degree d homogeneous polynomials in n variables, where “generic” is meant in the sense that it
commonly has in Algebraic Geometry. In this case, under the hypothesis that the base field is algebraic
closed of characteristic zero, the answer is provided by the celebrated Alexander–Hirschowitz theorem,
which deals with interpolation of sets of fat points, but which through the Terracini’s lemma has a
direct translation in frame of the Waring rank (see [3] for the original proof of the theorem and [4],
Section 7 for a good historical account of it). Henceforth, we shall refer to the Waring rank of a form
simply as its rank.

Interestingly, at the end of his review of the outstanding paper [3] in the MathSciNet database,
Fedor Zak wrote:

It would also be nice to know how many linear forms are required to express an arbitrary
form of degree d as a sum of dth powers of linear forms.

In the mentioned Exposé [2], Tony Geramita called this problem the little (and the “generic version”
solved by Alexander and Hirschowitz the big) Waring problem for polynomials. However, as little as it
can be, similar to a mouse, the problem is also escaping, and indeed it has remained open to date.

After Geramita’s Exposé, Johannes Kleppe was able to prove that the maximum rank of ternary
quartics is seven, in his master thesis [5] under the supervision of Kristian Ranestad. More precisely,
that work contains a study of normal forms and ranks of ternary cubics and quartics, from which the
maximum ranks can be obtained.

Some years later, at the opposite side of Kleppe’s result, which gives a sharp upper bound in
two very specific cases, Corollary 1 [6] provided us with a very mild upper bound in the general
case. After about the same amount of time, that result was dramatically improved by Blekherman
and Teitler (see [7], Corollary 9). From the references in [6], some information on earlier works on the
subject can be obtained. For instance, the work in [8], published in 1969, deals with the problem for
arbitrary fields, with a particular care to detect in which cases there is actually a maximum for the
Waring rank (as it is always the case when the base field is algebraically closed of characteristic zero).
We believe that any list of references one might try to work out for the problem of our interest will
likely be far from complete, since it is of a natural and elementary nature and dates back to at least
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the first half of the past century. For instance, B. Segre at the beginning of [9], Section 96, mentioned a
question raised in [10].

The introduction of Buczyński and Teitler’s paper [11] is a good source of information on what
is known on the maximum Waring rank, up to recent times. As tensor theory, as well as its related
algebrogeometric aspects, is currently a very active research field, a good deal of new results have
been discovered since then, and they can be of use to determine that maximum. However, if we strictly
focus on the problem, as far as we know, there are only two new facts that improve ([11], Table 1).
The first one is [12], Proposition 3.3, which sensibly improves the Blekherman and Teitler’s upper
bound when n = 3. The other is [13], Theorem 2.5, which extends to even degrees the Buczyński and
Teitler’s lower bound established in [11], Theorem 1 (in the sense that it raises by one the lower bound
given by the maximum rank of monomials, which for an even degree d is (d2 + 2d)/4).

According to the aforementioned results, for ternary forms over algebraically closed fields of
characteristic zero both the lower and the upper bounds are of order O(d2/4), and the gap is d − 1.
The main purpose of the present survey article is to convey the basic ideas that led to those bounds.

2. Symmetric Algebra and Apolarity

In this section, we give an overview of some fundamental facts that are worthy of being recalled
in the present context. The technical treatments of basic tensor theory and apolarity that can be
encountered in the literature may vary considerably. Instead of fixing one of them, we only review the
main statements: whatever reference the reader is willing to adopt, the basic definitions will likely
be compatible with (or at least adaptable to) our assumptions. The exposition is organized so that,
by adding sufficient details, one can get a coherent theoretical development.

Henceforth, K denotes a field and V a K-vector space.

2.1. The Tensor Algebra of a Vector Space

We take the view that the tensor algebra T(V) can be any fixed K-algebra that contains V as a
K-vector subspace and such that for each K-vector space homomorphism of V into a (commutative
or not) K-algebra A there exists a unique K-algebra homomorphism T(V) → A that extends it.
The elements of T(V) are called tensors, the multiplication in T(V) is denoted by ⊗ and t0 ⊗ t1 is
the tensor product of t0 and t1. However, V ⊗V does not denote the set of all v0 ⊗ v1 with v0, v1 ∈ V,
but the vector subspace of T(V) generated by that set. The tensor power V ⊗⋯⊗V =∶ V⊗d can be
similarly defined; its elements are said to have order d. The multiplication μd ∶ V ×⋯ ×V → V⊗n,
(v1, . . . , vn) ↦ v1 ⊗⋯⊗ vn, is a universal d-linear map, that is, every d-linear map m ∶ V ×⋯×V →W
factors as ϕ ○ μd for a uniquely determined vector space homomorphism ϕ ∶ V⊗d →W.

This approach may be considered rather abstract, but it might be said that T(V) is no more
abstract than C: similar to how one extends R by adding a square root of −1 and all objects that are
consequently needed to keep the operations and their properties, here one extends V and K by adding
tensor products of vectors and all objects that are consequently needed to keep the operations of
V, and to build a multiplication with the usual properties (apart from commutativity). The above
characterization of T(V) (up to algebra isomorphisms) makes precise the intuitive idea, and indeed
a similar characterization holds for C: for every R-algebra A that contains a square root x of −1
(for instance, A could be the algebra of endomorphisms of vectors in the plane and x a rotation by 90○),
there exists a unique R-algebra homomorphism C→ A that sends the imaginary unit into x.

2.2. The Symmetric Algebra of a Vector Space

The definition of the symmetric algebra S(V) can be given in the same way, except for the fact
that now the target K-algebra A in the characteristic property is required to be commutative. A very
natural K-algebra homomorphism T(V) → S(V) arises: the one which extends the identity map of
V. Elements of S(V) are not exactly symmetric tensors, though in most cases the two things can be
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identified, but rather polynomials. Indeed, if (xi)i∈I denotes a (possibly infinite) basis of the vector space
V, any element of S(V) can be written as a polynomial in the xis, and two elements are equal if and
only if for each monomial they carry the same coefficient.

2.3. Symmetric Tensors

To define symmetric tensors, first notice that for each permutation σ of {1, . . . , n}, by the mentioned
universal property of tensor powers we have an automorphism σV of V⊗n such that v1 ⊗⋯⊗ vn ↦
vσ(1) ⊗⋯⊗ vσ(n). A tensor in V⊗n is said to be symmetric if it is invariant under σV for all permutation
σ of {1, . . . , n}. For instance, v⊗w+w⊗ v and v⊗ v⊗w+ v⊗w⊗ v+w⊗ v⊗ v are symmetric tensors for
whatever choice of v, w ∈ V. A sum of symmetric tensors of different orders can be called symmetric as
well (although very seldom one encounters such sums).

2.4. The Symmetric Product

The set S(V) of symmetric tensors is a vector subspace, but not a subalgebra of T(V) (apart from
the trivial cases when dim V ≤ 1). However, a meaningful multiplication in S(V) can be introduced.
The symmetric product s0s1 of two symmetric tensors of given orders d0, d1 can be defined as the sum of
σV(s0 ⊗ s1) with σ varying on the (d0, d1)-shuffles, that are the permutations of {1, . . . , d0 + d1} such
that σ(1) < ⋯ < σ(d0) and σ(d0 + 1) < ⋯ < σ(d0 + d1). For instance,

u (v⊗w +w⊗ v) = u⊗ v⊗w + u⊗w⊗ v + v⊗ u⊗w +w⊗ u⊗ v + v⊗w⊗ u +w⊗ v⊗ u = uvw (1)

for whatever choice of u, v, w ∈ V.
There is a unique way to extend this operation on the whole of S(V), that preserves the distributive

law. Note that with this definition we have vd = d!v⊗d = d!v⊗⋯⊗ v (d factors).

2.5. A Variant of the Symmetric Product in Characteristic Zero

We mention that there is a much more popular variant of the symmetric product, which is in use
when K is C, or more generally is of characteristic zero (see, e.g., [1], 2.6.3). It can be presented as
follows. Every K-vector space automorphism α of any K-algebra A induces another multiplication on
A: the one that makes α a K-algebra automorphism, when it replaces the original one on the target (but
not on the domain). In particular, if a sequence (ad)d≥0 of nonzero scalars is given, the multiplication by
ad on order d symmetric tensors gives a K-vector space automorphism of S(V), hence a multiplication
in it. The mentioned symmetric product in S(V) is given by the sequence ad ∶= 1/d!. For instance, this
definition gives

u (v⊗w +w⊗ v) = 1
3
(u⊗ v⊗w + u⊗w⊗ v + v⊗ u⊗w +w⊗ u⊗ v + v⊗w⊗ u +w⊗ v⊗ u) = u(2vw)

(compare with Equation (1)); note also that now vd = v⊗d.
The reason for the popularity of the “modified” symmetric product is explained by the relationship

between symmetric tensors and polynomials: it makes the restriction S(V) → S(V) of the natural
map T(V) → S(V) a K-algebra isomorphism. In positive characteristic, a multiplication with such a
desirable property can not be hoped for, simply because in this case the restriction S(V) → S(V) is not
bijective (unless dim V ≤ 1). It also worthy of being remarked that in characteristic zero, S(V) with
the previous symmetric product is naturally isomorphic to S(V) as well, but in this case through the
K-algebra homomorphism S(V) → S(V) that arises simply because S(V) is a commutative K-algebra
containing V.

Although the subject of the present work is the maximum symmetric rank in the characteristic
zero case, we prefer to assume that S(V) is equipped with the general symmetric product (which is
defined regardless of the characteristic of K), not with the modified one.
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2.6. Tensors on the Dual and Multilinear Forms

Let us consider the dual space V∗ and denote by V∗d the space of d-linear forms. A d-linear form
μ ∶ Vd → K and a d′-linear form μ′ ∶ Vd′ → K give rise to the (d + d′)-linear form

(v1, . . . , vd+d′) ↦ μ (v1, . . . , vd)μ′ (vd+1, . . . , vd+d′) .

This allows us to define a K-algebra structure on

M(V) ∶= ⊕
d

V∗d .

Since V∗ embeds (as a summand) in M(V), one comes with a natural K-algebra homomorphism
T (V∗) →M(V), which is always injective and turns out to be an isomorphism if and only if dim V < ∞.
On the other hand, to give a d-linear form on V is the same as to give a linear form on V⊗d, and T(V),
as a matter of facts, is a graded algebra whose degree d component is V⊗d (regardless of the finiteness
assumption). Therefore, M(V) is isomorphic as a vector space to the graded dual of T(V). In conclusion,
when dim V < ∞, the graded dual of T(V) is isomorphic, as a graded vector space, to T (V∗).

Let us also point out that, given l1, . . . , ld ∈ V∗, the image of the tensor product l1 ⊗⋯⊗ ld in M(V)
takes value

l1 (v1)⋯ld (vd) (2)

on (v1, . . . , vd), and this is also the value taken on v1 ⊗⋯⊗ vd by the image in the graded dual of T(V).
For the symmetric algebra, we have the following facts. To begin with, S(V) is a graded algebra

as well, and the natural homomorphism T(V) → S(V) is a graded one, and as a matter of facts is
surjective on each graded component. Hence, the graded dual of S(V) embeds into the graded dual of
T(V), which is isomorphic to M(V). However, similarly to what happens for V⊗d, to give a d-linear
form on the symmetric power Sd(V) (the subspace of degree d elements of S(V)) is the same as to give
a symmetric d-linear form on V. This easily implies that the image of the dual of Sd(V) through the
embedding into M(V) is precisely the subspace of d-linear symmetric forms. Next, it is not difficult to
show that an order d tensor in T (V∗) is symmetric if and only if its image through the embedding
T (V∗) ↪M(V) is a symmetric d-linear map. In the finite dimensional case, the converse is also true:
a d-linear form is symmetric if and only if it corresponds to a symmetric tensor. In conclusion, when
dim V < ∞, the graded dual of S(V) is isomorphic, as a graded K-vector space, to S (V∗).

According to the definition of the symmetric product, given l1, . . . , ln ∈ V∗, the image of l1⋯ld in
M(V) takes value

∑
σ

l1 (vσ(1))⋯ld (vσ(d)) (3)

on (v1, . . . , vd), that is, the permanent of the matrix (li (vj))i,j. This is also the value taken on v1⋯vd by
the image of l1⋯ld in the graded dual of S(V).
2.7. Evaluation

The algebra KV of all functions V → K is commutative and contains V∗. Hence, there is a canonical
K-algebra homomorphism S (V∗) → KV . Note also that the value of the image of f ∈ S (V∗) on v is
the image of through the evaluation homomorphism S (V∗) → K that extends the evaluation at v map
V∗ → K (l ↦ l(v)). If f ∈ S (V∗) is considered as a polynomial, the image in KV is the corresponding
polynomial function.

For a form f ∈ Sd (V∗), the corresponding symmetric d-linear form can be considered as a
polarization of the corresponding polynomial function (though it is customary to affect that d-linear
form by a factor 1/d!).
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2.8. Symmetric Tensors on the Dual and Divided Powers

The symmetric product may be preferred over its variant in characteristic zero, not only because
it is defined regardless to the characteristic of K, but also because it makes S(V) an algebra of divided
powers, in a quite simple way: it suffices to set v[d] ∶= v⊗d. A perhaps more familiar way to introduce
divided powers is in the context of duality, as done, e.g., in [14], Appendix A. To link the discussion
earlier to the Iarrobino and Kanev’s approach:

henceforth, we assume dim V < ∞.

Since an isomorphic image of a tensor algebra is a tensor algebra as well, we can assume that
T (V∗) is chosen so that S (V∗) actually is the graded dual of S(V). Similarly, if R = K [x1, . . . , xr] =⊕d≥0Rd is a (graded) ring of polynomials, we can assume S (R1) = R. Let us also assume V ∶= R1

(under a suitable definition of polynomial rings, this assumption imposes no restriction on V). Setting
D ∶= S (V∗) and denoting by Dd the subspace of order d symmetric tensors, we get exactly in the
situation at the beginning of [14], Appendix A. Let us employ a few lines below to check that setting
l[d] ∶= l⊗d, subsequent definitions of [14], Appendix A, are automatically fulfilled.

Let (X1, . . . , Xr) be the base of D1, dual to (x1, . . . , xr) (that is, Xi (xj) is 0 when i ≠ j and 1 when
i = j). Note that XiXj takes value 1 on xixj when i ≠ j (it is indeed given by Equation (3), and

li (xj) = lj (vi) = 0), but the value is 2 when i = j, that is, X2
i (x2

i ) = 2. Instead, we have X[2]i (xi) =
X⊗2

i (xi) = 1, as it follows from the evaluation rule Equation (2) (or also from X2
i = 2!X⊗2

i ). More

generally, we have that X[d1]
1 ⋯X[dr]

r takes value 0 on xd′1
1 ⋯xd′r

r when (d1, . . . , dr) ≠ (d′1, . . . , d′r) and
value 1 when (d1, . . . , dr) = (d′1, . . . , d′r). This agrees with [14], Definition A.1. Since the number of
(d, d′)-shuffles is (d + d′)!/(d!d′!), we have

X[d]i X
[d′]
i = (d + d′)!

d!d′!
X
[d+d′]
i ,

hence

X[d1]
1 ⋯X[dr]

r X
[d′1]
1 ⋯X

[d′r]
r = (d1 + d′1)!

d1!d′1!
⋯(dr + d′r)!

dr!d′r!
X
[d1+d′1]
1 ⋯X

[dr+d′r]
r ,

in agreement with [14], (A.0.5). Similar calculations lead to

(a1X1 +⋯+ arXr)[d] = ∑
d1+⋯+dr=d

ad1
1 ⋯adr

r X[d1]
1 ⋯X[dr]

r ,

in agreement with [14], Definition A.8.

2.9. The Contraction Map

Given p ∈ Rd, f ∈ Dd+d′ = Hom (Rd+d′ ,K) and denoting by μp ∶ Rd′ → Rd+d′ the vector space
homomorphism given by the multiplication by p, the composition f ○ μp belongs to Dd′ and is called
the contraction of f by p. The bilinear operations Rd ×Dd+d′ → Dd′ (assuming Dd′ = {0} when d′ < 0)
extend to a unique bilinear operation R ×D → D, that can be called contraction map (in agreement
with [14], Definition A.2). If l1, . . . , ld ∈ R1 and ϕ ∈M(V) is the (d + d′)-linear form corresponding to
f , the contraction of f by l1⋯ld corresponds to the d′-linear form obtained by fixing d arguments of
ϕ equal to l1, . . . , ld: (v1, . . . , vd′) ↦ ϕ (l1, . . . , ld, v1, . . . , vd′). This property may also be used to give an
alternative definition of the contraction, because of the characteristic property of the symmetric powers
(the d-linear assignment on all (l1, . . . , ld) ∈ Rd

1 determines a homomorphism Rd = Sd (R1) → V∗d′ ,
whose image is canonically isomorphic to Dd′ and which depends on f ∈ Dd+d′ in a linear way). For
this reason, the contraction can also be called insertion and denoted by ⨼ (this attitude is perhaps more
common in the context of alternating forms).
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2.10. Contraction and Derivatives

The ordinary directional derivative of differentiable (real valued) functions fulfills the Leibnitz rule
∂v( f g) = (∂v f ) g + f ∂vg and on linear forms is nothing but the evaluation on v. These two properties
can be used to characterize the derivative of polynomials in S (V∗) along v ∈ V. Indeed, for each d,
we can define ∂v on Sd V∗ as the unique operator into Sd−1 V∗ such that

∂v (l1⋯ld) = d∑
i=1

li(v)l1⋯l̂i⋯ld ∈ Sd−1 V∗

for all l1, . . . , ld ∈ V∗ (with the hat denoting omission). Then, ∂v extends to the whole of S (V∗) by
additivity. Using again the fact that linear operators on Sd V∗ are characterized by their values on the
products l1⋯ld, one can easily check that the Leibnitz rule holds in S (V∗) and that ∂v is the unique
extension of the evaluation on v in V∗ with this property. A partial derivative is obviously a directional
derivative along a basis vector xi.

Let l1, . . . , ld ∈ V∗, v1, . . . , vd ∈ V, and f be the image in Dd of l1⋯ld ∈ Sd V∗ (that is, the product
l1⋯ld in the ring D). From the evaluation rule Equation (3) follows that the contraction of f by v1 take
the same value on v2⋯vd as

d∑
i=1

li(v1)l1⋯l̂i⋯ld ∈ Dd−1

(is basically a Laplace-like expansion of the permanent along the first row), which is the image
of ∂v1 (l1⋯ld) ∈ Sd−1 V∗. Using additivity and again the fact that operators on symmetric powers
are determined by their values on products of vectors, we conclude that, for every v ∈ V,
the partial derivative ∂v and the contraction by v are compatible via the canonical homomorphism
S (V∗) → S (V∗) = D.

A constant coefficient linear partial differential operator on S (V∗) is a linear combination of
compositions of directional (or partial) derivatives. The set D of such operators is a commutative
K-algebra with multiplication given by composition. Hence, v ↦ ∂v extends in a unique way to a
K-algebra homomorphism S(V) = R → D. The image of each p ∈ R in D can be denoted by ∂p.

2.11. Apolarity

When K is of characteristic zero, both canonical homomorphisms S (V∗) → D and R → D are
isomorphisms. In this case, we can assume that S (V∗) = D (and under a suitable definition of
polynomials also R = D could be assumed). This way the contraction map becomes a bilinear map
S(V) × S (V∗) → S (V∗) such that each p acts as the constant coefficient linear differential operator ∂p

(e.g., the contraction of X1X2
2 by 3x1x2 + x2

2 is 3∂x1 ∂x2 (X1X2
2) + ∂x2 ∂x2 (X1X2

2) = 2X1 + 6X2).
From the coordinate-free definitions is quite easy to recognize that the contraction map is invariant

with respect to the canonical actions of GL(V) on V and on V∗ (cf. also [14], Proposition A3(i)).
As Ehrenborg and Rota reported in [15], Introduction, for each fixed degree there is a unique invariant
bilinear form Sd(V)×Sd (V∗) → K, which has been much used since the nineteenth century by classical
invariant theorists. They also say that this form can be called apolar bilinear form, that the subject of
apolarity has been related with the symbolic method in classical invariant theory, and that an efficient
treatment can be given in frames of Hopf algebras.

Apolarity for univariate polynomials of the same degree can also be disguised as an explicit
formula with alternating signs. To understand why, it may be useful to have a quick look on what
happens for the homogeneous version of such polynomials, that is, for binary forms. From a geometric,
projective viewpoint, (nonzero) vectors can be viewed as points and linear forms as hyperplanes.
For binary forms, that is, when dim V = 2 and the projective picture is a line, hyperplanes are
(singletons of) points. From the algebraic viewpoint, this amounts to the existence of an isomorphism
V → V∗, unique up to scalar factors (or, equivalently, to the existence of a unique, up to scalar factors,
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nondegenerate alternating form on V). In coordinates, a0x0 + a1x1 corresponds to a1X0 − a0X1 (or to
a scalar multiple of it). The extension S(V) ∼→ S (V∗) of this isomorphism allows us to equivalently
describe apolarity as a bilinear form on S(V) alone. Restricting the attention on (homogeneous)
polynomials of the same degree, we get a bilinear form on Sd(V), which is alternating for d odd and
symmetric for d even. In coordinates:

( ∑
i

aix
d−i
0 xi

1 , ∑
i

a′i x
d−i
0 xi

1 ) ↦ ∑
i
(−1)i(d − i)!i!ad−ia

′
i .

In terms of univariate polynomials of an assigned degree d:

( ∑
i

aix
i , ∑

i
a′i x

i ) ↦ ∑
i
(−1)i(d − i)!i!ad−ia

′
i .

Some classical results deal with this kind of apolarity, with K = C. For instance, Grace’s theorem is
sometimes named Grace’s apolarity theorem for this reason. Nowadays, there is a basic result, which is
largely referred to as the apolarity lemma. It plays a fundamental role in proving the bounds on Waring
ranks we aim to present in this article. We end this section by setting up the technical environment of
our presentation. In the next section, we state a version of the apolarity lemma.

2.12. Standing Assumptions

From the usual geometric viewpoint, forms are regarded as hypersurfaces. To begin with,
for every element of S (V∗), the vanishing locus of the corresponding polynomial function is an
affine hypersuperface in V. However, a projective viewpoint is perhaps more fruitful. We define
the projective space P(V) as the set of one-dimensional subspace of V, ⟨ v ⟩ with v ≠ 0, and the
hypersurface corresponding to a form f ∈ Sd (V∗) as the zero locus in P(V) of the corresponding
degree d homogeneous function on V. Sometimes geometric features of the hypersurface defined by a
form f , such as the singular locus, can give information on the rank of f (cf. [1], Theorem 9.2.1.4).

However, rank determination often uses the dual viewpoint, from which forms are considered as
points in a space where powers of linear forms constitute a Veronese variety (see [1], 4.3.7). Sometimes,
having a simultaneous look on both viewpoint has been fruitful, and perhaps a systematic investigation
with this double viewpoint could be worthy of being pursued. However, that it is not our goal here,
we prefer to facilitate the interchange between V and V∗ by working on an arbitrary pair of (finite
dimensional) vector spaces, with a given perfect pairing between one another. To denote such spaces,
we follow a kind of abstract index notation, using upper indices for one of the two spaces and lower
indices for the other. In a purely algebraic context, especially one in which powers play an important
role, this might be considered bad practice. However, if one takes care of not assigning an independent
meaning to x, the use of xi causes no ambiguities. An advantage of this choice is to have a notation
that can be more promptly translated (and provide insight) in physics contexts where tensors are
widely used.

As we have anticipated, we are interested in the case when K is algebraically closed of
characteristic zero (e.g., K = C). Hence, apolarity will be assumed on a (dual) pair of symmetric
algebras, which we denote by S● and S●. From our preferred geometric viewpoint, elements of S●

are considered as polynomial functions on the degree 1 component S1 of S● (in accordance with the
abstract index notation, where forms take upper indices and vectors lower indices), but elements of S●

act also as constant coefficient linear differential operators on S●. Note that, to fit the first description
into the previously outlined technical treatment, one needs to identify S● with S(V) and S● with S (V∗),
whereas, to fit the other, one needs the converse. Polynomials whose rank is to be studied will live
in Sd.

Following from the above said, now we set up more formally our ground technical framework
for the subsequent sections.
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• We assume that K is algebraically closed and of characteristic zero.
• The span of a subset X ⊆ V is denoted by ⟨X ⟩ (or also ⟨ v1, . . . , vn ⟩when X = {v1, . . . , vn}).
• We define the projective space P(V) as the set {⟨ v ⟩ ∶ v ∈ V ∖ {0}} of one-dimensional subspaces

of V.
• We fix two symmetric algebras S● and S●, whose degree d components are denoted by Sd and Sd.
• We assume dim S1 < ∞, dim S1 < ∞, S● = S (S1), S● = S (S1).
• We assume that a perfect pairing S1 × S1 → K is given.
• By the value f (v) of f ∈ S● at v ∈ S1, we mean the value at v of the image of f through

S●
∼→ S (S∗1 ) → KS1 , where the first isomorphism is induced by the given perfect pairing.

• The ideal I(X) ⊆ S● of a subset X ⊆ P (S1) is the homogenous ideal with degree d components
given, for each d, by all f ∈ Sd such that f (v) = 0 for all ⟨ v ⟩ ∈ X.

• The apolar bilinear map S● × S● → S● is the map induced by the earlier defined bilinear map
S(V) × S (V∗) → S (V∗), when V = S1, through the isomorphism S(S1∗) ∼→ S● induced by the
given perfect pairing.

• ∂ f x denotes the value of the apolar map on ( f , x) ∈ S● × S●.
• f and x are said to be apolar to each other when ∂ f x = 0, and the ideal Ann x ⊆ S● of all f apolar

to x is called the apolar ideal of x.
• If W ≤ Sd is a subspace, W⊥ denotes the set of all f ∈ Sd that are apolar to all elements of W.

Similarly, for a subspace W ≤ Sd, W⊥ denotes the set of all x ∈ Sd that are apolar to all elements
of W.

From the discussion above, it follows that apolarity induces an isomorphism Sd → S∗d for each
d, therefore gives a perfect pairing in each degree. Hence, W⊥ denotes nothing but the orthogonal
complement with respect such a perfect pairing. The notation Ann x for the apolar ideal complies
with the notion of the annihilator of an element of a module, because S● is structured as an S●-module
by apolarity. We prefer not to use the quite common notation x⊥ for the apolar ideal (we speak about
orthogonality only in a fixed degree).

When one needs schemes (for which we assume the definitions in [16]), it turns out that a point
of Proj S (V∗) rational over K is a maximal non-irrelevant homogeneous ideal in S (V∗) such that its
intersection with S1 (V∗) = V∗ is a hyperplane. However, every hyperplane in V∗ is the hyperplane of
forms that vanish on some point in P(V). This gives the canonical identification of P(V)with the set
of K-points of Proj S (V∗).
3. Basic Results

3.1. Apolarity Lemma

Let us preliminary point out that

f (v) = 1
d!

∂ f vd , ∀ f ∈ Sd , v ∈ S1, d > 0 . (4)

Remark 1. From Equation (4), it follows that, given f ∈ Sd and v ∈ S1 such that f (v) = 0, for every g ∈ Sd′ ,
we have

∂g∂ f vd+d′ = ∂g f vd+d′ = (d + d′)!(g f )(v) = (d + d′)!g(v) f (v) = 0 .

However, ∂g∂ f vd+d′ = 0 for all g ∈ Sd′ implies that ∂ f vd+d′ = 0 (because apolarity gives a perfect pairing in

degree d′). Of course, ∂ f also vanishes on vd′ when d′ < d. Therefore, if f (v) = 0 then ∂ f vanishes on all powers
of v.

By additivity, we conclude that every f ∈ I ({⟨ v1 ⟩ , . . . , ⟨ vr ⟩}) is apolar to every power sum v1
d +⋯+ vr

d,
d > 0 and, more generally, to every linear combination of v1

d, . . . , vr
d, d > 0.

Now, we prove the following version of the apolarity lemma.

50



Mathematics 2018, 6, 247

Lemma 1. Let x ∈ Sd with d > 0, and X ∶= {⟨ v1 ⟩ , . . . , ⟨ vr ⟩} ⊂ PS1. Then,

x ∈ ⟨ v1
d, . . . , vr

d ⟩ ⇐⇒ I(X) ⊆ Ann x .

Proof. Suppose that x ∈ ⟨ v1
d, . . . , vr

d ⟩, that is, x is a linear combination of v1
d, . . . , vr

d. By Remark 1,
every f ∈ I(X) is apolar to such linear combination, hence is apolar to x. Therefore, I(X) ⊆ Ann x.

Conversely, let us suppose that I(X) ⊆ Ann x. By the evaluation of Equation (4), it follows that
f ∈ Sd vanishes on v ∈ S1 if and only if it is apolar to vd. In other terms, the set of all f ∈ Sd that vanish
on v ∈ S1 is the orthogonal complement of vd with respect to the perfect pairing given by apolarity in
degree d. Hence

I(X) ∩ Sd = ⟨ v1
d, . . . , vd

r ⟩⊥ .

Since I(X) ⊆ Ann x, we have in particular that x is orthogonal to I(X) ∩ Sd. Hence,
x ∈ ⟨v1

d, . . . , vr
d ⟩.

A general and detailed version of the apolarity lemma can be found in [14], Lemma 1.15. It holds
in every characteristic and uses divided powers. Lemma 1 is basically equivalent to [14], Lemma 1.15(i)
and (ii), restricted to the characteristic zero case.

To illustrate the lemma with a simple (nearly trivial) example, let S● ∶= C [x0, x1], S● ∶= C [x0, x1],
with (x0, x1) being the dual basis of (x0, x1). The evaluation of a polynomial p = p (x0, x1) ∈ S● on
a0x0 + a1x1 ∈ S1 is just p (a0, a1). When p is homogeneous of degree d and p(v) = 0 for a v ∈ S1, then p
vanishes on all scalar multiples of v, that is, on all elements of ⟨ v ⟩. If v ≠ 0, we can say that ⟨ v ⟩ ∈ PS1 is
a root of p.

Let us find the sum of squares decompositions of f ∶= x0x1 ∈ S2 using the apolarity lemma.
We have ∂x0 f = x1 and ∂x1 f = x0, hence Ann f has no degree 1 homogeneous nonzero elements.

In degree 2 we have Ann f ∩ S2 = ⟨ x0 2
, x1 2 ⟩. Obviously, Sd ⊂ Ann f for all d ≥ 3. Now, for a finite set

X = {⟨ v1 ⟩ , . . . , ⟨ vr ⟩} ⊂ PS1 of r (distinct) points, I(X) is the set of all (polynomial) multiples in S● of
the polynomial p ∈ Sr with roots precisely ⟨ v1 ⟩ , . . . , ⟨ vr ⟩. Hence, by the apolarity lemma, for every
homogeneous p ∈ Ann f ∩ Sr that has r (distinct) roots ⟨ v1 ⟩ , . . . , ⟨ vr ⟩, we have f ∈ ⟨ v1

2, . . . , vr
2 ⟩. It

easily follows that f can be decomposed as a sum of squares of appropriate scalar multiples of v1, . . . vr.

For instance, p ∶= x0 2 − x1 2 ∈ Ann f ∩ S2 gives rise to the decomposition

x0x1 = ( 1
2
(x0 + x1) )

2 + ( i
2
(x0 − x1) )

2
.

3.2. The Classically Known Results on Maximum Rank

From the elementary theory of quadratic forms, known since long time, follows that the rank
of a quadratic form f ∈ S2, equals the rank of its representing matrix with respect to whatever given
(ordered) basis. Hence, the maximum rank equals dim S1, that is, the number of indeterminates (if S●
is considered as a ring of polynomials).

To find the maximum rank of binary forms of given degree, apolarity is very effective. Indeed, let
us consider the following simple description of the apolar ideal of a binary form.

Proposition 1. Let f ∈ Sd ∖ {0}, with dim S1 = 2. Then, Ann f is generated by a form a ∈ Ss and a form
b ∈ Sd+2−s for some integer s ≤ (d + 2)/2.

Proof. See [14], Theorem 1.44(iv).

As reported in [14], this classical result is due to Macaulay. When dim S1 = 2, the ideal of a
set of r distinct points in PS1 is generated by a homogeneous form. If the form a in the statement
of Proposition 1 is squarefree, from Lemma 1 follows that the rank of f is s, and some appropriate
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pairwise non-proportional roots of a in S1 give the linear forms of a dth power sum decomposition.
Taking also into account that a and b must be coprime, since they generate an ideal that contains Sd+1,
we also deduce that if a is not squarefree, then the rank is d + 2− s and for every finite subset X ⊂ PS1

there exists a dth power sum decomposition such that ⟨ v ⟩ /∈ X for every linear form v in it.
From the above, it is clear that the rank of f is at most d, and can be d only if Ann f contains

the square of a linear form. Given a basis (x0, x1) of S1, the apolar ideal of x0
d−1x1 contains x12

,
with (x0, x1) being the dual basis. We conclude that the maximum rank of binary forms of degree d > 0
is d.

In [9], Sections 96 and 97, one finds that the maximum ranks of ternary and quaternary cubics are
5 and 7, respectively. As we mentioned in the Introduction, beyond these classical results, only two
new cases have been recently worked out: the maximum rank is 7 for ternary quartics (which has been
determined in [5,17]) and 10 for ternary quintics (see [11,18]).

To our knowledge, no other values for the maximum rank have been determined to date;
the known values can therefore be summarized in the following Table 1.

Table 1. Known maximum Waring ranks in Sd, with dim S1 = n.

1 2 3 4 5 d

1 1 1 1 1 1 1
2 1 2 3 4 5 d
3 1 3 5 7 10 -
4 1 4 7 - - -
n 1 n - - - -

3.3. Elementary Bounds on Maximum Waring Rank

Let us recall a common geometric viewpoint on Waring rank. Given f ∈ Sd ∖ {0}, we have a
point ⟨ f ⟩ ∈ PSd and we have to express f as sum of dth powers. The set of (spans of) dth powers
of linear forms is an algebraic variety in PSd: the image of the embedding PS1 → PSd, ⟨ v ⟩ ↦ ⟨ vd ⟩.
This embedding turns out to be equivalent to a much studied embedding: the Veronese embedding
(also called d-uple embedding: see, e.g., [16], Chapter I, Exercise 2,12). Its image is sometimes called the
Veronese variety (see [1] 4.3.7). The problem of finding a power sum decomposition of f is equivalent
to the problem of finding a set of points X in the Veronese variety such that f ∈ ⟨X ⟩, that is, such that
the point ⟨ f ⟩ lies in the projective span of X (one has to take into account that a scalar multiple of a
dth power is a dth power as well, since K is algebraically closed). Since the Veronese variety spans PSd,
the Waring rank is well defined for all forms, and it is at most

dim Sd = (d + n − 1
n − 1

) ,

where n ∶= dim S1 and the parenthesized notation stands for the binomial coefficient. This gives an
elementary upper bound on rank (which could easily be slightly lowered, but we are not interested in
doing this here).

Let us now consider the union U of all projective spans of r distinct points in the Veronese variety.
Clearly, for every ⟨ f ⟩ /∈ U, the rank of f is greater than r. Elementary tools of algebraic geometry allow
one to estimate the dimension of the Zariski closure U of U (see [1], 4.9.5 or [16], Chapter I, Section 2,
p. 10), which is called the (r − 1)th secant variety (of the Veronese variety). Roughly speaking, the set of
all groups of r points in the Veronese variety, which has dimension n − 1 = dimPS1, is of dimension
r(n − 1). Since most of these groups spans a subspace of dimension r − 1, the expected dimension of
U is rn − 1. When this number does not reach the dimension (d+n−1

n−1 ) − 1 of the entire space PSd, there
exist forms with rank greater than r. Hence, the maximum rank in Sd is at least

⌈ 1
n
(d + n − 1

n − 1
)⌉
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(where the external parentheses denote the upper integer part; a similar notation ⌊. . .⌋ will be used for
the lower integer part).

Note that when d = 2, the lower bound is ⌈(n + 1)/2⌉, meanwhile the maximum rank is n. It is
also worthy of being mentioned that the estimate of dim U fails for d = 2 (and n, r ≥ 2). More generally,
that estimate fails when most points in U lie on infinitely many spans. In this case, the dimension of the
secant variety drops, and the now classical theorem by Alexander and Hirschowitz gives the complete
list of n, d, r for which this happens (we refer the reader to the exposition in [4]). It turns out that for d ≥ 3
the above lower bound can be raised by one in exactly four cases: (n, d) ∈ {(3, 4), (4, 4), (5, 3), (5, 4)}.

Given n, d, if r is the least value for which U = PSd then, by some basic algebrogeometric
considerations which we skip here, for all ⟨ f ⟩ in a nonempty open Zariski subset of PSd, f is actually
of rank r. In this situation, it is customary to say that r is the rank of a generic form in Sd. In the context
of tensor rank, the striking outcome of the Alexander–Hirschowitz theorem is indeed the exact value
of the rank of a generic form (the lower bounds in the exceptional cases are only some of the many
consequences). In the following sections, we review the enhanced lower and upper bounds that have
been found recently.

4. Lower Bounds

To find a good lower bound on the set of the symmetric ranks of all symmetric tensors over K of
given order d and dimension n, it suffices to find a form in Sd, when dim S1 = n, with high Waring rank.

The (few) lower bounds which we are aware of have been obtained by finding some special forms
of high rank. Since the rank of a generic form gives a lower bound, the challenge is to exceed it. In this
section, we present the special forms of high rank that have given the best known lower bounds.

4.1. What Monomials Tell Us

To begin with, let us consider binary forms, for which ranks are quite well understood.
The maximum rank of degree d binary forms is d, while the rank of a generic degree d binary form is
⌊(d+ 2)/2⌋ (it can be deduced from Proposition 1). Moreover, a degree d binary form of maximum rank
can be turned into a monomial by a change of coordinates. Hence, for binary forms, the maximum
rank is reached by monomials. For quadrics, whose rank is obviously well understood, the maximum
rank of monomials is two (unless dim S1 ≤ 1), meanwhile the maximum rank is reached by generic
forms (and equals dim S1, that from a polynomial viewpoint is the number of indeterminates).

The rank of all monomials has been determined by Carlini, Catalisano e Geramita in [19].
In dimension three, it turns out that the monomial xyszs is of rank (s + 1)2 and xys−1zs of rank s(s + 1).
This gives a lower bound that asymptotically approaches d2/4 for the rank of ternary forms of degree
d, while a generic form has rank asymptotically approaching d2/6. According to [12], Proposition 3.4,
the asymptotic estimate of maximum rank for ternary forms is actually d2/4. When the number of
variables is four or greater, the maximum rank of monomials does not exceed the rank of a generic
form of the same degree.

