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Abstract: Radar target detection (RTD) is a fundamental but important process of the radar system,
which is designed to differentiate and measure targets from a complex background. Deep learning
methods have gained great attention currently and have turned out to be feasible solutions in radar
signal processing. Compared with the conventional RTD methods, deep learning-based methods can
extract features automatically and yield more accurate results. Applying deep learning to RTD is
considered as a novel concept. In this paper, we review the applications of deep learning in the field
of RTD and summarize the possible limitations. This work is timely due to the increasing number of
research works published in recent years. We hope that this survey will provide guidelines for future
studies and applications of deep learning in RTD and related areas of radar signal processing.

Keywords: radar target detection; radar signal processing; deep learning models; artificial neural
network; deep neural network

1. Introduction

Radar target detection (RTD) is widely used to determine whether there is a signal
present in noise. Since radar signals reflected from targets are often immersed in complex
backgrounds (e.g., noise, clutter, even jamming), traditional signal processing methods are
often used to boost signal-to-noise ratio (SNR) [1], while constant false alarm rate (CFAR)
is a useful method for detection in a noise environment based on hypothesis testing [2].
Traditional CFAR-based detection methods consider the models of target or environment
as a stochastic process which is usually based on statistical theory [3]. However, due to
the complex detection environment and diverse target types, finding targets in a complex
scene is an extremely challenging task, and therefore a reliable and robust RTD method has
been one of the key pursuits of research [4].

Deep learning is a rapidly developing technology which has dramatically brought
a breakthrough in many fields such as image classification, natural language processing,
speech recognition, etc. [5,6]. As a subset of machine learning, deep learning-based models
attempt to extract features from large scale raw data automatically. The success of deep learn-
ing is mainly due to the availability of big data, the improvement of computational power,
and the ability of data processing [7]. Various deep neural network (DNN) technologies
have been successfully used, including deep neural networks (DNN), convolutional neural
networks (CNN), recursive neural networks (RNN), deep belief networks (DBN), etc. [8].

Although deep learning technology has demonstrated an exciting trend over the past
few years, its full potential for radar application has not yet been explored. In ref. [9],
researchers grouped the radar application problems that can be solved by deep learning-
based methods into three general categories: radar sensing, radar signal processing,
and radar automatic target recognition (ATR), respectively, which are listed in Figure 1.
Radar sensing and radar signal processing are the necessary prerequisites and procedures
for radar ATR.

Electronics 2022, 11, 156. https:/ /doi.org/10.3390/electronics11010156 1 https://www.mdpi.com/journal/electronics
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Figure 1. Radar tasks that can benefit from deep learning.

Deep learning methods have been fully applied in radar sensing. Wang et al. [10]
applied CNNs to radar waveform recognition. According to [11,12], deep learning methods
can solve the problem of high computational complexity of antenna parameter optimization.
The design of array antennas has been addressed by artificial neural networks (ANN) [13].
Cognitive radar antenna selection has also been solved by deep learning methods [14,15].
Gao et al. [16] explored a feature extractor based on CNN and a stacked autoencoder (SAE)
to recognize modulated signals of radar, including LFM, NLEM, BPSK, FRANK, COSTAS,
P1, P2, P3 and P4, etc.

Automatic Target Recognition is the most straightforward and widely-used application
of deep learning to radar, especially for synthetic aperture radar (SAR) [17-20]. Different
“image-like” radar data have been well-studied for the purpose of feature extraction and
classification of ATR. Deep learning models were built up on radar high-resolution range
profiles (HRRP) for ATR [21-23]. ATR on radar Micro-Doppler signatures could also be
considered in [24-28]. Deep learning can also be used for recognition of human activities
using Micro-Doppler signatures, including hand gestures recognition [29-31], vital signs
sensing [32-34], routine activities recognition [35-39], etc. Khalid et al. [40] investigated
the use of radar Range-Doppler profiles for ATR with the Convolutional Long Short-Term
Memory (CLSTM) model. A deep learning-based method on Range-Doppler radars is
proposed to recognize human fall motions in [41].

Radar Signal Processing is an intermediate procedure between radar sensing and ATR.
One of the most important purposes of radar signal processing is to detect targets. Machine
learning-based classifiers algorithms, such as support vector machines (SVM) [42] and
k-Nearest-Neighbour (kNN) [43], have been used for RTD [44,45]. As previously men-
tioned, RTD is a binary hypothesis testing which can be regarded as a binary classification
problem, namely whether the target is present or absent. Based on this assumption, RTD
can be regarded as an ATR application. As deep learning models have achieved good
performance in ATR, it is feasible and reasonable to explore deep learning-based models
in RTD. As one of the most reliable classifiers, ANN has been utilized to improve radar
detection performance [46,47]. Many recent literatures utilize DNN to tackle RTD and
also present performance improvements. Figure 2 illustrates the major developments
and application of deep learning in RTD. Detailed descriptions of each algorithm will be
presented later.

Applying deep learning technology to the field of RTD is a novel concept, yet by now,
there is no paper which comprehensively summarizes and introduces the application and
its development status. In this paper, we try to review the applications of ANN and deep
learning methods in the classical radar system problem of target detection.
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Year:
1994 1997 2006 2015 2017 2018 2019 2020 2021
O
ANNSs for RTD in clutter
— ANN:S for RTD in noise
DNN:ss for various RTD tasks
NN-CFAR, Detecting targets in clutter, (Amoozegar et al.1994)
ANN, Detecting in K-distributed clutter, (Cheikh et al. 2006) Faster R-CNN, Detecting target absent or present, (Kang et al. 2017)
SVM, Detecting targets in sea clutter, (Callaghan et al. 2017) Faster R-CNN, Ranging and detecting target in sea clutter, (Pan et al. 2019)
ANN&GO-CFAR, Detecting targets in clutter, (Akhtar et al. 2019) CNN-based, Detecting target or no-target under different sea states, (Su et al.
and Wang et al.2019)
® CNN-based, Target detection in 4D space, (Brodeski et al.2019)

NN, Detecting in non-Gaussian noise, (Prashant et al. 1997)
ANN, Detecting in non-homogeneous noise, (Rohman et al. 2015)

ANN&CA-CFAR, Detecting in noise, (Akhtar et al. 2018)

Figure 2. Major milestone of deep learning in RTD.

This review focuses on articles in online databases, e.g., IEEExplore, Open Science
Elsevier, Scopus, Springer and Researchgate. Recent articles (available by July 2021) pub-
lished in major journals of radar signal processing and major international conferences on
artificial intelligence attract more attention; these include IEEE Signal Processing Magazine,
IEEE Transactions on Antennas and Propagation, IEEE Transactions on Aerospace and
Electronic Systems, IEEE Transactions on Geoscience and Remote Sensing, IEEE Geoscience
and Remote Sensing Letters, IEEE Journal of Selected Topics in Signal Processing, IEEE
Transactions on Signal Processing, ISPRS Journal of Photogrammetry and Remote Sensing,
IEEE Radar Conference, International Conference on Radar, IEEE Conference on Com-
puter Vision and Pattern Recognition, and IEEE International Conference on Computer
Vision. In addition, a number of research papers from other sources are related to this
topic and thus included in this review, and most of them were published between 2000 and
2020. These papers were selected by keywords in the titles and keywords of the studies,
and they represent a wide range of: (a) methods from theoretical derivation to application
research, (b) detection background from noise to clutter, (c) applications from maritime
target detection to human motion detection, (d) data forms from radar received echoes to
PPl images, and (e) comparative methods from neural networks to deep learning models.
Lastly, only studies in the English language are included in the review.

The rest of this review is organized as follows: Section 2 introduces related work
on RTD including traditional CFAR detectors, which are often used for performance
comparisons. For completeness, in Section 3, we first recap on the basic methodology
of ANN before applying it to practical applications, and we then recap the recent deep
learning-based methods for. In Section 4, some open datasets are described as well as how
to construct synthetic datasets, while Section 5 summarizes the research challenges and
opportunities. Finally, conclusions are presented in Section 6.

2. Related Work on Radar Target Detection
2.1. Traditional Processing Methods for RTD

In a complex scenario of RTD, radar echo signals are often immersed in noise, jamming
and clutter, etc., which is shown in Figure 3. During the typical pulse Doppler radar signal
processing, the reflected radar signals are processed by a series of methods such as matched
filtering, coherent accumulation, clutter suppression, CFAR detection, etc.
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Figure 3. A schematic of RTD in a complex scene.

The received radar signals are sampled at a certain rate, and the pulses are compressed
by the matched filter to obtain high range resolution and narrow pulse width. Moving
target indication (MTI) is performed to suppress static clutter. Then, Doppler processing
or coherent accumulation is applied over multiple pulses at each range unit to obtain the
Range-Doppler spectrum. The reflected signal amplitude for each Range-Doppler is stored
in separate cells, after which the CFAR detector is utilized to reveal one whose amplitude
exceeds the threshold of detection. Thus, the corresponding information about velocity
and position can be measured. The flowchart is presented in Figure 4.

Matched Doppler CFAR B
Filter i> MTI i|> Processing i\> Disiasiarn i‘> Measurement i>

Received Echoes

Figure 4. A signal processing diagram of the Pulse Doppler radar.

One of the most important purposes of designing a radar detector is to distinguish
targets from noise, clutter and jamming signals. A decision must be made at the end of
the detector as to whether the radar echo contains the target or not. The classical method
is to establish an adaptive detection threshold based on statistical models, which varies
according to noise and clutter energy. In order to minimize the false alarm rate (Pf,)
and maximize the probability of detection (Pp), the Neyman-Pearson criterion is utilized
for decision-making [2]. The typical performance requirement of a radar system will
require Pp > 0.8 and Py, < 10e~*. This problem is commonly solved by applying a CFAR
detector, which adaptively determines a local optimum threshold and maintains the Py, to
be constant as a predetermined value [48].

Figure 5 depicts a general CFAR detector, which is described as a shift register of
length 21 + 1. The input samples are sent into the detector cell by cell and the energy y
in the cell under test (CUT) is estimated. The CFAR detector adjusts the statistic value z
according to the variation of energy in 2n reference cells. The energy of the CUT is
compared to the statistical result z of the CFAR processor scaled by a constant scale factor a.
Thus, the detection threshold is represented as az. Determining whether there is a target
according to (1):

{ y <az, targetabsent 1)
y > az, target present

In order to find an adaptive detection threshold, many CFAR-based methods have
been studied, which can adapt the threshold to the background changes, keeping a constant
Pf,. The diagram of typical CFAR processors is also showed in Figure 5 [49].
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Figure 5. The diagram of typical CFAR detectors.

Compared with one-dimensional range detection, two-dimensional detection under
phase-coherent accumulation includes range and Doppler detection, which is presented in
Figure 6. x denotes the reference cells of range dimension, v denotes the reference cells of
the Doppler dimension. The detection process of Doppler dimension is the same as that of

range dimension.

Van

V2

Vit

The Doppler dimension

‘ X X ‘ ‘ xn ‘ Yy ‘ xn+] Xniz | o ‘XZH |::> ‘ xl ‘ -xz ‘ ‘ xﬂ Yy xn+l Xy | wee “xZn
Range dimension ——  Range dimension
VH
v,
Vi
a) One dimensional detection area b) Two dimensional detection area

Figure 6. Schematic diagram of CFAR detection area, (a) One-dimensional detection area, (b) Two-

dimensional detection area.

CFAR-based detectors have been well-studied over the past years, however, there still
remains a trade-off between the various CFAR technologies. The cell averaging CFAR (CA-
CFAR) is the most widely-used method which has the highest detectability in homogeneous
background [50]. However, it also exhibits severe performance degradation in the presence
of an interfering target or an abrupt change in clutter background [51]. The greatest CFAR
(GO-CFAR) and the smallest CFAR (SO-CFAR) detectors were developed to improve
the detection performance under various non-ideal conditions such as nonhomogeneous
clutter background and multiple target environments [52]. Rohling et al. [53] developed an
ordered statistics CFAR (OS-CFAR) to control the detecting threshold even though other
interfering signals occurred in reference cell. As far as we know, CFAR methods are still
under investigation, such as the censored mean level detector CFAR (CMLD-CFAR) and
trimmed mean CFAR (TM-CFAR) detector [54], which were introduced to improve the
anti-inference performance. However, each of those CFAR algorithms is only limited to

some specific cases, lacking in generality.
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2.2. Deficiencies and Challenges in Conventional Approaches

RTD is a rather complex problem in practical applications. Although conventional
methods have been working well in some conditions, deficiencies and challenges still exist.
Currently, the difficult problems of RTD still mainly lie in high-resolution processing of
targets, clutter suppression, antijamming technology, and ‘low-small-slow” target detection
(low glancing angle, small size, slow or stationary), etc. [4].

Conventional CFAR-based methods in radar systems mainly depend on statistical
hypothesis. (1) In the actual RTD, only the specific type of target under the specific back-
ground has good detection performance, because the predefined parameters of the detector,
such as margin, threshold, sizes of the guard and reference windows, will determine the
detection accuracy. However, radar always works in a diverse scene. (2) Furthermore, tradi-
tional methods are computationally expensive and not flexible because they process inputs
cell-by-cell and need to manually change the window size to adaptive targets of different
resolutions. (3) Most importantly, in most cases, neither the target nor the environment
(noise, clutter, interference) have known statistical models. It is difficult to find suitable
parameters to design the radar detector, not to mention predict its performance accurately.

In brief, traditional statistical methods are no longer applicable to complex scenes and
the selection of the optimal parameter set is extremely challenging. It seems reasonable
and inevitable to develop a data-driven deep learning approach for RTD.

3. Deep Learning Methods for Radar Target Detection
3.1. Artificial Neural Networks and Deep Learning-Based Models for RTD

ANN is motivated by the biological structure of the human brain. Generally, a neural
network consists of neuron, weight vector, bias, activation function, etc. Multi-Layer
Perceptron (MLP) is a type of neural network which consists of several hidden layers
with neurons in layers being interconnected to each other [55]. Neural networks can be
utilized in RTD due to their learning ability. In fact, the problem of RTD can be considered
as a problem of pattern recognition, which fits well to the possibilities that an ANN
provides [56]. Several approaches have suggested that considering ANNSs as non-linear
detectors could improve the detection performance. A typical ANN detector is shown in
Figure 7. The output of each neuron can be given as (2):

XkJrl _ f(Wk X Xk + bk) (2)

where X is the input vector of the k' layer, W¥ is the weight vector of the k" layer, bF is
an element of bias vector of the k" layer, f(-) is the activation function. ANN detector
produces y; if the CUT contains a value larger than the sum of all the reference cells scaled
by weights, otherwise, it would output y,. Usually, a more complex ANN detector with
multiple hidden layers would give better performance.

Input Layer Hidden Layers Output Layer

vt X,bb
Decision

yl

y2

Figure 7. A typical architecture of a multi-layer ANN detector.

Using multiple layers to achieve more powerful generalization and abstractions, DNN
outperforms all the machine learning methods. The traditional shallow neural network
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requires an empirical feature extraction process to decrease the networks’ computational
load. If the features have to be extracted automatically by the network, a deep network
with powerful training capability is necessary. Currently, development in computer power
and memory have made it possible to train very large-scaled networks. Various sizes of
layers are used to provide different degrees of abstraction and generalization [57].

The increased popularity of deep learning has brought an increase in research pub-
lications related to RTD with deep learning models over the past few years. Specially
designed network frameworks for RTD in noise environments and clutter backgrounds will
be included in this work; in addition, several different DNNs will be reviewed in this paper,
and each of them perform well for RTD. The increase in the number of related publications
confirms the valid and increasing motivation of the research community on RTD tasks.

Next, we will review the recent articles using deep learning that address RTD in
online databases. Table 1 summarizes the related works on RTD where we present the
type of tasks and main contributions of each study. A more detailed description of the
detection methods is provided in Table 2, where we summarize all the related papers,
particularly highlighting the architecture of networks and the type of input and dataset.
Unfortunately, a direct comparison for all methods is not possible because they were
evaluated on different datasets.

Table 1. Summary of RTD tasks and methods in recent literature.

Task Signal Processing Method  Detection Method Main Contributions Ref. Year
Detecting glgnal in NN . NN is employed t(? detec.t (58] 1997
non-Gaussian noise signals in non-Gaussian noise.
Detecting tareets in ANN is employed to improve
non-homo gene(%us noise CA-CFAR and OS-CFAR ANN target detection performance [59] 2015
& by switching CA/OS CFAR.
ANN detector combined with
Detecting targets in Pulse compression and CA-CFAR detector to offer a
noisy background CA-CFAR ANN lower false alarm rate [60] 2018
than CFAR.
- A NN-CFAR detection
Detecting targets in Statistical parameters of scheme is presented to offer a
& targ target and clutter NN P . [61] 1994
clutter environment : robust performance in the face
fluctuations
of loss of reference cells.
ANN-CFAR detector with
Detecting signal in MLP and RBF architecture is
K-distributed clutter CFAR ANN employed to detect signals in [62] 2006
K-distributed clutter.
Detecting targets in Pulse compression and SVM&KNN SVM and KNN are used for [63] 2017
sea clutter Doppler processing suppression of sea clutter.
Detecting tareets in SVM-based detector can
& targ SVM flexibly control the false [64] 2019
sea clutter
alarm rate.
ANN detector combined with
Detecting targets Doppler processing and ANN GO-CFAR detector to offer a [65] 2019
embedded in clutter GO-CFAR higher detection performance
than CFAR.
Detecting target absent Pulse compression and CNN The classical CFAR detector is [66] 2019
or present Doppler processing replaced by a CNN detector.
CNN is used to detect and
Target detection in Doppler processing CNN localize in the 4D space of [67] 2019

4D space

range, Doppler, azimuth
and elevation.
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Table 1. Cont.

Task Signal Processing Method  Detection Method Main Contributions Ref. Year
Construct input information
Predicting targets’ and employ DNNs as radar
location and power —_— Autoencoder models to learn conditional [68] 2017
distributions probability end-to-end
from data.
Faster R-CNN is applied to
Ranging and detecting Pulse compression Faster R-CNN achieve the t'arg?t dett?ctlon [69] 2019
target from sea clutter and localization with
low SCR.
Detecting tarcet absent Faster R-CNN combined with
8 '8 RDA and CFAR Faster R-CNN CFAR to detect [70] 2017
or present .
small-sized targets.
Detecting tarcets in Improved Faster R-CNN are
& targ —_— Faster R-CNN used for target detection in [71] 2019
sea clutter L .
navigation radar PPI images.
Dete?ctlng targets WVD CNN WVD-CNN detector is used [72] 2002
in clutter for clutter analysis.
Detecting target or Pulse compression CNN:s are used for the
no-target under different and SEFT CNN detection of target [73] 2019
sea states micro-Doppler.
RDA: Range Doppler Algorithm; WVD: Wigner-Ville Distribution; STFT: Short Time Fourier Transform; detection
in 4D space: 4 dimension information of range, velocity, azimuth and elevation.
Table 2. Summary of RTD models in the literature.
Arch. Name Author Model Input Actlva.tlon Pooling Regularization Optimization Other Ref.
Function Resources
. . Radar
NN Gandhi 1 hidden received Sigmoid None —_— —_— Simulated data  [58]
etal. layer .
signals
Rohman 2hidden  CA, OS and Log- .
ANN etal. layers CUT data sigmoid None T - Simulated data [59]
2 hidden Pulse- .
ANN Akhtar layers, 32 Range Hyperbolic None —_— SCG Simulated data  [60]
etal. tangent
ANN nodes NN maps
NN- Amoozegar 2 hidden 9 statistical Siemoid None Simulated data  [61]
CFAR etal. layers parameters &
. . Range-
ANN Cheikh 1 hidden Doppler Sigmoid None —_— —_— Simulated data  [62]
etal. layer
maps
4 hidden Range-
ANN Akhtar - layers, 19 . Hyperbolic g — SCG Simulated data  [65]
etal. nodes in tangent
each layer maps
Wang 8 layers Range- .
CNN etal CNN Doppler ReLU Max — SGD Simulated data  [66]
maps
. Range- Collected data +
RD-Net +  Brodeski CNN-
Ang-Net otal. based Doppler ReLU Max Dropout Adam Augmented [67]
maps data
RPN + Pulse-
Faster = hetal.  CNN+ Range ReLU Max Smooth L1 GD CSIR dataset  [69]
R-CNN . Dropout
DNN Rol images
CNN ‘gia;.g > é&;\}ﬁe\; s SARimages  Sigmoid Average —_— —_— MSTAR dataset  [74]
GoogLeNet Yang et al. 36C11a\%\elrs SAR images ReLU Max Dropout — MSTAR dataset  [75]
ANN + Zheng CNN- . Sentinel-1
CNN etal. based SAR images ReLU SGD dataset ! [76]
RPN + .
Faster Kang . Sentinel-1
R-CNN ot al. CII\{I(I)\II + SAR images ReLU Max — — dataset 1 [70]
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Table 2. Cont.

Arch. Name Author Model Input Actlva‘tlon Pooling Regularization Optimization Other Ref.
Function Resources
Faster Zhan RPN + Echo data Simulated data
& CNN + and SAR ReLU Max e e + MSTAR [77]
R-CNN etal. .
Rol images dataset
Zhao VGG16- . Gaofen-3
SSD etal. based SAR images dataset (78]
Faster RPN +
Mou et al. CNN + PPIimages ELUs Max —_— Adam Collected data [71]
R-CNN Rol
7 layers & Time- . .
LeNet& Sigmoidé& Max & IPIX measured
GoogLeNet Suetal. 22 layers Fljequency ReLU Average Dropout SGD data [73]
CNN images
Spatial
DNN Wheeler Autoencoder raster and ReLU e o Ada Collected and [68]
etal. o generated data
object list
RD-Net + Jiang CNN- Echo data Soft-max Max Smooth L1 Adam Simulated data  [49]
Ang-Net etal. based

ReLU: Rectified Linear Units, ELUs: Exponential Linear Units, SCG: Scale conjugate gradient [79], GD: gradient
descent, SGD: stochastic gradient descent [80], Adam: Adaptive Moment Estimation [81], Ada: Adadelta [82],
CA: CA-CFAR, OS: OS-CFAR, CUT: Cell under test, RBF: Radial Basis Function. ! https:/ /scihub.copernicus.eu/
(accessed on 30 December 2021).

3.2. RTD in Noise Background

In the past decades, many approaches have been proposed to address the issue of
RTD in diverse types of noise or clutter scenarios. Those approaches include complete
descriptions of environmental statistics as well as statistical computing power. Recently,
deep learning-based schemes were proposed to cope with the problem of RTD within
noise backgrounds.

In practical application, the likelihood ratio can be obtained by sufficient statistics,
which mainly depends on the probability density function of the noise, for example, Gaus-
sian white noise. However, in a modern radar system, noise is usually non-Gaussian
distribution, thus the likelihood ratio has a complex non-linear relation which makes it
difficult to implement sufficient statistics [83,84]. Early in 1988, Gandhi and Kassam [85]
analyzed the theoretical principle of CFAR processors in non-homogeneous backgrounds.
This kind of processing can also be handled by ANN due to its ability to realize complicated
nonlinear mappings on the data directly. In 1997, Gandhi and Ramaurti [58] were likely the
first to employ neural networks to detect signals in non-Gaussian noise at some specified
Pfu. With a detailed theoretical derivation, it was noted that the ANN detector’s perfor-
mance did not rely on the SNR, but actual relied on signal strength and noise common
variations during training. By setting several non-Gaussian noise environments, the per-
formance of the ANN detector has been shown to outperform the matched filter as well
as the locally optimum detectors under some certain non-Gaussian noise environments.
However, the computational power and the storage requirements are generally higher in
the ANN detector.

In order to improve the detection performance of radar a in non-homogeneous en-
vironment, in 2015, Rohman et al. [59] presented a novel adaptive switch between the
CA-CFAR and OS-CFAR detector by using the ANN structure with MLP which consisted
of 2 hidden layers. The proposed architecture is illustrated in Figure 8. The inputs of ANN
were calculated thresholds and the CUT value and the output was a preliminary threshold.
Then, the nearest value between raw threshold and CA or OS-CFAR would be selected
and utilized as the final threshold. The experiment’s results showed that the combined ap-
proach is capable of switching between CA-CFAR and OS-CFAR properly in homogenous
and non-homogeneous environments based on the best detection performance.
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Figure 8. Design of ANN in switching CA/OS CFAR.

Additionally, a competent radar system must provide a high Pp with a low Py,
which is the major principle of employing standard CFAR detectors. Akhtar and Olsen [60]
presented an ANN, which is trained under a CA-CFAR detector for a fluctuating target
detection procedure with a noise background. The ANN detector would output positive
outcomes conditionally if a real target exists at a CUT and CA-CFAR returns a positive
detection or the network would not return positive results. A prominent benefit of the ANN
detector is that the outcome may be regarded as a measure of Pp, and not necessarily be
either 0 or 1. It was also shown that such a scheme can obtain a slightly lower, or comparable
target detection performance, but with a noticeably lower P, than that of the traditional
CA-CFAR detector.

Taking into consideration that ANNs are confirmed to be able to approximate the
CFAR detector, Amores et al. [86] further argued that the ANN can improve the robustness
of a radar detector. Results show that although the detection performance of the trained
network tends to increase as the number of hidden neurons increases, MLPs with one
hidden layer with 23 units can implement very robust detectors for SNR lower than 10 dB.
For more than 23 hidden neurons, the performance improvement is trivial, while the
associated computational cost continues growing.

3.3. RTD in Clutter Background

Compared with a noise background, target detection in clutter background is a more
common but challenging problem, because the signal returned from the targets are severely
immersed by the backscatter from the clutter. According to theoretical analysis, the detec-
tion performance of CFAR detection increases as the number of reference cells increases;
as the number approaches infinity, the CFAR detector approaches the optimal detector [87].
However, the serious degradation in Pp of the traditional CFAR detectors is due to a
reduction in the number of available reference units. This decrease may be caused by
high-resolution, the presence of interference signals, or clutter patches.

In the CFAR scheme, the need for a larger reference window, or more reference cells,
results from the statistical requirements for the parameters which are used for representing
the clutter background and the target fluctuation. The information loss caused by the
window size reduction can be compensated for by introducing some extra parameters.
Early in 1994, Amoozegar et al. [61] presented a NN-based CFAR detection method that
provides a robust performance to compensate the loss of reference cells. The input layer
contains nine specific statistical parameters which represent the features of target and clutter.
A multi-layer feedforward neural network with sigmoid activation function was proposed
to extract the features of target and clutter fluctuations. The results of experiments under
diverse scenarios indicated that the NN-CFAR scheme consistently provides a superior
robustness in responding to new environments and outperforms CA-CFAR detectors with
small-sized reference windows.

To distinguish target from clutter, another meaningful method is to look for certain
intrinsic features from the returned echoes to describe the difference between the targets
and the clutter. Callaghan et al. [63] selected the magnitude of each Range-Doppler pixel as
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the feature from Range-Doppler maps and processed them by SVM and KNN algorithms
to discriminate small maritime targets from sea clutter. Similarly, Li et al. [64] explored and
extracted three practically discriminative features, namely the frequency peak to average
ratio, the temporal Hurst exponent, and the temporal information entropy, from radar
echo in time and frequency domains to construct feature space. An SVM-based detector
which can flexibly control the Py, was designed for target detection within sea clutter.
Experimental results showed that the detection probability of the proposed detector is
obviously higher than that of the classical detectors under the condition of low signal-to-
clutter ratio (SCR) and low Py, cases. All these statistical parameters which can depict the
target and clutter characteristics may be embedded as the input of the NN-based detector
in the literature [61].

However, because the characteristics of clutter highly rely on the actual environment
and the parameters of radar, the above extracted parameters or features often become
ineffective when the detection environment changes. Compared with machine learning
methods which need to empirically select features, ANN is more suitable for extracting
high-dimensional features, and has been adopted as a method of radar signal detection [88].
Following on from this work, Cheikh and Soltani [62] used different ANN architectures to
assess the problem of RTD in a K-distributed clutter with thermal noise. They considered
the MLP architecture with the genetic algorithm and back-propagation as the training meth-
ods, and the radial basis function (RBF) which has been largely used in signal processing
was also adopted in the neuronal detector. A training set was used which can describe the
clutter distribution well, and the architecture of the ANN-CFAR detector is depicted in
Figure 9. The results show that the ANN-CFAR detector with MLP structure has better
performance compared to the classical OS-CFAR and CA-CFAR detectors.
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Figure 9. Artificial neural network detector structure.

Previous work, such as [58,61,62], attempted to improve the target detection perfor-
mance on the basis of traditional CFAR methods. One objective in [59,60,69] is to replace
the CFAR-based detector completely with neural networks to optimize the process of
detection. In 2019, Akhtar and Olsen [65] continued to propose a more general training
strategy where the conventional GO-CFAR detectors mutually work to detect targets in
K-distributed clutter. This process would also be transferred into an ANN with four hidden
layers and 19 nodes in each layer, with tanh as the activity function. The training strategy is
related to [60] and the ANN structure is similar to that of [62], which is shown in Figure 9.
The complete training data includes 2000 independent range-doppler maps with the aver-
age SNR over all CPIs ranging from —40 dB to 75 dB, while the average SCR varied from
—60 dB to 60 dB. The experimental results show that, at least for specifically trained scenes,
the overall detection performance of the ANN can significantly outperform a GO-CFAR
detector, namely augment on Pp with reduction in Pf,.

11



Electronics 2022, 11, 156

From the above work, these ANN-based methods distinguish targets from a noise or
clutter background and deliver better and more robust results than conventional statistical
approaches. In addition, the multilayer architecture shows better performance, particularly
in a mixed clutter environment. However, classical ANNSs also have a major limitation;
that is, due to the small number of neurons and layers, satisfactory performance may not
be achieved when dealing with classification and regression problems.

3.4. Deep Learning for RTD with Different Data Forms

DNNSs, such as CNN, RNN, etc., operate in a similar way to ANNSs, but with more
hidden layers and neurons. DNNs are capable of learning complex relationships from
different types of data, which are more suitable to deal with large datasets and complex
training algorithms. A basic CNN architecture consists of an input layer, a convolution
layer, a pooling layer, a fully connected layer, and an output layer. The convolutional
operation could generate local feature maps, and the pooling operation plays a role in
obtaining the translation invariant [9]. The connections between these layers are more
sparse than classical ANN structures.

CNN s are favored for computer vision tasks due to the grid structure of the input data,
and the sparseness and locality of interactions between layers [89]. Typical optical image
target detection algorithms based on CNNs are grouped into two categories: regional
proposal-based and regression-based. The former contains R-CNN [90], SPP-Net [91],
Fast RCNN [92] and Faster R-CNN [93], the latter contains YOLO [94], SSD [95], etc.
Recently, these CNN-based methods have been widely used in RTD, which present faster
speed, higher detection and position accuracy compared with CFAR.

Radar echo is a one-dimensional discrete time sequence, but a radar input data
usually includes data of multiple range cells for a certain time, which determines that
there are diverse forms of data for the detection network. The accuracy of deep learning
also scales with the data. To accomplish this goal, the received radar signals are reshaped
as various images to fit the CNN input format. Therefore, in addition to the original
radar received signals, most researchers tried to detect and measure targets hidden in
the noise background and clutter for multi-dimensional information with multiple CNN
models based on range-Doppler spectrums, pulse-range maps, time-frequency images,
synthetic aperture radar (SAR) images and plane position indicator (PPI) images as the
inputs respectively, listed in Figure 10.

Range-Doppler Map

5o v & o o

Doppler cell oo Range cel

d) Time-Frequency image e) SAR image ) PPI image

Figure 10. Input type of multiple CNN-based detectors, (a) Radar received echo; (b) Range-Doppler
spectrum; (c) Pulse-Range image; (d) Time-Frequency image; (e) SAR image; (f) PPI image.
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3.4.1. Radar Received Echo

Many studies have concluded that traditional signal processing methods of radar,
serving as preprocessing methods of training data, is beneficial to extract features and
improve the performance of detection. But actually, as the conventional processing methods,
matched filtering and coherent accumulation are essentially convolution computations,
and DNN models can extract features from inputs automatically, so it is feasible to detect
targets from original radar echoes with DNNS. Jiang et al. [49] proposed a model for RTD
based on CNN, which works with radar echo signal directly and therefore avoids the
process of conventional signal processing. The proposed model explores the time and
frequency domain of radar echo, which is presented in Figure 11. The echo signal is a
one-dimensional discrete complex sequence, so the input data should be constructed as
a radar echo cube to fit the network. The main goal of RTD is not only to distinguish
the target from noise, but also to predict position and velocity. The RD-Detection Net is
used to measure range and velocity, while azimuth and elevation are predicted by the
Angle-Detection Net. The CNN-based model presented better accuracy and performance
of detection than traditional approaches.

RD Detection Net
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Figure 11. Structure of a CNN detector for RTD with radar echo data.

As in previous analyses, it is feasible and reasonable to implement a complete “end-
to-end” multi-task RTD learning scheme, and a DNN-based learning scheme can also be
utilized for more complex RTD tasks. For specific or more complex tasks, the received
radar signals are transformed from the raw echo data to diverse data forms using different
transform methods.

3.4.2. Range-Doppler Spectrum

Following the idea of image processing with CNN, a range-Doppler spectrum can
be considered as an “image”, then, the detector classifies the “image” as target absent or
present, thus, the detection task could be treated as a classification task. Based on this idea,
Wang et al. [66] designed a CNN target detector based on the range-Doppler spectrum and
compared the proposed method with traditional CFAR detectors. The proposed network
architecture presented in Figure 12 is an 8-layer CNN, including 2 convolutional layers,
2 ReLU layers, 2 max-pooling layers, and 2 fully connected layers. Different range-Doppler
spectrum with multiple SNR values are constructed as the input of the CNN detector.
The detector is actually a sliding window detector that slides over the Range-Doppler spectrum
with a fixed window, and further decides whether the spectrum contains targets or just noise.

A deep learning method for automotive radar detection with non-image-like Range-
Doppler data is proposed in [67], Brodeski et al. described a CNN model to detect and
localize targets in the Range-Doppler-Azimuth-Elevation space. The training data was
collected during the calibration process and augmented with raw radar data. Radar signals
are transformed to the Range-Doppler domain by Doppler processing as the input to
the network. When comparing with the conventional CA-CFAR method, the proposed
approach outperformed the classical detection method while keeping the real-time abilities.
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Their method for data construction was inspired by a simulation-based method for synthetic
automotive scenes generation in [68].
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Figure 12. Structure of a CNN detector for RTD with Range-Doppler spectrum.

3.4.3. Pulse-Range Maps

Radar echoes also can be processed as pulse-range two-dimensional images for train-
ing and testing. Therefore, the problem of RTD can also be transformed into the target
detection and location problem in Pulse-Range images. Pan et al. [69] introduced a CNN
model for small marine target detection in strong sea clutter. A modified Faster R-CNN is
utilized to extract the features of small targets and sea clutter, then the extracted features are
utilized to detect and position the target in the pulse-range image. Figure 13 presents the
DNN architecture for RTD based on Faster R-CNN with pulse-range images. This method
proved to be easier to use in locating small targets from sea clutter and is able to obtain high
Pp obviously, which overcomes the weakness of the traditional CFAR detection methods.
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Figure 13. Faster R-CNN-based model for RTD with Pulse-Range images.

We can find that classic object detection methods based on CNNs, especially Faster
R-CNN and SSD, which have been widely employed to RTD. Girshick et al. [92] trans-
formed the detection task into a classification task and proposed Fast R-CNN structure.
Ren et al. [93] depicted a new region proposal network (RPN) to implement the end-to-end
target detection based on Faster R-CNN and RPN with shared convolutional features [96].
The target detection process of Fast R-CNN is performed in two steps; RPN proposes
regions where are easy to find the target. Each region uses anchors to provide its possible
course position, and then classifies the proposed target and fine-tunes its position by re-
gression. The structure of Faster R-CNN is presented in Figure 14, and this architecture
has been widely used as the basic framework for RTD, not only in Pulse-Range images,
but also in SAR images and PPI images.

3.4.4. SAR Images

Some radar image signals, such as SAR data, can be inputted as images. Target
detection based on SAR images is a key step in ATR, because SAR can provide high-
resolution radar images of a wide range of scenarios including all-weather and all-day.
However, as mentioned earlier, SAR imaging technology is another application branch of
radar signal processing, and SAR images are widely-used in ATR. RTD tasks utilizing SAR
images, as the input in this review will mainly focus on target feature extraction, target
detection and location.
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Figure 14. Basic structure of the Faster R-CNN.

CNN is a common deep learning architecture for target detection of SAR images.
Wang et al. [74] presented a method and ideas of CNN in the research of target detection
in SAR images, laying a foundation for future research. Yang et al. [75] adopted a DNN
regression method for SAR images target detection based on the improved structure of
YOLO [94]. This network is effective for extracting features with low resolution and
complex composition. Zheng et al. [76] proposed a multi-feature target detection method
in SAR imagers aiming at obtaining the target’s actual position, which is presented in
Figure 15. The CNN model was applied to capture deep features while the ANN was
adopted to analyze hand-crafted features. Then, two sub-channel features are concatenated
together in the main channel and the experimental results showed that the multi-features-
based method outperformed other methods.
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Figure 15. Structure of target detection model with multi-features in SAR images.

In addition, Faster R-CNN [93] was modified to improve detection performance in
SAR images. Kang et al. [70] introduced a CNN-based detection method combining features
and pixels in which the Faster R-CNN framework was modified by the traditional CFAR
detection algorithm for small-sized targets detection, which is presented in Figure 16.
For targets with clearer shape and structure, Faster R-CNN gave higher classification scores,
while for those small-sized targets with smaller bounding boxes, the classification score
was relatively low. CFAR was employed because this detector relies on the amplitude of the
pixel rather than the shape or structure of the target. The combination of detectors based
on deep features and pixels can improve the multi-scale target’s detection performance.
An SAR image is different from an optical image in that it reflects the electromagnetic
characteristics of the target. Making full use of electromagnetic characteristics in feature
extraction for RTD would help improve detection performance. Zhang et al. [77] fused
electromagnetic and geometrical characteristics and involved the fused features in Faster
R-CNN, and the architecture is presented in Figure 17. in their work, convolutional layers
were utilized to extract geometric features of SAR images, just like the process of optical

15



Electronics 2022, 11, 156

images. Meanwhile, SVM was applied to extract electromagnetic characteristics from the
complex data.
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Figure 16. The flowchart of Faster R-CNN-based detector in SAR images.
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Figure 17. The structure of fused features of echo data and SAR images.

SSD is a single DNN designed to detect targets in images, which consists of the basic
network and the auxiliary structure [95]. Zhao et al. [78] presented a SSD-based approach
to deploy a maritime target detection network model of SAR on an embedded device.
As shown in Figure 18, a truncated VGG-16 [97] is adopted as the backbone. The auxiliary
structure generates the following key features for detection: convolution predictors, multi-
scale feature maps, aspect ratios, and default boxes. Experiments based on the Gaofen-3
spaceborne SAR dataset showed that this approach has practicability and expansibility.
Ma et al. [98] proposed a modified SSD model and designed a complete workflow for
different targets detection in large-scale GF-3 SAR images.

) VGG16 Extra feature layers
SAR images  Through conv5 3 layer Classifier conv

v

Yy
Detections per class
Non-maximum suppression

Classifier conv

10
j AN
N 19 10 NS
1024 1024 512 256 256 256

Figure 18. The structure of fused features in Faster R-CNN.

3.4.5. PPI Images

Although there are different visualizations of radar displays, such as P-display and
A-display, they are all processed through radar signal processing and have a the similar
process. Radar PPl images indicate all or part of the data of range, azimuth elevation or
height. Mou et al. [71] proposed an improved Faster R-CNN method for marine target
detection using radar PPl images. VGG16 and ResNet101 were used as backbone network
models to extract target features. They modified Faster R-CNN in 4 aspects: (1) using the
focal loss [99] instead of classification loss to overcome the deficiency of sample imbalance.
(2) ROI Pooling is replaced by precise ROI Pooling [100] to reduce the precision loss in
the process of scale unification and enhance the accuracy of pooling. (3) NMS is replaced
by soft-NMS [101] to boost missing detection. (4) ReLU is replaced by ELUs [102] to
speed up convergence and avoid gradient disappearance. Experimental results proved
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that compared with the traditional Faster R-CNN, the modified approach based on Faster
R-CNN has better detection performance in stability and accuracy.

3.4.6. Time-Frequency Images

The development of micro-Doppler technology also provides a valid method for target
detection [103,104]. Targets have the characteristics of micro-motion; due to the micro-
motion of the targets, the amplitude and the phase of electromagnetic wave scattered by
the moving parts change periodically or irregularly. This is, other words, the micro-motion
signature induced by the high-speed moving parts of the targets, known as micro-Doppler.

The extraction of target micro-motion features is always one of the challenges in RTD.
A common method for signal time-frequency analysis is Wigner-Ville distribution (WVD).
Risueno et al. [72] introduced a WVD-CNN detector for RTD using less free weights than
the conventional MLP scheme. Su et al. [73] investigated CNN-based methods (LeNet [105]
and GoogLeNet [106] models) for maritime targets detection under different polarization
and sea states. In this work, short-time Fourier transform (STFT) is adopted to convert
the radar signal (IPIX measured data) to two-dimensional time-frequency images of the
target and the clutter. According to the experiment results, LeNet is more efficient in echo
signal preprocessing, while GoogLeNet has better detection performance under different
polarization and sea states modes in Pp and Py,.

3.5. Summarization of Different Structures for RTD

ANN-based models could be used as a kind of detectors to differentiate targets from
noise or clutter with high detection performance, especially in a time-varying and non-
homogeneous environment, the parameters of the background will change. The robustness
of the detector is improved by training the network for different scenarios corresponding to
different noise and clutter distribution parameters. Therefore, ANN-based detector is more
robust and could provide a higher detection performance than the classical CFAR detector.

DNN-based models could be designed for different RTD tasks with different input
forms. The purpose of RTD is to identify whether the radar echo undertested contains a
signal from the target or only contains the noise, but more importantly, to obtain multi-
dimensional information of position and motion. DNNs turned out to be qualified and
excellent in RTD, and more complex architecture with different training ways for more com-
plicated RTD scenes. In addition, various preprocessing methods of radar signal processing
could extract features effectively, which could help to improve detection performance. A fu-
sion of the traditional detection methods and the new concepts of deep learning methods
has become a promising trend and solution in RTD application.

4. Summary of Datasets and Performance Evaluation

The effectiveness of deep learning-based methods depends largely on the available
quantity of training data. The availability of a labelled dataset is regarded as a prerequisite
for applying deep learning methods to a certain application. Although several publicly
datasets are available for image processing, speech recognition, nature language processing,
etc., there are very few ones for radar (except SAR images), not to mention the sampled
radar data for RTD based on deep learning. In this review, we summarize IPIX and CSIR
experimental datasets which have been used for RTD by some researchers. Although these
two measured datasets have been used for RTD, they are not generally public because they
are domain-specific. Therefore, we collect and summarize the related radar experimental
parameters of these two datasets, which could help you to to understand the existing
datasets or construct simulation datasets.

4.1. Dataset Descriptions
4.1.1. IPIX Database

The IPIX database is a widely-used database for sea-surface small target detection,
sea clutter characteristic analysis and modeling. It was collected and maintained by Prof.
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Haykin’s research group at McMaster University. The IPIX database contains two data
sets, one was collected by the popular intelligent pixel (IPIX) processing radar under
the staring mode in the city of Dartmouth, Canada in 1993 [64,107], and the other came
from IPIX radar in the Grimsby area of Canada in 1998 [108]. The Dartmouth database
in 1993 contains 339 data sets which cover a wide range of wave and wind conditions.
About 14 data files are particularly useful to test algorithms aiming at detecting small
objects in sea clutter. All these target data files have a weak target in one of their range
bins and are more than 2 min long, which (a subset) is available in [109]. The Grimsby
experiment upgraded the quantization bits and measured sea clutter data from different
range resolutions; in this way, weak clutter signals and strong targets can be observed
simultaneously without large quantization errors or clipping. About 222 datasets in the
Grimsby database focus specifically on the floating targets of various sizes, and the actual
Grimsby data files are available in [110]. However, the related target information and
auxiliary sea state information have yet to be released [111]. The parameters of IPIX radar,
experimental parameters and sea state information are summarized in Table 3.

Table 3. IPIX radar and experimental parameters.

IPIX Parameter
TX frequency (GHz) 9.39 Width of beam (°) 0.9 pencil beam
Peak power (kW) 8 Antenna gain(dB) 45.7
Radar parameters Pulse width(us) 02 Samplefi range 15
resolution (m)
PRF (kHz) 0.8/1 Polarization mode HH;HV,;VH;VV
Year 19931 1998 2
Longitude 63°25.41' W 79°35'54.6" W
Latitude 44°36.72' N 43°12/41.0" N
Height (m) 30 20
Experiment Duration (s) 131 —_—
Summary Distance resolution (m) 30 3~60
Target Type Spherical buoyant apparatus Floating boat
Target range (m) 2660/5525/2655 —_—
Target Azimuth (°) 128/130/170 —_—
Quantization bits 8 10
SCR (dB) 0~6 —
Environmental Observation direction Upwind —_—
parameters Significant wave height (m) 1.0/1.5/2.1 —
Douglas sea state 2/3/4 —

I http:/ /soma.ece.mcmaster.ca/ipix/dartmouth /datasets.html (accessed on 30 December 2021). 2 http:/ /soma.
mcmaster.ca/ipix.php (accessed on 30 December 2021).

There are limitations to using the IPIX database. These two datasets only cover
restricted environmental conditions and limited relative positions, and related impor-
tant auxiliary information was not recorded detailed, especially the measured data from
1998 [111]. The other limitation is that the radar echoes are only reflected from motionless
floating objects, not mobile ships, so it is inevitable for researchers to add extra simulated
target echo data. Li et al. [64] adopted the IPIX database to extract features for surface small
target detection. Chen et al. [112] validated the proposed micromotion target detection
method with a simulated IPIX dataset. Su et al. [72] used IPIX measured target signal and
sea clutter data to conduct CNN training and testing schemes for maritime target detection.
What is worth mentioning is that the results obtained in [72] are significantly worse than
the simulated data. Besides the diversity of the measurements themselves, the low speed
and acceleration of the targets in IPIX radar can also lead to degradation.
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4.1.2. CSIR Database

The CSIR dataset was collected from two kinds of sea clutter and ship target echo
measurement trials which were conducted by the Defense, Peace, Safety, and Security Unit
of Council for Scientific and Industrial Research (CSIR) in the southwest coastline of South
Africa. The first trial was conducted at the Overberg Test Range (OTR) near Arniston in
July 2006 with the Fynment radar [113,114]. The second measurement trial was conducted
on 4 November 2007 with an experimental monopulse radar deployed on top of Signal Hill
in Cape Town [115,116]. Radar parameters and experimental parameters are demonstrated
in Table 4.

Table 4. CSIR trial radar and experimental parameters.

Items Fynment Radar Monopulse Radar
TX frequency (GHz) 6.5~17.5 8.8
Peak power (kW) 2 —_—
PRF (kHz) 0~30 Adjustable
Radar Width of beam (°) <2 —
parameters Antenna gain(dB) >30 —_—
Sampled range resolution (m) 15/45 15
Gates 1~96 —_—
Year 2006 2007
Setup site Overberg Test Range Signal Hill
Longitude 20°17'17.46" E 18°23/53.76" E
) Latitude 34°36'56.52" S 33°55'15.62" S
Experiment Height (m) 67 294
summary Grazing angle (°) 0.3~3 0.3~10
Duration (s) 169.1 49.17
Maximum target range (km) 15 60
Target azimuth (°) 90° N~225° N 240°N~20° N
Mean wind speed (m/s) 0~10.3 0~20.58
Environmental Wind direction 180° N~270° N 130 E::lzégo 11111,320
parameters Significant wave height (m) 1~3.8 1~6

Swell direction

135° N~180° N

230° N~270° N

The CSIR dataset contains a large amount of sea clutter and target echo data, covering
multiple parameter combination (various transmitted waveforms, azimuths and distances)
under different environment conditions. The radar operating parameters, marine envi-
ronment parameters, GPS auxiliary data and the types of cooperative target (inflatable
boat, motor yacht and fishing boat) could make up the limitations of the IPIX database.
A detailed trial designing scheme and trial data records are also maintained, which could
provide reference and guidance for similar trials [108]. Currently, many research insti-
tutes are using the CSIR dataset in related research. In Pan’s experiment [69], the dataset
TFC15_008, collected from the Fynment radar was used to demonstrate that the DNN
approach can easily detect small targets from sea clutter with low SCR and accurately
locate the position of the targets compared with the traditional CFAR detection methods.
Chen et al. [112] employed the CSIR database to validate the detection performance of
marine maneuvering targets with translational motion.