In view of the above, a first guess on maximum rank could be that the maximum rank is reached
either by monomials or by generic forms. However, for ternary quartics, for which the maximum
rank is known from Kleppe’s master thesis [5,17], it exceeds by one the maximum rank of both the
monomials and the generic forms. The maximum rank exceeds both the maximum rank, of the
monomials and of the generic forms, for ternary quintics too (see [11,18]). Buczyński and Teitler in [11]
also found forms in more than three variables with rank exceeding by one the rank of generic forms.
An improvement by one might seem not too exciting but, at least for ternary forms, one cannot hope to
go much farther. Indeed, the upper bound given in [12], Proposition 3.3 shows that the maximum rank
of a degree d ternary form can exceed the maximum rank of monomials by at most d. Thus, the initial
guess may be modified by expecting that the maximum rank could only slightly exceed the maximum
rank of either monomials or generic forms.
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For a detailed discussion on maximum rank of monomials, we refer the reader to [20]. Let us now
outline how the rank of monomials has been bounded from below, and how that technique has been
enhanced by Buczyński and Teitler, to exceed the previously known lower bounds on maximum ranks.

4.2. What Hilbert Functions Tell Us

The Hibert function of a graded module ⊕d∈ZMd over the graded K-algebra S● can be simply
defined as the function that on each d ∈ Z takes value dimK Md. This is a fundamental tool in algebraic
geometric, and is still much studied. To let readers who are not acquainted with algebraic geometry get
a taste of the fundamental nature of Hilbert function, let us mention that the degree and the dimension
of an algebraic set can easily be get from a naturally associated Hilbert function. More precisely,
let X ⊆ P (S1) be the set of all points on which some system of homogenous forms in S● vanishes. Then,
the Hilbert function HX of S●/ I(X) coincides with a polynomial pX (the Hilbert polynomial of X) for
all sufficiently large degrees. The degree of pX gives the dimension n of X and n! times the leading
coefficient of pX gives the degree of X. In the case when X is a finite set of r points, which by Lemma 1
is of our interest here, we get that HX(d) = r for all sufficiently large d. Below, we take a few lines to
directly show this fact in an elementary way; readers who are interested in the general properties of
Hilbert functions can find them in many basic textbooks of algebraic geometry (e.g., in [16], Chapter I,
Section 7).

Let X = {⟨ v1 ⟩ , . . . , ⟨ vr ⟩} ⊆ P (S1) be a set of r points and let HX be the Hilbert function of S●/ I(X).
The degree d component of that quotient is Sd/ I(X)d, where I(X)d = Sd ∩ I(X) is the space of degree
d forms that vanish on X. From the evaluation in Equation (4), it follows that I(X)d = ⟨ v1

d, . . . , vr
d ⟩⊥

(this fact has been already noticed in the proof of Lemma 1). It follows that

HX(d) = dim ⟨ v1
d, . . . , vr

d ⟩ .

Note that it is easy to find l1, . . . , lr−1 ∈ S1 such that li(vi) = 0 and li(vr) ≠ 0 for each i ∈ {1, . . . , r−1}.
It follows that when d ≥ r − 1 the hyperplane (l1d−r+2

l2⋯lr−1)⊥ < Sd contains v1
d, . . . , vr−1

d, but not vr
d.

In a similar way, it can be found hyperplanes that do not contain a given vi but contain all vj with j ≠ i.
This shows that v1

d, . . . , vr
d are linearly independent, hence

dim ⟨ v1
d, . . . , vr

d ⟩ = r , ∀d ≥ r − 1 .

Therefore, HX(d) = r for all sufficiently large d (≥ r − 1, in this case).

4.3. What Hyperplane Sections Tell Us

Let S
● = S●/I be the quotient of S● by a homogeneous ideal I and suppose that l ∈ S

1
is not a

zero divisor in S
●
. Then, the multiplication by l in S

●
injects each homogeneous component S

d
into

S
d+1

. Let H and H′ be, respectively, the Hilbert functions of S
●

and of its quotient S
●/ (l) over the ideal

generated by l. Thus, we have
H′(d) = H(d) −H(d − 1) .

Consequently, we also have

H(d) = d∑
i=0

H′(i) .

In this way, relevant properties of H can be deduced from properties of H′.
The quotient S

●/ (l) is naturally isomorphic to the quotient of S● over the ideal I + (l), with l ∈ S1

being a representative of l. When I is the ideal of an algebraic set X ⊆ P (S1) (that is, the set of all
points where some set of homogeneous elements of S● vanish), the algebraic set defined by I + (l) (that
is, the set of all points where all the homogeneous elements of I + (l) vanish) is the intersection of X
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with the hyperplane given by l. From a geometric viewpoint, the idea is that features of hyperplane
sections of X give relevant information on X. This idea is ubiquitous in algebraic geometry.

Let us see what we get in the case of our interest. When X is a finite set of r points, if a product
of homogeneous elements xy vanishes on X but y does not, then x must vanish on some point of X.
Conversely, if x vanishes on some point of X, it is not difficult to find a nonzero y in some Sd such that
xy vanishes on X. Therefore, to find l ∈ S●/I(X) that is not a zero divisor is to find an hyperplane that
does not meet X. In this case, since we know that H takes values r for d ≥ r − 1, we conclude that

r = r−1∑
i=0

H′(i) ,

with H′ being the Hilbert function of S●/(I(X) + (l)).
4.4. Rank of Monomials

The result we have just discussed, in conjunction with the apolarity lemma gives a way to bound
the rank of f ∈ Sd from below. If we fix l ∈ S1 ∖ {0}, for every finite set of r points X such that
I(X) ⊆ Ann f we obviously have I(X) + (l) ⊆ Ann f + (l). Denoting by Hf the Hilbert function of
S●/(Ann f + (l)), we have H′(i) ≥ Hf (i) for all i, hence

r ≥ d∑
i=0

Hf (i) =∶ b(l) .

Taking into account Lemma 1, we have that every power sum decomposition f = v1
d +⋯+ vr

d

for which no ⟨ vi ⟩ lies on the hyperplane ⟨ l ⟩⊥, has at least b(l) summands. On this basis, a first rough
idea to find a lower bound on the rank of f is to find the minimum b(l), with ⟨ l ⟩ varying in an infinite
subset of P (S1) such that each point of P (S1) lies on at most a finite number of the hyperplanes ⟨ l ⟩⊥
(e.g., one may take an irreducible curve in P (S1) contained in no hyperplane). However, Carlini,
Catalisano and Geramita followed another interesting path.

For whatever X, the ideal (I(X) ∶ l) = {g ∈ S● ∶ gl ∈ I(X)} is clearly the ideal of the set
X′ ∶= X ∖P ⟨ l ⟩⊥. Hence, for the Hilbert function H′f of S●/ ((Ann f ∶ l) + (l)),

d∑
i=0

H′f (i)
cannot exceed the number of points in X′, and consequently the number of points in X, for whatever
X. This holds for whatever choice of l ∈ S1 ∖ {0}, which therefore can be chosen to maximize the
above sum.

Now, let us consider a positive degree monomial f = x1
a1⋯xn

an for a given basis (x1, . . . , xn) of

S1. Let (x1, . . . , xn) be the dual basis in S1, and note that a monomial x1b1⋯xnbn is apolar to f if and
only if bi > ai for some i. Moreover, for two different (monic) monomials m and m′ that are not apolar
to f , we have that ∂m f and ∂m′ f cannot be proportional. This easily implies that Ann f is the ideal

generated by x1 a1+1
, . . . , xn an+1.

With no loss of generality, we can assume a1 ≤ ⋯ ≤ an, and let ai be the first nonzero exponent. It
is quite easy to recognize that (Ann f ∶ xi) is generated by

x1, . . . , xi−1, xi ai , . . . , xn an+1

and (Ann f ∶ xi) + (xi) by

x1, . . . , xi, xi+1 ai+1+1
, . . . , xn an+1 .
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To calculate that for the Hilbert function H′f of S●/ ((Ann f ∶ xi) + (xi)), one has

d∑
i=0

H′f (i) = (ai+1 + 1)⋯(an + 1)
is not difficult (and quite easy if one is familiar with Hilbert functions).

Since we are concerned with lower bounds on rank, we could end here the subsection. However,
to agree that r ∶= (ai+1 + 1)⋯(ai+1 + 1) is actually the rank of f is quite easy because, similar to what is
smartly remarked in [19], we have that

(x1, . . . , xi−1, xi+1ai+1+1 − xiai+1+1
, . . . , xnan+1 − xian+1)

is the ideal of a set of r distinct points and is contained in Ann f .

4.5. Beyond Monomials and Generic Forms

As anticipated before, once the rank of monomials has been determined, one can find ternary
monomials with rank much higher than the rank of generic forms of the same degree (which is
known by the Alexander–Hirschowitz theorem). When the number of indeterminates is four or
greater, the rank of generic forms can not be exceeded by monomials. We give now a brief account of
how Buczyński and Teitler were able to beat both ternary monomials and generic quaternary forms,
with one and the same argument. A more informative description can be directly found in [11].

Let f ∈ Sd and l ∈ S1 ∖ {0}. In the calculations before, the sum of all values of the Hilbert function
of quotient algebras of the type S●/(I + (l)) turned out to be useful. When I = Ann f , that sum
bounds from below the number of summands of a decomposition whose linear forms are outside the
hyperplane ⟨ l ⟩⊥. When I = (Ann f ∶ l), that sum directly bounds from below the rank of f . Note that
the sum under consideration is nothing but the dimension of S●/(I + (l)) as a K-vector space. We can
give the following useful description of this dimension, using a relation between I + (l) and (I ∶ l) that
one often encounters when dealing with hyperplane sections.

When S●/I is finite-dimensional, we have

dimK
S●

I + (l) = dimK
S●

I
−dimK

I + (l)
I
= dimK

S●

I
−dimK

(l)
(l) ∩ I

.

Since the kernel of the homomorphism

S●↠ (l)
(l) ∩ I

, x ↦ [xl](l)∩I ,

is (I ∶ l), we deduce that

dimK
S●

I + (l) = dimK
S●

I
−dimK

S●

(I ∶ l) .

When I = Ann f , S●/I is called the apolar algebra, and its dimension the apolar length of f . They
can be denoted by A f and al f . Note that even when I = (Ann f ∶ l), S●/I is an apolar algebra. Indeed,
for whatever x, y ∈ S●, we have

x ∈ (Ann f ∶ y) ⇐⇒ xy ∈ Ann f ⇐⇒ ∂xy f = 0 ⇐⇒ ∂x∂y f = 0 ⇐⇒ x ∈ Ann ∂y f ,

that is, (Ann f ∶ y) = Ann ∂y f . Hence, when I = (Ann f ∶ l), the quotient A is the apolar algebra of ∂l f .
From the formula (Ann f ∶ y) = Ann ∂y f and the fact that apolarity is a perfect pairing in every

degree, we get another interesting fact: the apolar length of f equals the dimension of the vector space
of all ∂y f with y ∈ S●.
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We end up with

dimK
S●

Ann f + (l) = al f − al ∂l f ,

dimK
S●

(Ann f ∶ l) + (l) = al ∂l f − al ∂l2 f ,

the former being a lower bound on the number of summands of a decomposition of f whose linear
forms are outside the hyperplane ⟨ l ⟩⊥, and the latter a lower bound on the rank of f . Based on these
remarks, a good knowledge of apolar algebras, which can be obtained for instance from [14], clearly
gives precious information on lower bounds on rank.

A first obvious step is to try to maximize al ∂l f − al ∂l2 f . To use a coordinate description, let us
fix dual bases (x1 . . . , xn) and (x1 . . . , xn) of S1 and S1. To get al ∂l2 f = 0 we choose l = x1 and consider
a form

f ∶= x1g + k , g, k ∈ K [x2, . . . xn] .

Then, ∂l f = g, and we have to choose g with maximum apolar length. From [14], we can
find the value of that maximum and learn that it is reached by a generic g (that is, for all g in a
suitable nonempty open set in the Zariski topology). In conclusion, there exist degree d forms in
n indeterminates with rank not less than the maximum apolar length of degree d − 1 forms in n − 1
indeterminates. Surprisingly, that maximum equals the maximum rank of degree d monomials when
n = 3, and the rank of generic forms of degree d when n = 4 and d is odd.

When (Ann f ∶ l) = Ann ∂l f is considered instead of Ann f to get the lower bound, one might
hope that for some special f some of the linear forms might be forced to lie on the hyperplane ⟨ l ⟩⊥.
However, for geometric reasons, we expect that forms of high rank have many decompositions, which
can therefore easily escape out of the hyperplane. Note also that, when f is a monomial x1

a1⋯xn
an ,

al f − al ∂xi f = al ∂xi f − al ∂
xi2 f whenever ai ≠ 0, so that we have no loss in cutting out the part on the

hyperplane. This might give some indication on why in the high rank examples found in [11] the first
thing considered is to raise the value of al f − al ∂xi f

For a form f of the type x1g + k, one can raise al f − al ∂x1 f by one by lowering al g by one, but at
the cost of lowering alx1 f − al ∂x1

2 f too. This causes a problem for decompositions that have some

linear forms on the hyperplane ⟨ x1 ⟩⊥. The idea was to show that for suitable choices of the form
k, such decompositions must have at least two forms on the hyperplane. To this end, note that if a
decomposition of f involve exactly one linear form v that lies in ⟨ x1 ⟩⊥, then f − vd has a decomposition
with all linear factors outside that hyperplane. Using the fact (pointed out before) that the apolar length
equals the dimension of the vector space of all derivatives, it turns out that al( f − vd) − al ∂x1( f − vd)
can be kept hight for whatever choice of v. This is incompatible with the fact that for some v, f − vd has
a decomposition with all linear factors outside ⟨ x1 ⟩⊥.

In view of determination of maximum rank, the Buczyński–Teitler lower bound is particularly
interesting because, in conjunction with the upper bound in [18], shows that the maximum rank of
ternary quintics is ten. Now, at the end of [12], Introduction, a possible guess for the maximum rank for
ternary forms of an arbitrarily given degree d is outlined, and if it is correct then the Buczyński–Teitler
lower bound is the best possible for d odd (and n = 3). In [13], the lower bound for ternary forms given
by monomials is raised by one for even degrees too, and if the guess in [12] is correct, it cannot be
improved further. Basically, the lower bound in [13] follows the second advice in [11], Remark 19,
but uses a more specific example, similar to that in [11], Theorem 18 (which gives the lower bound of
ten for ternary quintics), and the arguments are of a purely algebraic nature (do not involve geometric
dimension counts).
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5. Upper Bounds

5.1. Rise and (Relative) Fall of an Upper Bound of Genuinely Geometric Nature

We know that the rank of generic forms gives a lower bound for maximum rank. A simple
geometric argument shows that twice that rank gives an upper bound. This can be proven in a more
general context. Indeed, the rank of a point P of a projective space P, with respect to a variety in P,
is defined as the minimum number of points that can be fixed on the variety such that P lies in their
projective span. For the Veronese variety we recover the Waring rank.

Let us suppose that all forms in a nonempty open subset of a projective space P are of a certain
rank rgen with respect to some given variety (as it is the case when P = PSd, and rgen is the rank of
generic forms). When the base field is C (or even R), one can consider a small ball whose points all
have rank rgen. Every point in a projective line joining two points in the ball has rank at most the sum
of the ranks of the two points, hence at most 2rgen. Since all such lines cover P, we deduce that the
maximum rank is at most 2rgen. When K ≠ C (but is algebraically closed according to our standing
assumption, or at least infinite), to consider the Zariski topology causes no problems, since a nonempty
intersection of a line with a Zariski open set is always an infinite set.

The upper bound 2rgen, due to Blekherman and Teitler (see [7]), in the case of the Waring rank
has dramatically improved the previously known upper bounds from [6,21,22]. In addition, if we
recall that, for generic binary forms of degree d, rgen = ⌊(d + 2)/2⌋, we have that the maximum rank for
degree d binary forms, which is d, it equals 2rgen − 1 for odd degrees and 2rgen − 2 for even degrees.
This might induce to hope that the Blekherman–Teitler upper bound is nearly sharp.

Somewhat symmetrically to what they had done for lower bounds, Buczyński and Teitler, jointly
with Han and Mella, showed that the maximum rank is at most 2rgen − 1. In some special cases, which
include binary forms of even degrees, they also lowered the upper bound down to 2rgen − 2 (see [23],
Theorem 3.9 and Example 3.10). This result, which would have given a strong evidence in favor of
the sharpness of such bounds, had no such effect because, when [23] was announced, it was already
known that for ternary forms the upper bound 2rgen is quite mild (because of the asymptotic estimate
in [12]).

The Blekherman–Teitler bound keeps its relevance in the general context of rank with respect to
varieties, which, apart from its intrinsic interest, by means of Segre varieties can be readily applied
to arbitrary (not necessarily symmetric) tensors too (see [1], 4.3.4). At the same time, because of the
special nature of Veronese and Segre varieties, it is reasonable to expect that the Blekherman–Teitler
bound on tensor rank can be sensibly lowered, by means of appropriate algebraic techniques.

5.2. Linear Algebraic Tools for Upper Bounds on Waring Rank

A widely shared attitude is that hyperplane sections should provide us with a good insight on
how to build short power sum decompositions. Apart from the ubiquitous nature of this tool, in this
specific case we have the following easy fact. Let f ∈ Sd and let us take a hyperplane, defined by a
nonzero l ∈ S1. A power sum decomposition of the derivative

∂l f = v1
d−1 +⋯+ vr

d−1 ,

such that l (vi) ≠ 0 for all i, leads to a “lifted” form

F = 1
d l(v1)v1

d +⋯+ 1
d l(vr)vr

d , (5)

because, from the Leibnitz rule for ∂l and Equation (4), it readily follows that

∂l F = v1
d−1 +⋯+ vr

d−1 ,
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that is, ∂l F = ∂l f . The fact that ∂l( f − F) = 0 implies that f − F can be regarded as a form in one
indeterminate less. Indeed, note that if (x1, . . . , xn) and (x1, . . . , xn) are dual bases with l = x1, then f − F
is a form in x2, . . . , xn. More invariantly, T● ∶= ker ∂l is a graded subring of S●, and since the elements
of the ideal (l) annihilate every element in T●, the apolar bilinear map S● × S● → S● induces a bilinear
map T● × T● → T●, where T● ∶= S●/(l), which is an apolar bilinear map as well, and dim T1 = dim S1 − 1.
This allows us to design an inductive procedure, which basically is the one that has given the upper
bound in [6].

The main difficulty in the mentioned procedure is the condition that l (vi) ≠ 0 for all i.
The improvement given in [22] to the upper bound in [6] basically consists in a slightly better handling
of that condition. The fact that the bounds in [6,22] are much milder than the Blekherman–Teitler
bound should not be taken as an indication to abandon their path. Indeed, the scope of [6] is wider than
upper bounds on rank, and Jelisiejew opens a line of investigation in that direction (in [21] Introduction
one can find some additional motivation on why that line is worthy of being pursued).

To explain what is the further idea that led to the presently known best upper bounds on maximum
rank of ternary forms of given degree, let us look at binary forms, for which the actual maximum
rank is known. It does not come as a surprise that in a context where duality plays an important role,
the case when points and hyperplanes are the same thing, at least from a geometric viewpoint, turns
out to be relatively simple. Then, a reasonable basic principle is to give an important role to both points
and hyperplanes.

The idea that underlies [12], Proposition 3.3 (that supersedes the Blekherman–Teitler bound for
ternary forms), and the sharp upper bounds for ternary quartics and quintics (see [17,18]), is to look
for decompositions that “split along a few lines”. More precisely, in [18], it is shown that every ternary
quintic f can be decomposed as a sum v1

5 +⋯+ v10
5 such that the points ⟨ v1 ⟩ , . . . , ⟨ v10 ⟩ belong to a

union of four distinct lines P ⟨ l1 ⟩⊥ , . . . ,P ⟨ l4 ⟩⊥ in PS1. In [12] is shown that every degree d ternary form
has a decomposition v1

d +⋯+ vr
d, with r giving the upper bound, such that the points ⟨ v1 ⟩ , . . . , ⟨ vr ⟩

belong to a union of d distinct lines P ⟨ l1 ⟩⊥ , . . . ,P ⟨ ld ⟩⊥ in PS1. Of course, even a bare induction
procedure based on hyperplane sections, when followed step by step, leads to a decomposition of
f ∈ Sd that splits along d hyperplanes. What is new here is that the configuration of lines is fixed in
advance, and is used to drive the construction step by step of the decomposition. Let us now describe
in more detail how the construction works.

Henceforth, we assume that dim S1 = 3.

To begin with, given a nonzero x ∈ S1, a decomposition of f ∈ Sd gives rise to a decomposition
of ∂x f where all linear forms v ∈ ⟨ x ⟩⊥ disappear. Hence, to have a decomposition that splits along
lines given by l1, . . . , ld ∈ S1 ∖ {0}, a necessary condition is that ∂l1⋯ld f = 0. At each step ,we have to lift
with respect to li a decomposition with all linear forms outside the line ⟨ li ⟩⊥. Hence, we need that
⟨ l1 ⟩ , . . . , ⟨ ld ⟩ are distinct. A further mild technical need is that ∂

l1⋯l̂i⋯ld f ≠ 0, with the hat denoting
omission. It is not difficult to find such l1, . . . , ld (see [12], Proposition 3.1).

To start the procedure, let us consider ∂l2⋯ld f , which of course is a linear form and has a trivial
1-power decomposition with just one summand. However, we choose a redundant decomposition with
two summands lying in ⟨ l1 ⟩⊥, such that the summands lie on no one of the lines P ⟨ l2 ⟩⊥ , . . .P ⟨ ld ⟩⊥,
and fulfill a further condition that we shall explain later. Then, we can lift that decomposition with
respect to ∂l2 as in Equation (5) and take the difference, denoted g′1, with ∂l3⋯ld f . Since the lift is
annihilated by ∂l1 , we have ∂l1 g′1 = ∂l1l3⋯ld f ≠ 0, and since the lift has the same ∂l2 -derivative as ∂l3⋯ld f ,
we also have ∂l2 g′1 = 0. Hence, g′1 can be considered as a binary form and can be decomposed along the
line P ⟨ l2 ⟩⊥.

Now, we have come to a delicate step. If g′1 is a square v2, with v ∈ S1, on the one hand, we
have a cheap decomposition with one summand, while, on the other hand, if li(v) = 0 for some i ≥ 3,
the procedure cannot proceed. Unfortunately, from Proposition 1, it follows that all the decompositions
with two summands must involve v (or, more accurately, every such decomposition must have a
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zero summand; a fact that also follows from elementary considerations). To overcome this problem,
a crucial condition has to be imposed on g′1: the least degree of a generator of Ann g′1, a number which
in [12] is called the binary length of g′1, must be 2 (the highest possible binary length for degree 2 forms).
This way we can find a sufficiently cheap decomposition that does not stop the procedure. A similar
condition is needed in the subsequent steps.

The binary length coincides with the border rank, which is an important invariant of a form in
the context of tensor rank, but we do not need this fact. The important fact in the proof is that the
condition on g′1 (and on other forms related with l3, . . . , ld) can be assured at the previous step, when
the redundant decomposition of the linear form ∂l2⋯ld f is chosen. A similar care has to be taken
when choosing the decomposition of g′1 with two summands, and so on for all decompositions that
subsequently arise by lifting with respect to l3, l4, etc. To keep control of these conditions, a technical
lemma is needed: see [12], Lemma 2.7, based on [12], Lemma 2.6.

That is how the upper bound

⌊d2 + 6d + 1
4

⌋
in [12], Proposition 3.3 has been obtained. The splitting that has given the sharp upper bound for
quintics in [18] was obtained in a direct, not inductive, way. However, a new and probably simpler
proof can be organized in a way that is closer to that outlined above.

5.3. A Nontrivial Feature of Split Decompositions

A rough dimension count shows that, to say that every degree d ternary form has a power sum
decomposition with r summands that splits along d (or d− 1) lines, imposes a nontrivial constraint on r.
Indeed, the variety of sets of r points belonging to the union of given d lines is of dimension r. Each of
those sets gives a space of decompositions of dimension at most r − 1. Finally, the set of all unions of d
lines has dimension 2d. To reach the dimension of the space of all degree d ternary forms, we need that

2r − 1+ 2d ≥ (d + 2
2
) − 1 ,

hence

r ≥ d2 − d + 2
4

.

This is quite near to (and in fact a bit less than) the lower bound on ternary forms discussed in the
previous section, that is,

⌊d2 + 2d + 5
4

⌋
(for d ≥ 2). Note that, in most cases, a generic degree d ternary form does not have a decomposition
that splits along d lines. Hence, the above dimension count indicates that this procedure could be
particularly suitable for finding the maximum rank.

6. Summary

Let us summarize the state of the knowledge on the maximum rank rmax(n, d) of forms of degree
d > 0 in n variables, which has been presented in this article. For ternary forms:

⌊d2 + 2d + 5
4

⌋ ≤ rmax(3, d) ≤ ⌊d2 + 6d + 1
4

⌋ , ∀d ≥ 2 .

For n ≥ 4, we have the lower and upper bounds given by the rank rgen of generic forms and its
double, which hold in general for the rank with respect to a variety. The enhancements obtained
in [11,23] allow raising by one the lower bound when d is odd, and lower the upper bound by one.
Let us mention that, according to the list in [1], 5.4.1, the exceptional cases from the Alexander and
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Hirschowitz’s theorem, (3, 4), (4, 4), (5, 3), (5, 4), are included in the special cases for which the upper
bound 2rgen can be lowered by two according to Theorem 3.9 in [23].

The other special cases are a bit more cumbersome to be detected, so we do not take them into
account in the following summary:

⌈ 1
n
(n + d − 1

n − 1
)⌉ + ε ≤ rmax(n, d) ≤ 2 ⌈ 1

n
(n + d − 1

n − 1
)⌉ + ε′ − 1 , ∀n ≥ 4,∀d > 0 ,

with

ε = { 1 when n = 4 and d is odd and ≥ 3, or (n, d) ∈ {(4, 4), (5, 3), (5, 4)}
0 otherwise

,

ε′ = { 1 when (n, d) ∈ {(4, 4), (5, 3), (5, 4)}
0 otherwise

.

To give a more concrete idea of the above values, we explicitly report some ranges in Table 2,
which enrich Table 1.

Table 2. Ranges for rmax(n, d) in low degree.

1 2 3 4 5 6

1 1 1 1 1 1 1
2 1 2 3 4 5 6
3 1 3 5 7 10 13–18
4 1 4 7 10–18 15–27 21–41
5 1 5 8–14 15–28 26–51 42–83
6 1 6 10–19 21–41 42–83 77–153

Let us conclude by recalling that, if the symmetric rank was well understood, it would be easy to
determine rmax(n, d). That is why the techniques invented to find rmax(n, d)may hopefully indicate
some ways to understand tensor rank, which would be a considerable achievement, because of the
recently recognized high applicative interest of this topic.
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Abstract: We consider here the problem, which is quite classical in Algebraic geometry, of studying
the secant varieties of a projective variety X. The case we concentrate on is when X is a Veronese
variety, a Grassmannian or a Segre variety. Not only these varieties are among the ones that have
been most classically studied, but a strong motivation in taking them into consideration is the fact
that they parameterize, respectively, symmetric, skew-symmetric and general tensors, which are
decomposable, and their secant varieties give a stratification of tensors via tensor rank. We collect
here most of the known results and the open problems on this fascinating subject.

Keywords: additive decompositions; secant varieties; Veronese varieties; Segre varieties; Segre-Veronese
varieties; Grassmannians; tensor rank; Waring rank; algorithm

1. Introduction

1.1. The Classical Problem

When considering finite dimensional vector spaces over a field k (which for us, will always be
algebraically closed and of characteristic zero, unless stated otherwise), there are three main functors
that come to attention when doing multilinear algebra:

• the tensor product, denoted by V1 ⊗ · · · ⊗Vd;
• the symmetric product, denoted by SdV;
• the wedge product, denoted by

∧d V.

These functors are associated with three classically-studied projective varieties in algebraic
geometry (see e.g., [1]):

• the Segre variety;
• the Veronese variety;
• the Grassmannian.

We will address here the problem of studying the higher secant varieties σs(X), where X is one of
the varieties above. We have:

σs(X) :=
⋃

P1,...,Ps∈X
〈P1, . . . , Ps〉 (1)

Mathematics 2018, 6, 314; doi:10.3390/math6120314 www.mdpi.com/journal/mathematics63
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i.e., σs(X) is the Zariski closure of the union of the Ps−1’s, which are s-secant to X.
The problem of determining the dimensions of the higher secant varieties of many classically-

studied projective varieties (and also projective varieties in general) is quite classical in algebraic
geometry and has a long and interesting history. By a simple count of parameters, the expected
dimension of σs(X), for X ⊂ PN , is min{s(dim X) + (s− 1), N}. This is always an upper-bound of the
actual dimension, and a variety X is said to be defective, or s-defective, if there is a value s for which
the dimension of σs(X) is strictly smaller than the expected one; the difference:

δs(X) := min{s(dim X) + (s− 1), N} − dim σs(X)

is called the s-defectivity of X (or of σs(X)); a variety X for which some δs is positive is called defective.
The first interest in the secant variety σ2(X) of a variety X ⊂ PN lies in the fact that if σ2(X) �= PN ,

then the projection of X from a generic point of PN into PN−1 is an isomorphism. This goes back to the
XIX Century with the discovery of a surface X ⊂ P5, for which σ2(X) is a hypersurface, even though
its expected dimension is five. This is the Veronese surface, which is the only surface in P5 with this
property. The research on defective varieties has been quite a frequent subject for classical algebraic
geometers, e.g., see the works of F. Palatini [2], A. Terracini [3,4] and G. Scorza [5,6].

It was then in the 1990s that two new articles marked a turning point in the study about these
questions and rekindled the interest in these problems, namely the work of F. Zak and the one by J.
Alexander and A. Hirshowitz.

Among many other things, like, e.g., proving Hartshorne’s conjecture on linear normality,
the outstanding paper of F. Zak [7] studied Severi varieties, i.e., non-linearly normal smooth n-dimensional
subvarieties X ⊂ PN , with 2

3 (N − 1) = n. Zak found that all Severi varieties have defective σ2(X),
and, by using invariant theory, classified all of them as follows.

Theorem 1. Over an algebraically-closed field of characteristic zero, each Severi variety is projectively equivalent
to one of the following four projective varieties:

• Veronese surface ν2(P2) ⊂ P5;
• Segre variety ν1,1(P2 × P2) ⊂ P8;
• Grassmann variety Gr(1, 5) ⊂ P14;
• Cartan variety E16 ⊂ P26.

Moreover, later in the paper, also Scorza varieties are classified, which are maximal with respect
to defectivity and which generalize the result on Severi varieties.

The other significant work is the one done by J. Alexander and A. Hirschowitz; see [8] and
Theorem 2 below. Although not directly addressed to the study of secant varieties, they confirmed
the conjecture that, apart from the quadratic Veronese varieties and a few well-known exceptions,
all the Veronese varieties have higher secant varieties of the expected dimension. In a sense, this result
completed a project that was underway for over 100 years (see [2,3,9]).

1.2. Secant Varieties and Tensor Decomposition

Tensors are multidimensional arrays of numbers and play an important role in numerous research
areas including computational complexity, signal processing for telecommunications [10] and scientific
data analysis [11]. As specific examples, we can quote the complexity of matrix multiplication [12],
the P versus NP complexity problem [13], the study of entanglement in quantum physics [14,15],
matchgates in computer science [13], the study of phylogenetic invariants [16], independent component
analysis [17], blind identification in signal processing [18], branching structure in diffusion images [19]
and other multilinear data analysis techniques in bioinformatics and spectroscopy [20]. Looking at this
literature shows how knowledge about this subject used to be quite scattered and suffered a bit from
the fact that the same type of problem can be considered in different areas using a different language.
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In particular, tensor decomposition is nowadays an intensively-studied argument by many
algebraic geometers and by more applied communities. Its main problem is the decomposition of a
tensor with a given structure as a linear combination of decomposable tensors of the same structure
called rank-one tensors. To be more precise: let V1, . . . , Vd be k-vector spaces of dimensions n1 + 1,
. . . , nd + 1, respectively, and let V = V∗1 ⊗ · · · ⊗ V∗d � (V1 ⊗ . . . ⊗ Vd)

∗. We call a decomposable,
or rank-one, tensor an element of the type v∗1 ⊗ · · · ⊗ v∗d ∈ V. If T ∈ V, one can ask:

What is the minimal length of an expression of T as a sum of decomposable tensors?

We call such an expression a tensor decomposition of T, and the answer to this question is usually
referred to as the tensor rank of T. Note that, since V is a finite-dimensional vector space of dimension
∏d

i=1 dimk Vi, which has a basis of decomposable tensors, it is quite trivial to see that every T ∈ V can
be written as the sum of finitely many decomposable tensors. Other natural questions to ask are:

What is the rank of a generic tensor in V? What is the dimension of the closure of the set of
all tensors of tensor rank ≤ r?

Note that it is convenient to work up to scalar multiplication, i.e., in the projective space P(V),
and the latter questions are indeed meant to be considered in the Zariski topology of P(V). This is the
natural topology used in algebraic geometry, and it is defined such that closed subsets are zero loci of
(homogeneous) polynomials and open subsets are always dense. In this terminology, an element of a
family is said to be generic in that family if it lies in a proper Zariski open subset of the family. Hence,
saying that a property holds for a generic tensor in P(V) means that it holds on a proper Zariski subset
of P(V).

In the case d = 2, tensors correspond to ordinary matrices, and the notion of tensor rank coincides
with the usual one of the rank of matrices. Hence, the generic rank is the maximum one, and it is
the same with respect to rows or to columns. When considering multidimensional tensors, we can
check that in general, all these usual properties for tensor rank fail to hold; e.g., for (2× 2× 2)-tensors,
the generic tensor rank is two, but the maximal one is three, and of course, it cannot be the dimension
of the space of “row vectors” in whatever direction.

It is well known that studying the dimensions of the secant varieties to Segre varieties gives a first
idea of the stratification of V, or equivalently of P(V), with respect to tensor rank. In fact, the Segre
variety ν1,...,1(Pn1 × . . . × Pnd) can be seen as the projective variety in P(V), which parametrizes
rank-one tensors, and consequently, the generic point of σs(ν1,...,1(Pn1 × · · · × Pnd)) parametrizes a
tensor of tensor rank equal to s (e.g., see [21,22]).

If V1 = · · · = Vd = V of dimension n + 1, one can just consider symmetric or skew-symmetric
tensors. In the first case, we study the SdV∗, which corresponds to the space of homogeneous
polynomials in n + 1 variables. Again, we have a notion of symmetric decomposable tensors,
i.e, elements of the type (v∗)d ∈ SdV∗, which correspond to powers of linear forms. These are
parametrized by the Veronese variety νd(Pn) ⊂ P(SdV∗). In the skew-symmetric case, we consider∧d V∗, whose skew-symmetric decomposable tensors are the elements of the form v∗1 ∧ . . .∧ v∗d ∈

∧d V∗.
These are parametrized by the Grassmannian Gr(d, n + 1) in its Plücker embedding. Hence, we get a
notion of symmetric-rank and of ∧-rank for which one can ask the same questions as in the case of
arbitrary tensors. Once again, these are translated into algebraic geometry problems on secant varieties
of Veronese varieties and Grassmannians.

Notice that actually, Veronese varieties embedded in a projective space corresponding to P(SdV∗)
can be thought of as sections of the Segre variety in P((V∗)⊗d) defined by the (linear) equations given
by the symmetry relations.

Since the case of symmetric tensors is the one that has been classically considered more in
depth, due to the fact that symmetric tensors correspond to homogeneous polynomials, we start
from analyzing secant varieties of Veronese varieties in Section 2. Then, we pass to secant
varieties of Segre varieties in Section 3. Then, Section 4 is dedicated to varieties that parametrize
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other types of structured tensors, such as Grassmannians, which parametrize skew-symmetric
tensors, Segre–Veronese varieties, which parametrize decomposable partially-symmetric tensors,
Chow varieties, which parametrize homogeneous polynomials, which factorize as product of linear
forms, varieties of powers, which parametrize homogeneous polynomials, which are pure k-th powers
in the space of degree kd, or varieties that parametrize homogeneous polynomials with a certain
prescribed factorization structure. In Section 5, we will consider other problems related to these kinds
of questions, e.g., what is known about maximal ranks, how to find the actual value of (or bounds on)
the rank of a given tensor, how to determine the number of minimal decompositions of a tensor, what is
known about the equations of the secant varieties that we are considering or what kind of problems
we meet when treating this problem over R, a case that is of course very interesting for applications.

2. Symmetric Tensors and Veronese Varieties

A symmetric tensor T is an element of the space SdV∗, where V∗ is an (n + 1)-dimensional
k-vector space and k is an algebraically-closed field. It is quite immediate to see that we can associate
a degree d homogeneous polynomial in k[x0, . . . , xn] with any symmetric tensor in SdV∗.

In this section, we address the problem of symmetric tensor decomposition.

What is the smallest integer r such that a given symmetric tensor T ∈ SdV∗ can be written
as a sum of r symmetric decomposable tensors, i.e., as a sum of r elements of the type
(v∗)⊗d ∈ (V∗)⊗d?

We call the answer to the latter question the symmetric rank of T. Equivalently,

What is the smallest integer r such that a given homogeneous polynomial F ∈ SdV∗

(a (n + 1)-ary d-ic, in classical language) can be written as a sum of r d-th powers of
linear forms?

We call the answer to the latter question the Waring rank, or simply rank, of F; denoted Rsym(F).
Whenever it will be relevant to recall the base field, it will be denoted by Rk

sym(F). Since, as we
have said, the space of symmetric tensors of a given format can be naturally seen as the space of
homogeneous polynomials of a certain degree, we will use both names for the rank.

The name “Waring rank” comes from an old problem in number theory regarding expressions of
integers as sums of powers; we will explain it in Section 2.1.1.

The first naive remark is that there are (n+d
d ) coefficients ai0,··· ,in needed to write:

F = ∑ ai0,··· ,in xi0
0 · · · xin

n ,

and r(n + 1) coefficients bi,j to write the same F as:

F =
r

∑
i=1

(bi,0x0 + · · ·+ bi,nxn)
d.

Therefore, for a general polynomial, the answer to the question should be that r has to be at least such
that r(n + 1) ≥ (n+d

d ). Then, the minimal value for which the previous inequality holds is
⌈

1
n+1 (

n+d
d )

⌉
.

For n = 2 and d = 2, we know that this bound does not give the correct answer because a regular
quadratic form in three variables cannot be written as a sum of two squares. On the other hand,
a straightforward inspection shows that for binary cubics, i.e., d = 3 and n = 1, the generic rank is as
expected. Therefore, the answer cannot be too simple.

The most important general result on this problem has been obtained by J. Alexander and A.
Hirschowitz, in 1995; see [8]. It says that the generic rank is as expected for forms of degree d ≥ 3 in
n ≥ 1 variables except for a small number of peculiar pairs (n, d); see Theorem 2.
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What about non-generic forms? As in the case of binary cubics, there are special forms that require
a larger r, and these cases are still being investigated. Other presentations of this topic from different
points of view can be found in [23–26].

As anticipated in the Introduction, we introduce Veronese varieties, which parametrize
homogeneous polynomials of symmetric-rank-one, i.e., powers of linear forms; see Section 2.1.2.
Then, in order to study the symmetric-rank of a generic form, we will use the concept of secant
varieties as defined in (1). In fact, the order of the first secant that fills the ambient space will give
the symmetric-rank of a generic form. The dimensions of secant varieties to Veronese varieties were
completely classified by J. Alexander and A. Hirschowitz in [8] (Theorem 2). We will briefly review
their proof since it provides a very important constructive method to compute dimensions of secant
varieties that can be extended also to other kinds of varieties parameterizing different structured
tensors. In order to do that, we need to introduce apolarity theory (Section 2.1.4) and the so-called
Horace method (Sections 2.2.1 and 2.2.2).

The second part of this section will be dedicated to a more algorithmic approach to these
problems, and we will focus on the problem of computing the symmetric-rank of a given homogeneous
polynomial.

In the particular case of binary forms, there is a very well-known and classical result firstly
obtained by J. J. Sylvester in the XIX Century. We will show a more modern reformulation of the
same algorithm presented by G. Comas and M. Seiguer in [27] and a more efficient one presented
in [28]; see Section 2.3.1. In Section 2.3.2, we will tackle the more general case of the computation of
the symmetric-rank of any homogeneous polynomial, and we will show the only theoretical algorithm
(to our knowledge) that is able to do so, which was developed by J. Brachat, P. Comon, B. Mourrain
and E. Tsigaridas in [29] with its reformulation [30,31].

The last subsection of this section is dedicated to an overview of open problems.

2.1. On Dimensions of Secant Varieties of Veronese Varieties

This section is entirely devoted to computing the symmetric-rank of a generic form, i.e., to the
computation of the generic symmetric-rank. As anticipated, we approach the problem by computing
dimensions of secant varieties of Veronese varieties. Recall that, in algebraic geometry, we say that
a property holds for a generic form of degree d if it holds on a Zariski open, hence dense, subset
of P(SdV∗).

2.1.1. Waring Problem for Forms

The problem that we are presenting here takes its name from an old question in number theory.
In 1770, E. Waring in [9] stated (without proofs) that:

“Every natural number can be written as sum of at most 9 positive cubes, Every natural
number can be written as sum of at most 19 biquadratics.”

Moreover, he believed that:

“For all integers d ≥ 2, there exists a number g(d) such that each positive integer n ∈ Z+ can
be written as sum of the d-th powers of g(d) many positive integers, i.e., n = ad

1 + · · ·+ ad
g(d)

with ai ≥ 0.”

E. Waring’s belief was shown to be true by D. Hilbert in 1909, who proved that such a g(d)
indeed exists for every d ≥ 2. In fact, we know from the famous four-squares Lagrange theorem
(1770) that g(2) = 4, and more recently, it has been proven that g(3) = 9 and g(4) = 19. However,
the exact number for higher powers is not yet known in general. In [32], H. Davenport proved that
any sufficiently large integer can be written as a sum of 16 fourth powers. As a consequence, for any
integer d ≥ 2, a new number G(d) has been defined, as the least number of d-th powers of positive
integers to write any sufficiently large positive integer as their sum. Previously, C. F. Gauss proved
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that any integer congruent to seven modulo eight can be written as a sum of four squares, establishing
that G(2) = g(2) = 4. Again, the exact value G(d) for higher powers is not known in general.

This fascinating problem of number theory was then formulated for homogeneous polynomials
as follows.

Let k be an algebraically-closed field of characteristic zero. We will work over the projective space
Pn = PV where V is an (n + 1)-dimensional vector space over k. We consider the polynomial ring
S = k[x0, . . . , xn] with the graded structure S =

⊕
d≥0 Sd, where Sd = 〈xd

0, xd−1
0 x1, . . . , xd

n〉 is the vector
space of homogeneous polynomials, or forms, of degree d, which, as we said, can be also seen as the
space SdV of symmetric tensors of order d over V. In geometric language, those vector spaces Sd are
called complete linear systems of hypersurfaces of degree d in Pn. Sometimes, we will write PSd in
order to mean the projectivization of Sd, namely PSd will be a P(n+d

d )−1 whose elements are classes of
forms of degree d modulo scalar multiplication, i.e., [F] ∈ PSd with F ∈ Sd.

In analogy to the Waring problem for integer numbers, the so-called little Waring problem for
forms is the following.

Problem 1 (little Waring problem). Find the minimum s ∈ Z such that all forms F ∈ Sd can be written as
the sum of at most s d-th powers of linear forms.

The answer to the latter question is analogous to the number g(d) in the Waring problem for
integers. At the same time, we can define an analogous number G(d), which considers decomposition
in sums of powers of all numbers, but finitely many. In particular, the big Waring problem for forms
can be formulated as follows.

Problem 2 (big Waring problem). Find the minimum s ∈ Z such that the generic form F ∈ Sd can be written
as a sum of at most s d-th powers of linear forms.

In order to know which elements of Sd can be written as a sum of s d-th powers of linear forms,
we study the image of the map:

φd,s : S1 × · · · × S1︸ ︷︷ ︸
s

−→ Sd, φd,s(L1, . . . , Ls) = Ld
1 + · · ·+ Ld

s . (2)

In terms of maps φd,s, the little Waring problem (Problem 1) is to find the smallest s, such that
Im(φd,s) = Sd. Analogously, to solve the big Waring problem (Problem 2), we require Im(φd,s) = Sd,
which is equivalent to finding the minimal s such that dim(Im(φd,s)) = dim Sd.

The map φd,s can be viewed as a polynomial map between affine spaces:

φd,s : As(n+1) −→ AN , with N =

(
n + d

n

)
.

In order to know the dimension of the image of such a map, we look at its differential at a general
point P of the domain:

dφd,s|P : TP(A
s(n+1)) −→ Tφd,s(P)(A

N).

Let P = (L1, . . . , Ls) ∈ As(n+1) and v = (M1, . . . , Ms) ∈ TP(As(n+1)) � As(n+1), where Li, Mi ∈ S1 for
i = 1, . . . , s. Let us consider the following parameterizations t �−→ (L1 + M1t, . . . , Ls + Mst) of a line C
passing through P whose tangent vector at P is M. The image of C via φd,s is φd,s(L1 + M1t, . . . , Ls +

Mst) = ∑s
i=1(Li + Mit)d. The tangent vector to φd,s(C) in φd,s(P) is:

d
dt

∣∣∣∣
t=0

(
s

∑
i=1

(Li + Mit)d

)
=

s

∑
i=1

d
dt

∣∣∣∣
t=0

(Li + Mit)d =
s

∑
i=1

dLd−1
i Mi. (3)
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Now, as v = (M1, . . . , Ms) varies in As(n+1), the tangent vectors that we get span 〈Ld−1
1 S1, . . . , Ld−1

s S1〉.
Therefore, we just proved the following.

Proposition 1. Let L1, . . . , Ls be linear forms in S = k[x0, . . . , xn], where Li = ai,0x0 + · · · + ai,nxn,
and consider the map:

φd,s : S1 × · · · × S1︸ ︷︷ ︸
s

−→ Sd, φd,s(L1, . . . , Ls) = Ld
1 + · · ·+ Ld

s ;

then:
rk(dφd,s)|(L1,...,Ls) = dimk〈Ld−1

1 S1, . . . , Ld−1
s S1〉.

It is very interesting to see how the problem of determining the latter dimension has been solved,
because the solution involves many algebraic and geometric tools.

2.1.2. Veronese Varieties

The first geometric objects that are related to our problem are the Veronese varieties. We recall
that a Veronese variety can be viewed as (is projectively equivalent to) the image of the following
d-pleembedding of Pn, where all degree d monomials in n + 1 variables appear in lexicographic order:

νd : Pn ↪→ P(n+d
d )−1

[u0 : . . . : un] �→ [ud
0 : ud−1

0 u1 : ud−1
0 u2 : . . . : ud

n].
(4)

With a slight abuse of notation, we can describe the Veronese map as follows:

νd : PS1 = (Pn)∗ ↪→ PSd =
(
P(n+d

d )−1
)∗

[L] �→ [Ld]
. (5)

Let Xn,d := νd(Pn) denote a Veronese variety.
Clearly, “νd as defined in (4)” and “νd as defined in (5)” are not the same map; indeed, from (5),

νd([L]) = νd ([u0x0 + · · ·+ unxn]) = [Ld] =

=

[
ud

0 : dud−1
0 u1 :

(
d
2

)
ud−1

0 u2 : . . . : ud
n

]
∈ PSd.

However, the two images are projectively equivalent. In order to see that, it is enough to consider the
monomial basis of Sd given by:{(

d
α

)
xα | α = (α0, . . . , αn) ∈ Nn+1, |α| = d

}
.

Given a set of variables x0, . . . , xn, we let xα denote the monomial xα0
0 · · · xαn

n , for any α ∈ Nn+1.
Moreover, we write |α| = α0 + . . . + αn for its degree. Furthermore, if |α| = d, we use the standard
notation (d

α) for the multi-nomial coefficient d!
α0!···αn ! .

Therefore, we can view the Veronese variety either as the variety that parametrizes d-th powers of
linear forms or as the one parameterizing completely decomposable symmetric tensors.

Example 1 (Twisted cubic). Let V = k2 and d = 3, then:

ν3 : P1 ↪→ P3

[a0 : a1] �→ [a3
0 : a2

0a1 : a0a2
1 : a3

1]
.
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If we take {z0, . . . , z3} to be homogeneous coordinates in P3, then the Veronese curve in P3 (classically known
as twisted cubic) is given by the solutions of the following system of equations:⎧⎪⎨⎪⎩

z0z2 − z2
1 = 0

z0z3 − z1z2 = 0
z1z3 − z2

2 = 0
.

Observe that those equations can be obtained as the vanishing of all the maximal minors of the following matrix:(
z0 z1 z2

z1 z2 z3

)
. (6)

Notice that the matrix (6) can be obtained also as the defining matrix of the linear map:

S2V∗ → S1V, ∂2
xi
�→ ∂2

xi
(F)

where F = ∑3
i=0 (

d
i)
−1

zix3−i
0 xi

1 and ∂xi := ∂
∂xi

.
Another equivalent way to obtain (6) is to use the so-called flattenings. We give here an intuitive idea about

flattenings, which works only for this specific example.
Write the 2× 2× 2 tensor by putting in position ijk the variable zi+j+k. This is an element of V∗ ⊗V∗ ⊗

V∗. There is an obvious isomorphism among the space of 2× 2× 2 tensors V∗ ⊗ V∗ ⊗ V∗ and the space of
4× 2 matrices (V∗ ⊗V∗)⊗V∗. Intuitively, this can be done by slicing the 2× 2× 2 tensor, keeping fixed the
third index. This is one of the three obvious possible flattenings of a 2× 2× 2 tensor: the other two flattenings
are obtained by considering as fixed the first or the second index. Now, after having written all the possible three
flattenings of the tensor, one could remove the redundant repeated columns and compute all maximal minors of
the three matrices obtained by this process, and they will give the same ideal.

The phenomenon described in Example 1 is a general fact. Indeed, Veronese varieties are always
defined by 2× 2 minors of matrices constructed as (6), which are usually called catalecticant matrices.

Definition 1. Let F ∈ Sd be a homogeneous polynomial of degree d in the polynomial ring S = k[x0, . . . , xn].
For any i = 0, . . . , d, the (i, d − i)-th catalecticant matrix associated to F is the matrix representing the
following linear maps in the standard monomial basis, i.e.,

Cati,d−i(F) : S∗i −→ Sd−i,
∂i

xα �→ ∂i
xα(F),

where, for any α ∈ Nn+1 with |α| = d− i, we denote ∂d−i
xα := ∂d−i

∂x
α0
0 ···∂xαn

n
.

Let {zα | α ∈ Nn+1, |α| = d} be the set of coordinates on PSdV, where V is (n + 1)-dimensional.
The (i, d− i)-th catalecticant matrix of V is the (n+i

n )× (n+d−i
n ) matrix whose rows are labeled by Bi = {β ∈

Nn+1 | |β| = i} and columns are labeled by Bd−i = {β ∈ Nn+1 | |β| = d− i}, given by:

Cati,d−i(V) =
(

zβ1+β2

)
β1∈Bi

β2∈Bd−i

.

Remark 1. Clearly, the catalecticant matrix representing Catd−i,i(F) is the transpose of Cati,d−i(F). Moreover,
the most possible square catalecticant matrix is Cat�d/2�,�d/2�(F) (and its transpose).

Let us describe briefly how to compute the ideal of any Veronese variety.

Definition 2. A hypermatrix A = (ai1,...,id)0≤ij≤n, j=1,...,d is said to be symmetric, or completely symmetric, if
ai1,...,id = aiσ(1) ,...,iσ(d) for all σ ∈ Sd, where Sd is the permutation group of {1, . . . , d}.
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Definition 3. Let H ⊂ V⊗d be the (n+d
d )-dimensional subspace of completely symmetric tensors of V⊗d,

i.e., H is isomorphic to the symmetric algebra SdV or the space of homogeneous polynomials of degree d in
n + 1 variables. Let S be a ring of coordinates of P(n+d

d )−1 = PH obtained as the quotient S = S̃/I where
S̃ = k[xi1,...,id ]0≤ij≤n, j=1,...,d and I is the ideal generated by all:

xi1,...,id − xiσ(1) ,...,iσ(d) , ∀ σ ∈ Sd.

The hypermatrix (xi1,...,id)0≤ij≤n, j=1,...,d, whose entries are the generators of S, is said to be a generic
symmetric hypermatrix.

Let A = (xi1,...,id)0≤ij≤n, j=1,...,d be a generic symmetric hypermatrix, then it is a known result that
the ideal of any Veronese variety is generated in degree two by the 2× 2 minors of a generic symmetric
hypermatrix, i.e.,

I(νd(P
n)) = I2(A) := (2× 2 minors of A) ⊂ S̃. (7)

See [33] for the set theoretical point of view. In [34], the author proved that the ideal of the Veronese
variety is generated by the two-minors of a particular catalecticant matrix. In his PhD thesis [35], A.
Parolin showed that the ideal generated by the two-minors of that catalecticant matrix is actually I2(A),
where A is a generic symmetric hypermatrix.

2.1.3. Secant Varieties

Now, we recall the basics on secant varieties.

Definition 4. Let X ⊂ PN be a projective variety of dimension n. We define the s-th secant variety σs(X) of
X as the closure of the union of all linear spaces spanned by s points lying on X, i.e.,

σs(X) :=
⋃

P1,...,Ps∈X
〈P1, . . . , Ps〉 ⊂ PN .

For any F ⊂ Pn, 〈F〉 denotes the linear span of F , i.e., the smallest projective linear space containing F .

Remark 2. The closure in the definition of secant varieties is necessary. Indeed, let L1, L2 ∈ S1 be two
homogeneous linear forms. The polynomial Ld−1

1 L2 is clearly in σ2(νd(P(V))) since we can write:

Ld−1
1 L2 = lim

t→0

1
t

(
(L1 + tL2)

d − Ld
1

)
; (8)

however, if d > 2, there are no M1, M2 ∈ S1 such that Ld−1
1 L2 = Md

1 + Md
2 . This computation represents a

very standard concept of basic calculus: tangent lines are the limit of secant lines. Indeed, by (3), the left-hand
side of (8) is a point on the tangent line to the Veronese variety at [Ld

1], while the elements inside the limit on the
right-hand side of (8) are lines secant to the Veronese variety at [Ld

1] and another moving point; see Figure 1.

Figure 1. Representation of (8).
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From this definition, it is evident that the generic element of σs(X) is an element of some
〈P1, . . . , Ps〉, with Pi ∈ X; hence, it is a linear combination of s elements of X. This is why secant
varieties are used to model problems concerning additive decompositions, which motivates the
following general definition.

Definition 5. Let X ⊂ PN be a projective variety. For any P ∈ PN, we define the X-rank of P as

RX(P) = min{s | P ∈ 〈P1, . . . , Ps〉, for P1, . . . , Ps ∈ X},

and we define the border X-rank of P as

RX(P) = min{s | P ∈ σs(X)}.

If X is a non-degenerate variety, i.e., it is not contained in a proper linear subspace of the ambient
space, we obtain a chain of inclusions

X ⊂ σ2(X) ⊂ . . . ⊂ σs(X) = PN .

Definition 6. The smallest s ∈ Z such that σs(X) = PN is called the generic X-rank. This is the X-rank of
the generic point of the ambient space.

The generic X-rank of X is an invariant of the embedded variety X.
As we described in (5), the image of the d-uple Veronese embedding of Pn = PS1 can be viewed as

the subvariety of PSd made by all forms, which can be written as d-th powers of linear forms. From this
point of view, the generic rank s of the Veronese variety is the minimum integer such that the generic
form of degree d in n + 1 variables can be written as a sum of s powers of linear forms. In other words,

the answer to the Big Waring problem (Problem 2) is the generic rank with respect to the
d-uple Veronese embedding in PSd.

This is the reason why we want to study the problem of determining the dimension of s-th secant
varieties of an n-dimensional projective variety X ⊂ PN .

Let Xs := X× · · · × X︸ ︷︷ ︸
s

, X0 ⊂ X be the open subset of regular points of X and:

Us(X) :=
{
(P1, . . . , Ps) ∈ Xs | ∀ i, Pi∈X0, and

the Pi’s are independent

}
.

Therefore, for all (P1, . . . , Ps) ∈ Us(X), since the Pi’s are linearly independent, the linear span
H = 〈P1, . . . , Ps〉 is a Ps−1. Consider the following incidence variety:

Is(X) = {(Q, H) ∈ PN ×Us(X) | Q ∈ H}.

If s ≤ N + 1, the dimension of that incidence variety is:

dim(Is(X)) = n(s− 1) + n + s− 1.

With this definition, we can consider the projection on the first factor:

π1 : Is(X)→ PN ;

the s-th secant variety of X is just the closure of the image of this map, i.e.,

σs(X) = Im(π1 : Is(X)→ PN).
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Now, if dim(X) = n, it is clear that, while dim(Is(X)) = ns + s − 1, the dimension of σs(X) can
be smaller: it suffices that the generic fiber of π1 has positive dimension to impose dim(σs(X)) <

n(s− 1) + n + s− 1. Therefore, it is a general fact that, if X ⊂ PN and dim(X) = n, then,

dim(σs(X)) ≤ min{N, sn + s− 1}.

Definition 7. A projective variety X ⊂ PN of dimension n is said to be s-defective if dim(σs(X)) <

min{N, sn + s− 1}. If so, we call s-th defect of X the difference:

δs(X) := min{N, sn + s− 1} − dim(σs(X)).

Moreover, if X is s-defective, then σs(X) is said to be defective. If σs(X) is not defective, i.e., δs(X) = 0, then it
is said to be regular or of expected dimension.

Alexander–Hirschowitz Theorem ([8]) tells us that the dimension of the s-th secant varieties
to Veronese varieties is not always the expected one; moreover, they exhibit the list of all the
defective cases.

Theorem 2 (Alexander–Hirschowitz Theorem). Let Xn,d = νd(Pn), for d ≥ 2, be a Veronese variety. Then:

dim(σs(X)) = min
{(

n + d
d

)
− 1, sn + s− 1

}
except for the following cases:

(1) d = 2, n ≥ 2, s ≤ n, where dim(σs(X)) = min
{
(n+2

2 )− 1, 2n + 1− (s
2)
}

;

(2) d = 3, n = 4, s = 7, where δs = 1;
(3) d = 4, n = 2, s = 5, where δs = 1;
(4) d = 4, n = 3, s = 9, where δs = 1;
(5) d = 4, n = 4, s = 14, where δs = 1.

Due to the importance of this theorem, we firstly give a historical review, then we will give the
main steps of the idea of the proof. For this purpose, we will need to introduce many mathematical
tools (apolarity in Section 2.1.4 and fat points together with the Horace method in Section 2.2) and
some other excursuses on a very interesting and famous conjecture (the so-called SHGHconjecture; see
Conjectures 1 and 2) related to the techniques used in the proof of this theorem.

The following historical review can also be found in [36].
The quadric cases (d = 2) are classical. The first non-trivial exceptional case d = 4 and n = 2

was known already by Clebsch in 1860 [37]. He thought of the quartic as a quadric of quadrics and
found that σ5(ν4(P2)) � P14, whose dimension was not the expected one. Moreover, he found
the condition that the elements of σ5(ν4(P2)) have to satisfy, i.e., he found the equation of the
hypersurface σ5(ν4(P2)) � P14: that condition was the vanishing of a 6× 6 determinant of a certain
catalecticant matrix.

To our knowledge, the first list of all exceptional cases was described by Richmond in [38],
who showed all the defectivities, case by case, without finding any general method to describe all
of them. It is remarkable that he could describe also the most difficult case of general quartics of P4.
The same problem, but from a more geometric point of view, was at the same time studied and solved
by Palatini in 1902–1903; see [39,40]. In particular, Palatini studied the general problem, proved the
defectivity of the space of cubics in P4 and studied the case of n = 2. He was also able to list all the
defective cases.

The first work where the problem was treated in general is due to Campbell (in 1891; therefore,
his work preceded those of Palatini, but in Palatini’s papers, there is no evidence of knowledge of
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Campbell’s work), who in [41], found almost all the defective cases (except the last one) with very
interesting, but not always correct arguments (the fact that the Campbell argument was wrong for
n = 3 was claimed also in [4] in 1915).

His approach is very close to the infinitesimal one of Terracini, who introduced in [3] a very
simple and elegant argument (today known as Terracini’s lemmas, the first of which will be displayed
here as Lemma 1), which offered a completely new point of view in the field. Terracini showed again
the case of n = 2 in [3]. In [42], he proved that the exceptional case of cubics in P4 can be solved by
considering that the rational quartic through seven given points in P4 is the singular locus of its secant
variety, which is a cubic hypersurface. In [4], Terracini finally proved the case n = 3 (in 2001, Roé,
Zappalà and Baggio revised Terracini’s argument, and they where able to present a rigorous proof for
the case n = 3; see [43]).

In 1931, Bronowski [44] tried to tackle the problem checking if a linear system has a vanishing
Jacobian by a numerical criterion, but his argument was incomplete.

In 1985, Hirschowitz ([45]) proved again the cases n = 2, 3, and he introduced for the first time
in the study of this problem the use of zero-dimensional schemes, which is the key point towards a
complete solution of the problem (this will be the idea that we will follow in these notes). Alexander
used this new and powerful idea of Hirschowitz, and in [46], he proved the theorem for d ≥ 5.

Finally, in [8,47] (1992–1995), J. Alexander and A. Hirschowitz joined forces to complete the proof
of Theorem 2. After this result, simplifications of the proof followed [48,49].

After this historical excursus, we can now review the main steps of the proof of the
Alexander–Hirschowitz theorem. As already mentioned, one of the main ingredients to prove is
Terracini’s lemma (see [3] or [50]), which gives an extremely powerful technique to compute the
dimension of any secant variety.

Lemma 1 (Terracini’s lemma). Let X be an irreducible non-degenerate variety in PN, and let P1, . . . , Ps be s
generic points on X. Then, the tangent space to σs(X) at a generic point Q ∈ 〈P1, . . . , Ps〉 is the linear span in
PN of the tangent spaces TPi (X) to X at Pi, i = 1, . . . , s, i.e.,

TQ(σs(X)) = 〈TP1(X), . . . , TPs(X)〉.

This “lemma” (we believe it is very reductive to call it a “lemma”) can be proven in many ways
(for example, without any assumption on the characteristic of k, or following Zak’s book [7]). Here,
we present a proof “made by hand”.

Proof. We give this proof in the case of k = C, even though it works in general for any
algebraically-closed field of characteristic zero.

We have already used the notation Xs for X× · · · × X taken s times. Suppose that dim(X) = n.
Let us consider the following incidence variety,

I =

{
(P; P1, . . . , Ps) ∈ PN × Xs

∣∣∣ P ∈ 〈P1, . . . , Ps〉
P1, . . . , Ps ∈ X

}
⊂ PN × Xs,

and the two following projections,

π1 : I→ σs(X) , π2 : I→ Xs.

The dimension of Xs is clearly sn. If (P1, . . . , Ps) ∈ Xs, the fiber π−1
2 ((P1, . . . , Ps)) is generically a Ps−1,

s < N. Then, dim(I) = sn + s− 1.
If the generic fiber of π1 is finite, then σs(X) is regular. i.e., it has the expected dimension;

otherwise, it is defective with a value of the defect that is exactly the dimension of the generic fiber.
Let (P1, . . . , Ps) ∈ Xs and suppose that each Pi ∈ X ⊂ PN has coordinates Pi = [ai,0 : . . . : ai,N ],

for i = 1, . . . , s. In an affine neighborhood Ui of Pi, for any i, the variety X can be locally parametrized
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with some rational functions fi,j : kn+1 → k, with j = 0, . . . , N, that are zero at the origin. Hence,
we write:

X ⊃ Ui :

⎧⎪⎨⎪⎩
x0 = ai,0 + fi,0(ui,0, . . . , ui,n)

...
xN = ai,N + fi,N(ui,0, . . . , ui,n)

.

Now, we need a parametrization ϕ for σs(X). Consider the subspace spanned by s points of X, i.e.,

〈(a1,0 + f1,0, . . . , a1,N + f1,N), . . . , (as,0 + fs,0, . . . , as,N + fs,N)〉,

where for simplicity of notation, we omit the dependence of the fi,j on the variables ui,j; thus, an
element of this subspace is of the form:

λ1(a1,0 + f1,0, . . . , a1,N + f1,N) + · · ·+ λs(as,0 + fs,0, . . . , as,N + fs,N),

for some λ1, . . . , λs ∈ k. We can assume λ1 = 1. Therefore, a parametrization of the s-th secant variety
to X in an affine neighborhood of the point P1 + λ2P2 + . . . + λsPs is given by:

(a1,0 + f1,0, . . . ,a1,N + f1,N)+

+ (λ2 + t2)(a2,1 − a1,0 + f2,1 − f1,0, . . . , a2,N − a1,N + f2,N − f1,N)+

+ · · ·+
+ (λs + ts)(as,1 − a1,0 + fs,1 − f1,0, . . . , as,N − a1,N + fs,N − f1,N),

for some parameters t2, . . . , ts. Therefore, in coordinates, the parametrization of σs(X) that we are
looking for is the map ϕ : ks(n+1)+s−1 → kN+1 given by:

(u1,0, . . . , u1,n, u2,0, . . . , u2,n, . . . , us,0, . . . , us,n, t2, . . . , ts)�→

(. . . , a1,j + f1,j + (λ2 + t2)(a2,j − a1,j + f2,j − f1,j) + · · ·+ (λs + ts)(as,j − a1,j + fs,j − f1,j), . . .),

where for simplicity, we have written only the j-th element of the image. Therefore, we are able to
write the Jacobian of ϕ. We are writing it in three blocks: the first one is (N + 1)× (n + 1); the second
one is (N + 1)× (s− 1)(n + 1); and the third one is (N + 1)× (s− 1):

J0(ϕ) =
(

(1− λ2 − · · · − λs)
∂ f1,j
∂u1,k

∣∣∣ λi
∂ fi,j
∂ui,k

∣∣∣ ai,j − a1,j

)
,

with i = 2, . . . , s; j = 0, . . . , N and k = 0, . . . , n. Now, the first block is a basis of the (affine) tangent
space to X at P1, and in the second block, we can find the bases for the tangent spaces to X at P2, . . . , Ps;
the rows of: ⎛⎜⎜⎜⎝

∂ fi,0
∂ui,0

· · · ∂ fi,0
∂ai,N

...
...

∂ fi,N
∂ai,0

· · · ∂ fi,N
∂ai,N

⎞⎟⎟⎟⎠
give a basis for the (affine) tangent space of X at Pi.

The importance of Terracini’s lemma to compute the dimension of any secant variety is extremely
evident. One of the main ideas of Alexander and Hirshowitz in order to tackle the specific case
of Veronese variety was to take advantage of the fact that Veronese varieties are embedded in the
projective space of homogeneous polynomials. They firstly moved the problem from computing the
dimension of a vector space (the tangent space to a secant variety) to the computation of the dimension
of its dual (see Section 2.1.4 for the precise notion of duality used in this context). Secondly, their
punchline was to identify such a dual space with a certain degree part of a zero-dimensional scheme,
whose Hilbert function can be computed by induction (almost always). We will be more clear on the
whole technique in the sequel. Now we need to use the language of schemes.
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Remark 3. Schemes are locally-ringed spaces isomorphic to the spectrum of a commutative ring. Of course,
this is not the right place to give a complete introduction to schemes. The reader interested in studying schemes
can find the fundamental material in [51–53]. In any case, it is worth noting that we will always use only
zero-dimensional schemes, i.e., “points”; therefore, for our purpose, it is sufficient to think of zero-dimensional
schemes as points with a certain structure given by the vanishing of the polynomial equations appearing in
the defining ideal. For example, a homogeneous ideal I contained in k[x, y, z], which is defined by the forms
vanishing on a degree d plane curve C and on a tangent line to C at one of its smooth points P, represents a
zero-dimensional subscheme of the plane supported at P and of length two, since the degree of intersection among
the curve and the tangent line is two at P (schemes of this kind are sometimes called jets).

Definition 8. A fat point Z ⊂ Pn is a zero-dimensional scheme, whose defining ideal is of the form ℘m, where
℘ is the ideal of a simple point and m is a positive integer. In this case, we also say that Z is a m-fat point,
and we usually denote it as mP. We call the scheme of fat points a union of fat points m1P1 + · · ·+ msPs,
i.e., the zero-dimensional scheme defined by the ideal ℘m1

1 ∩ · · · ∩ ℘ms
s , where ℘i is the prime ideal defining the

point Pi, and the mi’s are positive integers.

Remark 4. In the same notation as the latter definition, it is easy to show that F ∈ ℘m if and only if
∂(F)(P) = 0, for any partial differential ∂ of order ≤ m− 1. In other words, the hypersurfaces “vanishing” at
the m-fat point mP are the hypersurfaces that are passing through P with multiplicity m, i.e., are singular at P
of order m.

Corollary 1. Let (X,L) be an integral, polarized scheme. If L embeds X as a closed scheme in PN, then:

dim(σs(X)) = N − dim(h0(IZ,X ⊗L)),

where Z is the union of sgeneric two-fat points in X.

Proof. By Terracini’s lemma, we have that, for generic points P1, . . . , Ps ∈ X, dim(σs(X)) =

dim(〈TP1(X), . . . , TPs(X)〉). Since X is embedded in P(H0(X,L)∗) of dimension N, we can view the
elements of H0(X,L) as hyperplanes in PN . The hyperplanes that contain a space TPi (X) correspond
to elements in H0(I2Pi ,X ⊗L), since they intersect X in a subscheme containing the first infinitesimal
neighborhood of Pi. Hence, the hyperplanes of PN containing 〈TP1(X), . . . , TPs(X)〉 are the sections of
H0(IZ,X ⊗L), where Z is the scheme union of the first infinitesimal neighborhoods in X of the points
Pi’s.

Remark 5. A hyperplane H contains the tangent space to a non-degenerate projective variety X at a smooth
point P if and only if the intersection X ∩ H has a singular point at P. In fact, the tangent space TP(X) to X at
P has the same dimension of X and TP(X ∩ H) = H ∩ TP(X). Moreover, P is singular in H ∩ X if and only if
dim(TP(X ∩ H)) ≥ dim(X ∩ H) = dim(X)− 1, and this happens if and only if H ⊃ TP(X).

Example 2 (The Veronese surface of P5 is defective). Consider the Veronese surface X2,2 = ν2(P2) in
P5. We want to show that it is two-defective, with δ2 = 1. In other words, since the expected dimension of
σ2(X2,2) is 2 · 2 + 1, i.e., we expect that σ2(X2,2) fills the ambient space, we want to prove that it is actually a
hypersurface. This will imply that actually, it is not possible to write a generic ternary quadric as a sum of two
squares, as expected by counting parameters, but at least three squares are necessary instead.

Let P be a general point on the linear span 〈R, Q〉 of two general points R, Q ∈ X; hence, P ∈ σ2(X2,2).
By Terracini’s lemma, TP(σ2(X2,2)) = 〈TR(X2,2), TQ(X2,2)〉. The expected dimension for σ2(X2,2) is five, so
dim(TP(σ2(X2,2))) < 5 if and only if there exists a hyperplane H containing TP(σ2(X2,2)). The previous
remark tells us that this happens if and only if there exists a hyperplane H such that H ∩ X2,2 is singular at R, Q.
Now, X2,2 is the image of P2 via the map defined by the complete linear system of quadrics; hence, X2,2 ∩ H is the
image of a plane conic. Let R′, Q′ be the pre-images via ν2 of R, Q respectively. Then, the double line defined by
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R′, Q′ is a conic, which is singular at R′, Q′. Since the double line 〈R′, Q′〉 is the only plane conic that is singular
at R′, Q′, we can say that dim(TP(σ2(X2,2))) = 4 < 5; hence, σ2(X2,2) is defective with defect equal to zero.

Since the two-Veronese surface is defined by the complete linear system of quadrics, Corollary 1 allows us
to rephrase the defectivity of σ2(X2,2) in terms of the number of conditions imposed by two-fat points to forms of
degree two; i.e., we say that

two two-fat points of P2 do not impose independent conditions on ternary quadrics.
As we have recalled above, imposing the vanishing at the two-fat point means to impose the annihilation of

all partial derivatives of first order. In P2, these are three linear conditions on the space of quadrics. Since we
are considering a scheme of two two-fat points, we have six linear conditions to impose on the six-dimensional
linear space of ternary quadrics; in this sense, we expect to have no plane cubic passing through two two-fat
points. However, since the double line is a conic passing doubly thorough the two two-fat points, we have that
the six linear conditions are not independent. We will come back in the next sections on this relation between the
conditions imposed by a scheme of fat points and the defectiveness of secant varieties.

Corollary 1 can be generalized to non-complete linear systems on X.

Remark 6. Let D be any divisor of an irreducible projective variety X. With |D|, we indicate the complete
linear system defined by D. Let V ⊂ |D| be a linear system. We use the notation:

V(m1P1, . . . , msPs)

for the subsystem of divisors of V passing through the fixed points P1, . . . , Ps with multiplicities at least
m1, . . . , ms respectively.

When the multiplicities mi are equal to two, for i = 1, . . . , s, since a two-fat point in Pn gives n + 1
linear conditions, in general, we expect that, if dim(X) = n, then:

exp. dim(V(2P1, . . . , 2Ps)) = dim(V)− s(n + 1).

Suppose that V is associated with a morphism ϕV : X0 → Pr (if dim(V) = r), which is an embedding
on a dense open set X0 ⊂ X. We will consider the variety ϕV(X0).

The problem of computing dim(V(2P1, . . . , 2Ps)) is equivalent to that one of computing the
dimension of the s-th secant variety to ϕV(X0).

Proposition 2. Let X be an integral scheme and V be a linear system on X such that the rational function
ϕV : X ��� Pr associated with V is an embedding on a dense open subset X0 of X. Then, σs

(
ϕV(X0)

)
is

defective if and only if for general points, we have P1, . . . , Ps ∈ X:

dim(V(2P1, . . . , 2Ps)) > min{−1, r− s(n + 1)}.

This statement can be reformulated via apolarity, as we will see in the next section.

2.1.4. Apolarity

This section is an exposition of inverse systems techniques, and it follows [54].
As already anticipated at the end of the proof of Terracini’s lemma, the whole Alexander and

Hirshowitz technique to compute the dimensions of secant varieties of Veronese varieties is based on
the computation of the dual space to the tangent space to σs(νd(Pn)) at a generic point. Such a duality
is the apolarity action that we are going to define.
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Definition 9 (Apolarity action). Let S = k[x0, . . . , xn] and R = k[y0, . . . , yn] be polynomial rings and
consider the action of R1 on S1 and of R1 on S1 defined by:

yi ◦ xj =

(
∂

∂xi

)
(xj) =

{
0, if i �= j
1, if i = j

;

i.e., we view the polynomials of R1 as “partial derivative operators” on S1.

Now, we extend this action to the whole rings R and S by linearity and using properties of
differentiation. Hence, we get the apolarity action:

◦ : Ri × Sj −→ Sj−i

where:

yα ◦ xβ =

⎧⎨⎩∏n
i=1

(βi)!
(βi−αi)!

xβ−α, if α ≤ β;

0, otherwise.

for α, β ∈ Nn+1, α = (α0, ..., αn), β = (β0, . . . , βn), where we use the notation α ≤ β if and only if
ai ≤ bi for all i = 0, . . . , n, which is equivalent to the condition that xα divides xβ in S.

Remark 7. Here, are some basic remarks on apolarity action:

• the apolar action of R on S makes S a (non-finitely generated) R-module (but the converse is not true);
• the apolar action of R on S lowers the degree; in particular, given F ∈ Sd, the (i, d− i)-th catalecticant

matrix (see Definition 1) is the matrix of the following linear map induced by the apolar action

Cati,d−i(F) : Ri −→ Sd−i, G �→ G ◦ F;

• the apolarity action induces a non-singular k-bilinear pairing:

Rj × Sj −→ k, ∀ j ∈ N, (9)

that induces two bilinear maps (Let V ×W −→ k be a k-bilinear parity given by v × w −→ v ◦ w.
It induces two k-bilinear maps: (1) φ : V −→ Homk(W,k) such that φ(v) := φv and φv(w) = v ◦ w
and χ : W −→ Homk(V,k) such that χ(w) := χw and χw(v) = v ◦ w; (2) V ×W −→ k is not
singular iff for all the bases {w1, . . . , wn} of W, the matrix (bij = vi ◦ wj) is invertible.).

Definition 10. Let I be a homogeneous ideal of R. The inverse system I−1 of I is the R-submodule of S
containing all the elements of S, which are annihilated by I via the apolarity action.

Remark 8. Here are some basic remarks about inverse systems:

• if I = (G1, . . . , Gt) ⊂ R and F ∈ S, then:

F ∈ I−1 ⇐⇒ G1 ◦ F = · · · = Gt ◦ F = 0,

finding all such F’s amounts to finding all the polynomial solutions for the differential equations defined by
the Gi’s, so one can notice that determining I−1 is equivalent to solving (with polynomial solutions) a finite
set of differential equations;

• I−1 is a graded submodule of S, but it is not necessarily multiplicatively closed; hence in general, I−1 is
not an ideal of S.

Now, we need to recall a few facts on Hilbert functions and Hilbert series.
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Let X ⊂ Pn be a closed subscheme whose defining homogeneous ideal is I := I(X) ⊂ S =

k[x0, . . . , xn]. Let A = S/I be the homogeneous coordinate ring of X, and Ad will be its degree
d component.

Definition 11. The Hilbert function of the scheme X is the numeric function:

HF(X, ·) : N→ N;

HF(X, d) = dimk(Ad) = dimk(Sd)− dimk(Id).

The Hilbert series of X is the generating power series:

HS(X; z) = ∑
d∈N

HF(X, d)td ∈ k[[z]].

In the following, the importance of inverse systems for a particular choice of the ideal I will be
given by the following result.

Proposition 3. The dimension of the part of degree d of the inverse system of an ideal I ⊂ R is the Hilbert
function of R/I in degree d:

dimk(I−1)d = codimk(Id) = HF(R/I, d). (10)

Remark 9. If V×W → k is a non-degenerate bilinear form and U is a subspace of V, then with U⊥, we denote
the subspace of W given by:

U⊥ = {w ∈ W | v ◦ w = 0 ∀ v ∈ U}.