In fact, from Table 2 in Section 2, we can conclude that most research teams construct
and label radar datasets by simulation methods for deep RTD, besides SAR images, as the
actual radar data was hard to obtain. The simulation parameters of radar waveform can
also be referred from Tables 3 and 4.
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4.2. Data Preprocessing and Construction

To boost target detection performance, appropriate preprocessing is necessary. Ac-
cording to the summarization of all related papers, radar received echoes, Pulse-Range
maps, Range-Doppler spectrum and Time-Frequency images are widely-used in RTD.

All of them are transformed from raw radar echo by a train of signal processing
methods or mathematical operations. In the signal processing process of a pulsed coherent
radar, the received signals are processed by pulse compression, coherent accumulation,
and clutter suppression. Therefore, to make a better comparison, we will discuss these
inputs that are related to deep learning regarding RTD from the literature. Figure 19 shows
the flow of the preprocessing of datasets for RTD.

DNN
> — ..
Detector
Pulse-R:
e-Range maps o DNN | .
Detector
Received Range-Doppler
Ech spectrum
choes | Ma.tched > MTI > Dopplfer > DNN | )
Filter Processing Detector
Time-Frequency
. Short-Time images | DNN
" | Fourier Transform " | Detector ’

Figure 19. Preprocessing diagram of the dataset for the radar detection system.

4.2.1. Radar Received Echoes and Radar Cube

A typical pulsed radar system is considered in which a transmitted waveform S(t) is
emitted at a certain interval. The received echoes S;(t, k), which includes signals of a target
and noise, are modulated by amplitudes, time delays, doppler frequency and then sampled
at a given rate as (3):

Se(tk) =Y 0uS(t — Tn)e/ Pk + W(t) ©)

wheret =1,2,..., R (fast time). In the incoming radar echoes, 0;; denotes the reflectivity
amplitude which can be calculated from the radar function, and 7, is the time delay of
target 1, W(t) is white Gaussian noise, an independent complex Gaussian random variable
with mean zero. e/##+ denotes the doppler shift for each target, for a target with a constant
velocity, it can be defined as (4):

2v,
Pk = Pni—1+ 27ch?nTr 4)

where k = 1,..., M (slow time), M is the total number of pulses in a coherent processing
interval (CPI), assuming ¢, 0 = 0 and v, is the radial velocity of target n, f. is the radar
carrier frequency, T, is the pulse repetition interval and c is the propagation velocity.

Simulations in a setting with fluctuating targets model and noise background are
carried out to construct the radar received echoes for RTD. An example of how different
targets stand out in different SNR is presented in Figure 20. The emitted pulse is assumed to
be a unit vector which does not incorporate any beneficial compression gains or additional
antenna gains. The targets are assumed to fluctuate slowly and follow the standard
Swerling distribution, where the value of ¢, varies randomly. It is assumed to consider
the impact of path propagation and other environmental effects indirectly. By time and
frequency domain analysis of radar received echoes, targets or environment characteristics
can be obtained.
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Figure 20. Example of simulated radar received echoes with different SNR, left: SNR = 10 dB,
right: SNR = 0 dB.

Using raw data as the input to perform RTD training without any preprocessing
method is a complete “end-to-end” task, and the radar echo cube enables the network
to exploit the temporal and spatial correlation simultaneously [49], which is presented in
Figure 21. Prashant et al. [58] used radar received echoes to detect signals in a non-Gaussian
noise environment. However, for raw data, it may require a deeper network to extract
target features; in other words, the increasing complex detection environment makes the
“end-to-end” tasks more challenging.
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Figure 21. Data preprocessing for a radar echo cube.

4.2.2. Pulse-Range Maps

Radar emits multiple pulses in the CPI, and the reflected signals are integrated in
a coherent or incoherent way. The axes of the original echo data can be labelled as ‘fast’
and ‘slow’ time, where fast time is utilized to calculate distance and slow time is used
to calculate doppler velocity (see in Figure 22). Pulse compression is applied to the echo
signal via a standard matched filtering operation, using the reference signal over the fast
time, which is calculated as (5):

Si(t, k) = S*(—t) x S¢(t, k) (5)

The operation of pulse compression through matched filter can obtain a narrow
pulse width and a high resolution of range profile, but has no impact on the radar
detection range. Therefore, the problem of RTD can be converted into target detection
and location in Pulse-Range maps. The upper part of Figure 22 shows an example of the
Pulse-Range map. Akhtar et al. [60] used Pulse-Range maps to detect targets in a noisy
background, and in [69], the Pulse-Range maps were applied to ranging and detecting
targets from sea clutter.
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Figure 22. Schematic diagram of a pulse compression and Doppler processing.

4.2.3. Range-Doppler Maps

Subsequent to gathering all pulses, doppler processing is applied over multiple pulses
by applying fast Fourier transform (FFT) over a slow time at each range. The slow time
domain of S;(t, k) is multiplied by a window function firstly and then FFT is used to yield
a range-Doppler spectrum as (6):

Si(t,w) = F(win x S;(t,k)) (6)

where win is a windowing function, F denotes the discrete Fourier transform (DFT).
Following DFT, targets with a steady pace will appear concentrated in doppler. An example
of doppler processing after matched filtering is shown in Figure 22. The Range-Doppler
map in Figure 22 shows three targets at different doppler bins, a close target at range
180 samples having a positive velocity, which indicates that the target is moving towards
the radar (shown as orange grid in Figure 22), and 2 moving targets at the same range
250 samples but different doppler bins (shown as blue and green grids respectively). Multi-
ple frames are extracted from the raw data, producing a sequence of Range-Doppler frames.

Range-Doppler maps with targets absent and present is presented in Figure 23. The tar-
get echo occupies multiple cells, forming a mountain-like shape in the spectrum. If the
SNR is low, the two targets at the range of 250 samples are not obvious in the spectrum.
Researchers often consider the Range-Doppler map as an image, and use a classifier to
classify the image as target absent or present. Target present examples with different SNR
can be generated By setting a different noise power. In Refs. [62,65-67], range-Doppler
maps were utilized in various RTD tasks.

Range-Doppler Map

<107 i
N
Target Present 4 i
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1,000
500

Doppler cell 0 o0 Range cell

Figure 23. Target present and Target absent in Range-Doppler Map.
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4.2.4. Time-Frequency Images

The time-frequency analysis method is an effective and powerful tool in analyzing
time-varying non-stationary signals because of the time-varying characteristics of target
micro-motion. After demodulation and pulse compression are applied on the radar echo,
STFT is often adopted to convert the radar echo to two-dimensional time-frequency images,
as shown in (7):

(o)
STFT(t, f) = / ' $:(6,k)g" (6 — He 1245 ?)
—00

where ¢(t) is a narrow windowing function such as a Hamming window function. Since the
micro-motion characteristics of targets differ from background noise or clutter, time-
frequency images are utilized to build training and testing datasets. Su et al. [72] adopted a
time-frequency analysis method to analyze micro-motion characteristics, thereby differenti-
ating targets from clutter.

4.3. Performance Evaluation

RTD is a fundamental process for separating targets of interest from background noise.
A primary goal of RTD is to satisfy two very contradictory requirements: acquire a high Pp
with alow Py,. Comparing the Pp under the same Ps, with the DNN-based detector and
CFAR detector respectively is the common metric of detection performance [59,70]. Pp and
Py, are defined as (8) and (9):

Ny
Pp= " (8)
Ntotal_turgets
Ngg
P, ! ©)

Nde_turgets

where Ny, is the total number of truly detected targets, Niota)_targets denotes the total number
of targets in the sample, Ny, is the total number of falsely detected targets (mistaken for
targets), Nye_targets is the total number of non-targets in the sample.

4.4. Summarization of Dataset and Preprocessing

The actual radar data is not widely accessible at present because of the particularity
of RTD tasks. Although a few of the existing datasets, such as, IPIX and CSIR, whose
data have been used for sea surface targets detection and sea clutter characteristic analysis,
most recent research on RTD still relies on synthetic or simulation data. In this section,
we describe how to construct radar received echoes and preprocess three types of data
which are widely used in RTD. Three types of data processed in radar signal processing
are applied in different target detection tasks with respective characteristics. Since pulse
compression could obtain a high resolution of the range profile, pulse-range maps are
mainly used in radar ranging tasks. Range-Doppler maps are more commonly used
in position and velocity measurement in complex scenarios with background noise or
clutter because doppler processing could improve SNR effectively. The time-frequency
analysis method is efficient and especially suitable for targets with distinct micro-motion
characteristics. An example would be maritime target detection and recognition, which
can make full use of the micro-motion information of the target and clutter.

5. Discussion
Although deep learning-based approaches have had some successful applications in
the field of RTD, the following challenges remain:

5.1. Dataset Deficiency

One of the difficulties in applying deep learning-based methods to RTD is the lack of
publicly available labelled data. The difference with other applications is the high cost of
radar data collection. Currently, radar system simulation modeling is a method to solve
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the problem, but it is computationally demanding and extremely challenging to generate
alternative data because multiple factors need to be considered, e.g., multiple attenuation,
discrete cells and multipath reflections. In other words, even if all the above issues are
avoided, relying on mathematical models for simulation is inevitable, which may introduce
the problem of model fidelity. Similar inaccuracies have emerged in [72].

We still hope to get enough data for training from real-world radar systems, which will
certainly make the detection model more reliable. In order to further advance the research
of RTD in the absence of realistic radar data, the following approaches can be considered:
(1) Data augmentation, which has been used in [67,68]; (2) Developing more robust deep
learning-based algorithms with insufficient training data, such as generative adversarial
networks (GAN) [117]; (3) Establishing more advanced RTD frameworks seems to be a new
trend; (4) Developing learning-based methods, such as meta learning [118,119] and transfer
learning [120,121], which can overcome the limitation of insufficient data and insensitivity
to the changes of the radar detection environment.

5.2. Varied Models in Complex Tasks

Although the application of deep learning technology in RTD has made remarkable
progress, the existing literatures on ANNs and DNNs of RTD are still relatively sparse and
not mature enough. For instance, a common aspect found in many of the papers cited
above is the moderate size of ANN, where the networks proposed in [58,61] contain only
one hidden layer. In addition, although many other architectures have been proposed
in DNN, only CNN is widely used in RTD. Therefore, there is plenty of room to explore
various DNN in RTD. Signal processing system that can efficiently suppress target RCS
fluctuations, noise, clutter, and jamming is always considered as one of the key directions
of radar research and development. How to effectively distinguish targets from strong
active jammed signals is still under investigation. How to verify other deep learning
architectures can perform better in RTD also needs to be considered. These also imply that
newer, more diverse but practical powerful learning schemes for more complex tasks are
required urgently.

The advance in computing power allows the training of large-scaled deep learning
models on massive data. Remarkable progress in deep learning algorithms and great
advances in radar system would benefit each other. It is worth exploring replacing the
entire radar signal processing by deep learning methods.

5.3. Integrated Training Methods

Much of the existing research shows that the deep fusion of traditional signal process-
ing methods and deep learning-based schemes in RTD application is an evident trend [122].
For one thing, as a kind of data preprocessing method, traditional radar signal processing
methods, such as pulse compression, coherent accumulation, STFT, etc., are beneficial
to enhance features, thus improving the detection performance. For another, according
to the previous review, neural networks combined with typical radar signal processing
approaches (e.g., CFAR) as a learning strategy can help improve detection performance.
In addition, we believe that models based on deep learning can provide an “end-to-end”
framework for integrating perception, processing and decision making. Besides, studies of
simulation process optimization, performance judgment criteria and other basic problems,
such as model interpretability and generalization ability, are still under investigation.

6. Conclusions

Research efforts in artificial neural network and deep learning models in RTD has
been discussed in this review. Various architectures of networks for various application
schemes have been investigated. The results obtained have shown that deep learning-based
detectors perform better than the traditional processing methods to some certain degree in
some specific cases. Although the study of deep learning in the field of RTD is at the initial
stage and still faces some challenges, there is no doubt that the research and usage of deep
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learning-based methods in RTD will contribute great improvement in the future. We wish
to take a step towards making deep learning more applicable to the related fields of radar
signal processing.
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Abstract: In this paper, an adaptive speed controller of the electrical drive is presented. The main part
of the control structure is based on the Recurrent Wavelet Neural Network (RWNN). The mechanical
part of the plant is considered as an elastic connection of two DC machines. Oscillation damping
and robustness against parameter changes are achieved using network parameters updates (online).
Moreover, the various combinations of the feedbacks from the state variables are considered. The
initial weights of the neural network and the additional gains are tuned using a modified version
of the Grey Wolf Optimizer. Convergence of the calculation is forced using a new definition. For
theoretical analysis, numerical tests are presented. Then, the RWNN is implemented in a dSPACE
card. Finally, the simulation results are verified experimentally.

Keywords: wavelet neural network; grey wolf optimizer; adaptive speed control; design process
optimization; two-mass drive

1. Introduction

The reliability of the applied control methods is one of the main points of scientific
work observed in research centers around the world. The advance of these algorithms is
possible due to the fact that the computational power of the available programmable devices
is now much higher and the tools are cheaper. Adaptive control theory is one of the many
fields explored by scientists. Among the techniques applied in this field, neural networks
(NNs) are the fastest-growing group—they find use in robotics [1], optimization of complex
control schemes, e.g., predictive control [2], or combinations with other intelligent structures
such as fuzzy systems [3]. They ensure a model-free design process and recalculation of
internal coefficients under changes of the operating point. Due to these advantageous
features, NNs are used in almost any engineering field. The real-life implementations
also include electrical drives. In the literature, they are applied to control the speed of
Permanent Magnet Synchronous Motors (PMSMs) [4], Induction Motors (IMs) [5], and
systems with a complex mechanical part [6].

Neural networks theory proposes adaptation methods that can create models for
engineering implementations. A significant division concerns the way the weights are
recalculated. To implement offline learning, it is necessary to acquire patterns of data
that represent the states of the controlled plant [7]. Then, after several pre-processing
methods, the collected data are used for training. Through updating the weights online,
adaptive structures for control solutions can be created [8]. Another point considered
during the application of a neural network is its topology. The most basic arrangement
is called Adaline [9]—a neuron with a linear activation function, which has inputs and
weights connected to it. As shown in [10,11], when many linear neurons are connected
in layers, a multi-layer perceptron is created, which is one of the most often used neural
structures in control theory. A more advanced approach is related to recurrent connections
in various parts of the network. Elman [12] and Jordan [13] networks are examples of
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the most common solutions in this group; for instance, the applicability of recurrent
neural structures to electrical drives is presented in [14]. However, the significant point
of the topology determination for a given issue is the activation function. The classical
approach involves a sigmoidal transfer function [15]. Radial basis function can also be
incorporated as the activation function [16], some modifications (recurrent feedbacks in
the structure) are also included in the analyzed solutions [17]. The last group consists of
wavelet functions [18]. Wavelet is a function whose value decays over a finite time. Every
input neuron utilizes a wavelet that is translated and dilated from the mother wavelet
function. The greatest advantage of wavelets is the function estimation. Given that, the
neural network can approximate any function.

Wavelet neural networks are a combination of wavelets and neural networks. Neural
networks have great learning (adaptation) capabilities, while wavelets are used in wavelet
transform [19] (similar to Fourier). The wavelet transform changes the time-value system
to a time-frequency system [20]. This ability can be used in neural networks to approximate
complicated continuous functions. All wavelet functions use translation () and dilatation
(o) coefficients, which facilitate searching the space for an appropriate value. In wavelet
neural networks, translation and dilatation can be treated similarly to weights in classical
networks, so they can change their value in time to better adapt to the current conditions.
In control theory, this concept can be used to synthesize estimators [21], predictors [22], or
controllers [23]. Adaptation algorithms can be used to update only the weights between
layers [24] or weights as well as dilatation and translation parameters [25,26], which
improves the efficiency of the learning algorithm. Recurrent wavelet networks adopt
recursive connections in only one layer [27,28] or every layer [29,30].

Authors in [20] replace radial functions with wavelet functions. It has been shown that
wavelet networks are better at approximating the desired functions, this comes with less
computation power required. It is easier to determine parameters of such a network, e.g.,
the number of hidden layers or weights. Neural networks that use the wavelet function
are also more accurate and faster converging than the well-known multi-layer perceptron
(MLP). The authors also show the disadvantages of wavelet neural networks—a large
number of input nodes is associated with a greater number of hidden layers, which can
increase the complexity of computing. Paper [21] compares different neural networks used
as battery state of charge estimators. Decomposing the signal helps to forecast the battery
level more accurately. The output signal of classical neural networks is stable most of
the time. However, fluctuations in the output values might be observed. Nevertheless,
recurrent wavelet neural networks are accurate most of the time, there are no fluctuations
in the estimated values. Recurrent wavelet neural networks are also more robust against
external disturbances. A wavelet neural network, as well as wavelet decomposition,
are applied in [25] to control a permanent magnet motor. Wavelet transform is used to
decompose error signal into different frequency components. Meanwhile, a neural network
is employed to calculate the gains of the speed controller. The results of this work are then
compared to PI and PID controllers. Authors show that the applied algorithm performs
much better in many different states of the drive and for different reference speeds.

The optimal selection of the control structure parameters, according to the reduction in
the cost function values, can be achieved using methods based on observations of the pop-
ulations in nature. Simple elementary data processing (without derivatives of the objective
function), easy application to various problems, and multiple criteria analysis are the most
often listed advantages of the mentioned techniques, which include the Cuckoo Search
algorithm [31], Artificial Bee Colony algorithm [32], Particle Swarm Optimization [33] and
Flower Pollination algorithm [34]. A general review of nature-inspired algorithms used for
electric drive optimization has been provided by Hannan et al. in [35]. Recently, the Grey
Wolf Optimizer (GWO) has been successfully used for optimization [36]. Formulas describe
the behavior of wolves that try to find, surround, and get closer to the target [37,38]. The
following modifications of the basic version of the GWO are analyzed in the literature (e.g.,
binary and multi-objective) [39,40]. Reduction in the area of searching in the application
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of the algorithm in the design process of the electrical machine (PM motor) can lead to
faster results. For this purpose, new definitions of variable elements used in calculations
are analyzed [41]. This was an inspiration for the new version of the modified Grey Wolf
Optimizer (mMGWO) described in this paper.

The implementation of the control algorithms based on artificial intelligence deals
with the problems of mathematical terms and coefficient definitions in several design stages.
The first concern is the proper determination of the gains used in the control structure.
Their values can affect the precision of control and dynamics of the entire system. Classical
methods of the control structure synthesis mostly require parameters and equations of the
object to be known. Then, after some recalculations, the formulas are achieved. However,
the application of the controllers based on neural networks or fuzzy models can be more
complicated. A clear mathematical description of the topology of those controllers might be
problematic (the transfer function of the closed control loop). Moreover, for controllers that
contain reconfigurable parameters, advanced methods of analysis are used. Another issue
refers to the nonlinearities of the plant. It needs to be considered during the design process,
even though this is an additional design enhancement. In this paper, different combinations
of the additional feedbacks (for better damping of the state variables oscillations observed
in the two-mass system) used in the control structure are considered. The feedback loops
presented in the literature include using the physically unobtainable signals calculated
with state observers [42,43] or variations of the Kalman filter [44,45]. Internal recurrent
connections in neural controllers are also tested [46]. Thus, multiple recalculations would
be required. For the briefly mentioned above problems, the meta-heuristic algorithm can
be a useful and efficient solution.

A separate issue of the neural controller applications is focused on the selection of
the initial conditions. The systems often start with the random values of weights. After
some time of operation, the adaptive law recalculates those coefficients. However, during
the initial phase, high oscillations of the state variables can be observed. Assuming the
application of the adaptive neural controller, it can be significant for the mechanical part.
Unstable work (even over a short period) may lead to ruptures of the couplings and shafts
connecting several parts of the system. This issue was also considered in this work, the
GWO algorithm was used for the optimization of the starting point of the adaptive neural
speed controller.

This paper contains seven essential sections. It starts with a short presentation of
the problems and proposed tools used for solving the issue. Then, a description of the
plant is shown. The next part of the manuscript is related to the mathematical details
of the adaptive neural controller. The background of the GWO calculations and applied
modification is presented in the following section. After the theoretical part, the tests
(simulations and laboratory experiments) of the RWNN controller applied for an electrical
drive with an elastic connection between the motor and the load machine are analyzed.
The final element of the article stands concluding remarks.

2. Mathematical Model of the Controller and the Plant

Control structure described in this paper consists of the Recurrent Wavelet Neural
Network applied to a two-mass drive as depicted in Figure 1. Mathematical model of
mechanical part used in drive with elastic shaft can be characterized using following
equations [6,14]:

doy(t) _ me(t)—ms(t)—mp (F)

dt - T;

dopt) _ ms(B)=my(H)=mp(t) 1)
dr - T,

dmg() _ w()wt)
dt T;

where wy and w, are rotor speeds of motor and load, respectively, Ty, T», and T, are
mechanical time constants of the motor, the load, and the shaft, respectively, m, and m; are
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electromagnetic torque and shaft torque, respectively, my is load torque, and mp and mp,
are nonlinear functions that describe friction occurring in real electrical drives:

my; = (c- abs(w;) + d)sgn(w;) @)

where ¢ and d represent the viscous and the Coulomb friction coefficients, respectively.

Reference Wref™ Sl w1
"

MECHANICAL PART OF THE DRIVE

Wref

Figure 1. Schematic diagram of the adaptive control with the RWNN model.

Inner current loop is assumed to be simplified. It is represented using a first order
inertial element with a current time constant Ty:

_ 1

Gf(S) (3)

A schematic diagram of the control structure is presented in Figure 1. The speed
controller is based on a recurrent wavelet neural network. It is composed of four layers.
The first layer (L1) is linear, it has two inputs—the error signal and its derivative. There is
also an additional recurrent connection from the neuron output (z}) to its input (h}). It can
be characterized by the following equation:

hl (k) = x; }
L1 i i 4)
an{ B
where x is the input signal; ! and z! are the neuron input and output, respectively; w™ is
the connection weight; 7 is the index; and k is the sample number.
The second layer is the wavelet function layer (L2), in this part of the neural network
the output of the input layer is processed according to the mother wavelet equation [47]:

2 (1) — R Fmi(k)
2 (k) = A (K) )

where h? and z? are the second layer’s inputs and outputs, respectively, y is the translation,
o is the dilatation coefficient, and i and j are indexes.

The mother wavelet used in this paper is the Mexican Hat Wavelet, it can be described
using the undermentioned expression [48]:

Ax) = (1 —0.5x%) exp(—x?) (6)

where x is the input of the function and exp(.) represents the exponential function.
Then, the achieved values (from the second layer) are multiplied in the third layer
(L3). Nodes in the mentioned layer have four inputs—two of them correspond to outputs
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from the second layer, the additional two signals are the recurrent connections from the
third and the fourth layers:

<L3 { hBZ _ (3 ] 1% ] Zl/ k)Z%](k>)Z4r(k) (7)

where 1% and z3 are the third layer’s inputs and outputs, respectively, and z3" and z*" are
the outputs of the recurrent nodes:

®)

W (k) = 0 (k) (1)
W Sle) Z o ©)

where 1%, 23", h*", and z*" are the inputs and the outputs of the recurrent nodes in L3 and L4,
respectively, w3 and w*" are the connection weights, and y,,, is the output of the controller.

In the above equations, § and ¢ are nonlinear functions that help to propagate the
signals back. These functions are defined as follows:

1
9(x) = exp(—x?) (11)

The last neuron (L4) combines (sums) the output signals from the previous layer:

L { (k) = 3w ()23 (k) )
24(k) = I (K) = Y (K)

where h* and z* are the inputs and the outputs of the last layer, respectively, and w* is the
weight connection between neurons.

To achieve a proper operation of the controller, it is necessary to provide a learn-
ing process to update the weights of the neural network. This process consists of three
parts—the forward pass, the backward pass, and the weights update. The forward pass of
signals was explained at the beginning of this section. Details of the following stages are
described below.

Adaptation is performed to reduce the cost function values—E. In this paper, for the
RWNN, following formula was assumed [14]:

E(k) = 0.5¢2,(k) (13)
em (k) = wyep(k) — wi (k) (14)
where ey, is the difference between the reference model speed w,,/" and the actual motor

speed w;.

To calculate new values of the parameters (weights), the gradient values with respect
to all the layers need to be obtained. For the last layer, the gradient is calculated according
to the following expression:

JE (k)

(54(k) B Yun (k)

— ey (k) (15)
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Then, the calculations use the chain rule applied for partial derivatives [27,30]. Values
for the third layer are determined as:
_ OE(k)  OE(k) Qypn (k) oh*(k)
0zl (k)  Qymn Ok*(k) 9z (k)

53 (k) — &tw?™ (k) (16)

Similarly, data processing is realized for the second layer:

_ OE(k)  9E(k) 9z} (k) 9k (k) o
%0 = 52 G 923 (k) ah%(k) az%]].(k) = 072 (k)" (k)23 (k) 17)
3 3
2,(6) = 9E(k) _ 9E(k) 9% (k) ok} (k) L R R (02 () as)

B 9z, (k) B 9z} (k) oI} (k) 0z3, (k)

Finally, for the input layer, gradient values are achieved using the formula:

_ OB _ 2B () GK) |  90(9) (1= 054%) —90(9)

(k) = ozl (k) — 023 (k) ol (k) 9z} (k) ;i (k)

where:

z} (k) — pij (k)
a;j (k)
After the calculation of all the gradients, all variable parameters are updated in

each iteration. In this work, all the weights, as well as the parameters of the wavelet

function—translation () and dilatation (c)—are updated. Weights in the last recurrent

layer are adjusted using the following expression:

¢(k) = (20)

pat () — PER)_ PEG) (k) D1 ()

4
= aw4r(k) o a]/nn(k) ah4r(k) 8w47(k) —0 ynn(k) (21)

They are then updated according to the delta rule with the learning factor #:
w (k+1) = w (k) — 7* Aw? (k) (22)

Weights between the third and the last layer are recalculated using the following expression:

Aw]qttt(k)_ aE(k) _ aE(k) aynn(k) ah4(k) —>54Z3

0wl (k) Oyan(k) Okt (k) 9w (k) (k) (23)

Output weights are updated according to the adaptation law described using the
expression presented:
wout(k + 1) _ wout(k) _ UoutAw};ut(k) (24)

Parameters in the recurrent nodes of the third layer are changed similarly to the
previous ones:

L. E(k) _ 9E(k) 0z (k) o (k)
B (k) = ow (k) oz (k) ah%f(k) aw];r(k)

— 62 (k—1) (25)

The new values are obtained by the following expression:

w¥ (k4 1) = w¥ (k) — 1> Aw® (k) (26)
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Weights of the second and the third layer are fixed as ones, thus there is no need to
update those values. The parameters of the wavelet function are determined according
to equations:

OE(k) _ 9E(k) 9z5(K) IIG(K) , p8() (1~ 05¢2) — p8(9)

Apii(k) = = b 27
Hi) = Sk~ 922 () 912 ) g ®) 50 @
OE(K) _ 9E(k) 9z5(k) ali(k)  , 98(g) (1 — 0.5¢%) — 98(9)

Acji(k) = = 07 28

%) = 30k = 922 k) am (k) o) (k) @)
Abovementioned values are applied in expressions:

pij(k +1) = pii(k) —n¥ Apgi (k) (29)

oij(k+1) = o;(k) — n7Aojj(k) (30)

The last parameters that need to be updated are recurrent weights that are present in
the input neurons:

OE(k)  OE(k) 9z} (k) ohj (k)
dwi"(k) 0z} (k) oh} (k) dwi" (k)

Aw'™ (k) = — ozt (k—1) (31)

1

w (k+1) = w}" (k) — 1™ Aw" (k) (32)

Constants 7%, 5%, 3", y#, and 1 correspond to learning rates used in Equations (24),

(26), (29), (30) and (32), respectively. Based on the above mathematical description, the

adaptive neural controller was designed. The details of the topology are presented in
Figure 2.
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Figure 2. The recurrent wavelet neural network.
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3. The Design Process of the Adaptive Neural Controller Using Grey Wolf Optimizer

The most basic process of establishing the initial values of weights and learning rates
is to assign all the values using a pseudo-random number generator. Though it is easy,
it comes with some disadvantages. The first few seconds of the operation of the system
heavily depend on the initial values of these parameters. If they are too large, oscillations
and overshoot may occur. On the other hand, when smaller values are applied, the network
needs more time to adapt to the current state of the drive. To cope with this phenomenon,
the initial values of the weights, the learning rates, and the gains in the control structure
(an in-depth analysis of this topic is presented in Section 5) are chosen using a modified
Grey Wolf Optimizer [36]. It should be noted that the optimization process is an offline
operation performed before the start of the system, while backpropagation is constantly
updating the weights of the controller during the system’s operation.

Grey Wolf Optimizer is a nature-inspired metaheuristic algorithm. The most basic
concept of the algorithm comes from observations of packs of wolves. When a pack tries to
attack prey, they form a few smaller groups of wolves. All of them are led by an alpha wolf.
Finally, the wolves approach their prey until they reach it.

In the algorithm, wolves are the points on the optimization plane, the prey is the
investigated minimum of the function and the distance between the wolves and the prey is
the value of the fitness function. In addition, some additional parameters are required to
be established.

The current solution and the next point can be written as equations:

D = [C- Xp(kiter) — X(Kiter) | (33)

X(kiter + 1) = Xp (kiter) —A-D (34)

where X, are the optimal values from the previous iteration, X is the current iteration
solution, and kj,, is the number of the current iteration.
Parameters A and C are adjusted in every iteration of the algorithm, according to the
equations below:
C=2-n (35)

A=2-a-1r (36)

Values of 1 and rp are random in the range of [0, 1]. The value of the parameter a is
changed from 2 to 0, descending over the course of iterations [49].

a= 2(1 _ Kiter ) (37)

kmax

When a is in the range of [1, 2], the algorithm is in the exploration state. The exploita-
tion state lasts when a is in the range of [0, 1). In the exploration state, the algorithm seeks
possible solutions in the search space while the exploitation results in narrowing the search
plane. The modified formula for a allows for a longer exploration time so the final solution
can be found more easily than in the classical GWO.

K2
a=2(1- ¢ (38)
max

Figure 3 shows how different formulae for a influence the GWO algorithm. The
horizontal axis shows the iteration count (T is the maximum value set), whilst the vertical
axis shows the change of 2 over the course of iterations. The area covered in blue marks the
exploitation phase and the red area denotes the exploration state. In the basic version of the
GWO, the time for both stages is equal, while the modified version emphasizes searching
for the new values for the algorithm. If a better solution is needed, the exploration stage
must be extended by altering Equation (35).
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Figure 3. Changes of the a parameter in (a) the classical GWO, (b) the modified GWO.

The distance between the three best points (X, Xg, and X;) and the solution candidate
can be calculated using Equations (39)—(41).

Dy = |Cp - Xo — X| (39)
Dg = |Cy - X — X| (40)
Ds =|Cs- X5 — X| (41)

Later, the whole population is updated:

X, = X, — A- Dy 42)
Xy = X — Ay Dy (43)
X3 = X3 — A3z D; (44)

Bt -

The algorithm uses a fitness function that can be written as follows:

X(k+1)

1 tprob
]GWO(kiter) - ﬁ k=1

W (k) — w1 (k) (46)

where w,,f" output of reference model.

All the steps of the GWO algorithm are pictured below in a block diagram in Figure 4.

Figure 5 shows examples of different transients of motor speed gathered during the
optimization process. The transient from the third iteration has the greatest amplitude of
oscillations and the settling time is the slowest amongst all the transients shown. With each
consecutive iteration, the achieved results are improving—after 20 iterations, the speed
transient oscillations are almost fully dampened and the overshoot issue is solved. The
fitness function values for each of the presented transients are attached in Table 1.

Changes in the fitness function for both versions of the algorithm are depicted below
in Figure 6. The crucial parameters of both algorithms are presented in Table 2. The only

change that influences the results is the additional multiplications in the rate of change of a.

After the first few iterations, the fitness function was lowering much faster for the modified
version compared to the classical. Additionally, it can be seen that when the value of a
is lower than 1, the convergence is faster. A value higher than 1 causes the algorithm to
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find a better value. After a few optimization runs, it was noticed that the modified Grey
Wolf Optimizer can achieve similar values of the fitness function in less than half of the
iterations required by the classic Grey Wolf Optimizer.

START

Done only once before first iteration

Figure 4. The Grey Wolf Optimizer.

T
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C Return alpha wolf - Xa )

wi[pu

Figure 5. Speed transients’ changes during optimization.

Table 1. The values of the fitness function.

Iteration Fitness Function Value (*10—4)
3 0.1661
5 0.1052
10 0.0683
20 0.0164
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Figure 6. Comparison of fitness function for the GWO and the mGWO.

Table 2. Parameters of GWO and mGWO.

GWO mGWO
Number of iterations 20
Population 40
Rate of change of a parameter 2 (1 — M) 2 (1 _ Ilﬁi )
t
1 prob
Fitness function Ty Lk =1 ‘U'r’;f(k) - ‘Ul(k))

The modified version of the algorithm can spend more time in the exploration state (red
section of Figure 4) which means it is looking for the global extremum (minimum) longer.
If one is found, in the exploitation phase the algorithm seeks the minimum value close
to the extremum found. The longer the exploration phase lasts, the more accurate value
should have been found, so the exploitation time (blue part of Figure 4) can be shortened.

The Grey Wolf Optimizer was implemented in Matlab software. For calculations, the
machine with Intel Core 7-7700 CPU (3.60 GHz) with 16 GB of RAM and 64 bit Windows 10
was used. It took 12pprox.. 25.78 min to complete the optimization process for the modified
version of the algorithm. The standard version is processed in about 17.52 min. During
calculations an identical number of search agents and iterations were assumed—the exact
parameters are presented in Table 2. An extended time needed for the optimization process
is observed due to additional tasks (additional multiplications in the equation used for the
value of a) in the code. However, these calculations are performed offline, therefore they
do not affect the work of the whole system.

4. Simulation Tests

This section of the manuscript presents the numerical tests of the adaptive speed
control structure based on the RWNN model. For all simulations, the sampling time
equal to 100 ps is assumed, calculations take 20 s. Parameters of the two-mass system
obtained through the identification of the real drive used in the experiment are as follows:
T1=T,=0.203sand T, = 0.0012 s.

Results acquired for the nominal parameters of the drive are presented in Figure 7.
The observation of the operation of the control structure with the recurrent wavelet neural
network controller makes it possible to state that the drive is working properly. There
is no apparent overshoot or oscillations. Electromagnetic torque is produced rapidly.
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Such a result can be achieved through the continuous adaptation of parameters of the
neural controller.
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Figure 7. Speeds (wy, w1, and wy) and torques (1, and ms)—transients for nominal parameters
of drive.

Next, a set of simulations is carried out to verify how the changes in the drive’s
mechanical properties (time constants) affect the drive’s performance. Figure 8 shows
gathered results for an increased value of the mechanical time constant of the load machine
(T2 =2 Tyy). In this case, there is a slight overshoot at the first phase, but it decays as
simulation time passes. Slight oscillations can also be observed in electromagnetic and
shaft torques, this is the effect of an increased time constant in a drive with elastic joints.

In Figure 9 the transients of the rotational speeds and torques of the drive with an
increased value of the time constant of the shaft are presented. The increased time constant
T, introduces negligible oscillations in torques and speeds of the motor and the load. It is
apparent that before and after switching the load torque the drive achieves the reference
speed with high dynamics.

Figures 10 and 11 show the results achieved for decreased time constants of the load
motor and the shaft, respectively. Transients of both speeds for the reduced time constants
are similar to the results obtained for the nominal parameters of the drive, except the speed
drop occurring directly after the change of the load (t11 =9 s, t12 = 11 s) is smaller for the
reduced value of the shaft stiffness time constant T,. The difference can also be noticed
in torques transients. The torque changes are as dynamic as with the nominal values, but
oscillations can be seen in both instances, especially when the load torque is switched.
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Figure 8. Speeds (wy, w1, and w») and torques (1, and ms)—transients for increased load time
constant (Tp =2 T»y,).
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Figure 9. Speeds (wy,f, w1, and wy) and torques (1, and m;)—transients for the increased stiffness
time constant (T, = 2 T¢y).
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constant (T, = 0.5 Ty,).

Ty =Ty, T, = 0.5T¢,
) T T

0.3
0.2+ i -
SOo01k N
3
I ]
)
5
S5 -01F 7
3 B
ref
—0.2 k l —w1 |7
—wy
—0.3 L L 1 1 L L L L T
0 2 4 6 8 10 12 14 16 18 20
3 T T T ) T T T T
— M,
2+ — M|
— 1 :
3
=
g /
S i
-2
-3 I I I I I I I I I
0 2 4 6 8 10 12 14 16 18 20

t[s]

Figure 11. Speeds (wn,f, w1, and wy) and torques (1, and m;)—transients for the decreased shaft time
constant (T, = 0.5 T¢y).

To verify the performance of the proposed control structure, RWNN was compared
to the classical PI controller. Both systems were tested after changing the mechanical
time constant of the load drive—T5, = 2 Ty,. Comparison is depicted in Figure 12. The

43



Electronics 2022, 11,177

PI controller was tuned according to the pole placement method—parameters were set
according to the predefined design parameters—the damping coefficient and the reference
resonant frequency. It should be added that both gains of the controller are depended on
the proper identification of the plant. In comparison to the PI controller, structure with the
RWNN ensures adaptive properties. As a result, rapid response to the parametric changes
of the drive can be observed. It is due to the weights being constantly updated. Moreover,
high overshoot can be noticed in the drive with the classical solution, which is not present
in the adaptive structure.
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Figure 12. Results for RWNN controller and PI controller with increased load time constant—T5,, = 2 T5,,.

The impact of the learning rate value was also analyzed and shown in Figure 12. The
results were gathered for the nominal parameters of the drive, but the outcome is similar
when the parameters of the drive are changed.

Figure 13 shows how the drive behaves when different learning rates are applied to
the controller where #,,gwo is the learning rate obtained from the mGWO optimization
process (1,cwo = 0.0982) and 77 and 7, are values 5 times lower and higher than the
optimized value. Tests were performed for reduced and increased values of the learning
rate. The speed of the drive is shaped in a similar way for the optimized and the greater
learning rates, but oscillations are greater for the higher value. On the other hand, for the
decreased value, it takes more time to reach the reference speed value. It was also observed
that the bigger the value of the learning coefficient, the higher the maximum value of the
overshoot, therefore results for any higher values are not shown in order not to blur the
image.

Similar tests were carried out for the changes in the initial values of the weights of the
controller. Figure 14 shows the changes in the speed of the motor speed when different
initial values of weights were applied (red line indicates the load speed transient with
the initial values optimized by the mGWO algorithm, the green line shows the situation,
where the values of the weights were halved, and the yellow line shows the situation of a
two-times increase in weights’ value compared to the nominal ones).

As can be seen in Figure 14b, higher initial values cause greater overshoot in the
starting process, and it takes more time to adapt the controller to the reference speed. On
the other hand, when small values are applied the opposite is happening—there is an
undershoot that needs to be corrected during the operation of the drive. The advantage of
using the metaheuristic algorithm is the compromise between the two values with a long
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rise time and an overshoot that can be neglected as it is present only over a short period
during the initial phase of the drive’s operation.
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Figure 13. Influence of the learning rate parameter on the adaptation process (a), the initial part of

the simulation (b), applying load torque (c).
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Figure 14. The impact of different initial values of weights in the adaptive speed controller based
on the RWNN (a), the initial part of the simulation (b), applying load torque (c), the final part of the

simulation (d).

In addition to transients, parameters of the step response were calculated for data
presented in Figures 13 and 14 and presented in Table 3. The rise time of the signal can
be calculated as the time it takes for the response to rise from 10% to 90% of the reference
value. Settling time can be defined as the time it takes for the error to stay below 2%. Of the
difference between reference speed and speed of the drive. All parameters were calculated
for the first reversion from wj,;; = —0.25 p.u. to Wiy = 0.25 p.u.
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Table 3. Settling and rise times for different states of the drive.

Case tyise (S) Esettling (S)
NmGWO, WinitGWO (nominal) 0.186 0.25
1 =2 mGwo 0.189 0.69
112 = 0.5 7mewo 0.191 0.27
Winit1 = 2 WinitGWO 0.190 0.34
Winit2 = 0.5 Winirgwo 0.263 0.40

The rise time for the nominal parameters, as well as for different learning rates applied,
is almost equal. Lower initial values of the weights affect the time needed for adaptation,
which results in lower rise time and higher overshoot in the first reversion of the drive.
Even minimal changes of the analyzed parameters can influence the quality of the response
(the settling time). The fastest response of the system can be observed for the neural
network with parameters optimized with mGWO.

Initial weights of the controller also have an influence on the parameters of the step
response. Rise time for increased initial values stays the same, but lowering them increases
the value. Lower values of initial weights introduce overshoot which increases the rise
time and settling time of the speed of the drive. Higher initial values of weights cause
oscillations which increase the settling time.

5. The Influence of Additional Feedbacks in the Speed Loop

All previous tests were conducted for a structure with a classical negative speed
feedback loop, where the speed of the motor was subtracted from the reference speed. In
addition to the motor speed feedback, auxiliary feedbacks were applied with no additional
gains present in these feedback loops. Additional loops can improve the characteristics
of the drive in dynamical states, e.g., reversions. Supplementary feedback in the torque
control loop provides better damping of torsional vibrations [50]. A signal from the
difference in speeds inserted in a speed loop ensures good dynamical characteristics [51].
There are many possible feedback loop modifications, but for this study, the simplest were
selected. The derivatives of the state variables could also be used, but they cause damping
of high-frequency vibrations and a decline in the system’s dynamical properties.

Results achieved for different feedbacks depicted in Figure 15 are presented in this
section. By taking a look at Figure 16, only a small difference can be observed. Close-ups of
different parts of the simulation are given in Figure 16b,c. First reversion shows that there
are slight oscillations when additional feedback from the speed difference is applied (yellow
graph). Green and red transients, indicating additional shaft torque and speed difference
feedbacks and shaft torque feedback, respectively, are the closest to reference speed. The
structure with no additional feedbacks has the highest error between the reference speed
and the load speed. On the contrary, after switching the load at t;; = 9 s, the red and green
transients are the most distant from the set speed transient.

Oscillations are damped the most when the additional shaft torque feedback is ap-
plied (red and green transients in Figure 16b). During the simulations, all parameters of
the recurrent wavelet neural network controller are updated, so the difference in speed
transients is less visible at the end of the test. After applying the load, the structure with no
additional feedbacks and with the feedback loop from the difference between the speeds
perform the best. Near the end of the simulation tests in Figure 16¢, it can be seen that all
structures perform similarly. Drive with both loops (shaft torque and difference between
speeds) achieves the best results overall.

To achieve the best results of the drive, it is suggested to implement the structure
incorporating both the shaft torque feedback loop as well as the speed difference feedback
loop. It is assumed that in the simulations all the state variables are accessible, and therefore
they do not need to be estimated.
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Figure 15. Combinations of feedbacks applied in the control structure, a classical feedback loop (a), an
additional speed difference feedback (b), an additional shaft torque feedback (c) and a combination
of speed and torque feedbacks (d).
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Figure 16. Comparison of speeds (w,, and wy) transients obtained for different connections of
feedbacks (a), the initial part of the simulation (b), the final of the simulation (c).

6. Experimental Results

To confirm the theoretical tests, experimental studies on the laboratory stand were
carried out. The laboratory system presented in Figure 17 consists of two DC motors
coupled by a long steel shaft. To change the time constant of the load, motor flywheels can
be added. Drive is powered through an H-bridge. Current measurements are conducted
by LEM sensors and incremental encoders are mounted on both machines to measure the
speed of the drive. The control algorithm is compiled on a PC and uploaded to a DSpace
1103 card with a digital signal processor. Everything is connected through a control panel.
To simplify the process of compiling and uploading the algorithm to the processor, the
controller was implemented as a Matlab Embedded Function.
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Figure 17. The laboratory setup.

The code is built using Matlab’s built-in compiler. These data are then loaded to a
ControlDesk virtual panel (which is a part of the dSPACE software). ControlDesk is used
to capture signals from the dSPACE card, display the results and then save them in a *.mat
file which can be read by Matlab. The nominal parameters of the experimental setup are
presented in Table 4.

Table 4. Parameters of the experimental setup.

Motor Nominal Power 500 W
Load nominal power 500 W
Shaft length 600 mm
Shaft diameter 5 mm
Encoder impulse 36,000 pulses/rev

The experimental verification of the simulation tests can be found in Figure 18, pre-
sented transients match the results obtained in Section 4. The upper part of the graph
shows the speeds of the motor and the load for nominal time constants of the drive. Refer-
ence speed of 25% of the nominal speed value was used with cyclic reversions occurring
every 5 s.

The lower part of the graph shows the influence of an increased load time constant
on the control structure. A small overshoot is observed, but it is gradually reduced with
the adaptation process. The same can be noticed for the oscillations of speeds close
to the setpoint, the frequency of oscillations decreases over the time of the experiment.
The reaction to the load torque is comparable to the results achieved with the nominal
parameters.

Settling time and rise time for nominal parameters in the experimental bench were
also calculated. The calculated value of the rise time was equal to ¢, = 0.25 s, while the
settling time was £y = 0.38 s which is comparable to simulation results.

Another test was also carried out to see how an increased learning rate impacts the
dynamics of the drive. As presented in Figure 19, when the higher value of learning rate
is applied, the overshoot on the first reversion is substantially higher. After the controller
updates all parameters, the overshoot is reduced to zero. The test proves the control
structure’s adaptive qualities. Other than that, the performance of the drive is exactly the
same as in previous tests.
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Figure 18. Transients of experimental results for nominal parameters of the drive (a) and increased
load time constant (b).
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Figure 19. Results from the experimental setup obtained after increasing the value of the learning rate.

7. Concluding Remarks

In this paper, a recurrent wavelet neural network designed to control the electrical
drive with an elastic shaft is investigated. Various combinations of state feedback signals
from the plant are considered. It starts with only a basic connection from the motor
speed, then additional solutions are analyzed. It can be important not only in theoretical
assumptions, but also in real applications (economic aspects and reliability). One of the
main points of the study is the application of the modified Grey Wolf Optimizer in the
design process of the control structure. The efficiency of the proposed solutions was tested
in simulations and experiments. Based on the obtained results, the main remarks presented
below can be formulated.

49



Electronics 2022, 11,177

- Recurrent wavelet neural network can form the basis of an adaptive speed controller
designed for an electrical drive with a compound mechanical part.

- Presented results show that the adaptation is performed properly. As a result, over-
shoots are reduced, and oscillations are damped.

- Correct work of the control system is observed even when the parameters are changed.

- The Grey Wolf Optimizer can be used as a universal tool for solving issues observed
in the design process of adaptive neural speed controllers for the drive.

- Proposed improvements (achieved through processing the data using the mGWO)
expedite the process of the neural controller optimization.

- To effectively damp the oscillations of the state variables, implementation of an
additional feedback loop is necessary.
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Abstract: A pipe is a ubiquitous product in the industries that is used to convey liquids, gases, or
solids suspended in a liquid, e.g., a slurry, from one location to another. Both internal and external
cracking can result in structural failure of the industrial piping system and possibly decrease the
service life of the equipment. The chaos and complexity associated with the uncertain behaviour
inherent in pipeline systems lead to difficulty in detection and localisation of leaks in real time. The
timely detection of leakage is important in order to reduce the loss rate and serious environmental
consequences. The objective of this paper is to propose a new leak detection method based on an
autoregressive with exogenous input (ARX) Laguerre fuzzy proportional-integral-derivative (PID)
observation system. The objective of this paper is to propose a new leak detection method based
on an autoregressive with exogenous input (ARX) Laguerre fuzzy proportional-integral-derivative
(PID) observation system. In this work, the ARX-Laguerre model has been used to generate better
performance in the presence of uncertainty. According to the results, the proposed technique can
detect leaks accurately and effectively.