With this definition, we observe that:

• if we consider the bilinear map in (9) and an ideal I ⊂ R, then:

(I−1)d
∼= I⊥d .

• moreover, if I is a monomial ideal, then:

I⊥d = 〈monomials of Rd that are not in Id〉;
• for any two ideals I, J ⊂ R: (I ∩ J)−1 = I−1 + J−1.

If I = ℘m1+1
1 ∩ · · · ∩ ℘ms+1

s ⊂ R = k[y0, . . . , yn] is the defining ideal of the scheme of fat points
m1P1 + · · ·+msPs ∈ Pn, where Pi = [pi0 : pi1 : . . . : pin] ∈ Pn, and if LPi = pi0 x0 + pi1 x1 + · · ·+ pin xn ∈
S = k[x0, . . . , xn], then:

(I−1)d =

{
Sd, for d ≤ max{mi},

Ld−m1
P1

Sm1 + · · ·+ Ld−ms
Ps

Sms , for d ≥ max{mi + 1},

and also:

HF(R/I, d) = dimk(I−1)d =

=

{
dimk Sd, for d ≤ max{mi}
dimk〈Ld−m1

P1
Sm1 , . . . , Ld−ms

Ps
Sms〉, for d ≥ max{mi + 1} (11)

This last result gives the following link between the Hilbert function of a set of fat points and ideals
generated by sums of powers of linear forms.
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Proposition 4. Let I = ℘m1+1
1 ∩ · · · ∩ ℘ms+1

s ⊂ R = k[y0, . . . , yn], then the inverse system (I−1)d ⊂ Sd =

k[x0, . . . , xn]d is the d-th graded part of the ideal (Ld−m1
P1

, . . . , Ld−ms
Ps

) ⊂ S, for d ≥ max{mi + 1, i = 1, . . . , s}.

Finally, the link between the big Waring problem (Problem 2) and inverse systems is clear. If in (11),
all the mi’s are equal to one, the dimension of the vector space 〈Ld−1

P1
S1, . . . , Ld−1

Ps
S1〉 is at the same

time the Hilbert function of the inverse system of a scheme of s double fat points and the rank of the
differential of the application φ defined in (2).

Proposition 5. Let L1, . . . , Ls be linear forms of S = k[x0, . . . , xn] such that:

Li = ai0 x0 + · · ·+ ain xn,

and let P1, . . . , Ps ∈ Pn such that Pi = [ai0 , . . . , ain ]. Let ℘i ⊂ R = k[y0, . . . , yn] be the prime ideal associated
with Pi, for i = 1, . . . , s, and let:

φs,d : S1 × · · · × S1︸ ︷︷ ︸
s

−→ Sd

with φs,d(L1, . . . , Ls) = Ld
1 + · · ·+ Ld

s . Then,

R(dφs,d)|(L1,...,Ls) = dimk〈Ld−1
1 S1, . . . , Ld−1

s S1〉.

Moreover, by (10), we have:

dimk(〈Ld−1
1 S1, . . . , Ld−1

s S1〉) = HF

(
R

℘2
1 ∩ · · · ∩ ℘2

s
, d

)
.

Now, it is quite easy to see that:

〈TP1 Xn,d, . . . , TPs Xn,d〉 = P〈Ld−1
1 S1, . . . , Ld−1

s S1〉.

Therefore, putting together Terracini’s lemma and Proposition 5, if we assume the Li’s (hence, the Pi’s)
to be generic, we get:

dim(σs(Xn,d)) = dim〈TP1 Xn,d, . . . , TPs Xn,d〉 =
= dimk〈Ld−1

1 S1, . . . , Ld−1
s S1〉 − 1 = HF(R/(℘2

1 ∩ · · · ∩ ℘2
s ), d)− 1. (12)

Example 3. Let P ∈ Pn, ℘ ⊂ S be its representative prime ideal and f ∈ S. Then, the order of all partial
derivatives of f vanishing in P is almost t if and only if f ∈ ℘t+1, i.e., P is a singular point of V( f ) of
multiplicity greater than or equal to t + 1. Therefore,

HF(S/℘t, d) =

{
(d+n

n ) if d < t;

(t−1+n
n ) if d ≥ t.

(13)

It is easy to conclude that one t-fat point of Pn has the same Hilbert function of (t−1+n
n ) generic distinct points

of Pn. Therefore, dim(Xn,d) = HF(S/℘2, d)− 1 = (n + 1)− 1. This reflects the fact that Veronese varieties
are never one-defective, or, equivalently, since Xn,d = σ1(Xn,d), that Veronese varieties are never defective: they
always have the expected dimension 1 · n + 1− 1.

Example 4. Let P1, P2 be two points of P2, ℘i ⊂ S = k[x0, x1, x2] their associated prime ideals and m1 =

m2 = 2, so that I = ℘2
1 ∩ ℘2

2. Is the Hilbert function of I equal to the Hilbert function of six points of P2 in
general position? No; indeed, the Hilbert series of six general points of P2 is 1 + 3z + 6 ∑i≥2 zi. This means
that I should not contain conics, but this is clearly false because the double line through P1 and P2 is contained
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in I. By (12), this implies that σ2(ν2(P2)) ⊂ P5 is defective, i.e., it is a hypersurface, while it was expected to
fill all the ambient space.

Remark 10 (Fröberg–Iarrobino’s conjecture). Ideals generated by powers of linear forms are usually called
power ideals. Besides the connection with fat points and secant varieties, they are related to several areas of
algebra, geometry and combinatorics; see [55]. Of particular interest is their Hilbert function and Hilbert series.
In [56], Fröberg gave a lexicographic inequality for the Hilbert series of homogeneous ideals in terms of their
number of variables, number of generators and their degrees. That is, if I = (G1, . . . , Gs) ⊂ S = k[x0, . . . , xn]

with deg(Gi) = di, for i = 1, . . . , s,

HS(S/I; z) $Lex

⌈
∏s

i=1(1− zdi )

(1− z)n+1

⌉
, (14)

where �·� denotes the truncation of the power series at the first non-positive term. Fröberg conjectured
that equality holds generically, i.e., it holds on a non-empty Zariski open subset of PSd1 × . . . × PSds .
By semicontinuity, fixing all the numeric parameters (n; d1, . . . , ds), it is enough to exhibit one ideal for
which the equality holds in order to prove the conjecture for those parameters. In [57] (Main Conjecture 0.6),
Iarrobino suggested to look to power ideals and asserted that, except for a list of cases, their Hilbert series
coincides with the right-hand-side of (14). By (11), such a conjecture can be translated as a conjecture on the
Hilbert function of schemes of fat points. This is usually referred to as the Fröberg–Iarrobino conjecture; for
a detailed exposition on this geometric interpretation of Fröberg and Iarrobino’s conjectures, we refer to [58].
As we will see in the next section, computing the Hilbert series of schemes of fat points is a very difficult and
largely open problem.

Back to our problem of giving the outline of the proof of Alexander and Hirshowitz Theorem
(Theorem 2): Proposition 5 clearly shows that the computation of TQ(σs(νd(Pn))) relies on the
knowledge of the Hilbert function of schemes of double fat points. Computing the Hilbert function
of fat points is in general a very hard problem. In P2, there is an extremely interesting and still open
conjecture (the SHGH conjecture). The interplay with such a conjecture with the secant varieties is
strong, and we deserve to spend a few words on that conjecture and related aspects.

2.2. Fat Points in the Plane and SHGH Conjecture

The general problem of determining if a set of generic points P1, . . . , Ps in the plane, each with
a structure of mi-fat point, has the expected Hilbert function is still an open one. There is only a
conjecture due first to B. Segre in 1961 [59], then rephrased by B. Harbourne in 1986 [60], A. Gimigliano
in 1987 [61], A. Hirschowitz in 1989 [62] and others. It describes how the elements of a sublinear system
of a linear system L formed by all divisors in L having multiplicity at least mi at the points P1, . . . , Ps,
look when the linear system does not have the expected dimension, i.e., the sublinear system depends
on fewer parameters than expected. For the sake of completeness, we present the different formulations
of the same conjecture, but the fact that they are all equivalent is not a trivial fact; see [63–66].

Our brief presentation is taken from [63,64], which we suggest as excellent and very instructive
deepening on this topic.

Let X be a smooth, irreducible, projective, complex variety of dimension n. Let L be a complete
linear system of divisors on X. Fix P1, . . . , Ps distinct points on X and m1, . . . , ms positive integers.
We denote by L(−∑s

i=1 miPi) the sublinear system of L formed by all divisors in L having multiplicity
at least mi at Pi, i = 1, . . . , s. Since a point of multiplicity m imposes (m+n−1

n ) conditions on the divisors
of L, it makes sense to define the expected dimension of L(−∑s

i=1 miPi) as:

exp. dim

(
L

(
−

s

∑
i=1

miPi

))
:= max

{
dim(L)−

s

∑
i=1

(
mi + n− 1

n

)
,−1

}
.
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If L(−∑s
i=1 miPi) is a linear system whose dimension is not the expected one, it is said to be a special

linear system. Classifying special systems is equivalent to determining the Hilbert function of the
zero-dimensional subscheme of Pn given s general fat points of given multiplicities.

A first reduction of this problem is to consider particular varieties X and linear systems L on them.
From this point of view, the first obvious choice is to take X = Pn and L = Ln,d := |OPn(d)|, the system
of all hypersurfaces of degree d in Pn. In this language, Ln,d(−∑s

i=1 miPi) are the hypersurfaces of
degree d in n + 1 variables passing through P1, . . . , Ps with multiplicities m1, . . . , ms, respectively.

The SHGH conjecture describes how the elements of L2,d(−∑s
i=1 miPi) look when not having the

expected dimension; here are two formulations of this.

Conjecture 1 (Segre, 1961 [59]). If L2,d(−∑s
i=1 miPi) is a special linear system, then there is a fixed double

component for all curves through the scheme of fat points defined by ℘m1
1 ∩ · · · ∩ ℘ms

s .

Conjecture 2 (Gimigliano, 1987 [61,67]). Consider L2,d(−∑s
i=1 miPi). Then, one has the following

possibilities:

1. the system is non-special, and its general member is irreducible;
2. the system is non-special; its general member is non-reduced, reducible; its fixed components are all rational

curves, except for at most one (this may occur only if the system is zero-dimensional); and the general
member of its movable part is either irreducible or composed of rational curves in a pencil;

3. the system is non-special of dimension zero and consists of a unique multiple elliptic curve;
4. the system is special, and it has some multiple rational curve as a fixed component.

This problem is related to the question of what self-intersections occur for reduced irreducible
curves on the surface Xs obtained by blowing up the projective plane at the s points. Blowing up the
points introduces rational curves (infinitely many when s > 8) of self-intersection −1. Each curve
C ⊂ Xs corresponds to a curve DC ⊂ P2 of some degree d vanishing to orders mi at the s points:

P2 ��� Xs, DC �→ C,

and the self-intersection C2 is d2 −m2
1 − · · · −m2

s if DC ∈ L2,d(−∑s
i=1 miPi).

Example 5. An example of a curve DC corresponding to a curve C such that C2 = −1 on Xs is the line through
two of the points; in this case, d = 1, m1 = m2 = 1 and mi = 0 for i > 2, so we have d2−m2

1− · · ·−m2
s = −1.

According to the SHGH conjecture, these (−1)-curves should be the only reduced irreducible
curves of negative self-intersection, but proving that there are no others turns out to be itself very hard
and is still open.

Definition 12. Let P1, . . . , Ps be s points of Pn in general position. The expected dimension of
L(−∑s

i=1 miPi) is:

exp. dim

(
L

(
−

s

∑
i=1

miPi

))
:= max

{
vir. dim

(
L

(
−

s

∑
i=1

miPi

))
,−1

}
,

where:

vir. dim

(
L

(
−

s

∑
i=1

miPi

))
:=

(
n + d

d

)
− 1−

s

∑
i=1

(
mi + n− 1

n

)
,

is the virtual dimension of L(−∑s
i=1 miPi).

Consider the blow-up π : P̃2 ��� P2 of the plane at the points P1, . . . , Ps. Let E1, . . . , Es be the
exceptional divisors corresponding to the blown-up points P1, . . . , Ps, and let H be the pull-back of
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a general line of P2 via π. The strict transform of the system L := L2,d(∑
s
i=1 miPi) is the system

L̃ = |dH −∑s
i=1 miEi|. Consider two linear systems L := L2,d(∑

s
i=1 miPi) and L′ := L2,d(∑

s
i=1 m′iPi).

Their intersection product is defined by using the intersection product of their strict transforms on
P̃2, i.e.,

L · L′ = L̃ · L̃′ = dd′ −
s

∑
i=1

mim′i.

Furthermore, consider the anticanonical class −K := −KP̃2 of P̃2 corresponding to the linear system
L2,d(−∑s

i=1 Pi), which, by abusing notation, we also denote by −K. The adjunction formula tells us
that the arithmetic genus pa(L̃) of a curve in L̃ is:

pa(L̃) = L · (L+ K)
2

+ 1 =

(
d− 1

2

) s

∑
i=1

(
mi
2

)
,

which one defines to be the geometric genus of L, denoted gL.
This is the classical Clebsch formula. Then, Riemann–Roch says that:

dim(L) = dim(L̃) = L · (L− K) + h1(P̃2, L̃)− h2(P̃2, L̃) =

= L2 − gL + 1 + h1(P2, L̃) = vir. dim(L) + h1(P2, L̃)

because clearly, h2(P̃2, L̃) = 0. Hence,

L is non-special if and only if h0(P̃2, L̃) · h1(P̃2, L̃) = 0.

Now, we can see how, in this setting, special systems can naturally arise. Let us look for an
irreducible curve C on P̃2, corresponding to a linear system L on P2, which is expected to exist, but,
for example, its double is not expected to exist. It translates into the following set of inequalities:⎧⎪⎪⎨⎪⎪⎩

vir. dim(L) ≥ 0;

gL ≥ 0;

vir. dim(2L) ≤ −1;

which is equivalent to: ⎧⎪⎪⎨⎪⎪⎩
C2 − C · K ≥ 0;

C2 + C · K ≥ −2;

2C2 − C · K ≤ 0;

.

and it has the only solution:
C2 = C · K = −1,

which makes all the above inequalities equalities. Accordingly, C is a rational curve, i.e., a curve of
genus zero, with self-intersection −1, i.e., a (−1)-curve. A famous theorem of Castelnuovo’s (see [68]
(p. 27)) says that these are the only curves that can be contracted to smooth points via a birational
morphism of the surface on which they lie to another surface. By abusing terminology, the curve
Γ ⊂ P2 corresponding to C is also called a (−1)-curve.

More generally, one has special linear systems in the following situation. Let L be a linear system
on P2, which is not empty; let C be a (−1)-curve on P2 corresponding to a curve Γ on P2, such that
L̃ · C = −N < 0. Then, C (respectively, Γ) splits off with multiplicity N as a fixed component from all
curves of L̃ (respectively, L), and one has:

L̃ = NC + M̃, (respectively,L = NΓ +M),
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where M̃ (respectively,M) is the residual linear system. Then, one computes:

dim(L) = dim(M) ≥ vir. dim(M) = vir. dim(L) +
(

N
2

)
,

and therefore, if N ≥ 2, then L is special.

Example 6. One immediately finds examples of special systems of this type by starting from the (−1)-curves of
the previous example. For instance, consider L := L2,2d(−∑5

i=1 dPi), which is not empty, consisting of the
conic L2,2(∑d

i=1 Pi) counted d times, though it has virtual dimension −(d
2).

Even more generally, consider a linear system L on P2, which is not empty, C1, . . . , Ck some
(−1)-curves on P̃2 corresponding to curves Γ1, . . . , Γk on P2, such that L̃ · Ci = −Ni < 0, i = 1, . . . , k.
Then, for i = 1, . . . , k,

L =
k

∑
i=1

NiΓi +M, L̃ =
k

∑
i=1

NiCi + M̃, and M̃ · Ci = 0.

As before, L is special as soon as there is an i = 1, . . . , k such that Ni ≥ 2. Furthermore, Ci · Cj = δi,j,
because the union of two meeting (−1)-curves moves, according to the Riemann–Roch theorem, in a
linear system of positive dimension on P̃2, and therefore, it cannot be fixed for L̃. In this situation,
the reducible curve C := ∑k

i=1 Ci (respectively, Γ := ∑k
i=1 NiΓi) is called a (−1)-configuration on P̃2

(respectively, on P2).

Example 7. Consider L := L2,d(−m0P0 −∑s
i=1 miPi), with m0 + mi = d + Ni, Ni ≥ 1. Let Γi be the line

joining P0, Pi. It splits off Ni times from L. Hence:

L =
s

∑
i=1

NiΓi + L2,d−∑s
i=1 Ni

(
−

(
m0 −

s

∑
i=1

Ni

)
P0 −

s

∑
i=1

(mi − Ni) Pi

)
.

If we require the latter system to have non-negative virtual dimension, e.g., d ≥ ∑s
i=1 mi, if m0 = d and some

Ni > 1, we have as many special systems as we want.

Definition 13. A linear system L on P2 is (−1)-reducible if L̃ = ∑k
i=1 NiCi + M̃, where C = ∑k

i=1 Ci
is a (−1)-configuration, M̃ · Ci = 0, for all i = 1, . . . , k and vir. dim(M) ≥ 0. The system L is called
(−1)-special if, in addition, there is an i = 1, . . . , k such that Ni > 1.

Conjecture 3 (Harbourne, 1986 [60], Hirschowitz, 1989 [62]). A linear system of plane curves
L2,d(−∑s

i=1 miPi) with general multiple base points is special if and only if it is (−1)-special, i.e., it contains
some multiple rational curve of self-intersection −1 in the base locus.

No special system has been discovered except (−1)-special systems.
Eventually, we signal a concise version of the conjecture (see [67] (Conjecture 3.3)), which involves

only a numerical condition.

Conjecture 4. A linear system of plane curves L2,d(−∑s
i=1 miPi) with general multiple base points and such

that m1 ≥ m2 ≥ . . . ≥ ms ≥ 0 and d ≥ m1 + m2 + m3 is always non-special.

The idea of this conjecture comes from Conjecture 3 and by working on the surface X = P̃2,
which is the blow up of P2 at the points Pi; in this way, the linear system L2,d(−∑s

i=1 miPi) corresponds
to the linear system L̃ = dE0 − m1E1 − . . . − Es on X, where (E0, E1, . . . , Es) is a basis for Pic(X),
and E0 is the strict transform of a generic line of P2, while the divisors E1, . . . , Es are the exceptional
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divisors on P1, . . . , Ps. If we assume that the only special linear systems L2,d(−∑s
i=1 miPi) are those

that contain a fixed multiple (−1)-curve, this would be the same for L̃ in Pic(X), but this implies that
either we have ms < −1, or we can apply Cremona transforms until the fixed multiple (−1)-curve
becomes of type −m′iE

′
i in Pic(X), where the E′i ’s are exceptional divisors in a new basis for Pic(X).

Our conditions in Conjecture 4 prevent these possibilities, since the mi are positive and the condition
d ≥ m1 + m2 + m3 implies that, by applying a Cremona transform, the degree of a divisor with respect
to the new basis cannot decrease (it goes from d to d′ = 2d−mi −mj −mk, if the Cremona transform
is based on Pi, Pj and Pk), hence cannot become of degree zero (as −m′iE

′
i would be).

One could hope to address a weaker version of this problem. Nagata, in connection with his
negative solution of the fourteenth Hilbert problem, made such a conjecture.

Conjecture 5 (Nagata, 1960 [69]). The linear system L2,d(−∑s
i=1 miPi) is empty as soon as s ≥ 10 and

d ≤ √s.

Conjecture 5 is weaker than Conjecture 3, yet still open for every non-square n ≥ 10. Nagata’s
conjecture does not rule out the occurrence of curves of self-intersection less than −1, but it does
rule out the worst of them. In particular, Nagata’s conjecture asserts that d2 ≥ sm2 must hold when
s ≥ 10, where m = (m1 + · · ·+ ms)/s. Thus, perhaps there are curves with d2 −m2

1 − · · · −m2
s < 0,

such as the (−1)-curves mentioned above, but d2 −m2
1 − · · · −m2

s is (conjecturally) only as negative
as is allowed by the condition that after averaging the multiplicities mi for n ≥ 10, one must have
d2 − sm2 ≥ 0.

Now, we want to find a method to study the Hilbert function of a zero-dimensional scheme.
One of the most classical methods is the so-called Horace method ([8]), which has also been extended
with the Horace differential technique and led J. Alexander and A. Hirschowitz to prove Theorem 2.
We explain these methods in Sections 2.2.1 and 2.2.2, respectively, and we resume in Section 2.2.3 the
main steps of the Alexander–Hirschowitz theorem.

2.2.1. La Méthode D’Horace

In this section, we present the so-called Horace method. It takes this name from the ancient
Roman legend (and a play by Corneille: Horace, 1639) about the duel between three Roman brothers,
the “Orazi”, and three brothers from the enemy town of Albalonga, the “Curiazi”. The winners were
to have their town take over the other one. After the first clash among them, two of the Orazi died,
while the third remained alive and unscathed, while the Curiazi were all wounded, the first one
slightly, the second more severely and the third quite badly. There was no way that the survivor
of the Orazi could beat the other three, even if they were injured, but the Roman took to his heels,
and the three enemies pursued him; while running, they got separated from each other because they
were differently injured and they could run at different speeds. The first to reach the Orazio was the
healthiest of the Curiazi, who was easily killed. Then, came the other two who were injured, and it
was easy for the Orazio to kill them one by one.

This idea of “killing” one member at a time was applied to the three elements in the exact sequence
of an ideal sheaf (together with the ideals of a residual scheme and a “trace”) by A. Hirschowitz in [45]
(that is why now, we keep the french version “Horace” for Orazi) to compute the postulation of
multiple points and count how many conditions they impose.

Even if the following definition extends to any scheme of fat points, since it is the case of our
interest, we focus on the scheme of two-fat points.

Definition 14. We say that a scheme Z of r two-fat points, defined by the ideal IZ, imposes independent
conditions on the space of hypersurfaces of degree d in n + 1 variable OPn(d) if codimk (IZ)d) in SdV is
min

{
(n+d

d ), r(n + 1)
}

.
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This definition, together with the considerations of the previous section and (12) allows us to
reformulate the problem of finding the dimension of secant varieties to Veronese varieties in terms
of independent conditions imposed by a zero-dimensional scheme of double fat points to forms of a
certain degree.

Corollary 2. The s-th secant variety σs(Xn,d) of a Veronese variety has the expected dimension if and only if a
scheme of s generic two-fat points in Pn imposes independent conditions on OPn(d).

Example 8. The linear system L := Ln,2(−∑s
i=1 2Pi) is special if s ≤ n. Actually, quadrics in Pn singular at

s independent points P1, . . . , Ps are cones with the vertex Ps−1 spanned by P1, . . . , Ps. Therefore, the system is
empty as soon as s ≥ n + 1, whereas, if s ≤ n, one easily computes:

dim(L) = vir. dim(L) +
(

s
2

)
.

Therefore, by (12), this equality corresponds to the fact that σs(ν2(Pn)) are defective for all s ≤ n;
see Theorem 2 (1).

We can now present how Alexander and Hirschowitz used the Horace method in [8] to compute
the dimensions of the secant varieties of Veronese varieties.

Definition 15. Let Z ⊂ Pn be a scheme of two-fat points whose ideal sheaf is IZ. Let H ⊂ Pn be a hyperplane.
We define the following:

• the trace of Z with respect to H is the scheme-theoretic intersection:

TrH(Z) := Z ∩ H;

• the residue of Z with respect to H is the zero-dimensional scheme defined by the ideal sheaf IZ : OPn(−H)

and denoted ResH(Z).

Example 9. Let Z = 2P0 ⊂ Pn be the two-fat point defined by ℘2 = (x1, . . . , xn)2, and let H be the hyperplane
{xn = 0}. Then, the residue ResH(Z) ⊂ Pn is defined by:

IResH(Z) = ℘2 : (xn) = (x1, . . . , xn) = ℘,

hence, it is a simple point of Pn; the trace TrH(Z) ⊂ H � Pn−1 is defined by:

ITrH(Z) = (x1, . . . , xn)
2 ⊗ k[x0, . . . , xn]/(xn) = (x1, . . . , xn−1)

2,

where the xi’s are the coordinate of the Pn−1 � H, i.e., TrH(Z) is a two-fat point in Pn−1 with support at
P0 ∈ H.

The idea now is that it is easier to compute the conditions imposed by the residue and by the trace
rather than those imposed by the scheme Z; in particular, as we are going to explain in the following,
this gives us an inductive argument to prove that a scheme Z imposes independent conditions on
hypersurfaces of certain degree. In particular, for any d, taking the global sections of the restriction
exact sequence:

0 → IResH(Z)(d− 1)→ IZ(d)→ ITrH(Z)(d)→ 0,

we obtain the so-called Castelnuovo exact sequence:

0 → (IResH(Z))d−1 → (IZ)d → (ITrH(Z))d, (15)
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from which we get the inequality:

dimk(IZ)d ≤ dimk(IResH(Z))d−1 + dimk(ITrH(Z))d. (16)

Let us assume that the supports of Z are r points such that t of them lie on the hyperplane H,
i.e., ResH(Z) is the union of r− t many two-fat points and t simple points in Pn and TrH(Z) is a scheme
of t many two-fat points in Pn−1 i.e., with the notation of linear systems introduced above,

dimk(IResH(Z))d−1 = dim

(
Ln,d−1

(
−2

r−t

∑
i=1

Pi −
r

∑
i=r−t+1

Pi

))
+ 1;

dimk(ITrH(Z))d = dim

(
Ln−1,d

(
−2

t

∑
i=1

Pi

))
+ 1.

Assuming that:

1. ResH(Z) imposes independent conditions on OPn(d− 1), i.e.,

dimk(IResH(Z))d−1 = max
{(

d− 1 + n
n

)
− (r− t)(n + 1)− t, 0

}
,

2. and TrH(Z) imposes independent conditions on OPn−1(d), i.e.,

dimk(ITrH(Z))d = max
{(

d + n− 1
n + 1

)
− tn, 0

}
,

then, by (16) and since the expected dimension (Definition 12) is always a lower bound for the actual
dimension, we conclude the following.

Theorem 3 (Brambilla–Ottaviani [36]). Let Z be a union of r many two-fat points in Pn, and let H ⊂ Pn be
a hyperplane such that t of the r points of Z have support on H. Assume that TrH(Zr) imposes independent
conditions on OH(d) and that ResHZr imposes independent conditions on OPn(d− 1). If one of the pairs of
the following inequalities occurs:

1. tn ≤ (d+n−1
n−1 ) and r(n + 1)− tn ≤ (d+n−1

n ),

2. tn ≥ (d+n−1
n−1 ) and r(n + 1)− tn ≥ (d+n−1

n ),

then Z imposes independent conditions on the system OPn(d).

The technique was used by Alexander and Hirschowitz to compute the dimension of the linear
system of hypersurfaces with double base points, and hence, the dimension of secant varieties of
Veronese varieties is mainly the Horace method, via induction.

The regularity of secant varieties can be proven as described above by induction,
but non-regularity cannot. Defective cases have to be treated case by case. We have already seen that
the case of secant varieties of Veronese surfaces (Example 4) and of quadrics (Example 8) are defective,
so we cannot take them as the first step of the induction.

Let us start with σs(X3,3) ⊂ P19. The expected dimension is 4s− 1. Therefore, we expect that
σ5(X3,3) fills up the ambient space. Now, let Z be a scheme of five many two-fat points in general
position in P3 defined by the ideal IZ = ℘2

1 ∩ . . . ∩ ℘2
5. Since the points are in general position, we may

assume that they are the five fundamental points of P3 and perform our computations for this explicit
set of points. Then, it is easy to check that:

HF(S/℘2
1 ∩ · · · ∩ ℘2

5, 3) = 19− dimk(IZ)3 = 19− 0.
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Hence, σ5(X3,3) = P19, as expected. This implies that:

dim(σs(X3,3)) is the expected one for all s ≤ 5. (17)

Indeed, as a consequence of the following proposition, if the s-th secant variety is regular, so it is the
(s− 1)-th secant variety.

Proposition 6. Assume that X is s-defective and that σs+1(X) �= PN. Then, X is also (s + 1)-defective.

Proof. Let δs be the s-defect of X. By assumptions and by Terracini’s lemma, if P1, . . . , Ps ∈ X are
general points, then the span TP1,...,Ps := 〈TP1 X, . . . , TPs X〉, which is the tangent space at a general point
of σs(X), has projective dimension min(N, sn + s− 1)− δs. Hence, adding one general point Ps+1,
the space TP1,...,Ps ,Ps+1 , which is the span of TP1,...,Ps and TPs+1 X, has dimension at most min{N, sn +

s− 1} − δs + n + 1. This last number is smaller than N, while it is clearly smaller than (s + 1)n + s.
Therefore, X is (s + 1)-defective.

In order to perform the induction on the dimension, we would need to study the case of d = 4,
s = 8 in P3, i.e., σ8(X3,4). We need to compute HFZ(4) = HF(k[x0, . . . , x3]/(℘2

1 ∩ · · · ∩ ℘2
8), 4). In order

to use the Horace lemma, we need to know how many points in the support of scheme Z lie on a
given hyperplane. The good news is upper semicontinuity, which allows us to specialize points on a
hyperplane. In fact, if the specialized scheme has the expected Hilbert function, then also the general
scheme has the expected Hilbert function (as before, this argument cannot be used if the specialized
scheme does not have the expected Hilbert function: this is the main reason why induction can be
used to prove the regularity of secant varieties, but not the defectiveness). In this case, we choose to
specialize four points on H, i.e., Z = 2P1 + . . . + 2P8 with P1, . . . , P4 ∈ H. Therefore,

• ResH(Z) = P1 + · · ·+ P4 + 2P5 + · · ·+ 2P8 ⊂ P3;
• TrH(Z8) = 2P̃1 + · · ·+ 2P̃4 ⊂ H, where 2P̃i’s are two-fat points in P2

Consider Castelunovo Inequality (16). Four two-fat points in P3 impose independent conditions
to OP3(3) by (17), then adding four simple general points imposes independent conditions; therefore,
ResHZ imposes the independent condition on OP3(3). Again, assuming that the supports of TrH(Z)
are the fundamental points of P2, we can check that it imposes the independent condition on OP2(4).
Therefore,

max
{(

4 + 3
3

)
− 8 · 4, 0

}
= 3 = exp. dimk(IZ)4 ≤ dimk(IZ)4

≤ dimk(IResH(Z))3 + dimk(ITrH(Z))4

= max
{(

3 + 3
3

)
− 4 · 4− 4, 0

}
+ max

{(
2 + 4

2

)
− 4 · 3, 0

}
= max{20− 16− 4, 0}+ max{15− 12, 0} = 3.

In conclusion, we have proven that

σs(X3,4) has the expected dimension for any s ≤ 8.

Now, this argument cannot be used to study σ9(X3,4) because it is one of the defective cases,
but we can still use induction on d.

In order to use induction on the degree d, we need a starting case, that is the case of cubics.
We have done P3 already; see (17). Now, d = 3, n = 4, s = 7 corresponds to a defective case. Therefore,
we need to start with d = 3 and n = 5. We expect that σ10(X5,3) fills up the ambient space. Let us
try to apply the Horace method as above. The hyperplane H is a P4; one two-fat point in P4 has
degree five, so we can specialize up to seven points on H (in P4, there are exactly 35 = 7× 5 cubics),
but seven two-fat points in P4 are defective in degree three; in fact, if Z = 2P1 + . . . + 2P7 ⊂ P4,
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then dimk (IZ)3 = 1. Therefore, if we specialize seven two-fat points on a generic hyperplane H,
we are “not using all the room that we have at our disposal”, and (16) does not give the correct upper
bound. In other words, if we want to get a zero in the trace term of the Castelunovo exact sequence,
we have to “add one more condition on H”; but, to do that, we need a more refined version of the
Horace method.

2.2.2. La méthode d’Horace Differentielle

The description we are going to give follows the lines of [70].

Definition 16. An ideal I in the algebra of formal functions k[[x, y]], where x = (x1, . . . , xn−1), is called a
vertically-graded (with respect to y) ideal if:

I = I0 ⊕ I1y⊕ · · · ⊕ Im−1ym−1 ⊕ (ym)

where, for i = 0, . . . , m− 1, Ii ⊂ k[[x]] is an ideal.

Definition 17. Let Q be a smooth n-dimensional integral scheme, and let D be a smooth irreducible divisor on
Q. We say that Z ⊂ Q is a vertically-graded subscheme of Q with base D and support z ∈ D, if Z is a
zero-dimensional scheme with support at the point z such that there is a regular system of parameters (x, y) at z
such that y = 0 is a local equation for D and the ideal of Z in ÔQ,z ∼= k[[x, y]] is vertically graded.

Definition 18. Let Z ∈ Q be a vertically-graded subscheme with base D, and let p ≥ 0 be a fixed integer.
We denote by Resp

D(Z) ∈ Q and Trp
D(Z) ∈ D the closed subschemes defined, respectively, by the ideals sheaves:

IResp
D(Z) := IZ + (IZ : I p+1

D )I p
D, and ITrp

D(Z),D := (IZ : I p
D)⊗OD.

In Resp
D(Z), we remove from Z the (p + 1)-th “slice” of Z, while in Trp

D(Z), we consider only the
(p + 1)-th “slice”. Notice that for p = 0, this recovers the usual trace TrD(Z) and residual schemes
ResD(Z).

Example 10. Let Z ⊂ P2 be a three-fat point defined by ℘3, with support at a point P ∈ H lying on a plane
H ⊂ P3. We may assume ℘ = (x1, x2) and H = {x2 = 0}. Then, 3P is vertically graded with respect to H:

℘3 = (x3
1)⊕ (x2

1)x2 ⊕ (x1)x2
2 ⊕ (x3

2),

x2

x1

Visualization of a three-fat point in P2: each dot corresponds to a

generator of the local ring, which is Artinian.

Now, we compute all residues (white dots) and traces (black dots) as follows:

Case p = 0. Res0
H(P) ⊂ P2 is defined by:

℘3 : (x2) = ℘2 = (x2
1)⊕ (x1)x2 ⊕ (x2

2),

i.e., it is a two-fat point in P2, while Tr0
H(P) is defined by:

℘̃3 = ℘3 ⊗ k[[x0, x1, x2]]/(x2) = (x3
1),

where x0, x1 are the coordinates on H, i.e., it is a three-fat point in P1.

x2

x1
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Case p = 1. Res1
H(3P) ⊂ P2 is a zero-dimensional subscheme of

P2 of length four given by:

℘3 + (℘3 : (x2
2))x2 = (x2

2, x1x2, x3
1) =

= (x3
1)⊕ (x1)x2 ⊕ (x2)

2;

roughly speaking, we “have removed the second slice” of 3P; while,
Tr1

H(3P) is given by:

(℘3 : (x2))⊗ k[[x0, x1, x2]]/(x2) = (x2
1).

x2

x1

Case p = 2. Res2
H(P) ⊂ P2 is a zero-dimensional scheme of length

five given by:

℘3 + (℘3 : (x3
2))x2

2 = (x2
2, x2

1x2, x3
1) =

= (x3
1)⊕ (x2

1)x2 ⊕ (x2)
2;

roughly speaking, we “have removed the third slice” of 3P; while
Tr2

H(P) is given by:

(℘3 : (x2
2))⊗ k[[x0, x1, x2]]/(x2) = (x1).

x2

x1

Finally, let Z1, . . . , Zr ∈ Q be vertically-graded subschemes with base D and support zi;
let Z = Z1 ∪ · · · ∪ Zr, and set p = (p1, . . . , pr) ∈ Nr. We write:

Trp
D(Z) := Trp1

D (Z1) ∪ · · · ∪ Trpr
D (Zr), Resp

D(Z) := Resp1
D (Z1) ∪ · · · ∪ Respr

D (Zr).

We are now ready to formulate the Horace differential lemma.

Proposition 7 (Horace differential lemma, [71] (Proposition 9.1)). Let H be a hyperplane in Pn, and let
W ⊂ Pn be a zero-dimensional closed subscheme. Let Y1, . . . , Yr, Z1, . . . , Zr be zero-dimensional irreducible
subschemes of Pn such that Yi

∼= Zi, i = 1, . . . , r, Zi has support on H and is vertically graded with base H,
and the supports of Y = Y1 ∪ · · · ∪Yr and Z = Z1 ∪ · · · ∪ Zr are generic in their respective Hilbert schemes.
Let p = (p1, . . . , pr) ∈ Nr. Assume:

1. H0(ITrHW∪Trp
H(Z),H(d)) = 0 and

2. H0(IResHW∪Resp
H(Z)(d− 1)) = 0;

then,
H0(IW∪Y (d)) = 0.

For two-fat points, the latter result can be rephrased as follows.

Proposition 8 (Horace differential lemma for two-fat points). Let H ⊂ Pn be a hyperplane, P1, . . . , Pr ∈
Pn be generic points and W ⊂ Pn be a zero-dimensional scheme. Let Z = 2P1 + · · ·+ 2Pr ⊂ Pn, and let
Z′ = 2P′1 + . . . + 2P′r such that the P′i ’s are generic points on H. Let D2,H(P′i ) = 2P′i ∩ H be zero-dimensional
schemes in Pn. Hence, let:

Z = ResH(W) + D2,H(P′1) + . . . + D2,H(P′r) ⊂ Pn, and

T = TrH(W) + P′1 + . . . + P′r ⊂ H � Pn−1.
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Then, if the following two conditions are satisfied:

degue : dimk(IZ)d−1 = 0;

dime : dimk(IT)d = 0,

then, dimk(IW+Z)d = 0.

Now, with this proposition, we can conclude the computation of σ10(X5,3). Before Section 2.2.2,
we were left with the problem of computing the Hilbert function in degree three of a scheme
Z = 2P1 + · · ·+ 2P10 of ten two-fat points with generic support in P5: since a two-fat point in P5

imposes six conditions, the expected dimension of (IZ)3 is zero. In this case, the “standard” Horace
method fails, since if we specialize seven points on a generic hyperplane, we lose one condition that we
miss at the end of the game. We apply the Horace differential method to this situation. Let P′1, . . . , P′8
be generic points on a hyperplane H � P4 ⊂ P5. Consider:

Z = P′1 + . . . + P′7 + D2,H(P8) + 2P9 + 2P10 ⊂ P5, and

T = 2P′1 + . . . + 2P′7 + P′8 ⊂ H � P4.

Now, dime is satisfied because we have added on the trace exactly the one condition that we were
missing. It is not difficult to prove that degue is also satisfied: quadrics through Z are cones with the
vertex the line between P9 and P10; hence, the dimension of the corresponding linear system equals the
dimension of a linear system of quadrics in P4 passing through a scheme of seven simple points and
two two-fat points with generic support. Again, such quadrics in P4 are all cones with the vertex the
line passing through the support of the two two-fat points: hence, the dimension of the latter linear
system equals the dimension of a linear system of quadrics in P3 passing through a set of eight simple
points with general support. This has dimension zero, since the quadrics of P3 are ten. In conclusion,
we obtain that the Hilbert function in degree three of a scheme of ten two-fat points in P5 with generic
support is the expected one, i.e., by (12), we conclude that σ10(X5,3) fills the ambient space.

2.2.3. Summary of the Proof of the Alexander–Hirshowitz Theorem

We finally summarize the main steps of the proof of Alexander–Hirshowitz theorem (Theorem 2):

1. The dimension of σs(Xn,d) is equal to the dimension of its tangent space at a general point Q;
2. By Terracini’s lemma (Lemma 1), if Q is general in 〈P1, . . . , Ps〉, with P1, . . . , Ps ∈ X general points,

then:
dim(TQσs(X)) = dim(〈TP1 X, . . . , TPs X〉);

3. By using the apolarity action (see Definition 9), one can see that:

dim(〈TP1 Xn,d, . . . , TPs Xn,d〉) = HF(R/(℘2
1 ∩ · · · ∩ ℘2

s ), d)− 1,

where ℘2
1 ∩ · · · ∩ ℘2

s is the ideal defining the scheme of two-fat points supported by Pn

corresponding to the Pi’s via the d-th Veronese embedding;
4. Non-regular cases, i.e., where the Hilbert function of the scheme of two-fat points is not as

expected, have to be analyzed case by case; regular cases can be proven by induction:

(a) The list of non-regular cases corresponds to defective Veronese varieties and is very
classical; see Section 2.1.3, page 11 and [36] for the list of all papers where all these cases
were investigated. We explained a few of them in Examples 2, 4 and 8;

(b) The proof of the list of non-regular cases classically known is complete and can be proven
by a double induction procedure on the degree d and on the dimension n (see Theorem 3
and Proposition 6):
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• The starting step of the induction for the degree is d = 3 since quadrics are defective
(Example 8):

– The first case to study is therefore X3,3: in order to prove that σ5(X3,3) = P19 as
expected (see page 26), the Horace method (Section 2.2.1) is introduced.

• The starting step of the induction for the dimension is n = 5:

– σ8(X3,4) has the expected dimension thanks to upper semicontinuity
(see page 26), so also the smallest secant varieties are regular (page 26);

– σ9(X3,4) is defective ([4,43,62]);
– Therefore, one has to start with σ10(X3,5), which cannot be done with the

standard Horace method (see page 27), while it can be solved (see page 29)
by using the Horace differential method (Section 2.2.2).

2.3. Algorithms for the Symmetric-Rank of a Given Polynomial

The goal of the second part of this section is to compute the symmetric-rank of a given symmetric
tensor. Here, we have decided to focus on algorithms rather than entering into the details of their
proofs, since most of them, especially the more advanced ones, are very technical and even an idea of
the proofs would be too dispersive. We believe that a descriptive presentation is more enlightening on
the difference among them, the punchline of each one and their weaknesses, rather than a precise proof.

2.3.1. On Sylvester’s Algorithm

In this section, we present the so-called Sylvester’s algorithm (Algorithm 1). It is classically
attributed to Sylvester, since he studied the problem of decomposing a homogeneous polynomial
of degree d into two variables as a sum of d-th powers of linear forms and solved it completely,
obtaining that the decomposition is unique for general polynomials of odd degree. The first modern
and available formulation of this algorithm is due to Comas and Seiguer; see [27].

Despite the “age” of this algorithm, there are modern scientific areas where it is used to describe
very advanced tools; see [14] for the measurements of entanglement in quantum physics. The following
description follows [28].

If V is a two-dimensional vector space, there is a well-known isomorphism between
∧d−r+1(SdV)

and Sd−r+1(SrV); see [72]. In terms of projective algebraic varieties, this isomorphism allows us to view
the (d− r + 1)-th Veronese embedding of Pr � PSrV as the set of (r− 1)-dimensional linear subspaces
of Pd that are r-secant to the rational normal curve. The description of this result, via coordinates,
was originally given by Iarrobino and Kanev; see [25]. Here, we follow the description appearing
in [73] (Lemma 2.1). We use the notation G(k, W) for the Grassmannian of k-dimensional linear spaces
in a vector space W and the notation G(k, n) for the Grassmannian of k-dimensional linear spaces
in Pn.

Lemma 2. Consider the map φr,d−r+1 : P(SrV) → G(d − r + 1, SdV) that sends the projective class of
F ∈ SrV to the (d− r + 1)-dimensional subspace of SdV made by the multiples of F, i.e.,

φr,d−r+1([F]) = F · Sd−rV ⊂ SdV.

Then, the following hold:

1. the image of φr,d−r+1, after the Pl’́ ucker embedding of G(d− r + 1, SdV) inside P(
∧d−r+1 SdV), is the

(d− r + 1)-th Veronese embedding of PSrV;
2. identifying G(d− r + 1, SdV) with G(r− 1,PSdV∗), the above Veronese variety is the set of linear spaces

r-secant to a rational normal curve Cd ⊂ PSdV∗.
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For the proof, we follow the constructive lines of [28], which we keep here, even though we take
the proof as it is, since it is short and we believe it is constructive and useful.

Proof. Let {x0, x1} be the variables on V. Then, write F = u0xr
0 + u1xr−1

0 x1 + · · ·+ urxr
1 ∈ SrV. A basis

of the subspace of SdV of forms of the type FH is given by:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

xd−r
0 F = u0xd

0 + · · ·+ urxd−r
0 xr

1,

xd−r
0 x1F = u0xd−1

0 x1 + · · ·+ urxd−r−1
0 xr+1

1 ,
...

. . .

xd−r
1 F = u0xr

0xd−r
1 + · · ·+ urxd

1.

(18)

The coordinates of these elements with respect to the standard monomial basis {xd
0, xd−1

0 x1, . . . , xd
1} of

SdV are thus given by the rows of the following (r + 1)× (d + 1) matrix:⎛⎜⎜⎜⎜⎜⎜⎝
u0 u1 . . . ur 0 . . . 0 0
0 u0 u1 . . . ur 0 . . . 0
...

. . . . . . . . . . . . . . .
...

0 . . . 0 u0 u1 . . . ur 0
0 . . . 0 0 u0 . . . ur−1 ur

⎞⎟⎟⎟⎟⎟⎟⎠ .

The standard Plücker coordinates of the subspace φr,d−r+1([F]) are the maximal minors of this matrix.
It is known (see for example [74]) that these minors form a basis of k[u0, . . . , ur]d−r+1, so that the image
of φr,d−r+1([F]) is indeed a Veronese variety, which proves (1).

To prove (2), we recall some standard facts from [74]. Consider homogeneous coordinates
z0, . . . , zd in P(SdV∗), corresponding to the dual basis of the basis {xd

0, xd−1
0 x1, . . . , xd

1}. Consider
Cd ⊂ P(SdV∗), the standard rational normal curve with respect to these coordinates. Then, the image
of [F] by φr,d−r+1 is precisely the r-secant space to Cd spanned by the divisor on Cd induced by the
zeros of F. This completes the proof of (2).

The rational normal curve Cd ⊂ Pd is the d-th Veronese embedding of PV � P1 inside PSdV � Pd.
Hence, a symmetric tensor F ∈ SdV has symmetric-rank r if and only if r is the minimum integer for
which there exists a Pr−1 � PW ⊂ PSdV such that F ∈ PW and PW is r-secant to the rational normal
curve Cd ⊂ P(SdV) in r distinct points. Consider the maps:

P(SrV)
φr,d−r+1−→ G(d− r,PSdV)

αr,d−r+1� G(r− 1,PSdV∗). (19)

Clearly, we can identify PSdV∗ with PSdV; hence, the Grassmannian G(r− 1,PSdV∗) can be identified
with G(r− 1,PSdV). Now, by Lemma 2, a projective subspace PW of PSdV∗ � PSdV � Pd is r-secant
to Cd ⊂ PSdV in r distinct points if and only if it belongs to Im(αr,d−r+1 ◦ φr,d−r+1) and the preimage
of PW via αr,d−r+1 ◦ φr,d−r+1 is a polynomial with r distinct roots. Therefore, a symmetric tensor
F ∈ SdV has symmetric-rank r if and only if r is the minimum integer for which the following two
conditions hold:

1. F belongs to some PW ∈ Im(αr,d−r+1 ◦ φr,d−r+1) ⊂ G(r− 1,PSdV),
2. there exists a polynomial F ∈ SrV that has r distinct roots and such that αr,d−r+1(φr,d−r+1([F])) =

P(W).
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Now, let PU be a (d− r)-dimensional linear subspace of PSdV. The proof of Lemma 2 shows that PU
belongs to the image of φr,d−r+1 if and only if there exist u0, . . . , ur ∈ k such that U = 〈F1, . . . , Fd−r+1〉,
where, with respect to the standard monomial basis B = {xd

0, xd−1
0 x1, . . . , xd

1} of SdV, we have:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

F1 = (u0, u1, . . . , ur, 0, . . . , 0),

F2 = (0, u0, u1, . . . , ur, 0, . . . , 0),
...

...

Fd−r+1 = (0, . . . , 0, u0, u1, . . . , ur).

Let B∗ = {z0, . . . , zd} be the dual basis of B with respect to the apolar pairing. Therefore, there exists
a W ⊂ SdV such that PW = αr,d−r+1(PU) if and only if W = H1 ∩ · · · ∩ Hd−r+1, and the Hi’s are
as follows: ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

H1 : u0z0 + · · ·+ urzr = 0;

H2 : u0z1 + · · ·+ urzr+1 = 0;
...

. . .

Hd−r+1 : u0zd−r + · · ·+ urzd = 0.

This is sufficient to conclude that F ∈ PSdV belongs to an (r− 1)-dimensional projective subspace of
PSdV that is in the image of αr,d−r+1 ◦ φr,d−r+1 defined in (19) if and only if there exist H1, . . . , Hd−r+1
hyperplanes in SdV as above, such that F ∈ H1 ∩ . . . ∩ Hd−r+1. Now, given F ∈ SdV with coordinates
(a0, . . . , ad) with respect to the dual basis B∗, we have that F ∈ H1 ∩ . . . ∩ Hd−r+1 if and only if the
following linear system admits a non-trivial solution in the ui’s⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

u0a0 + · · ·+ urar = 0

u0a1 + · · ·+ urar+1 = 0
. . .

u0ad−r + · · ·+ urad = 0.

If d − r + 1 < r + 1, this system admits an infinite number of solutions. If r ≤ d/2, it admits a
non-trivial solution if and only if all the maximal (r + 1)-minors of the following catalecticant matrix
(see Definition 1) vanish: ⎛⎜⎜⎜⎜⎝

a0 · · · ar

a1 · · · ar+1
...

...
ad−r · · · ad

⎞⎟⎟⎟⎟⎠ .

Remark 11. The dimension of σr(Cd) is never defective, i.e., it is the minimum between 2r− 1 and d. Actually,
σr(Cd) � PSdV if and only if 1 ≤ r <

⌈
d+1

2

⌉
. Moreover, an element [F] ∈ PSdV belongs to σr(Cd) for

1 ≤ r <
⌈

d+1
2

⌉
, i.e., Rsym(F) = r, if and only if Catr,d−r(F) does not have maximal rank. These facts are very

classical; see, e.g., [1].

Therefore, if we consider the monomial basis
{
(d

i)
−1

xi
0xd−i

1 | i = 0, . . . , d
}

of SdV and write

F = ∑d
i=0 (

d
i)
−1

aixi
0xd−i

1 , then we write the (i, d − i)-th catalecticant matrix of F as Cati,d−i(F) =

(ah+k) h=0,...,i
k=0,...,d−i

.
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Algorithm 1: Sylvester’s algorithm.
The algorithm works as follows.

Require: A binary form F = ∑d
i=0 aixi

0xd−i
1 ∈ SdV.

Ensure: A minimal Waring decomposition F = ∑r
i=1 λiLi(x0, x1)

d.
1: initialize r ← 0;
2: if rk Catr,d−r(F) is maximal then

3: increment r ← r + 1;
4: end if

5: compute a basis of Catr,d−r(F);
6: take a random element G ∈ SrV∗ in the kernel of Catr,d−r(F);
7: compute the roots of G: denote them (αi, βi), for i = 1, . . . , r;
8: if the roots are not distinct then

9: go to Step 2;
10: else

11: compute the vector λ = (λ1, . . . , λr) ∈ kr such that:⎛⎜⎜⎜⎜⎜⎜⎝
αd

1 · · · αd
r

αd−1
1 β1 · · · αd−1

r βr

αd−2
1 β2

1 · · · αd−2
r β2

r
...

...
...

βd
1 · · · βd

r

⎞⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎝
λ1

λ2
...

λr

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎝

a0
1
d a1

(d
2)
−1

a2
...

ad

⎞⎟⎟⎟⎟⎟⎟⎠
12: end if

13: construct the set of linear forms {Li = αix0 + βix1} ⊂ S1V;
14: return the expression ∑r

i=1 λiLd
i .

Example 11. Compute the symmetric-rank and a minimal Waring decomposition of the polynomial

F = 2x4
0 − 4x3

0x1 + 30x2
0x2

1 − 28x0x3
1 + 17x4

1.

We follow Sylvester’s algorithm. The first catalecticant matrix with rank smaller than the maximal is:

Cat2,2(F) =

⎛⎜⎝ 2 −1 5
−1 5 −7
5 −7 17

⎞⎟⎠ ,

in fact, rk Cat2,2(F) = 2. Now, let {y0, y1} the dual basis of V∗. We get that ker Cat2,2(F) = 〈2y2
0 − y0y1 −

y2
1〉. We factorize:

2y2
0 − y0y1 − y2

1 = (−y0 + y1)(−2y0 − y1).

Hence, we obtain the roots {(1, 1), (1,−2)}. Then, it is direct to check that:⎛⎜⎜⎜⎜⎜⎝
1 1
1 −2
1 4
1 −8
1 16

⎞⎟⎟⎟⎟⎟⎠
(

1
1

)
=

⎛⎜⎜⎜⎜⎜⎝
2
−1
5
−7
17

⎞⎟⎟⎟⎟⎟⎠ ,
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hence, a minimal Waring decomposition is given by:

F = (x0 + x1)
4 + (x0 − 2x1)

4.

The following result was proven by Comas and Seiguer in [27]; see also [28]. It describes
the structure of the stratification by symmetric-rank of symmetric tensors in SdV with dim V = 2.
This result allows us to improve the classical Sylvester algorithm (see Algorithm 2).

Theorem 4. Let Cd = {[F] ∈ PSdV | Rsym(F) = 1} = {[Ld] | L ∈ S1V} ⊂ Pd be the rational normal curve
of degree d parametrizing decomposable symmetric tensors. Then,

∀ r, 2 ≤ r ≤
⌈

d + 1
2

⌉
, σr(Cd)� σr−1(Cd) = σr,r(Cd) ∪ σr,d−r+2(Cd),

where we write:
σr,s(Cd) := {[F] ∈ σr(Cd) | Rsym(F) = s} ⊂ σr(Cd).

Algorithm 2: Sylvester’s symmetric (border) rank algorithm [28].
The latter theorem allows us to get a simplified version of the Sylvester algorithm,
which computes the symmetric-rank and the symmetric-border rank of a symmetric tensor,
without computing any decomposition. Notice that Sylvester’s Algorithm 1 for the rank is
recursive: it runs for any r from one to the symmetric-rank of the given polynomial, while
Theorem 4 shows that once the symmetric border rank is computed, then the symmetric-rank
is either equal to the symmetric border rank or it is d− r + 2, and this allows us to skip all the
recursive process.

Require: A form F ∈ SdV, with dim V = 2.
Ensure: the symmetric-rank Rsym(F) and the symmetric-border rank Rsym(F).

1: r := rk Cat� d
2 �,� d

2 �(F)

2: Rsym(F) = r;
3: choose an element G ∈ ker Catr,d−r(F);
4: if G has distinct roots then

5: Rsym(F) = r
6: else

7: Rsym(F) = d− r + 2;
8: end if

9: return Rsym(F)

Example 12. Let F = 5x5
0x1, and let {y0, y1} be the dual basis to {x0, x1}. The smallest catalecticant without

full rank is:

Cat2,3(F) =

⎛⎜⎝0 1 0 0
1 0 0 0
0 0 0 0

⎞⎟⎠ ,

which has rank two. Therefore [F] ∈ σ2(C6). Now, ker Cat2,3(F) = 〈y2
1〉, which has a double root. Hence,

[F] ∈ σ2,6(C6).

Remark 12. When a form F ∈ k[x0, . . . , xn] can be written using less variables, i.e., F ∈ k[L0, . . . , Lm], for
Lj ∈ k[x0, . . . , xn]1, with m < n, we say that F has m essential variables (in the literature, it is also said that F
is m-concise). That is, F ∈ SdW, where W = 〈L0, . . . , Lm〉 ⊂ V. Then, the rank of [F] with respect to Xn,d is
the same one as the one with respect to νd(PW) ⊂ Xn,d; e.g., see [75,76]. As recently clearly described in [77]
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(Proposition 10) and more classically in [25], the number of essential variables of F coincides with the rank of the
first catalecticant matrix Cat1,d−1(F). In particular, when [F] ∈ σr(Xn,d) ⊂ P(SdV) with dim(V) = n + 1,
then, if r < n + 1, there is a subspace W ⊂ V with dim(W) = r such that [F] ∈ PSdW, i.e., F can be written
with respect to r variables.

Let now V be (n + 1)-dimensional, and consider the following construction:

Hilbr(Pn)
φ

��� G
(
(d+n

n )− r, SdV
)

∼=
G(r− 1,PSdV∗) ←− G

(
(d+n

n )− r− 1,PSdV
) (20)

where the map φ in (20) sends a zero-dimensional scheme Z with deg(Z) = r to the vector space
(IZ)d (it is defined in the open set formed by the schemes Z, which impose independent conditions
to forms of degree d) and where the last arrow is the identification, which sends a linear space to its
perpendicular.

As in the case n = 1, the final image from the latter construction gives the (r− 1)-spaces, which are
r-secant to the Veronese variety in PN ∼= P(k[x0, . . . , xn]d)

∗. Moreover, each such space cuts the image
of Z via the Veronese embedding.

Notation 1. From now on, we will always use the notation ΠZ to indicate the projective linear subspace of
dimension r− 1 in PSdV, with dim(V) = n + 1, generated by the image of a zero-dimensional scheme Z ⊂ Pn

of degree r via the Veronese embedding, i.e., ΠZ = 〈νd(Z)〉 ⊂ PSdV.

Theorem 5. Any [F] ∈ σ2(Xn,d) ⊂ PSdV, with dim(V) = n + 1 can only have symmetric-rank equal to 1, 2
or d. More precisely:

σ2(Xn,d)� Xn,d = σ2,2(Xn,d) ∪ σ2,d(Xn,d);

more precisely, σ2,d(Xn,d) = τ(Xn,d) � Xn,d, where τ(Xn,d) denotes the tangential variety of Xn,d,
i.e., the Zariski closure of the union of the tangent spaces to Xn,d.

Proof. This is actually a quite direct consequence of Remark 12 and of Theorem 4, but let us describe the
geometry in some detail, following the proof of [28]. Since r = 2, every Z ∈ Hilb2(Pn) is the complete
intersection of a line and a quadric, so the structure of IZ is well known, i.e., IZ = (L0, . . . , Ln−2, Q),
where Li’s are linearly independent linear forms and Q is a quadric in S2V � (L0, . . . , Ln−2)2.

If F ∈ σ2(Xn,d), then we have two possibilities: either Rsym(F) = 2 or Rsym(T) > 2, i.e., F lies
on a tangent line ΠZ to the Veronese, which is given by the image of a scheme Z ⊂ PV of degree 2,
via the maps (20). We can view F in the projective linear space H ∼= Pd in P(SdV) generated by the
rational normal curve Cd ⊂ Xn,d, which is the image of the line � defined by the ideal (L0, . . . , Ln−2) in
PV, i.e., � ⊂ Pn is the unique line containing Z. Hence, we can apply Theorem 4 in order to get that
Rsym(F) ≤ d. Moreover, by Remark 12, we have Rsym(F) = d.

Remark 13. Let us check that σ2(Xn,d) is given by the annihilation of the (3× 3)-minors of the first two
catalecticant matrices, Cat1,d−1(V) and Cat2,d−2(V) (see Definition 1); actually, such minors are the generators
of Iσ2(νd(Pn)); see [78].

Following the construction above (20), we can notice that the coefficients of the linear spaces defined by
the forms Li ∈ V∗ in the ideal IZ are the solutions of a linear system whose matrix is given by the catalecticant
matrix Cat1,d−1(V); since the space of solutions has dimension n− 1, we get rk Cat1,d−1(V) = 2. When we
consider the quadric Q in IZ, instead, the analogous construction gives that its coefficients are the solutions of
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a linear system defined by the catalecticant matrix Cat2,d−2(V), and the space of solutions give Q and all the
quadrics in (L0, . . . , Ln−2)2, which are (n

2) + 2n− 1, hence:

rk Cat2,d−2(V) =

(
n + 2

2

)
−

((
n
2

)
+ 2n

)
= 2.

Therefore, we can write down an algorithm (Algorithm 3) to test if an element [F] ∈ σ2(Xn,d) has
symmetric rank two or d.

Algorithm 3: An algorithm to compute the symmetric-rank of an element lying on σ2(Xn,d).

Require: A from F ∈ SdV, where dim V = n + 1.
Ensure: If [F] ∈ σ2(Xn,d), returns the Rsym(F).

1: compute the number of essential variables m = rk Cat1,d−1(F);
2: if m = 1 then

3: print F ∈ Xn,d;
4: else if m > 2 then

5: print F �∈ σ2(Xn,d);
6: else

7: let W = (ker Cat1,d−1(F))⊥ and view F ∈ SdW;
8: end if

9: return apply Algorithm 2 to F.

Example 13. Compute the symmetric-rank of

F = x3
0x2 + 3x2

0x1x2 + 3x0x2
1x2 + x3

1x2.

First of all, note that (y0 − y1) ◦ F = 0; in particular, ker Cat1,3(F) = 〈y0 − y1〉. Hence, F has two essential
variables. This can also be seen by noticing that F = (x0 + x1)

3x2. Therefore, if we write z0 = x0 + x1 and
z1 = x2, then F = z3

0z1 ∈ k[z0, z1]. Hence, we can apply Algorithms 1 and 2 to compute the symmetric-rank,
symmetric-border rank and a minimal decompositions of F. In particular, we write:

Cat2,2(F) =

⎛⎜⎝ 0 1/4 0
1/4 0 0

0 0 0

⎞⎟⎠ ,

which has rank two, as expected. Again, as in Example 12, the kernel of Cat2,2(F) defines a polynomial with a
double root. Hence, Rsym(F) = 2 and Rsym(F) = 4. If we are interested in finding a minimal decomposition of
F, we have to consider the first catalecticant whose kernel defines a polynomial with simple roots. In this case,
we should get to:

Cat0,4(F) =

⎛⎜⎜⎜⎜⎜⎝
0

1/4
0
0
0

⎞⎟⎟⎟⎟⎟⎠ ,

whose kernel is 〈(1, 0, 0, 0, 0), (0, 0, 1, 0, 0), (0, 0, 0, 1, 0), (0, 0, 0, 0, 1)〉. If we let {w0, w1} be the variables on
W∗, we take a polynomial in this kernel, as for example G = w4

0 + w2
0w2

1 + w0w3
1 + w4

1. Now, if we compute
the roots of G, we find four complex distinct roots, i.e.,

(α1, β1) = − 1
6 A− 1

2

√
B + C (α2, β2) = − 1

6 A + 1
2

√
B + C;

(α3, β3) =
1
6 A− 1

2

√
B− C (α4, β4) =

1
6 A + 1

2

√
B− C;
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where:

A =

√√√√√√9
(

1
18 i
√

257
√

3− 43
54

) 2
3 − 6

(
1

18 i
√

257
√

3− 43
54

) 1
3
+ 13

1
18 i
√

257
√

3− 43
54

1
3

;

B =

√√√√−(
1/18i

√
257
√

3− 43
54

)1/3
−

(
13
9

1
18 i
√

257
√

3− 43
54

) 1
3

;

C =
6√√√√ 9( 1

18 i
√

257
√

3− 43
54 )

2
3 −6( 1

18 i
√

257
√

3− 43
54 )

1
3 +13

1
18 i
√

257
√

(3)− 43
54

1
3

− 4
3

Hence, if we write Li = αiz0 + βiz1, for i = 1, . . . , 4, we can find suitable λi’s to write a minimal
decomposition F = ∑4

i=1 λiL4
i . Observe that any hyperplane through [F] that does not contain the tangent

line to C4 at [z4
0] intersects C4 at four distinct points, so we could have chosen also another point in

〈(1, 0, 0, 0, 0), (0, 0, 1, 0, 0), (0, 0, 0, 1, 0), (0, 0, 0, 0, 1)〉, and we would have found another decomposition of F.

Everything that we have done in this section does not use anything more than Sylvester’s
algorithm for the two-variable case. In the next sections, we see what can be done if we have to deal
with more variables and we cannot reduce to the binary case like in Example 13.

Sylvester’s algorithm allows us to compute the symmetric-rank of any polynomial in two essential
variables. It is mainly based on the fact that equations for secant varieties of rational normal curves
are well known and that there are only two possibilities for the symmetric-rank of a given binary
polynomial with fixed border rank (Theorem 4). Moreover, those two cases are easily recognizable by
looking at the multiplicity of the roots of a generic polynomial in the kernel of the catalecticant.

The first ideas that were exploited to generalize Sylvester’s result to homogeneous polynomials
in more than two variables were:

• a good understanding of the inverse system (and therefore, of the scheme defined by the kernels
of catalecticant matrices and possible extension of catalecticant matrices, namely Hankel matrices);
we will go into the details of this idea in Section 2.3.3;

• a possible classification of the ranks of polynomials with fixed border rank; we will show the few
results in this direction in Section 2.3.2.

2.3.2. Beyond Sylvester’s Algorithm Using Zero-Dimensional Schemes

We keep following [28]. Let us start by considering the case of a homogeneous polynomial with
three essential variables.

If [F] ∈ σ3(νd(Pn))� σ2(νd(Pn)), then we will need more than two variables, but actually, three
are always sufficient. In fact, if [F] ∈ σ3(νd(Pn)), then there always exists a zero-dimensional scheme
νd(Z) of length three contained in νd(Pn), whose span contains [F]; the scheme Z ⊂ Pn itself spans
a P2, which can be seen as P((L1, L2, L3)1) with Li’s linear forms. Therefore, F can be written in
three variables. The following theorem computes the symmetric-rank of any polynomial in [F] ∈
σ3(νd(Pn)) \ σ2(νd(Pn)), and the idea is to classify the symmetric-rank by looking at the structure of
the zero-dimensional scheme of length three, whose linear span contains [F].

Theorem 6 ([28] (Theorem 37)). Let d ≥ 3, Xn,d ⊂ P(kn+1). Then,

σ3(Xn,3)� σ2(Xn,3) = σ3,3(Xn,3) ∪ σ3,4(Xn,3) ∪ σ3,5(Xn,3),
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while, for d ≥ 4,

σ3(Xn,d)� σ2(Xn,d) = σ3,3(Xn,d) ∪ σ3,d−1(Xn,d) ∪ σ3,d+1(Xn,d) ∪ σ3,2d−1(Xn,d).

We do not give here all the details of the proof since they can be found in [28]; they are quite
technical, but the main idea is the one described above. We like to stress that the relation between the
zero-dimensional scheme of length three spanning F and the one computing the symmetric-rank is in
many cases dependent on the following Lemma 3. Probably, it is classically known, but we were not
able to find a precise reference.

Lemma 3 ([28] (Lemma 11)). Let Z ⊂ Pn, n ≥ 2, be a zero-dimensional scheme, with deg(Z) ≤ 2d + 1.
A necessary and sufficient condition for Z to impose independent conditions on hypersurfaces of degree d is that
no line � ⊂ Pn is such that deg(Z ∩ �) ≥ d + 2.

Remark 14. Notice that if deg(� ∩ Z) is exactly d + 1 + k, then the dimension of the space of curves of degree
d through them is increased exactly by k with respect to the generic case.

It is easy to see that Lemma 3 can be improved as follows; see [79].

Lemma 4 ([79]). Let Z ⊂ Pn, n ≥ 2, be a zero-dimensional scheme, with deg(Z) ≤ 2d + 1.
If h1(Pn, IZ(d)) > 0, there exists a unique line � ⊂ Pn such that deg(Z ∩ �) = d + 1 + h1(Pn, IZ(d)) > 0.

We can go back to our problem of finding the symmetric-rank of a given tensor. The classification
of symmetric-ranks of the elements in σ4(Xn,d) can be treated in an analogous way as we did for
σ3(Xn,d), but unfortunately, it requires a very complicated analysis on the schemes of length four.
This is done in [80], but because of the long procedure, we prefer to not present it here.

It is remarkable that σ4(Xn,d) is the last s-th secant variety of Veronesean, where we can use
this technique for the classification of the symmetric-rank with respect to zero-dimensional schemes
of length s, whose span contains the given polynomial we are dealing with; for s ≥ 5, there is a
more intrinsic problem. In fact, there is a famous counterexample due to Buczyńska and Buczyśki
(see [81]) that shows that, in σ5(X4,3), there is at least a polynomial for which there does not exist any
zero-dimensional scheme of length five on X4,3, whose span contains it. The example is the following.

Example 14 (Buczyńska, Buczyński [81,82]). One can easily check that the following polynomial:

F = x2
0x2 + 6x2

1x3 − 3 (x0 + x1)
2x4.

can be obtained as limε→0
1
3ε Fε = F where:

Fε = (x0 + εx2)
3 + 6(x1 + εx3)

3 − 3(x0 + x1 + εx4)
3 + 3(x0 + 2 x1)

3 − (x0 + 3x1)
3

has symmetric-rank five for ε > 0. Therefore, [F] ∈ σ5(ν3(P4)).
An explicit computation of F⊥ yields the Hilbert series for HSR/F⊥(z) = 1 + 5z + 5z2 + z3. Let us

prove, by contradiction, that there is no saturated ideal I ⊂ F⊥ defining a zero-dimensional scheme of length
≤ 5. Suppose on the contrary that I is such an ideal. Then, HFR/I(i) ≥ HFR/F⊥(i) for all i ∈ N. As
HFR/I(i) is an increasing function of i ∈ N with HFR/F⊥(i) ≤ HFR/I(i) ≤ 5, we deduce that HSR/I(t) =
1 + 5 ∑∞

i=1 zi. This shows that I1 = {0} and that I2 = (F⊥)2. As I is saturated, I2 : (x0, . . . , x4) = I1 = {0},
since HFR/F⊥(1) = 5. However, an explicit computation of (F⊥)2 : (x0, . . . , x4) gives 〈x2, x3, x4〉. In this
way, we obtain a contradiction, so that there is no saturated ideal of degree ≤ 5 such that I ⊂ F⊥. Consequently,
the minimal zero-dimensional scheme contained in X4,3 whose linear span contains [F] has degree six.
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In the best of our knowledge, the two main results that are nowadays available to treat these
“wild” cases are the following.

Proposition 9 ([28]). Let X ⊂ PN be a non-degenerate smooth variety. Let Hr be the irreducible component of
the Hilbert scheme of zero-dimensional schemes of degree r of X containing r distinct points, and assume that for
each y ∈ Hr, the corresponding subscheme Y of X imposes independent conditions on linear forms. Then, for each
P ∈ σr(X) �σ0

r (X), there exists a zero-dimensional scheme Z ⊂ X of degree r such that P ∈ 〈Z〉 ∼= Pr−1.
Conversely, if there exists Z ∈ Hr such that P ∈ 〈Z〉, then P ∈ σr(X).

Obviously, five points on a line do not impose independent conditions on cubics in any Pn for
n ≥ 5; therefore, this could be one reason why the counterexample given in Example 14 is possible.
Another reason is the following.

Proposition 10 ([81]). Suppose there exist points P1, . . . , Pr ∈ X that are linearly degenerate, that is
dim〈P1, . . . , Pr〉 < r − 1. Then, the join of the r tangent stars (see [83] (Section 1.4) for a definition) at
these points is contained in σr(X). In the case that X is smooth at P1, . . . Pr, then 〈TP1 X, . . . , TPr X〉 ⊂ σr(X).

2.3.3. Beyond Sylvester’s Algorithm via Apolarity

We have already defined in Section 2.1.4 the apolarity action of S•V∗ � k[y0, . . . , yn] on S•V �
k[x0, . . . , xn] and inverse systems. Now, we introduce the main algebraic tool from apolarity theory
to study ranks and minimal Waring decompositions: that is the apolarity lemma; see [24,25]. First,
we introduce the apolar ideal of a polynomial.

Definition 19. Let F ∈ SdV be a homogeneous polynomial. Then, the apolar ideal of F is:

F⊥ = {G ∈ S•V∗ | G ◦ F = 0}.

Remark 15. The apolar ideal is a homogeneous ideal. Clearly, F⊥i = SiV∗, for any i > d, namely AF =

S•V∗/F⊥ is an Artinian algebra with socle degree equal to d. Since dimk(AF)d = 1, then it is also a
Gorenstein algebra. Actually, Macaulay proved that there exists a one-to-one correspondence between graded
Artinian Gorenstein algebras with socle degree d and homogeneous polynomials of degree d; for details, see [24]
(Theorem 8.7).

Remark 16. Note that, directly by the definitions, the non-zero homogeneous parts of the apolar ideal of a
homogeneous polynomial F coincide with the kernel of its catalecticant matrices, i.e., for i = 0, . . . , d,

F⊥i = ker(Cati,d−i(F)).

The apolarity lemma tells us that Waring decompositions of a given polynomial correspond to
sets of reduced points whose defining ideal is contained in the apolar ideal of the polynomial.

Lemma 5 (Apolarity lemma). Let Z = {[L1], . . . , [Lr]} ⊂ P(S1V), then the following are equivalent:

1. F = ∑r
i=1 λiLd

i , for some λ1, . . . , λr ∈ k;
2. I(Z) ⊆ F⊥.

If these conditions hold, we say that Z is a set of points apolar to F.

Proof. The fact that (1) implies (2) follows from the easy fact that, for any G ∈ SdV∗, we have that
G ◦ Ld is equal to d times the evaluation of G at the point [L] ∈ PV. Conversely, if I(Z) ⊂ F⊥, then we
have that F ∈ I(Z)⊥d = 〈Ld

1, . . . , Ld
r 〉; see Remark 9 and Proposition 4.
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Remark 17 (Yet again: Sylvester’s algorithm). With this lemma, we can rephrase Sylvester’s algorithm.
Consider the binary form F = ∑d

i=0 ci(
d
i)xd−i

0 xi
1. Such an F can be decomposed as the sum of r distinct powers

of linear forms if and only if there exists Q = q0yr
0 + q1yr−1

0 y1 + · · ·+ qryr
1 such that:⎛⎜⎜⎜⎜⎝

c0 c1 · · · cr

c1 · · · cr+1
...

...
cd−r · · · cd

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝

q0

q1
...

qr

⎞⎟⎟⎟⎟⎠ = 0, (21)

and Q = μΠr
k=1(βky0 − αky1), for a suitable scalar μ ∈ k, where [αi : βi]’s are different points in P1. In this

case, there exists a choice of λ1, . . . , λr such that F = ∑r
k=1 λk(αkx0 + βkx1)

d. This is possible because of the
following remarks:

• Gorenstein algebras of codimension two are always complete intersections, i.e.,

I(Z) ⊂ (F⊥) = (G1, G2);

• Artinian Gorenstein rings have a symmetric Hilbert function, hence:

deg(G1) + deg(G2) = deg(F) + 2, say deg(G1) ≤ deg(G2);

• If G1 is square-free, i.e., has only distinct roots, we take Q = G1 and Rsym(F) = deg(G1); otherwise,
the first degree where we get something square-free has to be the degree of G2; in particular, we can take Q
to be a generic element in F⊥deg(G2)

and Rsym(F) = deg(G2).

By using Apolarity Theory, we can describe the following algorithm (Algorithm 4).

Algorithm 4: Iarrobino and Kanev [25].
We attribute the following generalization of Sylvester’s algorithm to any number of variables
to Iarrobino and Kanev: despite that they do not explicitly write the algorithm, the main idea
is presented in [25]. Sometimes, this algorithm is referred to as the catalecticant method.

Require: F ∈ SdV, where dim V = n + 1.
Ensure: a minimal Waring decomposition.

1: construct the most square catalecticant of F, i.e., Catm,d−m(F) for m = �d/2�;
2: compute ker Catm,d−m(F);
3: if the zero-set Z of the polynomials in ker Catm,d−m(F) is a reduced set of points, say
{[L1], . . . , [Lr]}, then continue, otherwise the algorithm fails;

4: solve the linear system defined by F = ∑s
i=1 λiLd

i in the unknowns λi.

Example 15. Compute a Waring decomposition of:

F = 3x4 + 12x2y2 + 2y4 − 12x2yz + 12xy2z− 4y3z + 12x2z2 − 12xyz2 + 6y2z2 − 4yz3 + 2z4.

The most square catalecticant matrix is:

Cat2,2(F) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

3 0 0 2 −1 2
0 2 −1 0 1 −1
0 −1 2 1 −1 0
2 0 1 2 −1 1

−1 1 −1 −1 1 −1
2 −1 0 1 −1 2

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.
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Now, compute that the rank of Cat2,2(F) is three, and its kernel is:

ker(Cat2,2(F)) = 〈(1, 0, 0,−1,−1,−1), (0, 1, 0,−1,−2, 0), (0, 0, 1, 0, 2, 1)〉 =
〈y2

0 − y2
1 − y1y2 − y2

2, y0y1 − y2
1 − 2y1y2, y0y2 + 2y1y2 + y2

2〉 ⊂ S2V∗.

It is not difficult to see that these three quadrics define a set of reduced points {[1 : 1 : 0], [1 : 0 : −1], [1 : −1 :
1]} ⊂ PV. Hence, we take L1 = x0 + x1, L2 = x0 − x2 and L3 = x0 − x1 + x2, and, by the apolarity lemma,
the polynomial F is a linear combinations of those forms, in particular,

F = (x0 + x1)
4 + (x0 − x2)

4 + (x0 − x1 + x2)
4.

Clearly, this method works only if Rsym(F) = rank Catm,d−m(F), for m =
⌈

d
2

⌉
. Unfortunately,

in many cases, this condition is not always satisfied.
Algorithm 4 has been for a long time the only available method to handle the computation of

the decomposition of polynomials with more than two variables. In 2013, there was an interesting
contribution due to Oeding and Ottaviani (see [84]), where the authors used vector bundle techniques
introduced in [85] to find non-classical equations of certain secant varieties. In particular, the very
interesting part of the paper [84] is the use of representation theory, which sheds light on the geometric
aspects of this algorithm and relates these techniques to more classical results like the Sylvester
pentahedral theorem (the decomposition of cubic polynomial in three variables as the sum of five
cubes). For the heaviness of the representation theory background needed to understand that algorithm,
we have chosen to not present it here. Moreover, we have to point out that ([84] Algorithm 4) fails
whenever the symmetric-rank of the polynomial is too large compared to the rank of a certain matrix
constructed with the techniques introduced in [84], similarly as happens for the catalecticant method.