Keywords: autoregressive with exogenous input Laguerre (ARX-Laguerre); fuzzy; pipeline; PID;
controller; PID observer

1. Introduction

Pipelines are the safest way for transporting crude oil, petroleum products, and
natural gas over long distances. Pipelines deliver clear benefits in supporting economic
growth as they provide a cheaper means to transport. However, oil and gas pipelines
may be significantly damaged due to internal and external defects (e.g., corrosion, dents,
gouges, weld defects). Construction and operational defects of pipes can pose major risks
to supplies. Pipeline safety is possible using inspection and monitoring techniques which
can be either internal or external in nature.

Over the last few years, a number of technologies have been reported to monitor
pipelines such as acoustic emission [1-3], fibre optic sensor [4,5], digital signal processing,
and mass—volume balance [6]. In [7], a real-time transient modelling method has been
utilised for leakage detection and localization in the pipeline systems. In [8], an extended
version of a real-time transient modelling method to estimate two leaks simultaneously
in a piping system is proposed. The acoustic pulse reflectometry method has been used
successfully to identify damage in pipelines utilising the time domain [9].

In [10], the cepstrum analysis technique is utilised to identify leaks in pipes. In [11], a
new method based on auxiliary mass spatial probing by the stationary wavelet transform
is suggested to detect damage in beams. Artificial intelligence with fuzzy logic has become
the most effective approach, which attracts many investigators to deeply research it [12-16].
It has been successfully used for leak detection. In [17], a low-cost wireless sensor system
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is introduced to detect of leaks in metallic piping systems. In [18,19], a neural network
technique was utilized to detect the leak in a pipeline and has provided promising results.
In [20], an artificial neural network was utilized to detect the leak in a pipeline such that
the sound noise data were gathered through several microphones placed within a specific
distance from the damaged part. The fast Fourier transform algorithm has been performed
on data and supplied to a feed-forward network for making a final decision. In [11,21], a
neural network technique was used for pattern recognition in oil pipe networks.

Various researchers have used observational approaches for fault diagnosis in pipes
that are based on different algorithms [22-24]. The authors in [25] focused on leakage
reconstruction in pipe systems utilising sliding mode observer. The authors in [26-28]
focused on leakage reconstruction in pipe systems utilising a PID (proportional-integral-
derivative) model and observer. In [29], a fuzzy PI observer was used to detect leaks in
pipeline. In [30], a leak inspection device consisting of an adaptive Luenberger-type observer
based upon a set of two-coupled partial differential equations governing the flow dynamics
is proposed. To improve the input and output performance of ARX, in [26,31], the Laguerre
method is applied to ARX to filter the input and output. In [27,29], a fuzzy PID observation
method using the ARX-Laguerre technique is used for diagnosing fault in pipe.

The object of this paper is to develop a new technique based on autoregressive with
exogenous input Laguerre (ARX-Laguerre) fuzzy PID to detect leaks in a pipe. For this aim,
in the first step, the ARX-Laguerre technique is used for pipeline modelling. In the second
step, the PID observer based on the ARX-Laguerre model is designed to detect leakage
in the presence of uncertainties. The numerical results demonstrate that the proposed
technique detects and estimates leaks accurately. The remainder part of this paper is
organized as follows: in Section 2, the pipeline model equations are described using the
momentum and continuity equations. The pipeline model equations based on the ARX-
Laguerre technique are given in the Section 3. The proposed new technique based on
ARX-Laguerre fuzzy PID observer to detect and locate leaks in a pipe is given in Section 4.
The algorithm and simulation results analysis is given in Section 5. Moreover, in this
section, the proposed method is compared with some other existing methods to illustrate
its value. Finally, conclusions are given.

2. Pipeline Modelling

Here, we do not consider convective speed changes and compressibility effects in
process lines. The mass flow rate (m), the length of the pipe (T'), the flow in a pipe
system (®), the inlet pressure (gp;), and outlet pressure (p,) at pipeline are assumed to
be computable. Furthermore, the area of cross section (a) is fixed along the pipe. The
suggested pipeline architecture is illustrated in Figure 1.
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Figure 1. The suggested pipeline architecture.

The differential equation describing the dynamic behaviour of a fluid in a duct is
based on the mass, momentum, and the conservation of energy [32]. Newton’s second law
of motion, when implemented to a control volume, generated the following momentum
equation [32,33]:

v ldp S ,

54



Electronics 2022, 11, 152

If we substitute v = % as well as p = pg% in (1) the resulting momentum equation
will be: )
od ) 3P
aot P8 290 =0 @
Thus,
oP 9 o2
5 + ag-_ + o0 0 (©)]

in which # represents the pressure head, ® the rate of flow in a pipe, x the length of pipe, ¢
time steps, g the gravity, a the pipe cross-sectional area, 0 the inside diameter of the pipe,
and $ the pipe friction factor.

Coefficient of friction is typically assumed to be constant. In general, it was found to
be a function of the Reynolds number (Re) and the pipe material roughness coefficient (e).
The Swamee-Jain equation can be used to describe the friction factor for a pipe of circular
section (0) as follows [34,35]:

2
o 0.5
v ( In[0.27(§) + 5.741{3(”]) ¥

where S is the pipe friction factor, 0 is the inside diameter of the pipe and the pipe material
roughness coefficient (e)
Reynolds number equation is determined via the following equation [36]:

Re— 4 P2 _ pv0

Tou U ®)

in which p represents the fluid density, and y the viscosity of the flowing fluid. For
108 < 5§ < 0.01 as well as 5000 < Re < 108 are provably correct.

8£+pa28l =

ot ox 0 ©)

After applying the overall mass balance as well as the Reynolds transport theorem to
the control volume the continuity equation will be obtained:

ap 200
5 TP = 0 ()
The following equation can be acquired if we substitute the pressure head (%) as well

as the flow rate (®) in Equation (7):

o | a> 0D
o9t Tgaax 0 ®)
in which a represents the speed of the wave inside a fluid filled elastic duct. The wave
velocity depends on the elastic properties of the fluid and pipe. The pressure head (%) and
flow rate (®) change as functions of position and time, # (x, t) and ®(x, t), respectively, so
that x € [0,T], where I represents the length of the duct.

Now we can create a model of the pipe applying Equations (3) and (8). These equations
need to be solved; however, coming to analytical solutions is not easy. Because of this,
different methods need to be used to solve these equations such as characteristics and
finite difference approaches [37]. Here, the finite difference approach is implemented
such that Equations (3) and (8) are discretized to obtain a system of ordinary differential
equations. The considered finite difference approach discretizes the whole pipe into N
smaller sections [37,38]. Finite difference technique with a fixed step size As is, historically,
the most popular time-stepping approach. Here, we consider finite difference method
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because it is an easy-to-use approach and is specially designed and applied for nonlinear
observer models. In this study we define it as follows:

0P(si—1,t)

Js ~ As ~ As
OF (si1t) o AH(si1t)  Hi—H;iq ©)
05 ~ As ~ As

AD(si1t) =P g

Vi =1, --,n,in which n represents the number of points of the grid, and As = s; 1 —s;
represents the size of the i-section between the two successive grid points. The compu-
tational domain s € [0,I] is divided up into three smaller domains, {si}:= {0, S;e0r, I'},
so that sj, indicates the location of leak; see Figure 2. The leak flow rate can be mea-
sured by P = Cattjeakr/28\/ % (Siear, t), such that Cy represents efflux coefficient, and
a1k the cross-sectional area along the leak path. The leak flow rate can be calculated by
Dogk = A/ H (Siear, 1), in which A = Cyajeqr/28. The behaviour of a dynamic pipeline
network can be described by an ordinary differential equation system:

by = —9) - S5
Hieak = 35 (P1 — P2 — Av/Ticar) (10)

. (\q)z
Dy = A5 (%0 — %) — 557

}[Leak CDLeak
H; Hs

SLeak
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Figure 2. The suggested pipeline architecture.

Suppose that both inlet and outlet pressures, #; and %3, respectively, are known and
have been defined using external means such as a pump. The pressure #, and the inlet
and outlet flow rate (®; and ®,, respectively) of the leakage point are considered to be
variables. From the continuity equation we can write:

D1 = Dppgi + D2 (11)

3. Pipeline Modelling Based on the ARX-Laguerre Technique

For many years, pipelines played a huge role in oil and gas industries, as they signif-
icantly reduce transport costs. Leakage inspection in transmission pipelines is crucially
significant for safe operation. In general, there are various fault detection methods, each
with different potentials; however, the selection of proper leak detection technique is
difficult. This is particularly important when they deal with various types of uncertain
conditions. To deal with this problem, we introduce a fuzzy ARX-Laguerre PID observer in
Section 4. First, in this study, the ARX-Laguerre technique is used for pipeline modelling.
In the second step, the PID observer based on the ARX-Laguerre model is designed to
detect leakage in the presence of uncertainties. The proposed model-based ARX-Laguerre
orthonormal method is represented by developing its coefficients associated to the flow
input and flow output, Fourier coefficients, and Laguerre-based orthonormal function, as
follows [23,39]:

My(s) = i)\m (i €, * Mo(s)> XM (8) + li)tn.b (i €y * Mi(s)> XM, (5) (12)
0 j=1 0 j=1
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in which Mo(s), (An.g and Ayy), (ia,ip) (€a, €)%, Mi(s), XM, (s), and x,, ,(s) represent
the pipe outflow, Fourier coefficients, the order of the system, Laguerre orthonormal
function, convolution product, pipe inflow, exhaust filter, and entrance filter, respectively.
By expanding the ARX model on Laguerre orthonormal bases, the following state-space
model can be obtained:

{ M(s +1) = [AM(s) + By(y(s) +as(k)) + Bu (u(s) + ay(s))] (13)
y(s) = (S)"M(s) + Bsas(s),

in which M(s),y(s), u(s), ap(s), and as(s) represent the state vector, calculated output,
control input, pump defect, and sensor defect, respectively. A, By, By, and B, as well as S,
represent matrices of coefficients.

4. ARX-Laguerre Fuzzy PID Observation Technique

In this section, the ARX-Laguerre fuzzy PID observation system is proposed to detect
and estimate a leak in pipelines.

4.1. Modelling of Dynamic System by ARX-Laguerre

Let us consider the linear ARX state space model with disturbances illustrated by the
following equation to formulate the dynamic fault detection problem:

M(s +1) = [A M(s) + Bu (u(s) + ap(s))]
{ y(s) = (S)"M(s) + Beas(s), (14)

We define the ARX model on Laguerre base as follows [31,40]:
X(K) = [ Xua(s) Xy (5) | (15)
a

inwhichy(k), #(K), (K Kons) )» (Nas Nb), X4 (), X (5, and (L (5,8a), Lh(5,8))
represent the pipe outflow, pipe inflow, Fourier coefficients, exhaust filter, entrance filter,
and Laguerre orthonormal function, respectively.

Using Equation (16) the following state-space model can be obtained in the presence
of failures of the pump and sensor as well as disturbances:

{( M) = (M) Belan) 1) £ B Hip0D]
(s) = (8)" My (5) + Bas(s),

The fault of the pump is calculated using the following formula:

(n u+1x,,)(s) (S) (17)

(s )—yp(s)—]/( )
emls) = [ ) =t

such that

xu(n,qutxp) (S) 7é M(n,u)(s) — MP(S) 7& M(S) — yp(s) 7& y(‘S) — ey(s) 7& 0 (18)
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The fault of the sensor is calculated using the following formula:

ey(s) = yp(s) —y(s)
_ Mp(n,u)(k> — M) (s) (19)

em(s) = M,y +as) (K) = M) (5)

such that
My, +a:) (8) 7 X(ny)(s) = Mp(s) # M(s) = yp(s) # y(s) = ¢,(S) #0.  (20)

4.2. Fault Diagnosis

In this study, the ARX-Laguerre fuzzy PID observation system is proposed to identify
pump and sensor defects in pipes. We define the proposed technique by the following
formulas in the presence of failures of the pump and sensor in the pipe:

M(s+1) = AM(s) + By(g(

| ‘ \/

+ &s(s)) + By (u(s) +&p(s)) + Kpe(s)

5) = (4:(5) — 4:(5))
ep(5) = (0p(3) — 0y (2
p(s+1) = ap(s) + Kipe p(s)—i-Kd (ep(s+1) +ep(s) +ep(s—1))
Rs(s +1) = &s(s) + Kises(s) + Ky (es(s +1) +es(s) +es(s — 1))

Jls+1) = ($)TH(s +1) + Bsis(s)

(21)

where M(s) represents the state vector, a,(s) pump defect, as(s) sensor defect, and 7(s) the
output of the system, and A, By, By, and B, as well as S, represent matrices of coefficients.
In accordance with Equation (21), in this paper, we particularly study three main cases and
types of faults in pipe.

Case 1: Incaseap # 0, as = 0, and &,(s) # ap(s), we have:

(y(s+1)—ﬁ(s—|—1)7&0)&(M(s+1)—1\71(s+1))#OT:>
[ MIGs+1) MIGs+1) ) = [ MI(s+1) M, (s+1) ] #0—

. (22)
M(n,u)(s) - M(An,quuc,,)(S) 7é 0
Mp,y)(s) = My, ) (s) #0
Incaseap #0, as = 0, and &,(s) = ap(s), we have:
(y(s+1)—9(s+1) =0) & (M(s+1) — M(s+1)) # OT:>
[ MI(s+1) MIGs+1) ] = [ M{(s+1) NI, (s+1) | £0— )

M(n,u)(s) - M(An,qua,,)(S) #0
M) (8) = M) (s) =0

In accordance with Equations (22) and (23), in case the error related to ARX-Laguerre
fuzzy PID technique is close to zero, the detection rate of defect is very high.
The following formula can be defined for fault in the pump:

A

dp=0g = qp—Gp=20&w—-D#0—>r=w—0 (24)
Case 2: In case a5 # 0, ap = 0, and &;(s) # as(s), we have:
(y(s+1) —G(s+1) #0) & (M(s+1) = M(s+1)) #0 =
N N T
[ MT(s+1) M2T(5+1)]T—[M1T(s+1) M, (s+1) | #0=

Al (25)
{ M) (5) = My (5) # 0

A~

M(ny)() Mny+uc5(>7é0
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In case a5 # 0, ap = 0, and &;(s) = as(s), we have:

(y(s+1)—g(s+1)—0)&(M(s+1)—1\>1(s+1));AOT:>
[ MT(s+1) MI(s+1)] - [MT(sH) Mg%(sﬂ)} 40—

M(n,u) (S) M(n,u)(s) =0
( ,y)( )_ (n,y+uc5)(s) 7& 0

(26)

In accordance with Equations (25) and (26), the ARX-Laguerre fuzzy PID has a

significant influence on the efficiency of sensor defect detection in a duct.
The following formula can be defined for fault in sensor:

A

ds=0s > w—0=0&qy—qp #0—=1=qp —qp
Case 3: Incase s # 0, ap = 0, &s(s) 7# as(s), and &,(s) # ap(s) we have:
1) #0)& (M(s+1) ~ M(s +1) £0 =

. T
1)]T—[MT (s+1) Mg(s+1)] £0 =

S
M(n,u)(s) M(n utap) ( ) #0
M(n,y) (S) M(n y+as) ( ) #0

[ Mi(s+1) MzT(

Incase a5 # 0, xp = 0, and &;(s) = as(s), we have:

(y(s+1)—9(s+1) # )& (M(s+1) — M(s+1)) ¢0T:>

[ MT(s+1) MI(s+1) ] [MlTsH) M{ap(s+1)} 40—
{ M(n,u)(s> - Ail(n u+ap) (S> 7£ 0
M(n,y) (5) - M (ny+as) (5) 7é 0

(27)

(28)

(29)

In accordance with Equation (29), in case the pipe includes sensor and pump failures,
the signals received from pump and joint variable can identify the defects. Signal sensor

and pump faults are:

dp=ap& ds=as—>n=w—-—w>0&r=q,—§4, >0

(30)

To increase the signal estimation accuracy and to modify the performance of fault
estimation of the ARX-Laguerre PID technique, optimal fuzzy observer coefficients, K,

Kip, de, Kp,, K;; and K, are applied, which are defined as follows:

Ki, = 720 Kay = K, Ty,
Kp
Klb - Ti:’ de - Kps Tds

(31)

where T; , Tj, Ty,, and Ty, represent the integral gain for pump failure, the integral gain
for sensor failure, the derivative gain for pump failure, and the derivative gain for sensor

failure, respectively. Following Equation (29), we have:

2

Ti (Kpp)
:E'P:f.Zr sz* ,Bplgdp
2

_ T _ (&)

b =100 Ki = i,
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Normalization of the above equation can be performed by the formula described
below:

Ky

Kp,—K, (i =Ky (mi
K, = -t g q) g — i g ) 0 < g <5
Py Kpp(mux)_Kpp(min) [ ] Pp KPP(”’“/Y)_KPP(”’i") [ } o ﬁp o (33)

Ky, —K ; K, —K .
1o s Pps(min) 1o Ras=Ragmin g <
Kps KPS("’HX>_KPS<"’i"> < [0, 1]’ de de(mux)_de(min) € [0' ”'2 - ﬁs — 5

such that g = Lia) 3 represents a membership function.

Lia(x;)
5. Simulation Results
In this section, we evaluate our proposed technique on a pipe model under the leak
condition in the presence of failures of the pump and sensor in the pipe. In order to check
the efficiency of the proposed ARX-Laguerre fuzzy PID observation technique for fault
detection in the pipe, we consider two cases, pipe with fault and under no-fault conditions.
Pipe under no-fault condition. In this case, the duct functions under optimal circum-
stances and performs well. The input-output signals of the pipe model in a healthy state
can be computed as follows:

r(w) =w—m— r(w) =w — (Wopserver + Ap) = (W) = w — (Wopserver +0) = 0 (34)

V((P) =¢— (ﬁ — V((P) =¢— (¢Observer + “S) — F((P) =¢— (¢Observer + 0) =0

The sensor signal for the pipe under no-fault condition and no noise impact is shown
in Figure 3. The pump signal for the pipe under no-fault condition and no noise impact is
shown in Figure 4.
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Figure 3. The sensor signal for the pipe under no-fault condition.
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Figure 4. The pump signal for the pipe under no-fault condition.
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For a healthy system, the pump and sensor faults can be described as follows:

0 t<t

F = — = 4 p
Aultpunp = p(F = fo) { ap, B>ty (35)

0, <t

Faultsensor = as(t — tg) = N E>

Sr S

The effectiveness of the proposed technique for fault estimation under no-fault condi-
tion is shown Figure 5. As can be observed from Figure 5, the proposed method is more
effective than the ARX-Laguerre PI observer [41] and the adaptive fuzzy observer [42].
The error between the predicted output and the expected output based on the proposed
technique under no-fault condition is shown in Figure 6. It can be seen that the proposed
method yields more accurate results compared with ARX-Laguerre PI observer [41] and
the adaptive fuzzy observer [42].
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Figure 5. The effectiveness of the proposed technique for fault estimation under no-fault condition.
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Figure 6. The error between the predicted output and the expected output based on the proposed
technique under no-fault condition.

Pipe under fault condition. In this case, the duct functions under faulty circumstances.
The duct has two kinds of defects simultaneously, the sensor defect and the pump defect.
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The input-output signals from sensor and pump in the pipe with a fault state can be
computed as follows:

T’A‘i — r<w) =w— (wObserver + “p) >0 (36)
7’(4)) =¢—¢— T((P) =¢— (¢Observer + D‘S) >0

where

Q1

iy (my = { 5 W0<<25
lay N 0, otherwise

06, 10<t<25

Pra (m) = { 0, otherwise

The pump signal for the pipe under fault condition and no noise impact is shown in
Figure 7. The sensor signal for the pipe under fault condition is shown in Figure 8.
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Figure 7. The pump signal for the pipe under fault condition.
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Figure 8. The sensor signal for the pipe under fault condition.

The effectiveness of the proposed technique for fault estimation under fault condition
is shown Figure 9. As can be observed from Figure 9, the proposed method is more effective
than the ARX-Laguerre PI observer [41] and the adaptive fuzzy observer [42]. The error
between the predicted output and the expected output based on the proposed technique
under fault condition is shown in Figure 10. It can be seen that the proposed method yields
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more accurate results compared with ARX-Laguerre PI observer [41] and the adaptive
fuzzy observer [42]. Furthermore, the delay for the proposed method to fault detection in
both Figures 9 and 10 is less than the other methods.
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Figure 9. The effectiveness of the proposed technique for fault estimation under fault condition.
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Figure 10. The error between the predicted output and the expected output based on the proposed
technique under fault condition.

The effectiveness of the proposed technique for fault estimation at leakage point is
shown in Figure 11. It can be seen from this figure that our proposed method detects fault
in less time in comparison with ARX-Laguerre PI observer [41] and the adaptive fuzzy
observer [42].
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Figure 11. The effectiveness of the proposed technique for fault estimation at leakage point in pipe.

6. Conclusions

The task of precise defect detection in the pipeline system is a formidable challenge
due to the uncertainties in leak signal. To better deal with uncertainties in the leak signal,
in this paper, an ARX-Laguerre PID-observer is introduced to perform fault diagnosis
in the pipeline system. First, in this study, the ARX-Laguerre technique was used for
pipeline modelling. In the second step, the PID observer based on the ARX-Laguerre
model was designed to detect leakage in the presence of uncertainties. The performance of
the proposed algorithm was tested in numerical simulations. According to the results, the
proposed technique can accurately locate the leakage point. Despite the high accuracy of
the proposed fault diagnosis method, it has a disadvantage of large extensive computation.
In the future, the proposed observation method will be used to enhance the performance of
fault diagnosis when the uncertainties are in the form of Z-numbers.
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Abstract: Climate change and pollution fighting have become prominent global concerns in the
twenty-first century. In this context, accurate estimates for polluting emissions and their evolution
are critical for robust policy-making processes and ultimately for solving stringent global climate
challenges. As such, the primary objective of this study is to produce more accurate forecasts of
greenhouse gas (GHG) emissions. This in turn contributes to the timely evaluation of the progress
achieved towards meeting global climate goals set by international agendas and also acts as an
early-warning system. We forecast the evolution of GHG emissions in 12 top polluting economies
by using data for the 1970-2018 period and employing six econometric and machine-learning
models (the exponential smoothing state-space model (ETS), the Holt-Winters model (HW), the
TBATS model, the ARIMA model, the structural time series model (STS), and the neural network
autoregression model (NNAR)), along with a naive model. A battery of robustness checks is
performed. Results confirm a priori expectations and consistently indicate that the neural network
autoregression model (NNAR) presents the best out-of-sample forecasting performance for GHG
emissions at different forecasting horizons by reporting the lowest average RMSE (root mean square
error) and MASE (mean absolute scaled error) within the array of predictive models. Predictions
made by the NNAR model for the year 2030 indicate that total GHG emissions are projected to
increase by 3.67% on average among the world’s 12 most polluting countries until 2030. Only
four top polluters will record decreases in total GHG emissions values in the coming decades (i.e.,
Canada, the Russian Federation, the US, and China), although their emission levels will remain
in the upper decile. Emission increases in a handful of developing economies will see significant
growth rates (a 22.75% increase in GHG total emissions in Brazil, a 15.75% increase in Indonesia,
and 7.45% in India) that are expected to offset the modest decreases in GHG emissions projected
for the four countries. Our findings, therefore, suggest that the world’s top polluters cannot meet
assumed pollution reduction targets in the form of NDCs under the Paris agreement. Results thus
highlight the necessity for more impactful policies and measures to bring the set targets within
reach.

Keywords: GHG emissions; automated forecasting; neural network autoregression model (NNAR);
GHG emissions prediction; Paris agreement

1. Introduction

Along with climate change, air pollution is one of the most serious environmental
hazards to human health, estimated to cause 7 million premature deaths per year [1]. The
economic consequences of air pollution are dire, as estimates indicate $5 trillion in welfare
losses and 225 billion in lost income [2,3].

Air pollution includes greenhouse gas (GHG) emissions that warm the earth’s surface
and atmosphere [4]. GHG refer to the sum of seven gases that have direct effects on climate
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change: carbon dioxide (CO;), methane (CH4), nitrous oxide (N20O), chlorofluorocarbons
(CFCs), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), sulfur hexafluoride (SF6),
and nitrogen trifluoride (NF3) [5].

Understanding the urgency of more vigorous climate combat, decisive steps have
been taken at the global level. The United Nations Framework Convention on Climate
Change (UNFCCC) adopted the Kyoto Protocol (1997) and the Paris Agreement (2015) [6].
The Paris Agreement, signed in December 2015, gathered all signatory countries under a
common goal toward making significant efforts to tackle climate change and air pollu-
tion [7,8]. The Paris Agreement is meant to improve upon and replace the Kyoto Protocol,
an earlier international treaty designed to curb the release of GHG, whose effectiveness
has been heavily criticized because the world’s two top carbon dioxide-emitting countries,
China and the United States, chose not to be part of the agreement [9]. In contrast, the
2015 Paris agreement has been signed by nearly every country in the world (together
responsible for more than 90 percent of global emissions), with 190 of the signatory coun-
tries (including the US and China) going further and having underlined their support
with formal approval. As such, while before the Paris Conference the signatory countries
submitted carbon reduction targets (i.e., “intended nationally determined contributions”
or INDCs), these targets subsequently became “nationally determined contributions” or
NDCs after the formal approval of the agreement [10]. Hence, the Paris Agreement and
the attainment of long-term climate targets are built around these NDCs representing
each country’s efforts to cut national emissions and adapt to climate change consequences.
Given the heterogeneity in circumstances, resources, and capabilities, the agreement was
developed so that each country establishes their own commitments in terms of how much
they can contribute to the 2030 Agenda. However, almost all submitted NDCs contain a
target to reduce polluting emissions by a specific percentage over a specified period, in
most cases, the first established deadline being 2030. However, while signatory parties
are legally required to establish an NDC under the Paris agreement and to take actions to
accomplish it, the NDC itself is not legally binding or enforceable pledge [11].

Considering the GHG emission mitigation targets that most world countries have set
for 2030 and/or 2050 under the Paris agreement, the total GHG emissions were expected
to decline significantly in the aftermath of its adoption and to continue a decreasing trend
over the next decades. However, the vast majority of world economies are yet to deliver
on their pledges [12].

Data employed in our study backs this finding. Figure 1 shows that on average total
GHG emissions have continued to increase after 2015, although there is high heterogeneity
across countries at the world level when it comes to their contribution to world pollution.
Figure 2 highlights that only a handful of countries significantly contributed to world
pollution over the 1970-2018 period. Specifically, the main culprits reflected in Figure 2
are the US, with a mean annual value for total GHG emissions measured in kt of CO,
equal to 6,134,747 over the 49-year period, closely followed by China with 5,439,570
kt average annual GHG over the same period and at some distance by the Russian
Federation, which registered 2,635,846 kt average annual GHG emissions. The rhythm
of emissions growth has also been heterogenic at the world level over the past decades,
as our study will further reflect. Overall, global greenhouse gas emissions have risen
considerably since 1970, showing a 67.31% increase by 2018 (when total GHG emissions in
kt of CO, equivalent at world level registered a mean value of 254,047.3) relative to their
1970 levels (mean value of 151,837.9 kt of CO; equivalent). This translates into an increase
of 102,209.4 kt CO, in absolute terms over the 1970-2018. Over the entire 49-year period,
interim short-term reversals followed economic contractions, with a sharper decrease
during the 1990s economic recession caused by the Gulf War and subsequent oil price
shocks.
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Figure 1. Historical trend of mean GHG emissions in 175 countries (1970-2018).
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Figure 2. Mean GHG emissions per country over 1970-2018 (175 countries).

This incongruence between policy targets and the current reality is particularly
worrying given that top polluters continue to show significant increases in total GHG
emissions and highlights the necessity of more impactful policies and measures to bring
the set targets within reach. Consequently, accurate and robust forecasts for polluting
emissions are needed for an effective and efficient policy-making process. The issue is
timely, as countries must juggle post-pandemic recovery and bend the emission trends [13].
However, the task is particularly challenging, as the world should halve annual green-
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house gas emissions in the next eight years to keep global warming below 1.5 °C this
century, and thus meet the aspirational goal of the Paris Agreement [14]. Other studies
report the need for a cut of total GHG emissions by 7.6 percent each year between 2020
and 2030 to stay on track toward the 1.5 °C temperature goal of the Paris Agreement [15].
Current statistics show a rapid recovery of economic activity and increasing emissions as
energy demand soars [16].

Unsurprisingly, polluting emissions have steadily drawn the attention of academics
and policymakers over the past decades, and national and international agencies increas-
ingly employ forecasts of polluting emissions in their policy-making process. Conse-
quently, producing accurate estimates for GHG emissions and their evolution is critical for
robust policy-making processes and ultimately for solving global climate challenges [17].
This in turn is an important motivator for this study, which intends to identify the over-
performing predictive model in terms of forecasting accuracy for total GHG emissions
and subsequently apply it for producing forecasts for GHG emissions in top-emitting
countries over long forecasting horizons, covering the first benchmark set for individual
pledges within the Paris agreement, i.e., 2030.

Unlike most studies in the existing literature that investigate driving factors for
polluting emissions, we take a univariate approach. This further brings two important ad-
vantages. First, it eliminates the challenge of identifying the right mix of macroeconomic,
social, and financial variables that are potential impact factors for polluting emissions,
and thus eliminates the risk of model misspecification, with further gains in terms of
increasing estimation efficiency. Second, and most importantly, our approach allows us to
produce forecasts for a validated leading indicator, independent of other variables.

Considering the above considerations, this study makes several contributions to the
extant literature, as follows.

First, we employ a wider variety of candidate predictive models, including econo-
metric and machine-learning methods, and perform a battery of robustness checks to
assure that the best-performing out-of-sample forecasting model is identified. As we are
more concerned with prediction accuracy than in-sample information, and in light of the
previous literature, we a-priori expect machine learning methods to over-perform.

Secondly, we use a more relevant metric for air pollution, GHG emissions, instead of
CO; emissions that are usually employed in previous studies. Consequently, by including
a more accurate indicator of air pollution (i.e., CO, emissions account for approximately
76 percent of total GHG emissions, according to the Center for Climate and Energy
Solutions [18], estimation results are more relevant for policymakers. To this end, this
study uses data for the 1970-2018 period provided by the World Development Indicators
(WDI) database of the World Bank.

Thirdly, unlike most of the aforementioned previous studies that focus only on
a single country or cover at most a handful of economies, this study includes the 12
most polluting countries in the world, which are responsible together for around 75% of
total GHG emissions at world level. This contributes to assuring the robustness of the
forecasting method and further increases the relevance of results for policymakers.

Results of this study confirm prior expectations and find that overall on average, the
neural network autoregression model (NNAR) presents the best out-of-sample forecasting
performance for GHG emissions over a long forecasting horizon by reporting the lowest
average RMSE within the array of predictive models. Results further show that the
world’s top polluters will not meet assumed GHG emissions’ reduction targets under the
Paris agreement, and thus more impactful policies and measures are needed to bring the
set goals within reach.

The remainder of the paper is organized as follows. The next section gives an
overview of the related literature. Next, Section 3 explains the data and methodology
employed in the empirical investigation, while Section 4 presents and discusses the
estimation results and the performed robustness checks. Finally, Section 5 concludes the
study.
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2. Literature Review

The environmental Kuznets curve (EKC) theory [19,20] states that pollution rises
with the economic expansion until a certain level of wealth is achieved, at which point
emissions begin to decline, implying an inverted U-shaped link between environmental
degradation and income [21]. Overall, mixed results were obtained from previous research
that looked at the presence of the EKC in different countries and across different time
periods [22]. As a result, the topic of how economic growth and environmental quality are
related (i.e., the form of the environmental Kuznets curve) continues to be contentious [23].
As such, on one hand, the EKG hypothesis has been validated empirically by numerous
studies (among others, [6,24-26]). However, on the other hand, a bidirectional causality
has also been repeatedly encountered [27], thus suggesting that emissions can also be a
leading indicator of growth.

Moreover, besides its proven impact on economic growth, air pollution has a sub-
stantial influence on public health [28]. Hence, previous studies confirmed that polluting
emissions are also a leading indicator for various health variables [29] and for mortal-
ity [30,31]. These effects have been found in both long-term studies, which have followed
cohorts of exposed individuals over time, and in studies that connect day-to-day fluctua-
tions in air pollution and health [32]. Moreover, there is mounting evidence that indoor
air pollution is a severe concern to human health in addition to ambient air quality, partic-
ularly in low-income nations where biomass fuels are still used as an energy source [33].
All these findings further highlight the importance of combating climate change.

As such, given its validated role as an impact factor for important socio-economic
variables, the primary objective of this study is to produce more accurate forecasts of
GHG emissions. This in turn contributes to the timely evaluation of the progress achieved
toward meeting global climate goals set by international agendas and also acts as an
early-warning system when projections show that the state of affairs does not reflect
policy statements and formal pledges are not followed by concrete measures and results.
Hence, results of this study are also important for policymakers to incorporate forecasts
of polluting emissions in their policy-making process.

However, time series analysis and forecasting remain challenging tasks [34], and air
pollution prediction is no exception [35]. Broadly, based on the work of [36] prediction
models pertain to two main cultures or schools of thought [37], each with its benefits
and drawbacks [38]: (i) econometrics, or statistical methods, a category that covers
many familiar models [39], and (ii) machine learning (self-learning systems, capable of
learning from data to improve their performance). Their two common goals, information,
and predictability [40] are differently prioritized, with statistical methods focusing on
inference, whereas machine-learning techniques concentrate on prediction [41]. As the
British statistician George Box has famously put it: “All models are wrong, but some
are useful.” Consequently, the aim in time-series forecasting should be to identify the
best predictive model within a pool of candidates and employ it to produce forecasts for
the series of interest. This study does not deviate from this goal. Previous studies that
attempt to model and forecast univariate polluting emission time series (most often CO5)
primarily employ statistical methods, including the logistic equation [42], the ARIMA [43],
and the ARIMA, Holt-Winters, exponential smoothing, and singular spectrum analysis
(SSA) [44]. In the second category, we encounter among others [45] that use extreme
learning machines based on particle swarm optimization to predict CO; emissions in
Hebei, ref. [46] that use an artificial neural network (ANN) to predict carbon emission
intensity for Australia, Brazil, China, India, and the USA, and [47], which employ a
neural network model for forecasting the CO; emission produced by the cereal sector
in a southern Italy region. Overall, previous studies confirm that nonlinear models can
capture the nonlinear pattern of real-world data, and thus overcome the limitation of
linear models, improving their prediction performance [48]. Additionally, artificial neural
networks (ANN) are found to be useful in time series modeling where past values of a
variable of interest are used to determine its future values [49].
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In this study, we attempt to forecast the evolution of GHG emissions by employing
six candidate models belonging to both the aforementioned categories. As such, we
estimate the innovations state-space models for exponential smoothing (ETS), the Holt-
Winters (HW) model, the autoregressive integrated moving average (ARIMA) model,
the trigonometric ETS state-space model with Box-Cox transformation, ARMA errors,
trend and seasonal components (TBATS) model, the structural time series model (STS)
and the neural network autoregression (NNAR) model. Additionally, a naive model is
also employed for comparative purposes.

Similar approaches in the literature, but with application on other time series, include
the study by [50], which estimate and report the forecasting performance of nine models
for the price of gold, concluding that on average, the exponential smoothing model is
providing the best forecasts in terms of the lowest root mean squared error. Similarly,
ref. [51] uses seven automated forecasting techniques, including statistical and machine
learning models, for explaining and predicting the evolution of CO, emissions in Bahrain
and identify the NNAR model to provide the most accurate out-of-sample forecasts. More
recently, ref. [34] also predicted the evolution of Bahrain’s CO, emissions by employing
a neural network time series nonlinear autoregressive model, the Gaussian process
regression model, and Holt’s method, to agree that the NNAR model is outperforming the
other candidates. Ref. [52] also employs four of the techniques applied in this investigation
(i.e., ARIMA, ETS, NNAR, and TBATS) along with their feasible hybrid combinations
to forecast the second wave of COVID-19 hospitalizations in Italy, concluding that the
best single models were NNAR and ARIMA, and that the best hybrid models always
included a NNAR process. Finally, ref. [53] employ statistical and deep learning methods
to forecast long-term pollution trends for the two categories of particulate matter (PM)
in a major city in eastern India, i.e., Kolkata. They conclude that statistical methods (i.e.,
auto-regressive (AR), seasonal auto-regressive integrated moving average (SARIMA)
and Holt-Winters) outperform deep learning methods for their data. However, they
argue that the results might be due to the limited data available, and that with a higher
quantity of data and higher frequency and forecasting horizon, deep-learning models
would out-perform.

All of these works bring important results for the global climate fight related litera-
ture. However, most of these works have a narrow interest (i.e., most are single-country
studies, as seen above) and most importantly, they do not strongly defend their results
robustness. The vast majority stops at evaluating the predictive ability of alternative
models by reporting various forecasting accuracy metrics. [34] employs the root mean
square errors (RMSE) to this end, whereas [53] estimate both RMSE and MAE, and [52]
reports MAE, MAPE, MASE, and RMSE metrics. Nonetheless, except [51] that reports
the KSPA test, other studies do not estimate and present statistical tests for multiple
forecast comparisons and thus, do not investigate the hypothesis whether forecasts are
significantly different, defending their results. Additionally, none of these previous works
have re-estimated the models by employing an alternative forecasting technique (i.e.,
recursive window, changing window length, various time series slitting rules, etc.).

In this study, results’ robustness is assured firstly by employing out-of-sample
forecasting on a holdout sample of observations and investigating the accuracy of several
forecasting methods in comparative perspective, then by reassessing the predictive ability
of candidate models via the recursive window forecasting technique, and finally by
performing all estimations for 12 different top polluting countries, responsible for around
3 of total GHG emissions at world level. Moreover, applying the Kolmogorov-Smirnov
(KS) predictive accuracy test (KSPA) proposed by [54] and the Diebold-Mariano (DM)
test introduced by [55] and developed by [56] further contributes to testing the over-
performance of the best predictive model and assures our results’ robustness.

Additionally, a further advantage of our approach consists in the fact that the em-
ployment of standard econometric methods together with machine-learning techniques in
estimations and predictions allows comparison with previous results from the literature.
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3. Materials and Methods
3.1. Data
3.1.1. Database

This study uses annual data on total GHG emissions measured in kt of CO, for
the period 31 December 1970-31 December 2018, thus covering a total of 49 years. The
source of data is the World Development Indicators (WDI) database of the World Bank
(Data source: https://data.worldbank.org/indicator/EN.ATM.GHGT.KT.CE, accessed
on 8 November 2021).

In the first stage, GHG data were extracted from the WDI for all countries included
in the database, thus resulting in a sample of 205 individual economies. Then, we have
removed countries for which data were unavailable over the entire period, resulting in
the final sample of 175 countries and 8575 annual observations included in the analysis.

An exploratory analysis aimed at uncovering the state of affairs was subsequently
performed.

3.1.2. GHG Emissions by Country, Top Polluters and Historical Trends

available data, i.e., 2018.

Table 1 reflects the top 20 GHG emitters in the world in the most recent year of

Table 1. Greenhouse Gas Emissions by Top Emitters, 2018 and emission trends (1970-2018).

) o
Country Gggtflmli:s;?résoz(;ls Region Income Category (I/{‘)elca};?\::!gfo (I/{oelcaltl?‘?egteo
' 2 2015) 1970)
China 12,355,240 East Asia & Pacific Upper middle 4.18 559.31
United States 6,023,620 North America High income 0.33 11.54
India 3,374,990 South Asia Lower middle 10.16 352.11
Fg;l;rs;ggn 2,543,400 Europe & Central Asia Upper middle 2.73 13.50
Japan 1,186,770 East Asia & Pacific High income —6.19 26.10
Brazil 1,032,640 Latin America & Upper middle —4.62 ~18.11
Indonesia 969,580 East Asia & Pacific Lower middle 13.80 185.44
Iran, Islamic Rep. 828,280 Middle East & North Upper middle 5.31 484.04
Germany 806,090 Europe & Central Asia High income —4.88 —37.35
Canada 724,930 North America High income 2.40 46.46
Korea, Rep. 718,880 East Asia & Pacific High income 4.82 711.00
Mexico 679,880 Latin America & Upper middle 146 22291
Australia 615,380 East Asia & Pacific High income 3.50 92.89
Turkey 502,520 Europe & Central Asia Upper middle 15.83 432.17
United Kingdom 452,080 Europe & Central Asia High income -9.17 —46.15
Pakistan 431,220 South Asia Lower middle 17.89 394.90
France 423,350 Europe & Central Asia High income —1.58 —31.11
Thailand 416,950 East Asia & Pacific Upper middle 6.15 280.61
Italy 399,600 Europe & Central Asia High income —3.98 2.92
Poland 389,650 Europe & Central Asia High income 6.39 —16.42
o ;ﬁ%ﬁt(etg 3.23% 183.34%
Average (175 countries) 3.4% 67%
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As of 2018, the world’s top greenhouse gas (GHG) emitters in absolute terms are China, the United
States, India, the Russian Federation, Japan, and Brazil. The 20 top polluters reflected in Table 1 belong
to all income categories, among which 50% are high-income countries, 35% are upper-middle-income
countries, and 15% lower-middle-income economies (i.e., India, Indonesia, and Pakistan). This confirms
that high polluting emissions are a problem across the development divide [57]. The rhythm of GHG
emissions growth is highest in Korea, with an alarming 711% increase over 1970-2018, followed by
China with 559% and Iran with 484% over the same period. Only five of the world’s top polluters (i.e.,
Brazil, Germany, UK, France, and Poland) register a decrease in emissions since 1970, with overall
modest decreasing rates (emissions have fallen the most in the UK, with a negative evolution of
—46%). As such, although these (mostly) developed countries have shown a downward trend in
overall emissions, their levels remain in the upper decile as of 2018 (for Brazil, Germany, UK, France),
while Poland is on the 8th decile in rank of the world countries with most GHG emissions in 2018.
Over the 49-year period, the top 20 world polluters recorded an enormous 183.34% of GHG emissions
growth, whereas the world average (including the top polluters) is 67% over the same period, as shown
in Figure 1. The disparities in emissions growth are also reflected in Figure 3.
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Figure 3. Historical trends of greenhouse gas emissions.

Equally troublesome, only six countries have actually reduced their GHG emissions in the after-
math of the Paris agreement (i.e., Japan, Brazil, Germany, UK, France, and Italy). All other top polluters
continue to register increases in emissions since 2015, with Pakistan, Turkey, and Indonesia showing
the highest growth levels.

Figure 4 confirms that a small handful of nations account for the majority of global greenhouse
gas emissions. On an absolute basis, China, the United States, and India are the three largest emitters.
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Together, they account for 48% of 2018 global GHG emissions. The 12 most polluting countries produce
overall around three quarters of total GHG emissions at the world level, while the other 163 countries
included in the analysis are responsible together for 26% of total greenhouse gas emissions in 2018.
This underlines that a minority of countries create a global problem with systemic consequences. This
in turn further motivates us to focus on the 12 top emitting countries in our investigation.

Most Poluting Countries in 2018 (GHC, % from Total)

United States 14 % China 28 %

India 8 %

Russian Federation 6 %

Japan 3 %

Brazil 2 %
Indonesia 2 %
Iran, Islamic Rep. 2 %
Germany 2 %

%gg?&%&fgb 2%

Others(163) 26 %

Figure 4. Contribution of world top polluters to total GHG emission (2018).

3.2. Method

Firstly, Appendix A presents the notations and definitions that are employed in the empirical
investigations.

3.2.1. Forecasting Technique

This study implements a holdout technique to compare and select an optimal model for forecasting
GHG emissions in 12 countries. This technique requires the division of the historical data series of
length Ni, i € {1, ..., 12} in two subsets corresponding to a training (or fit) period and a test period.
For our purposes, the data up until 2013 (i.e., approximately 90% of observations) are used in-sample
for model training and validation whilst the period covering 2014-2018 (i.e., 10% of observations) is set
aside for testing the out-of-sample forecasting accuracy of the predictive models. The last observation
in the training interval Si is thus the forecasting origin (here, GHG emissions in 2013), whereas the
period that is predicted (here, 2014-2018) represents the forecasting horizon or lead-time, equal to
Ni-Si [58]. Figure 5 depicts the holdout forecasting technique employed in this study.
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N; = 49 fori € {1,...,12} ‘

Training Dataset (1970-2013) Testing Dataset (2014-2018)
Si=44
ie{1,..,12}
Train multiple candidate models Evaluate
Forecasting
(ETS, HW, ARIMA, STS, TBATS, Accuracy
NNAR, Naive)
(RMSE)

Figure 5. The holdout forecasting with training/test sets.

As most NDCs under the Paris agreement specify the year 2030 as the first deadline for emissions
reduction, we are particularly concerned with identifying the best predictive model within a pool
of seven candidates and subsequently using it for providing h = 12 steps ahead forecasts for GHG
emissions in the 12 top polluting countries, thus including this first deadline in the forecasting horizon.

R software is employed to implement the method and estimate the predictive models via automatic
forecasting algorithms, mainly included in the “forecast” package [59] and the “stats” package [60].

3.2.2. Robustness Checks

Forecasting accuracy: The forecasting accuracy of all candidate models for each of the 12 series is
assessed through estimating the root mean squared error (RMSE), as in [44,55]. This accuracy metric
brings the valuable benefit of being directly interpretable in terms of measurement units. RMSE
represents the square root of the mean square error, and thus is estimated by taking the differences
between each point forecast and corresponding observed value within the lead time, squaring it, and
averaging it, as in Equation (1):

-9)? )

RMSE, as many other Goodness-of-Fit (GoF) metrics, is referred to as scale-depen-
dent [61]. Within the scale-dependent category of GoFs, RMSE, and the mean absolute error (MAE)
emerged as the most popular. However, RMSE carries some benefits relative to MAE and is usually
the recommended metric [62], although it cannot be used to measure out-of-sample forecast accuracy
at a single forecast horizon [63] when multiple series of different measurement unit are analyzed. To
solve this issue, ref. [63] proposed a new GoF metric, MASE (the mean absolute scaled error), thus a
scale free error metric, which we also report in this study for robustness checks purposes. MASE is
thus estimated by taking the MAE and dividing it by the MAE of an in-sample naive benchmark, as in
Equation (2).

MAE 1&
MASE = == — @)
MAEinfsample,naive nizzl |YI YI|

The MASE metric is symmetrical and resistant to outliers, and values larger than 1 imply that
the predictions are, on average, poorer than the naive model’s in-sample one-step forecasts [63]. The
MASE would only be infinite or undefined if all historical observations were equal or if all of the actual
values throughout the in-sample period were zeros [64].
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The recursive window forecasting technique: To further assure the robustness of our results, all
estimations for the 12 time series are repeated by implementing one of the most popular techniques for
cross-validation, a fixed-length rolling-window forecasting technique.

As such, the dataset covers the training period set for the first S observations (i.e., 44 years) in
the sample, and a testing period of length N-S, where N is the total number of observations for each
country, i.e., 49. For each year n in the testing interval [S+1:N], or here [2014:2018], the GHG emissions
are predicted after the candidate models have been fit on the recursive window of S past observations.
This sequence is repeated recursively over the lead-time, and consequently a total of N-S iterations (5)
are performed for each of the 12 time series. Figure 6 illustrates this process applied for the current
investigation.

N (49) (1970-2018)

. o N—
-
I e

Recursive window of First year in the lead time (first
length § {44 years) GHG point forecasts produced)

Figure 6. The fixed-length recursive window out-of-sample forecasting technique.

3.2.3. The Predictive Models

Exponential Smoothing State Space Model (ETS): [65] extended the Exponential Smoothing (ES)
classical method and developed the exponential smoothing state space (ETS) model. The basic ETS
model contains two equations, respectively a forecast equation and a smoothing equation, which are
integrated into an innovation state space model. The estimation of the ETS model is fully automated
through the “forecast” package in R and, together with ARIMA models, is the base model for the most
popular automatic forecasting algorithms [66]. In this study, the system is instructed to automatically
select the error, type, and season, and to apply the corrected Akaike information criterion (AICc) for
model selection. Hence, following the terminology of [59,65], we specify the three-character string
identifying method as (Z,Z,Z).