Nowadays, one of the best ideas to generalize the method of catalecticant matrices is due to
Brachat, Comon, Mourrain and Tsidgaridas, who in [29] developed an algorithm (Algorithm 5) that
gets rid of the restrictions imposed by the usage of catalecticant matrices. The idea developed in [29] is
to use the so-called Hankel matrix that in a way encodes all the information of all the catalecticant
matrices. The algorithm presented in [29] to compute a Waring decomposition of a form F ∈ SdV
passes through the computation of an affine Waring decomposition of the dehomogenization f of
the given form with respect to a suitable variable. Let S = k[x1, . . . , xn] be the polynomial ring in n
variables over the field k corresponding to such dehomogenization.

We first need to introduce the definition of Hankel operator associated with any Λ ∈ S∗. To do so,
we need to use the structure of S∗ as the S-module, given by:

a ∗Λ : S → k, b �→ Λ(ab), for a ∈ S, Λ ∈ S∗.

Then, the Hankel operator associated with Λ ∈ S∗ is the matrix associated with the linear map:

HΛ : S → S∗, such that a �→ a ∗Λ.

Here are some useful facts about Hankel operators.

Proposition 11. ker(HΛ) is an ideal.

Let IΛ = ker(HΛ) and AΓ = S/IΛ.

Proposition 12. If rank(HΛ) = r < ∞, then the algebra AΛ is a k-vector space of dimension r, and there exist
polynomials l1, . . . lk of degree one and g1, . . . , gk of degree d1, . . . , dk, respectively, in k[∂1, . . . , ∂n] such that:

Λ =
k

∑
i=1

ld−di
i gi.
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Moreover, IΛ defines the union of affine schemes Z1, . . . , Zk with support on the points l∗1 , . . . , l∗k ∈ kn,
respectively, and with multiplicity equal to the dimension of the vector space spanned by the inverse system
generated by ld−di

i gi.

The original proof of this proposition can be found in [29]; for a more detailed and expanded
presentation, see [30,31].

Theorem 7 (Brachat, Comon, Mourrain, Tsigaridas [29]). An element Λ ∈ S∗ can be decomposed as
Λ = ∑r

i=1 λi ld
i if and only if rankHΛ = r, and IΛ is a radical ideal.

Now, we consider the multiplication operators in AΛ. Given a ∈ AΛ:

Ma : AΛ → AΛ,

b �→ a · b,

and,
Mt

a : A∗Λ → A∗Λ,

γ �→ a ∗ γ.

Now,
Ha∗Λ := Mt

a · HΛ. (22)

Theorem 8. If dim AΛ < ∞, then, Λ = ∑k
i=1 ld−di

i gi and:

• the eigenvalues of the operators Ma and Mt
a are given by {a(l∗1 ), . . . , a(l∗r )};

• the common eigenvectors of the operators (Mt
xi
)1≤i≤n are, up to scalar, the li’s.

Therefore, one can recover the li’s, i.e., the points l∗i ’s, by eigenvector computations: take B
as a basis of A f , i.e., say B = {b1, . . . , br} with r = rankHΛ, and let HB

a∗Λ = Mt
a HB

Λ = HB
Λ Ma

(Ma is the matrix of the multiplication by a in the basis B). The common solutions of the generalized
eigenvalue problem:

(Ha∗Λ − λHΛ)v = 0,

for all a ∈ S yield the common eigenvectors HB
Λv of Mt

a, that is the evaluations at the points l∗i ’s.
Therefore, these common eigenvectors HB

Λv are up to scalar the vectors [bi(l∗i ), . . . , br(l∗i )], for i =

1, . . . , r.
If f = ∑r

i=1 λi ld
i , then the Zi’s in Proposition 12 are simple, and one eigenvector computation is

enough: in particular, for any a ∈ S, Ma is diagonalizable, and the generalized eigenvectors HB
Λv are,

up to scalar, the evaluations at the points l∗i ’s.
Now, in order to apply this algebraic tool to our problem of finding a Waring decomposition

of a homogeneous polynomial F ∈ k[x0, . . . , xn], we need to consider its dehomogenization f =

F(1, x1, . . . , xn) with respect to the variable x0 (with no loss of generality, we may assume that the
coefficients with respect to x0 are all non-zero). Then, we associate a truncated Hankel matrices
as follows.

Definition 20. Let B be a subset of monomials in S. We say that B is connected to one if ∀m ∈ B either
m = 1 or there exists i ∈ {1, . . . , n} and m′ ∈ B such that m = xim′.
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Let B, B′ ⊂ S≤d be sets of monomials of degree ≤ d, connected to one. For any f =

∑α∈Nn

|α|≤d
cα(

d
d−|α|,α1,...,αn

)xα ∈ Sd, we consider the Hankel matrix:

HB,B′
f = (hα+β)α∈B,β∈B′ ,

where hα = cα if |α| ≤ d, and otherwise, hα is an unknown. The set of all these new variables is
denoted h. Note that, by this definition, the known parts correspond to the catalecticant matrices of F.
For simplicity, we write HB

f = HB,B
f . This matrix is also called quasi-Hankel [86].

Example 16. Consider F = −4x0x1 + 2x0x2 + 2x1x2 + x2
2 ∈ k[x0, x1, x2]. Then, we look at the

dehomogenization with respect to x0 given by f = −4x1 + 2x2 + 2x1x2 + x2
2 ∈ k[x1, x2]. Then, if we

consider the standard monomial basis of S≤2 given by B = {1, x1, x2, x2
1, x1x2, x2

2}, then we get:

HB
f =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −2 1 0 1 1
−2 0 1 h(3,0) h(2,1) h(1,2)
1 1 1 h(2,1) h(1,2) h(0,3)
0 h(3,0) h(2,1) h(4,0) h(3,1) h(2,2)
1 h(2,1) h(1,2) h(3,1) h(2,2) h(1,3)
1 h(1,2) h(0,3) h(2,2) h(1,3) h(0,4)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where the h’s are unknowns.

Now, the idea of the algorithm is to find a suitable polynomial f whose Hankel matrix extends
the one of f , has rank equal to the Waring rank of f and the kernel gives a radical ideal. This is done by
finding suitable values for the unknown part of the Hankel matrix of f . Those f are elements whose
homogenization is in the following set:

E d,0
r :=

{
[F] ∈ P(SdV) | ∃L ∈ S1V � {0}, ∃F′ ∈ Ym,m′

r s.t. Lm+m′−dF′ = F
with m = max{r, �d/2�}, m′ = max{r− 1, �d/2�}

}
where Yi,d−i

r = {[F] ∈ P(SdV) | rankCati,d−i(F) ≤ r}. If [F] ∈ E d,0
r , we say that f is the generalized

affine decomposition of size r.

Suppose that HB,B′
f is invertible in k(h), then we define the formal multiplication operators:

MB,B′
i (h) := (HB,B′

f )−1HB,B′
xi f .

Notation 2. If B is a subset of monomials, then we write B+ = B ∪ x1B ∪ . . . ∪ xnB. Note that, if B is
connected to one, then also B+ is connected to one.

The key result for the algorithm is the following.

Theorem 9 (Brachat, Comon, Mourrain, Tsigaridas [29]). If B and B′ are sets of monomials connected to
one, the coefficients of f are known on B+ × B′+, and if HB,B′

f̃
is invertible, then f extends uniquely to S if and

only if:
MB,B′

i ·MB,B′
j = MB,B′

j ·MB,B′
i , for any 1 ≤ i < j ≤ n.
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Algorithm 5: Brachat, Comon, Mourrain, Tsigaridas [29–31].
Here is the idea of algorithm presented in [29]. In [30,31], a faster and more accurate version
can be found.

Require: Any polynomial f ∈ S.
Ensure: An affine Waring decomposition of f .

1: r ← 1;
2: Compute a set B of monomials of degree ≤ d connected to one and with |B| = r;
3: Find parameters h such that det(HB

f ) �= 0 and the operators MB
i = (HB

f )
−1HB

xi f commute;
4: if there is no solution then

5: go back to 2 with r ← r + 1;
6: else

7: compute the n · r eigenvalues zi,j and the eigenvectors vj such that Mjvj = zi,jvj,
i = 1, . . . , n, j = 1, . . . , r, until one finds r different common eigenvectors;

8: end if

9: Solve the linear system f = ∑r
j=1 λjzd

j in the λi’s, where the zj’s are
the eigenvectors found above.

For simplicity, we give the example chosen by the authors of [29].

Example 17. We look for a decomposition of:

F =− 1549440 x0x1x2
3 + 2417040 x0x1

2x2
2 + 166320 x0

2x1x2
2 − 829440 x0x1

3x2

− 5760 x0
3x1x2 − 222480 x0

2x1
2x2 + 38 x0

5 − 497664 x1
5 − 1107804 x2

5

− 120 x0
4x1 + 180 x0

4x2 + 12720 x0
3x1

2 + 8220 x0
3x2

2 − 34560 x0
2x1

3

− 59160 x0
2x2

3 + 831840 x0x1
4 + 442590 x0x2

4 − 5591520 x1
4x2

+ 7983360 x1
3x2

2 − 9653040 x1
2x2

3 + 5116680 x1x2
4.

1. We form a (n+d−1
d )× (n+d−1

d ) matrix, the rows and the columns of which correspond to the coefficients of
the polynomial with respect to the expression f = F(1, x1, . . . , xn) = ∑α∈Nn

|α|≤d
cα(

d
d−|α|,α1,...,αn

)xα.

The whole 21× 21 matrix is the following.

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 x1 x2 x2
1 x1 x2 x2

2 x3
1 x2

1 x2 x1 x2
2 x3

2
1 38 −24 36 1272 −288 822 −3456 −7416 5544 −5916

x1 −24 1272 −288 −3456 −7416 5544 166,368 −41,472 80,568 −77,472
x2 36 −288 822 −7416 5544 −5916 −41,472 80,568 −77,472 88,518
x2

1 1272 −3456 −7416 166,368 −41,472 80,568 −497,664 −1,118,304 798,336 −965,304
x1 x2 −288 −7416 5544 −41,472 80,568 −77,472 −1,118,304 798,336 −965,304 1,023,336

x2
2 822 5544 −5916 80,568 −77,472 88,518 798,336 −965,304 1,023,336 −1,107,804

x3
1 −3456 166,368 −41,472 −497,664 −1,118,304 798,336 h6,0,0 h5,1,0 h4,2,0 h3,3,0

x2
1 x2 −7416 −41,472 80,568 −1,118,304 798,336 −965,304 h5,1,0 h4,2,0 h3,3,0 h2,4,0

x1 x2
2 5544 80,568 −77,472 798,336 −965,304 1,023,336 h4,2,0 h3,3,0 h2,4,0 h1,5,0

x3
2 −5916 −77,472 88,518 −965,304 1,023,336 −1,107,804 h3,3,0 h2,4,0 h1,5,0 h0,6,0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
Notice that we do not know the elements in some positions of the matrix. In this case, we do not know the
elements that correspond to monomials with (total) degree higher than five.

2. We extract a principal minor of full rank.

We should re-arrange the rows and the columns of the matrix so that there is a principal minor of full rank.
We call this minor Δ0. In order to do that, we try to put the matrix in row echelon form, using elementary
row and column operations.
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In our example, the 4× 4 principal minor is of full rank, so there is no need for re-arranging the matrix.
The matrix Δ0 is:

Δ0 =

⎛⎜⎜⎜⎝
38 −24 36 1272

−24 1272 −288 −3456
36 −288 822 −7416

1272 −3456 −7416 166,368

⎞⎟⎟⎟⎠
Notice that the columns of the matrix correspond to the set of monomials {1, x1, x2, x2

1}.
3. We compute the “shifted” matrix Δ1 = x1Δ0.

The columns of Δ0 correspond to the set of some monomials, say {xα}, where α ⊂ Nn. The columns of Δ1

correspond to the set of monomials {x1 xα}.

The shifted matrix Δ1 is:

Δ1 =

⎛⎜⎜⎜⎝
−24 1272 −288 −3456
1272 −3456 −7416 166,368
−288 −7416 5544 −41,472
−3456 166,368 −41,472 −497,664

⎞⎟⎟⎟⎠ .

Notice that the columns correspond to the monomials {x1, x2
1, x1x2, x3

1}, which are just the corresponding
monomials of the columns of Δ0, i.e., {1, x1, x2, x2

1}, multiplied by x1.

In this specific case, all the elements of the matrices Δ0 and Δ1 are known. If this is not the case, then
we can compute the unknown entries of the matrix, using either necessary or sufficient conditions of the
quotient algebra, e.g., it holds that the Mxi Mxj −Mxj Mxi = 0, for any i, j ∈ {1, . . . , n}.

4. We solve the equation (Δ1 − λΔ0)X = 0.

We solve the generalized eigenvalue/eigenvector problem [87]. We normalize the elements of the eigenvectors
so that the first element is one, and we read the solutions from the coordinates of the normalized eigenvectors.

The normalized eigenvectors of the generalized eigenvalue problem are:⎛⎜⎜⎜⎝
1

−12
−3
144

⎞⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎝
1

12
−13
144

⎞⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎝
1

−2
3
4

⎞⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎝
1
2
3
4

⎞⎟⎟⎟⎠ .

The coordinates of the eigenvectors correspond to the elements of the monomial basis {1, x1, x2, x2
1}. Thus,

we can recover the coefficients of x1 and x2 in the decomposition from the coordinates of the eigenvectors.

Recall that the coefficients of x0 are considered to be one because of the dehomogenization process. Thus,
our polynomial admits a decomposition:

F = λ1(x0 − 12x1 − 3x2)
5 + λ2(x0 + 12x1 − 13x2)

5+

λ3(x0 − 2x1 + 3x2)
5 + λ4(x0 + 2x1 + 3x2)

5.

It remains to compute λi’s. We can do this easily by solving an over-determined linear system, which we
know that always has a solution, since the decomposition exists. Doing that, we deduce that λ1 = 3,
λ2 = 15, λ3 = 15 and λ4 = 5.
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3. Tensor Product and Segre Varieties

3.1. Introduction: First Approaches

As we saw in the Introduction, if we consider the space parametrizing (n1 + 1) × · · · × (nt +

1)-tensors (up to multiplication by scalars), i.e., the space PN , with N = ∏t
i=1(ni + 1)− 1, then additive

decomposition problems lead us to study secant varieties of the Segre varieties Xn ⊂ PN , n =

(n1, . . . , nt), which are the image of the Segre embedding of the multiprojective spaces Pn1 × · · · × Pnt ,
defined by the map:

ν1,...,1 : Pn1 × · · · × Pnt → PN ,

ν1,...,1(P) = (a1,0a2,0 · · · at,0, . . . , a1,n1 · · · at,nt),

where P = ((a1,0, . . . , a1,n1), . . . , (at,0, . . . , at,nt)) ∈ Pn1 × · · · × Pnt , and the products are taken in
lexicographical order. For example, if P = ((a0, a1), (b0, b1, b2)) ∈ P1 × P2, then we have ν1,1(P) =

(a0b0, a0b1, a0b2, a1b0, a1b1, a1b2) ∈ P5.
Note that, if {xi,0, . . . , xi,ni} are homogeneous coordinates in Pni and zj1,...,jt , ji ∈ {0, . . . ni} are

homogeneous coordinates in PN , we have that Xn is the variety whose parametric equations are:

zj1,...,jt = xj1,1 · · · xjt ,t; ji ∈ {1, . . . ni}.

Since the use of tensors is ubiquitous in so many applications and to know a decomposition for a given
tensor allows one to ease the computational complexity when trying to manipulate or study it, this
problem has many connections with questions raised by computer scientists in complexity theory [88]
and by biologists and statisticians (e.g., see [16,89,90]).

As it is to be expected with a problem with so much interest in such varied disciplines,
the approaches have been varied; see, e.g., [88,91] for the computational complexity approach, [16,90]
for the biological statistical approach, [22,92–94] for the classical algebraic geometry approach, [95,96]
for the representation theory approach, [97] for a tropical approach and [98] for a multilinear algebra
approach. Since the t = 2 case is easy (it corresponds to ordinary matrices), we only consider t ≥ 3.

The first fundamental question about these secant varieties, as we have seen, is about their
dimensions. Despite all the progresses made on this question, it still remains open; only several partial
results are known.

Notice that the case t = 3, since it corresponds to the simplest tensors, which are not matrices,
had been widely studied, and many previous results from several authors are collected in [22].

We start by mentioning the following result on non-degeneracy; see [22] (Propositions 2.3 and 3.7).

Theorem 10. Let n1 ≤ n2 ≤ · · · ≤ nt, t ≥ 3. Then, the dimension of the s-th secant variety of the Segre
variety Xn is as expected, i.e.,

dim σs(Xn) = s(n1 + n2 + · · ·+ nt + 1)− 1

if either:

• s ≤ n1 + 1; or
• max{nt + 1, s} ≤

[
n1+n2+···+nt+1

2

]
.

In the paper mentioned above, these two results are obtained in two ways. The first is via
combinatorics on monomial ideals in the multihomogeneous coordinate ring of Pn1 × · · · × Pnt :
curiously enough, this corresponds to understanding possible arrangements of a set of rooks
on an t-dimensional chessboard (corresponding to the array representing the tensor). There is
also a reinterpretation of these problems in terms of code theory and Hamming distance (the
so-called Hamming codes furnish nice examples of non-defective secants varieties to Segre’s of type
Pn × · · · × Pn).
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Combinatorics turns out to be a nice, but limited tool for those questions. The second part
of Theorem 10 (and many other results that we are going to report) are obtained by the use of
inverse systems and the multigraded version of apolarity theory (recall Section 2.1.4 for the standard
case, and we refer to [99–102] for definitions of multigraded apolarity) or via Terracini’s lemma
(see Lemma 1).

The idea behind these methods is to translate the problem of determining the dimension of σs(X),
into the problem of determining the multihomogeneous Hilbert function of a scheme Z ⊂ Pn1 × · · · ×
Pnt of s generic two-fat points in multi-degree 1 = (1, . . . , 1). We have that the coordinate ring of the
multi-projective space Pn1 × · · · × Pnt is the polynomial ring S = k[x1,0, . . . , x1,n1 , . . . , xt,0, . . . , xt,nt ],
equipped with the multi-degree given by deg(xi,j) = ei = (0, . . . , 1

i
, . . . , 0). Then, the scheme Z is

defined by a multi-homogeneous ideal I = I(Z), which inherits the multi-graded structure. Hence,
recalling the standard definition of Hilbert function (Definition 11), we say that the multi-graded
Hilbert function of Z in multi-degree d = (d1, . . . , dt) is:

HF(Z; d) = dimk(S/I)d = dimk Sd − dimk Id.

3.2. The Multiprojective Affine Projective Method

We describe here a way to study the dimension of σs(Xn) by studying the multi-graded Hilbert
function of a scheme of fat points in multiprojective space via a very natural reduction to the Hilbert
function of fat points in the standard projective space (of equal dimension).

We start recalling a direct consequence of Terracini’s lemma for any variety.
Let Y ⊂ PN be a positive dimensional smooth variety, and let Z ⊂ Y be a scheme of s generic

two-fat points, i.e., a scheme defined by the ideal sheaf IZ = I2
P1,Y ∩ · · · ∩ I2

Ps ,Y ⊂ OY, where the
Pi’s are s generic points of Y defined by the ideal sheaves IPi ,Y ⊂ OY, respectively. Since there is a
bijection between hyperplanes of the space PN containing the linear space 〈TP1(Y), . . . , TPs(Y)〉 and
the elements of H0(Y, IZ(1)), we have the following consequence of the Terracini lemma.

Theorem 11. Let Y be a positive dimensional smooth variety; let P1, . . . , Ps be generic points on Y; and let
Z ⊂ Y be the scheme defined by I2

P1,Y ∩ . . . ∩ I2
Ps ,Y. Then,

dim σs(Y) = dim〈TP1(Y), . . . , TPs(Y)〉 = N − dimk H0(Y, IZ(1)).

Now, we apply this result to the case of Segre varieties; we give, e.g., [103] as the main reference.
Consider Pn := Pn1 × · · · × Pnt , and let Xn ⊂ PN be its Segre embedding given by OPn1 (1)⊗ . . .⊗
OPnt (1). By applying Theorem 11 and since the scheme Z ⊂ Xn corresponds to a scheme of s generic
two-fat points in X, which, by a little abuse of notation, we call again Z, we get:

dim σs(Xn) = HF(Z, 1)− 1.

Now, let n = n1 + · · ·+ nt, and consider the birational map:

Pn ��� An,

where: (
[x1,0 : · · · : x1,n1 ], . . . , [xt,0, . . . , xt,nt ]

)

�→(
x1,1
x1,0

, x1,2
x1,0

, . . . ,
x1,n1
x1,0

; x2,1
x2,0

, . . . ,
x2,n2
x2,0

; . . . ; xt,1
xt,0

, . . . , xt,nt
xt,0

)
.

This map is defined in the open subset of Pn given by {x1,0x2,0 · · · xt,0 �= 0}.
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Now, let k[z0, z1,1, . . . , z1,n1 , z2,1, . . . , z2,n2 , . . . , zt,1, . . . , zt,nt ] be the coordinate ring of Pn,
and consider the embedding of An → Pn, whose image is the affine chart {z0 �= 0}. By composing the
two maps above, we get:

ϕ : Pn ��� Pn,

with: (
[x1,0 : · · · : x1,n1 ], . . . , [xt,0, . . . , xt,nt ]

)

�→[
1 : x1,1

x1,0
: x1,2

x1,0
: · · · :

x1,n1
x1,0

: x2,1
x2,0

: · · · :
x2,n2
x2,0

: · · · : xt,1
xt,0

: · · · : xt,nt
xt,0

]
.

Let Z ⊂ X be a zero-dimensional scheme, which is contained in the affine chart {x0,1x0,2 · · · x0,t �= 0},
and let Z′ = ϕ(Z). We want to construct a scheme W ⊂ Pn such that HF(W; d) = HF(Z; (d1, . . . , dt)),
where d = d1 + . . . + dt.

Let:
Q0, Q1,1, . . . , Q1,n1 , Q2,1, . . . , Q2,n2 , Qt,1, . . . , Qt,nt

be the coordinate points of Pn. Consider the linear space Πi
∼= Pni−1 ⊂ Pn, where Πi = 〈Qi,1, . . . , Qi,ni 〉.

The defining ideal of Πi is:

I(Πi) = (z0, z1,1, . . . , z1,n1 ; . . . ; ẑi,1, . . . , ẑi,ni ; . . . ; zt,1, . . . , zt,nt) .

Let Wi be the subscheme of Pn denoted by (di − 1)Πi, i.e., the scheme defined by the ideal I(Πi)
di−1.

Since I(Πi) is a prime ideal generated by a regular sequence, the ideal I(Πi)
di−1 is saturated (and even

primary for I(Πi)). Notice that Wi ∩Wj = ∅, for i �= j. With this construction, we have the following
key result.

Theorem 12. Let Z, Z′, W1, . . . , Wt be as above, and let W = Z′ + W1 + · · ·+ Wt ⊂ Pn. Let I(W) ⊂ S
and I(Z) ⊂ R be the ideals of W and Z, respectively. Then, we have, for all (d1, . . . , dt) ∈ Nt:

dimk I(W)d = dimk I(Z)(d1,...,dt),

where d = d1 + · · ·+ dt.

Note that when studying Segre varieties, we are only interested to the case (d1, . . . , dt) = (1, . . . , 1);
but, in the more general case of Segre–Veronese varieties, we will have to look at Theorem 12 for any
multidegree (d1, . . . , dt); see Section 4.2.

Note that the scheme W in Pn that we have constructed has two parts: the part W1 + · · ·+ Wt

(which we shall call the part at infinity and we denote as W∞) and the part Z′, which is isomorphic to
our original zero-dimensional scheme Z ⊂ X. Thus, if Z = ∅ (and hence, Z′ = ∅), we obtain from the
theorem that:

dimk I(W∞)d = dimk S(d1,...,dt), d = d1 + · · ·+ dt.

It follows that:

HF(W∞; d) =
(

d1 + · · ·+ dt + n
n

)
−

(
d1 + n1

n1

)
· · ·

(
dt + nt

nt

)
.

With this observation made, the following corollary is immediate.

Corollary 3. Let Z and Z′ be as above, and write W = Z′ + W∞. Then,

HF(W; d) = HF(Z; (d1, . . . , dt)) + HF(W∞; d).

Eventually, when Z is given by s generic two-fat points in multi-projective space, we get
the following.
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Theorem 13. Let Z ⊂ X be a generic set of s two-fat points, and let W ⊂ Pn be as in the Theorem 12. Then,
we have:

dim σs(Xn) = HF(Z, (1, . . . , 1))− 1 = N − dim I(W)t,

where N = Πt
i=1(1 + ni)− 1.

Therefore, eventually, we can study a projective scheme W ⊂ Pn, which is made of a union of
generic two-fat points and of fat linear spaces. Note that, when n1 = . . . = nt = 1, then also W is a
scheme of fat points.

3.3. The Balanced Case

One could try to attack the problem starting with a case, which is in a sense more “regular”,
i.e., the “balanced” case of n1 = · · · = nt, t ≥ 3. Several partial results are known, and they lead Abo,
Ottaviani and Peterson to propose, in their lovely paper [92], a conjecture, which states that there
are only a finite number of defective Segre varieties of the form Pn × · · · × Pn, and their guess is that
σ4(P2 × P2 × P2) and σ3(P1 × P1 × P1 × P1) are actually the only defective cases (as we will see later,
this is just part of an even more hazardous conjecture; see Conjecture 6).

In the particular case of n1 = · · · = nt = 1, the question has been completely solved in [104],
supporting the above conjecture.

Theorem 14 ([104]). Let t, s ∈ N, t ≥ 3. Let X1 be the Segre embedding of P1 × · · · × P1, (t-times).
The dimension of σs(X1) ⊂ PN, with N = 2t − 1, is always as expected, i.e.,

dim σs(X) = min{N, s(t + 1)− 1},

except for t = 4, s = 3. In this last case, dim σ3(X) = 13, instead of 14.

The method that has been used to compute the multi-graded Hilbert function for schemes of
two-fat points with generic support in multi-projective spaces is based first on the procedure described
on the multiprojective affine projective method explained in the previous section, which brings
to the study of the standard Hilbert function of the schemes W ⊂ Pt. Secondly, the problem of
determining the dimension of I(W)t can be attacked by induction, via the powerful tool constituted
by the differential Horace method, created by Alexander and Hirschowitz; see Section 2.2.2. This is
used in [104] together with other “tricks”, which allow one to “move” on a hyperplane some of the
conditions imposed by the fat points, analogously as we have described in the examples in Section
2.2.2. These were the key ingredients to prove Theorem 14.

The only defective secant variety in the theorem above is made by the second secant variety
of P1 × P1 × P1 × P1 ⊂ P15, which, instead of forming a hypersurface in P15, has codimension two.
Via Theorem 13 above, this is geometrically related to a configuration of seven fat points; more precisely,
in this case, the scheme W of Theorem 13 is union of three two-fat points and four three-fat ones (see
also Theorem 12 for a detailed description of W). These always lie on a rational normal curve in P4

(see, e.g., Theorem 1.18 of [1]) and do not have the expected Hilbert function in degree four, by the
result in [105].

For the general “balanced” case Pn × · · · × Pn, the following partial result is proven in [92].

Theorem 15. Let Xn be the Segre embedding of Pn × · · · × Pn (t times), t ≥ 3. Let st and et be defined by:

st =

⌊
(n + 1)t

nt + 1

⌋
and et ≡ st mod (n + 1) with et ∈ {0, . . . , n}.

Then:

• if s ≤ st − et, then σs(X) has the expected dimension;

111



Mathematics 2018, 6, 314

• if s ≥ st − et + n + 1, then σs(X) fills the ambient space.

In other words, if st = q(n + 1) + r, with 1 ≤ r ≤ n, then σs(Xn) has the expected dimension
both for s ≥ (q + 1)(n + 1) and for s ≤ q(n + 1), but if n + 1 divides st, then σs(X) has the expected
dimension for any s.

Other known results in the “balanced” case are the following:

• σ4(P2 × P2 × P2) is defective with defect δ4 = 1; see [21].
• Pn × Pn × Pn is never defective for n ≥ 3; see [106];
• Pn × Pn × Pn × Pn for 2 ≤ n ≤ 10 is never defective except at most for s = 100 and n = 8 or for

s = 357 and n = 10; see [107].

3.4. The General Case

When we drop the balanced dimensions request, not many defective cases are actually known.
For example:

• P2 × P3 × P3 is defective only for s = 5, with defect δ4 = 1; see [92];
• P2 × Pn × Pn with n even is defective only for s = 3n

2 + 1 with defect δs = 1; see [22,94].
• P1 × P1 × Pn × Pn is defective only for s = 2n + 1 with defect δ2n+1 = 1; see [92].

However, when taking into consideration cases where the ni’s are far from being equal, we run
into another “defectivity phenomenon”, known as “the unbalanced case”; see [22,108].

Theorem 16. Let Xn be the Segre embedding of Pn1 × · · · × Pnt × Pn ⊂ PM, with M = (n + 1)Πt
i=1(ni +

1)− 1. Let N = Πt
i=1(ni + 1)− 1, and assume n > N −∑t

i=1 ni + 1. Then, σs(X) is defective for:

N −
t

∑
i=1

ni + 1 < s ≤ min{n; N},

with defect equal to δs(X) = s2 − s(N −∑t
i=1 ni + 1).

The examples described above are the few ones for which defectivities of Segre varieties are
known. Therefore, the following conjecture has been stated in [92], where, for n1 ≤ n2 ≤ . . . ≤ nt, it is
proven for s ≤ 6.

Conjecture 6. The Segre embeddings of Pn1 × · · · .× Pnt , t ≥ 3, are never defective, except for:

• P1 × P1 × P1 × P1, for s = 3, with δ3 = 1;
• P2 × P2 × P2, for s = 4, with δ4 = 1;
• the “unbalanced case”;
• P2 × P3 × P3, for s = 5, with δ5 = 1;
• P2 × Pn × Pn, with n even, for s = 3n

2 + 1, with δs = 1);
• P1 × P1 × Pn × Pn, for s = 2n + 1, with δ2n+1 = 1).

4. Other Structured Tensors

There are other varieties of interest, parametrizing other “structured tensors”, i.e., tensors that
have determined properties. In all these cases, there exists an additive decomposition problem,
which can be geometrically studied similarly as we did in the previous sections. In this section,
we want to present some of these cases.

In particular, we consider the following structured tensors:

1. skew-symmetric tensors, i.e., v1 ∧ . . . ∧ vk ∈
∧k V;
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2. decomposable partially-symmetric tensors, i.e., Ld1
1 ⊗ . . .⊗ Ldt

t ∈ Sd1 V∗1 ⊗ · · · ⊗ Sdt V∗t ;

3. d-powers of linear forms, i.e., homogeneous polynomials Ld1
1 · · · Ldt

t ∈ SdV∗, for any partition
d = (d1, . . . , dt) ) d;

4. reducible forms, i.e., F1 · · · Ft ∈ SdV∗, where deg(Fi) = di, for any partition d = (d1, . . . , dt) ) d;
5. powers of homogeneous polynomials, i.e., Gk ∈ SdV∗, for any k|d;

4.1. Exterior Powers and Grassmannians

Denote by G(k, n) the Grassmannian of k-dimensional linear subspaces of Pn ∼= PV, for a fixed
n + 1 dimensional vector space V. We consider it with the embedding given by its Plücker coordinates
as embedded in PNk , where Nk = (n+1

k )− 1.
The dimensions of the higher secant varieties to the Grassmannians of lines, i.e., for k = 1, are well

known; e.g., see [7], [109] or [110]. The secant variety σs(Gr(1, n)) parametrizes all (n + 1)× (n + 1)
skew-symmetric matrices of rank at most 2s.

Theorem 17. We have that σs(G(1, n)) is defective for s < � n+1
2 � with defect equal to δs = 2s(s− 1).

For k ≥ 2, not many results can be found in the classical or contemporary literature about this
problem; e.g., see [109–111]. However, they are sufficient to have a picture of the whole situation.
Namely, there are only four other cases that are known to be defective (e.g., see [110]), and it is
conjectured in [112] that these are the only ones. This is summarized in the following conjecture:

Conjecture 7 (Baur–Draisma–de Graaf, [112]). Let k ≥ 2. Then, the secant variety σs(G(k, n)) has the
expected dimension except for the following cases:

actual codimension expected codimension
σ3(G(2, 6)) 1 0
σ3(G(3, 7)) 20 19
σ4(G(3, 7)) 6 2
σ4(G(2, 8)) 10 8

In [112], they proved the conjecture for n ≤ 15 (the case n ≤ 14 can be found in [113]).
The conjecture has been proven to hold for s ≤ 6 (see [111]) and later for s ≤ 12 in [114].

A few more results on non-defectivity are proven in [110,111]. We summarize them in
the following.

Theorem 18. The secant variety σs(G(k, n)) has the expected dimension when:

• k ≥ 3 and ks ≤ n + 1,
• k = 2, n ≥ 9 and s ≤ s1(n) or s ≥ s2(n),

where:
s1(n) =

⌊
n2

18 − 20n
27 + 287

81

⌋
+

⌊
6n−13

9

⌋
and s2(n) =

⌈
n2

18 − 11n
27 + 44

81

⌉
+

⌈
6n−13

9

⌉
;

in the second case, σs(G(2, n)) fills the ambient space.

Other partial results can be found in [114], while in [115], the following theorem can be found.

Definition 21. Given an integer m ≥ 2, we define a function hm : N→ N as follows:

• hm(0) = 0;
• for any k ≥ 1, write k + 1 = 2λ1 + 2λ2 + . . . + 2λ� + ε, for a suitable choice of λ1 > λ2 > . . . > λ� ≥ 1,

ε ∈ {0, 1}, and define:
hm(k) := mλ1−1 + mλ2−1 + . . . + mλ�−1.
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In particular, we get hm(2k) = hm(2k− 1), and h2(k) = � k+1
2 �.

Theorem 19 (Theorem 3.5.1 of [115]). Assume that k ≥ 2, and set:

α :=
⌊

n + 1
k + 1

⌋
.

If either:

• n ≥ k2 + 3k + 1 and h ≤ αhα(k− 1);

or:

• n < k2 + 3k + 1, k is even, and h ≤ (α− 1)hα(k− 1) + hα(n− 2− αr);

or:

• n < k2 + 3k + 1, r is odd, and:

h ≤ (α− 1)hα(k− 2) + hα(min{n− 3− α(k− 1), r− 2}),

then, G(k, n) is not (h + 1)-defective.

This results strictly improves the results in [111] for k ≥ 4, whenever (k, n) �= (4, 10), (5, 11);
see [115].

Notice that, if we let R∧(k, n) be the generic rank with respect to G(k, n), i.e., the minimum s such
that σs(G(k, n)) = PNk , we have that the results above give that, asymptotically:

R∧(2, n) ∼ n2

18
.

A better asymptotic result can be found in [115].
Finally, we give some words concerning the methods involved. The approach in [110] uses

Terracini’s lemma and an exterior algebra version of apolarity. The main idea there is to consider the
analog of the perfect pairing induced by the apolarity action that we have seen for the symmetric case
in the skew-symmetric situation; see Section 2.1.4. In fact, the pairing considered here is:

k∧
V ×

n−k∧
V →

n∧
V � k,

induced by the multiplication in
∧

V, and it defines the apolarity of a subspace Y ⊂ V of dimension k to
be Y⊥ := {w ∈ ∧n−k V |w ∧ v = 0 ∀ v ∈ Y}. Now, one can proceed in the same way as the symmetric
case, namely by considering a generic element of the Grassmannian G(k, n) and by computing the
tangent space at that point. Then, its orthogonal, via the above perfect pairing, turns out to be, as in
the symmetric case, the degree n− k part of an ideal, which is a double fat point. Hence, in [110],
the authors apply Terracini’s lemma to this situation in order to study all the known defective cases
and in other various cases. Notice that the above definition of skew-symmetric apolarity works well for
computing the dimension of secant varieties to Grassmannians since it defines the apolar of a subspace
that is exactly what is needed for Terracini’s lemma, but if one would like to have an analogous
definition of apolarity for skew symmetric tensors, then there are a few things that have to be done.
Firstly, one needs to extend by linearity the above definition to all the elements of

∧k V. Secondly,
in order to get the equivalent notion of the apolar ideal in the skew symmetric setting, one has to define
the skew-symmetric apolarity in any degree ≤ d. This is done in [116], where also the skew-symmetric
version of the apolarity lemma is given. Moreover, in [116], one can find the classification of all the
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skew-symmetric-ranks of any skew-symmetric tensor in
∧3 Cn for n ≤ n (the same classification can

actually be found also in [117,118]), together with algorithms to get the skew-symmetric-rank and the
skew-symmetric decompositions for any for those tensors (as far as we know, this is new).

Back to the results on dimensions of secant varieties of Grassmannians: in [112], a tropical
geometry approach is involved. In [111], as was done by Alexander and Hirshowitz for the symmetric
case, the authors needed to introduce a specialization technique, by placing a certain number of points
on sub-Grassmannians and by using induction. In this way, they could prove several non-defective
cases. Moreover, in the same work, invariant theory was used to describe the equation of σ3(G(2, 6)),
confirming the work of Schouten [119], who firstly proved that it was defective by showing that it is a
hypersurface (note that by parameter count, it is expected to fill the ambient space). Lascoux [120]
proved that the degree of Schouten’s hypersurface is seven. In [92], with a very clever idea, an explicit
description of this degree seven invariant was found by relating its cube to the determinant of a 21× 21
symmetric matrix.

Eventually, in [115], the author employed a new method for studying the defectivity of varieties
based on the study of osculating spaces.

4.2. Segre–Veronese Varieties

Now, we consider a generalization of the apolarity action that we have seen in both Section 2 and
Section 3 to the multi-homogeneous setting; see [99–102]. More precisely, fixing a set of vector spaces
V1, . . . , Vt of dimensions n1 + 1, . . . , nt + 1, respectively, and positive integers d1, . . . , dt, we consider
the space of partially-symmetric tensors:

Sd1 V∗1 ⊗ . . .⊗ Sdt V∗t .

The Segre–Veronese variety parametrizes decomposable partially-symmetric tensors, i.e., it is the
image of the embedding:

νn,d : P(S1V∗1 )× . . .× P(S1V∗t ) −→ P(Sd1 V∗1 ⊗ . . .⊗ Sdt V∗t )
([L1], . . . , [Lt]) �→

[
Ld1

1 ⊗ . . .⊗ Ldt
t

]
,

where, for short, we denote n = (n1, . . . , nt), d = (d1, . . . , dt).
More geometrically, the Segre–Veronese variety is the image of the Segre–Veronese embedding:

νn,d : Pn := Pn1 × . . .× Pnt −→ PN , where N =
t

∏
i=1

(
di + ni

ni

)
− 1,

given by OPn(d) := OPn1 (d1)⊗ . . .⊗OPnt (dt), that is via the forms of multidegree (d1, . . . , dt) of the
multigraded homogeneous coordinate ring:

R = k[x1,0, . . . , x1,n1 ; x2,0, . . . , x2,n2 ; . . . ; xt,0, . . . , xt,nt ].

For instance, if n = (2, 1), d = (1, 2) and P = ([a0 : a1 : a2], [b0 : b1]) ∈ P2 × P1, we have νn,d(P) =
[a0b2

0 : a0b0b1 : a0b2
1 : a1b2

0 : a1b0b1 : a1b2
1 : a2b2

0 : a2b0b1 : a2b2
1], where the products are taken in

lexicographical order. We denote the embedded variety νn,d(Pn) by Xn,d. Clearly, for t = 1, we recover
Veronese varieties, while for (d1, . . . , dt) = (1, . . . , 1), we get the Segre varieties.

The corresponding additive decomposition problem is as follows.

Problem 3. Given a partially-symmetric tensor T ∈ Sd1 V∗1 × . . . × PSdt V∗t or, equivalently,
a multihomogeneous polynomial T ∈ R of multidegree d, find the smallest possible length r of an expression
T = ∑r

i=1 Ld1
i,1 ⊗ . . .⊗ Ldt

i,t.
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As regards the generic tensor, a possible approach to this problem mimics what has been done for
Segre and Veronese varieties. One can use Terracini’s lemma (Lemma 1 and Theorem 11), as in [22,103],
to translate the problem of determining the dimensions of the higher secant varieties of Xn,d into that of
calculating the value, at d = (d1, . . . , dt), of the Hilbert function of generic sets of two-fat points in Pn.
Then, by using the multiprojective affine projective method introduced in Section 3.2, i.e., by passing
to an affine chart in Pn and then homogenizing in order to pass to Pn, with n = n1 + · · ·+ nt, this last
calculation amounts to computing the Hilbert function in degree d = d1 + · · ·+ dn for the subscheme
W ⊂ Pn; see Theorem 12.

There are many scattered results on the dimension of σs(Xn,d), by many authors, and very few
general results. One is the following, which generalizes the “unbalanced” case considered for Segre
varieties; see [92,108].

Theorem 20. Let X = X(n1,...,nt ,n),(d1,...,dt ,1) be the Segre–Veronese embedding:

Pn1 × . . .× Pnt × Pn (d1,...,dt ,1)−→ X ⊂ PM, with M = (n + 1)

(
t

∏
i=1

(
ni + di

di

))
− 1.

Let N = Πt
i=1(

ni+di
di

)− 1, then, for N −∑t
i=1 ni + 1 < s ≤ min{n, N}, the secant variety σs(X) is defective

with δs(X) = s2 − s(N −∑t
i=1 ni + 1).

When it comes to Segre–Veronese varieties with only two factors, there are many results by
many authors, which allow us to get a quite complete picture, described by the following conjectures,
as stated in [121].

Conjecture 8. Let X = X(m,n),(a,b), then X is never defective, except for:

• b = 1, m ≥ 2, and it is unbalanced (as in the theorem above);
• (m, n) = (1, n), (a, b) = (2d, 2);
• (m, n) = (3, 4), (a, b) = (2, 1);
• (m, n) = (2, n), (a, b) = (2, 2);
• (m, n) = (2, 2k + 1), k ≥ 1, (a, b) = (1, 2);
• (m, n) = (1, 2), (a, b) = (1.3);
• (m, n) = (2, 2), (a, b) = (2, 2);
• (m, n) = (3, 3), (a, b) = (2, 2);
• (m, n) = (3, 4), (a, b) = (2, 2).

Conjecture 9. Let X = X(m,n),(a,b), then for (a, b) ≥ (3, 3), X is never defective.

The above conjectures are based on results that can be found in [93,99,112,121–134].
For the Segre embeddings of many copies of P1, we have a complete result. First, in [99] and

in [130], the cases of two and three copies of P1, respectively, were completely solved.

Theorem 21. Let X = X(1,1),(a,b), a ≤ b. Then, X is never defective, except for (a, b) = (2, 2d); in this case,
σ2d+1(X) is defective with δ2d+1 = 1.

Theorem 22. Let X = X(1,1,1),(a,b,c), a ≤ b ≤ c; then X is never defective, except for:

• (a, b, c) = (1, 1, 2d); in this case, σ2d+1(X) is defective with δ2d+1 = 1;
• (a, b, c) = (2, 2, 2); here, σ7(X) is defective, and δ7 = 1.
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In [135] the authors, by using an induction approach, whose basic step was Theorem 14
about the Segre varieties X1 [104], concluded that there are no other defective cases except for the
previously-known ones.

Theorem 23. Let X = X(1,...,1),(a1,...,ar). Then, X is never defective, except for:

• X(1,1),(2,2d) (Theorem 21);
• X(1,1,1),(1,1,2d) and X(1,1,1),(2,2,2) (Theorem 22);
• X(1,1,1,1),(1,1,1,1) (Theorem 14).

For several other partial results on the defectivity of certain Segre–Veronese varieties, see,
e.g., [99,115,133,136], and for an asymptotic result about non-defective Segre–Veronese varieties,
see [115,137].

4.3. Tangential and Osculating Varieties to Veronese Varieties

Another way of generalizing what we saw in Section 2 for secants of Veronese Varieties Xn,d is to
work with their tangential and osculating varieties.

Definition 22. Let Xn,d ⊂ PN be a Veronese variety. We denote by τ(Xn,d) the tangential variety of Xn,d,
i.e., the closure in PN of the union of all tangent spaces:

τ(Xn,d) =
⋃

P∈Xn,d

TP(Xn,d) ⊂ PN .

More in general, we denote by Ok(Xn.d) the k-th osculating variety of Xn,d, i.e., the closure in PN of the union
of all k-th osculating spaces:

Ok(Xn,d) =
⋃

P∈Xn,d

Ok
P(Xn,d) ⊂ PN .

Hence, τ(Xn,d) = O1(Xn,d).

These varieties are of interest also because the space Ok(Xn,d) parametrizes a particular kind of
form. Indeed, if the point P = [Ld] ∈ Xn,d ⊂ PSd, then the k-th osculating space Ok

P(Xn,d) correspond

to linear space
{
[Ld−kG] | G ∈ Sk

}
. Therefore, the corresponding additive decomposition problem

asks the following.

Problem 4. Given a homogeneous polynomial F ∈ k[x0, . . . , xn], find the smallest length of an expression
F = ∑r

i=1 Ld−k
i Gi, where the Li’s are linear forms and the Gi’s are forms of degree k.

The type of decompositions mentioned in the latter problem have been called generalized additive
decomposition in [25] and in [29]. In the special case of k = 1, they are a particular case of the so-called
Chow–Waring decompositions that we treat in full generality in Section 4.4. In this case, the answer to
Problem 4 is called (d− 1, 1)-rank, and we denote it by R(d−1,1)(F).

Remark 18. Given a family of homogeneous polynomials F = {F1, . . . , Fm}, we define the simultaneous rank
of F the smallest number of linear forms that can be used to write a Waring decomposition of all polynomials
of F .

Now, a homogeneous polynomial F ∈ SdV can be seen as a partially-symmetric tensor in S1V ⊗ Sd−1V
via the equality:

F =
1
d

n

∑
i=0

xi ⊗ ∂F
∂xi

.
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From this expression, it is clear that a list of linear forms that decompose simultaneously all partial derivatives
of F also decompose F, i.e., the simultaneous rank of the first partial derivatives is an upper bound of the
symmetric-rank of F. Actually, it is possible to prove that for every homogeneous polynomial, this is an equality
(e.g., see [138] (Section 1.3) or [139] (Lemma 2.4)). For more details on relations between simultaneous ranks of
higher order partial derivatives and partially-symmetric-ranks, we refer to [139].

Once again, in order to answer the latter question in the case of the generic polynomial, we study
the secant varieties to the k-th osculating variety of Xn,d. In [21], the dimension of σs(τ(Xn,d)) is studied
(k = 1 case). Via apolarity and inverse systems, with an analog of Theorem 11, the problem is again
reduced to the computation of the Hilbert function of some particular zero-dimensional subschemes of
Pn; namely,

dim σs(τ(Xn,d)) = dimk(Ld−1
1 , . . . , Ld−1

s , Ld−2
1 M1, . . . , Ld−2

s Ms)d − 1 =

= HF(Z, d)− 1,

where L1, . . . , Ls, M1, . . . , Ms are 2s generic linear forms in k[x0, . . . , xn], while HF(Z, d) is the Hilbert
function of a scheme Z, which is the union of s generic (2, 3)-points in Pn, which are defined as follows.

Definition 23. A (2, 3)-point is a zero-dimensional scheme in Pn with support at a point P and whose ideal
is of type I(P)3 + I(�)2, where I(P) is the homogeneous ideal of P and � ⊂ Pn is a line through P defining
ideal I(�).

Note that when we say that Z is a scheme of s generic (2, 3)-points in Pn, we mean that I(Z) =
I(Q1)∩ . . . ∩ I(Qs), where the Qi’s are (2, 3)-points, i.e., I(Qi) = I(Pi)

3 + I(�i)
2, such that P1, . . . Ps are

generic points in Pn, while �1, . . . , �s are generic lines passing though P1, . . . , Ps, respectively.
By using the above fact, in [21], several cases where σs(τ(Xn,d)) is defective were found, and it

was conjectured that these exceptions were the only ones. The conjecture has been proven in a few
cases in [22] (s ≤ 5 and n ≥ s+ 1) and in [140] (n = 2, 3). In [70], it was proven for n ≤ 9, and moreover,
it was proven that if the conjecture holds for d = 3, then it holds in every case. Finally, by using this
latter fact, Abo and Vannieuwenhoven completed the proof of the following theorem [141].

Theorem 24. The s-th secant variety σs(τ(Xn,d)) of the tangential variety to the Veronese variety has dimension
as expected, except in the following cases:

1. d = 2 and 2 ≤ 2s < n;
2. d = 3 and n = 2, 3, 4.

As a direct corollary of the latter result, we obtain the following answer to Problem 4 in the case
of generic forms.

Corollary 4. Let F ∈ Sd be a generic form. Then,

R(d−1,1)(F) =

⌈
(n+d

n )

2n + 1

⌉
,

except for:

1. d = 2, where R(d−1,1)(F) =
⌊ n

2
⌋
+ 1;

2. d = 3 and n = 2, 3, 4, where R(d−1,1)(F) =
⌈
(n+d

n )
2n+1

⌉
+ 1.

The general case of σs(Ok(Xn.d)) is studied in [70,142–144]. Working in analogy with the case
k = 1, the dimension of σs(Ok(Xn,d) is related to the Hilbert function of a certain zero-dimensional
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scheme Z = Z1 ∪ · · · ∪ Zs, whose support is a generic union of points P1, . . . , Ps ∈ Pn, respectively,
and such that, for each i = 1, . . . , s, we have that (k + 1)Pi ⊂ Zi ⊂ (k + 2)Pi.

As one of the manifestations of the ubiquity of fat points, the following conjecture describes the
conditions for the defect of this secant variety in terms of the Hilbert function of fat points:

Conjecture 10 ([70] (Conjecture 2a)). The secant variety σs(Ok(Xn,d)) is defective if and only if either:

1. h1(IX(d)) > max{0, deg Z− (d+n
n )}, or

2. h0(IT(d)) > max{0, (d+n
n )− deg Z},

where X is a generic union of s, (k + 1)-fat points and T is a generic union of (k + 2)-fat points.

In [142,144], the conjecture is proven for n = 2, s ≤ 9, and in [70] for n = 2 and any s.

4.4. Chow–Veronese Varieties

Let d = (d1, . . . , dt) be a partition of a positive integer d, i.e., d1 ≥ . . . ≥ dt are positive integers,
which sum to d. Then, we consider the following problem.

Let S =
⊕

d∈N Sd be a polynomial ring in n + 1 variables.

Problem 5. Given a homogeneous polynomial F ∈ Sd, find the smallest length of an expression F =

∑r
i=1 Ld1

i,1 · · · Ldt
i,t, where Li,j’s are linear forms.

The decompositions considered in the latter question are often referred to as Chow–Waring
decompositions. We call the answer to Problem 5 as the d-rank of F, and we denote it by Rd(F).

In this case, the summands are parametrized by the so-called Chow–Veronese variety, which is
given by the image of the embedding:

νd : PS1 × . . .× PS1 −→ PSd,

([L1], . . . , [Lt]) �→
[

Ld1
1 · · · Ldt

t

]
.

We denote by Xd the image νd(Pn). Notice that this map can be seen as a linear projection of the
Segre–Veronese variety Xn,d ⊂ P(Sd1 ⊗ . . .⊗ Sdt), for n = (n, . . . , n), under the map induced by the
linear projection of the space of partially-symmetric tensors Sd1 ⊗ . . .⊗ Sdt on the totally symmetric
component Sd. Once again, we focus on the question posed in Problem 5 in the case of a generic
polynomial, for which we study dimensions of secant varieties to Xd.

In the case of d = (d− 1, 1), we have that Xd coincides with the tangential variety of the Veronese
variety τ(Xn,d), for which the problem has been completely solved, as we have seen in the previous
section (Theorem 24).

The other special case is given by d = (1, . . . , 1), for d ≥ 3. In this case, Xd has been also referred
to as the Chow variety or as the variety of split forms or completely decomposable forms. After the
first work by Arrondo and Bernardi [73], Shin found the dimension of the second secant variety in
the ternary case (n = 2) [145], and Abo determined the dimensions of higher secant varieties [146].
All these cases are non-defective. It is conjectured that varieties of split forms of degree d ≥ 3 are never
defective. New cases have been recently proven in [147,148].

The problem for any arbitrary partition d has been considered in [149]. Dimensions of all s-th
secant varieties for any partition haves been computed in the case of binary forms (n = 1). In a higher
number of variables, the dimensions of secant line varieties (s = 2) and of higher secant varieties with
s ≤ 2

⌊ n
3
⌋

have been computed. This was done by using the classical Terracini’s lemma (Lemma 1)
in order to obtain a nice description of the generic tangent space of the s-th secant variety. In the
following example, we explain how the binary case could be treated.
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Example 18. If P = [Ld1
1 · · · Ldt

t ] ∈ Xd, then it is not difficult to prove (see Proposition 2.2 in [149]) that:

TPXd = P ((IP)d) , with d = d1 + . . . + dt

where IP = (Ld1−1
1 Ld2

2 · · · Ldt
t , Ld1

1 Ld2−1
2 · · · Ldt

t , . . . , Ld1
1 Ld2

2 · · · Ldt−1
t ).

In the particular case of binary forms, some more computations show that actually, TPXd = P ((I′P)d),
where I′P is the principal ideal (Ld1−1

1 · · · Ldt−1
t ). In this way, by using Terracini’s lemma, we obtain that, if Q is

a generic point on the linear span of s generic points on Xd, then:

TQσs(Xd) = P
(
(Ld1−1

1,1 · · · Ldt−1
1,t , . . . , Ld1−1

s,1 · · · Ldt−1
s,t )d

)
,

where Li,j’s are generic linear forms. Now, in order to compute the dimension of this tangent space, we can
study the Hilbert function of the ideal on the right-hand side. By semicontinuity, we may specialize to the case
Li,1 = . . . = Li,t, for any i = 1, . . . , s. In this way, we obtain a power ideal, i.e., an ideal generated by powers of
linear forms, whose Hilbert function is prescribed by Fröberg–Iarrobino’s conjecture; see Remark 10. Now, since
in [150], the authors proved that the latter conjecture holds in the case of binary forms, i.e., the Hilbert function
of a generic power ideal in two variables is equal to the right-hand side of (14), we can conclude our computation
of the dimension of the secant variety of Xd in the binary case. This is the way Theorem 3.1 in [149] was proven.

In the following table, we resume the current state-of-the-art regarding secant varieties and
Chow–Veronese varieties.

d s d n References dim σs(Xd)

(d− 1, 1) any any any [141] non-defective, except for
(1) d = 2 and

2 ≤ 2s < n;
(2) d = 3 and

n = 2, 3, 4.
(1, . . . , 1) d > 2 3(s− 1) < n [73] non-defective

any any 2 [146] non-defective, except for
some numerical constraints [146,148] cases above

any any any 1 [149] non-defective, except for
2 any any cases above

≤ 2
⌊ n

3
⌋

any any

4.5. Varieties of Reducible Forms

In 1954, Mammana [151] considered the variety of reducible plane curves and tried to generalize
previous works by, among many others, C. Segre, Spampinato and Bordiga. More recently, in [147],
the authors considered the varieties of reducible forms in full generality.

Let d = (d1, . . . , dt) ) d be a partition of a positive integer d, i.e., d1 ≥ . . . ≥ dt are positive
integers, which sum up to d and t ≥ 2. Inside the space of homogeneous polynomials of degree d,
we define the variety of d-reducible forms as:

Yd = {[F] ∈ PSd | F = G1 · · ·Gt, where deg(Gi) = di},

i.e., the image of the embedding:

ψd : PSd1 × . . .× PSdt −→ PSd,
(G1, . . . , Gt) �→ Gd1

1 · · ·Gdt
t .

Clearly, if d = 2, then d = (1, 1), and Y(1,1) is just the Chow variety X(1,1). In general, we may see
Yd as the linear projection of the Segre variety Xm inside P(Sd1 ⊗ · · · ⊗ Sdt), where m = (m1, . . . , mt)

with mi = (di+n
n )− 1. Note that, if d, d′ are two partitions of d such that d can be recovered from d′ by

120



Mathematics 2018, 6, 314

grouping and summing some of entries, then we have the obvious inclusion Yd′ ⊂ Yd. Therefore, if we
define the variety of reducible forms as the union over all possible partitions d ) d of the varieties Yd,
we can actually write:

Y =

� d
2 �⋃

k=1

Y(d−k,k) ⊂ PSd.

In terms of additive decompositions, the study of varieties of reduced forms and their secant varieties
is related to the notion of the strength of a polynomial, which was recently introduced by T. Ananyan
and M. Hochster [152] and then generalized to any tensor in [153].

Problem 6. Given a homogeneous polynomial F ∈ Sd, find the smallest length of an expression F =

∑r
i=1 Gi,1Gi,2, where 1 ≤ deg(Gi,j) ≤ d− 1.

The answer to Problem 6 is called the strength of F, and we denote it by S(F).
In [147], the authors gave a conjectural formula for the dimensions of all secant varieties σs(Yd) of

the variety of d-reducible forms for any partition d (see Conjecture 1.1 in [147]), and they proved it
under certain numerical conditions (see Theorem 1.2 in [147]). These computations have been made
by using the classical Terracini’s lemma and relating the dimensions of these secants to the famous
Fröberg’s conjecture on the Hilbert series of generic forms.

The variety of reducible forms is not irreducible and the irreducible component with biggest
dimension is the one corresponding to the partition (d− 1, 1), i.e., dim Y = dim Y(d−1,1). Higher secant
varieties of the variety of reducible forms are still reduced, but understanding which is the irreducible
component with the biggest dimension is not an easy task. In Theorem 1.5 of [147], the authors proved
that, if 2s ≤ n− 1, then the biggest irreducible component of σs(Y) is σs(Y(d−1,1), i.e., dim σs(Y) =

dim σs(Y(d−1,1)), and together with the aforementioned Theorem 1.2 of [147], this allows us to compute
the dimensions of secant varieties of varieties of reducible forms and answer Problem 6 under certain
numerical restrictions (see Theorem 7.4 [147]).

In conclusion, we have that Problem 6 is answered in the following cases:

1. any binary form (n = 2), where S(F) = 1,

since every binary form is a product of linear forms;
2. generic quadric (d = 2), where S(F) =

⌊ n
2
⌋
+ 1,

since it forces d = (1, 1), which is solved by Corollary 4 (2);
3. generic ternary cubic (n = 2, d = 3), where S(F) = 2,

since Y(2,1) is seven-dimensional and non-degenerate inside P9 = PS3, then σ2(Y(2,1)) cannot be
eight-dimensional; otherwise, we get a contradiction by one of the classical Palatini’s lemmas,
which states that if dim σs+1(X) = dim σs(X) + 1, then σs+1(X) must be a linear space [2].

4.6. Varieties of Powers

Another possible generalization of the classical Waring problem for forms is given by
the following.

Problem 7. Given a homogeneous polynomial F ∈ Sd and a positive divisor k > 1 of d, find the smallest length
of an expression F = ∑r

i=1 Gk
i .

The answer to Problem 7 is called the k-th Waring rank, or simply k-th rank, of F, and we denote
it Rk

d(F). In this case, we need to consider the variety of k-th powers, i.e.,

Vk,d = {[Gk] ∈ PSd | G ∈ Sd/k}.
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That is, the variety obtained by considering the composition:

π ◦ νk : PSd/k → PSk(Sd/k) ��� PSd, (23)

where:

1. if W = Sd/k, then νk is the k-th Veronese embedding of PW in PSkW;
2. if we consider the standard monomial basis wα = xα of W, i.e., |α| = d/k, then π is the linear

projection from PSkW to PSd induced by the substitution wα �→ xα. In particular, we have that
the center of the projection π is given by the homogeneous part of degree k of the ideal of the
Veronese variety νd(Pn).

Problem 7 was considered by Fröberg, Shapiro and Ottaviani [154]. Their main result was that, if F is
generic, then:

Rk
d(F) ≤ kn, (24)

i.e., the kn-th secant variety of Vk,d fills the ambient space. This was proven by Terracini’s lemma.
Indeed, for any G, H ∈ Sd/k, we have that:

d
dt

∣∣∣∣
t=0

(G + tH)k = kGk−1H;

therefore, we obtain that:
T[Gk ]Vk,d = P

(
〈[Gk−1H] | H ∈ Sd/k〉

)
,

and, by Terracini’s lemma (Lemma 1), if Q is a generic point on 〈[Gk
1], . . . , [Gk

s ]〉, where the Gi’s are
generic forms of degree d/k, then:

TQσsVk,d = P
(
(Gk−1

1 , . . . , Gk−1
s )d

)
. (25)

In [154] (Theorem 9), the authors showed that the family:

Gi1,...,in = (x0 + ξ i1 x1 + . . . + ξ in xn)
d/k ∈ Sd/k, for i1, . . . , in ∈ {0, . . . , k− 1},

where ξk = 1, is such that:
(Gk−1

1 , . . . , Gk−1
s )d = Sd.

In this way, they showed that σkn(Vk,d) fills the ambient space. A remarkable fact with the
upperbound (24) is that it is independent of the degree of the polynomial, but it only depends

on the power k. Now, the naive lower bound due to parameter counting is
⌈

dim Sd
dim Sd/k

⌉
=

⌈
(n+d

n )

(n+d/k
n )

⌉
,

which tends to kn when d runs to infinity.
In conclusion, we obtain that the main result of [154] is resumed as follows.

Theorem 25 ([154] (Theorem 4)). Let F be a generic form of degree d in n + 1 variables. Then,

Rk
d(F) ≤ kn.

If d � 0, then the latter bound is sharp.

This result gives an asymptotic answer to Problem 7, but, in general, it is not known for which
degree d the generic k-th Waring rank starts to be equal to kn, and it is not known what happens in
lower degrees.

We have explained in (23) how to explicitly see the variety of powers Vk,d as a linear projection
of a Veronese variety XN,k = νk(PN), where N = (n+d/k

n )− 1. It is possible to prove that σ2(XN,k)
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does not intersect the base of linear projection, and therefore, Vk,d is actually isomorphic to XN,k.
Unfortunately, higher secant varieties intersect non-trivially the base of the projection, and therefore,
their images, i.e., the secant varieties of the varieties of powers, are more difficult to understand.
However, computer experiments suggest that the dimensions are preserved by the linear projection;
see [155] (Section 4) for more details about these computations (a Macaulay2 script with some examples
is available in the ancillary files of the arXiv version of [155]). In other words, it seems that we can
use the Alexander–Hirschowitz theorem to compute the dimensions of secant varieties of varieties of
powers and provide an answer to Problem 7. More on this conjecture is explained in [155].

Conjecture 11 ([155] (Conjecture 1.2)). Let F be a generic form of degree d in n + 1 variables. Then,

Rk
d(F) =

{
min{s ≥ 1 | s(n+d/2

n )− (s
2) ≥ (n+d

n )} for k = 2;

min{s ≥ 1 | s(n+d/k
n ) ≥ (n+d

n )} for k ≥ 3.

Remark 19. The latter conjecture claims that for k ≥ 3, the correct answer is given by the direct parameter
count. For k = 2, we have that secant varieties are always defective. This is analogous to the fact that secant
varieties to the two-fold Veronese embeddings are defective. Geometrically, this is motivated by Terracini’s lemma
and by the fact that:

T[G2]V2,d ∩ T[H2]V2,d = [GH],

and not empty, as expected.

Example 19. Here, we explain how the binary case can be treated; see [155] (Theorem 2.3). By (25),
the computation of the dimension of secant varieties of varieties of powers reduces to the computation of
dimensions of homogeneous parts of particular ideals, i.e., their Hilbert functions. This relates Problem 7 to some
variation of Fröberg’s conjecture, which claims that the ideal (Gk

1, . . . , Gk
s ), where the Gi’s are generic forms of

degrees at least two, has Hilbert series equal to the right-hand side of (14); see [156]. In the case of binary forms,
by semicontinuity, we may specialize the Gi’s to be powers of linear forms. In this way, we may employ the
result of [150], which claims that power ideals in two variables satisfy Fröberg–Iarrobino’s conjecture, i.e., (14)
is actually an equality, and we conclude the proof of Conjecture 11 in the case of binary forms.

By using an algebraic study on the Hilbert series of ideals generated by powers of forms, we have
a complete answer to Problem 7 in the following cases (see [155]):

1. binary forms (n = 1), where:

Rk
d(F) =

⌈
d + 1

d/k + 1

⌉
;

2. ternary forms as sums of squares (n = 2, k = 2), where:

R2
d(F) =

⌈
(d+2

2 )

(d/2+2
2 )

⌉
,

except for d = 1, 3, 4, where R2
d(F) =

⌈
(d+2

2 )

(d/2+2
2 )

⌉
+ 1.;

3. quaternary forms as sums of squares (n = 3, k = 2), where:

R2
d(F) =

⌈
(d+3

3 )

(d/2+3
3 )

⌉
,

except for d = 1, 2, where R2
d(F) =

⌈
(d+3

3 )

(d/2+3
3 )

⌉
+ 1.
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5. Beyond Dimensions

We want to present here, as a natural final part of this work, a list of problems about secant
varieties and decomposition of tensors, which are different from merely trying to determine the
dimensions of the varieties σs(X) for the various X we have considered before. We will consider
problems such as determining maximal possible ranks, finding bounds or exact values on ranks of
given tensor, understanding the set of all possible minimal decompositions of a given tensor, finding
equations for the secant varieties or studying what happens when working over R. The reader should
be aware of the fact that there are many very difficult open problems around these questions.

5.1. Maximum Rank

A very difficult and still open problem is the one that in the Introduction we have called the
“little Waring problem”. We recall it here.

Which is the minimum integer r such that any form can be written as a sum of r pure powers
of linear forms?

This corresponds to finding the maximum rank of a form of certain degree d in a certain number
n + 1 of variables.

To our knowledge, the best general achievement on this problem is due to Landsberg and
Teitler, who in [76] (Proposition 5.1) proved that the rank of a degree d form in n + 1 variables is
smaller than or equal to (n+d

d ) − n. Unfortunately, this bound is sharp only for n = 1 if d ≥ 2
(binary forms); in fact, for example, if n = 2 and d = 3, 4, then the maximum ranks are known
to be 5 < (2+3

2 )− 3 = 7 and 7 < (2+4
2 )− 4 = 11, respectively; see [28] (Theorem 40 and Theorem

44). Another general bound has been obtained by Jelisiejew [157], who proved that, for F ∈ Sdkn+1,
we have Rsym(F) ≤ (n+d−1

d−1 )− (n+d−5
d−3 ). Again, this bound is not sharp for n ≥ 2. Another remarkable

result is the one due to Blekherman and Teitler, who proved in [158] (Theorem 1) that the maximum
rank is always smaller than or equal to twice the generic rank.

Remark 20. The latter inequality, which has a very short and elegant proof, holds also between maximal and
generic X-ranks with respect to any projective variety X.

In a few cases in small numbers of variables and small degrees, exact values of maximal ranks
have been given. We resume them in the following table.

d n Maximal Rank Ref.
binary forms any 1 d classical, [159]

quadrics 2 any n + 1 classical
plane cubics 3 2 5 [76,160]

plane quartics 4 2 7 [161,162]
plane quintics 5 2 10 [163,164]
cubic surfaces 3 3 7 [160]

cubic hypersurfaces 3 any ≤
⌊

d2+6d+1
4

⌋
[165]

We want to underline the fact that it is very difficult to find examples of forms having high
rank, in the sense higher than the generic rank. Thanks to the complete result on monomials in [166]
(see Theorem 31), we can easily see that in the case of binary and ternary forms, we can find monomials
having rank higher than the generic one. However, for higher numbers of variables, monomials do not
provide examples of forms of high rank. Some examples are given in [164], and the spaces of forms of
high rank are studied from a geometric point of view in [167].

5.2. Bounds on the Rank

In the previous subsection, we discussed the problem of finding the maximal rank of a given
family of tensors. However, for a given specific tensor T, it is more interesting, and relevant, to find
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explicit bounds on the rank of T itself. For example, by finding good lower and upper bounds on the
rank of T, one can try to compute actually the rank of T itself, but usually, the maximal rank is going
to be too large to be useful in this direction.

One typical approach to find upper bounds is very explicit: by finding a decomposition of T.
In the case of symmetric tensors, that is in the case of homogeneous polynomials, the apolarity lemma
(Lemma 5) is an effective tool to approach algebraically the study of upper bounds: by finding the
ideal of a reduced set of points X inside F⊥, we bound the rank of F from above by the cardinality of X.

Example 20. For F = x0x1x2, in standard notation, we have F⊥ = (y2
0, y2

1, y2
3), and we can consider the

complete intersection set of four reduced points X whose defining ideal is (y2
1 − y2

0, y2
2 − y2

0), and thus, the rank
of F is at most four. Analogously, if F = x0x2

1x3
2, we have F⊥ = (y2

0, y3
1, y4

3), and we can consider the complete
intersection of 12 points defined by (y3

1 − y3
0, y4

2 − y4
0).

Other upper bounds have been given by using different notions of rank.

Definition 24. We say that a scheme Z ⊂ PN is curvilinear if it is a finite union of schemes of the form
OCi ,Pi /m

ei
Pi

, for smooth points Pi on reduced curves Ci ⊂ PN. Equivalently, the tangent space at each connected
component of Z supported at the Pi’s has Zariski dimension ≤ 1. The curvilinear rank Rcurv(F) of a degree d
form F in n + 1 variables is:

Rcurv(F) := min
{

deg(Z) | Z ⊂ Xn,d, Z curvilinear, [F] ∈ 〈Z〉} .

With this definition, in [168] (Theorem 1), it is proven that the rank of an F ∈ Sdkn+1 is bounded
by (Rcurv(F)− 1)d + 2− Rcurv(F). This result is sharp if Rcurv(F) = 2, 3; see ([28] Theorems 32 and 37).

Another very related notion of rank is the following; see [82,169].

Definition 25. We define the smoothable rank of a form F ∈ Sdkn+1 as:

Rsmooth(F) := min

⎧⎨⎩deg(Z)
∣∣∣ Z is a limit of smooth schemes Zi such that

Z, Zi ⊂ Xn,d, are zero-dim schemes with deg(Zi) = deg(Z),
and [F] ∈ 〈Z〉

⎫⎬⎭ .

In ([168] Section 2), it is proven that if F is a ternary form of degree d, then Rsym(F) ≤
(Rsmooth(F)− 1)d. We refer to [82] for a complete analysis on the relations between different notions
of ranks.

The use of the apolarity lemma (Lemma 5) to obtain lower bounds to the symmetric-rank of a
homogeneous polynomial was first given in [170].

Theorem 26 ([170] (Proposition 1)). If the ideal F⊥ is generated in degree t and X is a finite scheme apolar to
F, that is IX ⊂ F⊥, then:

1
t

deg F⊥ ≤ degX.

This result is enough to compute the rank of the product of variables.

Example 21. For F = x0x1x2, Theorem 26 yields:

1
2

8 ≤ degX.

If we assume X to be reduced, i.e., degX = |X|, by the apolarity lemma, we get Rsym(F) ≥ 4, and thus, by
Example 20, the rank of F is equal to four. However, for the monomial x0x2

1x3
2, we get the lower bound of six,

which does not allow us to conclude the computation of the rank, since Example 20 gives us 12 as the upper
bound.
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To solve the latter case, we need a more effective use of the apolarity lemma in order to produce a
better lower bound for the rank; see [166,171].

Theorem 27 ([171] (Corollary 3.4)). Let F be a degree d form, and let e > 0 be an integer. Let I be any ideal
generated in degree e, and let G be a general form in I. For s � 0, we have:

Rsym(F) ≥ 1
e

s

∑
i=0

HF
(

R/(F⊥ : I + (G)), i
)

.

A form for which there exists a positive integer e such that the latter lower bound is actually
sharp is called e-computable; see [171]. Theorem 27 was first presented in [166] in the special case
of e = 1: this was the key point to prove Theorem 31 on the rank of monomials, by showing that
monomials are one-computable. In order to give an idea of the method, we give two examples: in the
first one, we compute the rank of x0x2

1x3
2 by using one-computability, while in the second one, we give

an example in which it is necessary to use two-computability; see [166,171].

Example 22. Consider again F = x0x2
1x3

2. We use Theorem 27 with e = 1, G = y0 and I = (y0). Note that:

F⊥ : I + (G) = (y2
0, y3

1, y4
2) : (y0) + (y0) = (y0, y3

1, y4
2).

This yields to:

Rsym(F) ≥
s

∑
i=0

HF
(

R/(y0, y3
1, y4

2), i
)
= 12,

since HS(R/(y0, y3
1, y4

2), z) = 1 + 2z + 3z2 + 3z3 + 2z4 + z5. Hence, by using Example 20, we conclude that
the rank of F is actually 12.

Example 23. Consider the polynomial:

F = x11
0 − 22x9

0x2
1 + 33x7

0x4
1 − 22x9

0x2
2 + 396x7

0x2
1x2

2 − 462x5
0x4

1x2
2+

33x7
0x4

2 − 462x5
0x2

1x4
2 + 385x3

0x4
1x4

2,
,

we show that F is two-computable and Rsym(F) = 25. By direct computation, we get:

F⊥ = ((y2
0 + y2

1 + y2
2)

2, G1, G2),

where G1 = y5
1 + y2(y2

0 + y2
1 + y2

2)
2 and G2 = y5

2 + y0(y2
0 + y2

1 + y2
2)

2.
Hence, by (27), we get:

Rsym(F) ≥ 1
2

∞

∑
i=0

HF(T/(F⊥ : (y2
0 + y2

1 + y2
2) + (y2

0 + y2
1 + y2

2)), i) = 25.

Moreover, the ideal (G1, G2) ⊂ F⊥ is the ideal of 25 distinct points, and thus, the conclusion follows. It can be
shown that F is not one-computable; see [171] (Example 4.23).

Another way to find bounds on the rank of a form is by using the rank of its derivatives. A first
easy bound on the symmetric-rank of a homogeneous polynomial F ∈ k[x0, . . . , xn] (where k is
a characteristic zero field) is directly given by the maximum between the symmetric-ranks of its
derivatives; indeed, if F = ∑r

i=1 Ld
i , then, for any j = 0, . . . , n,

∂F
∂xj

=
r

∑
i=1

∂Ld
i

∂xj
= (d− 1)

r

∑
i=1

∂Li
∂xj

Ld−1
i . (26)
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A more interesting bound is given in [172].

Theorem 28 ([172] (Theorem 3.2)). Let 1 ≤ p ≤ n be an integer, and let F ∈ k[x0, . . . , xn] be a form, where k
is a characteristic zero field. Set Fk =

∂F
∂xk

, for 0 ≤ k ≤ n. If:

rksym(F0 +
n

∑
k=1

λkFk) ≥ m,

for all λk ∈ k, and if the forms F1, F2, . . . , Fp are linearly independent, then:

rksym(F) ≥ m + p.

The latter bound was lightly improved in [173] (Theorem 2.3).
Formula (26) can be generalized to higher order differentials. As a consequence, for any G ∈ SjV∗,

with 1 ≤ j ≤ d− 1, we have that Rsym(F) ≥ Rsym(G ◦ F), and in particular, if F ∈ 〈Ld
1, . . . , Ld

r 〉, we have

that G ◦ F ∈ 〈Ld−j
1 , . . . , Ld−j

r 〉. Since this holds for any G ∈ SjV∗, we conclude that the image of the

(j, d− j)-th catalecticant matrix is contained in 〈Ld−j
1 , . . . , Ld−j

r 〉. Therefore,

Rsym(F) ≥ dimk(Imm Catj,d−j(F)) = rk Catj,d−j(F). (27)

The latter bound is very classical and goes back to Sylvester. By using the geometry of the hypersurface
V(F) in Pn, it can be improved; see [76].

Theorem 29 ([76] (Theorem 1.3)). Let F be a degree d form with n + 1 essential variables. Let 1 ≤ j ≤ d− 1.
Use the convention that dim ∅ = −1. Then, the symmetric-rank of F is such that:

Rsym(F) ≥ rk Catj,d−j(F) + dim Σj(F) + 1,

where Catj,d−j(F) is the (j, d− j)-th catalecticant matrix of F and:

Σj(F) =
{

P ∈ V(F) ⊂ PV :
∂αF
∂xα

(P) = 0, ∀|α| ≤ j
}

.

The latter result has been used to find lower bounds on the rank of the determinant and the
permanent of the generic square matrix; see [76] (Corollary 1.4).

The bound (27) given by the ranks of catalecticant matrices is a particular case of a more general
fact, which holds for general tensors.

Given a tensor T ∈ V1 ⊗ . . .⊗Vd, there are several ways to view it as a linear map. For example,
we can “reshape” it as a linear map V∗i → V1 ⊗ . . . ⊗ V̂i ⊗ . . . ⊗ Vd, for any i, or as V∗i ⊗ V∗j →
V1 ⊗ . . .⊗ V̂i ⊗ . . .⊗ V̂j ⊗ . . .⊗Vd, for any i �= j, or more in general, as:

V∗i1 ⊗V∗i2 ⊗ . . .⊗V∗is → V1 ⊗ . . .⊗ V̂i1 ⊗ . . .⊗ V̂is ⊗ . . .⊗Vd, (28)

for any choice of i1, . . . , is. All these ways of reshaping the tensor are called flattenings. Now, if T is a
tensor of rank r, then all its flattenings have (as matrices) rank at most r. In this way, the ranks of the
flattenings give lower bounds for the rank of a tensor, similarly as the ranks of catalecticant matrices
gave lower bounds for the symmetric-rank of a homogeneous polynomial.

We also point out that other notions of flattening, i.e., other ways to construct linear maps starting
from a given tensor, have been introduced in the literature, such as Young flattenings (see [85]) and
Koszul flattenings (see [84]). These were used to find equations of certain secant varieties of Veronese
and other varieties and to provide algebraic algorithms to compute decompositions.
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We conclude this section with a very powerful method to compute lower bounds on ranks of
tensors: the so-called substitution method. In order to ease the notation, we report the result in the
case T ∈ V1 ⊗V2 ⊗V3, with dimk Vi = ni. For a general result, see [174] (Appendix B).