The Holt-Winters Model (HW): The HW model was introduced in the late 1950s and early 1960s
by [67,68]. It applies three exponential smoothing formulae to the time series: to the mean, trend, and
each seasonal sub-series, respectively [69]. In this study, the estimation of the HW model for the 12
time series is automated through the “HoltWinters” function included in the “stats” package in R
software. It computes Holt-Winters filtering of a given time series, and identifies unknown parameters
by minimizing the squared prediction error.

TBATS Model (Exponential Smoothing State Space Model with Box-Cox Transformation, ARMA
Errors, Trend, and Seasonal Components): The TBATS model, which is capable of handling multiple
and complex seasonality has been introduced by [70]. The TBATS model is fit for the 12 time series
through the “forecast” package in R. The fitted model is identified as TBATS (omega, phi, <my,ki>, ...,
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<my,k;>), where omega is the Box-Cox parameter and phi is the damping parameter, my, ... , mj reflect
the seasonal periods, and ki, ..., kj are the corresponding number of Fourier terms used for each
seasonality. The Box-Cox parameter, the trend and the damping parameters are automatically selected
in our estimations by AIC.

ARIMA: ARIMA models constitute a popular statistical technique for time series forecasting that
is capable of describing the autocorrelations in the data. This study applies the automatic ARIMA
methodology provided through the “auto.arima function” within the “forecast” package for the R
software. As in [66], the function uses unit root tests, minimization of the AICc and MLE to return the
best ARIMA model, through a step-wise automated procedure.

Structural Time Series Models (STS): Structural time series models are (linear Gaussian) state-
space models for (univariate) time series based on a decomposition of the series into a number of
components [71]. STS models can be easily implemented in R through the function “StructTS” in the
“stats” package, as in [72]. This is automatically realized in this study for the 12 GHG time series by
maximum likelihood.

Neural network autoregression model (NNAR): The main predictive model of interest in this
study is NNAR, which provides the adaptability advantage by learning from the provided inputs and
training itself to optimize weights. Generally, a neural network autoregression model (NNAR) uses p
lagged values of the time series as inputs to a neural network with k hidden nodes, for forecasting the
output y(t). The model is thus usually specified as NNAR(p,k), and the hidden nodes are nonlinear
functions of the original provided inputs. The functions that are applied at the nodes of the hidden
layers are called activation functions. A more complex specification is needed when the data is seasonal,
and thus the model in this case is written as NNAR(p,P k), where P is the number of seasonal lags.

Figure 7 reflects the general structure of a neural network autoregression model, with its three
main layers: the first layer of the autoregressive neural network receives the lagged values of the series
(here GHG emissions) as inputs, then a linear combination of the weighted inputs are fed forward to
the hidden layer or layers of the network, and finally a nonlinear activation function modifies the result
from the hidden layer nodes which is then passed to the last output layer that contains a single node
representing the predicted value.

Input layer with

p nodes

yie=1) Hidden layer H with k

y(t-2) nodes) NN 0 7] 17| gpe——
H={weight matrix y(t)=f(H

[(p*k)] * input
vector} + bias vector

\_ /
|

NNAR

Y(E=P) s

Figure 7. General structure of the nonlinear autoregressive neural network (NNAR) with one hidden layer.
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In equation format, the NNAR model depicted in Figure 7 can be expressed as:

Y =f(H) = f(WxX+B),X=[y(t=1),y(t=2),...,y(t = p)] ®)

where Y is the output vector, f is the activation function, H is the vector of nodes in the hidden layer, W
represents the weight matrix between the input and the hidden layers, X is the vector of inputs, and B
is a bias vector.

In this study, the “nnetar” function within the R software “forecast” package is used to automati-
cally fit multilayer feed-forward mneural networks with a single hidden layer,
knodes and p lagged inputs, by automatically selecting parameters p and P through AIC. The algorithm
is also instructed to make 25 repetitions and to estimate the number of hidden notesas k = (p + P +
1)/2 (rounded to the nearest integer). As the initial weights at the input layer take random values and
are subsequently updated using the observed data, we follow best practices and train the network 25
times using different random starting weights, and then average the results. Based on previous results
(i.e., [51]), we expect NNAR models to out-perform other candidates in terms of forecasting accuracy
when applied for GHG emissions series.

3.2.4. The Conceptual Framework

For a clearer view of the implemented method, Figure 8 reflects the consecutive steps that have
been taken to estimate the alternative models and produce out-of-sample forecasts.

l Training set
. M1 l M2 | T M7
M1

| Parameter estimation/ diagnostic checking
J
l Testing set

Estimate errors/ Forecasting accuracy metrics
(RMSE, RRMSE, MASE)

Further robustness checks: alternative
forecasting technique (recursive window),
alternative forecasting horizons h)

Identify best
predictive model

Confirm forecasting
superiority (KSPA, DM

Entire Dataset

e Estimate best model, check in-sample fit, produce GHG forecasts

Figure 8. Sequential steps of the forecasting procedure.
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Next, Figure 9 puts together all building blocks of the research and gives on overview of the work
conducted.
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Figure 9. The conceptual framework of the study.

4. Results and Discussion
4.1. Empirical Results

Table 2 reports the RMSE for out-of-sample forecasting results at a horizon of h = 5 steps ahead
(covering the data test period, or 2014-2018) for the models described above, along with a “naive”
forecasting model, which predicts a flat line equal to the last observation in the training set. Although
no single model can provide the best forecast for GHG emissions at a horizon of five years, the NNAR
is over-performing within the pool of seven competing models. The same conclusion is extracted from
estimations of the second estimated GoF metric, MASE, which is reported in Appendix C. The overall
scoring given by the two metrics is identical. Consequently, when a decision should be made about
relying on a single predictive model for GHG emissions at the selected forecasting horizon, NNAR
emerges as the optimal choice. The STS comes in second in terms of the lowest RMSE, at a significant
distance, while other models are not able to provide competitive forecasts for the evolution of GHG
emissions in the 12 top polluting countries considered in this study:.
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Table 2. Forecasting accuracy (RMSE for out-of-sample forecasting at h = 5).

NNAR ETS ARIMA STS H-W BATS/TBATS Naive
China 241,141.3 1578,920.1 1,500,806.5 1,511,817.9 1,622,516.1 1,646,765.7 392,357.5
United States 145,181.9 153,472.8 16,6416.3 196,148.3 255,999.2 175,472.4 165,455.0
India 58,230.5 76,108.4 54,133.7 42,551.3 269,141.0 45,626.0 310,503.0
Russian Federation 32,264.24 57,429.15 43,193.64 54,974.53 66,939.67 52,285.81 62,813.95
Japan 51,971.29 74,274.37 89,904.26 98,164.92 94,184.98 94,746.37 53,984.63
Brazil 50,432.98 34,096.97 43,155.88 24,167.78 114,618.17 75,126.30 43,755.23
Indonesia 106,501.64 121,314.90 137,564.51 59,337.21 438,966.52 123,244.94 130,566.57
Iran, Islamic Rep. 8763.64 22,545.14 45,868.70 23,366.34 17,374.46 35,536.55 32,180.85
Germany 15,978.24 50,292.81 22,668.79 25,631.45 27,811.22 41,023.36 50,293.06
Canada 21,034.85 18,123.81 10,440.79 31,330.76 32,214.06 15,313.01 28,000.70
Korea, Rep. 15,875.00 23,220.19 20,179.04 23,187.95 45,057.87 27,507.61 26,638.77
Mexico 10,752.22 16,296.63 17,818.57 16,413.70 14,488.03 15,481.74 23,683.56
Score * 8 0 1 3 0 0 0
Score (%) ** 66.67% 0% 8.33% 25.00% 0% 0% 0%
Rank 1 4-7 3 2 4-7 4-7 4-7

Notes: * Score indicates the number of times the model outperforms the other candidate models in term of forecasting accuracy; ** Score
(%) indicates the percentage of outperformance (out of 12 iterations, or countries); Bold values underline the minimum RMSE across the
seven candidate predictive models for each country.

Table 3 reports the relative root mean squared error (RRMSE) results for the out-of-sample forecasts,
where the best performing forecasting model (i.e., NNAR) acts as a benchmark. Hence, the forecasting
performance of the neural network model is found to be 28% better than the ETS forecast, 19% better
than the ARIMA model, 14% better than STS, 54% better than Holt—Winters, 31% better than TBATS,
and 37% better than the naive model for forecasting GHG emissions in the 12 top polluters.

Table 3. RRMSE for out-of-sample forecasts of GHC emissions at h =5 (O = M1/M2).

NNAR/ETS NNAR/ARIMA NNAR/STS NNAR/H-W  NNAR/TBATS NNAR/Naive

China 0.15 0.16 0.16 0.15 0.15 0.61
United States 0.95 0.87 0.74 0.57 0.83 0.88
India 0.77 1.08 1.37 0.22 1.28 0.19
Russian Federation 0.56 0.75 0.59 0.48 0.62 0.51
Japan 0.70 0.58 0.53 0.55 0.55 0.96
Brazil 1.48 1.17 2.09 0.44 0.67 1.15
Indonesia 0.88 0.77 1.79 0.24 0.86 0.82
Iran, Islamic Rep. 0.39 0.19 0.38 0.50 0.25 0.27
Germany 0.32 0.70 0.62 0.57 0.39 0.32
Canada 1.16 2.01 0.67 0.65 1.37 0.75
Korea, Rep. 0.68 0.79 0.68 0.35 0.58 0.60
Mexico 0.66 0.60 0.66 0.74 0.69 0.45
Average 0.72 0.81 0.86 0.46 0.69 0.63
Score 10 9 9 12 10 11

Appendix B presents the graphical representation of the forecasting performance, showing the
NNAR model’s fit to the real test set data for the 12 countries. It can be seen that the NNAR model
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(despite its nonlinear nature) fails to precisely follow the complex real data dynamics behavior (due to
real data highly nonlinear characteristics) and in some instances (i.e., particularly for Brazil, Indonesia,
and Canada) is not able to accurately predict the trend over the testing interval.

Subsequently, applying the Kolmogorov-Smirnov (KS) Predictive Accuracy test (KSPA) proposed
by [54] and also the Diebold-Mariano (DM) test introduced by [55] and developed by [56] further tests
the over-performance of NNAR and contributes to assuring the robustness of results. The test identifies
significant differences between forecasts produced by NNAR and the second-best performing model
in each of the cases where NNAR emerged as the optimal model. In instances where NNAR is not
found to over-perform, the KSPA /DM tests are applied to identify the differences between forecasts
from NNAR and the specific optimal predictive model. As such, the forecast errors from NNAR and
competing forecasting models are introduced as inputs into the two-sided KSPA /DM tests, which are
then estimated to identify a statistically significant difference in the distribution of forecasts errors from
the two models.

Table 4 reports the results of the predictive accuracy tests for each pair of competing models and
each country, considering NNAR as the benchmark. When the two-sided predictive accuracy tests
statistic are significant at 1%, we can reject the null hypothesis and accept the alternate, thus confirming
that the forecast errors from NNAR and the other candidate model do not share the same distribution.
The KSPA and DM tests confirm for the vast majority of countries that the NNAR forecasting technique
provides superior forecasts in comparison to its competitor (the only exceptions are encountered
for estimations in the US and Germany). These findings align with those of [51]. In the instances
when NNAR is not the optimal model in terms of forecasting accuracies, the predictive accuracy tests
generally do not confirm the superiority of the competing model (i.e., for India, Brazil, Indonesia, and
Canada).

Table 4. Results of the KSPA and DM tests (p-values).

Country KPSA (p-Value) DM (p-Value)
China 0.07937 *** 0.04076 **
United States 0.1871 0.2182
India 1 0.4692
Russian Federation 0.07937 *** 0.0569 ***
Japan 0.0235 ** 0.0455 **
Brazil 1 0.1265
Indonesia 0.3571 0.4517
Iran, Islamic Rep. 0.0793 *** 0.0571 ***
Germany 0.3571 0.2092
Canada 0.8730 0.1067
Korea, Rep. 0.002057 * 0.03032 **
Mexico 0.0524 *** 0.0493 **

Note: * indicates a statistically significant difference between the distribution of forecast errors from the best and second best
performing models based on the two-sided HS test at a 1% significance level; ** denotes significance at 5%; *** denotes significance
at 10%.

Table 5 confirms the superiority of NNAR throughout further robustness checks, including re-

estimation at a forecasting horizon of 3 years and also re-estimation by employing the recursive window
forecasting technique, while holding h = 5.
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Table 5. Robustness checks: RMSE score of candidate models for holdout out-of-sample forecasting at h = 3 and
RMSE for recursive window forecasting at h = 5.

NNAR ETS ARIMA STS H-W TBATS Naive
Score (h = 3, holdout)/Rank 8/1 0 1/3 3/2 0 0 0
Score (h = 5, recursive window) 10/1 0 2/2 0 0 0 0

In the last stage of this investigation, the over-performing predictive model (i.e., NNAR) is fitted
to the entire dataset and further employed to produce point forecasts for GHG emissions in the 12
countries for the 2019-2030 period (i.e., h = 12). We should also mention that the in-sample fit has
been verified by estimating the Ljung-Box test to check the residuals for any significant evidence of
non-zero correlations at lags 1-20. Test results confirm that all models are correctly specified. We thus
confidently proceed with a discussion of forecasting results.

Table 6 contains the point forecasts in absolute terms, whereas Table 7 reflects the percentage
change relative to the last year with available data within the dataset (i.e., 2018). On average, results
indicate a continuation of the current increasing trend of GHG emissions produced by top polluting
countries’ in the next decade. Therefore, the NNAR model predicts that top polluters countries will see
an overall increase of 3.67% in GHG emissions relative to 2018 levels, although significant disparities
are identified among individual countries. Thus, in relative terms, the projections translate into a
22.75% increase for Brazil, a 15.75% increase for Indonesia, and 7.45% for India. The only countries that
are projected to decrease polluting emissions are Canada (—5.57%), Russian Federation (—3.01%), the
US (—0.76%), and China (—0.89%), although total GHG emissions remain in the upper decile and fall
well behind set pledges.

Table 6. Total GHG emissions in top polluting countries, kt of CO, tons (forecasted values for 2019-2030).

Year Point Forecast * China Point Forecast US Point Forecast India Point Forecast Russian Federation
2019 12,309,920 6,016,766 3,431,213 2,557,312
2020 12,283,414 6,010,620 3,476,984 2,543,205
2021 12,267,808 6,005,139 3,513,591 2,513,877
2022 12,258,584 6,000,273 3,542,441 2,483,813
2023 12,253,120 5,995,972 3,564,909 2,462,427
2024 12,249,879 5,992,186 3,582,242 2,451,886
2025 12,247,954 5,988,863 3,595,515 2,449,864
2026 12,246,812 5,985,956 3,605,621 2,452,769
2027 12,246,133 5,983,420 3,613,282 2,457,491
2028 12,245,729 5,981,212 3,619,069 2,461,957
2029 12,245,489 5,979,295 3,623,431 2,465,131
2030 12,245,347 5,977,633 3,626,711 2,466,778
Point Forecast Japan Point Forecast Brazil =~ Point Forecast Indonesia Point Forecast Iran
2019 1,192,158 1,076,958 1,076,732 823,679.7
2020 1,196,957 1,121,942 1,209,626 820,617.5
2021 1,201,228 1,163,625 1,307,557 818,561.4
2022 1,205,024 1,198,314 1,221,594 817,172.9
2023 1,208,393 1,224,208 1,235,139 816,231.7
2024 1,211,380 1,241,788 1,472,859 815,592.0
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Table 6. Cont.

Year Point Forecast * China Point Forecast US Point Forecast India Point Forecast Russian Federation
2025 1,214,023 1,252,892 1,462,027 815,156.5
2026 1,216,360 1,259,567 1,380,622 814,859.6
2027 1,218,422 1,263,456 1,391,117 814,657.1
2028 1,220,240 1,265,679 1,339,545 814,518.9
2029 1,221,841 1,266,936 1,253,736 814,424.5
2030 1,223,250 1,267,643 1,119,400 814,360.0
Point Forecast Germany  Point Forecast Canada  Point Forecast Korea Point Forecast Mexico
2019 818,123.0 685,765.5 719,072.9 682,001.7
2020 825,845.8 684,968.0 719,233.5 683,925.4
2021 830,972.1 684,929 .4 719,367.3 685,666.7
2022 834,448.5 684,927.5 719,478.7 687,240.6
2023 836,839.9 684,927 .4 719,571.4 688,661.3
2024 838,500.6 684,927 4 719,648.6 689,942.2
2025 839,661.5 684,927 .4 719,712.9 691,095.8
2026 840,476.8 684,927 .4 719,766.4 692,133.6
2027 841,051.1 684,927 4 719,810.9 693,066.5
2028 841,456.6 684,927 .4 719,848.0 693,904.4
2029 841,743.4 684,927 .4 719,878.8 694,656.3
2030 841,946.4 684,927 .4 719,904.5 695,330.8

* all numbers represent total GHG emissions measured in kt of CO5.

Table 7. Predicted change in GHG emissions in top polluting countries over 2019-2030.

Country GHG %
China —0.89
United States —0.76
India 7.45
Russian Federation —3.01
Japan 3.07
Brazil 22.75
Indonesia 15.75
Iran, Islamic Rep. —1.68
Germany 4.45
Canada —5.52
Korea, Rep. 0.14
Mexico 227
Average growth of GHG until 2030 3.67%

4.2. Discussion of Results

Among all tested models for predicting GHG emissions in the 12 top polluters, the neural network
autoregressive model has illustrated the best forecasting performance. This in line with [34,51] who
reach the same conclusion from forecasting a similar time series (i.e., CO, emissions) in a single country,

84



Electronics 2021, 10, 3149

and support those of [49], thus confirming that artificial neural networks (ANN) are useful in time
series modeling when past values of a variable are used as inputs to explain its future values.

Consequently, similar to the approaches of the aforementioned studies, we issue forecasted
values for total GHG emissions in the 12 countries by using the neural network time series nonlinear
autoregressive model (NNAR). Overall, we find that both the recent evolution of total GHG emissions in
top polluting countries and also future projections of emissions fall significantly below what is needed
to achieve set climate goals. Emissions have seen massive increases in Korea, China, and Iran over the
1970-2018 period, due to the rapid economic growth, poverty eradication, and substantial integration
into global value chains that characterized these economies over the period [73-76]. However, GHG
emissions are projected to increase most in Brazil, Indonesia, and India over the 20192030 interval.
Our findings conform to those that emerge from a recent study of the International Energy Agency [16],
which shows that polluting emissions have increased in 2020 as economic activity increased toward
the middle of the year, but deviate from the projections of the European Environment Agency [13]
concerning the EU country included in the study (i.e., Germany).

However, whereas emissions have continued to increase since 2015 (recording an overall 3.4%
increase at the world level and 3.23% increase among the global top 20 polluters), the Paris Agreement
requires yearly cuts of almost 8% on average at world level to reach the global warming threshold of
1.5 degrees Celsius [15]. Moreover, ref. [77] find that emissions reductions about 80% more ambitious
than those in the Paris Agreement are required to stay within the 2 degrees target, thus highlighting
that set global warming targets are even more out-of-reach than previously considered. Ref. [78] also
confirm that the current commitments are inadequate to meet temperature targets. Projections of future
GHG emissions that emerge from our study confirm that no country is expected to meet its NDCs
under the Paris agreement, which in turn are nonetheless inadequate in the context of limiting global
warming. Given this finding, and considering the catastrophic impact of pollution on public health
variables [28,29], including mortality rate [30,31], the current trend is particularly troublesome, and
significant efforts should be directed toward its reversal.

Our findings further highlight that more impactful policies are needed to successfully combat
global pollution. Considering previous results in the literature that indicate a negative relationship
between renewable energy and polluting emissions [79-85]), we argue that countries, especially top
GHG emitters, should use the recovery funds available in the aftermath of the global COVID-19
pandemic and prioritize sustainable energy policies. This is also in line with the conclusion of [21].

Moreover, given that the bulk of global greenhouse gas emissions has historically come from a few
countries, and that this situation is expected to continue for the foreseeable future, the logical solution
should be to encourage particular nations in implementing specific GHG reduction targets, rather than
issuing global policies that cover the entire spectrum of economies. Consequently, the small number of
nations that causes a global problem with systemic effects, in particular, must issue and implement
ambitious low-carbon policies. We take a similar view to [86], who suggest that although average
global reductions are expected, advanced economies should contribute more in terms of emissions
reduction, considering their historical contribution to world pollution.

5. Conclusions

Greenhouse gas emissions (GHG) have risen significantly for the past 49 years at the world level.
However, enormous disparities are encountered among individual countries, both in terms of absolute
GHG emissions values and in terms of their rhythm of growth over the 1970-2018 period. On an
absolute basis, China, the United States, and India are the three largest emitters. Together, they account
for 48% of 2018 global GHG emissions. The 12 most polluting countries produce overall around three
quarters of total GHG emissions at the world level, while the other 163 countries included in the
analysis are responsible together for 26% of total greenhouse gas emissions in 2018. This underlines
that a minority of countries create a global problem with systemic consequences and further motivates
our focus on the 12 top emitting countries in our investigation.

The primary objective of this study is thus is to produce more accurate forecasts of GHG emissions.
This in turn contributes to the timely evaluation of the progress achieved towards meeting global
climate goals set by international agendas and also acts as an early-warning system when projections
show that the state of affairs does not reflect policy statements and formal pledges are not followed
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by concrete measures and results. Results of this study are also important for policymakers that
incorporate forecasts of polluting emissions in their policy-making process. A policy can only be
efficient if it is developed based on robust input elements. Consequently, an accurate estimation of
GHG emissions in top polluting countries is not only paramount for an effective policy-making process
in the climate combat arena but will also play a vital role in planning economic developments over
the long run. The issue is timely, as countries have to pursue post-pandemic economic recovery while
bending the emissions trend.

As such, this paper attempts to forecast the evolution of GHG emissions in the world top polluters
by employing seven statistical and machine learning methods, such as the exponential smoothing
state-space model (ETS), the Holt-Winters model, the TBATS model, ARIMA, the structural time
series model (STS), and the neural network time series forecasting method (NNAR). A naive model
is also estimated and serves for comparative purposes. In particular, the study takes a univariate
approach that offers the important advantage of producing forecasts for a validated leading indicator
independent of other variables, aside from increasing efficiency. The results demonstrate that the
best single model in terms of forecasting accuracy for GHG emissions is NNAR, and this finding
resists a battery of robustness checks (including re-estimations at different forecasting horizons and
re-estimation by implementing a recursive window forecasting technique). Consequently, the NNAR
model is further employed to produce GHG emissions point forecasts for the 12 top polluting countries
until 2030, i.e., until the first benchmark under the Paris agreement.

Although total GHG emissions were expected to decline sharply in the aftermath of the 2015 Paris
agreement and to continue a decreasing trend over the next decades, empirical results indicate that top
polluters will see an overall increase of 3.67% in GHG emissions relative to their 2018 levels. However,
significant disparities remain among individual countries. Projections from the NNAR model at the
2030 forecasting horizon point to a 22.75% increase in GHG total emissions in Brazil, a 15.75% increase
in Indonesia, and 7.45% in India. Decreases in GHG total emissions are expected in Canada (—5.57%),
the Russian Federation (—3.01%), the US (—0.76%), and China (—0.89%), although they remain in the
upper decile. More importantly, GHG projected levels fall well behind set pledges for all top polluting
countries and none of the 12 sample economies is expected to meet its NDCs under the Paris agreement.

Overall, this study makes several important contributions to the extant literature, as follows: (i) it
employs a wider variety of candidate predictive models for polluting emissions, including econometric
and machine-learning methods, and also performs a battery of robustness checks to defend its findings;
(ii) it employs a more accurate indicator for air pollution, thus increasing the relevancy of its results;
(iii) it focuses on the 12 most polluting countries that are together responsible for around 75% of
total GHG emissions at world level, thus further increasing the relevancy of the findings relative to
single-country /narrower studies.

We conclude that country-specific policies would be more efficient to tackle global pollution than
the global approach that is currently being implemented. In addition, a country-specific approach
is only fair, given the enormous historical disparities in terms of individual countries’ contributions
to world pollution, which are expected to persist. Moreover, public policies and the recovery funds
directed toward post-pandemic economic recovery should target sustainable energy production and
consumption, which in turn mitigate polluting emissions.
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Appendix A
Table A1l. Variables’ notations and definitions.
Variable Definition
Y;(t) real GHG time series data for 12 countries,i=1... 12and t=1, ... ,49.
N the length of each time series, i.e., 49 (annual data over 1970-2018 for each of the 12 countries,
i=1...12)
S S; is the last observation in the training interval for each time seriesi,i=1... 12, and represents

the forecasting origin

Training data set

[1;S]

Testing data set

[S+ 1:N]

{1, ..., ys}

the observations in the training data set

{Ys+1, Ys+2, -+, Yn}

the observations in the test data set

9i(t) = Yijm (t)

the 84 (i.e., 7 x 12) forecasted time series from the seven models for each country over the testing
period, i.e., yi]-m(t), i=1...12,t=5+1,...,49,j={M1,M2, ..., M7}, m-model

Mj,j = {My, My, ..

., My}

The 7 predictive models:

the exponential smoothing state-space model (ETS),
the Holt-Winters Model (HW),

the TBATS model,

the ARIMA model,

the structural time series model (STS),

the neural network autoregression model (NNAR)),
7. the naive model

AL .

Naive model

A naive forecast is the most recently observed value, such that the k-step-ahead naive forecast
(Fit4x) equals the observed value for country i at time ¢ F;(f + k) = y;(t)

ejjm (t)

The 84 vectors of forecast errors representing the difference between an observed value and its
point forecast over the testing period for each country, such as: e;j, () = y;(t) — ;(t),i=1... 12,
t=5+1,...,49,andj={M1,M2,... , M7}
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Appendix B. NNAR Fit to the Test Set Data for the 12 Countries
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Appendix C. Forecasting Accuracy (MASE for Out-of-Sample Forecasting at h = 5)

Table A2. Forecasting Accuracy (MASE for Out-of-Sample Forecasting at h = 5).

NNAR ETS ARIMA STS H-W BATS/TBATS
China 0.55 3.45 1.33 243 3.95 4.67
United States 0.84 0.95 0.98 1.22 1.33 1.03
India 1.04 1.20 0.88 0.69 424 0.81
Russian Federation 0.36 0.45 0.38 0.47 0.95 0.36
Japan 0.94 1.64 2.24 3.78 3.08 3.05
Brazil 1.07 0.25 1.27 0.22 1.85 1.67
Indonesia 0.32 0.33 0.60 0.23 1.27 0.47
Iran, Islamic Rep. 0.36 1.15 2.05 1.38 0.94 1.52
Germany 0.45 1.74 0.72 0.74 1.73 1.73
Canada 0.50 0.39 0.29 0.98 1.03 0.30
Korea, Rep. 0.75 1.48 1.20 1.31 1.87 1.42
Mexico 0.49 0.77 1.15 0.90 0.61 0.75
Score * 8 0 1 3 0 0
Score (%) ** 66.67% 0% 8.33% 25.00% 0% 0%
Rank 1 4-7 3 2 4-7 4-7

Notes: * Score indicates the number of times the model outperforms the other candidate models in term of forecasting accuracy; ** Score
(%) indicates the percentage of outperformance (out of 12 iterations, or countries); Bold values underline the minimum MASE across the
seven candidate predictive models for each country.
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Abstract: In this work, a virtual sensor for PM;( concentration monitoring is presented. The sensor
is based on wavenet models and uses daily mean NO, concentration and meteorological variables
(wind speed and rainfall) as input. The methodology has been applied to the reconstruction of
PMjq levels measured from 14 monitoring stations in Lombardy region (Italy). This region, usually

affected by high levels of PMy, is a challenging benchmarking area for the implemented sensors.

Neverthless, the performances are good with relatively low bias and high correlation.

Keywords: virtual sensors; wavenet; air quality

1. Introduction

Exposure to high levels of particulate matter (PM;) is a big social problem [1] due
to its impacts on human health, with effects including pulmonary and cardio-vascular
diseases [2,3]. One of the main challenges in decision making related to PM;g control
is that, usually, win—win solutions that also consider other pollutants, such as nitrogen
oxides (NO3) and ozone (O3), are complex to identify and implement [4-7]. For this
reason, having detailed information about the level of all of the significant air pollutants
over a certain area is a key issue in decision-making processes. In this context, the use
of integrated information coming from regional networks and novel/private networks
supported by low-cost technology [8,9] has become more and more important, which
has been mainly due to the fact that they can provide suitable information for chemical
transport models (CTMs), allowing them to compute concentrations far away from the
official monitoring network stations [10-12].

In principle, four main techniques for the measurement of PM; are presented in
literature [13]: (1) gravimetric analysis of pumped and filtered particles; (2) tapering
element oscillating microbalance (TEOM); (3) beta-attenuation; (4) light scattering. The
first three of these techniques are quite expensive, so their use is limited to regional
authorities, private companies and research groups [13]. Light scattering, instead, is a
relatively low-cost technique, but it is often affected by consistent biases [14].

The objective of this work is to evaluate the possibility of implementing a virtual
sensor for PM;( daily mean concentration starting from the data measured by sensors
detecting other pollutants and meteorological variables. In particular, the virtual sensors
applied in this work are based on NO, daily mean concentration and meteorological
variables, such as wind speed, rainfall, relative humidity and temperature.

As indicated by the name, virtual sensors can be broadly described as a software
that allows us to compute the value of a certain variable without direct measurement
considering measurements that are physically/chemically related to the variable that
should be reproduced [15]. They assume a key role when it is not possible to place a
physical sensor due to any kind of limitations (e.g., unreachable position, high cost). There
are two possible approaches to virtual sensor implementation:
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1.  Data-driven: in this approach, time series of input and output variables are collected
from direct measurement and are used to compute a mathematical, approximated
relationship between the measured variables” and sensors’ output [16];

2. Deterministic: in this approach, the (eventually approximated) physical/chemical
relationships among input and output variables are used to compute the unmeasured
variable through the virtual sensor [17].

This work presents a data-driven approach based on wavenet models to implement
a PMj virtual sensor using NO, and meteorological variables. All these variables are
strictly related to the phenomena involved in the formation and accumulation of PMyg
in atmosphere; their choice is due to the presence in the literature of low-cost sensors
with performances that are adequate [18] enough to identify a virtual sensor, therefore
allowing the definition of a low-cost PMjy measuring network. Wavenets are data-driven
models resulting from the integration of wavelet theory and neural network models [19].
Their main applications are related to sound management/filtering [20], even if their
nonlinear function approximation (and thus forecasting) properties have been applied
with good results also in other fields such as energy systems [19,21]. These approximation
properties make them suitable for environmental monitoring and forecasting applications,
but still, there is no literature related to their application to reproduce PM;j, or other
air quality pollutants. Therefore, since artificial neural networks are widely used in this
field [4,22,23], wavenets could also be useful for the definition of a PMg virtual sensor.
The paper is organized in two main parts, a methodological one (Section 2) where the
basics of the artificial neural network, wavelet theory and wavenets are introduced and a
second part presenting the evaluation of the results on a test case.

2. Materials and Methods

In this section, the theoretical framework used to derive a virtual air quality sensor
based on wavenets [24] is presented.

2.1. Artificial Neural Networks

Artificial Neural Networks (ANNSs) are functions approximating human brain behav-
ior, considered as a network of smaller units, called neurons, representing the information
processing unit (Figure 1).

k2

&y

L4

Figure 1. Typical neuron model.

Each input x; of the network is multiplied by a corresponding weight w;, analogous
to a synaptic force; then all the weighted inputs are added together, including also a bias
b term in order to compute the activation level x of the neuron. The output signal y(x) is
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usually a nonlinear function f(x) of the activation level. Hence, the typical neuron model
is represented as (1):

d
y(x) = f(Z xj X wi + b) (1)
=

where d is the length of the input vector.

The approximation capacity of a single neuron is quite limited; to overcome this, they

are collected in layers sharing the same input. The final structure of a neural network is
obtained by connecting several layers, as in the case of the two-layer feedforward neural
network in Figure 2.

Figure 2. Two-layer feedforward neural network structure.

In this case, the output y(x) can be computed as:
y(x) = g(LW x f(IW x x + 1) + bp) (2)

where y(x) € R™ is the output of the network, x € R? is its input vector, f : RY — R and
g : R™ — R™2 are the activation functions of the hidden and output layers, respectively, and, finally,
m1 and m?2 are the lengths of the activation function output and the neural network output. The bias
terms by, by € R™ and the weight matrices IW € R"™*? and LW € R"2*"! are computed during
the training phase. Even if the number of layers of an artificial neural network can be higher than 2,
following the proof of the Cybenko approximation theorem, and in order to limit the complexity of the
network, in real applications only a two layers neural network is used [25].

2.2. Wavelets and Wavenet Models

Wavelets are a family of orthonormal basis functions that can be used to perform transformations
among spaces. Their use ranges from function approximation to audio compression [26-28]. The
wavelet approximation theory is strictly related to multi-resolution analysis [26]. In this context, a
function h(x) can be approximated using the so-called wavelet (mother) and scaling (father) functions,

as:
Z C]o 47]0 k(x) + Z Zd ll]]f 3)

j=Jo
where:

*  ¢j (k) are the scaling coefficients;

e dj(k) are the details (wavelet) coefficient;

* ¢, x(x) is the selected scaling (father) function family;
*  ¢;x(x) is the selected wavelet (mother) function family.
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The computation of the scaling and wavelet coefficient is strongly connected to the selected
wavelet family (considered as the couple wavelet/scaling functions). Up to now, a number of different
functions has been considered and are currently used. More details about wavelet transformation can
be found in [26-28].

Wavenets (wavelet networks) [24] can be considered as a one hidden layer network with wavelets
as activation functions. In particular, the wavenet output Y (x) for an input x € R? can be computed as:

Y(x) =WN(x) = (x —r)G+
nsasi bs i((x =7)Q —cs
T ip(bsi((x =7)Q — ¢ i)+ @

Ny

+ Zl aw_jl/](bw_j((x - V)Q - Cs_j)
j=

where ¢(z) = ¢ 07, z = b, ;((x — r)Q — ¢ ; is the scaling function, ¢(t) = (m —t-/)e 05t
t = by j((x —7)Q — cs_j) is the wavelet function, x € R'*? is the row vector input of the wavenet,
as i, bs i, 0y i, by i 7 € R G e R™1 and Q € R are the parameters to be computed during the
training.

The comparison between Equations (2) and (4) shows that the wavenet can be considered as a
neural network with the function:

=[5 ®

as the activation function of the hidden layer.
When the phenomena to model with the wavenet is dynamical, the wavenet is feeded by an input
vector x(t) that is the output of a time delay phase:

up (t)
up(t—1)
ul(t: ny)
x(t) = (6)
U (1)
Uy (t—1)
[t — 1)

where u7...u,, are the variables selected to compute the output y(#) of the overall system. In this work,
since the PMyg formation, accumulation and removal are clearly dynamical processes, the system
structure presented in Figure 3 is used.

up(t)
up(t—1)

uy (t—mny)

x(t) =
(1)

Uy (t—1)

Uy
) Lttm (£ — 1) |
INPUT Al
DELAYS > WAVENET > y()
Um
—>

Figure 3. Wavenet structure.
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3. Results and Discussion
3.1. Case Study and Dataset Definition

The aim of this work is the definition of a virtual sensor to compute PM;, daily average concen-
trations starting from the measured data of daily average NO, concentration and the measured values
of two meteorological variables: average daily wind speed WS, total daily rainfall RF, average daily
relative humidity RH and average daily temperature T. The selection of NO; as the input variable is
due to the fact that its levels are strongly related to PMj, ones, as they shared some emission drivers
(i.e., road traffic, domestic heating) and chemical paths (i.e., formation of secondary inorganic aerosol
starting from the ammonium nitrates). On the other hand, the selected meteorological variables can
be related to general deposition or dispersion conditions (mainly rainfall and wind speed) or to the
formation of secondary aerosol by condensation. Thus, the Y(x) in Equation (4) is the dailyPM;
concentration computed by the model, which is referred to as nPMjg(x) from now on. Moreover, the
input x of the wavenet function is time dependent, so x = x(t), and it includes both NO; concentrations
and meteorological variables for the day t and the previous days, as in:

NO;(t)
NOs(t — 1)

NO,(t - nno,)

WS(t)
WS(t—1)

WS(t: nws)
RE(H)
xp=| RV @)
RF(t — ngr)

RH(#)
RH(t — 1)

RH(t: nRH)
T(1)
T(t—1)

L T(t—n1)

In order to test the presented methodology, a series of models has been trained and validated to
reproduce the PM;( daily mean concentrations starting from different input measured by the Lombardy
region monitoring network. The work has been tested using data measured by 14 monitoring stations
belonging to the Lombardy region (Italy) monitoring network (Figure 4).

More in detail, the data from year 2019 have been used (365 x 14 = 5110 available raw data tuples).
The performance evaluation for the different models has been performed using a leave-p-out approach
with p = 4. Following this approach, 100 tests have been performed for each model configuration, with
10 stations being used for the identification, and the data for p = 4 being randomly selected as stations
queued in order to define the metastation used for the validation.
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@ Air Quality stations

Figure 4. Domain and measuring stations.

3.2. Configuration Tests

In order to evaluate the capability of the methodology presented in Section 2 to compute PMjg
concentrations, all the possible configurations among the input variables have been considered, and
the relative models PMj;y = WN(x) trained.

In principle, the different configurations can be grouped into three categories:

e  Configurations including only NO; concentration as input;
e Configurations including only meteorological variables as input;
¢  Configurations including both NO, concentrations and meteorological variables as input.

For each test, an analysis of the memory of the systems, i.e., an evaluation of the performances
of varying nno,, "ws, nrr, "ry and nt, has been performed. On the basis of the knowledge of the
phenomena related to the formation of PMjy in atmosphere, a maximum value of 5 days can be
considered for these parameters. Each model has been evaluated on the basis of the following three
different statistical indexes:

¢ Normalized Root Mean Squared Deviation:

\/Z;il(PMlo(t)—PMw(t))z
NRMSD = n

PMig —PMig"
*  Root Mean Squared Error
RMSE — \/DTzl(PMlo(g}*PMlo(t))z
e  Correlation Coefficient
i1 (PMio(t)—pipayy ) (PMio (1) —pipyy. )
V Z (PMio () =ppanyg )2\ /T (PR () —ppg, )2
where PM(t) and PMy(t) are, respectively, the t-th values of the model output and of the validation

dataset, and jipy; -and pipp,, are their mean values. From the huge set of performed tests, only the
best-performing ones are presented in this context, in particular for the combination of multiple input.

Correlation =

3.3. Validation Results
3.3.1. Models with NO; as Input

This first class of models includes only NO, daily mean concentrations as input. This is due to the
fact that PMyy and NO,

concentrations are generated by several common emitting activities (i.e., road transport) and
that the secondary inorganic fraction of PMjg is composed, in part, of nitrates, in particular ammonia
nitrate, whose formation depends on the NO, concentration in atmosphere. Table 1 highlights that the
performances are quite good in terms of correlation, with values around 0.74, and acceptable in terms
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of root mean square error, with a normalised root mean standard deviation (allowing one to compare
the root mean square error with respect to the overall variability of the output time series) around 0.1.

From these results, it is clear that an increase in the memory of the system does not lead to
significant impacts on the performances and on the behavior of the model. The negligible increase in
performances for the test with ny0, = 4 does not justify the increasing number of parameters. Table
2 shows the performances for the same configurations for the part of the time series where PMy
concentrations higher than 30 g/ m?> have been measured. The table states that the model has strong
difficulties in reproducing high concentrations, as highlighted by the strong decrease in statistical
indexes.

3.3.2. Models with Meteorological Variables as Input

The second class of models considers only the meteorological variables as input. These tests
allow an assessment of the relative “importance” between meteorology and NO, concentration for the
computation of PM; levels. Tables 3 and 4 show poor performances, with the limited exception of the
cases with temperature T as input. Thus, the performances suggest that the meteorological conditions
alone are not enough to estimate PM;y concentrations, and, so, they may be at best used to increase the
performances in addition to the NO; concentrations.

Table 1. NO; input configuration performances.

X = {NOz}

I’INO2 =1

correlation 0.723
RMSE 10.896
NRMSD 0.1101
nNo, = 2

correlation 0.722
RMSE 10.927
NRMSD 0.1104
1’1NO2 =3

correlation 0.732
RMSE 10.764
NRMSD 0.1087
nNOZ =4

correlation 0.733
RMSE 10.743
NRMSD 0.1085
1/lNo2 =5

correlation 0.742
RMSE 10.575
NRMSD 0.1068
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Table 2. NO, input configuration performances for PMyy > 30 pug/m°.

X = {NOz}

T’INO2 =1

correlation 0.39

RMSE 11.531

NRMSD 0.1696

TINO2 =2

correlation 0.39

RMSE 11.481

NRMSD 0.1688

nNO, = 3

correlation 0.41

RMSE 11.390

NRMSD 0.1675

nNoz =4

correlation 0.40

RMSE 11.412

NRMSD 0.1678

1”lNo2 =5

correlation 0.40

RMSE 11.444

NRMSD 0.1683

Table 3. Meteorological input configuration performances.

x={WS} x={RF} x={RH} x={T} x={RH,T}
nws = 1 NRr = 1 NRy — 1 nr = 1 nRH,T =1
correlation 0.33 0.10 0.150 0.461 0.47
RMSE 16.733 16.622 16.380 14.807 14.736
NRMSD 0.1690 0.1679 0.1655 0.1496 0.1488
leszz TIRFZZ I’ZRHZZ TITZZ I’ZRH,TZZ
correlation 0.37 0.18 0.185 0.494 0.50
RMSE 16.723 16.486 16.132 14.551 14.469
NRMSD 0.1689 0.1665 0.1630 0.1470 0.1462
nws =3 nrp =3 nryg =3 ny =3 nruT =3
correlation 0.37 0.23 0.171 0.503 0.52
RMSE 16.899 16.283 16.176 14.467 14.385
NRMSD 0.1707 0.1644 0.1634 0.1461 0.1453
nys =4 nrrp =4 nry =4 ny = nrpyT =4
correlation 0.38 0.27 0.190 0.513 0.513
RMSE 16.912 15.9010 16.085 14.347 14.474
NRMSD 0.1708 0.1606 0.1625 0.1449 0.1462
nws =5 NRr =5 T’ZRHIS nT:5 HRH/TIS
correlation 0.339 0.30 0.183 0.514 0.52
RMSE 16.846 15.730 16.126 14.348 14.419
NRMSD 0.1701 0.1588 0.1629 0.1449 0.1456
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Table 4. Meteorological input configuration performances for PMyy > 30 pg/m°.

x={WS} x={RF} x={RH} x={T} x={RH,T}

leszl TIRle I’ZRH:1 TIT:1 HUT:1
correlation 0.19 0.079 0.15 0.35 0.32
RMSE 12.711 12.517 12.296 11.732 11.889
NRMSD 0.1869 0.1841 0.1808 0.1725 0.1748

HWS:Z TIRFZZ I’ZRHZZ TITZZ I’ZUTZZ
correlation 0.196 0.153 0.18 0.40 0.43
RMSE 12.862 12.425 12.231 11411 11.263
NRMSD 0.1891 0.1827 0.1799 0.1678 0.1656

TlW5=3 an:3 nRH:3 TlT=3 HUT=3
correlation 0.185 0.212 0.20 0.43 0.40
RMSE 12.935 12.272 12.193 11.220 11.536
NRMSD 0.1902 0.1805 0.1793 0.1650 0.1696

i’lWS:4 VLRP:4 TZRH:4 VLT:4 T’ZUT:4
correlation 0.24 0.210 0.17 0.44 0.42
RMSE 12.926 12.272 12.284 11.190 11.388
NRMSD 0.1901 0.1805 0.1806 0.1646 0.1675

nws:5 an:5 T’ZRHIS nT:5 T’ZUTIS
correlation 0.192 0.220 0.20 0.44 0.45
RMSE 12.979 12.244 12.178 11.164 11.193
NRMSD 0.1909 0.1801 0.1791 0.1642 0.1646

3.3.3. Models with NO; and Meteorological Variables as Input

The last class of models considers both the meteorological variables and the NO, daily mean
concentration as input in order to evaluate if the joint use of these information sources leads to an
increase in the performances. Table 5 presents the results with NO, concentrations coupled to a
meteorological variable at a certain time. The performances are in line with that of the models with
only NO, as an input. Moreover, the combined use of more than one meteorological variable did not
lead to a consistent increase in performance (Tables 6-8). The only slight improvement can be seen
for high concentrations when the temperature is used as input (Tables 9-12), but also, in this case, the
performances seem not to be good enough (correlation coefficient close to 0.52) in the preproduction of
the peaks. These results suggest that, to reproduce mean PMjg levels in this domain, only the NO;
concentrations should used, thus relying on cheaper sensors. Nevertheless, a bond in the performances
exists, which did not allow the reconstruction of peak concentrations.
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Table 5. NO; and one meteorological variable input configuration performance.

X = {NOz,WS} X = {NOz,RF} X = {NOz,RH} X = {NOz,T}
nNo,ws =1 nNO,RF = 1 nNO,RH = 1 nNo, T =1
correlation 0.69 0.72 0.71 0.72
RMSE 11.285 10.987 10.969 10.808
NRMSD 0.1139 0.1109 0.1108 0.1092
NNO,Ws = 2 NNO,,RE = 2 NNOy,RH = 2 nNO, T = 2
correlation 0.70 0.73 0.72 0.73
RMSE 11.207 10.796 10.916 10.672
NRMSD 0.1132 0.1090 0.1103 0.1078
nNO,Ws = 3 nNO,,RF = 3 NNOy,RH = 3 nNO, T =3
correlation 0.71 0.73 0.72 0.73
RMSE 11.042 10.735 10.890 10.669
NRMSD 0.1115 0.1084 0.1100 0.1078
nNo,ws = 4 nNO,,RF = 4 nNOy,RH = 4 nNo, T =4
correlation 0.71 0.731 0.72 0.74
RMSE 11.007 10.670 10.906 10.543
NRMSD 0.1111 0.1077 0.1102 0.1065
nNO,Ws =D NNO,,RF =D NNOy,RH = D nNO, T =5
correlation 0.711 0.741 0.71 0.73
RMSE 10.950 10.500 10.954 10.716
NRMSD 0.1106 0.1060 0.1106 0.1082
Table 6. NO; and two meteorological variable input best configuration performances.
x = {NO,, x = {NO,, x = {NO,, x = {NO,, x = {NO,,
WS, RF} RH, T} WS, T} RF,RH} RF, T}
NNO,WS,RF = 1 nNOy,RH,T = 1 nNo,ws,T =1 NNO,,RE,RH = 1 nNO,,RET = 1
correlation 0.70 0.72 0.70 0.72 0.73
RMSE 11.132 10.859 11.103 10.870 10.768
NRMSD 0.1124 0.1097 0.1122 0.1098 0.1088
1NO,,WS,RF = 2 1NO,,RH,T = 2 NNO,WS,T = 2 NNO,,RF,RH = 2 INO,,RE,T = 2
correlation 0.72 0.73 0.69 0.725 0.73
RMSE 10.844 10.743 11.385 10.748 10.725
NRMSD 0.1095 0.1085 0.1150 0.1086 0.1083
1NO,,WS,RF = 3 NNO,y,RH,T = 3 nNO,WS,T = 3 NNO,,RF,RH = 3 INO,,RE,T = 3
correlation 0.711 0.73 0.72 0.72 0.73
RMSE 10.945 10.690 10.945 10.837 10.690
NRMSD 0.1105 0.1080 0.1106 0.1095 0.1080
nNO, WS,RF = 4 NNO, RH,T = 4 nNo,ws,T =4 NNO, RF,RH = 4 nNO, RF,T = 4
correlation 0.72 0.72 0.73 0.71 0.73
RMSE 10.803 10.849 10.823 10.965 10.752
NRMSD 0.1091 0.1096 0.1093 0.1108 0.1086
1NO, WS,RF = D 1INOy,RH,T = D 1NO,WS,T = D 1INO,,RE,RH = O NNO,,RET =
correlation 0.731 0.72 0.72 0.70 0.71
RMSE 10.62 10.880 10.918 11.109 11.032
NRMSD 0.1072 0.1099 0.1103 0.1122 0.1114
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Table 7. NO; and three meteorological variable input configuration performances.

x = {NO,,RF,RH, T} x = {NO,, WS, RF, RH} x = {NO,, WS, RF, T}

N0, RF,RH,T = 1

NNO, WS,RF,RH = 1

NNO,WS,RE,T = 1

correlation 0.72 0.692 0.71
RMSE 10.841 11.241 10.992
NRMSD 0.1095 0.1135 0.1110

1NO,,RE,RH,T = 2 NNO,,WS,RF,RH = 2 1NO,,WS,RF,T = 2
correlation 0.72 0.72 0.71
RMSE 10.826 10.868 11.064
NRMSD 0.1094 0.1098 0.1118

IINO,,RE,RH,T = 3 1NO, WS,RE,RH = 3 NO,,WS,RF,T = 3
correlation 0.72 0.703 0.72
RMSE 10.869 11.084 10.916
NRMSD 0.1097 0.1119 0.1098

INO,,RE,RH,T = 4 NO, WS,RF,RH = 4 1NO, WS,RF,T = 4
correlation 0.70 0.71 0.721
RMSE 11.098 10.032 11.163
NRMSD 0.1121 0.1114 0.1128

IINO,,RF,RH,T = O 1INO,,WS,RF,RH = D IINO,,WS,RF,T = O
correlation 0.69 0.70 0.714
RMSE 11.324 11.207 11.071
NRMSD 0.1144 0.1132 0.1118

Table 8. NO; and four meteorological variable input configuration performances.

x = {NO,, WS, RF,RH, T}

1NO,,WS,RF,RH,T = 1

correlation 0.70
RMSE 11.046
NRMSD 0.1116

1NO,,WS,RF,U,T = 2
correlation 0.72
RMSE 10.926
NRMSD 0.1104

1INO,,WS,RF,U,T = 3
correlation 0.73
RMSE 10.788
NRMSD 0.1090

NO,,WS,RF,U,T = 4
correlation 0.71
RMSE 11.632
NRMSD 0.1127

N0, WS,RF,U,T = D
correlation 0.71
RMSE 11.297
NRMSD 0.1141
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Table 9. NO, one meteorological variable input configuration performance for PMjo > 30 pg/m?>.

X = {NOz,WS} X = {NOz,RF} X = {NOz,RH} X = {NOz,T}

nNo,ws =1 nNO,RF = 1 nNO,RH = 1 nNo, T =1

correlation 0.381 0.39 0.392 0.39
RMSE 12.176 11.492 11.474 11.445
NRMSD 0.1791 0.1690 0.1687 0.1683
NNO,Ws = 2 NNO,,RE = 2 NNOy,RH = 2 nNO, T = 2

correlation 0.39 0.401 0.422 0.49
RMSE 11.970 11.456 11.280 10.817
NRMSD 0.1760 0.1685 0.1659 0.1591
nNO,Ws = 3 nNO,,RF = 3 NNOy,RH = 3 nNO, T =3

correlation 0.382 0.413 0.406 0.50
RMSE 12.086 11.384 11.467 10.744
NRMSD 0.1777 0.1674 0.1686 0.1580
nNo,ws = 4 nNO,,RF = 4 nNOy,RH = 4 nNo, T =4

correlation 0.40 0.405 0.395 0.51
RMSE 11.938 11.438 11.553 10.671
NRMSD 0.1756 0.1682 0.1699 0.1569
nNO,Ws =D NNO,,RF =D NNOy,RH = D nNO, T =5

correlation 0.40 0.425 0.402 0.52
RMSE 11.855 11.311 11.498 10.570
NRMSD 0.1743 0.1663 0.1691 0.1554

Table 10. NO; and two meteorological variable input best configuration performances for PMyy > 30 pg/m°.

x = {NO,, x = {NO,, x = {NO,, x = {NO,, x = {NO,,

WS, RF} RH, T} WS, T} RF,RH} RF, T}

NNO,WS,RF = 1 nNo,ur =1 nNo,ws,T =1 nNOy,REU = 1 nNO,RET = 1

correlation 0.394 0.42 0.45 0.394 0.44
RMSE 12.058 11.246 11.445 11.458 11.160
NRMSD 0.1773 0.1654 0.1683 0.1685 0.1641
nNO,Ws = 2 nNOL,U,T = 2 NO,WS,T = 2 NNOy,REU = 2 INO,,RE,T = 2

correlation 0.39 0.503 0.47 0.414 0.485
RMSE 11.970 10.750 11.367 11.364 10.832
NRMSD 0.1760 0.1581 0.1672 0.1671 0.1593
nNO,Ws = 3 nNo,u,T =3 nNO,Ws,T = 3 NNO,,REU = 3 NNO,,RE,T = 3

correlation 0.382 0.49 0.47 0.40 0.49
RMSE 12.086 10.895 11.237 11.575 10.825
NRMSD 0.1777 0.1602 0.1652 0.1702 0.1592
nNo,ws = 4 nNo,u,r =4 nNo,ws,T =4 nNO, RF,U = 4 nNO, RF,T = 4

correlation 0.40 0.50 0.51 0.40 0.51
RMSE 11.938 10.919 10.839 11.658 10.667
NRMSD 0.1756 0.1606 0.1594 0.1714 0.1569
NNO,Ws = D nNO,U,T =D 1NO,WS,T = D NNO,,REU = D INO,,RET = O

correlation 0.40 0.514 0.52 0.40 0.49
RMSE 11.855 10.707 10.703 11.632 10.856
NRMSD 0.1743 0.1575 0.1574 0.1711 0.1597
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Table 11. NO; and three meteorological variable input configuration performances for PMg > 30 pg/m°.

x = {NO,,RF,RH, T}

x = {NO,, WS, RF, RH}

x = {NO,, WS, RF, T}

N0, RF,RH,T = 1

NNO, WS,RF,RH = 1

NNO,WS,RE,T = 1

correlation 0.430 0.390 0.436
RMSE 11.201 11.660 11.444
NRMSD 0.1647 0.1715 0.1683

1NO,,RE,RH,T = 2 NNO,,WS,RF,RH = 2 1NO,,WS,RF,T = 2
correlation 0.503 0.407 0.462
RMSE 10.720 11.863 11.275
NRMSD 0.1576 0.1744 0.1658

IINO,,RE,RH,T = 3 1NO, WS,RE,RH = 3 NO,,WS,RF,T = 3
correlation 0.49 0.381 0.478
RMSE 10.945 12.103 11.063
NRMSD 0.1610 0.1780 0.1627

INO,,RE,RH,T = 4 NO, WS,RF,RH = 4 1NO, WS,RF,T = 4
correlation 0.503 0.396 0.498
RMSE 10.892 12.077 10.846
NRMSD 0.1602 0.1776 0.1595

IINO,,RF,RH,T = O 1INO,,WS,RF,RH = D IINO,,WS,RF,T = O
correlation 0.511 0.399 0.518
RMSE 10.756 11.953 10.678
NRMSD 0.1582 0.1758 0.1570

Table 12. NO, and four meteorological variable input configuration performances for PM;g > 30 ug/m>.

x = {NO,, WS, RF,RH, T}

1NO,,WS,RF,RH,T = 1

correlation 0.425
RMSE 11.484
NRMSD 0.1689

1INO,,WS,RF,RH,T = 2
correlation 0.494
RMSE 11.067
NRMSD 0.1627

1INO,,WS,RF,RH,T = 3
correlation 0.484
RMSE 11.191
NRMSD 0.1646

1INO,,WS,RF,RH,T = 4
correlation 0.492
RMSE 11.107
NRMSD 0.1633

1INO,,WS,RF,RH,T = D
correlation 0.522
RMSE 10.875
NRMSD 0.1599
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3.4. Comparison to State-of-the-Art Models

In this section, the comparison of the wavenet approach used in this work with two different
state-of-the-art models is presented. The two models are a (1) K-nearest neighbors (KNN) and an (2)
artificial neural network-based model, which are often used in this context to capture the dynamic of
the PM; [29]. The comparison (Table 13) shows how the performances of the best-identified wavenet
are strongly better than that of the KNN model and very similar (slightly better for high orders) to
that of the ANN ones. Moreover, it has to be stressed how the best model for the wavenet approach
ensures these performances with limited complexity and with a limited number of variables (only NO;
concentration) with respect to the other approaches.

Figures 5-7 present the time series plots for the best configuration of wavenet, artificial neural
network and KNN models, respectively. As expected, the behaviour of the wavenet and ANN models
is very similar, with the first models showing slightly better performances for the low value close
to the sample n. 800. In general, the KNN model reproduces higher value but, as also stated by the
lower values of correlation coefficient, the time series rarely follows the value and the gradient of the
measured values.

Table 13. Best configuration performances.

WT (x = {NO,}) ANN (x = {NO,, RF}) KNN (x = {NO,, WS, RF, U})

nNo, = 1 NNO,,RF = 1 NNO, WS,RF,U = 1
correlation 0.723 0.72 0.523
RMSE 10.896 10.940 14.860
NRMSD 0.1101 0.1105 0.1501

nNo, = 2 NNO,,RE = 2 NNO,,WS,RF,U = 2
correlation 0.722 0.732 0.581
RMSE 10.927 10.651 14.082
NRMSD 0.1104 0.1076 0.1422

nNo, =3 nNO, RF = 3 IINO,,WS,RF,U = 3
correlation 0.732 0.72 0.59
RMSE 10.764 10.877 13.904
NRMSD 0.1087 0.1099 0.1404

nNo, =4 nNO, RF = 4 N0, WS,RF,U = 4
correlation 0.733 0.713 0.61
RMSE 10.743 10.909 13.628
NRMSD 0.1085 0.1102 0.1377

nNo, =5 NNO, RF = D NNO, WS,RF,U = D
correlation 0.742 0.73 0.634
RMSE 10.575 10.675 13.435
NRMSD 0.1068 0.1078 0.1357
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Figure 5. Time series comparison between the measured values (blue) and the best wavenet model output
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Figure 7. Time series comparison between the measured values (blue) and the best KNN model output (x50, rr =
5, red).

4. Conclusions

In this work, a data-driven, wavenet-based virtual sensor for PM;j, daily mean concentration
is presented and evaluated. Different model configurations have been tested and evaluated. The
methodology has been applied to data measured by the Lombardy regional monitoring network. The
results show good agreement between the output of the virtual sensor and the measured data used
for validation when the daily mean NO; concentration is used as input—in particular, around the
mean concentration values. Therefore, the models fail to reproduce the peak concentrations, and this
behaviour will not change even if other inputs, such as meteorological data, are used. Nevertheless, the
performances show that this approach can be used to produce supporting information to integrate the
regional monitoring network that can be made available through app/web services due to a relatively
fast computation.
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Abstract: Orthogonal Frequency Division Multiplexing (OFDM) is one of the key modulations for
current and novel broadband communications standards. For example, Multi-band Orthogonal
Frequency Division Multiplexing (MB-OFDM) is an excellent choice for the ECMA-368 Ultra
Wideband (UWB) wireless communication standard. Nevertheless, the high Peak to Average Power
Ratio (PAPR) of MB-OFDM UWSB signals reduces the power efficiency of the key element in mobile
devices, the High Power Amplifier (HPA), due to non-linear distortion, known as the non-linear
saturation of the HPA. In order to deal with this limiting problem, a new and efficient pre-distorter
scheme using a Neural Networks (NN) is proposed and also implemented on Field Programmable
Gate Array (FPGA). This solution based on the pre-distortion concept of HPA non-linearities offers
a good trade-off between complexity and performance. Some tests and validation have been
conducted on the two types of HPA: Travelling Wave Tube Amplifiers (TWTA) and Solid State
Power Amplifiers (SSPA). The results show that the proposed pre-distorter design presents low
complexity and low error rate. Indeed, the implemented architecture uses 10% of DSP (Digital
Signal Processing) blocks and 1% of LUTs (Look up Table) in case of SSPA, whereas it only uses
1% of LUTs in case of TWTA. In addition, it allows us to conclude that advanced machine learning
techniques can be efficiently implemented in hardware with the adequate design.

Keywords: ECMA-368; MB-OFDM; HPA; PAPR; pre-distortion; neural networks; FPGA

1. Introduction

Ultra Wideband (UWB) technology has been deployed for broadband wired and
wireless communications since in February 2002, the implementation of a regulation gave
authorization on the use of UWB technology for telecommunications consumer in the
United States by the Federal Communications Commission (FCC). Once the frequency
band of 7.5 GHz not subject to licensing (FCC 02-48) has been allotted, the FCC welcomed
the very high data rate (beyond Gbps) wireless communications. UWB was basically

linked to waveforms without carriers (carrier-free) built from very short pulses [1,2].

In this way, a simple approved definition considered that these signals having a fractional
bandwidth FB > 0.25 with a frequency bandwidth >500 MHz can be considered UWB
[2].

OFDM is a modulation technology that guarantees an orthogonality in the frequency
domain since it uses the sinusoidal basis function [3]. Then, a cyclic prefix or zero padding
is added to each symbol, which makes it possible to avoid the inter-symbol interference
(ISI) due to the multipath channel. However, if the orthogonality between the sub-carriers
is lost, it results in inter-carrier-interference (ICI), and thus OFDM system performances
is degraded. In order to decrease the impact of these problems, a new Multi-band
Orthogonal Frequency Division Modulation (MB-OFDM) system has been proposed in
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[4]. To make wireless connectivity possible between devices within the personal area
network. At the same time, it is important to undergo the European Conformity (CE)
and the multimedia industry current needs in the field of wireless personal area network
(WPAN) with very high data-rates or for their use in future Wireless Universal Serial
Bus (WUSB/IEEE 1394) [5], different standards have been implemented: Multi-band
OFDM Alliance (MBOA), Wimedia and ECMA-368 [6]. In this paper, the ECMA-368
Standard is used. It points out the MB-OFDM scheme to transmit information for a
wireless personal area network, however identically to all OFDM based communications
systems, the ECMA-368 undergoes the large Peak to Average Power Ratio (PAPR), this
drawback reduces the High Power Amplifier (HPA) efficiency at the transmitter.

In the ECMA-368 system, very efficient amplifiers are used, mainly of two different
types, namely, Traveling Wave Tube Amplifiers (TWTA) and Solid State Power Amplifiers
(SSPA). Unfortunately, these amplifiers are highly non-linear and thus, in order to avoid
the distortion of the signal, large back-offs are needed. As result, the efficiency is sub-
stantially reduced. This phenomenon leads to the in-band distortion, which increases the
bit error rate (BER) [7] and the out-band spectral re-growthwhich also increases adjacent
channel interference. Numerous methods have been proposed to overcome the high
PAPR problem in OFDM signals [8,9]. Among these techniques, the HPA pre-distorter
[10] is one of the most promising ones because it avoids the increase on transmit energy,
it does not need side information which reduces efficiency, it is only needed to be applied
at the transmitter, which eases the implementation, and it does not increase the BER,
among other advantages.

It should be noted that most of the results and designing parameters in this paper
can also be extended to other OFDM standards [11-14].

TWTA and SSPA are the most efficient amplifiers, and are the two main amplifier
choices for space-based RF communications. TWTA and SSPA are generally more ad-
vantageous for higher power and higher frequencies, at a reduced size, cost, and with
improved thermal performance. Unfortunately, these amplifiers are highly non-linear
[15], hence, a large back-off [16] is needed to mitigate the signal distortion. As outcome,
the efficiency is substantially reduced.

To run off a large back-off, several techniques were used to reduce the power en-
velope fluctuations (PAPR) [8,17]. However, the non-linearity of HPA [18] still provoke
a signal distortion, compromising the system performance. These non-linearity can
be identified in the amplitude with the Amplitude Modulation/Amplitude Modula-
tion (AM/AM), and in the phase with the Amplitude Modulation/Phase Modulation
(AM/PM) functions [19]. In addition, those techniques, as indicated earlier, increase
transmission power due to the expansion on the transmitted constellation.

In order to overcome this problem, we can pre-distort the signal before the HPA
like to linearize the HPA, i.e., to linearize the AM/AM and AM/PM characteristics of
the HPA. In order to better understand the effect and issues with AM/AM and AM/PM
distortion, please see [20] and the references therein.

Artificial NNs are being successfully applied through a wide range of complex
computational problems [21,22]. Among the different NN architectures [23], Multilayer
Perceptron (MLP) is the most used one. It connects a set of input data to an appropriate
output’s set by using a supervised training techniques. In this paper, we developed a
very simple pre-distorter architecture based on two MLPs for, respectively, AM/AM and
AM/PM conversions. Then, two HPA models, namely, TWTA and SSPA [24] have been
tested. Finally, the implementation of the proposal on FPGA is described and analyzed
showing that it is well suited to future wireless communications systems [25].

The remainder of this paper is organized as follows. Section 2 describes the NN
models for HPA pre-distortion. Section 3 presents the implementation of our proposed
design on FPGA. Then, results are detailed in Section 4. Finally, Section 5 summarizes the
conclusion of the paper.
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2. NN Models for HPA Pre-Distortion

First, in this section, the signal model and the NN design are described and analyzed.

2.1. Transmitted Signal

The transmitted radio frequency ECMA-368 signal can be mathematically described
as [6]

Npg—1

w(0) = R{ X Sult = nTova) expl2eFq(mr) | W
n=0

where R{.} stands for the real part of the signal, Tsy) is the symbol duration , N, is the

number of symbols that every packet has, F is the center frequency, and g(n) is a the

mapping function of the n'" symbol to the appropriate frequency.

Once the signal has been described, the pre-distortion scheme and the proposal will
be presented. It should be highlighted that, although this paper uses the ECMA-368
standard for describing the signal and obtaining the results, all the recommendations
and analysis can be easily extrapolated to other MB-OFDM or even OFDM system or
standard, which makes the contribution of this paper very valuable.

2.2. HPA Pre-Distortion Concept

The model for a HPA can be characterized by the AM/AM and the AM/PM distor-
tion, as it can be seen in Figure 1. The output y(t) of the non-linear amplifiers TWTA and
SSPA corresponding to x(t) input, is expressed as

y(t) = AM(|x(t)|)ej[PM(|x(t)\)+¢(x(t))] @)

where AM(.) and PM(.) are, respectively, the AM/AM and AM/PM distortion functions.
According to Saleh’s model [26], the AM/AM and AM/PM conversions can be written as

AM(Jx(t))) = —E ©
POV B k(0P
PM(x()]) = —pulxOF @

(1+ Bpml|x(t)?)
1

VAl

is the maximum output amplitude.

where Ly is the small signal gain, Agy;t = is the input saturation voltage of TWTA or

4 oy Asar
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High Power Amplifier (HPA)
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>| AM/AM
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Figure 1. HPA’s operating principle.

The modified Rapp model [27] is used instead for the SSPA case. Where, the AM/AM
and AM/PM conversions is given as

AM/(x(t)]) = g— O ©)
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()|
1+ (Fhe)

where g is the small gain signal, s is a smoothness factor parameter, Ay is the saturation
level with a similar meaning as in the TWTA, and parameters «, 3, c; and ¢, are adjusted
to match the amplifier’s characteristics.

A common parameter in HPA is the Input Back Off (IBO), which is defined as

PM'(|x(t)]) = (6)

IBO = 10log, lfs”t )
avg

where the Ps4; represents the saturation input power and Pm,g denotes the average input
power. The IBO accounts for how much power need to be reduced to obtain a low level
of distortion output signal, and it is usually understood as a loss in link budget analysis.
A summary of these operating principle is illustrated in Figure 1.

The concept of pre-distortion is to compensate the AM/AM and AM/PM distortion
with an inverse non-linearity. With the formulated AM/AM and AM/PM pre-distortion
functions, the amplifier input can be re-written as

y(8) = AM=I (| (8)])ellPM (x(O) +9(x(0)] ®)

where AM~1(|x(t)|) and PM~!(x(t)) are the AM/AM and the AM/PM pre-distorter
functions, respectively. The pre-distorter output can be expressed as

z(t) = AM~([y(b)] )ef[PM*(Iy(t)\)+¢(y(t))] )

It should be highlighted here that, although these pre-distortion schemes allow the
use of lower IBO than other techniques, we still need an IBO to absorb the near-flat part of
the curve due to the hard saturation in AM/AM characteristic (see Figure 2). In the case
of the amplifiers in Figure 2, it should be around 4 dB of IBO for the SSPA (worst case),
around 2 dB for TWT2 and 1 dB for TWTA1, while other techniques would probably need
an IBO of around 8-10 dB. Of course, it will depend on the specific HPA characteristics
and the hard saturation point. Since a minimum IBO is needed, the dynamic range of
the HPA is reduced. However, the higher the IBO the lower the dynamic range. Thus,
with pre-distortion techniques, since the IBO can be lowered, so the the dynamic range
can be larger than with other techniques.
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Figure 2. HPA non-linear response for amplitude (left) and phase (right). TWTAL: o) =2, =1,
XppM = 4,,BPM =9, TWTA2: IXH = 3"BH = 2,0(pM = 2/,BPM = 7,SSPA: NEC GaAs [10].

2.3. NN Pre-Distorter Architecture

The main idea behind the concept of pre-distortion is the aim of introducing inverse
nonlinearities that can compensate the AM/AM and AM/PM distortion of the HPA.
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In order to ease the design of the predistorter and to accelerate the identification, two
MLP NN are proposed for AM~!(|x(t)|) and PM~1(|x(t)|). The first one synthesizes
the AM/AM pre-distortion function while the second one synthesizes the AM/PM pre-
distortion function.

Each MLP NN is off-line trained using the levenberg-marquardt algorithm [28]. Once
it is already trained, it is ready for the continuous and real-time operation. The maximum
number of epochs = 1000, and the mean squared error (MSE) is fixed to be less than
or equal to 1E-6. The off-line training process is depicted in Figure 3 and is processed
according to the following steps:

1.  Decompose the original signal x(#) into magnitude |x(t)| and phase angle ¢(x(t)).

2. Apply the HPA AM/AM conversion function to the original magnitude |x(t)| to
obtain HPA magnitude AM(|x(t)|).

3. Apply the HPA AM/PM conversion function to the original magnitude |x(t)| to
obtain HPA phase angle PM(|x(t)]).

4. Train the NN AM/AM pre-distorter model using magnitudes [|x(t)|, AM(|x(¢)])]
to synthesize the AM~! pre-distorter function.

5. Calculate the difference between the HPA AM/PM output and original phase angle
(PM(x(1)]) - 9(x(1)).

6.  Train the NN AM/PM pre-distorter model using the original magnitude (|x(t)])
and PM(|x(£)|) — ¢(x(£)).

7. Finally, using NN models, the pre-distorters magnitude (AM~!(|x(t)|)) and phase
angle (PM~!(|x(t)|)) signals are generated.

NOER
NN [AMI(x(?)))
( \ AM/AM >
HPA AM(lx(t)D\ Predistorter
x(?) || AM/AM “ J
Input ¢ — Ix()| N
T o~ |PM(X@D
( ) AM/PM [
5| HPA PM(lx(t)|)>+< ) 5| Predistorter
AM/PM o\ )

P(x()

Figure 3. Pre-distorter training phase.

Following off-line training, both NN models are used before the high-power ampli-
fier, as shown in Figure 4. We would like to highlight that the examples of amplifiers
used in this paper are only meant to obtain results and validate the performance of the
proposed pre-distorter scheme. Once trained with the specific amplifier response, the NN
models are able to pre-distort the input signal adequately.

NN
AM/AM
Predistorter

1
1
1
1
1
1
|
1
1
\

Figure 4. Pre-distorter architecture.

115



Electronics 2021, 10, 1538

It is worth noting that the amplifier’s response can vary during the time. However,
if the NNs have been trained with enough data and possibilities, the NNs will be able to
follow these changes real time even if the amplifier changes its behavior. Obviously, there
is a limitation on the possible changes, but it is robust enough for normal operation.

Going deep into the NN architecture of each MLP pre-distorter used, in Figures 3 and 4
consists in 3 layers as illustrated in Figure 5.

®  The input layer: receives the input signal of the system.
e The hidden layer includes:

- n =4 neurons adopting triangular basis (tribas) function in case of TWTA.
— n = 2 neurons with radial basis (radbas) function in case of SSPA.

¢ The output layer: with a single neuron using a linear activation function.

Input layer Hidden layer Output layer
InCl))ut Wi Wiz
L Activation
P function

Activation
bl.l A function

Activation
function

Activation
function

Figure 5. Multilayer perceptrons neural networks pre-distorter.

Mathematically each neuron output can be expressed as

y = flu), u=

L
W;P; + b (10)

i=1

where P is an input vector P = (P, P,, Ps..., PI-)T, W is set of synaptic connections also
known as the set of weights W = (Wy, W,, Ws..., W;)T these weights multiply the input to
get WP and b is the added bias to WP. For the MLP NN hidden layer, L = 1 is the number
of inputs of each neuron, f(u) = tribas(u) is a tribas function (TWTA) and f(u) = e(=1)
is a radial basis function (SSPA) while for the MLP NN output layer L = 4 in case of
TWTA, L = 2 in case of SSPA and f(u) = u is a linear function.

Since radbas function uses an exponential calculation, in [29,30], authors proposed a
new approximation to express the exponential function using Taylor series. It has been
shown that it consumes less FPGA resources and does not require any memory blocks. In
fact, in this paper, this approximation for the SSPA predistorter is adopted.
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3. FPGA Implementation

To implement the proposed NN pre-distorters, an FPGA has been used for the
benefits they offer [31,32]. Indeed an FPGA enables a higher sampling frequency, tolerates
higher data rates and provides real-time processing [33]. Since the training of the NN
pre-distorters is carried out off-line, only the real-time part, i.e., their layers, will be
implemented on an FPGA, without the need of implementing the learning algorithm.

Figures 6 and 7 represent the architecture of a neural networks, of the AM/AM pre-
distorter for TWTA and SSPA, respectively, implemented using Xilinx system generator [34].
To achieve the proposed implementations signed fixed-point representation has been
adopted, allowing a better computational speed and minimal resources consumption at
expenses of a reduced degradation. The number of bits has been optimized to obtain the
best trade-off between speed, space and degradation. Each sample is encoded on 16 bits:
5 bits are reserved for the integer part, 10 bits for the fractional part and one bit of sign. It
should be noted that the number of bits at the transmitter side is not usually a problem
and it is fixed to the maximum number of bits at Digital to Analog Converter (DAC) to
maximize the dynamic range of the transmitted signal. It is worth noting that for AM/PM
pre-distorter, the same NN architecture implementation is adopted, the difference is
that the weights and bias take a different values, for TWTA and SSPA, respectively. It
should be noted that complex multipliers are needed to operate in the output layer, which
corresponds to a four real-valued multipliers pipe-line architecture in the implementation
as a trade-off between complexity, efficiency and resources.
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Figure 8 represents the Register Transfer Level (RTL) schematic of Figures 6 and
7, while Figures 9 and 10 represent a zoom on both entities AM/AM and AM/PM of

Figure 8.
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Figure 8. RTL Schematic for NN TWTA and SSPA pre-distorters.
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4. Results

The TWTA has been used with ay = Z,ﬁH =1,app =4 and Bpy = 9 [10], while the
SSPA used is the NEC GaAs Power Amplifier used for standardization with parameters:
=19, Agst =1.4,5 = 0.81, « = —48000, p = 0.123, ¢; = 3.8 and ¢, = 3.7 [10].

To evaluate the performance of our implementation, several metrics have been
used, namely: the FPGA resources consumption, the bit error rate and finally the power
spectral density.

Table 1 shows the consumed resources on virtex-4, virtex-5 and virtex-6 FPGAs.
The table also shows the maximum frequency supported (it is worth noting that the
maximum frequency stands for the maximum throughput supported by the designs).

Table 1. Resources consumption.

Solutions FPGA DSP Blocks LUTs Max Freq (MHz)
Virtex-6 xc6vIx130 0 (0%) 1560 (1%) 492
TWTA predistorter Virtex-5 xc5vIx110 0 (0%) 1611 (2%) 425
Virtex-4 xc4v1x100 0 (0%) 1796 (1%) 344
Virtex-6 xc6vIx130 52 (10%) 2744 (1%) 200
SSPA predistorter Virtex-5 xc5vIx110 52 (81%) 2805 (4%) 157
Virtex-4 xc4vIx100 78 (81%) 3285 (3%) 122

From Table 1, it can be concluded that the TWTA pre-distorter is faster and less resources con-
suming than the SSPA. This can be justified by the use of radial basis function based on exponential
function approximation, leading to slower and more complex calculation. Since the HPA is usually
imposed by the application, we need to guarantee that both design can be efficiently implemented.

Table 2 and Figure 11 show the power consumption for TWTA and SSPA pre-distorters. It is
worth noting that the TWTA pre-distorter consumes less power than the SSPA pre-distorter. It can also
be seen in Figure 11 that the novel FPGA architectures (Spartan) are more efficient than older ones,
and our proposal can better exploit the optimization characteristics on these devices. It is especially
relevant that in Spartan 6 boards, the power consumption of our proposal could even be neglected,
which is a relevant contribution in this context. The power estimation has been obtained with Xilinx
Power Analyzer, using Simulation Activity Files (SAIF or VCD) for accurate power analysis, which
guarantees enough accuracy on the results.

Table 2. Power consumption.

Device Virtex5 Virtex6 Virtex6 Virtex4 Spartan3 Spartan6 Spartan6
5vfx100t  6vex130t  6vex130tL  4vfx100 XC3S4000 XC6SLX 100 XC6SLX100L
SSPA power consumption (W) 1.97 1.343 0.932 0.944 0.564 0.198 0.134
TWTA power consumption (W) 1.66 1.23 0.83 0.84 0.272 0.081 0.058

The proposed MLP NNs have been simulated and implemented on FPGA, following ECMA-368
standard. If nothing is indicated in other sense, the IBO has been fixed to 2 dB, a very optimistic
value for realistic systems. Figure 12 shows the transmitted constellation after the TWTA and SSPA
without the pre-distortion (warped constellation), and when using our proposal (close to the original
constellation). It can be seen that, even in this taught conditions, the proposed design is able to work

properly.
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Figure 11. Power consumption For both SSPA and TWTA pre-distorter implementation.

In Figure 12, it can be concluded that using the proposed NN pre-distorters, the constellation is
like the original signal without distortion, which will greatly improve the bit error rate.
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Figure 12. DCM Constellation—Before and after NN pre-distorters for TWTA (up) and SSPA (down), mean input
power =22.5 dBm.

To make sure that our implementation for both designs does not affect the performance of the
ECMA-368 wireless communication system, the Bit Error Rate (BER) is also obtained and analyzed
for different standard channels CM1, CM2, CM3 and CM4. In order to do so, a JTAG hardware
co-simulation [35] is used to accelerate the simulation of the whole implemented designs on the FPGA
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platform. In Figure 13, only the proposed NNs has been implemented on the hardware while the rest
is simulated by software. The software transmits a data frame to the hardware at each clock cycle
for processing. For a fast transmission, both software and hardware communicate through a JTAG or

Ethernet cable.
_____________ .|__________________________
| Software | Hardware
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Figure 13. Co-simulation platform.

As shown in Figures 14-17 the system performance does not undergo any degradation for both
TWTA and SSPA pre-distorters for different channels CM1, CM2, CM3 and CM4 with respect to the
ECMA-368 standard. The mean input power to generate these figures was 22.5 dBm. The transmit
power was kept constant and we varied the noise power. The input power saturation of the HPA was 30
dBm. As it can be observed in the figures, the degradation is lower than 0.4 dB for lower data rates and
less than 0.1 dB for higher data rates. These results shows a twofold conclusion. First, the optimization
carried out in terms of number of bits works because the degradation is very low. Second, it is possible
to implement a real-time high data rate pre-distorter using FPGA. It can be seen that even at very high
data rate of nearly 500 Mbs the system is working properly.
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Figure 14. Bit Error Rate without and with NN pre-distorter for CM1.
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Figure 16. Bit Error Rate without and with NN pre-distorter for CM3.

In Figure 18, the power spectral density (PSD) of HPA output signal with and without NN pre-
distorters is shown. It can be observed that by using our proposals, the PSD regrowth is negligible.
In fact, it is about 5 dB for the TWTA, whereas it is 7 dB for the SSPA, which is very reduced compared

to the original signal.
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5. Conclusions

In this paper, a novel and efficient architectures for HPA non-linearity pre-distortion have been
designed, optimized and implemented on FPGA. Then, it has been tested by using two types of
HPA: TWTA and SSPA. To evaluate the performance of our implemented designs, three metrics were
used: resource consumption, bit error rate and power spectral density. By using the proposed pre-
distorters, the modulation constellation is not modified with respect to the original while respecting
the demodulation slicer. In addition, a low consumption of resources is used, about 1% in case of
TWTA, which makes it feasible to be implemented with the rest of ECMA-368 transmission chain on
the same FPGA. In order to make sure that our implementations do not degrade the performance
of the proposed wireless communication system standard, we carried out a bit error rate simulation
and plotted the power spectral density. The results show that the system does not undergo any BER
degradation for both TWTA and SSPA pre-distorters, with a negligible PSD regrowth. For future works,
this proposal can be of interest in 5G and beyond communication systems.
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Abstract: This paper presents a control-oriented neuro-fuzzy model of brazed-plate evaporators for
use in organic Rankine cycle (ORC) engines for waste heat recovery from exhaust-gas streams of
diesel engines, amongst other applications. Careful modelling of the evaporator is both crucial to
assess the dynamic performance of the ORC system and challenging due to the high nonlinearity
of its governing equations. The proposed adaptive neuro-fuzzy inference system (ANFIS) model
consists of two separate neuro-fuzzy sub-models for predicting the evaporator output temperature
and evaporating pressure. Experimental data are collected from a 1-kWe ORC prototype to train, and
verify the accuracy of the ANFIS model, which benefits from the feed-forward output calculation
and backpropagation capability of the neural network, while keeping the interpretability of fuzzy
systems. The effect of training the models using gradient-descent least-square estimate (GD-LSE)
and particle swarm optimisation (PSO) techniques is investigated, and the performance of both
techniques are compared in terms of RMSEs and correlation coefficients. The simulation results
indicate strong learning ability and high generalisation performance for both. Training the ANFIS
models using the PSO algorithm improved the obtained test data RMSE values by 29% for the
evaporator outlet temperature and by 18% for the evaporator outlet pressure. The accuracy and
speed of the model illustrate its potential for real-time control purposes.

Keywords: ANFIS; dynamic modelling; evaporator; organic Rankine cycle; waste heat recovery

1. Introduction

The internal combustion (IC) engine is the main technology currently used in the
transportation sector. A typical IC engine converts about 40% of the fuel combustion en-
ergy into useful work. Legislation on vehicle emission continues to become more stringent
to reduce the impact of IC engines on the environment. To this end, technologies—such
as gasoline direct injection (GDI) [1], turbo direct injection (TDI) [2], and fuel stratified
injection (FSI) [3]—have been developed and implemented in recent years to increase
the efficiency of IC engines. Despite the advantages of such technologies, the thermal
efficiency of IC engines needs to be improved to meet regulatory targets such as those
agreed upon at the COP21 in the legally binding Paris Agreement, which is set to reduce
greenhouse gas emissions. Recently, new methods of waste heat recovery (WHR) have
been explored to utilise the significant amount of energy that is released to the atmo-
sphere from the exhaust and coolant of IC engines [4]. The objective is to convert this
waste thermal energy into useful mechanical or electrical energy. Several viable WHR
technologies can be used to harness this waste thermal energy, such as turbo-compound,
thermoelectric generators, piezoelectric generators, and organic Rankine cycle (ORC)
engines. Among them, ORC systems are the preferred method of WHR in IC engines due
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to their low manufacturing cost and high efficiency. WHR technologies can contribute to
enhancing the overall conversion efficiency of IC engines [5-7].

ORCs are a promising WHR technology that has been widely considered in many
industries due to their features such as simplicity and high efficiency. The ORC is a
heat-engine thermodynamic cycle that exhibits the potential to be deployed for recovery
of waste heat in IC engines, the exhaust gases of which are an unsteady heat source with
fluctuating temperature and mass flow rate [8,9]. Key characteristics of the ORC engine
that make it a desirable solution for waste heat recovery in IC engines include modularity,
versatility, and technological maturity of components (due to the similarities with the
refrigeration systems). Moreover, ORC systems are able to recover waste heat in the
low- to medium-temperature range. Most current investigations on ORCs are focused on
theoretical and thermodynamic analysis [10], cycle optimisation [11], techno-economic
optimisation [12,13], and working fluid selection [14]. In particular, combined fluid-design
optimisation studies explore the potential of novel working fluids using computer aided
molecular design (CAMD) techniques [15-17]. Several studies also propose advanced off-
design optimisation algorithms to maximise the performance of an ORC engine operating
under variable heat-source conditions [18-21].

However, the latter are based on quasi-steady models of the ORC engine and are thus
not suitable for dynamic applications. For safe and successful implementation of ORCs in
the automotive industry, a reliable and precise control scheme is required to ensure the
safe operation of the engine, prevent organic fluid decomposition, and reduce the risk
of component damage. Furthermore, designing a reliable control algorithm for the ORC
in the mobile applications depends on accurate modelling of all the components within
the cycle. The heat exchanges (i.e., evaporator and condenser) are key components of the
ORC system as they are responsible for a large share of the overall exergy destruction [22]
(heat transfer over a finite temperature difference being irreversible by nature) and are
challenging to model due to the high nonlinearity of their governing equations. In
addition, the dynamic behaviour of ORC engines is governed by the large thermal inertia
of the heat exchangers, in particular by that of the evaporator, which has a direct impact
on the response time of an ORC engine subject to fluctuations in heat-source conditions
(namely, temperature and mass flowrate). Therefore, an accurate model of the evaporator
is required to capture the dynamics of the system and is of prominent importance, not
only because it is necessary for cycle optimisation and working fluid selection, but also as
it allows a comprehensive optimisation of the dynamic control strategy.

Evaporator models available in the literature can be categorised into three main
categories, namely: finite volume (FV) models, moving boundary (MB) models, and
intelligent based models such as fuzzy and neural network models [23-25]. As illustrated
in Figure 1, FV models are based on a spatial discretisation of the evaporator into a
finite number of equally spaced control volumes, with the thermo-physical properties of
the working fluid considered constant within each control volume. For this modelling
technique, a higher number of control volumes results in an increased precision but
significantly increases the computational complexity. Therefore, a trade-off must be made
between accuracy and processing time to select the adequate spatial resolution of FV
models [26]. FV techniques are computationally expensive and are thus appropriate
for performance assessment and working fluid selection, but cannot be applied to high-
frequency, real-time control purposes.
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Figure 1. Discretisation of evaporator into N control volumes [27].

By contrast, MB models are control-oriented models based on a fixed spatial dis-
cretisation of the evaporator into three regions (liquid, two-phase mixture, vapour), the
size of which varies with time. The MB technique results in a slight improvement in
computational complexity, however, models developed by this technique cannot tolerate
nonexistence of the distinct phases of the working fluid. Therefore, this technique is not
suitable for situations such as start-up or shut-down because of the resulting singularity
in numerical problems [23]. Evaporator fuzzy models have been developed recently to
improve the real-time calculation speed of the models [24,28]; however, setting the rules
for identifying the model based on the available data is a time-consuming task. Another
approach for developing an agile model of the evaporator is the neuro-fuzzy technique.
Neuro-fuzzy models are data-driven techniques that require training before implementa-
tion. As opposed to predictive methods, which require an iterative solution, neuro-fuzzy
models are much faster and can be utilised for control purposes. Adaptive neuro-fuzzy
inference system (ANFIS) is an intelligent modelling technique acquiring the modelling
benefits of Sugeno fuzzy inference system and pattern recognition ability of feedforward
neural network [29]. Khosravi et al. [30] used ANFIS-PSO algorithm for thermodynamic
modelling of geothermal based ORC equipped with solar system. Authors, in previ-
ous studies [27,31], have developed ANFIS models based on the available data from FV
evaporator models that offer reduced complexity, high accuracy and lower computational
burden for prediction of the working-fluid and heat-source outlet temperatures. This paper
investigates the application of neuro-fuzzy techniques for modelling a plate evaporator
using time-resolved high-fidelity experimental data obtained on a 1-kWe ORC prototype.

This paper is structured as follows: Section 2 describes the layout and operation of
the 1-kWe ORC testing facility. In Section 3, the architecture of the ANFIS model and
the node functions within its layers are discussed for a fuzzy inference system with two
inputs and one output. Two methods are introduced in Section 4 for training the ANFIS
model and limitations and advantages of both methods are pointed out. In Section 5,
data collection and application of the ANFIS method for modelling the evaporator outlet
temperature and pressure in the testing facility are discussed. The simulation results and
discussions of the study are presented in Section 6. The simulation tests are designed to
evaluate the effectiveness of the proposed modelling technique. Finally, the paper closes
by summarising and discussing key conclusions from this work in Section 7.

2. ORC System Layout and Test Bench Prototype

The testing facility, commissioned at the Clean Energy Processes (CEP) Laboratory at
Imperial College London, comprises a rotary-vane pump, brazed-plate evaporator and
condenser, and a scroll expander coupled magnetically to a generator with an adjustable
resistive load. The ORC prototype is operated with R245fa as the working fluid, which can
maintain above-atmospheric pressure within the condenser and prevent non-condensable
air from leaking into the closed loop. The rotary-vane pump circulates the organic fluid
through the cycle and allows adjustment of the flowrate. Shaft power is produced from the
expansion of the high-temperature, high-pressure vapour exiting the evaporator down to
the low pressure maintained in the condenser. The generator converts the expander shaft
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mechanical work into electrical energy, which is dissipated within a resistive load bank
made of a set of adjustable resistors — with an equivalent overall resistance ranging from
10 to 60 Q). This resistive load bank is able to dissipate safely up to 2 kW of heat without
external ventilation and allows to control the torque applied to the expander shaft. The
low-pressure vapour leaving the expander is then cooled down and fully condensed in the
water-cooled condenser. To avoid cavitation in the pump and maintain zero subcooling at
the condenser outlet, a liquid receiver is placed between the condenser and the pump. An
18-kW electric oil heater with adjustable delivery temperature is used as the heat source
for the ORC prototype, thus providing a controllable stream of hot Marlotherm SM oil.
A detailed piping and instrumentation diagram (P&ID) of the testing facility is shown in
Figure 2 and an actual picture of the test bench is presented in Figure 3.

® . Generator

Ot Expander

T Electric
oil heater

Cooling water

Pump

® Pressure transducer @ Thermocouple @ Flow meter
GO Sight glass >4 In-line valve 5% 3-way valve

Figure 2. Piping and instrumentation diagram of ORC (organic Rankine cycle) testing facility (taken
from [32]).
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Figure 3. Experimental test facility and ORC prototype (taken from [19]).
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As shown in Figure 2, pressure transducers and thermocouples (T-type) are placed at

the inlet and outlet of each component to monitor the working fluid state throughout the
cycle and provide high-fidelity measurements of the components and system performance.

A

DAQ970A data acquisition system is used to record time-resolved experimental data

from the apparatus with a 1/2-Hz sampling rate. Detailed specifications of the key ORC
components are listed in Table 1.

Table 1. Components specification of the ORC test prototype [32].

Fluid Name Mass Flowrate Temperature Range
Heat-source thermal fluid Marlotherm SM oil 0.01-1.4 kg/s 93-142 °C
Working fluid R254fa 14-58 g/s 7-136 °C
Cooling fluid Water 0.4kg/s 18 °C
Model Type Area Specifications
Pump TMER2 (Fluid-o-Tech, Italy) Magnet-driven rotary vane pump - 1100-3000 RPM
Condenser CB60-30H-F (Alfa Laval, Sweden) Brazed-plate 1.62 m? -
Evaporator B12Lx18 (SWEP, UK) Brazed-plate 0.45 m? -
Expansion machine E15H22N4.25 (Air Squared, USA) Scroll expander - 14.5 cm® /rev, 1kWe
Model
Data acquisition system DAQ970A (Keysight Technologies, UK)
Pressure transducers PXM309 (Omega Engineering, UK)
Coriolis flowmeter Optimass 6000 (Krohne, UK)

3. Architecture of an Adaptive Neuro-Fuzzy Inference System (ANFIS)

ANFIS is as an advanced method widely used to model and control complex engineering sys-
tems [29]. An ANFIS network is able to extract non-linear relationships of complex multivariable
problems using modelling benefits of Sugeno fuzzy inference system and pattern recognition power
of feedforward neural networks by means of learning with training data. The advantage of this
method compared with other similar methods, such as ANN, is the interpretability in terms of lin-
guistic variables [33]. Because of its fuzzy logic capabilities, ANFIS models are not considered as
pure black-box models, and therefore are more interpretable [33]. Moreover, ANFIS is an adequate
compromise between neural network and fuzzy system providing smoothness and adaptability for
the model [34]. Consequently, the model is able to handle uncertainties better and is less sensitive
to noise. The ANFIS architecture comprises five layers. Each layer contains some adaptive or fixed
nodes which are connected using directional links to form the network. Fixed nodes are performing a
specific task while the output of adaptive nodes depends on the parameters incorporated in their node
function. The learning rule specifies how these parameters should change to minimise a prescribed
error function [29].

To avoid complexity, a FIS with two inputs and one output is assumed in describing the ANFIS
architecture. In the rule base of FIS two TSK rules are considered as follows:

if x is A; is By, then:

A =px+qy+ry; (1)
if is Aj is By, then :

fa = p2x + q2y + 12,

where x and y denote the input variables and f; is the output. A; and B; are demarcated over the
input domain and are regarded as the fuzzy sets. p;, q;, and r; are regarded as the linear polynomial
parameters in the fourth layer of ANFIS network. Figure 4 represents the architecture of the ANFIS
network, formed by implementing these two rules. The square and circle node symbols are deployed
to illustrate the adaptive and fixed nodes, respectively. The node function for layers 1 to 5 of this
architecture are as follows:

Rule 1:

Rule 2:
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Figure 4. Architecture of adaptive neuro-fuzzy inference system (ANFIS) used to model the evaporator.

Layer 1: The nodes in the first layer of ANFIS are parameterised membership functions and the
parameters set in this layer are referred to as premise parameters. These nodes are adaptive and can
represent various types of membership functions such as triangular, trapezoidal, generalised bell and
Gaussian. In case of the Gaussian shape membership function, the node function is

O1,i = pa,(x) fori=1, 2; or

Oy, i =pp,_,(y) fori=3, 4. @)

A and B denote the linguistic labels, x and y represent the inputs to the node 7 and p(x) and p(y)
are Gaussian membership functions ranging from 0 to 1, as follows:

u(x) =exp <—(C202)> , 3)

where c; determine the centre and o; represent the fuzzy set width. The training cost is determined
using the number of training parameters, thus, since Gaussian membership function has only two
adjustable parameters it is the most frequently used membership function in the literature [35]. In this
study, Gaussian membership function is adopted for partitioning the input space because of its features
such as fewer tuneable parameters and smooth representation of the domain.

Layer 2: Nodes in the second layer are fixed and labelled as 7. In this layer, the output of nodes is
obtained by multiplying all incoming signals. The node output ascertains the firing strength of the
rules, as:

Oni = wi = pa,(x)pp,(y) fori=1,2. 4)

Layer 3: The fixed nodes in this layer are labelled as N. The normalised firing strengths is obtained by
dividing the firing strength of ith rule to sum of all rules firing strengths:

=Y fori=1, 2. )
w1 + Wy

Layer 4: The nodes in the fourth layer have three adjustable parameters and hence are regarded as
adaptive nodes. Their node function is calculated as:

04,1‘ = wifi = wi(pix +q;y+ 7’1') ’ (6)

where w; is the normalised firing strength, and p;, g; and r; are referred to as consequent parameters,
which are identified during the training process of the network.
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Layer 5: The single node in this layer is a fixed node and is labelled as %. The crisp output of this layer
is calculated by adding all of the incoming signals as

051 = Laifi = H2L 7)

4. Learning Algorithm of ANFIS

The aim of training the ANFIS network is to adjust the premise and consequent parameters
in the adaptive nodes to minimise a performance measure known as the error function. Despite
outperforming other fuzzy methods, ANFIS requires an effective learning algorithm for training the
parameters of the network. In the original ANFIS paper proposed by Jang [29] a hybrid gradient descent,
least square estimate (GD-LSE) method is used to identify the premise and consequent parameters
of the network. In this method, because of utilising a gradient-based approach, the algorithm has a
tendency to trap in local minima. Therefore, in search for a more effective training method for ANFIS,
metaheuristic approaches have been investigated by researchers as an alternative for identifying the
network parameters. Extensive literature review illustrates that various metaheuristic algorithms—
such as PSO, GA, ABC, and their variants—have been used for training the premise and consequent
parameters of the ANFIS network for a range of engineering problems. Table 2 summarises some
studies which have used metaheuristic methods for training the ANFIS network.