Theorem 30 (The substitution method ([174] Appendix B) or ([175] Section 5.3)). Let T ∈ V1 ⊗V2 ⊗V3.
Write T = ∑n1

i=1 ei ⊗ Ti, where the ei’s form a basis of V1 and the Ti’s are the corresponding “slices” of the tensor.
Assume that Mn1 �= 0. Then, there exist constants λ1, . . . , λn1−1 such that the tensor:

T′ =
n1−1

∑
i=1

ei ⊗ (Ti − λiTn1) ∈ kn1−1 ⊗V2 ⊗V3,

has rank at most R(T)− 1. If Tn1 is a matrix of rank one, then equality holds.

Roughly speaking, this method is applied in an iterative way, with each of the Vi’s playing the
role of V1 in the theorem, in order to reduce the tensor to a smaller one whose rank we are able to
compute. Since, in the theorem above, R(T) ≥ R(T′) + 1, at each step, we get a plus one on the lower
bound. For a complete description of this method and its uses, we refer to [175] (Section 5.3).

A remarkable use of this method is due to Shitov, who recently gave counterexamples to
very interesting conjectures such as Comon’s conjecture, on the equality between the rank and
symmetric-rank of a symmetric tensor, and Strassen’s conjecture, on the additivity of the tensor
rank for sums of tensors defined over disjoint subvector spaces of the tensor space.

We will come back with more details on Strassen’s conjecture, and its symmetric version, in the
next section. We spend a few words more here on Comon’s conjecture.

Given a symmetric tensor F ∈ SdV ⊂ V⊗d, we may regard it as a tensor, forgetting the symmetries,
and we could ask for its tensor rank, or we can take into account its symmetries and consider its
symmetric-rank. Clearly,

R(F) ≤ Rsym(F). (29)

The question raised by Comon asks if whether such an inequality is actually an equality. Affirmative
answers were given in several cases (see [176–180]). In [181], Shitov found an example (a cubic in 800
variables) where the inequality (29) is strict. As the author says, unfortunately, no symmetric analogs
of this substitution method are known. However, a possible formulation of such analogs, which might
lead to a smaller case where (29) is strict, was proposed.

Conjecture 12 ([181] (Conjecture 7)). Let F, G ∈ S = k[x0, . . . , xn] of degree d, d− 1, respectively. Let L be
a linear form. Then,

Rsym(F + LG) ≥ d + min
L′∈S1

Rsym(F + L′G).

Remark 21. A symmetric tensor F ∈ SdV can be viewed as a partially-symmetric tensor in Sd1 V⊗ . . .⊗ Sdm V,
for any d = (d1, . . . , dm) ∈ Nm such that d1 + . . . + dm = d. Moreover, if d′ = (d′1, . . . , d′m′) ∈ Nm′ is a
refinement of d, i.e., there is some grouping of the entries of d′ to get d, then we have:

Rsym(F) ≥ Rd(F) ≥ Rd′(F), (30)

which is a particular case of (29). In the recent paper [139], the authors investigated the partially-symmetric
version of Comon’s question, i.e., the question if, for a given F, (30) is an equality or not. Their approach consisted
of bounding from below the right-hand side of (30) with the simultaneous rank of its partial derivatives of some
given order and then studying the latter by using classical apolarity theory (see also Remark 18). If such a
simultaneous rank coincides with the symmetric-rank of F, then also all intermediate ranks are the same. In
particular, for each case in which Comon’s conjecture is proven to be true, then also all partially-symmetric
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tensors coincide. For more details, we refer to [139], where particular families of homogeneous polynomials
are considered.

5.3. Formulae for Symmetric Ranks

In order to find exact values of the symmetric-rank of a given polynomial, we can use one of
the available algorithms for rank computations; see Section 2.3. However, as we already mentioned,
the algorithms will give an answer only if some special conditions are satisfied, and the answer will be
only valid for that specific form. Thus, having exact formulae working for a family of forms is of the
utmost interest.

Formulae for the rank are usually obtained by finding an explicit (a posteriori sharp) upper bound
and then by showing that the rank cannot be less than the previously-found lower bound.

An interesting case is the one of monomials. The lower bound of (27) is used to obtain a rank
formula for the complex rank of any monomial, similarly as in Example 22; i.e., given a monomial
F = xα, whose exponents are increasingly ordered, we have that F⊥ = (yα0+1

0 , . . . , yαn+1
n ), and then,

one has to:

1. first, as in Example 20, exhibit the set of points apolar to F given by the complete intersection
(yα1

1 − yα1
0 , . . . , yαn

n − yα0
0 ); this proves that the right-hand side of (31) is an upper bound for the

rank;
2. second, as in Example 22, use Theorem 27 with e = 1 and G = y0 to show that the right-hand

side of (31) is a lower bound for the rank.

Theorem 31 ([166] (Proposition 3.1)). Let 1 ≤ α0 ≤ α1 . . . ≤ αn. Then,

Rsym(xα) =
1

α0 + 1

n

∏
i=0

(αi + 1). (31)

Another relevant type of forms for which we know the rank is the one of reduced cubic forms.
The reducible cubics, which are not equivalent to a monomial (up to change of variables), can be
classified into three canonical forms. The symmetric complex rank for each one was computed, as the
following result summarizes: the first two were first presented in [76], while the last one is in [172].
In particular, for all three cases, we have that the lower bound given by Theorem 28 is sharp.

Theorem 32 ([172] (Theorem 4.5)). Let F ∈ C[x0, . . . , xn] be a form essentially involving n + 1 variables,
which is not equivalent to a monomial. If F is a reducible cubic form, then one and only one of the following holds:

1. F is equivalent to:
x0(x2

0 + x2
1 + . . . + x2

n),

and Rsym(F) = 2n.
2. F is equivalent to:

x0(x2
1 + x2

2 + . . . + x2
n),

and Rsym(F) = 2n.
3. F equivalent to:

x0(x0x1 + x2x3 + x2
4 + . . . + x2

n),

and Rsym(F) = 2n + 1.
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Another way to find formulae for symmetric-ranks relies on a symmetric version of Strassen’s
conjecture on tensors. In 1973, Strassen formulated a conjecture about the additivity of the tensor
ranks [182], i.e., given tensors Ti, . . . , Ts in V⊗d defined over disjoint subvector spaces, then,

R(
s

∑
i=1

Ti) =
s

∑
i=1

R(Ti).

After a series of positive results (see, e.g., [183–185]), Shitov gave a proof of the existence of a
counter-example to the general conjecture in the case of tensors of order three [186]. Via a clever
use of the substitution method we introduced in the previous section, the author described a way to
construct a counter-example, but he did not give an explicit one.

However, as the author mentioned is his final remarks, no counter example is known for the
symmetric version of the conjecture that goes as follows: given homogeneous polynomials F1, . . . , Fs in
different sets of variables, then:

Rsym(
s

∑
i=1

Fi) =
s

∑
i=1

Rsym(Fi).

In this case, Strassen’s conjecture is known to be true in a variety of situations. The case of sums of
coprime monomials was proven in [166] (Theorem 3.2) via apolarity theory by studying the Hilbert
function of the apolar ideal of F = ∑s

i=1 Fi. Indeed, it is not difficult to prove that:

F⊥ =
s⋂

i=1

F⊥i + (Fi + λi,jFj : i �= j), (32)

where the λi,j’s are suitable coefficients.

In this way, since apolar ideals of monomials are easy to compute, it is possible to express explicitly
also the apolar ideal of a sum of coprime monomials. Therefore, the authors applied an analogous
strategy as the one used for Theorem 31 (by using more technical algebraic computations) to prove
that Strassen’s conjecture holds for sums of monomials.

In [187], the authors proved that Strassen’s conjecture holds whenever the summands are in either
one or two variables. In [171,173], the authors provided conditions on the summands to guarantee
that additivity of the symmetric-ranks holds. For example, in [173], the author showed that whenever
the catalecticant bound (27) (or the lower bound given by Theorem 29) is sharp for all the Fi’s, then
Strassen’s conjecture holds, and the corresponding bound for ∑s

i=1 Fi is also sharp.
A nice list of cases in which Strassen’s conjecture holds was presented in [171]. This was done

again by studying the Hilbert function of the apolar ideal of F = ∑s
i=1 Fi, computed as described

in (32), and employing the bound given by Theorem 27.

Theorem 33 ([171] (Theorem 6.1)). Let F = F1 + . . . + Fm, where the degree d forms Fi are in different sets
of variables. If, for i = 1, . . . , m, each Fi is of one of the following types:

• Fi is a monomial;
• Fi is a form in one or two variables;
• Fi = xa

0(xb
1 + . . . + xb

n) with a + 1 ≥ b;
• Fi = xa

0(xb
1 + xb

2);
• Fi = xa

0(xb
0 + . . . + xb

n) with a + 1 ≥ b;
• Fi = xa

0(xb
0 + xb

1 + xb
2);

• Fi = xa
0G(x1, . . . , xn) where G⊥ = (H1, . . . , Hm) is a complete intersection and a ≤ deg Hi;

• Fi is a Vandermonde determinant;

then Strassen’s conjecture holds for F.
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5.4. Identifiability of Tensors

For simplicity, in this section we work on the field C of the complex numbers. Let us consider
tensors in V = Cn1+1 ⊗ . . . ⊗ Cnd+1. A problem of particular interest when studying minimal
decompositions of tensors is to count how many there are.

Problem 8. Suppose a given tensor T ∈ V has rank r, i.e., it can be written as T =
⊕r

i=1 v1
i ⊗ . . . ⊗ vd

i .
When is it that such a decomposition is unique (up to permutation of the summands and scaling of the vectors)?

This problem has been studied quite a bit in the last two centuries (e.g., see [12,188–190]), and it is
also of interest with respect to many applied problems (e.g., see [191–193]). Our main references for
this brief exposition are [194,195].

Let us begin with a few definitions.

Definition 26. A rank-r tensor T ∈ V is said to be identifiable over C if its presentation T =
⊕r

i=1 v1
i ⊗

. . .⊗ vd
i is unique (up to permutations of the summands and scaling of the vectors).

It is interesting to study the identifiability of a generic tensor of given shape and rank.

Definition 27. We say that tensors in V are r-generically identifiable over C if identifiability over C holds
in a Zariski dense open subset of the space of tensors of rank r. Moreover, we say that the tensors in V are
generically identifiable if they are rg-generically identifiable, where rg denotes the generic rank in V.

Let us recall that the generic rank for tensors V is the minimum value for which there is a Zariski
open non-empty set U of V where each point represents a tensor with rank ≤ rg; see Section 3.
Considering n = (n1, . . . , nd), let Xn ⊂ PV be the Segre embedding of Pn1 × . . .× Pnd . As we already
said previously, if rg is the generic rank for tensors in V, then σrg(Xn) is the first secant variety of Xn,
which fills the ambient space. Therefore, to say that the tensors in V are generically identifiable over C
amounts to saying the following: let rg be the generic rank with respect to the Segre embedding Xn

in PV; then, for the generic point [T] ∈ PV, there exists a unique Pr−1, which is rg-secant to Xn in rg

distinct points and passes through [T]. The rg points of Xn gives (up to scalar) the rg summands in the
unique (up to permutation of summands) minimal decomposition of the tensor T.

When σr(Xn) �= PV, i.e., the rank r is smaller than the generic one (we can say that r is sub-generic),
then we have that the set of tensors T ∈ V with rank r is r-generically identifiable over C if there is an
open set U of σr(Xn) such that for the points [T] in U, there exists a unique Pr−1, which is r-secant in r
distinct points to Xn and passes through [T].

Obviously, the same problem is interesting also when treating symmetric or skew-symmetric
tensors, i.e., when n1 = . . . = nd = n and T ∈ Sd(Cn+1) ⊂ V or T ∈ ∧d(Cn+1). From a geometric
point of view, in these cases, we have to look at Veronese varieties or Grassmannians, respectively,
and their secant varieties, as we have seen in the previous sections.

Generic identifiability is quite rare as a phenomenon, and it has been largely investigated;
in particular, we refer to [12,188,196–201]. As an example of how generic identifiability seldom
presents itself, we can consider the case of symmetric tensors.

It is classically known that there are three cases of generic identifiability, namely:

• binary forms of odd degree (n = 1 and d = 2t + 1), where the generic rank is t + 1 [189];
• ternary quintics (n = 2 and d = 5), where the generic rank is seven [190];
• quaternary cubics (n = 3 and d = 3), where the generic rank is five [189].

Recently, Galuppi and Mella proved that these are the only generically identifiable cases when
considering symmetric-ranks of symmetric tensors; see [202].
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When we come to partially-symmetric tensors (which are related to Segre–Veronese varieties,
as we described in Section 4.2), a complete classification of generically-identifiable cases is not known,
but it is known that it happens in the following cases; see [203].

• Sd1C2 ⊗ . . . ⊗ SdtC2, with d1 ≤ . . . dt and d1 + 1 ≥ rg, where rg is the generic
partially-symmetric-rank, i.e., forms of multidegree (d1, . . . , dt) in t sets of two variables; here,
the generic partially-symmetric-rank is t + 1 [204];

• S2Cn+1 ⊗ S2Cn+1, i.e., forms of multidegree (2, 2) in two sets of n + 1 variables; here, the generic
partially-symmetric-rank is n + 1 [205];

• S2C3 ⊗ S2C3 ⊗ S2C3 ⊗ S2C3, i.e., forms of multidegree (2, 2, 2, 2) in four sets of three variables;
here, the generic partially-symmetric-rank is four (this is a classical result; see also [203]);

• S2C3 ⊗ S3C3, i.e., forms of multidegree (2, 3) in two sets of three variables; here, the generic
partially-symmetric-rank is four [206];

• S2C3 ⊗ S2C3 ⊗ S4C3, i.e., forms of multidegree (2, 2, 4) in three sets of three variables; here,
the generic partially-symmetric-rank is seven [203].

When considering r-generically identifiable tensors for sub-generic rank, i.e., for r < rg, things
change completely, in as much as we do expect r-generically-identifiability in this case. Again,
the symmetric case is the best known; in [201] (Theorem 1.1), it was proven that every case where r is a
sub-generic rank and σr(Xn,d) has the expected dimension for the Veronese variety Xn,d, r-generically
identifiability holds with the only following exceptions:

• S6C3, i.e., forms of degree six in three variables, having rank nine;
• S4C4, i.e., forms of degree four in four variables, having rank eight;
• S3C6, i.e., forms of degree three in six variables, having rank nine.

In all the latter cases, the generic forms have exactly two decompositions.
Regarding generic identifiability for skew-symmetric tensors, there are not many studies, and we

refer to [207].
It is quite different when we are in the defective cases, namely, when we want to study r-generic

identifiability and the r-th secant variety is defective. In this case, non-identifiability is expected;
in particular, we will have that the number of decompositions for the generic tensor parametrized by a
point of σr(Y) is infinite.

5.5. Varieties of Sums of Powers

Identifiability deals with the case in which tensors have a unique (up to permutation of the
summands) decomposition. When the decomposition is not unique, what can we say about all possible
decompositions of the given tensor? In the case of symmetric tensors, that is homogeneous polynomial,
an answer is given by studying varieties of sums of powers, the so-called VSP, defined by Ranestad
and Schreyer in [208].

Definition 28. Let F be a form in n + 1 variables having Waring rank r, and let HilbrPn be the Hilbert scheme
of r points in Pn; we define:

VSP(F, r) = {X = {P1, . . . , Pr} ∈ HilbrPn : IX = ℘1 ∩ . . . ∩ ℘r ⊂ F⊥}.

For example, when identifiability holds, VSP is just one single point. It is interesting to note that,
even for forms having generic rank, the corresponding VSP might be quite big, as in the case of binary
forms of even degree.

Using Sylvester’s algorithm we have a complete description of VSP for binary forms, and it turns
out to be always a linear space.

132



Mathematics 2018, 6, 314

Example 24. Consider the binary form F = x2
0x2

1. Since F⊥ = (y3
0, y3

1), by Sylvester’s algorithm, we have that
the rank of F is three. Moreover, by the apolarity lemma, we have that VSP(F, 3) is the projectivization of the
vector space W = 〈y3

0, y3
1〉 because the generic form in W has three distinct roots.

In general, the study of VSPsis quite difficult, but rewarding: VSPs play an important role in
classification work by Mukai see [209–211]. For a review of the case of general plane curves of degree
up to ten, that is for general ternary forms of degree up to ten, a complete description is given in [208],
including results from Mukai and original results. We summarize them in the following.

Theorem 34 ([208] (Theorem 1.7)). Let F ∈ SdC3 be a general ternary cubic with d = 2t− 2, 2 ≤ t ≤ 5,
then:

VSP
(

F,
(

t + 1
2

))
� G(t, V, η) = {E ∈ G(t, V) | ∧2 E ⊂ η}

where V is a 2t + 1-dimensional vector space and η is a net of alternating forms η : Λ2V → C3 on V. Moreover:

• if F is a smooth plane conic section, then VSP(F, 3) is a Fano three-fold of index two and degree five in P6.
• if F is a general plane quartic curve, then VSP(F, 6) is a smooth Fano three-fold of index one and genus 12

with anti-canonical embedding of degree 22;
• if F is a general plane sextic curve, then VSP(F, 10) is isomorphic to the polarized K3-surface of genus 20;
• if F is a general plane octic curve, then VSP(F, 15) is finite of degree 16, i.e., consists of 16 points.

Very often, for a given specific form, we do not have such a complete description, but at least,
we can get some relevant information, for example about the dimension of the VSP: this is the case
for monomials.

Theorem 35 ([212] (Theorem 2)). Let F ∈ C[x0, . . . , xn] be a monomial F = xα with exponents 0 < α0 ≤
. . . ≤ αn. Let A = C[y0, . . . , yn]/(y

α1+1
1 , . . . , yαn+1

n ). Then, VSP(F, Rsym(F)) is irreducible and:

dim VSP(F, Rsym(F)) =
n

∑
i=1

HF(A; di − d0).

A complete knowledge of VSP(F, r) gives us a complete control on all sums of powers
decompositions of F involving r summands. Such a complete knowledge comes at a price: a complete
description of the variety of sums of powers might be very difficult to obtain. However, even less
complete information might be useful to have and, possibly, easier to obtain. One viable option is
given by Waring loci as defined in [213].

Definition 29. The Waring locus of a degree d form F ∈ SdV is:

WF = {[L] ∈ PV : F = Ld + Ld
2 + . . . + Ld

r , r = Rsym(F)},

i.e., the space of linear form which appears in some minimal sums of powers decomposition of F. The forbidden
locus of F is defined as the complement of the Waring locus of F, and we denote it by FF.

Remark 22. In this definition, the notion of essential variables has a very important role; see Remark 12.
In particular, it is possible to prove that if F ∈ C[x0, . . . , xn] has less than n + 1 essential variables, say
x0, . . . , xm, then for any minimal decomposition F = ∑r

i=1 Li, the Li’s also involve only the variables x0, . . . , xm.
For this reason, if in general, we have F ∈ SdV, which has less than dimC V essential variables, say that W ⊂ V
is the linear span of a set of essential variables, thenWF ⊂ PW.

In [213], the forbidden locus, and thus the Waring locus, of several classes of polynomials was
computed. For example, in the case of monomials, we have the following description.
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Theorem 36 ([213] (Theorem 3.3)). If F = xα, such that the exponents are increasingly ordered and m =

mini{αi = α0}, then:
FF = V(y0 · · · ym).

The study of Waring and forbidden loci can have a two-fold application. One is to construct
step-by-step a minimal decomposition of a given form F: if [L] belongs toWF, then there exists some
coefficient λ ∈ C such that F′ = F + λLd has rank smaller than F; then, we can iterate the process by
consideringWF′ . In [214], this idea is used to present an algorithm to find minimal decompositions of
forms in any number of variables and of any degree of rank r ≤ 5 (the analysis runs over all possible
configuration of r points in the space whose number of possibilities grows quickly with the rank);
a Macaulay2 package implementing this algorithm can be found in the ancillary files of the arXiv
version of [214]. A second possible application relates to the search for forms of high rank: if [L]
belongs to WF, then the rank of F + λLd cannot increase as λ varies, but conversely, if the rank of
F + λLd increases, then [L] belongs to the forbidden locus of F. Unfortunately, it is not always possible
to use elements in the forbidden locus to increase the rank of a given form; however, this idea can give
a place to look for forms of high rank. For example, since Fx0x1x2 = V(y0y1y2), that is the forbidden
locus of the monomial F = x0x1x2 is the union of the three coordinate lines of P2, the only possible
way to make the rank of F increase is to consider F + λL3 where L is a linear form not containing at
least one of the variables. However, as some computations can show, the rank of F + λL3 does not
increase for any value of λ and for any choice of L in the forbidden locus.

Another family of polynomial for which we have a complete description of Waring and forbidden
loci are binary forms.

Theorem 37 ([213] (Theorem 3.5)). Let F be a degree d binary form, and let G ∈ F⊥ be an element of minimal
degree. Then,

• if rk(F) < (d+1
2 ), thenWF = V(G);

• if rk(F) > (d+1
2 ), then FF = V(G);

• if rk(F) = (d+1
2 ) and d is even, then FF is finite and not empty;

if rk(F) = (d+1
2 ) and d is odd, thenWF = V(G).

Example 25. The result about Waring and forbidden loci of binary forms can be nicely interpreted in terms of
rational normal curves. If F = x0x2

1, then:
FF = {[y3

1]},

and this means that any plane containing [F] and [y3
1] is not intersecting the twisted cubic curve in three distinct

points; indeed, the line spanned by [F] and [y3
1] is tangent to the twisted cubic curve.

Other families of homogeneous polynomials for which we have a description of Waring and
forbidden loci are quadrics [213] (Corollary 3.2) (in which case, the forbidden locus is given by
a quadric) and plane cubics [213] (Section 3.4). We conclude with two remarks coming from the
treatment of the latter case:

• in all the previous cases, the Waring locus of F is always either closed or open. However, this is
not true in general. In fact, for the cusp F = x3

0 + x2
1x2, we have that the Waring locus is:

WF = {[y3
0]} ∪ {[(ay1 + by2)

3] : a, b ∈ C and b �= 0},

that is the Waring locus is given by two disjoint components: a point and a line minus a point;
therefore,WF is neither open nor closed in P2;

• since the space of minimal decompositions of forms of high rank is high dimensional, it is
expected that the Waring locus is very large, and conversely, the forbidden locus is reasonably
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small. For example, the forbidden locus of the maximal rank cubic F = x0(x2
1 + x0x2) is just a

point, i.e.,
FF = {[y3

0]}.

There is an open conjecture stating that, for any form F, the forbidden locus FF is not empty.

5.6. Equations for the Secant Varieties

A very crucial problem is to find equations for the secant varieties we have studied in the previous
sections, mainly for Veronese, Segre and Grassmann varieties. Notice that having such equations
(even equations defining only set-theoretically the secant varieties in question) would be crucial in
having methods to find border ranks of tensors.

5.6.1. Segre Varieties

Let us consider first Segre varieties; see also [108]. In the case of two factors, i.e., Xn with
n = (n1, n2), the Segre variety, which is the image of the embedding:

Pn1 × Pn2 → Xn ⊂ PN , N = (n1 + 1)(n2 + 1)− 1,

corresponds to the variety of rank one matrices, and σs(Xn) corresponds to the variety of rank s
matrices, which is defined by the ideal generated by the (s + 1) × (s + 1) minors of the generic
(n1 + 1)× (n2 + 1) matrix, whose entries are the homogenous coordinates of PN . In this case, the ideal
is rather well understood; see, e.g., [215] and also the extensive bibliography given in the book of
Weyman [216].

We will only refer to a small part of this vast subject, and we recall that the ideal Iσs(Xn) is a
perfect ideal of height (n1 + 1− (s + 1)− 1)× (n2 + 1− (s + 1)− 1) = (n1 − s− 1)× (n2 − s− 1) in
the polynomial ring with N + 1 variables, with a very well-known resolution: the Eagon–Northcott
complex. It follows from this description that all the secant varieties of the Segre embeddings of a
product of two projective spaces are arithmetically Cohen–Macaulay varieties. Moreover, from the
resolution, one can also deduce the degree, as well as other significant geometric invariants, of these
varieties. A determinantal formula for the degree was first given by Giambelli. There is, however,
a reformulation of this result, which we will use (see, e.g., [1] (p. 244) or [217] (Theorem 6.5)), where this
lovely reformulation of Giambelli’s Formula is attributed to Herzog and Trung:

deg(σs(X(n1,n2)
)) =

n1−s

∏
i=0

(n2+1+i
s )

(s+i
s )

.

Let us now pass to the case of the Segre varieties with more than two factors. Therefore, let Xn ⊂ PN

with n = (n1, . . . , nt), N = Πt
i=1(ni + 1)− 1 and t ≥ 3, where we usually assume that n1 ≥ . . . ≥ nt.

If we let T be the generic (n1 + 1)× . . .× (nt + 1) tensor whose entries are the homogeneous
coordinates in PN , then it is well known that the ideal of Xn has still a determinantal representation,
namely it is generated by all the 2× 2 “minors” of T, that is the 2× 2 minors of the flattenings of T.
It is natural to ask if the flattenings can be used also to find equations of higher secant varieties of
Xn. If we split 1, . . . , t into two subsets, for simplicity say 1, . . . , � and �+ 1, . . . , t, then we can form
the composition:

ν(n1,...,n�)
× ν(n�+1,...,nt) : (Pn1 × . . .× Pn�)× (Pn�+1 × . . .× Pnt)→ Pa × Pb,

where a = Π�
i=1(ni + 1)− 1, b = Πt

i=�+1(ni + 1)− 1, followed by:

ν1,1 : Pa × Pb → PN , N as above.

135



Mathematics 2018, 6, 314

Clearly Xn ⊂ ν1,1(Pa × Pb), and hence, σs(Xn) ⊂ σs(ν1,1(Pa × Pb)).
Thus, the (s + 1)× (s + 1) minors of the matrix associated with the embedding ν1,1 will all vanish

on σs(Xn). That matrix, written in terms of the coordinates of the various Pni , is what we have called a
flattening of the tensor T.

As we have seen in (28), we can perform a flattening of T for every partition of 1, . . . , t into two
subsets. The (s + 1)× (s + 1) minors of all of these flattenings will give us equations that vanish on
σs(Xn). In [90], it was conjectured that, at least for s = 2, these equations are precisely the generators
for the ideal Iσ2(Xn) of σ2(Xn). The conjecture was proven in [218] for the special case of t = 3 (and set
theoretically for all t’s). Then, Allman and Rhodes [16] proved the conjecture for up to five factors,
while Landsberg and Weyman [96] found the generators for the defining ideals of secant varieties for
the Segre varieties in the following cases: all secant varieties for P1 × Pm × Pn for all m, n; the secant
line varieties of the Segre varieties with four factors; the secant plane varieties for any Segre variety
with three factors. The proofs use representation theoretic methods.

Note that for s > 2, one cannot expect, in general, that the ideals Iσs(Xn) are generated by the
(s + 1)× (s + 1) minors of flattenings of T. Indeed, in many cases, there are no such minors, e.g., it is
easy to check that if we consider n = (1, 1, 1, 1, 1) and Xn ⊂ P31, we get that the flattenings can give
only ten 4× 8 matrices and five 2× 16 matrices. Therefore, we get quadrics, which generate IXn ,
and quartic forms, which are zero on σ3(Xn), but no equations for σ4(Xn) or σ5(Xn), which, by a
simple dimension count, do not fill all of P31.

There is a particular case when we know that the minors of a single flattening are enough to
generate the ideal I(σs(Xn)), namely the unbalanced case we already met in Theorem 16, for which
we have the following result.

Theorem 38 ([108]). Let X = Xn ⊂ PM with M = Πt
i=1(ni + 1)− 1; let N = Πt−1

i=1(ni + 1)− 1; and let
Y(N,nt) be the Segre embedding of PN × Pnt into PM. Assume nt > N −∑t−1

i=1 ni + 1. Then, for:

N −
t−1

∑
i=1

ni + 1 ≤ s ≤ min{nt, N},

we have that σs(X) = σs(Y) �= PM, and its ideal is generated by the (s + 1) × (s + 1) minors of an
(nt + 1)× (N + 1) matrix of indeterminates, i.e., the flattening of the generic tensor with respect to the splitting
{1, . . . , t− 1} ∪ {t}.

We can notice that in the case above, X is defective for N − ∑t−1
i=1 ni + 1 < s; see Theorem 16,

while when equality holds, σs(X) has the expected dimension. Moreover, in the cases covered by the
theorem, σs(X) is arithmetically Cohen–Macaulay, and a minimal free resolution of its defining ideal is
given by the Eagon–Northcott complex.

5.6.2. Veronese Varieties

Now, let us consider the case of Veronese varieties. One case for which we have a rather complete
information about the ideals of their higher secant varieties is the family of rational normal curves,
i.e., the Veronese embeddings of P1. In this case, the ideals in question are classically known; in
particular, the ideal of σs(X1,d) is generated by the (s + 1)× (s + 1) minors of catalecticant matrices
associated with generic binary form of degree d, whose coefficients corresponds to the coordinates of
the ambient coordinates. Moreover, we also know the entire minimal free resolution of these ideals,
again given by the Eagon–Northcott complex.

Since the space of quadrics can be associated with the space of symmetric matrices, a similar
analysis as the one done for the Segre varieties with two factors can be done in the case d = 2.
In particular, the defining ideals for the higher secant varieties of the quadratic Veronese embeddings
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of Pn, i.e., of σs(Xn,2), are defined by the (s + 1)× (s + 1) minors of the generic symmetric matrix of
size (n + 1)× (n + 1).

For any n, d, the ideal of σ2(Xn,d) is considered in [78], where it is proven that it is generated by
the 3× 3 minors of the first two catalecticant matrices of the generic polynomial of degree d in n + 1
variables; for the ideal of the 3× 3 minors, see also [219].

In general for all σs(Xn,d)’s, these kinds of equations, given by (s + 1) × (s + 1) minors of
catalecticant matrices ([220]), are known, but in most of the cases, they are not enough to generate the
whole ideal.

Notice that those catalecticant matrices can also be viewed this way (see [2]): consider a generic
symmetric tensor (whose entries are indeterminates) T; perform a flattening of T as we just did for
generic tensors and Segre varieties; erase from the matrix that is thus obtained all the repeated rows
or columns. What you get is a generic catalecticant matrix, and all of them are obtained in this way,
i.e., those equations are the same as you get for generic tensors, symmetrized.

Only in a few cases, our knowledge about the equations of secant varieties of Veronese varieties is
complete; see for example [25,78,85,108]. All recent approaches employ representation theory and the
definition of Young flattenings. We borrow the following list of known results from [85].

σs(Xn,2) size s + 1 minors generic symmetric matrix ideal classical
σs(X1,d) size s + 1 minors of any generic catalecticant ideal classical
σ2(Xn,d) size 3 minors of ideal [78]

generic (1, d− 1) and (2, d− 2)-catalecticants
σ3(Xn,3) Aronhold equation + size 4 minors of ideal Aronhold (n = 2) [25]

generic (1, 2)-catalecticant [85]
σ3(Xn,d) size 4 minors of scheme [221] (n = 2, d = 4)

(d ≥ 4) generic (1, 3) and (2, 2)-catalecticant [85]
σ4(X2,d) size 5 minors of scheme [221] (d = 4)

generic (
⌊

d
2

⌋
,
⌈

d
2

⌉
)-catalecticant [85]

σ5(X2,d) size 6 minors of scheme Clebsch (d = 4) [25]

(d ≥ 6, d = 4) generic (
⌊

d
2

⌋
,
⌈

d
2

⌉
)-catalecticant [85]

σs(X2,5) size 2s + 2 sub-Pfaffians of irred.comp. [85]
s ≤ 5 generic Young ((31), (31))-flattening

σ6(X2,5) size 14 sub-Pfaffians of scheme [85]
s ≤ 5 generic Young ((31), (31))-flattening

σ6(X2,d) size 7 minors of scheme [85]

generic (
⌊

d
2

⌋
,
⌈

d
2

⌉
)-catalecticant

σ7(X2,6) symmetric flattenings + Young flattenings irred. comp. [85]
σ8(X2,6) symmetric flattenings + Young flattenings irred. comp. [85]
σ9(X2,6) determinant of generic (3, 3)-catalecticant ideal classical
σs(X2,7) size (2s + 2) sub-Pfaffians of irred. comp. [85]
(s ≤ 10) generic ((4, 1), (4, 1))-Young flattening

σs(X2,2m) rank of (a, d− a)-catalecticant ≤ min
{

s, (a+2
2 )

}
scheme [25,85]

(s ≤ (m+1
2 )) for 1 ≤ a ≤ m, open and closed

σs(X2,2m+1) rank of (a, d− a)-catalecticant ≤ min
{

s, (a+2
2 )

}
scheme [25,85]

(s ≤ (m+1
2 ) + 1) for 1 ≤ a ≤ m, open and closed

σs(Xn,2m) size s + 1 minors of irred. component [25,85]
(s ≤ (m+n−1

n )) generic (m, m)-catalecticant
σs(X2,2m+1) size ( n

�n/2�)j + 1 minors of a Young flattening irred. comp. [25,85]
(s ≤ (m+n

n ))

Note that the knowledge of equations that define the σs(Xn,d)’s, also just set-theoretically,
would give the possibility to compute the symmetric border rank for any tensor in SdV.
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For the sake of completeness, we mention that equations for secant varieties in other cases can be
found in [85] (Grassmannian and other homogeneous varieties), in [108] (Segre–Veronese varieties and
Del Pezzo surfaces) and in [83] (Veronese re-embeddings of varieties).

5.7. The Real World

For many applications, it is very interesting to study tensor decompositions over the real numbers.
The first thing to observe here is that since R is not algebraically closed, the geometric picture

is much more different. In particular, a first difference is in the definition of secant varieties, where,
instead of considering the closure in the Zariski topology, we need to consider the Euclidean topology.
In this way, we have that open sets are no longer dense, and there is not a definition of “generic rank”:
if X is variety in PN

R , the set Ur(X) = {P ∈ PN
R | RX(P) = r}might be non-empty interior for several

values of r. Such values are called the typical ranks of X.
It is known that the minimal typical (real) rank of X coincides with the generic (complex) rank of

the complexification X⊗C; see [158] (Theorem 2).
The kind of techniques that are used to treat this problem are sometimes very different from what

we have seen in the case of algebraically-closed fields.

Now, we want to overview the few known cases on real symmetric-ranks.
The typical ranks of binary forms are completely known. Comon and Ottaviani conjectured

in [222] that typical ranks take all values between
⌊

d+2
2

⌋
and d. The conjecture was proven by

Blekherman in [223].
In [224], the authors showed that any value between the minimal and the maximal typical rank is

also a typical rank. Regarding real symmetric-ranks, they proved that: the typical real rank of ternary
cubics is four; the typical ranks of quaternary cubics are only five and six; and they gave bounds on
typical ranks of ternary quartics and quintics.

Another family of symmetric tensors for which we have some results on real ranks are monomials.
First of all, note that the apolarity lemma (Lemma 5) can still be employed, by making all algebraic
computations over the complex number, but then looking for ideals of reduced points apolar to the
given homogeneous polynomial and having only real coefficients. This was the method used in [225]
to compute the real rank of binary monomials.

Indeed, if M = xα1
0 xα1

1 , then, as we have already seen, M⊥ = (yα0+1
0 , yα1+1

1 ). Now, Waring
decompositions of M are in one-to-one relation with reduced sets of points (which are principal
ideals since we are in P1), whose ideal is contained in M⊥. Now, if we only look for sets of points
that are also completely real, then we want to understand for which degree d it is possible to find
suitable polynomials H0 and H1 such that G = yα0+1

0 H0 + yα1+1
1 H1 is of degree d and have only distinct

real roots.
The authors observe the following two elementary facts, which hold for any univariate g(y) =

cdyd + cd−1yd−1 + . . . + c1y + c0, as a consequence of the classic Descartes’ rule of signs:

• if ci = ci−1 = 0, for some i = 1, . . . , d, then f does not have d real distinct roots; see [225]
(Lemma 4.1);

• for any j = 1, . . . , d− 1, there exists ci’s such that f has d real distinct roots and cj = 0; see [225]
(Lemma 4.2).

As a consequence of this, we obtain that:

• if d < α0 + α1, then G (or rather, its dehomogenization) has two consecutive null coefficients;
hence, it cannot have d real distinct roots;

• if d = α0 + α1, then only the coefficient corresponding to yα0
0 yα1

1 of G (or rather its
dehomogenization) is equal to zero; hence, it is possible to find H0 and H1 such that G has
d real distinct roots.

Therefore, we get the following result.
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Theorem 39 ([225] (Proposition 3.1)). If α0, α1 are not negative integers, then RR
sym(xα0

0 xα1
1 ) = α0 + α1.

Note that, comparing the latter result with Theorem 31, we can see that for binary monomials,
the real and the complex rank coincide if and only if the least exponent is one. However, this is true in
full generality, as shown in [226].

Theorem 40 ([226] (Theorem 3.5)). Let M = xα0
0 · · · xαn

n be a degree dmonomial with α0 = mini{αi}. Then,

RR
sym(M) = RC

sym(M) if and only if α0 = 1.

Note that the real rank of monomials is not known in general, and as far as we know, the first
unknown case is the monomial x2

0x2
1x2

2, whose real rank is bounded by 11 ≤ RR
sym(x2

0x2
1x2

2) ≤ 13; here,
the upper bound is given by [226] (Proposition 3.6 and Example 3.6), and the lower bound is given
by [227] (Example 6.7).

We conclude with a result on real ranks of reducible real cubics, which gives a (partial) real
counterpart to Theorem 32.

Theorem 41 ([172] (Theorem 5.6)). If F ∈ R[x0, . . . , xn] is a reducible cubic form essentially involving n + 1
variables, then one and only one of the following holds:

• F is equivalent to x0(∑n
i=1 εix2

i ), where εi ∈ {−1,+1}, for 1 ≤ i ≤ n, and:

2n ≤ RR
sym(F) ≤ 2n + 1.

Moreover, if ∑i εi = 0, then RR
sym(F) = 2n.

• F is equivalent to x0(∑n
i=0 εix2

i ), where εi ∈ {−1,+1}, for 1 ≤ i ≤ n, and:

2n ≤ RR
sym(F) ≤ 2n + 1.

Moreover, if ε0 = . . . = εn, then RR
sym(F) = 2n. If ε0 �= ε1 and ε1 = . . . = εn, then RR

sym(F) = 2n + 1.
• F is equivalent to (αx0 + xp)(∑n

i=0 εix2
i ), for α �= 0, where ε0 = . . . = εp−1 = 1 and εp = . . . = εn =

−1 for 1 ≤ p ≤ n, and:
2n ≤ RR

sym(F) ≤ 2n + 3.

Moreover, if α = −1 or α = 1, then 2n + 1 ≤ RR
sym(F) ≤ 2n + 3.
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