Table 2. Summary of studies based on metaheuristic algorithms for ANFIS training.

Premise Consequent

Shoorehdeli, Teshnehlab [36] AWPSO FFRLS
Shoorehdeli, Teshnehlab [37] AWPSO EKF
Sargolzaei et al. [38] PSO PSO
Turki, Bouzaida [39] PSO PSO
Rini, Shamsuddin [40] PSO PSO
Karaboga, Kaya [41] ABC ABC
Soto, Melin [42] GA LSE
Cardenas, Garcia [43] GA GA

In this study, among many methods of minimising the performance measure, the particle swarm
optimisation (PSO) and standard gradient descent, lest square estimate (GD-LSE) are chosen to train
the ANFIS network. Moreover, their performance for matching training and test datasets is compared.
The root mean square error (RMSE) is selected as the main performance indicator. The network output
will better match the training target as the RMSE approaches zero.

4.1. GD-LSE Algorithm

In the architecture of the aforementioned ANFIS network, layer 1 and layer 4 contain adjustable
parameters that need to be tuned for the network to match the training data. The least square estimate
can be utilised to find the optimal values for the consequent parameters; however, since the premise
parameters are not fixed, the search space becomes too large and it affects the convergence speed
adversely. Therefore, by using a hybrid approach GD-LSE algorithm can speed up the process of
training the network. The hybrid GD-LSE comprises a forward and a backward pass to train consequent
and premise parameters, respectively. Table 3 illustrates this two-pass algorithm for identifying the
premise and consequent parameters of the model.
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Table 3. Two-pass parameter identification of the GD-LSE method.

Parameter Forward Pass Backward Pass
Antecedent parameters Fixed Gradient decent
Consequent parameters Least square estimate Fixed

Signals Node outputs Error signals

The data is presented to the network after fixing the premise parameters. The node outputs
propagate forward through the network and, consequently, the network output is obtained as a linear
combination of consequent parameters as:

w1y Wy _ _
= + =W f1 + Wy fr. 8
f w1+w2fl w1+w2f2 1h 2f2 ®

Substituting the fuzzy if-then rules into Equation (8) yields:

f = (@x)p1 + (@1y)q1 + (@1)r1 + (W2x) p2 + (Woy)q2 + (W2)12. ©)
Equation (9) is linear in the consequent parameters p1, 41, 1, p2, g2 and ry, and can thus be
written as:
f=XW, (10)
and, if the X matrix is invertible:
W=X"1f (11)

Otherwise, W is calculated by deploying a pseudo-inverse as:
w = (xTx) "' xTf, (12)

where X7 is the transpose of X, and (XTX)ilXT is the pseudo-inverse of X if XT X is non-singular.
However, X X may become singular during the iterations that makes the problem ill-defined. More-
over, although Equation (12) is concise in notation finding the inverse of X is expensive in computation.
Therefore, to overcome this issue the recursive LSE method proposed by Jang [29] can be employed as:

Wii1 = Wi + SipqXi ( fro- xiTHWi) withi=0,1, ..., P—1; (13)
Sixiiqxl . S;

5i+1:5i_%, (14)
1+ xiHS,'xiH

where S; is the covariance matrix and least square estimate of W is equal to Wp. x is the ith row vector
of matrix X and f is the ith element of f.

After identifying the consequent parameters, the output of network can be calculated and the
error measure of the n'" entery of the training data can be obtained as:

E, = (Tn - On)2 (15)

where T, and O,, represent the desired output and ANFIS output, respectively. Therefore, the RMSE of
the whole training dataset can be computed as follows:

RMSE = 4/ % (16)
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In the backwards pass, the consequent parameters are fixed and the error signals propagate
through the network in the reverse direction. Accordingly, using the GD algorithm, the premise
parameters located in the first layer of the network are updated as:

n OE
(t 1:..,}_7.7, 17
Cz]( +1) Cl]( ) p aCij (17)
where, ¢;; is the membership function’s adjustable parameter and 7 represents the learning rate. To
obtain the partial derivative, %, the chain rule is applied as:
ij

9E_OE Of i ow O
E)cl-/- af afl awi ayl] 801-]-‘

(18)

4.2. Particle Swarm Optimisation

PSO is an iterative metaheuristic computational algorithm inspired by social behaviour of birds
and fishes within a flock. This method is first proposed by Eberhart and Kennedy and is considered
as one of the swarm intelligence population-based search methods that is usually exploited to solve
optimisation problems [44]. In PSO algorithm, potential solutions to the optimisation problem are
referred to as particles. In each iteration, the position and velocity of the particles are updated by
moving them in the search domain. Each particle movement is determined using its local best position
(xppest) but is influenced by the other particles best-known position in the search-space (xG pest) as

vi(k) = wo;(k — 1) + p1 (xppest — Xi(k)) + p2(XGpest — Xi(k)) (19)
xi(k) = xi(k — 1) +v;(k) (20)

where p1 and p; are random variables defined as p; = r1¢1 and pp = racp, with vy and r, ~ U(0, 1). The
variables ¢; and ¢, are positive acceleration constants that satisfy the condition ¢; + co < 4 [45]. w is
the inertial weight and is determined using the inertial weight approach (IWA) as follows [46]:

Wmax — Wmin
W = Wmax — T Ne Nigr (21)
itr,max

where wmax and Wi, are the initial and final weights, respectively, Ny, is the current iteration number,
and Nig max denotes the maximum number of iterations.

In the original GD-LSE method proposed by Jang [29], convergence of parameters is dependent
on their initial value. Since this method is a gradient based approach the convergence speed of the
algorithm is quite slow, especially for problems with a large set of variables. Furthermore, setting the
best learning rate in the backpropagation algorithm is not an easy task and requires trial and error.

The PSO algorithm does not use the gradient of the optimisation problem as opposed to the
classic optimisation methods such as GD-LSE. Therefore, it does not require the optimisation problem
to be differentiable, however it cannot guarantee convergence to an optimal solution. Moreover, for
a determined size of network, training ANFIS using the PSO algorithm is favourable as it is less
computationally expensive [37].

5. Data Collection and Model Implementation

In this experiment, for modelling the evaporator, a set of 756 input-output data pairs are collected
from the ORC testing facility by varying the heat source mass flow rate and temperature and working
fluid mass flow rate. For the heat source, the mass flow rate and temperature of the supplied Mar-
lotherm SM oil stream is altered using the electric heater in the range of 0.01 to 1.37 kg/s and 93 to 142
°C, respectively. Mass flow rate of the working fluid is also altered in the range of 14.4 to 57.8 g/s by
manually changing the pump speed. Four separate multi-input single-output sub-models are trained
for prediction of evaporator output temperature (T;,out) and evaporator output pressure (Prout). The
inputs to sub-models are identical and consist of mass flow rate of heat source (r1,), temperature of
heat source (T},) and mass flow rate of the working fluid (r1,). The recorded outputs for the sub-models
are the evaporator outlet temperature (T} ou) and evaporator outlet pressure (P out). For evaluating
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the models, the data set is randomly divided to two subsets of training data set and test data set. The
ANFIS network is optimised using the training data set whereas the test data set which is deployed for
evaluating the model. In sub-models, 70% of data points are used for training the network and the
remaining data points are deployed to test the constructed network. Among the available methods
of clustering, fuzzy c-means (FCM) algorithm, due to its high flexibility is used for clustering the
input space and generating the base FIS. The GD-LSE and PSO techniques are applied as the learning
algorithm to optimise the base FIS. The training parameters for all four sub-models are listed in Table 4.
The performance of both training methods is compared in terms of the RMSE and linear correlation
coefficient (R) for both sub-models.

Table 4. Summary of R coefficients obtained for the evaporator outlet temperature sub-model.

Parameters GD-LSE ANFIS GD-LSE ANFIS PSO ANFIS Model PSO ANFIS Model
Model for Ty out Model for Py out for Ty out for Py out
Training dataset samples 529 x 4 529 x 4 529 x 4 529 x 4
Test dataset samples 227 x 4 227 x 4 227 x 4 227 x 4
Clustering method FCM FCM FCM FCM
Membership functions Gaussian Gaussian Gaussian Gaussian
Number of clusters 8x3 8x3 8x3 8x3
Number of epochs 1000 1000 - -
Number of linear parameters 32 32 32 32
Number of nonlinear parameters 48 48 48 48
Total number of parameters 80 80 80 80
Number of fuzzy rules 8 8 8 8
Maximum iteration - - 1000 1000
Population size - - 80 80
Inertial weight - - 1 1
Personal learning coefficient (Cy ) - - 1 1
Global learning coefficient (Cy) - - 2 2

6. Results and Discussion

Two neuro-fuzzy models of evaporator are developed to predict the evaporator outlet temperature
and evaporator outlet pressure in a 1-kWe ORC test rig. Figure 5 represents the comparison between
evaporator outlet temperature prediction in the models trained using GD-LSE and PSO techniques.
As illustrated in Figure 5, for the training dataset, RMSE of 3.5 and 2.4 achieved for GD-LSE and
PSO, respectively. Furthermore, to evaluate the generalisation ability of the models, an unseen test
dataset is applied to the models. For the test dataset, the obtained RMSEs are equal to 3.4 and 2.4 in the
model trained using GD-LSE method and PSO technique, respectively. Comparison of RMSE for the
evaporator outlet temperature models clearly indicates the models trained using the PSO algorithm
have higher accuracies. For the training dataset, training the network using the PSO algorithm results
in reduction of RMSE by 29% as compared to the GD-LSE algorithm. Similarly, for the test dataset, the
RMSE reduced by 29% for the model trained using the PSO algorithm which indicates higher accuracy
of this model as compared to the model trained using the GD-LSE algorithm.
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Figure 5. Comparison of GD-LSE ANFIS and PSO ANFIS model predictions of the evaporator outlet temperature, T out,

using training and test data: (a) training data (GD-LSE); (b) training data (PSO); (c) test data (GD-LSE); and (d) test data
(PSO).

Furthermore, regression plots are shown in Figure 6, to illustrate the deviation of the predicted
evaporator outlet temperatures from the experimentally obtained evaporator outlet temperatures. The
linear correlation coefficient (R) for both GD-LSE and PSO models are listed in Table 5. Comparison
of the R values indicate an acceptable fit for training and test data for both models. However, the
R coefficients in the PSO model are closer to one, which imply better fit and greater generalisation
ability of the model optimised by the PSO method. For the training and test datasets, the R coefficients
improved 1.1% and 0.9%, respectively, by deploying the PSO method for training.

Table 5. Summary of R coefficients obtained for the evaporator outlet temperature sub-model.

Training Method Training Data Test Data
GD-LSE 0.98 0.98
PSO 0.99 0.99
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Figure 6. Comparison of regression plots between GD-LSE ANFIS and PSO ANFIS models for prediction of evaporator
outlet temperature, T; out, using the training and test data: (a) training data (GD-LSE); (b) training data (PSO); (c) test data
(GD-LSE); and (d) test data (PSO).

ANFIS model is applied to predict evaporator outlet pressure. The new sub-model is trained by
deploying the GD-LSE technique and PSO technique. Comparison of the obtained RMSE values from
both training and test dataset is presented in Figure 7. For the training dataset RMSE of 0.42 and 0.35
are achieved from the models trained using GD-LSE technique and PSO technique, respectively. The
obtained RMSE for the unseen test data is 0.45 for the PSO ANFIS model and 0.54 for the GD-LSE
model. It can be inferred that the evaporator outlet pressure results achieved from the PSO ANFIS
model have a better compliance with the experimental data as evaluated against the model trained by
the GD-LSE technique. For the training data, deploying the PSO algorithm to train the neuro fuzzy
model results in 15% improvement in the RMSE as compared with the GD-LSE method. Moreover,
for the test data the RMSE of the model trained using the PSO technique enhanced by 18%, which
illustrates better generalisation ability in prediction of the evaporator outlet pressure.
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Figure 7. Comparison of GD-LSE ANFIS and PSO ANFIS model predictions of the evaporator outlet pressure, Py out, using
training and test data: (a) training data (GD-LSE); (b) training data (PSO); (c) test data (GD-LSE); and (d) test data (PSO).

Similarly, to examine the accuracy of the models, comparison of the regression plots for the models
trained by GD-LSE and PSO methods are shown in Figure 8. The R coefficient for the training and
test data sets in both models are close to one, which indicates the agreement between the predictions
from the models and the experimentally measured evaporator outlet pressures. The obtained linear
correlation coefficients are listed in Table 6. The R values achieved for the training and test data
sets are higher in the PSO model. Furthermore, the highest obtained accuracy is for the refrigerant
output pressure model optimised using PSO algorithm with the linear correlation coefficient of 0.98
for the training dataset, and 0.96 for the test dataset. These two sub-models for the evaporator outlet
temperature and evaporator outlet pressure can be used to identify the phase of the working medium
instantaneously. Therefore, in the application of the ORC for recovery of the wasted heat in IC engines,
this neuro-fuzzy model can be deployed to design an accurate control system to ensure the system
safety and prevent decomposition of the working fluid by adjusting the pump speed.

Table 6. Summary of R coefficients obtained for the evaporator outlet pressure sub-model.

Training Method Training Data Test Data
GD-LSE 0.96 0.95
PSO 0.98 0.96
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Figure 8. Comparison of regression plots between GD-LSE ANFIS and PSO ANFIS model predictions of the evaporator
outlet pressure, Prout, using training and test data: (a) training data (GD-LSE); (b) training data (PSO); (c) test data (GD-LSE);
and (d) test data (PSO).

The neuro-fuzzy models developed to predict the evaporator outlet temperature and evaporator
outlet pressure are very agile due to the modelling benefits of fuzzy systems. Compared to the
conventional models of evaporator such as FV and MB models, the neuro-fuzzy models do not
require numerical solution of governing differential equations, and therefore, are computationally less
expensive. The accuracy and speed of the neuro-fuzzy evaporator models illustrate its potential for
real-time control purposes.

7. Conclusions

In this study, GD-LSE and PSO algorithms have been to train two neuro-fuzzy models for pre-
diction of the evaporator outlet temperature and pressure of a 1-kWe ORC prototype. As system
safety is vital in ORC applications for the recovery of waste heat from the exhaust gases of IC engines,
accurate modelling of the evaporator outlet temperature, and pressure plays a pivotal role in the design
of suitable control systems. Comparisons of experimentally gathered data and predictions from the
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neuro-fuzzy models reveal an acceptable accuracy in predicting the evaporator outlet temperature and
pressure.
Based on the obtained results the main findings from this study are as follows:

e  The neuro-fuzzy models offer reduced complexity, high accuracy and lower computational burden
for prediction of the evaporator outlet temperature and pressure.

e  The models developed by using neuro-fuzzy technique can be deployed for real-time control of
ORC in various applications.

e Compared to the models trained using the GD-LSE algorithm, the models trained using the
population-based PSO algorithm obtained better accuracy in terms of RMSEs and R coefficients
for the training and test datasets. For the evaporator outlet temperature, a 29% improvement in
the RMSE was achieved for both the training and test data. Furthermore, the evaporator outlet
pressure RMSE improved by 15% and 18% for the training and test data, respectively, by using the
PSO algorithm.

e  The effort to identify the model parameters reduced substantially in the ANFIS models as opposed
to the conventional non-adaptive methods of fuzzy system tuning.
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Nomenclature

ABC artificial bee colony

ANFIS adaptive network-based fuzzy inference system
AWPSO adaptive weighted particle swarm optimisation
EKF extended Kalman filter

FFRLS forgetting factor recursive least squares
FSI fuel stratified injection

FV finite volume

GA genetic algorithm

GD gradient descent

GDI gasoline direct injection

HDDE heavy-duty diesel engine

ICE internal combustion engine

IWA inertial weight approach

KW kilowatt

LSE least square estimate

MB moving boundary

ORC organic Rankine cycle

PSO particle swarm optimisation

RMSE root mean square error

SRC steam Rankine cycle

TDI turbo direct injection

TES thermal energy storage

TP two-phase region

TP-V two-phase and vapour region

WHR waste heat recovery
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Greek letters
n learning rate
n membership function
0 random variable
o fuzzy set width
Variables
A B linguistic variables
c fuzzy set centre
C acceleration constant
L length of evaporator
m mass flow rate
N number of control volumes
P pressure
p.qr consequent parameters
T temperature
W inertial weight
Subscripts
ev evaporator
G global
h heat source
in inlet
itr iteration
out outlet
P personal
r refrigerant
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Abstract: Obtaining tools to analyze and predict the performance of batteries is a non-trivial
challenge because it involves non-destructive evaluation procedures. At the research level, the
development of sensors to allow cell-level monitoring is an innovative path, and electrochemical
impedance spectrometry (EIS) has been identified as one of the most promising tools, as is the
generation of advanced multivariable models that integrate environmental and internal-battery
information. In this article, we describe an algorithm that automatically identifies a battery-
equivalent electrochemical model based on electroscopic impedance data. This algorithm allows in
operando monitoring of variations in the equivalent circuit parameters that will be used to further
estimate variations in the state of health (SoH) and state of charge (SoC) of the battery based on
a correlation with experimental aging data corresponding to states of failure or degradation. In
the current work, the authors propose a two-step parameter identification algorithm. The first
consists of a rough differential evolution algorithm-based identification. The second is based on the
Nelder-Mead Simplex search method, which gives a fine parameter estimation. These algorithm
results were compared with those of the commercially available Z-view, an equivalent circuit tool
estimation that requires expert human input.

Keywords: automatic identification; electrochemical model; electrochemical impedance spectrome-
try (EIS); electric equivalent circuit (EEC); lead acid batteries

1. Introduction

Batteries fulfill a vital function in many stationary applications, so any problem in a
cell or module that could destabilize its energy storage capacity represents a significant
expense. For instance, solutions based on the manual measurements of the state of
health of the energy storage system involves high maintenance costs. If the review
frequency is low, failures are not detected in time, the battery’s life expectancy is not
maximized, and end-user has added expenses. In this framework, the integration of
sensors at the cell level and the development and optimization of a Battery Management
System (BMS) are important for creating batteries that can meet these requirements. The
monitoring of the battery by the implementation of smart models and algorithms to the
BMS permits the continuous collection of historical data, including the State of Charge
(50C) and State of Health (SoH), thereby minimizing battery failure. In addition, it can
be identified continuously. This monitoring action would also reduce the maintenance
costs associated with on-site visits. For example, the biggest challenge in lead-acid battery
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management is determining the health status of the battery throughout its life while
optimizing operational and maintenance costs [1-7].

As the requirements of batteries increase in demand and complexity, the ability to
understand, control, and predict battery performance becomes more important. It seems
axiomatic that the identification and characterization of battery electrochemical models is
crucial to predicting battery life and to controlling and understanding the battery itself.
These models are based on interpreting electrochemical behavior with respect to a wide
range of battery properties (performance, life span, and especially safety), and in this
Electrochemical Impedance Spectroscopy (EIS) plays a remarkable role [6].

In summary, integration of smart EIS sensing and the extraction of key parameters
produces a detailed understanding and evaluation of the battery, develops better energy
management strategies, and enables smart SoC and SoH identification to improve perfor-
mance. The review presented by Unguren et al. [8] includes a valuable updated comparison
of the different types of models that have been used, mainly for electric mobility applications.
This work focuses on the dynamic identification of electrochemical model parameters, as
suggested by Kwiecien et al. [6]. The work of Lin et al. [9] includes an overview of the
latest work in electric mobility, but there is still room to improve battery management
algorithms, despite the enormous efforts made. Regarding possible improvements in the
battery management system, thermal management is also important, as shown by the study
by Jilte et al. [10]. Possibly one of the positive messages of this report is the importance of
collecting as much experimental data as possible to implement incremental improvements
in the models. Indeed, the more relevant models, which range from simple one-dimensional
models to highly complex multi-dimensional coupled ones, as suggested by Olarte et al. [11],
are be made by in operando electrochemical data, as in the case of this work.

The process of determining the SoC and SoH of batteries is challenging. Several
imaginative monitoring approaches have been introduced that have generated a number
of patents covering different technologies [12]. Over many years, this kind of research
paid attention mainly to lead-acid technology to make it more accessible to customers.
A number of advances in assessing the behavior of cell resistance upon cycling in Pb-
acid batteries was made possible by the introduction of Electrochemical Impedance
Spectroscopy (EIS), which evaluates the battery’s SoC and SoH by combining a set of
direct measurements, namely, resistance, current pulse quantities, EIS, coulomb counting,
and open circuit voltage-based approximations.

Numerous studies have reported different ways to estimate SoC and SoH vari-
ables, which can be divided into different categories: direct measurements, electrical
and electrochemical models, and adaptive and machine learning methods [13-16]. For
example, Chaturvedi et al. reviewed different algorithms for SoC and SoH indication and
commercially available Battery Management Systems and concluded that SoC and SoH
identification in vehicle batteries was still not accurate enough [13].

Among direct measurements, discharge test capacities can only be done at the begin-
ning of a battery’s working life or for intermediate measurements of its SoH. However,
this type of method, even if precise, cannot be incorporated into an intelligent diagnostic
detection system by itself, as explained by Lukic et al. [17].

Some electrochemical models are based on coulomb counting, which can be very
accurate but only if the initial input is valid, and for this high accuracy current sensors
are required [18,19]. Open Circuit Voltage (OCV) measurement is used in lead-acid,
lithium-ion or zinc/bromine batteries, which are based on the relation of the OCV to
the SoC. The OCV is usually measured in off-line conditions, but it could be conducted
on-line if the OCV is deduced from terminal voltage real values or suitable models.

Another method for making real-time predictions by interpreting parameters from the
spectra is Electrochemical Impedance Spectroscopy (EIS). It is difficult to implement the
electrochemical model because it depends on a specific technology [18], but it is expected to
be very accurate. The last electrochemical model is Kalman filters, which can be implemented
in all battery systems, although implementation entails a high level of difficulty.
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The difficulty in determining the parameters of the EIS spectrum lies in the devel-
opment of an adequate and advanced algorithm that allows both automatic and reliable
identification. There are different techniques for identifying system parameters, and the
common laboratory approach consists of measuring the impedance spectrum of a cell’s
frequency domain by means of a single sine-sweep signal. Then, the ECM parameters are
fitted to the frequency domain. Among the authors who have developed work related to
this topic, is Al Nazer et al., who presented a two-step method, although initial expert
background to define the initial parameter values was necessary [20]. Nasser-Eddine
et al. presented a two-step identification method combining chronopotentiometry and
EIS [21]. Gonzalez et al. used a self-adaptive differential evolution algorithm for metal
coating systems that had only been tested with experimental inputs [22]. On the other
hand, the study of Alavi et al. [23] paid attention to the estimation of ECM parameters
directly from data gathered in the time domain. That technique could have practical
applications for parameter estimation in battery-powered vehicles. In addition, Zou
et al. [24] presented a critical synopsis of fractional-order techniques for dealing with
lead-acid batteries, lithium-ion batteries, and supercapacitors. In the study of Ramos
et al. [25], an improvement in the gene expression programming of specific details of
implementation was presented with pre-embedded knowledge to improve the efficiency
of identifying circuits in impedance spectroscopy. On the other hand, a convolutional
neural network (CNN) was used by Chun et al. [26] to predict or prevent problems by
observing the inner states of lithium-ion batteries.

In this paper, direct measurements based on the analysis of EIS impedance spectra
were used to determine the electric equivalent circuit (EEC) parameters. Changes or
variations in value based on a correlation with experimental EIS data from aging batteries
corresponding to known states of failure or degradation allowed the fast mapping to
SoC and SoH in combination with additional historical operational data of the battery
system. Regarding the EIS impedance measurement, different authors made comments.
According to Baccouche et al. [19], this method is very reliable as it presents high accuracy;
however, it could be very time consuming and hard to implement. According to Rivera-
Barrera et al. [15], this estimation method is only suitable for identical charging conditions.
According to Chang [14], impedance measurements are very versatile in that they give
information about many parameters, such as SoC, battery degradation, and failure modes.

The main innovation of the present work consists of proposing a new model to
improve the certainty of EEC parameter estimation from EIS. The process of identification
and use of parameters is interactive, which allows for the integration of more experimen-
tal variables. As important as developing an efficient and highly accurate algorithm of
battery EEC parameters may be, it must also be implemented economically in hardware
integrated into an advanced Battery Management System (BMS). A valuable part of the
work to be done is inspired by the guidelines defined by the European Commission [12],
which shares the objective of this work, i.e., the development of economical and efficient
sensors. In this manner, this work has directed efforts to implement a computationally
efficient yet robust algorithm that can be used in a low-cost device. With the implementa-
tion of the present algorithm, lead-acid batteries may become zero-maintenance because
the adjusted predictions of the remaining useful life (RUL) and historical data records
would allow continuous improvement that would improve overall performance, cycling
strategies, battery safety and operation, and maintenance costs.

The remainder of the manuscript is structured as follows: Section 2 describes the ag-
ing data and the identification methods used to characterize battery impedance. Section 3
presents the main results of the identification process setup and the set of identified pa-
rameters. Finally, the main conclusions and future directions are summarized in Section 4.
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2. Aging Data and Identification Methods
2.1. Aging Tests and Electrochemical Data Logs

The work is based on the aging and measurements of four lead-acid battery models
from different manufacturers. These have between 80 and 100 Ah and 12 V, with improved
performance at high temperatures compared to standard lead-acid batteries. They contain
an anode of metallic lead (Pb), while the cathode consists of a paste of lead oxide (PbO,).
Between the electrodes is a porous separator impregnated with an electrolyte consisting
of an aqueous acid solution of H,SOj. First, a standard characterization is performed to
extract electrical parameters as inputs for the electrochemical model to characterize the
SoC at standard C-rates, such as C/10. (The C-rate is a measure that governs the current
at which a battery is charged and discharged. The capacity of a rechargeable battery is
commonly rated at 1 C, meaning that a 1000 mAh battery should provide a current of
1000 mA for 1 h.)

Second, aging tests were developed based on the load profile for the stationary
case application. These induced accelerated aging through a number of temperature
profiles and modified cycling frequencies. In both type of tests, standard and aging
characterization, the testing protocol included the constant current (CC) and constant
voltage (CV) charge stages. Periodic impedance measurements were taken at different
SoC levels and SoH stages (in the case of accelerated tests), at Ah% = 20. At each
SoC level, a 12 h relaxation time was established before performing the impedance
measurement under an excitation current of 50 mA and in a frequency range from 10
mHz to 10 kHz. From these accelerated aging tests, suitable parameters/signals from
the electrochemical system were extracted for integration into the model to determine
the SoH for the lead-acid batteries. This testing protocol included voltage, current,
temperature, and EIS spectra identification at different operational conditions. Figure 1
illustrates the equivalent circuit model proposed by the authors because all experiments
showed inductive behavior at high frequencies and a circular shape spectrum at medium
frequencies. At low frequencies, another lager circular shape spectrum is shown. The
EEC was selected to monitor variations in impedance and resistance as well as charge
transfer and diffusion phenomena, to allow us to monitor or detect variations in battery
failure modes. The algorithm proposed in this work can be used with other associated
EECs to monitor other interpretations of the electrochemical processes and dynamics in
other batteries.

4= -
— cPE1l | cPE2 }—

—M— | —W—
[ o

Figure 1. Equivalent EIS circuit model.

During both tests, electrochemical data from the EIS spectra and EEC parameters
are recorded in logs. Specifically, this EEC is selected with constant phase elements so
that the experimental data can be adjusted. Non-ideal capacitive behavior of an electrode
(suppressed semi-circles on the Nyquist plot) are taken into account, and a constant phase
element (CPE) is used (see Equation (1)), which is a capacitor with a leakage parameter of
. If the parameter is 1, the element is a pure capacitor (see Aksal et al. [1]).

1

ZCPE =
C(iw)"

1)
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Using the gathered data, tendencies are analyzed, and complete electrochemical
models are developed for each lead-acid battery.

2.2. Data Processing, Proposed Intelligent Identification Algorithm, and Cost Function

EIS is a faster technique for identifying the SoH and the SoC of lead-acid batteries
provided that the data sets have been interpreted using a convenient EEC model. This
section explains the mathematic expression of the EIS based on an equivalent electrical
circuit from the previous section. From circuit theory, it follows that the EIS of the battery
is given by Equation (2):

Zeis = Zr, + Z1y + Zry||cPE, T ZRs)|CPE, (2)

Taking into account that the EEC consists of the simple electrical circuit elements
R, L (and in this case constant phase elements (CPEs)), Equation (2) can be expressed as
Equation (3):

Ry (RoCiw™1-(cosFaq — jsincosFaq) +1)

Z = 3
RallCPE, R3C2w?1 + 2R, Ciwicos Fag + 1 ®
The same procedure is followed for CPE;:
R3(R3Cow™?-(cosFay — jsincosFaz) + 1)
ZRs||cPE, = (4)

R3C2w?%2 + 2R3Csw™2cos Fap + 1

To understand the previous equations, the following parameters need to be ex-
plained:

j = imaginary number (]'2 =-1)

o = angular frequency (rad/s)

o = constant phase angle of the CPE (rad)
R = resistance (Q))

C = capacitance (F)

L = inductance (H)

2.3. Proposed Intelligent Identification Algorithm

There are different types of algorithms for solving complex problems, and because
of them we have a better understanding of lead-acid battery behavior such as the SoC
and SoH.

Current research proposes the so-called differential evolution (DE) algorithm, which
was first proposed in 1997 [27]. As is the case with Particle Swarm Optimization (PSO), DE
is a noncomplex but powerful population-based stochastic search technique. As presented
in Aramendia et al. [28], different agent sets are proposed by DE, and all agents follow
the same procedure to improve the resulting agent set, evaluation, crossing, mutation,
and selection. The three main vectors are described as follows:

o  Target vector: The solution undergoing evolution used in mutation to generate a
donor vector.
Donor vector: Undergoes recombination to obtain the trial vector.
Trial vector. An offspring formed by recombination of the donor with the target
vector.

The set of variables to be optimized in this case were Ry, L1, Ry, C1, a1, R3,Cy,and ay,
which were real, so they were arranged or codified in a vector. The length of the resulting
vectors (N) was the same as the number of variables. The nomenclature X‘g was used to
define a vector, where p indicated the individual population (p =1 ... NP), g was the
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corresponding generational number, and NP is the agent number. The candidate solutions
are defined in Equation (5):

X‘f, = {x},,m, e xg,m} (5)

where m =1... n. The DE algorithm is composed of four steps:

2.3.1. Initialization

The population was generated randomly without exceeding either the maximum or
minimum limits, as described in Equation (6):

x;,,m = x%in + rand(O, 1). (xmax _ x,'Zi") (6)

where p =1 ... NP and a uniformly distributed random variable within the range [0, 1] is
represented by rand (0,1). This equation corresponded to generation 1 (g = 1).

2.3.2. Mutation

In the mutation operation, three random solutions (X, X2, X;3) were selected from
a population of solutions. These solutions could not be identical. The donor vector was
achieved with Equation (7):

V§ = X3+ F-(Xp — Xn2) (7)

wherep =1... NP; F is a scaling factor, a positive control parameter between (0,2) that
scales the difference vector. For its target, X, ¢, at generation g, the associated donor

8 _ 1 m
vector, V;; = {Up,g, ey vp,g}, can be generated.

2.3.3. Recombination
This operation increases the diversity of the population. The crossover operator

generates a trial vector, TS = {t;/g, el t;”,g}, out of each target vector, X, ¢, and corre-
sponding donor vector, V), ¢. For simpler implementation, the DE algorithm employs a

binomial (uniform) crossover operator, as defined in Equation (8)

g vy, m if rand([0,1]) < GR
e xg,m if any other case

(8)

wherem=1... n,p=1... NP, and GR is the crossover rate, which actually is a constant
defined by the user and has a value constrained by the range that controls the fraction
of parameter values copied from the donor vector; v‘g, m is a variable of the donor vector,

x‘glm is a variable of the target vector, and tﬁ,m is a variable of the trial vector.

2.3.4. Selection

The selection operation is determined by Equation (9):

Xﬁ“ = t iff(tf’) = f(X§> 9)

X‘f, otherwise

where f ( Tg ) is the objective function value of each trial vector and is compared to that

of its corresponding target vector, f (X% ), with the current population. If the objective
function value with the trial vector is less than or equal to the corresponding target vector,
then the target vector will be replaced by the trial vector and enter into the next generation
population. Otherwise, there will be no changes and the target vector will be kept for the
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next generation population. The previous three steps are repeated for an undetermined
number of generations until specific termination criteria are reached.

2.4. Cost Function
As highlighted in the study of Martinez-Rico et al. [29], the optimization problem

covers the objective of minimizing the loss of value. To know this loss of value, the
following cost function, determined by Equation (10), is proposed:

u=Nsamples || _, N N N
ZEISexp (wy) -Z (*)I wy)

J= L

2
‘ (10)
u=1

where @ = [Rq, L1, Ry, C1, a1, R3, Cp, &3] and cj# = angular frequency. This angular fre-
quency vector has 121 different frequencies, as defined by N samples.

According to Equation (10), it is possible to know the difference between the ex-
perimental values and the values of the proposed battery model, both the real and the
imaginary parts. The experimental values were obtained as a function of different frequen-
cies. Instead, the electrochemical impedance spectroscopy (EILS) of the model depended
on several parameters, specifically the = parameters, which, as mentioned in the differen-
tial evolution algorithm part, were the ones that must be optimized to achieve the least
possible loss of value.

2.5. Fine Parameter Identification Process

The Nelder-Mead Simplex method is a well-known optimization procedure. Its
main disadvantage is that it must be near the optimal point because this algorithm can
stop at local minima points. Nevertheless, the main advantage of this algorithm is its
good convergence to a minimal point. Therefore, we combined it with DE to achieve a
good set of identification parameters. This set was the initial value for the second step of
parameter identification.

2.6. Test Definition

A total of 36 tests were performed over 5 months. The first was a discharge cycle
test from 100 to 0% of the SoC. The exact SoCs evaluated were 100, 80, 60, 40, 20, and
0%. The battery was kept at 25 °C the whole time. Once the discharge cycle was finished,
it was again charged to 100%, and the battery was kept in a floating state for a whole
month. Afterwards, another discharge cycle started; therefore, the authors conducted 36
EIS experimental tests for each battery model after 5 months: 6 monthly tests with 6 SoCs.
The tests had 121 frequencies with a logarithmic span as shown in Table 1.

Table 1. Test frequencies.

Highest Frequency Lowest Frequency Units
10,000 0.01 Hertz

3. Results
3.1. Identification Process Setup

The authors studied different optimization algorithms to match a parameter set-
generated spectrum to the experimental spectrum. This issue was explained in Equation
(10), and the corresponding frequencies are shown in Table 1. The first-step differential
evolution algorithm options are included in Table 2, and the second-step Nelder-Mead
Simplex algorithm options are in Table 3.
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Table 2. First Step Differential Evolution algorithm options.

. . Number of
Agent Number F Option CR Option Tterations 1
10,000 1 0.5 0.011
1 First step’s options do not change much parameter identification cost.
Table 3. Second Step Nelder—-Mead Simplex algorithm options.
P X Y o
2 0.5 0.5

The parameters/variables p and x correspond to the reflection and expansion coeffi-
cients, respectively. The values presented in Table 3 are well-known as the best values for
the Nelder-Mead Simplex method given by Lagarias et al. [30].

To improve convergence, DE algorithms were normalized between 0 and 1, and in
the second step, we conducted the same normalization. The identification of parameters
to set maximum and minimum normalized values is included in Table 4. These parameter
set values were proposed by the experience obtained from the test data.

Table 4. Identification parameter set maximum and minimum values applied in normalization.

Identification Maximum Value Minimal Value Units
Parameter

R2 0.02 0.002 Ohms
R3 1 0.001 Ohms
c1 12 1 F
o 0.9 0.4 -
&) 300 40 F
o 0.8 0.4 -
L1 10°° 10°° H

The parameters shown in Table 4 are the outputs of the proposed identification
process. They had to be set to match the experimental EIS test data and were usually
identified using commercial standard software, which needed high human expertise to
obtain reliable matches with the experimental EIS data tests.

3.2. Identified Parameter Sets

The authors compared the cost functions obtained from DE and from DE combined
with the Nelder-Mead Simplex method to improve the optimization of cost function
values. Jpgprediction 1S the optimization cost function value with unique DE optimization.
JDEoptim 18 the two-step optimization. Figure 2 illustrates the square errors obtained from
one-step DE-based identification and the two-step identification square errors. According
to the results presented in Figure 2, the proposed identification improved significantly.

This optimization combined the exploration capability of DE with the fine conver-
gence of the Nelder-Mead Simplex method as shown in Equation (11), where the improve-
ment metric was defined. The authors compared these two methods with the mean square
error. In Equation (10), the authors showed the applied metric. As the electrochemical
impedance spectroscopy (EIS) data were complex-valued sample sets, the authors applied
a complex number module to the error between the test and models data, which is the stan-
dard measurement technique for complex data. The authors reduced the ratio between the
mean square errors obtained from the two-step identification and the one-step DE-based
identification. The summary of all improved results is shown in Table 5.
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Figure 2. Square errors with proposed identification and with only DE algorithm identification.

Table 5. Mean and standard deviation improvement related to one differential evolution optimization.

Mean Improvement with Two-Step Standard Deviation with Two-Step
Optimization Optimization in %
85.1315 1491422

2 “In %" refers to the cost function, J, of one-step DE optimization.

In Figure 2, the x axis is the one-step DE-based identification RMSE and the two-step
identification RMSE. The y axis is the test reference.

Improvement % = 100.]DE”’€diCti0” — IpEoptim

(11)
]DEprediction

In Table 5, the mean and standard deviation improvement values relating to one
differential evolution optimization are shown. The improvement is related to the RMSE
obtained from the two-step optimization compared with the RMSE obtained by only
taking into account the first-step optimization using DE.

In all tests, two-step optimization results were an improvement over one-step opti-
mization. The first step gave a good approximation, but after a good parameter value set
was proposed, the second-step optimization made a fine parameter fitting. In fact, the
second algorithm had a fast convergence if it started close to the optimal solution. This
second algorithm needed fewer iterations to make a fine fitting and a suitable initialization
point. Consequently, the authors propose using DE to obtain a good starting point for the
second optimization step.

Figure 3 shows the EIS experiment results. This Nyquist diagram illustrates three
different regions: Region 1 has the contribution of the inductance and the ohmic resistance
(L1 and R1 parameters, see Table 4) with high frequency samples; Region 2 is related to
the first CPE parallel to the R2 identification parameter, which is usual for characterizing
a circular EIS spectrum with these two elements; Region 3 is characterized as a larger
circular spectrum, and for this reason, a characterization with a second CPE element
parallel to R3 was made. In total, 36 experiments were carried out and all spectra showed
similar behavior with these three different regions. Consequently, the equivalent circuit
schema described in Figure 1 was proposed.
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EIS month number:1, SOC:80%
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Figure 3. 80% SoC EIS experiment in first iteration (Pristine Battery).

Figure 4 represents the same experiment presented in Figure 3, with identification
results added to the experimental samples represented by red crosses. The red line repre-
sents the DE optimization-based identification results, and the black line represents the
two-step optimization-based identification results. Figure 4 shows that DE optimization
gave a reasonably good parameter identification, but it was not fine enough (see red line).
The parameter identification based on the two optimization steps represented by the black
line gave a much better identification performance.

0.02
0.01 i
O 4

S
= : DE Prediction
% 0.01 k- ’f; I X Experimental Data | |
S oI DE Optim
© X

-0.02 | Xt 1

.
-0.04 : ' ! !
0 0.005 0.01 0.015 0.02 0.025

real(EIS) [€2]

Figure 4. Comparison between one-step DE optimization-based identification result and two-step
DE optimization-based identification results at 80% SoC.

In Figure 4, authors show that the two-step identification-based model (black line)
showed better performance than did the one-step identification model (red line). The
experimental data are identified by red crosses. The one-step identification model did not
match Region 1 at all (defined in Figure 3), but the two-step identification model matched
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Region 1’s data very well. In Region 2, both models were good enough to match the
experimental data. Finally, in Region 3, the two-step identification model matched the
experimental data very well, even in the transition between Region 2 and 3; however, the
transition between Regions 1 and 2 did not match the one-step identification correctly.

Note that 36 figures with experimental data were added as supplementary material.
In addition, another 36 figures with graphic comparisons between the one-step DE and
the combined DE-Nelder-Mead Simplex method were added. To confirm the efficiency
of the identification proposed, 36 EIS experimental tests for each battery model were
conducted after 5 months for a total of 6 monthly tests with 6 SoCs (100, 80, 60, 40, 20,
and 0%). In emf format files named OptimizationResults_month_X_SOC_Y, the authors
showed the identification results and the experimental data in X month with Y SoC. In
emf format files named month = X SOC =Y, the authors showed only the experimental
data in X month with Y SoC.

4. Conclusions

In summary, we proposed the use of an automatic algorithm to identify variations
in the parameters for a given EEC. Usually, conventional identification needs expert
human support to guide the identification results. The proposed algorithm allows in
operando monitoring of the variation of the EEC parameters to further estimate changes
or variations in the battery’s state of charge (S0C) and state of health (SoH) based on a
correlation with experimental aging data associated with states of failure or degradation.
The authors proposed a reliable alternative for improving the parameter identification
time of an EIS: A two-step optimization algorithm. In that way, the best characteristics of
each algorithm were applied in the identification process.

Even though the proposed algorithm was shown to be robust enough, there is still
room for improvement by gathering more experimental data and conducting a post-
mortem analysis. These improvements will be based on the development of a complete
SoH lead-acid battery supervisor that will gather both the proposed improved algorithm
and the failure identification mode to apply preventive and corrective action to the com-
plete battery system. This would not only be a significant advance in the field of predicting
battery performance, but also be key to the development of remote monitoring systems.

Supplementary Materials: The following are available online at https:/ /www.mdpi.com/2079-9
292/10/11/1353/s1: The authors have added 36 figures with experimental data, 36 other figures
with graphic comparisons between Differential Evolution unique step, and the combinations of
Differential Evolutions with Nelder-Mead Simplex method.
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Abbreviations

Acronyms

EIS Electrochemical Impedance Spectroscopy
SoC State of Charge

SoH State of Health

RUL Remaining Useful Lifetime

ECM Equivalent Circuit Model

OoCVv Open Circuit Voltage

CNN Convolutional Neural Net wok
EEC Electric Equivalent Circuit

CPE Constant Phase Element

DE Differential Evolution

ZCPE Impedance Constant Phase Element
PSO Particle Swarm Optimization

BMS Battery Management System
Abbreviations

Greek and Other Symbols

i imaginary number (i = —1)

o) angular frequency (rad/s)
o constant phase angle of the CPE (rad)
R resistance (Q))
C capacitance (F)
L inductance (H)
0 Reflection coefficient of Nelder-Mead algorithm
X Expansion coefficient of Nelder-Mead algorithm
0% Coefficient of Nelder-Mead algorithm
o Coefficient of Nelder-Mead algorithm
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Abstract: Recently, the penetration of energy storage systems and photovoltaics has been signifi-
cantly expanded worldwide. In this regard, this paper presents the enhanced operation and control
of DC microgrid systems, which are based on photovoltaic modules, battery storage systems, and
DC load. DC-DC and DC-AC converters are coordinated and controlled to achieve DC voltage
stability in the microgrid. To achieve such an ambitious target, the system is widely operated in
two different modes: stand-alone and grid-connected modes. The novel control strategy enables
maximum power generation from the photovoltaic system across different techniques for operat-
ing the microgrid. Six different cases are simulated and analyzed using the MATLAB/Simulink
platform while varying irradiance levels and consequently varying photovoltaic generation. The
proposed system achieves voltage and power stability at different load demands. It is illustrated
that the grid-tied mode of operation regulated by voltage source converter control offers more
stability than the islanded mode. In general, the proposed battery converter control introduces a
stable operation and regulated DC voltage but with few voltage spikes. The merit of the integrated
DC microgrid with batteries is to attain further flexibility and reliability through balancing power
demand and generation. The simulation results also show the system can operate properly in
normal or abnormal cases, thanks to the proposed control strategy, which can regulate the voltage
stability of the DC bus in the microgrid with energy storage systems and photovoltaics.

Keywords: microgrid; photovoltaic; storage systems; control strategy; islanded mode

1. Introduction

Global warming and carbon dioxide emissions, attributed to traditionally used
energy sources, have become severe issues in the world for the last few years. Hence, the
improvement of renewable energy sources (RES) has gained great research interest to
mitigate and reduce such risks. Some RES, such as photovoltaic cells or wind turbines,
are well-developed since they are clean and cost-effective [1-3]. However, other sources
such as fuel cells and biomass are still in their growth stage [4].

Microgrid systems, which are classified as AC or DC microgrids, could merge RES
with household and industrial loads [5-7]. The differences between both types of mi-
crogrids as well as their advantages are deeply discussed in the literature [8,9]. In fact,
power electronic devices (PED) have recently become a must in grid integration, since
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photovoltaic systems output DC power while wind systems’ output is in the form of
variable frequency/voltage AC power. Additionally, some modern electronic loads, such
as computers and plug-in hybrid electric vehicles, and even traditional AC loads such
as induction motors, require DC power when driven by a variable-speed drive. Conse-
quently, DC microgrids have been proven as one of the most efficient and cost-effective
systems in the integration of RES with loads, as they decrease the AC-DC and DC-AC
power conversion stages compared to AC microgrids [10,11]. Machine learning and artifi-
cial intelligence have shown promising performance in different electrical engineering
applications [12-16] as well as power system components, e.g., power transformers and
high voltage transmission lines [17-23]. Figure 1 illustrates the microgrid components in
which the load and the diesel generator along with the wind turbines are connected to
the AC side. In turn, PV units and battery energy storage systems (BESS) are tied to the
DC side which is connected to the AC side by DC/AC inverter.

AC side DC side

Load Demand

PV system

DCto AC

Wind Farms \ | \ 1
==
Diesel station
AC Loads [
Regr
BESS

Figure 1. Schematic diagram of a microgrid system.

Among different RES merged with DC microgrids, photovoltaic (PV) cells are considered clean
and scalable. PV microgrids operate in islanded mode to supply power to a small community or are
tied to a grid as a distributed generator. However, a PV system is an intermittent source of energy as it
depends on weather conditions and whether the sun is shining [24,25]. To overcome such drawbacks,
energy storage systems (ESS) such as batteries or supercapacitors should be applied in the microgrid to

158



Electronics 2021, 10, 1261

attain smooth and reliable power generation from the PV system. ESS is charged during sunlight hours
when PV power exceeds load demand, while during peak times, shortages of power generation, or
unstable generation of PV, ESS discharge their energy [26-28]. The PV systems are widely operated in
two modes of operation: stand-alone and grid-connected modes [29-33]. During the stand-alone mode,
ESS compensates for the shortage of power generated by the PV modules, and if the stored power
was insufficient, the system undergoes load shedding to meet the system requirements [34]. On the
other hand, the utility grid manages to achieve power balance and DC voltage stability in the grid-tied
mode [35]. Different strategies have been proposed for the control of DC microgrids. Standalone PV
system control with a battery storage system through a bidirectional buck-boost converter is discussed
in [36], with the aim of maintaining DC voltage stability. A control strategy for the integrated DC
microgrid under variable load demand and different insolation levels through islanded mode and
grid-connected mode is demonstrated in [37]. A hybrid AC/DC microgrid control that can manage and
regulate power flow with both DC and AC buses in grid-connected and islanded modes is presented
in [38]. Some limitations on battery discharge and grid power transfer are simulated in [39].

In this paper, the integration of a PV system, a battery storage system, and DC load in a DC
microgrid is simulated using the Simscape power systems toolbox, MATLAB/Simulink (2018b, Math-
Works Inc., Natick, MA, USA) platform. The effects of various controllers on the voltage stability
of the system is observed during different solar irradiation cases, load demands, batteries, and grid
power transfers. In particular, DC-DC and DC-AC converters are managed to achieve DC voltage
stability in the microgrid while the system is operated in two practical modes: (1) stand-alone and
(2) grid-connected. The novelty of this work is that different operating techniques of the microgrid
are simulated using the traditional Direct-Quadrature (DQ) control strategy in cooperation with the
voltage current controllers, where the updated voltage-oriented current control regulates DC voltage
and ensures power balance between sources and load. Additionally, maximum power generation from
the photovoltaic system can be attained by the novel control strategy across different techniques for
operating the microgrid. The proposed battery converter control can introduce a stable operation and
regulate DC voltage. The advantage of the integrated DC microgrid with batteries is that it accom-
plishes better flexibility and reliability while balancing power demand and generation. Accordingly,
the microgrid can perform properly in both normal and sudden variation cases, thanks to the proposed
control strategy that improves the voltage stability of the DC bus interconnected with energy storage
systems and photovoltaics.

The rest of the paper is organized as follows: The proposed PV-based DC microgrid structure and
controller modeling are analyzed in Section 2. Simulation results are presented in Section 3. Finally, the
conclusions drawn from the results are presented in Section 4.

2. System Configuration and Modeling

The configuration of the proposed PV microgrid includes (1) PV arrays with the DC-DC boost
converter and maximum power point tracking (MPPT), (2) a battery energy storage system (BESS)
with DC-DC bidirectional buck-boost converters, (3) a voltage source converter (VSC) in the case of
the grid-tied system. The utility grid is represented as the three-phase ideal voltage source. The BESS
is used to maintain the power balance between PV power generation and the load demand in the
islanded mode. A typical radial DC microgrid configuration is shown in Figure 2. Different microgrid
structures are discussed in references [35,40,41].
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Figure 2. Typical radial DC microgrid configuration.

Utility Grid

The PV based microgrid is controlled through a MPPT controller, a BESS local control unit
that charge-discharges the battery bank based on the operation mode and a VSC controller. Table 1
introduces comparative analysis of various VSC control strategies.

Table 1. Comparative Analysis of VSC control strategies.

Control Method

Operation

Advantages

Disadvantages

) Selects the

droop

parameters based on the

steady-state analysis.

Voltage Droop Control [42] Inner loop

controls

current while an outer
loop regulates DC

voltage.

Reduces the effects of

DC voltage disturbances.

Reference current control
could diverge in any
sudden change during
grid operation.

e  Steady state operation

Vector Current Controller
[43,44]

separately.

into the d—q axis to
control active power and
reactive power

Fast dynamic response.
Delivers better power
quality during
harmonics and grid
disturbances.

Can compensate grid
harmonics.

Achieves poor
performance when it is
applied to a DC link
connected to a weak AC
network.

° Direct control of active

Voltage Controller [45]

power, reactive power °

and power angle.

Simple and easy process.

Active power and
reactive power cannot be
controlled
independently.

Cannot limit the current
flowing into the
converter.

° The method is based on
the transformation

Proposed Voltage Oriented
Control (DQ-control)

between stationary
coordinates a3 and

synchronous rotating °
coordinates dq.

Fast and robust.

High static performance
via internal current
control loop.

Advanced PWM
strategies can be used.

Coordinate
transformation and PI
controllers are required.
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2.1. Photovoltaic System

The main source of power supply in the DC microgrid is the photovoltaic system which is
controlled to operate at the maximum power point (MPP). Consequently, PV cell model representation
has become an important field of study. Although there are several equivalent circuits to represent the
PV array, the typical and most commonly used one is the single-diode circuit as it is characterized by
its simplicity and accuracy. It is known also as the five-parameter model. The circuit shown in Figure 3
combines a photo-generated controlled current source parallel to a single diode, series resistance, and
parallel resistance representing power losses [46].

Ry Ipy
—— -

/ Re Vir

Figure 3. Equivalent circuit of PV array.

The photovoltaic cell is constructed based on P-N junctions, which are made from semiconductor
materials. Silicon is dominantly used due to its abundance, non-toxicity, high and stable cell effi-
ciencies [47]. The I-V characteristic of the solar cell is given by implicit and nonlinear equations as
follows:

Vpy + Rsl
IPV:IgId<PVR “’V) (1)
p
Vpy + RsI
Iy=1, [exp(q( PVnKTS PV)) — 1} (2)
Vp = Vpy + Rslpy 3)

In an array, PV modules are connected in series and in parallel. A group of PV cells is connected
together in series to form a string, then the group of strings is connected in parallel to form an array.
The current-voltage relationship of the array is affected by these connections as given by [48]:

Vpy + %Rslpv

Ipy = Nply — Npl; — oy
N, *p

(4)

Lo q(Vpy + %Rsfpv) . 5
d = lo | &XP NenKT - ©®)

where g is the electronic charge, K is the Boltzmann constant, # is the ideality factor, T is the cell
temperature, I, represents a current source created by sunlight known as a photocurrent, i.e., irradiance
current, I, is the diode saturation current, Rg is the series resistance, Rp is the shunt resistance, N is
the number of cells connected in series in the array, Nj, is the number of strings in parallel, Ipy and Vpy
are the current and voltage outputs of the PV array, respectively.

PV systems deliver varying power depending on solar temperature and irradiation. As a result,
MPPT should take place to optimize the power that can be delivered by PV cells. MPP differs according
to light intensity and cell temperature and isn’t a particular operating point on the P-V curve. Hence, a
control technique is applied to the PV array with a boost converter to control its duty cycle to drive the
system to operate at its optimal value [49].

There are various methods to implement MPPT tracking [50]. The most common methods are
incremental conductance (IC) and perturb and observe (P&O). The IC technique has the advantage
of a fast response to changes in irradiation and temperature. Moreover, it can determine when MPPT
reaches the MPP during these changes while P&O oscillates around the MPP [51,52]. IC is implemented
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based on the study of the P-V curve; the MPP is reached when dP/dV = 0. The equations of the IC
method are [53]:

P=VI (6)
%zl%—l—V%zl—l—V% @)
% = _71 at MPP 8)

j—‘l/ > _71 Left of MPP )
a1 Right of MPP (10)

awv v
As shown in the previous equations, the output incremental conductance equals the negative of
the instantaneous output conductance at the MPP in the IC method. MPPT controls the duty cycle of
the DC-DC boost converter to reach the condition (dI/dV = —I/V). The flow chart of IC MPPT in
Figure 4 shows the algorithm. If (9) is satisfied, the duty cycle of the converter needs to be increased in
order to increase the operating voltage to attain MPP, and vice versa if (10) is satisfied.

| Read PV array voltage and current [|=

l

| du=u—u, & di=i—i, |

Next Cycle

v Y
Increase the duty cycle (D) | I Decrease the duty cycle (D)

I |
'

Uy =U &, =1 |«

Figure 4. Flow chart of incremental conductance MPPT.

A 4
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2.2. Battery Energy Storage System

Solar power generation may exceed or fall behind load demand. In addition, intermittency of PV
power leads to the need for ESS to store the surplus power, supply power when there are deficits, and
maintain grid stability during fluctuations resulting from changes in weather conditions like cloud
shadows on the PV array. The storage module consists of a Lithium-ion battery bank and a bidirectional
DC-DC buck-boost converter. Lithium-ion batteries have high energy capacity, low maintenance
needs, and a robust life cycle. The control of the bidirectional buck-boost converter regulates charging
and discharging of the BESS based on DC bus voltage, so the control is designed in bus monitoring
(BM) mode [54]. The battery model shown in Figure 5 can be modeled through a general dynamic
model that can be described by the equations [55]:

Viart = Eg — tpatt Rpart (1)

Eg = Ego — + AeB [ ivandt (12)

Q
K Q — [ ipandt
where,
E¢ = no-load voltage (V)
Ego = battery constant voltage (V)
K = polarization voltage (V)
Q = maximum battery capacity (Ah)
[ ipasedt = actual battery charge (Ah)
A = exponential zone amplitude (V)
B = exponential zone time constant inverse (Ah)—1
Vpart = battery output voltage (V)
Ry,st = internal resistance (resistance that the battery opposes to the flow of energy) (€2)
ipgt = battery current (A)

+
P <_> E Vba 73

Figure 5. Equivalent circuit of battery.

The storage local control unit adjusts battery current to control charge and discharge of the battery
by providing duty cycle to the converter as introduced in Figure 6. Hence, DC bus voltage remains
stable.
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Figure 6. Battery local control.

2.3. Grid and Voltage Source Converter

The grid circuit is composed of a three-phase AC voltage source, an inductive-capacitive-inductive
(LCL) filter which is responsible for reducing voltage and current switching harmonics, and a converter.
Although the capacitive-inductive—capacitive (CLC) filter has the merits of reduced cost and size,
it is commonly used with low current equipment. The used filter in the architecture is LCL, which
has better capability in reducing total harmonic distortion compared to other filters, limits higher
frequency current inflow, keeps the current harmonics in and around the operating frequency within
the restricted limits, and could be designed to have a high dynamic response to meet the fast dynamics
in power grids existing in Egypt. VSC is controlled to maintain the stability of the system and DC
bus. A grid-connected VSC Control loop is used to adjust the DC voltage and generate pulse width
modulation signals as shown in Figure 7 [56].

[‘lref:O 9
J J VSC
1 Vdre[
Ve Voltage dref| Current b Vabe PWM . ﬁ
Vref ——{ Regulator Regulator abc
v, Gate
I % el pulses
L

Figure 7. VSC voltage and current control.

The control strategy used with the VSC is vector control, also known as voltage-oriented control.
This scheme is characterized by its high dynamic performance. There are two control loops, the outer
loop is the voltage control loop for regulating the DC voltage, and the inner one is the current control
loop which regulates direct axis current I; and quadrature axis current I;. VSC can control active
and reactive powers independently. The direct axis component is responsible for controlling DC link
voltage since the output from the outer voltage control loop is I; .. However, the quadrature axis
component is responsible for controlling the reactive power transfer where I; is set to zero, as there
is no reactive power. The outputs of the current control loop, V; s and V; ,.f, are converted to a
three-phase voltage reference, then the pulse width modulator (PWM) generates gate pulses to control
the converter so that DC voltage is regulated [57].

3. Results and Discussions

The integration of PV microgrids with battery storage is simulated using the MATLAB/Simulink
platform. The parameters of the microgrid, PV array, battery, and DC load are provided in Table 2.
The PV array in the grid-tied DC microgrid is composed of 47 parallel strings each consists of 10 series
modules. PV systems have higher capital costs per unit and much lower operating costs than traditional
fossil-based electrical resources. However, progress in the PV industry continues, with reasonable
scope for further cost reductions in the near future. As a result, PV panels can be manufactured at lower
costs and can generate energy at higher efficiencies, reducing production costs per watt. The simulation
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sampling time is 10 us, which is suitable to the switching frequency of the control components, so
as to increase the accuracy of the controlling devices. Note that sampling time and hence sampling
frequency is suitable for the switching frequency of the control components. Additionally, digital signal
processors (DSP) that are used in power system applications in Egypt have switching frequency ranges
from 70 to 160 kHz. The used time step in the model is variable. PWM is of an asymmetrical type.
First, the microgrid is tested at constant load demand through different PV irradiance in different cases.
Then, it is tested for different load demands.

Table 2. Parameters of DC microgrid PV Array, battery, and DC load.

DC Micro-Grid

Nominal voltage 600 V
PV Array Parameters
Number of series modules per string Ns 10
Number of parallel strings Np 47
Module short circuit current (STC) I 7.84 A
Module open-circuit voltage (STC) Vi, 363V
Module current at maximum power (STC) Ly 735 A
Module voltage at maximum power (STC) Vi, 29V
Module maximum power Py, 213.15W
Boost converter inductance Lggost 1.5mH
Boost converter Capacitance Cpypst 3300 uF
PV boost converter switching frequency 5000 Hz
Battery Parameters
Type Li-ion
Nominal voltage 240V
Rated capacity Q 800 Ah
Battery converter inductance 5mH
Battery converter series resistance 010
Battery converter capacitance 1 mF
Battery converter parallel resistance 1 x 1074 Q
GS-VSC Parameters (PWM IGBT)
DC Voltage Vp, 600 V
Line to line AC voltage Voltage Vi_1 s 400V
Filter inductance, resistance and capacitance L¢, R, Cr 0.5mH, 1 mQ, 15 uF
DC Load
Constant resistance 36 Q)
Constant power 10 kW

3.1. Grid-Tied PV Microgrid

In this simulation, the PV microgrid is connected to the utility grid and VSC control is responsible
for regulating DC load and DC bus voltage. When the PV generation is more than the load demand
in cases of high irradiance, surplus power goes to the grid. However, when it is below load demand,
the utility grid supplies the deficiency in power generated by the PV system to the load. The load
consumes constant power in all irradiance changes. At instants of sudden changes in irradiance, DC
bus voltage is maintained within the permissible limits, 5%, consequently, load voltage remains in
the allowed range which is (600 V = 30 V). However, there are tiny fluctuations and sudden drops and
rises in irradiance for both the DC bus voltage and power provided to the DC load. Therefore, voltage
stability is controlled by grid VSC as shown in Figure 8.
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Figure 8. Grid-tied PV microgrid response; (a) Irradiation & DC voltage at load point, and (b) Power flow through
DC microgrid.

3.2. Islanded PV Microgrid

In this simulation, the PV microgrid is disconnected from the utility grid, and the battery with
the bidirectional converter control becomes responsible for regulating DC load voltage. The battery
discharges to maintain DC load voltage stability and to supply power in case of low power generation
by the PV system. When PV power generation increases above the load demand, the battery starts
charging from the excess power generated by the PV system as illustrated in Figure 9. Voltage spikes
and sags are observed at sudden changes of irradiance, as a result of the fast change of battery current,
which causes a voltage increase or decrease due to the flow of momentary current through the parallel
diode during switching operations of converter switches.
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Figure 9. Islanded PV microgrid response; (a) Irradiation, DC voltage at load point and battery current, and (b)
Power flow through DC microgrid.

3.3. Grid-Tied PV Microgrid with Constant Grid Power

The constant power mode of the utility grid is presented in this case, during which the influence of
the microgrid on the utility power system is reduced. Figure 10 shows that the grid supplies constant
power to the microgrid by controlling the direct current i, to track reference positive current ;. Hence,
DC voltage is not controlled using VSC control. Therefore, the battery converter regulates DC load
voltage and deals with the power generated from the PV module to make the battery charge during
excess power generation from the PV system and discharge during PV low power generation. The
presence of voltage fluctuations at every sudden change in irradiance level is shown in this case, as
with the islanded mode of operation response, because here the battery converter controller is also
responsible for DC voltage regulation but voltage is quickly established to track the reference DC
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voltage. Furthermore, the battery bank responds to changes in the power imbalance between power
generation and load demand, thus supplying almost stable power to the load.
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Figure 10. Response of grid-tied PV microgrid with constant grid power; (a) PV power and DC voltage at load
point, and (b) Power Transfer through microgrid.
3.4. Grid-Tied PV Microgrid with Constant Battery Discharge

Figure 11 shows the battery discharge by constant rate through controlling battery current ip to
positive reference current i,. Battery power is the constant positive power and grid powDer transfer to
load is regulated by VSC control. It is also observed that DC-bus power is not affected by the variations.
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Figure 11. Power flow in grid-tied PV microgrid with constant battery discharge.

3.5. Islanded PV Microgrid with Different Load Demands

For this case, the bidirectional converter is responsible for controlling the charge and discharge
of the battery. The power transfer illustrated in Figure 12 shows the response of the DC microgrid
in islanded mode with different load demands. It is observed that at instants t =2 s and t = 4 s the
load power is suddenly increased by 10 kW to evaluate the performance of the system at different
operating conditions. Therefore, at t = 2 s the load is suddenly increased but PV power generation still
exceeds the load demand, so the battery continues to be charged; battery power is negative, therefore,
the converter is in buck mode but its power decreases as the load consumes the difference in power.
Att=4s, the load demand increases by 10 kW, and PV power generation is still higher than demand,
so the battery continues to be charged while at t = 5 s, PV generation is decreased past load demand,
consequently, the battery responds to meet load demand, where the bidirectional converter is put into
boost mode. The system maintains its stability and supply load at different load changes using the
control strategy of a battery bidirectional converter. The settling time at transient moments is slightly
high but the system quickly restores its stability. When the battery is full, the PV system only supplies
the load with no extra energy. In other words, the PV system does not operate at maximum power
point but will operate according to load demand.

3.6. Grid-Tied PV Microgrid with Different Load Demands

For the different load demands and variable PV power generation due to different irradiance levels,
the utility grid is responsible for supplying the load when demand is increased over PV generation
in the grid-tied mode of operation as shown in Figure 13. It is observed that when irradiance level is
low during the night or when it is cloudy, grid power is negative to supply the load instead of the PV
system. Hence, the grid VSC control is the main controller in this case. Furthermore, power stability is
enhanced for the system when tied to the grid rather than in the islanded mode.
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Figure 12. Power flow in islanded PV microgrid with different load demands.
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Figure 13. Power flow in Grid-Tied DC PV microgrid with different load demands.

4. Conclusions

This paper presents the enhanced operation of DC microgrid with PV generation as RES and
battery as the energy storage system. The grid is connected and disconnected according to the mode of
operation. Local control units of VSC and battery bidirectional converters are used to attain the required
references for the different cases of simulation of the DC microgrid. The system is simulated for 6 s and
the results are analyzed for each case. Results show that an integrated DC microgrid with batteries
achieves more flexibility and reliability in the system by balancing power demand and generation.
The stability of the DC microgrid is studied to test the reliability of the system during different modes
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of operations and different load changes. Through the simulation, discussion and results, it can be
concluded that whether the system operates in normal cases or abnormal cases, different control
strategies can regulate stable DC bus voltage. Additionally, it is observed that the grid-tied mode
of operation regulated by VSC control offers more stability than islanded mode. However, battery
converter control introduced a stable operation and regulated DC voltage but with a few voltage spikes.
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Abstract: The design of robot systems controlled by cables can be relatively difficult when it is
approached from the mathematical model of the mechanism, considering that its approach involves
non-linearities associated with different components, such as cables and pulleys. In this work, a
simple and practical decoupled control structure proposal that requires practically no mathematical
analysis was developed for the position control of a planar cable-driven parallel robot (CDPR).
This structure was implemented using non-linear fuzzy PID and classic PID controllers, allowing
performance comparisons to be established. For the development of this research, first the structure
of the control system was proposed, based on an analysis of the cables involved in the movement
of the end-effector (EE) of the robot when they act independently for each axis. Then a tuning of
rules was carried out for fuzzy PID controllers, and Ziegler-Nichols tuning was applied to classic
PID controllers. Finally, simulations were performed in MATLAB with the Simulink and Simscape
tools. The results obtained allowed us to observe the effectiveness of the proposed structure, with
noticeably better performance obtained from the fuzzy PID controllers.

Keywords: CDPR; fuzzy control; PID; topology control

1. Introduction

In recent years, research in the field of robotics has focused on the study of cable-
driven parallel robots (CDPR), with the control stage being very important, and involving
a significant choice in the structure of the robot. In this way, in [1], the control of a CDPR
to simulate movements of a satellite, allowing experimentation with a vibration control
caused by external disturbances and by autorotation is developed. Additionally, in [2],
a coordinated dynamic control in the task space (CDCT) was proposed for a CDPR to
guarantee high-precision control. By analyzing the contour error, a new timing error was
introduced to represent the coordination relationship between axes, and an additional
robust compensation using the defined timing error was designed. In [3], a robust torque
control scheme for a CDPR based on a PD controller was designed with real-time mass
estimation and path compensation for pick-and-place tasks with different masses. In [4],
the use of a CDPR for 3D printing with concrete was reported. The proposed concept
was used to test the possibility of constructing a house with high precision and a stable
trajectory. In [5], a review of the state of the art of fully constrained cable-actuated parallel
mechanisms and cable-suspended parallel mechanisms was presented, recalling the basic
kinematic architecture and briefly exposing the associated static and kinematic models.
For its part, in [6], a prototype CDPR was used to 3D print a wall made of glass powder
for an artistic exhibition. The position of the robot was measured by 3 on-board lidars and
its operation over 174 working hours was evaluated. Additionally, in [7], the application
of a CDPR as a 3D printer was proposed, using a retractable end-effector to avoid the
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collision of the cables with the printed objects and to increase the working space, with a
stiffness analysis of the disturbance present in the end-effector.

While the mathematical modeling of the mechanism is relatively complex due to the
non-linearities of the components that make it up, such as cables and pulleys, empirical
tuning controllers can be chosen, among them the fuzzy and classic PID. That is the case
reported in [8], where a fuzzy control was used with an adaptive feedback method for
non-linear systems, the controller helps the following error tend towards zero. In [9], a
Sugeno-type controller was used for the independent design of the controller and the
fuzzy observer. This was achieved through the development of a separation property
which obtained satisfactory results from the non-linear systems. For its part, in [8], a fuzzy
controller was coupled to highlight the characteristics of a PID controller, improving both
the transient and steady-state responses [10]. Fuzzy controllers were also applied for
speed and direction control in [11], where an investigation of fuzzy speed control was
carried out for a frequency inverter connected to a permanent magnet (PM)-synchronous
motor, where fuzzy logic was used based on the speed error. Other applications are in
the area of mobile robots, as in [12], where fuzzy control rules were used to heuristically
adjust the angles of the wheels and the data from an encoder used in the balance and
drive of the mechanical wheel of a ball robot. Something similar was proposed in [13],
where a fuzzy controller was used to control the speed and direction of an intelligent
mobile robot that tracked and obtained the trajectory of a specific target. While in [14], a
fuzzy adaptive PI controller for the non-linear control of the motion of a four-wheeled
omnidirectional mobile robot was employed, the fuzzy adaptive algorithm adjusted the
PI controller’s parameters, and the fuzzy inference rules were set using the tracking error
and its derivative.

Several articles analyze ways to tune and apply a classic PID. In [15] the three main
control effects were examined for the experimental or calculated values of the delay and
the unit reaction rate of the process to be controlled. In [16], a controller based on a
classical PID was designed and simulated to regulate the position and orientation of a six
degrees-of-freedom (DOF) quadrotor. The control parameters were obtained according
to the simulation results. In [17], some rules for the adjustment of the PID of a two-DOF
robot manipulator were proposed. This adjustment procedure was extracted from the
stability analysis using a Lyapunov function and the LaSalle invariance principle. Finally,
in [18], the semi-global stability of robotic manipulators under classical PID control
was demonstrated. Based on model compensation techniques, the non-linearities were
grouped into a single function and are estimated using a reduced-order observer.

Prior to the control stage, a trajectory planner is required. In [19], the dynamic path
planning (DPP) of a planar robot arm was described, non-heuristic algorithms to plan
collision-free trajectories with information obtained from the environment by feedback. In
the case shown in [20], a Catmull-Rom spline-based path planning scheme was proposed,
which allowed a robot to move through several points with a method of speed limitation
used at the beginning and end of each node, optimized through time scaling to keep speed
and acceleration separated. Finally, in [21], a CDPR was used to simulate underwater
conditions on a humanoid robot planning a dynamic polygonal 6-1-6 trajectory, to set the
necessary speed and acceleration of the system tracking the humanoid robot.

For the most part, the research and design of control strategies in CDPRs involve
the mathematical model, which demands effort in its modeling due to the non-linearities
incorporated in the components of the mechanism. From the foregoing, it is important to
have alternatives for controller structures that are easy and fast to tune and implement.
With the aim of contributing to the field of CDPR control, a decoupled control structure
proposal based on fuzzy PID and classic PID controllers was developed and studied, the
results were analyzed and their performance was evaluated. The effectiveness of the
fuzzy PID controller is demonstrated as having better tracking and less error compared to
the classic PID. The main contribution of this research is to provide a decoupled structure
for the position control of a CDPR requiring almost no mathematical analysis. The novelty
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consists in using a well-known design technique for controllers acting independently to
control the position of the CDPR in each axis, which has not been previously reported in
the literature.

The paper is structured as follows: in Section 2, the structure and equations of forces
of the CDPR are presented, as well as the topology of the position control and trajectory
planning. The tuning of the PID controller and the design of the fuzzy controller are also
developed. In Section 3, the operation of PID and fuzzy PID controllers are simulated and
the results are compared. In Section 4, a discussion on the obtained results is presented
and, conclusions are established finally, in Section 5.

2. Materials and Methods
2.1. Structure of the Parallel Cable Mechanism

The planar CDPR mechanism shown in Figure 1 is made up of a fixed structure
with two posts, and a mobile effector to which the cables are anchored allows for the
application of force to generate movement in the vertical plane.

Al A>

Figure 1. Planar CDPR structure.

In Figure 1, A1, A2, A3, and A4 are the anchor points on the fixed structure, EE is the
anchor point on the end-effector, B is the robot base, defined as the distance between the
posts supporting the robot cables, and H is the robot height, defined as the height of the
posts supporting the robot cables.

The robot workspace is delimited by the anchor points of the pulleys that guide
the cable in the fixed structure. A hypothetical case of a mechanism with B = 3 m
and H =2.5m, with an end-effector of 5 kg in weight and light nylon cables whose
characteristics allow the robot to ignore catenary effects was considered [22].

The robot dynamic model is presented in Equation (1) through Equation (4) [23],
which consider: the external forces at the EE, the weight of the EE, the friction damp-
ing forces of the environment where the robot works, and the forces developed in the
robot cables.

4
fdy —Bd-xg — Y _{(ti— P;)Six + QiSiy } = Mig 1
i—1
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4
fdy+M(gy) = Bd-yg — }_{(t = P))Siy + QiSix} = Mg ®
i=1
where: 1
P = pm (Ligs —LiLi+ 5 (Limf) )
1 3 - 1,5.
Qi = Pm <2Li8N — g LiLioi — 3L12”‘i) @)

The different external forces and moments (wrenches) that affect the end-effector
correspond to external forces (fd), gravitational forces (M-g), forces impressed on the
effector due to its acceleration (M-Xxg, M-y), and damping forces due to friction in the
environment where the robot moves (Bd-x'G, Bd yG) The wires have constant density

pm, and are actuated by means of force T;, L; is recollection or extension speed, and &; is
the angular speed of each wire. The speed of the cable’s center of mass in direction S; was
considered. The robot model was developed in the MATLAB Simscape toolbox.

2.2. Motion Control Topology

Parallel robots are designed for various applications, among which are those where
the end-effector does not exert contact or force with the environment, in which case a
position control is required [24]. The position control of the robot can be approached in
two ways, one referring to the joint space and the other to the task space. The choice of
the control topology depends on the accessibility of the measurement of the signals and
the demands of the robot application.

For position control in task space, the position of the end-effector is fed back directly.
The control topology is shown in Figure 2, where the effect of a disturbance (representing
a displacement in the position of the end-effector) is added for the purpose of evaluating
the responses of the control system.

Disturbance

Fb
+
xd  + T + 5
Controller Parallel Robot
Reference 2 Forces in End Effector
Trajectory actuators Trajectory

Figure 2. Topology of position control in task space.

General control topologies used in robotics can be structured based on coupled or decoupled
control schemes, as feasible [24].

For the case of the planar CDPR in Figure 1, a mixed controller structure was proposed for use in
the task space under the following considerations:

e  One controller performs the X-axis positioning control. For positive displacement, force is applied
to cables 2 and 4, while for negative displacement, force is applied to cables 1 and 3.

e Another controller performs the Y-axis positioning control. For positive displacement, force is
applied to cables 1 and 2, while for negative displacement, force is applied to cables 3 and 4.

The control structure for decoupled axis movement is shown in Figure 3, where the X-axis
controller and the Y-axis controller are implemented as decoupled controllers with independent tuning.
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Figure 3. Control structure for the positioning of a planar CDPR.

2.3. Trajectory Planning

The trajectory planning of a robot allows us to determine the continuous position paths that
will guide the end-effector of the robot, either in the presence or absence of defined obstacles in its
workspace. In this sense, trajectory planning seeks to determine continuous and smooth trajectories
in position, speed, acceleration, and jerk for each active joint of the robot, guaranteeing their physical
integrity [25].

To meet the expressed requirements of path continuity and smoothness, a 6-1-6 polynomial
path can be adjusted [21]. This position path has a sixth-order polynomial in the acceleration and
deceleration section, while the middle section guarantees constant speed with a first-order polynomial.
The generic polynomial structure 6-1-6 is:

3 5
hA(t) _ Z)ma5x t6 _ Umzx t5 + Umagx t4 1 X, (5)
tac fac 2tqc
Umaxtac
hB(t) = Umaxt + > + Xo (6)
3Vmax
hc(t) = th(t) + Opaxt + | H — Tl‘ac Umax + 2X0 (7)

The values considered along each axis of the robot are:

e 4, hp,and hc: positions reached during the sections of acceleration, constant speed, and decelera-
tion, respectively.
Umax: Mmaximum speed that can be developed.
tac: acceleration and deceleration time.
tt: total time required to develop the whole trajectory.

In Figure 4, the graph of the trajectories 6-1-6 in the task space can be seen, which was used for the
robot as positional references. In Figures 5-7, the curves for speed, acceleration, and jerk are shown,
which were derived from the position curve, showing that in all cases they were smooth paths that did
not present discontinuities [21].
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Figure 4. Trajectory for position using 6-1-6 polynomials for the planar CDPR.
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Figure 5. Trajectory for speed using 6-1-6 polynomials for the planar CDPR.
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2.4. Controller Tuning

Based on the dynamic behavior of the system, various controller structures can be adopted for the
implementation of the control block, among them PID controllers and fuzzy PID control, which were
chosen for this work due to their advantages in tuning and robustness.

2.4.1. PID Control

One of the most used controllers in the industry is the proportional, integral, and derivative (PID)
controller.

In Figure 8 the structure of a PID is shown, whose general equation is:

U(s) = KP (1 + %H + Td * s> E(s) 8)

where:
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Figure 8. General structure of a PID controller.

U(s): Control signal

KP: Proportional constant.

E(s): Error signal (difference between reference and controller response).

Tr: Adjustment constant for integral action.

Td: Adjustment constant for derivative action.

Based on the Ziegler—Nichols [13] tuning technique, the constants KP, Tr and Td are proposed as
a function of the critical period (Pc) and the critical gain (Kc). For the controller structure shown in
Equation (8), the PID constants are obtained from Equations (9)—(11):

KP=0.6 x Kc )
Tr="Pc/2 (10)
Td =Pc/8 (11)

Through the simulation, the critical force value was found in the upper cables, which allow for the
balance of the robot in the center of the work plane, for which an approximate force of 2.7 N resulted.
This value of the force will be considered as the operating point around which the control signal will
act. The proposed control structure has a block that compensates for the forces of the effector’s weight,
which in this case corresponds to forces of 2.7 N for each upper cable.

In order to generate an oscillation of the system, a force slightly greater than the force that stabilizes
it is applied. In this case, a force of 3 N was applied to the upper cables, so that with the robot originally
positioned in the center of the plane, oscillations were produced in the vertical axis, allowing the critical
period (Pc) to be obtained for the calculation of the controller’s parameters. According to Figure 9, the
period of oscillation was Pc = 4 s. In the first instance, a critical gain Kc = 1 was assumed, since it used
forces very close to the forces that balance the robot in the center of the plane. This gain can be adjusted
based on the response of the system.

21 T T T T T T T T T

0 2 4 6 8 10 12 14 16 18 20
Time [s]

Figure 9. Oscillation response of the robot in the presence of 3 N forces in the upper cables.
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The PID parameters shown in Equation (8), resulted in Kp = 0.6, Tr = 2, and Td = 0.5. These
constants were configured in the two control blocks shown in the structure of Figure 3, which, including
the gravitational forces compensation stage, remains as shown in Figure 10.

Maximum force
saturation in cable

Position Actuator Forces
error
signal / 4@
T1 uT1
{ )—b error_x ) e / Contro|
ex uT2 Cables
13 Signals
C—ppemoy g S
ey uT3
Controllers X and Y / > -
uT4

[2.7,2.7.0,0]

Gravity Forces Compensation

Figure 10. Structure of a decoupled control system for a planar CDPR.

2.4.2. Fuzzy Control

The fuzzy controller is by nature a non-linear controller whose most relevant characteristics are:

o It does not require knowledge of the mathematical model of the plant to be controlled.
The control output is generated by inference of the input signals based on the membership
functions defined for each variable, establishing its form and respective universe of discourse.

o The inference is developed through a rules table of query and decision.

For fuzzy controller tuning, it is very important to define the universe of discourse of each
membership function according to the knowledge of the system’s operation (operator experience).

A fuzzy logic controller can adopt the structure of a PID controller with the generation of output
functions derived from PD action and an adaptation for the integrating signal, as can be seen in Figure 11.

.
*

Fuzzy Logic
Integrator

mi= -

emar »{in _%_ out —b@—b U_Fuzzy u —l-

error deidt > Control Signal
Fuzzy Logic Derivative Gain

Freprocess Proportional-Derivative Postprocess

Figure 11. Structure of a fuzzy PID controller.

An independent control structure was chosen for the proportional-derivative and the integral
terms, which provided us the possibility of separately adjusting the incidence of each stage according
to the response requirements that were presented in the fine-tuning process of the controller by
modifying the gain value during each stage. This action replaces the effect of having to make multiple
modifications in the universe of discourse of the variables.

For the control of a planar CDPR by means of a fuzzy PID controller, the error signals and their
derivatives were considered as inputs to the controller. The selection of the rules and the number
and form of the membership functions were based on expert knowledge acquired in the operation
of a didactic planar CDPR belonging to Salesian Polytechnic University, as shown in Figure 12. The
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structure of the model shown in Figure 1, as well as its physical dimensions, were also based on this
didactic CDPR. The inference process in the set of rules was of the Mamdani type [26].

The physical dimensions of the robot’s workspace described above were directly involved in the
choice of the universe of discourse of the error variables. Additionally, with the intention of achieving
a more effective action when the robot approached the desired position, it was decided to concentrate
the membership functions in the universe of discourse between —0.5 m and 0.5 m, taking into account
that if the error were greater it, would be captured by the lateral membership functions which have
open trapezoidal characteristics. On the other hand, in the case of the universe of discourse for the
signal of the derivative of the error, the maximum speed of movement of the robot was considered,
which is 2 m/s in the end-effector. Therefore, using a similar criterion for the action of the membership
functions that focused their action on when the robot approached the desired position, a universe of
discourse ranging from —1 m/s to 1 m/s was defined.

Figure 12. Planar CDPR assembled in the labs of Salesian Polytechnic University in Ecuador.

Seven membership functions were considered for each input signal to the controller (error signal
and derivative of the error), of which the intermediate five were triangular type and those at the ends
were open-wing trapezoidal type, as shown in Figures 13 and 14. These membership functions were
distributed evenly throughout the universe of discourse and named: large negative (NG), negative (N),
small negative (NP), zero (Z), small positive (PP), positive (P), and large positive (PG).

f T T T T T T T T

L 1 P =L L - - -] —L. L .
0.5 0.4 0.3 0.2 0.1 0 0.1 02 0.3 04 05
input variable "e(t]"

Figure 13. Membership functions and universe of discourse of the error input signal.
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Figure 14. Membership functions and universe of discourse of the error derivative input signal.

These seven membership functions were equidistant in distribution, with each corresponding
to 14.2% of the universe of discourse. In the case of the error signal, each membership function was
equivalent to approximately 14 cm, and in the case of the derivative of the error, it corresponded to
0.28 m/s. These ranges and the number of membership functions were considered acceptable as they
generated control surfaces requiring a moderate amount of computation.

The control output was generated by the inference of seven triangular membership functions, as
seen in Figure 15 [26,27]. These membership functions represent the characteristics of the control signal
and were named: large negative control (uUNG), negative control (uN), small negative control (uNP),
zero control (uZ), small positive control (uPP), positive control (uP), and large positive control (uPG).

uNG uM uMP Uz uPP uP uPG

1 1 1 Il 1 1
0.8 0.6 0.4 0.2 1 02 04 08 o8

output variable "u(tf"

Figure 15. Membership functions and universe of discourse of the control output signal.

The choice of the triangular shape of the membership functions used for the inputs and output
was intended to decrease the processing time, understanding that the generated control surfaces would
not be physically smooth. It should be noted that the general context of the smooth motion of the robot
was considered in the design of the trajectory planner.

The output signal of both the proportional-derivative stage and the integrating stage was derived
from an inference process based on AND operations that had a total of 49 rules, whose details are
shown in Figures 16 and 17. Each rule was constructed based on expert knowledge of CDPR behavior,
and some examples are explained:

e  For the output of the proportional-derivative action when the error signal and the error derivative
are close to zero, the rule can be stated as: IF e(t) is “Z” AND e(t) is “Z” THEN u(t) is “uZ.”
The same situation for the output of the integrative action can be stated as: IF e(t) is “Z” AND
e(t) is “Z” THEN u(t) is “uPG.” In this case, the idea is that the integrative action is in charge of
outputting the required control signal that maintains the tracking error near zero.

e Ifasmall positive error is now considered with a small negative error derivative, a small positive
action would be required at the output of the proportional-derivative action and this rule can be
stated as: IF e(t) is “PP” AND ¢(t) is “NP” THEN u(t) is “uPP.”
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e If again, a small positive error is considered, but now a small positive error derivative is present,
then the output of the proportional-derivative action must be reinforced, and this can be stated as:
IF e(t) is “PP” AND e(t) is “PP” THEN u(t) is “uP.”

The defuzzification process of the Mamdani fuzzy inference system is based on the centroid
calculation, where the defuzzified value x* for a fuzzy input is obtained by:

o fub xp(x)dx
faby(x)dx

where p(x) is the fuzzified input, and [a,0] is the interval where the fuzzy set is defined [28].

e(t)
z e

(12)

NG N NP P PG

bod uNP | YZ | uPP | up | UPG [ uPG | ,pg

o UN |uNP | uZ | uPP | UPG | UPG | UPG

2 uN |[uN [uNP | uPP | uP | uPG | UPG
~~
=

‘U N UNG | uUN |uNP | uZ |uPP | UP uPG

£ UNG | UNG [ uN [uNP [ uPP [UP | uwP

z uUNG |UNG | uNG | UNP | uZ | uPP | uP

2 UNG [ UNG | UNG [ uN | uNP [ uZz | uPP

Figure 16. Matrix of rules for the proportional-derivative action.
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Figure 17. Matrix of rules for the integrative action.
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Once the set of rules was implemented, the control surfaces obtained for each stage were observed,
as shown in Figures 18 and 19.

The structure and tuning of the fuzzy controller can be implemented in an equivalent way for the
control of the X-axis and the Y-axis, according to the planar CDPR decoupled control system structure
shown in Figure 3.

05 05
de(t) e(t)

Figure 18. Control surface of the proportional-derivative action.

0

0

de(t) 05 05 elt)

Figure 19. Control surface of the integrative action.

3. Results

The CDPR planar control system is shown in Figure 20, which includes a disturbance signal
input that allows for the validation of the results of the controllers in the presence of any external
signal that may deviate it from the objective position of the robot. The simulations were developed
in MATLAB/Simulink using continuous-time mode, with fixed step size and an ode4 (Runge-Kutta)
solver.
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Figure 20. Control system of a planar CDPR.

3.1. Simulation Results for a Control Structure Based on PID Controllers

The results of the simulations for the control structure of Figure 10 based on PID controllers are
presented below.

The position in the X and Y axes of the end-effector of the robot is represented by XG and YG. The
references generated by the trajectory planner are called Ref. XG and Ref. YG.

Figure 21 shows the robot’s positioning response in the absence of disturbance actions, while
Figure 22 shows the results in the presence of 10 cm step disturbance actions in the position of each
axis.
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Figure 21. Planar CDPR positioning response of a PID controller.
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Figure 22. Positioning response of the planar CDPR in the presence of disturbance of a PID controller.

In Figures 21 and 22, it can be seen that the robot followed the positional reference, establishing
itself with relative precision, and was also capable of overcoming the disturbance present after 5 s of
simulation.

3.2. Simulation Results for Control Structure Based on Fuzzy-PID Controllers

The results of the simulations for the control structure of Figure 10 based on fuzzy PID controllers
are presented below.

In Figure 23, the response of positioning and orientation of the robot can be observed in the
absence of disturbance actions, while in Figure 24 the results are observed in the presence of 10 cm step
disturbance actions in the position of each axis.
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Figure 23. Planar CDPR positioning response of a fuzzy PID controller.
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Figure 24. Positioning response of the planar CDPR in the presence of disturbance of a fuzzy PID controller.

In a similar way to the case of control with a PID, it is observed in Figures 23 and 24 that the robot
followed the position reference, was established with better precision and was able to overcome the
disturbance presented through 5 s of simulation. Although the disturbance rejection was no better than
that of a classic PID, a lower tracking error was observed throughout the path. In order to compare the
performances of both controllers, the cumulative quadratic error (CQE) between responses and their
corresponding references was computed in MATLAB. For the test of the PID shown in Figure 21, the
CQE was 0.41 for the response on the X-axis and 0.37 for the response on the Y-axis. The same index
calculated for the response of the fuzzy PID shown in Figure 23 gave 0.0056 in the X-axis and 0.0058 in
the Y-axis.

4. Discussion

According to the results, it was determined that the decoupled control structure proposed in this
document, which considers the movements in the axes of the robot plane as independent, was effective
when implemented with both classic and fuzzy PID controllers. During a combined movement on
both axes, each controller was influenced by the signals generated because of the movement on the
other axis. This influence is assumed as a disturbance that will be controlled by the controller. The
effectiveness of the control depends on the distance between the end-effector and the center of the
plane of movement, being lower as the end-effector moves away from the center.

The fuzzy PID controller had notably better performance compared to the classic PID, as shown
previously with the calculated values of the CQE. These can be also observed in the error signals of the
evolutions shown in Figures 21 and 23, which are plotted in Figures 25 and 26.
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Figure 25. Error signal developed during robot movement under the action of a PID controller.

2107
10F T T =
Errar Position X
9 1 T Error Posifon Y |
= 1 . =
7
Es
£ 5
a1
[ =
2 4
L=
g s
2
1 iﬂ——
1 1
Li] 1 2 3 4 5 [ 7 8 9 10

Time [s]
Figure 26. Error signal developed during robot movement under the action of a fuzzy PID controller.

It is important to highlight that compensation for gravitational forces calculated in the center
of the workspace was proposed. The non-linearity of the system restricted the performance of the
controllers to an area close to this point of operation. Therefore, the workspace under the proposed
control structure was affected. In this sense, a point more distant from the center of the robot [X, Y] =
[2.6, 2.3] was explored, with the disturbing position signal acting after 15 s. Figures 27 and 28 show the
responses of the PID control system and the fuzzy PID, respectively, in which it can be seen that the
PIDs did not present an adequate control action.
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Figure 27. Positioning response of the planar CDPR (away from the center) with disturbance at 15 s of simulation, with a
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Figure 28. Positioning response of the planar CDPR (away from the center) with disturbance at 15 s of simulation, with a

fuzzy PID controller.

5. Conclusions

The results show that PID controllers with linear characteristics correctly control the non-linear
mechanism under a decoupled structure for each axis of the end-effector. However, by having a defined
operation point at the center of the robot, these controllers lose effectiveness at positioning the robot at
extreme points of the work plane, reducing the effective working space of the robot.

It was observed that the fuzzy PID controllers, having non-linear characteristics, controlled the
non-linear mechanism with greater accuracy, and presented smaller error signals than those of the
control case based on classic PID controllers. Additionally, it was shown that fuzzy PID controllers
presented an adequate level of performance in extreme positions of the robot, allowing us to effectively
take advantage of a wider workspace with respect to the case of the PID controllers.

As was shown, when analyzing the behavior of the error signal developed by the control system
for each case, the control system based on fuzzy PID presented better results in terms of the amplitude
of the error and the stabilization time.
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The decoupled control structure proposed for each axis of the planar CDPR has proven to be
effective even when it was experimented upon using trajectories of simultaneous movement between
the two axes.

Future work should include an experimental test of the proposed CDPR method shown in Figure
12. Also, future work should extend the application of this structure to the case of a spatial CDPR in
which decoupled movements are assumed for the three axes.
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Abstract: Modular robots are flexible structures that offer versatility and configuration options for
carrying out different types of movements; however, disconnection problems between the modules
can lead to the loss of information, and, therefore, the proposed displacement objectives are not met.
This work proposes the control of a chain-type modular robot using an artificial neural network
(ANN) that enables the robot to go through different environments. The main contribution of this
research is that it uses a software defined radio (SDR) system, where the Wi-Fi channel with the best
signal-to-noise Ratio (SNR) is selected to send the information regarding the simulated movement
parameters and obtained by the controller to the modular robot. This allows for faster communication
with fewer errors. In case of a disconnection, these parameters are stored in the simulator, so they can
be sent again, which increases the tolerance to communication failures. Additionally, the robot sends
information about the average angular velocity, which is stored in the cloud. The errors in the ANN
controller results, in terms of the traveled distance and time estimated by the simulator, are less than
6% of the real robot values.

Keywords: artificial neural network (ANN); modular robot; software defined radio (SDR);
signal-to-noise ratio (SNR)

1. Introduction

Today, modularity is present in numerous areas of industry and robotics; therefore, modular
systems offer benefits such as versatility, robustness and low-cost manufacturing compared to
fixed-parameter conventional designs [1]. This has driven the use of modular robots whose structure
is made up of multiple modules that are combined in different configurations to carry out various
kinds of tasks. Some of these tasks include simple movements such as spinning or moving forward
and complex movements such as walking or crawling [2,3]. The scope and movements of the robotic
structure depend on the shape and number of degrees of freedom of each module, since these variables
can increase the processing capacity required to synchronize the articulations of each module [4,5].

The techniques to control a modular robot can be centralized, decentralized or hybrid. In the first
case, structure control is embedded in a single device [6]. In the second case, the controller can be any
module in the structure [7,8]. In the third case, the controller incorporates features of the previous
controllers; that is, there is a central controller that sends parameters to the modules that translate said
information to perform a task [9-11].
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The artificial neural network (ANN) has been used in robotics applications due to the high
computation rate and capacity to support nonlinear functions. The uses of ANN controllers in
robotics include the support of wireless connections for underwater swarm robots [12], the control
of a five-degrees-of-freedom robot [13] and a neural-learning-based sensorless control scheme in the
presence of an input dead zone for a robotic arm [14].

Furthermore, the evolution of communication systems throughout the years has led to their
application in robots to enhance their performance [15]. One of the more novel approaches in
communication systems corresponds to the development of software defined radio (SDR) technology,
which is a radio system where the components are implemented using software to interact with
hardware [16,17]. In this project, the Raspberry Pi 3 device was used to implement the SDR since
it allows for the development of wireless applications with a robust low-cost embedded system,
which has been used as a communication system for robot control in the monitoring and storage of
data in real time [18]. It has also been used for the control and communication of a robot that produces
basic motions and sends a video to an Android device [19]. Typically, communication in modular
robots is based on infrared or wired communication; however, some initiatives have been developed
to communicate the modules wirelessly using ZigBee [20] and Wi-Fi [21] technologies, although to
date, there are no reports on the use of SDR communication.

This work contributes to the literature with the use of a wireless ANN controller that builds the
path of an EMERGE modular robot in a simulator and sends the information to the modular robot
through an SDR communication network implemented in a Raspberry Pi 3. The result of this is the
approximation of the behavior of the robot before its start-up and in the use of a communication
channel that causes fewer errors and has a higher speed than those around it, at a low cost. This paper
is organized as follows: Section 2 describes the structure and operation of the system, while Section 3
presents and discusses the results obtained with the controller executed in the simulator and the robot.
Lastly, Section 4 presents the conclusions derived from the overall work.

2. System Development

The elements that compose the system are described below: the EMERGE modular robot,
the simulator, the ANN controller and the SDR communication platform, as shown in Figure 1.
Furthermore, this section details the concepts required to understand the operation of the EMERGE
modular robot, the control method and an explanation of the experiments carried out to evaluate
the controller.

Modular Robot

Router Raspberry Pi 3

Simulator & controller

&

Figure 1. General diagram of the developed system.
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2.1. EMERGE Modular Robot

The EMERGE robot seen in Figure 2a is an open-use prototype; that is, the materials,
electrical circuits and procedure necessary for its assembly can be found in a repository [22].
Additionally, this prototype is flexible, which allows the user to adapt the circuits to particular
needs [23-25]. For instance, in this case, a printed circuit was added to the robot with the ESP32
microcontroller, which allows it to communicate with the Raspberry Pi using Wi-Fi wireless technology.

(b)

Figure 2. EMERGE modular robot: (a) Assembly; (b) Individual module.

This robot is basically composed of various modules, such as the one shown in Figure 2b, where the
user defines the grouping. Each module has four sides with magnets that can be connected to other
modules. The information is shared using the controller area network (CAN) protocol, which can
package, send and receive the information from or towards a specific module or device [23-25].

Although, in this application, chain-type morphologies were considered to carry out the
experiments, the CAN communication protocol and the structure of each module are flexible,
which allows the robot modules to be grouped with different types of morphologies and, therefore,
perform various tasks [22].

The traditional method to control the EMERGE robot is based on a centralized controller such as
the one in Figure 3a, that is implemented in the platform, so the controller has an embedded control
algorithm that is executed in real time during the operation of the platform [23]. However, when the
platform is turned off or a module is disconnected, the controller is desynchronized and the robot stops
moving. This is avoided with the control and communication strategy proposed in this paper.

Figure 3. Local controllers: (a) Traditional; (b) Wi-Fi module.

The proposed controller modifies the centralized control technique using an evolutionary algorithm
that is executed locally in the controller. This is achieved by generating the control parameters on
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the computer, in which the parameters are simulated and sent to the robot through the SDR network,
which connects to the robot’s Wi-Fi module (ESP32 microcontroller), presented in Figure 3b. This device
sends the received information to each module through the CAN bus [23].

2.2. Modular Robot Simulator

The simulation environment was developed in the 3D World Editor application in Matlab [26].
The dynamic interactions between the module chains, the environment and simulated obstacles are
displayed in the editor. This allows the user to know in advance the real movements of the robot.
Figure 4a shows the virtual module of the robot implemented in the 3D simulation. This module was
created in the SolidWorks software. The virtual modules are coupled to create the robot morphology
as shown in Figure 4b, and the movement is produced according to the rotation and translation data
received from the controller.

(a) (b)

Figure 4. Virtual simulator: (a) Module developed in SolidWorks; (b) Design and assembly of the robot
in the 3D World Editor environment.

The sequence of movements in the simulator is generated using the motion control tables, which
were designed based on a sine function with an amplitude, frequency and phase shift for each module.
As a result of this function, values between 0 and 7 are obtained, and then a conversion is performed
for the start-up of the actuator of the module, which receives values between 0 and 1024 as shown in
Figure 5. The conversion is limited in the range of [}, B'T”], since any value outside this range would
compromise the mechanical structure of the robot.

Figure 5. Motion range for the module actuator.
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The simulator user interface shown in Figure 6 allows the selection of the morphology and
environment to simulate the path. Three designed morphologies are available with 3 to 5 modules,
as well as three environments: a flat surface, a ladder as an obstacle and an L-shaped path.
Then, the ANN controller is executed to determine the position of each module of the robot.
The data are represented graphically in the virtual environment, and, if needed, these are sent to the
real robot through the SDR communication network.

Environments

O fiat surface
(® Ladder

(O L-shaped

Simulate Send Data Exit

Figure 6. The simulator user interface.

2.3. Artificial Neural Network Controller

The ANN controller calculates the position of each robot module [27-30]. In this case,
a backpropagation ANN was implemented as shown in Figure 7a, which uses a training algorithm
based on the correction of the mean squared error. Basically, it is a margin of error (€) that is estimated
as the average of the squares of the errors, as shown in the following equations—that is, the difference
between the expected value (7;), contained in a dataset, and the estimated value (y;), calculated by
the ANN. This difference is adjusted in each training iteration based on the weights (w;) of each
ANN neuron, with an activation function f;, until the error is close to zero (in this case, a threshold of
T =4 x 1078 is established).

yi = fi(w; X yi+e€) 1)
Iy
ei—nZ(yz vi) )

i=1

In this case, the training dataset, presented in Table 1, is a database containing the following information:
the number of modules, type of environment and position of the modules. Furthermore, this dataset
contains 1000 records of samples taken during the operation of the robot modules in different
environments, 750 records to be used for ANN training and 250 for validation of the estimated results.
The ANN controller inputs are the type of environment and the number of modules, while the positions
of the modules are the outputs. Afterward, the ANN is trained to reproduce the set of movements in
the simulator and, if required, in the robot, as shown in Figure 7b. The number of hidden layers of the
ANN was established as 25 since that is the minimum number to estimate a set of continuous and
stable movements with a low error, as is analyzed in chapter 3, and using moderate computational
resources during training. The training time is approximately 430 s.
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Figure 7. Artificial neural network (ANN) configuration: (a) Implementation of the layers;
(b) Robot controller.

Table 1. Database segment used to train the ANN.

Inputs Outputs
Scenario Number of Modules Module Module Module Module Module
1 2 3 4 5
Flat surface 3 300 320 340 - -
Flat surface 4 325 345 365 385 -
Ladder 4 350 370 390 410 -
L-shaped 4 375 395 415 435 -
Flat surface 5 400 420 440 460 480
Ladder 5 425 445 465 485 505

In Algorithm 1, the instructions of the proposed ANN controller are presented, which delivers the
movements to the simulator and, if required, to the robot. The three environments over which the
robot can move, to evaluate the algorithm, are shown in Figure 8.
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Algorithm 1. Control strategy

Function ANN (in i, out 0, margin of error €)

T=4x10"8
ANN « Inputs [i][1]
ANN « Outputs [1][o]
ANN « Activation function (f;)
ANN <« Hidden layers [10][25]
ANN  « Initial weights
While 7 < e do
ANN « optimize weights (i, 0)
€ « test ANN
End While
return ANN

End ANN

Function Virtual enviroment ()

Load libraries 3D enviroment
Start SDR port
Create communication port read thread
Create communication port send thread
Start GUIO (Graphical User Interface Objects)
i < number of modules
j « select escenario
m <« mode
epochs < 0
If mode == 1 then
0; « movements database
else
0; « ANN(i, j, inf)

While epochs < 200 do

/[Threshold as stop condition

//In vector layer

//Out vector layer

//fi is a gaussian function (Equation (1))
//Matrix 10 neurons X 25 layers

//nitial weight assignment function

//Validation of results

//Load virtual objects and robot
//Open port to establish communication
//Start communication routine

//Start program

//Select robot morphologie
//Select enviroment

//Select routine test or ANN mode
//Start iterations

//Read predefined movements (Table 1)
//Read ANN movements

//Note: inf is a initial value (can be > 10)
//for € and start ANN weights

;< Generate movements in the virtual reality environment (0;)

Send via serial port (c;)

Run the move routine for 100 milliseconds

epochs ++

€ « MSE(6;)

0; < ANN(i, j,€)
End While

End Virtual enviroment

//Nomalize the 0; value and fixes it
//on the actuator scale

//Send 6; to each real module
//Delay for the next movement

//Mean Squares Error routine (Equation (2))
//Simulates the ANN and update weights
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(b) (c)

Figure 8. Environments used to evaluate the controller algorithm: (a) Flat surface; (b) Ladder as an
obstacle; (c) L-shaped path.

2.4. Software-Defined Radio Communication System

The communications system developed, presented in Figure 1, is composed of the following.
First, there is a Raspberry Pi 3, which is configured as a wireless access point (WAP) in which the
SDR is performed and the wireless network is used to measure the power level of the channels of
the Wi-Fi network. Second, there is a router that provides an internet connection and sends the
information generated from the robot to the cloud. This router is also connected to a computer in which
the ANN controller is simulated and developed to send movements to the robot. Third, there is an
ESP32 microcontroller that communicates bidirectionally with the Raspberry, transmitting the motion
sequence to the robot and the angular velocity to the Raspberry, to be sent and stored in the cloud.

In the WAP configuration of the Raspberry, the name of the wireless network (SSID), the channel,
and the level of security, among other settings, are edited. To provide internet access through the
WAP, a bridge between the Raspberry’s wireless interface and the ethernet network adapter is created.
Hence, the traffic is redirected through the network cable that is connected to the router to access to
the Internet.

The Raspberry Pi has limitations in the network interface, so a USB dongle is used to measure
the power of the surrounding wireless networks. After measuring the power of the channels in the
2.4 GHz band, this information is sent to the Raspberry Pi to start the SDR.

The SDR system establishes the Wi-Fi transmission between the Raspberry and the ESP32, from the
beginning, using the channel with the highest SNR. To achieve this, the powers or received signal
strength indicators (RSSI) are captured from the channels of the access points found in the Raspberry
environment, which are measured by the USB dongle. Then, the power per channel is averaged based
on the RSSI measurements of the access points, as shown below:

— YN Peanner
Pchannel = 1Tcmme (3)

where l_jchunnel is the average power of the Wi-Fi channel in dBm, P yy,1 is the channel power for a

wireless access point in dBm and N is the number of wireless access points that are present in the same
channel. The Gaussian white noise power is now calculated [31]:

P white_noise — 10 10g (kTB ) (4)
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where k is the Boltzmann constant 1.3806852 x 10723 J/K; T is the ambient temperature in degrees
Kelvin—in this case, it is 298.15 °K; and B is the bandwidth of each Wi-Fi channel in Hz (20 MHz).
Therefore, Pyypite noise is =131 dBm. Finally, the SNR of each channel can be determined as [32]:

SNR = l_jchannel -P white_noise (5)

Then, the channel with the highest SNR is chosen and set to the access point.

The communication between the Raspberry and the ESP32 is bidirectional. The Raspberry sends
the sequence of movements to the ESP32 located in the modular robot. The ESP32 sends the robot’s
average angular velocity to the Raspberry. The user datagram protocol (UDP) is used in this task.

The routine program in the Raspberry Pi was developed in Python, which directs the packets of
the robot’s motion sequence to the IP address of the ESP32, enables the input buffer to receive packets
from the ESP32, and executes a sub-process to connect to the ThingSpeak servers and thus send the
robot’s performance parameters to the cloud, which, in this case, are the average angular velocity of
each movement.

The programming algorithm contained in the ESP32 was developed in the Arduino IDE.
This contains the necessary instructions to interpret the commands sent from the Raspberry Pi
to move the robot, while it also collects and sends the data obtained by the robot connecting to the
Raspberry’s WAP.

The connection to the ThingSpeak server is established through a script that is executed as a
sub-process within the main UDP communication routine in the Raspberry, to store the data on the server.
The identification and password provided by the platform are used to access the previously created
channel. Subsequently, when the data transmission between the WAP and the ESP32 microcontroller is
successful, the routine sends the performance parameter to the server to be visualized after a delay of
around one minute.

3. Results and Discussion

The ANN controller simulation delivered results close to those obtained with the modular robot,
with the robot moving through the proposed environments in virtual and real scenarios as shown in
Figure 9. In each proposed environment, the modular robot with five modules traveled a distance of
1.8 m. In the ladder environment, the robot surpassed the obstacle. In the L-shaped path, the modular
robot turned 45° to the right after advancing 1.05 m. The times and distances obtained in the simulator
and the real modular robot are compared in Tables 2 and 3.

Figure 9. Modular robot movement with five modules: (a) Virtual environment; (b) Real environment.
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Table 2. Comparison of the travel times for each environment in the simulator and the real scenario.

Environment Time Estimated by the Simulator =~ Time in Real Scenario Error
Flat surface 11 min 11.6 min 5.45%
Ladder 13 min 13.75 min 5.76%
L-shaped 13 min 13.7 min 5.38%

Table 3. Comparison of the traveled distances for each environment in the simulator and the
real scenario.

Environment Distance Estimated by the Simulator Distance in Real Scenario  Error

Flat surface 1.8m 1.77 m 1.66%
Ladder 1.8 m 1.71m 5%

L-shaped 1.8 m 1.73 m 3.88%

Figure 10 shows the margin of error between the training data and the real data during the ANN

training, as well as the results of the movement of a module compared to the information stored in
the database.

1.2

Training algorithm
Expected value

Margin of errorXx100%

] 50 100 150 200
Epochs

(@)

— NMeasuremen
ANN output

Angular position [deg]

o] 5 10 15 20 25 30
Robot operating time

(b)

Figure 10. ANN training: (a) Margin of error; (b) Movement result vs. measured value, for a
single module.
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Initially, the most appropriate ANN configuration for robot control was established. Then, the same
ANN was tested by changing the number of hidden layers. The results in Figure 11 show that the
lowest error was obtained for 25 layers.

(o) 50 100 150 200
Epochs

Figure 11. ANN margin of error for different numbers of hidden layers.

Finally, the communications network based on SDR was tested. For this, the SNR at different
sites was obtained for the Wi-Fi channels connected to the Raspberry Pi, as seen in Table 4, and with a
Wi-Fi sensitivity, in the best scenario, of =98 dBm [33]. An adequate SNR value must be above 40 dB,
which occurs for most selected channels.

Table 4. Average signal-to-noise ratio (SNR) for selected Wi-Fi channels at different sites.

Place Number Average SNR (dB)

69
46
66
36
58
49
59
53
46

[uy

O 0O NI ONUlk WIN

The Wireshark software was used to find the lost packets and the latency between the Raspberry
Pi and the ESP32 module located in the modular robot, for approximately one hour of communication
tests. Out of 1647 transmitted and received packets, 0.162% were lost, and the average latency was
12.23 ms.

The average angular velocity information of the modular robot is stored in the cloud through a
server hosted by ThingSpeak, as presented in Figure 12.
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Figure 12. Average angular velocity of the modular robot stored in the cloud.

4. Conclusions

In this paper, an ANN controller for a modular robot that uses an SDR communication network
was presented, where the Wi-Fi channel with the best SNR was selected, and then the information
regarding the simulated movements and obtained by the controller was sent to the modular robot, as a
contribution to the literature. The distance and time estimated by the simulator did not exceed an error
of 6% when compared to those of the real robot, as evidenced in Tables 2 and 3.

The developed ANN controller has 25 layers, two inputs and one output. It predicted the
movements of the robot with a training margin of error less than 5%, as seen in Figure 10. Furthermore,
this type of strategy is adaptive, which means that a single ANN configuration was required for the
robot to move around the environment. Another advantage of this control strategy is that the robot
can go through the path even when a module fails, given that the parameters are sent from an external
device, such as the Raspberry Pi.

The behavior of the ANN with different configurations of hidden layers showed an optimal
operation region for generating the robot controller. This region was found between 20 and 30 hidden
layers, since more than 50 layers or fewer than 10 layers caused the training algorithm to not converge
satisfactorily. This is depicted in Figure 11. Selecting a number of hidden layers outside the optimal
region implies that the controller cannot find an appropriate set of movements for the robot to use to
move from one place to another.

The innovative SDR communications network developed transmitted the information
corresponding to the robot movements from the simulator to the modular robot, using a WAP
developed with the Raspberry Pi and the ESP32 microcontroller located in the robot. This reduced
the controller disconnection, and the fault tolerance of the robot was increased. The Raspberry chose,
from the establishment of communication, the Wi-Fi channel with the highest SNR, which caused
little information loss and low transmission latency compared to in other channels with a lower SNR.
Furthermore, the transmitted information was stored and displayed in the cloud, corresponding to the
average angular velocity with which the robot moved.
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Abstract: Understanding the flashover performance of the outdoor high voltage insulator has been in
the interest of many researchers recently. Various studies have been performed to investigate the critical
flashover voltage of outdoor high voltage insulators analytically and in the laboratory. However,
laboratory experiments are expensive and time-consuming. On the other hand, mathematical models
are based on certain assumptions which compromise on the accuracy of results. This paper presents
an intelligent system based on Artificial Neural Networks (ANN) to predict the critical flashover
voltage of High-Temperature Vulcanized (HTV) silicone rubber in polluted and humid conditions.
Various types of learning algorithms are used, such as Gradient Descent (GD), Levenberg-Marquardt
(LM), Conjugate Gradient (CG), Quasi-Newton (QN), Resilient Backpropagation (RBP), and Bayesian
Regularization Backpropagation (BRBP) to train the ANN. The number of neurons in the hidden
layers along with the learning rate was varied to understand the effect of these parameters on
the performance of ANN. The proposed ANN was trained using experimental data obtained from
extensive experimentation in the laboratory under controlled environmental conditions. The proposed
model demonstrates promising results and can be used to monitor outdoor high voltage insulators.
It was observed from obtained results that changing of the number of neurons, learning rates, and
learning algorithms of ANN significantly change the performance of the proposed algorithm.

Keywords: critical flashover voltage; Artificial Neural Networks (ANN); Gradient Descent
(GD); Levenberg-Marquardt (LM); Conjugate Gradient (CG); Quasi-Newton (QN); Resilient
Backpropagation (RBP); Bayesian Regularization Backpropagation (BRBP)

1. Introduction

Outdoor high voltage insulators are exposed to various types of stresses. Stresses include
mechanical, electrical, thermal, and environmental stresses. To simulate the effect of these stresses
in the laboratory, different types of techniques are used. High-voltage stresses and artificial rain and
fog are a few examples. The critical flashover voltage of insulators depends on the insulator design,
surface roughness, orientation, rain, humidity, temperature, fogs, Ultraviolet (UV) radiations, wind
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speed, direction, and distance from the pollution source [1,2]. Although the performance of outdoor
insulators is affected by many parameters, pollution deposition on the insulator surface is considered a
major factor in the deteriorating performance of insulators. Pollution deposition on outdoor insulators
surface may be due to industrial emissions, salt spray from the sea, and chemicals” emissions from
vehicles and or agriculture. The change in the performance of outdoor insulators due to pollution
deposition depends on the type of pollution constituents. Generally, pollution deposited on the
insulator surface is classified into two major types: inert pollution and active pollution. The effect
of active and inert pollution on the insulator performance is different resulting in errors of flashover
voltage calculations [3].

Intelligent techniques such as fuzzy logic [4], Support Vector Machine (SVM) [5], Artificial Neural
Networks (ANN) [6-8], Hidden Markov Model (HMM) [9], K-means clustering [10], Discrete Wavelet
Transform (DWT) [11], S-Transform [12], have been extensively used in electrical power system and
high voltage engineering problems. These intelligent systems can be successfully utilized for the
condition monitoring of high-voltage outdoor insulators to increase the reliability of power system
transmission and distribution as well as minimize human efforts and cost [13].

With the increase in transmission line voltages and increased distance of renewable power
sources from the loads, the importance of research on the pollution performance of insulators has
significantly increased. The mechanism of flashover in high voltage porcelain, glass, and ceramic
insulators under contamination has been studied extensively in the past [14-16]. Many researchers
have proposed mathematical models to predict the critical flashover voltage under uniform and
non-uniform pollution [17,18]. An improved mathematical model has been proposed in Reference [19]
to estimate pollution flashover voltage of ceramic insulators based on dimensional analysis of the
flashover influencing parameters. Shahabi et al. [20] studied the flashover process of outdoor insulators
by adding a random value to the discharge length to account for wind speed, direction, and thermal
convection on the discharge. Palangar et al. [21] proposed an improved dynamic model for predicting
the critical flashover parameters of ceramic insulators by incorporating capacitance in the equivalent
circuit of the dry band.

Apart from mathematical and numerical modeling, many researchers have proposed intelligent
systems such as ANN for flashover voltage prediction [6,8,22]. Salem et al. [22] combined Adaptive
Neuro Fuzzy Inference System (ANFIS) with ANN and used insulator height, diameter, form factor,
creepage distance along with Equivalent Salt Deposit Density (ESDD) as input parameters to train
the model. In Reference [23], the authors applied dimensional analysis to the proposed ANFIS-based
ANN network by establishing a relationship between critical flashover voltage and leakage current.
The arc constant of the mathematical model for obtaining the test data was optimized using a Genetic
Algorithm (GA) for improved results.

Another important intelligent technique used for flashover prediction is SVM, which offers the
advantage of global optimality. Least Square SVM (LS-SVM) was proposed in Reference [24] for
prediction of pollution severity and critical flashover voltage based on insulator diameter, height,
ESDD, and form factor. Ming-Yuan et al. [25] estimated insulator leakage current using SVM
by finding correlation between weather conditions and leakage current. Different meteorological
parameters were combined with leakage current parameters generated from different types of insulators.
Gencoglu et al. [26] proposed LS-SVM for prediction of flashover voltage by generating the training
data set from numerical models based on Finite Element Method (FEM). The LS-SVM parameters were
tuned using a grid search algorithm for improved accuracy.

Saranya et al. [27,28] proposed a new method for condition monitoring of outdoor insulators
by identifying insulator arc faults using phasor angle measurements. The insulator arcs have been
classified using SVM to support the design of improved protection schemes for smart grids. A modified
LS-SVM scheme has been proposed by applying a fixed set of support vectors to predict the critical
flashover voltage under polluted conditions [5]. The Quadratic Renyi Criterion (QRC) is used to select
support vectors from the training data set.
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The existing literature demonstrates considerable work on the application of intelligent systems
in predicting the flashover voltage of outdoor high voltage insulators. However, there are specific
gaps in the current knowledge which need to be further investigated. The existing ANN algorithms
used the Gradient Descent (GD) algorithm due to its faster convergence and lower computation time
by compromising the prediction accuracy. The current literature also considered insulator height,
diameter, form factor, and ESDD as input parameters for flashover prediction, while the flashover
voltage also depends on environmental conditions such as temperature, humidity, and non-soluble
pollution. Apart from that, fixing the number of neurons, learning rates, and the number of hidden
layers significantly changes the prediction accuracy of ANN, which needs to be investigated. One of
the major limitations of existing ANN-based prediction models is that most of them rely on data from
mathematical models which are based on a particular assumption. Additionally, current mathematical
models are applicable to porcelain and glass insulators and cannot be applied to polymeric insulators
without modification due to the different flashover mechanism of polymeric insulators as compared to
porcelain and glass insulators.

2. Materials and Methods

ANN and other machine learning algorithms have been used to predict critical flashover voltage,
leakage current, and ESDD. However, there are some limitations of the existing literature such as;
(1) use of insulator dimensions and pollution severity as input parameters for learning and ignoring the
environmental conditions (humidity and temperature); (2) using a single learning algorithm for training,
for example, GD in most cases; (3) the training data set is either small or generated from mathematical
models. This paper presents an intelligent system for flashover voltage prediction of polymeric
insulators using experimental results as a training data set for training the ANN. The experimental
results of critical flashover voltage are obtained under controlled environmental conditions. To increase
the sample space and accuracy of the proposed model, bootstrapping is applied to the actual data set.
The proposed NN model is tested for different learning algorithms such as GD, Levenberg-Marquardt
(LM), Conjugate Gradient (CG), Quasi-Newton (QN), Resilient Backpropagation (RBP) and Bayesian
Regularization Backpropagation (BRBP). The number of neurons in the hidden layer, the number of
hidden layers, as well as learning rate, are varied to obtain the optimum parameters. The prediction
accuracy of each model is tested using Root Mean Square Error (RMSE), Mean Absolute Percentage
Error (MAPE), Regression Value (R) and Normalized Mean Square Error (NRMSE).

2.1. Experimental Setup and Test Methods

High voltage tests were performed on rectangular samples of HTV silicone rubber under controlled
environmental conditions. The clean fog method (solid layer) based on modified IEC 60507 was
used to apply soluble and non-soluble pollution on the insulator samples. The test setup and sample
configuration are shown in Figures 1 and 2, respectively. The insulator samples were energised using a
power frequency 0-100 kV test transformer. Before energising, samples were placed in the climate
chamber for a considerable amount of time to make sure no dry bands were present, and the samples
were properly wetted. Initial tests were performed on a uniformly polluted sample to determine
the probable flashover voltage. Once the probable flashover voltage was determined, the remaining
tests were performed by applying voltage in steps of 5% of the probable flashover voltage. Each step
was maintained for 2 min, and if no partial arcs appeared, the voltage was increased further. In the
case of appearance of a partial arc, the voltage was kept constant at that step until the partial arc
vanished or lead to flashover. This process was repeated for each sample. As silicone rubber loses
its hydrophobicity under energization, the sample was replaced after every two tests. This helped in
maintaining the uniform pollution layer and the hydrophobic nature of silicone rubber.
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Experimental Results

Air pollution deposited on the insulator surfaces can be broadly classified into two major types:
active and inert. Active pollution is represented with ESDD, while inert pollution is represented with
NSDD. NSDD is the non-soluble part of pollution such as dust, cement, or sand, which does not
dissolve in water but forms a thick layer on the surface of the insulator, which may affect the flashover
behavior. The effect of ESDD and NSDD is different on flashover voltage of polymeric insulators as
presented in Reference [1]. Figure 3 shows the relationship between critical flashover voltage and ESDD
at different values of NSDD. A total of 16 tests were performed at different combinations of ESDD and
NSDD. The results show that as the value of ESDD and NSDD increases, the critical flashover voltage
decreases. This is mainly due to the increase in leakage current due to the increased conductivity of the
pollution layer, as well as the increased thickness of the pollution layer when NSDD is increased. The
increase in the thickness of the pollution layer resists the recovery of hydrophobicity and facilitates
uniform wetting of the pollution layer, resulting in increased leakage current. The temperature and
humidity were kept constant during these tests to minimize the effect of environmental conditions.

The effect of relative humidity on critical flashover voltage is shown in Figure 4. The relative
humidity was varied within the climate chamber, while temperature and NSDD were kept constant.
Samples with different ESDD values were tested. The critical flashover voltage decreased as humidity
and ESDD increased. This may be due to the increase in pollution constituent dissolving in the humid
air surrounding the insulator.
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Figure 3. The relationship between NSDD and critical flashover voltage at moderate humidity and
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Figure 4. The relationship between relative humidity and critical flashover voltage at 10 °C temperature
and NSDD of 0.75 mg/cm?.

Apart from humidity, inert, and active pollution, ambient temperature also affects the flashover
process. The influence of high temperature on insulator performance in desert conditions has been
investigated in the literature. However, here, the focus is on the effect of temperature under polluted
and humid conditions, which influence the hydrophobicity loss and recovery process of polymeric
insulators. The results of the critical flashover voltage at four different temperature values are shown in
Figure 5. It can be observed that critical flashover voltage decreases with an increase in temperature and
ESDD. There can be multiple explanations, such as a change in the hydrophobicity recovery process
and conductivity of the pollution layer. However, the obtained results show that as the temperature
increases, the conductivity of the pollution layer increases, which leads to an increase in leakage
current, decrease in surface resistance, and critical flashover voltage.
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Figure 5. The relationship between ambient temperature and critical flashover voltage at moderate
humidity and NSDD of 0.75 mg/cm?.

2.2. Proposed Artificial Neural Network Algorithm

Machine learning algorithms such as ANN can be effectively used in high voltage engineering to
minimize cost and time of experimentation. In this work, we proposed a machine learning algorithm
based on NN to predict the critical flashover voltage of outdoor high voltage insulators. Details about
the proposed machine learning algorithm are given in the following section.

2.2.1. Bootstrapping Method

Bootstrapping, or sometimes called bagging, is a statistical technique to increase the sample space
when a limited number of data samples are available for training machine learning algorithms. Apart
from increasing the number of observations, bootstrapping also offers the advantage of improved
accuracy as well as increased effectiveness of percentage estimation. A bootstrap sample is a random
sample conducted with replacement; it means the number of times a random observation is selected
from the real data. Rather than relying on the theory, which gives the sets of all possible estimates, the
bootstrap generates estimates through re-sampling distribution named bootstrap distribution, and the
standard deviation of all estimates is called the bootstrap standard error. There are two main reasons
to use the bootstrap approach instead of large sample theory approach: one is the lack of large sample
data, and the other is to workout with the standard error of the estimates.

In this technique, sampling is performed by extracting only one sample at a time from a given
data, and the selected sample is returned to the data set. In this way, the sample appears more than
once in the given test data in the next iteration. This method of sampling is known as sampling with
replacement. The bootstrap method can be summarized as [29]:

e  Select the number of samples which need to be extracted from given data
e  Select the appropriate size of selected samples

e  For each selected sample, perform sampling with replacement

e  Compute the various statistical parameters of the given data

e  Lastly, compute the mean of all statistical parameters.

In this paper, a two-dimensional chaos map known as Tangent Delay Ellipse Reflecting Cavity
Map System (TD-ERCS) was applied for the random selection of samples. This technique is used
widely for the generation of random numbers and permutations. This type of chaos system is preferred
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for the bootstrapping method because of its equiprobability and nonlinear nature [30]. TD-ERCS can
be generalized as:
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Here u, x,, @ and m are the seed parameters. These seed parameters are used as the key in
random number generation from the TD-ERCS map. Random sequences are denoted by x,, and v, in
Equations (1) and (2). Machine learning algorithms were trained by taking 100 bootstrap samples, and
44 observations were made for each bootstrap sample. Given data was tested by using unselected
observations. For each chosen sample, performance matrices as well as average value () were
computed. Moreover, the deviation of each value from the average value was described in terms of
standard deviation (STD). A schematic diagram of the bootstrapping method is shown in Figure 6.
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y=3 Y.y ©)
b=1
B 2
STD = Zb—g(g - y) (10)

2.2.2. Artificial Neural Network

ANN is a specialized computer program that is trained through various learning algorithms for
the identification of any linear or non-linear relationship between variables of interest in any raw data
set. ANN is gaining importance in almost every field of life, ranging from business, social sciences,
to engineering and sciences, mainly because of its exceptional large data handling and analyzing
capability. A significant amount of research work has already been conducted, both for offline and
online state monitoring, in power engineering through ANN [31,32]. In the implementation of ANN
analysis, it is very crucial to devise a suitable ANN model with valid input and output variables.
Proper scrutiny of data is very important as it ensures the preciseness of acquired results. Once the
ANN model is developed, it can then be utilized for accurate estimation of an output variable by using
a given set of input values.
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The main processing entity in the ANN model is the neuron. ANN contains many neurons which
are linked to each other through specialized information-carrying pathways known as interconnections.
There can be multiple inputs to a single neuron, and it can have one or more outputs. Generally,
external stimuli or outputs of any other neuron act as the input to the given neuron. One possibility is
that output of a neuron is fed back as the input to the same neuron. Each interconnection of neurons is
associated with a weight. The output is produced only if the weighted sum of all neurons acting as
input to a certain neuron crosses a predefined weighted sum limit. The ANN model contains three
basic layers: the input layer, output layer, and one or more hidden layers. The number of neurons in
each layer should be decided while implementing the ANN [33]. A schematic diagram of a typical
ANN network is shown in Figure 7.

Hidden Layer : Output Layer
i

Input Layer

Figure 7. Generic diagram of an ANN network.

The ANN model used in this work has four inputs (ESDD, NSDD, humidity, temperature) and
one output (Flashover voltage), as shown in Figure 8. The number of neurons in the hidden layer and
the number of hidden layers were varied to study the effect of varying the number of neurons and
hidden layers on the performance of each algorithm. Apart from that, six different types of training
algorithms were used.
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Figure 8. Schematic diagram of the proposed ANN network.

To avoid saturation while training the ANN model, it is important to perform normalization of
the given data set. There are two different ways in which normalization can be performed. In the first
method, normalization is achieved by considering only maximum values of input and output variables,
while in the second method, both maximum and minimum values are considered. In this case, we used
the first method of normalization as described below. If there arep =1,2,3 ..., n, number of patterns,
i=1,2,3,...,n;number of input values, and k=1, 2, 3, ... , n; the number of output values. Then,

i max = maX(”i(P)) (11)
Ok,max = maX(Ok (P)) (12)
Therefore, normalized values are
ni(p)
1 nor(p) = n? (13)
i,max
Ox(p)
Ok,nor(p) - Ok,max (14

After normalization, the input and output values will be between 0 and 1. The different types
of learning algorithms used in this study such as GD, LM, CG, QN, RBP and BRBP are given in
Appendix A.

3. Results

In this paper, various machine learning tools were applied to predict the critical flashover voltage
of HTV silicone rubber outdoor insulators. A comparison between the predicted and actual value
of flashover voltage obtained through the LM algorithm is shown in Figure 9. It can be observed
from Figure 9 that forecasted values for flashover voltage are closer to the actual values. A similar
comparison for the prediction of critical flashover voltages using machine learning techniques was
done in Reference [34], which validates the results presented in Figure 9. For better visualization
and comparison of these machine learning algorithms, it would be more appropriate to use some
matrices for describing the accuracy and validity. In this paper, the accuracy and preciseness of the
implemented algorithms were described in four matrices. These are Root Mean Square Error (RMSE),
Normalized RMSE (N-RMSE), Mean Absolute Percentage Error (MAPE) and R value. RMSE is the
square root of the average of squared errors, while NRMSE is the normalized value of RMSE. In MAPE,
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the percentage of the average of the error value is calculated. Mathematically, these matrices can be
described as:
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Figure 9. Comparison of the predicted and actual flashover voltage using the LM learning algorithm
and 10 neurons in the hidden layer.

Here, 'n’ is the number of samples, ‘FV 4;" and ‘FVp;” are actual and forecasted critical flashover
voltage values. The values of these performance metrics must be close to some definite value. Usually,
values of RMSE, NRMSE, and MAPE, which are approaching zero imply the efficient operation of
a machine learning algorithm. In other words, the machine learning algorithm will be considered
reliable only if its error values obtained through RMSE, NRMSE, and MAPE are approaching zero,
while in terms of the R parameter, the machine learning would be rated as good enough if its error
value in terms of R is closer to 1.

A performance comparison, based on variation in the number of neurons in the hidden layers of
different machine learning algorithms, is depicted in Figure 10. For the GD algorithm, the error value
for RMS, NRMSE, and MAPE decreases with the increasing number of neurons from 5 to 15. However,
a further increase in the number of neurons to 20 results in an increase of error values. The R-value for
GD first increases from 5 to 15 neurons, and further increment to 20 neurons results in a decrement of
the R value. Thus, increasing the number of neurons from 15 to 20 adversely affects the performance
of GD. In the case of the RP algorithm, error values for RMS, NRMSE, and MAPE first decrease on
increasing neurons from 5 to10. Further increase in the number of neurons leads to an increase of error
values (RMS, NRMSE and MAPE). A similar trend is followed by the R-value where the increase of the
number of neurons beyond 10 decreases the R value.
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Figure 10. Performance parameters comparison of the different learning algorithms on the basis of
changes in the number of neurons in the hidden layer. (a) RMSE; (b) NRMSE; (c) MAPE (%); (d) R value.

Thus, increasing the number of neurons from 10 to 20 adversely affects the performance of RP. The
SCG, LM and BFG Quasi newton algorithms exhibit rather random behavior. In these algorithms, an
increase in the number of neurons from 5 to 10 strengthens the efficiency of the given machine learning
algorithm. A further increase in neurons from 10 to 15 overshoots the error values for RMSE, NRMSE,
and MAPE and decreases the regression value, R. The behavior of the BR backpropagation algorithm is
quite distinct from the above-stated algorithms where an increase in the number of neurons boosts the
performance of ANN. Overall, it can be concluded that increasing the number of neurons to a certain
limit has a healing effect on the GD algorithm and BR backpropagation algorithm. For the rest of the
algorithms, the number of neurons must be chosen as the optimum, and a general trend should not
be followed.

The above-mentioned results are based on a single hidden layer, and only the number of neurons
in the hidden layer was varied. Increasing the number of hidden layers also effects the performance
of the neural network. In this paper, three hidden layers with different numbers of neurons were
considered. The results obtained are shown in Figure 11, where [x, y, z] in the legend represents the
number of neurons in each hidden layer. It was noted that by increasing the number of hidden layers,
the computational complexity of the proposed neural network increased; however, the computational
performance of proposed algorithms was not tested in this work. Comparing the results shown in
Figure 11 to that of Figure 10, it can be noted that the performance of some algorithms improved
with the increased number of hidden layers, while others deteriorated at the same time. The BR
backpropagation algorithm which performed better for a single hidden layer worsened when increasing
the number of hidden layers and neurons. In other words, increasing the number of hidden layers
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caused overfitting of the given data. Similarly, the performance of the RP algorithm is also adversely
affected. On the other hand, the performance of the remaining algorithms has improved as indicated
by their error values. It is very important to note here that the performance of any algorithm is also
dependent on the number of neurons in that layer. All these algorithms exhibit random behavior. For
example, in the case of the SCG algorithm, increasing the number of neurons in the hidden layer from
[20, 10, 5] to [30, 20, 10] reduces the RMSE from 1.22 to 0.59, NRMSE from 0.19 to 0.069, and MAPE
from 10.93 to 5.09%.

0.4
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Figure 11. Performance parameters comparison of the different learning algorithms based on changes in
the number of neurons and using three hidden layers. (a) RMSE; (b) NRMSE; (c) MAPE (%); (d) R value.

Choosing a certain learning rate for a neural network algorithm is also very important for improved
performance. The learning rate is considered a hyperparameter in neural networks, and it accounts for
alterations that should be made in the current model in response to calculated errors. A small value
of the learning rate requires a large number of training epochs, whereas a large learning rate value
may cause convergence of the algorithm rapidly to the local minima or maxima. Figure 12 shows the
performance comparison of the GD algorithm for different learning rates. It can be observed from these
plots that increasing the learning rate from 0.0025 to 0.0075 apparently does not have any significant
effect on error values obtained through RMS, N-RMS, and MAPE. However, a further increase in the
learning rate value depicts the dominant increment in the value of these matrices, therefore indicating

219



Electronics 2020, 9, 1620

a drastic deterioration of the GD algorithm. On the other hand, the R-value did not account for any
variation in the learning rate value, and it remains constant.
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Figure 12. Performance parameters comparison of the GD algorithm for different learning rates.
(a) RMSE; (b) NRMSE; (c) MAPE (%); (d) R value.

4. Conclusions

In this paper, different training algorithms of ANN were applied for the prediction of critical
flashover voltage of insulators. These learning algorithms were applied by varying various parameters
like the number of neurons, hidden layers, and learning rate. It was found that increasing the number
of neurons to a certain limit can boost the performance of the machine learning algorithm for accurate
prediction of flashover voltage, but after crossing a certain threshold, any further increase deteriorates
the performance. Similarly, increasing the number of hidden layers had a positive influence on
machine learning algorithms, except BR backpropagation, whose performance was affected badly with
increasing hidden layers. The performance of the GD algorithm changed with the changing learning
rate. Any inappropriate value may lead to large prediction errors of deployed algorithms. Therefore, it
is important to choose the optimum values of the learning rate, number of neurons, and hidden layers
for better performance of the machine learning algorithm. Additionally, the performance of the ANN
algorithm is related to the type of learning algorithm utilized. These results can help scientists and
engineers choose the best learning algorithm and associated parameters while predicting the critical
flashover voltage of outdoor polymeric insulators.
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Appendix A

This section describes the details of the learning algorithms used to train the neural network.

Appendix A.1. Gradient Descent

The GD method is usually applied for maximization or minimization of any n-dimensional
function. It is described in the form of a gradient vector ‘g’ that points towards the steepest point of the
given n-dimensional function f(x_n), given that ‘g” is differentiable on that point. Mathematically;, it
can be written as:

e(xq1, x2, x3,....xn) = V fx1,x0,%3,....%) (A1)

where V' is the gradient operator. The gradient is equivalent to the derivative of that point, therefore,
a negative gradient will always point to the steepest point (minima) of the given function ‘f(x;,)". In
physical terms, gradient descent means moving downwards in steps proportional to the magnitude of
gradient vector ‘|g|". There are many shortcomings associated with this algorithm, like convergence to
local minima instead of global and a low convergence rate. But due to low memory requirements, it is
still considered a good algorithm for processing large data sets.

Appendix A.2. Conjugate Gradient Descent (CGD)

For quadratic functions, the GD algorithm exhibits slow convergence and involves many iterations.
Therefore, to overcome this shortcoming, the CDG method was introduced in Reference [35]. This
algorithm detects the minimum of any quadratic function ‘f” by searching in orthogonal directions.

Let f(x) be the function to be minimized, with ‘x” being a vector of ‘N’ variables. The CGD
algorithm consists of the following steps:

The CGD Algorithm

1. Start with initial set point of “x_0’ (iteration = k = 0).
2. In the second step, direction is computed as given below:

st = L)

i-  If g(k) = 0, then x(k) is already present at optimal minimum point.
ii- If g(k) # 0 and k = 0, then r(k) = —g(k), move to step 3.
iii- If g(k) # 0 and k > 0, then r(k) can be calculated as:

r(k) = —g(k) + — xr(k—1)

3. Inthis step, w(k+1) is calculated, which steers to the minima of function ’f” in the direction w(k) + a X (k).
4. k =k +1, move back to step 2.

Optimal point is obtained in K iterations where K < N
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Appendix A.3. Quasi Newton Method

The Quasi-Newton method is an improved form of Newton’s method. Newton’s method requires
a lot of computational space as it involves calculation of the Hessian matrix. In the Quasi-Newton
method, an approximation of the inverse Hessian matrix is made at each iteration step. Newton’s
method initiates by finding out first derivative ‘V,f(x)’, with an initial estimate of ‘x*’. This nonlinear
function “Vf(x* 4 1)’ can be expanded by applying the Taylor series, up to two terms only:

fo(xk+u) = g(xk+u) = g(xk)—i- Vg )u (A2)

Further, setting it equal to zero and assuming u = u*

g(xk) + Vi g(xk)u =0 (A3)

Veg(d)u = —g() (A4)

where ‘V,g (x¥) is Hessian matrix. As stated above, the Quasi-Newton calculates only the
approximate value for the Hessian matrix. This approximation is made possible by making use
of Broyden-Fletcher—Goldfarb—Shanno (BFGS) algorithm. By applying the Quasi-Newton BFGS
algorithm, the following secant condition is obtained:

Vﬁf(xkﬂ).(xk*l - xk) ~ fo(xkﬂ) - fo(xk) (A5)
Hessian matrix ‘V2 f (x**1)" is replaced by approximation ‘H*".
Hk+1dk =y (A6)

where, df = (ka - xk), and y = fo(ka) - fo(xk) = gfF1 ok,
Hessian matrix ‘H**!” can be calculated by an earlier computed Hessian matrix ‘H*" as follows:

T k., kT
Hk+l:Hk+ﬁ+]/y

dk ng Ak ykT (A7)
Moreover, further simplification to the given problem is made by assuming AF = H*
And A¥1 can be computed as:
dk kT k gkT k kT
AR = (I_ k;{ k)Ak(I_ ykT k) * dk;l k (A8)
dy ayr) Ay

Appendix A.4. Levenberg-Marquardt (LM)

The LM algorithm is widely used for solving nonlinear least-squares problems. It is also termed
as the damped least-square method. This algorithm does not involve the computation of the Hessian
matrix. However, it incorporates the Jacobean matrix and gradient vector for obtaining the optimal
point of any function ‘f’. The optimal point is calculated using the following steps:
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Calculate Steps

1. Let jx denotes Jacobian matrix, dy indicates search direction, the initial iteration parameter value is set to
greater than zero (a; > 0):
0<po<p1<pp<1

2. If ]',{Fkll < ¢, terminate the criteria here. Otherwise
e = ax(O[Fl|+(1 + 0)]| e

compute dy as:
(it je + end)d = ~j{F

3. Then solve the following equation

Pl e a0l
A A A AL

xptde if e >po
X1 =

X else
4oy if re <p1
U1 =9 a if reelpr, p2]
max{%,m} else

k =k + 1, move back to step 2.

Appendix A.5. Resilient Backpropagation

The RBP algorithm is one of the most widely deployed learning algorithms in neural networks.
In this algorithm, the magnitude of the partial derivative is ignored, and only its sign is used as an
indication for introducing any alterations in weights. An update in the weight is made only if the sign
of partial derivative changes. The work of this algorithm can be summarized as [36]:
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The RBP Algorithm

1. If the sign of derivative of the given function does not change in the next succeeding iterations, then an
update in the weight is made as indicated below.

JE JE
If (awk/‘ (t - 1) X Wk](t)) >0

Then
Ak;(t) = minimum (Akj(t -1)x 17+,Amax)

JE
Awk;(t) = —sgn(awkj (t)) X Ak;(t)
Awkj(t + 1) = wk](t) + Awkj(t)
2. But, if the sign of derivative changes in the next iteration then weight decreases as shown below.

JE JE
If (Wk/(t - 1) X Wk](t)) < 0, Then

Akj(t) = maximum (Akj(t -1)xn-, Amin)

Awk;(t+1) = wk;(t) — Awk;(t - 1)

JE

3. Incase, derivative is equal to zero then no changes are made to the weight value:

JE JE —

Awk;(t) = —sgn(aiuij (t)) X Ak;(t)
Awkj(t +1) = wk](t) + Awkj(t)

Where Ak;= size of update

Appendix A.6. Bayesian Regularization Backpropagation

Traditional backpropagation method performs the task of minimization of given function
F=E, (A9)

where
n

Eg=) (ti—a) (A10)
i=1
In this equation, ‘n” denotes the number of training inputs, ‘t;” indicates anticipated output and ‘a;’
is the ith output obtained as a result of neural network operation.
In regularization problems, the objective function is described as.

F = aEqy + BE, (A11)
n

Ev =Y w? (A12)
i=1

Here, ‘E;," is the penalty factor and is equivalent to the addition of the squares of all network
weights and ‘o and 8’ are regularization parameters. It is very important to obtain optimal values for
these regularization parameters. Generally, smaller weights for these parameters are preferred as it
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enhances the generalization capability of the given network. Too large a value of a (a >> f) results in
tolerance to higher errors. The converse condition (¢ < ) may lead to overfitting. In Reference [37],
David Mackay presented a methodology for obtaining optimum weights of regularization parameters,
commonly known as Bayesian regularization.

In the Bayesian regularization algorithm, a network’s weights are considered as random variables.
Let ‘D’ indicate a training data set for a particular neural network model ‘M’, then the posterior
distribution for network’s weights can be written as;

P(D

w, B, M)P(w
P(Dla, B, M)

a, M)

P(wD, a,B,M ) = (A13)

Here, ‘w’ is the vector containing network’s weights, P(w|a, M) is prior distribution, P(D|w,,M) is
likelihood function and P(D|a,,M) is a normalization term. Normalization factor P(Dla, , M) can be
expressed as;

P(D

a,B,M) = f P(Dlw, , M)P(wla, M)dw (A14)

By considering the nature of noise in training data and prior distribution to be Gaussian in nature,
we can write then,

P(Dfw M) = 55 exp(-pE) (A15)
P(wla, M) = Zwl(a) exp(~aEu) (A16)
where
Zp(p) = (%)2 (A17)
Zoola) = (g)l2V (A18)
P(wlD, a,8,M) = % (A19)

Zp(a,B) = Zp(B) + Zw(a). P(D

The main purpose is to find out the values or weights that will cause minimization of ‘F(w’). In
other words, this is analogous to maximization of P(w|D, a, 5, M). So, by Baye’s rule:

a,B,M) (A20)

P(D

a, B, M)P(a,p
P(DIM)

M)

P(a,B

D,M) = (A21)

By considering the prior density P(Dla, f, M) to be uniform, then maximization of posterior P(x,
BID, M) will be equal to the maximization of P(D|a, 5, M).

(2 (8)) exp(~BED)(£ () ) exp(-aEy)

Pl B M) = (% (a,p)) exp(~F(w)) 42
P(D|a, B, M)= _Zrap (A23)
P 70 (B) Zal@)
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"Zyw(a) and “Zp(p)’ are already known values. ‘Zr(, 4)" can be estimated by Taylor expansion. For

normalization constant, we can solve it as:

1

_1 5
Zp = 2n¥(det(HMP) )2 exp (—F(w)"") (A24)
Here, ‘H’ is Hessian matrix and can be calculated as
H = BV?Ep+aV?E, (A25)

Putting the value of “Zf” and further solving it gives us the optimum weight of 'a” and’f’at

'pr'. So, y
MP
a’t = 2Ew(wMP) (A26)
And MP n-y
g = ZED(wMP) (A27)
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